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ABSTRACT

We point out that using the state-of-the-art (or soon-to-be) intense ultrafast laser
technology, violent acceleration that may be suitable for testing general relativistic
effects can be realized through the interaction of a high intensity laser with a plasma.
In particular, we demonstrate that the Unruh radiation is detectable, in principle,
beyond the conventional radiation (most notably the Larmor radiation) background
noise, by taking advantage of its specific dependence on the laser power and distinct
character in spectral-angular distributions.
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General relativity (GR) is by birth a classical theory. The celebrated discovery
by Hawking[l] of the black hole radiation links the GR to quantum mechanics and
thermodynamics in one stroke. While the ultimate theoretical understanding of the
Hawking radiation, for example through the superstring th(t()rym7 is still in progress,
the fundamental importance of the Hawking radiation is hardly questionable. Sub-
sequent to Hawking’s discovery, Unruh™ established that similar radiation can also
occur for a “particle detector” under acceleration. Without resorting to detail argue-
ments, one can readily appreciate such a notion intuitively based on the equivalence
principle. While the celestial observations of GR effects are clearly important, one
wonders if by means of extremely violent acceleration in the laboratory setting these

effects can be detected or tested by controlled experiments.

There have been proposals for laboratory detection of the Unruh effect " For
example, Yablonovich ) proposed to detect the Unruh radiation using ionization fronts
in solids. Darbinyan et at™” proposed to test it through the crystal channeling
phenomena. Since the sought-after effects are typically extremely weak , the most
severe problem would be the struggle against paramount background signals. Thus
the challenge in general is to find a physical setting which can maximally enhance the

signal above its competing backgrounds.

It is known that plasma wakefields excited by either a laser pulsem or an in-
tense electron beam'™ can in principle provide an acceleration gradient as high as100
GeV/em, or 10%3¢g4. Such acceleration relies on the collective perturbations of the
plasma density excited by the driving pulse and restored by the immobile ions,
and therefore is an effect arisen over a plasma period. There is in fact another
aspect of laser-plasma interaction. Namely, when a laser is ultra-relativistic (i.e.,

ap = eEy/mcwy > 1), the plasma electrons under the direct influence of the laser



[

can be instantly “snowplowed” forward in every laser cycle (which is typically much
higher frequency than that of the plasma), resulting in a intermittant acceleration
that is much more violent than that provided by the plasma wakefields. For the

[9] N 5 :
Petawatt-class lasers currently under development ", 10 TeV/cm, or 10%°gs, will be

possible for these “snowplow” accelerations in the near future.

Although the classical equivalent of the acceleration exerted on a nucleon bound
to a nucleus can be as large as ayyelear ~ 10%2¢q, it is well-known from quantum
mechanics that the notion of classical trajectory and acceleration is not justified in
subatomic systems. By the same token one should not expect any GR effect to
be generated during high energy particle collisions where, if the notion of classical
particle motion was wrongly applied, the hard scattering during a very brief moment
would suggest an extremely violent acceleration. Furthermore, as will be addressed
in more details below, even if the notion of classical acceleration is valid in a physical
system, there is also the question of uniformity and duration of such accelerations
for the Unruh effect to be applicable. The outstanding character of our system is
that the snowplow acceleration is macroscopic and can be well described by classical
electrodynamics, and therefore the Unruh effect associated with violent acceleration

can be readily applied.

. . o] [3] . . .
According to Davies  ~ and Unruh ', a uniformly accelerated particle finds itself

imbeded in a thermal heat bath with temperature

o

kT (1)

2rc

where o is the constant proper acceleration of the particle. In the standard treatment,
an internal degree of freedom of the accelerated particle is invoked as a means to detect

the Unruh effect. This can be, for example, a monopole moment (interacting with



a scalar field)"""”

, or the spin of an electron (interacting with EM fields) " Since
the agency that we rely on for the violent acceleration is electromagnetic and acts
only on charged particles, we consider an electron, the lightest charged particle, as
our particle detector. As was shown by Bell and Leinaa‘s[u], the manifestation of the
Unruh effect through the equilibrium degree of spin polarization would require an
unphysically long time in the case of a linear acceleration, yet for such an effect in a
circular motion the Thomas precession complicates the issue. In our approach, we do
not invoke any internal degree of freedom. Rather, we rely on the quivering motion

of the electron under the influence of the nontrivial vacuum fluctuations, and look for

the emitted photons so induced as our signals.

