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A new measurement of the leading hadronic corrections to the
muon g-2*
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Abstract. A novel approach to determine the leading hadronic corrections to the muon
g-2 is proposed. It consists in a measurement of the effective electromagnetic coupling in
the space-like region. This method may become feasible at flavor factories resulting in a
determination potentially competitive with the dispersive approach via time-like data.

1 Introduction

The motivation of this work [1] is due to a long-standing discrepancy between experiment and the
Standard Model (SM) prediction for a,, the muon anomalous magnetic moment. For this reason the
hadronic corrections have been kept under close scrutiny [2-5]. The hadronic contribution represents
the largest uncertainty of the SM value and is comparable with the experimental one. When the new
results from the g-2 experiments at Fermilab and J-PARC will reach the unprecedented precision of
0.14 parts per million (or better) [6—8], the uncertainty of the hadronic corrections will become the
main limitation of this formidable test of the SM.

Vacuum Polarization makes «,,, running assuming a well defined effective value at any scale. Vacuum
polarization and the effective charge are defined by:
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A direct measurement of the running of a,,,(s/f) in space/time-like regions can show the running of
em- It can provide a test of duality far away form resonances and ita has been done in the past by few
experiments at e*e~ colliders by comparing well known QED processes with some reference (either
data or MonteCarlo one) normalization:

a(qz) 2 . inqnal(qz)
aq)” Nuom(qp)

&)

Niignai can be any QED process as muon pairs production or others similar ones and N,,,,, can be the
Bhabha process, a pure QED channel as yy pair production as well as theory, or any other reference
process. g represents a scale chosen as starting point for the running.

2 4!LO calculation
The leading-order hadronic contribution to the muon g-2 is given by the well-known formula [5, 12]

ﬁf d—: K(s) ImITpaq(s + i€), ©
0

HLO
a =
2

"

where IT},4q(s) is the hadronic part of the photon vacuum polarization, € > 0,

1 201 _
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is a positive kernel function, and m,, is the muon mass. As the total cross section for hadron production
in low-energy e*e” annihilations is related to the imaginary part of Tlp,q(s) via the optical theorem,
the dispersion integral in eq. (6) is computed integrating experimental time-like (s > 0) data up to
a certain value of s [3, 16, 17]. The high-energy tail of the integral is calculated using perturbative
QCD [18].

Alternatively, if we exchange the x and s integrations in eq. (6) we obtain [19]

at =2 [ dx(x = D) a1, @)
T Jo

where TThag(f) = TThaa(?) — TThaa(0) and
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is a space-like squared four-momentum. If we invert eq. (9), we get x = (1 —3) (t/2m;21), with 8 =
(1 —4m/n)!/?, and from eq. (8) we obtain

o _ @ (= B—1\ dt
ar=2 [ wnhad(o(/m) 5 (10)

Equation (10) has been used for lattice QCD calculations of aﬂw [20]; while the results are not yet
competitive with those obtained with the dispersive approach via time-like data, their errors are ex-
pected to decrease significantly in the next few years [21].
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The effective fine-structure constant at squared momentum transfer ¢° is defined above and is
Aa(q?) = —Reﬁ(qz). The purely leptonic part, Aalep(qz), can be calculated order-by-order in per-
turbation theory — it is known up to three loops in QED [22] (and up to four loops in specific ¢>
limits [23]). As Imﬁ(cf) = 0 for negative q%, eq. (8) can be rewritten in the form [24]

1
a™ = ¢ dx (1 — x) Aanaa[t(x)] . (1)
u 7 Jo

Equation (11), involving the hadronic contribution to the running of the effective fine-structure con-
stant at space-like momenta, can be further formulated in terms of the Adler function [25], defined as
the logarithmic derivative of the vacuum polarization, which, in turn, can be calculated via a dispersion
relation with time-like hadroproduction data and perturbative QCD [24, 26]. We will proceed differ-
ently, proposing to calculate eq. (11) by measurements of the effective electromagnetic coupling in the
space-like region. The hadronic contribution to the running of @ in the space-like region, Aap,q(f) (see
eq. (3)), can be extracted comparing Bhabha scattering data to Monte Carlo (MC) predictions. The
LO Bhabha cross section receives contributions from #- and s-channel photon exchange amplitudes.
At NLO in QED, it is customary to distinguish corrections with an additional virtual photon or the
emission of a real photon (photonic NLO) from those originated by the insertion of the vacuum polar-
ization corrections into the LO photon propagator (VP). let us consider a few simple points. In fig. 1
(left) we plot the integrand (1 —x)Aanag[#(x)] of eq. (11) using the output of the routine hadr5n12 [29]
(which uses time-like hadroproduction data and perturbative QCD). The range x € (0, 1) corresponds
to t € (=00,0), with x = 0 for + = 0. The peak of the integrand occurs at xpex =~ 0.914 where
fpeak = —0.108 GeV? and Aarpag(tpear) = 7.86 x 1074 (see fig. 1 (right)). Such relatively low ¢ values
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Figure 1. Left: The integrand (1 — x)Aapaq[#(x)] X 10° as a function of x and . Right: Aapqa[#(x)] x 10*.

