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Recently the exact NSVZ β-function was rewritten in the form of a relation between the β-function and 
the anomalous dimensions of the quantum gauge superfield, of the Faddeev–Popov ghosts, and of the 
matter superfields. It was also suggested that this form of the NSVZ equation follows from an underlying 
equation relating two-point Green functions of the theory. Here we demonstrate that this relation is 
satisfied at the two-loop level for the non-Abelian N = 1 supersymmetric gauge theories in the case 
of using the simplest (BRST non-invariant) version of the higher covariant derivative regularization. 
Consequently, the integrals giving the two-loop β-function can be reduced to the one-loop integrals 
giving the anomalous dimensions of the quantum gauge superfield, of the Faddeev–Popov ghosts, and 
of the matter superfields.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The exact NSVZ β-function [1–4] is the famous all-order re-
lation between the β-function and the anomalous dimension of 
the chiral matter superfields (in the representation R of the gauge 
group),1

β(α,λ) = −
α2

(
3C2 − T (R) + C(R)i

j(γφ) j
i(α,λ)/r

)
2π(1 − C2α/2π)

. (1)

In our notation α = e2/4π is the coupling constant and λi jk

are the Yukawa couplings. The group theory factors are defined 
by the equations f AC D f BC D ≡ C2δ

AB , tr (T A T B) ≡ T (R) δAB , and 
(T A)i

k(T A)k
j ≡ C(R)i

j , where (T A)i
j are the generators of the 

gauge group in the representation R . Generators t A of the fun-
damental representation in our notation satisfy the normalization 
condition tr(t At B) = δAB/2. The dimension of the gauge group is 
denoted by r.

For the pure N = 1 supersymmetric Yang–Mills (SYM) theory 
Eq. (1) gives the exact β-function in the form of the geometric 
series, and for theories with extended supersymmetry it produces 
all non-renormalization theorems [5–7] which have been originally 
proposed in [8,9] for N = 2 theories (see also Ref. [10]) and in [8,

E-mail address: stepan@m9com.ru (K.V. Stepanyantz).
1 Here we do not so far specify, how the renormalization group functions are 

defined.
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9,11,12] for N = 4 SYM. The NSVZ-like relations also exist for the 
Adler D-function [13] in N = 1 SQCD [14,15] and for theories with 
softly broken supersymmetry [16–18].

Although a lot of general arguments (see, e.g., [5,19,20]) lead 
to Eq. (1), its direct derivation by methods of perturbation the-
ory is a complicated and so far unsolved problem. Starting from 
the three-loop approximation the NSVZ relation is not valid in the 
DR-scheme [21–25] due to the scheme dependence [26,27]. How-
ever, by the help of a specially tuned finite renormalization in a 
given loop it is possible to construct a scheme in which Eq. (1) is 
valid. Already in the three-loop approximation this fact is highly 
non-trivial [21], because the NSVZ relation leads to some scheme 
independent consequences [27,28]. In the Abelian case the NSVZ 
scheme can be easily constructed for N = 1 theories regularized 
by the higher covariant derivative regularization [29–31] in a su-
persymmetric version [32,33]. This scheme is obtained (in all or-
ders of perturbation theory) if only powers of ln 	/μ (where 	 is 
the dimensionful parameter of the regularized theory and μ is a 
normalization point) are included in the renormalization constants 
[34]. This prescription looks very similar to the minimal subtrac-
tions, so that it is possible to write

NSVZ = HD + MSL, (2)

