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Recently the exact NSVZ S-function was rewritten in the form of a relation between the g-function and
the anomalous dimensions of the quantum gauge superfield, of the Faddeev-Popov ghosts, and of the
matter superfields. It was also suggested that this form of the NSVZ equation follows from an underlying
equation relating two-point Green functions of the theory. Here we demonstrate that this relation is
satisfied at the two-loop level for the non-Abelian N' =1 supersymmetric gauge theories in the case

of using the simplest (BRST non-invariant) version of the higher covariant derivative regularization.
Consequently, the integrals giving the two-loop B-function can be reduced to the one-loop integrals
giving the anomalous dimensions of the quantum gauge superfield, of the Faddeev-Popov ghosts, and

of the matter superfields.
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1. Introduction

The exact NSVZ B-function [1-4] is the famous all-order re-
lation between the S-function and the anomalous dimension of
the chiral matter superfields (in the representation R of the gauge

group),!

@2(3C; = T(R) + CRI () (@ 1))
27 (1 — Coot/270)

Bla,2) =— (1)

In our notation « = e?/4rr is the coupling constant and AUK
are the Yukawa couplings. The group theory factors are defined
by the equations fACD fBCD = C,848 tr(TATB) = T(R)$4B, and
(TH*T4d = C(R);#, where (T#);/ are the generators of the
gauge group in the representation R. Generators t4 of the fun-
damental representation in our notation satisfy the normalization
condition tr(tAt8) = 848 /2. The dimension of the gauge group is
denoted by r.

For the pure N =1 supersymmetric Yang-Mills (SYM) theory
Eq. (1) gives the exact B-function in the form of the geometric
series, and for theories with extended supersymmetry it produces
all non-renormalization theorems [5-7] which have been originally
proposed in [8,9] for A/ =2 theories (see also Ref. [10]) and in [8,
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1 Here we do not so far specify, how the renormalization group functions are
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9,11,12] for N' =4 SYM. The NSVZ-like relations also exist for the
Adler D-function [13]in A/ =1 SQCD [14,15] and for theories with
softly broken supersymmetry [16-18].

Although a lot of general arguments (see, e.g., [5,19,20]) lead
to Eq. (1), its direct derivation by methods of perturbation the-
ory is a complicated and so far unsolved problem. Starting from
the three-loop approximation the NSVZ relation is not valid in the
DR-scheme [21-25] due to the scheme dependence [26,27]. How-
ever, by the help of a specially tuned finite renormalization in a
given loop it is possible to construct a scheme in which Eq. (1) is
valid. Already in the three-loop approximation this fact is highly
non-trivial [21], because the NSVZ relation leads to some scheme
independent consequences [27,28]. In the Abelian case the NSVZ
scheme can be easily constructed for A/ =1 theories regularized
by the higher covariant derivative regularization [29-31] in a su-
persymmetric version [32,33]. This scheme is obtained (in all or-
ders of perturbation theory) if only powers of In A/u (where A is
the dimensionful parameter of the regularized theory and u is a
normalization point) are included in the renormalization constants
[34]. This prescription looks very similar to the minimal subtrac-
tions, so that it is possible to write

NSVZ = HD + MSL, 2)

where MSL means Minimal Subtractions of Logarithms. The NSVZ-
like schemes for the Adler D-function in N =1 SQCD [35] and
for the renormalization of photino mass in A" =1 SQED [36] are
obtained by the same way.
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The possibility of formulating this simple prescription giving
the NSVZ scheme with the higher derivative regularization fol-
lows from an interesting feature of quantum corrections which was
first noted in [37,38]. Namely, the momentum integrals giving the
B-function (defined in terms of the bare couplings) can be pre-
sented in the form of integrals of total derivatives [37] and even
double total derivatives [38]. In A" =1 SQED this allows obtaining
the NSVZ relation for the renormalization group (RG) functions de-
fined in terms of the bare coupling constant by taking the integral
over the momentum of a matter loop. The all-loop derivation of
the NSVZ equation by this method for A/ =1 SQED was made in
Refs. [39,40] and has been verified by an explicit three-loop calcu-
lation in [41]. Similar all-loop derivations of the NSVZ-like relations
were done for the Adler D-function in A/ =1 SQCD [14,15] and for
the renormalization of the photino mass in softly broken N =1
SQED [42]. Note that the higher derivative regularization is a very
essential ingredient of this construction, because for factorizing
loop integrals into integrals of double total derivatives one should
take the limit of the vanishing external momentum. For theories
regularized by the dimensional reduction [43,44] one should ei-
ther introduce auxiliary masses in propagators in this limit [45], or
make calculations for the non-vanishing external momentum. In
the latter case the factorization into double total derivatives does
not take place, although some similar constructions can be found
[46,47].

