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Abstract
We review the description of classical gravitational scatterings of two compact
objects by means of the eikonal framework. This encodes via scattering amp-
litudes both the motion of the bodies and the gravitational-wave signals that
such systems produce. As an application, we combine the next-to-leading
post-Minkowskian waveform derived in the post-Newtonian PN limit with the
4PM static loss due to the linear memory effect to reproduce known results
for the total angular momentum loss in the center-of-mass frame up to O(G4)
and 2.5PN order. We also provide similar expressions for the change in the
system’s mass dipole, discussing the subtleties related to its sensitivity to the
Coulombic components of the field and to the nonlinear memory effect.
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1. Introduction

In gravitational theories, the standard perturbative approach to scattering amplitudes breaks
down at transplanckian energies E�

√
ℏ/G, as the effective gravitational coupling GE2/ℏ

becomes large. It is not surprising, then, that the problem of head-on collisions at high energies
is very challenging and, at the same time, very interesting, since it is closely related to the issue
of black-hole formation and unitarity. The regime where the incoming states are well separated
is instead much more tractable.

In this regime, which corresponds to the post-Minkowskian (PM) limit, it is possible to
rearrange the standard perturbation theory to resum the large contributions due to the coup-
lings between the highly energetic states and the gravitons. An efficient way to implement
this idea goes under the name of gravitational eikonal and has been studied in great detail
starting from the eighties [1, 2]. At the time, the focus was more on conceptual issues and on
string theory, while more recently, following [3–7], this approach has been applied to the study
of black hole encounters, see [8] and references therein. The basic idea is that the dominant
contributions to the S-matrix due to the large energy E take a simpler form after performing
a Fourier transform to impact parameter space, where they exponentiate to define a classical
quantity: the gravitational eikonal.

Here we will use this framework to describe the scattering of two massive scalar particles
minimally coupled to gravity in four spacetime dimensions. As mentioned, we work in the
regime where the impact parameter is much larger than the effective size GE and the goal
is to provide a quantitative characterization of the final state. The momentum of the massive
particles changes compared to the initial state because of the mutual gravitational interaction,
while at the same time radiation is produced in the form of gravitational waves. Thus, it is con-
venient to describe the final state as an operator acting on the Fock space of the gravitonmodes.
This eikonal operator [8–11] involves two main ingredients: the elastic 2→ 2 amplitude, with
external massive states representing the black holes, and the inelastic 2→ 3 amplitude with the
emission of one graviton. We will use these inputs up to 3PM, which means at next-to-leading
(NLO) order for the 5-point amplitude and at NNLO for the 4-point amplitude.

There is by now a vast literature on these amplitudes, their classical limit and the observables
that can be obtained from them. The deflection of the massive objects, also referred to as
classical impulse, was analyzed within different approaches up to 3PM in [9, 12–25], while
the state of the art for this observable goes beyond 3PM, with a complete analysis at 4PM [26–
30] and partial results at 5PM [31, 32]. The inelastic 2→ 3 amplitude and its relation with the
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classical gravitational waveform was discussed instead in [33–37] at LO and [38–44] at NLO.
When it comes to extracting observables from amplitudes, the eikonal operator framework can
be thought of as a reorganization of the Kosower–Maybee–O’Connell [45] strategy, whereby
classical gravitational observables are given by expectation values of operators in the final
states obtained by the action of the S-matrix [46]. A closely-related line of development is
based on efficiently solving the classical problem via worldline methods [28, 29, 31, 35, 47–
51].

Our main objective in this work is to use the eikonal operator to obtain explicit expressions
for the full Lorentz tensor

Jαβ = Jαβ +Jαβ + δJαβ (1.1)

describing in a covariant way the angular momentum and mass dipole moment lost by the
binary to the gravitational field. We will discuss more in detail each term in (1.1) below, but
the general convention is to use boldface symbols for quantities that are entirely determined
by gravitons with non-zero frequency and calligraphic symbols for contributions that depend
on the static gravitational field and in particular on the ‘zero-frequency gravitons’. The cov-
ariant angular momentum is closely connected to various subtleties related to low-frequency
gravitational modes, as already evident in the full PM results derived in [52, 53] at O(G2) and
in [11, 54] at O(G3). In particular, while dissipation of energy-momentum only takes place
via the emission of dynamical gravitational waves implying Pα = Pα, the two-body system
can lose angular momentum both via the emission of physical radiation modes, gravitational
waves, and due to the interaction with the static gravitational field [52, 54, 55]. The latter
effect is also intimately tied to BMS supertranslations, as emphasized by [56], as well as to the
memory effect [57–60] and the Weinberg soft graviton theorem [54, 55], and is thus closely
related to the core ‘infrared triangle’ characterizing the asymptotic properties of gravity [61–
63]. While several alternative formulas for the angular momentum loss have been proposed
[64–71], both kinds of contributions are taken into account by the manifestly covariant for-
mula for Jαβ of [54, 55], which we take as our starting point, being particularly natural in the
amplitude approach.

We discuss how these two contributions are encoded in the approach of the eikonal operator.
For the radiative part Jαβ , we review how to connect the formulas used in the covariant amp-
litude approach to the expressions used in the post-Newtonian (PN) literature in terms of the
transverse-traceless (TT) waveform [52, 72, 73] or equivalently of its multipole decomposition
[64, 73–75]. Then, we include in the eikonal operator the information encoded by the NLO
waveform, which was recently obtained in the PN limit from the small-velocity limit of the PM
answer [76–78]. From this, we obtain explicit expressions for Jαβ in the small-velocity expan-
sion, both for the spatial part Jij, the angular momentum proper, and for the mixed space-time
components Ji0, the mass dipole, in the center-of-mass frame. As we shall see, while Jij, is per-
fectly well defined and unambiguous, the Ji0 components retain a non-trivial contribution com-
ing from the tail part of the waveform [79–81] and inherit a dependence on the arbitrary scale
related to shifts of the retarded time induced by the tail effect [38–41, 82, 83]. This holds both
in the eikonal and in the standard PN approach. Following [64, 73, 84] however, in the center-
of-mass frame one can subtract the drift due to recoil by definingMi = Ji0 −

´
tṖi dt, and this

quantity is then well defined and independent of the aforementioned arbitrary scale. Note that
J̇i0 =−L̇i0 = Żi, where Lαβ is the mechanical angular momentum tensor and, following [84],
Zi represents the intial position of the center of mass of the system multiplied by the total
energy. We recall that, in the absence of radiation, the three components Zi represent the con-
served quantities associated to the invariance of the theory under Lorentz boosts, in the same
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way as the three components of the angular momentum are conserved due to invariance under
spatial rotations.

Then we turn our attention to the zero-frequency contributions, which were first included
in the eikonal setup in [55] (see also [8, 11, 85, 86]) by taking into account the interference
effects between the static field and the soft waveform determined by the linear memory effect
[57, 87, 88]. This strategy, already outlined in [54], allowed [55] to obtain a formally all-order
expression for this type of effect, Jαβ , see equation (3.30) of that reference. Contributions
arising from the nonlinear memory part of the soft waveform [58–60], which we denote by
δJαβ , are instead expected to enter at O(G4) by power counting and had been neglected in
[55]. Building on the approach of that reference, we derive here a general expression for δJαβ

and discuss its properties.
First, we show that the spatial components δJij are unambiguous at least up to and including

O(G6). Second, we find that δJij does not include anyO(G4) contribution, while it is nontrivial
at order O(G5). This means that the full zero-frequency contribution at O(G4) is captured by
Jij, for which we provide an explicit PM expression for generic velocities at order O(G4).
Combining this with the radiative part, obtained following the above strategy in the small-
velocity limit, we verify that Jij+Jij perfectly agrees up toO(G4) and 2.5PN order with results
obtained in [74, 75] for this observable. This nontrivial cross-check, whereby amplitude-based
results match previous PN expressions obtained from purely classical methods, supports the
picture presented above in terms of radiative and static contributions, and in particular the idea
that the supertranslation of [56] is exact inG. Finally, the nonlinear effect enters in a nontrivial
way the mass dipole components δJi0 already at O(G4) and induces the same sensitivity to
choice of the origin of retarded time mentioned above for the radiative contribution Ji0. While
there it entered due to the infrared divergence associated to the tail effect, here the time-shift
ambiguity arises due to a collinear singularity. For completeness, we include the PMexpression
for Ji0 up to O(G4) and the result for δJi0 at O(G4) in the small-velocity limit.

Another interesting feature appearing in the analysis of the static mass dipole components
Ji0 + δJi0 is their sensitivity to the Coulombic field of the binary system. As noticed in [69],
this is in fact an essential feature associated to the Lorentz covariance of Jαβ . As we will see,
the effect of the Coulombic field can be automatically taken into account by using all modes
in the de Donder gauge rather than restricting the static part of the eikonal operator to the TT
part (cf the discussions in [89–91]). Another subtlety associated to a rearrangement between
field and mechanical contributions is the so-called scoot, see [53, 92–96].

We also derive the analogous expressions involving the TT projection of the field, J TT
αβ +

δJ TT
αβ , which instead excludes the Coulombic field contributions, and show that, while the

angular momentum components coincide with the above ones, Jij = J TT
ij , δJij = δJ TT

ij , the
mass dipole components are different and in fact are free of collinear singularities and inde-
pendent of the above mentioned time shift. This comes at the price of losing Lorentz covari-
ance, since the resulting formula depends on the form of the reference vector entering the TT
projection. We are thus led to define Mi = J TT

i0 (note that static modes do not contribute to
the radiated energy-momentum) and similarly δMi = δJ TT

i0 . Once again, we present explicit
PM formulas forMi up toO(G4), and fall back to the PN expansion for δMi. To summarize,

Jij = Jij+Jij+ δJij , Mi =Mi+Mi+ δMi (1.2)

provide unambiguous expressions for the total variation of the ten charges associated to
Poincaré invariance in the center-of-mass frame. See table 1 for a visual guide to the prop-
erties of the various contributions entering the angular momentum and mass-dipole losses.
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Table 1. A short summary of the properties of the various contributions involved in the
angular momentum and mass-dipole losses. The Jij components in the center-of-mass
frame are completely regular and unambiguous. Instead, the Ji0 components inherit an
ambiguity under shifts of retarded time due to an IR divergence (tail effect) in Ji0 and
from a collinear singularity in δJi0. They can be removed by introducing the subtracted
and TT-projected quantity Mi.

Radiative Linear static
Nonlinear
static

Jij = Jij + Jij + δJij

4 4 4

Ji0 = Ji0 + Ji0 + δJi0

IR divergence Includes
Coulombic field

Collinear
singularity

Mi = Ji + Mi + δMi

Mi = Ji0 −
´
t Ṗi dt Mi = J TT

i0 δMi = δJ TT
i0

IR finite and unambiguous Excludes
Coulombic field

Nonsingular
and
unambiguous

It will be interesting to extend the analysis presented here, generalizing the discussion in
[8, 11] to also include the change in the mechanical angular momentum of the two-body sys-
tem ∆Lαβ =∆Lαβ1 +∆Lαβ2 at O(G4). This should allow one to check explicitly that the bal-
ance law for the total angular momentum Jαβ =−∆Lαβ holds, and we will provide a simple
argument to this effect in conclusions. An advantage of having both sides of the balance law
under control is that ambiguities associated with the arbitrary time translationmentioned above
should cancel out. It will also be interesting to complete our results by including the full PM
O(G4) expression for Jij andMi, and by extending them to include angular momentum losses
in the presence of tidal and spin effects [97–106].

The paper is organized as follows. In section 2, we briefly review the elastic eikonal expo-
nentiation and its upgrade to the operator version, which draws inspiration from the exponen-
tiation of soft graviton emissions [87, 88], paying particular attention to the role of static and
Coulombic modes. In section 3 we spell out our conventions for the asymptotic waveform, its
TT projection and its multipolar decomposition. In particular, we separate out the contribu-
tion due to the static field. Section 4 is devoted to a review of the energy-momentum loss and
serves as an occasion to anticipate several key points that also play an important role in the
following. Section 5 contains the new developments involving the angular momentum and is
divided into two parts. The first one deals with the calculation of the dynamical emission of
angular momentum Jij and mass dipole moment Mi, for which we provide explicit results up
to O(G4) in the small-velocity limit. In the second one, which focuses on static effects, we
present the static contributions due to the linear memory effect Jij, Mi, deducing the explicit
PM expressions at O(G4), and we derive the formula for the nonlinear static contributions
δJij, δMi showing in particular that δJij vanishes atO(G4). We end the section by collecting
the full expressions for Jij and Mi at O(G4) in the PN limit and by verifying the agreement
between Jij at this order and the results of [74, 75] up to 2.5PN. The paper also includes two
appendices. Appendix A contains useful Fourier transforms from time two frequency domain,
while appendix B provides details about the covariant uplift of the TT formula for the angular
momentum loss.
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2. Eikonal operator

The initial state we are interested in is very simple: two massive particles with masses m1, m2,
momenta p1, p2 and total center-of-mass energy1 E=−(p01 + p02). Since we focus on a scatter-
ing process, the final state will contain the same two particles with different momenta (p4 for
the particle of mass m1 and p3 for that of mass m2) plus radiation. In the standard perturbative
approach, one starts by considering the contribution of the Feynman diagram where a single
graviton is exchanged between the two massive particles. While we are interested in the four
dimensional case, we will need to used dimensional regularization D= 4− 2ϵ to make sense
of infrared (IR) divergent integrals at intermediate steps. In momentum space, the contribution
of such diagram to the 2→ 2 scattering amplitude reads

A0
(
q2
)
= 32Gm2

1m
2
2

(
σ2 − 1

D−2

) 1
q2

+ · · · , (2.1)

where

pµ1 =−m1v
µ
1 , pµ2 =−m2v

µ
2 , σ =−v1 · v2 ⩾ 1 (2.2)

and thus σ is the relative Lorentz factor between the two particles, while q= p1 + p4 is the
momentum carried by the exchanged graviton and the dots in (2.1) stand for terms that are
analytic in q2 in the q→ 0 limit. The basic idea of the eikonal approach is that the leading
contribution to the full amplitude, where many gravitons are exchanged, is obtained by expo-
nentiating the result in (2.1). This is done by introducing the ‘eikonal’ impact parameter2. be
by means of the Fourier transform