where MSL means Minimal Subtractions of Logarithms. The NSVZ-
like schemes for the Adler D-function in N = 1 SQCD [35] and 
for the renormalization of photino mass in N = 1 SQED [36] are 
obtained by the same way.
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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The possibility of formulating this simple prescription giving 
the NSVZ scheme with the higher derivative regularization fol-
lows from an interesting feature of quantum corrections which was 
first noted in [37,38]. Namely, the momentum integrals giving the 
β-function (defined in terms of the bare couplings) can be pre-
sented in the form of integrals of total derivatives [37] and even 
double total derivatives [38]. In N = 1 SQED this allows obtaining 
the NSVZ relation for the renormalization group (RG) functions de-
fined in terms of the bare coupling constant by taking the integral 
over the momentum of a matter loop. The all-loop derivation of 
the NSVZ equation by this method for N = 1 SQED was made in 
Refs. [39,40] and has been verified by an explicit three-loop calcu-
lation in [41]. Similar all-loop derivations of the NSVZ-like relations 
were done for the Adler D-function in N = 1 SQCD [14,15] and for 
the renormalization of the photino mass in softly broken N = 1
SQED [42]. Note that the higher derivative regularization is a very 
essential ingredient of this construction, because for factorizing 
loop integrals into integrals of double total derivatives one should 
take the limit of the vanishing external momentum. For theories 
regularized by the dimensional reduction [43,44] one should ei-
ther introduce auxiliary masses in propagators in this limit [45], or 
make calculations for the non-vanishing external momentum. In 
the latter case the factorization into double total derivatives does 
not take place, although some similar constructions can be found 
[46,47].

The derivation of the NSVZ relation in all cases mentioned 
above has a simple graphical interpretation [38] (see also [48]). 
Let us draw a supergraph without external lines. By attaching two 
external gauge legs in all possible ways we obtain a group of di-
agrams contributing to the β-function. The NSVZ equation relates 
it to the contribution to the anomalous dimension given by super-
diagrams which are obtained from the original graph by cutting 
matter lines in all possible ways.

In the non-Abelian case explicit calculations in lowest loops 
with the higher covariant derivative regularization (see, e.g., 
[49–54]) also reveal factorization of integrals giving the β-function 
into integrals of double total derivatives. However, the above de-
scribed graphical interpretation of Eq. (1) is evidently unapplicable 
in this case. Really, the β-function is obtained from diagrams with 
two external legs of the background superfield, while by cutting 
various propagators we obtain diagrams with external lines of the 
quantum gauge superfield, of the Faddeev–Popov ghosts, and of the 
matter superfields. Moreover, Eq. (1) contains the coupling con-
stant dependent denominator which hinders comparing different 
contributions. All this difficulties were overcome in [55], where 
it was proved that the three-point gauge-ghost vertices are finite 
in all loops. (It is important that the gauge leg in these vertices 
corresponds to the quantum gauge superfield.) Using this non-
renormalization theorem one can rewrite the NSVZ relation (1)
(for the RG functions defined in terms of the bare couplings) in 
the equivalent form

β(α0, λ0)

α2
0

= − 1

2π

(
3C2 − T (R) − 2C2γc(α0, λ0)

− 2C2γV (α0, λ0) + C(R)i
j(γφ) j

i(α0, λ0)/r
)
. (3)

This equation relates the β-function to the anomalous dimensions 
γc , γV , and (γφ)i

j of the Faddeev–Popov ghosts, of the quantum 
gauge superfield, and of the matter superfields, respectively. More-
over, it does not contain the coupling dependent denominator. That 
is why Eq. (3) admits exactly the same qualitative graphical inter-
pretation as in the Abelian case.

Eq. (3) allows suggesting that, similar to the Abelian case, with 
higher covariant derivative regularization the Green functions (de-
fined as in Ref. [55], see Eqs. (18) and (33) below) satisfy the 
equation

d

d ln	

(
d−1 − α−1

0

)∣∣∣
α,λ=const; p→0

= −3C2 − T (R)

2π

− 1

2π

d

d ln	

(
− 2C2 ln Gc − C2 ln G V

+ C(R)i
j ln(Gφ) j

i/r
)∣∣∣

α,λ=const;q→0
. (4)

If this equation is valid in all loops, than Eq. (3) is also valid, and 
Eq. (2) giving the NSVZ scheme takes place in the non-Abelian 
case. At the three-loop level this has been verified by an explicit 
calculation in Ref. [54] for terms quartic in the Yukawa couplings. 
However, this check works only for the matter part of Eq. (4), 
while it is much more interesting to compare parts coming from 
the contributions of the quantum gauge superfield and ghosts. This 
is much more difficult from technical point of view, because the 
higher covariant derivative term leads to new vertices of the com-
plicated structure. That is why, at present, the complete calculation 
of the considered Green functions with the BRST-invariant ver-
sion of the higher covariant derivative regularization was made 
only in the one-loop approximation [53,56]. Nevertheless, the cal-
culations can be considerably simplified by the help of the BRST 
non-invariant versions of the higher derivative regularization, see 
Refs. [49–52]. Such a non-invariant regularization should be sup-
plemented by a special renormalization prescription which restores 
the Slavnov–Taylor identities [57,58] in each order of perturba-
tion theory. Such prescriptions were constructed, e.g., in [59,60]
for non-supersymmetric gauge theories and in [61,62] for the su-
persymmetric case.