The derivation of the NSVZ relation in all cases mentioned
above has a simple graphical interpretation [38] (see also [48]).
Let us draw a supergraph without external lines. By attaching two
external gauge legs in all possible ways we obtain a group of di-
agrams contributing to the g-function. The NSVZ equation relates
it to the contribution to the anomalous dimension given by super-
diagrams which are obtained from the original graph by cutting
matter lines in all possible ways.

In the non-Abelian case explicit calculations in lowest loops
with the higher covariant derivative regularization (see, e.g.,
[49-54]) also reveal factorization of integrals giving the S-function
into integrals of double total derivatives. However, the above de-
scribed graphical interpretation of Eq. (1) is evidently unapplicable
in this case. Really, the S-function is obtained from diagrams with
two external legs of the background superfield, while by cutting
various propagators we obtain diagrams with external lines of the
quantum gauge superfield, of the Faddeev-Popov ghosts, and of the
matter superfields. Moreover, Eq. (1) contains the coupling con-
stant dependent denominator which hinders comparing different
contributions. All this difficulties were overcome in [55], where
it was proved that the three-point gauge-ghost vertices are finite
in all loops. (It is important that the gauge leg in these vertices
corresponds to the quantum gauge superfield.) Using this non-
renormalization theorem one can rewrite the NSVZ relation (1)
(for the RG functions defined in terms of the bare couplings) in
the equivalent form
Bloo, 2o)

1
=——(3C;—-T(R)-2C A
22 o= (3C2 = T(R) — 2Caye(@0. 20)

— 22y (@0, %0) + C(RI () @0, 20) /7). (3)

This equation relates the g-function to the anomalous dimensions
Ye» Vv, and (¥4)i? of the Faddeev-Popov ghosts, of the quantum
gauge superfield, and of the matter superfields, respectively. More-
over, it does not contain the coupling dependent denominator. That
is why Eq. (3) admits exactly the same qualitative graphical inter-
pretation as in the Abelian case.

Eq. (3) allows suggesting that, similar to the Abelian case, with
higher covariant derivative regularization the Green functions (de-

fined as in Ref. [55], see Eqgs. (18) and (33) below) satisfy the
equation

d (d_1—05_])‘ :_3C2—T(R)
dlnA 0 a,A=const; p—0 27

1 d
2w dinA

+C(R);! 1n(c¢)jf/r)‘

(—2c21ncc—c21ncv

. (4)
o, A=const;q—0
If this equation is valid in all loops, than Eq. (3) is also valid, and
Eq. (2) giving the NSVZ scheme takes place in the non-Abelian
case. At the three-loop level this has been verified by an explicit
calculation in Ref. [54] for terms quartic in the Yukawa couplings.
However, this check works only for the matter part of Eq. (4),
while it is much more interesting to compare parts coming from
the contributions of the quantum gauge superfield and ghosts. This
is much more difficult from technical point of view, because the
higher covariant derivative term leads to new vertices of the com-
plicated structure. That is why, at present, the complete calculation
of the considered Green functions with the BRST-invariant ver-
sion of the higher covariant derivative regularization was made
only in the one-loop approximation [53,56]. Nevertheless, the cal-
culations can be considerably simplified by the help of the BRST
non-invariant versions of the higher derivative regularization, see
Refs. [49-52]. Such a non-invariant regularization should be sup-
plemented by a special renormalization prescription which restores
the Slavnov-Taylor identities [57,58] in each order of perturba-
tion theory. Such prescriptions were constructed, e.g., in [59,60]
for non-supersymmetric gauge theories and in [61,62] for the su-
persymmetric case.

In this paper we verify the relation (4) for the two-loop two-
point Green function of the background gauge superfield and the
one-loop two-point Green functions of the quantum gauge super-
field, ghosts, and matter superfields. We take the two-loop result
obtained with the BRST non-invariant version of the higher deriva-
tive regularization from Ref. [50] and compare it with the one-loop
two-point Green functions, which are obtained here with the same
regularization supplemented by the renormalization prescription
proposed in [62]. This regularization is described in Sect. 2. In
Sect. 3 we demonstrate the validity of Eq. (4) as an equality be-
tween the loop integrals.

