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ABSTRACT

The origin of the late-time acceleration of the universe is one of the biggest questions
in cosmology. We give the name dark energy to the substance which is responsible
for this, highlighting our ignorance on its origin. The most widely accepted expla-

nation is that of the cosmological constant. However the naturalness of the cosmological
constant, and the theoretical inconsistency with the value expected from quantum field
theory, poses a question over whether this is the true explanation of the late-time ac-
celeration. In this thesis, we investigate models of massive gravity, which arise from
modifying Einstein’s theory of General Relativity, to tackle the late-time acceleration
problem in a more natural way than the cosmological constant. The theories we will
study are the bigravity and generalised massive gravity theories.

In this work we are principally concerned with both the theoretical consistency and
phenomenological implications of the aforementioned theories. To study the theoretical
consistency we study cosmological perturbations and derive the stability conditions,
whilst for the phenomenological study we investigate the background evolution and the
effects on the large scale structure of the universe. We also investigate the screening
mechanisms, which are important to allow the recovery of General Relativity on local,
well tested, scales.

The first part of the thesis is dedicated to the history of massive gravity. The timeline
of the development of dRGT (de-Rham, Gabadadze, Tolley) massive gravity is discussed
in detail in chapter 2. The second part of chapter 2 discusses the cosmological solutions
in massive gravity, and the requirement to study extensions of the theory to find stable
cosmologies. We also introduce other models of massive gravity which could explain the
late-time acceleration.

In chapter 3 we study the low energy limit model of bigravity. We study the linear
scalar perturbations and investigate the modified Poisson’s equation. To determine the
details of the screening, we derive the non-linear equations and identify the Vainshtein
radius. We conclude by discussing the viability of bigravity theories for dark energy.

In chapter 4 we introduce the generalised massive gravity and study its stability at
the level of the quadratic action for cosmological perturbations. To do so, we derive the
stability conditions as a function of the model parameters. Imposing that we require
late-time acceleration and the absence of instabilities, we identify a region of parameter
space in which the theory is stable. Building upon the analysis in chapter 4, we study
generalised massive gravity in more detail in chapter 5. We perform a full background
analysis, identifying the expansion history and equation of state of dark energy for a
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concrete model. Later on in chapter 5 we study the linear scalar perturbations, focusing
on the effects of generalised massive gravity on large scale structure. We finish the
chapter by investigating the propagation of gravitational waves and conclude the thesis
with future directions and open questions in the field.
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1
INTRODUCTION

Cosmology is the study of the time evolution of the universe from the big bang all

the way through to the present day. The question we as cosmologists ask is what

is at the origin of the observations that we see. Curiosities like this have intrigued

astronomers for thousands of years, from scientists and philosophers working on the first

cosmological model, which was introduced by Plato and placed the earth at the centre of

the universe, to the era of precision cosmology we are now in. We have in our armoury

many experiments which probe all areas of the universe to unprecedented precision.

Planck [2] provides a wealth of information about the Cosmic Microwave Background

(CMB), shedding light on the early universe. The Laser Interferometer Gravitational-

Wave Observatory (LIGO) [3] has detected many different sources of gravitational waves,

which provide insight to gravitational interactions in the strong field regime. The Sloan

Digital Sky Survey (SSDS) [4] is a spectroscopic redshift survey which has detailed

over one quarter of the night sky and EUCLID [5] is a futuristic experiment which

will attempt to map the geometry of the universe by measuring the shape of galaxies

at different redshifts, to understand the nature of dark energy. Combining all these

probes points us towards the standard model of cosmology, the Lambda Cold Dark Matter
model, or ΛCDM. ΛCDM is a remarkable achievement of the scientific community, but

it is not a complete model of the universe. We do not know how the universe came into

existence, but we know to remarkable precision what happened after its birth all the way

up until the present day, thanks to developments in theory and to the aforementioned

observations. By uniting the observational data from all these experiments with the
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CHAPTER 1. INTRODUCTION

predictions from theoretical models, we can continue to understand the physics of the

universe.

In the next few paragraphs we very briefly summarise the timeline of the universe

from the big bang up until the present day, see the following textbooks for a more detailed

summary [6–8].

Our understanding of the evolution of the universe starts with inflation. Shortly after

the big bang, which assuming ΛCDM happened around 13.7 billion years ago, there

was a period when the universe underwent a rapid accelerated expansion [9], which is

given the name inflation. In the simplest models, inflation is driven by a scalar field (the

inflaton) slowing rolling down its potential, and ends with the inflaton decaying into

standard model particles and the radiation which we observe today via the process of

reheating [10]. The end of inflation also marks the beginning of the radiation dominated

era. As the universe expanded and the plasma cooled, the temperature dropped to a point

marking the electroweak phase transition, around Tew ∼ 246GeV, which corresponds to

the vacuum expectation value of the Higgs field. This broke SU(2)×U(1) symmetry of

the electroweak force into the U(1) of electromagnetism, separating electromagnetism

from the weak interaction. The electroweak phase transition marks the beginning of the

quark epoch. After the QCD phase transition, where quarks and gluons were confined

within hadrons, the universe was a hot dense plasma containing only hadrons, mesons,

leptons and photons. Neutrinos then decoupled, electrons and positrons annihilated

each other and the universe continued to cool until protons and neutrons are bound into

atomic nuclei in a process called big bang nucelosynthesis (BBN). After BBN the universe

entered the matter dominated epoch, the majority of which is made up of dark matter

whose origin is still unknown. The first neutral atoms were produced in recombination,

in which electrons bound to protons to form neutral Hydrogen atoms. Once the neutral

atoms had formed, baryonic matter decoupled from the photons allowing the photons to

free steam away and form the CMB which we observe today.

After more expansion and cooling the first stars were formed, around 200 million

years after the big bang. Galaxies and galaxy clusters formed and the energy density

of matter dropped as the universe continued to expand. The universe then reached a

pivotal point. Around the time of the formation of the solar system, around 9 billion years

after the big bang, the energy density of matter dropped below that of the vacuum energy.

The universe then entered the dark energy dominated era in which the expansion of

the universe started to accelerate again. This observation was confirmed by measuring

the luminosities of high redshift, type Ia supernovae [11, 12]. It was discovered that

2



1.1. GENERAL RELATIVITY

the luminosities of the supernovae sample were dimmer than they would be in the

case of the universe undergoing a decelerated expansion. In the framework of ΛCDM,

the accelerated expansion of the universe is due to Λ, the cosmological constant. The

cosmological constant is a constant energy density which exists throughout the universe.

It exerts a negative pressure which drives the accelerated expansion. However, as

we shall see, the cosmological constant is what calls the ΛCDM model into question

regarding the nature of dark energy.

In this thesis, we motivate the study of alternative sources of the accelerated expan-

sion of the universe by modifying Einstein’s theory of General Relativity. In the rest of

chapter 1 we outline the theory of general relativity and the problems associated with

the ΛCDM model. We discuss the famous Lovelock’s theorem, which protects GR and

how to bypass it when considering modifications of gravity. We then discuss potential

problems that arise in the form of theoretical inconsistencies and the failure to reproduce

observational tests when one goes beyond GR. Finally, at the end of the chapter we dis-

cuss mechanisms which allow modified theories of gravity to bypass tight observational

constraints on local scales, but allow for order one deviations on cosmological scales

which can drive the accelerated expansion of the universe.

1.1 General Relativity

For well over a century now, Einstein’s theory of General Relativity (GR) [13] has

passed a plethora of observational tests [14]. From predicting the deflection angle of

light rays around massive objects, which is given the name gravitational lensing, to

predicting the peculiar feature of the perihelion precession of Mercury’s orbit, to even

sub-millimetre laboratory tests [14]. Einstein’s intuition at the time was extraordinary,

from the equivalence principle and coordinate invariance to a fully non-linear theory of

gravity describing the dynamics of spacetime itself. The discovery of GR was years ahead

of its time, and decades later through the development of field theory [7] and particle

physics, GR was found to be the unique theory of an interacting, massless spin-2 field.

To understand the phenomenology of GR, we first have to understand the theoretical

foundations, therefore we begin with the Einstein-Hilbert action

(1.1) S = 1
16πG

∫
d4x

p−g (R−2Λ)+
∫

d4x
p−g Lm[gµν,Ψi],

where G is Newton’s gravitational constant which can be written in terms of the reduced

3



CHAPTER 1. INTRODUCTION

Planck mass via,

(1.2) Mp = 1p
8πG

∼ 2.4×1018GeV.

Here gµν is the metric tensor, R is the Ricci scalar, Λ is the cosmological constant,

d4x
p−g is the volume element written in terms of the determinant of the metric gµν

and Lm[gµν,Ψi] is the matter Lagrangian describing the motion of matter fields Ψi. The

Ricci scalar is the simplest curvature invariant one can write down and is constructed

from the trace of the Ricci tensor using the inverse metric gµν,

(1.3) R = gµνRµν,

which in itself can be written as a contraction over the Riemann tensor,

(1.4) Rµν = Rρ
µρν.

The Riemann tensor quantifies how much curvature is present in the 4D spacetime

manifold and is written in terms of derivatives of the metric tensor,

(1.5) Rρ
σµν = ∂µΓρσν−∂νΓρσµ+ΓρλµΓλσν−Γ

ρ

λν
Γλσµ,

making use of the Christoffel symbols Γµνρ,

(1.6) Γσµν =
1
2

gσλ
(
∂µgλν+∂νgλµ−∂λgµν

)
.

Here, ∂µ ≡ ∂
∂xµ and indices are raised and lowered with gµν. To obtain the Einstein

equations, we apply the principle of least action to (1.1). Introducing a small perturbation

to the metric g as gµν→ gµν+δgµν, the action (1.1) becomes,

(1.7) δS =
∫

d4x
[

1
16πG

(
δR
δgµν

+ (R−2Λ)p−g
δ
p−g
δgµν

)
+ 1p−g

δ(
p−g Lm)
δgµν

]p−gδgµν.

Using the fact that the variation of the metric determinant can be written as,

(1.8) δ
p−g =−1

2
p−g gµνδgµν,

and imposing the metric variation δgµν smoothly vanishes in the limit of reaching the

boundary of the spacetime, along with the tensor identities in [15, 16], we arrive at the

Einstein field equations,

(1.9) Gµν ≡ Rµν− 1
2

R gµν+Λgµν = 8πGTµν.

4



1.1. GENERAL RELATIVITY

In (1.9) the energy-momentum tensor Tµν is defined as

(1.10) Tµν ≡ −2p−g
δ(
p−g Lm[gµν,Ψi])

δgµν
.

The Einstein field equations (1.9) exemplify the famous quote from John Wheeler: "Space
tells matter how to move, matter tells space how to curve", which was the essence of

Einstein’s intuition. Due to the diffeomorphism invariance of GR, the Einstein tensor

obeys the following conservation law known as the Bianchi identity,

(1.11) ∇µGµν = 0,

where ∇µ is the covariant derivative associated with the metric gµν. From the Einstein

field equations (1.9), the Bianchi identity implies the following relation for the energy-

momentum tensor,

(1.12) ∇µTµν = 0,

which results in the local conservation of energy-momentum. Written in terms of the

ordinary 4-derivative and Christoffel symbols (1.12) is,

(1.13) ∇µTµν ≡ ∂µTµν+ΓνµρTµρ+ΓµµρTρν = 0.

To study the motion of particles, we derive the equation of motion which comes

from the variation of the action with respect to the coordinates for a point particle. The

separation between two events in spacetime is measured using the line element,

(1.14) ds2 = gµνdxµdxν.

The proper time is defined by dτ2 = −ds2. The particle will follow the path which

extremizes the proper time, or the shortest path in curved space. Using this, we can

construct the action for a point particle with mass m parameterised by the worldline

xµ = xµ(τ),

(1.15) S = m
∫ √

−gµν
dxµ

dτ
dxν

dτ
dτ.

Upon variation we obtain the following,

(1.16) gµγ
d2xµ

dτ2 = 1
2

[
∂gµγ
∂xν

+ ∂gγν
∂xµ

− ∂gµν
∂xγ

]
dxµ

dτ
dxν

dτ
,
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CHAPTER 1. INTRODUCTION

which can be written in the more familiar form,

(1.17)
d2xµ

dτ2 =−Γµνγ
dxγ

dτ
dxν

dτ
.

Equation (1.17) is known as the geodesic equation and by specifying the geometry of

spacetime (the metric tensor), one can obtain the particle trajectory xµ. Taking the weak

field limit of the geodesic equation, we can recover an analogue of Newton’s second law

which relates the acceleration felt by a test mass to the local gravitational potential Φ

(1.18) ~a =−∇Φ.

1.2 Standard Model of Cosmology

Before we detail the standard model of cosmology, the ΛCDM model, we must first outline

the two main assumptions which form the foundation for the most successful model of

our universe to date.

• Cosmological Principle: The cosmological principle is based on two key observa-

tions, the first being that the universe appears to be isotropic in all directions. This

means that every direction we survey, the universe looks the same. The second

key observation is that the universe is homogeneous at every point in space, which

states the universe is the same at every point. Observations of the temperature of

CMB photons today

(1.19) Tz=0 = 2.73±δT K ,

with fluctuations of the order,

(1.20)
δT

Tz=0
≈ 10−5,

allow us to estimate the temperature of the universe at the time the CMB was

formed [17],

(1.21) Tz=1100 = Tz=0
az=0

az=1100
≈ 3000K ,

where z = 1100 is the redshift corresponding to the time of recombination. The

smallness of the temperature fluctuations of the early universe implies the early

universe was isotropic. The observation which supports homogeneity is that of

6



1.2. STANDARD MODEL OF COSMOLOGY

galaxy redshift distributions, such as the two degree field galaxy redshift survey

[18] or the BOSS galaxy sample [19] that found that on large scales the distribution

of galaxies is homogeneous. This implies that, locally at least, the universe appears

to be homogeneous.

• The laws of gravity are described by GR: The second assumption is that

gravity on all scales is described GR. It is this assumption which we are going to

break in this thesis, for reasons we shall see later on in this chapter.

1.2.1 Friedmann-Lemaître-Robertson-Walker metric

Mathematically we can describe the dynamics of spacetime through the Friedmann-

Lemaître-Robertson-Walker (FLRW) metric, which is the metric describing a homoge-

neous, isotropic and expanding universe in 4 dimensions. The line element can be written

as,

(1.22) ds2 =−dt2 +a(t)2
[

dr2

1−Kr2 + r2dΩ2
]

,

where dΩ2 = dθ2+sin2θdφ2 is the line element on the 2-sphere, a(t) is the scale factor, r
is the comoving radial coordinate and K represents the curvature parameter which can

take values {K < 0,K = 0,K > 0}. Geometrically, the aforementioned values of K represent

an open (hyperbolic), flat (euclidean) and closed (spherical) universe respectively.

The scale factor, albeit dimensionless, is a very important quantity in the ΛCDM

model. It determines whether the universe is expanding or contracting, and is used to

determine physical distances from R = a(t)r. Throughout this work, we set a(t0) = 1,

where a subscript 0 means the quantity in question is evaluated today. From the scale

factor, we can define the Hubble parameter as H = ȧ
a , where a dot identifies a time

derivative, which quantifies how much the universe is expanding. The value of the

Hubble parameter today, i.e. H0, is the cause of a lot of investigation for cosmologists

as there is a tension [20] between early time and late time measurements. The CMB

predicts H0 = 67.44±0.58 km s−1 Mpc−1 [2], whilst late time cepheid measurements

from the SH0ES collaboration infer H0 = 74.03±1.42 km s−1 Mpc−1 [21–23]. The CMB

result is obtained from assuming a flat ΛCDM cosmology whilst the SH0ES result is

independent of the cosmological model, so the SH0ES result could be hinting at physics

beyond ΛCDM [24].

7



CHAPTER 1. INTRODUCTION

1.2.2 Cosmological Distances

The measurement of the supernovae in the SH0ES collaboration relies on our knowledge

of understanding how light travels in an expanding universe. Light travels on null

geodesics, that is ds2 = 0, and applying that in (1.22) and considering only light travelling

in the radial direction gives,

(1.23)
dt

a(t)
=± drp

1−Kr2
.

Consider a burst of light travelling towards us from a distant galaxy emitted at t = te

and r = re and is observed by us on earth at t = t0 and r = 0. The signal we observe is

determined by solving the following integral equation,

(1.24)
∫ t0

te

dt
a(t)

=−
∫ 0

re

drp
1−Kr2

=
∫ re

0

drp
1−Kr2

,

where we chose the minus sign in (1.23) as the light from the galaxy is travelling towards

us. Now the galaxy emits another burst of light at a time te +δte and is observed by us

on earth at t0+δt0. As we are in comoving coordinates the right hand side of the integral

is independent of when the signal was emitted, hence

(1.25)
∫ t0

te

dt
a(t)

−
∫ t0+δto

te+δte

dt
a(t)

= 0,

(1.26) =⇒
∫ te+δte

te

dt
a(t)

=
∫ t0+δt0

t0

dt
a(t)

,

(1.27) =⇒ δte

a(te)
= δt0

a(t0)
.

We can re-write (1.27) in terms of the wavelengths of the emitted light rays,

(1.28)
1

a(te)
= λ0

λe
.

The fractional change of the emitted and observed wavelengths is defined as the redshift
of the source, i.e. z = (λ0−λe)/λe. Using this, we can derive a simple relation between the

scale factor and the redshift,

(1.29) a(te)= 1
1+ z

.

Essentially, redshift explains why the wavelengths of photons travelling to us from far

away galaxies are stretched as the universe expands. It is this knowledge of how photons

8



1.2. STANDARD MODEL OF COSMOLOGY

travel in an expanding universe that led astronomers to understand that the universe

was expanding faster than predicted. They observed that the luminosities of type Ia

supernovae were dimmer than predicted by a non-accelerating universe. To understand

this, the distance to the supernovae must have been known.

Let’s consider a flat FLRW background, where a light ray is again travelling in the

radial direction. The line element reduces to,

(1.30) ds2 =−dt2 +a2dr2.

Now consider a supernovae at r = re, t = te which emits a light ray measured on earth at

r = 0, t = t0. Integrating (1.30) becomes,

(1.31) dc ≡ re =−
∫ te

t0

dt
a(t)

=
∫ z

0

dz′

H(z′)
,

where dc is defined to be the comoving distance to the supernovae and we used the

definition of redshift (1.29) to convert from the time coordinate to redshift. The flux

F observed on earth from the supernovae with luminosity L0 is defined as the energy

observed, per unit time per unit area,

(1.32) F = L0

4πd2
c
.

The luminosity distance is defined by,

(1.33) d2
L = Ls

4πF
,

where Ls is the absolute luminosity of the source. Combining the above equations yields,

(1.34) d2
L = d2

c

(
Ls

L0

)
.

We can re-write the relation above by considering the following: the change in the energy

of light ∆Es being emitted by the supernovae in a time ∆ts, which is measured here on

earth as energy ∆E0 in a time ∆t0. Therefore (1.34) becomes,

(1.35) d2
L = d2

c

(
∆Es

∆E0

∆t0

∆ts

)
.

As the energy of a photon is proportional to the inverse of its wavelength we can write,

(1.36) d2
L = d2

c

(
λ0

λs

∆t0

∆ts

)
,

which using the results in (1.27,1.29,1.28) and taking the square root reduces to,

(1.37) dL = dc(1+ z),

which is the luminosity distance of the source. As almost every type Ia supernovae has

the same intrinsic brightness, i.e. a standard candle, we can use the observed brightness

to measure the distance to them and compare against the redshift.

9
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1.2.3 Dynamics of FLRW metric

Before describing the dynamics of the FLRW metric, we have to specify the matter

content of the universe. We consider n perfect fluids, which are described by the energy-

momentum tensor

(1.38) T(n)
µν = (ρn +Pn)un

µun
ν +Pn gµν,

where un
µ is the 4-velocity, ρn is the density of each fluid species and Pn is the pressure.

To achieve homogeneity and isotropy, both are assumed to be independent of the spatial

coordinates. Requiring that the expansion is in the rest frame of the fluid, the 4-velocity

takes the simple form uµ = (−1,~0) which yields a simpler form for Tµ
ν

1,

(1.39) Tµ
ν =


−ρ 0 0 0

0 P 0 0

0 0 P 0

0 0 0 P

 .

Substituting (1.38) and (1.22) into the Einstein equations (1.9) yields, for the time-time

component, the first of the Friedmann equations,

3
(

ȧ2

a2 + K
a2

)
= 8πG

∑
n
ρn +Λ.(1.40)

By using the definition of the Hubble parameter we can rewrite the relation above,

(1.41) H2 = 8πG
3

∑
n
ρn − K

a2 + Λ
3

.

It is useful to write (1.41) in terms of the dimensionless energy density parameters. To

do this we first define the critical energy density ρc, which is the minimum amount of

energy density which keeps the universe spatially flat in the absence of the cosmological

constant.

(1.42) H2 = 8πGρ
3

=⇒ ρc = 3H2

8πG
.

Defining the dimensionless energy-density parameters as follows,

(1.43) Ωn = ρn

ρc
, ΩK = −K

(aH)2 , ΩΛ = Λ

3H2 ,

1Here we briefly drop the n index for ease of notation and from here on, we work with Tµ
ν ≡ gµσTνσ
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1.2. STANDARD MODEL OF COSMOLOGY

allows us to rewrite (1.41) as,

(1.44) 1=∑
n
Ωn +ΩK +ΩΛ.

The trace of the spatial component of the Einstein equations yields the second

Friedmann equation,

(1.45) 3H2 +2Ḣ = 8πG
∑
n

Pn − K
a2 +Λ.

Combining the two Friedmann equations, (1.41) and (1.45) yields the acceleration equa-

tion,

(1.46)
ä
a
=−4πG

3

∑
n

(
Pn +3ρn

)+ Λ
3

.

From equation (1.46) we can see how the dynamics of the expansion of the universe is

affected by the matter content. If the dominant matter species in the universe obeys

(1.47) ρn +3Pn < 0,

then the expansion of the universe accelerates due to the right hand side of (1.46) being

manifestly positive. We can re-write (1.47) using the equation of state parameter,

(1.48) wn ≡ Pn/ρn

which yields the simple relation for (1.47) wn <−1/3. Hence, if any fluid with an equation

of state wn <−1/3 is the dominant species in the universe, the expansion of the universe

accelerates.

Mathematically, the conservation of energy-momentum is represented by the van-

ishing of the divergence of the energy-momentum tensor ∇µT(n)
µν = 0. This yields the

following matter equation of motion, which is named the continuity equation,

(1.49) ρ̇n +3H(ρn +Pn)= 0.

Here each species satisfies its own continuity equation independently and are not coupled

to each other. For fluids with a constant equation of state, equation (1.49) has a simple

solution,

(1.50) ρn(a)= ρ0(n)

(
a0(n)

an

)3(1+wn)

11
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Fluid type Equation of State ρ(a)

Cold matter w = 0 ∝ a−3

Radiation w = 1/3 ∝ a−4

Cosmological constant w =−1 ∝ const
Curvature w =−1/3 ∝ a−2

Table 1.1: Table showing how the energy density scales with the scale factor for varying
components of the universe.

where a subscript zero means the quantity in question is evaluated today and we choose

to normalise a(t0) = 1. We can also define the total energy density as the sum of the

individual components,

(1.51) ρtot =
∑
n
ρn(a).

We are now in a position to see how different fluids affect the expansion history of

the universe. Table 1 shows how the energy density scales for various components of the

universe. Using (1.50) and the definition of cosmological redshift, we can rewrite (1.44)

as,

(1.52) H2(z)= H2
0
[
Ωr,0(1+ z)4 +Ωm,0(1+ z)3 +ΩK ,0(1+ z)2 +ΩΛ,0

]
,

The parameters (Ωm,0,Ωr,0,ΩΛ,0,ΩK ,0,H0) are determined via observations. See [2] for

their exact values, including the error bars and how they are experimentally determined,

but here we briefly comment on each value and its significance.

1.2.4 Cosmological Parameters

Matter

We split Ωm,0 into two components: one for baryonic matter ΩBM,0 and one for cold

dark matter ΩCDM,0. Baryonic matter is made up of all the baryons in the universe, i.e.

protons and neutrons 2. However, despite baryonic matter making up all the matter we

observe, ΩBM,0 ∼ 0.05, which is a tiny fraction of the total energy budget of the universe.

On the other hand ΩCDM,0 ∼ 0.26 which constitutes a large portion of the matter in the

universe which we cannot directly observe 3. Such a large contribution is required to

explain the rotation curves of galaxies, and more recently the formation and evolution of

galaxy clusters as well as the large scale structure (LSS) of the universe [25].
2Which in turn consist of three quarks.
3Here ’dark’ refers to the fact that whatever substance constitutes dark matter does not interact with

electromagnetism, or if it does, it does so very weakly.
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Radiation

From (1.52) we see that radiation dilutes much faster than matter as the universe

expands, hence the small value Ωr,0 ∼ 9×10−5. Relic photons from the CMB make up

most of the energy density of radiation in the present epoch.

Curvature

Current experiments [2] show no direct detection of curvature in the universe and

all observations point to the universe being spatially flat, with the curvature density

parameter being ΩK ,0 ∼ 10−3. However, as we shall see later in this thesis, keeping

a non-zero value for the curvature, but still within observational bounds, can lead to

interesting phenomenology.

Cosmological Constant

The final piece of the cosmological puzzle is the energy density which arises from the

cosmological constant. The value ΩΛ,0 ∼ 0.7 shows that the cosmological constant (or

dark energy) makes up 70% of the energy budget of the universe and it is required to

explain the accelerated expansion of the universe. Inspecting the form of (1.52) shows

that the cosmological constant is unaffected by the cosmological expansion, hence when

the cosmological constant is the dominant species then the expansion of the universe

accelerates.

Using (1.52) and the definition of redshift we can make predictions in the ΛCDM

model, for example we can numerically compute the age of the universe,

(1.53)
∫ t0

0
dt =

∫ ∞

0

dz
H(z)(1+ z)

(1.54) =⇒ t0 = H−1
0

∫ ∞

0

dz
H(z)(1+ z)

∼ 13 billion years.

Under the assumption of ΛCDM, the age of the universe is approximately 13 billion

years. Despite the success of the ΛCDM model in describing many of the cosmological

observations, the standard model of cosmology is not without problems, seeking many

researchers to study alternative cosmological models.
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1.3 Questioning ΛCDM

The remarkable success of ΛCDM perhaps leads us to ask the question, what is the

problem? However, there are still many mysteries regarding the nature of dark energy

and dark matter which have yet to be resolved. It is by considering alternative models

and ideas that we learn more about the composition and structure of the universe, as

history has proved.

In the 19th century peculiarities in Mercury’s orbit were hypothesised to be caused by

the presence of a dark planet ’Vulcan’, by the French astronomer Urbain le Verrier. The

discovery of Vulcan was confirmed by amateur astronomer Edmon Lescarbault shortly

after, although no direct observation had been made. Both won the prestigious Legion

d’honneur award. Note here that Newtonian gravity was the accepted theory of gravity

at the time. Einstein then published the theory of General Relativity around 50 years

later, and explained perfectly the peculiarities in Mercury’s orbit without the need of

a planet Vulcan. Newtonian gravity was then realised to be the weak field limit of GR.

Who is to say that GR is not the limit of some more complex theory of gravity which

introduces beyond ΛCDM physics? If we place ourselves in Le Verrier’s position now, we

have not detected dark matter directly or a cosmological constant but we hypothesise
what they are, and until we detect them and understand their origins, it is critical to

seek alternative cosmologies beyond ΛCDM as that is where the true answer could lie.

