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Abstract

Non-perturbative Methods in Quantum Field Theories

by Péter Mati

The non-perturbative aspects of quantum field theories (QFT) seem to be indispensable

to understand the qualitative behaviour of strongly interacting physical systems. In my

thesis we are going to discuss two different non-perturbative approach. One of them is the

2PI (Two-Particle Irreducible) functional technique combined with the Dyson-Schwinger

equation. Essentially, it is based on resumming a particular class of Feynman diagrams,

in a well-controlled, systematic way. This is going to be applied to the Bloch-Nordsieck

model (at zero and finite temperature) which can be considered as the low frequency limit

of Quantum Electrodynamics. The second is the Functional (or Exact) Renormalisation

Group (FRG) approach. Here, the Wilsonian idea is used: by integrating out the rapid

degrees of freedom, an effective description of the theory is obtained, which is proved

useful in the investigation of the phase diagram and critical behaviour of the system

under consideration. We will explore the fixed point structure of the O(N) model in

various dimensions.
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Chapter 1

Introduction

The subatomic particles behave in such ways that seem completely bizarre from the

human perspective, and at some point we even lose our intuition based on everyday

classical physics. To understand contemporary theoretical physics R. P. Feynman said

once: ”If you want to learn about nature, to appreciate nature, it is necessary to under-

stand the language that she speaks in”. The mathematical model was manifested under

the name of Quantum Field Theory (QFT) and has proved to be the most successful

strategy in the description of elementary particle interactions, and as such is regarded

as a fundamental part of modern theoretical physics. In most textbooks the emphasis is

on the effectiveness of the theory, which at present essentially means perturbative QFT.

Undoubtedly an extraordinary success was achieved by the perturbative description of

quantum electrodynamics and of the Standard Model of electroweak interactions, the

theoretical predictions are in an impressive agreement with the experimental results.

However, one must not consider PT as the fundamental definition of QFT, rather it

must be looked at a systematic technique to approximate the full theory taking into ac-

count the errors in a controlled way. It is well known that everything that can be done in

the framework of free field theory is mathematically correct. Once we want to introduce

interactions between fields things are getting complicated. In fact, we do not at present

have a rigorously defined interacting quantum field theory for a four-dimensional space-

time, although there are such theories in lower dimensions (conformal field theories).

One short way to put the main difficulty is to say that the central theoretical object of a

quantum field theory, the functional integral [9] has at present no rigorous mathematical

definition, except in special or simple cases such as non-interacting theories. However,

perturbation theory can give us an efficient and conceptually meaningful technique for

calculating physically interesting quantities, but in return one needs to partially give up

the rigour (and comfort) that mathematics provide.

The following sections in the Introduction are based on [1–5]. The structure of this

1
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chapter is as follows. First we discuss PT in nutshell, then we proceed to the concept

of renormalisation. At the end of the chapter we give a very brief introduction to the

basic concepts in QFT. The outline of the thesis is given in the last section.

1.1 Perturbation Theory

In quantum theory, we typically solve a problem by finding the states of definite energy

and their corresponding values of energy, i.e. we diagonalise the Hamiltonian of the

system. Unfortunately, in most of the cases we are unable to perform this operation

exactly. But let us assume that our Hamiltonian H can be written in the following way:

H = H0 +Hint, (1.1)

where both of the operators are hermitian of course, and we can look at the term Hint

as a perturbation term which depends on a coupling constant (Hint = gH ′int). The

time evolution operators that are generated by the unperturbed and the perturbed

Hamiltonian, respectively, read:

U0(t) = e−iH0t, (1.2)

U(t) = e−iHt. (1.3)

At this point it is convenient to switch to the interaction picture in which the ob-

servables (operators) are evolving according to the unperturbed Hamiltonian (OI(t) =

U0(t)†OSU0(t)), and the state vectors evolve as follows:

ψI(t) = V (t)ψS(0), V (t) ≡ U0(t)†U(t). (1.4)

Where the subscript ”S” is for the Schrödinger picture. The main advantage of the

interaction picture is that it yields the solution of the time evolution operator in terms

of a power series in the coupling constant. As a matter of fact, V (t, t′) is responsible for

the time evolution of the state vectors in the interaction picture:

ψI(t) = V (t, t′)ψI(t
′), V (t, t′) ≡ V (t)V (t′)−1. (1.5)

Now, V (t, t′) satisfies the differential equation:

i∂tV (t, t′) = HI(t)V (t, t′), (1.6)
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where HI(t) ≡ H int
I (t), i.e. the interaction part of the Hamiltonian in the interaction

picture. This differential equation is equivalent to the following integral equation:

V (t, t′) = 1− i
t∫

t′

dsHI(s)V (s, t′). (1.7)

The iterative solution of Eq. (1.7) will provide a power series in the coupling for V (t, t′).

Moreover, from this result we can extract information about the S-matrix, since it is

defined by the asymptotic limits of V (t)−1 (which are the so-called Møller operators and

make the connections between the in/out states):

Ω± = lim
t→∓∞

V (t)−1, (1.8)

and the scattering matrix is: S = Ω−Ω+ = lim
t→∞, t′→−∞

V (t, t′).

Now, it is possible to express the scattering matrix with V(t,t’) through its power series

in the coupling g.

S = lim
ε→0

lim
t→∞, t′→−∞

∞∑

n=0

(−i)n
t∫

t′

dt1

t1∫

t′

dt2...

tn−1∫

t′

dtne
−ε(|t1|+|t2|...+|tn|)HI(t1)HI(t2)...HI(tn)

= lim
ε→0

∞∑

n=0

(−i)n
n!

∞∫

−∞

dt1

∞∫

−∞

dt2...

∞∫

−∞

dtne
−ε(|t1|+|t2|...+|tn|)T (HI(t1)HI(t2)...HI(tn)) .(1.9)

The operator T (.) is the time ordering operator:

T (HI(t1)HI(t2)) = θ(t1 − t2)HI(t1)HI(t2) + θ(t2 − t1)HI(t2)HI(t1), (1.10)

where θ(t) = 1 if t > 0 and 0 otherwise. In Eq. (1.9) the factor e−ε
∑
n |tn| is called the

adiabatic switching on, and it enables us to evaluate the limits t → ∞ and t′ → −∞
term-by-term.

In QFTs the interaction Hamiltonian is defined by an integral of a Lorentz scalar (which

respects locality) over the three spatial dimensions:

HI(t) =

∫
d3xhI(x). (1.11)

Altogether one find the (formally) closed formula for the scattering matrix, which is

called the Dyson-series:

S =

∞∑

n=0

(−i)n
n!

∞∫

−∞

d4x1...

∞∫

−∞

d4xnT (hI(x1)...hI(xn)) ≡ Te−i
∫
d4xhI(x) (1.12)
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The exponential expression mathematically does not make too much sense and it is

rather formal. It is only used as shorthand notation for the Dyson-series.

The perturbation series in Eq. (1.12) in most of the cases does not converge at all, more-

over the integrals defined in each individual term by expanding the series will diverge,

too. The divergence of the integrals can be solved in the framework of renormalisation

theory, which we will consider later on. Even if we assume that each term is finite in the

series, there is still no guarantee for the series to be convergent. However, the essence of

perturbation theory tells us to not to look at the series as a whole, but rather consider

the partial sums which define effective approximations for the operator S. More pre-

cisely, the theory should generate numbers from the matrix element of the approximated

S operator which must be comparable with those that are obtained from experimental

measurements. Let us assume that we would like to compute a measurable physical

quantity Q which can be represented from the theory with the series
∞∑
n=0

qn. The most

important Ansatz here is the following: If the first few terms of
∞∑
n=0

qn decrease in mag-

nitude (that is |qn+1|/|qn| ≤ 1) as n increases, the corresponding partial sums of
∞∑
n=0

qn

is being accepted as effective approximations of the physical quantity Q. As it was men-

tioned above, even if each qn can be made finite by renormalisation procedure, it is not

sure that the terms are small. For QED it happens to be a good effective approximation,

however for the strong interaction (at low energies) it is not. A simple mathematical

example can illustrate the situation. Let us consider the following series:

∞∑

n=0

(−100)n

n!
, (1.13)

∞∑

n=0

n!

(−100)n
. (1.14)

The first one converges to e−100, however if we look at the first few partial sums they

are far away from being an acceptable approximation of the limit: 1,−99, 4901, .... The

second series in Eq. (1.13) is not convergent. However, considering the partial sums for

some lower orders it will give: 1, 0.99, 0.9902, 0.990194. This gives a nice approximation

for the integral:

∫ ∞

0
dt

100 e−t

t+ 100
= 0.99019422. (1.15)

The trick here is that one can expand 1
1+t/100 into a geometric series and evaluating

the integral term by term would generate the desired series in Eq. (1.13). However,

one should not change the order of integration with the summation since the radius of

convergence for the geometric series is |t| < 100. But if we do so, then our expression
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Figure 1.1: The partial sums of the series Eq. (1.14) is shown as a function of the
truncation order N . The black line is the numerical value of the integral Eq. (1.15).
One can see that the series provides a nice approximation up to the order of truncation

N = 268.

will diverge, however, the series
∑

n n!/(−100)n will give an excellent approximation of

the integral till the order n = 100 is reached, where the error in magnitude start to

grow. For n > 268 the terms n!/(100)n > 1, and as a consequence, the series start the

to diverge widely, providing unreliable approximations of the integral (see Fig. 1.1). It

can be shown that

∫ ∞

0
dt
xe−t

t+ x
= exxΓ(0, x), (1.16)

where Γ(0, x) is the corresponding incomplete gamma function. Hence, in general we

can say that the sum
∑

n n!/(−x)n is the asymptotic series of Eq. (1.16).

The success of this sort of perturbative analysis is two-sided. On the one hand, we can

see an astounding agreement with experimental measurements as we already mentioned

for example in QED: the accuracy that is achieved by the prediction in quantum elec-

trodynamics of the magnetic moment of the electron is one part in 1010 [6]. On the

other hand, there are serious mathematical problems: not only that the perturbation

series may not converge for most of the theories, but there are quantum field theories for

which they are not even asymptotic series and we know that they do not converge. The

convergence of the perturbative series is not the only mathematical difficulty that one

has to face in QFTs. As it was mentioned above, often each term in the Dyson-series

has an infinite value which made physicist more concerned at the time. The question

of infinities is the quantum field theory’s most notorious problem, which was addressed
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and solved by the renormalisation procedure, applied with great success firstly to QED

in the pioneering work of Dyson, Feynman, Schwinger and Tomonaga between 1947−50.

1.2 Renormalisation

1.2.1 Traditional way

In classical physics there seems to be no problem with the definition of the coupling of

the interaction, calculating from a measurement. For instance, let us consider a charged

test particle entering an electrostatic field. The force that is acting on it can be described

by the gradient of the electrostatic potential which is proportional to the inverse of the

squared distance:

F = −∇U(r) ∝ − e

r2
. (1.17)

From this, it is straightforward to express the coupling constant (i.e. the electric charge)

e = −4πε0r
2F , where we introduced the vacuum permittivity as ε0. In QFT we can

not do this so easily: one will get corrections from quantum fluctuations, and they will

depend on which energy scale our experimental measurement is performed. We can

have the following oversimplified picture in mind: every particle is surrounded by vir-

tual particles as quantum fluctuations, and when they scatter on each other the harder

the collision the deeper into the cloud of virtual particles we can see. In the following,

we are going to use the notation µ for this energy scale, and call it the renormalisation

scale. Hence, we can say that the coupling that we can calculate using our measurement

as an input is g = g(g0, µ). In the argument we have written g0, which corresponds to

the bare coupling. The bare coupling is, in fact, a parameter that we used to define our

interaction in the Lagrangian (or Hamiltonian). Our aim is to match the theoretical

parameter that we introduced, i.e. the bare coupling, to our measurement. For that

reason we must invert the relation in order to be able to predict what kind of parameter

we will need to choose in the theory to fit the measurement: g0 = g0(g, µ). Now, at

this point, we need to go back to the Dyson-series obtained from PT, Eq. (1.12). We

agreed that the interaction Hamiltonian is given as a function of the coupling. Now, as

a consequence the perturbation series is a power series in the coupling. The whole ma-

chinery can be implemented in the framework of Lagrangians and in momentum space.

Actually, the description in momentum (or Fourier) space is much more suitable since,

being a well-defined quantum number, it characterises the given quantum states. It can

be shown that each term in the perturbation series (apart from the first term of course)

contains integrals like
∞∫
k0

dkka, which may well be divergent, too. In brief this means that
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in the given order of the perturbation series a virtual excitation arises with momentum

in the [k0,∞) range, which gives a quantum correction to the quantity under consid-

eration. At this point comes the renormalisation procedure into the picture to extract

some finite answer from our formulas. First, we must get rid of the infinities, which can

be achieved in the easiest way by introducing an integral cut-off Λ as the upper limit of

the integral. If we choose to work in the real space, then this cut-off can be considered

as an inverse distance due to the definition of the de Broigle wavelength: Λ ∼ 1/a,

where a has a dimension of distance. Now, our theory can be seen as space-time was

discretised, and our whole model would have been placed on an imaginary lattice. In

fact, there exist such QFTs, where we do not need to perform this cut-off artificially,

since a natural length scale characterises our theory, such as the lattice spacing in solid

state physics or the intermolecular distance. On the contrary, if we believe that the

space-time is a continuum, truncating the upper limit is not well justified in general,

hence we need to take the limit a → 0 (or equivalently Λ → ∞), in order to obtain a

coupling which is cut-off independent. We need to mention here that there are several

regularisation techniques besides the cut-off: the Pauli-Villars regularisation introduces

a particle with huge mass that cancel the UV infinities; the recently most popular is

the gauge invariance respecting dimensional regularisation, which treats the dimension

of the space-time as a continuous variable in a way that the integral is rendered conver-

gent, and explicitly separates the singularity. For details see the reference [7], where it

is also proved that all regularisation schemes are, in fact, equivalent.

However, as it was discussed, the presence of an artificial cut-off at a given energy scale

made our theory dependent from a human choice explicitly. Nevertheless, our whole

theory based on mathematical models designed by human, but once we agreed in the

usage of one of these models to approximate the reality, we should avoid inconsistencies

coming from an explicit human choice in the framework of the chosen model. However,

it is justifiable to do so in some cases, even in QED: in the case of the Lamb shift the

electrons Compton wavelength seems to be a natural lower limit to the lowest character-

istic length scale a (cf. [8]). But in most of the cases, we cannot assume that processes at

lower length scale do not contribute, hence we need to take the continuum limit (a→ 0).

The actual procedure of getting rid of the cut-off is called the renormalisation. So, at

this point in a regularised theory we have for the coupling g0 = g0(g, µ,Λ). Now, it is

a question whether the limit limΛ→∞ can be performed at a fixed g(µ) observed at the

energy scale µ. If this limit happens to be finite, we say that the theory under consider-

ation is ”finite”, otherwise it is not. The more usual situation is to find this limit to be

infinite, like in QED. This means that in the framework of perturbative renormalisation

QED is not a well defined quantum field theory, although its experimental predictions

are incredibly accurate. So, independently from the result of the limit above, we can

say that a theory is renormalisable if that limit exists whether being finite or infinite.
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For a single coupling in the Lagrangian, Dyson formulated its criterion in the most

simple way, which is called the power-counting criterion. By dimensional analysis it is

easy to obtain the mass dimension of the coupling under consideration. Let us suppose

that our coupling has the dimension [g]. It can be shown that this interaction term is

renormalisable if [g] ≥ and non-renormalisable if [g] < 0. In fact the former situation can

be split into two classes again by considering the coupling with [g] = 0 renormalisable

and [g] > 0 super-renormalisable. The couplings with [g] < 0 are non-renormalisable

couplings, and as such, it will produce infinite many divergent terms in the perturbation

series, hence it would need infinite many counter-terms associated to these terms [7].

By infinite many, in this case, we mean infinitely many kind. The counter terms are

defined as new terms in the Lagrangian and they are responsible for the cancellation

of the infinities during the renormalisation procedure. However, one can look at these

counter terms as new extra couplings introduced in our QFT, and formulate the follow-

ing line of thought: in our theory, even if we choose some bare couplings to be zero,

the corresponding physical coupling might be non-zero. For instance, let us consider

a Lagrangian in which we define a massless particle, hence we do not include a bare

mass into our formula. However, measuring its physical mass at some momentum scale

could give us non-zero result. In this situation one can say that the particle acquires a

dynamical mass through the interaction. This means that we might need to add some

extra terms to he Lagrangian in order to make our theory successful. If we manage to do

this by including a finite number of extra terms, we can call the theory ”renormalisable”,

contrary, if we would need to include infinite many from those terms our QFT is called

”non-renormalisable”.

1.2.2 The modern approach

This final thought of the previous section leads us to the concept of renormalisation

group. The idea was first imposed by K.G. Wilson [14] (who won the Nobel prize for

it in 1982) and it goes as follows: we are not concerned about the limiting behaviour

of the coupling in the continuum, rather we will be interested in its dependence on the

scale. Let us set up the stage: we have a Lagrangian with N bare couplings G0 =

{g0
1, g

0
2, ..., g

0
N}. To do actual calculations we will need to introduce, as well, a cut-

off scale Λ in momentum space. The interactions above this energy scale are being

neglected, as it was explained above. Having defined these numbers, it is possible to

compute the physical couplings G = {g1, g2, ..., gN} at a given energy scale µ through

the relation:

G = f(G0,Λ, µ) ' G = f̂(G0, a, l). (1.18)
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Here, the variables (Λ and µ) of f have energy dimension, and they correspond, actually,

to inverse length scales: from the cut-off we have the inverse lattice spacing (Λ ∼ 1/a)

and for the arbitrary energy scale, we have an inverse arbitrary length scale (µ ∼ 1/l).

Now, we fix the bare couplings and the cut-off but we adjust µ which defines the actual

value of the physical coupling at a given energy scale. We can imagine this to happen

in an N -dimensional space, and as the µ as parameter varies, the value of the physical

coupling runs on a given trajectory embedded in RN . These trajectories are usually

called as the renormalisation group flows, with the running coupling constants, but we

will discuss this later in more detail. So, what would happen with a non-renormalisable

theory if we tried to apply the idea of the renormalisation group to it? We would start

with a Lagrangian with N couplings in it: some of them would be renormalisable, but

there must be at least one which is not. If we start to scale down the energy µ, we will find

that the physical couplings corresponding to the unrenormalisable terms are approaching

zero. So, it seems that at low energy (meaning large distances) the non-renormalisable

couplings become irrelevant. This is an incredibly important fact, because it may explain

why the QFT, that seems to describe our world (namely the Standard Model or SM),

is renormalisable. Indeed, it may well be that on extremely small distances, we would

find a world where, for example, the effect of quantum gravity would not be negligible,

but at larger distances the SM seem to be a reasonably accurate approximation of our

reality and, according to the RG, the non-renormalisable interactions will look very

weak. Wilson’s arguments show that this circumstance explains the renormalisability

of QED and other QFTs in elementary particle physics. Whatever the Lagrangian of

QED was at the fundamental scale (Λ), as long as the couplings corresponding to its

interactions are sufficiently small, it is legitimate for the theory to be described by

a renormalisable effective Lagrangian at the energies of our experiments. Of course,

it is reasonable to check the limiting behaviour of such RG running of the couplings.

Basically, we need to take two limits in Eq. (1.18), namely when µ → Λ and evidently

when µ→ 0. The first limit describes its ultraviolet limit (UV) the second the infrared

(IR) behaviour, and the limits themselves are being called the UV and IR fixed points

of the theory, respectively. The UV limit can even be taken to infinity, where for super-

renormalisable and asymptotically free theories it gives limΛ→∞G = 0, which describes

a non-interacting quantum field theory. This situation is called asymptotic freedom.

Contrary, the scenario limΛ→∞G 6= 0 defines an interacting quantum field theory in the

continuum, and it is called the asymptotic safety. The existence of such theory would

be extremely important from theoretical point of view: an interacting QFT could be

established in mathematically consistent way. Similarly, we can find free theories in the

IR limit of the non-renormalisable theories, and also of some renormalisable theories like

QED.

Wilson’s idea is not only good for treating non-renormalisable theories, but it points out
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a very deep connection with a more general phenomenon, namely the second order phase

transition. The statement in brief is the following: every second order phase transition

corresponds to an IR fixed point of the renormalisation group flow. In the following, we

are going to illustrate why. Let us shortly discuss the second order phase transition in a

ferromagnetic material, which we can define by an interacting spin lattice system with

spin up and spin down states. At temperatures above a certain point, called the Curie

temperature, the ferromagnet will not be magnetised, we call this the ordered phase.

Below this, so-called, critical point (Tc), the system will break the Z2 symmetry, and

the magnetisation of the system will point either up or down (this is the phenomenon

of spontaneous symmetry breaking). The behaviour of the magnet exactly at the fixed

point can be well characterised by the 2-point correlation function. That is, we define

a random variable at each site x of the lattice which will be denoted by S(x). It can

take a value from the set {−1, 1}, which corresponds to the up and down states. Of

course, in the symmetric phase the mean value is 〈S(x)〉 = 0. The 2-point correlation

function is 〈S(x)S(y)〉 and this quantity characterises our system the most. Away from

the critical temperature, we will find that the spins, positioned at x and y on the

lattice, will have an exponentially decaying correlation 〈S(x)S(y)〉 ∝ exp(−|x − y|/ξ),
where ξ is the correlation length. However, at the critical point it turns into a power law

〈S(x)S(y)〉 ∝ 1/|x−y|d. We call d a critical exponent (which is related to the correlation

function), and we will discuss it later on. The power law behaviour is interesting since

it means that the system is invariant under scaling transformation. That is, if we zoom

out more and more, we will find the same structure at every scale. One can imagine

this like a random fractal: we start from a larger distance, where we will find a domain

of spins pointing up, when we magnify it and take a closer look, we will find another

domain inside the previous one, which will contain spins pointing down, now we take an

even closer look and we find spins pointing to the opposite direction, and so on. In fact,

we can find the same fractal structure until we reach the natural length scale, the lattice

spacing, which will play the role of the cut-off a in this case. These scaling solutions

indeed can be described by a fixed point of the RG equation: a fixed point of a running

coupling means that its running stops somewhere. We usually describe this by the beta

function of the coupling: β(g) = µdβ/dµ. At a fixed point β(g) = 0, hence the running

coupling becomes independent of the scale at that point. If this is so, it means that

our theory is scale invariant at the critical point, and it exhibits that random fractal

structure we described above.

Now, we can see that the philosophy behind renormalisation has changed a lot since it

was first introduced.



Chapter 1. Introduction 11

1.3 Basics of the functional formalism of QFT

In this section we are going to review the functional approach to quantum field theories.

In this formalism we introduce the functional integral which is being considered as the

central object of QFT, however, at present it does not have a mathematical rigorous

definition, except in special or simple cases such as the free field theory, or when we

define our theory on a lattice. Despite the difficulties around the functional integration,

we are still able to use this tool to extract the important physics which lay behind our

theory. For the sake of simplicity, we are going to present the functional approach using

a single scalar field ϕ(x) in D dimensions, but this formalism can be generalised for an

arbitrary QFT.

The fundamental objects of a QFT are the n-point correlation functions of the quantum

fields. Sometimes the 2-point correlation functions are loosely called propagators or

Green’s functions, and throughout the thesis we are also going to use them in this

respect. These correlation functions are obtained from the weighted average of a product

of n field operators at different space-time points, taking into account all possible field

configurations. In the Euclidean formalism we define our theory in a vector space with

Euclidean metric. This transformation can be achieved by replacing the time coordinate

with a pure imaginary number, i.e. t→ −iτ , where, of course, τ is real. By doing this,

the Lorentz-invariant square of a four-vector simply changes to the length of a vector

in R4: xµx
µ = t2 − x2 → −(t2 + x2). This procedure is called the Wick-rotation, since

we rotate our real quantity from the real line to the imaginary axis in the complex

plane. In Euclidean QFT, the fields are weighted with an exponential of the action

S[ϕ] =
∫
d4xL(ϕ, ∂µϕ):

〈ϕ(x1), ϕ(x2), ..., ϕ(xn)〉 := N
∫
Dϕ(x)

n∏

i=1

ϕ(xi)e
−S[ϕ]. (1.19)

Here we introduced N as a normalisation factor. In the RHS we used the notation of

the functional integration, however the integration measure Dϕ(x) cannot be considered

as a well defined mathematical object in the continuum. Nevertheless, we have a well

established theory on lattice ([10]), so, we know that the functional integral presented

in Eq. (1.19) exist when we perform this operation with a regularised measure DRϕ(x).

In fact, we needed the Euclidean metric to make this integral numerically more control-

lable, otherwise the imaginary unit i would make this integral extremely oscillatory. The

regularised action (with DRϕ(x)) must be invariant under the symmetry transformation

U of the theory: SR[U †ϕU ] = SR[ϕ]. We must assume this to hold for the continuum

limit, too. We also need to assume that the theory that we obtained through the compu-

tation using the Euclidean metric can be analytically continued back to the Minkowski
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space.

All the correlation functions derivable from the generating functional:

Z :=

∫
Dϕe−S[ϕ]+

∫
Jϕ, (1.20)

where Jϕ ≡
∫
dDxJ(x)ϕ(x) and J(x) represents a classical source associated to the

quantum field ϕ(x). The n-point correlation functions are obtained by taking the func-

tional derivative of Z at vanishing source:

〈ϕ(x1), ϕ(x2), ..., ϕ(xn)〉 =
1

Z[0]

δnZ[J ]

δJ(x1)δJ(x2)...δJ(xn)

∣∣∣∣
J=0

. (1.21)

We are usually interested in the so-called connected n-point functions whose generator

can be obtained by taking the logarithm of Z[J ]:

W [J ] = lnZ[J ]. (1.22)

For an n-point correlation function being connected is interpreted in the sense of the

cluster decomposition theorem ([11]), which means that the function vanishes at large

space-like separations. An n-point function contains all the partitions which can be

made using the connected n-point functions:

〈ϕ(x1), ϕ(x2), ..., ϕ(xn)〉 =
∑

# of partitions

〈
n∏

i=0

ϕ(xi)

〉

con

n−i∏

j=0

〈ϕ(xj)〉con . (1.23)

Here the subscript ”con” corresponds for the connected propagators. Since in the follow-

ing we are only going to deal with connected correlators, we will neglect the superscript

from our notation. In classical mechanics, the equations of motion can be derived from

the action by the principle of stationary action. In quantum theory this is not the

case, here the amplitude of all possible trajectories is added up in the path integral.

However, if the action is replaced by the effective action, the equations of motion for

the vacuum expectation values (VEV) of the fields can be derived from the stationarity

requirement of the effective action. The effective action is defined through the Legendre

transformation1 of W [J ]:

Γ[φ] := sup
J

(∫
Jφ−W [J ]

)
. (1.24)

We will show that the variable of Γ is nothing else but the VEV of the field, 〈ϕ(x)〉 =

φ(x). Evaluating the variation of the expression in the bracket above at Jsup (which is

1The sign convention in Eq. (1.24) is usually used by the FRG community.
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the source for Eq. (1.24) being its supremum), it vanishes:

δ

δJ

(∫
Jφ−W [J ]

)∣∣∣∣
J=Jsup

= 0. (1.25)

Indeed, the variation of W [J ] by J will provide the VEV of the quantum field in the

presence of the source:

φ =
δW [J ]

δJ
=

1

Z[J ]

δZ[J ]

δJ
= 〈ϕ〉J . (1.26)

Now, we can understand the role of Γ by taking its variation respect to the classical field

φ(x) using the result above:

δΓ

δφ(x)
= J(x) +

∫

y

δJ(y)

δφ(x)
φ(y)−

∫

y

δW [J(y)]

δJ(y)

δJ(y)

δφ(x)
= J(x). (1.27)

This shows that the variation of the effective action provides the quantum equation of

motion in the presence of a classical source J . This is very similar to the action principle,

hence the name effective action, but contrary to the classical case, the equation describes

the dynamics of the VEV of the quantum field taking into account all the quantum

fluctuations.

The exact effective action can be only obtained in very special cases, therefore, we need

to rely on approximations in order to extract some results. The vertex expansion is one

of the most common form which we can use:

Γ[φ] =
∞∑

n=0

1

n!

∫
dDx1

∫
dDx2...

∫
dDxnΓ(n)(x1, x2, ..., xn)φ(x1), φ(x2), ..., φ(xn).(1.28)

We call Γn the One-Particle Irreducible (1PI) proper vertices. This name comes from

the Feynman diagrams: it can be shown that the effective action is in fact the gen-

erating functional of the 1PI n-point functions, which diagrammatically correspond to

connected graphs that remain connected by cutting any of their internal lines. We see

at the expression in Eq. (1.28) is highly non-local, although it is being thought as the

generalisation of the classical action which contains only local terms. However, we can

give a quasi-local form to Γ[φ], by expanding each VEV of the field φ(xj) (j 6= 1) around

the space-time point x1 into Taylor series:

φ(xj) = φ(x1) + ∂µφ(x1)(x1 − xj)µ +
1

2
∂µ∂νφ(x1)(x1 − xj)µ(x1 − xj)ν + ... (1.29)
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Now, we integrate out for all the space-time points xj with j ≥ 2 and ordering the

derivatives in an ascendant way. We obtain:

Γ[φ] =

∫
dDx

(
U(φ) +

1

2
Z(φ)(∂µφ)2 + Y (φ, {(∂µφ)2n}∞n=2)

)
. (1.30)

Here, we relabelled x1 to x. U(φ) and Z(φ) are analytic functions of φ, called the

effective potential and wave function renormalisation, respectively. The higher order

of the fields derivative has been collected into Y . This is the so-called derivative (or

gradient) expansion of the effective action. However, there exists a further simplification,

namely, when we assume that φ is roughly a constant in space-time, hence the derivatives

of it vanish. The equation we end up with is the following:

Γ[φ] = ΩU(φ), (1.31)

where Ω is constant, and it corresponds to the volume of the space-time on which the

integration was performed. The effective potential U(φ) can be shown to be nothing else

but the quantum generalisation of the classical potential [9]. We will use the functional

formalism introduced above throughout the next chapters.

1.4 Outline of the thesis

This work focuses on two non-perturbative techniques applied to QFTs. In Chapter 2

we will give an analysis of the IR regime of the QED. We will derive the exact solution

for the the Bloch-Nordsieck (BN) model [31, 32], using resummation techniques. The

BN model was invented to resolve the problem of the infrared catastrophe, which will be

explained in details in the next chapter. Different level of approximations are given both

at zero and at finite temperatures. It turns out that the fermionic propagator can be

given in an analytic way using the 2PI (Two-Particle Irreducible) resummation combined

with the exact Ward identities which closes the infinite tower of the hierarchical Dyson-

Schwinger equations. At finite temperature the simple 2PI formalism provides a result

which can be matched with the exact calculations by using a mapping between the

coupling constant defined in the 2PI theory (α2PI) and the exact coupling (αex). We

can use this relation to give the running of the 2PI coupling respect to the temperature,

where the a Landau pole is recovered.

In Chapter 3 a brief introduction to the Functional Renormalisation Group is given

(FRG) (cf. [92, 93]). The technique is applied to study the phase structure of the

O(N) models. A proof of the Mermin-Wagner-Hohenberg-Coleman theorem is shown in

the framework of the FRG in the Local Potential Approximation (LPA), both for finite
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and large -N . A technique using the so-called Vanishing Beta Function curves is given

in order to examine the results when the effective potential is expanded into Taylor

series. This polynomial approximation will generate ”fake” fixed points which has been

neglected so far using physical arguments. Here, we will discuss a method, which is

based more on mathematical grounds, in order to extract the physical fixed points. For

D ≤ 4 the known results are recovered for D ≥ 4 triviality is shown. In the large -N

limit for theories in dimensions 4 < D < 6 a new fixed point candidate is found, which

is currently being an up-to-date research topic [52, 53].
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Phys. Rev. D 87, 125007, e-Print: arXiv:1301.1803 [hep-th];

• Validating the 2PI resummation: The Bloch-Nordsieck example,

A. Jakovac, P. Mati,

Phys. Rev. D 90, 045038, e-Print: arXiv:1405.6576 [hep-th];

• Truncation Effects in the Functional Renormalisation Group Study of Spontaneous

Symmetry Breaking,

N. Defenu, P. Mati, I.G. Marián, I. Nándori, A. Trombettoni,

e-Print: arXiv:1410.7024 [hep-th]

The article is under publication at JHEP.

• The Vanishing Beta Function curves from the Functional Renormalisation Group,
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minor revisions were required by the referee in the first round).





Chapter 2

Exploring Quantum

Electrodynamics in the Infrared

In this chapter we are going to investigate the IR limit of Quantum Electrodynamics

which is famous of being plagued by infrared divergences. This phenomenon is known

as the ”infrared catastrophe”, but it can be found in any QFT which involves massless

fields. The development of QFTs started around 1930 with QED, therefore, in most

of the cases the subjects of the computations were electromagnetic quantities. The

methods used for the calculations were mostly the direct extension of the PT from

quantum mechanics that we discussed briefly in the last chapter. Physicist back then,

who were doing computations in QED, immediately faced infrared divergences when

calculating first order perturbative corrections to the Bremsstrahlung process, due to the

low frequency photon contributions. The core of the problem lays in the fundamental

definition of QED, namely, that we assume the existence of a free theory, i.e. the

existence of asymptotic states. However, such states are difficult to define in a theory

where we have long range interactions. As a consequence, one cannot truly define the

asymptotic states described by the Fock representation of free theory Hilbert space, on

which the PT is performed. Thus we need to search for a non-perturbative solution to

prevent these difficulties. An alternative option is provided by Bloch and Nordsieck in

1937 in their remarkable work on treating the infrared problem [31]. The divergencies

are caused by the fact that in a scattering process an infinite amount of long wavelength

photons are emitted, and these low energy excitations of the photon field are always

present around the electron in the form of a ”photon cloud”. This shows us essentially

that the observed particle is in fact very different from the one we call the bare particle:

they can be considered as dressed ”quasi particle” objects whose interactions cannot be

described through PT entirely.

In this chapter we will show the emergence of the infrared catastrophe and then we

17
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will introduce the Bloch-Nordsieck (BN) model, which was designed in order to imitate

the low energy regime of QED. In Section 2.2 we will discuss the breakdown of the PT

and then we will present the result for the fermionic propagator in the framework of

the Two-Particle Irreducible (2PI) resummation, which corresponds to a quasi particle

description. However, it is possible to obtain the exact full solution by improving the

2PI formalism using the Ward-Takahashi identities. We will give the full solution for

the BN model at finite temperature which can be obtained in a closed analytic form,

too (Sec. 2.3). In the last section of the chapter (Sec. 2.4) the 2PI resummed results are

provided at finite temperature. Interestingly, one is able to match the coupling constant

defined in the 2PI resummed theory to the full solution at finite temperature giving

rise to an interesting non-perturbative running of the 2PI coupling with temperature.

Section 2.2, 2.3 and 2.4 are based on [40], [41] and [42], respectively.

2.1 The infrared catastrophe

This section is based on Chapter 4 of [12] and Chapter 19 of [13]. In the following,

we are going to give an example of the infrared divergencies in a semi-classical model,

where the quantised electromagnetic field is interacting with a classical source. It will

be shown that the asymptotic states cannot be considered as free states, actually they

correspond to so-called coherent states. We are going to use the adiabatic switching on,

which we mentioned already in Chapter 1, but in short it means that the interaction is

being switched on only for a finite amount of time during the scattering process. We

can see that this hypothesis is already in contradiction with the nature of the long range

interactions, however this is how people usually treat the scattering processes. We are

going to work in the Fock space representation of the incoming photons and determine

the final state of the process, governed by the interaction with the classical source when

the initial state was the vacuum.

The equation of motion of the quantised electromagnetic field in the Feynman gauge has

the form:

∂µF
µν = �Aν = jν . (2.1)

Where Fµν := ∂µAν − ∂νAµ is the field strength tensor and Aµ is the photon field

operator. The solution to this equation can be obtained as:

Aµ(x) = Aµ0 +

∫
d4y G(x− y)jµ(y). (2.2)

On the RHS the term Aµ0 corresponds to the free field operator and G is the Green’s func-

tion corresponding to Eq. (2.1) and it is specified by the boundary conditions. Namely,
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we can use the advanced and retarded Green’s functions to obtain the solution:

Aµ(x) = Aµin(x) +

∫
d4y Gret(x− y)jµ(y)

= Aµout(x) +

∫
d4y Gadv(x− y)jµ(y). (2.3)

The various Green’s functions are obtained considering different integration path on the

complex plane:

Gret/adv(x) = −
∫

d4p

(2π)4

e−ipx

(p2
0 ± iε− p2)

=
1

2π
θ(±x0)δ(x2). (2.4)

The constants of the integration with subscript in and out are for the photon field before

and after the interaction with the source j, i.e. they are defined as the following limits:

lim
x0→−∞

Aµ(x) = Aµin(x),

lim
x0→∞

Aµ(x) = Aµout(x). (2.5)

We are looking for the unitary operator S that maps the in fields to the out field:

Aµout = S−1AµinS. (2.6)

We can formulate this canonical transformation between the in and out states as follows:

|out〉 = S |in〉. Now, we are interested in the probability that the final state remains the

vacuum after the interaction with the classical source j. That is, we are looking for the

probability amplitude:

〈out 0 | in 0〉 = 〈in 0|S |in 0〉 = 〈out 0|S |out 0〉 (2.7)

Now, the desired probability is p0 = |〈out 0 | in 0〉|2. The probabilities like p1, p2,etc.

(one photon, two photons, etc.) can be obtained in an analogous way. This tells us that

the operator S contains all the information about the final state.

From Eq. (2.4) we can derive the following expression:

Aµout(x) = S−1Aµin(x)S

= Aµin(x) +

∫
d4y (Gret(x− y)−Gadv(x− y)) jµ(y)

≡ Aµin(x) +

∫
d4y (G−(x− y)) jµ(y)

≡ Aµin(x) +Aµcl(x). (2.8)

Thus, it can be seen that the vector potential is a sum of an incident term and the

classical radiation emitted by the source j. Based on the canonical commutation relation
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corresponding to the vector potential, the second term in Eq. (2.8) can be rewritten as:

G−(x− y) = gµν (Gret(x− y)−Gadv(x− y)) = −i[Aµin(x), Aνin(y)]. (2.9)

And hence from Eq. (2.8):

S−1Aµin(x)S = Aµin(x)− i
∫
d4y[Aµin(x), Ain(y)j(y)]. (2.10)

The equation above can be solved for S by using the Hadamard’s lemma1 and yields:

S = e−i
∫
d4xAin(x)j(x) = e−i

∫
Aout(x)j(x). (2.11)

By decomposing the field operator into positive and negative frequency components:

Aµin(x) = A
µ(+)
in (x) +A

µ(−)
in (x). (2.12)

The commutator between the positive and the negative frequency component is the

following:

[
A
µ(−)
in (x), A

ν(+)
in (y)

]
= gµν

∫
d4k

(2π)3
e−ik(x−y)θ(k0)δ

(
k2
)
. (2.13)

Using the Baker-Campbell-Hausdorff formula2 one is able to rewrite Eq. (2.11) in terms

of the decomposed field operator (Eq. (2.12)):

S = e−i
∫
d4xA

(−)
in (x)j(x)e−i

∫
d4xA

(+)
in (x)j(x)e

1
2

∫ ∫
d4x d4y

[
A

(−)
in (y)j(y), A

(+)
in (x)j(x)

]
. (2.14)

The last exponent in the equation above can be written as:

1

2

∫ ∫
d4x d4y

[
A

(−)
in (y)j(y), A

(+)
in (x)j(x)

]
=

1

2

∫
d3k

2k0(2π)3
J∗(k) J(k)|k0=|k| , (2.15)

where we introduced J(k) as the Fourier transform (and its complex conjugate J∗) of

the classical source jµ(x). We have the following relations for J(k):

Jµ(k) = Jµ(−k), kµJ
µ = 0, (2.16)

which show the real character and the conservation of j(x). Let us decompose J(k) as

follows:

Jµ(k) = kµJl(k) + Jµtr(k), (2.17)

1eABe−A =
∞∑
n=0

1
n!

[A, [A, [...[A,B]]...]].

2eAeB = eA+B+ 1
2

[A,B] iff [A,[A,B]]=[B,[B,A]]=0.
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where Jl(k) is a scalar, hence the first term is parallel with kµ and the second term is

a space-like vector orthogonal to kµ. For example, if k = (k0,k) then we can introduce

the following space-like four-vectors ε1 = (0, e1) and ε2 = (0, e2) with e2
1 = e2

2 = 1

and e1e2 = e1k = e2k = 0. We can choose then Jµtr(k) = −∑i=1,2 Ji(k)εµi with

Ji(k) = εiJ(k). Using this decomposition for the transverse part and the fact that in

the integral of Eq. (2.15) only the light-like momenta give contributions (hence k2 = 0),

it can be shown:

J∗(k)J(k) = J∗tr(k)Jtr(k) = −
(
|J1(k)|2 + |J2(k)|2

)
. (2.18)

Therefore, Eq. (2.14) can be written in the following way:

S = e−i
∫
d4xA

(+)
in (x)j(x)e−i

∫
d4xA

(−)
in (x)j(x)e

− 1
2

∫
d3k

2k0(2π)3
(|J1(k)|2+|J2(k)|2)

. (2.19)

Now, we have obtained the desired form of the S matrix element of Eq. (2.7), and thus

we can calculate the probability of the process by taking the absolute value square of

Eq. (2.19):

p0 = |〈out 0 | in 0〉|2 = |〈in 0 |S | in 0〉|2 = e
−

∫
d3k

2k0(2π)3
(|J1(k)|2+|J2(k)|2)

. (2.20)

In fact, this can be generalised to a process with an arbitrary photon number in the

final state: the detailed derivation can be found in [12]. The corresponding probability

of emitting n photons during the process can be shown to be the following expression:

pn =
1

n!

[∫
d3q

2q0(2π)3

(
|J1(q)|2 + |J2(q)|2

)]n
e
−

∫
d3k

2k0(2π)3
(|J1(k)|2+|J2(k)|2)

. (2.21)

Let us define the average number of emitted photons by:

n̄ =

∫
d3k

2k0(2π)3

(
|J1(k)|2 + |J2(k)|2

)
. (2.22)

This enables us to identify the probability distribution defined by the emission process.

It is described by Poisson statistics:

pn =
n̄

n!
e−n̄. (2.23)

The Poission distribution claims the statistical independence of successive emissions

which also manifests in the factorised form of the scattering amplitude in the case of

n photon emission. Of course, the distribution is normalised in a way that the total

probability of emitting infinite number of photons ads up to one, hence the average

number of emitted photons is
∑

n npn = n̄.
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In the following, we are going to examine the final state. We can start from t → ∞,

when we have the vacuum of the free theory, |in 0〉, which is basically an eigenvector of

the annihilation part of the Aµin field operator with zero eigenvalue:

A
µ(+)
in (x) |in 0〉 = 0. (2.24)

Now, if we consider its relation to the out photon field operator in Eq. (2.8), we will

find:

A
µ(+)
out (x) |in 0〉 = S−1A

µ(+)
in (x)S |in 0〉 = A

µ(+)
cl (x) |in 0〉 , (2.25)

where A
µ(+)
cl (x) is the positive frequency part of the classical vector potential. So, we

found that it is an eigenstate of the out field operator, too, but not necessarily with a

zero eigenvalue (function). This we call a coherent state and it is responsible for the

Poisson photon statistics in the final state. Hence, the vacuum expectation value of the

out field yields:

〈
in 0

∣∣∣Aµ(+)
out (x)

∣∣∣ in 0
〉

= Aµcl(x). (2.26)

This last equation tells us that in the final state the field is just the classical field.

On the other hand, we can examine the amount of the average emitted radiation, which

reads as:

Ē = 〈in 0 |H(Aout) | in 0〉 =
〈
in 0

∣∣S−1H(Ain)S
∣∣ in 0

〉

=

〈
in 0

∣∣∣∣∣S
−1

∫
d3k

2k0(2π)3
k0

2∑

λ=1

aλ,†in (k)aλin(k)S

∣∣∣∣∣ in 0

〉
. (2.27)

Here, we introduced the operators a
λ,(†)
in (k), which are the annihilation and creation

operators of the state with momentum k on the Fock space defined for the incoming

photons, polarised in one of the two transverse direction λ = 1, 2. From Eq. (2.8) it

follows that they transform in the following way:

aλ,†out(k) = Saλ,†in (k)S−1 = aλ,†in (k)− iJλ(k). (2.28)

Thus, inserting this expression into Eq. (2.27) gives the average emitted energy as:

Ē =
1

2

∫
d3k

(2π)3

(
|J1(k)|2 + |J2(k)|2

)
, (2.29)

which can be shown to coincide with the emitted energy by a classical radiation (cf.

[12]). Now, we can compare this result to the emitted average number of photons in

Eq. (2.22). There is one difference between the two expressions, namely a 1/k0 factor in



Chapter 2. Exploring Quantum Electrodynamics in the Infrared 23

the integrand. Indeed, in the phase space element d3k/(2k0(2π)3) the average number

of emitted photons reads as:

dn̄ =
d3k

~k0

(
|J1(k)|2 + |J2(k)|2

)
. (2.30)

For pedagogical reasons, here we plugged back the ~ into the equation, since each photon

quanta carries ~k0 energy, otherwise, of course, it is set to one. Indeed, from Eq. (2.29)

the average emitted energy by the photons in this phase space element is:

dĒ = ~k0dn̄. (2.31)
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Figure 2.1: Possion distributions are shown for various values of the parameter n̄, the
emitted average photon number. The distribution converges to zero as n̄ grows, which

is a consequence of the diverging number of emitted soft photons.

The relation above has a very important consequence: if we have measured a finite

amount of energy for photons with very low frequency, i.e. k0 → 0, dn̄ must blow up

in order to keep the LHS finite in Eq. (2.31). This is the so-called infrared catastrophe.

