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ABSTRACT

We point out that using the state-of-the-art (or soon-to-be) intense ultrafast laser
technology, violent acceleration that may be suitable for testing general relativistic
e�ects can be realized through the interaction of a high intensity laser with a plasma.
In particular, we demonstrate that the Unruh radiation is detectable, in principle,
beyond the conventional radiation (most notably the Larmor radiation) background
noise, by taking advantage of its speci�c dependence on the laser power and distinct
character in spectral-angular distributions.
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General relativity (GR) is by birth a classical theory. The celebrated discovery

by Hawking
[1]
of the black hole radiation links the GR to quantum mechanics and

thermodynamics in one stroke. While the ultimate theoretical understanding of the

Hawking radiation, for example through the superstring theory
[2]
, is still in progress,

the fundamental importance of the Hawking radiation is hardly questionable. Sub-

sequent to Hawking's discovery, Unruh
[3]
established that similar radiation can also

occur for a \particle detector" under acceleration. Without resorting to detail argue-

ments, one can readily appreciate such a notion intuitively based on the equivalence

principle. While the celestial observations of GR e�ects are clearly important, one

wonders if by means of extremely violent acceleration in the laboratory setting these

e�ects can be detected or tested by controlled experiments.

There have been proposals for laboratory detection of the Unruh e�ect
[4]
. For

example, Yablonovich
[5]
proposed to detect the Unruh radiation using ionization fronts

in solids. Darbinyan et at.
[6]

proposed to test it through the crystal channeling

phenomena. Since the sought-after e�ects are typically extremely weak , the most

severe problem would be the struggle against paramount background signals. Thus

the challenge in general is to �nd a physical setting which can maximally enhance the

signal above its competing backgrounds.

It is known that plasma wake�elds excited by either a laser pulse
[7]

or an in-

tense electron beam
[8]
can in principle provide an acceleration gradient as high as100

GeV/cm, or 1023g�. Such acceleration relies on the collective perturbations of the

plasma density excited by the driving pulse and restored by the immobile ions,

and therefore is an e�ect arisen over a plasma period. There is in fact another

aspect of laser-plasma interaction. Namely, when a laser is ultra-relativistic (i.e.,

a0 � eE0=mc!0 � 1), the plasma electrons under the direct in
uence of the laser
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can be instantly \snowplowed" forward in every laser cycle (which is typically much

higher frequency than that of the plasma), resulting in a intermittant acceleration

that is much more violent than that provided by the plasma wake�elds. For the

Petawatt-class lasers currently under development
[9]
, 10 TeV/cm, or 1025g�, will be

possible for these \snowplow" accelerations in the near future.

Although the classical equivalent of the acceleration exerted on a nucleon bound

to a nucleus can be as large as anuclear � 1028g�, it is well-known from quantum

mechanics that the notion of classical trajectory and acceleration is not justi�ed in

subatomic systems. By the same token one should not expect any GR e�ect to

be generated during high energy particle collisions where, if the notion of classical

particle motion was wrongly applied, the hard scattering during a very brief moment

would suggest an extremely violent acceleration. Furthermore, as will be addressed

in more details below, even if the notion of classical acceleration is valid in a physical

system, there is also the question of uniformity and duration of such accelerations

for the Unruh e�ect to be applicable. The outstanding character of our system is

that the snowplow acceleration is macroscopic and can be well described by classical

electrodynamics, and therefore the Unruh e�ect associated with violent acceleration

can be readily applied.

According to Davies
[10]

and Unruh
[3]
, a uniformly accelerated particle �nds itself

imbeded in a thermal heat bath with temperature

kT =
�h�

2�c
; (1)

where � is the constant proper acceleration of the particle. In the standard treatment,

an internal degree of freedom of the accelerated particle is invoked as a means to detect

the Unruh e�ect. This can be, for example, a monopole moment (interacting with
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a scalar �eld)
[11;12]

, or the spin of an electron (interacting with EM �elds)
[13]
. Since

the agency that we rely on for the violent acceleration is electromagnetic and acts

only on charged particles, we consider an electron, the lightest charged particle, as

our particle detector. As was shown by Bell and Leinaas
[12]
, the manifestation of the

Unruh e�ect through the equilibrium degree of spin polarization would require an

unphysically long time in the case of a linear acceleration, yet for such an e�ect in a

circular motion the Thomas precession complicates the issue. In our approach, we do

not invoke any internal degree of freedom. Rather, we rely on the quivering motion

of the electron under the in
uence of the nontrivial vacuum 
uctuations, and look for

the emitted photons so induced as our signals.