In this paper we verify the relation (4) for the two-loop two-
point Green function of the background gauge superfield and the 
one-loop two-point Green functions of the quantum gauge super-
field, ghosts, and matter superfields. We take the two-loop result 
obtained with the BRST non-invariant version of the higher deriva-
tive regularization from Ref. [50] and compare it with the one-loop 
two-point Green functions, which are obtained here with the same 
regularization supplemented by the renormalization prescription 
proposed in [62]. This regularization is described in Sect. 2. In 
Sect. 3 we demonstrate the validity of Eq. (4) as an equality be-
tween the loop integrals.

2. N = 1 supersymmetric gauge theories regularized by higher 
derivatives

We consider the N = 1 SYM theory interacting with the mass-
less chiral superfields φi in a certain representation R of the gauge 
group G ,

S = 1

2e2
0

Re tr
∫

d4x d2θ W a Wa + 1

4

∫
d4x d4θ φ∗i(e2V )i

jφ j

+
(1

6
λ

i jk
0

∫
d4x d2θ φiφ jφk + c.c.

)
. (5)

The subscript 0 denotes bare couplings, namely, the gauge coupling 
constant e0 and the Yukawa couplings λi jk

0 . Certainly, we assume 
that this theory is gauge invariant, so that the Yukawa couplings 
satisfy the equation

λ
mjk
0 (T A)m

i + λimk
0 (T A)m

j + λ
i jm
0 (T A)m

k = 0. (6)

In this paper we will use almost the same version of the 
higher derivative regularization as in Ref. [50] (see also [51,52]), 
because in this case we know all integrals defining the two-
loop β-function. To construct this regularization, first, we make 
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the background-quantum splitting by the help of the substitution 
e2V → e�+

e2V e� . Then the background superfield V is given by 
the equation e2V = e�+

e� . It is convenient to choose the gauge 
fixing term which does not break the background gauge invariance, 
namely,2

Sgf = − 1

32e2
tr

∫
d4x d4θ V

(∇2∇̄2 + ∇̄2∇2)V , (7)

where the background supersymmetric covariant derivatives are 
written as

∇a = e−�+
Dae�+; ∇̄ȧ = e�Dȧe−�. (8)

Certainly, it is also necessary to introduce anticommuting Faddeev–
Popov and Nielsen–Kallosh ghost superfields with the actions

SFP = 1

e2
0

tr
∫

d4x d4θ
(

e�c̄e−� + e−�+
c̄+e�+)

×
{( V

1 − e2V

)
Adj

(
e−�+

c+e�+)
+

( V

1 − e−2V

)
Adj

(
e�ce−�

)}
; (9)

SNK = 1

2e2
0

tr
∫

d4x d4θ b+e2V be−2V , (10)

respectively.
In this paper we use a version of the higher covariant derivative 

regularization which is obtained by adding

S	 = 1

2e2
0

Re tr
∫

d4x d4θ V
(∇2

μ)n+1

	2n
V

+ 1

4

∫
d4x d4θ φ∗i

(
e�+ (∇2

μ)m

	2m
e�

)
i

jφ j (11)

to the action, where the background covariant derivative ∇μ is de-
fined by the equation

{∇a, ∇̄ḃ} = 2i(γ μ)aḃ∇μ. (12)

By adding the term (11) we regularize all divergences except for 
the ones in the one-loop approximation, for which one should use 
the Pauli–Villars method [31]. To cancel the one-loop divergences, 
it is possible to insert the Pauli–Villars determinants for the matter 
superfields and ghosts,3(∫

D� exp (i S�)
)−1

∫
D B exp (i S B)

×
K∏

I=1

(∫
DC̄ I DC I exp

(
i SC,I

))cI
, (13)

into the generating functional. Here the (commuting) Pauli–Villars 
superfields �i with the action

S� = 1

4

∫
d4x d4θ �∗i

(
e�+ (∇2

μ)m

	2m
e� + e�+

e2V e�
)

i

j� j

+
(1

4
Mij

∫
d4x d2θ �i� j + c.c.