Mathematically not only the average number of the emitted photons will diverge but

the Poisson distribution itself gets in trouble, too (see Fig. 2.1):

lim
n̄→∞

p0 = lim
n̄→∞

|〈0 out | 0 in〉|2 = lim
n̄→∞

e−n̄ = 0. (2.32)

As a consequence every matrix element between in-and-out states vanishes. From this

we can see that it is impossible to construct a Fock space for the out states from the in

states: there does not exist a unitary S operation which would map the two Hilbert space

onto each other. This phenomenon is due to the inequivalence of the representation of

the vacuum states, which happens naturally in a system with infinite degrees of freedom

under specific circumstances (here n̄ =∞).
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In the following section we are going to consider the infrared phenomenon in the Bloch-

Nordsieck model, which was designed to mimic the low frequency (infrared) regime of

the QED.

2.2 The Bloch-Nordsieck model

Bloch and Nordsieck developed a model (1937) for the description of the ultra low

frequency limit of the QED in order to solve the infrared problem. They have shown

that the exact solution of the model does not require perturbation theory, although

one could get back the perturbative results by expanding the analytic expression into a

power series at the end of the computation.

First, we will discuss the theory itself. The BN model is a simplification of the QED

Lagrangian, where the Dirac matrices γµ are replaced by a four-vector uµ:

L = −1

4
FµνF

µν +Ψ̄(iuµD
µ−m)Ψ, iDµ = i∂µ−eAµ, Fµν = ∂µAν−∂νAµ. (2.33)

The singled-out four-vector uµ represents the four-velocity of the fermion. The fermion

wave function here has only one component and Ψ̄ = Ψ∗. We are interested in the

fermion propagator which, in the path integral representation, has the following form

iG(x) =
〈
TΨ(x)Ψ̄(0)

〉
=

1

Z

∫
DΨ̄DΨDAµeiS[Ψ̄,Ψ,A]Ψ(x)Ψ̄(0). (2.34)

At the tree level it reads:

G0(p) =
1

uµpµ −m+ iε
. (2.35)

Since it has a single pole, there are no antiparticles in the model, and also the Feynman

propagator is the same as the retarded propagator. The lack of antiparticles also means

that all closed fermion loops are zero3. As a consequence, the photon self-energy is zero

(no vacuum polarisation), and thus the free photon propagator equals to the exact one.

In Feynman gauge therefore the exact photon propagator is

Gµν(k) =
−gµν
k2 + iε

. (2.36)

In the following we will show first that the perturbation series in the framework of the

BN model is plagued with IR divergencies, but this is the case in general for spinor

QED, too. Then we proceed with the 2PI resummation, which gives an approximate,

but non-perturbative result, free of IR divergences. Finally, we will present the solution

3This statement can be best seen in real time representation. There a chain of fermion propagators,
because of the retardation, is proportional to Θ(t1 − t2) . . .Θ(tn−1 − tn). In a closed loop tn = t1,
therefore, the product of theta functions is zero almost everywhere.
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of the Dyson-Schwinger equations with an Ansatz for the vertex function. We show that

the last method is exact and provides the same solution which is known from literature

[31, 32]. This observation, however, leads us to a proposal for how the 2PI resummation

can be improved in a generic model in order to catch the IR physics correctly.

2.2.1 The breakdown of the perturbation series

In this section we will provide the one-loop perturbative result for the fermion propagator

in the BN model. Reducing the Dirac spinor to a one component fermion is well justified,

considering the fact that all the contributions to the fermion self-energy come from ultra-

soft photons [31, 32]. Indeed, at this energy scale photons do not have enough energy

even to flip the spin of the fermion, not to mention the pair creation. Here, we are going

to work in counter-term formalism. In Feynman gauge the Lagrangian reads (using that

the photon self-energy is zero):

L = −1

2
(∂µAν)2 + Ψ̄(i∂0 −m)Ψ− eΨ̄A0Ψ + δZΨ̄i∂0Ψ− δZmmΨ̄Ψ− δeΨ̄A0Ψ. (2.37)

The fermionic part of the Lagrangian is Lorentz-covariant, therefore we can relate the

results with different uµ choice by Lorentz transformation. This makes possible to work

with u = (u0, 0, 0, 0) without loss of generality. In fact, we can perform a Lorentz-

transformation where Λu = (u0, 0, 0, 0). If uµ is a 4-velocity then u0 = 1; if it is of the

form u = (1,v), then it is u0 =
√

1− v2. After rescaling the field as Ψ → Ψ/
√
u0 and

the mass as m→ u0m, the Lagrangian reads

L = −1

4
FµνF

µν + Ψ̄(iD0 −m)Ψ. (2.38)

This is the Lagrangian which will be used mostly in this chapter later on. If necessary,

the complete u dependence can be recovered easily.

For the fermion self-energy the one-loop diagram is the bubble with the contribution:

−iΣ1loop(p0,m) = (−ie)2

∫
d4k

(2π)4
iG00(k) iG(p− k)

= −e2u2

∫
d4k

(2π)4

1

k2 + iε

1

p0 − k0 −m+ iε
. (2.39)

Here, we have a p0 dependence only, since we are working in the special reference frame

that we introduced above, and for which the product uµp
µ = p0 for every four-vector

pµ. The result will change only in its argument if we choose a different reference frame:

Σ(p0) → Σ(up). This statement holds for all the computations performed at zero tem-

perature.
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Moreover, we have wave function and mass renormalisation counter-terms

Σct(p0) = −δZp0 + δZmm. (2.40)

The complete one-loop self-energy is Σ1loop+Σct. In the calculation we have to take care

of the non-standard form of the free fermion propagator. The details of the computation

performed using dimensional regularisation (D = 3− 2ε) can be found in Appendix A,

as a result we obtain

Σ1loop(p0,m) =
α

π
(p0 −m)

[
− ln

m− p0

µ
+Dε

]
, (2.41)

where α = e2/(4π), µ is the renormalisation scale and

Dε =
1

2ε
+ 1 +

1

2
(lnπ − ΓE). (2.42)

For renormalisation, we have to subtract the divergences with the help of the counter-

terms, the finite parts are fixed by the renormalisation scheme. In the MS scheme we

choose the counter-terms to be

δZ1,MS = δZm,MS =
α

π
Dε, (2.43)

which results in

Σren
1loop(p0,m) = −α

π
(p0 −m) ln

m− p0

µ
. (2.44)

We can define a discontinuity of a function f(x) on the complex plane through the

formula

Disc
x

f(x) = lim
ε→0

f(x+ iε)− f(x− iε). (2.45)

The discontinuity of the renormalised self-energy reads

Disc
p0

Σren
1loop(p0,m) = 2α (p0 −m)Θ(p0 −m). (2.46)

For the one-loop propagator we obtain

G(p0) =
1

p0 −m− Σ(p)
=

1

p0 −m
1

1 +
α

π
ln
m− p0

µ

. (2.47)

The spectral function Discp0 iG reads

%(p0) =
Θ(p0 −m)

p0 −m
2α

(
1 +

α

π
ln
p0 −m
µ

)2

+ α2

. (2.48)
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The fermionic spectral function needs to satisfy the sum rule
∫
R dp0%(p0) = 1, which is

the consequence of the equal time anticommutation relations. This spectral function is

normalisable, since
∞∫

−∞

dp0

2π
%(p0) =

π

α
. (2.49)

However, the question of the integrability of the spectral function for the exact result

is more subtle. We will see this later on. On the other hand the one-loop result is not

reliable when | ln(p0 −m)/µ| � π
α , i.e. in the vicinity of the mass shell as well as in the

large p0 regime. The former can be considered as the fingerprint of the IR catastrophe:

the accumulation of the soft photon contributions cause a singular behaviour close to

the mass shell, hence each higher term in the perturbation series would give larger and

larger ”corrections” to the fermion propagator which would make the series to diverge

very fast. In order to have a better description of these kinematical regimes, we need

a resummation of certain class of Feynman diagrams which will be provided in the

framework of the so-called 2PI functional techniques.

2.2.2 Two-Particle Irreducible (2PI) resummation in the Bloch-Nordsieck

model

The 2PI formalism provides a consistent resummation framework known for a long time

[15]. The basic idea is to replace the free propagator in the perturbation theory with the

exact one which is approximated self-consistently with fixed-loop skeleton diagrams. The

so-defined resumed perturbation theory is renormalisable [16]-[26], and can be applied

to study different physical questions from non-equilibrium [22], [23], thermodynamics

[20], [24],[28],[29] and different systems like O(N) model [25], [26] or gauge theories [27].

Although the 2PI approximation is constructed by physical arguments, and we expect

better results (i.e. closer to the exact one) after the 2PI resummation, a priori it is

not sure that one really achieves this goal. Probably the finite lifetime effects are well

represented by 2PI resummation both in equilibrium [20] as well in non-equilibrium,

where the 2PI is close to the Boltzmann-equation approximation [30]. But if the deep

IR regime is important, where multi-particle excitations also play crucial role, the picture

is far to be so clean. To make the case even worse, in most gauge theory models there

is hard to make exact statements about the IR behaviour of the model. A detailed

discussion of the 2PI functional formalism can be found in Appendix B.

The idea is to use the exact propagators in the perturbation theory, which propagator is

determined self-consistently using skeleton diagrams as resummation patterns. The one-

loop bubble diagram in the present case generates the resummation of all the “rainbow”

diagrams. To obtain an expression for the 2PI resummation we apply the technique
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of [20]: we use the one-loop formula (2.39), interpret the appearing propagators as full

propagators, and finally perform renormalisation of the divergent parts with the same

counter-terms as in the one-loop case (the actual values will be different).

The tree level photon propagator is exact, therefore we can write

Σ(p) = −ie2

∫
d4k

(2π)4

G(p− k)

k2 + iε
. (2.50)

Using a spectral representation for the fermion propagator (using the fact that now

the Feynman propagator is the retarded one and that the fermion spectral function is

%(ω < 0) = 0) we find

Σ(p0,m) = −ie2

∞∫

0

dω

2π

∫
d4k

(2π)4

1

k2 + iε

%(ω)

p0 − k0 − ω + iε
. (2.51)

From this form it is clear that we obtain the weighted one-loop result, i.e.

Σ(p0,m) =

∞∫

0

dω

2π
%(ω)Σ1loop(p0, ω). (2.52)

Implicitly we always understood ρ(ω) to be dependent on the mass m. In particular, if

%(ω) = 2πδ(ω −m), then we get back the one-loop self-energy. At this point it is worth

to examine the UV divergence structure of the 2PI approximation. UV divergences

may occur in Eq. (2.52) for large values of ω: using Eq. (2.41) we find that the large ω

behaviour of the one-loop self-energy reads:

Σ1loop(p0, ω) =
α

π
ω

(
ln
ω

µ
−Dε

)
+
α

π

(
− ln

ω

µ
+Dε

)
p0 +O

(
p2

0

ω

)
, (2.53)

with Dε given in Eq. (2.42). Since % is integrable for large ω values, therefore, the

O(ω−1) contribution is already finite. Thus, the divergence structure of the self-energy

is A+Bp0, just like for the free case, and so the same type of counter-terms are needed,

although as a result of the resummation the values are different. This is a manifestation

of the general case of counter-term renormalisability of 2PI resummations [20].
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2.2.2.1 Analytic study of the 2PI equations

First we try to examine Eq. (2.52) with analytic methods. We differentiate it with

respect to p0 to find

∂2Σ

∂p2
0

= −α
π

∞∫

0

dω

2π

%(ω)

p0 − ω + iε
= −α

π
G. (2.54)

Since

∂Σren
1loop

∂p0
=
α

π

(
− ln

ω − p0 − iε
µ

− 1

)
,

∂2Σren
1loop

∂p2
0

= −α
π

1

p0 − ω + iε
. (2.55)

But G−1 = p0 −m− Σ, so we find for G−1:

d2G−1

dp2
0

G−1 =
α

π
. (2.56)

To solve the equation, first we should realise that the α = 0 and α 6= 0 cases are very

different. If α = 0 then (G−1)′′ = 0 and the propagator behaves as G = Z/(p0− m̃) with

some wave function renormalisation constant Z and mass m̃. This agrees with the free

case.

If α 6= 0 then we can redefine the variables with an arbitrary Ω scale as

E := Ω

√
2α

π
(m− p0), χ := −ΩG−1, (2.57)

then we find

2
d2χ

dE2
χ = 1. (2.58)

This equation does not depend on the coupling any more. The coupling constant depen-

dence shows up in the integration constants which are the manifestation of the renor-

malisation scheme. We shall also note that the equation does not give information about

the sign of E and χ, because for E → −E or χ → −χ the equation remains the same.

The chosen signs in Eq. (2.57) turn out later to be the physical choice.

We introduce

y =
dχ

dE
⇒ d2χ

dE2
=
dy

dE
=
dy

dχ

dχ

dE
= y

dy

dχ
. (2.59)

This means that we can write for y:

2yχ
dy

dχ
= 1 ⇒ y =

dχ

dE
=
√

lnχ+ y0, (2.60)
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with an integration constant y0. Therefore

χ∫

1

dχ′√
lnχ′ + y0

= E. (2.61)

There could appear an integration constant also here on the RHS: E−E0. But recalling

that E ∼ p0 −m, we see that E0 corresponds to a mass shift: if the mass remains the

tree level one, that is m, then E0 = 0.

This is the (implicit) solution of the 2PI equations. We see that for real χ the left hand

side is real and positive, moreover for χ(E = 0) = 1. The E < 0 part corresponds to

imaginary values of χ. Since the equation itself is real, if χ is a solution, then χ∗ is a

solution, too. This means that the imaginary part is in fact the (half) discontinuity of

the solution.

We see that irrespective of the value of y0, at E = 0, i.e. on the mass shell, χ = 1

and so G = −Ω finite. This yields difficulties when we try to apply renormalisation

conditions on the self-energy. Namely, if we keep the mass shell unchanged (this would

correspond to the choice of E0 above), then the renormalisation of the self-energy would

mean Σ(p0 = m) = 0 and Σ′(p0 = m) = finite. Then, however, near the mass shell

the propagator should always behave as ∼ 1/(p0 −m), i.e. infinite at the mass shell.

This means that the physical renormalisation process requires Ω→∞. In this case the

propagator behaves near the mass shell as:

G =
−Ω

1 + Ωy0

√
2α

π
(m− p0)

Ω→∞
y0=
√
π/(2α)−→ 1

p0 −m
, (2.62)

because if χ is close to 1 then the logarithmic term can be neglected in Eq. (2.61), and

we find χ = 1 + y0E.

For large values of χ, on the other hand, y0 can be neglected. Then the integral can be

evaluated as
√
π erfi(

√
lnχ) = E. (2.63)

For large χ values the expression above behaves as

χ√
lnχ

= E, for large E, χ. (2.64)

2.2.2.2 Numerical solution

Let us turn now to the numerical study of the system, based on [20] and [36]: we

determine the discontinuity of the self-energy self-consistently. The discontinuity of
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Eq. (2.52) now reads

Disc
p0

Σ(p0,m) =
α

π

p0∫

0

dω(p0 − ω)%(ω). (2.65)

Note that the upper limit of the integration goes till p0 because of the theta function

in the discontinuity of the self-energy. Knowing the discontinuity of the self-energy, we

can use the Kramers-Kronig relation to restore the complete self-energy:

Σ(p0,m) =

∞∫

−∞

dω

2π

Discω iΣ(ω,m)

p0 − ω + iε
. (2.66)

While Eq. (2.65) is a completely finite expression, in the Kramers-Kronig relation we will

find divergences. This corresponds to the divergences of the self-energies which must be

made finite by applying the appropriate counter-terms. Technically one can regularise

the integral in Eq. (2.66) and then make it finite with counter-terms, or use the (twice)

subtracted form of the Kramers-Kronig relation. To see how it works, we determine the

one-loop result from the tree level spectral function and the dimensional regularisation

of the Kramers-Kronig equations (interpreting ω →
√
ω2):

− 2αµ2ε

∫
d1−2εω

(2π)1−2ε

ω −m
p0 − ω + iε

=
α

2π
(p0 −m)

[
1

ε
− 2 ln

m− p0

µ
+ lnπ + 1

]
. (2.67)

The divergence structure is the same, and also the MS scheme result is the same as in

Eq. (2.41) (the different finite parts are due to the different regularisation method).

Now, we can set up an algorithm to solve Eq. (2.65). We choose an arbitrary spectral

function as a starting one (practically the free spectral function), then follow the steps:

step 1: compute the discontinuity of the self-energy using Eq. (2.65);

step 2: compute the complete self-energy using the Kramers-Kronig relation Eq. (2.66);

step 3: renormalise the self-energy with local counter-terms. To fix the counter-

terms we used on-mass-shell (OM) renormalisation scheme, i.e. the real part of

the self-energy at the mass shell is zero and its derivative is also zero

Re Σ(p0 = m) = 0,
dRe Σ(p0)

dp0

∣∣∣∣
p0=m

= 0. (2.68)

We note here that releasing the first condition yields a mass shift, releasing the

second condition yields a finite wave function renormalisation. But in all renor-

malisation schemes it will remain true that near the (renormalised) mass shell the

propagator behaves as G(p0 ≈ m) = ζ/(p0 −m) (ζ being a positive real number).
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step 4: construct the new spectral function from the discontinuity of the propagator

knowing the real and imaginary part of the self-energy as

%(p0) =
2 Im Σ(p0)

(p0 −m− Re Σ(p0))2 + ( Im Σ(p0))2
. (2.69)

step 5: continue with step 1 until the process converges.

Integrations in the above algorithm are performed numerically. This strategy was applied

successfully to the φ4 model in [20]. The direct application of this strategy, however,

this times fails. Numerically what we can observe is that the spectral function becomes

more and more shallow, and pointwise it goes to zero: limn→∞ %n(p0) = 0 for ∀ p0. In

order to see a convergence, we had to use a supplementary step in the iteration after

step 4:

step 4’: use a rescaling of the generated spectral function:

%(p0)→ A%(B p0), (2.70)

with appropriate A and B which can ensure convergence. These appropriate val-

ues can be found by inspection, but the actual values are not too important (we

used A = 73 and B = 11 in our numerics). In this way finally we succeeded to see

convergence in the spectral function. The numerical reason of the pointwise van-

ishing 2PI spectral function is that the exact spectral function has a discontinuity

at the mass shell, and – apart from this single point – it has always a negative

derivative. Numerically, however, we cannot have a jump, since in all regulari-

sations Eq. (2.65) yields %(p0 ≈ m) ∼ (p0 −m)n, where n ≥ 2. Since the exact

curve starts to bend downwards, the recursion tries to lower the spectral function

in order to have smaller derivative near the mass shell. Since the spectral function

has to be positive, these requirements can be satisfied only with % = 0. With the

continuous rescaling, we can achieve that the numerically badly conditioned part,

the vicinity of the mass shell, becomes smaller and smaller.

The numerical results for the real part and the discontinuity of the fermion propagator

can be seen in Fig. 2.2. In Fig. 2.3 the expected asymptotics are fitted to the numerical

result that is obtained for the fermionic propagator in Eq. (2.62) and in Eq. (2.64).

Note that since from the 2PI solution the coupling drops out, there is no need to specify

its value for the presented results. The figure also proves implicitly that the strategy

to resolve the aforementioned numerical problem with the 2PI equation was correct.

Comparing the 1-loop and the 2PI the improvement is evident: the IR problem near the
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mass shell which made the 1-loop calculation unreliable, seems to be cured. However,

even though the 2PI result behaves well in the IR it is not closer to the exact solution

which we will derive in the next section.

continuous rescaling we can achieve that the numerically
badly conditioned part, the vicinity of the mass shell,
becomes smaller and smaller.

The numerical results can be seen on Fig. 1. The ex-
pected asymptotics can be nicely identified on the calcu-
lation (cf. Figure 2). This also proves implicitly that the
strategy to resolve the aforementioned numerical problem
with the 2PI equation was correct.

If we compare the one-loop, the 2PI, and the exact
results we see that there is not too much improvement.
The IR problem near the mass shell which made the one-
loop calculation unreliable, seems to be cured, but in fact
the result is not closer to the exact one than the one-loop
result. The physics of the deep infrared photons cannot be
described by the 2PI approximation.

V. SCHWINGER-DYSON EQUATIONS
AND WARD IDENTITIES

The next level of the approximations is based on the
Schwinger-Dyson equations. For the Bloch-Nordsieck
model in Feynman gauge it, can be written as

!ðpÞ ¼ $ie2
Z d4k

ð2!Þ4 GðkÞGðp$ kÞu"""ðk;p$ k; pÞ;

(48)

where "" is the vertex function.

For the vertex function there is another exact equation,
coming from the current conservation. This results in the
Ward identity analogous to the QED case [22]

k""
"ðk;p$ k; pÞ ¼ G$1ðpÞ $G$1ðp$ kÞ: (49)

In this model, however, the vertex function is pro-
portional to u". In principle, the Lorentz index in this
model can come from u" or from any of the momenta.
But, since the fermion propagator depends on the 4-
momentum in the form u"p

", the fermion-photon vertex
does not depend on the momentum components which
are orthogonal to u". Therefore the Lorentz index which
comes from k" in fact comes from the longitudinal
part of k", i,e., proportional to u". So we can write
""ðk;p$ k; pÞ ¼ u""ðk;p$ k; pÞ.
This gives us the possibility that from theWard identities

we exactly determine the vertex function [23]. The Ward
identity for the current conservation yields then, in the case
where u ¼ ð1; 0; 0; 0Þ,

k""
"ðk;p$ k; pÞ ¼ k0"ðk;p$ k; pÞ

¼ G$1ðpÞ $G$1ðp$ kÞ"ðk;p$ k; pÞ

¼ G$1ðpÞ $G$1ðp$ kÞ
k0

: (50)

Therefore, we find

!ðpÞ¼$ie2
Z d4k

ð2!Þ4
GðkÞ
k0

Gðp$kÞðG$1ðpÞ$G$1ðp$kÞÞ:

(51)

This is an exact equation in the Bloch-Nordsieck model.
Now we will solve this equation in the renormalized
theory, and demonstrate that the solution is indeed iden-
tical with the Bloch-Nordsieck solution presented in
Sec. II.
In the second term, G$1ðp$ kÞ drops out, resulting in

an integral

$ ie2
Z d4k

ð2!Þ4
GðkÞ
k0

¼ 0; (52)

because of k0 ! $k0 symmetry. What remains is

!ðpÞ ¼ G$1ðpÞð$ie2Þ
Z d4k

ð2!Þ4
GðkÞ
k0

Gðp$ kÞ: (53)

This form is true in the original model, we shall now find
the renormalized form. First we adapt the wave-function
renormalization for the fermionic fields which changes
the bare propagator to 1=ðZp0 $ ðmþ #mÞÞ where Z ¼
1þ #Z. We will assume that the mass shell remains the
same, thenmþ#m¼Zm. The free propagator 1=ðp0 $mÞ
gets a wave-function renormalization correction factor
1=Z. We will use also the notation eb ¼ eþ #e. The full
propagator then reads
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becomes smaller and smaller.
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pected asymptotics can be nicely identified on the calcu-
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strategy to resolve the aforementioned numerical problem
with the 2PI equation was correct.

If we compare the one-loop, the 2PI, and the exact
results we see that there is not too much improvement.
The IR problem near the mass shell which made the one-
loop calculation unreliable, seems to be cured, but in fact
the result is not closer to the exact one than the one-loop
result. The physics of the deep infrared photons cannot be
described by the 2PI approximation.
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(48)

where "" is the vertex function.

For the vertex function there is another exact equation,
coming from the current conservation. This results in the
Ward identity analogous to the QED case [22]

k""
"ðk;p$ k; pÞ ¼ G$1ðpÞ $G$1ðp$ kÞ: (49)

In this model, however, the vertex function is pro-
portional to u". In principle, the Lorentz index in this
model can come from u" or from any of the momenta.
But, since the fermion propagator depends on the 4-
momentum in the form u"p

", the fermion-photon vertex
does not depend on the momentum components which
are orthogonal to u". Therefore the Lorentz index which
comes from k" in fact comes from the longitudinal
part of k", i,e., proportional to u". So we can write
""ðk;p$ k; pÞ ¼ u""ðk;p$ k; pÞ.
This gives us the possibility that from theWard identities

we exactly determine the vertex function [23]. The Ward
identity for the current conservation yields then, in the case
where u ¼ ð1; 0; 0; 0Þ,

k""
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Therefore, we find

!ðpÞ¼$ie2
Z d4k

ð2!Þ4
GðkÞ
k0

Gðp$kÞðG$1ðpÞ$G$1ðp$kÞÞ:

(51)

This is an exact equation in the Bloch-Nordsieck model.
Now we will solve this equation in the renormalized
theory, and demonstrate that the solution is indeed iden-
tical with the Bloch-Nordsieck solution presented in
Sec. II.
In the second term, G$1ðp$ kÞ drops out, resulting in

an integral

$ ie2
Z d4k

ð2!Þ4
GðkÞ
k0

¼ 0; (52)

because of k0 ! $k0 symmetry. What remains is

!ðpÞ ¼ G$1ðpÞð$ie2Þ
Z d4k

ð2!Þ4
GðkÞ
k0

Gðp$ kÞ: (53)

This form is true in the original model, we shall now find
the renormalized form. First we adapt the wave-function
renormalization for the fermionic fields which changes
the bare propagator to 1=ðZp0 $ ðmþ #mÞÞ where Z ¼
1þ #Z. We will assume that the mass shell remains the
same, thenmþ#m¼Zm. The free propagator 1=ðp0 $mÞ
gets a wave-function renormalization correction factor
1=Z. We will use also the notation eb ¼ eþ #e. The full
propagator then reads

-10

-5

 0

 5

 10

 0  0.5  1  1.5  2

R
e 

G

p0

 0

 5

 10

 15

 20

 25

 30

 0  0.5  1  1.5  2

ρ

p0

FIG. 1 (color online). The real part and discontinuity of the 2PI
propagator.

 0.01

 0.1

 1

 10

 100

 0.01  0.1  1  10

p 0
-m

G

1/(G sqrt(log(G)))
1/G

calculation

FIG. 2 (color online). The expected asymptotics plotted on
the data.
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Figure 2.2: The real part (left panel) and discontinuity (spectral function) of the 2PI
fermion propagator (right panel). The mass shell is set to m = 1.

continuous rescaling we can achieve that the numerically
badly conditioned part, the vicinity of the mass shell,
becomes smaller and smaller.

The numerical results can be seen on Fig. 1. The ex-
pected asymptotics can be nicely identified on the calcu-
lation (cf. Figure 2). This also proves implicitly that the
strategy to resolve the aforementioned numerical problem
with the 2PI equation was correct.

If we compare the one-loop, the 2PI, and the exact
results we see that there is not too much improvement.
The IR problem near the mass shell which made the one-
loop calculation unreliable, seems to be cured, but in fact
the result is not closer to the exact one than the one-loop
result. The physics of the deep infrared photons cannot be
described by the 2PI approximation.
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model in Feynman gauge it, can be written as
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Z d4k

ð2!Þ4 GðkÞGðp$ kÞu"""ðk;p$ k; pÞ;

(48)

where "" is the vertex function.

For the vertex function there is another exact equation,
coming from the current conservation. This results in the
Ward identity analogous to the QED case [22]

k""
"ðk;p$ k; pÞ ¼ G$1ðpÞ $G$1ðp$ kÞ: (49)

In this model, however, the vertex function is pro-
portional to u". In principle, the Lorentz index in this
model can come from u" or from any of the momenta.
But, since the fermion propagator depends on the 4-
momentum in the form u"p

", the fermion-photon vertex
does not depend on the momentum components which
are orthogonal to u". Therefore the Lorentz index which
comes from k" in fact comes from the longitudinal
part of k", i,e., proportional to u". So we can write
""ðk;p$ k; pÞ ¼ u""ðk;p$ k; pÞ.
This gives us the possibility that from theWard identities

we exactly determine the vertex function [23]. The Ward
identity for the current conservation yields then, in the case
where u ¼ ð1; 0; 0; 0Þ,

k""
"ðk;p$ k; pÞ ¼ k0"ðk;p$ k; pÞ

¼ G$1ðpÞ $G$1ðp$ kÞ"ðk;p$ k; pÞ

¼ G$1ðpÞ $G$1ðp$ kÞ
k0
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Therefore, we find
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ð2!Þ4
GðkÞ
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Gðp$kÞðG$1ðpÞ$G$1ðp$kÞÞ:

(51)

This is an exact equation in the Bloch-Nordsieck model.
Now we will solve this equation in the renormalized
theory, and demonstrate that the solution is indeed iden-
tical with the Bloch-Nordsieck solution presented in
Sec. II.
In the second term, G$1ðp$ kÞ drops out, resulting in

an integral

$ ie2
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ð2!Þ4
GðkÞ
k0

¼ 0; (52)

because of k0 ! $k0 symmetry. What remains is

!ðpÞ ¼ G$1ðpÞð$ie2Þ
Z d4k

ð2!Þ4
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k0

Gðp$ kÞ: (53)

This form is true in the original model, we shall now find
the renormalized form. First we adapt the wave-function
renormalization for the fermionic fields which changes
the bare propagator to 1=ðZp0 $ ðmþ #mÞÞ where Z ¼
1þ #Z. We will assume that the mass shell remains the
same, thenmþ#m¼Zm. The free propagator 1=ðp0 $mÞ
gets a wave-function renormalization correction factor
1=Z. We will use also the notation eb ¼ eþ #e. The full
propagator then reads
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Figure 2.3: The expected asymptotics plotted on the data. The green curve fits on
the small momentum regime with Eq. (2.62). The red curve shows the large momentum
behaviour of the propagator with Eq(.2.64), where χ ∝ G. Since inverting the relation
Eq. (2.64) is rather difficult, it is more convenient to give the inverse function instead,
that is why the plot is not in the form of G vs. p0 −m. Note that on the plot label G

is noted by capital G.

2.2.3 Dyson-Schwinger equations and Ward identities

Next we are going to consider the Dyson-Schwinger equation derived in Appendix D.1.

For the BN model in Feynman gauge it can be written as

Σ(p) = −ie2

∫
d4k

(2π)4
G(k)G(p− k)uµΓµ(k; p− k, p), (2.71)
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where Γµ is the vertex function (see Appendix D.2). For the vertex function there is

another exact equation, coming from the current conservation (see Appendix D.3). This

results in the Ward identity analogous to the QED case [1]:

kµΓµ(k; p− k, p) = G−1(p)− G−1(p− k). (2.72)

In this model, however, the vertex function is proportional to uµ. In principle, the

Lorentz-index in this model can come from uµ or from any of the momenta. But, since

the fermion propagator depends on the 4-momentum in the form uµp
µ, the fermion-

photon vertex does not depend on the momentum components which are orthogonal to

uµ. Therefore the Lorentz-index which comes from kµ in fact comes from the longitudinal

part of kµ, i.e. proportional to uµ. So we can write Γµ(k; p− k, p) = uµΓ(k; p− k, p).
This gives us the possibility to determine the vertex function exactly by using the Ward

identities [37]. The Ward identity for the current conservation yields then in case when

u = (1, 0, 0, 0):

kµΓµ(k; p− k, p) = k0Γ(k; p− k, p) = G−1(p)− G−1(p− k)

Γ(k; p− k, p) =
G−1(p)− G−1(p− k)

k0
. (2.73)

Therefore, we find

Σ(p0,m) = −ie2

∫
d4k

(2π)4

G00(k)

k0
G(p− k)

(
G−1(p)− G−1(p− k)

)
. (2.74)

This is an exact equation in the BN model. Now, we will solve this equation in the

renormalised theory. The finding is that the result is identical to the BN solution known

from the literature ([31, 32]).

In the second term G−1(p− k) drops out, resulting in an integral

− ie2

∫
d4k

(2π)4

G00(k)

k0
= 0, (2.75)

because of the k0 → −k0 symmetry. What remains is

Σ(p0,m) = G−1(p)(−ie2)

∫
d4k

(2π)4

G00(k)

k0
G(p− k). (2.76)

This form is true in the original model, we shall now find the renormalised form. First

we adapt the wave function renormalisation for the fermionic fields which changes the

bare propagator to 1/(Zp0 − (m + δm)) where Z = 1 + δZ. We will assume that the

mass shell remains the same, then m+ δm = Zm. The free propagator 1/(p0 −m) gets

a wave function renormalisation correction factor 1/Z. We will use also the notation
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eb = e+ δe. The full propagator then reads

G−1(p) = Z(p0 −m)− Σ(p), (2.77)

Using Eq. (2.76) we find the equation

G(p) =
ζ(p0)

p0 −m+ iε
, (2.78)

where

ζ(p0) =
1 + J(p0)

Z
and J(p0) = −ie2

b

∫
d4k

(2π)4

G(k)

k0
G(p− k). (2.79)

ζ(p0) can be interpreted as a running wave function renormalisation constant. With the

spectral representation we have:

J(p0) =

∞∫

0

dω

2π
%(ω) I1(ω−p0−iε), where I1(a) = ie2

b

∫
d4k

(2π)4

1

k2
0 − k2 + iε

1

k0

1

a+ k0
.

(2.80)

In the Appendix A we evaluate I1(p0), and we find

J(p0) =
e2
b

4π2

∞∫

−∞

dω

2π
%(ω)

[
Dε − ln

ω − p0 − iε
µ

]
. (2.81)

We plug it into Eq. (2.79), then, assuming that spectral function fulfils the sum rule,

after some algebraic manipulation we find

ζ(p0) =

1

αb
+

1

π
Dε −

1

π

∞∫

−∞

dω

2π
%(ω) ln

ω − p0 − iε
µ

Z/αb
. (2.82)

We may assume that the explicit integral is not UV divergent (it can be checked a

posteriori). Then the above equation can be made finite by requiring

1

αb
+

1

π
Dε =

1

αr
,

Z

αb
=
zr
αr
. (2.83)

where αr and zr are finite. This form can be interpreted physically as the appearance

of the renormalised coupling αr and the finite wave function renormalisation zr. We

note that the coupling constant renormalisation equation in Eq. (2.83) agrees with the

formula providing the non-perturbative coupling constant renormalisation in the O(N)
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models [38]. Now, we find

ζ(p0) =
1

zr


1− αr

π

∞∫

−∞

dω

2π
%(ω) ln

ω − p0 − iε
µ


 . (2.84)

This function depends on the arbitrary renormalisation scale µ, but the physics, of

course, must be µ independent. This can be achieved by appropriately changing the zr

and αr constant when we change µ. The µ-independence of ζ(p0) requires (using the

sum rule for %):

dζ(p0)

d lnµ
= − 1

z2
r

dzr
d lnµ


1− αr

π

∞∫

−∞

dω

2π
%(ω) ln

ω − p0 − iε
µ




− 1

zrπ

dαr
d lnµ

∞∫

−∞

dω

2π
%(ω) ln

ω − p0 − iε
µ

+
1

zr

αr
π

= 0. (2.85)

This can be satisfied if

− 1

z2
r

dzr
d lnµ

+
1

zr

αr
π

= 0,
1

z2
r

dzr
d lnµ

αr
π
− 1

zrπ

dαr
d lnµ

= 0. (2.86)

The second equation means zr = αr/α0, where α0 is a constant; the first equation then

reads

d ln zr
d lnµ

=
αr
π
⇒ dαr

d lnµ
=
α2
r

π
. (2.87)

And thus

− 1

αr(µ)
+

1

αr(µ0)
=

1

π
ln

µ

µ0
⇒ αr(µ) =

αr(µ0)

1 +
αr(µ0)

π
ln
µ0

µ

. (2.88)

What we obtained here is nothing else but the non-perturbative running of the coupling

in this model. Using the normalisability of % we finally find

ζ(p0) =
α0

π

∞∫

−∞

dω

2π
%(ω) ln

Λ

ω − p0 − iε
, Λ = µe

π
αr . (2.89)

The constant α0 and the scale Λ are renormalisation group independent quantities (i.e.

independent of the scale µ), these characterise the renormalisation scheme. The appear-

ance of a scale Λ is the manifestation of dimensional transmutation. Now, instead of

that scale Λ, it is worth to use M for which Re ζ(M) = 0. Clearly, M ≈ Λ if Λ � m.
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Then differentiating ζ with respect to p0, we find

dζ(p0)

dp0
=
α0

π

∞∫

−∞

dω

2π

%(ω)

p0 − ω + iε
= G(p0) ⇒ ζ(p0) =

α0

π

M∫

p0

dω G(ω). (2.90)

This gives finally

(p0 −m)G(p) =
α0

π

M∫

p0

dω G(ω). (2.91)

By differentiation with respect to p0 we find

(p0 −m)G′ + G = −α0

π
G ⇒ G(p) = g0(p0 −m)−1−α0

π , (2.92)

where g0 is an arbitrary constant playing the role of the wave function renormalisation

factor. This is indeed the solution of Bloch and Nordsieck [31, 32], now in terms of the

renormalised quantities. We can also compute the exact spectral function of the theory

Disc
p0

G(p) = Θ(p0 −m)
g0(1− e2iα0)

(p0 −m)1+
α0
π

. (2.93)

The discontinuity can take complex values, too, hence it is well justified to consider its

absolute value instead, which gives

ρ(p) = Θ(p0 −m)
2g0 sin(α0)

(p0 −m)1+
α0
π

. (2.94)

Interestingly, one can observe a periodic behaviour in the coupling, which is present in

the finite temperature result, too (see Section 2.3). From Eq. (2.94) we can immediately

see that it is not normalisable. The only way to achieve the sum rule is demanding

g0 → 0. But then we are faced with a 0 × ∞ expression. A possible solution is that

one should always use a regularised version of the spectral function (or propagator),

maintaining the sum rule, and only at the end of the calculation is one allowed to

release the regularisation.

The most important fact regarding the BN propagator is that all the contribution of the

quantised electromagnetic field now is being encoded in the exponent α0/π, the fermion

propagator has been dressed up with the photon cloud. The lesson of this analysis is

that the deep IR physics seems to be well described by the Dyson-Schwinger equation

supplemented with the Ward identities. As we have seen, this strategy is renormalisable

and exact in case of the Bloch-Nordsieck model. However, the vertex resummation

provided by the the procedure described above cannot be found in the case of the pure

2PI resummation, which could not give the exact solution. We can look at this new type

of resummation as an improved version of the 2PI resummation.
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In the following section we are going to present the results for the finite temperature

case of the BN model.

2.3 The Bloch-Nordsieck model at finite temperature

At finite temperature the model is studied less often. In the seminal papers of Blaizot and

Iancu [45, 46] the authors examined the large time behaviour of the fermion propagator

with the Hard Thermal Loop (HTL) improved photon propagator. Using this result,

Weldon worked out a spectral function which is valid in the vicinity of the mass shell [47].

With a different approach, Fried et al. studied the time dependence of the momentum

loss of a hard incoming fermionic particle [48]. The main goal of this section is to work

out the complete spectral function of the BN model for all momenta, and see how the

short time dynamics, resembling the T → 0 limit, goes over to the long time damping.

Because of the relative simplicity of the model, we can even give analytic solutions

for certain parameters, while for other, analytically not reachable parameter values,

we used a well controlled numerical procedure. Another goal is to extend our Dyson-

Schwinger formalism combined with Ward identities [40], which works excellently at zero

temperature, to finite temperatures. With the help of this, the complete renormalisation

process remains fully under control.

2.3.1 The finite temperature formalism

We are interested in the finite temperature fermion propagator. To determine it, we use

the real time or Keldysh formalism (for details, see [49] and Appendix C). Here, the time

variable runs over a contour containing forward and backward running sections (C1 and

C2). The propagators are subject to boundary conditions which can be expressed as the

KMS (Kubo-Martin-Schwinger) relations (see Appendix C). The physical time can be

expressed through the contour time t = T (τ). This makes possible to work with fields

living on a definite branch of the contour, Ψa(t,x) = Ψ(τa,x) where T (τa) = t, and

τa ∈ Ca for a = 1, 2; and similarly for the gauge fields. The propagators are matrices in

this notation, in particular the fermion and the photon propagator, respectively, reads

as:

iGab(x) =
〈
TCΨa(x)Ψ†b(0)

〉
,

iGµν,ab(x) = 〈TCAµa(x)Aνb(0)〉 , (2.95)

where TC denotes ordering with respect to the contour variable (contour time ordering).

For a generic propagator G11 corresponds to the Feynman propagator, and, since the
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C2 contour times are always larger than the C1 contour times, G21 = G> and G12 = G<

are the Wightman functions. The KMS relation for a bosonic/fermionic propagator

reads G12(t,x) = ±G21(t− iβ,x) which has the following solution in Fourier space (with

k = (k0,k))

iG12(k) = ±n±(k0)%(k),

iG21(k) = (1± n±)(k0)%(k), (2.96)

where

n±(k0) =
1

eβk0 ∓ 1
and %(k) = iG21(k)− iG12(k) (2.97)

are the distribution functions (Bose-Einstein (+) and Fermi-Dirac (-) statistics), and

the spectral function, respectively. It is sometimes advantageous to change to the R/A

formalism with field assignments Ψ1,2 = Ψr ± Ψa/2. Then, one has Gaa = 0 for both

the fermion and the photon propagators. The relation between the propagators in the

Keldysh formalism and the R/A propagators reads

Grr =
G21 +G12

2
, G11 = Gra +G12, % = iGra − iGar. (2.98)

The Gra propagator is the retarded, the Gar is the advanced propagator, Grr is usually

called the Keldysh propagator in the framework of the R/A formalism (not to confuse

with the propagators in the Keldysh formalism).

At zero temperature, as we could see in Section 2.2, the fermionic free Feynman propa-

gator in the BN model has a single pole which means that there are no antiparticles in

the model. Consequently, all closed fermion loops are zero, thus there is no self-energy

correction to the photon propagator at zero temperature, as we already discussed it.

The interpretation of the u parameter as the fixed four-velocity of the fermion implies

that the Bloch-Nordsieck model describes that regime where the soft photon fields do

not have energy even for changing the velocity of the fermion (no fermion recoil). This

leads to the interpretation that the fermion is a hard probe of the soft photon fields, and

as such it is not part of the thermal medium [46]. The finite temperature one-loop cor-

rection to the fermion propagator (see Appendix F) confirms this physical picture. So,

we will set G12 = 0, therefore the closed fermion loops as well as the photon self-energy

remain zero even at finite temperature. Another, mathematical reason, why we must

not consider dynamical fermions – which could show up in fermion loops – is that the

spin-statistics theorem [1] forbids a one-component dynamical fermion field.

This means that now the exact photon propagator reads in Feynman gauge at finite
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temperature

Gab,µν(k) = −gµνGab(k),

Gra =
1

k2

∣∣∣∣
k0→k0+iε

. (2.99)

And the exact photon spectral function is

%(k) = 2π sgn(k0)δ(k2). (2.100)

All other propagators can be expressed using the identities in Eq. (2.96) and in Eq. (2.98).

2.3.2 Dyson-Schwinger equations in the Bloch-Nordsieck model at fi-

nite temperature

The derivation of the Dyson-Schwinger equations at non-zero temperature can be found

in Appendix D.1 where we applied the CTP (Closed Time Path) formalism (see Ap-

pendix C). Thus, one can express the equation for the fermion self-energy with the

two-component notation as it can be seen in Fig. 2.4. In terms of analytic formulas it

reads:

Σab(x, y) = iαae
2uµ

2∑

c,d=1

∫
d4wd4z Gac(x,w)Gµνad (x, z)Γν;dcb(z;w, y), (2.101)

where αa = (−1)a+1. In Fourier space it is:

Σab(p) = iαae
2uµ

2∑

c,d=1

∫
d4k

(2π)4
Gac(p− k)Gµνad (k)Γν;dcb(k; p− k, p). (2.102)

Figure 2.4: The Dyson-Schwinger equations in real time formalism. The bold letters
for space-time points, the regular letters are the Keldysh indices and the Greek letters

denote the Lorentz indices.

This equation is the non-zero temperature equivalent of Eq. (2.71), the only difference

here is that, since we evaluate each operator on a given time contour, we need to indicate

them, thus we use the lower indices for this purpose.

The vertex function in this case can be derived in a similar manner, too (see Appendix
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D.2). The fact that the vertex function is proportional to uµ is crucial again, in order

to be able to apply the Ward identities in a way we did already in the zero temperature

computation. The derivation of Ward identities at finite temperature is a straightforward

generalisation of the formula that we have at zero temperature. This can be found in

Appendix D.3. It is easy to rewrite it in the two-component formalism, taking into

account that to satisfy the delta functions requirement the time arguments must be on

the same contour. One finds in Fourier space

kµΓµabc(k; p, q) =
[
δabG−1

bc (q)− δacG−1
bc (p)

]
(2π)4δ(k + p− q). (2.103)

In the Bloch-Nordsieck model, because of the special property of the vertex function

expressed in Eq. (D.10), the vertex function is completely determined by the fermion

propagator in the form:

Γabc(k; p, q) =
1

uk

[
δabG−1

bc (q)− δacG−1
bc (p)

]∣∣∣∣
p=q−k

, (2.104)

therefore the Dyson-Schwinger equations for the fermion propagator become closed.

We will use Feynman gauge, and denote the photon propagator as Gµν = −gµνG. Then

this closed equation can be written as

Σac(p) = −ie2U2αa

2∑

a′,b′=1

∫
d4k

(2π)4

1

uk
Gaa′(k)Gab′(p− k)

×
[
δa′b′(G−1)b′c(p)− δa′c(G−1)b′c(p− k)

]

= −ie2U2αa

[
2∑

a′=1

(G−1)a′c(p)

∫
d4k

(2π)4

1

uk
Gaa′(k)Gaa′(p− k)

− δac
∫

d4k

(2π)4

1

uk
Gaa(k)

]
,

(2.105)

where U2 = u2
0 − u2. In particular

Σ11(p) = −ie2U2

[
2∑

a′=1

(G−1)a′1(p)

∫
d4k

(2π)4

1

uk
G1a′(k)G1a′(p− k)−

∫
d4k

(2π)4

G11(k)

uk

]

Σ12(p) = −ie2U2
2∑

a′=1

(G−1)a′2(p)

∫
d4k

(2π)4

1

uk
G1a′(k)G1a′(p− k). (2.106)

Instead of G11 and G22, it is more aesthetic to work with the retarded and advanced

propagators (the relations are given in Eq. (2.98)). Since in the R/A formalism Gaa = 0,
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the retarded propagator satisfies a homogeneous self-energy relation

Gra(p) = G(0)
ra (p) +G(0)

ra (p)Σar(p)Gra(p), (2.107)

while the propagators in the 1, 2 components mix. From the definitions we easily find

Σar = Σ11 + Σ12,

Gar = G11 − G12. (2.108)

Therefore we have, using Eq. (2.106) and Eq. (2.98)

Σar(p) = J (p)G−1
ra (p)−∆M, (2.109)

where

J (p) = −ie2U2

∫
d4k

(2π)4

1

uk
(G21(k)Gra(p− k)−Gra(k)G12(p− k)) ,

∆M = −ie2U2

∫
d4k

(2π)4

G11(k)

uk
. (2.110)

One can immediately find that ∆M = 0. The photon propagator G11 is even for k → −k,

which is true in general, but now we can prove by inspecting the free propagator which

is exact in our case

iG11(k) =
i

k2 + iε
+ (n(k0) + Θ(−k0))2π sgn(k0) δ(k2). (2.111)

For the first term the k → −k symmetry is evident, in the second one we should use the

identity n(k0) + n(−k0) + 1 = 0. Therefore, with the change of the integration variable

(k → −k), the G11 propagator remains the same while uk changes sign, so ∆M changes

sign, too. As a consequence ∆M = 0.

