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Abstract. The Weyl-Wigner description of quantum mechanical operators and states in
classical phase-space language is well known for Cartesian systems. We describe a new approach
based on ideas of Dirac which leads to the same results but with interesting additional insights. A
way to set up Wigner distributions in an interesting non-Cartesian case, when the configuration
space is a compact connected Lie group, is outlined. Both these methods are adapted to quantum
systems with finite-dimensional Hilbert spaces, and the results are contrasted.

1. Introduction.

It is well known that Quantum Mechanics grew out of the Hamiltonian form of Classical
Mechanics, and this was formalized in a procedure called ”canonical quantization” [1]. This
is a heuristic and suggestive procedure which works for systems whose fundamental variables
are continuous and Cartesian. Then the classical configuration space is Euclidean Rn for n
degrees of freedom, while the phase space is R2n. The basic variables qr, pr, r = 1, 2, ..., n all lie
in the range −∞ < qr, pr <∞.

To make the transition to Quantum Mechanics, we replace these classical real variables by
Hermitian operators q̂r, p̂r obeying the canonical commutation relations:

[q̂r, p̂s] = iδrs, [q̂r, q̂s] = [p̂r, p̂s] = 0 (1)
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where we have set ~ = 1. These operators act on Schrödinger wave functions ψ (q) belonging
to the Hilbert space H = L2 (Rn). General classical dynamical variables, which are real phase

space functions f (q,p), are promoted to Hermitian operators Â on H.
Turning now to quantum states, we have pure states described by wave functions ψ (q) and

mixed states described by density matrices ρ̂. Pure states can be combined with one another
according to the Superposition Principle, while with mixed states only convex combinations can
be formed:

ψ1, ψ2, ...→ ψ = c1ψ1 + c2ψ2 + ...; c1, c2, ... ∈ C

ρ̂1, ρ̂2, ...→ ρ̂ = p1ρ̂1 + p2ρ̂2 + ...; p1, p2... ∈ R+, p1 + p2 + ... = 1
(2)

where R+ stands for the set of non-negative real numbers.
Since the q̂’s and p̂’s do not commute, given a classical dynamical variable f (q,p) there is

”a priori” no unambiguously defined corresponding quantum dynamical variable, as there are
factor ordering problems:

classical f (q,p)→ quantum f (q̂, p̂) ambiguous (3)

We may think of several rules or prescriptions to resolve this ambiguity, but none is intrinsic to
the transition from Classical to Quantum Mechanics. The earliest rule was proposed by Weyl
in 1927 [2]. Taking n = 1 for simplicity, i.e. one q̂ and one p̂, this rule is to place q̂ and p̂
in all possible relative positions in any expression and then take the average. For monomials,
exponentials and general functions, the rule is:

i) qmpn = ∂m

∂λm
∂n

∂µn

(λq+µp)m+n

(m+n)! |λ=µ=0 →
→ ∂m

∂λm
∂n

∂µn

(λbq+µbp)m+n

(m+n)! |λ=µ=0

ii) exp [i (λq + µp)]→ exp [i (λq̂ + µp̂)]

iii) f (q, p) =

∞∫∫

−∞

dλdµ a (λ, µ) exp [i (λq + µp)]→

→ Âf =

∞∫∫

−∞

dλdµ a (λ, µ) exp [i (λq̂ + µp̂)]

(4)

The Weyl rule does possess the nice property:

f (q,p) real ⇐⇒ Âf hermitian (5)

but of course for products:

f → Âf , g → Âg ; fg → Âf Âg (6)

This means that the Weyl correspondence between classical phase-space functions and
quantum mechanical operators is not a homomorphism of associative algebras:

Âfg 6= Âf Âg (7)

Indeed, the classical equivalent of operator multiplication in Quantum Mechanics is the non-local
Moyal product (see below) of phase-space functions, quite different from the pointwise product;
it is associative but of course non-commutative.