To be sure, the Unruh radiation is not a “new” radiation. Using the standard
field theory (in this case quantum electrodynamics), one should in principle be able
to arrive at the same result when properly taking particle radiation reaction into
account. Treating the problem in the instantaneous proper frame and invoking the
particle response to the thermal vacuum fluctuations, however, help to elucidate the
phenomenon through a very intuitive picture in the spirit of the fluctuation-dissipation

[14] . .
theorem in thermodynamics.

We assume that in the leading order the accelerated electron is “classical”, with
well-defined acceleration, velocity and position. Therefore we can introduce a Rindler
transformation’” so that the electron is described in its instantaneous proper frame.
Also at this level the linearly accelerated electron will execute a classical Larmor ra-
diation. As a response to the Larmor radiation, the electron reacts to the vacuum
fluctuations with a quivering motion in its proper frame. This in turn triggers ad-

ditional radiation. We assume that this quivering motion is nonrelativistic in the



proper frame, and the interaction Hamiltonian can be written as

H =—p A=—e?-E . (2)

e
mc
The probability of the emission of a photon with energy w = & — £ is
AT (, o 1 ] ‘ ],_ ! 2
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where ¢ and 7 are the absolute and relative proper time, respectively. The 7 de-
pendence of the position operator has been extracted to the phase due to a unitary

transformation. The last bracket is the well-known autocorrelation function for vac-

uum fluctuations of the electric ﬁeld,[w] ie.,

o Ah fanNt L 4 raTr o
<Ei(U—T/2>E]'((T—|-T/2)>:Oi_l‘ﬁ(%) sinh 4(;) , i,7=1,2,3. (4)

With a change of variable s = a7/2¢, we find

+oo
IN 3 e ran3, . 2cw
o2 (2) (z?) / ds exp ( — isL) sinh™*(s — ie) (5)

do  2nhe3 \¢ «Q

— 00

This integral has poles at s = nmi, and is periodic every As = mi. Thus it can be

casily performed by returning the contour along the line Ims = 7, and we get

N _ hP_;(g>)<I2>[2w+ (:)13] (@27rcw/a_1)_1 : (6)

do 1% o

The expectation value of 22 fluctuates due to the random absorption of quanta
12

from the vacuum fluctuation. From the uncertainty principle we have (2?)(p?) 2 fi%.



By absorbing a quanta of frequency w, the corresponding change of momentum is
(p?) = (p*)/3 = (2/3)mliw. We shall thus assume that

3 h

2y o2 z
(i) 2 mw (7)

Note that this expression is invalid when the quivering motion becomes relativistic,
ie., (p?) & (mec)?. Beyond this limit a fully relativistic treatment is necessary, and
higher order processes such as ete™ pair production should be included. Taking the
typical frequency of the vacuum fluctuation spectrum, w ~ k7T'/Ti, the nonrelativistic
approximation corresponds to the constraint that kT < me?. Correspondingly, this
means the fluctuations of the electron position in our case is larger than the Compton
wavelength, i.e., (2?) X A2, which is consistent with our semi-classical treatment.
This range of validity of our approximation is physically unrelated to the well-known
issue of Zitterbewegung for an inertial clectron™ . But it is interesting to recall that an
unaccelerated electron also jiggles under the zero-point fluctuations of the Minkowski
vacuum, yet with (1’2> < A2 at a frequency 2¢/A.. This, as we know, will never

constitute any radiation.

To find the radiation power, one should insert Eq(7) and further integrate Eq.(6)
over hdw, which diverges in the infrared limit. In reality, however, the duration of
acceleration, 7, is always finite, which sets a cutoff frequency at w, ~ 1/7,. Therefore

we introduce a regularization through an infrared cutoff, w,, and find

o0

dI, N /ha’de 3 716373(@)3 y (c/aty)? exp(—27mc/ar,), T4 <K 2mc/a,

~
~

do do AT ¢ \e

2log(ar, /2mc) Ta 2 27c/a.
Wa

We see that if the time for acceleration is less than the characteristic time 7. = 27¢/

then this radiation is exponentially suppressed.