1.3.1 Old Cosmological Constant Problem

The biggest challenge facing the ΛCDM model is that of the old cosmological constant

problem. Simply put, the observed value for the vacuum energy is far below that of the

value predicted for the vacuum energy from quantum field theory (QFT). To outline the

problem we calculate the vacuum energy density arising from the cosmological constant

in ΛCDM. The relation we find is

(1.55) ρΛ = ρc

(
Λ

3H2

)
=

(
3H2

0

8πG

)
ΩΛ,0.

Plugging in numbers yields the following observed value for the vacuum energy,

(1.56) ρobs
Λ ∼ (10−3eV)4.

To compare this with the vacuum energy predicted from QFT we follow a similar argu-

ment to [26]. A naive calculation of the vacuum energy yields,

(1.57) ρvac
Λ ≈

∫ ∞

0
dkk2

√
k2 +m2 .
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However, the above integral has a quartic divergence in k, so to circumvent this we

introduce a cut-off scale kmax which corresponds to the energy scale up to which we can

trust the standard model of particle physics. The value of the vacuum energy therefore

becomes,

(1.58) ρvac
Λ ∼

∫ kmax

0
dkk2kmax

√
k2 +m2 ∼ k4

max.

Finally, we are agnostic about the scale involved and consider the highest energy scale

which would give rise to the highest value for the vacuum energy, which is given by the

Planck scale. Therefore, the approximate value for the vacuum energy is

(1.59) ρvac
Λ ∼Mp4 = 10121ρobs

Λ ,

which is a striking mismatch between the theoretical prediction and the observed value.

In fact, regardless of where we choose the cut-off the discrepancy remains at O (> 45)

orders of magnitude. Such is the discrepancy between ρobs
Λ and ρvac

Λ , that a fine-tuning

of 121 decimal places is required to bring the large contribution from the theoretical

prediction down to the observed value. Renormalisation can improve the amount of

fine-tuning required, see [27] for a discussion, but even after renormalisation there still

persists a fine-tuning problem.

Suppose we have our fine-tuned bare vacuum energy such that,

(1.60) ρbare
Λ = Λbare

8πG
= ρobs

Λ −ρvac
Λ .

We can write the Einstein-Hilbert action in terms of this new Λbare

(1.61) S = 1
16πG

∫
d4x

p−g (R−2Λbare) .

However, the tuning in (1.60) is sensitive to the UV physics and is unstable under radia-

tive corrections [28]. This means at each loop order one has to re-tune the vacuum energy

down to match the observed value, which poses a question regarding the naturalness of

the cosmological constant. In this thesis we study different approaches to the problem of

the late-time acceleration of the universe, which don’t suffer from the naturalness issue

that the cosmological constant suffers from.

There is also another problem associated with the cosmological constant, which we

don’t aim to solve in this thesis but are mentioning for completeness, and it is the why
now? question. That is to say, why in the epoch of human observation the value of Ωm,0

andΩΛ,0 are the same order of magnitude. There is a debate as to whether this is actually

a problem, but models exist which solve this problem via the means of a interaction

between dark matter and dark energy [29, 30].
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1.4 Modified Gravity

We know that vacuum energy exists due to the experimental evidence in Casimir effect

experiments [31]. The question of whether the vacuum energy is simply a cosmological

constant, or something more exotic, has really gained momentum this millennium. This

is due to the development of phenomenologically interesting models combined with

the power of a large number of state of the art observations, which can rule out and

constrain alternative models of gravity and dark energy. In order to find alternatives

to the cosmological constant and to investigate cosmologies which go beyond ΛCDM,

we have to go back to the assumptions which form the basis of the ΛCDM model and

reconsider if they are actually valid assumptions. That is to say, we shall not break the

assumption of homogeneity and isotropy in this thesis, although there are models which

break these assumptions. Such models are the Lemaître-Tolman-Bondi models [32–34],

but these models come into tension with LSS data.

1.4.1 How to modify GR

In this work, we are principally concerned with breaking the 2nd assumption of the

ΛCDM model: that GR is valid on all scales. How to break and modify GR, however,

is non-trivial as it is protected by the famous Lovelock’s theorem (1971) which states:

In 4 dimensions GR, plus a cosmological constant, is the unique gravitational theory

describing a massless spin-2 field which yields second order equations of motion [35, 36].

Therefore, to modify GR we must have one (or more) of the following:

· 1. The equations of motion are emergent, or in other words, they do not arise from an

action. One example of such a theory is emergent gravity [37] which can be used as

an alternative model to cold dark matter [38].

· 2. Lorentz invariance is broken. Breaking of Lorentz invariance can lead to a UV

complete theory of gravity, an example being Hořava gravity [39]. However, due

to the recent binary neutron star merger [40], detected by the LIGO-VIRGO

collaboration, and the detection of an optical counterpart [41], this has put tight

constraints on this class of gravitational theory [42].

· 3. Non-locality. A non-local theory of gravity contains operators in the Lagrangian such

as,

(1.62) LNL ⊇ R
1
22 R,
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where 2=∇µ∇µ. Here, the non local term produces an effective dark energy with a

phantom equation of state (w <−1), negating the need for a cosmological constant

[43].

· 4. Extra dimensions. Higher dimensional theories of gravity such as DGP (Dvali-

Gabadadze-Porati) [44] and braneworld gravity [45] are string theory inspired

constructions whereby at low energies gravity is localised on the brane and GR is

recovered, whilst at high energies gravity leaks into the bulk spacetime resulting

in interesting consequences for cosmology and high energy astrophysics.

· 5. Higher derivatives in the action. One of Lovelock’s assumptions is that the equations

of motion for the metric tensor are second order. Theories such as Stelle’s classical

gravity [46] includes higher derivatives of the metric in the action, which lead to

fourth order equations of motion.

· 6. Extra fields. Adding extra field content to GR is another way of introducing mod-

ifications. The Horndeski class of theory [47] is the most general scalar-tensor

theory which leads to second order equations of motion, thus avoiding the Ostra-

gradski ghost instability [48], even though the action contains higher derivative

interactions. The covariant action for the Horndeski class takes the following form,

LH =
5∑

i=2
Li,(1.63)

where Li are covariantisations of the galileon interactions [49] and take the form,

L2 = K(φ, X ) ,

L3 =−G3(φ, X )2φ ,

L4 =G4(φ, X )R+G4,X (φ, X )
[
(2φ)2 − (∇µ∇νφ)2] ,

L5 =G5(φ, X )Gµν∇µ∇νφ

−1
6

G5,X (φ, X )
[
(2φ)3 −32φ(∇µ∇νφ)2 +2(∇µ∇νφ)3] .(1.64)

In (1.64) (K ,G3,G4,G5) are free functions of a scalar field φ and its correspond-

ing kinetic term X =−gµν∂µ∂νφ, a comma represents a derivative and Gµν is the

Einstein tensor. Not every theory which can be derived from the Horndeski action

introduces an extra scalar field, i.e. setting G5 = 0, G4 = 1, G3 = 0, K =−2Λ recov-

ers the GR action (1.1) which is simply a metric gravitational theory. However,

the Horndeski theory is primarily used in the context of scalar-tensor theories
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whereby the extra scalar field introduced via the terms in (1.64) can be chosen in

such a way to drive the accelerated expansion of the universe without the need of a

cosmological constant and is a compelling candidate for dark energy. However, as

with the case with Hořava gravity, the detection of the binary neutron star merger

with optical counterpart has constrained the space of viable Horndeski theories

[50]. The problem being a large subset of the Horndeski class predict a speed of

gravitational waves different from the speed of light cT 6= c 4. There is however, a

caveat which the reader should be aware of. It was shown that the cut-off scale of

the Horndeski theory lies very close to the energy scale of the LIGO observations

[51]. Furthermore, at energies close to the UV cut-off, it was shown that a toy

model of the Horndeski theory with a partial UV completion can predict cT = c at

LIGO energy scales but have cT < c at lower energies. The upshot of this result

is that in order to describe physics and compare with data close to or around the

cut-off of the EFT, knowing the UV completion of the theory is important and one

can not necessarily draw conclusions about the predictions of the theory around

the cut-off of the EFT without knowing the UV completion.

As seen in the case of Horndeski theory, an extra scalar field can be introduced

which has interesting phenomenological properties. But why stop there? Vector

fields [52, 53] can be introduced which have self-accelerating properties or extra

tensor fields like in bigravity [54].

There are many other theories of modified gravity which fit into one or more of these

categories, which have interesting implications for cosmology and high energy physics.

For more information see the reviews [26, 55, 56] and references therein. In this thesis,

we shall focus on working with extra tensor fields which give rise to interesting cosmology,

which to the most part fall into point 6.

1.4.2 Consequences of modifying GR

Now we have introduced how to modify GR, we have to face the consequences of modifying

the most successful theory of gravity to date. Introducing a wanted effect, such as

obtaining a solution for dark energy5 without introducing a cosmological constant, nearly

always brings about unwanted effects. Such pathologies can include the violation of solar

4One should note, however, that GR exists as a theory within the Horndeski framework, so one should
be careful when making comments regarding the validity of the entire Horndeski class.

5We will refer to these solutions as self-accelerating solutions.
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system and laboratory tests, which are the most successful predictions of GR, or the

emergence of theoretical inconsistencies within the construction of the theory. Different

classes of theories will have different problems and also different phenomenological

consequences, and in this section we briefly discuss the consequences of modifying GR

and what problems it can lead to.

The basic principle is this: extra fields mediate extra forces, and on the face of it, the

lack of a detection of any "fifth" forces in nature is a thorn in the side of many theories of

modified gravity. See [14] for a review on tests of gravity conducted from laboratory to

galactic scales. In addition, it was also shown that recently no deviation from GR has

been found at extra-galactic scales [57], but the scales we are extrapolating GR to, in

terms of cosmology, are way beyond any scale that GR has been tested to date. We also

know that GR is not a UV complete theory, and requires modification in the UV due to

GR being non-renormalisable below the Planck scale. Therefore there is good motivation

to seek modifications in both the IR and UV regime.

Theoretical considerations must also be taken into account when discussing the

viability of an extended theory of gravity [55, 58]. These concepts will be important

throughout this thesis. To illustrate the different theoretical issues one could have, we

consider a simple scalar field toy model described by the action,

(1.65) Sφ =
∫

dtd3x
(
K φ̇2 −G∂iφ∂

iφ−m2φ2
)
.

A tachyonic instability arises if the scalar field has a negative mass squared m2 < 0.

However this can be a mild instability if the mass of the field is small, as the time the

instability takes to develop is described by tI ∼ m−1. This means for small masses the

instability can be pushed to arbitrarily large times.

A gradient instability arises if the coefficient of the gradient term has the wrong

sign, which for our toy model means G < 0. This type of instability is dangerous as the

timescale of the instability depends on the wavenumber of the mode, so for smaller scales

the timescale of the instability shortens.

Finally, a ghost instability arises if the kinetic term has the wrong sign, so K < 0.

This is also a dangerous instability [58, 59]. The consequence of a ghost mode is that

the vacuum breaks down due to the hamiltonian of the theory being unbounded, which

results in the theory instantly becoming unstable [60]. Particles are produced out of the

vacuum at a very high rate, which is un-physical. Another way of generating a ghost is

to have higher derivatives in the Lagrangian. These type of ghosts are given the name

Ostrogradsky ghosts [48], named after Mikhail Ostrogradsky. A toy Lagrangian with
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higher derivatives takes the form [58],

(1.66) L ghost =−1
2

(∂φ)2 + 1
2Λ

(2φ)2 −V (φ),

where Λ is the cutoff of the effective theory. At first glance, this appears to be a healthy

Lagrangian. To expose the ghost pathology we introduce an equivalent formulation of

(1.66) [58],

(1.67) L ghost =−1
2

(∂φ)2 +χ2φ− Λ
2

2
χ2 −V (φ),

where χ is an auxiliary field. Integrating out χ, i.e solving its equation of motion, and

substituting back into (1.67) we recover the original ghostly Lagrangian (1.66). We are

allowed to integrate out massive fields when the cut-off of the effective field theory is

equal to or below the mass of the field. Diagonalising (1.67) utilising the field redefinition

φ=ψ−χ and integrating by parts we obtain the equivalent formulation of (1.66)

(1.68) L ghost =−1
2

(∂ψ)2 + 1
2

(∂χ)2 − Λ
2

2
χ2 −V (ψ,χ).

Here the nature of the ghost is apparent. We have transformed a theory with higher

derivatives into a theory with two scalar fields, where the field χ has the wrong sign

kinetic term, signalling the presence of a ghost.

To be a healthy and successful modified gravity theory, the theory must pass all

observational tests to date and be theoretically consistent. Once these hurdles have

been passed, then the phenomenological implications can be studied. However, there is

a caveat regarding the lack of a fifth force detection. Many theories of modified gravity

have screening mechanisms which hide the effect of the force due to the extra degrees of

freedom on local scales, such as the solar system, and on cosmological scales the fifth

force activates and drives the accelerated expansion of the universe. In the next section,

we briefly discuss a variety of screening mechanisms present in modified theories of

gravity.

1.4.3 Screening Mechanisms

To illustrate the screening mechanisms which are present in modified theories of gravity,

let’s consider a generalisation of the scalar field Lagrangian (1.65) [55, 58, 61] minimally

coupled to an external source,

(1.69) L φ =−1
2

Z(φ)2 gµν∂µφ∂νφ−V (φ)+ g̃(φ)Tµ
µ.
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Here Z(φ) is the kinetic function and is dependent on the background field value φ̄

only, V (φ) is the potential, g̃(φ) is a coupling function and Tµ
µ is the trace of the energy-

momentum tensor, which we assume to be non-relativistic matter Tµ
µ =−ρ. Expanding

(1.69) to second order in the field fluctuation δφ, introduced via φ= φ̄+δφ yields,

(1.70) L φ ⊇−1
2

Z(φ̄)2∂µδφ∂
µδφ−m(φ̄)2δφ2 − g(φ̄)δφMδ3(~x)+ ....

where we considered a static point mass in 3 dimensions, ρ = Mδ3(~x), and

(1.71) g(φ)≡ dg̃
dφ

.

The behaviour of the scalar field fluctuations δφ around the background value φ̄ de-

pends on 3 functions: the mass m(φ̄)2 ≡ 2∂2V /∂φ̄2, the coupling function which quantifies

how the scalar field couples to matter g(φ̄) and the kinetic function Z(φ̄). Each 3 of these

functions can screen the scalar field in different ways, and we briefly describe each one

of them in turn.

Large Mass If the mass of the field m(φ̄) is large enough in areas of high density, such

as the solar system, then the scalar field does not propagate above the Compton

wavelength. On the other hand, if the mass is low in low density environments,

such as the cosmological background, then the scalar field mediates a fifth force

which modifies gravity on large scales. A typical model which realises this type of

screening is chameleon gravity [62, 63], however these models have been heavily

constrained by observations [64] and to act as dark energy require a cosmological

constant [65] to achieve self acceleration.

Small Coupling Alternatively, one could have g(φ̄) being small enough in dense

environments, so again the fifth force is screened. But on cosmological scales, the

coupling can be order 1 so the fifth force contributes the same order of magnitude

as the Newtonian force. The symmetron [61] and dilaton [66] realise this method

of screening.

Large kinetic term Having a large kinetic function Z(φ̄) results in an interesting class

of screening mechanism which depends on the derivatives of the scalar. There are

two options: screening by the first derivative ∂φ becoming large, as in k-mouflage

(k-essence theories [67]), or by the second derivative ∂2φ becoming large. The latter

is associated with the Vainshtein mechanism, which will be discussed in detail in
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chapter 2 and has an important role to play when studying theories of massive

gravity. Having a large Z(φ̄) results in the normalisation of the kinetic term being

no longer unity, so upon canonical normalisation (1.70) schematically contains,

(1.72) L ⊇−1
2
∂µδφ̃∂

µδφ̃− g(φ̄)
Z(φ̄)

δφ̃Mδ3(~x).

From (1.72) it is clear to see that a large Z(φ̄) in dense environments will suppress

the coupling to matter, again screening the effect of the fifth force.

1.5 Cosmological Perturbations

We conclude this chapter with a brief introduction into cosmological perturbations.

See [68, 69] for comprehensive reviews on the subject. Cosmological perturbations are

a very useful tool for quantifying small deviations from the standard cosmological

background. Given an FLRW background described by the ḡµν, fluctuations on top of

this background are described by the metric perturbation δgµν, which is spacetime

dependent and contains scalar, vector and tensor perturbations. In general, there are two

approaches for studying cosmological perturbations in the context of modified gravity

theories. The first is to work with an explicit model, and use the predictions from the

model to constrain the model parameters directly. The second is to work in a general

framework for parameterising deviations away from GR, such as the PPF (Parameterised

post-Friedmann) [70–72] or PPN (Parameterised post-Newtonian) [73]. In this thesis

we will work with the first approach, but see the above references for details on the

alternative approach.

To mathematically describe how to perform perturbations, we begin with the curved

background FLRW metric,

(1.73) ds2 = ḡµνdxµdxν =−dt2 +a2Ωi jdxidx j,

where Ωi j is the metric on the constant time hypersurfaces,

(1.74) Ωi j = δi j +
Kδilδ jmxl xm

1−Kδlmxl xm .

For matter we consider the following energy momentum tensor,

(1.75) Tµ
ν = (

ρ̄+ P̄
)
uµuν+ P̄δµν.

In (1.75) ūµ is the background 4-velocity which satisfies ūµūν = −1, ρ̄ and P̄ are the

background values for the energy density and pressure respectively.
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The standard analysis of cosmological perturbations revolves around deriving the

equations of motion governing the perturbations, then substituting the fields in terms of

their harmonics in curved space [74, 75]. The harmonic expansion for a scalar quantity is

(1.76) φ=
∫

d3kφ|~k|Y (~k,~x),

where k is the comoving wavenumber of the length scale λ = 2π/k, φ|~k| is the mode

function and the harmonics satisfy the relation

(1.77) D iD iY (~k,~x)=−k2Y (~k,~x).

In (1.77) D i is the covariant derivative associated with the metric Ωi j.

In general there are three different regimes when studying perturbations: the large k
regime corresponding to modes with wavenumbers smaller than the horizon, ie: k << aH.

In this regime motion is relativistic and requires a full relativistic treatment. The linear

quasi-static regime is described by modes with k >> aH, in this regime linear theory is

sufficient and the motion is non-relativistic. The final regime is the small scale, non-linear

regime where perturbation theory is no longer applicable and is the most difficult regime

to describe. Density perturbations are no longer small and may couple to additional fields

present in modified gravity theories, which makes this regime tricky to quantitatively

analyse, however this regime can be the most interesting for detecting modified gravity

signatures. In the linear regime, each Fourier mode evolves independently which is not

the case in the non-linear regime. N-body simulations are required to study particle

motions in this regime which can be computationally expensive [76, 77] and which

typically show deviations from the linear theory around k ∼ 0.1Mpc−1.

Introducing a perturbation to the metric tensor as,

(1.78) gµν = ḡµν+δgµν,

with components,

(1.79) δgµν =
(
δg00 aδg0i

aδg i0 a2δg i j

)
,

the full line element becomes,

(1.80) ds2 =−(1−δg00)dt2 +2aδg0idxidt+a2(Ωi j +δg i j)dxidx j.

We can further decompose the metric perturbations as [58, 69],

δg00 =−2φ

δg0i = D iBS +BV
i

δg i j = 2ψΩi j +D iD jSS +D iFV
j +D jFV

i +γi j,(1.81)

23



CHAPTER 1. INTRODUCTION

where the vectors are divergence free D iBV
i = D iFV

i = 0 and the tensor γi j is divergence

free and traceless D iγi j =Ωi jγi j = 0.

For the matter sector, in the case of a pressure-less perfect fluid, the perturbed

energy-momentum tensor takes the form

(1.82) δTµ
ν = δρūµūν+ ρ̄(δuµūν+ ūµδuν).

Using gµνuµuν = −1 and introducing a perturbation to the spatial component of the

4-velocity vi = D iv we deduce that,

(1.83) uµ = (1−φ,D iv), uµ = (−1−φ,a2D iv).

Which leads to the following form for Tµ
ν

T0
0 =−(ρ̄+δρ)

T i
0 =−ρ̄D iv

T0
i = a2ρ̄D iv

T i
j = 0.(1.84)

Note that in the presence of pressure, the spatial components of the energy-momentum

tensor are non-vanishing. We will use these results in the subsequent chapters to analyse

perturbations in massive gravity cosmology.

1.6 Gauge transformations

We now discuss the effect on the metric perturbation under a general coordinate trans-

formation. A diffeomorphism is a spacetime transformation of the form,

(1.85) xµ→ x′µ = xµ+ξµ(x),

where ξµ is the spacetime dependent gauge parameter which is assumed to be small.

Under this transformation, different quantities will transform according to their rank.

Due to the diffeomorphism invariance of GR, the following relationship holds between

the line elements ds2 and ds′2,

(1.86) gµνdxµdxν = g′
µνdx′µdx′ν.

Using this, we obtain how the metric transforms under a diffeomorphism (1.85),

(1.87) g′
µν(x′)= gαβ(x)

∂xα

∂x′µ
∂xβ

∂x′ν
.

24



1.7. CONCLUSIONS

We can re-write the left hand side of (1.87) by Taylor expanding,

(1.88) LHS= ḡµν(x)+ξα∂α ḡµν(x)+δg′
µν,

and similarly for the right hand side,

(1.89) RHS= ḡµν(x)+δgµν−∂µξρ ḡρν−∂νξρ ḡµρ.

Equating the two results above, we obtain how the metric perturbation transforms

(1.90) ∆δgµν ≡ δg′
µν−δgµν =−∂µξρ ḡρν−∂νξρ ḡµρ−ξα∂α ḡµν(x).

The diffeomorphism ξµ can be chosen in a certain way to render some of the metric per-

turbations in (1.81) zero, which is particularly useful to simplify computations. This will

have no effect on observable quantities however, as they are gauge invariant. One partic-

ular choice corresponds to setting BS = SS = 0, which is known as the Newtonian gauge.

In this gauge, the line element simplifies to,

(1.91) ds2 =−(1+2φ)dt2 +a2(1+2ψ)Ωi jdxidx j,

where we have omitted the vector and tensor components as they decouple at linear order

due to the rotational symmetry of the background [78]. When analysing the stability

of generalised massive gravity in chapter 4 we will re-introduce the vector and tensor

modes, but for this discussion it is convenient to omit them. The benefit of this choice

means that, in the case of zero spatial curvature and Cartesian coordinates, the metric is

now diagonal meaning it is easier to perform computations, and in this thesis we discuss

density perturbations which are scalar quantities

Sometimes it is useful to work with gauge invariant variables. One particular choice

is known as the Bardeen variables [79]. In terms of the metric perturbations they are,

(1.92) ΦB =φ− d
dt

[
a2

(
ṠS

2
− BS

a

)]
; ΨB =ψ−a2H

(
ṠS

2
− BS

a

)
.

1.7 Conclusions

In this section we have introduced the foundations of General Relativity which is the

underlying theory of gravity behind the standard model of cosmology. We discussed prob-

lems associated with ΛCDM, namely the cosmological constant problem, and discussed

possible solutions via modifications of gravity. We then introduced modified gravity and
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gave a brief tour of the zoo of models which can, or cannot, account for the late time

acceleration of the universe, without so far pledging allegiance to a particular model.

We then discussed possible issues with modifying gravity such as the violation of solar

system and observational tests, which can be resolved by screening mechanisms, or the

generation of theoretical inconsistencies.

It is at this point we choose our particular class of theory to study, which is massive

gravity. We shall see how postulating the presence of a graviton mass has been a very

popular avenue of research over the last decade. In chapter 2 we shall describe the

history of massive gravity, from linear Fierz-Pauli in the early 20th century to the

current status today, focusing on the problems and the subsequent resolutions bought

about by developments in the field. In the subsequent chapters, we study bigravity and

generalised massive gravity as extensions to dRGT as possible dark energy models.
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MASSIVE GRAVITY

Introduction

A theory of massive gravity is a gravitational theory which propagates a massive

spin-2 particle, and from the equation which counts the degrees of freedom for

massive particles 1, we know that the theory must have 5 degrees of freedom.

From particle physics experiments we have experimentally detected massive spin-0 and

massive spin-1 particles [80, 81], in the form of the Higgs and W, Z bosons respectively.

So to postulate that the graviton has a non-zero mass is quite a natural one from the

point of view of particle physics.

To motivate why adding mass to the graviton could yield a solution to the dark energy

conundrum, we consider the simpler case of adding mass to a scalar field. Starting from

the Klein-Gordon equation for a massive scalar field sourced by a point source located at

the origin,

(2.1) (−∇2 +m2)φ= δ(~x),

we get the solution,

(2.2) φ(~x)= 1
4πr

e−mr.

1dof= 2S+1 where S is the spin of a massive particle. This is related to the Poincare representations
of massive spinning particles around Minkowski, i.e. these are the number of degrees of freedom we expect
from a massive spin S particle around Minkowski.
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Equation (2.2) tells us that the field profile drops off exponentially quickly as r → 1
m ,

or in other words, on scales larger than the Compton wavelength of the particle, λ= 1
m .

The result of this is that the force exerted by a massive particle has a finite range.

Assuming the field profile for a massive graviton follows that of (2.2) and taking m ∼ H0

yields that the force drops off on distances r ∼ H−1
0 , which corresponds to the Hubble

radius. Therefore, postulating that the graviton has a mass of the order of the Hubble

parameter could lead to a decay of the gravitational force on cosmological distances and

drive the accelerated expansion of the universe. This is the essence of what modified

gravity theories aspire to achieve.

Endowing the graviton with a non-zero mass was first considered in 1939 by Fierz

and Pauli [82], who wrote down the linear theory of massive gravity describing a mas-

sive spin-2 field by requiring the absence of ghosts. The theory breaks the linearised

diffeomorphism of GR resulting in the propagation of 5 degrees of freedom. Years later,

in 1970, van Dam and Veltman [83] and independently Zakharov [84] showed that in

the massless limit of the linear theory of massive gravity, GR is not recovered. The name

given to this discrepancy is the famous vDVZ discontinuity. Vainshtein resolved the

discontinuity two years later by realising that the inclusion of non-linear interactions,

which promote the linear Fierz-Pauli theory to a non-linear theory, allows the recovery

of GR in the massless limit. Written another way, the linear approximation of gravity

outside of a source breaks down at distances larger than the gravitational radius, so

the massless limit of FP massive gravity does not correspond to GR. In the same year

however, Boulware and Deser showed that generic non-linear theories of massive gravity

propagate an extra degree of freedom, which turned out to be a ghost and was dubbed

the Boulware-Deser ghost [85]. The early 2000’s saw developments in the effective field

theory (EFT) description of a massive graviton [86]. It was found that massive gravity

theories typically have a UV cut-off of Λ5 ∼ (Mpm4)
1
5 , and for a Hubble scale gravi-

ton mass m ∼ H0 yields Λ−1
5 ∼ 1011km, which is a very low cut-off. In 2010 there was

a breakthrough, de-Rham, Gabadadze and Tolley constructed the unique, ghost free

theory of massive gravity [87, 88] (dRGT massive gravity) with a higher UV cut-off of

Λ3 ∼
(
Mpm2) 1

3 , which assuming m ∼ H0 yields Λ−1
3 ∼ 103km. Here Λ3 is also referred to

as the strong coupling scale of dRGT theory, which corresponds to the energy scale at

which unitary is broken: so at higher energy scales than Λ3 the theory loses predictability.

Note here that to obtain massive gravity to be perturbative down to distances of O (mm),

i.e. laboratory scales, the graviton mass must be m >O (10−3)eV which would render the

theory incompatible with GR on large distances [89]. dRGT massive gravity will form
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the framework model for which we will work in this thesis.

In this Section we first briefly review linearised GR and ouline the history of massive

gravity from the first ideas by Fierz and Pauli to dRGT, mathematically highlighting

the key developments and problems summarised in this Section. This Section is largely

based on the review [90]. We then discuss the application of dRGT massive gravity to

cosmology and study its viability.