At this point let us compare the classical and quantum descriptions of dynamical variables,
states and expectation values:
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Classical Quantum

Dynamical variable f (q,p) ←Weyl rule→ Âf
States ρ (q,p) |ψ >, ρ̂
Expectation values:

〈f〉 =
∫∫

dqdpf (q,p) ρ (q,p)
〈
Âf

〉
=
〈
ψ
∣∣∣Âf
∣∣∣ψ
〉
, T r

(
ρ̂Âf

)

We have denoted a general classical state by a phase space probability distribution ρ (q,p). It
is now natural to ask: if via the Weyl rule we are able to describe quantum dynamical variables
in classical phase space language, what about quantum states? For Cartesian systems, in 1932
Wigner found a way to represent quantum states too by classical real phase space functions [3].
For pure |ψ > or general ρ̂ the corresponding Wigner distributions (for n = 1) are:

Wψ (q, p) = 1
2π

∞∫

−∞

dq′ψ
(
q − 1

2q
′)ψ

(
q + 1

2q
′)∗ eiq′p

Wbρ (q, p) = 1
2π

∞∫

−∞

dq′
〈
q − 1

2q
′ |ρ̂| q + 1

2q
′〉 eiq′p

(8)

In the pure state case this means that we construct a rank-one projector ρ̂ out of the state vector
|ψ〉 and then use the second definition above.

The mapping (8) is dual to the Weyl map (4) in the sense:

f (q, p)→ Âf by Weyl, ρ̂→ Wbρ (q, p) by Wigner ⇒
Tr
(
ρ̂Âf

)
=

∫∫
dqdpW (q, p) f (q, p)

(9)

But whereas in the Weyl rule we can take essentially any classical f (q, p) and find its operator

counterpart Âf , for states the Wigner distributions W (q, p) are highly restricted, on account
of the properties of ρ̂ and of the definition (8). A general (real) phase space function is highly
unlikely to be Wbρ (q, p) for some quantum state ρ̂.

This Weyl-Wigner duality was clarified and developed further by Grönewold and Moyal
[4]. In particular Moyal [5] expressed operator multiplication as a nonlocal, associative but
non commutative multiplication rule among classical phase space functions, and applied it to
quantum dynamics.

The Moyal product f ∗ g of two phase-space functions f (q, p) and g (q, p) is:

(f ∗ g) (q, p) = f (q, p) exp

{
~

2i

(←−
∂

∂p

−→
∂

∂q
−
←−
∂

∂q

−→
∂

∂p

)}
g (q, p) (10)

The first term in the expansion of the exponential gives the ordinary pointwise product of
f (q, p) with g (q, p); the second term involves the Poisson bracket of f (q, p) and g (q, p); and
the non-local nature is evident.
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2. Some properties of Wigner distributions.

To get a ”feel” for these phase space functions, we recall some of their important properties:
a)

ρ̂† = ρ̂, T rρ̂ = 1⇒ W (q, p) real,

∫∫
dqdpW (q, p) = 1 (11)

b) Recovery of quantum mechanical position and momentum probability distributions as
marginals:

∞∫

−∞

dpW (q, p) = 〈q |ρ̂| q〉 ,
∞∫

−∞

dqW (q, p) = 〈p |ρ̂| p〉 (12)

However in general W (q, p) is not pointwise non negative and so cannot be regarded as a
probability distribution. This is generic, indeed (for n = 1) Hudson’s theorem [6] says:

Wψ (q, p) ≥ 0 ∀q, p ⇒
⇒ ψ (q) is complex Gaussian, W (q, p) is real Gaussian

(13)

Further we have a theorem of Folland and Sitaram [7]:

W (q, p) has compact support ⇒ W (q, p) = 0 (14)

c) At each point in phase space W (q, p) is bounded:

|W (q, p)| ≤ 1

π
(15)

We can see in eqs.(14,15) the great contrast to Schrödinger wave functions ψ (q), which could
very well be of compact support, and are certainly not pointwise universally bounded. It is clear
that the ”Wigner quality” of a phase space function is really delicate.
d) Traciality is a key property: for any two states ρ̂ and ρ̂′:

Tr
(
ρ̂ρ̂′
)

=

∫∫
dqdpWbρ (q, p)Wbρ′ (q, p) (16)

This ensures that ρ̂ can be reconstructed from, and is completely and faithfully represented by,
Wbρ (q, p).
e) Turning now to general n, the behavior of W (q,p) under the group of linear canonical

transformations is important. These transformations are described by real 2n × 2n matrices S
such that the hermitian operators q̂′r, p̂

′
r defined by:

∣∣∣∣
q̂′r
p̂′r

∣∣∣∣ = S

∣∣∣∣
q̂r
p̂r

∣∣∣∣ (17)

obey the same commutation relations (1) as q̂r, p̂r. Therefore such changes in the basic operators

are unitarily implementable. There are unitary operators Û (S) , S ∈ Sp (2n,R), determined up
to phases and acting on H, such that:

q̂′r = Û (S)−1 q̂rÛ (S) , p̂′r = Û (S)−1 p̂rÛ (S) (18)

Upon composition, however, and after adjustment of phases, the Û (S)’s give a unitary
representation of the two-fold metaplectic covering group Mp (2n) of the symplectic group

Particles and Fields: Classical and Quantum IOP Publishing
Journal of Physics: Conference Series 87 (2007) 012010 doi:10.1088/1742-6596/87/1/012010

4



Sp (2n,R), not of the latter itself. When a state ρ̂ is transformed in this way, Wbρ (q,p) transforms
very simply:

ρ̂′ = Û (S) ρ̂Û (S)−1 ⇔Wbρ′

(∣∣∣∣
q̂

p̂

∣∣∣∣
)

= Wbρ

(
S−1

∣∣∣∣
q̂

p̂

∣∣∣∣
)

(19)

f) We said above that the ”Wigner quality” of a phase space function is quite delicate and
subtle. Based on traciality, eq.(16), we can give a necessary and sufficient condition for a given
W (q,p) to be a Wigner distribution:

W (q,p) is a Wigner distribution ⇔∫∫
dnqdnpW (q,p)Wψ (q,p) ≥ 0 ∀ψ ∈ H (20)

(this is of course in addition to reality and normalization). However from a practical point of
view, this is rather unwieldy. In caseW (q,p) is a Gaussian, the condition can be made explicit in
terms of its covariance matrix by exploiting the behavior (19) under symplectic transformations
[8]. A real normalizable Gaussian on a 2n dimensional phase space can without loss of generality
be taken to be of the form:

WG (q,p) ∼ exp

{
−
∣∣ q p

∣∣G
∣∣∣∣

q

p

∣∣∣∣
}

(21)

with G a real symmetric and positive definite 2n × 2n matrix. By a nice theorem due to
Williamson [9], such a matrix can be brought to diagonal form by some S ∈ Sp (2n,R) of the
kind discussed in property e) above:

STGS = diag (k1, k2, ..., kn, k1, k2, ..., kn) , kj > 0 (22)

This is generally not a similarity transformation as S may not belong to SO (2n,R), therefore
it is not isospectral and the kj ’s are generally not eigenvalues of G. The condition now reads:

WG (q,p) is a Wigner distribution ⇔ 0 < kj ≤ 1 ∀j (23)

One can see how strong these conditions are - they are essentially the Heisenberg uncertainty
relations for the n modes. For other treatments of Gaussian Wigner functions one may consult
Ref. [10].

These then are some important properties of Wigner distributions in the Cartesian case. Both
in Quantum Optics and Quantum Chemistry, Wigner distributions have been widely used.

3. Finite dimensions.

For a long time there has been considerable interest in extending these ideas to quantum systems
with finite-dimensional state spaces. One can also consider extensions in infinite-dimension to
non Cartesian systems.