For the sake of simplicity, we treat the laser as a plane EM wave. Let the laser
be linearly polarized in x-direction and propagate in the z-direction, with amplitude
E = Epcosko(, where ¢ = z — vyt is the coordinate of the comoving frame. The
normalized vector potential is then A(() = [eEy/mecwp]sin kol = ag sin ko(, where ag
is the conventional dimensionless laser strength parameter. The state-of-the-art, or
soon-to-be, laser technology can provide an intensity so high that ag £ 100 is attain-
able™ In our conception, the accelerated electrons are provided by a low temperature
plasma. This, in principle, induces a collective reaction from the plasma to the laser
through the modification of the index of refraction, n = /1 — (wp/wp)? < 1, where
wp = cy/47mren, is the plasma frequency.

The Lorentz force equations for a plasma electron driven by a linearly polarized
laser , where its magnetic field is related to the electric field by B, = nE, = nkE, can

be written as

Ap,

(5” =—enf.E |

(]]f~ 9)
d; =—e¢(l—np,)FE

For a plasma electron initially at rest, its subsequent velocity and energy as a function

of ( in the lab frame can be solved exactly from the above equations. In the regime of

our interest it can be shown, with the approximation \/[1 + A(Q)?](1 —n?) +1 =1,

that

(10)

1+ n?+ A(Q)?
N 1+ n?

Note that, as A(() is periodic, the electron returns to a full stop every half-cycle, where
A(¢) = 0. Taking time derivatives on 3, and ., and making Lorentz transformation

to the proper frame, it can be shown that the magnitude of the proper acceleration

~I



is simply

= cagpy /wg + uuﬁ cos koC =~ cagwg cos ko . (11)

Thus in the limit w, < wy, the plasma effect on the proper acceleration is negligible.
It is clear that the maximum acceleration occurs at every half laser cycle, with phases
n = ko( = 0,7, 27, ..., which coincide with the phases where the electron comes to
rest.

As can be seen from Eq.(10), since 3, oc A while 3. oc A2, the electron is initially
accelerated from rest in the transverse direction. But for the case where ag > 1.,
the motion is rapidly bent towards the direction of laser propagation (in z). This
helps the electron to remain in phase with the laser oscillation for a much longer time
compared with the nonrelativistic case. There still is, nevertheless, a slight amount
of “phase slippage” incured to the electron versus the laser phase. The phase advance
of the electron is

dn LWy (. 1

— =ko(v, —vy) = — (/3, — —) . 12)
dt = Uph) n \" "~ (
As we discussed earlier, to avoid exponential suppression we look for a minimum

acceleration time 7, & 7. = 2m¢/a. The corresponding characteristic laboratory time

t. for acceleration, through Rindler transformation, is then

t. = ESiHh(TCQ/C) = Esinh(27r) : (13)
@ &3

Integrating Eq.(12) from 0 to +7./2, and assuming that the resultant phase slip-

page 1. < 1 while agn. > 1, we find the phase slippage to be

1 \
49, = +—(3sinh 2m)1/3 (14)
ao

Thus to ensure the uniformity of acceleration during a time t., it is necessary that



cosne ~ 1 — (7/6)2/2 ~ 1, orag> (3 SiIthﬂ')l/S/\/i ~ 6.6. As we will discuss below,
we assume an ultra-intense laser where ag ~ 100, thus the nonuniformity of the proper
acceleration during this characteristic time is less than 0.5%, and we shall from here

on simply assume a = cagwy within the time 7.

At the classical level, the same linear acceleration induces a Larmor radiation.

The total Larmor radiation power is

dr, 2 e? (dpl,, dp“) B 2 rema?