2. N =1 supersymmetric gauge theories regularized by higher
derivatives

We consider the N'=1 SYM theory interacting with the mass-
less chiral superfields ¢; in a certain representation R of the gauge
group G,

1 1 . ;
S= —Retr/d4xd29 WIW, + fd4xd49¢*’(ezv)i1¢j
2e3 4
‘1 ..

+ (gkgk / d*xd%0 ¢igjx + c.c.). (5)
The subscript 0 denotes bare couplings, namely, the gauge coupling
constant eg and the Yukawa couplings Agk. Certainly, we assume
that this theory is gauge invariant, so that the Yukawa couplings
satisfy the equation

AT A+ 2™ (TP md 4+ 2¢™ (T = 0. (6)
In this paper we will use almost the same version of the
higher derivative regularization as in Ref. [50] (see also [51,52]),

because in this case we know all integrals defining the two-
loop B-function. To construct this regularization, first, we make
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the background-quantum splitting by the help of the substitution
e2V — e®"e2Ve® Then the background superfield V is given by
the equation e2V = e®" ¢®. It is convenient to choose the gauge
fixing term which does not break the background gauge invariance,

namely,?
S f=_Ltr/d4xd40 v(v262+vzvz)v (7)
& 32¢2 ’

where the background supersymmetric covariant derivatives are
written as

_Qt + = —
Va=e ¥ Dee?; Vi=e%Dye 2. (8)

Certainly, it is also necessary to introduce anticommuting Faddeev-
Popov and Nielsen-Kallosh ghost superfields with the actions

1 _ _
Sep = —2tr/d4xd49 (eﬂce’ﬂ + e’mc*em)
e

0
14 _Q@t + oF
X{(l—eZV)Adj<e ce )
v e.,-a)].
+ (W)Adj (e ce ) }, (9)
1
Snk = —2tr/d4xd49 b*e?Vbe 2V, (10)
2e;
respectively.

In this paper we use a version of the higher covariant derivative
regularization which is obtained by adding

2 \n+1
(V2)"
A2n

o VD" o

")/ an

1
SA:—ZRetr/d4xd49V %4
2e;

1 4,, J4n pxi
+4/dxd9¢ (e

to the action, where the background covariant derivative V , is de-
fined by the equation

{Va, Vi) =2i(y") gy V. (12)
By adding the term (11) we regularize all divergences except for
the ones in the one-loop approximation, for which one should use
the Pauli-Villars method [31]. To cancel the one-loop divergences,
it is possible to insert the Pauli-Villars determinants for the matter
superfields and ghosts,’

(/D(D exp(iSq,))_]/DBexp(iSB)
K _ ¢
<] ([DC,DC, exp (iSca)) (13)
I=1

into the generating functional. Here the (commuting) Pauli-Villars
superfields ®; with the action

2\m
V)" o
A2m

. 4
+ e ezveﬂ).@j
1

1 .
So = Zfd4Xd49 <I>”“(em
1 ij 4., 12
+ (ZMJ d*xd%0 i +c.c.) (14)
2 The gauge term (7) corresponds to the Feynman gauge £ = 1.

3 In the Feynman gauge one-loop diagrams with a loop of the quantum gauge
superfield are finite.

lie in the representation R. Also we assume existence of the invari-
ant mass term, such that MYM?%, = §;M? with M =a4 A, where a4
is a constant. The chiral superfields C;and C; with I=1,...,K
are anticommuting and lie in the adjoint representation. The com-
muting chiral superfield B also lies in the adjoint representation.
The actions for these superfields have the form

1 _ _
Sci= —Ztr/d4xd49 (eQCIe’Q +e’9+CI+em)
€o

14 _ot 4 QF
X{(l—eZV)Adj(e Cre )

4 2 -9
V) (o))
+(1—e_2V>Aclj( !