Some early attempts in the finite-dimensional case are by R.Jagannathan in his unpublished
1976 thesis; Hannay and Berry in 1980; and Feynman as well as Wootters in 1987 [11]. Our
work exploring approaches to setting up Wigner distributions in various situations consists of
four interconnected parts:

Infinite dimensions, continuous variables Finite dimension N
(i) New ”Dirac” method, two-step procedure (iii) Any N
(ii) Quantum Mechanics on compact (iv) Any odd N
Lie groups as configuration spaces

It is important to point out that (iii) and (iv) are adaptations of (i) and (ii) respectively;
and interestingly our results in (iii) for odd N are in general different from the results in (iv),
the latter displaying greater flexibility.

We now briefly outline our methods and results in the four situations.
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4. (i) ”Dirac” approach in Cartesian case [12].
For simplicity alone we assume one degree of freedom, n = 1. In the Weyl-Wigner approach, we
can see that three desirable aims are attained all at once:

• Classical phase space descriptions for quantum variables and states;

• Recovery of quantum-mechanical probabilities as marginals;

• Translation of operator Hermiticity into reality of phase-space functions.

In contrast, the Dirac-inspired method uses two steps to achieve these. It exploits the essential
similarity of position q̂ and momentum p̂ in the Cartesian case, in fact they are unitarily related
by Fourier transformation.

The first two properties listed above can both be achieved by a practically trivial first step.
Next, in a rather interesting second step, the Hermiticity-reality connection is secured. The key
fact is that the wave function of an (ideal) momentum eigenstate is always non-zero:

〈q|p〉 =
1√
2π

exp (iqp) 6= 0 (24)

An operator Â is in any case completely determined by its mixed matrix elements
〈
q
∣∣∣Â
∣∣∣ p
〉
, so

it is (trivially!) a classical phase space description of Â! Taking advantage of eq.(24), however,
we define, following Dirac:

Â→ Al (q, p) =:
〈
q
∣∣∣Â
∣∣∣ p
〉
〈p|q〉 =

〈
q
∣∣∣Â
∣∣∣ p
〉

2π 〈q|p〉 (25)

since this allows us to express Â as an ordered function of operators q̂ and p̂, the former always
placed to the left of the latter:

Â = 2πAl (q̂, p̂) (26)

Recovering the marginals is equally trivial:

∞∫

−∞

dpAl (q, p) =
〈
q
∣∣∣Â
∣∣∣ q
〉

;

∞∫

−∞

dqAl (q, p) =
〈
p
∣∣∣Â
∣∣∣ p
〉

(27)

However, in general:
Â Hermitian ; Al real (28)

To tackle this we look at the trace of the product of two operators:

Tr
(
ÂB̂
)

=

= (2π)2
∫∫∫∫

dqdpdq′dp′Al (q, p) 〈q|p〉 〈p|q′〉 〈q′|p′〉 〈p′|q〉Bl (q′, p′) =

=

∫∫∫∫
dqdpdq′dp′Al (q, p)Kl (q − q′, p− p′)Bl (q′, p′)

Kl (q − q′, p− p′) = exp {i (q − q′) (p− p′)}

(29)

The kernel Kl has interesting properties: symmetry under the interchange (q, p) ↔ (q′, p′);
invariance under phase space translations; unitarity in a suitable sense. The exponent is the
area of a phase space rectangle, and so it is a geometric phase. To transform this kernel away,
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we need a ”square root” kernel in a convolution sense, having similar invariances, such that its
use preserves the recovery of marginals as in eq.(27).

This is easily achieved in essentially unique fashion, as the same expression with a change in
scale will do:

Kl (q − q′, p− p′) =

∞∫∫

−∞

dq′′dp′′ξ (q − q′′, p − p′′) ξ (q′ − q′′, p′ − p′′)

ξ (q − q′′, p − p′′) =
√

2/π exp {2i (q − q′′) (p− p′′)}
(30)

Using this in the trace expression (29) and associating one factor with each of Al and Bl we get:

Â→ Al (q, p)→ A (q, p) =
√

2π

∞∫∫

−∞

dq′dp′ξ (q − q′, p − p′)Al (q′, p′)

Tr
(
ÂB̂
)

= 1
2π

∞∫∫

−∞

dqdpA (q, p)B (q, p)

(31)

This is indeed the Weyl-Wigner definition with all three characteristic properties. Thus we have
a new route to an old result, bringing out the underlying structure from a fresh point of view.