2.1 Fierz-Pauli Massive Gravity

To study Fierz-Pauli massive gravity, we first have to discuss linearised GR. We consider

purely the gravity sector with no cosmological constant for this discussion, and work

with a spacetime which is close to flat described by

(2.3) gµν = ηµν+hµν,

where ηµν is the flat 4 dimensional Minkowski metric and hµν is the spin-2 metric

perturbation. Upon substituting (2.3) into the action (1.1) and expanding to second order

in hµν yields,

(2.4) S(2) = 1
8πG

∫
d4x

(
−1

2
∂λhµν∂λhµν+∂µhνλ∂νhµλ−∂µhµν∂νh+ 1

2
∂λh∂λh

)
,

where h = ηµνhµν is the trace of hµν. The question we now ask is, what if the field hµν
has a mass? At linear level (or quadratic at the level of the action), there are two possible

terms that can be added when adding a mass term to (2.4),

(2.5) L(2) = m2 (
ahµνhµν+bh2) ,

where m is a parameter which controls the size of the graviton mass and a and b are

constants. Requiring the absence of ghosts imposes constraints on the form of a and b.

In order to show this, we expand (2.5) in terms of the metric perturbation components,

(2.6) L(2) = m2
(
(a+b)h2

00 −2ah2
0i +ah2

ij −2bh00hii +bh2
ii

)
.

In this work we are not concerned with the full Hamiltonian analysis and what follows

is a rather heuristic way of counting the degrees of freedom (a more complete way would

be performing a full Hamiltonian analysis, see [90]). With this in mind, we require that

h00 appears linearly in the action to ensure there are no ghost degrees of freedom. In
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order to achieve this, the only solution is a =−b, this is known as the Fierz-Pauli tuning.

With this, we can can construct the action for Fierz-Pauli massive gravity [82],

(2.7)

SFP = 1
8πG

∫
d4x

(
−1

2
∂λhµν∂λhµν+∂µhνλ∂νhµλ−∂µhµν∂νh+ 1

2
∂λh∂λh− m2

2
(
hµνhµν−h2)) .

The Fierz-Pauli action is the unique action at the quadratic level that can describe the

dynamics of a massive spin-2 field. Any deviation from the structure of (2.7) would result

in extra degrees of freedom propagating, which would represent a ghost, or fewer than 5

degrees of freedom would propagate and the structure of the theory would be broken. To

count the degrees of freedom, we calculate the equations of motion stemming from the

action (2.7). Varying with respect to hµν yields,

(2.8)
δSFP

δhµν
=2hµν−∂λ∂µhλν−∂λ∂νhλµ+ηµν∂λ∂γhλγ+∂µ∂νh−ηµν2h−m2 (

hµν−ηµνh
)= 0.

Taking the divergence of (2.8) yields the following constraint equation,

(2.9) m2 (
∂µhµν−ηµν∂µh

)= 0,

and assuming a non-zero m, we plug the solution of (2.9) into the equations of motion

(2.8) to obtain,

(2.10) 2hµν−∂µ∂νh−m2 (
hµν−ηµνh

)= 0.

Taking the trace of (2.10) yields h = 0, and using this in (2.9) results in ∂µhµν = 0.

Therefore, we have the following 3 equations describing the dynamics of a linear theory

of massive gravity in a flat spacetime,

(2.11)
(
2−m2)hµν = 0, ∂µhµν = 0, h = 0.

The first of (2.11) is a wave equation describing the propagation of a massive spin-2

field. As hµν is symmetric, this equation implies 10 propagating degrees of freedom in 4

dimensions. The constraint h = 0 removes one degree of freedom, whilst the divergence

of hµν, given by the second equation, is in fact four equations which remove another 4

degrees of freedom. Therefore the total number of degrees of freedom is 10−1−4 = 5,

as expected from a theory of massive gravity. Now that we understand how the vacuum

field equations behave, we investigate the behaviour of Fierz-Pauli massive gravity in

response to an external matter source. Here we encounter the first setback in the history

of massive gravity, the vDVZ discontinuity.
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2.2 vDVZ discontinuity

To couple Fierz-Pauli massive gravity to matter, we consider an action of the form,

(2.12) S = SFP +
∫

d4xhµνTµν.

Varying (2.12) results in the following equation of motion,

(2.13)

2hµν−∂λ∂µhλν−∂λ∂νhλµ+ηµν∂λ∂γhλγ+∂µ∂νh−ηµν2h−m2 (
hµν−ηµνh

)=−8πGTµν.

Again, applying the operator ∂µ on (2.13) results in,

(2.14) ∂µhµν−∂νh = 8πG
m2 ∂µTµν,

where, due to a non-zero m, the conservation of energy momentum is no longer implied,

∂µTµν 6= 0. However, we assume a conserved source for this discussion, which is a valid

assumption at the classical level 2. Furthermore, if we do not consider a conserved source

then in the limit m → 0 then the right hand side of (2.14) diverges, indicating strong

coupling. We will use this assumption later on in this chapter when identifying the origin

of the vDVZ discontinuity (see footnote 3 in section 2.3). Substituting (2.14) into (2.13)

and taking the trace yields,

(2.15) h =−8πG
3m2 T.

Using the results of (2.15) and (2.14) in the equations of motion yields to the following 3

equations

(2−m2)hµν =−8πG
(
Tµν− 1

3

(
ηµνT − 1

m2∂µ∂νT
))

,

∂µhµν = −8πG
3m2 ∂νT ,

h =−8πG
3m2 T.(2.16)

Finding the solution of the first equation of (2.16) is sufficient since after some manipula-

tions the other two equations are implied. Furthermore, we neglect the term proportional

to ∂µ∂νT as this term has no observable consequences on a test body under conservation

of energy momentum [91]. Therefore, the equation for the massive spin-2 perturbation

we wish to solve reduces to,

(2.17) (2−m2)hµν =−8πG
(
Tµν− 1

3
ηµνT

)
.

2For the type of sources we consider here, matter is conserved. The presence of the Fierz-Pauli term
just means we cannot use the Bianchi identity to assume a conserved source.
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Substituting the fields in terms of their Fourier transforms,

hµν(x)=
∫

d4 p
(2π)4 eipσxσ h̃µν(p) ,

Tµν(x)=
∫

d4 p
(2π)4 eipσxσ T̃µν(p) ,

T(x)=
∫

d4 p
(2π)4 eipσxσ T̃(p),(2.18)

yields,

(2.19) h̃µν(p)= 8πG
pσpσ+m2

[
T̃µν(p)− 1

3
ηµνT̃(p)

]
.

Considering for the matter sector a point source located at the origin which is described

by [90],

(2.20) Tµν(x)= Mδ0
µδ

0
νδ

3(~x),

and using the property of the Dirac delta in momentum space yields,

(2.21) T̃µν(p)= 2πMδ0
µδ

0
νδ(p0), T̃(p)=−2πMδ(p0).

Using (2.19) and (2.21) in (2.18) we obtain,

(2.22) hµν(x)= 8πGM
∫

d4 p
(2π)3

eipσxσ

pσpσ+m2

[
δ0
µδ

0
ν+

1
3
ηµν

]
δ(p0).

We split the integral into the time and spatial components,

(2.23) hµν(x)= 8πGM
∫

dp0

∫
d3~p
(2π)3

ei(−p0x0+~p.~x)

−p2
0 + p2 +m2

δ(p0)
(
δ0
µδ

0
ν+

1
3
ηµν

)
,

and integrate over p0 to obtain,

(2.24) hµν(x)= 8πGM
∫

d3~p
(2π)3

ei~p.~x

p2 +m2

(
δ0
µδ

0
ν+

1
3
ηµν

)
.

Finally, we solve (2.24) using contour integration and express the result in component

form,

h00(x)= 16πGM
3

∫
d3~p
(2π)3

ei~p.~x

p2 +m2 = 4
3

GM
r

e−mr ,

h0i(x)= 0 ,

hi j(x)= 8πGM
3

δi j

∫
d3~p
(2π)3

ei~p.~x

p2 +m2 = 2
3

GM
r

e−mrδij.(2.25)
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We now use the results in (2.25) to identify the two gravitational potentials using the

following decomposition of hµν [16],

h00(x)=−φ(r) ,

hi j(x)=−ψ(r),(2.26)

to yield,

φFP(r)=−4
3

GM
r

e−mr ,

ψFP(r)=−2
3

GM
r

e−mr.(2.27)

Whilst in the case of GR the result is the usual Newtonian gravitational potentials,

φGR(r)=−GM
r

,

ψGR(r)=−GM
r

.(2.28)

We can also look at the bending angle of a light ray around a massive object with impact

parameter given by b. As ψ(r) = γφ(r), where γ is a constant referred to as the PPN

parameter [92], and φ(r)=−k/r [90], where k =GM is a constant, the deflection angle

can be written as,

(2.29) δθ = 2k
b

(1+γ).

We now are in a position to exhibit the vDVZ discontinuity. Taking the solutions in

Fierz-Pauli massive gravity (2.27) and applying the massless limit m → 0 yields,

φFP(r)=−4
3

GM
r

,

ψFP(r)=−2
3

GM
r

.(2.30)

We can immediately see here that the massless limit of Fierz-Pauli massive gravity does

not recover the result of GR (2.28). However, the light bending angle is coherent with the

result in GR.

(2.31) δθFP = δθGR = 4GM
b

.

One should note here, however, that by rescaling G → 3/4G in (2.30) the same Newtonian

potential can be recovered as in GR, but this modifies the light bending angle by 25
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percent. This result is precisely the vDVZ discontinuity discovered by Van dam, Veltman

and Zakharov [83, 84]. To see how well constrained the light bending angle is, we can

re-write (2.31) as,

(2.32) δθ =
(
1+γPPN

2

)
4GM

b
,

where γPPN is known as the Eddington light bending parameter, which has been in-

troduced to parameterise deviations away from GR and has been constrained to be

γPPN < 10−5 by the Cassini probe. This implies that the maximum modification to the

Newton constant can be at the 10−5 level, therefore completely ruling out O (1) modifica-

tions.

Due to the degeneracy from being able to rescale the gravitational constant to obtain

the same Newtonian potential, another observation is required to falsify FP massive

gravity. For example, one could calculate the prediction for the orbital period of the moon

using Newton’s third law,

(2.33) T2 ∝ a3

GM
,

where T is the orbital period and a is the semi-major axis of the orbit. Rescaling G to

obtain the same Newtonian potential will modify the light bending angle, whilst keeping

the orbital period the same. However, not rescaling G will modify the lunar period. So,

using a combination of these probes FP massive gravity can be ruled out.

Inspecting the form of the action (2.7) and taking m = 0 results in simply linearised

GR and shows no inconsistency, so it is peculiar how at the level of the gravitational

potentials we are witnessing O (1) departures from GR when taking the massless limit.

The key to understanding this is to realise that the massless limit of Fierz-Pauli massive

gravity is not GR. To see this, the action given by (2.7) propagates 5 degrees of freedom

as expected from a healthy theory of a massive spin-2 field, and breaks the 4D diffeo-

morphism invariance of GR. Taking the massless limit means we are losing information

about the extra degrees of freedom present in Fierz-Pauli massive gravity, and simply

sending m → 0 in (2.7) does not yield a smooth limit to GR.

2.3 Stückelberg Trick

In the previous Section, we found that the massless limit of Fierz-Pauli massive gravity

does not produce GR due to the information lost from the extra degrees of freedom. To

understand the origin of the vDVZ discontinuity, we introduce new fields to restore gauge

34



2.3. STÜCKELBERG TRICK

symmetry, but seek to maintain the physical predictions of the original theory. This the

essence of the Stückelberg trick, introduced by Ernst Stückelberg in 1957 when studying

the properties of massive photons [93].

To begin, we recall the Fierz-Pauli action with minimal coupling to an external matter

source (2.12),

(2.34) S =
∫

d4x
(
LGR − 1

2
m2 (

ĥµνĥµν− ĥ2)+ 1
Mp

ĥµνTµν

)
,

where M−2
p = 8πG and LGR is shorthand for the linearised Einstein Hilbert action.

Here we have also canonically normalised the spin-2 perturbation hµν as hµν = ĥµν
Mp

,

which ensures the coefficient of the kinetic term is normalised correctly. Redefining the

canonically normalised spin-2 field ĥµν as,

(2.35) ĥµν→ ĥµν+∂µAν+∂νAµ,

and substituting into the action (2.34) yields,

S =
∫

d4x
(
LGR − 1

2
m2 (

ĥµνĥµν− ĥ2)− 1
2

m2FµνFµν−2m2 (
ĥµν∂µAν− ĥ∂µAµ

)
+ 1

Mp
ĥµνTµν− 2

Mp
Aµ∂νTµν

)
.(2.36)

As (2.35) looks like a gauge transformation, analogous to (1.90), and as LGR is gauge

invariant, this piece remains unaltered by (2.35). Here, Fµν = ∂µAν−∂νAµ is the Faraday

field strength tensor and appears in (2.36) as the U(1) gauge invariant quantity FµνFµν.

Canonically normalising Aµ in (2.36) as Aµ→ 1
m Aµ we obtain,

S =
∫

d4x
(
LGR − 1

2
m2 (

ĥµνĥµν− ĥ2)− 1
2

FµνFµν−2m
(
ĥµν∂µAν− ĥ∂µAµ

)
+ 1

Mp
ĥµνTµν− 2

mMp
Aµ∂νTµν

)
.(2.37)

Now, we consider a conserved source3 and take the massless limit. We obtain an action

describing a massless spin-2 and massless spin-1 field, which propagate a total of 4

degrees of freedom,

S =
∫

d4x
(
LGR − 1

2
FµνFµν+ 1

Mp
ĥµνTµν

)
.(2.38)

3If we do not consider a conserved source, then in the massless limit the spin-1 field becomes strongly
coupled to the source.
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This is already an improvement on the original formulation of Fierz-Pauli: by introducing

an extra field in the form of a field redefinition we have gained an extra two degrees

of freedom in the massless limit. However, we are still 1 short of the 5 expected from a

massive spin-2 field. Naturally, the next step is to utilise again the Stückelberg trick,

this time with the addition of a spin-0 field. Taking the action (2.37) and performing the

field redefinition,

(2.39) Aµ→ Aµ+ 1
m
∂µφ,

results in,

S =
∫

d4x
(
LGR − 1

2
m2 (

ĥµνĥµν− ĥ2)− 1
2

FµνFµν

−2m
(
ĥµν∂µAν− ĥ∂µAµ

)−2
(
ĥµν∂µ∂νφ− ĥ∂µ∂µφ

)
− 2

mMp
Aµ∂νTµν+ 2

m2Mp
φ∂µ∂νTµν+ 1

Mp
ĥµνTµν.(2.40)

Like in the previous case, we take the massless limit of (2.40) assuming a conserved

source to yield,

(2.41) S =
∫

d4x
(
LGR − 1

2
FµνFµν−2

(
ĥµν∂µ∂νφ− ĥ∂µ∂µφ

)+ 1
Mp

hµνTµν

)
.

The action (2.41) describes a massless spin-2, massless spin-1 and massless spin-0 field,

thus the theory represented propagates 5 degrees of freedom. The vector is completely

decoupled from the tensor and scalar, whilst the latter two are mixed together. To

disentangle the mixing between the scalar and tensor modes, we perform a conformal

transformation at the expense of the non-minimal coupling to the energy-momentum

tensor [90],

(2.42) ĥµν = h̄µν+πηµν.

The transformation to the gauge invariant GR piece is,

(2.43) LGR(h)=LGR(h̄)+2
(
∂λh̄∂λπ−∂µh̄µν∂νπ+ 3

2
∂λπ∂

λπ

)
,

which inserted into (2.41) along with (2.42), setting π=φ and integrating by parts yields,

S =
∫

d4x
(
LGR(h̄)− 1

2
FµνFµν−3∂λφ∂λφ+ 1

Mp
h̄µνTµν+ 1

Mp
φT

)
.(2.44)
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Upon rescaling Aµ→ 1/
p

2 Aµ and φ→ 1/
p

6φ to obtain the correct factors in front of the

kinetic terms we finally obtain,

S =
∫

d4x
(
LGR(h̄)− 1

4
FµνFµν− 1

2
∂λφ∂

λφ+ 1
Mp

h̄µνTµν+ 1p
6 MP

φT
)
.(2.45)

Here we have exposed the origin of the vDVZ discontinuity. In the massless limit of Fierz-

Pauli massive gravity, the scalar φ remains coupled to energy momentum. The conclusion

here is that the massless limit of Fierz-Pauli massive gravity does not correspond to GR,

but a scalar tensor theory non-minimally coupled to energy momentum. From (2.45) it

is also clear why for light bending the result is continuous in the massless limit, as the

trace of energy momentum for a photon vanishes as T = 0 4 but the metric potentials

show an O (1) deviation from GR.

2.4 Non-linear massive gravity

We learned from the previous Section that in the massless limit of Fierz-Pauli massive

gravity, solar system tests are violated and GR is not recovered. Arkady Vainshtein

remedied this by realising that the vDVZ discontinuity was in fact an artefact of the

linear theory [94], and by extending Fierz-Pauli to a non-linear theory, continuity with

GR was obtained in the massless limit. The key concept here is identifying the scale at

which the linear theory breaks down, which corresponds to a regime in which the theory

becomes non-linear. The Vainshtein mechanism allows the smooth recovery of GR on

solar system scales. Before we discuss the Vainshtein mechanism, we first address the

concept of non-linearities in GR.

Being a non-linear theory, GR will also have a certain scale where the linear approx-

imation is no longer applicable to describe gravitational interactions, and non-linear

effects have to be included. To identify this scale in GR, we schematically expand the

Einstein-Hilbert action to include non-linear terms with at most 2 derivatives,

(2.48) SNL
EH =

∫
d4x ∂2ĥ2 + 1

Mp
∂2ĥ3 + 1

M2
P
∂2ĥ4 + ...+ 1

Mn
P
∂2ĥn+2,

4To see this, the stress tensor for a massless photon in a spacetime described by the metric gµν is

(2.46) Tµν = FµαFν
α−

1
4

gµνFαβFαβ.

Tracing results in,

(2.47) T = FµαFµα−δµµ
1
4

FαβFαβ = 0.

This can also be seen from the fact the equation of state of radiation is wR = 1/3.
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with ĥ representing the canonically normalised field as in Section 2.3. Recalling the

linear field profile for ĥ around a massive body,

(2.49) ĥ ∼ M
Mpr

,

and from (2.48) we have that the non-linear terms are suppressed with respect to the

linear terms by the factor,

(2.50)
1

Mp
∂2ĥ3

∂2ĥ2
∼ ĥ

Mp
.

Using (2.49) and the result above, we obtain that the distance with which the

non-linear terms begin to dominate is rNL ∼ M/M2
p which roughly corresponds to the

Schwarzschild radius rs of a massive body, which is given by rs = 2GM [95, 96]. Working

this out for the sun we obtain rs ∼ 3km. This means that we can trust the linear approxi-

mation of GR at distances r > 3km away from solar mass objects, and only at distances

r ∼ 3km we need to consider the non-linear effects. We can still do computations and

make predictions below the Schwarzschild radius, we just need to consider non-linear

effects. It is only when we hit the cutoff scale that we can no longer trust the results of

GR. To find the cut-off scale, consider a 2−→ 2 scattering of two gravitons [90] at energy

scale E, the amplitude A for the scattering is A ∝
(

E
Mp

)2
. At energy scales E ∼ Mp,

unitarity is broken and we lose all predictability of the system. Therefore, from this we

conclude that GR has a cutoff of Mp.

Now, we want to find the radius at which non-linear terms in massive gravity start

to dominate. To do this, we follow the procedure of Vainshtein [90, 94] and consider a

minimal non-linear model of massive gravity where we have full non-linear Einstein

gravity but keep the linear Fierz-Pauli mass term.

(2.51) S =
M2

p

2

∫
d4x

[(p−g R
)−√

−g(0) m2

4
g(0)µαg(0) νβ (

hµνhαβ−hµαhνβ
)]

,

where gµν = g(0)
µν+hµν is the full metric and g(0)

µν is a background fiducial metric. Here,

g(0)
µν is required to create non-trivial interactions as constructing scalar quantites out

of 1 metric simply yields a cosmological constant gµνgµν = c. To derive the radius at

which non-linearities begin to dominate, we work at the level of the equations of motion.

Varying (2.51) with respect to gµν yields,

(2.52)
p−g Gµν+

√
−g(0) m2

2

(
g(0)
µαg(0

νβ
hαβ− g(0)

αβ
hαβg(0)

µν

)
= 0.
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We assume a static spherically symmetric source and a spherically symmetric ansatz for

g,

(2.53) gµνdxµdxν =−B(r)dt2 +C(r)dr2 + A(r)r2dΩ2,

where dΩ2 is the metric on a 2-sphere. Furthermore, we consider a flat fiducial metric,

(2.54) g(0)
µνdxµdxν =−dt2 +dr2 + r2dΩ2.

Substituting the above ansatz into the equations of motion (2.52), and solving the

equations recursively by expanding the functions in (2.53) as A → 1+εA1 +ε2A2 + ... we

obtain,

A(r)−1= 4
3

GM
4πm2r3

(
1−4

GM
m4r5 + ...

)
B(r)−1=−8

3
GM

r

(
1− 1

6
GM
m4r5 + ...

)
C(r)−1=−8

3
GM
m2r3

(
1−14

GM
m4r5 + ...

)
.

(2.55)

The solutions in (2.55) are an expansion in the following quantity

(2.56) ∼
(

RV

r

)5

where we define the Vainshtein radius as

(2.57) RV =
(
GM
m4

) 1
5

.

The Vainshtein radius is the radius at which the linear theory becomes no longer applica-

ble, and higher order interactions must be considered. As we send m → 0, RV grows and

the regime in which we can trust the solution is reduced to zero. Vainshtein therefore

concluded that the linear theory cannot make predictions below RV as the perturbative

expansion breaks down, and that the solutions to the full non-linear equations may

show a smooth limit to GR [94, 97, 98]. Analogous to the case of GR, we can estimate

the radius at which linear perturbation theory breaks down for a solar mass object. We

have to specify the parameter m, and for cosmological purposes it is natural to assume

m ∼ H0. Plugging into (2.57) we obtain that RV ∼ 1018km, which is approximately the

size of the Milky Way galaxy. Therefore we cannot use linear Fierz-Pauli massive gravity

to describe light bending or other solar system tests, we have to use the full non-linear

theory. For the moment, we do not comment on the cutoff of non-linear massive gravity,

this will become apparent in the next Section.
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2.5 Higher order interactions

As we found for the linear case, adding a Lorentz-invariant non-derivative term to the

Einstein-Hilbert action required the addition of a non-dynamical reference metric. In

this section, we briefly summarise the development of the unique, non-linear theory

of massive gravity starting from a general potential. A candidate non-linear theory of

massive gravity takes the form,

(2.58) S =
M2

p

2

∫
d4x

[p−g R−p−g
1
4

m2U(g(0),h)
]

,

where gµν = g(0)
µν+hµν and U(g(0),h)=U2(g(0),h)+U3(g(0),h)+U4(g(0),h)+ ...+ where the

individual terms are given by,

U2(g(0),h)= [h2]− [h]2

U3(g(0),h)= c1[h3]+ c2[h2][h]+ c3[h]3

U4(g(0),h)= d1[h4]+d2[h3][h]+d3[h2][h]2 +d4[h2]2 +d5[h]4

+
∞∑

n=5
Un(g(0),h).(2.59)

In (2.59) the square brackets denote trace operation with respect to the background

metric, i.e.

(2.60) [h]= g(0)µνhµν, [h2]= g(0)µαhαβg(0)βνhµν

etc.. and the minus sign in U2 has been chosen to match Fierz-Pauli [82] at the linear

level, so at least at the linear level there are no ghost degrees of freedom.

As we have seen, utilising the Stückelberg trick allows us to restore diffeomorphism

invariance at the expense of introducing new degrees of freedom. We choose to let the full

metric gµν transform covariantly, and introduce the Stückelberg fields via the fiducial

metric as in [86, 90],

(2.61) Hµν(x)= gµν(x)− g(0)
AB(φ(x))∂µφA∂νφ

B,

where φA are the 4 Stückelberg fields. Substituting (2.61) into the action (2.58) and

setting φA = xA, where xA represent the spacetime coordinates, we obtain the original

Fierz-Pauli action at the linear level. This choice is known as the unitary gauge.

As before, we are interested in separating out the different helicities present in the

theory, so we write φα = xα−πα. We also change the field space index to a greek index as
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πµ will eventually transform as a Lorentz 4-vector [99, 100]. We therefore expand (2.61)

as

(2.62) Hµν = hµν+ g(0)
µβ
∂νπ

β+ g(0)
αν∂µπ

α− g(0)
αβ
∂µπ

α∂νπ
β+G (∂g(0)),

where hµν = gµν− g(0)
µν and G (∂g(0)) is schematic for derivatives of the fiducial metric.

Specialising to the case of a flat fiducial metric, and further expanding the 4-vector πα as

πα→πα+∂αφ to extract the longitudinal mode yields,

(2.63)

Hµν = hµν+∂µπν+∂νπµ+2∂µ∂νφ−∂µπα∂νπα−∂µπα∂ν∂αφ−∂µ∂αφ∂νπα−∂µ∂αφ∂ν∂αφ.

After substituting (2.63) into the action (2.58) as in [90, 91, 100] and canonically normal-

ising the fields as,

(2.64) ĥµν = 1
2

Mphµν, π̂µ = 1
2

mMpπ
µ, φ̂= 1

2
m2Mpφ,

we obtain a plethora of interaction terms between the different helicity modes. A generic

interaction term takes the form [90, 100, 101],

(2.65) m2M2
p
p−gU ⊃ m2M2

phnh (∂π)nπ
(
∂2φ

)nφ ∼Λ4−nh−2nπ−3nφ
λ

ĥnh (∂π̂)nπ
(
∂2φ̂

)nφ ,

where

(2.66) Λλ =
(
Mpmλ−1

) 1
λ , λ= 3nφ+2nπ+nh −4

nφ+nπ+nh −2
.

In (2.65) ĥ always appears with no derivatives, π with 1 derivative and φ with 2 deriva-

tives. Here Λλ is the energy scale corresponding to the outlined interaction. As m ¿ MP ,

the smaller the λ the higher the energy scale the interaction appears at. Furthermore,

nh +nπ+nφ ≥ 3. The term suppressed by the smallest scale will be the most important

at low energies. For the system (2.65), the term suppressed by the lowest scale is that of

the cubic scalar which contributes as,

(2.67) ∼ (∂2φ̂)3,

where nh = 0, nπ = 0, nφ = 3. Therefore, the corresponding energy scale associated with

this interaction is,

(2.68) Λ5 =
(
Mpm4) 1

5 ,

which is the strong coupling scale of the theory, or in other words, the scale at which the

theory becomes non-predictive. In this non-linear theory, as with the Vainshtein radius,
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we can estimate the energy scale Λ5 for a solar mass object and a Hubble scale graviton

mass. We find that Λ5 ∼ 10−11km−1. This is an unnacceptably low scale, and renders

this theory uninteresting for cosmological purposes. To make matters worse, as was

found by Boulware and Deser [85], the theory described by the action (2.58) with generic

coefficients propagates an extra scalar mode which was dubbed the Boulware-Deser (BD)

ghost. However, efforts to raise the strong coupling scale and exorcise the BD ghost were

made at the start of this century and the next section describes these developments.