The Bloch-Nordsieck model, as all four-dimensional interacting quantum field theories,

contains divergences. To obtain a finite result, we need wave function, mass and cou-

pling constant renormalisation. Since the above expressions have contained the original

parameters of the Lagrangian, we should rewrite them in terms of the renormalised

quantities. From now on the parameters m and e will denote the renormalised ones,

while m0 and e0 are the bare quantities. Renormalisation goes like in the zero tempera-

ture case in Section 2.2: assuming that the renormalised mass m = Zm0 where Z is the

fermion wave function renormalisation constant (this is ensured by the Ward identities)

we can write G−1
ra = Z(up−m)− Σar, and from Eq. (2.109) we find

Gra(p) =
ζ(p)

up−m, where ζ(p) =
1 + J (p)

Z
. (2.112)
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2.3.3 Calculation of J

In the expression of J in Eq. (2.110) appears G12(k). As we discussed earlier, for the

sake of physical and mathematical consistency of the model, we must assume that the

fermion describes a hard probe and is not a dynamical field, which means that we must

set G12(k) = 0. Then from Eq. (2.110) we can easily recover the zero temperature result

we found in Section 2.2. At finite temperature, we have

J (p) = −ie2U2

∫
d4k

(2π)4

1

uk
G21(k)Gra(p− k). (2.113)

Next, we prove by recursion that the solution for Gra depends solely on w = up−m. It

is true at tree level where G−1
ra = up−m. So let us assume that Gra(p) = Ḡra(up−m).

Then

J (p) = −ie2U2

∫
d4k

(2π)4

1

uk
G21(k)Ḡra(up−m− uk), (2.114)

implying J (p) = J̄ (up−m). Equation (2.112) tells us that if J depends only on up−m,

then Gra also depends only on up−m. With this statement the recursion is closed.

Since in the BN model the free photon propagator is exact, we shall write it into

Eq. (2.113). Using Eq. (2.96) for the G21 propagator, and applying the Landau pre-

scription (w → w + iε), we find

J̄ (w) = e2U2

∫
d4k

(2π)4

1

uk
(1 + n(k0))

2π

2k
(δ(k0 − k)− δ(k0 + k)) Ḡra(w − uk). (2.115)

This result, as we shall show in Section 2.3.7, is consistent with the results of [45, 46].

The integral in Eq. (2.115) can be brought to the form (see Appendix E):

J̄ (w) =
−α
π

∞∫

−∞

dq f(q, u) Ḡra(w − q), (2.116)

where α = e2/(4π) and

f(q, u) =
u0(1− v2)

2v

u0(1+v)∫

u0(1−v)

ds

us2

(
1 + n

(q
s

))
=
u0(1− v2)

2vqβ
ln
eβq/(u0(1−v)) − 1

eβq/(u0(1+v)) − 1
, (2.117)

where u = u0(1,v) and v = |v| (i.e. v is the velocity v = u/u0). The integration

variables q and s are related to the absolute value of k the angle between k and u,

respectively. At zero temperature f(q) = Θ(q). At v = 0 we find

f(q,u = 0) = 1 + n(q). (2.118)
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2.3.4 Renormalisation

In Eq. (2.116) we find ultraviolet (UV) divergences. From the expression of f(q, u)

(Eq. (2.117)) we see that for large momenta the thermal distribution functions always

decrease exponentially, thus yielding a UV finite result. So, all the UV singularity is in

the T = 0 part, discussed already in Section 2.2 and in [40].

To apply the renormalised treatment at finite temperature, we recall some results from

Section 2.2. At T = 0 Eq. (2.116) can be written in spectral representation and with

dimensional regularisation as

J̄0(w) =
−α
π

∞∫

0

dq Ḡra(w − q) =
α

π

∞∫

−∞

dw′

2π
%̄(w′)

∞∫

0

dq
1

q + w′ − w − iε

=
α

π

∞∫

−∞

dw′

2π
%̄(w′)

[
Dε − ln

w′ − w − iε
µ

]
, (2.119)

where

Dε =
1

2ε
+

1

2
ln(4π) +

1

2
P1/2 (2.120)

(P1/2 = −1.96351 is the value of the polygamma function with 0, 1/2 arguments, that is

Ψ0(1/2)).

As we discussed in the previous section, the divergent term is necessary both for the

coupling constant and for the wave function renormalisation. Repeating the procedure

of Section 2.2.3, we can write, assuming normalisability of %̄

ζ̄(w) =
1 + J̄ (w)

Z
=

4π2

e2
0

+Dε + J̄fin(w)

4π2Z

e2
0

, (2.121)

where J̄fin(w) is finite. We introduce as in Eq. (2.83)

4π2

e2
0

+Dε =
4π2

e2
,

4π2Z

e2
0

=
4π2zr
e2

, (2.122)

where zr and e now are finite (renormalised) values. Using renormalisation group in-

variance, we can write for the complete finite temperature contribution

ζ̄(w) =
ē2

4π2



∞∫

−∞

dw′

2π
%̄(w′) ln

Λ

w′ − w − iε −
∞∫

−∞

dq (f(q, u)−Θ(q)) Ḡra(w − q)


 ,

(2.123)
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where ē is a RG invariant coupling, Λ = µ exp(4π2

e2
) is the momentum scale of the

Landau-pole. Introducing for the first term in the square bracket

I(w) =

∞∫

−∞

dw′

2π
%̄(w′) ln

Λ

w′ − w − iε , (2.124)

we can express its derivative as:

I(w)

dw
= −

∞∫

−∞

dw′

2π

%̄(w′)

w − w′ + iε
= −Ḡra(w). (2.125)

The imaginary part of I(w) term is zero for w < 0, moreover for w = 0 it is negative (at

least for large Λ), while for w → −∞ it is positive. So there exists a value w = −M for

which it is zero. Then we can write:

I(w) = −
w∫

−M

dq Ḡra(q). (2.126)

The scale M replaces the scale Λ. Assuming that M � T we can change the integration

limits and integrate from −M to M in the second term in Eq.2.123, too. Then we find

ζ̄(w) = − ē2

4π2

∫
dq f(q, u) Ḡra(w − q), (2.127)

where the integral symbol means
∫

=
∫M
−M . If it does not cause problem, we will send

M →∞. The zero temperature part is the same as in Section 2.2.3.

In conclusion, by combining Eq. (2.112) with Eq. (2.127), the renormalised equation

reads:

wḠ(w) = −α
π

∫
dq f(q, u) Ḡ(w − q), (2.128)

where f(q, u) is given by Eq.((2.117)). Since this equation is linear, the same will be

true for the spectral function (with different normalisation conditions)

w%̄(w) = −α
π

∫
dq f(q, u) %̄(w − q). (2.129)

2.3.5 Zero velocity case

For v = 0, u0 = 1 we find from Eq. (2.129) and Eq. (2.118)

w%̄(w) = −α
π

∫
dq (1 + n(q))%̄(w − q). (2.130)
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By sending the limits of the integration to infinity, we realise that the integral on the

RHS is a convolution. Therefore, we change to Fourier space where it becomes a product,

and the LHS will be i∂t%̄(t). Using the Fourier transform of 1 + n(q)

∫
dw

2π
e−iwt

eβw

eβw − 1
=

−iT
2 tanh(πtT )

(2.131)

we obtain the differential equation

i∂t%̄(t) =
iTα

tanh(πtT )
%̄(t). (2.132)

This has the following solution:

%̄(t) = %̄0 (sinhπtT )α/π . (2.133)

Before we proceed, we shall discuss this result. First we can easily obtain the T = 0

result, since for t � 1
T the sinh function can be approximated linearly, and we get

%̄(t) ∼ tα/π. On the other hand this result is rather weird; it describes forever increasing

correlation instead the physically sensible loss of correlation. Since we find the same

result by performing the computation at zero temperature, this is not an artefact of the

finite temperature calculation. In accordance with Blaizot and Iancu [45, 46], we should

not consider this expression as the physical response function. Mathematically, we can

argue that we are not in the physically sensible analytic domain, the time dependent

spectral function is not square-integrable for a real α value, as it should be. We must

therefore go over to the physical analytic domain, where the Fourier-transformation is

well defined.

For the analytic continuation we consider Eq. (2.182) valid as long as it yields sensible

formulae, which is the case for complex α values. With this assumption the spectral

function in the Fourier space will be an analytic function in α. For real α values the

spectral function will be interpreted as an analytic continuation. We will see that this

procedure indeed provides sensible results.

To perform the inverse Fourier transformation on %̄(t) in Eq. (2.182), we apply Laplace

transformation. With s± = ±iw we find

∞∫

−∞

dt eiwt%̄(t) =

∞∫

0

dt e−s−t%̄(t) +

∞∫

0

dt e−s+t%̄(−t) = %̄+(s−) + (−1)α/π%̄+(s+), (2.134)
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where

%̄+(s) = %̄0

∞∫

0

dt e−st (sinhπtT )α/π = %̄0

Γ
(

1 +
α

π

)

21+α/ππT

Γ

(
βs

2π
− α

2π

)

Γ

(
1 +

βs

2π
+

α

2π

) . (2.135)

Since the gamma function satisfies Euler’s reflection formula Γ(1 − z)Γ(z) = π/sinπz,

we can write with s = ±iw:

Γ

(
βs

2π
− α

2π

)

Γ

(
1 +

βs

2π
+

α

2π

)

∣∣∣∣∣∣∣∣
s=±iw

=
π∣∣∣∣Γ

(
1 +

α

2π
+ i

βw

2π

)∣∣∣∣
2

sin

(
α

2
∓ iβw

2

) . (2.136)

To obtain the full spectral function Eq. (2.134) we need to perform the following sum,

which is done in detail in Appendix E:

π∣∣∣∣Γ
(

1 +
α

2π
+ i

βw

2π

)∣∣∣∣
2


 1

sin
(
α
2 − i

βw
2

) +
(−1)α/π

sin
(
α
2 + iβw2

)


 =

2eiα/2eβw/2 sinα

cosh(βw)− cosα
.

(2.137)

Thus, we get the following expression for the spectral function:

%̄∗(w) = %̄0
2eiα/2β sinα eβw/2

cosh(βw)− cosα

1∣∣∣∣Γ
(

1 +
α

2π
+ i

βw

2π

)∣∣∣∣
2 . (2.138)

Here, we can see that we obtained a complex valued function. This was the case at zero

temperature, too (cf. Eq. (2.93)). We can get rid of the phase factor eiα/2 by taking the

absolute value %̄ = |%̄∗|. Then, we get for the (real) spectral function

%̄(w) =
Nαβ| sinα| eβw/2
cosh(βw)− cosα

1∣∣∣∣Γ
(

1 +
α

2π
+ i

βw

2π

)∣∣∣∣
2 , (2.139)

where Nα is a normalisation factor which incorporates the constant %̄0, and its precise

numerical value can be determined by the sum rule

∫
dw

2π
%̄(w) = 1. (2.140)

In Fig. 2.5 we can see the shape of the spectral function for different α = e2/4π values

and for different temperatures.
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(iii) For the case of large values of w, which is equiva-
lent to the small temperature case, we can use the
asymptotic form of the ! function for complex
arguments with large absolute value:

!ðxÞ ¼ e$xxxðx$1=2 þOðx$3=2ÞÞ: (58)

Then we find, up to normalization factors,

"%ð!w & 1Þ ' e!w

cosh ð!wÞ
1

w1þ"
#
!!!!T!0

#ðwÞw$1$"
#:

(59)

This is the well-known exact solution by Bloch and
Nordsieck at zero temperature. Note that the #
function came out correctly from the formula. At
finite but small temperatures, for negative argu-
ments we observe exponential decrease.
This form also shows how at zero temperature we
obtain zero wave function renormalization factor.
The normalization factor [cf. (55)] is proportional
to !, while the asymptotic form is ð!wÞ$1$"

#. Then
approaching zero temperature we obtain T

"
#w$1$"

#,
which means a renormalization factor vanishing
as 'T

"
# for T ! 0.

(iv) Now let us consider the w ! 0 limit, i.e., the
vicinity of the mass shell. We can expand "% into
power series

"%ðwÞ ¼ 4 "%ð0ÞCT2

ðw$ CTÞ2 þ ð4C $ 1ÞC2T2 þOðw3Þ ;

(60)

where

1

C
¼ 1

2
þ 2

1$ cos"
þ 1

#2 $
2

"
1þ "

2#

#
; (61)

and $ðaÞ is the digamma function. The maximum
of this function is at CT; the width is

CT
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4C$1 $ 1

p
. Since, however, the function is

not symmetric, these parameters cannot be inter-
preted as a thermal mass and thermal width. For
that we need to examine the real time dependence.

(v) For the real time dependence we use the fact that,
according to (55), %ðpÞ ¼ !f0ð!ðp0 $mÞÞ, which
means that %ðtÞ ¼ e$imt ~f0ðTtÞ. Omitting the oscil-
lating phase [i.e., if we consider the envelope of
%ðtÞ], we recover the Fourier transform of f0.
The real time dependence obtained from the inverse
Fourier transformation of (55) differs from (51).
This is because we performed an analytic continu-
ation to the physically sensible analytic domain. The
numerical inverse Fourier transform of the normal-
ized spectral function [and, because iGraðtÞ ¼
#ðtÞ%ðtÞ, for t > 0 this is also the real time depen-
dence of the retarded Green’s function] can be seen
in Fig. 3.
At small times we expect to recover the zero
temperature result. Indeed, we observe "%ðtÞ¼
ð1$AðTtÞ"=#Þe$imt asymptotic form (for " ¼ 0:5,
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(iii) For the case of large values of w, which is equiva-
lent to the small temperature case, we can use the
asymptotic form of the ! function for complex
arguments with large absolute value:

!ðxÞ ¼ e$xxxðx$1=2 þOðx$3=2ÞÞ: (58)

Then we find, up to normalization factors,

"%ð!w & 1Þ ' e!w

cosh ð!wÞ
1

w1þ"
#
!!!!T!0

#ðwÞw$1$"
#:

(59)

This is the well-known exact solution by Bloch and
Nordsieck at zero temperature. Note that the #
function came out correctly from the formula. At
finite but small temperatures, for negative argu-
ments we observe exponential decrease.
This form also shows how at zero temperature we
obtain zero wave function renormalization factor.
The normalization factor [cf. (55)] is proportional
to !, while the asymptotic form is ð!wÞ$1$"

#. Then
approaching zero temperature we obtain T

"
#w$1$"

#,
which means a renormalization factor vanishing
as 'T

"
# for T ! 0.

(iv) Now let us consider the w ! 0 limit, i.e., the
vicinity of the mass shell. We can expand "% into
power series

"%ðwÞ ¼ 4 "%ð0ÞCT2

ðw$ CTÞ2 þ ð4C $ 1ÞC2T2 þOðw3Þ ;

(60)

where

1

C
¼ 1

2
þ 2

1$ cos"
þ 1

#2 $
2

"
1þ "

2#

#
; (61)

and $ðaÞ is the digamma function. The maximum
of this function is at CT; the width is

CT
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4C$1 $ 1

p
. Since, however, the function is

not symmetric, these parameters cannot be inter-
preted as a thermal mass and thermal width. For
that we need to examine the real time dependence.

(v) For the real time dependence we use the fact that,
according to (55), %ðpÞ ¼ !f0ð!ðp0 $mÞÞ, which
means that %ðtÞ ¼ e$imt ~f0ðTtÞ. Omitting the oscil-
lating phase [i.e., if we consider the envelope of
%ðtÞ], we recover the Fourier transform of f0.
The real time dependence obtained from the inverse
Fourier transformation of (55) differs from (51).
This is because we performed an analytic continu-
ation to the physically sensible analytic domain. The
numerical inverse Fourier transform of the normal-
ized spectral function [and, because iGraðtÞ ¼
#ðtÞ%ðtÞ, for t > 0 this is also the real time depen-
dence of the retarded Green’s function] can be seen
in Fig. 3.
At small times we expect to recover the zero
temperature result. Indeed, we observe "%ðtÞ¼
ð1$AðTtÞ"=#Þe$imt asymptotic form (for " ¼ 0:5,
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(A) (B)

Figure 2.5: (A) The exact, normalised spectral function at v = 0. Common features
are the dominantly exponential decrease for w → −∞, power law decrease ∼ w−1−α/π
for w →∞ and at the peak at finite curvature ∼ α. (B) The temperature dependence
of the spectral function at v = 0 and α = 0.5. In the limit T → 0 it is singular at the

point w = 0.

To discuss this result we make the following observations:

• %̄(w) is a function of βw only, which is understandable, since there is no other scale

in the system which could form a dimensionless combination.

• For α→ 0, we find
eβw/2| sinα|

cosh(βw)− cosα
→ 2πδ(w), (2.141)

so we recover the free case. It is interesting, that this behaviour periodically returns

for α = 2πn.

• For large values of w which is equivalent to the small temperature case we can use

the asymptotic form of the Γ function for complex arguments with large absolute

value:

Γ(x) = e−xxx
(
x−1/2 +O(x−3/2)

)
. (2.142)

Then we find, up to normalisation factors

%̄(βw � 1) ∼ eβw

cosh(βw)

1

w1+α
π

T→0−→ Θ(w)w−1−α
π . (2.143)

This is the well-known exact solution by Bloch and Nordsieck at zero temperature.

Note that the Θ function came out correctly from the formula. At finite but small

temperatures, for negative arguments we observe exponential decrease.

This form also shows how at zero temperature we obtain zero wave function renor-

malisation factor that we discussed at the end of the Section 2.2.3 (g0 in Eq. (2.94)).
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The normalisation factor (c.f. Eq. (2.139)) is proportional to β, while the asymp-

totic form is (βw)−1−α
π . Then approaching zero temperature we obtain T

α
πw−1−α

π ,

which means a renormalisation factor vanishing as ∼ T α
π for T → 0.

• Now, let us consider the w → 0 limit, i.e. the vicinity of the mass shell. We can

expand %̄ into a power series

%̄(w) =
4%̄(0)CT 2

(w − CT )2 +

(
4

C
− 1

)
C2T 2 +O(w3)

, (2.144)

where
1

C
=

1

2
+

2

1− cosα
+

1

π2
Ψ2(1 +

α

2π
), (2.145)

and Ψ(x) is the digamma function. The maximum of this function is at CT ,

the width is CT
√

4C−1 − 1. Since, however, the function is not symmetric, these

parameters cannot be interpreted as a thermal mass and thermal width. For that

we need to examine the real time dependence.

• For the real time dependence we use the fact that, according to Eq. (2.139),

%(p) = βf0(β(p0 − m)), which means that %(t) = e−imtf̃0(Tt). Omitting the

oscillating phase (i.e. if we consider the envelope of %(t)), we recover the Fourier

transform of f0. The real time dependence obtained from the inverse Fourier

transform of Eq. (2.139) differs from Eq. (2.182). This is because we performed

an analytic continuation to the physically sensible analytic domain. The numer-

ical inverse Fourier transform of the normalised spectral function (and, because

iGra(t) = Θ(t)%(t), for t > 0 this is also the real time dependence of the retarded

Green’s function) can be seen in Fig. 2.6. At small times we expect to recover the

zero temperature result. Indeed, we observe %̄(t) = (1−A(Tt)α/π)e−imt asymptotic

form (for α = 0.5 this is valid up to Tt < 0.4), the power law time dependence

is characteristic to the zero temperature result. At t = 0 the value of the spec-

tral function is 1, this is because of normalisation. Note however, that naively at

zero temperature we would obtain a time dependence of the form ∼ tα/πe−imt,

describing growth of correlation and violating the normalisation condition. Inter-

preting the zero temperature result as T → 0 limit, we could cure this apparent

inconsistency of the model. At strictly T = 0 we get back the physically sensible

oscillating solution %(t) = e−imt. For large times (for tT > 1) the time dependence

is ∼ e−αTt, which agrees with [45, 46]. Comparing it to Eq. (2.182) we see that

instead of an exponential rise we found an exponential decay, but with the same

coefficient. This can be understood by noting that if we have a pole at w = w0 in

the momentum space, meaning e−iw0t exponential time dependence, this pole is

present in the spectral function in position w∗0, too. The physical retarded Green’s
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function can have poles in the lower half plane, therefore we find in our case only

the w0 = −iαT pole, giving exponential damping.

(iii) For the case of large values of w, which is equiva-
lent to the small temperature case, we can use the
asymptotic form of the ! function for complex
arguments with large absolute value:

!ðxÞ ¼ e$xxxðx$1=2 þOðx$3=2ÞÞ: (58)

Then we find, up to normalization factors,

"%ð!w & 1Þ ' e!w

cosh ð!wÞ
1

w1þ"
#
!!!!T!0

#ðwÞw$1$"
#:

(59)

This is the well-known exact solution by Bloch and
Nordsieck at zero temperature. Note that the #
function came out correctly from the formula. At
finite but small temperatures, for negative argu-
ments we observe exponential decrease.
This form also shows how at zero temperature we
obtain zero wave function renormalization factor.
The normalization factor [cf. (55)] is proportional
to !, while the asymptotic form is ð!wÞ$1$"

#. Then
approaching zero temperature we obtain T

"
#w$1$"

#,
which means a renormalization factor vanishing
as 'T

"
# for T ! 0.

(iv) Now let us consider the w ! 0 limit, i.e., the
vicinity of the mass shell. We can expand "% into
power series

"%ðwÞ ¼ 4 "%ð0ÞCT2

ðw$ CTÞ2 þ ð4C $ 1ÞC2T2 þOðw3Þ ;

(60)

where

1

C
¼ 1

2
þ 2

1$ cos"
þ 1

#2 $
2

"
1þ "

2#

#
; (61)

and $ðaÞ is the digamma function. The maximum
of this function is at CT; the width is

CT
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4C$1 $ 1

p
. Since, however, the function is

not symmetric, these parameters cannot be inter-
preted as a thermal mass and thermal width. For
that we need to examine the real time dependence.

(v) For the real time dependence we use the fact that,
according to (55), %ðpÞ ¼ !f0ð!ðp0 $mÞÞ, which
means that %ðtÞ ¼ e$imt ~f0ðTtÞ. Omitting the oscil-
lating phase [i.e., if we consider the envelope of
%ðtÞ], we recover the Fourier transform of f0.
The real time dependence obtained from the inverse
Fourier transformation of (55) differs from (51).
This is because we performed an analytic continu-
ation to the physically sensible analytic domain. The
numerical inverse Fourier transform of the normal-
ized spectral function [and, because iGraðtÞ ¼
#ðtÞ%ðtÞ, for t > 0 this is also the real time depen-
dence of the retarded Green’s function] can be seen
in Fig. 3.
At small times we expect to recover the zero
temperature result. Indeed, we observe "%ðtÞ¼
ð1$AðTtÞ"=#Þe$imt asymptotic form (for " ¼ 0:5,
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Figure 2.6: Time dependence of the (envelope of the) retarded Green’s function
(or, equivalently, the spectral function) for v = 0 at α = 0.5 on a logarithmic y-
scale. For small times we find 1 − A(Tt)α/π, corresponding to the zero temperature
time dependence. For large times it turns into an exponential damping of the form

exp(−αTt).

For the justification of the analytic continuation we also used a different method. We

expanded the t-dependent result Eq. (2.182) into power series using

(sinhx)α/π =

(
1

2

)α
π
∞∑

k=0

[
Θ(x)(−1)k

(α
π

k

)
ex(α

π
−k)e−xk

+ Θ(−x)(−1)
α
π
−k
(α
π

k

)
e−x(α

π
−k)exk

]
. (2.146)

Now, the inverse Fourier transformation acts on a pure exponential function. We use

the formula
∞∫

0

dt e±iwt−st =
1

s∓ iw (2.147)

which is true, of course, if s > 0, but this is the formula for the analytic continuation,

too. Then the result of the Fourier transformation, with appropriate normalisation to

ensure reality of % is:

%(w) ∼
∞∑

k=0

(−1)k
(α
π

k

)[
(−1)−α/2π

sk + iw
+

(−1)α/2π

sk − iw

]
, (2.148)
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where sk = πT (2k − α/π). Using the (−1)α/2π = cos α2 + i sin α
2 definition we find after

a simple calculation

%(w) ∼
∞∑

k=0

(−1)k
(α
π

k

)
sk(1 + cosα)− w sinα

s2
k + w2

, sk = πT
(

2k − α

π

)
. (2.149)

this is valid up to Tt < 0:4), the power-law time
dependence is characteristic of the zero temperature
result. At t ¼ 0 the value of the spectral function is
1; this is because of normalization. Note, however,
that naively at zero temperature we would obtain
"t!="e#imt time dependence, describing growth of
correlation and violating the normalization condi-
tion. Interpreting the zero temperature result as the
T ! 0 limit, we could cure this apparent inconsis-
tency of the model. At strictly T ¼ 0 we get back
the physically sensible oscillating solution
%ðtÞ ¼ e#imt.
For large times (for tT > 1) the time dependence is
"e#!Tt, which agrees with [7,8]. Comparing it to
(51) we see that instead of an exponential rise
we found an exponential decay, but with the same
coefficient. This can be understood by noting that if
we have a pole at w ¼ w0 in the momentum space,
meaning e#iw0t exponential time dependence, this
pole is present in the spectral function in position
w&

0, too. The physical retarded Green’s function can
have poles in the lower half plane; therefore, we
find in our case only the w0 ¼ #i!T pole, giving
exponential damping.

For the justification of the analytic continuation we also
used a different method. We expanded the t dependent
result (51) into power series using

ðsinh xÞ!=" ¼
!
1

2

"!
"
X1

k¼0

#
!ðxÞð#1Þk

!
"
k

! "
exð

!
"#kÞe#xk

þ!ð#xÞð#1Þ!"#k
!
"
k

! "
e#xð!"#kÞexk

$
: (62)

Now the inverse Fourier transformation acts on a pure
exponential function. We use the formula

Z 1

0
dte(iwt#st ¼ 1

s) iw
(63)

which is true, of course, if s > 0, but this is the formula for
the analytic continuation, too. Then the result of the
Fourier transformation is, with appropriate normalization
to ensure reality of %,

%ðwÞ "
X1

k¼0

ð#1Þk
!
"
k

! "#ð#1Þ#!=2"

sk þ iw
þ ð#1Þ!=2"

sk # iw

$
; (64)

where sk ¼ "Tð2k# !="Þ. Using the ð#1Þ!=2" ¼
cos !2 þ i sin !

2 definition, we find after a simple calculation

%ðwÞ "
X1

k¼0

ð#1Þk
!
"

k

 !
skð1þ cos!Þ # w sin!

s2k þ w2 ;

sk ¼ "T
!
2k# !

"

"
:

(65)

The sum converges fast, and we can compare the result of
the two calculations on Fig. 4. We can see that the two

methods of analytic continuation yield consistent results in
the central peak regime. To understand the small deviations
at the edges, we remark that if ! is real then "%ðt ¼ 0Þ ¼ 0
[cf. (51)]. In Fourier space this means

R
dw "%ðwÞ ¼ 0;

therefore it cannot be positive for all momenta. Using the
second method, the position where the spectral function
turns into negative values is, fortunately, at large jw=Tj
values; therefore the peak is unaffected. The only precursor
of the sign changing is the slight decrease at the edges of
the plot. In our first method we started from imaginary !
values, where lim t!0 "%ðtÞ ¼ "%0 ! 0; then the normaliza-
tion does not require negative values for "%ðwÞ.

D. Finite velocity case

If v ! 0 we find for Eq. (47) using (36) the following
formula:

w "%ðwÞ ¼ #!

"

u0ð1# v2Þ
2v

Z u0ð1þvÞ

u0ð1#vÞ

ds

s2

*
Z

dq
!
1þ n

!
q

s

""
"%ðw# qÞ: (66)

The right-hand side is again a convolution, and formally
we can use the same method as in the v ¼ 0 case. We find

@t "%ðtÞ ¼
!

"

u0ð1# v2Þ
2v

Z u0ð1þvÞ

u0ð1#vÞ

ds

s2
Ts

tanh ð"tTsÞ
"%ðtÞ (67)

which has the solution

"%ðtÞ ¼ "%ð0Þexp
#
!

"

u0ð1#v2Þ
2v

Z u0ð1þvÞ

u0ð1#vÞ

ds

s2
ln ðsinh"tTsÞ

$
:

(68)

We cannot perform analytically either the integral or its
Fourier transform. But we can determine many features by
investigating the t ! 0 and t ! 1 limits.
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Figure 2.7: Comparison of the logarithm spectral function at α = 0.5 calculated from
Eq. (2.139) and from Eq. (2.149). The two results agree well.

The sum shows a fast convergence, and we can compare the result of the two calculations

in Fig. 2.7. We can see that the two methods of analytic continuation yield consistent

result in the central peak regime. To understand the small deviations at the edges,

we remark that if α is real then %̄(t = 0) = 0 (c.f. Eq. (2.182)). In Fourier space

this means
∫
dw%̄(w) = 0, therefore it can not be positive for all momenta. Using the

second method, the position where the spectral function turns into negative values is,

fortunately, at large |w/T | values, therefore the peak is unaffected. The only precursor

of the sign changing is the slight decrease at the edges of the plot. In our first method

we started from complex α values, where lim
t→0

%̄(t) = %̄0 6= 0, then the normalisation does

not require negative values for %̄(w).

2.3.6 Finite velocity case

If v 6= 0, we find from Eq. (2.129) using Eq. (2.117) the following formula

w%̄(w) = −α
π

u0(1− v2)

2v

u0(1+v)∫

u0(1−v)

ds

s2

∫
dq (1 + n(

q

s
)) %̄(w − q). (2.150)
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The q-ntegral on the RHS is again a convolution, and formally we can use the same

method as in the v = 0 case. We find

∂t%̄(t) =
α

π

u0(1− v2)

2v

u0(1+v)∫

u0(1−v)

ds

s2

Ts

tanh(πtTs)
%̄(t), (2.151)

which has the solution

%̄(t) = %̄(0) exp


α
π

u0(1− v2)

2v

u0(1+v)∫

u0(1−v)

ds

s2
ln(sinhπtTs)


 . (2.152)

We cannot perform analytically neither the integral nor its Fourier transform. But we

can determine many features by investigating the expressions for small and large values

of t.

2.3.6.1 Small time behaviour

Since at small t we can make the approximation sinhπtTs ' πtTs, one has:

u0(1− v2)

2v

u0(1+v)∫

u0(1−v)

ds

s2
ln(sinhπtTs) ' u0(1− v2)

2v

u0(1+v)∫

u0(1−v)

ds

s2
ln(πtTs) = ln(πTt) + const.,

(2.153)

where the constant comes from the integral of s−2 ln s, and being a finite quantity, it

goes into the normalisation. After exponentiation we find

%̄(t) ∼ (Tt)α/π, (2.154)

which is the zero temperature result. So, as we expected the short time or large frequency

regime reproduces the zero temperature case, and thus it is velocity-independent.

2.3.6.2 Large time behaviour

Here, the function sinh can be approximated by the exponential, and so for large t

ln sinhπTts ' πTts− ln 2. (2.155)
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The ln 2 yields a constant factor which goes into the normalisation. The rest gives,

including the prefactors

αTt
u0(1− v2)

2v

u0(1+v)∫

u0(1−v)

ds

s
= αeff (u)Tt, (2.156)

where

αeff (u) = α
u0(1− v2)

2v
ln

(
1 + v

1− v

)
. (2.157)

From this form we obtain for the spectral function in the asymptotic limit:

%̄(t) = Ceαeff (u)Tt. (2.158)

We can easily check that lim
v→0

αeff (u) = α. Therefore, the v → 0 limit is analytic.

Since in the asymptotic time regime we simply get the substitution rule α → αeff (u)

as compared to the v = 0 case, the analysis of the vicinity of the peak of the spectral

function and the large time dependence will also remain valid in the finite velocity case

but with a modified value of the coupling. In particular, since αeff (u) < α, we obtain

a smaller damping, larger lifetime for v > 0 cases. Physically this property is the

consequence of the decreasing cross section at larger energies. In the ultrarelativistic

limit v → 1 the damping disappears.

2.3.6.3 Solution for t ∈ (0,∞)

For intermediate times we will use a well-controlled numerical method to find the spectral

function, once the analytic behaviour for large t is identified. We express the wanted

%̄u(t) as a product of the known %̄u=0(t;αeff ) (from Eq. (2.157)) and a correction factor

%̄(t) ∼ Z(t)%̄u=0(t;αeff ), (2.159)

where

Z(t) ≡

exp


αu0(1− v2)

2πv

u0(1+v)∫

u0(1−v)

ds

s2
ln(sinhπtTs)




(sinhπTt)
αeff (u)

π

. (2.160)

After a short algebra we find

Z(t) = exp




αu0(1− v2)

2πv

u0(1+v)∫

u0(1−v)

ds

s2
ln

sinhπTts

(sinhπTt)s




. (2.161)
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The ratio defined in this way is symmetric: Z(t) = Z(−t). For small t arguments it

behaves as Z(t) ∼ (Tt)
α−αeff (u)

π and, since α ≥ αeff (u), we also know that Z(t = 0) = 0.

At large t we find lim
t→∞

Z(t) = 1. We can determine it numerically, for a specific v it can

be seen in Fig. 2.8.

1. The limit t ! 0

Since lim t!0 sinh!tTs ¼ !tTs:

lim
t!0

u0ð1# v2Þ
2v

Z u0ð1þvÞ

u0ð1#vÞ

ds

s2
ln ðsinh!tTsÞ

¼ u0ð1# v2Þ
2v

Z u0ð1þvÞ

u0ð1#vÞ

ds

s
ln!tTs ¼ ln!Ttþ const;

(69)

where the constant comes from the integral of s#2 ln s.
Being a finite quantity, it goes into the normalization.
After exponentiation we find

!%ðtÞ & ðTtÞ"=!; (70)

which is the zero temperature result. So, as we expected the
short time or large frequency regime reproduces the zero
temperature case, and thus it is velocity independent.

2. The limit t ! 1
Here the sinh can be approximated by the exponential,

and so

lim
t!1

ln sinh!Tts ¼ !Tts# ln 2: (71)

The ln 2 yields a constant factor which goes into the
normalization. The rest gives, including the prefactors,

"Tt
u0ð1# v2Þ

2v

Z u0ð1þvÞ

u0ð1#vÞ

ds

s
¼ "effðuÞTt; (72)

where

"effðuÞ ¼ "
u0ð1# v2Þ

2v
ln
!
1þ v

1# v

"
: (73)

From this form we obtain for the spectral function in the
asymptotic limit

!%ðtÞ ¼ Ce"eff ðuÞTt: (74)

We can easily check that lim v!0"effðuÞ ¼ ". Therefore,
the v ! 0 limit is analytic.

Since in the asymptotic time regime we simply get the
substitution rule " ! "effðuÞ as compared to the v ¼ 0
case, the analysis of the vicinity of the peak of the spectral
function and the large time dependence will remain valid in
the finite velocity case, too, with a modified value of the
coupling. In particular, since "effðuÞ< ", we obtain a
smaller damping, larger lifetime for v > 0 cases.
Physically this property is the consequence of the decreas-
ing cross section at larger energies. In the ultrarelativistic
limit v ! 1, the damping disappears.

3. Solution for t 2 ð0;1Þ
For intermediate times we could not work out analyti-

cally the integral. Nevertheless, we have a well-controlled
numerical method to find the spectral function, once the

analytic behavior for large t is identified. We express the
wanted !%uðtÞ as a product of the known !%u¼0ðt;"effÞ and a
correction factor

!%ðtÞ & ZðtÞ !%u¼0ðt;"effÞ; (75)

where

ZðtÞ '
exp ½"u0ð1#v2Þ

2!v

Ru0ð1þvÞ
u0ð1#vÞ

ds
s2
ln ðsinh!tTsÞ)

ðsinh!TtÞ"eff ðuÞ!

: (76)

After a short algebra we find

ZðtÞ ¼ exp
#
"u0ð1# v2Þ

2!v

Z u0ð1þvÞ

u0ð1#vÞ

ds

s2
ln

sinh!Tts

ðsinh!TtÞs
$
:

(77)

The so-defined ratio is symmetric ZðtÞ ¼ Zð#tÞ. For small

t arguments it behaves as ZðtÞ & ðTtÞ"#"eff ðuÞ
! and, since

" ^ "effðuÞ, we also know Zðt ¼ 0Þ ¼ 0. At large t we
find lim t!1ZðtÞ ¼ 1. We can determine it numerically, for
a specific v it can be seen on Fig. 5.
We can numerically Fourier transform ZðtÞ, and perform

a convolution in the Fourier space with the !%v¼0ðwÞ func-
tion (51). This ensures that we use the same analytic
continuation for the different velocity cases. As a result
we obtain Fig. 6. We can observe that the peak becomes
narrower for larger velocities, corresponding to the de-
creasing "eff value. At large momentum the asymptotics
is the same for all velocities (for a given "), because the
zero temperature result is insensitive to the value of v.
Here again we can work out the real time dependence.

We now write %uðpÞ ¼ u0#fuð#ðp0u0 # pu#mÞÞ and
find

%uðtÞ ¼ e#ivpt#imt=u0 ~fu

!
tT

u0

"
: (78)

The result of the numerical inverse Fourier transform can
be seen on Fig. 7. At small times the spectral function
(retarded Green’s function) is velocity independent; this
is the zero temperature asymptotics. For large times (for
Tt>1) the time dependence turns into &e#"eff ðuÞTt.

 1

 0.01  0.1  1  10  100

Z(
t)

t

FIG. 5 (color online). The ZðtÞ function on a logarithmic plot.
For small times it is a power; for larger times it flattens out.
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Figure 2.8: The Z(t) function on a logarithmic plot. For small times it is a power,
for larger times it flattens out. The shape of the plotted curve can be considered as a

generic behaviour of Z(t) (for arbitrary v and α).

E. Discussion of earlier results

We can compare our results to the earlier results in the
literature. The long time asymptotics of the finite tempera-
ture solution of the Bloch-Nordsieck model was already
discussed in [7,8]. They followed a different, functional
approach. Still, the two methods lead to the same inter-
mediate result. Neglecting renormalization effects (which
is treated later in Refs. [7,8]), our Eq. (31) together with
(34) yields, using the notation w ¼ up"m,

wGraðwÞ ¼ e2U2
Z d4k

ð2!Þ4
1

uk
ð1þ nðk0ÞÞ !%ðkÞ !Graðw" ukÞ;

(79)

where !%ðkÞ ¼ 2!
2k ð"ðk0 " kÞ " "ðk0 þ kÞÞ is the photon

spectral function. After Fourier transformation we find
exponentiation of the real time contributions

GraðtÞ ¼ Graðt ¼ 0ÞeFðtÞ; (80)

where

FðtÞ ¼ "e2U2
Z d4k

ð2!Þ4 ð1þ nðk0ÞÞ !%ðkÞ
1" e"iukt

ðukÞ2

¼ "it"0 þ it"ðtÞ þ ln#ðtÞ; (81)

where"0,"ðtÞ, and ln#ðtÞ are real quantities, correspond-
ing to the notation of [8]. Using U2 ¼ 1 this means

"ðtÞ ¼ "e2
Z d4k

ð2!Þ4
!%ðkÞ
uk

!
1" sin ukt

ukt

"

"0 ¼ "e2
Z d4k

ð2!Þ4
!%ðkÞ
uk

# ¼ exp
#
"e2

Z d4k

ð2!Þ4 nðk0Þ
!%ðkÞ 1" cosukt

ðukÞ2
$
:

(82)

These expressions agree with Eqs. (2.24) and (2.25) of [8]
(the constant phase "0 has no physical meaning).
The analysis of this formula, however, differs in our case

and in [7,8]. We strictly restrict ourselves to the original
Bloch-Nordsieck model and use the free photon spectral
function. In Refs. [7,8], the authors used the HTL-
improved photon spectral function [cf. their Eqs. (3.1)
and (3.2)]. As it turns out, the most important contribution
comes from the small frequency limit of the continuum
(Landau damping) part. This explains why the asymptotic
time behavior differs in our case and in the case of
Refs. [7,8] [ exp ð"#effðvÞTtÞ vs exp ð"Ct ln tÞ].
In Ref. [10], Fried et al. used again a different formal-

ism. Since they examine a different physical situation, the
comparison is much more difficult. What is clear, however,
is that they also use the original version of the model, and
also find an exponentially damping solution.
It is very interesting that in [14] the authors found the

same exp ð"#Tt ln tÞ-like solution as was the case in
Refs. [7,8], although with a different line of thought.
They use the dynamical renormalization group idea [15],
where the secular terms are melted into finite time depen-
dence of the renormalized parameters. Clearly they cannot
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FIG. 7 (color online). Comparison of the real time dependence
of the retarded Green’s function (or, equivalently, the spectral
function) for zero and finite velocity at # ¼ 0:5 on the logarith-
mic y scale. The small time behavior does not change; at large
times, the exponential damping turns to exp ð"#effðuÞTtÞ.
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E. Discussion of earlier results

We can compare our results to the earlier results in the
literature. The long time asymptotics of the finite tempera-
ture solution of the Bloch-Nordsieck model was already
discussed in [7,8]. They followed a different, functional
approach. Still, the two methods lead to the same inter-
mediate result. Neglecting renormalization effects (which
is treated later in Refs. [7,8]), our Eq. (31) together with
(34) yields, using the notation w ¼ up"m,

wGraðwÞ ¼ e2U2
Z d4k

ð2!Þ4
1

uk
ð1þ nðk0ÞÞ !%ðkÞ !Graðw" ukÞ;

(79)

where !%ðkÞ ¼ 2!
2k ð"ðk0 " kÞ " "ðk0 þ kÞÞ is the photon

spectral function. After Fourier transformation we find
exponentiation of the real time contributions

GraðtÞ ¼ Graðt ¼ 0ÞeFðtÞ; (80)

where

FðtÞ ¼ "e2U2
Z d4k

ð2!Þ4 ð1þ nðk0ÞÞ !%ðkÞ
1" e"iukt

ðukÞ2

¼ "it"0 þ it"ðtÞ þ ln#ðtÞ; (81)

where"0,"ðtÞ, and ln#ðtÞ are real quantities, correspond-
ing to the notation of [8]. Using U2 ¼ 1 this means

"ðtÞ ¼ "e2
Z d4k

ð2!Þ4
!%ðkÞ
uk

!
1" sin ukt

ukt

"

"0 ¼ "e2
Z d4k

ð2!Þ4
!%ðkÞ
uk

# ¼ exp
#
"e2

Z d4k

ð2!Þ4 nðk0Þ
!%ðkÞ 1" cosukt

ðukÞ2
$
:

(82)

These expressions agree with Eqs. (2.24) and (2.25) of [8]
(the constant phase "0 has no physical meaning).
The analysis of this formula, however, differs in our case

and in [7,8]. We strictly restrict ourselves to the original
Bloch-Nordsieck model and use the free photon spectral
function. In Refs. [7,8], the authors used the HTL-
improved photon spectral function [cf. their Eqs. (3.1)
and (3.2)]. As it turns out, the most important contribution
comes from the small frequency limit of the continuum
(Landau damping) part. This explains why the asymptotic
time behavior differs in our case and in the case of
Refs. [7,8] [ exp ð"#effðvÞTtÞ vs exp ð"Ct ln tÞ].
In Ref. [10], Fried et al. used again a different formal-

ism. Since they examine a different physical situation, the
comparison is much more difficult. What is clear, however,
is that they also use the original version of the model, and
also find an exponentially damping solution.
It is very interesting that in [14] the authors found the

same exp ð"#Tt ln tÞ-like solution as was the case in
Refs. [7,8], although with a different line of thought.
They use the dynamical renormalization group idea [15],
where the secular terms are melted into finite time depen-
dence of the renormalized parameters. Clearly they cannot
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FIG. 7 (color online). Comparison of the real time dependence
of the retarded Green’s function (or, equivalently, the spectral
function) for zero and finite velocity at # ¼ 0:5 on the logarith-
mic y scale. The small time behavior does not change; at large
times, the exponential damping turns to exp ð"#effðuÞTtÞ.
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(A) (B)

Figure 2.9: Velocity dependence of the spectral function for α = 0.5. The η values are
rapidities, v = tanh η. (A) is a linear-linear plot to show that the peak region becomes
more and more peaked with increasing η (v). The log-log in (B) plot demonstrates that

the asymptotics remain the same.