+ (miz’ltr/d‘lxdz@ C;C; —l—c.c.); (15)
€
1
Sp = z—ztr/d“xd“a Bte?V ge—2V

€o
m

+ (—gtr/d“xdze B2 +c.c.). (16)
2eg

The masses should be proportional to the parameter A, mg =agA,
mc,1 = ac,1A, where the coefficients ag and ac; are some con-
stants independent of the couplings. To cancel the one-loop diver-
gences, the coefficients c¢; in Eq. (13) should satisfy the conditions

K K
14+) =0 ) cm¢;=0. (17)
=1 =1

Note that the higher derivative term (11) does not break the
background gauge invariance and leads to relatively simple calcu-
lations, because there are no new vertices containing the quantum
gauge superfield. However, the BRST invariance (which is a rem-
nant of the quantum gauge invariance after the gauge fixing pro-
cedure [63,64]) is broken. The BRST-invariant version of the higher
covariant derivative regularization can be also constructed, but the
calculations made by the help of it are much more complicated,
see, e.g. [53]. At present, the B-function of the general renormaliz-
able A/ =1 supersymmetric gauge theory has been calculated with
the BRST invariant version of the higher derivative regularization
only in the one-loop approximation [53], although some contribu-
tions are known even in the three-loop approximation [54]. For
the regularization obtained with the higher derivative term (11),
all integrals giving the two-loop B-function have been found in
Refs. [50-52]. Certainly, the non-invariant regularization should be
supplemented by a proper subtraction scheme which restores the
Slavnov-Taylor identities. In this paper we will use a procedure
similar to the one proposed in [62].

3. Relation between the Green functions

First, we remind the result for the two-loop two-point Green
function of the background gauge superfield obtained in [50,51].
Due to the unbroken background gauge invariance the correspond-
ing part of the effective action can be presented in the form

r® _ 1 ¢ d*p a4 2
@ = r OV(p,0)d°Il12V(—p,0)

8w (27T)4
x d~ (e, 2o, A/D), (18)

where 21T /2 is the supersymmetric transversal projection opera-
tor. In this equation the coefficient is chosen so that the function d
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coincides with ag =
loop approximation

e 2 /47 in the tree approximation. In the two-

d
d71 _ —1)‘
dln A ( %o a, =const; p—0
= Cy (Igp + Inx) + T(R)Io + a0 (C2)% 14

imnq x

07 : i
+ 22tr (C(R)?) 12 + oo CaT (R) 3 + C(R) /="
r 4rrr

+ 0 (3, oA, 1) (19)

I4

Writing the (Euclidean) integrals I; in this equation we will use
the notation

qu q2n
The one-loop contributions Igp, Ing, and Ip come from diagrams
with a loop of the ghost or matter superfields and can be easily

calculated,

2

9 911 m2 |
Ipp=2 ——[—l 1 —]
F T[Z /(2n)4dlnA aqH aq, Lg? n( + q? )

(20)

=—%; 1)
dq d 98 o1 m? 1

Ink = =7 (2n)4d1nAaq_u@[q_21 (1+q_§)]:_ﬂ;

(22)
lIo=m dlq _d ii[lln(l—i—M—zﬂzi.
@m)dInA gk 9q, Lg? q%F? 2

(23)

They give the first term in the right hand side of Eq. (4).
The two-loop contributions to the B-function are given by the
integrals

dq d* d 8 9

=-12n? —
T ] @mF @n)tdina aqF aq,,
1
X ; (24)
[szquRq(q + I<)2Rq+l<]
, [ dq d% d 8 3 1
[r=8n 4 4 —_[ 2R, 2 2
2m)* 2m)* dIn A agt 9q,, Lk*Rq*Fq(q +k)* Fqi
FqFq+i ] (25)
K2Ry (q2F2 + M?) (@+k2F7, +M?)
I — 82 dq d* d @ a[ 1
3= 7)% @m)* dInA 3g” 9k, L (k+ q)2 Ry qq? Fqk? Fi
F F
- T e (26)
(k@) ?Rirq (a2FZ + M2) (K2FZ + M2)
, [ dq d* d 8 9
Is=—8m —
(2m)4 2m)* dIn A dagH 8q,
1
X . (27)
[kszquq(q+l<)2Fq+k]

All of them are integrals of double total derivatives. This allows
taking one of the momentum integrals,

p_ g% d 1 (8)
' m)*dIn A k4R’
g% 4 1 29)
2= ] 2m)AdinA KRRy

d*k d 1 F?
=2 otk (30)

2m)*dIn ALKAF, (kzl:lf +M2)

Pk d 1

Iy=— (31)

Certainly, these integrals can be easily calculated (see, e.g., Ref.
[51]), but we will not do this, because here we would like to verify
Eq. (4) at the level of loop integrals. Using Eqs. (19) and (28)-(31)
the left hand side of Eq. (4) can be written as
d ( -1 a”)‘ _ 3G —-TR)

dinA 0 Jla,a=const; p—0 2w

dk 1 d
Qm)*kAdin A

4a
TFkRk

- (@22 +r(cR?)

k

412 imnq *

1 k#) — C(R);/ ——Imn :|
2 5 2 ! F2
Fk (ksz +M2) wrFy

+ 0(a?, ar, 1Y, (32)

+2aC2T(R) <

where we take into account that ag = o + O (?) and A”k Ak
O (ah, A3).