can be explored at e*e™ colliders with center-of-mass energy /s around or below 10 GeV where

2
R —cosH)(l _ 4’”6), (12)
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0 is the electron scattering angle and m, is the electron mass. Depending on s and 6, the integrand
of eq. (11) can be measured in the range x € [Xmin, Xmax], @S shown in fig. 2 (left). Note that to
span low x intervals, larger 6 ranges are needed as the collider energy decreases. In this respect,
Vs ~ 3 GeV appears to be very convenient, as an x interval [0.30,0.98] can be measured varying
0 between ~ 2° and 28°. It is also worth remarking that data collected at flavor factories, such as
DAO®NE (Frascati), VEPP-2000 (Novosibirsk), BEPC-II (Beijing), PEP-II (SLAC) and SuperKEKB
(Tsukuba), and possibly at a future high-energy e*e™ collider, like FCC-ee (TLEP) [30] or ILC [31],
can help to cover different and complementary x regions.

Furthermore, given the smoothness of the integrand, values outside the measured x interval may be
interpolated with some theoretical input. In particular, the region below xy,;, will provide a relatively
small contribution to a!°, while the region above x;,,x may be obtained by extrapolating the curve

u
from xpax to x = 1, where the integrand is null, or using perturbative QCD.
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Figure 2. Left: Ranges of x values as a function of the electron scattering angle 6 for three different center-of-
mass energies. The horizontal line corresponds to x = Xxpeac = 0.914. Right: Bhabha differential cross section
obtained with BabaYaga [27] as a function of 8 for the same three values of +/s in the angular range 2° < 6 < 90°.

The analytic dependence of the MC Bhabha predictions on «a(¢) (and, in turn, on Aapaq(?)) is not
trivial, and a numerical procedure has to be devised to extract it from the data.This was not the case
for example in [13, 14]: there a(f) was extracted from Bhabha data in the very forward region at
LEP, where the ¢ channel diagrams are by far dominant and a(#) factorizes (see for example [15]). In
formulae, we have to find a function a(¢) such that

do

- (e, )|, (13)
where we explicitly kept apart the dependence on the time-like VP a(s) because we are only interested
in a(?). We emphasise that, in our analysis, a(s) is an input parameter. Being the Bhabha cross section
in the forward region dominated by the 7-channel exchange diagrams , we checked that the present
a(s) uncertainty induces in this region a relative error on the 6 distribution of less than ~ 10~ (which

is part of the systematic error).

_do
T odt

data
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We propose to perform the numerical extraction of Aayp,q(f) from the Bhabha distribution of the
t Mandelstam variable. The idea is to let a(¢) vary in the MC sample around a reference value and
choose, bin by bin in the 7 distribution, the value that minimizes the difference with data. The proce-
dure can be sketched as follows:

1. choose a reference function returning the value of Aayp,q(¢) (and hence a(r)) to be used in the
MC sample, we call it @(r);

2. for each generated event, calculate N MC weights by rescaling a(t) — a(r) + ﬁé(l), where
i € [-N,N] and 6(¢) is for example the error induced on a@(#) by the error on Aan,q(7). Being
done on an event by event basis, the full dependence on a(f) of the MC differential cross section
can be kept;

3. for each bin j of the ¢ distribution, compare the experimental differential cross section with the
MC predictions and choose the i; which minimizes the difference;

4. a(t)) + %6([1) will be the extracted value of a(¢;) from data in the j[h bin. Aay,q(?;) can then be
obtained through the relation between a(f) and Aahag(?).

We finally find, for each bin j of the ¢ distribution,

do

T = ‘2—?(@(;) + %60), as))|

Vs 14)
We remark that the algorithm does not assume any simple dependence of the cross section on a(?),
which can in fact be general, mixing s, t channels and higher order radiative corrections, relevant (or
not) in different t domains.