2.6 dRGT massive gravity

As we saw in the last section, generic non-linear theories of massive gravity have a very

low cutoff and propagate a 6th degree of freedom which corresponds to the BD ghost. We

recall the generic non-linear potential U(g,h)=U2(g,h)+U3(g,h)+U4(g,h)+U5(g,h)+
....+, where the individual terms are given by,

U2(g,h)= [h2]− [h]2

U3(g,h)= c1[h3]+ c2[h2][h]+ c3[h]3

U4(g,h)= d1[h4]+d2[h3][h]+d3[h2][h]2 +d4[h2]2 +d5[h]4

U5(g,h)= f1[h5]+ f2[h4][h]+ f3[h3][h]2 + f4[h3][h2]+ f5[h2]2[h]+ f6[h]2[h]3 + f7[h]5

+
∞∑

n=6
Un(g,h),(2.69)

where we included the explicit 5th order term for illustrative purposes. This time we

choose to write the interaction potential as a function of the full metric gµν and hµν. This

means indices are raised with respect to the full metric and the equivalence between the

two ways of writing the potential can be seen by expanding the inverse metric as,

(2.70) gµν = g(0)µν−hµν+hµλhνλ+O (h3),

and the matrix determinant as,

(2.71)
p−g =

√
−g(0)

[
1+ 1

2
[h]− 1

4

(
[h2]− 1

2
[h]2

)
+O (h3)

]
.

Next we recall the culprit interaction for the lowest energy scale Λ5, which was the

cubic scalar self interaction

(2.72)
1
Λ5

5

(
∂2φ̂

)3
,
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and we identify the next lowest scale Λ4 =
(
Mpm3) 1

4 , which appears in the interactions,

(2.73)
1
Λ8

4
(∂2φ̂)4,

1
Λ4

4
(∂π̂)2 (

∂2φ̂
)2

.

The next scale is Λ3 = (Mpm3)
1
3 and is only carried by the interactions,

(2.74)
1

Λ3(n−1)
3

ĥ
(
∂2φ̂

)n
,

1
Λ3n

3
(∂π̂)2 (

∂2φ̂
)n

.

It was shown in [86, 102] that arranging the scalar self interactions into total derivatives,

the cutoff scale could be raised to Λ3. However in [103] it was argued that any massive

gravity theory with cutoff of Λ3 would propagate a ghost, but a sign error in [103] proved

this to be a wrong conclusion.

To raise the cutoff scale, it is sufficient to consider only scalar interactions, so (2.63)

becomes simply,

(2.75) Hµν = 2∂µ∂νφ−∂µ∂αφ∂ν∂αφ,

and by defining Πµν = ∂µ∂νφ (2.75) it becomes,

(2.76) Hµν = 2Πµν−Πα
µΠνα.

We can construct total derivative combinations of the matrix Π up to quartic order

[87, 101, 104]

L der
0 = 1

L der
1 = [Π]

L der
2 = [Π]2 − [Π2]

L der
3 = [Π]3 −3[Π][Π2]+2[Π3]

L der
4 = [Π]4 −6[Π2][Π]2 +8[Π3][Π]+3[Π2]2 −6[Π4].(2.77)

In fact, the total derivative combinations vanish for L der
n>4. Defining a generic 4×4 matrix

S, the determinant expansion of det(I4 +S)=∑4
n=0 Un(S) can be written in terms of the
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elementary symmetric polynomials Un(S),

U (S)= 1

U1(S)= [S]

U2(S)= 1
2!

(
[S]2 − [S2]

)
U3(S)= 1

3!
(
[S]3 −2[S][S]2 +2[S3]

)
U4(S)= 1

4!
(
[S]4 −6[S2][S]2 +8[S3][S]−6[S]4)

Un>4(S)= 0.(2.78)

By using the result in (2.78), we deduce that Un(S)= n!L der
n (S).

By tuning the coefficients in (2.69) ensuring that the dangerous interactions sup-

pressed by the scales Λ5 and Λ4 arrange into the total derivative combinations (2.77),

the lowest scale at which interactions arise can be promoted to Λ3. The authors in

[87, 104] performed this analysis in the decoupling limit5, order by order, and removed

the dangerous interactions characterised by
(
∂2φ̂

)n.

Finally, the last step in the construction of dRGT massive gravity came when the

infinite set of interactions in (2.69) were re-summed into an action with a finite number

of terms [88]. First we define a new tensor K as,

(2.79) K
µ
ν = δµν−

√
δ
µ
ν−Hµ

ν =
∞∑

n=1
dn

(
Hn)µ

ν ,

where Hµ
ν = gµαHαν, (Hn)µν = Hµ

λ1
Hλ1
λ2

..Hλn−1
ν and

(2.80) dn =− (2n)!
(1−2n)(n!)24n .

It was shown that in the decoupling limit, this time keeping the scale Λ3 fixed, the K

tensor reduces to

(2.81) K DL
µν

∣∣
hµν=0 = ∂µ∂νφ.

To see this, we write the relation (2.79) as,

K DL
µν

∣∣
hµν=0 = gµν−

√
ηαβ∂µπα∂νπβ

=⇒ gµν−
√
ηµν−2Πµν+ΠµβΠ

β
ν ,(2.82)

5The decoupling limit is used to isolate the leading order interactions in the theory. For this purpose,
it is described by Mp →∞, m → 0, ĥ, φ̂ and the scale Λ5 fixed.
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which after expanding the square root for small Π yields precisely to (2.81)6. By replacing

the tensor K DL into (2.69), the graviton potential can be written as,

(2.83) W(g,K )= [K 2]− [K ]2 + c̃1[K 3]+ c̃2[K 2][K ]+ ....+,

and from the structure of (2.81) it is clear that the structure is that of in (2.77), so

W(g,Π) = W(g,K ). The key point here is that in 4 dimensions, the potential can be

written as,

(2.84) W(g,K )=
4∑

n=0

αn

n!
L der

n (K ),

where the sum truncates at n = 4 as the total derivative combinations vanish for n > D, as

in (2.78). Here αn are generic coefficients which can be related to the original coefficients

in (2.69). Since we want to describe the full non-linear theory, including all interactions

including the vector, we move away from the decoupling limit and write down the full

non-linear action for massive gravity [87, 88, 101],

S =
M2

p

2

∫
d4x

p−g

(
R+2m2

4∑
n=0

αnUn(K )

)
,(2.85)

where Un are the dRGT potential terms constructed in such a way as to not excite the

BD ghost and to be total derivatives in the decoupling limit.

We can rewrite K by remembering that Hµν is defined, in the case of a flat field

space metric as,

(2.86) Hµν = gµν−ηαβ∂µφα∂νφβ.

Acting on (2.86) with the inverse metric gµν yields,

(2.87) Hµ
ν = δµν− gγµηαβ∂γφα∂νφβ ≡ δµν− gγµ fγν,

which implies,

(2.88) δ
µ
ν−Hµ

ν = gγµ fγν,

where fµν is defined as

(2.89) fµν = ηab∂µφ
a∂νφ

b.

6Note that this holds only around Minkowski backgrounds.
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Using this result, we can express the square root in (2.79) as the matrix product of

the full metric g and the background fiducial metric f ,

(2.90) K
µ
ν = δµν−

(√
g−1 f

)µ
ν

.

There is also an equivalent formulation of the dRGT theory in terms of βn parameters

[105],

(2.91) S =
M2

p

2

∫
d4x

p−g

(
R−2m2

3∑
n=0

βn

n!
Un(g−1 f )

)
,

in which the β parameters are related to the α parameters via [101, 106],

(2.92) βn = (−1)n+1
4∑

k=0

n!
(n−k)!

αn.

We finish this Section by commenting on the structure of the action given by (2.85). The

term proportional to α0U0 is simply a cosmological constant and α1U1 corresponds to a

linear term whose existence does not allow Minkowksi space as a solution. The higher

order interactions U3,4 are allowed if and only if U2 is present, and any deviation from

the structure of dRGT would be pathological.

dRGT massive gravity is a ghost free theory of massive gravity [107–111] with a UV

cutoff scale of Λ3 and a Vainshtein screening mechanism to allow the recovery of GR

on local scales, see [112] for full details on the Vainshtein mechanism in the decoupling

limit of dRGT. The Vainshtein radius around a point mass M in the Λ3 decoupling limit

is given by,

(2.93) R3
V =

(
M

Λ3
3Mp

)
,

which for a Hubble scale graviton mass and solar mass object is roughly RV ∼O (pc). An

example of how the Vainshtein mechanism works in the cubic galileon theory, which

arises in the decoupling limit of dRGT massive gravity, is outlined in Appendix A.

Furthermore, illustrated in Fig.2.1 is a schematic picture of the different length scales in

dRGT away from a body of mass M, which is inspired off a diagram in [90].

Now, we turn our attention towards the cosmological implications of dRGT massive

gravity, and investigate the viability and phenomenology of cosmologies in the dRGT

framework.
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2.7 Cosmology of dRGT

Shortly after the construction of the ghost free theory of massive gravity, it was shown

that the gravitational mass term can invoke an energy density which exerts a negative

pressure and drives the accelerated expansion of the universe via the helicity-0 mode

of the graviton [113]. In this Section, we briefly review the attempts to find a stable

cosmology in massive gravity. To begin the study of dRGT cosmology, we work with the

action given by (2.85) and show the presence of open FLRW solutions at the background

level [114, 115]. It was shown in [116] that cosmologies with a flat FLRW solution are not

allowed due to the time evolution of the scale factor being forbidden. Furthermore, since

Minkowski space cannot be put into a closed FLRW chart, no closed FLRW solutions exist

either. Therefore, we seek the form of the open FLRW solution which was shown to be in

agreement with ΛCDM [117]. In order to achieve an isotropic and homogeneous universe

for both the physical and fiducial metric, we need fµν to have the same FLRW symmetries

as gµν in the same coordinate system, since they are coupled via g−1 f . Note that we are

considering homogeneous and isotropic solutions as the cosmological perturbations for a

non FLRW case are very complicated [114, 116] and requires a full re-addressing of how

to perform perturbative analysis. For a Minkowski field space metric the background

fiducial metric is,

(2.94) fµν = ηab∂µφ
a∂νφ

b,

and the unique field configuration compatible with these symmetries is

φ0 = f (t)
√

1+κ(x2 + y2 + z2) ,

φ1 = f (t)
p
κ x ,

φ2 = f (t)
p
κ y ,

φ3 = f (t)
p
κ z .(2.95)

where κ= |K | = −K is the absolute value of the negative constant curvature of the spatial

slice. With this definition, the fiducial metric has the same form as an open FLRW

solution [114]

(2.96) fµνdxµdxν =− ḟ (t)2dt2 +κ f (t)2Ωi jdxidx j ,

where an overdot denotes time derivative and Ωi j is the metric of the constant time

hypersurfaces with constant negative curvature

(2.97) Ωi jdxidx j = dx2 +d y2 +dz2 − κ(xdx+ yd y+ zdz)2

1+κ(x2 + y2 + z2)
.
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Our metric ansatz is then an open FLRW

gµνdxµdxν =−N2dt2 +a(t)2Ωi jdxidx j .(2.98)

We substitute the metric ansatz into the dRGT action, with α0 = α1 = 0 for now, and

setting α2 = 1 yields to the background action,

(2.99) S =
M2

pV

2

∫
N dta3

[
−6κ

a2 − 6 ȧ2

a2 N2 +2m2 (U2 +α3U3 +α4U4)
]

,

where

U2 = 3
(
1−

p
κ f
a

)(
2−

p
κ f
a

− ḟ
N

)
,

U3 =
(
1−

p
κ f
a

)2 (
4−

p
κ f
a

− 3 ḟ
N

)
,

U4 =
(
1−

p
κ f
a

)3 (
1− ḟ

N

)
.(2.100)

Varying (2.99) with respect to f we obtain the Stückelberg equation of motion which

encodes all the information about the dynamics of the 4 Stückelberg fields,

(2.101)
(
H−

p
κ

a

)[
(ξ−2)+ (ξ−1)(ξ−4)α3 + (ξ−1)2α4

]= 0,

where ξ= f
p
κ

a is the ratio of the scale factors of the background and dynamical metrics

respectively. The equation (2.101) has 2 branches of solutions. The first branch with

solution,

(2.102) H =
p
κ

a
,

corresponds to an empty universe, or in other words the open chart of Minkowski space-

time which is the same as the f -metric. It is uninteresting for cosmology as expansion is

prohibited. The other branch arises from solving the following algebraic equation for ξ,

(2.103) (ξ−2)+ (ξ−1)(ξ−4)α3 + (ξ−1)2α4 = 0,

where with respect to (2.101) we have removed the trivial solution. The other two

solutions are,

(2.104) ξ± =
1+2α3 +α4 ±

√
1+α3 +α2

3 −α4

α3 +α4
.
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In this branch, ξ is constant and exhibits self acceleration as the contribution from the

graviton mass term to the Friedmann equation acts like a cosmological constant [114].

Note here that the above solutions do not exist in the limit κ→ 0, which is consistent with

the result of no stable closed or flat FLRW solutions [114, 116]. It was shown that the

solutions on the self-accelerating branch suffer from a non-linear instability [115, 118]

as the kinetic terms vanish for the scalar and vector sectors at the level of the quadratic

action for cosmological perturbations. The upshot of this is that the modes are infinitely

strongly coupled and standard perturbative analysis cannot be performed.

The open FLRW can be generalised to include any choice for the field space metric

which can be written in FLRW form in some coordinate system as in [119] via,

(2.105) fµν =−n2(ϕ0)∂µϕ0∂νϕ
0 +α2(ϕ0)Ωi j(ϕk)∂µϕi∂νϕ

j,

where ϕi represent Stückelberg fields which have undergone a change of variables with

respect to the original ones. It was shown in [120] that this generalisation does not revive

the BD ghost. Deriving the Stückelberg equation, 3 solutions are again found [115, 119].

The first can be written as,

(2.106) aH =αH f ,

where H = ȧ
aN and H f = α̇

αn are the Hubble rates for the physical and fiducial metric

respectively. By choosing a maximally symmetric spacetime [120], the normal branch

outlined in (2.106) can support a cosmological solution. However, in the case of a de-Sitter

reference metric [121] the Higuchi ghost7 is also present [122] and is unstable under

linear perturbations [105, 123]. Choosing the form of the metric to be anti de-Sitter, the

cosmology cannot sustain acceleration [125]. The other branch of solution has exactly

the same structure as in (2.104) and can accommodate self-acceleration. However, this

branch of solution suffers from the same non-linear instability [115, 119] as before so

the solutions are unstable. With this result, we understand that all homogeneous and

isotropic solutions in dRGT massive gravity are unstable and breaking some underlying

assumptions about the theory are required to seek stable cosmologies.

Giving up isotropy and homogeneity, a stable ghost free anisotropic universe can

be achieved with the presence of a late time attractor solution [126]. Furthermore, in

the Stückelberg field space an inhomogeneous fiducial metric can be allowed [127–130].

7The Higuchi ghost is present when the Higuchi bound is violated. The Higuchi bound ensures the pos-
itivity of the kinetic term of the helicity-0 mode of the graviton. It was first studied by Higuchi considering
de-Sitter backgrounds [122] but was generalised in [123, 124] to arbitrary flat FLRW spacetimes.
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With this choice the Stückelberg fields are,

(2.107) φ0 = f (t, r), φi = g(t, r)
xi

r
,

which again results in an effective cosmological constant appearing in the Friedmann

equation which then exhibits self-acceleration. However, it was shown that these so-

lutions are also unstable [131] due to a ghost instability arising from an unbounded

hamiltonian. The lack of stable cosmologies in massive gravity led some authors to

consider extensions to dRGT and we briefly comment on some of them in the next

Section.

2.8 Extensions to dRGT

The first extension to consider is mass-varying massive gravity (MVMG) [132, 133],

where the free α parameters and the graviton mass parameter in the dRGT action are

promoted to functions of a scalar field α→α(ψ) where ψ is a scalar field which appears

with its own kinetic term. The action is modified in the following way,

(2.108) S =
M2

p

2

∫
d4x

p−g
[
R+2V (ψ)

∑
n
αn(ψ)Un − 1

2
(
∂ψ

)2 − Ṽ (ψ)
]

.

In this model the graviton mass becomes a function of the background scalar field.

The mass varying theory was shown to be stable under linear perturbations [133], but

propagates 6 degrees of freedom. This model can approximate self-acceleration, but to

get a cosmological constant requires the extra scalar to be slowly varying which almost

approximates constant mass dRGT.

Another extension is the quasidilaton massive gravity [134], which introduces another

scalar field but not in a way which promotes free parameters to functions. The scalar field

σ, or the quasidilaton, is coupled to the fiducial metric via a conformal transformation.

The quasidilaton can source the late time acceleration of the universe. The scalar field

and Stückelberg fields satisfy the following transformation properties,

(2.109) σ→σ+σ0, φa → e−σ0/Mpφa,

and with these definitions the building block tensor is modified to be,

(2.110) K
µ
ν = δµν− e−σ/Mp

(√
g−1 f

)µ
ν

.
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Whilst there are flat self-accelerating solutions, it was shown that a ghost instability

is always present in the theory [133, 135, 136]. The quasidilaton can be extended by

adding derivative operators [137] and it was hoped a stable cosmology could be achieved

with self-acceleration [138–141]; however it was shown that even in the extended theory

there is an instability [142, 143].

So far we have only mentioned Lorentz invariant theories, but by breaking Lorentz

invariance one can construct the minimal theory of massive gravity [144] which is a

massive gravity theory that propagates 2 degrees of freedom. It was shown that this

theory is pathology free [145] and can lead to self acceleration without the need of a

cosmological constant or other dark energy fluid. There is also the minimal quasidilaton

[146] with a Horndeski extension [147] and the resulting phenomenology has been

studied in [148, 149]. The main result of these extensions is that they are stable with

respect to the Lorentz invariant ones, at the price of abandoning Lorentz invariance.

The minimal theory also has interesting implications for the early universe, as blue

tilted primordial gravitational waves can be generated [150] which could potentially

be detected by interferometers [151–154]. Other versions of Lorentz breaking massive

gravity are detailed in [155–158] and references therein.

2.9 Quantum corrections and mass bounds

We end this chapter by mentioning quantum corrections and the observational bounds on

the graviton mass. Quantum corrections to the graviton mass scale as m2 → m2+O (1)m2

[55, 159]. Therefore a small mass is technically natural as the corrections are proportional

to the mass itself, unlike the cosmological constant. So if the graviton mass is small, it

remains small.

A plethora of observations which operate at different scales which constrain the mass

of different helicities of the graviton are outlined in [160]. The most stringent bound on

the scalar mass is from Lunar laser ranging [161], which interestingly places an upper

bound one order of magnitude higher than the dark energy scale,

(2.111) MS < 10−32eV.

This result is obtained from analysing the decoupling limit of dRGT, which describes

a linearised massive spin-2 mode and a quartic galileon field theory. The vector is also

present in the decoupling limit but does not couple directly to matter [159], so does not

influence the result. This result is the same order of magnitude as obtained from the
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decoupling limit of DGP, which is a linearised spin-2 mode plus a cubic galileon scalar

interaction.

The bound from gravitational waves on the spin-2 mass, which arises from the

dispersion relation, places an upper bound of

(2.112) MT < 10−22eV.

This result is obtained from the time delay difference between the light signal from the

gamma ray burst and the arrival of the gravitational wave. The observation of more

gravitational wave events with optical counterpart could tighten the bound on the mass

of the tensor modes, although at the moment they remain weaker than the bounds on

the scalar graviton mass.

2.10 Conclusions

The conclusion to this chapter is that there are many extensions to dRGT (for more

see [101, 162] and references therein), but finding a pathology free, Lorentz invariant

massive gravity theory, which can describe the late time acceleration of the universe has

been a challenge. Early on in this chapter we outlined the construction of dRGT massive

gravity, starting from the linear theory first studied by Fierz and Pauli. The next chapter

describes the cosmology of bigravity, which is an extension to dRGT which promotes the

background fiducial metric to be a dynamical variable. Extending the theory in this way

was hoped to alleviate some of the issues which has plagued cosmologies in dRGT.
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Figure 2.1: Schematic representation of the different length scales in dRGT away from
a body of mass M. RQ is the cutoff of the theory, in which quantum corrections become

important. This scale in dRGT is given by Λ3 ∼
(
Mpm2) 1

3 . Then there is the intermediate
regime in which non-linear interactions are important and GR is recovered. The next
regime is the linear regime where there is a fifth force active, and finally a large scale
regime where the force of gravity is exponentially suppressed due to the mass of the
graviton, which roughly corresponds to its Compton wavelength.





C
H

A
P

T
E

R

3
COSMOLOGY OF BIGRAVITY

Introduction

In this chapter we introduce the theory of bigravity. We then study the background

cosmology and discuss the branches of background solutions which exist in the

bigravity framework, assuming homogeneity and isotropy. We then discuss the

theoretical inconsistencies with one of these branches and move on to describe the

cosmology of the low energy model of bigravity and investigate the cosmological viability

of it. To achieve this, we study the background evolution and linear perturbations

by deriving the Poisson’s equation. Next, we describe the derivation of the non-linear

equations of motion which allows us to identify the Vainshtein radius. We conclude this

chapter with a discussion of the viability of bigravity theories for dark energy. This

chapter is based on published results in [163].

3.1 Bigravity Theory

Bigravity is an extension to dRGT massive gravity where the background fiducial metric

is promoted to a dynamical variable. The ghost free bigravity theory, which was con-

structed by Hassan and Rosen [54], modifies the dRGT action by imposing that the

bigravity theory propagates 7 degrees of freedom. In this way, the form of the kinetic

term for the f -metric is fixed to be that of the Einstein-Hilbert. Therefore the action for
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bigravity is,

S =
M2

g

2

∫
d4x

p−g R[g]+
M2

f

2

∫
d4x

√
− f R[ f ]+m2M2

g

∫
d4x

p−g
4∑

n=0
αnUn +

∫
d4x

p−g Lm,

(3.1)

where matter is coupled only to the g-metric and Un are the dRGT interaction terms

(2.85).

The question of which metric to couple matter to is an interesting one, as there are two

metrics to choose from. In GR the weak equivalence principle is satisfied, that is to say all

matter couples to gravity in the same way, typically through a term like
p−g Lm(g,ψi),

but the presence of a second dynamical metric adds a sense of ambiguity. If all matter

couples universally in a two-metric theory then the weak equivalence principle can be

satisfied. The first and most simple form of matter coupling is to couple matter to only

one tensor, through
p−g Lm(g,ψi); this was considered in the original formulation of

Hassan and Rosen bigravity and is inherently ghost free [54]. The advantage of the single

coupling scenario is that the metric tensor, which describes the dynamics of spacetime,

is clearly the metric which matter couples to. It is this type of matter coupling we will

work with in this thesis. The logical next step is to consider a doubly coupled scenario

and here there are two possibilities. The first is to couple g and f to the same matter

field via,

(3.2) Sm =
∫

d4x
p−g Lm(g,ψi)+

∫
d4x

√
− f Lm( f ,ψi).

This form of coupling creates a conceptual problem about which of g or f is the metric

tensor, however one can find a combination of the two which acts as the metric. In this

coupling scenario it was shown that a ghost is present [164], however there is a special

form of effective metric built out of both g and f which is ghost free in the decoupling

limit [164] and at the level of the background action. The structure of such a matter

action takes the form,

(3.3) Sm =
∫

d4x
√
−geff Lm(geff,ψi),

where

(3.4) geff =α2 gµν+2αβgµα
(√

g−1 f
)α
ν

+β2 fµν,
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and (α,β) are constants. Another form of coupling we discuss here is where different

matter fields can couple to each metric via,

(3.5) Sm =
∫

d4x
p−g L

g
m(g,ψi)+

∫
d4x

√
− f L

f
m( f ,φi).

This model was studied in [165], where it was found that the doubly coupled scenario

could explain the origin of dark matter. There are also other dark matter candidates in

the literature which arise out of the bigravity theory [166–168].

We turn our attention to the single coupling scenario and to the application of bigrav-

ity theory as a solution to the dark energy problem. To obtain the Einstein equations, we

vary the action (3.1) with respect to g and f , and as both metrics are dynamical they

satisfy their own Einstein equations. For a derivation of the variation of the mass term

see Appendix B. The equations of motion are,

E
(g)
µν ≡Gµν− 1

M2
g

Tµν−m2
4∑

n=0
αn

(
gµνLn −2

δUn

δgµν

)
= 0 ,

E
( f )
µν ≡Gµν+

2m2p−g M2
g√− f M2

f

4∑
n=0

αn
δUn

δ f µν
= 0 ,(3.6)

where Gµν and Gµν are the Einstein tensors built out of the g and f metrics respectively,

and

(3.7) Tµν ≡− 2p−g
δ

δgµν
(
p−g Lm) ,

is the energy-momentum tensor for the matter sector. Taking the divergence of (3.6) and

assuming matter conservation yields,

(3.8)
4∑

n=0
αn∇µ

g

(
gµνLn −2

δUn

δgµν

)
=

4∑
n=0

αn∇µ

f
δUn

δ f µν
= 0.

The previous equation is analogous to the energy-momentum conservation equation for

the matter fluid in (1.12), as the two-metric interaction produces an effective energy-

momentum tensor. Note here, that ∇g and ∇ f are covariant derivatives compatible with

the g and f metrics respectively.

3.2 Background Cosmology

In this section we study the background cosmology of the bigravity theory under the

ansatz that both metrics take flat Friedmann Lemaître Robertson Walker (FLRW) form
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in the same coordinate system:

ds2
g =−N(t)2 +a(t)2δi jdxidx j

ds2
f =−n(t)2 +α(t)2δi jdxidx j ,(3.9)

where N(t),n(t) denote the lapse functions, while a(t), α(t) represent the scale factors

for the g and f metrics respectively. For the matter content we consider a perfect fluid

described by the energy-momentum tensor:

(3.10) Tµν = ρuµuν+P(gµν+uµuν),

where uµ is the 4-velocity of the fluid and satisfies the condition uµuµ = −1, P the

pressure and ρ the energy density. In accordance with the homogeneous and isotropic

metric ansatze, the background values for the pressure and energy density are functions

of time only, while uµ =−δ0
µN. In what follows, we will restrict our discussion to a matter

sector consisting only of a pressureless non-relativistic fluid, P = 0.

For the background metrics (3.9) and a perfect fluid (3.10), the equations of motion

(3.6) reduce to four independent equations and the matter equation of motion [169]

3H2 = m2ρm,g + ρ

M2
g

,(3.11)

3H2
f =

m2

κ̃
ρm, f ,(3.12)

2 Ḣ
N

= m2ξJ(c̃−1)− ρ

M2
g

,(3.13)

2 Ḣ f

n
=− m2

κ̃ξ3 c̃
J(c̃−1) ,(3.14)

ρ̇

N
+3Hρ = 0,(3.15)

where a dot represents a time derivative and we define the following functions in

accordance with the notation of Ref.[169]:

ρm,g(ξ)≡U(ξ)− ξ

4
∂ξU(ξ) ,

ρm, f (ξ)≡ 1
4ξ3∂ξU(ξ) ,

J(ξ)≡ 1
3
∂ξ

(
U(ξ)− ξ

4
∂ξU(ξ)

)
,(3.16)

with U(ξ)≡−α0 +4α1(ξ−1)−6(ξ−1)2 +4α3(ξ−1)3 −α4(ξ−1)4 and

(3.17) ξ≡ α

a
, c̃ ≡ na

Nα
, κ̃≡ M2

f /M2
g .
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The conservation of the energy-momentum tensor arising from the two-metric interaction

(3.8) yields,

(3.18) J(H−ξH f )= 0 .

One final point we should make here is that the constraint equation derived from the

derivative of (3.18) is

(3.19)
d(H−ξH f )

dt
= 0.

Using the background equations (3.11,3.18) we obtain,

(3.20) 2(c̃−1)W = ρ

M2
g

,

where W is defined to be,

(3.21) W ≡ m2J(1+ κ̃ξ2)
2κ̃ξ

−H2.

The quantity W plays a role in the perturbative stability conditions [163, 169], and W > 0

is the bigravity generalisation of the Higuchi bound.