Ã0 =

ˆ
dD−2q⊥

(2π)D−2

A0
(
q2⊥
)

4Ep
ei beq⊥ , (2.3)

where E is the total center of mass energy as before, q⊥ is the part of q perpendicular to p1,2
and p is the spatial momentum in the center-of-mass frame satisfying

Ep= m1m2

√
σ2 − 1 . (2.4)

By using (2.1) in (2.3) one obtains the leading eikonal

2δ0 ≡ Ã0 =
2m1m2GD

(
σ2 − 1

2ϵ

)
Γ(−ϵ)

√
σ2 − 1

(
πb−2ϵ

e
) . (2.5)

We can now state the leading eikonal approximation to the S-matrix describing the scatter-
ing of two massive particles: it is simply the exponential of (2.5)

S(be)' e2iδ0 . (2.6)

1 We work in the mostly plus signature and conventionally take all momenta to be outgoing.
2 Another definition of the impact parameter is in terms of the total initial angular momentum L: L= pb where p is
given in (2.3). The magnitude of these vectors is related by b= be cos Θ

2
with Θ the deflection angle and also their

orientation is different by a relative rotation of Θ
2

(see [8] and references therein for a more detailed discussion on
this point and on how the transverse Fourier transform (2.3) arises).
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The Fourier transform back to momentum space S=
´
dD−2bee−ibeQS(be) can be well approx-

imated by a saddle point and one obtains a relation between the total momentum exchange Q
and the eikonal impact parameter be,

Qµ =
∂ 2δ
∂bµe

. (2.7)

Notice that Q captures the contribution of a large number of gravitons exchanged between the
two massive particles and is a classical quantity, while the momenta of the individual gravitons
are of order ℏ/be. Of course there are classical corrections to the leading eikonal phase dis-
cussed so far which promote the phase in (2.6) to a series of terms 2δ = 2δ0 + 2δ1 + · · · where
2δn is suppressed by a factor of (GE/be)n with respect to δ0 and determines as the (n+ 1)PM
correction to the classical impulse. The subleading eikonal terms can be extracted from higher-
loop corrections to the 2→ 2 amplitude, where more gravitons are exchanged between the two
massive particles. In order to do so, one has to subtract from the amplitude the contributions
already accounted for by the lower-order terms to isolate the new dynamical information, see
[8] and references therein for a discussion of this recursive procedure. Here, we just need to
mention that 2δ1 is real, so even at 2PM order the elastic eikonal provides a unitary approxim-
ation to the S-matrix. At 3PM, instead, radiation, i.e. emission of on-shell gravitons, becomes
relevant as highlighted by the fact that 2δ2 develops an imaginary part.

Let us start discussing this breakdown of elastic unitarity by focusing on the emission of
soft gravitons, which capture the low frequency limit of the gravitational wave emitted. In
this context ‘soft’ means that the frequency is small in comparison to the impact parameter:
ωbe � 1. A first effect of these soft gravitons is already visible in the 3PMelastic eikonal which
develops an IR-divergent imaginary part signaling that a purely elastic evolution is impossible
as the corresponding S-matrix element is suppressed by an infinitely small exponential factor
exp(− Im2δ2). In the soft regime, multi-graviton emissions are governed by the Weinberg soft
theorem [87, 88, 107]. According to this result, the amplitude Aα→β+N for the emission of N
gravitons with soft momenta kr and polarizations tensors εµνir (kr), with r= 1, . . . ,N, on top of
a hard process α→ β factorizes as follows,

Aα→β+N ∼

[
N∏
r=1

ε∗irµν (kr)F
µν
tot (kr)

]
Aα→β , (2.8)

as the product of the amplitude Aα→β for the hard process times N copies of the universal
factor

Fµν
tot (k) = κ

∑
a

pµa p
ν
a

pa · k− i0
, κ=

√
8πG (2.9)

where a in the last sum runs over all hard states (which can be gravitons themselves). We work
with the convention that all momenta pµa are regarded as formally outgoing, and define the
physical (future-directed) momenta kµa by pµa = ηakµa with

ηa =

{
+1 if ais outgoing

−1 if ais incoming.
(2.10)

Soft particles have wavelength much larger than any other length scale involved the process,
but still finite, hence k 6= 0 and the −i0 prescription in (2.9) is irrelevant for them. This is why
it was not considered in the original approach of Weinberg. However, extending the formula
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to‘zero-frequency gravitons’ as in (2.9) is useful, as we shall see, in order to capture static
contributions to gravitational observables such as the angular momentum.

The N-graviton soft theorem (2.8) essentially states that, to leading order in the soft limit,
graviton emissions are completely uncorrelated and produce a coherent superposition. A com-
pact way to encode this is to introduce the operator

Ŝs.r. = e2iδ̃(be) exp

[ˆ
k
θ (ω∗ −ω)

(
F(k)a† (k)−F∗ (k)a(k)

)]
, (2.11)

where 2δ̃ is obtained from the real part of the elastic eikonal discussed above3, aµν(k), a†µν(k)
are graviton creation and annihilation operators in de Donder gauge, which obey

2πθ
(
k0
)
δ
(
k2
)[
aµν (k) ,a

†
ρσ (k

′)
]
= (2π)D δ(D) (k− k ′) 1

2

×
(
ηµρηνσ + ηµσηνρ − 2

D−2 ηµνηρσ

)
. (2.12)

We also employed the shorthand notation

ˆ
k
=

ˆ
d4k

(2π)4
2πθ

(
k0
)
δ
(
k2
)
, Fa† = Fµν

(
ηµρηνσ − 1

2 ηµνηρσ
)
a†ρσ , (2.13)

where, as a first step, we make a further simplifying assumption: we consider only the soft
gravitons emitted by the scalar external states representing the black holes, so that Fµν has the
same form as in (2.9), but with the sum restricted to the massive states labeled by am

Fµν (k) = κ
∑
am

pµamp
ν
am

pam · k− i0
. (2.14)

In this way, Ŝs.r.|0〉 ‘dresses’ the vacuum with a coherent superposition of gravitons with fre-
quency ω < ω∗ emitted by the massive states. We will come back to the full soft expression
in (2.9) when discussing the role of the nonlinear memory effect, see equation (5.65) and
below. In the operator formalism just introduced the elastic process is described by 〈0|Ŝs.r.|0〉
and the divergent imaginary part of the 2δ2 mentioned above is obtained by normal ordering
the creation and annihilation operators in (2.11) [18].

They key physical idea that graviton emissions should generically be coherent in the clas-
sical limit, at least order by order in the small-deflection limit, has motivated the proposal of
a more general eikonal operator [10, 11],

Ŝ= e2iδ̃(be) exp

[
i
ˆ
k

(
τ̃µν (k)a†µν (k)+ τ̃∗µν (k)a

µν (k)
)]

, (2.15)

which should describe the final state of a classical collision even beyond the soft limit. While
2δ̃(be) is determined by the elastic amplitude, the new ingredient τ̃µν is the frequency-domain
field, which receives two types of contributions: a soft/static one and a hard/dynamical one.
Letting ω∗ denote the cutoff frequency marking the separation between the two,

τ̃µν (k) = lim
ω∗→0

[
−iθ (ω∗ −ω)Fµν (k)+ θ (ω−ω∗)W̃µν (k)

]
. (2.16)

3 In order to define 2δ̃, it is possible to link (2.11) to in and out states dressed by soft gravitons. See [8, 11] for the
precise mechanism through which 3PM Radiation-Reaction enters via the saddle-point conditions.
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Here Fµν(k) is the static contribution, which is captured by (2.14), while W̃µν is the dynamical
contribution. Eventually, we let ω∗ → 0, so the results captured by the first term in (2.16) are
due to the terms in the asymptotic metric fluctuation that are independent of this splitting (and
in the time domain, independent of t).

The dynamical contribution W̃µν can be written as the Fourier transform of a momentum
space ‘kernel’Wµν ,

W̃µν (b1,b2,k) =
ˆ

dDq1
(2π)D

dDq2
(2π)D

(2π)D δ(D) (q1 + q2 + k)2πδ (2p1 · q1)2πδ (2p2 · q2)

× eib1·q1+i b2·q2Wµν (q1,q2,k) , (2.17)

which can be derived from the classical limit of the 5-point amplitude A(5) describing the
scattering of the massive state with the emission of an extra on-shell graviton. The tree-level
approximationA(5)

0 for this amplitude was discussed in [33–35], and thenWµν
0 =A(5)µν

0 . The

one-loop expression for the amplitude, A(5)µν
1 , was obtained in [38, 39, 43]. Exactly as in the

elastic case, the NLO correction to the waveform kernel Wµν
1 is obtained from the amplitude

A(5)µν
1 after an appropriate subtraction [41, 42]. Because of its origin, the NLO contribution

Wµν
1 thus contains both real and imaginary parts, contrary to the leading term which is purely

real. This is the origin of some new subleading contributions in the calculation of the angular
momentum loss as discussed in section 4. Being derived from gauge-invariant amplitude, the
dynamical contribution obeys the transversality condition

kµW̃
µν (k) = 0 . (2.18)

3. Waveform

The eikonal operator in equation (2.15) determines the gravitational field sourced by the col-
lision via [45, 108]

hµν (x) = gµν (x)− ηµν =
1
2κ

〈in|Ŝ†
ˆ
k

(
eik·xaµν (k)+ e−ik·xa†µν (k)

)
Ŝ|in〉 . (3.1)

We then consider the limit of large radial distance r→∞ for fixed retarded time t and angular
direction nµ = (1, n̂), by letting xµ = (t+ r,rn̂). Focusing on the leading asymptotic limit of
the metric fluctuation, we then obtain [8, 108]

hµν (x) = gµν (x)− ηµν =
τµν (t,n)

r
+ · · · , (3.2)

where we can move from the frequency-domain to the time-domain representation using

τµν (t,n) =
4G
κ

[ˆ +∞

0
e−iωt τ̃µν (ωn)

dω
2π

+

ˆ +∞

0
eiωt τ̃∗µν (ωn)

dω
2π

]
. (3.3)

For practical applications, one can also focus on the gauge-invariant content of the dynam-
ical waveform W̃µν by taking its TT projection,

w̃µν (k) = Πµν,ρσ (k)W̃
ρσ (k) , (3.4)

9
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where the TT projector Πµν,ρσ(k) can be defined as follows,

Πµν,ρσ =
1
2

(
ΠµρΠνσ +ΠµσΠνρ −

2
D− 2

ΠµνΠρσ

)
, (3.5)

Πµν = ηµν +λµkν +λνkµ (3.6)

in terms of the arbitrary reference vector λµ obeying λ2 = 0, λ · k=−1. One often considers
expressions defined in the center-of-mass frame, where

kµ = ω (1, n̂) , n̂= (nx,ny,nz) = (sinθ cosϕ,sinθ sinϕ,cosθ) (3.7)

and then it is natural to choose

λµ =
1
2ω

(1,−n̂) , (3.8)

so that the transverse projector is purely spatial,

Πµν =

(
0 0
0 δij− ni nj

)
. (3.9)

Since the dynamical TT waveform reduces in this way to a traceless spatial tensor tangent to
the two-sphere, it can be equivalently presented as a multipolar decomposition [73, 109, 110],

1
κ
w̃ab =

∞∑
ℓ=2

1
ℓ!

[
nL−2UijL−2(u)−

2ℓ
ℓ+ 1

ncL−2ϵcd(iVj)dL−2(u)

]
Πij,ab , (3.10)

where UL and VL are symmetric trace-free (STF) tensors, we include the factor of 1
2 in the

symmetrization v(iwj) =
1
2 (viwj+ vjwi), and u denotes the dimensionless frequency variable

u=
ωb
p∞

. (3.11)

The multipole decomposition (3.10) is particularly useful in the PN limit, since order by order
in the small-velocity expansion the sum over ℓ truncates to the first few multipoles. Notice
that the multipoles introduce in (3.10) differ in one aspect from those that are more commonly
employed in the PN literature [73] as they do not contain the static G-independent part. As
mentioned above, those contributions are encoded in Fµν , see (2.16).

We choose to align our coordinate axes in the center-of-mass frame according to the fol-
lowing conventions,

bµe = bµ1 − bµ2 = be (0,1,0,0) , eµ = (0,0,1,0) , (3.12)

with eµ oriented along the spatial projection of the ‘average’ velocities ũµ1,2, satisfying ũ
2
1 =−1,

ũ22 =−1, defined by the O(G2)-accurate dynamics

pµ1 =−m1ũ
µ
1 +

1
2
Qµ , pµ4 = m1ũ

µ
1 +

1
2
Qµ ,

pµ2 =−m2ũ
µ
2 −

1
2
Qµ , pµ3 = m2ũ

µ
2 −

1
2
Qµ .

(3.13)

We fix the boost-freedom in the choice of reference frame by m1ũi1 +m2ũi2 = 0, which at
O(G2) is equivalent to pi1 + pi2 = 0. As discussed below equation (5.39), we will keep the

10
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same choice also at the next order inG. Furthermore, we fix the origin and thus the translation-
freedom by

E1b
µ
1 +E2b

µ
2 = 0 , (3.14)

where E1, E2 are the energies of the particles in the center-of-mass frame. Again, at this order,
equation (3.14) can be stated equivalently in terms of incoming or ‘average’ impact parameters,
since the two only differ by a rotation. We also introduce the ‘velocity’ p∞, the total mass m
and the symmetric mass-ratio ν according to

σ =
√

1+ p2∞ , m= m1 +m2 , ν =
m1m2

m2
, (3.15)

so that the PN limit corresponds to taking p∞ → 0.