)
(14)

2 The gauge term (7) corresponds to the Feynman gauge ξ = 1.
3 In the Feynman gauge one-loop diagrams with a loop of the quantum gauge 

superfield are finite.
lie in the representation R . Also we assume existence of the invari-
ant mass term, such that Mij M∗

jk = δi
k M2 with M = aφ	, where aφ

is a constant. The chiral superfields C̄ I and C I with I = 1, . . . , K
are anticommuting and lie in the adjoint representation. The com-
muting chiral superfield B also lies in the adjoint representation. 
The actions for these superfields have the form

SC,I = 1

e2
0

tr
∫

d4x d4θ
(

e�C̄ I e
−� + e−�+

C̄+
I e�+)

×
{( V

1 − e2V

)
Adj

(
e−�+

C+
I e�+)

+
( V

1 − e−2V

)
Adj

(
e�C I e

−�
)}

+
(mC,I

e2
0

tr
∫

d4x d2θ C̄ I C I + c.c.
)
; (15)

S B = 1

2e2
0

tr
∫

d4x d4θ B+e2V Be−2V

+
( mB

2e2
0

tr
∫

d4x d2θ B2 + c.c.
)
. (16)

The masses should be proportional to the parameter 	, mB = aB	, 
mC,I = aC,I	, where the coefficients aB and aC,I are some con-
stants independent of the couplings. To cancel the one-loop diver-
gences, the coefficients cI in Eq. (13) should satisfy the conditions

1 +
K∑

I=1

cI = 0;
K∑

I=1

cIm
2
C,I = 0. (17)

Note that the higher derivative term (11) does not break the 
background gauge invariance and leads to relatively simple calcu-
lations, because there are no new vertices containing the quantum 
gauge superfield. However, the BRST invariance (which is a rem-
nant of the quantum gauge invariance after the gauge fixing pro-
cedure [63,64]) is broken. The BRST-invariant version of the higher 
covariant derivative regularization can be also constructed, but the 
calculations made by the help of it are much more complicated, 
see, e.g. [53]. At present, the β-function of the general renormaliz-
able N = 1 supersymmetric gauge theory has been calculated with 
the BRST invariant version of the higher derivative regularization 
only in the one-loop approximation [53], although some contribu-
tions are known even in the three-loop approximation [54]. For 
the regularization obtained with the higher derivative term (11), 
all integrals giving the two-loop β-function have been found in 
Refs. [50–52]. Certainly, the non-invariant regularization should be 
supplemented by a proper subtraction scheme which restores the 
Slavnov–Taylor identities. In this paper we will use a procedure 
similar to the one proposed in [62].

3. Relation between the Green functions

First, we remind the result for the two-loop two-point Green 
function of the background gauge superfield obtained in [50,51]. 
Due to the unbroken background gauge invariance the correspond-
ing part of the effective action can be presented in the form



(2)
V = − 1

8π
tr

∫
d4 p

(2π)4
d4θ V (p, θ)∂2�1/2 V (−p, θ)

× d−1(α0, λ0,	/p), (18)

where ∂2�1/2 is the supersymmetric transversal projection opera-
tor. In this equation the coefficient is chosen so that the function d
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coincides with α0 = e2
0/4π in the tree approximation. In the two-

loop approximation

d

d ln	

(
d−1 − α−1

0

)∣∣∣
α,λ=const; p→0

= C2 (IFP + INK) + T (R)I0 + α0(C2)
2 I1

+ α0

r
tr

(
C(R)2

)
I2 + α0C2T (R)I3 + C(R)i

j
λimn

0 λ∗
0 jmn

4πr
I4

+ O (α2
0 ,α0λ

2
0, λ

4
0). (19)

Writing the (Euclidean) integrals Ii in this equation we will use 
the notation

Fq ≡ 1 + q2m

	2m
; Rq ≡ 1 + q2n

	2n
. (20)

The one-loop contributions IFP, INK, and I0 come from diagrams 
with a loop of the ghost or matter superfields and can be easily 
calculated,

IFP = 2π

K∑
I=1

cI

∫
d4q

(2π)4

d

d ln 	

∂

∂qμ

∂

∂qμ

[ 1

q2
ln

(
1 + m2

C,I

q2

)]
= − 1

π
; (21)

INK = −π

∫
d4q

(2π)4

d

d ln	

∂

∂qμ

∂

∂qμ

[ 1

q2
ln

(
1 + m2

B

q2

)]
= − 1

2π
;

(22)

I0 = π

∫
d4q

(2π)4

d

d ln	

∂

∂qμ

∂

∂qμ

[ 1

q2
ln

(
1 + M2

q2 F 2
q

)]
= 1

2π
.