We can numerically Fourier transform Z(t), and perform a convolution in the Fourier

space with the %̄v=0(w) function Eq. (2.182). This ensures that we use the same ana-

lytic continuation for the different velocity cases. As a result we obtain Fig. 2.9. We

can observe that the peak becomes narrower for larger velocities, corresponding to a

decreasing αeff value. At large momentum the asymptotics is the same for all velocities

(for a given α), because the zero temperature result is insensitive to the value of v.
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Here, again we can work out the real time dependence. We now write

%u(p) = u0βfu(β(p0u0 − pu−m)) (2.162)

and find

%u(t) = e−ivpt−imt/u0 f̃u

(
tT

u0

)
. (2.163)

E. Discussion of earlier results

We can compare our results to the earlier results in the
literature. The long time asymptotics of the finite tempera-
ture solution of the Bloch-Nordsieck model was already
discussed in [7,8]. They followed a different, functional
approach. Still, the two methods lead to the same inter-
mediate result. Neglecting renormalization effects (which
is treated later in Refs. [7,8]), our Eq. (31) together with
(34) yields, using the notation w ¼ up"m,

wGraðwÞ ¼ e2U2
Z d4k

ð2!Þ4
1

uk
ð1þ nðk0ÞÞ !%ðkÞ !Graðw" ukÞ;

(79)

where !%ðkÞ ¼ 2!
2k ð"ðk0 " kÞ " "ðk0 þ kÞÞ is the photon

spectral function. After Fourier transformation we find
exponentiation of the real time contributions

GraðtÞ ¼ Graðt ¼ 0ÞeFðtÞ; (80)

where

FðtÞ ¼ "e2U2
Z d4k

ð2!Þ4 ð1þ nðk0ÞÞ !%ðkÞ
1" e"iukt

ðukÞ2

¼ "it"0 þ it"ðtÞ þ ln#ðtÞ; (81)

where"0,"ðtÞ, and ln#ðtÞ are real quantities, correspond-
ing to the notation of [8]. Using U2 ¼ 1 this means

"ðtÞ ¼ "e2
Z d4k

ð2!Þ4
!%ðkÞ
uk

!
1" sin ukt

ukt

"

"0 ¼ "e2
Z d4k

ð2!Þ4
!%ðkÞ
uk

# ¼ exp
#
"e2

Z d4k

ð2!Þ4 nðk0Þ
!%ðkÞ 1" cosukt

ðukÞ2
$
:

(82)

These expressions agree with Eqs. (2.24) and (2.25) of [8]
(the constant phase "0 has no physical meaning).
The analysis of this formula, however, differs in our case

and in [7,8]. We strictly restrict ourselves to the original
Bloch-Nordsieck model and use the free photon spectral
function. In Refs. [7,8], the authors used the HTL-
improved photon spectral function [cf. their Eqs. (3.1)
and (3.2)]. As it turns out, the most important contribution
comes from the small frequency limit of the continuum
(Landau damping) part. This explains why the asymptotic
time behavior differs in our case and in the case of
Refs. [7,8] [ exp ð"#effðvÞTtÞ vs exp ð"Ct ln tÞ].
In Ref. [10], Fried et al. used again a different formal-

ism. Since they examine a different physical situation, the
comparison is much more difficult. What is clear, however,
is that they also use the original version of the model, and
also find an exponentially damping solution.
It is very interesting that in [14] the authors found the

same exp ð"#Tt ln tÞ-like solution as was the case in
Refs. [7,8], although with a different line of thought.
They use the dynamical renormalization group idea [15],
where the secular terms are melted into finite time depen-
dence of the renormalized parameters. Clearly they cannot
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FIG. 7 (color online). Comparison of the real time dependence
of the retarded Green’s function (or, equivalently, the spectral
function) for zero and finite velocity at # ¼ 0:5 on the logarith-
mic y scale. The small time behavior does not change; at large
times, the exponential damping turns to exp ð"#effðuÞTtÞ.
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Figure 2.10: Comparison of the real time dependence of the retarded Green’s function
(or, equivalently, the spectral function) for zero and finite velocity at α = 0.5 on loga-
rithmic y scale. The η values are rapidities, v = tanh η. The small time behaviour does
not change, at large times the exponential damping is described by exp(−αeff (u)Tt).

The result of the numerical inverse Fourier transform can be seen in Fig. 2.10. At small

times the spectral function (retarded Green’s function) is velocity independent, this is

the zero temperature asymptotics. For large times (Tt� 1) the time dependence turns

into ∼ e−αeff (u)Tt.

2.3.7 Discussion of earlier results

We can compare our results to the earlier ones in the literature. The long time asymp-

totics of the finite temperature solution of the Bloch-Nordsieck model was already dis-

cussed in [45, 46]. They followed a different, functional approach. Still, the two methods

lead to the same intermediate result. Neglecting renormalisation effects (which is treated

later in [45, 46]), our Eq. (2.112) together with Eq. (2.115) yields, using the notation

w = up−m

wGra(w) = e2U2

∫
d4k

(2π)4

1

uk
(1 + n(k0))%̄(k) Ḡra(w − uk), (2.164)
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where %̄(k) = 2π
2k (δ(k0 − k) − δ(k0 + k)) is the photon spectral function. After Fourier

transformation, we find exponentiation of the real time contributions

Gra(t) = Gra(t = 0)eF (t), (2.165)

where

F (t) = −e2U2

∫
d4k

(2π)4
(1 + n(k0))%̄(k)

1− e−iukt
(uk)2

= −itΦ0 + itΦ(t) + ln ∆(t), (2.166)

where Φ0, Φ(t) and ln ∆(t) are real quantities, corresponding to the notation of [46].

Using U2 = 1 this means

Φ(t) = −e2

∫
d4k

(2π)4

%̄(k)

uk

[
1− sinukt

ukt

]

Φ0 = −e2

∫
d4k

(2π)4

%̄(k)

uk

∆ = exp

{
−e2

∫
d4k

(2π)4
n(k0)%̄(k)

1− cosukt

(uk)2

}
. (2.167)

These expressions agree with the equations (2.24) and (2.25) of [46] (the constant phase

Φ0 has no physical meaning).

The analysis of this formula, however, differs in our case and in [45, 46]. We restrict our-

selves to the original Bloch-Nordsieck model, and used the free photon spectral function.

In [45, 46] the authors used HTL-improved photon spectral function (cf. their Eq.(3.1)

and (3.2)). As it turns out, the most important contribution comes from the small fre-

quency limit of the continuum (Landau damping) part. This explains why the asymp-

totic time behaviour differs in our case and in the case of [45, 46] ( exp(−αeff (v)Tt) vs.

exp(−Ct log t) ).

In [48] Fried et al. use again a different formalism. Since they examine a different physical

situation, the comparison is much more difficult. What is clear, however, that they also

use the original version of the model, and also find an exponentially damping solution.

It is very interesting that in [50] the authors found the same exp(−αTt log t) like so-

lution as was the case in [45, 46], although with a different line of thought. They use

the dynamical renormalisation group idea [51], where the secular terms are melted into

finite time dependence of the renormalised parameters. Clearly, they cannot consider

all photonic diagrams, only those, which contribute to the renormalisation group (RG)

equations. There, the logarithmic enhancement of the damping can be interpreted phys-

ically as an eternally growing cross section of the incoming hard particle which collects

more and more soft photons around itself. The analysis of the pure Bloch-Nordsieck

model results in a finite damping, which means that in this model the initial growth
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of the cross section eventually stops, the soft photon cloud saturates. The physical in-

terpretation of the saturation probably is that the multi-photon contributions arriving

from different space-time points become incoherent. The two scenarios, one with ever

growing photon cloud, the other with saturation, are both approximations of the real

QED (RG, HTL and free photon approximations, respectively). The question of which

one is finally manifested in QED, in particular in the ultrarelativistic limit, can be an-

swered only after a full analysis of the complete QED where all these effects are present.

In the next section we will compute the fermionic spectral function in the framework of

the 2PI formalism at finite temperature. The goal is to benchmark the results of the

2PI procedure by we comparing them to the exact ones.

2.4 Applying the 2PI technique at finite temperature

In the previous section we derived the spectral function of the BN model at finite tem-

perature exactly, and in the zero velocity case we could even obtain a closed analytic

form, consistent with the analytic solution of the zero temperature study. A natural

continuation of this analysis is to compare at finite temperature the results that we can

achieve by the using 2PI technique with those of the exact one. In Section 2.2 we found

that although the 2PI solution of the BN model is meaningful in the IR and does not

blow up like the result that we can get in PT, it does not provide a satisfactory agree-

ment with the exact one. In this section we will show that the 2PI technique does work

well in the case when we consider the problem at non-zero temperature, provided that

a rescaling of the coupling constant is done, which essentially can give us the running of

the 2PI coupling with the temperature. Being precise: there exists a mapping between

the coupling constants of the 2PI and those of the exact results in such a way that the

two spectral functions overlap almost entirely. This is a highly non-trivial result, since

the exact spectral function is an asymmetric function of the frequency, rather different

from a simple Lorentzian. The most important message towards the 2PI community is

that our result validates the 2PI approximation method at non-zero temperature and

only a finite reparametrisation of the theory is needed.

From the perturbative point of view the 2PI technique resums the two particle irre-

ducible diagrams, but the coupling constant and also the higher point functions remain

unchanged. So, for a certain 2PI diagram there exists another infinite set of diagrams

providing coupling constant modification. In the sense of the renormalisation group we

may try to take into account the sum of these diagrams effectively as a temperature

dependent (running) coupling constant. Since we now know the value of an observable

exactly (the electron spectral function for any frequency and temperature in a given
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gauge), the best method to extract the temperature dependent coupling is to compare

the 2PI and the exact results, which will be done in the present section.

2.4.1 The 2PI equations at finite temperatures

We are working again in the real time formalism, hence the Green’s functions in this

picture are going to have a matrix structure like in the previous section. We choose the

R/A basis for the matrix representation to calculate the retarded self-energy.

Figure 2.11: The diagrammatic representation of the self-energy. The wavy line
corresponds to the free (here also the exact) photon propagator with a loop momentum
k and the double solid line is for the exact fermion propagator with momentum p− k.

Both the polarization and the R/A indices are shown.

First, we are going to consider the one-loop correction then, we present a derivation of

the 2PI resummed spectral function at finite temperature. To evaluate its self-consistent

equations we will use a numerical approach which is similar to those we discussed above

for the T = 0 case. The integral equation for the retarded self-energy at non-zero

temperature in Feynman gauge reads as:

Σar(p) = ie2

∫
d4k

(2π)4
[Grr(k)Gra(p− k) +Gra(k)Grr(p− k)] . (2.168)

Where G and G stands for the propagator of the photon and the fermion, respectively.

In Fig. 2.11 we can see the pictorial representation of the fermion self-energy using

Feynman diagrams. Now, taking the discontinuity of the self-energy we obtain:

Disc
p0

Σar(p) = e2

∫
d4k

(2π)4
[Grr(k)ρf (p− k) + ργ(k)Grr(p− k)] . (2.169)

Here, ρf and ργ are the spectral functions of the fermion and the photon fields, re-

spectively. In general, we can express the rr propagators with the spectral function

and the distribution function of the corresponding spin statistics (the Bose-Einstein and

Fermi-Dirac distributions, respectively):

Grr(p) =

(
1

2
− nf (p0)

)
ρf (p), (2.170)

Grr(p) =

(
1

2
+ nb(p0)

)
ργ(p). (2.171)
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When inserting these expressions into Eq. (2.169), we get

Disc
p0

Σar(p) = e2

∫
d4k

(2π)4

[(
1

2
+ nb(k0)

)
ργ(k)ρf (p− k)

+ ργ(k)

(
1

2
− nf (p0 − k0)

)
ρf (p− k)

]

= e2

∫
d4k

(2π)4
(1 + nb(k0)− nf (p0 − k0)) ργ(k)ρf (p− k). (2.172)

In the last step of Eq. (2.172) we get the most general form of the discontinuity in terms

of the spectral functions.

2.4.2 One-loop correction at T 6= 0

For the detailed computation of the one-loop correction, see Appendix F, here we are

only going to present the results.

In the case of the one-loop calculation we have to insert the spectral function of the

free theory, for both the fermion and gauge fields, into Eq. (2.172). By performing this

substitution, our equation reads as

Disc
p0

Σar(p) = e2

∫
d4k

(2π)4
(1 + nb(k0)− nf (p0 − k0))

×2π sgn k0δ(k
2
0 − k2)2πδ (u0(p0 − k0)− u(p− k)−m)

=
e2

8π3

∞∫

0

dkk2

1∫

−1

dx
(2π)2

2|k| [(1 + nb(|k|)− nf (p0 − |k|))

× δ (u0p0 − up− u0|k| − |u||k|x−m) +

+ (nb(|k|) + nf (p0 + |k|)) δ (u0p0 − up + u0|k| − |u||k|x−m)] .

(2.173)

Here, we introduced the variable x which stands for the cosine of the angle between the

two spatial three-vectors u and k. For the sake of simplicity in the following we are

going to use the notations pu ≡ p0u0 − pu for the scalar product in Minkowski space

and k ≡ |k|, u ≡ |u|.
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First, we perform the angular integration for x:

Disc
p0

Σar(p) =
e2

4πu


Θ(pu−m)

pu−m
u−u0∫

pu−m
u+u0

dk (1 + nb(k)− nf (p0 − k))

+ Θ(m− pu)

m−pu
u−u0∫

m−pu
u+u0

dk (nb(k) + nf (p0 + k))


 . (2.174)

Now, we are going to use the fact that the fermion in this system is a hard probe, thus

it is not part of the heat-bath [45, 46]. This manifests already in Eq. (2.172) where we

need to set the Fermi-Dirac distribution to zero; otherwise we would face inconsistencies,

when we would try to take the T → 0 limit (see Appendix F). Thus, likewise in the exact

calculation in Section 2.3

nf ≡ 0 (in the framework of the BN model). (2.175)

In that case Eq. (F.10) simplifies in the following way:

Disc
p0

Σar(p) =
e2

4πu

pu−m
u−u0∫

pu−m
u+u0

dk (1 + nb(k)) . (2.176)

By evaluating the integral, one gets a result consistent with the T = 0 case:

Disc
p0

Σar(p) =
e2

2π
Θ(pu−m)(pu−m) +

Te2

4πu
ln


1− e−β

pu−m
u−u0

1− e−β
pu−m
u+u0


 . (2.177)

This gives the desired result for the T → 0 limit, namely

Disc
p0

Σar(p) =
e2

2π
Θ(pu−m)(pu−m). (2.178)

2.4.3 Non-zero temperature calculations in the 2PI framework

Now, we are going to derive the 2PI resummed result for the finite temperature the-

ory. Let us consider Eq. (2.107) and Eq. (2.168). Instead of calculating the one-loop

correction by inserting free propagators, we are going to use the self-consistent fermion

propagator, defining in this way a self-consistent system of integral equations. We stick

to the physical picture that the fermion is not part of the thermal medium cf. Eq. (2.175).

Using the calculation in Eq. (2.172) we arrive to an expression for the discontinuity of
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the self-energy for a general fermion propagator:

Disc
p0

Σar(p) = e2

∫
d4k

(2π)4
(1 + nb(k0)) ργ(k)ρf (p− k)

= e2

∫
d4k

(2π)4
(1 + nb(k0))

2π

2k
(δ(k0 − k)− δ(k0 + k))ρ̄f (up− uk −m).

(2.179)

Here, we used the free photon propagator as above and for the general spectral function

of the fermion we introduced the notation ρf (p) = ρ̄f (up−m). After some algebra, we

find

Disc
p0

Σar(p) =
e2

8π2

∞∫

−∞

dk

1∫

−1

dxknb(k)ρ̄f (w + (u0 + ux)k). (2.180)

Here, we defined w := up −m, and x represents the angle between the spatial parts of

kµ and uµ, so xku is the scalar product of two three-dimensional vectors like in the one-

loop calculation. Actually, this can be written in a more elegant, and for the numerical

implementation, a more useful way. Hence, we introduce the variable z as the argument

of the function ρ̄f :

Disc
p0

Σar(p) =
e2

8π2

1

u

∞∫

−∞

dk

w+(u0+u)k∫

w+(u0−u)k

dzρ̄f (z)nb(k) =
e2

8π2

1

u

∞∫

−∞

dzρ̄f (z)

z−w
u0+u∫

z−w
u0−u

dknb(k).

(2.181)

In the case in which the length of the 3-velocity tends to zero, that is u→ 0, we have

Disc
p0

Σar(p0) =
α

π

∞∫

−∞

dzρ̄f (z)(p0 −m− z)(1 + nb(p0 −m− z)). (2.182)

For u 6= 0 we obtain

Disc
p0

Σar(w) =
α

2π

∞∫

−∞

dzρ̄f (z)
T

u
ln

1− e−β
z−w
u0−u

1− e−β
z−w
u0+u

. (2.183)

We set m = 0, this can be done without the loss of generality since the two expressions

in Eq. (2.182) and Eq. (2.183) depends on the variable w = up −m only. That means

the theory is not sensitive where the mass-shell is being placed; it can be anywhere on

the real line.
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2.4.4 2PI results

We are implementing the same numerical method that we used for the zero-temperature

case (step 1 - step 5 in Section 2.2.2.2), using the finite temperature form of Eq.

(2.65), which is given in Eqs. (2.182) and (2.183). In the numerical procedure, we fix

the value of the coupling and the numerical value of the temperature and perform the

iteration until it converges. The physical temperature is a dimensionful quantity; there-

fore, dimensionless quantities must depend on the temperature only through the other

dimensionful parameter. If there were not for the renormalisation, then the only quan-

tity, which can make the temperature dimensionless, would be w, and the results would

depend on βw. However, the renormalisation leads to the appearance of a quantum scale

through dimensional transmutation (for the BN model; see Section 2.2.3). This can be

characterised, for example, by the value of the Landau pole ΛBN ; then, the results will

implicitly depend on βΛBN . In the numerics, this shows up as a dependence of the

physical results not only on βw, but also separately on the numerical value of the tem-

perature. We will refer to this numerical value as ”dimensionless temperature”, knowing

that only ratios of these dimensionless temperature values have physical meaning.

The result of the iteration is the finite temperature spectral function. First, we observe

that a small thermal mass ∆mT is generated, in dimensionless units in the order of

∆mT ∼ T ∼ 10−3. Interestingly, this thermal mass is negative; it shifts the spectral

function to the left. In the exact solution in Section 2.3, we found a zero thermal mass,

and thus we can consider it as an artefact of the 2PI approximation, which can be

incorporated into the mass and finally into w = up−m−∆m.

2.4.5 The zero velocity case

By applying the algorithm described in Section 2.2.2.2 we can obtain the spectral func-

tion derived from the 2PI approximation for the theory, using Eq. (2.182) as the self-

energy input. In Fig. 2.12 we can see the spectral function for different coupling values

and for different temperatures. The spectrum has a peak, its width is growing with in-

creasing coupling constant and with increasing temperature, likewise in the exact case.

In the Dyson-Schwinger approach the exact spectral function can be derived in a closed

form (at least in the the zero velocity case). We wish to compare the 2PI results to

our analytical expression in Eq. (2.139) obtained in Section 2.3. To benchmark the

2PI approximation, we can compare the resulting spectral function with the exact one.

The comparison can be seen in Fig. 2.13. We can see immediately that the two spectra

are not very similar. The reason is that the 2PI approximation do not sum up all the

diagrams, in particular the coupling constant corrections.
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Here, we defined w≔ up −m, and x represents the angle
between the spatial parts of kμ and uμ, so xku is the scalar
product of two three-dimensional vectors like in the one-
loop calculation. Actually, this can be written in a more
elegant and, for the numerical implementation, a more
useful way. We introduce the variable z as the argument of
the function ρ̄f:

Disc
p0

ΣarðpÞ ¼
e2

8π2
1

u

Z∞

−∞

dk
Zwþðu0þuÞk

wþðu0−uÞk

dzρ̄fðzÞnbðkÞ

¼ e2

8π2
1

u

Z∞

−∞

dzρ̄fðzÞ
Z
z−w
u0þu

z−w
u0−u

dknbðkÞ: ð34Þ

In the case in which the length of the 3-velocity tends to
zero, u → 0, we have

Disc
p0

Σarðp0Þ ¼
α
π

Z∞

−∞

dzρ̄fðzÞðp0 −m − zÞ

× ð1þ nbðp0 −m − zÞÞ: ð35Þ

For u ≠ 0,

Disc
p0

ΣarðwÞ ¼
α
2π

Z∞

−∞

dzρ̄fðzÞ
T
u
ln
1 − e−β

z−w
u0−u

1 − e−β
z−w
u0þu

: ð36Þ

We set m ¼ 0, and this can be done without the loss of
generality since the two expressions in Eqs. (35) and (36)
depend on the variable w ¼ up −m only. That means the
theory is not sensitive where the mass-shell is placed; it can
be anywhere on the real line.

V. 2PI RESULTS

We are implementing the same numerical method that we
used for the zero-temperature case (step 1–step 5 inSec. III B),
using the finite-temperature formofEq. (16),which is given in
Eqs. (35) and (36). In thenumerical procedure,we fix thevalue
of the coupling and the numerical value of the temperature and
perform the iteration until it converges. The physical temper-
ature is a dimensionful quantity; therefore, dimensionless
quantities must depend only on the temperature only through
the other dimensionful parameter. If there were no renorm-
alization problem, then the only quantity, which can make
temperature dimensionless, would bew, and the results would
depend on βw. However, renormalization leads to the appear-
ance of a quantum scale through dimensional transmutation
(for the B-N model; see Ref. [4]). This can be characterized,
for example, by the value of the Landau pole ΛBN ; then, the
results will implicitly depend on βΛBN . In the numerics, it
shows up as a dependence of the physical results not only on
βw but also separately on the numerical value of the temper-
ature. We will refer this numerical value as “dimensionless
temperature,” knowing that only ratios of these dimensionless
temperature values have physical meaning.
The result of the iteration is the spectral function. First,

we observe that a small thermal mass ΔmT is generated,
in dimensionless units in the order of ΔmT=T ∼ 10−3.
Interestingly, this thermal mass is negative; it shifts the
spectral function to the left. In the exact solution inRef. [16],
we found a zero thermal mass, and thus we can consider it as
an artifact of the 2PI approximation, which can be incorpo-
rated into the mass and finally into w ¼ up −m − ΔmT .

A. Zero-velocity case

By applying the algorithm described in Sec. III. B, we
can obtain the spectral function derived from the 2PI
approximation for the theory, using Eq. (35) as the self-
energy input. In Fig. 2, we can see the spectral function for
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FIG. 2 (color online). The coupling constant dependence of the spectral function in the 2PI approximation (a) at fixed temperature
T ¼ 1 and (b) at a fixed coupling value, α ¼ 0.5. The curves widen with growing coupling and growing temperature.

A. JAKOVÁC AND P. MATI PHYSICAL REVIEW D 90, 045038 (2014)

045038-6

Here, we defined w≔ up −m, and x represents the angle
between the spatial parts of kμ and uμ, so xku is the scalar
product of two three-dimensional vectors like in the one-
loop calculation. Actually, this can be written in a more
elegant and, for the numerical implementation, a more
useful way. We introduce the variable z as the argument of
the function ρ̄f:

Disc
p0

ΣarðpÞ ¼
e2

8π2
1

u

Z∞

−∞

dk
Zwþðu0þuÞk

wþðu0−uÞk

dzρ̄fðzÞnbðkÞ

¼ e2

8π2
1

u

Z∞

−∞

dzρ̄fðzÞ
Z
z−w
u0þu

z−w
u0−u

dknbðkÞ: ð34Þ

In the case in which the length of the 3-velocity tends to
zero, u → 0, we have

Disc
p0

Σarðp0Þ ¼
α
π

Z∞

−∞

dzρ̄fðzÞðp0 −m − zÞ

× ð1þ nbðp0 −m − zÞÞ: ð35Þ

For u ≠ 0,

Disc
p0

ΣarðwÞ ¼
α
2π

Z∞

−∞

dzρ̄fðzÞ
T
u
ln
1 − e−β

z−w
u0−u

1 − e−β
z−w
u0þu

: ð36Þ

We set m ¼ 0, and this can be done without the loss of
generality since the two expressions in Eqs. (35) and (36)
depend on the variable w ¼ up −m only. That means the
theory is not sensitive where the mass-shell is placed; it can
be anywhere on the real line.

V. 2PI RESULTS

We are implementing the same numerical method that we
used for the zero-temperature case (step 1–step 5 inSec. III B),
using the finite-temperature formofEq. (16),which is given in
Eqs. (35) and (36). In thenumerical procedure,we fix thevalue
of the coupling and the numerical value of the temperature and
perform the iteration until it converges. The physical temper-
ature is a dimensionful quantity; therefore, dimensionless
quantities must depend only on the temperature only through
the other dimensionful parameter. If there were no renorm-
alization problem, then the only quantity, which can make
temperature dimensionless, would bew, and the results would
depend on βw. However, renormalization leads to the appear-
ance of a quantum scale through dimensional transmutation
(for the B-N model; see Ref. [4]). This can be characterized,
for example, by the value of the Landau pole ΛBN ; then, the
results will implicitly depend on βΛBN . In the numerics, it
shows up as a dependence of the physical results not only on
βw but also separately on the numerical value of the temper-
ature. We will refer this numerical value as “dimensionless
temperature,” knowing that only ratios of these dimensionless
temperature values have physical meaning.
The result of the iteration is the spectral function. First,

we observe that a small thermal mass ΔmT is generated,
in dimensionless units in the order of ΔmT=T ∼ 10−3.
Interestingly, this thermal mass is negative; it shifts the
spectral function to the left. In the exact solution inRef. [16],
we found a zero thermal mass, and thus we can consider it as
an artifact of the 2PI approximation, which can be incorpo-
rated into the mass and finally into w ¼ up −m − ΔmT .

A. Zero-velocity case

By applying the algorithm described in Sec. III. B, we
can obtain the spectral function derived from the 2PI
approximation for the theory, using Eq. (35) as the self-
energy input. In Fig. 2, we can see the spectral function for
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FIG. 2 (color online). The coupling constant dependence of the spectral function in the 2PI approximation (a) at fixed temperature
T ¼ 1 and (b) at a fixed coupling value, α ¼ 0.5. The curves widen with growing coupling and growing temperature.
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(A) (B)

Figure 2.12: The coupling constant dependence of the spectral function in the 2PI
approximation (A) at temperature T = 1, and (B) at fixed fixed coupling value, α = 0.5.

The curves widen with growing coupling and growing temperature.

different coupling values and for different temperatures.
The spectrum exhibits a pole, and its width is growing
with increasing coupling constant and with increasing
temperature.
In the Dyson–Schwinger approach, the exact spectral

function can be derived in a closed form (at least in the
zero-velocity case). We wish to compare the 2PI results to
our analytic expression obtained in Ref. [16]:

ρðwÞ ¼ Nαβ sinðαÞeβw=2

coshðβwÞ − cosðαÞ
1

jΓð1þ α
2π þ i βw2πÞj

2
: ð37Þ

Here, we use the notation w ¼ p0 −m again, and Nα is a
normalization factor. Both for the 2PI approximation and

the Dyson–Schwinger calculation, we assumed a normali-
zation prescription, which assigned by the

R
w ρ ¼ 1 sum

rule.
To check the quality of the 2PI approximation, we can

compare the resulting spectral function with the exact
one. The comparison can be seen on Fig. 3. We can see
immediately that the two spectra are not very similar. The
reason is, as we discussed in the introduction, that the 2PI
approximation does not sum up all the diagrams, in
particular, the coupling constant corrections. To improve
the 2PI calculation, therefore, we can try to take into
account the resummation of these diagrams effectively in
a renormalization-group-inspired way, as a temperature-
dependent coupling constant. We should use a non-
perturbative matching procedure and choose a value of
α2PI that reproduces the exact result the most accurately.
For a perfect matching, not only the coupling constant
but also the higher point functions should also be
resummed. But we may hope that the most important
effect comes from the relevant couplings, in this case
from α2PI.
Therefore, our strategy will be to find the best,

temperature-dependent value of the coupling constant
α2PI that yields the best match between the exact and the
2PI spectral functions. As we can see in Fig. 4, there exists
such a value, for which the matching is almost perfect. We
can observe that the fit is excellent not just at the close
vicinity of the peak region but also for a much larger
momentum regime, and it can give an account also for
the asymmetric form of the exact spectral function. For
asymptotically large momenta, we expect that the two
curves do not agree, according to Ref. [4], and this can also
be observed in Fig. 4. This result is a strong argument
in favor of the usability of the 2PI technique at finite
temperature also for gauge theories.
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FIG. 3 (color online). Comparing the 2PI resummed spectral
function to the exact one. The solid red line is obtained from the
2PI resummation, while the dashed blue line is the exact spectral
function. Both of them are at T ¼ 1, and the couplings
are αex ¼ α2PI ¼ 0.5.
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FIG. 4 (color online). The fitting of the exact spectral function on the 2PI spectrum on (a) linear and (b) logarithmic plots. On the plot,
the curves are normalized to the same height for better visibility. We can see an exact match at the peak and a small deviation in the
asymptotics. The fit yields α2PI ¼ 0.5 for αex ¼ 0.293 at T ¼ 1.
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Figure 2.13: Comparing the 2PI resummed spectral function to the exact one. The
solid red line is obtained from the 2PI resummation, while the dashed blue line is the
exact spectral function. Both of them are at T=1 and the couplings are αex = α2PI =

0.5.

Therefore, to improve the 2PI calculation we can try to take into account the resum-

mation of these diagrams effectively in a renormalisation group inspired way, as a tem-

perature dependent coupling constant. We should use a non-perturbative matching

procedure, and choose that value of α2PI which reproduces the exact result the most

accurately. For a perfect matching not only the coupling constant, but also the higher

point functions should also be resummed. But we may hope that the most important

effect comes from the relevant couplings, in this case from α2PI .
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Therefore, our strategy will be to find the best, temperature dependent value of the cou-

pling constant α2PI that yields the best match between the exact and the 2PI spectral

functions. As we can see in Fig. 2.14, there exist such a value, where the matching is

almost perfect. We can observe that the fit is excellent not just at the close vicinity of

the peak region, but also for much larger momentum regime, and it can give an account

also for the asymmetric form of the exact spectral function. For asymptotically large

momenta, we expect that the two curves do not agree, according to Section 2.2.2.2,

this can also be observed in Fig. 2.14. This result is a strong argument in favor of the

usability of 2PI technique at finite temperature also for gauge theories.

different coupling values and for different temperatures.
The spectrum exhibits a pole, and its width is growing
with increasing coupling constant and with increasing
temperature.
In the Dyson–Schwinger approach, the exact spectral

function can be derived in a closed form (at least in the
zero-velocity case). We wish to compare the 2PI results to
our analytic expression obtained in Ref. [16]:

ρðwÞ ¼ Nαβ sinðαÞeβw=2

coshðβwÞ − cosðαÞ
1

jΓð1þ α
2π þ i βw2πÞj

2
: ð37Þ

Here, we use the notation w ¼ p0 −m again, and Nα is a
normalization factor. Both for the 2PI approximation and

the Dyson–Schwinger calculation, we assumed a normali-
zation prescription, which assigned by the

R
w ρ ¼ 1 sum

rule.
To check the quality of the 2PI approximation, we can

compare the resulting spectral function with the exact
one. The comparison can be seen on Fig. 3. We can see
immediately that the two spectra are not very similar. The
reason is, as we discussed in the introduction, that the 2PI
approximation does not sum up all the diagrams, in
particular, the coupling constant corrections. To improve
the 2PI calculation, therefore, we can try to take into
account the resummation of these diagrams effectively in
a renormalization-group-inspired way, as a temperature-
dependent coupling constant. We should use a non-
perturbative matching procedure and choose a value of
α2PI that reproduces the exact result the most accurately.
For a perfect matching, not only the coupling constant
but also the higher point functions should also be
resummed. But we may hope that the most important
effect comes from the relevant couplings, in this case
from α2PI.
Therefore, our strategy will be to find the best,

temperature-dependent value of the coupling constant
α2PI that yields the best match between the exact and the
2PI spectral functions. As we can see in Fig. 4, there exists
such a value, for which the matching is almost perfect. We
can observe that the fit is excellent not just at the close
vicinity of the peak region but also for a much larger
momentum regime, and it can give an account also for
the asymmetric form of the exact spectral function. For
asymptotically large momenta, we expect that the two
curves do not agree, according to Ref. [4], and this can also
be observed in Fig. 4. This result is a strong argument
in favor of the usability of the 2PI technique at finite
temperature also for gauge theories.
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FIG. 3 (color online). Comparing the 2PI resummed spectral
function to the exact one. The solid red line is obtained from the
2PI resummation, while the dashed blue line is the exact spectral
function. Both of them are at T ¼ 1, and the couplings
are αex ¼ α2PI ¼ 0.5.
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FIG. 4 (color online). The fitting of the exact spectral function on the 2PI spectrum on (a) linear and (b) logarithmic plots. On the plot,
the curves are normalized to the same height for better visibility. We can see an exact match at the peak and a small deviation in the
asymptotics. The fit yields α2PI ¼ 0.5 for αex ¼ 0.293 at T ¼ 1.
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different coupling values and for different temperatures.
The spectrum exhibits a pole, and its width is growing
with increasing coupling constant and with increasing
temperature.
In the Dyson–Schwinger approach, the exact spectral

function can be derived in a closed form (at least in the
zero-velocity case). We wish to compare the 2PI results to
our analytic expression obtained in Ref. [16]:

ρðwÞ ¼ Nαβ sinðαÞeβw=2

coshðβwÞ − cosðαÞ
1

jΓð1þ α
2π þ i βw2πÞj

2
: ð37Þ

Here, we use the notation w ¼ p0 −m again, and Nα is a
normalization factor. Both for the 2PI approximation and

the Dyson–Schwinger calculation, we assumed a normali-
zation prescription, which assigned by the

R
w ρ ¼ 1 sum

rule.
To check the quality of the 2PI approximation, we can

compare the resulting spectral function with the exact
one. The comparison can be seen on Fig. 3. We can see
immediately that the two spectra are not very similar. The
reason is, as we discussed in the introduction, that the 2PI
approximation does not sum up all the diagrams, in
particular, the coupling constant corrections. To improve
the 2PI calculation, therefore, we can try to take into
account the resummation of these diagrams effectively in
a renormalization-group-inspired way, as a temperature-
dependent coupling constant. We should use a non-
perturbative matching procedure and choose a value of
α2PI that reproduces the exact result the most accurately.
For a perfect matching, not only the coupling constant
but also the higher point functions should also be
resummed. But we may hope that the most important
effect comes from the relevant couplings, in this case
from α2PI.
Therefore, our strategy will be to find the best,

temperature-dependent value of the coupling constant
α2PI that yields the best match between the exact and the
2PI spectral functions. As we can see in Fig. 4, there exists
such a value, for which the matching is almost perfect. We
can observe that the fit is excellent not just at the close
vicinity of the peak region but also for a much larger
momentum regime, and it can give an account also for
the asymmetric form of the exact spectral function. For
asymptotically large momenta, we expect that the two
curves do not agree, according to Ref. [4], and this can also
be observed in Fig. 4. This result is a strong argument
in favor of the usability of the 2PI technique at finite
temperature also for gauge theories.
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FIG. 3 (color online). Comparing the 2PI resummed spectral
function to the exact one. The solid red line is obtained from the
2PI resummation, while the dashed blue line is the exact spectral
function. Both of them are at T ¼ 1, and the couplings
are αex ¼ α2PI ¼ 0.5.
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FIG. 4 (color online). The fitting of the exact spectral function on the 2PI spectrum on (a) linear and (b) logarithmic plots. On the plot,
the curves are normalized to the same height for better visibility. We can see an exact match at the peak and a small deviation in the
asymptotics. The fit yields α2PI ¼ 0.5 for αex ¼ 0.293 at T ¼ 1.
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(A) (B)

Figure 2.14: The fitting of the exact spectral function on the 2PI spectrum in linear
(A) and logarithmic (B) plot. We can see an exact match at the peak and a small

deviation in the asymptotics. The fit yields α2PI = 0.5 for αex = 0.293 at T = 1.

Hence, we can say that the coupling which takes the value of α2PI = 0.5 in the 2PI

resummation at T = 1 is equivalent to an αex = 0.293 in the D-S calculation at the

same temperature. One can also conclude that the vertex corrections (which are absent

in the 2PI self-energy calculations) have a role to modify the value of the renormalised

coupling. In the following, we are going to look for a general relation between α2PI and

αex.

We can repeat the strategy above for different temperatures. In this way we can deter-

mine a relation α2PI(αex, T ) (technically it is simpler to obtain αex(α2PI , T ) and invert

this relation). This provides the finite temperature dependence, or finite temperature

“running” of the 2PI coupling constant.

We expect that for small couplings the exact and the perturbative values agree, since

the perturbation theory gives αex = α2PI + O(α2
2PI). This is indeed the case. For

larger couplings, however, the linear relation changes. Interestingly, we can observe

that, depending on the temperature, two different type of functions describe the rela-

tion between the couplings. The first type of function which gives the mapping between
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the two couplings is valid in the interval T ∈ [0, 12.03]. This relation can be obtained

by a one-parameter fit between the 2PI and the exact couplings, namely:

α2PI = AT (e
αex
AT − 1). (2.184)

The result is shown in Fig. 2.15a., the fit parameters (AT ) are listed in Tables 2.1 and 2.2.

From this relation we immediately see that for small α2PI the relation of the couplings

is linear

α2PI ≈ αex +O
(
α2
ex

AT

)
. (2.185)

This tells us that the 2PI and the exact couplings are the same for the perturbative

region, meaning that we can rely on the results obtained by 2PI calculations in this

regime.

Hence, we can say that the coupling, which takes the
value of α2PI ¼ 0.5 in the 2PI resummation at T ¼ 1, is
equivalent to αex ¼ 0.293 in the Dyson–Schwinger calcu-
lation at the same temperature. One can also conclude that
the vertex corrections (which are absent in the 2PI self-
energy calculations) have a role to modify the value of the
renormalized coupling. In the following, we are going to
look for a general relation between α2PI and αex.
We can repeat the strategy above for different temper-

atures. In this way, we can determine a relation α2PIðαex; TÞ
[technically, it is simpler to obtain αexðα2PI; TÞ and invert
this relation]. This provides the finite-temperature depend-
ence, or finite-temperature “running,” of the 2PI coupling
constant.
We expect that for small couplings the exact and the

perturbative values agree, since the perturbation theory
gives αex ¼ α2PI þOðα22PIÞ. This is indeed the case. For
larger couplings, however, the linear relation changes.

Interestingly, we can observe that two different types of
functions describe the relation between the couplings
depending on the temperature. The first type of function,
which gives the mapping between the two couplings, is
valid in the interval T ∈ ½0; 12.03&. This relation can be
obtained by a one-parameter fit between the 2PI and the
exact couplings, namely,

α2PI ¼ ATðe
αex
AT − 1Þ: ð38Þ

The result is shown in Fig. 5(a), and the fit parameters (AT)
are listed in Tables I and II. From this relation, we
immediately see that for small α2PI the relation of the
couplings is linear:

α2PI ≈ αex þO
!
α2ex
AT

"
: ð39Þ
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FIG. 5 (color online). The relation between the 2PI and the exact coupling at u ¼ 0 for temperatures (a) T ∈ ½0; 12.03& and
(b) T ∈ ð12.03;∞Þ, respectively. The dashed red line indicates the limiting function at T ¼ 12.03; for details, see the text.

TABLE I. The fit parameters in the low-temperature case. The error of the parameters is '0.001.

T 0.11 0.25 0.5 1 2 4 7.14 10 12.03

AT 0.213 0.242 0.27 0.305 0.343 0.384 0.414 0.426 0.429

TABLE II. The fit parameters in the high-temperature case.

T 20 50 100 200 500 1000 2000

BT 1.03' 0.003 1.118' 0.008 1.217' 0.014 1.312' 0.017 1.381' 0.016 1.38' 0.012 1.3' 0.006
CT 1.107' 0.001 1.668' 0.025 2.654' 0.054 4.241' 0.083 6.937' 0.105 8.951' 0.1 9.991' 0.055
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Hence, we can say that the coupling, which takes the
value of α2PI ¼ 0.5 in the 2PI resummation at T ¼ 1, is
equivalent to αex ¼ 0.293 in the Dyson–Schwinger calcu-
lation at the same temperature. One can also conclude that
the vertex corrections (which are absent in the 2PI self-
energy calculations) have a role to modify the value of the
renormalized coupling. In the following, we are going to
look for a general relation between α2PI and αex.
We can repeat the strategy above for different temper-

atures. In this way, we can determine a relation α2PIðαex; TÞ
[technically, it is simpler to obtain αexðα2PI; TÞ and invert
this relation]. This provides the finite-temperature depend-
ence, or finite-temperature “running,” of the 2PI coupling
constant.
We expect that for small couplings the exact and the

perturbative values agree, since the perturbation theory
gives αex ¼ α2PI þOðα22PIÞ. This is indeed the case. For
larger couplings, however, the linear relation changes.

Interestingly, we can observe that two different types of
functions describe the relation between the couplings
depending on the temperature. The first type of function,
which gives the mapping between the two couplings, is
valid in the interval T ∈ ½0; 12.03&. This relation can be
obtained by a one-parameter fit between the 2PI and the
exact couplings, namely,

α2PI ¼ ATðe
αex
AT − 1Þ: ð38Þ

The result is shown in Fig. 5(a), and the fit parameters (AT)
are listed in Tables I and II. From this relation, we
immediately see that for small α2PI the relation of the
couplings is linear:

α2PI ≈ αex þO
!
α2ex
AT

"
: ð39Þ

data T 0.11
data T 0.25
data T 0.5
data T 1
data T 2
data T 4
data T 7.14
data T 10
data T 12.03
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fit T 0.5
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FIG. 5 (color online). The relation between the 2PI and the exact coupling at u ¼ 0 for temperatures (a) T ∈ ½0; 12.03& and
(b) T ∈ ð12.03;∞Þ, respectively. The dashed red line indicates the limiting function at T ¼ 12.03; for details, see the text.

TABLE I. The fit parameters in the low-temperature case. The error of the parameters is '0.001.

T 0.11 0.25 0.5 1 2 4 7.14 10 12.03

AT 0.213 0.242 0.27 0.305 0.343 0.384 0.414 0.426 0.429

TABLE II. The fit parameters in the high-temperature case.

T 20 50 100 200 500 1000 2000

BT 1.03' 0.003 1.118' 0.008 1.217' 0.014 1.312' 0.017 1.381' 0.016 1.38' 0.012 1.3' 0.006
CT 1.107' 0.001 1.668' 0.025 2.654' 0.054 4.241' 0.083 6.937' 0.105 8.951' 0.1 9.991' 0.055
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(A) (B)

Figure 2.15: The relation between the 2PI and the exact coupling for u = 0 at
temperatures (A) T ∈ [0, 12.03] and (B) T ∈ [12.03,∞), respectively. The dashed red

line indicates the limiting function at T = 12.03, for details see the text.

T 0.11 0.25 0.5 1 2 4 7.14 10 12.03

AT 0.213 0.242 0.27 0.305 0.343 0.384 0.414 0.426 0.429

Table 2.1: The fit parameters in the low temperature case. The error of the parame-
ters is ±0.001.

T 20 50 100 200 500 1000 2000
BT 1.03± 0.003 1.118± 0.008 1.217± 0.014 1.312± 0.017 1.381± 0.016 1.38± 0.012 1.3± 0.006
CT 1.107± 0.001 1.668± 0.025 2.654± 0.054 4.241± 0.083 6.937± 0.105 8.951± 0.1 9.991± 0.055

Table 2.2: The fit parameters in the high temperature case.
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Thus, if we are using couplings, which are in the order of the fine structure constant of

QED (α = 1/137) for instance, one does not even have to worry about the temperature

dependence of Eq. (2.184). From Eq. (2.184) it is obvious that the relation depends on

the temperature through the fit parameter AT : this is shown in Fig. 2.16a. We can fit

the temperature dependence in the following form:

AT = a(tanhTb)c, (2.186)

where a = 0.438± 0.002, b = 0.123± 0.01, and c = 0.17± 0.002.