Let us compare this expression with the one-loop two-point
Green functions of the quantum gauge superfield, of the Faddeev-
Popov ghosts, and of the matter superfields. The functions Gy, G,
and (G¢)ji entering Eq. (4) are related to the corresponding con-

tributions to the effective action by the equation

2) ()
r® —s® =

290 (2”) ' Y ’
X GV(0507 )\07 A/Q)

4
+ L [ Lt (—e@.o)ct(—q.0) + @ 0c(-q.0)

202 ) @m)*
x Ge(@o, 2o, A/q)

1 d4q d*0 o™ . 6 0) (G i
*2 /(271)4 ¢*(q.0)$i1(~q.0) (Gy) ' (0. 2o, A/q) + ..
(33)

where the dots denote the other terms in the effective action
quadratic in fields. According to this definition, in the tree approx-
imation

Gy =1+ O(ap); Gec =1+ O(p);
(Gg)i? =87 4+ 0(aw, 12). (34)

Note that the two-point Green function of the quantum gauge
superfield is transversal. This follows from the Slavnov-Taylor
identities [57,58] and the Schwinger-Dyson equations for the
Faddeev-Popov ghosts. However, the regularization used in this pa-
per breaks the BRST invariance of the total action and, therefore,
the Slavnov-Taylor identities are valid only after a special renor-
malization procedure made according to the prescription presented
in [62]. In particular, the two-point Green function of the quantum
gauge superfield will be transversal only after this procedure. Be-
low we will demonstrate this by an explicit calculation.
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Fig. 1. Superdiagrams giving the two-point Green function of the matter superfields in the one-loop approximation.

=
’ AN
/
W AN
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- .~

Fig. 2. Superdiagrams contributing to the one-loop two-point Green function of the
Faddeev-Popov ghosts.

Let us calculate the derivatives of the functions (Gg) ji, G¢, and
Gy with respect to InA in the limit of the vanishing external
momentum with the considered version of the higher derivative
regularization.*

The one-loop two-point Green function of the matter super-
fields is obtained by calculating the diagrams presented in Fig. 1.
This calculation gives

In(Gy),'

dinA

o, =const; g—0

d*k ; 8ap ; 2
— - _C R 1 )Lzmn)\*_ =
(2n)4< R aFr, 770 °f”1”k4F,§)

+ 0(a, cohd, A)- (35)

The superdiagrams contributing to the one-loop two-point
Green function of the Faddeev-Popov ghosts are presented in
Fig. 2. In the Feynman gauge & = 1 (which is used in this pa-
per following Refs. [50,51]) their sum in the limit of the vanishing
external momentum is O,

d

% e ) — 0(a). 36
dln A ¢ a,A=const; q—0 (@) (36)

The two-point Green function of the quantum gauge superfield
in the one-loop approximation is contributed to by the superdia-
grams presented in Fig. 3. The result for them is written as

1 d
F§,2>—s(?=——2tr/ 1_a%
& 2e 2m)

x (V(@.0)9M1/2V (~4.6) Gy (@0, 20, A /9)

+V(@.0)V(~4.6) v (@0, 20, A/D)). (37)

Unlike Eq. (33), the Green function obtained from this equation
is not transversal. This occurs, because the regularization breaks
the BRST invariance. Consequently, the Slavnov-Taylor identities
are also broken and the two-point Green function of the quantum
gauge superfield is no longer transversal.” Explicitly calculating the
diagrams presented in Fig. 3 we obtain that the non-invariant part

4 Earlier such a calculation has been made only with the BRST invariant version
of the higher covariant derivative regularization in [53], but here it is important that
various Green functions will be obtained with the same regularization method.

