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Abstract

In this thesis we study the finite temperature physics of a system which is afflicted
by the Adler-Bell-Jackiw anomaly or, the chiral anomaly. The universality class of
such systems are commonly referred to as the chiral plasma. Its weakly coupled
physics is described by a theory of massless Dirac fermions coupled to dynamical
electromagnetism and hence the universal symmetry structure of the chiral plasma
is that of dynamical U(1) Abelian gauge theory with charged matter. In this theory,
the non-conservation of the axial current due to the chiral anomaly is given by a
dynamical operator fµν f̃µν constructed from the field-strength tensor. We attempt
to describe this physics in a universal manner by casting this operator in terms of the
2-form current for the 1-form symmetry associated with magnetic flux conservation.
The precise symmetry structure in encoded by the anomaly equation which can be
formulated as the intertwining of these two currents. The sense in which this is
universal is that it is preserved along RG flows. Utilising this universal structure
we first perform a holographic investigation of this system and then construct a
hydrodynamic effective action for it. This effective action can be understood as “an
action” for chiral magnetohydrodynamics, which is devoted to understanding the
long-distance, late-time behavior of such a system suffering from an ABJ anomaly.

To perform the holographic study, we first construct a dual bulk theory with the
aformentioned symmetry breaking pattern and study some aspects of finite tempera-
ture anomalous magnetohydrodynamics. We explicitly calculate the charge suscepti-
bility and the axial charge relaxation rate as a function of temperature and magnetic
field and compare to recent lattice results. At small magnetic fields we find agree-
ment with elementary hydrodynamics weakly coupled to an electrodynamic sector,
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but we find deviations at larger fields.
Next we consider chiral magnetohydrodynamics. Using the universal symmetry

structure encoded in the anomaly we write down “effective actions” capturing the
equilibrium physics and the physics of dissipation. We present Euclidean generating
functional and dissipative action approaches to the dynamics and reproduce some
aspects of known chiral MHD phenomenology from an effective theory viewpoint,
including the chiral separation and magnetic effects. We also discuss the construc-
tion of the non-invertible axial symmetry defect operators in our formalism in real
time.

Finally, to study the axial charge relaxation rate in the limit of vanishing mag-
netic field, we undertake a study to see if hydrodynamic fluctuations affect this rate.
We compute the finite-frequency real-time topological susceptibility arising from
magnetohydrodynamic fluctuations. We find that it vanishes at zero frequency, in-
dicating that the axial charge dissipation rate vanishes at zero background magnetic
field. This is probably suggestive of the fact that the symmetry structure encoded
in the anomaly is protected by the non-invertible defect operators as 1-loop effects
do not spoil it.
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B.1 Poincaré Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
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CHAPTER 1

Introduction

Quantum Field Theory (QFT) has been a vibrant field of research for several
decades, standing as one of the crowning achievements of theoretical physics in the
past century. Its applications are vast, spanning from high-energy physics, including
the standard model, to low-energy physics, which encompasses our understanding
of metals and semiconductors. It is a powerful mathematical framework that has
revolutionized our understanding of the fundamental forces of nature, from the sub-
atomic scale to the cosmological scale. It describes the interactions of quantum
fields and particles in terms of exchange of energy, momentum, and other quantum
numbers. One of the most significant achievements of QFT has been the develop-
ment of the Standard Model of particle physics, which successfully describes the
electromagnetic, weak, and strong forces and their associated particles, as well as
the Higgs mechanism.

A major challenge in QFT is to understand the behavior of systems with strong
coupling, where the interactions between the particles are so intense that standard
perturbation techniques are not applicable. This is particularly important in the
study of systems such as quark-gluon plasmas in nuclear physics, strongly correlated
electron systems in condensed matter systems, and black holes in gravitational set-
tings. One powerful tool in this context is the use of symmetries, which provide a
means to simplify the problem by reducing the number of degrees of freedom or by
mapping the problem to another, more tractable system. There are many pathways
in which one can employ symmetries to study strongly interacting QFTs ranging
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from holography [3–5], conformal bootstrap [6,7], integrability [8] and techniques of
scattering amplitude [9–11] to the use age-old techniques like hydrodynamics and
effective field theories [12]. Here we will focus on the applicability of hydrodynamics
and holography to understand strongly interacting systems using the knowledge of
the global symmetries present in them. So for this let us discuss symmetries a bit.