4. Energy-momentum loss

The energy-momentum loss is insensitive to the static effects and thus equals the one radiated
via emission of gravitational waves Pα = Pα, taking the form [19]

Pα =

ˆ
k
kαρ(k) , (4.1)

where we introduced the following notation

ρ= W̃∗
µν

(
ηµρηνσ − 1

D−2 η
µνηρσ

)
W̃ρσ (4.2)

for the spectral emission rate, i.e. the phase space density of graviton emissions. Note that (4.1)
and (4.2) are invariant under translations and thus, for the scattering of scalar objects which
we focus on here, ρ is a function of the following invariants,

ρ= ρ
(
b2e ,be · k, ũ1 · k, ũ2 · k

)
. (4.3)

Let us also note that ρ starts at order O(G3) in the PM expansion, whenWµν is approximated
with the tree-level amplitude A(5)µν

0 ,

ρ= Ã(5)∗µν
0

(
ηµρηνσ − 1

D−2 ηµνηρσ

)
Ã(5)ρσ

0 +O
(
G4
)
= ρ0 +O

(
G4
)
. (4.4)

An important property of the leading-order spectral rate ρ0 is that, owing to the reality of the
tree-level amplitude in momentum space and to the Fourier transform (2.17),

Ã(5)µν
0 (−b1,−b2,k) = Ã(5)∗µν

0 (b1,b2,k) , ρ0 = ρ0

∣∣
be·k→−be·k

(4.5)

that is, ρ0 is an even function of be · k.
Thanks to the transversality condition (2.18), one immediately sees that equation (4.1) is

equivalent to the following expression involving the TT waveform w̃ab,

Pα =

ˆ
k
kα w̃∗

abw̃ab . (4.6)

11
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Following the decomposition (3.7) in the center-of-mass frame we thus have

κ2P0 ≡ κ2Erad = G
ˆ ∞

0

dω
π

˛
dΩ
2π

ω2w̃∗
abw̃ab , (4.7)

κ2Pi = G
ˆ ∞

0

dω
π

˛
dΩ
2π

ω2ni w̃∗
abw̃ab , (4.8)

which can be also obtained by integrating the following emission spectra expressed in terms
of multipole moments,

dErad

dω
=
G
π

+∞∑
ℓ=2

[
(ℓ+ 1)(ℓ+ 2) ω2U∗

LUL

(ℓ− 1)ℓℓ! (2ℓ+ 1)!!
+

4ℓ(ℓ+ 2) ω2V∗
LVL

(ℓ− 1)(ℓ+ 1)! (2ℓ+ 1)!!

]
, (4.9)

and

dPi
dω

=
G
π

∞∑
ℓ=2

Re

[
2(ℓ+ 2)(ℓ+ 3) ω2

ℓ(ℓ+ 1)! (2ℓ+ 3)!!
U∗
i LUL+

8(ℓ+ 3) ω2V∗
i LVL

(ℓ+ 1)! (2ℓ+ 3)!!

+
8(ℓ+ 2) ω2 ϵi abU

∗
aL−1VbL−1

(ℓ− 1)(ℓ+ 1)! (2ℓ+ 1)!!

]
, (4.10)

or the time-domain fluxes (see the useful relation (A.2c))

dErad

dt
=

1
32πG

˛
dΩ ẇabẇab ,

dPi

dt
=

1
32πG

˛
dΩ ẇabẇabni . (4.11)

Substituting into (4.9), (4.10) the post-Newtonian multipoles obtained in [77, 78] and integ-
rating over the frequency, one finds

Erad =
G3πm4

b3
p∞ν2

[
37
15

+

(
1357
840

− 37ν
30

)
p2∞ +O

(
p4∞
)]

+
G4m5

b4p∞
ν2

[
1568
45

+

(
18608
525

− 1136
45

ν

)
p2∞ +O

(
p4∞
)]

+
G4m5

b4
p2∞ν2

[
3136
45

+

(
1216
105

− 2272
45

ν

)
p2∞ +O

(
p4∞
)]

+O
(
G5
)
. (4.12)

The expression for the first line with exact dependence on σ =
√

1+ p2∞, the 3PM contribu-
tion, is given by equation (10) of [19]. Coming to the nonvanishing components of Pi, recalling
the choice of axes (3.12) we have

Px =
G4m5

b4
p3∞ν2

√
1− 4ν

(
1491
400

− 26757
5600

p2∞ +O
(
p4∞
))

π+O
(
G5
)
. (4.13)

and

12
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Py =
G3πm5

b3
p2∞ν2

√
1− 4ν

[
−37

30
+

(
37
60

ν− 839
1680

)
p2∞ +O

(
p4∞
)]

+
G4m5

b4
ν2
√
1− 4ν

[
−64

3
+

(
32
3
ν− 1664

175

)
p2∞ +O

(
p4∞
)]

+
G4m5

b4
p3∞ν2

√
1− 4ν

[
−128

3
+

(
64
3
ν− 192

75

)
p2∞ +O

(
p4∞
)]

+O
(
G5
)
. (4.14)

Equations (4.12)–(4.14) are in precise agreement with the results obtained by [19, 21, 28, 74,
75]. Note also that the radiated momentum vanishes,Pi = 0, for the equal-mass case,m1 = m2,
as can be expected by symmetry considerations.

TheO(G3) result for Pα was obtained for generic velocities in [19, 21] and let us emphasize
that the vanishing of the component of the radiated momentum along the impact parameter,
Px, at that order follows from the fact that ρ0 is even in be · k, (4.5), and thus

ˆ
k
be · kρ0 = 0 . (4.15)

At the next order, O(G4), the property (4.5) no longer holds and indeed the Px component is
no longer zero (4.13) as it involves the imaginary part of the one-loop waveform kernel. In par-
ticular, (4.13) is sensitive to the (unique) subtraction of ϵ/ϵ terms induced by the resummation
of infrared divergences discussed in [77, 78].

The vanishing of Pz is also obvious in the scalar case. This follows from the fact that ρ is
independent of ζ · k, where ζµ is the unit vector aligned with the z axis, which is orthogonal to
the scattering plane in our conventions (3.12). When including spin effects [98], a nonzero Pz
component can arise in the misaligned case.

5. Angular momentum loss

The angular momentum/mass dipole that the two-body system dissipates can be computed
from the manifestly Poincaré covariant formula [54, 55]

i Jαβ =

ˆ
k

(ηµρηνσ − 1
D−2 η

µνηρσ
)
τ̃∗µνk[α

↔
∂ τ̃ρσ
∂kβ]

+ 2ηµν τ̃∗µ[ατ̃β]ν

 , (5.1)

where the antisymmetrization is defined by v[αwβ] = vαwβ − vβwα and

f
↔
∂ g=

1
2
(f ∂g− g∂f) . (5.2)

Equation (5.1) receives two types of contributions (2.16), which we denote as follows,

Jµν = Jµν +J tot
µν . (5.3)

The first one, Jµν , is the dynamical or radiative contribution, which is the one carried away by
the gravitational field, while the second one, J tot

µν , is due to the interaction with the static field.
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5.1. Radiative contribution

We begin from the radiative contribution to (5.1),

iJαβ =

ˆ
k

(ηµρηνσ − 1
D−2 η

µνηρσ
)
W̃∗

µνk[α

↔
∂ W̃ρσ

∂kβ ]
+ 2ηµνW̃∗

µ[αW̃β]ν

 . (5.4)

Thanks to the exact transversality property (2.18), equation (5.4) can be expressed as the fol-
lowing integral quadratic in the dynamical component of the TT waveform [55],

iJαβ =

ˆ
k

[
1
2

(
w̃∗
µνk[α

∂w̃µν

∂kβ ]
− w̃µνk[α

∂w̃∗
µν

∂kβ ]

)
+ 2w̃∗

µ[αw̃
µ
β ]

]
. (5.5)

In particular, the equivalence between (5.5) and (5.4) holds thanks to the fact that the reference
vector λµ appearing in the TT projector (3.5) actually drops out from (5.5). In the following,
we use the ‘TT formula’ (5.5) and the explicit expressions for the waveforms w̃µν to calculate
Jαβ in the center-of-mass frame following the choice of coordinate axes in (3.12).

We consider first the purely spatial components Jij, which represent the angular momentum
proper in the center-of-mass frame. Having chosen the reference vector in the TT projector as
in (3.8) so that w̃0µ = 0 by (3.9), we have

iJij =
ˆ
k

[
1
2

(
w̃∗
abk[i

∂w̃ab
∂kj]

− w̃abk[i
∂w̃∗

ab

∂kj]

)
+ 2w̃∗

a[iw̃j]a

]
, (5.6)

which is the standard formula used in the general relativity literature [52, 72, 109]. Introducing
spherical variables in the integration,

k0 = ω = |⃗k | , ki = ωni (5.7)

with ni the standard unit vector, as in (3.7),

n̂= (sinθ cosϕ,sinθ sinϕ,cosθ) , xA = (θ,ϕ) , (5.8)

it is convenient to note that the Jacobian matrix for the spatial part reads

Mi
j =
(
ni,ω∂An

i
)
,

(
M−1

) j
i =

(
ni

ω−1γAB∂Bni

)
(5.9)

where γAB = (∂An̂) · (∂Bn̂) = diag(1,(sinθ)2) is the metric on the unit sphere and γAB denotes
its inverse, and thus

ω
∂

∂ki
= ni ω∂ω + γAB∂Bni ∂A . (5.10)

Using equations (5.7) and following, we can recast (5.6) as

κ2Jij = G
ˆ ∞

0

dω
iπ

˛
dΩ
2π

w̃∗
ab∂Aw̃abωγABn[i∂Bn

j]

+ 2G
ˆ ∞

0

dω
iπ

˛
dΩ
2π

w̃∗a[iw̃j]aω , (5.11)
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where we have used DADBni =−γABni to integrate by parts with respect to ∂B. Explicitly,

γABn[x∂Bn
y]∂A = ∂ϕ , (5.12a)

γABn[y∂Bn
z]∂A =−sinϕ∂θ −

cosθ
sinθ

cosϕ∂ϕ , (5.12b)

γABn[z∂Bn
x]∂A =+cosϕ∂θ −

cosθ
sinθ

sinϕ∂ϕ . (5.12c)

For completeness, let us mention that, using (A.2b) and taking into account the factors
in (3.3), one can rewrite (5.11) as the integral over time of the following time-domain flux
[52]4,

dJij
dt

=− 1
32πG

˛
dΩ
(
ẇab∂Aw

abγABn[i∂Bn
j] + 2ẇa[iwj]a

)
. (5.13)

Similarly, one finds the following expression fore the emission spectrum in frequency-domain,
written in terms of multipoles,

dJij
dω

=
Gω
π

Im
∑
ℓ

[
(ℓ+ 1)(ℓ+ 2)UL[i U

∗
j]L

(ℓ− 1)ℓ! (2ℓ+ 1)!!
+

4ℓ2(ℓ+ 2)VL[i V
∗
j]L

(ℓ− 1)(ℓ+ 1)!(2ℓ+ 1)!!

]
. (5.14)

The xy component also affords a particularly simple representation

κ2Jxy = G
ˆ ∞

0

dω
iπ

˛
dΩ
2π

∑
s=+,×

w̃∗
s ∂ϕ w̃sω (5.15)

in terms of the decomposition given by

w̃ab =
∑

s=+,×
w̃s ε

ab
s , εab+ =

1√
2

(
eaθe

b
θ − eaϕe

b
ϕ

)
, εab× =

1√
2

(
eaθe

b
ϕ + ebθe

a
ϕ

)
(5.16)

with eiA = ∂Ani.
Using the multipolar waveforms obtained in [77, 78] and substituting into (5.14) we find

the following result in the PN limit,

Jxy =
G3m4π

b2
ν2

[
28
5

+

(
1679
420

− 79
15

ν

)
p2∞ +O

(
p4∞
)]

+
G4m5

b3p2∞
ν2

[
224
5

+

(
12032
105

− 22832
315

ν

)
p2∞ +O

(
p4∞
)]

+
G4m5

b3
p∞ν2

[
448
5

+

(
1184
21

− 45664
315

ν

)
p2∞ +O

(
p4∞
)]

. (5.17)

We now consider the space-time components Ji0, which are associated to the boost charge
or mass dipole. Owing again to the simplifying choices (3.8), (3.9), which grant w̃0µ = 0, we
have

Ji0 =− 1
2i

ˆ
k

(
w̃∗
ab (k)k[0

∂

∂ki]
w̃ab (k)− w̃ab (k)k[0

∂

∂ki]
w̃∗
ab (k)

)
. (5.18)

4 The differential operator appearing in (5.13) can be also rewritten as n[i∂Bnj]γAB∂A = x[i∂ j] in terms of embedding
space coordinates xi = rni.
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By means of equation (5.7) and following, we can recast Ji0 as follows,

κ2Ji0 = G
ˆ ∞

0

dω
iπ

˛
dΩ
4π

(w̃∗
abω∂ωw̃ab− w̃abω∂ωw̃

∗
ab)ωni+κ2Mi , (5.19)

κ2Mi = G
ˆ ∞

0

dω
iπ

˛
dΩ
4π

(w̃∗
ab∂Aw̃ab− w̃ab∂Aw̃

∗
ab)ωγAB∂Bni . (5.20)

Explicitly,

γAB∂Bnx∂A = cosθ cosϕ∂θ −
sinϕ
sinθ

∂ϕ , (5.21a)

γAB∂Bny∂A = cosθ sinϕ∂θ +
cosϕ
sinθ

∂ϕ , (5.21b)

γAB∂Bnz∂A =−sinθ∂θ . (5.21c)

Using (A.2b) and (A.2d) and taking into account the factors in (3.3), equation (5.19) can
be recast as the integral over time of the following instantaneous flux in time domain

dJi0
dt

= t

[
1

32πG

˛
dΩ ẇabẇabni

]
+

dMi

dt
, (5.22)

dMi

dt
=− 1

32πG

˛
dΩ
(
ẇab∂Aw

ab
)
γAB∂Bni . (5.23)

Recognizing the quantity within square brackets in equation (5.22) as the flux of radiated
spatial momentum (4.11), this can be written equivalently as

dJi0
dt

− t
dPi
dt

=
dMi

dt
. (5.24)

This equation defines a quantity,Mi, after subtracting from Ji0 the drift induced on the position
of the center of mass due to the presence of a nontrivial recoil, Pi. Recasting (5.19) in terms

of multipoles, one obtains the equivalent expression (let us recall the definition of
↔
∂ in (5.2))

dJi0
dω

=
2Gω2

π

∞∑
ℓ

Im

 (ℓ+ 2)(ℓ+ 3)U∗
i L

↔
∂ ωUL

ℓ(ℓ+ 1)! (2ℓ+ 3)!!
+

4(ℓ+ 3)V∗
i L

↔
∂ ωVL

(ℓ+ 1)! (2ℓ+ 3)!!