To be sure, the Unruh radiation is not a \new" radiation. Using the standard

�eld theory (in this case quantum electrodynamics), one should in principle be able

to arrive at the same result when properly taking particle radiation reaction into

account. Treating the problem in the instantaneous proper frame and invoking the

particle response to the thermal vacuum 
uctuations, however, help to elucidate the

phenomenon through a very intuitive picture in the spirit of the 
uctuation-dissipation

theorem
[14]

in thermodynamics.

We assume that in the leading order the accelerated electron is \classical", with

well-de�ned acceleration, velocity and position. Therefore we can introduce a Rindler

transformation
[15]

so that the electron is described in its instantaneous proper frame.

Also at this level the linearly accelerated electron will execute a classical Larmor ra-

diation. As a response to the Larmor radiation, the electron reacts to the vacuum


uctuations with a quivering motion in its proper frame. This in turn triggers ad-

ditional radiation. We assume that this quivering motion is nonrelativistic in the
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proper frame, and the interaction Hamiltonian can be written as

H
I
= � e

mc
~p � ~A = �e~x � ~E : (2)

The probability of the emission of a photon with energy ! = E 0 � E is

N(!) =
1

�h2

Z
d�

Z
d� jh1~k; E

0jH
I
jE ; 0ij2

=
e2

�h2

3X
i;j

Z
d�

Z
d�e�i!�hxi(�)xj(�)ihEi(� � �=2)Ej(� + �=2)i ;

(3)

where � and � are the absolute and relative proper time, respectively. The � de-

pendence of the position operator has been extracted to the phase due to a unitary

transformation. The last bracket is the well-known autocorrelation function for vac-

uum 
uctuations of the electric �eld,
[16]

i.e.,

hEi(� � �=2)Ej(� + �=2)i = �ij
4�h

�c3

� �
2c

�4
sinh�4

���
2c

�
; i; j = 1; 2; 3: (4)

With a change of variable s = ��=2c, we �nd

dN

d�
=

3

2�

e2

�hc3

��
c

�3
hx2i i

+1Z
�1

ds exp
�
� is

2c!

�

�
sinh�4(s� i�) (5)

This integral has poles at s = n�i, and is periodic every �s = �i. Thus it can be

easily performed by returning the contour along the line Ims = �, and we get

dN

d�
=

e2

�hc3

��
c

�2
hx2i i

h
2! +

� c
�

�2
!3

i�
e2�c!=� � 1

�
�1

: (6)

The expectation value of x2i 
uctuates due to the random absorption of quanta

from the vacuum 
uctuation. From the uncertainty principle we have hx2i ihp2i i >� �h2.
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By absorbing a quanta of frequency !, the corresponding change of momentum is

hp2i i = hp2i=3 = (2=3)m�h!. We shall thus assume that

hx2i i �
3

2

�h

m!
: (7)

Note that this expression is invalid when the quivering motion becomes relativistic,

i.e., hp2i >� (mc)2. Beyond this limit a fully relativistic treatment is necessary, and

higher order processes such as e+e� pair production should be included. Taking the

typical frequency of the vacuum 
uctuation spectrum, ! � kT=�h, the nonrelativistic

approximation corresponds to the constraint that kT <� mc2. Correspondingly, this

means the 
uctuations of the electron position in our case is larger than the Compton

wavelength, i.e., hx2i >� ��c
2, which is consistent with our semi-classical treatment.

This range of validity of our approximation is physically unrelated to the well-known

issue of Zitterbewegung for an inertial electron
[17]
. But it is interesting to recall that an

unaccelerated electron also jiggles under the zero-point 
uctuations of the Minkowski

vacuum, yet with hx2i <� ��c
2 at a frequency 2c=��c. This, as we know, will never

constitute any radiation.