3.3 Bigravity Cosmologies

The constraint equation (3.18) branches out into two solutions, the self-accelerating

branch J = 0 and the normal branch of solution H = ξH f . The self-accelerating branch

clearly has ξ= const which forces ρm,g and ρm, f to be constant. This branch of solution

is problematic, and is analogous to the self-accelerating branch in massive gravity. There

are only 4 degrees of freedom propagating which correspond to two tensor modes and the

kinetic terms for the vectors and scalars vanish [170, 171].

Focusing on the normal branch, there are a couple of different options to take to

obtain a cosmological solution. We briefly summarise the results here, but refer the

reader to the reviews [162, 172, 173] for more details.

The normal branch is given by the solution H = ξH f which links the evolution of

the f metric to the evolution of the g metric. The consistency of the two Friedmann

equations results in,

(3.22)

(
3H2 −m2ρm,g − ρ

M2
g

)
−ξ2

(
3H2

f −
m2

κ̃
ρm, f

)
= 0,
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which gives an algebraic relation between ξ and the matter density ρ

(3.23) ρ̂m(ξ)=− ρ

m2M2
g

,

where

(3.24) ρ̂m(ξ)≡ ρm,g − ξ2

κ̃
ρm, f .

This equation determines ξ as a function of ρ and in general it is a quartic equation

for ξ. For late time cosmology, we desire a quasi de-Sitter phase and when the equation

for ξ (3.23) is in the late universe regime, the right hand side tends to zero as the density

redshifts away. From the Friedmann equation, for late time acceleration we require that

m ∼ H0, which appears to be a natural choice to match observations without any fine

tuning of the model parameters. Furthermore, m ∼ H0 corresponds to a value of m which

is roughly the dark energy scale, so in this sense this is a natural value for m. For the

early universe the behaviour of the equation for ξ is different. The right hand side of

(3.23) gets very large at early times, therefore ξ can either be very large or very small to

satisfy this condition. Here we discuss both options. Note that the following discussion is

valid in the high energy regime, i.e. the early universe.

3.3.1 Branch 1: Infinite branch

Taking the first option, a large ξ means we can approximate (3.23) as,

(3.25) (α3 +α4) ξ3 ∼− ρ

m2M2
g

.

This branch is known as the infinite branch of solution [173–175] and requires α3+α4 < 0

as ξ is strictly positive. This branch of solution was shown to be unstable at early times

[176], but here we comment briefly on it. We can derive a relation for the time derivative

of ξ,

(3.26) ξ̇= α̇

a
− α

a2 ȧ.

Using the background equation H = ξH f and the definition of c̃ (3.17) we can re-write

(3.26) as,

(3.27) ξ̇= NH(c̃−1)ξ,

on which using (3.20) becomes,

(3.28) ξ̇= NHξ

2M2
g
× ρ

W
.
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As ξ is a decreasing function in time, this implies that either W < 0 which violates

the Higuchi bound [122], or the matter sector has negative energy density. Both of these

are unphysical so we can conclude that this branch is unstable [177, 178]. Furthermore,

perturbations around this branch have been studied around FLRW backgrounds and in

general, even though for a specific set of parameters the branch is free from instabilities

[179], this branch contains ghost instabilities [180–182] and does not pass theoretical

consistency tests.

3.3.2 Branch 2: Finite branch

Taking the other extreme, ξ¿ 1 which is known as the finite branch, the equation for ξ

becomes.

(3.29)
α1 +3+3α3 +α4

ξκ̃
= ρ

m2M2
g

.

In this branch, ξ increases in time until the energy density dilutes away and ξ tends

to a constant value as the universe enters a late time de-Sitter phase [176]. At the

background level this branch appears to be stable. Moving on to the perturbations, it

was shown that while tensor and vector modes are well behaved, a gradient instability

is generated in the scalar sector at early times. [170, 171, 179, 182, 183]. A couple of

resolutions to this problem have been proposed. The first one is to work in the GR limit

of the theory, which is equivalent to taking κ̃→ 0 [184]. This effectively freezes the

dynamics of the second metric and decouples the massive graviton from the matter sector.

It was shown that in this limit the time the gradient instability appears can be pushed

to arbitrarily early times beyond the limit of the effective field theory. In this branch, the

cosmology becomes GR-like which has the advantage of being stable, however the theory

becomes indistinguishable from GR and therefore finding observational signatures are

difficult, however multiple works are still investigating the phenomenology and effects

on large scale structure of this model [185–188]. Another option is that a Vainshtein-like

mechanism could be present [189, 190] which screens the effect of the instability at early

times recovering GR.

3.3.3 Branch 3: Exotic branch

There is also another branch of solution in the literature which is known as the exotic

branch. It arises from explicitly solving the quartic equation (3.23) for ξ. These branches

of solution do not assume a monotonous evolution for the density ρ, and avoid the early

61



CHAPTER 3. COSMOLOGY OF BIGRAVITY

time instability via a bounce or describe a static cosmology. However, all these solutions

were shown to be unstable [181].

To conclude this discussion, the only viable bigravity models which could be interest-

ing for dark energy lie on the finite branch of solution. Imposing a hierarchy between the

Planck scales of the two metrics, one can recover GR at early times and push the gradient

instability out of reach of the effective field theory. Another way to resolve the problem is

the invoking of a Vainshtein-like mechanism to screen the effect of the instability and

allow GR to be recovered at early times.

However, abandoning the assumption that m ∼ H0 it was shown to lead to another

solution, which could potentially avoid the instability at the expense of fine tuning of

model parameters. In the rest of the chapter we focus on the cosmological viability of

this model, which was first introduced in [191].

3.4 Low Energy Limit

We now study the phenomenology of the low energy model of bigravity. This was proposed

in [191], and a healthy background cosmology was found. Implications on this model

from primordial gravitational waves and early universe physics were studied in [192],

where mild bounds on the parameter space of the model are found. The low energy limit

is defined by,

(3.30) ρ¿ m2M2
g .

This regime allows us to avoid the early time gradient instability in the normal branch

of solution [171] by pushing the instability beyond the reach of the effective field theory

[169, 191]. This model also has interesting implications for gravitational waves: Ref. [191]

studied the gravitational wave signal generated by this model and found an inverse chirp

signal could be detected by future gravitational wave experiments. For the physical sector,

gravitational waves propagate at the speed of light so are not constrained by the binary

neutron star merger, and for the second metric propagate at speed c f = 1+O
(
H2/m2)

[191]. An interesting feature of this bigravity theory is that due to the two-metric

coupling, the gravitational waves oscillate from the hidden sector to the physical sector

and it can produce a detectable signal.

Our goal for this chapter is to analyse the cosmological viability of the low energy

limit of the bigravity theory. Studying the equation for (3.23) we notice that in the far

future, the density ρ redshifts as a−3, and the solution for ξ converges to a constant value
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ξc defined by

(3.31) ρ̂m(ξc)= 0 .

To describe the evolution close to this late time attractor, we linearise Eq.(3.23) around

ξ= ξc to relate the departure from this point to the matter density:

m2
[

3(1+ κ̃ξ2
c)Jc

κ̃ξ2
c

− 2Λ
m2ξc

]
(ξ−ξc)∼ ρ

M2
g

,(3.32)

where Λ≡ m2ρm,g(ξc) and the subscript c corresponds to the values of functions evalu-

ated at the de-Sitter attractor. Following Ref.[169], we now assume |Λ/(m2Jc)|¿ 1. Using

these results, we find that the Friedmann equation (3.11) can be approximated as

3H2 ' ρ

M̃2
g
+Λ ,(3.33)

where the effective Planck scale is M̃2
g ≡ (1+ κ̃ξ2

c)M2
g, and we now identify Λ as the

effective cosmological constant 1.

3.5 Cosmological perturbations

In this section we consider perturbations around the low energy background model and

determine the effect of the two-metric interaction on the linear growth of structure. We

outline the method adopted to study the perturbations, the process to isolate the scalar

mode in the Poisson’s equation and the extension to non-linear order. In this work, we

only consider scalar perturbations as they are the only relevant ones for the large scale

structure.

3.5.1 Linear perturbations

To start the study of cosmological perturbations, we perturb both metrics around the

backgrounds (3.9) in the Newtonian gauge for the g metric

ds2
g =−(1+2φ)dt2 +a2 (

δi j +2δi jψ
)
dxidx j ,

ds2
f =−n2(1+2φ f )dt2 +2na∂ib dt dxi +α2

[
δi j +2δi jψ f +

(
∂i∂ j −

δi j

3
∇2

)
S

]
dxidx j ,

(3.34)

1Notice that Λ has a contribution from α0, which is simply a bare cosmological constant. In Sec.3.6,
we will set α0 = 0 such that the accelerated expansion is solely due to the two-metric coupling.
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where (φ,ψ,b,S,φ f ,ψ f ) are the perturbation variables and we fixed the time coordinate

such that N = 1. The perturbations in the matter sector are introduced via ρ = ρ(t)+δρ
and uµ = (1−φ,∂iv) which leads to the following form for Tµν,

T00 = ρ
(
1+2φ+ δρ

ρ

)
,

T0i =−a2ρ∂iv ,

Ti j = 0 .(3.35)

With these decompositions and using the quasi-static approximation [193] we can derive

an analogue of Poisson’s equation for the potential φ [169]. Here we briefly summarise

the derivation.

To begin with, we substitute the perturbed metrics into the equations of motion,

whilst in the process setting all time derivatives of the fields to zero in accordance with

the quasi-static approximation and evaluating everything at the late time attractor. Due

to the complex nature of the dRGT potential term, the calculation of the square-root

tensor is complicated for non-diagonal metrics. An algorithm used for this procedure is

presented in Appendix C. The equations take the following form, up to non-zero factors

E
(g)
00 = δρ

M2
g
− 2k2ψ

a2 −3Jcm2ξc(ψ−ψ f ) ,

E
(g)
tr = (−3Jcm2ξc −2(k2/a2)

)
φ+3Jcm2ξcφ f −6Jcm2ξcψ−2(k2/a2)ψ+6Jcm2ξcψ f ,

E
(g)
tl = Jcm2ξca2S+2(φ+ψ) ,

E
( f )
00 =−k2κ̃ξc(k2S+6ψ f )+a2(9Jcm2ψ−9Jcm2ψ f ) ,

E
( f )
tr =−3a2(3Jcm2φ−3Jcm2φ f +6Jcm2ψ−6Jcm2ψ f )+k2κ̃ξc(k2S+6(φ f +ψ f )) ,

E
( f )
tl =−3Jcm2a2S+ κ̃ξc(k2S+6(φ f +ψ f )).

(3.36)

where a subscript 00 represents the time-time component, tr is the trace of the spa-

tial components and tl is the traceless combination. We then solve the equations
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(
E

(g)
tl ,E ( f )

00 ,E ( f )
tr ,E ( f )

tl

)
for the variables (S,φ f ,ψ f ,ψ). The explicit solutions are as follows;

ψ= 1
2

(−Jcm2ξca2S−2φ
)
,(3.37)

ψ f =−ξcS
(
9J2

c m4a4 +2κ̃k4)+18Jcm2a2φ

6
(
3Jcm2a2 +2κ̃k2ξc

) ,(3.38)

φ f =
Jcm2a2 [(

3Jcm2a2(1+ κ̃ξ2
c)+ κ̃ξck2)S+6κ̃ξcφ

]
2κ̃ξc

(
3Jcm2a2 +2κ̃k2ξc

) ,(3.39)

S =− 4κ̃2k2ξ2
cφ

Jcm2a2
(
3Jcm2a2

(
κ̃ξ2

c +1
)+ κ̃k2ξc

(
4κ̃ξ2

c +3
)) .(3.40)

Substituting solutions (3.37-3.40) into E
(g)
00 and performing the re-definitions

Mg =
M̃g√

1+ κ̃ξ2
c

, Jc = 2κ̃ξcW
m2(1+ κ̃ξ2

c)
,(3.41)

yields equation (3.42). Note that the trace part of the g-metric equations E
(g)
tr is automat-

ically satisfied.

φ=− δρ

2M̃g(k2/a2)

[
6W + (3+4κ̃ξ2

c)(k2/a2)
6W +3(k2/a2)

]
,(3.42)

where k is the momentum of the mode in the plane-wave expansion and W is defined in

(3.20).

Inspecting the form of the Poisson’s equation, we find it is similar to the one in the

presence of a scalar field source. The traceless part of the g equations of motion is given

by E
(g)
tl ,

(3.43) Jcm2ξca2S+2(φ+ψ)= 0,

and reveals that the perturbation S acts as a source for anisotropic stress.

3.5.2 Vainshtein radius

We now move on to the study of second order perturbations and to identify the scale

at which the perturbative expansion breaks down. This will allow us to determine

the Vainshtein radius where the scalar graviton decouples from the matter sector and

the evolution closely follows GR. The workings of the Vainshtein mechanism are that

derivative self interactions of the scalar are enhanced around a matter source such as a

star, so that the effect of the fifth force is screened below the Vainshtein radius.
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In order to do this, a few approximations are in order. In addition to restricting the

study to the de Sitter attractor, we consider scales where the expansion can be neglected.

We also focus on small scales and assume ∇2 À m2. Keeping the metric perturbations up

to second order in the equations of motion, we find that unlike the g-metric equations,

the non-linear f -metric equations do not exhibit the enhancement ∇2/m2 with respect to

the linear part. This allows us to solve the linear f -metric equations and substitute the

solutions for (ψ f ,φ f ,φ) into the non-linear components of the g-metric equations. The

solutions are:

φ f =
Jcm2S
4κ̃ξc

,

ψ f =
1
6
∇2S+ Jcm2S

4κ̃ξc
,

φ= 3 Jcm2S
4κ̃ξc

−2ψ ,(3.44)

Upon substitution of equations (3.44) into the g-metric equations we obtain

E
(g)
00 = m2ξ3

c

16(ξc −1)

[
(∇2S)2 −

(
∂i∂ jS∂i∂ jS

)]
+ 1

2
Jcm2ξc∇2S+2∇2ψ+ δρ(t)

M2
g

,(3.45)

E
(g)
tr = m2ξ3

c

16(ξc −1)

[
(∇2S)2 −

(
∂i∂ jS∂i∂ jS

)]
+ 3+2κ̃ξ2

c

2κ̃
Jcm2∇2S−2∇2ψ ,(3.46)

where we kept only the second order terms that are enhanced in the limit ∇2/Jcm2 À 1.

Using Eq. (3.46) to replace ∇2ψ and the definition of M̃g, Eq. (3.45) reduces to

m2

8ξc

{
ξ4

c

(ξc −1)(1+ κ̃ξ2
c)

[
(∇2S)2 − (

∂i∂ jS
)2

]}
+ m2

8ξc

(
12Jc

κ̃
∇2S

)
+ δρ

M̃2
g
= 0 ,(3.47)

where the non-linear term has the expected galileon-like structure. The scale at which

the non-linear terms become important depends on the normalisation of the field. We

define

(3.48) S̃ =−m2Jcξc

2
S ,

such that the linear traceless equation of motion (3.43) reduces to S̃ =ψ+φ. With this

normalisation, the non-linear equation (3.47) becomes

∇2S̃− C
6

[
(∇2S̃)2 − (

∂i∂ jS̃
)2

]
= κ̃ξ2

cδρ

3 M̃2
g

,(3.49)

where

(3.50) C ≡ κ̃ξ3
c

J2
c m2(ξc −1)(1+ κ̃ξ2

c)
.
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Thus the non-linear term dominates for C∇2S̃ ∼ O (1), revealing the order of the Vain-

shtein radius as

(3.51) RV ∼ (C rg)
1
3 ,

where rg corresponds to the Schwarzschild radius of a spherical body. This result is

similar to the one obtained in section 2 in (2.93). This result is consistent with a similar

calculation performed in Ref.[191].

3.6 Fixing Model Parameters

We are now ready to fix the model parameters without introducing the bare cosmological

constant term, which is equivalent to setting α0 = 0. On the other hand, we keep α1

non-zero. This means that the theory does not admit the Minkowski solution, which is

not a problem as we are interested in cosmological solutions.

We start by trading α3 for ξc using the definition of the de-Sitter fixed point (3.31)

and obtain α3 =α3(ξc,α1,α4, κ̃) as

α3 =
3(ξc −1)

(
ξc −2 − 1

κ̃ξc

)
+

(
4+ 1

κ̃ξc
−3ξc

)
α1 − (ξc −1)3

(
1
κ̃ξc

+1
)
α4

(ξc −1)2
[
ξc −4− 3

ξcκ̃

](3.52)

We then fix α4 matching the effective cosmological constant Λ in the approximate

Friedmann equation (3.33) to the observed value, which is equivalent to solving,

(3.53) ρm,g =
(

H0

m

)2
.

The solution for α4 =α4(ξc,α1, κ̃) is,

α4 = 6
(ξc −1)2 − 8α1

(ξc −1)3 +
(

H0

m

)2 3− κ̃ξc(ξc −4)
(ξc −1)4 .(3.54)

Finally, the last parameter is fixed by requiring a sensible Vainshtein radius which

ensures that the effects of modified gravity are hidden below a certain distance scale to

recover GR on solar system and galactic scales. The relation we will consider is,

(3.55) R3
V = r2

crg .

We introduce the parametrisation

(3.56) rc = b H−1
0 ,
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where b ∼O (0.1−1) [194, 195] and allows us to tune the size of the Vainshtein radius. b
can be seen as the effective coupling to matter as in [195], where the authors considered

a cubic galileon model with an O (1) coupling, and tested the theory using supermassive

black holes via the strong equivalence principle. Black holes are a good test of galileon

like theories as they have no hair, i.e. the coupling to matter induced by the presence of

an extra scalar mode should vanish. Therefore, black holes can provide strong constraints

on galileon theories. It was shown that O (1) couplings are disfavoured, so we consider an

O (1) coupling as the maximum. The equation which relates the model parameters to the

Vainshtein radius is (3.51)

(3.57) C = b2

H2
0

.

From this relation we then fix α1,

(3.58) α1 = ξc −1
2

±
√
κ̃ξc(ξc −1)

2b
√

1+ κ̃ξ2
c

H0

m
+O

(
H0

m

)2
,

where we made use of the fact that H0 ¿ m. Noting that the solution with the + sign

leads to a negative W (defined in Eq.(3.21)), we will choose the − sign solution in the

following. Moreover, the solution only exists for ξc > 1.

After this procedure, we have reduced the number of free parameters down to two: ξc

and κ̃. We now check whether there are any inconsistencies in the background equations

of motion. Expanding the left hand side of Eq.(3.23) around the attractor, we have

dρ̂m

dξ

∣∣∣
ξ=ξc

(ξ−ξc)+ d2ρ̂m

dξ2

∣∣∣
ξ=ξc

(ξ−ξc)2 +O (ξ−ξc)3 =− ρ

m2M2
g

.(3.59)

In the limit H0 ¿ m, the coefficients of the linear and quadratic terms are,

dρ̂m

dξ

∣∣∣∣
ξ=ξc

=
3

√
1+ κ̃ξ2

c

b
√
κ̃ξc(ξc −1)

H0

m
+O

(
H0

m

)2
,

d2ρ̂m

dξ2

∣∣∣∣
ξ=ξc

= 3(1+ κ̃ξ2
c)

κ̃ξc(ξc −1)
+O

(
H0

m

)
.(3.60)

In Section 3.2, we used the linear term to obtain the approximate Friedmann equation

(3.33). However, we see that the first derivative is suppressed by H0/m, while the second

derivative term is manifestly positive. As a result, when the quadratic term dominates,

there is no real solution to this equation. This observation allows us to determine the

parameter range which grants a physical evolution. The linear term is dominant if

(3.61) |ξ−ξc|. 1
b

H0

m
,
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in which case, the solution to (3.59) behaves as

(3.62) |ξ−ξc| ∼ b
(

H0

m

)−1 ρ

m2M2
g

.

Using the condition (3.61), the above relation yields an upper bound on b;

b < H0Mgp
ρ

.(3.63)

Since the matter density today is of order of H2
0M2

g, we use ρ ∼ H2
0M2

g/a3, giving

b < a3/2 .(3.64)

Therefore, the solution exists for

(3.65) a > ain = b3/2 .

Turning this relation around, given a parameter b, the cosmological description can go

as far back as ain, before which no physical evolution exists. Although we set α0 = 0 in

order not to introduce a bare cosmological constant, we can check that this conclusion

holds even if α0 6= 0.

As an example, we impose that we wish to describe the evolution of the scale factor

up from the last scattering surface onward. Therefore, we set ain = aCMB = 10−3. In

order to have the low energy limit (3.30) be valid at the time of CMB, the minimum

mass parameter allowed is m = HCMB, where HCMB is the Hubble parameter at the last

scattering surface. From Eq. (3.65), this initial value of the scale factor corresponds to

a value of b = 10−9/2. In order to check this estimate, we compared the exact numerical

solution of Eq.(3.23) to the linear approximation. The comparison is summarised in

figure 3.1. The exact solution only appears around a ∼ 10−3, after which the value of ξ

becomes closer to the de Sitter attractor value ξc.

We close this Section with a discussion of the effect on the large scale structure.

From Eq. (3.42) we can determine the consequences of the several tunings: in order to

have an observable effect, the quantity W has to be comparable to the k2 contribution.

The function W can be interpreted as the effective mass of the gravity perturbations,

and behaves as W ∼ m2J. It encodes the information about the scale at which the

modifications to gravity appear. Using the approximate expression,

W ∼ m2
[(

1
b

H0

m

)
+O

(
H0

m

)2]
,(3.66)
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Figure 3.1: The evolution of 1−ξ/ξc with the scale factor. The dashed green line shows
the linear approximation (3.32) while the solid red line corresponds to the numerical
solution obtained by solving the exact equation (3.23). The Vainshtein radius tuning
parameter, defined in Eq.(3.56), is b = 10−9/2, while the other parameters are set to κ̃= 1,
ξc = 8.

we can estimate its value, using m ∼ HCMB ∼ 109/2H0,

(3.67) W ∼ 1(
103/2Mpc

) (
103Mpc

H−1
0

)2

,

which implies that the effect of the two-metric interaction appears only at scales smaller

than ∼ 0.1Mpc where linear perturbation theory is no longer applicable.

3.7 Conclusions

In this chapter we have presented an analysis of the linear and non-linear perturbations

in bigravity, where non-derivative two-metric coupling is introduced as in [54] so as not

to generate the Boulware-Deser ghost. We considered a perfect fluid with equation of

state P = 0 coupled to the g-metric and studied metric perturbations around FLRW,

whilst adopting the healthy branch of solution with H = ξH f . We then adopted the low

energy limit of the theory as it was thought this model could support a healthy cosmology.

Poisson’s equation was derived at the linear level in perturbations and we identified the

modification to the Poisson’s equation due to the extra degrees of freedom present from

70



3.7. CONCLUSIONS

the massive graviton. Furthermore, we studied perturbations going beyond linear order

and identified the Vainshtein radius, below which the derivative self-interactions of the

scalar screen the effect of the fifth force and conspire to reproduce GR on local scales.

We then looked at the effect of fixing three of the model parameters on the background

cosmology of the theory. We use the following requirements: ensuring the existence of

the late-time de-Sitter attractor, matching the effective cosmological constant in the

Friedmann equation to the value we observe and proposing we have a Vainshtein radius.

Bigravity in the low energy limit can admit a sensible cosmological solution, but this

comes with a cost of lowering the Vainsthein radius. With a value of b = 10−9/2, for which

the Vainshtein radius is given by R3
V = 10−9H−2

0 rg, we are able to describe the evolution

of the scale factor up until the last scattering surface at ain = 10−3. However, to satisfy

the observational constraints, we need to impose b =O (0.1−1), which results in a very

short window of the viable cosmological evolution.

The main conclusion of this chapter is that the stable bigravity model that is distin-

guishable from GR does not provide a reasonable description for the late time acceleration

of the universe. With this result, we have established that none of the exact cosmological

solutions to dRGT massive gravity/bigravity theory, where matter couples to a single

metric, admit a viable and testable dark energy model. However, there are two possi-

ble ways out from this no-go result for bigravity: (i) impose a hierarchy between the

two Planck scales, effectively decoupling the massive graviton from the matter sector,

thus making the model indistinguishable from GR [184], or (ii) invoke a Vainshtein-like

mechanism [189, 190] to screen the effect of the instability at early times.
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STABILITY OF GENERALISED MASSIVE GRAVITY

Introduction

As seen in the previous chapter, finding a stable cosmology in the framework

of massive gravity continues to be a challenge. In the case of bigravity, most

models are pathological or show no deviation away from GR so are not testable.

There are, however, other extensions to dRGT which do not add extra gravitational

degrees of freedom which have so far not been studied in detail. The Generalised Massive
Gravity (GMG) remains one of these theories. First introduced in [106], the authors

showed the stability of GMG in a decoupling limit with all 5 graviton modes propagating,

but the stability of the full theory was yet to be studied. In addition, it was shown the

theory admits self-accelerating and exact FLRW solutions as well as an active Vainshtein

mechanism. Whilst our results in this chapter qualitatively match [106], how to perform

a formal quantitative comparison is unclear, but we stress that in this chapter we make

no assumptions so our results hold in generality.

GMG modifies dRGT massive gravity without introducing any new gravitational

degrees of freedom, which is an advantage with respect to many other extensions of dRGT.

This is achieved by breaking the translation invariance in the field space by promoting

the mass parameters to functions of ηabφ
aφb, while preserving Lorentz invariance. One

might argue that by promoting constants to functions decreases the attractiveness of

the theory in terms of an Occam’s razor perspective, but we shall see that by minimally

modifying the original dRGT theory can lead to interesting phenemenology.
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CHAPTER 4. STABILITY OF GENERALISED MASSIVE GRAVITY

This construction preserves the dRGT tuning that removes the Boulware-Deser mode

[196]. In this chapter, we perform a full stability analysis with a k-essence fluid acting

as the matter field. We choose a k-essence field as it represents a simple choice for

analysing matter at the level of the action, but we stress that the results in this chapter

hold independently of the matter field considered. We derive the quadratic action for

the tensor, vector and scalar modes and derive stability conditions by requiring the

absence of ghosts and gradient instabilities. As gaining an analytic understanding of

extended theories of gravity can be challenging, we introduce the minimal theory of

generalised massive gravity. In the framework of this model, where we allow only one of

the mass functions to vary, we investigate the stability for a self-accelerating cosmological

background. We conclude this chapter by identifying a parameter space in which the

theory is pathology-free and in which the effective energy density arising from the mass

term approximates a cosmological constant. The work in this chapter is based on the

publication [197].

4.1 The Set-Up

In this section we outline the GMG theory and discuss the field configuration for cosmo-

logical solutions.

The gravitational action consists of the Einstein-Hilbert term and the generalised

mass terms

(4.1) S =
M2

p

2

∫
d4x

p−g

[
R+2m2

4∑
n=0

αn(φaφa) Un [K ]

]
+Smatter .

In the case of GMG, fµν is non-dynamical and is written in terms of the four Stückelberg

scalar fields,

(4.2) fµν ≡ ηab∂µφ
a∂νφ

b ,

with (a,b = 0,1,2,3). In standard dRGT massive gravity φa are the Stückelberg fields,

arising from the reintroduction of diffeomorphism invariance. However, if the translation

invariance in the field space is broken, the four fields can also appear in the Lorentz

invariant combination ηabφ
aφb; in GMG theory, the mass parameters αn are promoted

to functions of this combination [106].

For the matter sector we consider a k-essence field with action

(4.3) Smatter =
∫

d4x
p−g P(X ),
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with

(4.4) X ≡−gµν∂µϕ∂νϕ .