(23)

They give the first term in the right hand side of Eq. (4).
The two-loop contributions to the β-function are given by the 

integrals

I1 = −12π2
∫

d4q

(2π)4

d4k

(2π)4

d

d ln	

∂

∂qμ

∂

∂qμ

×
[ 1

k2 Rkq2 Rq(q + k)2 Rq+k

]
; (24)

I2 = 8π2
∫

d4q

(2π)4

d4k

(2π)4

d

d ln	

∂

∂qμ

∂

∂qμ

[ 1

k2 Rkq2 Fq(q + k)2 Fq+k

− Fq Fq+k

k2 Rk
(
q2 F 2

q + M2
) (

(q + k)2 F 2
q+k + M2

)]
; (25)

I3 = 8π2
∫

d4q

(2π)4

d4k

(2π)4

d

d ln	

∂

∂qμ

∂

∂kμ

[ 1

(k + q)2 Rk+qq2 Fqk2 Fk

− Fq Fk

(k + q)2 Rk+q
(
q2 F 2

q + M2
) (

k2 F 2
k + M2

)]
; (26)

I4 = −8π2
∫

d4q

(2π)4

d4k

(2π)4

d

d ln	

∂

∂qμ

∂

∂qμ

×
[ 1

k2 Fkq2 Fq(q + k)2 Fq+k

]
. (27)

All of them are integrals of double total derivatives. This allows 
taking one of the momentum integrals,
I1 = −6
∫

d4k

(2π)4

d

d ln	

1

k4 R2
k

; (28)

I2 = 4
∫

d4k

(2π)4

d

d ln	

1

k4 Fk Rk
; (29)

I3 = 2
∫

d4k

(2π)4

d

d ln	

[ 1

k4 F 2
k

− F 2
k(

k2 F 2
k + M2

)2

]
; (30)

I4 = −4
∫

d4k

(2π)4

d

d ln	

1

k4 F 2
k

. (31)

Certainly, these integrals can be easily calculated (see, e.g., Ref. 
[51]), but we will not do this, because here we would like to verify 
Eq. (4) at the level of loop integrals. Using Eqs. (19) and (28)–(31)
the left hand side of Eq. (4) can be written as

d

d ln	

(
d−1 − α−1

0

)∣∣∣
α,λ=const; p→0

= −3C2 − T (R)

2π

+
∫

d4k

(2π)4

1

k4

d

d ln	

[
− (C2)

2 6α

R2
k

+ tr
(

C(R)2
) 4α

r Fk Rk

+ 2αC2T (R)

(
1

F 2
k

− k4 F 2
k(

k2 F 2
k + M2

)2

)
− C(R)i

j
λimnλ∗

jmn

πr F 2
k

]
+ O (α2,αλ2, λ4), (32)

where we take into account that α0 = α + O (α2) and λi jk
0 = λi jk +

O (αλ, λ3).
Let us compare this expression with the one-loop two-point 

Green functions of the quantum gauge superfield, of the Faddeev–
Popov ghosts, and of the matter superfields. The functions G V , Gc , 
and (Gφ) j

i entering Eq. (4) are related to the corresponding con-
tributions to the effective action by the equation


(2) − S(2)

gf = − 1

2e2
0

tr
∫

d4q

(2π)4
d4θ V (q, θ)∂2�1/2 V (−q, θ)

× G V (α0, λ0,	/q)

+ 1

2e2
0

tr
∫

d4q

(2π)4
d4θ

(
− c̄(q, θ)c+(−q, θ) + c̄+(q, θ)c(−q, θ)

)
× Gc(α0, λ0,	/q)

