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Abstract. A novel approach to determine the leading hadronic corrections to the muon

g-2 is proposed. It consists in a measurement of the effective electromagnetic coupling in

the space-like region. This method may become feasible at flavor factories resulting in a

determination potentially competitive with the dispersive approach via time-like data.

1 Introduction

The motivation of this work [1] is due to a long-standing discrepancy between experiment and the

Standard Model (SM) prediction for aμ, the muon anomalous magnetic moment. For this reason the

hadronic corrections have been kept under close scrutiny [2–5]. The hadronic contribution represents

the largest uncertainty of the SM value and is comparable with the experimental one. When the new

results from the g-2 experiments at Fermilab and J-PARC will reach the unprecedented precision of

0.14 parts per million (or better) [6–8], the uncertainty of the hadronic corrections will become the

main limitation of this formidable test of the SM.

Vacuum Polarization makes αem running assuming a well defined effective value at any scale. Vacuum

polarization and the effective charge are defined by:

e2 → e2(q2) =
e2

1 + (Π(q2) − Π(0))
(1)

and

α(q2) =
α(0)

1 − Δα Δα = −Re(Π(q2) − Π(0)). (2)

Δα takes contributions from leptonic and hadronic elementary states among these the non-perturbative

Δαhad

Δα = Δαlept + Δαhad + Δαtop (3)

Δα(5)
had(M2

z ) = −α M2
z

3π
Re

∫ ∞

4m2
π

ds
R(s)

s(s − M2
z − iε)

(4)
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A direct measurement of the running of αem(s/t) in space/time-like regions can show the running of

αem. It can provide a test of duality far away form resonances and ita has been done in the past by few

experiments at e+e− colliders by comparing well known QED processes with some reference (either

data or MonteCarlo one) normalization:

(
α(q2)

α(q2
0
)
)2 � Nsignal(q2)

Nnorm(q2
0
)
. (5)

Nsignal can be any QED process as muon pairs production or others similar ones and Nnorm can be the

Bhabha process, a pure QED channel as γγ pair production as well as theory, or any other reference

process. q0 represents a scale chosen as starting point for the running.

2 aHLO
mu calculation

The leading-order hadronic contribution to the muon g-2 is given by the well-known formula [5, 12]

aHLO

μ =
α

π2

∫ ∞

0

ds
s

K(s) ImΠhad(s + iε), (6)

where Πhad(s) is the hadronic part of the photon vacuum polarization, ε > 0,

K(s) =

∫ 1

0

dx
x2(1 − x)

x2 + (1 − x)(s/m2
μ)

(7)

is a positive kernel function, and mμ is the muon mass. As the total cross section for hadron production

in low-energy e+e− annihilations is related to the imaginary part of Πhad(s) via the optical theorem,

the dispersion integral in eq. (6) is computed integrating experimental time-like (s > 0) data up to

a certain value of s [3, 16, 17]. The high-energy tail of the integral is calculated using perturbative

QCD [18].

Alternatively, if we exchange the x and s integrations in eq. (6) we obtain [19]

aHLO

μ =
α

π

∫ 1

0

dx (x − 1)Πhad[t(x)] , (8)

where Πhad(t) = Πhad(t) − Πhad(0) and

t(x) =
x2m2

μ

x − 1
< 0 (9)

is a space-like squared four-momentum. If we invert eq. (9), we get x = (1 − β) (t/2m2
μ), with β =

(1 − 4m2
μ/t)

1/2, and from eq. (8) we obtain

aHLO

μ =
α

π

∫ 0

−∞
Πhad(t)

(
β − 1

β + 1

)2 dt
tβ
. (10)

Equation (10) has been used for lattice QCD calculations of aHLO

μ [20]; while the results are not yet

competitive with those obtained with the dispersive approach via time-like data, their errors are ex-

pected to decrease significantly in the next few years [21].
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The effective fine-structure constant at squared momentum transfer q2 is defined above and is

Δα(q2) = −ReΠ(q2). The purely leptonic part, Δαlep(q2), can be calculated order-by-order in per-

turbation theory – it is known up to three loops in QED [22] (and up to four loops in specific q2

limits [23]). As ImΠ(q2) = 0 for negative q2, eq. (8) can be rewritten in the form [24]

aHLO

μ =
α

π

∫ 1

0

dx (1 − x)Δαhad[t(x)] . (11)

Equation (11), involving the hadronic contribution to the running of the effective fine-structure con-

stant at space-like momenta, can be further formulated in terms of the Adler function [25], defined as

the logarithmic derivative of the vacuum polarization, which, in turn, can be calculated via a dispersion

relation with time-like hadroproduction data and perturbative QCD [24, 26]. We will proceed differ-

ently, proposing to calculate eq. (11) by measurements of the effective electromagnetic coupling in the

space-like region. The hadronic contribution to the running of α in the space-like region, Δαhad(t) (see

eq. (3)), can be extracted comparing Bhabha scattering data to Monte Carlo (MC) predictions. The

LO Bhabha cross section receives contributions from t- and s-channel photon exchange amplitudes.