1.1 EFT and Hydrodynamics
One of the most powerful applications of symmetries in QFT is the construction
of effective field theories (EFTs), which provide a systematic way to describe low-
energy phenomena in terms of a few relevant degrees of freedom. EFTs incorporate
the symmetries of the underlying theory and allow for a consistent and predictive
description of physical processes, even in the presence of strong coupling. This is
owing to the universal nature of global symmetries since they are preserved along
renormalisation group flows. Hydrodynamics is one such way to construct effective
theories [12–16].

Hydrodynamics is the branch of physics that deals with the study of fluids, in-
cluding their motion, behavior, and interactions with solid boundaries. It is governed
by a set of equations known as the Navier-Stokes equations (dynamical equations
of motion), which describe the conservation of mass, momentum, and energy in a
fluid.

In conventional hydrodynamics, the fluid is treated as a continuum, and the
macroscopic properties of the fluid, such as density, pressure, and velocity, are de-
scribed in terms of spatially-averaged quantities. However, at the microscopic level,
the fluid is composed of individual particles, which can be atoms, molecules, or even
subatomic particles, depending on the system under consideration.

In the context of QFT, hydrodynamics can be applied to systems of strongly
coupled quantum fields, where the interactions between the fields are so strong that
they cannot be treated as independent entities. In the hydrodynamic regime, the
system is described in terms of collective excitations and transport coefficients, such
as viscosity, rather than individual particles. This can provide new insights into the
behavior of the system, including the dynamics of energy and momentum transport
and the response to external perturbations. Moreover, the construction of effective
hydrodynamic actions allows for a systematic derivation of the equations of motion,
incorporating both quantum and classical effects.
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1.2 Holography
Holography in QFT is inspired by the AdS/CFT correspondence – a duality between
a gravitational theory in a higher-dimensional Anti-de Sitter (AdS) spacetime and a
conformal field theory (CFT) on the boundary of that spacetime [5,17,18]. The idea
of holography in QFT is that the information contained in a strongly coupled QFT
can be encoded in a higher-dimensional gravitational theory, which is often easier to
work with. This duality allows us to compute physical quantities, such as viscosity
bounds, using tools from gravitational physics, which can be more tractable than
the original QFT [19].

1.3 Symmetries
Symmetries play a central role in our understanding of any physical system, whether
classical or quantum. They provide a powerful tool for simplifying and solving com-
plex problems in theoretical physics. For instance, they help us to derive non-trivial
constraints on strongly interacting QFTs which would otherwise be difficult to tackle
using perturbative methods. They also help to explore and classify different phases
of a theory, for instance, the Landau-Ginzburg theory makes use of symmetries to
classify various phases of matter, for example, a solid is an object which breaks
translational symmetry [20].

A symmetry is a transformation that leaves the physical properties of a system
unchanged. The symmetry parameter which is associated to such a transformation
plays a crucial role in the classification of symmetries. For instance, if this param-
eter is a global parameter, that is independent of spacetime coordinates then the
corresponding symmetry is a global symmetry1 else it is known as a gauge symmetry.
The latter case should not be confused with local symmetries which act differently
on different local degrees of freedom2. Gauge symmetries are not symmetries but

1There is a slight catch here regarding the word “global”. Traditionally, “global” is used to
mean that the symmetry transformation parameter is a constant in the spacetime as we define
it here. For the more generalised notions symmetries [21], sometimes the symmetry parameters
can have nontrivial dependence in spacetime. However, they will still be true symmetries that act
nontrivially on the Hilbert space, rather than redundancies in the description. We will use the
word “global” to mean both these cases – that is when the symmetry parameter is independent
of spacetime and in the case where it depends upon spacetime but still acts non-trivially on the
physical configurations.