In order to test our procedure, we perform a pseudo-experiment: we generate pseudo-data using
the parameterization Aa{la 4() of refs. [17, 32] and check if we can recover it by inserting in the MC
the (independent) parameterization Aa{é 4(0) (corresponding to () of eq. 14) of ref. [29] by means of
the method described above. For this exercise, we use the generator BabaYaga in its most complete
setup, generating events at /s = 1.02 GeV, requiring 10° < 6, < 170°, E. > 0.4 GeV and an
acollinearity cut of 15°. We choose (¢) to be the error induced on a(#) by the 1-0- error on Aay,q(?),
which is returned by the routine of ref. [29], we set N = 150, and we produce distributions with 200
bins. We note that in the present exercise «(s) and all the radiative corrections both in the pseudo-data
and in the MC samples are exactly the same, because we are interested in testing the algorithm rather
than assessing the achievable accuracy, at least at this stage.

In fig. 3, AeXY is the result extracted with our algorithm, corresponding to the minimizing set of
i;: the figure shows that our method is capable of recovering the underlying function Aay.q(?) inserted
into the “data”. As the difference between Aa{la i and Aaﬁ’;g is hardly visible on an absolute scale, in
fig. 3 all the functions have been divided by Aa/{fi 4 to display better the comparison between Aafla d
and Aoy

In order to assess the achievable accuracy on Aayp,q(f) with the proposed method, we remark that
the LO contribution to the cross section is quadratic in a(t), thus we have

16 o
27 2 2 2 SAam (15)
20 @
Equation (15) relates the absolute error on Aay,g with the relative error on the Bhabha cross section.
Let us stress here that:
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Figure 3. The extracted function Aat™ () compared to the function Aozfm 4(0) used in the pseudo-data (see text).

had

The functions Ae;! () + 6(¢) are shown to display the range spanned by the MC samples. All functions have been

divided by Aay! (). The tiny difference between Acy,, and Aa

jat is due to the binning discretization.

1. From the theoretical point of view, the present accuracy of the MC predictions [28] is at the level

of about 0.05%, which implies that the precision that our method can, at best, set on Aap,q(?)
is 0Aap.a(®) = 2 - 107*. Any further improvement requires the inclusion of the NNLO QED
corrections into the MC codes (see Ref. [28]).

. Experimentally a measurement of a,° from space-like data competitive with the current
time-like evaluations would require an O(1%) accuracy. Statistical considerations show that
a 3% fractional accuracy on the ;" integral can be obtained by sampling the integrand
(1 = X)Aap,a[#(x)] in ~ 10 points around the x peak with a fractional accuracy of 10%. Given
the value of O(107?) for Aap,g at x = Xpeak» this implies that the cross section must be known
with relative accuracy of ~ 2 x 107, Such a statistical accuracy, although challenging, can be
obtained at flavor factories, as shown in fig. 2 (right). With an integrated luminosity of O(1),
0(10), 0(100) fb~" at /s = 1, 3 and 10 GeV, respectively, the angular region of interest can be
covered with a 0.01% accuracy per degree. The experimental systematic error must match the

same level of accuracy.

A source of experimental systematic errors comes from the machine luminosity, which can be
normalized by calculating a theoretical cross section in principle not depending on Aap,g. We devise

two possible options for the normalization process:

1. To use the e*e™ — yy process, which has no dependence on Aay,g, at least up to NNLO order;

2. To use the Bhabha process at t ~ 1073 GeV? (x ~ 0.3), where the dependence on Aap,qg is of

O(1073) and can be safely neglected.
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It is worth quoting that a detailed analysis of the systematic errors involved in the measurement of
the luminosity has been carried out at LEP by the OPAL collaboration reaching the final accuracy of
0(107%) [14, 33].

3 Conclusions

We presented a novel approach to determine the leading hadronic correction to the muon g-2 based
on measurements of the running of a(#) in the space-like region.

This approach, even if challenging, may become feasible by using data collected at present
flavor factories as well as those at future high-energy e*e~ colliders !.

The proposed determination can become competitive with the accuracy of the present results
obtained with the dispersive approach via time-like data.

An alternative formula for a/’fw in the space-like region has been studied in detail. It empha-

sizes low values of ¢ < 1GeV? which can be explored at low energies machines.

We have also argued that this requires a measurement of the Bhabha cross section, at rela-
tively small angles, with an accuracy of the order 10 or better.

Reaching such an accuracy demands a dedicated experimental and theoretical work for the
next few years.
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