In order to achieve an isotropic and homogeneous universe for both the physical and

fiducial metric, we need fµν to have the same FLRW symmetries as gµν in the same

coordinate system, since they are coupled via g−1 f . Moreover, we also need to ensure that

φaφa stays uniform. For a Minkowski field space metric the unique field configuration

that is compatible with these symmetries is

φ0 = f (t)
√

1+κ(x2 + y2 + z2) ,

φ1 = f (t)
p
κ x ,

φ2 = f (t)
p
κ y ,

φ3 = f (t)
p
κ z .(4.5)

where κ= |K | = −K is the absolute value of the negative constant curvature of the spatial

slice. With this definition, the fiducial metric has the same form as an open FLRW

solution [114]

(4.6) fµνdxµdxν =− ḟ (t)2dt2 +κ f (t)2Ωi jdxidx j ,

where an overdot denotes time derivative and Ωi j is the metric of the constant time

hypersurfaces with constant negative curvature

(4.7) Ωi jdxidx j = dx2 +d y2 +dz2 − κ(xdx+ yd y+ zdz)2

1+κ(x2 + y2 + z2)
.

Our metric ansatz is then an open FLRW

gµνdxµdxν =−dt2 +a(t)2Ωi jdxidx j .(4.8)

The background field value is chosen to be uniform, i.e. ϕ = ϕ(t). In this case, the

k-essence can be interpreted as an irrotational fluid with pressure P(ϕ̇2), while the

energy density ρ and sound speed cs of the analogue fluid is given by

(4.9) ρ = 2P ′(ϕ̇2)ϕ̇2 −P(ϕ̇2), c2
s =

P ′(ϕ̇2)
2P ′′(ϕ̇2)ϕ̇2 +P ′(ϕ̇2)

where a prime denotes differentiation with respect to the argument.
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4.2 Background Dynamics

We now can use the field configurations outlined in the previous section to determine the

background dynamics of cosmology. We take the approach of calculating the background

action to obtain the background equations of motion. The total action in the mini-

superspace approximation is

(4.10)

S =
M2

pV

2

∫
N dta3

[
−6κ

a2 − 6 ȧ2

a2 N2 +2m2 (α0U0 +α1U1 +α2U2 +α3U3 +α4U4)+ 2a3

M2
p

P(ϕ̇2)

]
,

where αn =αn[− f (t)2] and

U0 = 1 ,

U1 = 4− 3
p
κ f

a
− ḟ

N
,

U2 = 3
(
1−

p
κ f
a

)(
2−

p
κ f
a

− ḟ
N

)
,

U3 =
(
1−

p
κ f
a

)2 (
4−

p
κ f
a

− 3 ḟ
N

)
,

U4 =
(
1−

p
κ f
a

)3 (
1− ḟ

N

)
.(4.11)

Varying the action (4.10) with respect to N, a and ϕ, then fixing the cosmological time

N = 1, we get the following equations of motion [106]

3
(
H2 − κ

a2

)
= m2L+ ρ

M2
p

,

2
(
Ḣ+ κ

a2

)
= m2J(r−1)ξ− ρ+P

M2
p

,

ρ̇ =−3H (ρ+P) ,(4.12)

where for convenience, we defined1

(4.13) H ≡ ȧ
a

, ξ≡
p
κ f
a

, r ≡ a ḟp
κ f

.

We also defined two combinations of the mass parameters

L ≡−α0 + (3ξ−4)α1 −3(ξ−1)(ξ−2)α2 + (ξ−1)2(ξ−4)α3 + (ξ−1)3α4 ,

J ≡α1 + (3−2ξ)α2 + (ξ−1)(ξ−3)α3 + (ξ−1)2α4 ,(4.14)

1Note that r defined here is the equivalent of c̃ in the previous chapter.
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where from the background equations, we infer that m2M2
pL2 is the effective energy

density coming from the mass term while m2M2
p J(1− r)ξ corresponds to the sum of the

effective density and pressure. In standard dRGT, the quantity J is forced to vanish,

yielding a constant ξ solution. As a result, the contribution to the Friedmann equation

m2L becomes an effective cosmological constant. In contrast, in the GMG theory, this is

no longer the case. By varying the action (4.10) with respect to f , or equivalently using

the contracted Bianchi identities, we obtain the Stückelberg constraint equation

(4.15) 3H J (r−1)ξ− L̇ = 0 .

Using the definition of L from Eq. (4.14), we can also rewrite this equation in the

following form

(4.16)

3
(
H−

p
κ

a

)
J =−2aξp

κ

[−α′
0 + (3ξ−4)α′

1 −3(ξ−1)(ξ−2)α′
2 + (ξ−1)2(ξ−4)α′

3 + (ξ−1)3α′
4
]

.

In this form, the dRGT limit can be trivially taken by α′
n ≡ ∂αn/∂(− f 2) → 0. In this

constant mass limit, there are two branches: the normal branch with H =p
κa which

prevents expansion, while J = 0 branch gives rise to a self-acceleration. The generalised

mass term thus prevents the branching by breaking the factorised form of the constraint

equation. Although this means that generically the mass term is no longer an effective

cosmological constant, this also solves the problem of infinite strong coupling of scalar

perturbations, whose kinetic terms are proportional to J in standard dRGT [119].

4.3 Cosmological Perturbations

In this section we derive the stability conditions by calculating the quadratic action

for the tensors, vectors and scalars. To calculate the quadratic action we need to first

introduce perturbations to the physical metric, whilst working in the unitary gauge for

the f -metric which leaves it un-perturbed,

(4.17) gµνdxµdxν =−(1+2φ)dt2 + (∂iB+Bi)dt dxi +hi j,

with hi j decomposed as

(4.18) hi j = 2ψΩi j +
(
D i D j − 1

3
Ωi jDlD l

)
E+ 1

2
(
D iE j +D jE i

)+γi j ,

2Note here that L is the equivalent of ρm,g in chapter 3.
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D i is the covariant derivative associated with the 3-metricΩi j and the spatial indicies are

raised by the inverse metric Ωi j. The vectors in the above decomposition are divergence-

free D iE i = D iBi = 0, while the tensor is divergence and trace-free D iγi j =Ωi jγi j = 0.

We also introduce matter perturbations through

(4.19) ϕ=ϕ0 +δϕ ,

with quantities in the fluid analogue P, ρ and cs all defined with respect to the back-

ground field. For the four scalar fields φa we exploit the diffeomorphism invariance to fix

their perturbations to zero, depleting all the gauge freedom in the system.

In this decomposition, the scalars (φ, B, ψ, E, δϕ), vectors (E i, Bi) and tensor (γi j)

perturbations decouple at quadratic order in the action. We will therefore study them

separately in the following.

4.3.1 Tensors

Starting with the tensor sector, we expand (4.1) to second order in tensor perturbations,

we find

(4.20) S(2)
T =

M2
p

8

∫
d4x

p
Ω a3

[
γ̇i jγ̇

i j + 1
a2 γi jDlD lγi j +

(
2κ
a2 −m2Γ

)
γi jγ

i j
]

.

We expand γi j in terms of tensor harmonics (see e.g. [74])

(4.21) γi j =
∫

d3kγ|~k|Yi j(~k,~x) ,

with DlD lYi j =−k2Yi j and D iYi j =Ωi jYi j = 0. Using the orthornormality condition,

(4.22)
∫

d3x
p
ΩYi j(~k,~x)Y i j(~k′,~x)= δ(3)(~k−~k′),

the action can be written as,

(4.23) S(2)
T =

M2
p

8

∫
dtd3k

∫
d3k′

[
γ̇|~k|γ̇|~k′|−

k2

a2γ|~k|γ|~k′|+
(
2κ
a2 −m2Γ

)
γ|~k|γ|~k′|

]
δ(3)(~k−~k′).

Integrating over~k′ allows us to reduce the above action to

(4.24) S(2)
T =

M2
p

8

∫
dtd3k a3

[
|γ̇|2 −ω2

T |γ|2
]

,

where the tensor dispersion relation is

(4.25) ω2
T =

(
k2

a2 − 2κ
a2 +m2 Γ

)
.
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The mass of the tensor mode m
p
Γ is given in terms of the mass functions as

(4.26)

Γ≡ ξ[
α1 + (3−2ξ)α2 + (ξ−1)(ξ−3)α3 + (ξ−1)2α4

]+ (r−1)ξ2 [−α2 + (ξ−2)α3 + (ξ−1)α4] .

This expression agrees with the standard dRGT tensor mass with constant αn [119].

From (4.24) it is clear the tensors show no ghost or gradient instabilities since their

kinetic term directly follows from a standard Einstein-Hilbert action. However one can

place restrictions on Γ requiring that Γ> 0 to avoid a tachyonic instability. On the other

hand, for |m2Γ| ∼ O (H2
0), the instability generically takes the age of the universe to

develop, thus an imaginary mass is not necessarily a cause for concern.

4.3.2 Vectors

We next calculate the action (4.1) at quadratic order in vector modes. The shift vector Bi

is non-dynamical so it can be integrated out by solving its algebraic equation of motion

(4.27) BV = a(1+ r)(k2 +2κ)
2

[
(k2 +2κ)(r+1)+2m2a2J ξ

] ĖV ,

where we expanded the perturbations in terms of vector harmonics

(4.28) Q i =
∫

d3kQV ,|~k|Yi(~k,~x) ,

with D iD iY j =−k2 Y j and D iYi = 0. Upon substituting (4.27) into the action, only one

propagating vector remains,

(4.29) S(2)
V =

M2
p

8

∫
d3k dt a3

[
T |ĖV |2 − k2 +2κ

2
m2 Γ |EV |2

]
,

where the kinetic term is

(4.30) T =
(

2
k2 +2κ

+ 1+ r
m2a2J ξ

)−1
.

For avoiding ghost instability, the following condition must hold at sub-horizon scales

(4.31) T
∣∣∣
kÀa H

= m2 a2 J ξ
1+ r

> 0 .

The sound speed for the vector modes can be calculated by taking the ratio of the two

terms in Eq.(4.29) in the sub-horizon limit

(4.32) c2
V = m2a2Γ

2T

∣∣∣
kÀa H

= (1+ r)Γ
2 J X

.

The squared-sound speeds should be positive to avoid gradient instability c2
V ≥ 0.
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4.3.3 Scalars

We now expand the action (4.1) up to quadratic order in scalar perturbations. Unfortu-

nately, the full calculation involves expressions not suitable for presentation as they are

very lengthy and non-intuitive. However, we describe the procedure here and show some

intermediate results.

At this stage we have an action with five degrees of freedom, (φ,ψ,B,E,δϕ). However,

the lapse and shift perturbations appear in the action without any time derivatives and

can be integrated out. By first expanding all perturbations in terms of scalar harmonics

(4.33) Q =
∫

d3kQS,|~k|Y (~k,~x) ,

with D iD iY =−k2Y , we solve the equation of motion for the shift B,

(4.34) B =
a (1+ r)

[
3δϕ(ρ+P)+M2

pϕ̇
[
(k2 +3κ)Ė+6(ψ̇−Hφ)

]]
3 M2

p
[
2(r+1)κ+m2a2J ξ

]
ϕ̇

.

where we omitted the subscript S, |~k| and we will do so for all other perturbations in the

following. Upon substituting the solution for B back in the action, we then solve for the

lapse perturbation φ, which is,

φ=
M2

pc2
s
[
2κ(r+1)+m2a2Jξ

]
2 M2

pc2
s H2

[
2(k2 +3κ)(r+1)+3m2 a2 J ξ

]− [
2κ (r+1)+m2a2J ξ

]
(ρ+P)

×
{

2k2 H (1+ r)
3

[
2κ (1+ r)+m2a2J ξ

] [
3(ρ+P)

M2
pϕ̇

δϕ+ (k2 +3κ)Ė+ 3
k2

(
2(k2 +3κ)+ 3m2a2J ξ

1+ r

)
ψ̇

]

+ k2(k2 +3κ)
3a2 E+ 2(k2 +3κ)+3m2a2J ξ

a2 ψ− (ρ+P)
M2

pc2
sϕ̇

δϕ̇

}
.

(4.35)

With the solution (4.35) we reduce the quadratic action to a system with 3 degrees of

freedom (ψ,E,δϕ). Formally, the action is the following;

(4.36) S(2)
S =

M2
p

2

∫
d3k dt a3

(
˙̃Ψ† K̃ ˙̃Ψ+ 1

2
˙̃Ψ† G̃ Ψ̃+ 1

2
Ψ̃† G̃ T ˙̃Ψ−Ψ̃† M̃ Ψ̃

)
,

where Ψ̃≡ (ψ,E,δϕ) is the field array and where K̃ , G̃ and M̃ are the real 3×3 kinetic,

mixing and mass matrices respectively. The absence of the Boulware-Deser ghost requires

that we can integrate out one more non-dynamical degree of freedom. Indeed, at this

stage detK̃ = 0, indicating that at least one combination of the fields has a vanishing

kinetic term. To explicitly see this we define the quantity Q

(4.37) Q ≡ψ+ k2(r+1)(k2 +3κ)
9m2a2J ξ+6(r+1)(k2 +3κ)

E−
(

H
ϕ̇

)
δϕ .
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When we remove δϕ in favour of Q, the kinetic part of the action becomes diagonal and

the non-dynamical nature of ψ becomes manifest. We identify ψ in this basis as the

would-be Boulware-Deser mode and integrate it out. Unfortunately, the solution is not

suitable to be presented here, but upon substitution into the action we obtain a system

with two dynamical fields in a basis Ψ= (Q,E), with the action formally

(4.38) S(2)
S =

M2
p

2

∫
d3k dt

(
Ψ̇† K Ψ̇+ 1

2
Ψ̇† GΨ+ 1

2
Ψ† G T Ψ̇−Ψ† MΨ

)
,

where K , G and M are now the 2×2 kinetic, mixing and mass matrices respectively in

the new basis, with K =K T , M =M T .

4.3.3.1 No-ghost Conditions

The conditions for the absence of ghosts can be obtained by studying the positivity of

the eigenvalues of the kinetic matrix K in the sub-horizon limit, which corresponds to

taking k →∞. The two eigenvalues are determined as

(4.39) e1 =K11 , e2 = det K

K11
.

The exact expressions are,

e1 =
[

M4
pc2

s H2

2(ρ+P)
−

(
4

[
2(k2 +3κ) (r+1)+3m2a2J ξ

]
M2

p
[
2κ (r+1)+m2 a2J ξ

] +B1

)−1]−1

,

e2 =
{ 3 M2

p

k2(k2 +3κ)
+

2 M2
p(r+1)

k2m2a2J ξ

+
4 M2

pr2

3m2a2

[
J ξ

[
−2

p
κ a

(
H−

p
κ

a

)
r+a2

(
−4H2 + r

(
ρ+P
M2

p
+m2J ξ

))]
+2a2H(2HΓ− J̇ ξ)

]−1 }−1

(4.40)

where

B1 ≡
4m2J2r2(r+1)ξ2 [

6κ+2(k2 +3κ)r+3m2a2J ξ2]2

M2
p
[
2κ (r+1)+m2a2J ξ

]
×

{
m2J2rξ2 [−2k2r3 −6κ(r−1)(1+ r)2 −3m2a2J(r2 −1)ξ

]
+H ξ

[
2κ (r+1)+m2a2J ξ

][
B2J−6(r+1)

(
−2HΓ

X
+ J̇

)]}−1

,

B2 ≡− 3 r (r+1)
H2

[
2
p
κ H
a

+ 4H2

r
− 2

[
3κ+ (k2 +3κ)r

]
3a2(1+ r)

− ρ+P
M2

p

]
.(4.41)
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In the dRGT limit J, J̇ → 0, the second eigenvalue vanishes, in agreement with [119].

However, with the varying mass functions, the strong coupling problem is resolved.

We now expand the eigenvalues in the sub-horizon limit, obtaining

e1 = 2(ρ+P)
M2

pc2
s H2

+O
(
k−2) ,

e2 = 3m2a4H
2 M2

pr2

[
r J ξ
2H

(
2κ
a2 − 2

p
κ H
a

− 4H2

r
+m2J ξ+ ρ+P

M2
p

)
+2HΓ− J̇ X

]
+O

(
k−2) .

(4.42)

To avoid ghost instabilities, we need e1 > 0 and e2 > 0. The first no-ghost condition is

simply the null-energy condition, so we identify the first eigenmode as the matter sector.

The second one is therefore the scalar graviton mode. However, from the subhorizon

expression for e2 we see that it no longer vanishes in the dRGT limit J , J̇ → 0. The

reason for this apparent discrepancy is that the sub-horizon limit does not commute with

the dRGT limit.

This peculiar behaviour can be understood by inspecting the terms in e2. In the second

of Eq.(4.40), there are some terms that vanish in any order of the limits. Neglecting

these, we are left with two terms that dominate according to which limit is applied first

(4.43) e2 ' 1
M2

p

(
2(r+1)

k2m2a2J ξ
+ r2

3m2a4H2Γ

)−1

.

In the above, the first term dominates in the dRGT limit while the second term dominates

in the large momentum limit. In order to control which limit is stronger, we define the

quantity

(4.44) E ≡ k2J
a2H2 .

The case E ¿ 1 then corresponds applying the dRGT limit first, while E À 1 corresponds

to applying the sub-horizon limit first. To make this argument clearer, we rewrite this

new parameter in terms of the relevant length scales in the problem

(4.45) E = lH lGMG

λ2 ,

where λ= a/k is the physical wavelength, the horizon length is lH ≡ 1/H, while we define

the length scale associated with varying mass parameters as lGMG ≡ J/H. We summarise

the possible values of the wavelength with respect to these scales in Figure 4.1. For a

small departure from constant mass dRGT, the two characteristic lengths obey lH > lGMG .
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For modes with wavelengths λ¿ lGMG , the variation of the mass parameters is non-

negligible, thus this case corresponds to the E À 1 limit. For lGMG ¿λ¿ lH , the modes

are sub-horizon, but the departure from standard dRGT is negligible, corresponding to

E ¿ 1. One can see that E must always be less than one in this case as if E > 1 then

(4.46) lH lGMG >λ2 =⇒ λ<
p

J /H,

which is not allowed as in the dRGT limit J → 0.

Figure 4.1: Schematic representation of different length scales. In this diagram, we
assumed that lGMG < lH , which corresponds to small departures from standard dRGT.

4.3.3.2 Sound Speeds

Instead of obtaining the full dispersion relations of eigenmodes, we will make use of the

fact that the frequency is dominated by the gradient term at high momenta. We first

vary the action (4.38) with respect to the fields Ψ†, what results is the following equation

of motion

(4.47) K Ψ̈+
(
G −G T

2
+3HK +K̇

)
Ψ̇+

(
Ġ

2
+ 3H G

2
+M

)
Ψ= 0.

For a monochromatic wave of the form Ψ∝ e−i
∫
ωdt, and in the sub-horizon limit we

have |ω̇|¿ω2, so equation (4.47) can be converted into an eigenvalue equation to solve ω

(4.48) det
[
−ω2K − iω

(
G −G T

2
+3HK +K̇

)
+

(
Ġ

2
+ 3HG

2
+M

)]
= 0 .

Since deep in the horizon, frequency is ω= CS(k/a), we solve the above equation for the

squared sound speed C2
S. The equation is quadratic in C2

S. The first solution coincides

with the sound speed of the k-essence field

(4.49) C2
S,1 = c2

s .
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The second one provides the sound speed of the scalar graviton C2
S,2,

C2
S =

(
18M2

pH3L̇
[
6M2

pH(r−1)2κL̇+a2(36M2
pH4(r−1)2Γ−18M2

pH3(r−1)L̇ ,

+3H(r−1)2(ρX +PX )L̇+m2M2
p(2r−1)L̇2 +6M2

pH2(L̇ṙ− (r−1)L̈)
])−1

×{
−36M4

pH2(r−1)2κ2L̇2 −6M2
pa2HκL̇

[
36M2

pH4(r−1)2(r(r−3)−2)Γ)+18M2
pH3(r2 + r−2)L̇

−6H(r−1)2(ρX +PX )L̇+m2M2
p(r−1)(3r−2)L̇2 +6M2

pH2((r−3)L̇ṙ+2(r−1)L̈)
]+a4

(
1296M4

pH8(r−1)3(r+1)Γ2 −216M4
pH7(r−1)2(6+ r)ΓL̇+3m2M2

pH(r−1)(3r−2)(ρX +PX )L̇3

+m4M4
p(r(3−2r)−1)L̇4108M4

pH6(r−1)
[
(3−2r)L̇2 +2L̇((3+ r)Γṙ+ r(r−1)Γ̇)−4(r2 −1)ΓL̈

]
−M2

pH3L̇
[
m2M2

p(r(5+2r)−6)L̇2 −3(r−3)(ρX +PX )L̇ṙ−6(r−1)(ρX +PX )L̈
]+36M2

pH5L̇
[

−3PX (r−1)2(2+3r)Γ−3(r−1)2(2+3r)ΓρX +M2
p((5r−9)L̇ṙ−2(r−3)(r−1)L̈)

]−3H2L̇2[
3P2

X (r−1)2 +6PX (r−1)2ρX +3(r−1)2ρ2
X +2m2M4

p
(
(r−3)L̇ṙ− (r−2)(r−1)L̈

)]
+18M2

pH4
[
PX (r−1)(6+ (4c2

s +3)r)L̇2 +2m2M2
p(r−1)(r(5r−1)−2)ΓL̇2 −6ρX L̇2 +2rρX L̇2

−3c2
s rρX L̇2 +4r2ρX L̇2 +3c2

s r2ρX L̇2 −4M2
pL̇2 ṙ2 −6M2

pL̇ṙL̈+M2
prL̇ṙL̈−2M2

pL̈2 +2M2
pr2L̈2

+2M2
prL̇2 r̈−2M2

p(r−1)rL̇L(3)
])

.
}

(4.50)

Both of the squared-sound speeds should be positive to avoid gradient instability. In

order to see how the stability conditions in this section can be satisfied, in the next section

we consider a minimal model of GMG, which allows us to gain an analytic understanding

of the system.

Before discussing the minimal model, we briefly discuss the advantages of GMG with

respect to pure dRGT massive gravity. Inspecting the form of the vector kinetic term

4.31 and the scalar kinetic term 4.40, and taking the dRGT limit J → 0, we see that the

kinetic terms vanish. This is the problem with cosmologies in dRGT massive gravity.

However, clearly from the form of the Stuckelberg constraint equation in GMG, the same

problem is not manifested and the kinetic terms remain finite.

4.4 Minimal Generalised Massive Gravity

In this section we consider small departures of constant mass parameters by allowing

only one of the αn parameters to vary. This allows us to solve the Stückelberg constraint
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(4.15) and evaluate the stability conditions in a concrete framework. In this minimal

setup, the free αn(φaφa) functions in the action (4.1) are

α0(φaφa)=α1(φaφa)= 0 ,

α2(φaφa)= 1+m2α′
2φaφ

a ,

α3(φaφa)=α3 ,

α4(φaφa)=α4 .

(4.51)

For the background configuration (4.5), we have (φaφa) = − f (t)2. The above choice is

basically the constant mass dRGT theory, with the only difference that we allowed α2

to vary with the Stückelberg fields. The variation is assumed to be small α′
2 ¿ 1, so we

expect the solutions to be close to dRGT. In this case, the contribution from mass term to

the Friedmann equation m2L should be approximately constant, and if it is responsible

for late time acceleration, positive. The conditions we impose are the positivity of the

effective cosmological constant, the squared-tensor mass, vector and scalar gradient and

kinetic terms.

We expand all background quantities for small α′
2,

ξ=ξ0 +α′
2ξ1 +O

(
α′

2
)2 ,

J =J0 +α′
2J1 +O

(
α′

2
)2 .

...(4.52)

At leading order, i.e. O (α′
2)0, all background quantities reduce to standard (constant

mass) dRGT expressions. The Stückelberg equation (4.15) at this order is simply J0 = 0,

solved by [119]

(4.53) ξ0± =
1+2α3 +α4 ±

√
1+α3 +α2

3 −α4

α3 +α4
.

Moreover, since ξ̇= (−H+p
κ r/a)ξ, we can use that ξ̇0 = 0 to determine

(4.54) r0 = a0H0p
κ

.

To determine which solution of ξ0 we need to use, we can use the squared tensor mass in

dRGT [119],

(4.55) Γ0 =±
(

a0H0p
κ

−1
)
ξ2

0±
√

1+α3 +α2
3 −α4 .
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Provided that curvature never dominates the expansion, the tensor mass is real only

for the solution ξ0+, which in turn leads to a positive vector gradient term (4.32). We

therefore consider this solution in the remainder of this section.

We now discuss the parameter region where we have a real solution that leads to a

positive cosmological constant. By definition, ξ0 is a positive quantity, so the parameter

region where the solution ξ0+ in (4.53) is positive corresponds to

(4.56)
(
α3 <−1∧α4 <−3(1+α3)

)
∨

(
α3 >−1∧α4 >−α3

)
.

On the other hand the contribution to the Friedmann equation from the mass term is

then an effective cosmological constant

L0 = (ξ0 −1)
[
6+4α3 +α4 − (3+5α3 +2α4)ξ0 + (α3 +α4)ξ2

0
]

,

=− 1
(α3 +α4)2

[
(1+α3)(2+α3 +2α2

3 −3α4)+2(1+α3 +α2
3 −α4)3/2

]
.(4.57)

In order to have a real and positive cosmological constant, we need to satisfy these

conditions:

(4.58) α3 >−1 ∧ 3+2α3 +3α2
3

4
<α4 < 1+α3 +α2

3 .

The O (α′
2) terms are relevant only in the stability conditions, and they are exclu-

sively introduced by the function J, whose O (α′
2)0 contribution vanishes. We can solve

background equations (4.12),(4.15) for J1 to obtain

J1 =
m2 a2

0

(α3 +α4)3
(p
κa0H0 −κ

)[2(1+α3)
(
3α2

3 +α3(5−2α4)− (α4 −1)(α4 +4)
)

+2
√

1+α3 +α2
3 −α4

(
4+α3(7+3α3)−α4 −2α3α4 −α2

4
)]

.

(4.59)

This is the main quantity needed when calculating the kinetic terms of perturbations. For

the region (4.58), where cosmological constant and tensor mass is positive, the positivity

of J requires

(4.60) α′
2(α3 −α4 +1)> 0 .

We now discuss the conditions for avoiding ghost and gradient instability in the

vector and scalar perturbations.

Schematically the action for the vector modes takes the form,

(4.61) S(2)
V =

∫
d3kdta3 TV

(
|V̇ |2 − c2

V k2

a2 |V |2 + . . .

)
,
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where ellipsis denotes other terms in the action, e.g. mass. For the vector modes, both

limits of the parameter E give the same result for the sub-horizon expressions, with

(4.62) TV → m2a2
0 J1 ξ0α

′
2

1+ r0
, c2

V → (1+ r0)Γ0

2 J1 ξ0α
′
2

.

Since r0 given by (4.54) is positive, and we chose the branch where Γ0 > 0, avoiding both

ghost and gradient instability requires

(4.63) J1α
′
2 > 0 ,

which, in the regime where we have positive cosmological constant, corresponds to the

range (4.60).

For the scalar mode that corresponds to the matter field, there is no ambiguity; as

long as the equivalent fluid obeys the null energy condition, and has a real propagation

speed, it is stable. For the scalar graviton, the action is formally

(4.64) S(2)
S =

∫
d3kdta3 TS

(
|Ṡ|2 − c2

Sk2

a2 |S|2 + . . .

)
.

As discussed in the previous section, the sub-horizon limit for TS depends also on the

limit for the parameter E . We find

(4.65) TS →



3m2a4
0 H2

0Γ0

M2
pr2

0
, E À 1

m2a2
0k2ξ0J1α

′
2

2 M2
p(r0 +1)

, E ¿ 1

.