2A simple example of a local symmetry is the following. Let us consider a classical ideal
gas of N particles of mass m with positions x⃗i(t) and momenta p⃗i(t). The index i = 1., . . . , N
labels the particles. Due to our idealisation approximation, the Hamiltonian contains only the
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rather redundancies in the system. One way to think of these redundancies is to
imagine relabelling your metre rods and clocks or, a coordinate transformation.

Similarly, if the symmetry parameter is continuous then we will have a continuous
symmetry – which by Noether’s theorem will give us a conserved current, else we
will have what is called a discrete symmetry.

In a conventional setting whenever, we have a symmetry in the system, we have
the concept of a symmetry group (or a Lie group) which acts on the fields living
on the phase space (for classical systems) or on the Hilbert space (for quantum
systems). These objects which transform under the group action are said to be
charged under the symmetry transformation and hence are called charged operators.
Since we know that the dynamical/evolution equations of a theory are second-order
differential equations, the solutions to these equations will transform in irreducible
representations of the corresponding symmetry group. Hence, considerations of
symmetries places non-trivial constraints on the solution space leading to what are
called selection rules. These selection rules are reflected in the quantisation of various
charges or as non-trivial constraints on the correlation functions of the theory.

1.3.1 Symmetry breaking and Anomalies

Next let us look at the case how these symmetries can break in our system. We will
discuss three types of breaking: explicit breaking, spontaneous breaking and breaking
by anomalies. The first case happens when at the level of the action we have a term
which does not obey the symmetry. When this happens the symmetry is entirely lost
from the system and nothing much can be learnt. The second case happens when the
action is invariant under the symmetry but atleast one stable state of the system,
say the vacuum becomes invariant under the symmetry. An important consequence
of this is the Goldstone’s theorem which roughly states that for each spontaneously
broken symmetry generator there exists a corresponding massless mode – called a
Goldstone mode – in the spectrum which mediates long range interactions in the
theory since it is massless [22, 23]. So, if we want to write down an effective field
theory for such a system then in the long-wavelength limit the dynamical variables

kinetic energy of individual particles – as particles are non-interacting: H = − 1
2m

N∑
i=1

P⃗ 2
i . So, we

see that the Hamiltonian is invariant under individual translations of each particle of the form:
x⃗i(t)→ x⃗i(t) + a⃗i. The local displacements, denoted by a⃗i, may be different for each particle. For
instance, we could consider the case in which a⃗i = 0 with i = 1, . . . , N − 1 and a⃗N ̸= 0. So, the
symmetry is a local one, rather than global [22].
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are these Goldstone modes.
Now moving on to the third case, to be honest, this is actually not a symmetry

breaking concept. To be precise, anomalies arise when the classical symmetry of a
system does not survive the quantisation process. In other words, even though the
action possess a symmetry the path-integral is not invariant under it which means
the path-integral measure fails to remain invariant under the symmetry. Anomalies
are non-perturbative phenomena in the theory and can be shown to be associated
with topological properties of the differential operator in the theory. So, just like
global symmetries their structure are also preserved along RG flows. Thus, they
also help in deriving additional non-trivial constraints on correlation functions of
the theory.

1.3.2 Generalised symmetries

In recent years, there has been a revolution in our understanding of the notion of
symmetries and their generalisations following the seminal work [21]. These gener-
alised notions of symmetries help in recasting various properties of gauge theories
and also lead to the discovery of many novel phases of the theories. These symmetry
structures are generalised in a way that they do not possess a group structure rather
they have a higher-group (in some cases of higher-form symmetries) or categorical
structure (in the case of non-invertible symmetries), where some of the group axioms
are relaxed [24–29]. Following the previous discussion of the parameter associated
to symmetry transformations, in the case of higher-form symmetries, this parameter
will no longer be a 0-form but will be a p-form having additional spacetime indices.
This is where the terminology – higher-form – comes from. In this reformulation,
conventional symmetries are termed as 0-form symmetries.