To �nd the radiation power, one should insert Eq(7) and further integrate Eq.(6)

over �hd!, which diverges in the infrared limit. In reality, however, the duration of

acceleration, �a, is always �nite, which sets a cuto� frequency at !a � 1=�a. Therefore

we introduce a regularization through an infrared cuto�, !a, and �nd

dI
U

d�
�

1Z
!a

�hd!
dN

d�
� 3

4�

re�h

c

��
c

�3
�
(
(c=��a)

2 exp(�2�c=��a); �a � 2�c=�;

2 log(��a=2�c) ; �a >� 2�c=�:
(8)

We see that if the time for acceleration is less than the characteristic time �c � 2�c=�,

then this radiation is exponentially suppressed.
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For the sake of simplicity, we treat the laser as a plane EM wave. Let the laser

be linearly polarized in x-direction and propagate in the z-direction, with amplitude

E = E0 cosk0�, where � = z � vpht is the coordinate of the comoving frame. The

normalized vector potential is then A(�) = [eE0=mc!0] sink0� � a0 sink0�, where a0

is the conventional dimensionless laser strength parameter. The state-of-the-art, or

soon-to-be, laser technology can provide an intensity so high that a0 >� 100 is attain-

able.
[9]
In our conception, the accelerated electrons are provided by a low temperature

plasma. This, in principle, induces a collective reaction from the plasma to the laser

through the modi�cation of the index of refraction, n =
p
1� (!p=!0)2 <� 1, where

!p = c
p
4�renp is the plasma frequency.

The Lorentz force equations for a plasma electron driven by a linearly polarized

laser , where its magnetic �eld is related to the electric �eld by By = nEx � nE, can

be written as

dpx

dt
=� en�zE ;

dpz

dt
=� e(1� n�x)E :

(9)

For a plasma electron initially at rest, its subsequent velocity and energy as a function

of � in the lab frame can be solved exactly from the above equations. In the regime of

our interest it can be shown, with the approximation
p
[1 +A(�)2](1� n2) + 1 ' 1,

that

�x(�) =
A(�)



; �z(�) =

n

1 + n2
A(�)2



;


(�) =
1 + n2 +A(�)2

1 + n2
:

(10)

Note that, asA(�) is periodic, the electron returns to a full stop every half-cycle, where

A(�) = 0. Taking time derivatives on �x and �z, and making Lorentz transformation

to the proper frame, it can be shown that the magnitude of the proper acceleration
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is simply

� = ca0

q
!2
0
+ !2

p cosk0� � ca0!0 cosk0� : (11)

Thus in the limit !p � !0, the plasma e�ect on the proper acceleration is negligible.

It is clear that the maximum acceleration occurs at every half laser cycle, with phases

� = k0� = 0; �; 2�; :::, which coincide with the phases where the electron comes to

rest.

As can be seen from Eq.(10), since �x / A while �z / A2, the electron is initially

accelerated from rest in the transverse direction. But for the case where a0 � 1,

the motion is rapidly bent towards the direction of laser propagation (in z). This

helps the electron to remain in phase with the laser oscillation for a much longer time

compared with the nonrelativistic case. There still is, nevertheless, a slight amount

of \phase slippage" incured to the electron versus the laser phase. The phase advance

of the electron is

d�

dt
= k0(vz � vph) =

!0

n

�
�z �

1

n

�
: (12)

As we discussed earlier, to avoid exponential suppression we look for a minimum

acceleration time �a >� �c = 2�c=�. The corresponding characteristic laboratory time

tc for acceleration, through Rindler transformation, is then

tc =
c

�
sinh(�c�=c) =

c

�
sinh(2�) : (13)

Integrating Eq.(12) from 0 to �tc=2, and assuming that the resultant phase slip-

page �c � 1 while a0�c � 1, we �nd the phase slippage to be

��c = � 1

a0
(3 sinh 2�)1=3 : (14)

Thus to ensure the uniformity of acceleration during a time tc, it is necessary that
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cos �c � 1� (�c)
2=2 � 1; or a0 � (3 sinh 2�)1=3=

p
2 � 6:6: As we will discuss below,

we assume an ultra-intense laser where a0 � 100, thus the nonuniformity of the proper

acceleration during this characteristic time is less than 0.5%, and we shall from here

on simply assume � = ca0!0 within the time �c.

At the classical level, the same linear acceleration induces a Larmor radiation.