On the other hand, the sound speed for the scalar graviton has the same value when E

is send to the either of the two extremes,

(4.66) c2
S → 2(1+ r0)Γ0

3 J1 ξ0α
′
2

= 4
3

c2
V

Regardless of the E limit, scalar kinetic term and squared-sound speed are positive in

the region where cosmological constant is positive, tensor mass is real (Γ0 > 0) and the

vector mode stability condition (4.63) is satisfied.

In Fig.4.2, we summarise all the conditions obtained in this section for the minimal

model. We show the region of the parameter space that has positive cosmological constant

and stable perturbations in Fig.4.2. Depending on the sign of α′
2 parameter, the allowed

region is either constrained in a finite area (α′
2 > 0) or is open (α′

2 < 0).
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Figure 4.2: Allowed regions for α′
2 > 0 (left panel) and α′

2 < 0 (right panel). The blue
region is ξ0 > 0 (bounded by the solid lines), orange region is α′

2J1 > 0 (bounded with the
solid and the dotted lines), the green region is where both conditions are satisfied. We
also mark the positive cosmological constant as the shaded area (region between the
solid and dashed lines). The region where all conditions are satisfied is highlighted in
yellow.

4.5 Conclusions

In this chapter we have studied the cosmological perturbations of Generalised Massive

Gravity with a k-essence fluid as the matter sector. We calculated the quadratic action

for the tensor, vector and scalar sectors and identified the stability conditions. We found

that, unlike in constant mass dRGT massive gravity, the kinetic terms for the vector and

scalar gravitons are non-vanishing, and the background can be free from pathologies.

As an example, we introduced a minimal version of the theory where only one mass

function is allowed to vary slowly, which can be considered as a small variation from

standard dRGT. In this model, the contribution to the Friedmann equation from the

mass term is approximately a constant, which can be positive. In other words, the cos-

mology approximates GR with a cosmological constant. On the other hand, the effective

cosmological constant continues to vary, and this variation allows the background to be

perturbatively stable in a region of the parameter space, unlike constant mass dRGT

theory. The tensor graviton has a time dependent mass and propagates at the speed
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of light, while vector and scalar perturbations generically propagate at superluminal

speeds. Superluminality is not generically a problem. However if the scalar graviton

was sub-luminal, there would be a decay channel from photons to scalar gravitons [198]

which has been heavily constrained by observations.

Our results in this chapter qualitatively match the results in [106], however quanta-

tively the comparison is unclear when taking the dRGT limit. For instance, taking the

dRGT limit on the vector action (4.29) results in a vanishing kinetic term, signalling

the infinite strong coupling problem in dRGT cosmologies. However, taking the dRGT

limit on the vector action in [106], the kinetic terms are non-vanishing. One possibility

is that the apparent discrepancy is due to their choice of Fermi normal coordinates and

the decoupling limit potentially probing a different background than the one considered

here.

The cosmology of Generalised Massive Gravity has advantages over similar exten-

sions outlined at the end of chapter 2. In addition to being an extension that has the

same number of degrees of freedom as standard dRGT, the strong coupling problem can

be tamed, unlike some other extensions. For instance, the problem of vanishing kinetic

terms have been addressed in a similar manner in the mass-varying massive gravity

[132], where the mass parameters are promoted to functions of a new dynamical field.

On the other hand, in order to achieve self-acceleration the mass functions need to vary

slowly, making the scalar and vector modes strongly coupled. In contrast, in this chapter,

we showed that the scalar perturbations in the GMG theory effectively end up with finite

kinetic terms provided that one considers modes that are sub-horizon and below the

characteristic GMG length scale. This is an indication that the strong coupling problem

of the dRGT theory becomes milder even with a slight variation of the model parameters.

As we have established a simple model of a stable cosmology with (approximate)

self-acceleration, the next chapter presents a comprehensive study of the background

cosmology and linear perturbations. To date, this is the only current Lorentz invariant

model of massive gravity with 5 degrees of freedom that admits a stable cosmology.
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5
PHENOMENOLOGY OF GENERALISED MASSIVE

GRAVITY

Introduction

In this section we study in detail the background cosmology and linear perturbations

of the GMG theory. As was shown in the previous chapter, we found that a stable

cosmology can be accommodated in the GMG framework. In this chapter, we build

upon the analysis in chapter 4 and study the full background evolution, identifying

the equation of state of dark energy and comparing the expansion history to that of

ΛCDM. We then study linear perturbations at the level of the equations of motion, and

derive the modified Poisson’s equation sourced by the extra scalar mode. Due to the

modified Poisson’s equation, the effective Newton’s constant is altered which results in a

modification to the growth rate of structure, so we compare the growth rate in GMG to

ΛCDM. Finally, we derive the equation of motion for the tensor modes and discuss their

evolution. This chapter is based on published results in [199].

5.1 Background Set Up

We begin the study of the background by considering the background in chapter 4, except

this time using the simplest matter source, a pressureless perfect fluid described by the
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energy momentum tensor,

(5.1) Tµν = ρuµuν.

As mentioned in chapter 4, the results are independent of the matter field, and a

pressureless perfect is the simplest choice for working at the level of the equations of

motion. The background equations of motion take the same form as in (4.12). We then

adopt the minimal model as studied in Chapter 4, which is outlined in (4.51) and derive

the background Friedmann and Stückelberg equations, which take the following form:

3
(
H2 − κ

a2

)
−m2 [−3(ξ−2)(ξ−1)(1−m2 f 2α′

2)+α3(ξ−1)2(ξ−4)+α4(ξ−1)3]= ρ

M2
p

,

3
(
H−

p
κ

a

)[
(3−2ξ)(1−m2 f 2α′

2)+α3(ξ−3)(ξ−1)+α4(ξ−1)2]= 6m2 f (ξ−2)(ξ−1)α′
2 .

(5.2)

In order to investigate the mass term’s effective equation of state and the Hubble rate,

we first introduce dimensionless variables and re-write every dimensionful quantity in

units of H0 and Mp

m → H0µ ,

H → H0h ,

κ→ a2
0H2

0Ωκ0 ,

α′
2 →

q
µ2 ,

ρ→
3a3

0H2
0M2

pΩm0

a3 .(5.3)

With this choice the parameter q now controls how far away from dRGT we are, where

q → 0 is the dRGT limit. We also use Eq.(4.13) to replace f (t) with f (t)→ aξp
κ

. With these

replacements, (5.2) becomes:

3

(
h2 − a2

0Ωκ0

a2

)
−µ2

[
3(ξ−2)(ξ−1)(qa2ξ2 −a2

0Ωκ0)

a2
0Ωκ0

+α3(ξ−1)2(ξ−4)+α4(ξ−1)3

]
= 3a3

0Ωm0

a3 ,

(5.4)

3

(
h−

√
Ωκ0 a0

a

)[
(3−2ξ)

(
1− q a2ξ2

a2
0Ωκ0

)
+α3(ξ−3)(ξ−1)+α4(ξ−1)2

]
= 6qa(ξ−2)(ξ−1)ξ

a0
√
Ωκ0

.

(5.5)

The full evolution for h and ξ in terms of a can be determined by solving the above

equations.
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For numerical solutions, we will fix the following parameters 1:

(5.6) Ωκ0 = 3×10−3, Ωm0 = 0.3, α3 = 0, α4 = 0.8 ,

where the specific choice of αn parameters correspond to a simple choice within the

allowed parameter space for stable cosmologies, depicted in Fig.4.2, as outlined in

chapter 4. We stress that in this chapter we are not exploring all of the parameter space

outlined in Fig.4.2. Our goal is to investigate the phenomenology and viability of the

theory for a choice of parameters which give stability, at least at the level of the quadratic

action for cosmological perturbations.

5.1.1 Varying q

In this section we study the background cosmology of GMG, whilst varying the parameter

q which controls the deviation away from dRGT.

From here on we rescale q in the following way

(5.7) Q ≡ 104q ,

as this is a typical value of q which will appear in later solutions and for the purpose of

clarity later in the plots.

First, we outline the method taken to isolate the physical solution for ξ(a) and h(a).

Initially, we keep µ arbitrary since it is sensitive to the value of Q and will later be

fixed by requiring that the effective energy density from the mass term is consistent

with the choice of cosmological parameters. We first solve the Stückelberg equation (5.5)

for h(ξ,a,Q,µ). We then replace this solution in the Friedmann equation (5.4), which

results in a 10th order polynomial equation for ξ(a,Q,µ). To choose the physical solution

with positive real values, we compare the values of the roots of this equation to the

value of ξdRGT at early times, where the contribution from α′
2, or Q, is negligible. We do

this because constant mass dRGT yields a cosmological constant with equation of state

w =−1, which therefore means at early times we match ΛCDM. Whereas at late times, if

we have departures from dRGT we can have departures also from ΛCDM. We set aside

the roots that are closest. The solution for ξ in dRGT is [114],

(5.8) ξ±dRGT =
1+2α3 ±

√
1+α3 +α2

3 −α4 +α4

α3 +α4
,

1Note we will allow Ωκ0 to vary later in this section.
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which arises from solving J(ξ)= 0, i.e. the quadratic equation (4.16) when the right hand

side is zero. As shown in chapter 4, only the + root allows for a real tensor mass so we

work with this solution. Using the parameter values (5.6), the solution is ξ+dRGT = 2.80902.

We can then compare the solutions for ξGMG to this value. Fig. 5.1 shows the solution for

ξGMG in comparison to ξ+dRGT : 8 of the other solutions do not converge to ξ+dRGT at early

0 2 4 6 8 10

2.3

2.4

2.5

2.6

2.7

2.8

z

ξ(
z)

ξ(z)

ξ+dRGT

Figure 5.1: The black solid line shows the solution for ξdRGT . The blue curve shows
the only physical solution for ξGMG which asymptotes to the solution for ξdRGT at early
times. Parameter values taken are Q = 1 and those outlined in (5.6).

times, whilst the other ξ solution which tends to ξ+dRGT at early times does not satisfy

both (5.4) and (5.5), leaving us with one physical solution.

We have reduced the system to one ξ(a,Q,µ) solution and its corresponding h(a,Q,µ)

solution. We start by first determining the value of µ that would be compatible with the

cosmological parameters today. We rewrite the Friedmann equation Eq.(5.4) as,

(5.9) h2 − a2
0Ωκ0

a2 =ΩDE + a3
0Ωm0

a3 ,

where we defined the density function for the effective dark energy as

(5.10) ΩDE ≡ ρDE

3H2
0 M2

p
= µ2 L

3
= µ2

30
(ξ−1)

[
8(ξ−1)2 + (ξ−2)

(
Q ξ2 a2

a2
0

−30

)]
.

For a given value of Q, we evaluate this equation today a = a0 using the root ξ(a0,Q,µ).

Since today we have Ωκ0 +Ωm0 +ΩDE0 = 1, we fix the value of µ using this relation.

We now investigate the effect of varying the parameter Q on the expansion rate and

the equation of state of the effective fluid for the mass term. The effective equation of
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state can be obtained by identifying the contribution (PDE +ρDE) from the acceleration

equation, i.e. the second line of Eq. (4.12)

(5.11) PDE +ρDE =−M2
pm2J(r−1)ξ ,

then using the effective density defined in Eq.(5.10). As a result, we find

(5.12) wDE = PDE

ρDE
=−1− µ2J(r−1)ξ

3ΩDE
=−1− J(r−1)ξ

L
.

The functions J and L, defined in (4.14), are functions of ξ and a only, so using the

solution ξ(a), we can determine their evolution with a. For the quantity r, we use

Eq.(4.13) to write

(5.13) r = ap
κ

(
H+ ξ̇

ξ

)
,

which can be calculated by using the solutions h, ξ and its derivative.

We can now discuss the effect of Q on the evolution. In Fig.5.2 we show the effect

of varying Q on the Hubble rate and the equation of state. Smaller values of Q lead to

smaller deviations of the Hubble rate from the ΛCDM value, which are typically at 1%

level. This is due to Q controlling how close we are to the dRGT background where the

effective density from the mass term is constant. We note that the normalisation of µ

parameter ensures that the value of H recovers the ΛCDM value today. The evolution

of the equation of state parameter shows a late time departure from a cosmological

constant, with maximum deviation at a 20% level with wDE <−1, followed by a bounce

back towards wDE =−1. Notably, the value of Q does not affect the size of this departure

but only the time it occurs. This behaviour can be understood as follows. The departure

from dRGT is introduced in α2 via Eq.(4.51)

(5.14) α2 = 1− Q
104 f 2,

Since f is an increasing function of time, with f 2 ∝ (1+ z)−2 a smaller value of Q will

simply decrease the redshift where the deviation from dRGT starts and delays the bounce

in wDE to later times. Conversely, a large value of Q will cause the bounce at an earlier

time, thus allowing wDE to increase back up and cross wDE = −1. From (5.12), this

crossing occurs when either J ∼ 0 or r ∼ 1. When J crosses zero, the solutions collapse to

the self-accelerating solutions of dRGT, and scalar and vector modes becomes infinitely

strongly coupled [119]. On the other hand, there is no a priori reason that prevents
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Figure 5.2: Left panel shows fractional deviation in the Hubble rate in GMG compared
to ΛCDM with varying values of Q, where δh

h = h−hΛCDM
hΛCDM

. The right panel shows the
equation of state w(z).

r from crossing 1. In the next section, we will determine the conditions for which the

background solution exists and how, if at all, it breaks down.

To study the regime of applicability of the solution, we will impose the perturbative

stability conditions derived in Chapter 4. We then evolve the background equations until

one of the above conditions are broken, which then results in the theory no longer being

applicable as a dark energy model.
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5.1.2 Case Study: Q = 1

In this section we give a concrete example of the cosmological evolution for a value of

Q = 1 with Ωκ0 = 3×10−3. We classify the evolution into several points.

1. The evolution starts at z = 10, at early times the solution tracks the dRGT evolu-

tion.

2. The equation of state undergoes a decrease away from w =−1 reaching a minimum

value of w ∼−1.19 at z ∼ 0.8, and there is a small deviation away from the ΛCDM

value shown in the Hubble rate at about 2% level.

3. w then starts to bounce back to w = −1 and the difference in the Hubble rate

decreases as it evolves towards z = 0 and into the future, past z = 0.

4. The critical point in the evolution now occurs. At zc ∼−0.178, w crosses −1 which

is caused by r = 1. At this point Γ also crosses 0 which generates a tachyonic

instability in the tensor sector from the following condition,

(5.15) M2
T = m2Γ> 0 .

This is not problematic though as the instability takes the age of the universe to

develop as the mass is typically of order Hubble. However, as the sound speeds of

the vector modes are also proportional to Γ,

(5.16) C2
V ∝ (1+ r)Γ

2Jξ
,

and the coefficient of the scalar kinetic term is proportional to Γ in the E >> 1 case

(see chapter 4),

(5.17) TS ∝Γ

with J is still positive, the vector modes become unstable and a ghost mode is

generated in the scalar sector, meaning the background solution is no longer valid.

We see that Q = 1 marginally misses the point of instability. Requiring that the solution

does not break down before z = 0, we will only consider the values Q ≤ 1.

The generation of future instabilities is not a cause for concern here. This can be

seen by the nature of the instabilities generated, which is a gradient instability in the

vector sector, but more importantly a ghost mode in the scalar sector in the limit E >> 1.
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As we approach the onset of the instability, the coefficient of the kinetic term for the

scalar mode approaches zero. This is an indication of strong coupling which means we

are entering a regime of the theory which is beyond the reach of the EFT. Therefore,

the instability is generated at an energy scale beyond which the theory can describe.

The upshot of this means we need to know the full UV completion to describe what is

happening around the point of the instability, i.e. into the future, and is therefore not a

concern for our model. Furthermore, the time of generation of the instability is sensitive

to the functional form chosen for α′
2 as in (4.51). Therefore, it is postulated that changing

the functional form can push the instability further into the future. In this work we are

mainly concerned with finding a proof of principle example and finding the observational

signatures of a stable model in the present universe.

5.1.3 Varying Ωκ0

The evolution of the universe is also sensitive to the value of Ωκ0. As can be seen from

(5.4), shifting the value of Ωκ0, under the condition that Ωκ0+Ωm0+ΩDE0 = 1, effectively

shifts the value of ΩDE0, whilst keeping Ωm0 fixed. Fixing Q = 1, we plot the Hubble rate

and the equation of state in Fig. 5.3. Notably, a higher value of Ωκ0 pushes the time the

instability occurs further into the future. The fractional deviation in the Hubble rate

increases for higher values of Ωκ0. For a value of Ωκ0 = 6×10−3, the deviation is around

4% at z ≈ 0.8. There are two effects one can see here. For a fixed value of Ωκ0, decreasing

Q pushes the time the instability is generated into the future. Furthermore, for a fixed

Q increasing Ωκ0 also pushes the time the instability is generated into the future.

In this section, we have outlined a case study of the cosmological evolution in the

minimal model of GMG. We find that the expansion history of the Universe can be

matched for values of Q ≤ 1. For a value of Q = 1, we can describe the evolution up

to a redshift of z ≈−0.2 before a gradient instability is generated in the vector sector.

Decreasing the value of Q or increasing Ωκ0, pushes the time the instability is generated

further into the future. The equation of state undergoes a bounce from w <−1 to w =
−1 and has a dynamical dark energy–like effect which could be constrained using

observations.
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Figure 5.3: For different values ofΩκ0, top panel shows fractional deviation in the Hubble
rate in GMG compared to ΛCDM, δh

h = h−hΛCDM
hΛCDM

, and the bottom panel shows the equation
of state.

5.2 Linear Perturbations

In this section we outline the study of linear perturbations and the derivation of the

Poisson’s equation to determine the effect of GMG on the growth of structure.

5.2.1 Set up

Only the linear scalar perturbations are relevant for the derivation of the Poisson’s

equation, so we decompose the g-metric as:

(5.18) gµνdxµdxν =−(1+2φ)dt2 +a∂iB dt dxi +a2 (
Ωi j +hi j

)
dxidx j,
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with hi j decomposed as

(5.19) hi j = 2ψΩi j +
(
D i D j − 1

3
Ωi jDlD l

)
S .

In this set up, Dl is the covariant derivative compatible with the 3-metric Ωi j. Spatial

indices are raised and lowered withΩi j. Perturbations to the matter sector are introduced

via ρ(t, xi)= ρ(t)+δρ(t, xi) and uµ = (1−φ,∂iv), where v is the longitudinal component of

the velocity perturbation, this leads to the following form for Tµ
ν:

T0
0 =−(δρ+ρ) ,

T0
i = aρ(∂iB+a∂iv) ,

T i
0 =−ρ∂iv ,

T i
j = 0 .

(5.20)

We exhaust the gauge freedom by fixing the unitary gauge, δφa = 0, thus the fiducial

metric fµν remains unperturbed. Using the metric decomposition (5.18), along with

Eqs.(4.6) and (5.20), we calculate the perturbed Einstein’s equations. Schematically, we

end up with 4 coupled Einstein’s equations denoted by E 00,E 0i,E tr,E tl , where “tr” and

“tl” denote the trace and traceless parts of the (i j) equation, respectively.

The unitary gauge that we are using leaves the metric and matter perturbations

intact. In order to compare with GR, it is useful to define gauge invariant variables that

can be constructed out of the available fields. We start with the coordinate transformation

(5.21) xµ→ xµ+δxµ,

where δxµ = (δx0,Ωi j∂ jδx) is of order of perturbations. Under (5.21) the metric and

matter perturbations transform as,

φ→φ+δẋ0 ,

B → B+aδẋ− 1
a
δx0 ,

ψ→ψ+ 1
3

D iD iδx+Hδx0 ,

S → S+2δx ,

δρ→ δρ+ ρ̇ δx0 ,

v → v−δẋ .(5.22)
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With these transformations, we can construct the gauge-invariant variables that are

analogues of the Newtonian gauge in GR:

Φ=φ−∂tζ ,

Ψ=ψ−Hζ− 1
6

D iD iS ,

δ̃ρ = δρ− ρ̇ ζ ,

ṽ = v+ 1
2

Ṡ,(5.23)

where

(5.24) ζ≡−aB+ 1
2

a2Ṡ.

We also define a convenient combination for density contrast

(5.25) ∆≡ δ̃ρ

ρ
−3a2 H ṽ ,

and then substitute (5.23) and (5.25) into the equations of motion (3.6)2 and expand all

perturbation variables in scalar harmonics,

Ψ=
∫

d3kΨ|~k|Y (~k,~x)

S =
∫

d3kS|~k|Y (~k,~x)

...(5.26)

where the scalar harmonics satisfy D iD iY →−k2Y . We also impose (4.12), (4.15) and

(5.13) to yield the perturbed Einstein equations with one covariant and one contravariant

index outlined below. For the 0i equation, we take out the overall covariant derivative D i.

For the traceless part of the i j equation, we remove the overall D iD j −
δi

j
3 DlD l operator.

2Note here that due to the f metric being non-dynamical, we only have the g metric equations.
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The equations of motion are given by

E 00 = k2m2JξS+6m2aHJrξB− 4(k2 +3κ)Ψ
a2 +a2H

(
6ṽρ
M2

p
−3m2JrξṠ

)
+2

(
∆ρ

M2
p
+6H2Φ−3m2JξΨ−6HΨ̇

)
,

E 0i =−2m2aJr2ξB− a2(r+1)2ṽρ
M2

p
+m2a2(r+1)J(r−1)ξṠ−4(r+1)(HΦ−Ψ̇) ,

E tr =−4
(k2 +6κ)Φ+ (k2 +3κ)Ψ)

a2

+3m2a
[

Jrξ(2Ḃ−p
κ (r−1)Ṡ)+2B

[
H(2Γ+ Jξ(3r−2))+ξ((r−1)J̇+ Jṙ)

]]
+2

[
k2m2ΓS+3

p
κm2r(r−1)JξB+3m2(r−2)JξΦ− 6ρΦ

M2
p
−6m2ΓΨ+6H(3HΦ+ Φ̇−3Ψ̇)

]
−3m2a2

[[
ξ((r−1)J̇+ Jṙ)+2H(Γ+ Jξ(2r−1))

]
Ṡ+ rJξS̈

]
−12Ψ̈ ,

E tl = m2a2SΓ−2(Φ+Ψ).

(5.27)

The conservation of the energy-momentum tensor, ∇µTµ
ν = 0 yields the Euler E eu

and continuity E co equations for the matter fluid,

E eu =
[
2(k2 +3κ)+ 3a2ρ

M2
p

−3a2(4H2 +m2Jξ(r−1))
]
ṽ−2(3a2H ˙̃v+ ∆̇+3Ψ̇) ,

E co =Φ+a2(2Hṽ+ ˙̃v) .(5.28)

5.2.2 Linear perturbation analysis

Looking at the form of the traceless equation E tl , we see that S acts as a source of

anisotropic stress. In GR, the equation for the anisoptropic stress vanishes, ie: Φ+Ψ= 0.

Whilst in GMG, we have

(5.29) Φ+Ψ= 1
2

m2a2ΓS.

This reveals that the dynamical scalar degree of freedom S could mediate a fifth force

which would alter the structure of the Poisson’s equation. Our goal is to investigate if S
affects structure formation, and what scales the modifications to gravity appear at due
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to the presence of this extra mode. To do this, we first derive the equation of motion for

S. We start by solving the matter equations for ˙̃v and ∆̇,

(5.30) ˙̃v =−2a2Hṽ+Φ
a2 , ∆̇= 3HΦ+ ṽ

[
k2 +3κ+ 3

2
m2a2(1− r)Jξ+ 3a2ρ

2M2
p

]
−3Ψ̇,

and substitute it into the equations of motion to reduce the system to the 4 Einstein’s

equations. We next solve the constraint equations E 00 and E 0i for the non-dynamical

degrees of freedom Φ and B,

Φ= 1
12M2

pa2H2

[
−4(k2 +3κ)M2

prΨ−3a4H(2ṽρ+m2M2
p JξṠ)+

a2
(
k2m2JrξS+2rρ∆−6m2M2

p JξrΨ+12M2
pHΨ̇

)]

B = r+1
6m2M2

pa3HJrξ

[
−a2(m2M2

p Jξ(k2S−6Ψ)+2ρ∆)+4(k2 +3κ)M2
pΨ+3m2M2

pa4HJξṠ
]
.

(5.31)

Upon substituting (5.31) and the time derivatives (Φ̇, Ḃ) into E tr and E tl , we end up with

two equations E tr and E tl in terms of (Ψ,S, ṽ) and their time derivatives. We then solve

E tr for Ψ(S, Ṡ, S̈, ṽ,∆) and replace into E tl as well as the time derivative Ψ̇. Upon doing

this, we obtain a second order differential equation for S sourced by matter perturbations

(∆, ṽ).

(5.32) A S̈+H0BṠ+H2
0C S+D∆+H0F ṽ = 0.

The dimensionless coefficients (A ,B,C ,D,F ) are functions of (k, z) and various back-

ground quantities relating to the GMG theory. They are too complicated to present here,

but they will be discussed in certain limits later in the chapter. It is pertinent to note

that no assumptions have been made at this stage so this equation is the most general

equation one can write down for the scalar S.

In order to gain an analytic understanding of the system, we adopt the minimal

model (4.51) once more, in which we expand each of the background GMG quantities

around their dRGT values as below:

J = Q
10000

J1 +O

(
Q

10000

)2
,

Γ=Γ0 + Q
10000

Γ1 +O

(
Q

10000

)2
,

r = a Hp
κ

+ Q
10000

r1 +O

(
Q

10000

)2
,
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where the leading order terms J1 and Γ0 are not necessary for this discussion and can be

found in Chapter 4 in equations (4.59) and (4.55) respectively.

A peculiar feature of the scalar terms in the UV is the appearance of a new energy

scale H/J in addition to the scale of expansion H. For small departures from dRGT we

have J < 1. Depending on the relation to these scales, the subhorizon modes k ¿ a H can

have two distinct behaviours. We define the following dimensionless parameter, as in

chapter 4, to distinguish between the cases [197]

(5.33) E ≡ k2J
a2H2 .

There are three qualitatively distinct limits:

1. 1 ¿ E ¿ k2

a2H2 : subhorizon modes with momenta larger than the new scale H/J.

For these modes, the variation of the mass parameters due to GMG affect the

UV behaviour. These cases are captured by first performing the subhorizon (UV)

expansion, then the dRGT expansion.

2. E ¿ 1¿ k2

a2H2 : subhorizon modes with wavelengths larger than the new scale. The

leading order terms in the UV expansion for these modes are identical to dRGT,

although the deviation due to GMG does not lead to infinite strong coupling. These

cases correspond to first carrying out the dRGT expansion, then the subhorizon

expansion.

3. k2

a2H2 ¿ 1 : superhorizon modes. There is no ambiguity for this case, and it corre-

sponds to taking the superhorizon limit.

For varying values of Q, and for the parameters given in Eq. (5.6), we plot E (k) for z = 10

and z = 0. The result is shown in Fig. (5.4). E being larger for a specified value of k at

z = 0 is expected as E ∝ J: at later times the departure from the early dRGT (or ΛCDM)

behaviour, controlled by J, increases.

This feature is also seen in Fig.5.2, deviations away from ΛCDM occur at late times,

whilst at early times ΛCDM is recovered. At z = 10, larger values of Q favour a larger

E however at z = 0 this is not the case: the Q = 1 line coincides with the Q = 1/4, whilst

Q = 1/2 gives the largest value of E . This feature corresponds to the bounce of the effective

equation of state observed in Fig.5.2.

With this information, we investigate the coefficients in (5.32) and derive which terms

are dominant in the quasi-static approximation (QSA) [193], as these terms will become

relevant when deriving the Poisson’s equation. The quasi-static approximation amounts
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Figure 5.4: Bottom panel shows E evaluated at z = 0, whilst the top panel is z = 10.

to assuming β̇ ∼ Hβ ¿ ∂iβ for any perturbation β, i.e. we neglect time derivatives

with respect to spatial derivatives. In terms of harmonic modes, it is an expansion for

large k/(aH). In Fig.5.5, we present a plot of each coefficient at z = 0 to justify this

approximation.