There have been many applications of such generalised notions of symmetries.
[30–35] makes use of the 1-form symmetry in QED to construct an effective hydro-
dynamic description of it stemming only from considerations of symmetries. In [36],
the authors use 1-form symmetries to extend the conventional Landau-Ginzburg
theory involving 0-form symmetries and develop a Landau-Ginzburg theory involv-
ing 1-form symmetries where the dynamical variable is an extended field called a
string field.

The above discussion begs the following question: Can we learn something more
about strongly interacting QFTs by applying the techniques of hydrodynamics and
holography to these generalised symmetric principles? The objective of this thesis,

5



in part, is to explore this question and provide evidence that supports an affirmative
response to some degree. This thesis explores these generalised notions of symmetries
to investigate quantum systems which suffer from anomalies involving dynamical
fields.3.

1.4 Outline of the thesis
This thesis is structured into several chapters, each addressing a distinct topic.

Chapter 2 begins with a review of ordinary symmetries in both classical and
quantum field theories. We then explore the generalization of these symmetries to
the 1-form case, followed by the more general p-form case with p > 1. The focus
then shifts to an exploration of 1-form symmetries in Maxwell theory in D = 4.
We also present Goldstone’s theorem in the case of higher-form symmetries. The
chapter concludes with a brief discussion on ’t Hooft and ABJ anomalies.

Chapter 3 provides an overview of the framework for ordinary ideal hydrodynam-
ics that involves conventional or 0-form symmetries. The discussion then extends
to hydrodynamics with 1-form symmetries. We conclude the chapter with an explo-
ration of anomalies and their implications for hydrodynamics.

Chapter 4 introduces the pertinent concepts related to holography that underpin
this thesis. We first briefly review the holographic principle and then present the
holographic dictionary. The chapter concludes with a very brief qualitative review
of the membrane paradigm within the context of AdS/CFT. This chapter marks the
conclusion of the background material required for subsequent computations in this
thesis.

The following chapters present original contributions to the existing body of
research.

In Chapter 5, we carry out a holographic examination of a chiral plasma at finite
temperature. This system’s weakly coupled dynamics can be described by a theory
of massless Dirac fermion coupled to dynamical electromagnetism. We leverage the
1-form symmetry of QED to formulate the bulk holographic action that belongs to
the same universality class of symmetries. From this bulk action, we calculate an

3Anomalies can be of two kinds: ’t Hooft-kind and ABJ-kind. In the ’t Hooft-kind, the non-
conservation of the current is related to fixed non-dynamical sources which in principle can be
turned off to still get a conserved current. On the contrary, in the ABJ-kind, the non-conservation
of the current is related to dynamical operators which cannot be turned off. We discuss more on
this later.
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interesting observable of the boundary theory that captures the chiral decay rate
by employing standard methods for computing quasi-normal modes in holography.
According to the holographic dictionary, the lowest-lying quasi-normal mode in the
bulk corresponds to the decay rate in the boundary. For smaller magnetic fields,
this decay rate is proportional to the square of the magnetic field, which aligns with
elementary hydrodynamic results. However, as we crank up the magnetic field, this
quadratic relationship no longer holds.

Chapter 6 is devoted to the development of hydrodynamic effective field theo-
ries – capturing equilibrium and dissipation – which fall in the same universality
class as that of dynamical QED at finite temperature. We start by identifying
the global symmetries of this system, specifically the 1-form magnetic symmetry
which is the global symmetry of QED. Additionally, there is a universal symmetry
structure stemming from the ABJ anomaly, which links the non-conservation of the
chiral current to the double-trace operator, ⋆J ∧ ⋆J , where J denotes the conserved
2-form current of the 1-form magnetic symmetry. Utilizing the constructed effec-
tive actions, we successfully reproduce well-known chiral MHD phenomenology, for
example, the chiral separation effect and the chiral magnetic effect. The chapter
concludes by demonstrating successful insertions of non-invertible defects [37, 38],
into the dissipative action in real-time and into the equilibrium action in Euclidean
signatures.