At NLO in QED, it is customary to distinguish corrections with an additional virtual photon or the

emission of a real photon (photonic NLO) from those originated by the insertion of the vacuum polar-

ization corrections into the LO photon propagator (VP). let us consider a few simple points. In fig. 1

(left) we plot the integrand (1− x)Δαhad[t(x)] of eq. (11) using the output of the routine hadr5n12 [29]

(which uses time-like hadroproduction data and perturbative QCD). The range x ∈ (0, 1) corresponds

to t ∈ (−∞, 0), with x = 0 for t = 0. The peak of the integrand occurs at xpeak � 0.914 where

tpeak � −0.108 GeV2 and Δαhad(tpeak) � 7.86 × 10−4 (see fig. 1 (right)). Such relatively low t values
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Figure 1. Left: The integrand (1 − x)Δαhad[t(x)] × 105 as a function of x and t. Right: Δαhad[t(x)] × 104.

can be explored at e+e− colliders with center-of-mass energy
√

s around or below 10 GeV where

t = − s
2

(1 − cosθ)
(
1 − 4m2

e

s

)
, (12)
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θ is the electron scattering angle and me is the electron mass. Depending on s and θ, the integrand

of eq. (11) can be measured in the range x ∈ [xmin, xmax], as shown in fig. 2 (left). Note that to

span low x intervals, larger θ ranges are needed as the collider energy decreases. In this respect,√
s ∼ 3 GeV appears to be very convenient, as an x interval [0.30, 0.98] can be measured varying

θ between ∼ 2◦ and 28◦. It is also worth remarking that data collected at flavor factories, such as

DAΦNE (Frascati), VEPP-2000 (Novosibirsk), BEPC-II (Beijing), PEP-II (SLAC) and SuperKEKB

(Tsukuba), and possibly at a future high-energy e+e− collider, like FCC-ee (TLEP) [30] or ILC [31],

can help to cover different and complementary x regions.

Furthermore, given the smoothness of the integrand, values outside the measured x interval may be

interpolated with some theoretical input. In particular, the region below xmin will provide a relatively

small contribution to aHLO

μ , while the region above xmax may be obtained by extrapolating the curve

from xmax to x = 1, where the integrand is null, or using perturbative QCD.
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Figure 2. Left: Ranges of x values as a function of the electron scattering angle θ for three different center-of-

mass energies. The horizontal line corresponds to x = xpeak � 0.914. Right: Bhabha differential cross section

obtained with BabaYaga [27] as a function of θ for the same three values of
√

s in the angular range 2◦ < θ < 90◦.

The analytic dependence of the MC Bhabha predictions on α(t) (and, in turn, on Δαhad(t)) is not

trivial, and a numerical procedure has to be devised to extract it from the data.This was not the case

for example in [13, 14]: there α(t) was extracted from Bhabha data in the very forward region at

LEP, where the t channel diagrams are by far dominant and α(t) factorizes (see for example [15]). In

formulae, we have to find a function α(t) such that

dσ
dt

∣∣∣∣
data
=

dσ
dt

(
α(t), α(s)

)∣∣∣∣
MC
, (13)

where we explicitly kept apart the dependence on the time-like VP α(s) because we are only interested

in α(t). We emphasise that, in our analysis, α(s) is an input parameter. Being the Bhabha cross section

in the forward region dominated by the t-channel exchange diagrams , we checked that the present

α(s) uncertainty induces in this region a relative error on the θ distribution of less than ∼ 10−4 (which

is part of the systematic error).
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We propose to perform the numerical extraction of Δαhad(t) from the Bhabha distribution of the

t Mandelstam variable. The idea is to let α(t) vary in the MC sample around a reference value and

choose, bin by bin in the t distribution, the value that minimizes the difference with data. The proce-

dure can be sketched as follows:

1. choose a reference function returning the value of Δαhad(t) (and hence α(t)) to be used in the

MC sample, we call it ᾱ(t);

2. for each generated event, calculate N MC weights by rescaling ᾱ(t) → ᾱ(t) + i
N δ(t), where

i ∈ [−N,N] and δ(t) is for example the error induced on ᾱ(t) by the error on Δαhad(t). Being

done on an event by event basis, the full dependence on α(t) of the MC differential cross section

can be kept;

3. for each bin j of the t distribution, compare the experimental differential cross section with the

MC predictions and choose the i j which minimizes the difference;

4. ᾱ(t j) +
i j

N δ(t j) will be the extracted value of α(t j) from data in the jth bin. Δαhad(t j) can then be

obtained through the relation between α(t) and Δαhad(t).