> _ = = - 15
dt 3m23 \dr dr 3 ¢ (15)

where Egs. (10) and (11), and the identity dvyf3./dr = dv/dr, which is a direct
consequence of the Lorentz force equations, have been invoked. This means that the
contribution to the relativistic Larmor radiation is predominantly from the trasverse
acceleration by the laser electric field. As the radiation power is a Lorentz invariant
quantity, the relative yield between the Unruh radiation (Eq.(8)) and the Larmor
radiation in each half-cycle is

dl, /dt 9 Ao
dl, Jdt ~ 4w 2

log(ar, /2mc) . (16)

In our particular setting the phase-slippage increases rapidly due to the hyperbolic
dependence of t. on 7. and the proper acceleration decreases accordingly. It is there-
fore adequate to assume that 7, & 7, = 27¢/a and log(at,/27¢) ~ O(1) in our case.
Consider the Petawatt laser currently under developmentmﬁ where wgy ~ 2 x 101%sec™!
and ag ~ 100. This gives (dI,/dt)/(dI,/dt) ~ 3 x 107%. To have the Unruh radi-
ation power breaking even with that of Lamor radiation, one would need a laser
power (o ag) more than 7 orders of magnitude larger, or an acceleration as large as

~ 3 x 103%em/ sec” ~ 3 x 10%8¢¢,, which is beyond the reach of current laser technol-

ogy. However, the time structure of these radiations and their different characters in



spectral-angular distributions and polarizations help to much relax the demand on

acceleration for detectability.

We have shown that the relative phase advance of the electron for emitting typical
Unruh photons is a small fraction of the laser half-cycle (¢f. Eq.(14)), and have a
much sharper temperal profile than that for the Larmor radiation. Because of the
snowplow mechanism, the electron rapidly becomes relativistic and is bent forward.
As a result the time laps for every period of motion is much longer than the laser
period. Roughly, the time separation between successive Unruh signals (for each

m-phase slippage) scales as a%:

At ~ymfwy = (14 a3/2)mfwy > 1/wg > t. . (17)

Therefore it should be possible to set up temporal gates where signals from different

periods can be isolated if a thin “film” of plasma is irradiated.

In our treatment the thermal fluctuation is isotropic (cf. Eq.(4))" in the elec-
tron’s proper frame. The radiation induced is therefore also isotropic. Since at each
half-cycle by the time when the electron has been accelerated for a time ¢./2 from
rest, its energy would be 7. &~ 1 + A%(1,)/2 ~ 1 + (3sinh 27)%/3/2 > 1, the Unruh
radiation is highly forward boosted in the lab frame. Inserting the proper accelera-
tion a = cagwy into Eq.(8), and transforming back to the lab frame with small-angle

expansion, the angular distribution becomes

dI, 1 r.h vuga?)
dtdQ — 272 ¢ (14 ~262%)3

(18)

As the Larmor radiation is essentially induced by the transverse acceleration, it

10
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is polarized and its angular distribution in the small (8, ¢) polar angle expansion g™

d’I, N 2nmzca%w8 [ 4720%(1 — @2)]
dtd) ~ (1 +1262)3 (1 +126%)2

(19)

It is clear that the radiation power is minimum at (6, ¢) = (1/7.,0), where d2I, /dtd) =
0. Consider a detector which covers an azimuthal angle A¢ = 1073 around this “blind
spot”, and an opening polar angle, A# < 1/4,.. Then the partial radiation power for

the Unruh signal would dominate over that for the Larmor within this solid angle.

To be sure, there are other types of radiation backgrounds in addition to the
Larmor radiation. The snowplowed plasma electrons will interact with the plasma
ions and trigger the conventional bremsstrahlung. The cross section of bremsstrahlung
for an unscreened hydrogen nucleus per unit photon energy is well-known: dy/dhw ~
(16/3)ar2in(EE'/mc*w). Assuming a frequency window of Aw/w, ~ 0.1 and a
temporal gate of At ~ 2 x 107 Psec, we find that, for the laser parameters discussed
above, the plasma density has to be lower than n, < 1018/(‘.1113 in order that the
bremsstrahlung signals be less than that from the Unruh effect, which is not a severe

restriction.

We have demonstrated that the Unruh radiation can in principle be detectable
against the backgrounds from the conventional radiations using the frontier laser
technology and the various experimental techniques. The violent, macroscopic accel-
eration provided by the snowplow mechanism available from ultra-relativistic lasers
can also be a useful tool to test other salient features of general relativity in the lab-
oratory setting. This should open up a brand new window to peek into foundations

of physics.
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