Chapter 7 investigates whether the chiral decay rate, known to be a function
of the magnetic field as explored in Chapter 5, approaches zero in the limit of
vanishing magnetic field. To estimate this rate, we employ the Kubo formula for
the current density-current density correlation, where the current in question is the
2-form current associated with magnetic flux conservation, and examine if hydro-
dynamic fluctuations contribute to this decay rate. At the 1-loop level, we observe
that this decay rate indeed remains zero as ω → 0. This finding implies that the
non-invertible symmetry inherent in the chiral anomaly preserves the universal inter-
twining between the 1-form non-conserved chiral current and the 2-form conserved
current.

Lastly, this thesis culminates with a succinct concluding chapter.
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CHAPTER 2

Generalised global symmetries

2.1 Analysis of conventional symmetries
In this section we shall examine conventional symmetries in the context of quantum
field theory. The idea is to express known results in this domain in terms of topology
and differential forms. This way we shall provide a geometrical meaning to them.
This will help us to generalise these concepts to the case of higher-form symmetries.

Here we will mostly follow the exposition given in [28] differing a bit at times as
and when required. Contemporary reviews on this subject include [24–27,29,39].

2.1.1 Aspects of symmetries in classical field theory

One of the cornerstones of theoretical physics is the Noether’s theorem, which posits
a connection between continuous symmetries and conservation laws. A succinct
derivation of this correlation can be illustrated as follows. Consider an action:
S[Φ] =

∫
dDxL(Φ), which subsumes a general ensemble of fields represented as Φs.

Assume that under an infinitesimal transformation of these fields,

Φ→ Φ + εaδaΦ, (2.1)
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where εa is a collection of constant, global parameters1, the action remains invariant.
This suggests a symmetry within the context of the classical theory.

To locate the corresponding conserved current, we transform the global param-
eters εa to local ones, indicated by εa → εa(x). Under these circumstances, the
transformation

Φ→ Φ + εa(x)δaΦ (2.2)

is no longer a symmetry of the action. Note that, the variance in the action must
incorporate the derivative of the parameters, noted as ∂µεa(x), which reinstates the
invariance under the condition of a global transformation for constant parameters.
From this, we can formulate the expression

δεS[Φ] =
∫
dDx jµa∂µεa(x) IBP= −

∫
dDx (∂µjµa )εa(x), (2.3)

where the coefficients jµa are arbitrary and in going to the second equality we have
done integration by parts and have thrown away boundary terms. Now there is no
reason to expect Eq. (2.3) to vanish.

The aforementioned local transformation in Eq. (2.2), can be interpreted simply
as a sequence of arbitrary variations of the fields. In this instance, equation (2.3)
vanishes when Φs are taken to be on-shell: δΦS[Φ] = 0, which is to say, in particular
for the transformation in Eq. (2.2) we have,

δεS[Φ] EoMs= −
∫
dDx (∂µjµa )εa(x) = 0, (2.4)

where EoMs stands for equations of motion.
Since εa(x) are arbitrary, we infer that the coefficients jµa in Eq. (2.3) are indeed

the associated conserved currents2,

∂µj
µ
a = 0 implying, d

dt
Qa = 0, (2.5)

where we have denoted the Noether charges as

Qa(Σ) ≡
∫

Σ
dD−1x jµn̂µ =

∫
Σt

dD−1x⃗ j0
a(x⃗, t), (2.6)