To repeat: in this approach, the introduction of phase space descriptions and recovery of
marginals constitute the essentially trivial first step; then in the second step we secure reality
from Hermiticity and get the Weyl-Wigner result essentially uniquely.

5. (ii) Quantum Mechanics on a compact Lie Group [13].
In the non Cartesian situation the definition of canonical momenta and construction of a phase
space suitable for handling quantum mechanical quantities are both subtle, they are not as
immediate and automatic as in the Cartesian case. We might anticipate that this is even more
so in the finite-dimensional situation. The canonical commutation relations no longer hold, and
the canonical quantization procedure has to be modified. We describe first what happens in an
interesting continuous non Cartesian case.

Assume the configuration space is a compact Lie group G of dimension n, with coordinates
αr, r = 1, 2, ..., n, of the nature of angles. Also assume for definiteness that G is simple. The
classical canonical momenta are like angular momenta, they are generators of G in the classical
sense; each of them, Jr, r = 1, 2, ..., n can have any real value:

classical configuration space = compact Lie group G⇒
classical phase space = T ∗G ≃ G× Rn (32)

with αr as coordinates over G, and Jr as coordinates over the factor Rn. We can present the
basic classical Poisson bracket relations symbolically in this manner:

{f1 (α) , f2 (α)} = 0
{f (α) , Jr} = linear first order differential

operator acting on f (α)
{Jr, Js} = ctrsJt

(33)

Here the c’s are the structure constants of G. We see here a new feature: the momenta have
non-zero brackets with one another, they are non-Abelian for non-Abelian G. So coordinates
and momenta have very different natures and properties.
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When we make the transition to Quantum Mechanics, it is natural to assume that Schrödinger
wave functions are complex functions on G with an invariant inner product. Denoting elements
of G by g, g′, ..., we have:

wave functions ∼ ψ (g) , g ∈ G
‖ψ‖2 =

∫

G

dg |ψ (g)|2 (34)

with dg a normalized left and right translation invariant volume element on G. The operators
Ĵr are the hermitian generators of, say, left group action on ψ:

e−iα
r bJrψ (g) = ψ

(
g (α)−1 g

)
(35)

This is like Cartesian momenta p̂r generating translations in q̂r. The difference is their non
commutativity: [

Ĵr, Ĵs

]
= ictrsĴt (36)

Turning to eigenvalues and eigenfunctions of momenta, we need the representation theory
of G. Generalizing the notations of quantum angular momentum theory, denote the various
inequivalent unitary irreducible representations (UIR) of G by j, of dimension Nj . Within a
UIR label rows and columns by m,n,m′, .... So we have various unitary representation matrices
Dj
mn (g). We then say:

momentum eigenvalues ∼ discrete set of labels jmn

momentum eigenfunctions ∼ Dj
mn (g)

(37)

Now it is a fact that any wave function ψ (g) can be expanded in terms of the D-functions,
an extension of Fourier analysis called harmonic analysis:

ψ (g) =
∑

jmn

ψjmnN
1/2
j Dj

mn (g)

ψjmn = N
1/2
j

∫

G

dgDj
mn (g)∗ ψ (g)

‖ψ‖2 =

∫

G

dg |ψ (g)|2 =
∑

jmn

|ψjmn|2

(38)

We may then view ψ (g) and ψjmn as configuration and momentum space wave functions

respectively, and |ψ (g)|2, |ψjmn|2 as the corresponding complementary probability distributions.
In this situation we pose the question: for a given wave function ψ (g), can we set up a

corresponding Wigner distribution of the general form ψψ∗, some expression W̃ (g; ...) where
the dots are suitable ”momentum variables”, which is real in a suitable sense and the marginals
give us the known probability distributions:

∫
dgW̃ (g; ...) ∼ |ψjmn|2 ,

∑

...