+
4(ℓ+ 2)ϵi abU

∗
aL−1

↔
∂ ωVbL−1

(ℓ− 1)(ℓ+ 1)! (2ℓ+ 1)!!

+
dMi

dω
(5.25)

dMi

dω
=−2Gω

π
Im
∑
ℓ

[
(ℓ+ 2)(ℓ+ 3)
ℓℓ! (2ℓ+ 3)!!

U∗
iLUL+

4(ℓ+ 3)
ℓ! (2ℓ+ 3)!!

V∗
iLVL

]
. (5.26)

In order to apply (5.19) to the waveforms obtained in [77, 78], we need to recall that

w̃ab =

(
ω

µIR

)2iGEω

w̃reg
ab (5.27)

where the overall phase factor involves an arbitrary scale µIR that is left behind by the expo-
nentiation of infrared divergences and amounts to an ambiguity in the definition of the origin
of retarded time, while w̃reg

ab is µIR-independent. Such a phase drops out in the calculation of the
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spectral rate (4.2) [41], which determines Pµ, and the same happens in the calculation of Jij
(5.11) because it is angle-independent in the center-of-mass frame. Conversely, inserting (5.27)
into (5.19) exposes the following dependence on the arbitrary scale in Ji0,

Ji0 = 2GE
ˆ
k
ρ(k)

(
log

ω

µIR
+ 1

)
ωni+ Jregi0 , (5.28)

κ2Jregi0 = G
ˆ ∞

0

dω
iπ

˛
dΩ
4π

(
w̃reg∗
ab ω∂ωw̃

reg
ab − w̃reg

ab ω∂ωw̃
reg∗
ab

)
ωni+κ2Mi (5.29)

and, recognizing the radiated momentum (4.8),

µIR∂µIRJi0 =−2GEPi . (5.30)

Thanks to the extra power of G and to the fact that Px =O(G4), we thus see that Jx0 is unaf-
fected by the running scale atO(G4). More generally, this running logarithm atO(Gn+1) will
drop out when focusing on the component orthogonal to Pi at O(Gn). Note also that, being
proportional to the recoil and antisymmetric under 1↔ 2, the ambiguity disappears for the
equal-mass case, where Ji0 = 0. Finally, the µIR-dependence also drops out from Mi which
only involves angular derivatives, see (5.20). This quantity, which properly subtracts the drift
induced by the presence of a nontrivial Pi, is thus completely unambiguous and provides a
well-defined notion of mass-dipole loss in the center-of-mass frame.

Let us now calculate the first few nonzero components of Ji0 in the PN limit. We thus find
the radiative contributions

Jx0 =
G3πm4

b2
p∞ν2

√
1− 4ν

[
121
30

+

(
1007
560

− 13
4
ν

)
p2∞ +O

(
p4∞
)]

+
G4m5

b3p∞
ν2
√
1− 4ν

[
13712
315

+

(
94168
1575

− 13576
315

ν

)
p2∞ +O

(
p4∞
)]

+
G4m5

b3
p2∞ν2

√
1− 4ν

[
27424
315

+

(
3296
225

− 27152
315

ν

)
p2∞ +O

(
p4∞
)]

+O
(
G5
)

(5.31)

and

Jregy0 =
G4πm5

b3
p2∞ν2

√
1− 4ν

[
36169
3600

+

(
137
5040

− 15781
7560

ν

)
p2∞ +O

(
p4∞
)]

+O
(
G5
)
. (5.32)

Note that (5.32) is sensitive both to the ϵ/ϵ terms and to the supertranslation frame discussed
in [77, 78], for which we adopt the ‘intrinsic’ choice [56] which is more common in the PN lit-
erature. As a cross-check, we explicitly verified that the O(G3) contributions to (5.17), (5.31)
match those obtained by means of the covariant formula (5.1) and evaluated via reverse unit-
arity for generic velocities, see equation (8.141) of [8].

Let us also remark that, for the scattering of scalar objects, any component involving one
index in the z direction necessarily vanishes, Jαz = ζβJαβ = 0, as a consequence of the fact
that the integrand entering the covariant expression (4.1) only depends on the external vectors
bµe , ũ

µ
1 , ũ

µ
2 which are all orthogonal to ζµ. The presence of misaligned spins leads instead to

nontrivial Jαz components [100, 104].
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For the cutoff-independent quantityMi, we find instead

Mx =
G3πm4

b2
p∞ν2

√
1− 4ν

[
391
105

+

(
269
140

− 319
105

ν

)
p2∞ +O

(
p4∞
)]

+
G4m5

b3p∞
ν2
√
1− 4ν

[
352
9

+

(
13904
225

− 368
9

ν

)
p2∞ +O

(
p4∞
)]

+
G4m5

b3
p2∞ν2

√
1− 4ν

[
704
9

+

(
1600
63

− 736
9

ν

)
p2∞ +O

(
p4∞
)]

+O
(
G5
)

(5.33)

and

My =
G4πm5

b3
p2∞ν2

√
1− 4ν

[
63
10

+

(
−1021

525
− 2323

700
ν

)
p2∞ +O

(
p4∞
)]

+O
(
G5
)
. (5.34)

5.2. Static contribution

Let us now turn to the static part of (5.1), starting from the contribution obtained from (2.11)
which takes into account the gravitons emitted by the massive states,

iJαβ =

ˆ
k

(ηµρηνσ − 1
D−2 η

µνηρσ
)
F∗
µνk[α

↔
∂Fρσ

∂kβ ]
+ 2ηµνF∗

µ[αFβ]ν

 . (5.35)

This can be evaluated in general by substituting Fµν given by (2.14) and yields [55]

J αβ =
G
2

∑
a,b

c(σab)(ηa− ηb)p
[α
a p

β]
b , (5.36a)

c(σab) =−

(σ2
ab− 3

2

σ2
ab− 1

)
σab arccoshσab√

σ2
ab− 1

+
σ2
ab− 1

2

σ2
ab− 1

 , (5.36b)

where ηa is +1 (or −1) when the a is outgoing (incoming), see equation (2.10), and

σab =−ηaηb
pa · pb
mamb

. (5.37)

For the scattering of scalars, the entire hyperbolic motion happens on the xy plane, so that
Jαz = 0 in (5.36) vanishes identically.

Starting from (5.36), we can substitute

pµ1 =−m̃1ũ
µ
1 +

1
2
Qµ

1 , pµ4 = m̃1ũ
µ
1 +

1
2
Qµ

1 ,

pµ2 =−m̃2ũ
µ
2 +

1
2
Qµ

2 , pµ3 = m̃2ũ
µ
2 +

1
2
Qµ

2 ,

(5.38)

where Qµ
1 , Q

µ
2 are the full classical impulses that we will use up to at mostO(G3), and, at this

order, [19, 21]

−Q1 · be
be

=+
Q2 · be
be

= Q(b) , Qµ
1 +Qµ

2 =−Pµ (5.39)
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with Q(b) explicitly given in (5.42) below and Pµ the total emitted energy and momentum
discussed in section 4. We specify the center-of-mass frame by choosing the reference vectors
again as in (3.12). In this way, the chosen boost-frame satisfies m̃1ũi1 + m̃2ũi2 = 0 in terms of
the average or ‘eikonal’ momenta, while pi1 + pi2 =− 1

2 P
i =O(G3) due to recoil. An altern-

ative possibility would be to specify this frame by enforcing the exact condition pi1 + pi2 = 0
in terms of the incoming momenta. Note that this is related to our frame choice by a boost that
differs from the identity byO(G3) terms; since as we shall see shortly J αβ =O(G2) to lead-
ing order, this boost would not change the explicit results presented below up to and including
O(G4). The translation-frame is instead immaterial here, because the static part of the angular
momentum does not transform under translations (being localized at ω= 0).

It is then possible to write down explicitly the first few orders in the PM expansion of (5.36).
One needs to relate the initial and the final momenta by using (5.38) and expand for small
deflections. In order to facilitate the comparisonwith the literature, while retaining the coordin-
ate system aligned as in (3.12), we give the results in terms of mi and b, rather than be and m̃i

(see also footnote 2). It is convenient to introduce the function

I (σ) =−16
3

+
2σ2

σ2 − 1
+

2σ
(
2σ2 − 3

)
arccoshσ

(σ2 − 1)3/2
, (5.40)

so we can write the component Jxy up to and including O(G4) as follows

Jxy = GpQ(b) I (σ)− GQ(b)3

E
√
σ2 − 1

[
E2

8m1m2

(
I (σ)+ 32

5

(
σ2 − 1

))
+

1
2

(
I ′ (σ)− 16

5
σ

)(
σ2 − 1

)]
+O

(
G5
)
, (5.41)

where Q(b) is the component of Qµ
1 along −bµe (see equation (5.39)) expressed as a function

of the initial impact parameter b, [12, 14, 52]

Q(b) =
4Gm1m2

(
σ2 − 1

2

)
b
√
σ2 − 1

+
3πG2m1m2 (m1 +m2)

(
5σ2 − 1

)
4b2

√
σ2 − 1

+
8G3m2

1m
2
2

b3

×

((
−4σ4 + 12σ2 + 3

)
arccoshσ

σ2 − 1
+
E2
(
12σ4 − 10σ2 + 1

)
2m1m2 (σ2 − 1)3/2

−
σ
(
14σ2 + 25

)
3
√
σ2 − 1

)

+
G
2b

(
4Gm1m2

(
σ2 − 1

2

)
b
√
σ2 − 1

)2

I (σ)−
G3m1m2E2

(
2σ2 − 1

)3
b3 (σ2 − 1)5/2

+O
(
G4
)
. (5.42)

We can then make contact with the PN expressions by further expanding the PM result for
small p∞. At the first few PN orders, one obtains

Jxy =
G2m3

b
p2∞ν2

[
16
5

+

(
176
35

− 8
5
ν

)
p2∞ +O

(
p4∞
)]

+
G3m4π

b2
ν2

[
24
5
p2∞ +O

(
p4∞
)]

+
G4m5

b3p2∞
ν2

×
[
−48

5
+

(
−1296

35
+

216
35

ν

)
p2∞ +O

(
p4∞
)]

+
G4m5

b3
p∞ν3

[
128
25

p2∞ +O
(
p4∞
)]

+O
(
G5
)
. (5.43)
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By following the same approach, one can evaluate also the time components ofJαβ relevant
for the mass dipole of the radiation. Up to order O(G4) we have

Jx0 =−
G
(
m2

1 −m2
2

)
2E

[
Q(b)I (σ)+ Q(b)3G (σ)

m1m2 (σ2 − 1)

]
+O

(
G5
)
, (5.44)

where

G (σ) =− 3arccoshσ

(σ2 − 1)3/2
+

8σ5 − 26σ3 + 33σ
5(σ2 − 1)

(5.45)

and for the y0 component

Jy0 =
GEErad√
σ2 − 1

√
1− 4ν

(
H (σ)− σ

2
I (σ)

)
+O

(
G5
)
, (5.46)

where

H (σ) =− 3arccoshσ

(σ2 − 1)3/2
+

−17σ3 + 11σ2 + 26σ− 11
3(σ2 − 1)

(5.47)

and Erad can be found in equation (10) of [19]. Further expanding for small p∞ we have

Jx0 =
G2m3

b
p∞ν

√
1− 4ν

[
−8

5
+

(
−88

35
+

4
5
ν

)
p2∞ +O

(
p4∞
)]

+
G3m4π

b2
p∞ν

√
1− 4ν

[
−12

5
+

(
−69

35
+

6
5
ν

)
p2∞ +O

(
p4∞
)]

+
G4m5

b3p3∞
ν
√
1− 4ν

[
4
5
+

(
−36

7
− 178

35
ν

)
p2∞

+

(
−10376

315
− 4337

210
ν+

37
14

ν2

)
p4∞ +O

(
p6∞
)]

+
G4m5

b3
p2∞ν2

√
1− 4ν

[
−64

25
+

(
−1408

175
+

32
25

ν

)
p2∞ +O

(
p4∞
)]

+O
(
G5
)
, (5.48)

while Jz0 = 0,

Jy0 =
G4πm5

b3
p2∞ν2

√
1− 4ν

[
−4699

450
− 15983

3600
p2∞ +O

(
p4∞
)]

+O
(
G5
)
. (5.49)

Let us note that the TT-projected formula analogous to the standard one (5.5),

iJ TT
αβ =

ˆ
k

[
1
2

(
f∗µνk[α

∂fµν

∂kβ ]
− fµνk[α

∂f∗µν
∂kβ ]

)
+ 2f∗µ[α f

µ
β]

]
, (5.50)

with

fµν =Πµν,ρσF
µν , (5.51)
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and the manifestly covariant one (5.35) are not equivalent when it comes to the static
contributions [36, 37, 54, 69]. In particular, (5.50) explicitly depends on the reference vector
λµ defining the TT projection (3.5), contrary to what happens for the radiative case (5.5). As
explained in [69], the reason for this discrepancy is that J TT

αβ suppresses the contribution due
to the Coulombic field and thus does not admit a covariant uplift. More in detail, [69] showed
that Jαβ can be expressed up to O(G4) corrections as an integral involving the function

∆S= 2G
∑
a

pa · n log
(
−ηa

pa · n
ma

)
, (5.52)

see equation (3.25) of that reference, while J TT
αβ given by (5.50) is equivalent to the same

integral where∆S is replaced with its projection on ℓ⩾ 2 spherical harmonics. This operation
amounts to dropping the contribution due to the Coulombic static field, and spoils the Lorentz
covariance of the result.