We finally find, for each bin j of the t distribution,

dσ
dt

∣∣∣∣
j,data
=

dσ
dt

(
ᾱ(t) +

i j

N
δ(t), α(s)

)∣∣∣∣
j,MC
. (14)

We remark that the algorithm does not assume any simple dependence of the cross section on α(t),
which can in fact be general, mixing s, t channels and higher order radiative corrections, relevant (or

not) in different t domains.

In order to test our procedure, we perform a pseudo-experiment: we generate pseudo-data using

the parameterization ΔαI
had

(t) of refs. [17, 32] and check if we can recover it by inserting in the MC

the (independent) parameterization ΔαII
had

(t) (corresponding to ᾱ(t) of eq. 14) of ref. [29] by means of

the method described above. For this exercise, we use the generator BabaYaga in its most complete

setup, generating events at
√

s = 1.02 GeV, requiring 10◦ < θ± < 170◦, E± > 0.4 GeV and an

acollinearity cut of 15◦. We choose δ(t) to be the error induced on α(t) by the 1-σ error on Δαhad(t),
which is returned by the routine of ref. [29], we set N = 150, and we produce distributions with 200

bins. We note that in the present exercise α(s) and all the radiative corrections both in the pseudo-data

and in the MC samples are exactly the same, because we are interested in testing the algorithm rather

than assessing the achievable accuracy, at least at this stage.

In fig. 3, Δαextr
had

is the result extracted with our algorithm, corresponding to the minimizing set of

i j: the figure shows that our method is capable of recovering the underlying function Δαhad(t) inserted

into the “data”. As the difference between ΔαI
had

and Δαextr
had

is hardly visible on an absolute scale, in

fig. 3 all the functions have been divided by ΔαII
had

to display better the comparison between ΔαI
had

and Δαextr
had

.

In order to assess the achievable accuracy on Δαhad(t) with the proposed method, we remark that

the LO contribution to the cross section is quadratic in α(t), thus we have

1

2

δσ

σ
� δα
α

� δΔαhad (15)

Equation (15) relates the absolute error on Δαhad with the relative error on the Bhabha cross section.

Let us stress here that:
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Figure 3. The extracted function Δαextr
had

(t) compared to the function ΔαI
had

(t) used in the pseudo-data (see text).

The functions ΔαII
had

(t)±δ(t) are shown to display the range spanned by the MC samples. All functions have been

divided by ΔαII
had

(t). The tiny difference between ΔαI
had

and Δαextr
had

is due to the binning discretization.

1. From the theoretical point of view, the present accuracy of the MC predictions [28] is at the level

of about 0.05%, which implies that the precision that our method can, at best, set on Δαhad(t)
is δΔαhad(t) � 2 · 10−4. Any further improvement requires the inclusion of the NNLO QED

corrections into the MC codes (see Ref. [28]).

2. Experimentally a measurement of aHLO

μ from space-like data competitive with the current

time-like evaluations would require an O(1%) accuracy. Statistical considerations show that

a 3% fractional accuracy on the aHLO

μ integral can be obtained by sampling the integrand

(1 − x)Δαhad[t(x)] in ∼ 10 points around the x peak with a fractional accuracy of 10%. Given

the value of O(10−3) for Δαhad at x = xpeak, this implies that the cross section must be known

with relative accuracy of ∼ 2 × 10−4. Such a statistical accuracy, although challenging, can be

obtained at flavor factories, as shown in fig. 2 (right). With an integrated luminosity of O(1),

O(10), O(100) f b−1 at
√

s = 1, 3 and 10 GeV, respectively, the angular region of interest can be

covered with a 0.01% accuracy per degree. The experimental systematic error must match the

same level of accuracy.

A source of experimental systematic errors comes from the machine luminosity, which can be

normalized by calculating a theoretical cross section in principle not depending on Δαhad. We devise

two possible options for the normalization process:

1. To use the e+e− → γγ process, which has no dependence on Δαhad, at least up to NNLO order;

2. To use the Bhabha process at t ∼ 10−3 GeV2 (x ∼ 0.3), where the dependence on Δαhad is of

O(10−5) and can be safely neglected.
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It is worth quoting that a detailed analysis of the systematic errors involved in the measurement of

the luminosity has been carried out at LEP by the OPAL collaboration reaching the final accuracy of

O(10−4) [14, 33].

3 Conclusions

We presented a novel approach to determine the leading hadronic correction to the muon g-2 based

on measurements of the running of α(t) in the space-like region.

This approach, even if challenging, may become feasible by using data collected at present

flavor factories as well as those at future high-energy e+e− colliders 1.

The proposed determination can become competitive with the accuracy of the present results

obtained with the dispersive approach via time-like data.

An alternative formula for aHLO
μ in the space-like region has been studied in detail. It empha-

sizes low values of t ≤ 1GeV2 which can be explored at low energies machines.

We have also argued that this requires a measurement of the Bhabha cross section, at rela-

tively small angles, with an accuracy of the order 10−4 or better.

Reaching such an accuracy demands a dedicated experimental and theoretical work for the

next few years.
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