W̃ (g; ...) ∼ |ψ (g)|2 ? (39)

This can be done using one key idea: given two group elements g′ and g, we need a definition
of their ”midpoint” s (g′, g) with reasonable properties:

g′, g ∈ G→ s (g′, g) ∈ G
symmetry: s (g′, g) = s (g, g′)

identity: s (g, g) = g
covariance: s (g1g

′g2, g1gg2) = g1s (g, g′) g2

(40)
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One can see that basically we need to define the square root of a general group element,
covariant under conjugation. If we take s (g, g′) to be the midpoint on the geodesic connecting
g to g′, then (except possibly on a set of measure zero) all these conditions are met.

Remark. This ”midpoint ” rule allows to solve our specific problem. However, for more
general situations its use is more subtle. Mathematically oriented readers may consult Ref.[14].
For the non-compact case, within the time-frequency Wigner function (signal analysis) see
Ref.[15] for a critical discussion of this subtle point.

We define now, to begin with, for given ψ (g):

W̃ (g; jmnm′n′) =

= Nj

∫

G

dg′
∫

G

dg′′ψ (g′)Dj
m′n′ (g′)

∗ δ
(
g−1s (g′, g′′)

)
Dj
mn (g′′)ψ (g′′)∗ (41)

where δ (..) is the invariant Dirac delta function going with the volume element dg, and find as
consequences:

W̃ (g; jmnm′n′)∗ = W̃ (g; jm′n′mn)∑

jmn

W̃ (g; jmnmn) = |ψ (g)|2

∫

G

dgW̃ (g; jmnm′n′) = ψjm′n′ψ∗
jmn

(42)

We can therefore adopt this as a good definition of the Wigner distribution in this continuous,
non Cartesian situation. Even traciality is assured but actually it turns out that what has been
defined above is overcomplete and a somewhat simpler expression will suffice. This is a result of
the non-Abelian nature of G, something we do not see in the familiar Cartesian case. Namely,

instead of W̃ above, we can work with:

W (g; jmm′) = 1
Nj

∑

n

W̃ (g; jmnm′n) =

=

∫

G

dg′
∫

G

dg′′ψ (g′)Dj
mm′

(
g′′g′−1

)∗
δ
(
g−1s (g′, g′′)

)
ψ (g′′)∗

(43)

and then, after straightforward extension to a general operator, we have:

Tr
(
ÂB̂
)

=
∑

jmm′

Nj

∫

G

dgW bA

(
g; jmm′)W bB

(
g; jm′m

)
(44)

In summary, a complete Weyl-Wigner isomorphism can be set up. Notice that the domain of
definition of these objects is not the classical phase space T ∗G with 2n continuous coordinates
αr, Jr, but what we may call a ”semi-quantized phase space” in which the momenta are already
quantized. The important differences compared to the Cartesian situation are quite evident.
In particular there is no rôle for the symplectic group Sp (2n,R), and the Dirac approach seems
unavailable.

Remark. Our treatment of Quantum Mechanics on compact Lie groups uses T ∗G as a
generalization of T ∗Rn. We prefer this point of view because T ∗G is a Drinfeld double ”Morita
equivalent” [16] to the complexification of G. Other approaches are available in the literature
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where the momentum map associated with the canonical action of G on T ∗G gives rise to the
orbit method advocated by A. Kirillov. In this context one may use the definition of Wigner
functions with coordinates on coadjoint orbits, and the Fourier transform as it is done in Refs.
[17] and [18].