The inequivalence between (5.35) and (5.50) can be traced back to the fact that, letting
kµ = ωnµ, and including a factor of 1

2 to avoid double counting [54],

nµF
µν = iπ

√
8πG

∑
a∈in

pµa δ (ω) 6= 0 (5.53)

(although kµFµν = 0 as a distribution by the identity ωδ(ω) = 0). One can check that the dis-
tinction between (5.35) and (5.50) is irrelevant for the spatial angular momentum evaluated in
the center-of-mass frame, owing to the form of nµFµν in (5.53),

J TT
ij = Jij . (5.54)

In particular, this equality relies on the fact that nµFµν is angle independent and that nµFµi

vanishes for i = 1,2,3 in the center-of-mass frame. Instead, the distinction between (5.35)
and (5.50) is important for the mass dipole in this frame, for which we find (see appendix B
for more details)

Mi = J TT
i0 = Ji0 − 2GE

∑
a

c(σa) p
i
a , (5.55)

where c(σa) is the same function appearing in (5.36) but now evaluated at the following argu-
ment,

σa =
Ea
ma

(5.56)

with Ea = ηa p0a the energy of the ath state in the center-of-mass frame. The complete
tensor (5.50) can be thus written as follows5

J TTαβ =
G
2

∑
a,b

c(σab)(ηa− ηb)p
[α
a p

β]
b + 2G

∑
a

c(σa)
∑
b∈in

p[αb p
β]
a . (5.57)

5 While still formally covariant, the result (5.57) depends on the properties of the reference vector λµ chosen in (3.8),
e.g. on the fact that nµFµνλν is angle-independent.
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Incidentally, we note that J TTαβ in (5.57) admits the smooth massless limit6

J TTαβ =−2G log

(
E2

Q2
− 1

)
(p1 − p2)

[αQβ] , (5.58)

which can be taken as an indication that the mechanical mass dipole moment should include
the Coulombic contribution in order to obtain a well-defined ultrarelativistic limit. Note also
that Mi 6= Ji0 already starting at O(G2). For instance,

Mx = Jx0 + 2GEQ(b) [c(σ1)− c(σ2)]+O
(
G5
)
, (5.59)

whose PN expansion reads

Mx =
G2m3

b
p3∞ν2

√
1− 4ν

[
48
35

+

(
568
315

− 88
105

ν

)
p2∞ +O

(
p4∞
)]

+
G3m4π

b2
p∞ν2

√
1− 4ν

[
72
35

p2∞ +O
(
p4∞
)]

+
G4m5

b3p∞
ν2
√
1− 4ν

[
−216

35
+

(
−8252

315
+

52
21

ν

)
p2∞ +O

(
p4∞
)]

+
G4m5

b3
p2∞ν2

√
1− 4ν

[
384
175

p2∞ +O
(
p4∞
)]

+O
(
G5
)
. (5.60)

Finally, letting

α0 = 2m2
2m

2
1

(
σ3 + 2

)
+m1m2

(
m2

1 +m2
2

)
(3σ+ 1)+m4

1 +m4
2 , (5.61)

α1 =−2m2m
3
1σ
(
σ2 + 3

)
− 3m2

2m
2
1

(
3σ2 + 1

)
+m4

1

(
−2σ4 + 3σ2 − 3

)
− 8m3

2m1σ− 2m4
2 (5.62)

and α2(m1,m2) = α1(m2,m1), we find

My = Jy0 +
GEErad

m

[
2(m1 −m2)α0

m2
1m

2
2 (σ

2 − 1)3/2
− α1 arccoshσ2

m3
1 (σ

2 − 1)2
+

α2 arccoshσ1

m3
2 (σ

2 − 1)2

]
+O

(
G5
)
, (5.63)

whose PN expansion gives

My =
G4πm5

b3
p2∞ν2

√
1− 4ν

[
− 74

175
ν p2∞ +O

(
p4∞
)]

. (5.64)

The zero-frequency limit (2.14) captures only linear contributions, i.e. the field sourced by
the massive lines. Including nonlinear ones, that is soft/static fields generated by dynamically
produced gravitons, amounts to replacing (2.14) with (2.9). Following [58–60], we replace
the sum over the hard gravitons in (2.9) by a phase-space integral weighted by the spectral
emission rate ρ(k) introduced in (4.2),

Fµν
tot (ℓ) = Fµν (ℓ)+ δFµν (ℓ) =

∑
am

√
8πGpµamp

ν
am

pam · ℓ− i0
+

ˆ
k
ρ(k)

√
8πGkµkν

k · ℓ− i0
. (5.65)

6 We evaluate this limit for formally elastic dynamics of the hard process.
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Notice that the last term has a collinear divergence inD= 4 because of the denominator, which
however disappears when taking the TT projection.

It is convenient to note that (5.65) is obtained from (2.14) by formally extending the sum
also to outgoing gravitons according to∑

a

7→
∑
am

+

ˆ
k
ρ(k) . (5.66)

Applying this operation on (5.36) and noting that, as mb → 0(σ2
ab− 3

2

σ2
ab− 1

)
σab arccoshσab√

σ2
ab− 1

+
σ2
ab− 1

2

σ2
ab− 1

∼ log
−2ηaηbpa · pb

mamb
+ 1+ o(mb) , (5.67)

we find

Jαβ 7→ J tot
αβ = Jαβ + δJαβ +O

(
G7
)
, (5.68)

where the first correction due to nonlinear memory is

δJ αβ = 2G
ˆ
k
ρ(k)

∑
a∈in

p[αa k
β] log

pa · k
maΛ

(5.69)

and Λ is an energy scale introduced to regulate the collinear divergence. In (5.68), we used
that ρ(k)∼O(G3) to leading order to neglect terms quadratic in the nonlinear memory effect.
Note that the dependence on this regulator enters (5.69) as follows,

Λ∂ΛδJ αβ =−2G(p1 + p2)
[αPβ] (5.70)

where we used (4.1).
Focusing first on the spatial components, we recall that pi1 + pi2 =− 1

2 P
i in the center-of-

mass frame we adopt and thus by (5.70) the cutoff dependence drops out from these compon-
ents,

Λ∂ΛδJij = 0 . (5.71)

This observation, combined with (5.68), ensures that J tot
ij is completely well defined up to and

including O(G6). In terms of the basis vectors (3.12), we thus obtain7 (we recall that vµ1 , v
µ
2

are the initial velocities defined by (2.2))

δJxy =
2Gp
be

ˆ
k
ρ(k)(be · k) log

v1 · k
v2 · k

+O
(
G5
)
, (5.72)

where pE= m1m2

√
σ2 − 1. In this way, we see that the spatial angular momentum loss due to

the nonlinear memory effect is actually independent of the arbitrary scaleΛ. In fact, it vanishes
at O(G4) order because the leading O(G3) spectral emission rate ρ0 in (4.4) is even under
be · k 7→ −be · k (4.5), and thus the integrand resulting from (5.72) is odd. We have explicitly
cross-checked the cancellation ensured by this observation at the first few PN orders. This

7 Here and in the following, we can use the O(G2)-accurate kinematics, up to O(G6) corrections.
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parity argument does not apply to the O(G5) contribution, which is sensitive to the one-loop
spectral emission rate, and is generically nonvanishing, while still independent of the arbitrary
scale Λ.

However, the dependence on the regulator Λ in (5.69) does generically survive in the mass-
dipole loss,

Λ∂ΛδJi0 = 2GEPi+O
(
G6
)
, (5.73)

where Pα is the radiated energy-momentum (4.1). Comparing (5.30) with (5.73), we note that
the logΛ ambiguity in δJy0 appears with coefficient opposite to the one of logµIR in Jy0.

Let us note that, since the collinear divergence is absent in the TT projection of the nonlinear
memory waveform δFµν , theΛ-dependence disappears entirely if we calculate its contribution
to the angular momentum loss by generalizing (5.50) instead of (5.35). Indeed, applying the
operation (5.66) to (5.57) instead of (5.36), we find

δJ TTαβ = 2G
ˆ
k
ρ(k)

∑
a∈in

p[αa k
β] log

pa · n
ma

, (5.74)

where nµ = (1, n̂) as defined in the center-of-mass frame. As already remarked, (5.74) leads to
the same prediction as (5.69) for the ij components, and in particular to (5.72). This is because
nµF

µν
tot = nµFµν is still as given in (5.53), and thus (5.54) can be upgraded to the nonlinear

case as well, δJ TT
ij = δJij. Instead, letting again δMi = δJ TT

i0 , we find that

δJi0 =−2GE
ˆ
k
ρ(k) ωni log

ω

Λ
+ δMi , (5.75)

where it is clear that the entire integral involving logω will eventually cancel out against the
one in (5.28). More explicitly,

δMx =−2G
b

ˆ
k
ρ(k)(be · k)

∑
a∈in

Ea log
pa · n
ma

+O
(
G5
)
, (5.76)

δMy = 2G
ˆ
k
ρ(k) ω

[
p log

v1 · k
v2 · k

− ny
∑
a∈in

Ea log
pa · n
ma

]
+O

(
G5
)
. (5.77)

The same parity argument discussed below (5.72) ensures that δJx0 and δMx vanish altogether
at order O(G4). Instead, using the explicit tree-level waveforms, we find

δMy =
G4πm5

b3
p2∞ν2

√
1− 4ν

[
15781
15120

ν p2∞ +O
(
p2∞
)]

+O
(
G5
)
. (5.78)

5.3. Complete expressions

Adding (5.17) and (5.43), we recover the following PN-expanded expression for the total angu-
lar momentum loss, which is aligned with the z-direction orthogonal to the scattering plane,

24



Class. Quantum Grav. 42 (2025) 045014 C Heissenberg and R Russo

Jxy =
G2m3

b
p2∞ν2

[
16
5

+

(
176
35

− 8
5
ν

)
p2∞ +O

(
p4∞
)]

+
G3πm4

b2
ν2

[
28
5

+

(
739
84

− 79
15

ν

)
p2∞ +O

(
p4∞
)]

+
G4m5

b3p2∞
ν2

[
176
5

+

(
8144
105

− 2984
45

ν

)
p2∞ +O

(
p4∞
)]

+
G4m5

b3
p∞ν2

[
448
5

+

(
1184
21

− 220256
1575

ν

)
p2∞ +O

(
p4∞
)]

+O
(
G5
)
. (5.79)

The first two lines of (5.79) reproduce the small-velocity expansion of the O(G2) and O(G3)
results in [52] and [11, 54]. The last two lines of (5.79) are in perfect agreement with the 0PN,
1PN, 1.5PN and 2.5PN contributions at O(G4) obtained in [74, 75].

Moving to the mass dipole, the sum of (5.31) and (5.48) yields instead

Jx0 =
G2m3

b
p∞ν

√
1− 4ν

[
−8

5
+

(
−88

35
+

4
5
ν

)
p2∞ +O

(
p4∞
)]

+
G3m4π

b2
p∞ν

√
1− 4ν

[
−12

5
+

121
30

ν

+

(
−69

35
+

1679
560

ν− 13
4
ν2

)
p2∞ +O

(
p4∞
)]

+
G4m5

b3p3∞
ν
√
1− 4ν

[
4
5
+

(
−36

7
+

346
9

ν

)
p2∞

+

(
−10376

315
+

123281
3150

ν− 3641
90

ν2

)
p4∞ +O

(
p6∞
)]

+
G4m5

b3
p2∞ν2

√
1− 4ν

[
133088
1575

+

(
416
63

− 133744
1575

ν

)
p2∞ +O

(
p4∞
)]

,

+O
(
G5
)
. (5.80)

which corresponds to a well-defined change in the mass-dipole component along the impact
parameter bµe . Finally, from the sum of (5.32), (5.49) and (5.78),

Jy0 = 2GEPy

(
log

Λ

µIR
+ 1

)
+
G4πm5

b3
p2∞ν2

√
1− 4ν

[
−1423

3600

+

(
−27799

6300
+

15781
15120

ν

)
p2∞ +O

(
p4∞
)]

+O
(
G5
)
. (5.81)

The change of the mass dipole component along the direction of motion (5.81) is thus sensitive
to the ratio of the cutoffs µIR, Λ, but this ambiguity takes the form of a pure time translation

Jαβ + δJ αβ 7→ Jαβ + δJ αβ + a[αPβ] (5.82)

with aα = (a,0,0,0) in the center-of-mass frame.
Considering instead the ‘subtracted’ mass dipole moment,Mi, which is free from the time-

translation ambiguity thanks to the removal of the recoil-induced drift and thanks to the TT
projection, we find, by summing (5.33) and (5.60)
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Mx =
G2m3
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p3∞ν2
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ν

)
p2∞ +O

(
p4∞
)]

+
G4m5

b3p∞
ν2
√
1− 4ν

[
10376
315

+

(
56068
1575

− 2420
63

ν

)
p2∞ +O

(
p4∞
)]

+
G4m5

b3
p2∞ν2

√
1− 4ν

[
704
9

+

(
1600
63

− 125344
1575

ν

)
p2∞ +O

(
p4∞
)]

,

+O
(
G5
)
. (5.83)

which corresponds to the total change in the subtracted mass-dipole component along the
impact parameter bµe . Finally, from (5.34), (5.64) and (5.78), we obtain

My =
G4πm5

b3
p2∞ν2

√
1− 4ν

[
63
10

+

(
−1021

525
− 203947

75600
ν

)
p2∞ +O

(
p4∞
)]

+O
(
G5
)
. (5.84)

6. Conclusions

In this work, we used the eikonal operator to describe the final state of a scattering between two
classical massive scalar particles. This operators encodes all the classical observables relevant
to the dynamics of gravitational binaries. We focused in particular on the properties of the
radiation produced in the scattering recalling in section 4 the results for the radiated linear
momentum and then discussing in some detail the full tensor encoding the angular momentum
and the mass dipole in section 5. This observable is sensitive to several aspects of the soft part
of the radiation spectrum and the static contributions to the asymptotic gravitational field. We
showed that the eikonal formalism can capture all these contributions separating in a neat way
those related to the physical radiation (see section 5.1) and those related to the zero-frequency
modes (see section 5.2).