The total Larmor radiation power is

dI
L

dt
=

2

3

e2

m2c3

�dp�
d�

dp�

d�

�
=

2

3

rem�2

c
; (15)

where Eqs. (10) and (11), and the identity d
�z=d� = d
=d� , which is a direct

consequence of the Lorentz force equations, have been invoked. This means that the

contribution to the relativistic Larmor radiation is predominantly from the trasverse

acceleration by the laser electric �eld. As the radiation power is a Lorentz invariant

quantity, the relative yield between the Unruh radiation (Eq.(8)) and the Larmor

radiation in each half-cycle is

dI
U
=dt

dI
L
=dt

� 9

4�

��c�

c2
log(��a=2�c) : (16)

In our particular setting the phase-slippage increases rapidly due to the hyperbolic

dependence of tc on �c and the proper acceleration decreases accordingly. It is there-

fore adequate to assume that �a >� �c = 2�c=� and log(��a=2�c) � O(1) in our case.

Consider the Petawatt laser currently under development
[9]
, where !0 � 2�1015sec�1

and a0 � 100. This gives (dI
U
=dt)=(dI

L
=dt) � 3 � 10�4. To have the Unruh radi-

ation power breaking even with that of Lamor radiation, one would need a laser

power (/ a2
0
) more than 7 orders of magnitude larger, or an acceleration as large as

� 3� 1031cm=sec2 � 3� 1028g�, which is beyond the reach of current laser technol-

ogy. However, the time structure of these radiations and their di�erent characters in
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spectral-angular distributions and polarizations help to much relax the demand on

acceleration for detectability.

We have shown that the relative phase advance of the electron for emitting typical

Unruh photons is a small fraction of the laser half-cycle (cf. Eq.(14)), and have a

much sharper temperal pro�le than that for the Larmor radiation. Because of the

snowplow mechanism, the electron rapidly becomes relativistic and is bent forward.

As a result the time laps for every period of motion is much longer than the laser

period. Roughly, the time separation between successive Unruh signals (for each

�-phase slippage) scales as a2
0
:

�t � 
�=!0 = (1 + a20=2)�=!0 � 1=!0 � tc : (17)

Therefore it should be possible to set up temporal gates where signals from di�erent

periods can be isolated if a thin \�lm" of plasma is irradiated.

In our treatment the thermal 
uctuation is isotropic (cf. Eq.(4))
[18]

in the elec-

tron's proper frame. The radiation induced is therefore also isotropic. Since at each

half-cycle by the time when the electron has been accelerated for a time tc=2 from

rest, its energy would be 
c � 1 + A2(�c)=2 � 1 + (3 sinh 2�)2=3=2 � 1, the Unruh

radiation is highly forward boosted in the lab frame. Inserting the proper accelera-

tion � = ca0!0 into Eq.(8), and transforming back to the lab frame with small-angle

expansion, the angular distribution becomes

dI
U

dtd

' 1

2�2
re�h

c

!3
0
a3
0

(1 + 
2c �
2)3

: (18)

As the Larmor radiation is essentially induced by the transverse acceleration, it
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is polarized and its angular distribution in the small (�; �) polar angle expansion is
[19]

d2I
L

dtd

' 2remca2

0
!2
0

(1 + 
2c�
2)3

h
1� 4
2c�

2(1� �2)

(1 + 
2c�
2)2

i
: (19)

It is clear that the radiation power is minimumat (�; �) = (1=
c; 0), where d
2I

L
=dtd
 =

0. Consider a detector which covers an azimuthal angle �� = 10�3 around this \blind

spot", and an opening polar angle, �� � 1=
c. Then the partial radiation power for

the Unruh signal would dominate over that for the Larmor within this solid angle.

To be sure, there are other types of radiation backgrounds in addition to the

Larmor radiation. The snowplowed plasma electrons will interact with the plasma

ions and trigger the conventional bremsstrahlung. The cross section of bremsstrahlung

for an unscreened hydrogen nucleus per unit photon energy is well-known: d�=d�h! �

(16=3)�r2e`n(EE
0=mc2!). Assuming a frequency window of �!=!u � 0:1 and a

temporal gate of �t � 2� 10�15sec, we �nd that, for the laser parameters discussed

above, the plasma density has to be lower than np <� 1018=cm3 in order that the

bremsstrahlung signals be less than that from the Unruh e�ect, which is not a severe

restriction.

We have demonstrated that the Unruh radiation can in principle be detectable

against the backgrounds from the conventional radiations using the frontier laser

technology and the various experimental techniques. The violent, macroscopic accel-

eration provided by the snowplow mechanism available from ultra-relativistic lasers

can also be a useful tool to test other salient features of general relativity in the lab-

oratory setting. This should open up a brand new window to peek into foundations

of physics.
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