6. (iii) Quantum Mechanics in N-dimensional state spaces [12].
For any finite dimensionN , the Dirac method can be adapted, since ”position” and ”momentum”
can be defined to have similar properties. Each vector |ψ > in a Hilbert space H(N) of dimension
N is a column vector with complex entries ψ (q) thought of as the ”position space” wave function
of |ψ >:

ψ (q) = 〈q|ψ〉 , q = 0, 1, ...,N − 1

〈ψ|ψ〉 =

N−1∑

q=0

|ψ (q)|2 (45)

We then set up a conjugate ”momentum basis” of vectors |p〉 by a finite Fourier transformation:

|p〉 = 1√
N

∑

q

e2πipq/N |q〉 , p = 0, 1, ...,N − 1

〈q|p〉 = 1√
N
e2πipq/N

(46)

So, we have two orthonormal bases {|q〉} , {|p〉} forH(N); and ψ̃ (p) = 〈p|ψ〉 is the ”momentum

space” wave function. The ”phase space” description of an operator Â on H(N), an n×n matrix(〈
q′|Â|q

〉)
in the position description, is initially taken to be:

Â→ Al (q, p) =
〈
q|Â|p

〉
〈p|q〉 = 1

N

〈
q|Â|p

〉

〈q|p〉 (47)

This leads to recovery of marginals and the trace formula:

∑

p

Al (q, p) =
〈
q
∣∣∣Â
∣∣∣ q
〉

;
∑

q

Al (q, p) =
〈
p
∣∣∣Â
∣∣∣ p
〉

Tr
(
ÂB̂
)

=
∑

qpq′p′

Al (q, p)Kl (q − q′, p − p′)Bl (q′, p′)

Kl (q − q′, p − p′) = exp {2πi (q − q′) (p− p′) /N}

(48)

Except for the discrete and finite range for the q’s and p’s, these are similar to the Cartesian
case. One can now ask if a ”square root” ξ of Kl can be extracted in the form:

Kl

(
q − q′, p− p′

)
=
∑

q′′p′′

ξ
(
q, p; q′′, p′′

)
ξ
(
q′, p′; q′′, p′′

)
(49)

with suitable properties. Then in the trace formula (48) we attach one ξ factor with each of Al
and Bl and define:

Â→ Al (q, p)→ A (q, p) =
1√
N

∑

q′p′

ξ
(
q, p; q′, p′

)
Al
(
q′, p′

)
(50)

so that:
Tr
(
ÂB̂
)

= N
∑

qp

A (q, p)B (q, p) (51)
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We would like to choose ξ so that:

Â Hermitian ⇔ A (q, p) real∑

p

A (q, p) =
〈
q
∣∣∣Â
∣∣∣ q
〉

;
∑

q

A (q, p) =
〈
p
∣∣∣Â
∣∣∣ p
〉

(52)

A detailed study shows that such a ”square root” kernel ξ can indeed be constructed. However,
in contrast to the continuum case, there is a fair amount of freedom in choices of signs in the
construction of ξ; and for any choices we get an acceptable Weyl-Wigner description. We may
point out that in comparison to the results of Hannay and Berry [11], for an N level system our
phase space is a set of just N2 points, while they need 4N2 points.

7. (iv) Quantum Mechanics in H(N) for odd N [19].
This is the last of our four cases. Here the Lie group method can be adopted, but only
in odd dimensions. Whenever for such N we can find a finite group G of order N , via
its representation theory we can set up an acceptable Wigner distribution formalism. The
definitions and properties are:

|ψ〉 = {ψ (g)} →W (g; jmm′) = W (g; jm′m)∗ =

=
∑

g′

ψ
(
g′

−1

g
)
Dj
mm′

(
g′2
)
ψ (g′g)∗

1
N

∑

jm

NjW (g; jmm) = |ψ (g)|2

Nj

N

∑

g

W (g; jmm′) =
∑

n

ψjm′nψ
∗
jmn

(53)

Here the ψjmn’s are given by the expansion:

ψ (g) =
∑

jmn

√
Nj

N
ψjmnD

j
mn (g) (54)

The expressions for operators and traces are as expected.
The limitation to odd dimensions N comes from the fact that the midpoint construction

works only in such situations. We may also note that for a given odd N we may have more than
one distinct choice of group G, and it may be non Abelian with multidimensional UIR’s. Then
we have something new not seen in the results of the Dirac method which works uniformly for
all dimensions.