Up to 3PM, the full Lorentz-covariant results were already obtained within the eikonal
formalism in [11, 55] finding agreement with [52, 54]. It would of course be interesting to
extend this analysis to 4PM for generic velocities. Here instead at O(G4) we provide full PM
expressions only for the static contributions, while for the radiative one we revert to the PN
expansion. Summing all terms at the same PN order we find perfect agreement for the spatial
components of the angular momentum tensor with [74, 75].

An interesting feature of the mass dipole component Jy0, where the y-direction is aligned
with the particles’ ‘average’ velocity as in (3.12), is that it receives starting at 4PM a contri-
bution from the tail terms of the waveform. This means that it displays a dependence on an
arbitrary scale that can be changed by a shift of the retarded time. This issue, which appears to
be a generic feature of the covariance of Jαβ and emerges separately for the radiative and the
static contributions, can be resolved by considering instead the time-translation invariant and
‘TT-projected’ quantityMi defined in the center-of-mass frame. However, as verified explicitly
at O(G2) in the traditional approach [53] and in the eikonal formalism at O(G3) [11], there
is a balance law between the total mechanical and the gravitational angular momenta (∆Lαβ
and Jαβ respectively). Indeed, letting
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i∆L1αβ =
(
ηµρηνσ − 1

D−2 ηµνηρσ

)ˆ
k
τ̃∗µν

b1[α
↔
∂

∂bβ1 ]
+ ũ1[α

↔
∂

∂ũβ1 ]

 τ̃ρσ (6.1)

and similarly for ∆L2αβ , it follows from (5.1) that ∆Lαβ =∆Lαβ1 +∆Lαβ2 obeys

∆Lαβ =−Jαβ , (6.2)

as one can check by using the fact that τ̃µν is a symmetric rank-two tensor constructed from ũµ1 ,
ũµ2 , b

µ
1 , b

µ
2 and kµ. It was noticed [11] that this balance law holds separately for the static and

the radiative parts at O(G3) and we expect the same to be true at O(G4) as well. So, the same
dependence on the scale related to time shifts should appear in ∆Ly0 both in the radiative and
the static sector. It would be interesting to calculate explicitly the O(G4) of ∆Lαβ to check
that the arbitrary scale cancels and to define regularized mechanical and radiative angular
momenta by moving appropriately the logarithmic terms between the two sides of the balance
law. This is reminiscent of the approach taken by [69] to define a supertranslation invariant
angular momentum and of course it would be very useful to extend that approach toO(G4) as
well.

Another interesting development is to apply to boundary to bound map [111–113] to the
mass dipole studied here and calculate the mass dipole components for bound systems also
beyond the leading PN contribution which is already discussed in [73].
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Appendix A. Time-domain and frequency-domain integrals

Letting

f(t) =
ˆ +∞

−∞
e−iωt f̃ (ω)

dω
2π

(A.1)

with f̃ (ω)∗ = f̃ (−ω) so that f (t) is real, and similarly for g(t), we have the following identities,
ˆ +∞

−∞
f(t) g(t) dt=

ˆ ∞

0

[
g̃(ω)∗ f̃ (ω)+ f̃ (ω)∗ g̃(ω)

] dω
2π

, (A.2a)
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ˆ +∞

−∞
ḟ (t) g(t) dt=

ˆ ∞

0
ω
[
g̃(ω)∗ f̃ (ω)− f̃ (ω)∗ g̃(ω)

] dω
2iπ

, (A.2b)

ˆ +∞

−∞
ḟ (t) ġ(t) dt=

ˆ ∞

0
ω2
[
g̃(ω)∗ f̃ (ω)+ f̃ (ω)∗ g̃(ω)

] dω
2π

, (A.2c)

ˆ +∞

−∞
t ḟ (t)2 dt=

ˆ ∞

0
ω
[
f̃ (ω)∗ω f̃ ′ (ω)−ω f̃ ′ (ω)

∗ f̃ (ω)
] dω
2iπ

, (A.2d)

where a superscript dot and a prime denote derivatives with respect to time and to frequency.
Note that, for constant g(t) = c0, equation (A.2b) gives

f(t=+∞)− f(t=−∞) =−i lim
ω→0+

ω
[
f̃ (ω)− f̃ (ω)∗

]
. (A.3)

Appendix B. Uplifting the TT formula

In this appendix, we provide the general uplift of the TT formula for the angular momentum to
its covariant counterpart, thus extending the derivation given in [55]. We introduce the short-
hand notation

dαβ = k[α
∂

∂kβ ]
(B.1)

for the differential operator that preserves the mass-shell constraint k2 = 0.

B.1. Spin one

We begin from the spin-one case by considering a generic Fµ(k) such that

S(k) = kµF
µ (k) (B.2)

and its transverse projection,

fµ =ΠµνF
ν (B.3)

with Πµν as defined in (3.6) in terms of a reference vector λµ obeying λ2 = 0, λ · k=−1.
Using the identities,

λµdαβλµ = 0 , kµdαβλµ + k[αλβ ] = 0 , (B.4)

which follow uniquely from the above properties obeyed by λµ, and integrating by parts, one
can show that the ‘transverse’ formula

iJ T
αβ =

ˆ
k

(
f∗µ

↔
dαβ f

µ + f∗[α fβ]

)
(B.5)

is equivalent to

iJ T
αβ = iJ vec

αβ −
ˆ
k

[
λ ·FdαβS

∗ + S∗
(
Fµdαβλµ +F[αλβ]

)
− c.c.

]
, (B.6)
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where the first term on the right-hand side provides the manifestly λ-independent uplift,

iJ vec
αβ =

ˆ
k

(
F∗
µ

↔
dαβF

µ +F∗
[αFβ]

)
, (B.7)

and the remaining terms on the right-hand side of (B.6) vanish if S= kµFµ is identically zero.
Equation (B.6) holds for any λµ obeying λ2 = 0, λ · k=−1 and for any Fµ. Specializing to

the parametrization kµ = ω(1, n̂) and λµ = 1
2ω (1,−n̂) as in (3.7), (3.8) in a given frame, one

can show that, for any Tµ,

Tµdijλµ +T[iλj] = 0 , Tµdi0λµ +T[iλ0] =− 1
ω
ΠiµT

µ . (B.8)

Further considering the explicit soft photon factor, one has (like for gravity, a factor of 1
2 is

introduced in S below to avoid double counting)

Fµ =
∑
a

ηa ea pµa
pa · k− i0

,
1
ω
S=−iπQδ (ω) , Q=

∑
a∈in

ea =
∑
a∈out

ea (B.9)

with Q the total Coulombic charge. Then, by applying (B.6) in the center-of-mass frame, one
obtains

J T
ij = J vec

ij , J T
i0 = J vec

i0 +
Q
4π

∑
a

ea
σ2
a − 1

(
arccoshσa√

σ2
a − 1

−σa

)
pia
ma

(B.10)

in terms of the variables σa = Ea/ma (with Ea the center-of-mass energy of the state a).
Combining the expressions in (B.10) with [55]

J vec
αβ =− 1

16π

∑
a,b

eaeb
σ2
ab− 1

arccoshσab√
σ2
ab− 1

−σab

(ηa− ηb)
p[αa p

β]
b

mamb
(B.11)

gives the full result for J T
αβ in the center-of-mass frame.

B.2. Spin two

Let us move to the spin-two case relevant for gravity. We thus consider a generic symmetric
Fµν(k), for which we define

Rµ (k) = kνF
µν (k) , R(k) = kµR

µ (k) , (B.12)

and its TT projection

fµν =Πµν,ρσF
ρσ , (B.13)

where Πµν,ρσ is defined in (3.5). Starting from the TT formula

iJ TT
αβ =

ˆ
k

(
f∗µν

↔
dαβ f

µν + 2f∗µ[α f
µ
β]

)
, (B.14)
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one can again use the properties (B.4) and integrate by parts to show that

iJ TT
αβ = iJαβ +

ˆ
k

[
D−4
D−2 R

∗ ·λdαβ (R ·λ)+ 2R ·λ
(
R∗µdαβλµ +R∗

[αλβ]

)
−λ ·F ·λdαβR

∗ − 2R∗ (λ ·Fµdαβλµ +λ ·F[αλβ]

)
− 2λ ·Fµ dαβR

∗
µ − 2R∗

µ

(
Fµνdαβλν +Fµ

[αλβ]

)
+ 2

D−2 η
µνFµν dαβ (R

∗ ·λ)− 2λ ·F[αR
∗
β] − c.c.

]
, (B.15)

where

iJαβ =

ˆ
k

[(
ηµρηνσ − 1

D−2 ηµνηρσ

)
F∗
µν

↔
dαβF

µν + 2F∗
µ[αF

µ
β]

]
(B.16)

is the manifestly λ-independent uplift, and the remaining terms on the right-hand side
of (B.15) vanish if Rµ = kνFµν is identically zero. In particular, (B.15) ensures the equivalence
between (5.5) and (5.4), thanks to the exact transversality property (2.18).

Equation (B.15) holds for any λµ satisfying λ2 = 0, λ · k=−1 and for generic Fµν . One
can then specialize to the choice kµ = ω(1, n̂) and λµ = 1

2ω (1,−n̂) as in (3.8), for which one
has the additional relations (B.8), and apply (B.15) to the soft factor (2.14) (or (2.9)), in which
case 1

ω R
µ = nνFµν is given by (5.53). In this way, one obtains the results presented in the

main body of the text for static effects in the gravitational emission of angular momentum, in
particular (5.57) and hence (5.74), in the center-of-mass frame.

One can also apply (B.15) in a generic frame. Letting a prime denote quantities evaluated in
that frame, and choosing k ′µ = ω ′(1, n̂ ′) and reference vector λ ′µ = 1

2ω ′ (1,−n̂ ′), one obtains
in particular

J TT ′
ij = J ′

ij − 2G
∑
a

c(σ ′
a)
∑
b∈in

p ′ [i
b p ′ j]

a (B.17)

with σ ′
a = E ′

a/ma. Note that, of course, (B.17) is in general different from the result obtained by
evaluating (5.57) in the primed frame, owing to the two different choices of reference vectors
(while the two formulas do agree in the center-of-mass frame). From (B.17), choosing the
frame where particle 1 is initially at rest, p ′ i

1 = 0, one recovers J TT ′
xy = GQ(b)m2p∞I(σ)+

O(G3), in agreement with [36, 37], while J ′
xy =

1
2 GQ(b)m2p∞I(σ)+O(G3) as in [54, 55].

ORCID iD

Carlo Heissenberg https://orcid.org/0000-0001-5775-9526

References

[1] ’t Hooft G 1987 Graviton dominance in ultrahigh-energy scattering Phys. Lett. B 198 61–63
[2] Amati D, Ciafaloni M and Veneziano G 1987 Superstring collisions at planckian energies Phys.

Lett. B 197 81
[3] Neill D and Rothstein I Z 2013 Classical space-times from the S matrix Nucl. Phys. B 877 177–89
[4] Damour T 2016 Gravitational scattering, post-Minkowskian approximation and effective one-

body theory Phys. Rev. D 94 104015
[5] Damour T 2018 High-energy gravitational scattering and the general relativistic two-body prob-

lem Phys. Rev. D 97 044038

30

https://orcid.org/0000-0001-5775-9526
https://orcid.org/0000-0001-5775-9526
https://doi.org/10.1016/0370-2693(87)90159-6
https://doi.org/10.1016/0370-2693(87)90159-6
https://doi.org/10.1016/0370-2693(87)90346-7
https://doi.org/10.1016/0370-2693(87)90346-7
https://doi.org/10.1016/j.nuclphysb.2013.09.007
https://doi.org/10.1016/j.nuclphysb.2013.09.007
https://doi.org/10.1103/PhysRevD.94.104015
https://doi.org/10.1103/PhysRevD.94.104015
https://doi.org/10.1103/PhysRevD.97.044038
https://doi.org/10.1103/PhysRevD.97.044038


Class. Quantum Grav. 42 (2025) 045014 C Heissenberg and R Russo

[6] Bjerrum-Bohr N E J, Damgaard P H, Festuccia G, Planté L and Vanhove P 2018 General relativity
from scattering amplitudes Phys. Rev. Lett. 121 171601

[7] Cheung C, Rothstein I Z and Solon M P 2018 From scattering amplitudes to classical potentials
in the post-Minkowskian expansion Phys. Rev. Lett. 121 251101

[8] Di Vecchia P, Heissenberg C, Russo R and Veneziano G 2023 The gravitational eikonal: from
particle, string and brane collisions to black-hole encounters (arXiv:2306.16488 [hep-th])

[9] Damgaard P H, Plante L and Vanhove P 2021 On an exponential representation of the gravitational
S-matrix J. High Energy Phys. JHEP11(2021)213

[10] Cristofoli A, Gonzo R, Moynihan N, O’Connell D, Ross A, Sergola M and White C D 2021 The
uncertainty principle and classical amplitudes (arXiv:2112.07556 [hep-th])

[11] Di Vecchia P, Heissenberg C, Russo R and Veneziano G 2023 Classical gravitational observables
from the eikonal operator Phys. Lett. B 843 138049

[12] Bern Z, Cheung C, Roiban R, Shen C-H, Solon M P and Zeng M 2019 Scattering amplitudes and
the conservative Hamiltonian for binary systems at third post-Minkowskian order Phys. Rev.
Lett. 122 201603

[13] Collado A K, Di Vecchia P and Russo R 2019 Revisiting the second post-Minkowskian eikonal
and the dynamics of binary black holes Phys. Rev. D 100 066028