This tells us that the 2PI and the exact couplings are the
same for the perturbative region, meaning that we can rely
on the results obtained by 2PI calculations in this regime.
Thus, if we are using couplings that are in the order of the
fine structure constant of QED (α ¼ 1=137), for instance,
one does not even have to worry about the temperature
dependence of Eq. (38).
From Eq. (38), it is obvious that the relation depends on

the temperature through the fit parameter AT ; this is shown
in Fig. 6(a). We can fit the temperature dependence in the
form

AT ¼ aðtanhTbÞc; ð40Þ

where a ¼ 0.438$ 0.002, b ¼ 0.123$ 0.01, and c ¼
0.17$ 0.002.
Let us consider the zero-temperature limit:

limT→0AT ¼ 0. This tells us that in the zero-temperature
limit all αex corresponding to any α2PI by Eq. (38) vanish.
To see this, it is easier to invert the relation and then take the
limit, i.e., limT→0AT lnðα2PI=AT þ 1Þ ¼ 0. This is consis-
tent with the fact that at T ¼ 0 the coupling drops out from
the 2PI propagator [4]. More precisely, at T ¼ 0 close to the
peak,

G2PIðwÞ ∝
1

w
; while GexðwÞ ∝

1

w1þαex
π

!!!!
αex¼0

¼ G2PI:

ð41Þ

Therefore, the diverging α2PI=αex relation does not signal a
physical singularity; it just means that in order to match the
exact theory we have to take into account other diagrams
not included in the resummation.
The relation in Eq. (40) is valid up to the dimensionless

temperature T ¼ 12.03. Above this temperature, the trend
of the curves can be seen in Fig. 5(a), namely, that they are
more and more shallow for increasing temperature changes.
The α2PIðαexÞ curve becomes steeper and steeper, as can be

seen in Fig. 5(b). We find for small couplings the expected
universal linear relation α2PI ¼ αex þ…. We can also
observe that the α2PIðαexÞ curves diverge at some limiting
value of αex. This can also be seen from the following fit
which describes the numerically determined curve quite
well:

α2PI ¼
αex

BT − CTαex
: ð42Þ

The fit parameters can be seen in Table II. This function has
a pole at BT=CT at each temperature. This is a temperature-
dependent quantity; the running of the position of the pole
can be seen in Fig. 6(b).
Equation (42) can be interpreted from the point of view

of the scale dependence of the coupling constant. For the
B-N model, the one-loop running is exact [4] and provides
a Landau pole. The value of the coupling for which we find
the pole is αðμ0Þ ¼ π

ln μ=μ0
. If we associate μ ∼ T for high

temperatures, this would suggest that the finite-temperature
dependence also exhibits a Landau-type pole at αex∼
ðln fTÞ−1. In fact, a two-parameter fit is
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FIG. 6 (color online). The running of (a) AT and (b) BT=CT with respect to the temperature. This latter quantity is the position of the
pole [cf. Eq. (42)]. One can see the best matching on higher temperatures.
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FIG. 7 (color online). Finite-temperature running of α2PI for
fixed αex ¼ 0.25. One can observe the high-temperature (Landau)
pole and the T → 0 divergence.
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This tells us that the 2PI and the exact couplings are the
same for the perturbative region, meaning that we can rely
on the results obtained by 2PI calculations in this regime.
Thus, if we are using couplings that are in the order of the
fine structure constant of QED (α ¼ 1=137), for instance,
one does not even have to worry about the temperature
dependence of Eq. (38).
From Eq. (38), it is obvious that the relation depends on

the temperature through the fit parameter AT ; this is shown
in Fig. 6(a). We can fit the temperature dependence in the
form

AT ¼ aðtanhTbÞc; ð40Þ

where a ¼ 0.438$ 0.002, b ¼ 0.123$ 0.01, and c ¼
0.17$ 0.002.
Let us consider the zero-temperature limit:

limT→0AT ¼ 0. This tells us that in the zero-temperature
limit all αex corresponding to any α2PI by Eq. (38) vanish.
To see this, it is easier to invert the relation and then take the
limit, i.e., limT→0AT lnðα2PI=AT þ 1Þ ¼ 0. This is consis-
tent with the fact that at T ¼ 0 the coupling drops out from
the 2PI propagator [4]. More precisely, at T ¼ 0 close to the
peak,

G2PIðwÞ ∝
1

w
; while GexðwÞ ∝

1

w1þαex
π

!!!!
αex¼0

¼ G2PI:

ð41Þ

Therefore, the diverging α2PI=αex relation does not signal a
physical singularity; it just means that in order to match the
exact theory we have to take into account other diagrams
not included in the resummation.
The relation in Eq. (40) is valid up to the dimensionless

temperature T ¼ 12.03. Above this temperature, the trend
of the curves can be seen in Fig. 5(a), namely, that they are
more and more shallow for increasing temperature changes.
The α2PIðαexÞ curve becomes steeper and steeper, as can be

seen in Fig. 5(b). We find for small couplings the expected
universal linear relation α2PI ¼ αex þ…. We can also
observe that the α2PIðαexÞ curves diverge at some limiting
value of αex. This can also be seen from the following fit
which describes the numerically determined curve quite
well:

α2PI ¼
αex

BT − CTαex
: ð42Þ

The fit parameters can be seen in Table II. This function has
a pole at BT=CT at each temperature. This is a temperature-
dependent quantity; the running of the position of the pole
can be seen in Fig. 6(b).
Equation (42) can be interpreted from the point of view

of the scale dependence of the coupling constant. For the
B-N model, the one-loop running is exact [4] and provides
a Landau pole. The value of the coupling for which we find
the pole is αðμ0Þ ¼ π

ln μ=μ0
. If we associate μ ∼ T for high

temperatures, this would suggest that the finite-temperature
dependence also exhibits a Landau-type pole at αex∼
ðln fTÞ−1. In fact, a two-parameter fit is
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FIG. 6 (color online). The running of (a) AT and (b) BT=CT with respect to the temperature. This latter quantity is the position of the
pole [cf. Eq. (42)]. One can see the best matching on higher temperatures.
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pole and the T → 0 divergence.
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Figure 2.16: The running of (A) AT and (B) BT /CT with respect to the temperature.
This latter quantity is the position of the pole (cf. Eq. (2.188)). One can see that the

best matching occurs at higher temperatures.

Let us consider the zero temperature limit: lim
T→0

AT = 0. This tells us that in the zero

temperature limit all αex corresponding to any α2PI by Eq. (2.184) vanish. To see this it

is easier to invert the relation and then take the limit, i.e. limT→0AT ln(α2PI/AT +1) =

0. This is consistent with the fact that at T = 0 the coupling drops out from the 2PI

propagator [40]. More precisely at T = 0 close to the peak:

G2PI(w) ∝ 1

w
,while Gex(w) ∝ 1

w1+αex
π

∣∣∣∣
αex=0

= G2PI . (2.187)

Therefore the diverging α2PI/αex relation does not signal a physical singularity, it just

means that in order to match the exact theory we have to take into account other

diagrams not included in the 2PI resummation.

The relation in Eq. (2.186) is valid up to the dimensionless temperature T = 12.03.

Above this temperature the trend of the curves can be seen in Fig. 2.15a, namely that

they are more and more shallow for increasing temperature. The α2PI(αex) curve be-

comes steeper and steeper as it can be seen in Fig. 2.15b. We find for small couplings

the expected universal linear relation α2PI = αex + . . . . We can also observe that the
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α2PI(αex) curves diverge at some limiting value of αex. This can also be seen from the

following fit which describes the numerically determined curve quite well:

α2PI =
αex

BT − CTαex
. (2.188)

The fit parameters can be seen in Table 2.2. This function has a pole at BT /CT at each

temperature. This is a temperature dependent quantity, the running of the position of

the pole can be seen in Fig. 2.16b. Equation (2.188) can be interpreted from the point of

view of the scale dependence of the coupling constant. For the BN model the one-loop

running is exact which can bee seen from Eq. (2.88), and provides a Landau pole. The

value of the coupling for which we find the pole is α(µ0) = π
lnµ/µ0

. If we associate µ ∼ T
for high temperatures, this would suggest that the finite temperature dependence also

exhibits a Landau-type pole at αex ∼ (ln fT )−1. In fact, a two-parameter fit is

BT
CT

=
d

ln(fT )
, (2.189)

where d = 0.576±0.03 and f = 0.035±0.003 describes the finite temperature behaviour

for large temperatures.

This tells us that the 2PI and the exact couplings are the
same for the perturbative region, meaning that we can rely
on the results obtained by 2PI calculations in this regime.
Thus, if we are using couplings that are in the order of the
fine structure constant of QED (α ¼ 1=137), for instance,
one does not even have to worry about the temperature
dependence of Eq. (38).
From Eq. (38), it is obvious that the relation depends on

the temperature through the fit parameter AT ; this is shown
in Fig. 6(a). We can fit the temperature dependence in the
form

AT ¼ aðtanhTbÞc; ð40Þ

where a ¼ 0.438$ 0.002, b ¼ 0.123$ 0.01, and c ¼
0.17$ 0.002.
Let us consider the zero-temperature limit:

limT→0AT ¼ 0. This tells us that in the zero-temperature
limit all αex corresponding to any α2PI by Eq. (38) vanish.
To see this, it is easier to invert the relation and then take the
limit, i.e., limT→0AT lnðα2PI=AT þ 1Þ ¼ 0. This is consis-
tent with the fact that at T ¼ 0 the coupling drops out from
the 2PI propagator [4]. More precisely, at T ¼ 0 close to the
peak,

G2PIðwÞ ∝
1

w
; while GexðwÞ ∝

1

w1þαex
π

!!!!
αex¼0

¼ G2PI:

ð41Þ

Therefore, the diverging α2PI=αex relation does not signal a
physical singularity; it just means that in order to match the
exact theory we have to take into account other diagrams
not included in the resummation.
The relation in Eq. (40) is valid up to the dimensionless

temperature T ¼ 12.03. Above this temperature, the trend
of the curves can be seen in Fig. 5(a), namely, that they are
more and more shallow for increasing temperature changes.
The α2PIðαexÞ curve becomes steeper and steeper, as can be

seen in Fig. 5(b). We find for small couplings the expected
universal linear relation α2PI ¼ αex þ…. We can also
observe that the α2PIðαexÞ curves diverge at some limiting
value of αex. This can also be seen from the following fit
which describes the numerically determined curve quite
well:

α2PI ¼
αex

BT − CTαex
: ð42Þ

The fit parameters can be seen in Table II. This function has
a pole at BT=CT at each temperature. This is a temperature-
dependent quantity; the running of the position of the pole
can be seen in Fig. 6(b).
Equation (42) can be interpreted from the point of view

of the scale dependence of the coupling constant. For the
B-N model, the one-loop running is exact [4] and provides
a Landau pole. The value of the coupling for which we find
the pole is αðμ0Þ ¼ π

ln μ=μ0
. If we associate μ ∼ T for high

temperatures, this would suggest that the finite-temperature
dependence also exhibits a Landau-type pole at αex∼
ðln fTÞ−1. In fact, a two-parameter fit is
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FIG. 6 (color online). The running of (a) AT and (b) BT=CT with respect to the temperature. This latter quantity is the position of the
pole [cf. Eq. (42)]. One can see the best matching on higher temperatures.

0.01 0.1 1 10 100

0.35

0.40

0.45

0.50

0.55

0.60

T

2
PI
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Figure 2.17: Finite temperature running of α2PI for fixed αex. One can observe the
high temperature (Landau) pole and the T → 0 divergence.

The finite temperature running of α2PI for fixed αex can be seen in Fig. 2.17. According

to our earlier analysis, we can identify the following characteristic features of this run-

ning. For small temperatures, the running of the perturbative coupling is determined

by the soft IR physics, the photon cloud. At very small temperatures, seemingly, we

find a divergence, but this is not a physical singularity; it just reflects the fact that at

zero temperature the 2PI approximation fails to describe the exact spectrum for any

couplings, cf. Eq. (2.187). At high temperatures, the perturbative running is the dom-

inant effect with the correspondence µ ∼ T . Again, we find there a pole that comes

from the Landau pole of the perturbative running. But, again, this singularity is not
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a physical one, the exact spectrum is regular for αex larger than the pole value. But

with 2PI calculation with the original action, we cannot reproduce this result, one would

need to take into account higher point vertices, too. Between the low temperature and

high temperature regimes there is a point where dα2PI(T )/dT = 0, in our case this is at

the dimensionless temperature value T = 12.03. This is a “fixed point” of the running

and loosely determines a “critical temperature” separating the two physically different

temperature regimes.

2.4.6 The finite velocity case

We can repeat the same analysis for the finite velocity case, too. Since the findings are

very similar to the u = 0 case, we just shortly overview the results. For the finite

velocity case we obtained the exact fermionic spectral function using numerics (see

Section 2.3.6.3). In the 2PI approximation we are going to use the same numerical

calculation that we used for the u = 0 case, and the only difference is that this time

we use the formula in Eq. (2.183) for the discontinuity of the self-energy. The spectral

functions obtained from 2PI for different u > 0, but fixed temperature and coupling

constant, can be seen in Fig. 2.18. To fit the spectral functions in the u > 0 case, we are

applying exactly the same procedure that we used for the u = 0 case. For this purpose

we choose the value u =
√

3 (or v =
√

3/2).

BT

CT
¼ d

lnðfTÞ
; ð43Þ

where d ¼ 0.576$ 0.03 and f ¼ 0.035$ 0.003 describes
the finite temperature behavior for large temperatures.
The finite-temperature running of α2PI for fixed αex can

be seen in Fig. 7. According to our earlier analysis, we can
identify the following characteristic features of this run-
ning. For small temperatures, the running of the perturba-
tive coupling is determined by the soft IR physics, the

photon cloud. At very small temperatures, seemingly, we
find a divergence, but this is not a physical singularity; it
just reflects the fact that at zero temperature the 2PI
approximation fails to describe the exact spectrum for
any couplings, cf. Eq. (41). At high temperatures, the
perturbative running is the dominant effect with the
association μ ∼ T. Again, we find a pole there that comes
from the Landau pole of the perturbative running. But,
again, this singularity is not a physical one; the exact
spectrum is regular for αex larger than the pole value. But
with the 2PI calculation with the original action, we cannot
reproduce this result, and one would need to take into
account higher point vertices, too. Between the low-
temperature and high-temperature regimes, there is a point
where dα2PIðTÞ=dT ¼ 0; in our case, this is at the dimen-
sionless temperature value T ¼ 12.03. This is a “fixed
point” of the running and loosely determines a “critical
temperature” separating the two physically different
temperature regimes.

B. Finite-velocity case

We can repeat the same analysis for the finite-velocity
case, too. Since the findings are very similar to the u ¼ 0
case, we just briefly overview the results.
For the finite-velocity case, we obtained in our previous

article [16] the formula in real time,

ρðtÞ ∝ zðtÞρu¼0ðt; αeffÞ; ð44Þ

where we defined an effective coupling that incorporates
the information about the finite velocity
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FIG. 8 (color online). The 2PI spectral functions with different
rapidities [η ¼ tanh−1ðvÞ, where v ¼ u=u0] at fixed temperature
T ¼ 1 and coupling α ¼ 0.5. The shrinking of the width can be
observed as the velocity grows, which is the same effect that we
had for the exact solution [16].
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FIG. 9 (color online). The relation between the 2PI and the exact coupling for u ¼
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p
at temperatures (a) T ∈ ½0; 12.03& and

(b) T ∈ ð12.03;∞Þ, respectively. The dashed red line indicates the limiting function at T ¼ 12.03; for details, see the text.
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Figure 2.18: The 2PI spectral functions with different rapidities (η = tanh−1(v),
where v = u/u0) at fixed temperature T = 1 and coupling α = 0.5. The shrinking of
the width can be observed as the velocity grows, which is the same effect that we had

for the exact solution in Section 2.3.

In Fig. 2.19 we can find the relation between the 2PI and the exact couplings and

in Table 2.3, 2.4 the corresponding fit parameters, but this time for u =
√

3. For

the given finite u, we have almost the same picture that we had for the u = 0 case,

and just the fit parameters, AT , BT and CT , are different. Interestingly, the threshold
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temperature stayed at T = 12.03, but the running of the parameter as a function of the

temperature is slightly modified. Now, we have for AT = a tanh(bAT )c, where this time

a = 0.55± 0.01, b = 0.075± 0.01 and c = 0.183± 0.004. For the running of the pole, we

have (BT /CT = d/ ln(fT )) d = 0.623± 0.04 and f = 0.032± 0.003.

BT

CT
¼ d

lnðfTÞ
; ð43Þ

where d ¼ 0.576$ 0.03 and f ¼ 0.035$ 0.003 describes
the finite temperature behavior for large temperatures.
The finite-temperature running of α2PI for fixed αex can

be seen in Fig. 7. According to our earlier analysis, we can
identify the following characteristic features of this run-
ning. For small temperatures, the running of the perturba-
tive coupling is determined by the soft IR physics, the

photon cloud. At very small temperatures, seemingly, we
find a divergence, but this is not a physical singularity; it
just reflects the fact that at zero temperature the 2PI
approximation fails to describe the exact spectrum for
any couplings, cf. Eq. (41). At high temperatures, the
perturbative running is the dominant effect with the
association μ ∼ T. Again, we find a pole there that comes
from the Landau pole of the perturbative running. But,
again, this singularity is not a physical one; the exact
spectrum is regular for αex larger than the pole value. But
with the 2PI calculation with the original action, we cannot
reproduce this result, and one would need to take into
account higher point vertices, too. Between the low-
temperature and high-temperature regimes, there is a point
where dα2PIðTÞ=dT ¼ 0; in our case, this is at the dimen-
sionless temperature value T ¼ 12.03. This is a “fixed
point” of the running and loosely determines a “critical
temperature” separating the two physically different
temperature regimes.

B. Finite-velocity case

We can repeat the same analysis for the finite-velocity
case, too. Since the findings are very similar to the u ¼ 0
case, we just briefly overview the results.
For the finite-velocity case, we obtained in our previous

article [16] the formula in real time,

ρðtÞ ∝ zðtÞρu¼0ðt; αeffÞ; ð44Þ

where we defined an effective coupling that incorporates
the information about the finite velocity
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FIG. 8 (color online). The 2PI spectral functions with different
rapidities [η ¼ tanh−1ðvÞ, where v ¼ u=u0] at fixed temperature
T ¼ 1 and coupling α ¼ 0.5. The shrinking of the width can be
observed as the velocity grows, which is the same effect that we
had for the exact solution [16].
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BT

CT
¼ d

lnðfTÞ
; ð43Þ

where d ¼ 0.576$ 0.03 and f ¼ 0.035$ 0.003 describes
the finite temperature behavior for large temperatures.
The finite-temperature running of α2PI for fixed αex can

be seen in Fig. 7. According to our earlier analysis, we can
identify the following characteristic features of this run-
ning. For small temperatures, the running of the perturba-
tive coupling is determined by the soft IR physics, the

photon cloud. At very small temperatures, seemingly, we
find a divergence, but this is not a physical singularity; it
just reflects the fact that at zero temperature the 2PI
approximation fails to describe the exact spectrum for
any couplings, cf. Eq. (41). At high temperatures, the
perturbative running is the dominant effect with the
association μ ∼ T. Again, we find a pole there that comes
from the Landau pole of the perturbative running. But,
again, this singularity is not a physical one; the exact
spectrum is regular for αex larger than the pole value. But
with the 2PI calculation with the original action, we cannot
reproduce this result, and one would need to take into
account higher point vertices, too. Between the low-
temperature and high-temperature regimes, there is a point
where dα2PIðTÞ=dT ¼ 0; in our case, this is at the dimen-
sionless temperature value T ¼ 12.03. This is a “fixed
point” of the running and loosely determines a “critical
temperature” separating the two physically different
temperature regimes.

B. Finite-velocity case

We can repeat the same analysis for the finite-velocity
case, too. Since the findings are very similar to the u ¼ 0
case, we just briefly overview the results.
For the finite-velocity case, we obtained in our previous

article [16] the formula in real time,

ρðtÞ ∝ zðtÞρu¼0ðt; αeffÞ; ð44Þ

where we defined an effective coupling that incorporates
the information about the finite velocity
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FIG. 8 (color online). The 2PI spectral functions with different
rapidities [η ¼ tanh−1ðvÞ, where v ¼ u=u0] at fixed temperature
T ¼ 1 and coupling α ¼ 0.5. The shrinking of the width can be
observed as the velocity grows, which is the same effect that we
had for the exact solution [16].
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(A) (B)

Figure 2.19: The relation between the 2PI and the exact coupling for u =
√

3 at
temperatures (A) T ∈ [0, 12.03] and (B) T ∈ [12.03,∞), respectively. The dashed red

line indicates the limiting function at T = 12.03, for details see the text.

T 0.11 0.25 0.5 1 2 4 7.14 10 12.03

AT 0.235 0.266 0.298 0.338 0.386 0.442 0.488 0.507 0.517

Table 2.3: The fit parameters in the low temperature case for u =
√

3. The error of
the parameters is ±0.001.

T 20 50 100 200 500 1000 2000
BT 1.016± 0.001 1.108± 0.007 1.2± 0.014 1.29± 0.017 1.371± 0.0175 1.389± 0.0145 1.35± 0.009
CT 0.908± 0.002 1.422± 0.023 = 2.275± 0.048 3.629± 0.075 6.113± 0.102 8.216± 0.105 9.8318± 0.079

Table 2.4: The fit parameters in the high temperature case for u =
√

3.

2.5 Chapter summary

In this chapter we analysed the IR limit of the QED which is expected to be described

accurately by the Bloch-Nordsieck model. The infrared catastrophe can be associated

with the presence of infinitely many soft photon excitations around the electron, and as

a consequence the perturbation series does not give a reliable result around the mass-

shell of the electron. This phenomenon characterises all the massless gauge theories.
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However, in the framework of the Bloch-Nordsieck model we are able to derive the full

fermionic propagator [31, 32], hence this gives a nice opportunity to benchmark different

level of approximations like the one-loop level perturbation theory, the 2PI resumma-

tion and the Dyson-Schwinger equations, as we did it in Section 2.2. The one-loop result

exhibits an IR sensitivity when we approach the mass-shell, which renders the theory ill-

defined. The self-energy (2PI) resummation reorganises the perturbative series in a way

that this IR problem disappears. Although the IR sensitivity cannot be seen anymore,

but still the 2PI method fails to reproduce the correct result. On the other hand, the

Dyson-Schwinger equations, truncated in a way that the Ward identities are satisfied,

yield the exact result in the Bloch-Nordsieck model. And, while the original method

to obtain the solution is very hard to generalise to other theories, there is a hope to

generalise the ideas of the specially truncated Dyson-Schwinger equations method.

In Section 2.3 we studied the Bloch-Nordsieck model at finite temperature; in particular

we studied the fermionic spectral function. We used the strategy introduced in Section

2.2 which is based on the Dyson-Schwinger equations, where the infinite hierarchy is

closed by using the Ward identity for the vertex function. We worked out the corre-

sponding equations at finite temperature in the real time formalism and solved them.

This procedure is exact in the Bloch-Nordsieck model. At zero velocity we were able to

obtain fully analytic results for the spectral function. For large momenta and/or zero

temperature this formula agrees with the zero temperature result. At finite temperature

there appears an asymmetric peak which decreases exponentially below and as a power

law above the mass shell.

We gave a numerical implementation of the 2PI resummation for the fermionic spec-

tral function in the BN model at non-zero temperature. In Section 2.3, we showed a

derivation of the exact spectral function in an analytic way and obtained a closed form.

Hence, this analytic formula provides us with a good basis for the justification of the 2PI

approximation. A 2PI approximation missing vertex resummation cannot provide us a

full solution, but we can still compare it to the exact result. One of our main results is

that the 2PI approximation works excellently at finite temperatures, and the spectrum

coming from the 2PI approximation could be fitted to the exact spectrum at high accu-

racy. The two curves agree well, not just in the vicinity of the peak, but also for a much

larger momentum interval. This demonstrates that the 2PI resummation is in fact a

physically appropriate approximation for gauge theories, too. Nevertheless, the 2PI and

the exact results match each other after properly choosing the 2PI coupling α2PI(αex, T )

as a function of the coupling of the exact formula αex and the temperature. For a fixed

αex, this describes a temperature-dependent running coupling constant. Another main

result is to provide this function for the BN model. The success of the 2PI method

extended by a non-perturbative running of the coupling constant encourages one to try

this strategy also in the cases of other (gauge) theories. The basis of the temperature
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running could be the matching to a non-perturbatively (e.g., in Monte Carlo simula-

tions) determined physical quantity. Then, using temperature-dependent 2PI couplings,

one could perform other calculations and give predictions for other, numerically hardly

accessible physical quantities.





Chapter 3

The Functional Renormalisation

Group Study of the O(N) model

In this chapter we will discuss our second non-perturbative approach to QFT, namely,

the Functional Renormalisation Group (FRG) technique. Sometimes it is called the

Exact Renormalisation Group, however, despite being non-perturbative we will make

several approximations till we get to the real RG equations. This method is based on

the Wilsonian idea, that is one starts with an initial theory on a given scale (Lagrangian

or Hamiltonian at scale Λ), and step-by-step one integrates out the rapid degrees of

freedom, obtaining an effective theory describing the IR physics. Using this strategy

provides us a powerful tool to examine second order phase transitions and critical phe-

nomena.

The structure of this chapter is as follows: first we introduce the concept of the Wilson-

Kadanoff renormalisation group on statistical systems, discuss why it is useful and how

it can describe critical phenomena [14, 62]. Then we move on and study the Functional

Renormalisation Group procedure from the point of view of QFT and apply it to the

O(N) symmetric N -vector model. We will see from the analysis how the famous Mermin-

Wagner theorem emerges, and show that using drastic approximations (like truncating

the Taylor-expansion of the effective potential) leads us to a wrong answer to questions

related to the phase structure. To cure the inconsistency in the approximated theory we

will examine carefully the behaviour of its results and give a statistical argument, which

will provide the real description of the phase structure of the O(N) models in arbitrary

dimensions and field components. This analysis uses the Vanishing Beta Function curves

(VBF) [44], which we will introduce later on, but we can say in advance that they give

back all the expectations regarding the O(N) models: they define the right lower and

upper critical dimensions and find all the physically relevant fixed points. Interestingly,

when N → ∞ in 4 < D < 6 dimensions, we will find a new fixed point candidate on

73
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the phase space of the model, which was suggested first in recent works of Klebanov

et al. [52], but also by Percacci in [53] who questioned the validity of this fixed point.

With the technique presented here, we will find that the corresponding critical potential

associated to this fixed point is metastable. Section 3.4, where we provide a proof of the

Mermin-Wagner theorem using analytical considerations, is based on [43] and Section

3.5, where we analyse the phase structure of the O(N) model is based on [44]. Sections

3.1-3.1.4 are based on [63, 76].

3.1 Coarse-graining and the Wilsonian approach

The main idea behind the Wilsonian approach is that we do not care too much about

the interactions at small scales (the rapid degrees of freedom), we are only interested in

how the system, as a whole, behaves at long distances (IR scales). However, when using

this approach, we need to bare in mind that we still need to rely on approximations, that

is in general we cannot integrate out all the fluctuations exactly. This is the case in the

PT, too, where we calculate loop integrals corresponding to the quantum fluctuations

of the theory and sum it up to obtain the full amplitude for the process of interest.

Wilson’s idea translated to the PT language tells us essentially that we need to reshuffle

the perturbation series and organise the summation in a way that will provide reliable

answers to the questions regarding the infrared physics. Before going into details, we

discuss what we mean by short and long distance physics, and which are the quantities

characterising the system at a given scale.

In a strongly correlated system there are basically two relevant scale parameters: (i)

the microscopic scale a ∼ Λ−1, which usually corresponds to the lattice spacing, inter-

molecular distance, the Planck scale, etc., in one word: it provides the natural cut-off

scale of the system under consideration. And (ii) the correlation length ξ which also can

be thought as the inverse mass. The scales (i) and (ii) are very different, especially at

criticality (for example in a ferromagnet without external field at the critical tempera-

ture T = Tc), and fluctuations in this case exist on all wavelengths between a and ξ. In

particle physics the correlation length typically corresponds to the Compton wavelength

of the particle and the energy scale of the underlying ”fundamental theory” is at the

scale of the Grand Unified Theory (∼ 1016 GeV) or ∼ 1019 GeV for quantum gravity.

However, to obtain a mathematically consistent QFT one would need to take the con-

tinuum limit (Λ → ∞), nevertheless, to study the phase structure of such systems we

do not need to do so.

In the following we are going present the general procedure through the example of a

scalar field ϕ(p) in momentum space. Let us say that we have defined a Hamiltonian at

energy scale Λ. Then, the corresponding partition function (which is nothing else but
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the generating functional) reads as:

Z =

∫
Dϕe−H[ϕ,C,Λ]. (3.1)

Here, the field ϕ = ϕ(p) considered as the degrees of freedom, C = (λ1, λ2, ...) represents

all the relevant coupling constants introduced at the given scale Λ. By integrating out

the rapid degrees of freedom we mean that we perform the functional integration in the

partition function, but only for the ”high energy modes” p ∈ [Λ− dΛ,Λ]. Schematically

to implement this elimination we will divide ϕ(p) into two parts

ϕ(p) = ϕ<(p) + ϕ>(p), (3.2)

where the terms defined as

ϕ<(p) = {ϕ(p)|p < Λ− dΛ} ,
ϕ>(p) = {ϕ(p)|Λ− dΛ ≤ p ≤ Λ} . (3.3)

Hence, we obtain the following integral for the partition functional:

Z =

∫
Dϕe−H[ϕ,C,Λ] =

∫
D<ϕD>ϕe−H[ϕ<,ϕ>,C,Λ]. (3.4)

Now, we perform the functional integration only with respect to Dφ>, which yields :

Z =

∫
D<ϕe−H[ϕ<,C′,Λ−dΛ], (3.5)

where we define the new couplings C′ by the equation

e−H[ϕ<,C′,Λ−dΛ] ≡
∫
D>ϕe−H[ϕ<,ϕ>,C,Λ]. (3.6)

We can see that Z was kept unchanged, all we did here is just a redefinition of the

partition function with the new effective couplings. Actually, for each new energy scale

we can associate a new set of effective couplings. It is more convenient to denote this

new scale in the following way: Λ/s ≡ Λ − dΛ, with s > 1. In this respect we can

indicate the effective couplings corresponding to the new scale

Λ → C,

Λ/s → C′,

Λ/s2 → C′′,

... (3.7)
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Thus, we can see that the coupling constant λis are naturally associated with an energy

scale, while using perturbation theory this can be seen only after removing the infinities

and extracting the beta function of the couplings. Wilson’s method introduces the

concept of renormalisation in the first place without relying on any expansion in the

parameters of the theory, hence we expect to go beyond the perturbative results.

There are essentially two distinguished line of thoughts to implement the ideas presented

above. One of them is closer to the original idea of the Wilson-Kadanoff block-spin

approach, where the RG transformation is carried out by introducing block-spins on

the lattice as new sites and redefine the length of the lattice spacing for the new sites.

In the meantime the redefinition of the couplings are needed Eq. (3.7). This is what

is known as the Wilson-Polchinksi formulation. The other method tackles the problem

from the opposite side: it defines an effective average action for those degrees of freedom

which we integrate out, thus providing a one-parameter family of effective theories on a

given energy scale k. We will use the latter method (Sec. 3.1.3) in our computations,

nevertheless, the basics of the first implementation will be also presented (Sec. 3.1.2) in

order to understand the differences between the two approach.

Before we proceed to technicalities, we will discuss the the definition of a critical system

and its relation to the RG fixed points in the next section.

3.1.1 Criticality and fixed points

As we discussed above, the RG flow takes place in the space of the couplings of the

theory. The main advantage of studying the RG flow is that one can extract general

informations about the second order phase transitions of the system. At criticality

(i.e. one of the couplings is tuned to criticality, e.g. the temperature T = Tc) the

dimensionful and dimensionless correlation length (which is measured in the unit of the

lattice spacing a ∼ 1/Λ) diverges: ξ = ∞, ξdl = ξ/a = ∞ (since a < ∞), where the

former is the dimensionful and the latter is the dimensionless correlation length. If we

perform an RG transformation on the critical system that maps C→ C′, then the new

correlation length will be unchanged:

ξdl =
ξ

a
→ ξ

as
=
ξdl
s

= ξ′dl =∞, if ξ =∞. (3.8)

Here, s > 1 represents the RG transformation by increasing the lattice spacing (in a

similar manner as we introduced it in the previous section). This means that the new

system, which is obtained through an RG transformation, stayed critical. A critical

surface defined by the set of point Cs in the space of couplings for which ξdl =∞. For

a second order phase transition only one parameter is needed to be tuned to criticality

(e.g. T → Tc), hence the critical surface has a co-dimension one (in the direction of
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the tuned coupling). By definition, the critical surface is an invariant subset of the RG

transformation.

If we consider a system that is not at criticality (i.e. ξdl < ∞), the RG transformation

will result in a new correlation length, i.e. ξ′dl = ξdl/s < ∞, hence the system is ”less

critical”. If we continue the RG steps the system gets further and further away from

the critical surface. If one starts applying the RG transformation on a system which is

critical surface

phys. line 

irrelevant dir.

relevant dir.

Ccrit

C*x
x

�1

�2

�3

Figure 3.1: A schematic picture of a renormalisation group flow in a three-dimensional
slice of the infinite-dimensional space of couplings. The vertical line corresponds to the
physical line, on which one of the couplings of the system is tuned to criticality (the
temperature for instance), i.e. onto the blue surface (critical surface). Various systems
with different colours are defined at criticality (green) or close to criticality (orange,
purple). The RG transformation governs each system on a different trajectory. The one,
which was critical initially (green), stayed critical: it ended up at the fixed point C∗.
The other two (orange, purple), which started close to criticality, ended up far from the
critical surface, flowing along the only relevant direction that the fixed point has. They
can be considered to belong to the same universality class, hence their long-distance

behaviour is identical.

on the critical surface it will converge to a fixed point. That is C → C∗, when both C

and C∗ are elements of the critical surface, and C∗ → C∗, i.e. C∗ is invariant under

the RG transformation. It is worth to emphasise that the RG transformation does not

correspond to an operation which has a physical manifestation: all the systems defined

by the RG flow correspond to the same physics, since the partition function remains

unchanged.

All systems which are defined with some C on the critical surface belong to the same
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universality class since they have the same long-distance behaviour. However, universal-

ity does not only hold for these systems, but also for some systems close to the critical

surface. In fact, it can be shown that around the fixed point, the RG flow behaves as

power law along its (linearised) eigendirections [62, 63]. There are three possibilities:

• The flow goes away from the fixed point C∗. The direction in which it flows

away called the relevant (eigen)direction. The coupling which corresponds to this

direction called the relevant coupling.

• The flow approaches the fixed point. This direction corresponds to its irrelevant

direction with the irrelevant coupling.

• If one cannot conclude the behaviour of the flow in a given direction from its lin-

earisation, then it is called the marginal direction, and the corresponding coupling

is the marginal coupling. In this case one needs to go beyond the linear order to

see if the coupling is relevant or irrelevant. The flow in this direction is very slow:

instead being power law, it exhibits a logarithmic behaviour.

The number of relevant couplings can be guessed, of course, since it must coincide with

the co-dimensions of the critical surface. In the case of a second order phase transition,

one parameter is needed to be tuned to criticality, consequently the number of relevant

directions must be one. A schematic picture of an RG flow is shown in Fig. 3.1.

From the linearisation of the flow in the vicinity of the fixed point, it is possible to

compute the critical exponents of the system, too. It can be shown that the value of the

critical exponents classifies different theories into universality classes [62, 106]. Using

FRG approach the critical exponents can be obtained with high precision, and they are

comparable with the results extracted from lattice simulations. In the present work we

will not discuss critical exponents, hence some references are given to the readers who

are interested in such computations: [62, 63, 75, 102, 106].

3.1.2 The Wilson-Polchinski approach

As we mentioned above, the Wilson-Polchinski approach [54] is the closest implemen-

tation of the coarse-graining procedure originally applied to lattice spin models. We

will use here the usual statistical field theory formulation in Euclidean metric. The mi-

croscopic physics corresponds to the theory defined on a scale Λ and has the partition

function

Z[J ] =

∫
dµKΛ

(ϕ)e−
∫
Vk(ϕ)+

∫
Jϕ, (3.9)
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where we perform the integration using the functional Gaussian measure:

dµKΛ
≡ Dϕe−

1
2

∫
x,y ϕ(x)K−1

Λ (x−y)ϕ(y). (3.10)

The kernel K−1
Λ (x− y) is defined in momentum space as:

KΛ(p) ≡ (1− θε(p,Λ))K(p). (3.11)

with K(p) being the free propagator:

K(p) =
1

p2 +m2
. (3.12)

The cut-off function 1−θε(Λ, p) is defined to be smooth around the value Λ with a width

ε. As ε→ 0 the quadratic part of the action becomes just the D-dimensional integral of

the free propagator with the cut-off Λ. In fact smoothing out the step function is not a

necessary requirement for the definition, but for practical reasons it is more convenient

to do so. We would like to implement the idea of the separation of the rapid and slow

modes that we discussed already at the beginning of this chapter. Let us define again

for all p momenta

ϕ(p) = ϕ(p)< + ϕ(p)>. (3.13)

We split the field in slower and faster modes with respect to a scale k < Λ. Let us

associate

ϕ(p) → KΛ(p),

ϕ(p)< → Kk(p),

ϕ(p)> → KΛ(p)−Kk(p).

(3.14)

We need to keep in mind that although ϕ(p) is being written as the sum of ϕ<(p) and

ϕ>(p), they do not necessarily coincide on the corresponding intervals. Having this

expression we are able to rewrite the partition function in terms of ϕ< and ϕ>, but first

we need to show that the functional integration measure can be indeed factorised in the

following way:

dµKΛ
(ϕ) = dµKk(ϕ<)dµKΛ−Kk(ϕ>) (3.15)
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This can be seen most easily for an analogoues one-dimensional integral:

I =

∞∫

−∞

dx e
−x

2

2γ , (3.16)

where x = y+ z and γ = α+ β correspond to ϕ = ϕ< +ϕ> and KΛ = (KΛ−Kk) +Kk,

respectively. Now, let us define

J =

∞∫

−∞

dy

∞∫

−∞

dze−
y2

2α e
− z

2

2β . (3.17)

Rewriting

− y
2

2α
− z2

2β
= −1

2

γ

αβ

(
y − α

γ
x

)2

+
α

2βγ
x2 − x2

2β
, (3.18)

and using the new variable u := (y − α
γ x) and since the Jacobian of the transformation

(y, z)→ (u, x) is unity, we will get:

J =

∫
du dxe−γu

2/2αβ−x2/2γ =

√
2παβ

γ
I. (3.19)

Not only I ∝ J , but it can be also shown more generally that

∞∫

−∞

e
−x

2

2γ
−V (x) ∝

∫
dy dze−

y2

2α e
− z

2

2β
−V (y+z)

. (3.20)

We generalise this result to the functional integrals by writing:

∫
dµKΛ

(ϕ)e−
∫
Vk(ϕ) ∝

∫
dµKk(ϕ<) dµKΛ−Kk

(ϕ>)e−
∫
Vk(ϕ<+ϕ>). (3.21)

From this formula with the integration of the rapid mode we can get the RG scale

dependence of the potential Vk:

e−
∫
Vk(ϕ<) =

∫
dµKΛ−Kk

(ϕ>)e−
∫
Vk(ϕ<+ϕ>), (3.22)

and thus the generating functional is

Z =

∫
dµKk(ϕ<)e−

∫
Vk(ϕ<). (3.23)

We did not include the quadratic term in the field into Vk, this is the reason why we

call it the potential. However, in a general case, as soon as k < Λ terms with ϕ< and

its arbitrary order of derivatives will be included in Vk. It is possible to derive the
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RG equation of the potential which is called the Wilson-Polchinski equation [54], the

details can be found in Appendix G . As we emphasised, Vk(ϕ) involves infinitely many

couplings contrarily to the PT where there are only the renormalisable ones. But even

in very crude approximations, the RG from the Wilson-Polchinski approach can provide

non-trivial non-perturbative results. This formulation is mathematically equivalent to

the one we will present in the following.

3.1.3 The effective average action

The Wilson-Polchinski approach to the Wilsonian idea of non-perturbative renormalisa-

tion provides rather formal results using its RG equation. The Hamiltonians obtained

through this type of renormalisation procedure are abstract objects and they are the

Hamiltonians of the slow degrees of freedom (ϕ<) which were not yet integrated out.

The equivalent formulation of the idea firstly was presented by C. Wetterich and it is

called the effective average action [91, 92]. The idea is practically the same, the cru-

cial difference is that instead of computing the sequence of Hamiltonians through the

RG equations one considers the effective action Γ[φ] of the rapid modes and builds a

one-parameter family of models Γk[φ], indexed by the RG scale k, in such a way that:

i When k = Λ no fluctuations has been integrated out, and thus we need to get back

our initial theory, with the bare action defined at the natural cut-off scale Λ at the

microscopic level, hence

lim
k→Λ

Γk = Sbare. (3.24)

ii When k = 0 all the fluctuations that were suppressed before are now integrated out.

(Actually it would be more appropriate to say ”integrated into”, that is taking into

account in Γk.) Hence in this limit we obtain the full quantum effective action:

lim
k→0

Γk = Γ. (3.25)

iii In the case when k < Λ, but non-zero, we will have an effective theory defined with

the effective average action at the given scale k.

From these requirements we can immediately see the major difference concerning the

role of the scale k in the two approaches. In the Wilson-Polchinski formulation it serves

as an ultraviolet cut-off for the slow modes, while it becomes an infrared cut-off for

the rapid modes when computing the effective average action. It is crucial that the

slow modes play a fundamental role in the Wilson-Polchinski approach, contrary to the
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effective average action method, where they are absent and only the rapid modes count.

For this reason all the information on the model (RG flow, fixed points, correlation

functions, etc.) are incorporated in the main subject of study: Γk[φ]. This latter feature

of the effective average method makes it a more powerful tool compared to the Wilson-

Polchinski formulation.

Now that we sketched the idea, we shall proceed to its implementation. We need to

decouple the slow modes from the rapid ones, for which the most simple way is to give a

large mass to the slow modes. In particle physics this corresponds to a small Compton

wavelength which was identified as the a correlation length of such theories (~/mc). Thus

a large ”mass” corresponds to a theory which is far from criticality (since at criticality

ξ → ∞), hence the fluctuations are small (suppressed). Now, the idea is to build up a

one-parameter family of effective theories using a scale-dependent artificial mass as an

infrared regulator:

Zk[J ] =

∫
Dϕe−S[ϕ]−∆Sk[ϕ]+

∫
Jϕ, (3.26)

where the scale-dependent mass was introduced in the following way:

∆Sk[ϕ] =
1

2

∫

q
ϕ(q)Rk(q)ϕ(−q). (3.27)

Here Rk(q) is the so-called regulator function which has to fulfil the following require-

ments:

i When k = Λ we would like to obtain the bare action. To achieve this, all the

fluctuations are needed to be frozen, hence

lim
k→Λ

Rk(q) =∞, ∀q. (3.28)

This will ensure that Eq. (3.24) is satisfied. Technically it is more convenient to

choose the regulator function as Λ2 in this limit.

ii When k = 0 we need to obtain the full quantum action Eq. (3.25), hence

lim
k→0

Rk(q) = 0, ∀q. (3.29)

iii for 0 < k < Λ the slow modes in the interval [0, k] are suppressed and the fast

modes, which have a momentum in [k,Λ], are not modified and the integration can

be performed on them, hence

Rk(q) ≈
{

finite if q < k

0 if q ≥ k.
(3.30)
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There have been extensive studies on a broad class of regulator functions and their

optimisation [95, 96]. However, we will use only one regulator function throughout this

chapter and we will define this particular regulator function later on, now we just give

an example to illustrate their general shape in Fig. 3.2. As we defined the generating

k2
1 k2

2 k2
3 k2

4 q2

Rk(q)

Figure 3.2: The typical shape of the regulator function in the effective average action
method. Slow modes below the scale k are given a large mass, whereas the fast modes
above k are being unaffected. On the figure we can see the regulator function for

different ki values.

functional for the effective theory at scale k we can derive the effective average action

from it. It is straightforward to obtain Wk, since it is nothing else but the logarithm of

Zk:

Wk = lnZk. (3.31)

From here a Legendre transformation would lead us to the corresponding effective action,

but this step is not that obvious. Let us first define Γk in the usual way but let us call

it Γ′k:

Γ′k[φ] = sup
J

(∫
Jφ−Wk[φ]

)
, (3.32)

where

φ(x) =
δWk

δJ
. (3.33)

One can check whether this definition fulfils the requirements: when k → 0 the limit of

Wk is just W hence Γ′k → Γ. This seems to be all right. However, taking the k → Λ

limit we can see immediately that it will not give back the bare action because of the

large term ∆Sk→Λ, thus limk→0 Γ′k 6= Sbare. We need to modify the definition of the

Legendre transformation of Wk in a way that it will give us the right Γk:

Γk[φ] = sup
J

(∫
Jφ−Wk[φ]

)
− 1

2

∫
φRkφ. (3.34)
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From this definition we will still get the full quantum action in the limit k → 0 and it

will give the right result in the limit k → Λ, i.e. limk→0 Γk = Sbare. We will show the

latter in the following.

Let us start from the definition of Γk and express J(x) from it:

J(x) =
δΓk[φ]

δφ(x)
+

∫

y
Rk(x− y)φ(y). (3.35)

Now, we are going to substitute Eq. (3.34) and Eq. (3.35) into the definition of Wk which

yields:

e−Γk =

∫
Dϕ exp

(
−S[ϕ] +

∫

x

δΓk[φ]

δφ(x)
(ϕ(x)− φ(x))

)

exp

(
−1

2

∫

x,y
(ϕ(x)− φ(x))Rk(x− y)(ϕ(y)− φ(y))

)
. (3.36)

In the limit k → Λ the regulator function diverges and

lim
k→Λ

exp

(
−1

2

∫

x,y
(ϕ(x)− φ(x))Rk(x− y)(ϕ(y)− φ(y))

)
∝ δ(ϕ− φ). (3.37)

Plugging it back into the Eq. (3.36) and taking the k → Λ limit gives:

e−Γ[φ] =

∫
Dϕe−S[ϕ]+

∫
x

δΓk[φ]

δφ(x)
(ϕ(x)−φ(x))

δ(ϕ− φ) = e−S[φ]. (3.38)

This yields indeed Γk[φ]→ S[φ] when k → Λ is performed, hence the right definition of

Γk is provided by Eq. (3.34).

We are interested in the RG scale dependence of Γk. It is being described by the so-

called Wetterich equation [91–93], for which we present its derivation in Appendix G.

The Wetterich equation is an integro-differential equation for the average effective action

and it reads as

∂kΓk =
1

2

∫

q
∂kRk(q)

(
Γ

(2)
k [φ] +Rk

)−1
(q,−q). (3.39)

The inverse in the bracket must be understood in operator sense. There is a more

compact form of the Wetterich equation which reads as:

∂tΓk[φ] =
1

2
Tr

[
∂tRk

(
Γ

(2)
k [φ] +Rk

)−1
]
, (3.40)

where we introduced the variable t = ln k/Λ and the trace is there to indicate the

integration over the momentum q. There are several properties of this RG equation of

the effective action which are worth to mention.
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• If at scale Λ the action S is invariant under a group G, then this group must

be also a symmetry of the average effective action defined in Eq. (3.36) for all k.

Nevertheless, there are theories with gauge symmetry which is broken explicitly

when a mass term is introduced. The symmetry breaking term can be controlled

by modified Ward identities that become the true Ward identities in the k → 0

limit [76]. However, it remains still an issue to develop a well controlled technique

for RG flows in gauge theories.

• The Wetterich equation can also be derived for theories which involve fermions.

• It is worth to mention that the Wetterich equation is very similar to the derivative

of the one-loop effective action which can be obtained from PT. In that case we

have the following loop expansion of the effective action

Γk = S + ~Γ1−loop
k +O(~2). (3.41)

To one-loop order Γ
(2)
k can be replaced by S(2) in the Wetterich equation (RHS of

Eq. (3.39)) which yields

∂tΓ
1−loop
k =

1

2
Tr

[
∂tRk

(
S(2) +Rk

)−1
]

=
1

2
∂tTr ln(S(2) +Rk). (3.42)

Integrating this respect to the scale t gives:

Γ1−loop = S +
1

2
Tr lnS(2) + const. (3.43)

This is just the formula of the one-loop effective action [9]. Furthermore, if we

make the identification of Gk[φ] =
(

Γ
(2)
k [φ] +Rk

)−1
as the full propagator, then

we can construct a diagrammatic representation of Eq. (3.39), see Fig. 3.3.

@t�k =

q

�q

X

Figure 3.3: The one-loop structure of the Wetterich equation Eq. (3.39). On the RHS
the line with arrows corresponds to the full propagator with momentum q. The ”X”

corresponds to the insertion of the operator ∂tRk.