+ 1

4

∫
d4q

(2π)4
d4θ φ∗ j(q, θ)φi(−q, θ) (Gφ) j

i(α0, λ0,	/q) + . . . ,

(33)

where the dots denote the other terms in the effective action 
quadratic in fields. According to this definition, in the tree approx-
imation

G V = 1 + O (α0); Gc = 1 + O (α0);
(Gφ)i

j = δi
j + O (α0, λ

2
0). (34)

Note that the two-point Green function of the quantum gauge 
superfield is transversal. This follows from the Slavnov–Taylor 
identities [57,58] and the Schwinger–Dyson equations for the 
Faddeev–Popov ghosts. However, the regularization used in this pa-
per breaks the BRST invariance of the total action and, therefore, 
the Slavnov–Taylor identities are valid only after a special renor-
malization procedure made according to the prescription presented 
in [62]. In particular, the two-point Green function of the quantum 
gauge superfield will be transversal only after this procedure. Be-
low we will demonstrate this by an explicit calculation.
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Fig. 1. Superdiagrams giving the two-point Green function of the matter superfields in the one-loop approximation.
Fig. 2. Superdiagrams contributing to the one-loop two-point Green function of the 
Faddeev–Popov ghosts.

Let us calculate the derivatives of the functions (Gφ) j
i , Gc , and 

G V with respect to ln 	 in the limit of the vanishing external 
momentum with the considered version of the higher derivative 
regularization.4

The one-loop two-point Green function of the matter super-
fields is obtained by calculating the diagrams presented in Fig. 1. 
This calculation gives

d

d ln	
ln(Gφ) j

i
∣∣∣
α,λ=const; q→0

=
∫

d4k

(2π)4

(
−C(R) j

i 8πα0

k4 Fk Rk
+ λimn

0 λ∗
0 jmn

2

k4 F 2
k

)

+ O (α2
0 ,α0λ

2
0, λ

4
0). (35)

The superdiagrams contributing to the one-loop two-point 
Green function of the Faddeev–Popov ghosts are presented in 
Fig. 2. In the Feynman gauge ξ = 1 (which is used in this pa-
per following Refs. [50,51]) their sum in the limit of the vanishing 
external momentum is 0,

d

d ln	
ln Gc

∣∣∣
α,λ=const; q→0

= O (α2
0). (36)

The two-point Green function of the quantum gauge superfield 
in the one-loop approximation is contributed to by the superdia-
grams presented in Fig. 3. The result for them is written as



(2)
V − S(2)

gf = − 1

2e2
0

tr
∫

d4q

(2π)4
d4θ

×
(

V (q, θ)∂2�1/2 V (−q, θ) G V (α0, λ0,	/q)

+ V (q, θ)V (−q, θ) G̃ V (α0, λ0,	/q)
)
. (37)

Unlike Eq. (33), the Green function obtained from this equation 
is not transversal. This occurs, because the regularization breaks 
the BRST invariance. Consequently, the Slavnov–Taylor identities 
are also broken and the two-point Green function of the quantum 
gauge superfield is no longer transversal.5 Explicitly calculating the 
diagrams presented in Fig. 3 we obtain that the non-invariant part 

4 Earlier such a calculation has been made only with the BRST invariant version 
of the higher covariant derivative regularization in [53], but here it is important that 
various Green functions will be obtained with the same regularization method.

5 Note that the transversality of the two-point Green function of the background 
gauge superfield is ensured by the unbroken background gauge invariance.
of the two-point function (37) in the limit of the vanishing exter-
nal momentum is written as

G̃ V

∣∣∣
q→0

= −8πα0

∫
d4k

(2π)4

[1

6
C2

( 1

k2
+

K∑
I=1

cI
1

k2 + m2
C,I

− 1

k2 Rk

)
+ T (R)

(Fk − 1)M2

k2 F 2
k (k2 F 2

k + M2)

]
+ O (α2

0 ,α0λ
2
0) ≡ e2

0	
2 gV + O (α2

0 ,α0λ
2
0). (38)

For m ≥ 1 and n > 1 this integral is convergent due to the condi-
tions (17), so that (for finite 	) gV is a finite numerical constant.