[14] Bern Z, Cheung C, Roiban R, Shen C-H, SolonM P and ZengM 2019 Black hole binary dynamics
from the double copy and effective theory J. High Energy Phys. JHEP10(2019)206

[15] Cristofoli A, Damgaard P H, Di Vecchia P and Heissenberg C 2020 Second-order post-
Minkowskian scattering in arbitrary dimensions J. High Energy Phys. JHEP07(2020)122

[16] Parra-Martinez J, Ruf M S and Zeng M 2020 Extremal black hole scattering at O(G3): grav-
iton dominance, eikonal exponentiation and differential equations J. High Energy Phys.
JHEP11(2020)023

[17] Di Vecchia P, Heissenberg C, Russo R and Veneziano G 2020 Universality of ultra-relativistic
gravitational scattering Phys. Lett. B 811 135924

[18] Di Vecchia P, Heissenberg C, Russo R and Veneziano G 2021 Radiation reaction from soft theor-
ems Phys. Lett. B 818 136379

[19] Herrmann E, Parra-Martinez J, Ruf M S and Zeng M 2021 Gravitational bremsstrahlung from
reverse unitarity Phys. Rev. Lett. 126 201602

[20] Di Vecchia P, Heissenberg C, Russo R and Veneziano G 2021 The eikonal approach to gravita-
tional scattering and radiation at O(G3) J. High Energy Phys. JHEP07(2021)169

[21] Herrmann E, Parra-Martinez J, RufMS and ZengM2021Radiative classical gravitational observ-
ables at O(G3) from scattering amplitudes J. High Energy Phys. JHEP10(2021)148

[22] Bjerrum-Bohr N E J, Damgaard P H, Planté L and Vanhove P 2021 Classical gravity from loop
amplitudes Phys. Rev. D 104 026009

[23] Heissenberg C 2021 Infrared divergences and the eikonal exponentiation Phys. Rev.D 104 046016
[24] Bjerrum-Bohr N E J, Damgaard P H, Planté L and Vanhove P 2021 The amplitude for

classical gravitational scattering at third post-Minkowskian order J. High Energy Phys.
JHEP08(2021)172

[25] Brandhuber A, Chen G, Travaglini G and Wen C 2021 Classical gravitational scattering from a
gauge-invariant double copy J. High Energy Phys. JHEP10(2021)118

[26] Bern Z, Parra-Martinez J, Roiban R, Ruf M S, Shen C-H, Solon M P and Zeng M 2021 Scattering
amplitudes and conservative binary dynamics at O(G4) Phys. Rev. Lett. 126 171601

[27] Bern Z, Parra-Martinez J, Roiban R, Ruf M S, Shen C-H, Solon M P and Zeng M 2022
Scattering amplitudes, the tail effect and conservative binary dynamics at O(G4) Phys. Rev.
Lett. 128 161103

[28] Dlapa C, Kälin G, Liu Z, Neef J and Porto R A 2023 Radiation reaction and gravitational waves
at fourth post-Minkowskian order Phys. Rev. Lett. 130 101401

[29] Dlapa C, Kälin G, Liu Z and Porto R A 2023 Bootstrapping the relativistic two-body problem J.
High Energy Phys. JHEP08(2023)109

[30] Damgaard P H, Hansen E R, Planté L and Vanhove P 2023 Classical observables from the expo-
nential representation of the gravitational S-matrix J. High Energy Phys. JHEP09(2023)183

[31] Driesse M, Jakobsen G U, Mogull G, Plefka J, Sauer B and Usovitsch J 2024 Conservative black
hole scattering at fifth post-Minkowskian and first self-force order Phys. Rev. Lett. 132 241402

[32] Bern Z, Herrmann E, Roiban R, Ruf M S, Smirnov A V, Smirnov V A and Zeng M 2024
Amplitudes, supersymmetric black hole scattering atO(G5), and loop integration (arXiv:2406.
01554 [hep-th])

31

https://doi.org/10.1103/PhysRevLett.121.171601
https://doi.org/10.1103/PhysRevLett.121.171601
https://doi.org/10.1103/PhysRevLett.121.251101
https://doi.org/10.1103/PhysRevLett.121.251101
https://arxiv.org/abs/2306.16488
https://doi.org/10.1007/JHEP11(2021)213
https://arxiv.org/abs/2112.07556
https://doi.org/10.1016/j.physletb.2023.138049
https://doi.org/10.1016/j.physletb.2023.138049
https://doi.org/10.1103/PhysRevLett.122.201603
https://doi.org/10.1103/PhysRevLett.122.201603
https://doi.org/10.1103/PhysRevD.100.066028
https://doi.org/10.1103/PhysRevD.100.066028
https://doi.org/10.1007/JHEP10(2019)206
https://doi.org/10.1007/JHEP07(2020)122
https://doi.org/10.1007/JHEP11(2020)023
https://doi.org/10.1016/j.physletb.2020.135924
https://doi.org/10.1016/j.physletb.2020.135924
https://doi.org/10.1016/j.physletb.2021.136379
https://doi.org/10.1016/j.physletb.2021.136379
https://doi.org/10.1103/PhysRevLett.126.201602
https://doi.org/10.1103/PhysRevLett.126.201602
https://doi.org/10.1007/JHEP07(2021)169
https://doi.org/10.1007/JHEP10(2021)148
https://doi.org/10.1103/PhysRevD.104.026009
https://doi.org/10.1103/PhysRevD.104.026009
https://doi.org/10.1103/PhysRevD.104.046016
https://doi.org/10.1103/PhysRevD.104.046016
https://doi.org/10.1007/JHEP08(2021)172
https://doi.org/10.1007/JHEP10(2021)118
https://doi.org/10.1103/PhysRevLett.126.171601
https://doi.org/10.1103/PhysRevLett.126.171601
https://doi.org/10.1103/PhysRevLett.128.161103
https://doi.org/10.1103/PhysRevLett.128.161103
https://doi.org/10.1103/PhysRevLett.130.101401
https://doi.org/10.1103/PhysRevLett.130.101401
https://doi.org/10.1007/JHEP08(2023)109
https://doi.org/10.1007/JHEP09(2023)183
https://doi.org/10.1103/PhysRevLett.132.241402
https://doi.org/10.1103/PhysRevLett.132.241402
https://arxiv.org/abs/2406.01554
https://arxiv.org/abs/2406.01554


Class. Quantum Grav. 42 (2025) 045014 C Heissenberg and R Russo

[33] GoldbergerWD and Ridgway AK 2017 Radiation and the classical double copy for color charges
Phys. Rev. D 95 125010

[34] Luna A, Nicholson I, O’Connell D and White C D 2018 Inelastic black hole scattering from
charged scalar amplitudes J. High Energy Phys. JHEP03(2018)044

[35] Mogull G, Plefka J and Steinhoff J 2021 Classical black hole scattering from a worldline quantum
field theory J. High Energy Phys. JHEP02(2021)048

[36] Jakobsen G U, Mogull G, Plefka J and Steinhoff J 2021 Classical gravitational bremsstrahlung
from a worldline quantum field theory Phys. Rev. Lett. 126 201103

[37] Mougiakakos S, Riva M M and Vernizzi F 2021 Gravitational bremsstrahlung in the post-
Minkowskian effective field theory Phys. Rev. D 104 024041

[38] Brandhuber A, Brown G R, Chen G, De Angelis S, Gowdy J and Travaglini G 2023 One-loop
gravitational bremsstrahlung and waveforms from a heavy-mass effective field theory J. High
Energy Phys. JHEP06(2023)048

[39] Herderschee A, Roiban R and Teng F 2023 The sub-leading scattering waveform from amplitudes
J. High Energy Phys. JHEP06(2023)004

[40] Elkhidir A, O’Connell D, Sergola M and Vazquez-Holm I A 2023 Radiation and reaction at one
loop (arXiv:2303.06211 [hep-th])

[41] Georgoudis A, Heissenberg C and Russo R 2024 An eikonal-inspired approach to the gravitational
scattering waveform J. High Energy Phys. JHEP03(2024)089

[42] Caron-Huot S, Giroux M, Hannesdottir H S and Mizera S 2024 What can be measured asymptot-
ically? J. High Energy Phys. JHEP01(2024)139

[43] Georgoudis A, Heissenberg C and Vazquez-Holm I 2023 Inelastic exponentiation and classical
gravitational scattering at one loop J. High Energy Phys. JHEP06(2023)126

[44] Georgoudis A, Heissenberg C and Vazquez-Holm I 2024 Addendum to: inelastic exponentiation
and classical gravitational scattering at one loop J. High Energy Phys. JHEP02(2024)161

[45] Kosower D A, Maybee B and O’Connell D 2019 Amplitudes, observables and classical scattering
J. High Energy Phys. JHEP02(2019)137

[46] Damgaard P H, Hansen E R, Planté L and Vanhove P 2023 The relation between KMOC and
worldline formalisms for classical gravity J. High Energy Phys. JHEP09(2023)059

[47] Kälin G and Porto R A 2020 Post-Minkowskian effective field theory for conservative binary
dynamics J. High Energy Phys. JHEP11(2020)106

[48] Kälin G, Liu Z and Porto R A 2020 Conservative dynamics of binary systems to third post-
Minkowskian order from the effective field theory approach Phys. Rev. Lett. 125 261103

[49] Dlapa C, Kälin G, Liu Z and Porto R A 2022 Dynamics of binary systems to fourth Post-
Minkowskian order from the effective field theory approach Phys. Lett. B 831 137203

[50] Jakobsen G U, Mogull G, Plefka J and Sauer B 2022 All things retarded: radiation-reaction in
worldline quantum field theory J. High Energy Phys. JHEP10(2022)128

[51] Kälin G, Neef J and Porto R A 2023 Radiation-reaction in the effective field theory approach to
post-Minkowskian dynamics J. High Energy Phys. JHEP01(2023)140

[52] Damour T 2020 Radiative contribution to classical gravitational scattering at the third order in G
Phys. Rev. D 102 124008

[53] Bini D and Damour T 2022 Radiation-reaction and angular momentum loss at the second post-
Minkowskian order Phys. Rev. D 106 124049

[54] Manohar A V, Ridgway A K and Shen C-H 2022 Radiated angular momentum and dissipative
effects in classical scattering Phys. Rev. Lett. 129 121601

[55] Di Vecchia P, Heissenberg C and Russo R 2022 Angular momentum of zero-frequency gravitons
J. High Energy Phys. JHEP08(2022)172

[56] Veneziano G and Vilkovisky G A 2022 Angular momentum loss in gravitational scattering, radi-
ation reaction and the Bondi gauge ambiguity Phys. Lett. B 834 137419

[57] Zel’dovich YB and Polnarev AG 1974 Radiation of gravitational waves by a cluster of superdense
stars Sov. Astron. 18 17

[58] Christodoulou D 1991 Nonlinear nature of gravitation and gravitational wave experiments Phys.
Rev. Lett. 67 1486–9

[59] Wiseman A G and Will C M 1991 Christodoulou’s nonlinear gravitational wave memory: evalu-
ation in the quadrupole approximation Phys. Rev. D 44 R2945–9

[60] Thorne K S 1992 Gravitational-wave bursts with memory: the christodoulou effect Phys. Rev. D
45 520–4

32

https://doi.org/10.1103/PhysRevD.95.125010
https://doi.org/10.1103/PhysRevD.95.125010
https://doi.org/10.1007/JHEP03(2018)044
https://doi.org/10.1007/JHEP02(2021)048
https://doi.org/10.1103/PhysRevLett.126.201103
https://doi.org/10.1103/PhysRevLett.126.201103
https://doi.org/10.1103/PhysRevD.104.024041
https://doi.org/10.1103/PhysRevD.104.024041
https://doi.org/10.1007/JHEP06(2023)048
https://doi.org/10.1007/JHEP06(2023)004
https://arxiv.org/abs/2303.06211
https://doi.org/10.1007/JHEP03(2024)089
https://doi.org/10.1007/JHEP01(2024)139
https://doi.org/10.1007/JHEP06(2023)126
https://doi.org/10.1007/JHEP02(2024)161
https://doi.org/10.1007/JHEP02(2019)137
https://doi.org/10.1007/JHEP09(2023)059
https://doi.org/10.1007/JHEP11(2020)106
https://doi.org/10.1103/PhysRevLett.125.261103
https://doi.org/10.1103/PhysRevLett.125.261103
https://doi.org/10.1016/j.physletb.2022.137203
https://doi.org/10.1016/j.physletb.2022.137203
https://doi.org/10.1007/JHEP10(2022)128
https://doi.org/10.1007/JHEP01(2023)140
https://doi.org/10.1103/PhysRevD.102.124008
https://doi.org/10.1103/PhysRevD.102.124008
https://doi.org/10.1103/PhysRevD.106.124049
https://doi.org/10.1103/PhysRevD.106.124049
https://doi.org/10.1103/PhysRevLett.129.121601
https://doi.org/10.1103/PhysRevLett.129.121601
https://doi.org/10.1007/JHEP08(2022)172
https://doi.org/10.1016/j.physletb.2022.137419
https://doi.org/10.1016/j.physletb.2022.137419
https://doi.org/10.1103/PhysRevLett.67.1486
https://doi.org/10.1103/PhysRevLett.67.1486
https://doi.org/10.1103/PhysRevD.44.R2945
https://doi.org/10.1103/PhysRevD.44.R2945
https://doi.org/10.1103/PhysRevD.45.520
https://doi.org/10.1103/PhysRevD.45.520


Class. Quantum Grav. 42 (2025) 045014 C Heissenberg and R Russo

[61] Strominger A and Zhiboedov A 2016 Gravitational memory, BMS supertranslations and soft the-
orems J. High Energy Phys. 10.1007/JHEP01(2016)086

[62] He T, Lysov V, Mitra P and Strominger A 2015 BMS supertranslations and Weinberg’s soft grav-
iton theorem J. High Energy Phys. JHEP05(2015)151

[63] Strominger A 2017 Lectures on the Infrared Structure of Gravity and Gauge Theory Princeton
University Press (arXiv:1703.05448 [hep-th])

[64] Compère G, Oliveri R and Seraj A 2020 The Poincaré and BMSflux-balance lawswith application
to binary systems J. High Energy Phys. JHEP10(2020)116

[65] Chen P-N, Wang M-T, Wang Y-K and Yau S-T 2021 Supertranslation invariance of angular
momentum Adv. Theor. Math. Phys. 25 777–89

[66] Chen P-N, WangM-T, Wang Y-K and Yau S-T 2022 BMS charges without supertranslation ambi-
guity Commun. Math. Phys. 393 1411–49

[67] Javadinezhad R and Porrati M 2023 Supertranslation-invariant formula for the angular momentum
flux in gravitational scattering Phys. Rev. Lett. 130 011401

[68] Mao P,Wu J-B andWuX 2023 Angular momentum andmemory effect Phys. Rev.D 107 L101501
[69] Riva MM, Vernizzi F andWong L K 2023 Angular momentum balance in gravitational two-body

scattering: flux, memory and supertranslation invariance Phys. Rev. D 108 104052
[70] Javadinezhad R and Porrati M 2024 Three puzzles with covariance and supertranslation invariance

of angular momentum flux and their solutions Phys. Rev. Lett. 132 151604
[71] Mao P and Zeng B 2024 Supertranslation ambiguity in post-Minkowskian expansion (arXiv:2406.