The ∂tRk term in the one-loop integral makes the result convergent in the UV,

hence the Wetterich equation is regularised both in the IR and in the UV. All diver-

gencies which show up in PT are avoided and we can obtain the RG flow directly,

without computing the relationship between bare and renormalised quantities.
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• In the expression of Eq. (3.39) the scale k has the role of an IR regulator scale,

hence for k > 0 there is no phase transition and as a consequence there is no

singularity in Γk (which is essentially the Gibbs free energy). If there is a second

order phase transition it can be observed only when k → 0.

3.1.4 Approximations of the effective average action

The RG equation (3.39) is of course an extremely complicated expression, thus, apart

from a few exceptional cases (e.g. in the large -N O(N) model [94]), we will need ap-

proximations in order to solve it. There are two widely used approximations to solve the

Wetterich equation. In both cases we are working in a restricted functional space, where

we do not use an expansion in some small parameter of the theory. As a consequence, we

expect that our result is non-perturbative. The first approximation is called the Green’s

function approach, where we build up an infinite tower of functional integro-differential

equatios for the correlation functions derived from Eq. (3.39) by differentiating it with

respect to the field and taking them at some specific field configuration (vanishing or

uniform field configuration). At some point we need to truncate these equations, of

course. Detailed discussion of this approximation scheme and some improvements can

be found in [55, 56, 83].

The second (and the most popular) type of approximation is the so-called derivative

expansion, which implicitly assumes the regularity of the effective average action. This

eventually should be true when k > 0, and hence, it can be expanded in terms of ∂µφ.

One can argue beside this approximation that we are interested mostly in the large dis-

tance physics, and thus we will keep only the lowest terms in ∂µφ, but we will keep all

orders of φ:

Γk =

∫
dDx

(
Uk(φ(x)) +

1

2
Zk(φ(x))(∂µφ(x))2

)
+O(∂4). (3.44)

The most important information from the point of view of the statistical mechanics is

contained by the effective potential, limk→0 Uk. Therefore, it is still going to give us

reliable results if we project the RG equation Eq. (3.39) on the effective potential. This

approximation is called the Local Potential Approximation (LPA) and it is defined by

taking the fields at uniform field configurations: Γk(φuni) = ΩUk(φuni), where Ω is the

spatial volume of the system. In this case the effective action will have the form:

Γk =

∫
dDx

(
Uk(φ(x)) + (∂µφ(x)2)

)
. (3.45)
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Here, we also set Zk = 1.

In the next section we are going to briefly discuss the O(N) model and consider its RG

equation of the effective potential in the framework of FRG.

3.2 The O(N) model in the framework of FRG

The O(N) or N -vector model is the straightforward generalisation of the ϕ4 theory with

the quantum field being now ϕ = (ϕ1, ϕ2, ..., ϕN ). Due to its relative simplicity it is one

of the most extensively studied models in quantum filed theory and in statistical physics.

The action that defines the model has a symmetry under N -dimensional rotations, hence

the parameter N can be considered as the dimensionality of a classical spin. In fact,

depending on N (the number of components) the model describes for N = 1 the Ising

model, N = 2 the XY model (spins rotating in a plane), N = 3 the Heisenberg model

(spins rotating in a three-dimensional sphere) (see Fig. 3.4), and for N = 4 it serves

as a toy model for the Higgs sector in the standard model or for low-energy meson

phenomenology. In the following we are going to derive the RG equation of the effective

O(1) O(3)O(2)

(A) (B) (C)

Figure 3.4: The spin models corresponding to various O(N) models. (A) is the
Ising model with O(1)∼= Z2 symmetric spins on a lattice, (B) is the XY model with
O(2) symmetric spins on the lattice sites and (C) is the Heisenberg model with O(3)

symmetric spins defined on each site.

potential for the O(N) model. Every term in the action is invariant under the N -

dimensional rotational group, therefore, technically it is more convenient to work with

the invariant variable of the theory:

ρ =
1

2
φ2. (3.46)

Now, there is also another technicality that we need to take care of. Since we wish to

study critical systems, where practically we have to work with singular dimensionful

quantities, we should use dimensionless quantities instead. This means that in order to
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keep the rather simple notations we had so far, by abuse of notation, we will redefine our

dimensionful fields and couplings with a ”bar” and we will define the dimensionless fields

and coupling without bars. For the dimensionful effective potential we will use Uk and

the corresponding dimensionless potential is uk. That is, since we have the canonical

dimensions:

[U ] = kD, [φ̄] = k
D−2

2 ⇒ [ρ̄] = kD−2, (3.47)

they will define the following dimensionless quantities:

u =
U

kD
, φ =

φ̄

k
D−2

2

⇒ ρ =
ρ̄

kD−2
. (3.48)

We start with the Wetterich equation Eq. (3.39) and use the LPA Ansatz Eq. (3.45) for

the effective action, which yields (see Appendix G.1.3)

∂tUk =
1

2

∫
dDq

(2π)D
∂tRk(q)

(
N − 1

q2 +Rk(q) + U ′k
+

1

q2 +Rk(q) + U ′k + 2ρ̄U ′′k

)
. (3.49)

So far, we have not introduced the regulator function Rk explicitly, but we have to do

it at this point in order to be able to evaluate Eq. (3.49). By using the optimised (or

Litim’s) regulator [95],

Rk(q
2) = (k2 − q2) θ(k2 − q2), (3.50)

which satisfy the criteria in Sec. (3.1.3), one can evaluate the integral in Eq. (3.49)

analytically, which we will show in the following. We can rewrite Eq. (3.49) into D-

dimensional spherical coordinates and integrate out the angular part to obtain:

∂tUk = vD

∞∫

0

dxx
D
2
−1∂tRk(q)

(
N − 1

q2 +Rk(q) + U ′k
+

1

q2 +Rk(q) + Uk + 2ρ̄U ′′k

)
, (3.51)

where x ≡ q2 and vD comes from the surface of the D-dimensional unit sphere and the

factor of 1/2, with the explicit expression:

vD =
1

2D+1πD/2Γ(D/2)
. (3.52)

Both of the terms in the integrand have essentially the same form. Hence, it is more

convenient to introduce:

Ī(Ω) =

∞∫

0

dxx
D
2
−1 ∂tRk(q)

q2 +Rk(q) + Ω
. (3.53)
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The term Ω in the denominator is a q independent object. We will use the dimensionless

regulator as a function of y ≡ q2/k2:

r(y) =
Rk(q)

q2
=

1

q2
(k2 − q2) θ(k2 − q2) =

(
1

y
− 1

)
θ (1− y) , (3.54)

and the logarithmic derivative of Rk by the scale k:

∂tRk =
1

q2

∂r(y)

∂y

∂y

∂t
=

1

q2

∂r(y)

∂y
k∂k

(
p2

k2

)
= −2q2r′(y)y = −2xr′(y)y. (3.55)

We continue by substituting Eq. (3.55) into Eq. (3.53):

Ī(Ω) =

∞∫

0

dxx
D
2
−1 −2xr′(y)y

q2 +Rk(q) + Ω

=

∞∫

0

dxx
D
2
−1 −2 x

k2 r
′(y)y

x
k2 (1 + r(y)) + Ω

k2

=

∞∫

0

dxx
D
2
−1 −2y2r′(y)

y + yr(y) + ω

= kD
∞∫

0

dy y
D
2

+1 −2r′(y)

y + yr(y) + ω
, (3.56)

where ω = Ω/k2. Now, the integrand is being expressed by fully dimensionless quantities,

and the dimensionless integral can be denoted by I(ω) = Ī(Ω)/kD. Using the definition

of Litim’s regulator in the dimensionless form given in Eq. (3.54) yields:

I(ω) = −2

∞∫

0

dy y
D
2

+1
− 1
y2 θ(1− y) +

(
1
y − 1

)
δ(1− x)

y + y
((

1
y − 1

)
θ (1− y)

)
+ ω

= 2

1∫

0

dy y
D
2
−1 1

1 + ω
=

4

D

1

1 + ω
. (3.57)

Here, in the nominator we used the fact that the derivative of the dimensionless regulator

is

r′(y) = − 1

y2
θ(1− y) +

(
1

y
− 1

)
δ(1− x). (3.58)

Using the result above, we can write down the RG equation for the effective potential

given in Eq. (3.49) as

∂tUk = AD

(
kD(N − 1)

1 + u′k
+

kD

1 + u′k + ρu′′k

)
. (3.59)
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On the RHS we substituted into ω the corresponding expression from the denominator

of Eq. (3.49). We defined the D-dependent factor AD:

AD = vD =
1

2D−1πD/2Γ(D/2)D
. (3.60)

Now, we need to factor out the scale on the LHS of Eq.(3.59), too. Differentiating the

potential with respect to the scale gives:

k
dUk(ρ̄)

dk
= k

kDuk(ρ)

dk
= k

(
kD−1Duk(ρ) + kD

duk(ρ)

dk

)
. (3.61)

Now, let us compute the second term in the bracket, where we need to keep in mind

that since ρ̄ can be arbitrary ρ must depend on the scale:

kD
duk(ρ)

dk
= kD

∂uk(ρ)

∂k
+ kD

∂uk(ρ)

∂ρ

∂ρ

∂k

= kD
∂uk(ρ)

∂k
+ kD

∂uk(ρ)

∂ρ

∂k2−Dρ̄

∂k

= kD
∂uk(ρ)

∂k
+ kD

∂uk(ρ)

∂ρ
k1−Dρ̄(2−D)

= kD−1
(
∂tuk(ρ) + (2−D)u′k(ρ)ρ

)
, (3.62)

where, when we took the partial derivative of the potential respect to k, the dimensionless

field variable ρ was understood as a fixed quantity. Now, by substituting Eq. (3.61) with

Eq. (3.62) into Eq. (3.59), we will obtain the RG equation for the dimensionless effective

potential:

∂tuk = −Duk + (D − 2)ρu′k + (N − 1)
AD

1 + u′k
+

AD
1 + u′k + ρu′′k

. (3.63)

This equation is going to be our main subject of study. In the following, we will discuss

the spontaneous breaking of the symmetry in the O(N) model.

3.3 The O(N) model and the spontaneous breaking of sym-

metry

Spontaneous symmetry breaking (SSB) is a cornerstone concept in a variety of systems,

ranging from field theory and particle physics to statistical mechanics and interacting

lattice models. The study of the occurrence of SSB play a crucial role in the theory

of phase transitions and in the characterisation of ordered phases and it highlights the

interplay between SSB and the dimensionality of the system: this interplay is custom-

arily expressed by defining a lower critical dimension DL for which SSB cannot occur
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[57]. A celebrated exact result connecting SSB and dimensionality is provided by the

Mermin-Wagner-Hohenberg-Coleman (MW) theorem [58–60]. According to this theo-

rem a continuous symmetry cannot be spontaneously broken in less than or equal to

two dimensions, hence the lower critical dimension is DL = 2. This theorem has been

formulated for classical systems [58] and then extended to quantum systems [59, 60]. For

magnetic systems with continuous symmetry it rules out the possibility of having a non-

vanishing magnetisation at finite temperature in two dimensions, and for 2D interacting

Bose gases predicts that no Bose-Einstein condensation occurs at finite temperature [59]

(for Bose gases this result has been extended to zero temperature [61]). As it is well

known, even though the Mermin-Wagner theorem rules out SSB and the existence of a

local order parameter in two dimensions, nonetheless the Berezinskii-Kosterlitz-Thouless

(BTK) transition may yet occur for the U(1) symmetry and it signaled by the algebraic

behaviour of correlation functions in the low temperature phase [62]. The Mermin-

Wagner theorem for the O(N)-symmetric scalar field theory states that for N ≥ 2 in

two dimensions no SSB occurs. Although originally formulated in integer dimensions,

this result was later extended to graphs with fractional dimensions [64]: in this way one

can explicitly show that for N ≥ 2 there is no SSB for D ≤ 2, with D being real, while

SSB occurs for D > 2 [65]. In [66] the study of how O(N) universality classes depend

continuously on the dimension D (and as well on N), in particular for 2 < D < 3 was

recently presented. The Ising model, i.e. the N = 1 case, is different from O(N) models

with continuous symmetry (N ≥ 2) because the symmetry is discrete: in two dimensions

it notoriously has a finite temperature phase transition [67] and it can be shown that

this happens for D ≥ 2 with D real [68]. The large -N limit of O(N) models is also

interesting because for N → ∞ it is equivalent to the spherical model [69], which is

exactly solvable [70]. The O(N) model represents then an ideal playground to study the

interplay of SSB and dimensionality and to test whether (and how) the appearance of

SSB depends on the approximation schemes. A powerful method used to consider the

phase structure of a model, and consequently to study the appearance of SSB, is the

FRG method [14, 71–77]. The O(N) model has been extensively studied using FRG

approaches: as relevant for our purposes, we mention that it was used to study, as a

function of dimension, the critical exponents of O(N) models [66, 78, 79] and to investi-

gate truncation effects and the regulator-dependence of the FRG equation [80–87], while

a FRG study of the critical exponents of the Ising model for D < 2 was presented in

[78]. The study of single-particle quantum mechanics can be seen as a ”low-dimensional”

statistical mechanics model: FRG studies addressed double well potential and quantum

tunneling [88, 89] and quartic anharmonic oscillators [90].
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3.4 Mermin-Wagner-Hohenberg-Coleman theorem for the

O(N) model in the framework of FRG

3.4.1 MW theorem for finite N

In this section we will consider the problem of determining the lower critical dimension

DL for the O(N) model for a finite N in LPA. In order to consider the appearance of

SSB in the O(N) model for finite N , let us start with the following fixed point equation,

which is obtained from Eq. (3.63). By setting ∂tu = 0

Du− (D − 2)ρu′ =
AD(N − 1)

1 + u′
+

AD
1 + u′ + 2ρu′′

. (3.64)

The LHS of the RG Eq. (3.64) is linear in the effective potential. The RHS depends on

the effective potential and its derivatives non-linearly, thus, we introduce the notation

LP ≡ Du(ρ)− (D − 2)ρu′(ρ), (3.65)

NLP ≡ (N − 1)
AD

1 + u′(ρ)
+

AD
1 + u′(ρ) + 2ρu′′(ρ)

, (3.66)

where LP (NLP ) stands for the linear (non-linear) part. The fixed point equation (3.64)

for the potential, using the notations in Eq. (3.65)-Eq. (3.66), reads then LP = NLP .

In the large field limit (ρ → ∞) the potential could be diverging or bounded, hence

tending to a constant value. However, we need to assume the analyticity of the effective

potential for finite field values [109].

Let us consider first the case when u(ρ) is diverging in the large field limit. In this

case we need to distinguish three sub-cases according to the behaviour of the derivative,

u′(ρ), since it can be diverging, tending to a finite value or to zero. In the case when

u′ is also diverging NLP tends to zero, hence the asymptotic form of the differential

equation is:

Du(ρ)− (D − 2)ρu′as(ρ) = 0, (3.67)

yielding the solution:

uas(ρ) = aρ
D
D−2 . (3.68)

Due to the stability requirement of the potential, that is u has to be bounded from

below, a is forced to be a positive real. We can then write the form of the potential as

u(ρ) = g(ρ) + aρ
D
D−2 , (3.69)

where, g(ρ) vanishes in the large ρ limit. We are looking for the minimum ρ0: let us

differentiate Eq. (3.69) and take it at ρ = ρ0, which is assumed to be the minimum.
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Performing this operation one gets

0 = g′(ρ0) + a
D

D − 2
ρ

D
D−2
−1

0 . (3.70)

From this ρ0 can be expressed as

ρ0 =

(
−g
′(ρ0)

a

)D−2
2
(
D − 2

D

)D−2
2

. (3.71)

We can now distinguish three sub-cases:

• for D > 2 the second factor in the expression of the minimum has a positive real

value. We have established already that in the first factor the denominator a is

positive. Therefore g′(ρ0) must be negative or zero in order to fulfil Eq. (3.70).

Hence, altogether, the fraction in the bracket must be positive independently of the

dimension. So, we found that for D > 2 the minimum ρ0 can be either vanishing

or a finite positive number. This latter case indicates that the presence of SSB is

possible.

• for D = 2 the second factor gives a 00, which is indeterminate, or alternatively

one can define it as 1 if we consider the D = 2 case as a limit (D → 2). In this

instance what one can see already from Eq. (3.70) is that if we assume ρ0 to be

a positive real, then g′(ρ0) should be −∞ to compensate the second term. So, if

we consider the limit D → 2 in Eq. (3.71), then ρ0 =∞, which means there is no

finite positive minimum to consider, therefore no SSB occurs in D = 2 limit [104].

However, this analysis is not sensitive to the number of the field components N .

In the special case, when N = 1 (i.e. Ising model) we would need to observe an

SSB phase in D = 2 as well. From this argument it is not clear how to achieve

this. The answer to this question can be found in Section 3.5.1, where the Taylor

expansion of the effective potential is used.

• for D < 2 one can immediately see that the second factor in Eq. (3.71) is going

to have complex value(s). From Eq. (3.70) we can conclude that g′(ρ0) ≥ 0 for

D < 2. The only value for g′(ρ0) that makes Eq. (3.71) physically sensible is

when g′(ρ0) = 0, therefore the potential cannot have a true extremum (minimum)

anywhere else than ρ0 = 0. This clearly shows that there exists only a symmetric

phase for dimensions D < 2 in the LPA.

Now, we will consider those two cases which are left, namely, when u(ρ) diverges and

u(ρ)′ tends to zero or to a finite constant and the case when u(ρ) itself tends to a

constant with the consequence that u′(ρ) is tending to zero. In all of these three cases
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the asymptotic form of the fixed point equation (3.64) reads:

Du(ρ)− (D − 2)ρu′as(ρ) = c. (3.72)

Its solution is

uas(ρ) =
c

D
+ aρ

D
D−2 . (3.73)

Hence, the full potential can be written in the same way as in Eq. (3.69). Now, in the

first two cases when u(ρ) is diverging, g(ρ) can have arbitrary behaviour. In this case

exactly the same arguments hold as those discussed above for the u′(ρ)→∞ scenario.

On the other hand, when u(ρ) is a constant in the large field limit, we have a more

subtle case. From Eq. (3.69) we would demand to tend to a constant, i.e. to c/D, as we

see in Eq. (3.73). Here we can have three different situations:

• When D < 2:

lim
ρ→∞

u(ρ) = lim
ρ→∞

g(ρ) + aρ
D
D−2 =

c

D
, ∀a ≥ 0. (3.74)

Thus g(ρ) → c/D. And hence, if we write down Eq. (3.71) we will find the same

answer: the only physically sensible solution for it is when g′(ρ) = 0, which implies

ρ0 = 0, and as a consequence there cannot be a SSB.

• When D > 2 the only way to get a constant in the large field limit is to set a to

zero:

lim
ρ→∞

u(ρ) = lim
ρ→∞

g(ρ) + aρ
D
D−2 =

c

D
, if a = 0. (3.75)

In this situation in Eq. (3.71) we are going to face the expression of g′(ρ0)/0 which

can only be compensated to give a finite value iff g′(ρ0) = 0, too. Since g(ρ) tends

to a constant this can be achieved if it converges very fast. This argument is rather

handwaving, however, from this analysis this is the most that we can extract. If

we assume that g′(ρ0) = 0 in a way that limg′,a→0 g
′(ρ0)/a ∈ R− (i.e. g(ρ) is

decreasingly approaching the constant value), indeed, we are going to have a finite

positive expression for the minimum in Eq. (3.71).

• When D = 2 we will face with divergences again, just like in the case when

u(ρ)→∞. The same argument can be done here, as it was done there.

We also need to give a small remark whether the extremum we consider can be truly a

minimum. To get the answer to this question, we need to analyse the second derivative

of the effective potential. More precisely, we need to show that u′′(ρ0) > 0. From
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Eq. (3.69) the second derivative of the potential at ρ = ρ0 reads:

u′′(ρ0) =
a
(

D
D−2 − 1

)
Dρ

D
D−2
−2

0

D − 2
+ g′′(ρ0). (3.76)

Now, since we established that a ≥ 0, the first term provides a positive value whenever

ρ0 > 0 (apart from the case when a = 0). Hence, the positivity of the expression in

Eq. (3.76) depends on the value of g′′(ρ0), which we do not know precisely, but the most

important fact, that is the possibility of u′′(ρ0) > 0, is not excluded at all. Thus, the

analysis we provided above holds.

As a conclusion: the analysis that was presented above in the finite N case when we have

a potential that diverges asymptotically, the Mermin-Wagner theorem can be established

with the question mark on the case of D = 2. When the potential is bounded from both

directions (like in the Ising model in D = 1 and D = 2 [110]) one needs to make a few

assumptions to prove the MW theorem in the framework of the FRG at the level of the

LPA. In Section 3.5.1 we will show that, indeed DL < 2 when N = 1 and DL = 2 when

N ≥ 2. In the next section, however, we will consider the large -N case first.

3.4.2 MW theorem for the spherical model

In this section we consider the O(N) model in the large -N limit which is equivalent to

the spherical model [69]: thus we can neglect the terms in Eq. (3.63) which are of order

1/N . To see this we are going to rescale Eq. (3.63) by an irrelevant parameter (ADN),

and considering the new variables ρ→ ρ/(ADN) and u→ u/(ADN). The derivative of

the potential remains invariant under this rescaling u′ → ∂u/(ADN)
∂ρ/(ADN) = u′. As a first step,

we divide the RG equation (3.63) by ADN :

∂t
u

ADN
= (D − 2)

ρ

ADN
u′ −D u

ADN
+

1

1 + u′
− 1

N

1

1 + u′
+

1

N

1

1 + u′ + 2ρu′′
. (3.77)

Next we perform the rescaling

∂tu = (D − 2)ρu′ −Du+
1

1 + u′
− 1

N

1

1 + u′
+

1

N

1

1 + u′ + 2ρu′′
. (3.78)

By taking the limit N →∞ the following terms remain:

∂tu = (D − 2)ρu′ −Du+
1

1 + u′
. (3.79)

This simplified expression represents the RG equation for the effective potential in the

large -N limit of the O(N) model in arbitrary dimension. From Eq. (3.79) we can extract

some useful information. First we should differentiate it with respect to ρ in order to
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get an equation for the derivative of the potential. It reads then

∂tu
′ = (D − 2)u′ + (D − 2)ρu′′ −Du′ − u′′

(1 + u′)2
. (3.80)

Since in a physically reasonable theory the potential is bounded from below, we can

assume that this potential has a global minimum at some ρ = ρ0. For ρ0 we have

the following value for the derivatives of the potential at the fixed point: u′(ρ0) = 0,

u′′(ρ0) ≡ λ. Assuming that the quartic coupling λ is finite, we have then the following

equation:

0 = (D − 2)ρ0λ− λ, (3.81)

with the solution

ρ0 =
1

D − 2
, (3.82)

which determines the cases where the minimum of the potential can be found in the

large -N case. There is SSB if the potential has the minimum at some finite ρ0 > 0: in

the case of Eq. (3.82) we can satisfy this condition for D > 2. For D < 2 we find ρ0 < 0,

hence in view of Eq. (3.46) there will be no SSB. The D = 2 case seems to be undefined

again, since ρ0 → ∞ in this limit. However, if the minimum of the potential is sent

to infinity one cannot define a proper real minimum. The absence of a finite minimum

indicates the absence of the spontaneous symmetry breaking for D = 2 dimensions. This

can be also seen by solving Eq. (3.80) using the method of characteristics [104], [94].

The large -N limit is a frequently used technique [53, 105], where the results obtained

can be considered as exact ones, since the LPA approximation can be considered as an

exact approximation when N →∞ [94, 106].

3.5 The phase structure of the O(N) model

3.5.1 The Vanishing Beta Function curves

In the following, we are going to use the most common Ansatz for solving the equation

3.63. Namely, it is the Taylor expansion of the effective potential in the field vari-

able. First we are assuming that we can expand the potential in a Taylor-series around

vanishing field. That is:

u(ρ) = lim
n→∞

n∑

i=1

u(i)

i!
ρi. (3.83)
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For the sake of simplicity we are going to use the following notations for the coefficients

λi ≡ u(i)(0). The scale-dependence is encoded into these dimensionless couplings. Most

of the times we are also going to use for the quadratic coupling λ1 ≡ m2, sometimes for

the quartic coupling λ2 ≡ λ and λ3 ≡ τ for the sextic coupling. Keeping this in mind,

we can look at the flow equation of the effective potential and differentiate it once, then

evaluate it at ρ = 0. So, we get the flow equation for the mass

∂tm
2 = (D− 2)m2 −Dm2 − 3λAD

(1 +m2)2 −
(N − 1)λAD

(1 +m2)2 . (3.84)

If we are looking for the scale independent solutions (i.e. the fixed point solutions) of

this partial differential equation, one can take ∂tm
2 = 0. By doing this, we can express

λ by using only the mass term

λ = −2m2
(
1 +m2

)2

(2 +N)AD
. (3.85)

This curve defines the value of λ, provided ∂tm
2 = 0, i.e. this relation is only true

when the mass stopped running [43], [103]. If one does not have quartic coupling, i.e.

λ = 0, then the solutions for this equation are just the roots of λ(m2), that is m2 = −1

or m2 = 0. Now we derive the flow equation for the quartic coupling, too. To do so,

we need to perform the same idea as before, but now we need to differentiate the flow

equation of the effective potential twice with respect to ρ and only then evaluate it at

ρ = 0. One will have then:

∂tλ = 2(D− 2)λ−Dλ+AD

[(
18λ2

(1 +m2)3 −
5τ

(1 +m2)2

)

+(N − 1)

(
2λ2

(1 +m2)3 −
τ

(1 +m2)2

)]
. (3.86)

Again, if we are interested in the fixed point of the equation we need to take ∂tλ = 0,

which enables us to express the sextic coupling as τ = τ(λ,m2). If we are looking for

the fixed points of both equations Eq. (3.86) and Eq. (3.84) we can express the sextic

coupling by only using the mass as an explicit parameter: τ = τ(λ(m2),m2) = τ(m2).

This looks as follows:

τ = −2m2
(
1 +m2

)3 (
D
(
1 +m2

)
(2 +N)− 4

(
2 +N + 2m2(5 +N)

))

(2 +N)2(4 +N)A2
D

. (3.87)

This function defines the value of τ , provided ∂tm
2 = 0 and ∂tλ = 0. When we are

looking for a fixed point for the whole system of equations we need to set the LHS of

Eq. (3.87) to zero (which sets ∂tτ = 0 automatically), thus providing the values for

m2 where the fixed points are found. The general statement is the following: one can
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express the nth coupling simply by using the mass term m2 as an explicit parameter.

This nested formula has the following form:

λn = λn(λn−1(λn−2(...λ2(m2))),m2) = λn(m2). (3.88)

It is straightforward to prove this using induction (see Appendix H). As a consequence

one can find a formula which tells the general form for the nth coupling for n ≥ 2:

λn = (−1)n+1 2[n/2]

An−1
D

n−1∏
i=1

(2i+N)[(n−1)/i]

m2(1 +m2)n
n−2∑

i=0

n−2∑

j=0

fi,j(N
α)(m2)iDj . (3.89)

Here the notation [.] means the integer part of its argument and fi,j(N) is an integer

valued function of Nα, where α is an integer, too. From Eq. (3.89) we can conclude that

(apart from the prefactor which depends only on N and D) λn is a polynomial of m2

over the integers, which has roots at m2 = 0 and m2 = −1 for every n ≥ 2. Another

interesting consideration is that λ2 is the greatest common divisor of all the λn VBF

polynomials, n ≥ 2. Of course, there are much more roots in the complex numbers

domain in general (actually the number of roots are growing with n), but we are only

going to consider the real ones, for which the physics is meaningful. However, in special

cases like in D = 4 and 4 < D < 6 in the large -N , one can observe a convergent series

of the unphysical roots on the complex plane from which the physically sensible results

can be extracted. It is worth to emphasise that Eq. (3.89) is the most general form of

the couplings λn(m2), their qualitative behaviour highly depend on the dimensionality,

as we are going to see later on. It also depends on the number of the fields N , of course,

but this dependence is rather quantitative.

The coupling λn = λn(m2) in Eq. (3.89) defines a curve in terms of m2 on which

∂tλn−1 = 0, i.e. the beta function of the (n − 1)th coupling, vanishes. But we know

that λn−1 = λn−1(m2) (which we have already in hand, otherwise we could not build

up λn(m2)) defines a curve on which ∂tλn−2 = 0, and we can continue this till n = 1.

For this reason from now on we will refer to the curves defined by Eq. (3.89) as the

Vanishing Beta Function (VBF) curves.

As a next step we would like to extract the fixed points of the theory. The VBF curves

of course define the possible values of the couplings for the fixed points. In order to

find a fixed point we need to perform the following procedure. The VBF λn defines a

curve where ∂tλn−1 vanishes, but it does not say anything about ∂tλn itself. The curve

which on ∂tλn vanishes is defined by λn+1 = λn+1(m2), and so on. But we need to cut

our Taylor expansion at some order, to be able to carry out real computations. Let us

say we truncate it at the nth order, but then again we would need the beta function

of λn to be zero, which is encoded in the VBF defined by λn+1. Since we expanded
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the effective potential in Taylor series until the nth order, clearly we cannot construct

that curve. The only way to get ∂tλn = 0 is to set λn(m2) ≡ 0 which gives zero for

its beta function automatically. In other words, assume that we would like to have an

(n − 1) order expansion, but before we do so we do not set λn = 0 for the moment. If

λn were not be zero we would need its beta function to vanish, too, in order to find a

fixed point. But we do not want to compute its beta function, because at the end we

are satisfied with an n− 1 order expansion. Since we did not set λn to zero yet, we can

express it through the vanishing beta function of the (n−1)th coupling because its fixed

point equation has the form ∂tλn−1 = 0 = F (m2) + λn, where F (m2) is a polynomial in

m2. Now, λn = −F (m2), which just defines its VBF curve. Since we did not want to

have this term (i.e. the nth), we can set F (m2) = 0, which is satisfied at its roots m2
0s,

hence λn = 0, too. Thus, although practically we expanded the effective potential till

the order n and we were able to construct the VBF curves all the way till order n, we

must find the roots of the nth VBF curve to set the nth coupling to zero, which would

imply by construction that ∂tλn ≡ 0. To make a long story short: we have to solve the

following equation

λn(m2
0) = 0, (3.90)

where m2
0 represents the roots of the VBF curve λn(m2). We need to evaluate the other

n− 1 VBF curves at these m2 = m2
0 points to obtain the value of all the dimensionless

couplings at the fixed point, and thus define the truncated effective fixed point potential.

So far so good, but let us suppose we find a fixed point potential which is unbounded from

below, i.e. defines an unstable theory. That obviously must be wrong, hence we need to

bring into play another restriction: since the potential is a polynomial, the asymptotics

(i.e. the boundedness from below for large field values) depend on the highest degree

term in the polynomial. As a consequence we need to exclude the m2
0 roots that give

λn−1(m2
0) < 0 coupling, which is the coefficient of the highest degree non-zero term in

the polynomial expansion.

In general we can sum up all these requirements in the following way. Let us define the set

M =
{
m2

0 ∈ R|λn(m2
0) = 0

}
. A stable fixed point effective potential can be found by sub-

stituting allm2
0 ∈M into the n−1 VBF curves

{
λn−1(m2), λn−2(m2), ..., λ2(m2), λ1 ≡ m2

}

provided λn−1(m2
0) ≥ 0. (If it happens to be zero, too, one need to apply this rule for

the VBF λn−2(m2), and so on). In other words, the set of m2
0s which defines a true fixed

point is

M∗ =
{
m2

0 ∈ R|λn(m2
0) = 0 ∧ λn−1(m2

0) ≥ 0
}
. (3.91)
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In the following, some example are presented individually for D ≤ 2, 2 < D < 4 and

D ≥ 4, starting with D ≤ 2.

3.5.2 VBF curves for D ≤ 2

3.5.2.1 Continuous symmetries (N ≥ 2)

The Mermin-Wagner theorem essentially states that no spontaneous breaking of contin-

uous symmetry is present in systems of D ≤ 2. In [66, 79] a numerical evidence was given

in the framework of the FRG that the MW theorem indeed holds, here a beyond LPA

scheme was used, where the wave function renormalisation was taken into account, too.

We have shown in Section 3.4, using analytical considerations, that the MW theorem

is not violated even at the LPA level. We will verify the MW theorem for the case of

the expanded potential (where this statement cannot be seen directly) by applying the

rules that have been settled above. Although the title of this section suggests to include

the case of a system with D = 2 and N = 2, we will perform our analysis using D = 2

with N ≥ 3, since in the former case an infinite order BTK phase transition is present

([97, 98]), as it was mentioned above. To detect this kind of symmetry breaking the

LPA is not sensitive enough, as we could see in Section 3.4. However, beyond LPA the

BTK phase transition can be observed in the framework of FRG [99–101].

Using Eq. (3.89) for D = 1 and D = 2 case one can find a simplified expression for the

nth coupling

λn ∝ (−1)n+1m2(1 +m2)n
n−2∑

i=0

gi(N,D)(m2)i. (3.92)

Here we only indicated the polynomial structure in m2, although the prefactors are

slightly modified, too. The coefficient functions gi(N,D) are defined as follows:

gi(N,D) =

n−2∑

j=0

fi,j(N
α)Dj . (3.93)

Interestingly, when setting D ≤ 2 the finding is that all the gis are positive for every

term, at least till the highest order (n = 45), that has been considered in the expansion,

this is the observation. This fact suggests that the roots (which are not complex) must

be either negative or zero.
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Let us find the fixed points according to the rule that has been established in the previous

section, using N = 3 and D = 2. The following VBF curves are found:

λ2 = −8π

5
m2(1 +m2)2,

λ3 =
64π2

175
m2(1 +m2)3(5 + 27m2),

λ4 = −512π3

7875
m2(1 +m2)4

(
25 + 670m2 + 1671(m2)2

)
,

λ5 =
4096π4

606375
m2(1 +m2)5

(
175 + 18595m2 + 161115(m2)2 + 254799(m2)3

)
,

... (3.94)

Considering only the real roots, we can find that they are all situated in the interval

[−1, 0]. In Fig. 3.5, one can see the plot of the VBF curves versus m2. The mere fact

that we can find roots is against the Mermin-Wagner theorem, because for that to hold

true, we should have no roots at all, except at the ending points of the interval [−1, 0].

-1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2
-10

-5

0

5

�5/4
�4/2
�3
�2

m2

�i

Figure 3.5: The VBF curves for the couplings λ2, λ3, λ4 and λ5 in the O(3), D = 2
model . Each curve is defined by the vanishing beta functions: ∂tm

2 = ∂tλ2 = ∂tλ3 =
∂tλ4 = 0 respectively. The roots for λ5(m2) are indicated by black dots. These roots
are going to define the fixed point potentials at the truncation level n = 4. Two of
its roots are indicated by a green dot and a red triangle to demonstrate a valid and a
false fixed point, respectively. At the green dot (m2 ≈ −0.484) we find that λ4 > 0,
and evaluating λ4 at the red triangle (m2 = −0.137) we get λ4 < 0, hence defining an
unbounded potential, See Fig. 3.6. On λ4 and on λ5 a scaling is performed for the sake

of the presentation.

We found true fixed point potentials at a finite truncation level according to Fig. 3.5,

which should not be there as a consequence of to the MW theorem. The situation is

getting worse when we go to higher order in the truncation: indeed, in this case we are

going to have more zeros, hence more and more fixed point potentials emerge. How can

we resolve this contradiction? One way would be to overcome this situation is that all

the roots between −1 and 0 turn into complex valued as we go to higher order. However,

from the order of the expansion we used, we cannot put our hope in this. There is another
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scenario, too. Let us analyse the VBF curves more carefully. Apparently, one can find a

pattern of the roots for the VBF curves: evaluating the λn−1 VBF at each of the roots

of λn, one will find real numbers alternating in sign starting from the closest root to −1

with sgnλn−1(m2
1) = +1 (here the 1 in the subscript indicates the closest root of λn to

-1). For instance in our example in Fig. 3.5 that was m2
1 ≈ −0.484 corresponding to the

stable potential (Fig. 3.6).

0.0 0.2 0.4 0.6 0.8 1.0

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

ρ

uin

ust

Figure 3.6: The fixed point potentials evaluated at the fixed point discussed in
Fig. 3.5. A stable potential can be obtained for m2 ≈ −0.484 and an instable one

for m2 = −0.137, which are indicated on the figure by ust, uin, respectively.

In other words, from the set M defined above, we will consider only M \ {−1, 0} and

the claim is: if we make an ordering from the smallest value to the largest in this set,

then every odd element of M \ {−1, 0} is in the set of M∗ \ {−1, 0}, hence for every

such element λn−1 > 0 thus defining a stable potential. So, we are still going to have

fixed points even though the number of them is halved by taking into account only the

fixed points which define stable potential. It seems that this procedure does not help

too much, but, actually, by doing this, we can extract some useful information: each

root of the λn VBF is surrounded by the roots of the λn−1, otherwise the alternating

signs that was explained above could not be possible. So, it means that by deriving

higher and higher order VBF curves the position and the number of roots change in the

way that all of the previous roots are around the new ones, see Fig. 3.7. Let us call

this interesting pattern of the set of roots the M∗ pattern for future use. We can do

one thing with this without knowing anything about the structure but the root pattern

statistics: we can simulate a sequence of sets of points which behave in this way.

Let us consider a randomly generated number X1 which can take a value in the interval

(−1, 0). We generate this number and then we consider two new random numbers:

X1
2 and X2

2 . The first one can take any value in the interval (−1, X1) and the second

in (X1, 0). After we generate values for X1
2 and X2

2 , they are going to be the new

ending points of the intervals where we define again random numbers but this time

three: X1
3 , X2

3 and X3
3 . We continue this procedure with the random numbers Xi

n with
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Figure 3.7: The roots of the VBF curves λ2, ..., λ15. Observe the pattern which is
given by the following rule: any root of λn is between the roots of λn−1 (except for −1

and 0 of course).

(a) n = 10 (b) n = 50

(c) n = 28000

Figure 3.8: Histograms of the distribution of the points generated in Xn. In the
subfigure (A) the distribution of X10 in the subfigure (B) the distribution of X50 and
in the subfigure (C) the distribution of X28000 are displayed. Note that the positions of
the points are tending to −1 and 0 and at very high n the number of points between the
two endpoints is negligible, in other words: the probability of finding a point between

the two end points is tending to zero as n→∞.

i = 1, 2, ..., n and n → ∞, where n indicates that we defined them in the nth step in

the interval (Xi−1
n−1, X

i+1
n−1), including −1 and 0, too. By increasing n we can obtain the

distribution of the points created in the way described above; this is shown in Fig. 3.8.

From this construction one can see that the distribution of the randomly generated

points is changing in a way that they are accumulating at the two ending points of

the interval. This suggests that the limit of the probability density for Xn (at least in

distributional sense) is:

lim
n→∞

fXn(x) =
1

2
(δ(x+ 1) + δ(x)). (3.95)
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The aim was to simulate the zeros of the VBF polynomials λn, and we found that

the roots are accumulating at −1 and 0. Thus, if there exists a limit for the VBFs

(limn→∞ λn = λ), then this will give zero only at −1 and 0, even if this limit is not

a continuous function. But this is physically well-justified since this would indicate

that we do not find any roots other than the two ending points of the interval, which

leads us to the conclusion that no SSB is present in dimensions D = 2 with N = 3.

Indeed, this is a seemingly paradoxical result, namely that we would expect infinitely

many number of fixed points as the degree of the VBF polynomials grow, but at the

end we will find two actual fixed points defining only one phase, in agreement with the

Mermin-Wagner theorem that we wanted to show. We can make another remark on the

role of the convexity (or IR) fixed point m2 = −1. From the VBFs one can see that

every higher coupling vanishes at this point, i.e. λ2(−1) = λ3(−1) = ... = 0, hence

the potential, which is defined by this fixed point, is an unstable one, corresponding to

the dimensionless potential u = −ρ2. One can now speculate whether this fixed point

is a real one or it is just an artefact of the approximations that we use in the FRG.

Similar results can be obtained both for the D = 1 (see Fig. 3.9). For N dependence

and fractional dimensions, see Section 3.5.5 and 3.5.6, respectively.
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Figure 3.9: Roots of a D = 1-dimensional theory with N = 3 field components. A
similar structure can be observed as in Fig. 3.7.

3.5.2.2 Z2 symmetry (N = 1)

In the case of the discrete symmetry the O(N) theory is equivalent to the Ising model,

and as the symmetry is being non-continuous, the MW theorem does not necessarily hold

for N = 1. Indeed, it is well known that in the Ising model we can find a spontaneous

symmetry breaking even in the D = 2 case, which was carried out in an exact calculation
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by Onsager [110]. Here, we are going to see that we can reproduce this result using the

technique introduced above.
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Figure 3.10: In the upper (lower) panel the position of the roots of the VBF curves
are shown for N = 1 in D = 1 (D = 2). In the one-dimensional case one finds the
same pattern that was shown above for N = 3 with a convergence to m2 = −1. In two

dimensions the roots are converging towards m2 = −0.835 signalling an SSB phase.

In Fig. 3.10 we can see the position of the roots for D = 1 and D = 2 in a separate

plot. The VBF polynomials are described by Eq. (3.92) with different gi coefficients, of

course. We can see qualitative difference between the two figures, namely, in the one-

dimensional case, the first root is converging to m2 = −1 and for the two-dimensional

case the asymptotic goes to m2 = −0.835 ± 0.001, defining a threshold for all the

roots in higher orders. One can fit a function of the form of f(x) = a + bxc on the

positions of the first roots, with fit parameters a = −1.00± 0.0002, b = 2.08± 0.002 and

c = 0.85± 0.0006 in D = 1, a = −0.835± 0.001, b = 1.56± 0.004 and c = 0.738± 0.003

in D = 2. Now, since the root position pattern is the same as we observed above,

we can apply the random number procedure for D = 1 in the interval [−1, 0] and for

D = 2 in the interval [−0.835, 0]. The limiting result is the following: in one dimension
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the roots are accumulating at m2 = −1 and m2 = 0, thus we can conclude only the

stable Gaussian fixed point potential is well defined at the latter. In the case of the two

dimensions we will find two fixed points, the Gaussian one (m2 = 0) and another one

which is at m2 = −0.835. Now, it is a question whether this fixed point is stable or not.

The finding is the following: for every truncation in the present computation (where the

highest order was n = 45) λn(m2 = −0.835) > 0, thus we can safely state that it defines

a stable fixed point potential, hence indicating a spontaneous symmetry breaking phase.

It is interesting that even at LPA level one can observe the SSB for the two-dimensional

Ising model contrary to the finding in [43], where even with the numerical spike plot

technique [107, 108] it is undetectable, due to its dependence on the numerical precision.

3.5.3 VBF curves for 2 < D < 4

The O(N) models which belong to the class 2 < D < 4 have the richest fixed point

structure, hence studying them is the most challenging. We are going to perform a

detailed analysis for the only integer dimension found in this interval, D = 3 restricting

ourselves to N = 2. We expect here to obtain the well known Wilson-Fisher fixed point

in the broken regime, however, we are going to see that there is no clear root structure

to be observed for the roots m2 > 0. In this case we have the following generic form for

the VBFs in 2 < D < 4, similarly to the Eq. (3.92)

λn ∝ (−1)n+1(m2)1+Θ(n−4)(1 +m2)n
n−2∑

i=0

gi(N,D)(m2)i−Θ(n−4). (3.96)

Here, gi(N,D) is defined in a similar way as above in Eq. (3.93), but now, as we can see,

the exponent of m2 has changed, hence in the sum Eq. (3.93) there must be Dα(j) rather

then Dj , where α(j) represents the remaining exponents, after the prefactor of the sum

is factored out. The θ function in the exponent is just the Heaviside step function:

Θ(n − 4) = 1 if n ≥ 4 and 0 otherwise. The first few polynomials from the VBFs for

D = 3 and N = 2 are:

λ2 = −3π2m2(m2 + 1)2,

λ3 = 3π4m2(m2 + 1)3(11m2 + 1),

λ4 = −27π6(m2)2(m2 + 1)4(23m2 + 4),

λ5 =
27π8

5
(m2)2(m2 + 1)5

(
2993(m2)2 + 719m2 + 14

)
,

λ6 = −27π10

5
(m2)2(m2 + 1)6

(
97167(m2)3 + 27418(m2)2 + 997m2 − 14

)
,

... (3.97)
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Contrary to the cases of D ≤ 2, the coefficients gi can take now negative values, too.

From these considerations one can already expect a different root structure from that

we had for D ≤ 2. In Fig. 3.11 we see the VBF curves up to λ6(m2) and in Fig. 3.12 the

root structure up to order n = 41. For our analysis we are going to separate the real line

of m2 into three regions. First, we will consider the roots in the interval [−1, 0], then

we will turn to the complement set, separately for the intervals (−∞,−1) and (0,∞).

-1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2

0

10

20

30

�6
340000

�5
6000

�4
150

�3
6

�2

m2

�i

Figure 3.11: In this plot the VBFs up to λ6 are shown for D = 3, N = 2. For each
λi the root that is closest to −1 (from above) is indicated with a black dot. Note that,
if we consider the position of these points as a sequence then it will converge to a finite

value m2 = −0.23, see also in Fig. 3.14.

From Fig. 3.14 it is clear, that in the interval [−1, 0] we have a very similar pattern

for the roots (above some n) that we had in the two dimensional case (see Fig. 3.7).

However, there is a striking difference between the D ≤ 2 case and the present D = 3

theory: the roots are seemed to be accumulating around the value m2 ≈ −0.23, rather

than −1. Although this is of course an approximated value, for the sake of simplicity, we

will use ”equals sign” in the following whenever we consider this value: m2 = −0.23. If

one restricts the pattern to the [−0.23, 0] interval, then the random number generating

model for the root pattern statistics becomes available again. Since the distribution of

the points signals the accumulation at m2 = 0 and m2 = −0.23 the probability density

of finding a root in this interval will have the same form as in Eq. (3.95), the only

difference is that now the Dirac-deltas now centred at m2 = −0.23 and m2 = 0 rather

than m2 = −1 and m2 = 0. We can also check the convergence of the roots by establish

an ordering among them: m2
1, m2

2 and m2
3, where the first indicates the root that is

the closest, the second is the second closest and the third is the third closest root to

m2 = −1 at each order. The root labelled by m2
1 starts to go towards −1 but at order

n = 6 it stops and starts to converge to m2 = −0.23 in an oscillatory way.
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Figure 3.12: Here we present the root structure of the VBF curves up to order n = 41,
in the O(3), D=3 model. Observe that, we can distinguish three regions where the roots
are positioned: m2 > 0, m2 < −1 and m2 ∈ [−1, 0]. For detailed picture see Fig. 3.14.