According to Refs. [59,60], starting from the result obtained 
with a non-invariant regularization one should construct Green 
functions satisfying the Slavnov–Taylor identities by the help of 
a special algorithm. In the supersymmetric case this algorithm 
is described in [61] for the Abelian theories, and in [62] for the 
non-Abelian ones. The first step of this algorithm is to remove 
non-invariant terms proportional to V (q, θ)V (−q, θ) from the two-
point Green function of the quantum gauge superfield and keep 
only invariant terms proportional to V (q, θ)∂2�1/2 V (−q, θ). Con-
sequently, the Slavnov–Taylor identity (in this case, the transver-
sality of the considered Green function) is satisfied by the renor-
malized Green function. It is easy to demonstrate that the above 
procedure is equivalent to adding the non-invariant counterterm

�S = 1

2
gV 	2 tr

∫
d4x d4θ V 2, (39)

which appears due to the use of the non-invariant regularization.6

The invariant part of the function (37) is logarithmically diver-
gent in the limit 	 → ∞. After calculating the diagrams presented 
in Fig. 3 we have obtained

d

d ln	
ln G V

∣∣∣
α,λ=const; q→0

= πα0

∫
d4k

(2π)4

d

d ln	

[
− 12C2

k4 R2
k

+ T (R)

(
4

k4 F 2
k

− 4F 2
k(

k2 F 2
k + M2

)2

)]
+ O (α2

0 ,α0λ
2
0). (40)

Thus, the terms containing various ln G in the right hand side 
of Eq. (4) can be written as

− 1

2π

d

d ln	

(
− 2C2 ln Gc − C2 ln G V

+ C(R)i
j ln(Gφ) j

i/r
)∣∣∣

α,λ=const;q→0

=
∫

d4k

(2π)4

1

k4

d

d ln	

[
− (C2)

2 6α

R2
k

6 Certainly, there is also a non-invariant counterterm containing V ∂2 V , but to 
find it, it is necessary to calculate the function G̃ V for non-vanishing values of q. 
Such calculations are much more complicated from the technical point of view, see, 
e.g., [56].



422 V.Yu. Shakhmanov, K.V. Stepanyantz / Physics Letters B 776 (2018) 417–423
Fig. 3. Superdiagrams giving the two-point Green function of the quantum gauge superfield V in the one-loop approximation.
+ 2αC2T (R)

(
1

F 2
k

− k4 F 2
k(

k2 F 2
k + M2

)2

)
+ tr

(
C(R)2

) 4α

r Fk Rk
− C(R)i

j
λimnλ∗

jmn

πr F 2
k

]
+ O (α2,αλ2, λ4).

(41)

Comparing this expression with Eq. (32) we see that the NSVZ-like 
equation (4) relating various two-point Green functions is really 
valid in the considered approximation with the considered ver-
sion of the higher derivative regularization. (Note that the equality 
takes place for loop integrals in the case of arbitrary values of the 
parameters m and n > 1.) This confirms the assumption made in 
Ref. [55] that Eq. (4) is valid in all orders and can be used for de-
riving the NSVZ relation and constructing the NSVZ scheme in the 
non-Abelian case.

4. Conclusion

In this paper we have verified Eq. (4) for the general N = 1
supersymmetric gauge theory by comparing the two-loop two-
point Green function of the background gauge superfield with the 
one-loop two-point Green functions of the quantum gauge super-
field, of the Faddeev–Popov ghosts, and of the matter superfields. 
To make this check we use the BRST non-invariant version of 
the higher derivative regularization supplemented by a subtraction 
scheme which restores the Slavnov–Taylor identities. This regular-
ization was chosen, because in this case all integrals defining the 
two-loop running of the coupling constant have been calculated 
earlier. After calculating one-loop two-point Green functions of the 
quantum fields listed above, we have checked that Eq. (4) is really 
satisfied. This confirms the proposal made in Ref. [55] that this 
equation is valid in all orders and can be used as a starting point 
for deriving the NSVZ relation (1) by direct summation of super-
graphs. Nevertheless, it is highly desirable to verify Eq. (4) in the 
case of using the BRST invariant version of higher derivative regu-
larization. This problem is more difficult from the technical point 
of view, because of new higher derivative vertices. These new ver-
tices essentially complicate the calculation even of the two-loop 
β-function. However, we hope that in future it would be possible 
to make such a check of Eq. (4).
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