07943 [gr-qc])
[72] Maggiore M 2007 Gravitational Waves. Vol. 1: Theory and Experiments (Oxford Master Series

in Physics) (Oxford University Press)
[73] Blanchet L 2014 Gravitational radiation from post-Newtonian sources and inspiralling compact

binaries Living Rev. Rel. 17 2
[74] Bini D, Damour T and Geralico A 2021 Radiative contributions to gravitational scattering Phys.

Rev. D 104 084031
[75] Bini D, Damour T and Geralico A 2023 Radiated momentum and radiation reaction in gravita-

tional two-body scattering including time-asymmetric effects Phys. Rev. D 107 024012
[76] Bini D, Damour T and Geralico A 2023 Comparing one-loop gravitational bremsstrahlung amp-

litudes to the multipolar-post-Minkowskian waveform Phys. Rev. D 108 124052
[77] Georgoudis A, Heissenberg C and Russo R 2024 Post-Newtonian multipoles from the next-to-

leading post-Minkowskian gravitational waveform Phys. Rev. D 109 106020
[78] Bini D, Damour T, De Angelis S, Geralico A, Herderschee A, Roiban R and Teng F 2024

Gravitational waveform: a tale of two formalisms (arXiv:2402.06604 [hep-th])
[79] Blanchet L and Damour T 1988 Tail transported temporal correlations in the dynamics of a grav-

itating system Phys. Rev. D 37 1410
[80] Blanchet L and Damour T 1992Hereditary effects in gravitational radiationPhys. Rev.D 46 4304–

19
[81] Blanchet L 1993 Time asymmetric structure of gravitational radiation Phys. Rev. D 47 4392–420
[82] Goldberger W D and Ross A 2010 Gravitational radiative corrections from effective field theory

Phys. Rev. D 81 124015
[83] Porto R A, Ross A and Rothstein I Z 2012 Spin induced multipole moments for the gravitational

wave amplitude from binary inspirals to 2.5 post-Newtonian order J. Cosmol. Astropart. Phys.
JCAP09(2012)028

[84] Blanchet L and Faye G 2019 Flux-balance equations for linear momentum and center-of-mass
position of self-gravitating post-Newtonian systems Class. Quantum Grav. 36 085003

[85] Di Vecchia P, Heissenberg C, Russo R and Veneziano G 2022 The eikonal operator at arbitrary
velocities I: the soft-radiation limit J. High Energy Phys. JHEP07(2022)039

[86] Cristofoli A, Elkhidir A, Ilderton A and O’Connell D 2023 Large gauge effects and the structure
of amplitudes J. High Energy Phys. JHEP06(2023)204

[87] Weinberg S 1964 Photons and gravitons in S-matrix theory: derivation of charge conservation and
equality of gravitational and inertial mass Phys. Rev. 135 B1049–56

[88] Weinberg S 1965 Infrared photons and gravitons Phys. Rev. 140 B516–24
[89] Ashtekar A and Bonga B 2017 On a basic conceptual confusion in gravitational radiation theory

Class. Quantum Grav. 34 20LT01
[90] Ashtekar A and Bonga B 2017 On the ambiguity in the notion of transverse traceless modes of

gravitational waves Gen. Relativ. Gravit. 49 122

33

https://doi.org/10.1007/JHEP01(2016)086
https://doi.org/10.1007/JHEP05(2015)151
https://arxiv.org/abs/1703.05448
https://doi.org/10.1007/JHEP10(2020)116
https://doi.org/10.4310/ATMP.2021.v25.n3.a4
https://doi.org/10.4310/ATMP.2021.v25.n3.a4
https://doi.org/10.1007/s00220-022-04390-1
https://doi.org/10.1007/s00220-022-04390-1
https://doi.org/10.1103/PhysRevLett.130.011401
https://doi.org/10.1103/PhysRevLett.130.011401
https://doi.org/10.1103/PhysRevD.107.L101501
https://doi.org/10.1103/PhysRevD.107.L101501
https://doi.org/10.1103/PhysRevD.108.104052
https://doi.org/10.1103/PhysRevD.108.104052
https://doi.org/10.1103/PhysRevLett.132.151604
https://doi.org/10.1103/PhysRevLett.132.151604
https://arxiv.org/abs/2406.07943
https://arxiv.org/abs/2406.07943
https://doi.org/10.12942/lrr-2014-2
https://doi.org/10.12942/lrr-2014-2
https://doi.org/10.1103/PhysRevD.104.084031
https://doi.org/10.1103/PhysRevD.104.084031
https://doi.org/10.1103/PhysRevD.107.024012
https://doi.org/10.1103/PhysRevD.107.024012
https://doi.org/10.1103/PhysRevD.108.124052
https://doi.org/10.1103/PhysRevD.108.124052
https://doi.org/10.1103/PhysRevD.109.106020
https://doi.org/10.1103/PhysRevD.109.106020
https://arxiv.org/abs/2402.06604
https://doi.org/10.1103/PhysRevD.37.1410
https://doi.org/10.1103/PhysRevD.37.1410
https://doi.org/10.1103/PhysRevD.46.4304
https://doi.org/10.1103/PhysRevD.46.4304
https://doi.org/10.1103/PhysRevD.46.4304
https://doi.org/10.1103/PhysRevD.47.4392
https://doi.org/10.1103/PhysRevD.47.4392
https://doi.org/10.1103/PhysRevD.81.124015
https://doi.org/10.1103/PhysRevD.81.124015
https://doi.org/10.1088/1475-7516/2012/09/028
https://doi.org/10.1088/1361-6382/ab0d4f
https://doi.org/10.1088/1361-6382/ab0d4f
https://doi.org/10.1007/JHEP07(2022)039
https://doi.org/10.1007/JHEP06(2023)204
https://doi.org/10.1103/PhysRev.135.B1049
https://doi.org/10.1103/PhysRev.135.B1049
https://doi.org/10.1103/PhysRev.140.B516
https://doi.org/10.1103/PhysRev.140.B516
https://doi.org/10.1088/1361-6382/aa88e2
https://doi.org/10.1088/1361-6382/aa88e2
https://doi.org/10.1007/s10714-017-2290-z
https://doi.org/10.1007/s10714-017-2290-z


Class. Quantum Grav. 42 (2025) 045014 C Heissenberg and R Russo

[91] BongaB and Poisson E 2019Coulombic contribution to angularmomentumflux in general relativ-
ity Phys. Rev. D 99 064024

[92] Gralla S E and Lobo K 2022 Self-force effects in post-Minkowskian scattering Class. Quantum
Grav. 39 095001

[93] Gralla S E and Lobo K 2022 Electromagnetic scoot Phys. Rev. D 105 084053
[94] Bhardwaj R and Lippstreu L 2022 Angular momentum of the asymptotic electromagnetic field in

the classical scattering of charged particles (arXiv:2208.02727 [hep-th])
[95] Alessio F and Arzano M 2024 A new pairwise boost quantum number from celestial states

(arXiv:2403.03760 [hep-th])
[96] Gralla S E, Lobo K and Wei H 2024 Frames and slicings for angular momentum in post-

Minkowski scattering (arXiv:2406.02815 [gr-qc])
[97] Mougiakakos S, Riva M M and Vernizzi F 2022 Gravitational bremsstrahlung with tidal effects

in the post-Minkowskian expansion Phys. Rev. Lett. 129 121101
[98] Riva M M, Vernizzi F and Wong L K 2022 Gravitational bremsstrahlung from spinning binaries

in the post-Minkowskian expansion Phys. Rev. D 106 044013
[99] Heissenberg C 2023 Angular momentum loss due to tidal effects in the post-Minkowskian expan-

sion Phys. Rev. Lett. 131 011603
[100] Heissenberg C 2023 Angular momentum loss due to spin-orbit effects in the post-Minkowskian

expansion Phys. Rev. D 108 106003
[101] De Angelis S, Gonzo R and Novichkov P P 2023 Spinning waveforms from KMOC at leading

order (arXiv:2309.17429 [hep-th])
[102] Brandhuber A, Brown G R, Chen G, Gowdy J and Travaglini G 2024 Resummed spinning wave-

forms from five-point amplitudes J. High Energy Phys. JHEP02(2024)026
[103] Aoude R, Haddad K, Heissenberg C and Helset A 2024 Leading-order gravitational radiation to

all spin orders Phys. Rev. D 109 036007
[104] Jakobsen GU,Mogull G, Plefka J and Sauer B 2023 Dissipative scattering of spinning black holes

at fourth post-Minkowskian order Phys. Rev. Lett. 131 241402
[105] Jakobsen G U, Mogull G, Plefka J and Sauer B 2024 Tidal effects and renormalization at fourth

post-Minkowskian order Phys. Rev. D 109 L041504
[106] Bohnenblust L, Ita H, Kraus M and Schlenk J 2023 Gravitational bremsstrahlung in black-hole

scattering at O(G3): linear-in-spin effects (arXiv:2312.14859 [hep-th])
[107] Weinberg S 2013 The Quantum Theory of Fields. Vol. 2: Modern Applications (Cambridge

University Press)
[108] Cristofoli A, Gonzo R, Kosower D A and O’Connell D 2022 Waveforms from amplitudes Phys.

Rev. D 106 056007
[109] Thorne K S 1980 Multipole expansions of gravitational radiation Rev. Mod. Phys. 52 299–339
[110] Blanchet L and Damour T 1986 Radiative gravitational fields in general relativity I. General struc-

ture of the field outside the source Phil. Trans. R. Soc. A 320 379–430
[111] Kälin G and Porto R A 2020 From boundary data to bound states J. High Energy Phys.

JHEP01(2020)072
[112] Kälin G and Porto R A 2020 From boundary data to bound states. Part II. Scattering angle to

dynamical invariants (with twist) J. High Energy Phys. JHEP02(2020)120
[113] Cho G, Kälin G and Porto RA 2022 From boundary data to bound states. Part III. Radiative effects

J. High Energy Phys. JHEP04(2022)154
Cho G, Kälin G and Porto R A 2022 J. High Energy Phys. JHEP07(2022)002 (Erratum)

34

https://doi.org/10.1103/PhysRevD.99.064024
https://doi.org/10.1103/PhysRevD.99.064024
https://doi.org/10.1088/1361-6382/ac5d88
https://doi.org/10.1088/1361-6382/ac5d88
https://doi.org/10.1103/PhysRevD.105.084053
https://doi.org/10.1103/PhysRevD.105.084053
https://arxiv.org/abs/2208.02727
https://arxiv.org/abs/2403.03760
https://arxiv.org/abs/2406.02815
https://doi.org/10.1103/PhysRevLett.129.121101
https://doi.org/10.1103/PhysRevLett.129.121101
https://doi.org/10.1103/PhysRevD.106.044013
https://doi.org/10.1103/PhysRevD.106.044013
https://doi.org/10.1103/PhysRevLett.131.011603
https://doi.org/10.1103/PhysRevLett.131.011603
https://doi.org/10.1103/PhysRevD.108.106003
https://doi.org/10.1103/PhysRevD.108.106003
https://arxiv.org/abs/2309.17429
https://doi.org/10.1007/JHEP02(2024)026
https://doi.org/10.1103/PhysRevD.109.036007
https://doi.org/10.1103/PhysRevD.109.036007
https://doi.org/10.1103/PhysRevLett.131.241402
https://doi.org/10.1103/PhysRevLett.131.241402
https://doi.org/10.1103/PhysRevD.109.L041504
https://doi.org/10.1103/PhysRevD.109.L041504
https://arxiv.org/abs/2312.14859
https://doi.org/10.1103/PhysRevD.106.056007
https://doi.org/10.1103/PhysRevD.106.056007
https://doi.org/10.1103/RevModPhys.52.299
https://doi.org/10.1103/RevModPhys.52.299
https://doi.org/10.1098/rsta.1986.0125
https://doi.org/10.1098/rsta.1986.0125
https://doi.org/10.1007/JHEP01(2020)072
https://doi.org/10.1007/JHEP02(2020)120
https://doi.org/10.1007/JHEP04(2022)154
https://doi.org/10.1007/JHEP07(2022)002

	Revisiting gravitational angular momentum and mass dipole losses in the eikonal framework
	1. Introduction
	2. Eikonal operator
	3. Waveform
	4. Energy-momentum loss
	5. Angular momentum loss
	5.1. Radiative contribution
	5.2. Static contribution
	5.3. Complete expressions

	6. Conclusions
	Appendix A. Time-domain and frequency-domain integrals
	Appendix B. Uplifting the TT formula
	B.1. Spin one
	B.2. Spin two

	References