8. Concluding Remarks.

We see that the Weyl-Wigner formalism is a robust feature of Quantum Mechanics, always
present in one or more forms in every interesting case, and may be considered as an alternative
picture of Quantum Mechanics which allows for an easy treatment of the quantum-classical
transition on the same carrier space (the ”phase space”). However, from our analysis it follows
that we cannot easily find an ”axiomatic” setting ”à la par” of the Dirac Hilbert space approach
or the C∗-algebraic approach to Quantum Mechanics.

But there is one unifying theme: the Dirac ”square root” concept familiar from the relativistic
electron wave equation. Here we deal with the square root of a kernel in the continuous Cartesian
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case, of a group element in the Lie group case, of a discrete kernel in any finite number of
dimensions, and again of a group element in the odd-dimensional case.

In the finite-dimensional situations we see quite a lot of freedom in choice of definitions,
and number theoretic features as well. It seems worthwhile to use these results in problems of
quantum information theory and the study of entanglement.
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[4] H.G.Grönewold, Physica 12, 205 (1946). J.E.Moyal, Proc.Camb.Phil.Soc. 45, 99 (1949).
[5] See also: A.Simoni., F.Zaccaria and E.C.G.Sudarshan, Nuovo Cimento B(11) − 5, 134 (1971).
[6] R.L.Hudson, Rep.Math.Phys. 6, 249 (1974).
[7] G.B.Folland and A.Sitaram, J.Fourier Anal. Appl. 3, 207 (1997).
[8] R.Simon, E.C.G.Sudarshan and N.Mukunda, Phys.Lett. A124, 223 (1987); Phys.Rev. A37, 3028 (1988). An

elegant and concise proof of the Williamson theorem in the form needed here, and original references, may
be found in: R.Simon, S.Chaturvedi and V.Srinivasan, Jour.Math.Phys. 40, 3632 (1999).

[9] J Williamson, Am.J.Math. 58, 141 (1936). See also the last of Refs.8.
[10] F.J. Narcowich, R.F. O’Connell, Phys.Lett.A133, 167(1988).
[11] R.Jagannathan: ”Studies in generalized Clifford algebras, generalized Clifford groups and their physical

applications”. PhD Thesis, University of Madras, India (1976); J.H.Hannay and M.V.Berry, Physica
D1, 26 (1980); R.P.Feynman: ”Negative Probabilities”. In: ”Quantum Implications: Essays in Honour
of Daniel Bohm”. B.Hiley and D.Peat Eds. Routledge, London (1987); W.K.Wootters, Ann.Phys.(N.Y.)
176, 1 (1987).

[12] S.Chaturvedi, E.Ercolessi, G.Marmo, G.Morandi, N.Mukunda and R.Simon, Jour.Phys. A39, 405 (2006).
[13] Arvind, S.Chaturvedi, R.Simon and N.Mukunda, Jour.Math.Phys. 45, 114 (2004); S.Chaturvedi, R.Simon,

G.Marmo, A.Zampini and N.Mukunda, Jour.Math.Phys. 46, 012106 (2005).
[14] A.Weinstein, Contemp.Math. 179, 261 (1994).
[15] F.Bertrand, Jour.Math.Phys. 33, 2515 (1992) .

[16] D. Alekseevsky, J. Grabowski, G.Marmo and P. Michor, J.Geom.Phys.26, 340 (1988); Jour.Math.Phys.
35, 4909 (1994).

[17] M.Figueroa, J.M. Gracia-Bondia and J.C.Varilly, Jour.Math.Phys. 31, 2664 (1990).
[18] N.J.Wildberger, J. Austr. Math. Soc.56, 64 (1994).
[19] S.Chaturvedi, R.Simon and N.Mukunda, Phys.Lett. A321, 160 (2004); S.Chaturvedi, E.Ercolessi, G.Marmo,

G.Morandi N.Mukunda and R.Simon, Pramana 65, 981 (2005).

Particles and Fields: Classical and Quantum IOP Publishing
Journal of Physics: Conference Series 87 (2007) 012010 doi:10.1088/1742-6596/87/1/012010

12