In Fig.5.5, the 3 regimes can be clearly identified. From right to left: regime 1 is

E À 1, regime 2 (the intermediate regime) is the subhorizon limit with E ¿ 1 and regime

3 is the superhorizon limit. In Appendix D, we give explicit expressions of the analytic

approximations of these functions in each of the 3 regimes. We now apply the QSA to

(5.32) as the Poisson’s equation is defined in this limit.
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Figure 5.5: Coefficients in (5.32) at z = 0 as a function of k. The left hand side is large
scales, whilst the right hand side is small scales. The dark shaded region corresponds
super horizon modes with k < h

3000Mpc−1. The light shaded region corresponds to modes
in the region h

3000Mpc−1 < k < k∗, where k∗ is the wave number corresponding to E |z=0 =
1. The whole shaded region corresponds to E < 1, whilst the area with no shading
corresponds to modes with k > k∗ which represents E > 1.

The QSA is valid on scales 10−2 hMpc−1 . k while the linear theory is applicable up

to k . 0.1 hMpc−1, so we consider the regime in which E À 1, which corresponds to the

non-shaded area of Fig. 5.5.

5.2.3 Poisson’s Equation

In the regime of interest, given by E À 1, we calculate the following ratios of the

coefficients in (5.32) to determine which are the dominant terms in the QSA. We are in

essence, comparing the time derivative terms (S̈, Ṡ) to the non- time derivative term S.

Observing that ṽ ∼ ∆̇/k2 from the Euler equation (5.28), we are also comparing it to the

∆ term:

(5.34)

(
H2

H2
0

)
A

C
∼ a2H2

k2 O (J) ,
(

H
H0

)
B

C
∼ a2H2

k2 O (J) ,
(

H0H
k2

)
F

D
∼ a2H2

k2 .

From (A.7), we see that in this regime, (S̈, Ṡ, ṽ) can be neglected as their coefficients are

suppressed with respect to (S,∆) by a2H2/k2. In this approximation the master equation

(5.32) reduces to the algebraic equation,

(5.35) H2
0C S+D∆= 0,
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for which the solution for S(∆) at leading order in k is,

S =− D

H2
0C

∆= [
2a2Jξr2(Jξ−2Γ)ρ

] ∆
k2 ×{

2κM2
p Jξr(2(r−1)Γ+ J(r+2)ξ)−2

p
κM2

paJξr(H(4(r+1)Γ+ Jξ(r−4))−2Jξ̇)

+a2
[
4M2

pH2(2(r+1)Γ2 + Jξ(r−4)Γ−2J2ξ2(r−1)
)

−4M2
pHξ(Γ(2(r+1)J̇+ Jṙ)− J(ξ(Jṙ− J̇(r−2))+ rΓ̇))

+ξ(m2M2
p J3(2−3r)rξ2 +2J2ξr(m2M2

p(3r−1)Γ+ρ)

+2M2
p(r+1)J̇2ξ−2J(r(Γρ+M2

pξJ̈)−M2
pξJ̇ ṙ)

)]}−1

.(5.36)

Manipulating the equations of motion of linear perturbations, we can derive a Poisson’s

equation for the Newtonian potential sourced by the matter perturbations. We solve

(E 00,E 0i,E tr,E tl) for (B, Ḃ,Ψ,Φ). After applying the QSA limit, the equation takes the

form:

(5.37)

Φ= 1
4

m2a2(2Γ−Jξ)S+ 1
8rk2

[
3m2a4(m2J2rξ2+H2(4Γ−2Jξ))S+8ra2

(
m2 3

4
κJξS− ∆ ρ

2M2
p

)]
.

Substituting (5.36) into (5.37) we obtain the Poisson’s equation for the Newtonian

potential Φ(∆) in the QSA.

(5.38) Φ=− ∆ρ

(k2/a2)
G(z),

where G(z) is the scale independent effective Newton’s constant, whose value in GR is

given by GGR = 1
2 M2

p. The full Poisson’s equation is too complicated to present, so we

perform the dRGT expansion after substituting the solution for S. Upon substitution,

and taking the leading order in dRGT expansion 3, we obtain

(5.39) Φ=− ∆ ρ

2M2
p(k2/a2)

(
1+ m2J1ξa

2
p
κH

)
.

The term in the brackets is the extra factor with respect to GR. Note that in dRGT we

have J1 = 0, so the Poisson’s equation is the same as in GR. This is not the case in GMG.

3The dRGT expansion is used to obtain a analytic understanding of the system and is not a truly
accurate representation of the underlying physics, therefore in the subsequent analysis we give all results
without performing the dRGT expansion but still working in the UV limit of the theory to make contact
with the QSA.
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5.2.4 Phenomenology

In this section we study the phenomenology of the theory. Our result will determine

whether the fifth force is in effect, ultimately allowing us to determine if there is a need

for a screening mechanism on local scales to recover GR. Fig. (5.6) shows a comparison of
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Figure 5.6: δG
G as a function of redshift for varying values of Q, where δG ≡G(z)−GGR .

the effective Newton’s constant in our model with respect to GR, for varying values of

Q. The largest deviation at z = 0, which is around a 20% enhancement, is shown by the

Q = 1
4 curve. The smallest deviation at z = 0, around an 8% enhancement, is the Q = 1

curve. This result matches the one in Fig. (5.2), the reason why Q = 1 has the lowest

deviation in the effective Newton’s constant is because the equation of state has already

undergone the turn back to w =−1. This implies that this branch of the theory is closer

to ΛCDM at z = 0 than other values of Q, so this result is consistent with earlier results

found in the background section.

A feature of modified gravity models which alters the effective Newton’s constant is

the modification to the growth rate of matter perturbations. The equation which governs

the evolution of the linear matter overdensity, δm =∆/ρ,

(5.40) δ̈m +2Hδ̇m −Gρδm = 0,

is dependent on two effects. The background expansion H(z) and the effective Newton’s

constant G. As has been seen in earlier section, GMG modifies both of these so one

expects the growth rate to be altered with respect to the ΛCDM case. We take (5.40) and
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5.2. LINEAR PERTURBATIONS

convert to redshift using the following relations;

(5.41)
d
dt

=−(1+ z)H
d
dz

,
d2

dt2 = (1+ z)2H2 d2

dz2 +
[
(1+ z)2H

dH
dz

+ (1+ z)H2
]

d
dz

.

Using (5.41) in (5.40) we obtain,

(5.42) δ′′m +
[

H′

H
− 1

1+ z

]
δ′m − Gρ

(1+ z)2H2δm = 0,

where a prime denotes a derivative with respect to redshift. We solve (5.42) with the

initial conditions,

(5.43) δm(zi)= 1
1+ zi

, δ′m(zi)=− 1
(1+ zi)2 ,

which are the same initial conditions as ΛCDM. This is an accurate approximation as

GMG mimics the expansion history of ΛCDM at early times. We solve for δm(z) and

compare with the solution in ΛCDM, the result is shown in Fig. (5.7). In this case, the
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Figure 5.7: Ratio of the growth rate in GMG to the growth rate in ΛCDM as a function of
redshift.

highest deviation comes from Q = 1
2 at around the 5% level with respect to the ΛCDM

case. To determine the strongest contribution to the growth rate, from the change in

the background expansion caused by H(z) or the modification to the Newton’s constant,

we isolate the Q = 1 case and solve Eq. (5.42) independently for 3 cases. In Fig. (5.8),

we show a comparison of the full GMG growth function to ΛCDM, along with two cases

where one of H(z) and G are modified. The main result of Fig. (5.8) is that the strongest
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Figure 5.8: Growth rate comparison, as a function of redshift, between competing effects
in GMG. The black curve shows the result in ΛCDM. The dashed curve shows result
using the Hubble rate in ΛCDM and the GMG Newton’s constant, whilst the dotted
curve shows the opposite scenario. The solid blue curve shows the solution using both
quantities in GMG.

modification to ΛCDM occurs when both the effects of the background expansion and the

modification to the Newton’s constant are included. However, the change in background

expansion with respect to ΛCDM has a larger effect on the growth rate than the modified

Newton’s constant. This is again consistent with the results of Fig.(5.2), whereby Q = 1
2

has a larger deviation from ΛCDM at the background level in H than the case Q = 1. At

early times GMG matches the growth rate of ΛCDM, however at late times there is a

discernible deviation from ΛCDM.

5.2.5 Gravitational wave propagation

To study the propagation of gravitational waves, we first quote the equation of motion

for the tensor modes 4

(5.44) ḧi j +3Hḣi j +
[
(1+ z)2(k2 −2κ)+M2

T
]
hi j = 0,

where the only modification with respect to ΛCDM is that the tensor modes acquire a

time dependent mass, MT = m
p
Γ , which is also the same modification as dRGT [200].

We plot the tensor mass MT for varying values of Q shown in FIG. 5.9. For lower values of

Q, the tensors acquire a higher mass at any given redshift around an order of magnitude

4For the derivation of the quadratic action for the tensors, see Chapter 4.
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Figure 5.9: Mass of the tensor modes, normalised to H0 for varying Q.

higher than H0. This is due to the normalisation of µ. When we fix µ, imposing that

the Hubble rate at z = 0 matches the value in ΛCDM, lower values of Q lead to a

higher values of µ, therefore the mass of the modes increases towards lower values of Q.

Additionally, the mass of the tensor modes increases as redshift increases. This feature

is due to the behaviour of r, which appears in the functional form for Γ (4.26), which is

an increasing function in redshift.

The modification to the mass modifies the speed of gravitational waves. However, the

modification is small as MT ∼O (10)H0 ∼O (10)10−33eV and is well within the bound on

the speed of gravity from the detected binary neutron star merger [201]. For instance,

the bound from LIGO on the mass of the tensor modes is,

(5.45) MT < 10−22eV.

The friction term for the propagation of gravitational waves is unmodified with respect to

the ΛCDM case, which leads to the luminosity distance of gravitational waves in GMG

being unmodified with respect to that of light5.

5Modified gravity models with non-minimal coupling or higher order covariant actions such as the
Horndeski theory [47] can produce a modified friction term [153, 202–204] which can invoke a time
dependent Newton’s constant for gravitational waves and modify the gravitational wave luminosity
distance. So it is possible that GMG with non-minimal coupling [205] could alter the GW luminosity
distance with respect to that of light
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5.3 Conclusions

In this chapter we studied the background cosmology and linear scalar perturbations

in the Generalised Massive Gravity theory. For simplicity, we considered a minimal

model where all these functions vanish except α2, which slowly varies around its dRGT

value and α4, which was chosen to be a non-zero constant compatible with the stability

conditions found in chapter 4. Controlling the variation of α2 with the parameter q =
10−4Q, we studied the evolution of cosmological solutions in this model. The background

is FLRW with an effective fluid corresponding to the mass term, with an equation of state

satisfying w(z)≤−1 throughout the evolution. At early times, this effective fluid starts

off like a cosmological constant, gradually decreasing. Eventually, it starts to increase

again until it reaches w =−1 where we lose perturbative control. The time of crossing

of the phantom divide6 can be controlled by the q parameter. We find that for values

of q . 10−4, the crossing can be moved to the future. We also find that increasing the

amount of negative curvature today has the same effect. The time dependent equation of

state modifies the expansion rate by O (10−2) with respect to ΛCDM, with the maximum

deviation at redshifts z < 1, depending on the value of q.

We also studied the evolution of linear perturbations. We found that the growth

function for matter perturbation is modified at O (10−2) with respect to ΛCDM at low z.

The non-zero anisotropic stress indicates the presence of a fifth force which contributes to

gravitational interactions and increases the effective Newton’s constant. This strength-

ening of gravity contributes to the matter growth, although the modified background

evolution H(z) contributes about twice the amount than the former. In the tensor sector,

we find that the only modification to gravitational wave propagation arises in the tensor

modes picking up a time dependent mass, which increases with redshift and with lower

values of Q.

6Crossing of the phantom divide defined as the equation of state crossing w =−1

112



C
H

A
P

T
E

R

6
CONCLUSIONS

In this thesis we have studied the cosmology of extended theories of massive gravity,

namely the bigravity theory and the generalised massive gravity theory. In particu-

lar, we have studied the viability of the aforementioned theories as alternatives to

general relativity in the context of cosmology. However as we have seen, modifying gen-

eral relativity is not easy. Finding a stable theory of massive gravity that brings wanted

effects, such as late time acceleration, without introducing pathologies is a non-trivial

exercise. Nevertheless in this thesis we have identified a stable model of massive gravity,

namely the generalised massive gravity, which could be a candidate for dark energy.

In chapter 2 we outlined the history of the construction of dRGT massive gravity,

from the linear theory of Fierz-Pauli to the full non-linear theory. We found that stable

massive gravity cosmologies have been hard to find, which led to the construction of

many extended theories of massive gravity attempting to resolve the issues plagued by

massive cosmologies in dRGT. In particular, the lack of stable flat/ closed FLRW solutions

[116] posed a serious question over the viability of massive gravity as a possible solution

for dark energy. However it was found that open FLRW solutions were allowed [114] at

the background level, but when analysing the perturbations the self-accelerating branch

was shown to have infinite strong coupling [119]. The upshot of this result being that

normal perturbation theory techniques can no longer be applied.

In chapter 3 we studied the cosmology of the bigravity theory, where there are two

dynamical metric tensors which propagate 7 degrees of freedom. We then discussed

cosmological solutions in bigravity that exist in the literature, of which there are many
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branches. To find a stable cosmology, we studied the low energy limit model which

assumes m2M2
g À ρ. The effect of this is to push a gradient instability [171] generated in

models where m ∼ H0 to early times [169, 191]. The viability of this model was studied

as a candidate for dark energy. We identified the effective cosmological constant that

appears in the Friedmann equation, which in turn causes a late-time acceleration of

the universe. Analysis of the linear perturbations allowed us to identify the modified

Poisson’s equation which showed modifications at scales k > 0.1Mpc/h, where linear

perturbation theory is no longer applicable. The Poisson’s equation is modified by the

extra scalar mode present, that needs to be screened by the Vainshtein mechanism. We

derived the non-linear equations for the extra scalar mode and identified the Vainshtein

radius. Then, imposing that we can describe the evolution of the scale factor back to

the last scattering surface, we found that the early time solution does not exist if we

require a working Vainshtein mechanism to satisfy observations. There are two ways

to circumvent this apparent no-go theorem for bigravity cosmologies. One is to impose

a hierachy between the two Planck scales [184] making the theory indistinguishable

from GR. This brings the theory in-line with observations. The second is to postulate the

presence of a Vainshtein-like mechanism [189, 190] to screen the effect of the instability

at early times to recover GR.

In chapter 4 we introduced the Generalised Massive Gravity theory which was first

studied in [106]. The theory promotes the mass parameters of dRGT to functions of the

Lorentz invariant combination φaφa. This choice means the Stückelberg constraint equa-

tion is modified with respect to dRGT. We derived the quadratic action for cosmological

perturbations for the tensor, vector and scalar modes. From the quadratic action, we iden-

tified the no-ghost and no-gradient instability conditions, as well as the tensor mass, as a

function of the model parameters. Due to the modification of the Stückelberg constraint

equation, the kinetic terms for the vectors and scalars were non-vanishing. This indicates

that the modes are not infinitely strongly coupled, which is an advantage over dRGT

massive gravity. We identified a region of parameter space that was compatible with

the stability conditions, as well as imposing that the model admits a self-accelerating

solution from the effective cosmological constant. From this we concluded that at the

level of the quadratic action, GMG is stable and could be a viable dark energy model.

In chapter 5 we studied generalised massive gravity in more detail, focusing on the

phenomenology and effect on large scale structure. We found a modified background

expansion rate with respect to ΛCDM and a dynamical equation of state of dark energy.

For a particular choice of the α functions we found that the Hubble rate today is modified
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at the percent level with respect to ΛCDM, whilst the equation of state exhibits a bounce

away from w =−1 to the phantom regime, showing a maximum deviation from ΛCDM

at around the 20 percent level. The solution then breaks down as w crosses −1, which

is caused by a gradient instability that is generated in the vector sector. The time the

instability is generated can be pushed into the future by considering values of Q < 1,

where Q is a parameter which controls the deviation away from dRGT. In addition, the

time of the instability is sensitive to the value of Ωκ0. Increasing the value of Ωκ0 also

pushes the time the instability is generated into the future.

We then performed a linear study of the scalar perturbations. This study revealed the

presence of anisotropic stress which modified the Poisson’s equation, via a modification to

the effective Newton’s constant. We found the modifications to the Newton’s constant are

enhanced at late times, with a maximum enhancement of 20 percent. We then compared

the growth rate of matter perturbations with that of ΛCDM and found that the growth

rate is enhanced at late times at around the percent level. We finished chapter 5 by

discussing the propagation of gravitational waves. The tensor modes acquired a time

dependent mass ∼ H0 which make this model distinguishable from scalar-tensor theories

which also predict similar effects on LSS. The linear study reveals the presence of a fifth

force, which needs to be screened at solar system scales via the Vainshtein mechanism.

GMG theory is known to admit a Vainshtein mechanism similarly to dRGT [106] in the

decoupling limit. In order to determine the details of the screening it is necessary to

study non-linear perturbations and identify the Vainshtein radius. This is left for future

work.

A second motivation for investigating the non-linear behaviour is provided by the

dRGT limit of our model. The evolution in the asymptotic past coincides with the self-

accelerating branch of dRGT. These solutions have exactly vanishing kinetic terms,

controlled by the function J, leading to an infinitely strong coupling in the vector and

scalar sectors. The solutions in GMG however never have vanishing J although as we

go back in the evolution, they do decrease. Whether these modes are strongly coupled

depends on the evolution of the non-linear terms and how they depend on J. Unlike in

dRGT, this is not trivial. The non-linear study will allow us to determine the fate of the

perturbative expansion, and provide the scale associated with this strong coupling if it

exists. It should be noted that this issue has been observed in the context of the minimal

theory, where only the α2(t) function varies rapidly. However, generalised massive gravity

is a theory with four arbitrary functions, and by using a very limited set of parameters,

we have only scratched its surface. In general, we expect that using a slowly varying
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function we can keep the strong coupling scale finite without affecting the past evolution

of the Universe. This is to be explored in a future publication [206].

Moreover, GMG has been extended to a general theory class in Ref. [205], including

non-minimal couplings. Finally, relaxing the dRGT constraint to be valid only within

the range of the effective field theory, we expect that disformal couplings to matter can

be allowed [207]. A natural next step is to exploit the full freedom of this theory class,

determining new ways to achieve self acceleration and finding other applications in

cosmology.

The main conclusion of this thesis is that whilst some models of massive gravity

are plauged with pathologies, and have been ruled out on theoretical consistency or

observational grounds, there are still models which are interesting for cosmology. It

is important to continue analysis of the healthy models, combating them with all the

observational data which we have at our disposal to really understand their viability. At

the end of the day, if the models indeed do get ruled out, we will have learnt more about

the robustness of General Relativity and maybe future observations will give an idea of

where to look next.
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A
VAINSHTEIN MECHANISM IN THE CUBIC GALILEON

MODEL

As discussed in chapter 2, the nature of the non-linearities in massive gravity allow

a working Vainshtein mechanism. This mechanism allows the recovery of GR on local

scales, but allows the effect of the 5th force due to the extra degrees of freedom to

manifest on cosmological scales, driving the accelerated expansion of the universe. To

illustrate the Vainshtein mechanism, we take for simplicity the cubic galileon which

arises in the decoupling limit of massive gravity [90, 101] and in the boundary effective

action of DGP [49, 208]. The action for the cubic galileon takes the form,

(A.1) S =
∫

d4x− 1
2

(
∂φ

)2 − 1
Λ3

3

(
∂φ

)22φ+ 1
Mp

φT,

where the non-linear term is suppressed by the scale Λ3
3 = m2Mp. Replacing φ→ φ̄+δφ,

where φ̄ is the background field value and δφ the perturbation to the field, expanding the

action to linear order and varying with respect to δφ we obtain the equation of motion,

(A.2) 2φ̄+ 1
Λ3

3

[
2∂µ

(
∂µφ̄2φ̄

)−2
(
∂φ̄

)2
]
+ T

Mp
= 0.

We then consider a static and spherically symmetric source, so the 4 gradient operator

reduces to the del operator in spherical coordinates. The equation of motion becomes,

(A.3) ∇2φ̄+ 1
Λ3

3

[
2∇(∇φ̄∇2φ̄

)−∇2 (
(∇φ̄)2

]
+ T

Mp
= 0.
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APPENDIX A. VAINSHTEIN MECHANISM IN THE CUBIC GALILEON MODEL

Factoring out a del operator, using a static matter source described by T =−Mδ3(r) and

using vector identities the equation can be rewritten as,

(A.4) ∇.r̂

[
φ̄′(r)+ 4

Λ3
3r
φ̄′(r)2

]
= M

Mp
δ3(r),

where r̂ is a unit vector in the radial direction. Integrating this equation once over the

3-dimensional volume we obtain,

(A.5) 4πr2

(
φ′(r)+ 4

Λ3
3r
φ̄′(r)2

)
= M

Mp
.

Reducing the order of the equation with u(r)= φ̄′(r) we can solve the resulting quadratic

equation for u(r) and replace back φ′(r),

(A.6) φ̄′(r)=− rΛ3
3

8
+ Λ3

3p
πr

√
πr3 +4R3

V ,

where we have defined the Vainshtein radius as R3
V ≡

(
M

Λ3
3Mp

)
and taken the positive

solution. Letting α= r/RV we can examine the behaviour for different regimes in r. For

small α, so r ¿ Rv the solution becomes,

(A.7) φ̄′(r)∼Λ
3
2
3

√
M

16πMpr
∼ 1p

r
,

whilst for large α, or r À RV the solution is,

(A.8) φ̄′(r)∼ M
4πMpr2 ∼ 1

r2 .

Equations (A.7) and (A.8) perfectly show the essence of the Vainshtein mechanism. At

large distances, the field becomes GR like with the usual 1/r2 profile. Whilst at shorter

distances, the force exerted by the scalar is much weaker than GR and is suppressed.
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B
VARIATION OF THE DRGT MASS TERM

In this appendix we compute the variation of the mass term for dRGT with a

dynamical reference metric in order to derive the equations of motion for bigravity

as outlined in section 3.1. The mass term takes the form,

(B.1) Lmass = m2M2
p
p−g

4∑
n=0

αnUn(K ),

Un are the dRGT potential terms.

U0(K )= 1 ,

U1(K )= [K ] ,

U2(K )= 1
2!

([K ]2 − [K 2]) ,

U3(K )= 1
3!

([K ]3 −3[K ][K 2]+2[K 3]) ,

U4(K )= 1
4!

([K ]4 −6[K ]2[K 2]+8[K ][K 3]+3[K 2]2 −6[K 4]) ,(B.2)

and in this case αn are free parameters. The K tensor is,

(B.3) K
µ
ν = δµν− Xµ

ν,

and we define Xµ
ν to be,

(B.4) Xµ
ν =

(√
g−1 f

)µ
ν

,
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which implies

(B.5) XµλXλν = gµλ fλν.

The tricky part here is the variation of the trace of the square root tensor, we compute

the variation as follows,

(B.6) δ[X n]= n
2

(X n)αµ
(
gανδgµν− fανδ f µν

)
,

which is valid for any power n ≥ 1. In the above we made use of δ fµν =− fµα fνβδ f αβ. The

variation of the interaction terms can be written in the following form:

δU1 =−1
2

Xα
µ

(
gανδgµν− fανδ f µν

)
,

δU2 =
[(
−3

2
+ 1

2
[X ]

)
X − 1

2
X2

]α
µ

(
gανδgµν− fανδ f µν

)
,

δU3 =
[(
−3

2
+ [X ]− 1

4
[X ]2 + 1

4
[X ]2

)
X +

(
−1+ 1

2
[X ]

)
X2 − 1

2
X3

]α
µ

(
gανδgµν− fανδ f µν

)
,

δU4 =
[(
−1

2
+ 1

2
[X ]− 1

4
[X ]2 + 1

12
[X ]3 + 1

4
[X2]− 1

4
[X ][X2]+ 1

6
[X3]

)
X

+
(
−1

2
+ 1

2
[X ]− 1

4
[X ]2 + 1

4
[X2]

)
X2 +

(
−1

2
+ 1

2
[X ]

)
X3 − 1

2
X4

]α
µ

(
gανδgµν− fανδ f µν

)
.

(B.7)
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C
ALGORITHM FOR CALCULATING THE SQUARE ROOT

MATRIX

For a generic metric g and f, which are non diagonal, to calculate the square root tensor

we first define,

(C.1) X = g−1 f .

We use ε as a parameter which controls the order of perturbations. The zeroth order part

of X is diagonal,

(C.2) X ε=0 = g−1 f
∣∣
ε=0,

so we can trivially take the square root as the square root of the components,

(C.3)
p

X ε=0 =
√

g−1 f
∣∣
ε=0.

To calculate the first order part, we introduce a trial 4 x 4 matrix X̃ with 16 independent

components and write the square root of X as,

(C.4)
p

X ε=1 =
p

X ε=0 +εX̃ .

We then solve the first order equation for the 16 components,

(C.5) X −
(p

X ε=1
)
.
(p

X ε=1
)
= 0,
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and substitute into (C.4) to obtain the expression for the square root under perturbative

expansion. To extend to second order, we write

(C.6)
p

X ε=2 =
p

X ε=1 +ε2 X̃ ,

and again solve the equation,

(C.7) X −
(p

X ε=2
)
.
(p

X ε=2
)
= 0,

for the components of the matrix X̃ and substitute into (C.6) to obtain the desired

expression. This algorithm can then be extended to arbitary order. As a sanity check,

once we have reached the order we require, we calculate,

(C.8) X −
(p

X ε=n
)
.
(p

X ε=n
)
=O (n+1),

and if the right hand side satisfies the relation in (C.8) then we have successfully

calculated the square root.
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D
FUNCTIONS IN THE EQUATION OF MOTION FOR S

In this appendix we present exact expressions of the coefficients in the equation of motion

for S, given by 5.32, in the three different regimes for the parameter E as outlined in

section 5.2.

D.0.0.1 Case 1: E À 1

A =
9κm2M2

pΓ0a2

2k4 , H0B =
9κm2M2

pa2(Γ̇0 +5HΓ0)

2k4 , H2
0C =

3
p
κm2M2

pΓ
2
0aH

J1ξk2 , D = 3m2Γ0a2ρ

2k4 ,

(D.1) H0F =−27
p
κm2Γ2

0a5H2ρ

J1ξk6 .

D.0.0.2 Case 2: E ¿ 1

A =
3J1

p
κξam2M2

p

4Hk2

H0B =
3m2ξ

[
2J1κ

3/2M2
p +2κM2

pa(J̇1 +5J1H)+p
κa2(2J̇1M2

pH+8J1M2
pH2 + J1ρ

]
8aH2k2

(D.2) H2
0C = 1

2
m2M2

pΓ0, D = J1ξm2aρ
4
p
κHk2 , H0F = 3J1ξm2a3ρ

4
p
κ k2 .

D.0.0.3 Case 3: k → 0

A =
J1m2M2

paξ

4
p
κH

, H0B =
m2ξ

[
2J1κM2

p +2
p
κM2

pa(J̇1 +5J1H)+a2(2J̇1M2
pH+8J1H2M2

p + J1ρ)
]

8
p
κaH2
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D =
[
2J1κ

2M2
p +2κ3/2M2

pa(J̇1 +3HJ1)+ J1
p
κa3Hρ+ J1a4H2ρ+κa2(2J̇1M2

pH+4J1M2
pH2 + J1ρ)

]
× m2ξρ

24κ5/2M2
paH3

(D.3) H2
0C = 1

2
m2M2

pΓ0, H0F = J1ξm2a3ρ

4κ3/2 .
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