On the other hand, the roots m2
2, m2

3 also converge to this value, and it is possible

to fit a curve on them, but this time the fit is an exponentially decaying one, as it

can be seen from Fig. 3.14a. The convergence of these roots confirms what we expect

from the M∗ pattern: the two roots that will remain in this interval for n → ∞ are

m2 = 0 and m2 = −0.23, which correspond to the Gaussian and the Wilson-Fisher fixed

point, respectively. One needs to check whether the WF fixed point defines a bounded

potential. Substituting the value m2 = −0.23 into the VBF polynomials λn will give

the following result: there are VBF curves for which λn(m2 = −0.23) < 0 and for which

λn(m2 = −0.23) > 0. This is due to the oscillatory behaviour of the root m2
1, but we

know that this will converge to a finite value, and finally the WF fixed point can be

defined as the limit of m2
1. But until this happens, we will find situations which would

give the weird result that the Wilson-Fisher fixed point defines an unbounded potential

from below, hence, strictly speaking, we should not consider it as a physical fixed point.

This is the case for example with λ8 and λ9 (see Fig. 3.13), hence this tells us that

there is no Wilson-Fisher fixed point at the truncation level n = 8. Even though this

is true, we must not forget that the Taylor expansion is an approximation, so the real

fixed point structure of the theory will be found when n → ∞, hence the ”absence” of

the WF fixed point can be considered as an artefact of the expansion.

Let us consider now the region m2 < −1. A magnified picture of it can be seen in

Fig. 3.14b. Here, we can observe roots which are running into the convexity fixed point

as n grows. The position of the roots would show similar pattern to the M∗ pattern,

however, here we have difficulties with the unbounded interval (−∞,−1]. We will show

how it is possible to overcome such situation in the next section, however, there will be

some requirements, which are not fulfiled in the present case.
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Figure 3.13: The absence of the Wilson-Fisher fixed point at the truncation order
n = 8. We can see that the root of λ9 to the left define a negative valued λ8(m2

WF ),
which will provide an unphysical potential. Moreover, the second root to the right does
not give a sensible potential either. This phenomenon occurs because of the oscillatory
nature of m2

1, but at n→∞ we expect to see a stable fixed point potential at the WF
fixed point. λ8 has been rescaled with a factor of 2× 10−7.

Here, we can only assume that all such roots will converge to m2 = −1 providing us the

IR (or convexity) fixed point in the n→∞ limit. For two of such roots we can show the

convergence by doing a fit. Interestingly, in this case the roots are following a different

trend to approach −1: the first one is an exponential function f(x) = a+ ceb(x−12) with

a = −1.014 ± 0.005, b = −0.39 ± 0.01 and c = −1.43 ± 0.05, the second is power law

g(x) = a + c(x − 20)b with a = −0.885 ± 0.003, b = 1.35 ± 0.08 and c = −7.2 ± 0.06.

Neither of them goes to −1 precisely, however, these are the best fits that can be found.

For large n values, when these roots are very close to −1, they develop an imaginary

part, hence they cannot be considered as true fixed points, strictly speaking. One has

to go so close to −1 that this effect can be considered as negligible, taking into account

that the VBF curves around −1 are extremely flat thanks to the (1 +m2)n factor in Eq.

3.89. Thus, finding roots around −1 is not always a reliable thing, it might depend on

the precision of the root finding algorithm, too.

The remaining region that we need to consider is the half interval m2 > 0. The position

of the roots for this region is shown in Fig. 3.14c. One can find again some pattern

which could remind us of the M∗ pattern, however, in this case beside the fact that the

interval is unbounded from above, the roots do not heave a clear bound even from below.

The general behaviour of the root positions is that they have the last real value at about

m2 = 0.01 − 0.02 (indicated by the red lane in Fig. 3.14c), and below that they will

have complex values. Even considering the generated complex roots does not help us to

understand this part of the root structure, however, in the case of the four-dimensional

O(N) models we can use these complex roots to capture the real physics, as we will see

in Section 3.5.4.2.
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(a) The region −1 < m2 < 0.
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(b) The region m2 < −1.
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(c) The region m2 > 0

Figure 3.14: The root structure of the D = 3, N = 2 theory separated into different
regions. In figure (A) and (B) we can conclude for the n→∞ limit, that is we will have
the following fixed points: Gaussian, Wilson-Fisher and the IR. These suggestions are
also confirmed with by functions. Regarding (C) for m2 > 0, no clear answer is found:

the red lane indicates the last real root for m2 > 0. For details see the text.

The most important result of this section is the appearance of the Wilson-Fisher fixed

point. It may well be possible to find more physical fixed points in other fractal dimen-

sions between two and four dimensions for various N values, but it is beyond the scope

of the present study.

3.5.4 VBF curves for D ≥ 4

So far we considered D = 1, 2 and 3. In this section we are going to investigate the

theories in D ≥ 4. Let us look at the first two VBF curves (λ2 and λ3) in arbitrary

dimensions and field components. We already derived their formula in Section 3.5.1:

Eq. (3.85) and Eq. (3.87). Now, we are interested in the roots of the general expressions:

0 = −2m2
(
1 +m2

)2

(2 + n)AD
,

0 = −2m2
(
1 +m2

)3 (
D
(
1 +m2

)
(2 +N)− 4

(
2 +N + 2m2(5 +N)

))

(2 +N)2(4 +N)A2
D

. (3.98)
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for λ2 and λ3, respectively. The first equation gives zero at m2 = −1 and m2 = 0

independently from the dimension. Among the roots of the second equation in Eq. (3.98)

of course we discover again m2 = −1 and m2 = 0, but factorising with respect to these

roots, one will be left with the equation for the third root, and it will depend on D. Let

us solve it for m2. The result is the following:

m2 =
−DN − 2D + 4N + 8

DN + 2D − 8N − 40
. (3.99)

-1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2
-0.05

0.00

0.05

0.10

0.15

�'3, D=5
�'3, D=4
�'3, D=3
�'3, D=2
�'3, D=1

m2

�i

Figure 3.15: In this figure one can see how the λ3 VBF curves change with the
dimension. Observe that the only root from the (−1, 0) interval runs into zero as
D → 4. For D ≥ 4 the root obtain a value m2

0 > 0, hence there is no fixed point
in the SSB phase but there is one in the symmetric phase, which turns out to be
unstable because λ2(m2

0) < 0. Note that, we indicated only integer values for D but
the transformation is continuous in the dimension, hence all the values between the
integers would define similar curves. For this illustration N was set to 3 and the VBF
curves are rescaled as: λ′3 ∝ λ310−α, where α = 0, 4, 4, 5 and 6 for D = 1, 2, 3, 4 and 5,

respectively.

This expression shows the ”running” of the root (the Wilson-Fisher fixed point) with

the dimension. For substituting D = 1, 2 and 3 (and N = 3), one would get the results

that we obtained in the previous sections. However, evaluating it at D = 4, we will

loose the N dependence completely. In other words: no matter what O(N) model we

consider, the WF fixed point coincides with the Gaussian in the D = 4 case. In Fig. 3.15

one can see the λ3 VBF for various dimensions. The observation is the following: the

only root in the interval (−1, 0) drifts towards the positive real values. At D = 4 it

merges into zero, hence, besides the convexity and the Gaussian fixed point, there are

no further fixed points present. Above four dimensions the root gets positive values. We

can address the question if this is a true fixed point or not. If one substitutes the value

of these positive roots into the VBF λ2(m2), one will immediately see that λ2(m2
0) < 0,

thus defining an unstable potential at this truncation level. As a consequence, there are
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no any other true fixed points besides the Gaussian and the IR, hence we can call the

system trivial. It is possible to derive the dimension dependence for other λis, too, with

similar qualitative behaviour: the roots start from inside the interval (−1, 0) with D = 1

and as the dimension grows, they are tending out from the interval. As D takes the value

of 4, the last (i.e. the closest to m2 = −1) root of the VBF under consideration merges

into m2 = 0, and all the others have already obtained positive values, see Fig. 3.16,

where we illustrate this situation with λ4.

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2

-0.004

-0.002

0.000

0.002

0.004

0.006

�'4, D=5
�'4, D=4
�'4, D=3
�'4, D=2
�'4, D=1

m2

�i 0.673

Figure 3.16: In this figure one can see the different λ4 VBF curves for different
dimensions. Observe that the two roots from the interval (−1, 0) runs to the right as
D grows. For D = 4 the root indicated with triangle has got already a positive value
and the one which was indicated by a dot, has just melted into zero. For D = 5 both of
the roots have positive value. The triangle is not present in the plot, since it took the
value m2 = 0.673. For this illustration N was set to 3 and the VBF curves are rescaled

as: λ′4 ∝ λ410−α, where α = 5, 6, 7, 8 and 9 for D = 1, 2, 3, 4 and 5, respectively.

In the following, we are going to discuss the VBF curves at a higher truncation level

for D = 5 in details, as a representative of theories for D > 4. However, we need

to distinguish the case when D = 4, since showing the triviality in this case is not

that straightforward as it is for D > 4, hence, the four-dimensional case is going to be

presented in a separate section. In the last two sections various examples for theories in

dimensions D ≥ 4 are shown.

3.5.4.1 Triviality of the O(N) model in D > 4

For any D > 4 theories the finding is that the VBF curves has the following structure:

λn ∝ (−1)n+1(m2)(1 +m2)n
n−2∑

i=0

gi(N,D)(m2)i. (3.100)
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Notice that, it has essentially the same structure that we had in the cases D ≤ 2, but

there is one crucial difference. For theories D ≤ 2 we found the coefficient functions gis to

be always positive, hence defining only negative (and complex) roots for the polynomial,

moreover they were inside the interval (−1, 0). In this case likewise to 2 < D < 4 we

can obtain negative values for gis, too, but contrary to that case, here we do not obtain

roots inside the interval (-1,0): all the real roots in this case positioned in the disjoint

union of the complement set of (-1,0), i.e. in (−∞,−1]∪ [0,∞). The first few VBFs are

the following:

λ2 = −24π3m2(m2 + 1)2,

λ3 =
288π6

7
m2(m2 + 1)3(39m2 − 5),

λ4 = −1536π9

7
m2(m2 + 1)4

(
576(m2)2 − 425m2 + 25

)
,

λ5 =
92160π12

539
m2(m2 + 1)5

(
10233(m2)3 − 176625(m2)2 + 36125m2 − 1225

)
,

... (3.101)

-1.0 -0.5 0.0 0.5

0

10

20

30

40

��8
��5
��4
��3
��2

m2

�i

Figure 3.17: The VBF curves λ′i (i=2,...5,8). Observe that the roots of each curve
are always outside the interval (−1, 0). For λ8 we have negative roots, too. For display
purposes the VBF curves are rescaled as: λ′i ∝ λi10−α, where α = 1, 3, 6, 9 and 19 for

i = 2, 3, 4, 5 and 8, respectively.

These curves are shown in Fig. 3.17. Now, we are going to analyse their root structure.

In the case for theories in D > 4 we can clearly identify a pattern of the roots again,

just like we did it for D ≤ 2, i.e. the M∗ pattern. For the particular case D = 5, N = 3

one can see the position of the VBF roots in Fig. 3.18. What we can observe is just the

reverse of what happened in the O(N) models for D ≤ 2. The roots are situated only

outside the interval (−1, 0), and they have a similar pattern to the one we had for the

D ≤ 2 cases, i.e. each root of λn+1 is surrounded by the roots of λn.
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Figure 3.18: In the upper (lower) panel the roots of the VBF curves are shown for
λ3, ..., λ10 (λ6, ..., λ15), for m2 ≥ 0 (m2 ≤ −1). One can observe a pattern of the roots
similar to the D ≤ 2 case: each root of VBF λn+1 is surrounded by the roots of λn.
The only problem in this case is, since the interval is unbounded, this pattern is not
entirely true: indeed, the highest (lowest) roots of λn+1 now do not have an upper
(lower) neighbour from the roots of λn. We can overcome this difficulty by one-point

compactifying the real line R. For details see the text.

We can call it only similar, since we clearly have a problem in the present case: we are

not able to use our random number generating model that we did in Section 3.5.2 for

simulating the positions of the roots, because the set (−∞,−1] ∪ [0,∞) is unbounded.

For that reason, the highest (lowest) roots of the VBF λn+1 do not have an upper

(lower) neighbour from the set of the roots of the VBF λn. However, we are able to do

the following trick: let us one-point compactify the real line R, meaning that we ”glue”

together the points m2 → ±∞, thus creating a closed set for [0,−1]. This may look an

ad hoc idea but we will see that it works. Let us consider for instance the order n = 6

and n = 7 in Fig. 3.18. The highest valued root in the region m2 > 0 from n = 7 would

need a root from n = 6 to restore the right pattern, but apparently there is no such

root.
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(a) n = 20 (b) n = 100

(c) n = 15000

Figure 3.19: Histograms of the distribution of the points generated in Xn. On the
subfigure (A) the distribution of X20 on the subfigure (B) the distribution of X100 and
on the subfigure (C) the distribution of X15000 are displayed. Observe that the points

are accumulating at −1 and 0 but this time from the outside region.

However, if we extend our picture with the compactified real line, we will see that in

the region m2 < −1 the right root appears just where we would need it at order n = 6,

and thus the pattern goes on. This is true for all the other roots (see Fig. 3.18), thus

the compactification of the real line is well justified in this way, hence providing us

an M∗ pattern on the compactified real line. In the interval [0,-1] one can now use

the technique that we introduced in Section 3.5.2. The result of such kind of random

number procedure is shown in Fig. 3.19.

We can see that the position of the roots are again accumulating at −1 and 0, but now

they are approaching from the complement interval of (−1, 0). In this way we can see

how the triviality is emerging in the limit n→∞.

3.5.4.2 Triviality of the O(N) model in D = 4

In this section we are going to discuss the D = 4 O(N) models, and a special attention

will be given to the case N = 1, which has been in the centre of interest since triviality

is predicted to occur in the φ4 theory. To have a clue on triviality beyond PT we still

need to rely on lattice simulations, which actually support the trivial behaviour of such

theories [111]. Here, we are going to show a result which suggests that indeed the trivial

scenario holds for such models, i.e. no UV fixed point different from the Gaussian is

present in the O(N) models taking into account all the symmetry respecting terms in

four dimensions (the φ4 case is shown in Fig. 3.15). We are going to present the result
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for N = 1 but this holds for general N . The VBF polynomials in D = 4 have the form:

λn ∝ (−1)n+1(m2)1+Θ(n−3)(1 +m2)n
n−2∑

i=0

gi(N,D = 4)(m2)i−Θ(n−3). (3.102)

In particular the first few λi for N = 1:

λ2 = −64π2

3
m2(m2 + 1)2,

λ3 =
8192π4

5
(m2)2(m2 + 1)3,

λ4 = −524288π6

35
(m2)2(m2 + 1)4(14m2 − 1),

λ5 =
67108864π8

315
(m2)2(m2 + 1)5

(
168(m2)2 − 41m2 + 1

)
,

... (3.103)

By analysing the root structure of these equations one will find that all the roots are

situated outside the interval of (−1, 0) likewise in the D > 4 cases, the only difference

is that at the order n = 7 the VBF curve λ7 develops a roots on the complex plane,

too, with Re m2 > 0. We have already met such situation in theories defined in 2 <

D < 4 dimensions. In that case, we neglected these roots since we considered them as

unphysical. In the present case we still stick to our convention, that is we neglect them

as possible fixed point candidates, however we can identify an interesting behaviour for

such nonreal roots. Let us look at the root structure of the theory in Fig. 3.21, where

we present the position of the real roots for all relevant intervals of m2.
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Figure 3.20: The real roots of the four-dimensional O(N) model are shown. No root
in the interval (-1,0) is found, contrary: all roots are outside this interval. One can see
that, just like in the case of the D > 4, the roots are approaching −1 and 0 from the
outside region. However, more careful analysis is needed in this case. For details see

the text.
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What we can observe is that the roots are approaching the points −1 and 0, just like

in the case for D > 4. However, as we indicated above, complex roots are emerging:

the first one and its conjugate from n = 7, two and their conjugates from n = 11, three

and the conjugates from n = 15 and from n = 18 four complex roots plus conjugates.

Among these roots, being complex, we cannot make an ordering, however we are able to

do that for the real part of them. The real part of the roots are indicated in Fig. 3.21,

complex roots with negative real parts does not occur, hence it is enough to consider

the Re m2 > 0.
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Figure 3.21: The real part of the roots. The black dashed line indicates the average
threshold between the purely real and complex root values. It is at about m2 = 0.022.
For every value of Re m2 under this line we have an imaginary part for the root. New
complex roots are emerging at order n = 7, n = 11, n = 15 and n = 18. At these
orders we can see a ”violation of the pattern” which is being indicated by the arrows:
pointed black arrows for the purely real and dashed gold for the complex roots. Apart

from the newly emerging complex roots the pattern holds. For details see the text.

The figure shows, that for the real part of the roots, there is indeed a pattern, namely

almost the same that we observed both for the cases D ≤ 2 and D > 4, the only

differences are in the orders where the complex roots appear. Here, we observe that above

and below the real part of the newly appearing complex roots the pattern continues, only

at those particular points we find the breaking of the pattern (these are indicated by red

circle in Fig. 3.21): no root from real part of the λn+1 goes between the corresponding

roots of λn. Now, if we consider the limiting distribution of such pattern of the points,

we will find that this anomaly will not have an effect on it: after compactification of the

real line, as we did it for the D > 4, the points are just accumulating at −1 and 0, hence

we will find exactly the same result as in Eq. (3.95), but now only for the real part of m2.

We are not done yet, since we have only considered the real part so far. This result on

the limiting position of the roots does not make any sense if we find a finite imaginary

part of m2 in this limit. Let us consider therefore the roots on the complex plane. This
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is shown in Fig. 3.22. We can see the developing imaginary part at the order n = 7 for

the first time.
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Figure 3.22: The roots on the complex plane. In the upper panel one can see the
emergence and disappearance of the first complex root (m2

1). It appears at n = 7 and
tends to zero as we go higher orders in n. In the lower panel the second and third
complex roots are indicated (m2

2 and m2
3). They appear at order n = 11 and n = 15

respectively, and coincide with the curve defined by the complex root m2
1. The fitted

power law curves are defined in the text, and the fitting procedure was performed on
24 data points.

Interestingly, the absolute value of the imaginary part will have a maximum at some

point and it is tending to zero just like the real part. We can also express the imaginary

part as a power law of the real part close to the origin: Im m2 = ±a(Re m2)b, where the

parameters are a = 0.162±0.001 and b = 0.589±0.001. Now, considering the ”running”

of the second and the third complex root (m2
2,m

2
3), which are appearing first at the

order n = 11 and n = 18, respectively, we will find that they behave in a very similar

way to the first complex root (m2
1), moreover, they collapse onto each other close to

the origin (see Fig. 3.22), thus approaching 0 with the same exponent. We can see that

both the real and the imaginary parts of the roots are approaching zero as the order n

grows, hence we can say that the roots, although they are not defined as physical ones

when they have complex values, accumulating at −1 and 0 in the n → ∞ limit. It is
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interesting that only in the limit the imaginary part is absent entirely, and until we take

this limit we will have a gap between m2 = 0 and the last noncomplex valued root in

the particular order n. With this procedure we were able to show that only two fixed

points are present (with the Gaussian as the only stable one) in the unexpanded O(N)

model just like in D > 4. Altogether this signals the triviality for the O(N) theories

when the dimension is D ≥ 4. Hence, we were able to show a non-perturbative evidence

of the triviality for theories defined in D ≥ 4.

Regarding to the D = 3 case, in Section 3.5.3, the roots on the complex plane does

not behave in a way they do in the four-dimensional case (Fig. 3.22), hence we cannot

obtain the distribution of the roots by using the random number generating algorithm

for the compactified M∗ pattern.

3.5.5 The N dependence and the large -N limit

In this section we are going show the effect of changing the number of fields, i.e. N ,

for particular dimensions. For large -N the RG equation of the effective potential was

provided in Eq. (3.79). From this equation one can derive the VBF curves with the

usual steps just the N dependence is absent from the formula Eq. (3.89). We cannot

show of course the full N dependence, these are only a few checks for particular values

of N . One should derive the root structure for each N independently. However, these

few examples could give us some ideas what is going on when N is changed.

3.5.5.1 N dependence for O(N) theories in D ≤ 2

Let us consider three different two-dimensional theories with field components N = 7

and N = 15 and N → ∞. The position of their roots are shown in Fig. 3.23. We can

see in the two finite N cases that there seems to be a problem in the low orders of the

expansion: the position of the roots will not satisfy the requirement of the M∗ pattern,

however, as the order grows the pattern restores.

We need to mention that when a particular root gets very close to −1 in the next order

sometimes it becomes complex, but its real part still stays around −1, hence one cannot

see this accumulation exactly, but rather we can say this root ”melted” into −1. This

might be related to the fact what we already explained for the D = 3 case: the VBF

polynomials get extremely flat close to −1 because of the (1 +m2)n factor in Eq. (3.89),

hence it could mean some problem for the root finding algorithm to provide the right

value. One way or another, a complex root does not define a physically sensible theory,

thus we can still look at this pattern which will provide Eq. (3.95) as the probability

density of the root positions when n → ∞. However, no complex roots occur for the
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Figure 3.23: The N dependence of the root positions in D = 2. We can see that the
M∗ pattern restores at larger order of the expansion for various N . Sometimes one will
find complex roots close to −1 which can be considered as unphysical. In this way it
does not actually matter if we consider the limit of the distribution of the roots or it
gets complex providing an unphysical situation. When the n → ∞ limit is taken the
only two roots that can be found is −1 and 0. In the large -N limit no complex valued

root has been found till the order n = 34.

large -N case where, we know that there must be only the symmetric phase present, as

it was proven analytically in Section 3.4 in the framework of FRG. The fact that a root

gets complex or accumulates at one of the stable fixed points −1, 0 is irrelevant from the

point of view of the physics: in both of the cases only −1 and 0 survive when n → ∞.

For D = 1 we can find similar results. These were, of course, only a few checks on the

N dependence and it should be considered case by case for every N , however, from our

experience we could assume that in the n → ∞ roots inside the interval (−1, 0) either

get complex or they are arbitrarily close to −1 or 0 for any field component N .

3.5.5.2 N dependence in 2 < D < 4

In dimensions 2 < D < 4 for finite N we will get a very similar result to the one which

we obtained in Section 3.5.3. For these values of the dimension, one has the richest

fixed point structure of all, hence it should be checked case by case. However, here we

will only focus on the integer valued dimension D = 3. For the large -N in D = 3 the

position of the VBF roots show a significant difference comparing them to the finite N
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(compare Fig. 3.24 and Fig. 3.12). Here, we can identify the Wilson-Fisher just as we

did it in Section 3.5.3, but in this case we cannot see the additional ”fake” fixed points

at any truncation level. Also for the m2 > 0 roots we can see differences: they start to

be organised in the pattern which leads us to the distribution found in Section 3.5.2,

Eq. (3.95). In this case it is also remarkable that no complex roots are found unlike for

finite N .
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Figure 3.24: The roots of the VBF in D = 3, N → ∞ are shown. Comparing it
to Fig. 3.12 the most striking difference is that there are no ”fake” roots between the
root which is indicating the Wilson-Fisher (m2 = −0.388) and the one which is for the
Gaussian, i.e. m2 = 0. It is equally interesting that in this case we do not find any

threshold which after the roots become complex in the m2 > 0 region.

3.5.5.3 N dependence in D ≥ 4

One of the most important result for theories D ≥ 4 was the triviality (Section 3.5.4).

Our finding is that the modification of the number of the field components N does not

give any qualitatively different result for any such theory, when N kept finite. However,

we can discover differences between the results when N < ∞ and N → ∞ for theories

in D > 4.

In four dimensions we will see the ”compactified” M∗ pattern of the real part of the

roots as in Fig. 3.21. The only question is wether the convergence on the complex plane

towards the origin still holds. We present the results in Fig. 3.25, for N = 4, N = 15,

N = 40 and N →∞. We can observe that the convergence to the origin slows down as N

grows, however, for the N <∞ cases, it is possible to fit a curve on them near the origin.

The same form of the power law is found for each N , that is f(x) = axb, just like in

the case of N = 1 in Section 3.5.4. The parameters are the following a = 0.193± 0.001,

b = 0.587 ± 0.002 for N = 4, a = 0.249 ± 0.002, b = 0.586 ± 0.002 for N = 15 and

a = 0.302± 0.006, b = 0.584± 0.004 for N = 40.
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Figure 3.25: The convergence to the origin on the complex plane is shown for (A)
N = 4, (B) N = 15 and (C) N = 40. On the figure (D) the N → ∞ presented, in
this case the number of the data points is not enough to fit a curve on the points near
the origin (the expansion order in this case n = 53, for the finite N cases n = 35).
However, the same behaviour is expected: the convergence to the origin slows down as
N grows. For the finite N cases a power law fit can be found around the origin (the fit
was performed on 24 data points), which exponent seems to be universal. For details

see the text.

It is interesting that close to the origin the exponent of the power law seems to take

the value 0.586 ± 0.002, and thus one can speculate wether it is universal. Regarding

the N → ∞ case, we did not reach the region where we could do the fit, however, the

absolute value of the imaginary part reached its maximum and started to decrease. We

expect the same behaviour (maybe with different exponent) as for the finite N cases,

however, to see that we would need to go to a higher expansion order than that was

used in this case (n = 53).

For theories in greater than four dimensions the fixed point structure does not change

much comparing to the results of Section 3.5.4, only quantitative differences can be ob-

served. We will present a few plots on the roots positions in Fig. 3.26. Arbitrarily we

have chosen the cases {D = 5, N = 6}, {D = 8, N = 10} and {D = 11, N = 12}. The

roots are positioned in a way that they accumulate more and more at the two stable

roots −1 and 0, which is essential for triviality. There can be minor deviation from the

pattern M∗, however, at some point the pattern restores completely, and one can obtain

the triviality in a way we did it for the case D = 5, N = 1.
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More interesting case, that can be found, is in the large -N limit. From Eq. (3.79) one

can derive again the VBF curves in D > 4. In the present section we are going to study

only the D = 5 theory for the large -N limit. In Fig. 3.27 one can see the root positions

for this model. The first thing that we can notice, there is a stable line at m2 = 0.139

which would signal a new fixed point solution. There has been a recent work ([53]) on

the topic, wether such fixed point exist in models 4 < D < 6 and the answer was that, if

there is such fixed point it will provide an unphysical fixed point potential. In an earlier

work [112] related to holography a similar conclusion was drawn. In the papers [52] an

IR fixed point was found for an O(N) symmetric theory with N + 1 scalars in D = 6− ε
for sufficiently large N , including a cubic interaction, too. It was argued that this IR

fixed point of the cubic O(N) theory with N+1 scalars is equivalent to a UV fixed point

of the O(N) model in the large -N , which would imply an unexpected asymptotically

safe behaviour of such theories. Now, since we have found such a fixed point, we need to

check whether it gives a stable fixed point potential. Substituting the value m2 = 0.139
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(b) D = 8, N = 10
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Figure 3.26: The VBF roots of the O(N) model: (A) in D = 5 and N = 6, (B) D = 8
and N = 10, (C) D = 11 and N = 12. On each plot the accumulation of the roots
at m2 = −1 and m2 = 0 can be observed. For the roots m2 < −1 there can be small
deviation from the M∗ pattern (most likely due to the extreme flatness of the VBFs

around -1), but at some point the pattern restores completely.
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into the VBF polynomials will provide the exact value for the corresponding coupling at

that fixed point, hence defining the fixed point potential. The finding is the following:

the highest order in the expansion is n = 46, and what we get is λn(m2 = 0.139) ≤ 0

for 2 ≤ n ≤ 46. This signals that the fixed point potential defined by this root is

unbounded from below in agreement with the findings in [53]. However, a further study

is needed to investigate the existence of such fixed point in 4 < D < 6 at finite N

using approximations beyond LPA. In Fig. 3.27 one can also observe that there is a gap

between the root corresponding for this newly found unstable fixed point, which can be

filled in by considering the real part of the roots. In the same figure considering the

lower panel, we can see how the real part of such roots behave. We can fit a power law

decaying curve again on the real part of the first root. This curve goes through on the

line m2 = 0.139 and in the asymptotic limit goes to zero. The imaginary part behaves

pretty much in the same way as in D = 4 case (see Fig. 3.25). Here, we can use the same

argument as for D = 4, N = 1: one needs to consider the positions of the roots on the

complex plane in order to catch the physics behind. According to our findings, the real

part of these roots exhibit the same M∗ pattern, hence for n→∞ we can expect them

to accumulate at m2 = 0, leaving us with three fixed points, which are defined by the

roots: m2 = −1 (since for m2 < −1 the root structure is the same as it was for the finite

N case), m2 = 0 and m2 = 0.139. Out of these three roots only the Gaussian (m2 = 0)

seems to provide a stable fixed point potential, thus triviality was found again.
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Figure 3.27: In the left panel the root structure provided by the real roots are shown.
A stable line of the roots can be observed at the value m2 = 0.139. In the right panel
the same root structure is shown, but now the real part of the complex roots has been
taken into account, too. The real part of the complex roots show the M∗ pattern, and
also a power law curve can be fitted on them: f(x) = axb, with a = 0.807± 0.005 and
b = −0.492 ± 0.002. In the n → ∞ we expect to find triviality again. For details see

the text.
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3.5.6 The fractal dimensions

We will present a few example on the fractal-dimensional cases in the intervals of the

dimension that we have investigated. In Fig. 3.28 the results are shown for {D =

1.3, N = 1}, {D = 2.6, N = 1}, {D = 3.1, N = 1} and {D = 4.6, N → ∞}. In the

first three cases the usual fixed points are found, however it, could be possible to find

additional fixed points for 2 < D < 4, but that would require a more detailed study of

this interval of the dimension. For the two D values, which are in this interval, we found

the WF fixed point, too, and it can be observed that they are situated at different values

of m2: for D = 2.6 m2
WF = −0.34 and for D = 3.1 it oscillates around m2

WF = −0.16.

The most remarkable case is when we set N →∞ and choose D = 4.6 ∈ (4, 6). Just as

we saw it for the large -N in D = 5, here, we find again a fixed point candidate at the

value m2 = 0.108. However, again in agreement with [53], this fixed point found to be

an unphysical one, i.e. the root m2 = 0.108 defines an unstable fixed point potential.

(More precisely, it is a metastabe potential.)
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Figure 3.28: The root structure is shown for some fractal-dimensional cases. The
usual fixed points are found for 4 < D, thus the most remarkable is figure (D), where
we obtain a fixed point candidate for D = 4.6 in the large -N . However, it turned out

to define an unstable fixed point potential just like it is shown in [53].
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3.6 Chapter summary

In this chapter we studied the phase and fixed point structure of the O(N) model in the

framework of FRG. After a short introduction was given, we examined the fixed point

equation on the LPA level using analytical considerations. In Section 3.4 we showed

that the LPA fixed point equation for the effective potential gives qualitatively correct

results regarding the existence of SSB phase. For systems with continuous symmetry

(N ≥ 2) LPA gives no SSB for D ≤ 2 and shows SSB for D > 2 in agreement with

the Mermin-Wagner theorem and its extension to systems with fractional dimension.

In particular, simple analytical expressions are found in the large -N limit, correctly

retrieving the expected results for the spherical model. However, from the analytical

study did not turn out what is the situation in the case of the discrete symmetry, i.e.

for the Ising model. The answer to that question was given in the subsequent section.

In Section 3.5 we investigated the fixed point structure of the O(N) model for various

dimensions an filed components. For our analysis we used the LPA again with a Taylor-

expanded potential around zero VEV of the field. In this case from the fixed point

equation one is able to express all the fixed point couplings through a polynomial in

the mass of the theory, see Eq. (3.89). Each nth polynomial is obtained from the fixed

point equation of the (n + 1)th coupling, that is the equation for ∂tλn+1(λn,m
2) = 0

can be solved for λn = λn(m2), hence the name VBF (Vanishing Beta Function) curve.

A general property of these polynomials is that they have always a root at m2 = −1

and m2 = 0 corresponding to the convexity (or IR) and the Gaussian fixed point,

respectively. These polynomials can be obtained for arbitrarily components of the fieldN

and dimension D. To find a true fixed point at a given level of truncation, we established

the following rule: let m2
0 be a root of the polynomial λn(m2), then a physically well

defined (i.e. bounded from below) fixed point potential is given by the set of couplings

{λn−1(m2
0), λn−2(m2

0), ..., λ1(m2
0) = m2

0}, provided λn−1(m2
0) ≥ 0 (if it happens to be

a root for the (n − 1)th polynomial, too, then the same rule holds for the (n − 2)th

polynomial, and so on). Using this rule to find fixed points at a truncation level n gave

us a nice opportunity to make considerations about theories in different dimensions.

First, we considered theories for D ≤ 2, and in particular, we analysed the case of

D = 2 in detail. The finding is that for all the theories we considered up to and

including dimension two behave qualitatively in the same way for N ≥ 2. In such

theories for continuos symmetries the Mermin-Wagner theorem must hold as we showed

in Section 3.4. We provided a statistical approach to show the validity of the theorem

by considering the statistics of the root patterns. It was found that for such systems

(D ≤ 2) all the roots are in the closed interval [−1, 0]. Since at every truncation level a

new root appears, it seems to be paradoxical to prove the Mermin-Wagner theorem: we

would not expect any root inside the interval but practically there appears (countably)
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infinitely many. A true fixed point in this interval signals an SSB phase, hence the MW

theorem seemed to be violated. However, it turned out that is only the case for finite n

truncation. As n → ∞ we can recover the MW theorem, by simulating the position of

the roots and derive their distribution in the infinite limit, see Section 3.5.2. For discrete

symmetry N = 1 the O(N) model is equivalent to the Ising model which has an SSB

phase in D = 2. This result is also shown as a part of this section.

In Section 3.5.3 we investigated the theory for D = 3 with N = 2, and in 2 < D < 4

the finding is that the theories that has been considered have similar properties. We

found the an additional fixed point beside the Gaussian and the IR fixed point, namely,

the Wilson-Fisher fixed point. Although these fixed points have been found, we could

not clearly analyse the root structure for the m2 > 0 region. It is also possible that one

could find additional fixed points in 2 < D < 4 for fractional dimensions, but it would

require more detailed study. The main result of this section was that we were able to

show the appearance of the Wilson-Fisher fixed point.

For D ≥ 4 we found two qualitatively different results (see Section 3.5.4), however,

essentially they lead us to the same physics, namely, to the triviality of the model, that

is only the Gaussian fixed point exist for such theories. For theories D > 4 we analysed

the D = 5 case, where the fixed point structure shows similarity to the D = 2 case,

but now the roots only appear outside of the interval (-1,0), however, for the the root

pattern the statistical simulation can be used again if we compactify the real line of m2.

In this way triviality can be shown. The situation for D = 4 is different: here, we need

to consider the complex roots that appear during the calculations, but it can be shown

that both the real and the imaginary part converges to the origin on the complex plane,

hence leading to the triviality of the model.

In Section 3.5.5 we showed some results considering different values of N . The most

interesting outcome is connected to the recent results in [52, 53], where it was argued

that in the O(N) model for N → ∞ if a non-trivial fixed point exist in dimensions

4 < D < 6, then it defines an unstable fixed point potential. From our analysis we found

this particular fixed point, and indeed, it can be shown that it defines an unbounded

effective potential. In the last section we gave some results for fractional dimensions,

obtaining similar behaviour to the integer-dimensional cases.

According to our findings, we can draw the conclusion that although we used the Local

Potential Approximation during our computations, that seems to be enough to obtain the

right qualitative physical results (Mermin-Wagner theorem, the presence of the Wilson-

Fisher fixed point and triviality), when one extrapolates to infinite order the results

obtained in a given order of the Taylor expansion. On the other hand, one has to be

careful with such expansions, since as we saw, at finite level of the truncation it can

generate ”fake” fixed points from the physical point of view.





Chapter 4

Summary and thesis statements

In this dissertation we studied two different non-perturbative methods, namely, the 2PI

(Two-Particle Irreducible) functional technique and the Functional (or Exact) Renor-

malisation Group (FRG) method. The former is based on resumming a particular class

of Feynman diagrams, in a well-controlled, systematic way. The latter is using the

Wilsonaian idea of renormalisation, that is we integrate out the rapid degrees of free-

dom of the system in order to obtain its large distance behaviour.

In general, the truncated 2PI resummation works as a non-perturbative approximation

technique, and the system of self-consistent equations it provides between the two-point

function and the self-energy, cannot be solved exactly. However, in the case of the

Bloch-Nordsieck (BN) model, which was designed to mimic the infrared limit of Quan-

tum Electrodynamics in order to prevent the infrared catastrophe, we showed that, if we

include the Ward-Takahashi identities as a further input in the equations, one obtains

an integral equation equivalent to the Dyson-Schwinger equation, which can be solved

exactly. The new approach also makes it possible to extend our computation to finite

temperature. In the finite temperature analysis of the BN model the Closed Time Path

formalism is used, and we compute the fermionic spectral function of the theory. In this

case the model remains exactly solvable, providing a closed formula for the finite tem-

perature spectral function in the rest frame of the fermion. For the finite temperature

theory, we derive the 2PI equations, too. Matching its solution to the exact one, gives

the running of the 2PI coupling with respect to the temperature.

In the second part of my dissertation, we study the occurrence of spontaneous symmetry

breaking for O(N) models using FRG techniques. We show that even the Local Poten-

tial Approximation (LPA), when treated the effective potential exactly, is sufficient to

give qualitatively correct results for systems with continuous symmetry, in agreement

with the Mermin-Wagner theorem and its extension to systems with fractional dimen-

sions. We discussed the derivation of the so called Vanishing Beta Function curves,

129
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which can be used to explore the fixed point structure of the theory under considera-

tion, for arbitrary field components N and dimensions D. The technique is based on the

most popular approximation scheme, namely, the polynomial expansion of the effective

potential in the LPA. In this case, as an artefact of the approximation, spurious fixed

points show up. Using statistical arguments, we can extract the physical fixed points of

the theory in accordance with earlier results regarding D < 4. For D ≥ 4 triviality of

the O(N) model was shown which is a new result using FRG in LPA. For the large -N

O(N) model in dimensions 4 < D < 6, we found a new interacting fixed point, that

defines a metastable critical potential. The existence of this fixed point is a subject of

current studies in connection with the asymptotic safe scenario of the model.

The thesis statements are listed below.

I It turned out that in the BN model the Ward-Takahashi identities make a a one-

to-one correspondence between the fermion propagator and the vertex function. As

a consequence, it is possible to extend the 2PI self-energy equation with the vertex

function by expressing it with the fermion propagator. The result is an integro-

differential equation equivalent to the Dyson-Schwinger (DS) equation. This equa-

tion is linear in the fermion propagator, and taking good care of renormalisation, it

is possible to solve analytically, providing the exact solution of the BN model. This

is a new way of obtaining the exact solution in the Bloch-Nordsieck model. And,

while the original solution method is very hard to generalise to other theories, the

generalisation of the Ward identity improved 2PI equations, could be easier. The

results are published in [40].

II After generalising the Ward identities to finite temperature the a Dyson-Schwinger

equation similar to the T = 0 case can be obtained in the BN model. The exact

fermionic spectral function of the BN model is derived at finite temperature. Ana-

lytic results are presented for some special parameters, namely when we perform the

computation in the rest frame of the fermion, for other values we have numerical re-

sults. The spectral function is finite and normalisable for any non-zero temperature

values. The real time dependence of the retarded Green’s function is power-like for

small times and exhibits exponential damping for large times. Treating the temper-

ature as an infrared regulator, a safe interpretation of the zero temperature result

is also given. The results are published in [41].

III The BN spectral function was numerically determined at finite temperature in the

framework of the 2PI approximation. The finding is that the results of the 2PI com-

putation nicely agree with the exact one, provided that a matching of the coupling

constant is performed. The mapping between the two parameters results in the

finite temperature running of the 2PI coupling constant. This result may apply to



Chapter 4. Summary and thesis statements 131

the finite temperature behaviour of the coupling constant in QED, too. The results

are published in [42].

IV The occurrence of spontaneous symmetry breaking (SSB) was studied for O(N)

models using FRG. It is shown that even the Local Potential Approximation, when

treated exactly, is sufficient to give qualitatively correct results for systems with

continuous symmetry, in agreement with the Mermin-Wagner theorem. This was

shown analytically both for N <∞ and N →∞. The results are published in [43].

V We discussed the derivation of the so-called Vanishing Beta Function curves, which

can be used to explore the fixed point structure of the theory under consideration, for

arbitrary field componentsN and dimensionsD. The technique is based on the most

popular approximation scheme, namely, the polynomial expansion of the effective

potential in the LPA. In this case, as an artefact of the approximation, spurious

fixed points show up. Using statistical arguments, we can extract the physical fixed

points of the theory in accordance with earlier results regarding D < 4. For D ≥ 4

triviality of the O(N) model was shown which is a new result using FRG in LPA.

For the large -N O(N) model in dimensions 4 < D < 6, we found a new interacting

fixed point, that defines a metastable critical potential. The existence of this fixed

point is a subject of current studies in connection with the asymptotically safe

scenario of the model [52, 53]. The results are published in [44].





Appendix A

One-loop integral in the

Bloch-Nordsieck model

The one-loop contribution to the self-energy reads, with a generic u vector in Feynman

gauge:

Σ = −ie2u2

∫
d4k

(2π)4

1

k2 + iε

1

uµ(pµ − kµ)−m+ iε
. (A.1)

This is Lorentz-invariant, if we do a Lorentz transformation both on u and p. So we may

choose a special frame where Λu = (u0, 0, 0, 0). If u is a proper 4-velocity, then u0 = 1;

if it is u = (1,v), then u0 =
√

1− v2, but still constant, since v is a parameter of the

theory. We find then

Σ = e2u0I0(
m

u0
− p0 − iε), I0(a) = i

∫
d4k

(2π)4

1

k2 + iε

1

a+ k0
. (A.2)

Thus it is enough to consider I0 only. There we transform to positive frequency integrals

I0(a) =
ia

π

∞∫

0

dk0

∫
d3k

(2π)3

1

k2
0 − k2 + iε

1

a2 − k2
0

=
a

π

∞∫

0

dk0

∫
d3k

(2π)3

1

k2
0 + k2

1

a2 + k2
0

, (A.3)

where in the last step we performed Wick rotation (the choice of the imaginary part of

a is crucial for the direction of the rotation on the complex plane).

Now we can write up the integral in k0 and k space, in the latter using 3−2ε dimensions:

I0 = aµ2ε

∞∫

0

dk0

π

∫
d3−2εk

(2π)3−2ε

1

k2
0 + k2

1

a2 + k2
0

. (A.4)
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We use the relation

µ2ε

∫
dd−2εk

(2π)d−2ε
f(k2) =

2(4πµ2)ε

(4π)d/2Γ(d/2− ε)

∞∫

0

dk kd−1+2εf(k2)

=
(4πµ2)ε

(4π)d/2Γ(d/2− ε)

∞∫

0

dz z
d
2
−1−εf(z) (A.5)

to proceed as

I0 =
a

π

∞∫

0

dk0
1

a2 + k2
0

(4πµ2)ε

(4π)3/2Γ(3
2 − ε)

∞∫

0

dz z
3
2
−1−ε(k2

0 + z)−1

=
a(4πµ2)εΓ(−1

2 + ε)

8π2
√
π

∞∫

0

dk0
k1−2ε

0

a2 + k2
0

=
aΓ(−1

2 + ε)Γ(1− ε)
16π2

√
π

(
4πµ2

a2

)ε
Γ(ε)

=
−a
8π2

[
1

ε
− 2 ln

a

µ
+ 2 + lnπ − γE

]
. (A.6)

We write it as

I0 =
−a
4π2

[
Dε − ln

a

µ

]
, (A.7)

where

Dε =
1

2ε
+ 1 +

lnπ − γE
2

. (A.8)

Therefore

Σ = (u0p0 −m)
e2

8π2

[
1

ε
− 2 ln

u0p0 −m
u0µ

+ 2 + lnπ − γE
]
. (A.9)

We also need to compute

I1(a) = i

∫
d4k

(2π)4

1

k2 + iε

1

k0

1

a+ k0

=
−i
π

∞∫

0

dk0

∫
d3k

(2π)3

1

k2
0 − k2 + iε

1

a2 − k2
0

= −1

a
I0(a) =

1

4π2

[
Dε − ln

a

µ

]
. (A.10)



Appendix B

The 2PI functional technique

The generating functional Z[J ] discussed in the Introduction has a functional dependence

only on one local source J(x). There is no restriction which could prevent introducing

non-local sources in the functional. In particular, adding a bilocal source K(x, y) yields

the following form for the generating functional in Euclidean metric:

Z[J,K] =

∫
Dϕe−S+Jiϕi+

1
2
ϕiKijϕj . (B.1)

Here, we generalised the partition function for a vector variable ϕ(x) = (ϕ1(x), ..., ϕn(x))

with a source J = (J1(x), ..., Jn(x)). The products are Jiϕi ≡
∑

i

∫
dDxJi(x)ϕi(x) and

ϕiKijϕj ≡
∑

i,j

∫
dDx

∫
dDyϕi(x)Kij(x, y)ϕj(y). Similarly to the case of Z[J ], we can

define the generating functional for the connected correlation functions corresponding

to the partition function Z[J,K]:

W [J,K] ≡ lnZ[J,K]. (B.2)

However, in this case the connectedness only holds for the differentiation with respect

to J , since differentiating by the bilocal source K will generate disconnected diagrams,

too:

δ2W

δJi(x)δJj(y)
=

1

Z[J,K]

∫
Dϕϕi(x)ϕj(y)e−S+Jiϕi+

1
2
ϕiKijϕj − φJ,Ki (x)φJ,Kj (y)

= 〈ϕi(x)ϕj(y)〉J,Kc ≡ GJ,Kij (x, y),

δW

δKij(x, y)
=

1

2

1

Z[J,K]

∫
Dϕϕi(x)ϕj(y)e−S+Jiϕi+

1
2
ϕiKijϕj

=
1

2

(
GJ,Ki,j (x, y) + φJ,Ki (x)φJ,Kj (y)

)
. (B.3)

Where φJ,Ki (x) ≡ δW [J,K]/δJi(x) is just the field VEV in the presence of the two

source J and K. In the following, both φ and G are understood in the presence of the
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sources, however, we will neglect the upper indices which are indicating it. Now, we

can define the 2PI effective action by a double Legendre transformation with respect to

both sources:

Γ[φ,G] = W [J,K]− Ji
δW [J,K]

δJi
−Kij

δW [J,K]

δKij

= W [J,K]− Jiφi −
1

2
Kij(φiφj +Gij) (B.4)

Here, we used the usual sign convention for the Legendre transformation, whereas in

the Introduction we defined it with opposite sign. The latter convention is used by the

FRG community. We also neglected the fact that all these quantities are a function of

space-time, but we should keep it in mind, of course. From this definition we are able

to derive the useful relations:

δΓ[φ,G]

δφi
= −Ji −Kijφj ,

δΓ[φ,G]

δGij
= −1

2
Kij . (B.5)

In the former equation we used the fact that Kij is symmetric. These are the ”quantum

equation of motion” from the 2PI effective action with external sources. Via variational

principle we can find the stationary mean field and the propagator solution from the

equations:

δΓ[φ,G]

δφ

∣∣∣∣
φ=φs,G=Gs

= 0,

δΓ[φ,G]

δG

∣∣∣∣
φ=φs,G=Gs

= 0. (B.6)

These two equations called the ”field” and the ”gap” equations, respectively. It is easy

to see that the defining 2PI effective action at the stationary point of the propagator,

i.e. for G = Gs, will give us the 1PI effective action for any φ defined in the Introduction

(just with opposite sign due to the convention which we will not indicate here):

Γ2PI[φ,Gs] = Γ1PI[φ]. (B.7)

It can be also shown that the 2PI effective action can be written in a compact form in

terms of the diagrammatic expansion (see in [15])

Γ[φ,G] = −S0[φ]− 1

2
Tr lnG−1 − 1

2
Tr
(
G−1

0 G− 1
)

+ Γint[φ,G]. (B.8)

In this notation S0[φ] = (1/2)φiG
ij
0 φj is the free action, G0 is the free propagator, G

corresponds to the full propagator and the term Γint[φ,G] contains all the closed 2PI
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skeleton (without self-energy insertion) diagrams constructed with the vertices defined

in Sint[φ+ ϕ] (where only the higher than quadratic terms in ϕ are found).