5 Note that the transversality of the two-point Green function of the background
gauge superfield is ensured by the unbroken background gauge invariance.

of the two-point function (37) in the limit of the vanishing exter-
nal momentum is written as

Gy =—8mag ﬂ[lCz(l +XK:c1¥—L)
q—0 Qm)4le “\k2 2+ m%‘, k2R,
(F — HM? ]
k2FZ(k?F2 4+ M?)
+ 0(a2, apr3) =e3A%gy + 0 (ad, aprd). (38)

+T(R)

For m>1 and n > 1 this integral is convergent due to the condi-
tions (17), so that (for finite A) gy is a finite numerical constant.
According to Refs. [59,60], starting from the result obtained
with a non-invariant regularization one should construct Green
functions satisfying the Slavnov-Taylor identities by the help of
a special algorithm. In the supersymmetric case this algorithm
is described in [61] for the Abelian theories, and in [62] for the
non-Abelian ones. The first step of this algorithm is to remove
non-invariant terms proportional to V(q,6)V (—q, #) from the two-
point Green function of the quantum gauge superfield and keep
only invariant terms proportional to V (g, 9)32H1/2V(—q,9). Con-
sequently, the Slavnov-Taylor identity (in this case, the transver-
sality of the considered Green function) is satisfied by the renor-
malized Green function. It is easy to demonstrate that the above
procedure is equivalent to adding the non-invariant counterterm

1
AS = EgVA2 tr/d4xd40 V2, (39)

which appears due to the use of the non-invariant regularization.’

The invariant part of the function (37) is logarithmically diver-
gent in the limit A — oo. After calculating the diagrams presented
in Fig. 3 we have obtained

d | o o d*k d 12C;
dinA v aA=const; g—0 0 Qm)4dinA k4Rl%
] (e
k4F? (I2F2 + MZ)Z
+ 0(03, aprd). (40)

Thus, the terms containing various InG in the right hand side
of Eq. (4) can be written as

1 d
2w din A

+CR) m(cd,)j"/r)‘

_/ d 1 d
] @m4kidinA

(—2C2lnGC—C21nGV

o, =const;q—0

6o
- (C2)° =
|: Rk

6 Certainly, there is also a non-invariant counterterm containing Va2V, but to
find it, it is necessary to calculate the function Gy for non-vanishing values of q.
Such calculations are much more complicated from the technical point of view, see,
e.g., [56].
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Fig. 3. Superdiagrams giving the two-point Green function of the quantum gauge superfield V in the one-loop approximation.

1 k4F2
+20CTR) (5 — ———
Fk (kzFI%'i'MZ)
4a ‘kimn)\»f
tr(C(R)?) —— — C(R); — ™% 0(e?, ar?, 2Y).
+ 1‘( ( ))T'FkRk ( )l JTI‘FI% + (0( ¢ )

(41)

Comparing this expression with Eq. (32) we see that the NSVZ-like
equation (4) relating various two-point Green functions is really
valid in the considered approximation with the considered ver-
sion of the higher derivative regularization. (Note that the equality
takes place for loop integrals in the case of arbitrary values of the
parameters m and n > 1.) This confirms the assumption made in
Ref. [55] that Eq. (4) is valid in all orders and can be used for de-
riving the NSVZ relation and constructing the NSVZ scheme in the
non-Abelian case.

4. Conclusion

In this paper we have verified Eq. (4) for the general N =1
supersymmetric gauge theory by comparing the two-loop two-
point Green function of the background gauge superfield with the
one-loop two-point Green functions of the quantum gauge super-
field, of the Faddeev-Popov ghosts, and of the matter superfields.
To make this check we use the BRST non-invariant version of
the higher derivative regularization supplemented by a subtraction
scheme which restores the Slavnov-Taylor identities. This regular-
ization was chosen, because in this case all integrals defining the
two-loop running of the coupling constant have been calculated
earlier. After calculating one-loop two-point Green functions of the
quantum fields listed above, we have checked that Eq. (4) is really
satisfied. This confirms the proposal made in Ref. [55] that this
equation is valid in all orders and can be used as a starting point
for deriving the NSVZ relation (1) by direct summation of super-
graphs. Nevertheless, it is highly desirable to verify Eq. (4) in the
case of using the BRST invariant version of higher derivative regu-
larization. This problem is more difficult from the technical point
of view, because of new higher derivative vertices. These new ver-
tices essentially complicate the calculation even of the two-loop
B-function. However, we hope that in future it would be possible
to make such a check of Eq. (4).
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