The description of the 2PI functional technique above, of course, leads us to an exact

expression of the 2PI effective action in Eq. (B.8). However, we always need to truncate

Γ[φ,G] at some point to be able to perform calculations. Hence, we will have the

equations

δΓtr[φ,G]

δφ

∣∣∣∣
φ=φs,G=Gs

= 0,

δΓtr[φ,G]

δG

∣∣∣∣
φ=φs,G=Gs

= 0, (B.9)

where Γtr[φ,G] is the truncated 2PI effective action. Applying the first one to the

truncated version of Eq. (B.8) yields:

φis = −Gij0
δΓtrint[φ,G]

δφj

∣∣∣∣
φ=φs,G=Gs

, (B.10)

where Γtrint is the truncated interaction term. Now, applying the second one to Eq. (B.8)

gives for the propagator:

G−1
s = G−1

0 − 2
δΓtrint[φ,G]

δG

∣∣∣∣
φ=φs,G=Gs

. (B.11)

From the equation of the propagator we can immediately identify the self-energy by

using the usual Dyson equation

G−1 = G−1
0 − Σ. (B.12)

Hence, from Eq. (B.11) and Eq. (B.12) we get

Σ[G] = 2
δΓtrint[φ,G]

δG
. (B.13)

The Dyson equation from Eq. (B.12) together with the self-energy from Eq. (B.13)

represents a self-consistent system of equations, which serves as a basis for the 2PI

resummation schemes.





Appendix C

Basics of the finite temperature

field theory in CTP formalism

The appropriate quantity that contains both the quantum and the statistical fluctuations

is the density matrix of the given system, which we will denote by ρ. Given the density

matrix, one is able to compute correlation functions with the formula:

〈O(x1)O(x2)...O(xn)〉 ≡ Tr[ρO(x1)O(x2)...O(xn)]

Tr[ρ]
. (C.1)

For a general density matrix we can define the partition function as follows:

Z[ρ] = Tr[ρ] =
∑

φ

〈φ | ρ |φ〉 , (C.2)

where |φ〉s are state vectors in the Heisenberg picture, and they form a complete set.

For the time evolution operators one can define a path integral representation [49], using

a time contour integral on the complex plane. If the same external source can be found

in the forward as well as in the backward evolution, then the two operators cancel (since

they are complex conjugates) and the initial value remained. Nevertheless, in general we

cannot assume this situation, thus different sources can be introduced for each direction

of the evolution: J1 for the forward and J2 for the backward. In the path integral

representation this time-dependent generating functional can be written as

Z[ρ, J1, J2] =

∫
Dϕ(1)Dϕ(2) 〈φ1, 0 | ρ |φ2, 0〉 e

i[
t∫
0

ds
∫
d3x(L(ϕ(1))+J1ϕ(1))−(L(ϕ(2))+J2ϕ(2))]

.

(C.3)

Here |φ1,2, 0〉 are the initial Hilbert space states corresponding to the initial field config-

urations: ϕH |φ1,2, 0〉 = ϕ
(1),(2)
0 |φ1,2, 0〉. It is more convenient to write this integral on
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the domain of the complex plane of the time on a given contour. Let us call this contour

C = C1 ∪ C2, where the C1 runs from 0 to t and C2 from t to 0. The corresponding time

evolution operator is:

UCJ = U †J2
(t, 0)UJ1(t, 0) ≡ TCei

∫
C dsd

3xJ(s,x)ϕ(s,x). (C.4)

The contour C is called the Schwinger-Keldysh closed time path, and TC is for contour

time path ordering, which is the ordinary time ordering if one considers C1 but it is the

anti-time ordering on C2. Thus the time integration along the contour C is

∫

C
ds =

∫ t

0, C1
ds−

∫ t

0, C2
ds. (C.5)

Then the partition function can be written in a compact way:

Z[ρ, J ] =

∫
Dϕ(1)

0 Dϕ
(2)
0 〈φ1, 0 | ρ |φ2, 0〉

ϕ
(2)
0∫

ϕ
(1)
0

Dϕe
i[
∫
C
ds

∫
d3x(L(ϕ)+Jϕ)]

. (C.6)

This form of the generating functional is very similar to the usual vacuum case. Variation

of the partition function respect to the source J will provide the correlation functions

which are specified by the initial density matrix ρ.

C.1 Propagators

Here, we are only going to consider the most simple scalar case. Since we introduced

the contour C, the correlation functions will have a matrix structure:

iGab(x− y) ≡
(

1

Z[0]

δ2Z[ρ, J ]

δiJa(x) δiJb(x)
− 1

Z[0]

δZ[ρ, J ]

δiJa(x)

1

Z[0]

δZ[ρ, J ]

δiJb(x)

)∣∣∣∣
J1=J2=0

, (C.7)

where a, b ∈ {1, 2}. Each field variable is living on one of the given branch of the time

contour C, hence we will use the notation ϕ(i)(tj) to indicate the fact that tj ∈ Ci. In

what follows, will not use the spatial coordinate of the space-time, but the dependence

on them as variables are understood implicitly. This definition gives a 2× 2 matrix for
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the propagator with the following elements:

iG12(t1, t2) =
〈

TCϕ(1)(t1)ϕ(2)(t2)
〉

= 〈ϕ(t2)ϕ(t1)〉 ,

iG21(t1, t2) =
〈

TCϕ(2)(t1)ϕ(1)(t2)
〉

= 〈ϕ(t1)ϕ(t2)〉 ,

iG11(t1, t2) =
〈

TCϕ(1)(t1)ϕ(1)(t2)
〉

= 〈Tϕ(t1)ϕ(t2)〉
= θ(t1 − t2)iG21(t2, t1) + θ(t2 − t1)iG12(t1, t2),

iG22(t1, t2) =
〈

TCϕ(2)(t1)ϕ(2)(t2)
〉

= 〈T∗ϕ(t1)ϕ(t2)〉
= θ(t2 − t1)iG21(t2, t1) + θ(t1 − t2)iG12(t1, t2). (C.8)

Where T∗ is the anti-time ordering. The contour propagators are not independent, and

as a consequence, we can write down the following identity:

G11 +G22 = G12 +G21. (C.9)

Sometimes it is more convenient to work in the R/A basis which is defined as:

ϕ(r) =
ϕ(1) + ϕ(2)

2
,

ϕ(a) = ϕ(1) − ϕ(2). (C.10)

Now, we can define the propagator in this new basis, too:

iGrr =
〈

TCϕ(r)ϕ(r)
〉

=
1

4

(
iG11 + iG12 + iG21 + iG22

)
=
iG12 + iG21

2
,

iGra =
〈

TCϕ(r)ϕ(a)
〉

=
1

2

(
iG11 − iG12 + iG21 − iG22

)

= iG11 − iG12 = θ(t1 − t2)ρ(t1, t2),

iGar =
〈

TCϕ(a)ϕ(r)
〉

=
1

2

(
iG11 + iG12 − iG21 − iG22

)

= iG11 − iG21 = −θ(t2 − t1)ρ(t1, t2),

iGaa =
〈

TCϕ(a)ϕ(a)
〉

= iG11 − iG12 − iG21 + iG22. (C.11)

Here, we introduced the spectral function which is the commutation relation of the fields

(for fermions it is the anticommutation relation):

ρ(t1, t2) = iG21 − iG12 = iGra − iGar = 〈ϕ(t1)ϕ(t2)− ϕ(t2)ϕ(t1)〉 . (C.12)

Some remarks on the R/A formalism: the propagator aa is always zero; Gra and Gar is

the retarded and advanced propagator, respectively; Grr sometimes called the Keldysh

propagator.
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C.2 Equilibrium

In the special case, when the system initially is in equilibrium, the density matrix is

given as

ρeq =
1

Z[0]
e−βH , Z[0] = Tre−βH , (C.13)

where β is the inverse temperature and H is the Hamiltonian. The prefactor in the

partition function in Eq. (C.6), thus can be given as

〈φ1, 0 | ρ |φ2, 0〉 =

∫
Dϕ(3)e

i
−iβ∫
0

dt
∫
d3xL(ϕ3)

, (C.14)

where this path integral is over field configurations satisfying the boundary conditions:

ϕ(3)(0,x) = ϕ
(1)
0 , ϕ(3)(−iβ,x) = ϕ

(2)
0 . (C.15)

Thus, we found a path integral representation for the partition function Z in which the

time integral runs along the imaginary axis from t = 0 to t = −iβ. Hence, the contour

is given now as C = C1 ∪ C2 ∪ C3, where C3 represents the new section of the contour

on the imaginary axis (Fig. C.1). In equilibrium the system has the property of time

t
Im t

Re t

ti tf

ti � i�

C1

C2

C3

Figure C.1: The time integration contour in the equilibrium. In this case the system
has a time translation invariance, hence the initial time (ti) and final time (tf ) time

can be shifted arbitrarily.

translation invariance, hence it is possible to set the initial time to t → −∞ instead

of t = 0. This gives an enormous simplification in the description of the system. For

instance, if we have a correlation function, which is defined by operators living on C1,2

and on C3, the propagation between the ”real” and ”imaginary” sections of the contour

takes infinite time. Now, in every realistic system there is a damping, which ensures for

such correlation functions to always be zero. This means that computations involving

the contour section C3 decouples from the calculations performed on the real contour
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lines, and hence there is no need to extend the matrix structure of the propagator.

Nevertheless, G33 can be computed.

In the following, we will give the propagators in equilibrium. Here, we can make a

simplification by setting t1 = 0 and t2 = t using the translation invariance in time:

iG12(t) =
〈

TCϕ(1)(t)ϕ(2)(0)
〉

=
1

Z[0]
Tr[e−βHϕ(0)ϕ(t)],

iG21(t) =
〈

TCϕ(2)(t)ϕ(1)(0)
〉

=
1

Z[0]
Tr[e−βHϕ(t)ϕ(0)],

iG11(t) =
〈

TCϕ(1)(t)ϕ(1)(0)
〉

=
1

Z[0]
Tr[e−βHTϕ(t)ϕ(0)]

= θ(t)iG21(t) + θ(−t)iG12(t),

iG22(t) =
〈

TCϕ(2)(t)ϕ(2)(0)
〉

=
1

Z[0]
Tr[e−βHT∗ϕ(t)ϕ(0)]

= θ(t)iG12(t) + θ(−t)iG21(t),

G33(t) =
〈

TCϕ(3)(t)ϕ(3)(0)
〉

=
1

Z[0]
Tr[e−βHTτϕ(−iτ)ϕ(0)]

= θ(τ)iG21(−iτ) + θ(−τ)iG12(−iτ).

(C.16)

The formulae in the R/A formalism are straightforward to obtain using Eq. (C.11). In

fact it, is enough to consider G12 and G21 only, since everything can be expressed by

these two correlation functions. A famous identity was given by Kubo, Martin and

Schwinger, which is usually being referred as the KMS relation. It reads:

iG12(t) =
1

Z[0]
Tr[e−βHϕ(0)ϕ(t)] =

1

Z[0]
Tr[e−βHeβHϕ(t)e−βHϕ(0)]

=
1

Z[0]
Tr[e−βHϕ(t− β)ϕ(0)] = iG21(t− iβ). (C.17)

More details about finite temperature field theory can be found in [49].





Appendix D

Local operator equations

D.1 The Dyson-Schwinger equation

The operator equations of motion give relations of the different Green’s functions, for-

mulated as the Dyson-Schwinger equations. These equations are local, and so they are

valid in generic non-equilibrium situations, and, of course, in a thermal medium, too.

The generating form of the Dyson-Schwinger equations for generic fields φi reads [7]

〈
δS

δφi(y)
φa1(x1) . . . φan(xn)

〉
= i

n∑

k=1

δiakδ(y − xk)
〈
k−1∏

l=1

φal(xl)

n∏

m=k+1

φam(xm)

〉
.

(D.1)

We can define the fermionic self-energy in the usual way using Eq. (D.1)

G(x, y) = G(0)(x, y) +

∫
d4x′d4y′ G(0)(x, x′)Σ(x′, y′)G(y′, y), (D.2)

Then we find in the Bloch-Nordsieck model

Σ(x, y) = ie2uµ

∫
d4wd4z G(x,w)Gµν(x, z)Γν(z;w, y), (D.3)

where the tree level vertex is euµ, the proper vertex is denoted by eΓµ. At finite tem-

perature we use the same definitions, but we need to take care of which time contour do

we perform the integration:

G(x, y) = G(0)(x, y) +

∫

C
d4x′d4y′ G(0)(x, x′)Σ(x′, y′)G(y′, y), (D.4)
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where the symbol
∫
C means time integration over the contour. In the Bloch-Nordsieck

model

Σ(x, y) = iα(x0)e2uµ

∫

C
d4wd4z G(x,w)Gµν(x, z)Γν(z;w, y), (D.5)

where α(x0) is 1 if x0 ∈ C1 and −1 if x0 ∈ C2. This factor appears because we

expressed the functional derivative δS
δφi(y) through the derivatives of the Lagrangian,

which, however, changes sign on C2. For details of the finite temperature formalism see

Appendix C.

D.2 The vertex function

The second use of the Dyson-Schwinger equation is to have a form for the vertex function.

From Eq. (D.1) we find for any gauge theories

〈
δS

δAµ(x)
O(ψ̄, ψ)

〉
= 0, (D.6)

where O is any local operator containing ψ̄ and ψ. This implies, in particular

〈
Aµ(x)ψ(y)ψ̄(z)

〉
=

∫

(C)
d4x′Gµν(x, x′)

〈
jν(x′)ψ(y)ψ̄(z)

〉
, (D.7)

where jµ is the conserved current. The vertex function shows up in the Aψψ† correlator

as

〈
Aµ(x)ψ(y)ψ̄(z)

〉
=

∫

(C)
d4x′d4y′d4z′ iGµν(x, x′)iG(y, y′)(−ie)Γν(x′, y′, z′)iG(z′, z).

(D.8)

From here, we find

∫

(C)
d4y′d4z′ iG(y, u) eΓµ(x;u, v)iG(v, z) =

〈
jµ(x)ψ(y)ψ̄(z)

〉
. (D.9)

In the BN model the fermion propagator is a scalar, moreover jµ = euµψ
†ψ is propor-

tional to uµ. Therefore, the vertex function is proportional to uµ, too. This is written

in the Fourier space as

Γµ(k; p, q) = uµΓ(k; p, q) (2π)4δ(k + p− q), (D.10)

where we also used the energy-momentum conservation. The C in the parenthesises

as a subscript of the integral stands for the time contour in case of finite temperature

computations. The vertex has the form of Eq. (D.10) at finite temperature, too, with
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the corresponding additional indices. For the contour integration in finite temperature

calculations see Appendix C.

D.3 Ward identities

The local equations expressing current conservation can be used in a similar manner.

The generating form reads

∂

∂xµ
〈jµ(x)φa1(x1) . . . φan(xn)〉 = −i

n∑

k=1

δiakδ(x−xk)
〈
k−1∏

l=1

φal(xl)∆φi(y)
n∏

m=k+1

φam(xm)

〉
,

(D.11)

where ∆φi is the transformation of the ith field generated by the conserved charge

Q =
∫
d3xj0(t,x). This means, in particular

∂

∂xµ
〈
jµ(x)ψ(y)ψ̄(z)

〉
= eδ(x− z)G(y, z)− eδ(x− y)G(y, z). (D.12)

We can write the corresponding equation for the vertex function, using Eq. (D.9):

∂

∂xµ

∫

(C)
d4ud4v iG(y, u)Γµ(x;u, v)iG(v, z) = δ(x−z)G(y−z)−δ(x−y)G(y−z). (D.13)

In momentum space we have:

kµΓµ(k; p− k, p) = G−1(p)− G−1(p− k). (D.14)

Which holds for finite temperature case, too, with the corresponding additional indices.

The C in the parenthesis again stands for the contour integration for nonzero tempera-

ture calculations (see Appendix C).





Appendix E

BN model calculations at T > 0

E.1 The calculation of Eq. (2.116)

Using the free form of the photon propagator G21, we can write:

J̄ (w) = −e2U2

∫
d4k

(2π)4

1

uk
(1 + n(k0))

2π

2k
(δ(k0 − k)− δ(k0 + k)) Ḡra(w − uk) =

=
−e2U2

2

∫
d3k

(2π)3

1

k

[
1 + n(k)

u0k − uk
Ḡra(w − (u0k − uk))

− 1 + n(−k)

−u0k − uk
Ḡra(w − (−u0k − uk))

]
=

=
−e2U2

2

∫
d3k

(2π)3

1

k

[
1 + n(k)

u0k − uk
Ḡra(w − (u0k − uk))

− n(k)

u0k + uk
Ḡra(w + (u0k + uk))

]
=

=
−e2U2

8π2

∞∫

0

dk

1∫

−1

dx

[
1 + n(k)

u0 − ux
Ḡra(w − k(u0 − ux))

− n(k)

u0 − ux
Ḡra(w + k(u0 − ux))

]
=

=
−e2U2

8π2

∞∫

0

dk

u0+u∫

u0−u

ds

us

[
(1 + n(k))Ḡra(w − ks)− n(k)Ḡra(w + ks)

]
=

=
−e2U2

8π2

∞∫

0

dq

u0+u∫

u0−u

ds

us2

[(
1 + n

(q
s

))
Ḡra(w − q)− n

(q
s

)
Ḡra(w + q)

]
=

=
−e2U2

8π2

∞∫

−∞

dq Ḡra(w − q)
u0+u∫

u0−u

ds

us2

(
1 + n

(q
s

))
. (E.1)
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E.2 The calculation of Eq. (2.137)

Using basic identities we have:

1

sin

(
α

2
− iβw

2

) +
(−1)α/π

sin

(
α

2
+ i

βw

2

)

=
1

sin
α

2
cosh

βw

2
− i cos

α

2
sinh

βw

2

+
eiα

sin
α

2
cosh

βw

2
+ i cos

α

2
sinh

βw

2

=

(
1 + eiα

)
sin

α

2
cosh

βw

2
+ i
(
1− eiα

)
cos

α

2
sinh

βw

2(
sin

α

2
cosh

βw

2

)2

+

(
cos

α

2
sinh

βw

2

)2

=

eiα/2 sinα

(
cosh

βw

2
+ sinh

βw

2

)

cosh2 βw

2

(
1− cos2 α

2

)
+ cos2 α

2
sinh2 βw

2

=
eiα/2eβw/2 sinα

cosh2 βw

2
− cos2 α

2

=
2eiα/2eβw/2 sinα

cosh(βw)− cosα
.

(E.2)



Appendix F

One-loop correction in the BN

model at finite temperature

We are going to use Eq. (2.172) as our starting point. For the one-loop calculation we

insert the spectral function of the free theory for both the fermion and gauge fields. The

one-loop self-energy discontinuity reads

Disc
p0

Σar(p) = e2

∫
d4k

(2π)4
(1 + nb(k0)− nf (p0 − k0))

×2π sgn k0δ(k
2
0 − k2)2πδ (u0(p0 − k0)− u(p− k)−m)

= e2

∫
d4k

(2π)4
(1 + nb(k0)− nf (p0 − k0))

×(2π)2

2|k| [δ(k0 − |k|)− δ(k0 + |k|)] δ (u0(p0 − k0)− u(p− k)−m)

= e2

∫
d3k

(2π)3

(
(1 + nb(|k|)− nf (p0 − |k|))

2π

2|k|δ (u0(p0 − k)− u(p− k)−m)

− (1− nb(−|k|)− nf (p0 + |k|)) 2π

2|k|δ (u0(p0 + |k|)− u(p− k)−m)

)

=
e2

8π3

∞∫

0

dkk2

1∫

−1

dx
(2π)2

2|k| [(1 + nb(|k|)− nf (p0 − |k|))

× δ (u0p0 − up− u0|k| − |u||k|x−m) +

+ (nb(|k|) + nf (p0 + |k|)) δ (u0p0 − up + u0|k| − |u||k|x−m)] . (F.1)

In the last step we used that

1 + nb(−ω) = 1 +
1

e−ω − 1
=

1

eω − 1
= −nb(ω). (F.2)
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In the last step we also introduced the variable x which stands for the cosinus of the

angle between the two spatial three-vectors u and k. For the sake of simplicity, in the

following we are going to use the notations pu ≡ p0u0 − pu for the scalar product in

Mikowski space, and k ≡ |k|, u ≡ |u|.
First we would like to integrate out the angle, that is x. The deltas are centered at

x =
pu± ku0 −m

ku
. (F.3)

According to the limits of the integral, this means that they will only give nonzero

contribution if:

|x| =
∣∣∣∣
pu± ku0 −m

ku

∣∣∣∣ ≤ 1 ⇒ |pu± ku0 −m| ≤ ku. (F.4)

In the inequality above we assumed that uµ is a time-like four vector, since we interpret

it as the four-velocity of the fermion. Also, since kµ is obviously time-like the, the scalar

product in Mikowski space of these two time-like four-vectors is definitely time like, i.e.

ku > 0. Thus, we can neglect the absolute value function. We distinguish two cases

corresponding to the two signs in Eq. (F.4).

Let us consider first the case when |pu + ku0 −m| < ku. Here, we need to distinguish

again two subcases. Firstly, when we have pu + ku0 −m > 0 then Eq. (F.4) reads as

pu+ ku0 −m < ku. These two conditions imply

m− pu
u0

< k <
m− pu
u0 − u

. (F.5)

This forces m − pu > 0 meaning pu < m, i.e. ”under the mass-shell”. On the other

hand, when pu−m+ k0 < 0, we have

|pu+ ku0 −m| = −pu− ku0 +m < ku. (F.6)

This implies

m− pu
u0 + u

< k <
m− pu
u0

. (F.7)

Since here m − pu needs to be positive again, hence this is again a situation where we

have a momentum under the mass-shell.

Now let us consider the other case, when we have a − sign in Eq. (F.4). With a

similar reasoning as above we will have two domain of validity again. Firstly, when

pu− ku0 −m ≥ 0,

pu−m
u0 + u

< k <
pu−m
u0

, (F.8)
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and secondly, when pu− ku0 −m ≤ 0,

pu−m
u0

< k <
pu−m
u0 − u

. (F.9)

The two inequalties describe a situation ”above the mass-shell”. Evaluating the x-

integral in Eq. (F.1), we end up with the expression

Disc
p0

Σar(p) =
e2

4πu

∞∫

0

dk [(1 + nb(k)− nf (p0 − k))

×
(

Θ

(
pu−m
u0 + u

< k <
pu−m
u0

)
+ Θ

(
pu−m
u0

< k <
pu−m
u0 − u

))

+ (nb(k) + nf (p0 + k))

×
(

Θ

(
m− pu
u0 + u

< k <
m− pu
u0

)
+ Θ

(
m− pu
u0

< k <
m− pu
u0 − u

))]

=
e2

4πu


Θ(pu−m)

pu−m
u−u0∫

pu−m
u+u0

dk (1 + nb(k)− nf (p0 − k))

+ Θ(m− pu)

m−pu
u−u0∫

m−pu
u+u0

dk (nb(k) + nf (p0 + k))


 . (F.10)

Now we have the formula for the discontinuity of the self-energy, therefore we can study

its limit in the zero temperature case.

Firstly, we are taking the limit u → 0. It should give us the zero three-velocity case

of the fermion, but still on at finite T . The only non-trivial place where u appears in

the expression is in the limits of the integration. We consider the two boundaries of the

integral and take the limit u→ 0:

lim
u→0

1

u

±(pu−m)
u0−u∫

±(pu−m)
u0+u

dkf(k), (F.11)

where f(k) is an arbitrary u-independent function. Since the boundaries are approaching

each other (the range shrinks to a point), we can evaluate the function f(k) at this

particular point. Hence we replace f(k) by f(±p0∓m
u0

) = f(±p0∓M), whereM ≡ m/u0.

The integral itself reads as:

lim
u→0

1

u

± (pu−m)
u0−u∫

± (pu−m)
u0+u

dkf(k) = ± 2

u0
(p0 −M)f(±p0 ∓M). (F.12)
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Using this result we can evaluate Eq. (F.10) in this limit, which gives:

Disc
p0

Σar(p0) =
e2

2πu0
[Θ(p0 −M)(p0 −M)(1 + nb(p0 −M)− nf (M))] .

+ Θ(M − p0)(M − p0)(nb(M − p0) + nf (M))]

=
e2

2πu0
[Θ(p0 −M)(p0 −M)− (p0 −M)nb(M) + |p0 −M |nf (|p0 −M |)] .

(F.13)

We have now the expression for the discontinuity of the self-energy at finite T and u = 0.

In the zero temperature limit we will have the following expression for it:

lim
T→0

Disc
p0

Σar(p0) =
e2

2πu0
Θ(p0 −M)(p0 −M). (F.14)

This is exactly the discontinuity of the zero temperature self-energy in Eq. (2.46). Thus,

this result is consistent with the zero temperature case.

However, if we consider it in general (i.e. for u 6= 0) we will have some problems. Let

us take first the limit T → 0. This gives for the expressions in the bracket of Eq. (F.10)

(note that k > 0 in any case):

lim
T→0

1 + nb(k)− nf (p0 − k) = 1−Θ(k − p0) = Θ(p0 − k), (F.15)

lim
T→0

nb(k) + nf (p0 + k) = Θ(−p0 − k) = 1−Θ(p0 + k). (F.16)

The first line in Eq. (F.15) tells us that the upper boundary of the integration by k

cannot exceed p0 in the first integral of Eq. (F.1). Hence, we need to compare p0 with

the upper limit which is pu−m
u0−u . The prefactor is Θ(pu − m), which ensures pu < m,

however, it does not give us enough information, i.e.

sgn

(
p0 −

pu−m
u0 − u

)
= undefined. (F.17)

We are facing a similar problem when we try to evaluate the second integral:

sgn

(
p0 −

m− p0

u0 + u

)
= undefined. (F.18)

Since we are unsure in the signs of the expressions above, we are going to have for the

complete expression of the discontinuity of the self-energy the following formula:
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Disc
p

Σar(p0) =
e2

4πu
Θ(pu−m)

×


Θ

(
p0 −

p0 −m
u0 − u

)
pu−m
u0−u∫

pu−m
u0+u

dk + Θ

(
p0 −m
u0 − u

− p0

) p0∫

pu−m
u0+u

dk




− e2

4πu
Θ(m− pu)

×



(

1−Θ

(
m− p0

u0 + u
+ p0

))
pu−m
u0−u∫

pu−m
u0+u

dk −Θ

(
−p0 −

m− p0

u0 + u

)
pu−m
u0−u∫

−p0

dk


 .

(F.19)

Because of Eq. (F.17) and Eq. (F.18) the expression in Eq. (F.19) is not well-defined.

To resolve this problem, we need to treat the fermion as a hard probe of the system, i.e.

as not being a part of the heatbath. Hence, the only solution to this problem is to set

the Fermi-Dirac distribution exactly to zero:

nf (p0 ± k) ≡ 0. (F.20)

In that case Eq. (F.10) simplifies in the following way:

Disc
p0

Σar(p) =
e2

4πu


Θ(pu−m)

pu−m
u−u0∫

pu−m
u+u0

dk (1 + nb(k)) + Θ(m− pu)

m−pu
u−u0∫

m−pu
u+u0

dknb(k)




=
e2

4πu


Θ(pu−m)

pu−m
u−u0∫

pu−m
u+u0

dk (1 + nb(k))−Θ(m− pu)

pu−m
u−u0∫

pu−m
u+u0

dknb(−k)




=
e2

4πu

p−m
u−u0∫

pu−m
u+u0

dk (1 + nb(k)) . (F.21)

Evaluating the integral, one gets a consistent result with the T = 0 case:

Disc
p0

Σar(p) =
Te2

4πu
ln


e

β pu−m
u−u0 − 1

e
β pu−m
u+u0 − 1


 =

e2

2π
Θ(pu−m)(pu−m)+

Te2

4πu
ln


1− e−β

pu−m
u−u0

1− e−β
pu−m
u+u0


 .

(F.22)
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And taking the limit T → 0, one gets Eq. (2.46):

Disc
p0

Σar(p) =
e2

2π
Θ(pu−m)(pu−m). (F.23)



Appendix G

Derivation of the RG equations

G.1 The exact RG equations

We are going to consider a simple scalar theory in order to derive the RG equations. We

define

Zk[J ] =

∫
Dφ exp

(
−S[φ]−∆Sk[φ] +

∫
Jφ

)
,

∆Sk[φ] =
1

2

∫

q
Rk(q)φ(q)φ(−q),

Wk[J ] = lnZk[J ],

Γk[φ] +Wk[J ] =

∫

x
Jφ− 1

2

∫

x,y
φ(x)Rk(x− y)φ(y), (G.1)

where the definition of φ(x) is given by:

δWk

δJ(x)
= φ(x) = 〈φ(x)〉. (G.2)

When J(x) is k-independent (as in Zk[J ]) then φ(x) computed from Wk is k-dependent.

Contrary, if φ(x) is fixed (as in Γk[φ]), then J(x) computed from Eq. (G.6) becomes

k-dependent.
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G.1.1 RG equation for Wk[J ]

∂ke
Wk = −1

2

∫
Dφ

(∫

x,y
φ(x) ∂kRk(x− y)φ(y)

)

× exp
(
− S[φ]− 1

2

∫

q
Rk(q)φ(q)φ(−q) +

∫
Jφ
)

=

(
−1

2

∫

x,y
∂kRk(x− y)

δ

δJ(x)

δ

δJ(y)

)
eWk[J ]. (G.3)

Therefore, the RG equation for Wk is:

∂kWk[J ] = −1

2

∫

x,y
∂kRk(x− y)

(
δ2Wk

δJ(x) δJ(y)
+

δWk

δJ(x)

δWk

δJ(y)

)
, (G.4)

which is equivalent to the Polchinski equation.

G.1.2 RG equation for Γk[φ]

We first derive the quantum equation of motion. The Legendre transform is symmetric

with respect to the two functions that are transformed. Here, in the k-dependent effective

theory, the Legendre transform of Wk is Γk + 1/2
∫
φRkφ. Thus,

δ

δφ(x)

(
Γk +

1

2

∫

x,y
φ(x)Rk(x− y)φ(y)

)
= J(x), (G.5)

and then

δΓk
δφ(x)

= J(x)−
∫

y
Rk(x− y)φ(y). (G.6)

In the Polchinski equation Eq. (G.4), the k-derivative is taken at fixed J(x). We must

convert it to a derivative at fixed φ:

∂k|J = ∂k|φ +

∫

x
∂kφ(x)|J

δ

δφ(x)
. (G.7)

Acting on Eq. (G.1) with ∂k|J , we obtain:

∂kΓk[φ]|J + ∂kWk[J ]|J =

∫

x
J ∂kφ|J

−1

2

∫

x,y
∂kRk(x− y)φ(x)φ(y)−

∫

x,y
Rk(x− y)φ(x)∂kφ(y)|J (G.8)
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Subsituting Eqs. (G.4, G.6, G.7) into this equation we finally obtain

∂kΓk[φ] =
1

2

∫

x,y
∂kRk(x− y)

δ2Wk

δJ(x) δJ(y)
. (G.9)

In the last step we rewrite the RHS of this equation in terms of Γk only. We start from

Eq. (G.2) and act on it with δ/δφ(z):

δ(x− z) =
δ2Wk

δJ(x) δJ(z)
=

∫

y

δ2Wk

δJ(x) δJ(y)

δJ(y)

δφ(z)
. (G.10)

Now, using Eq. (G.6), we get

δ(x− z) =

∫

y

δ2Wk

δJ(x) δJ(y)

(
δ2Γk

δφ(y) δφ(z)
+Rk(y − z)

)
. (G.11)

We define

W
(2)
k (x, y) =

δ2Wk

δJ(x) δJ(y)
, (G.12)

and thus

δ(x− z) =

∫

y
W

(2)
k (x, y)

(
Γ

(2)
k +Rk

)
(y, z) . (G.13)

Γ
(2)
k +Rk is therefore the inverse of W

(2)
k in the operator sense, and this relation is valid

for arbitrary φ. Note that, although we did not specify it, W
(2)
k is a functional of J(x)

and Γ
(2)
k a functional of φ(x). The RG equation Eq. (G.9) can now be written using Γk:

∂kΓk[φ] =
1

2

∫

x,y
∂kRk(x− y)

(
Γ

(2)
k +Rk

)−1
(x, y) . (G.14)

In Fourier space this equation becomes:

∂kΓk[φ] =
1

2

∫

q
∂kR̃k(q)

(
Γ̃

(2)
k + R̃k

)−1
(q,−q) . (G.15)
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G.1.3 The RG equation in the LPA for the O(N) model

We define the potential as Γk[φ] evaluated in a uniform field configuration φ. By sym-

metry arguments, we can choose any direction for the N -component vector φ. We take

φ =




φ1

0
...

0




. (G.16)

The RG equation on the potential in LPA writes as

∂tUk =
1

2
Tr

(
∂tRk(q)

(
∂2Uk
∂φi ∂φj

+ (q2 +Rk)δij

)−1
)
, (G.17)

where the trace means summation over O(N) indices and integration on the variable q.

Since

∂2Uk
∂φi ∂φj

=
∂Uk
∂ρ

δij +
∂2Uk
∂ρ2

φi φj , (G.18)

where ρ = 1/2φ2, we obtain

∂2Uk
∂φi ∂φj

+ (q2 +Rk)δij =




q2 +Rk + U ′k + 2ρU ′′k

q2 +Rk + U ′k
. . .

q2 +Rk + U ′k



. (G.19)

It is straightforward to invert this matrix and to compute the trace. We find:

∂kUk =
1

2

∫

q
∂kRk(q)

(
N − 1

q2 +Rk + U ′k
+

1

q2 +Rk + U ′k + 2ρU ′′k

)
. (G.20)

This equation on the right hand side defines a loop-integral structure with the propaga-

tors of the N − 1 Goldstone modes and the single massive radial mode.



Appendix H

Proof of the nested formula

We would like to prove the nested formula for the coupling constants in Eq. (3.88). The

easiest to consider first the case for the large -N , D = 2, because the RG equation has the

most simple form for these parameters (see Eq. (3.79)), however, it can be generalised

to arbitrary N and D, which we will present after this simpler example. Our starting

point is the RG equation, and we start to differentiate it with respect to ρ:

∂tu = −2u(ρ) +
1

u′(ρ) + 1
,

∂tu
′ = −2u′(ρ)− u′′(ρ)

(u′(ρ) + 1)2 ,

∂tu
′′ = −2u′′(ρ) +

2u′′(ρ)2

(u′(ρ) + 1)3 −
u(3)(ρ)

(u′(ρ) + 1)2 ,

∂tu
′′′ = −2u(3)(ρ)− 6u′′(ρ)3

(u′(ρ) + 1)4 +
6u(3)(ρ)u′′(ρ)

(u′(ρ) + 1)3 −
u(4)(ρ)

(u′(ρ) + 1)2 ,

... (H.1)

Let us rewrite the last three equation in the following form:

∂tu
′ = F1(u′) + g(u′)u′′,

∂tu
′′ = F2(u′, u′′) + g(u′)u(3),

∂tu
′′′ = F3(u′, u′′, u′′′) + g(u′)u(4). (H.2)

161
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Where we defined:

F1(u′) ≡ −2u′(ρ),

F2(u′, u′′) ≡ −2u′′(ρ) +
2u′′(ρ)2

(u′(ρ) + 1)3 −
u(3)(ρ)

(u′(ρ) + 1)2 ,

F3(u′, u′′, u′′′) ≡ −2u(3)(ρ)− 6u′′(ρ)3

(u′(ρ) + 1)4 +
6u(3)(ρ)u′′(ρ)

(u′(ρ) + 1)3 ,

g(u′) ≡ − 1

(u′(ρ) + 1)2 . (H.3)

We can find the following relation between Fis:

F2(u′, u′′) =
∂F1

∂ρ
+
∂F1

∂u′
u′′ +

∂g(u′)

∂u′
u′′2,

F3(u′, u′′, u′′′) =
∂F2

∂ρ
+
∂F2

∂u′
u′′ +

∂F2

∂u′′
u′′′ +

∂g(u′)

∂u′
u′′u′′′. (H.4)

Of course, ∂Fi/∂ρ = 0 since in this case there is no explicit ρ dependence, but for the

sake of consistency, we will indicate this term, as well. We can make the following

statement for n ≥ 1:

∂tu
(n) = Fn(u′, u′′, u′′′, ..., u(n)) + g(u′)u(n+1),

Fn(u′, u′′, u′′′, ..., u(n)) =
∂Fn−1

∂u′
u′′ +

∂Fn−1

∂u′′
u′′′ + ...+

(
∂Fn−1

∂u(n−1)
+
∂g(u′)

∂u′
u′′
)
u(n).

(H.5)

We are going to show this by induction. Let us suppose Eq. (H.5) is true. We are going

to show that it holds for n+ 1, too. Let us differentiate Eq. (H.5) once with respect to

ρ. It yields:

∂tu
(n+1) =

∂Fn
∂ρ

+
∂Fn
∂u′

u′′ +
∂Fn
∂u′′

u′′′ + ...+
∂Fn

∂u(n)
u(n+1) +

∂g(u′)

∂u′
u′′u(n+1) + g(u′)u(n+2),

∂tu
(n+1) =

∂Fn
∂ρ

+
∂Fn
∂u′

u′′ +
∂Fn
∂u′′

u′′′ + ...+

(
∂Fn

∂u(n)
+
∂g(u′)

∂u′
u′′
)
u(n+1) + g(u′)u(n+2),

∂tu
(n+1) = Fn+1(u′, u′′, u′′′, ..., u(n+1)) + g(u′)u(n+2),

(H.6)

where

Fn+1(u′, u′′, u′′′, ..., u(n+1)) =
∂Fn
∂u′

u′′ +
∂Fn
∂u′′

u′′′ + ...+

(
∂Fn

∂u(n)
+
∂g(u′)

∂u′
u′′
)
u(n+1).

(H.7)
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In this way it was shown that the RHS always depend on the highest derivative of u(ρ)

linearly, e.g. u(n+1) in Eq. (H.5). Now, if we look for the scaling solution then the LHS

vanishes, hence from Eq. (H.5):

u(n+1) = −Fn(u′, u′′, u′′′, ..., u(n))

g(u′)
. (H.8)

Evaluating this expression at ρ = 0 gives:

λn+1 = −Fn(λ1, λ2, λ3, ..., λn)

g(λ1)
. (H.9)

From this expression the nesting is straightforward:

λn+1 = −Fn(λ1, λ2, λ3, ..., λn)

g(λ1)
= −Fn(m2)

g(m2)
. (H.10)

Here, we used the notation m2 ≡ λ1. Thus, the formula of the nested couplings in

Eq. (3.88) is proved for N →∞ and D = 2.

Note that in the finite N case there are terms in the initial RG flow like ρu′ and ρu′′.

Evaluating the equation at ρ = 0 is crucial to be able to neglect these terms, which

would prevent us to perform the nesting. Thus, expanding into Taylor series around

zero is the only case when we can define VBFs.

In what follows, we will give a proof of the nested formula in Eq. (3.88) for arbitrary

field components N and dimensions D. Let us start again by differentiating the RG

equation (in this case Eq. (3.63)) with respect to ρ:

∂tu = (D − 2)ρu′(ρ)−Du(ρ) +
N − 1

u′(ρ) + 1
+

1

2ρu′′(ρ) + u′(ρ) + 1
,

∂tu
′ = (D − 2)ρu′′(ρ) + (D − 2)u′(ρ)−Du′(ρ)− (N − 1)u′′(ρ)

(u′(ρ) + 1)2 −
2ρu(3)(ρ) + 3u′′(ρ)

(2ρu′′(ρ) + u′(ρ) + 1)2 ,

∂tu
′′ = (D − 2)ρu(3)(ρ) + 2(D − 2)u′′(ρ)−Du′′(ρ) + (N − 1)

(
2u′′(ρ)2

(u′(ρ) + 1)3 −
u(3)(ρ)

(u′(ρ) + 1)2

)

+
2
(
2ρu(3)(ρ) + 3u′′(ρ)

)2

(2ρu′′(ρ) + u′(ρ) + 1)3 −
2ρu(4)(ρ) + 5u(3)(ρ)

(2ρu′′(ρ) + u′(ρ) + 1)2 . (H.11)

Let us express the equations above in the following way:

∂tu
′ = F1(u′, ρu′′) + g(u′)u′′ + h(u′, 2ρu′′)(3u′′ + 2ρu(3)),

∂tu
′′ = F2(u′, u′′, ρu(3)) + g(u′)u(3) + h(u′, 2ρu′′)(5u(3) + 2ρu(4)),

(H.12)
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where

F1(u′, ρu′′) = (D − 2)ρu′′(ρ) + (D − 2)u′(ρ)−Du′(ρ),

F2(u′, u′′, ρu(3)) = (D − 2)ρu(3)(ρ) + 2(D − 2)u′′(ρ)−Du′′(ρ)

+(N − 1)
2u′′(ρ)2

(u′(ρ) + 1)3 +
2
(
2ρu(3)(ρ) + 3u′′(ρ)

)2

(2ρu′′(ρ) + u′(ρ) + 1)3 ,

g(u′) = − N − 1

(u′(ρ) + 1)2 ,

h(u′, 2ρu′′) = − 1

(2ρu′′(ρ) + u′(ρ) + 1)2 . (H.13)

We can establish the relation again:

F2(u′, u′′, ρu(3)) =
∂F1

∂ρ
+
∂F1

∂u′
u′′ +

∂F1

∂u′′
ρu(3) +

∂g(u′)

∂u′
u′′u′′ +

dh

dρ

(
2ρu(3)(ρ) + 3u′′(ρ)

)
.

(H.14)

We can make the following statement for n ≥ 1:

∂tu
(n) = Fn(u′, u′′, ..., ρu(n+1)) + g(u′)u(n+1)

+h(u′, 2ρu′′)
(

(2n+ 1)u(n+1) + 2ρu(n+2)
)
,

Fn(u′, u′′, ..., ρu(n+1)) =
∂Fn−1

∂ρ
+
∂Fn−1

∂u′
u′′ + ...+

∂Fn−1

∂un
ρu(n+1)

+
∂g(u′)

∂u′
u′′u(n) +

dh

dρ

(
2ρu(n+1)(ρ) + (2n− 1)u(n)(ρ)

)
.

(H.15)

Let us suppose that Eq. (H.15) is true for the nth term. Now, we will show it is true for

the n+ 1th term:

∂tu
(n+1) =

∂Fn
∂ρ

+
∂Fn
∂u′

u′′ + ...+
∂Fn
∂un+1

ρu(n+2) +
∂g(u′)

∂u′
u′′u(n+1),

+g(u′)u(n+2) +
dh

dρ

(
(2n+ 1)u(n+1) + 2ρu(n+2)

)
,

+h
(

(2n+ 3)u(n+2) + 2ρu(n+3)
)
,

= Fn+1(u′, u′′, ..., ρu(n+2)) + g(u′)u(n+2) + h
(

(2n+ 3)u(n+2) + 2ρu(n+3)
)
,

(H.16)
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where

Fn+1(u′, u′′, ..., ρu(n+2)) =
∂Fn
∂ρ

+
∂Fn
∂u′

u′′ + ...+
∂Fn
∂un+1

ρu(n+2)

+
∂g(u′)

∂u′
u′′u(n+1) +

dh

dρ

(
(2n+ 1)u(n+1) + 2ρu(n+2)

)
.

(H.17)

In this way by induction we could show the statement of Eq. (H.15) is true. Here, (in

the case of finite N) we have to set ρ = 0 and only then it is possible to do the nesting

like in Eq. (H.10). From this point it is straightforward to show this.
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