1The index “a” denotes a collection of indices that may be either spacetime or internal.
2Here, we perform a slight abuse of notation. To be very precise, jµ

a s are actually current
densities and not currents themselves. In the literature, one often refers to them as Noether
currents and so, by an abuse of notation, we simply refer them as “currents”.
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where Σ is a (D−1) sub-manifold and n̂µ is the unit normal vector to ΣD−1. We get
the second equality above when ΣD−1 = Σt is a time slice. In this case, the charges
are constant in time as given in Eq. (2.5). Now let us ask ourselves what does the
charge Q(Σ) counts. First of all note that, Σ can be any (D − 1) sub-manifold.
However, when Σ = Σt is a time slice then Q(Σt) has a nice interpretation in the
sense that it is the conserved particle number. So basically, Q(Σt) counts the number
of particles in the system which is conserved. Since particle worldlines cannot end
in time, we can “catch” all the particles by integrating over a time slice, see Fig.
2.1.

Figure 2.1: Here we have a (D − 1) spatial slice – a time slice – which catches all
the particles in the system and upon integration, gives us the conserved particle
number.

Charged local operators

Here we shall discuss the operators charged under ordinary symmetries, or, 0-form
symmetries. These are called 0-form symmetries since the operators charged un-
der ordinary symmetries are local operators supported on 0-dimensional spacetime
points. We shall review these in more detail in a section below.

Consider the Hamiltonian picture where we can quantize on ΣD−1 and the cor-
responding operator’s action on the associated Hilbert space HD−1 is performed by
unitaries of the form,

Ug(ΣD−1) = eiλQ(ΣD−1) = exp
(
iλ
∫

ΣD−1
dD−1x jµn̂µ

)
, (2.7)

where n̂µ is the unit normal vector to ΣD−1 and g = eiλ ∈ G(0) with G(0) being the
0-form symmetry group.

These operators obey the following composition rule owing to the group law
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inherited from the 0-form symmetry group G(0), 3

Ug1(ΣD−1)Ug2(ΣD−1) = Ug1g2(ΣD−1), (2.8)

Let us denote the vacuum by |0⟩ and say local operators O(x) act on the vacuum
to create particle-states then Ug act on these local operators as,

Ug(ΣD−1)O(x) = O′(x)Ug(ΣD−1), (2.9)

which is directly analogous to the conjugation action that we have in QM:

U(Σt)O(t, x⃗)U−1(Σt) = O′(t, x⃗). (2.10)

Furthermore, in QM, we know the unitary operator U(t) ≡ U(Σt) acting on the
Hilbert space at time t commutes with the Hamiltonian generating time evolution,
that is: U(t) = U(t′) ∀ t, t′. Thus for general ΣD−1, we should have a similar result.
We shall now show that 4,

conservation of jµ ⇔ Ug(ΣD−1) depends on ΣD−1 upto homotopy

Consider,

Ug(ΣD−1)Ug−1(Σ′
D−1) = exp

[
iλ
(∫

Σ
dD−1x jµn̂µ −

∫
Σ′
dD−1x jµn̂µ

)]
= exp

[
iλ
∫

Σ̄
dDx ∂µj

µ
]

= 1 since ∂µj
µ = 0, (2.11)

where ∂Σ̄ = Σ ∪ Σ′
opp. and Σ′

opp. = Σ′ but with opposite orientation of the normal
vector field (see Fig. 2.2).

3A non-rigorous, quick, way to see this is to note,

Ug1Ug2 = eiλ1Qeiλ1Q ≃ ei(λ1+λ2)Q,

now, g3 = g1g2 = eiλ1eiλ2 = ei(λ1+λ2),

implying, Ug1Ug2 = Ug3 .

4ΣD−1 is homotopic to Σ′
D−1 if one can be smoothly deformed to the other.
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Figure 2.2: Here we have ΣD−1 homotopic to Σ′
D−1.

Thus, we get from above,

Ug(ΣD−1)Ug−1(Σ′
D−1) = 1, Ug(ΣD−1) ∼= Ug(Σ′

D−1), (2.12)

which means that Ug(ΣD−1) is a topological charged operator. We shall revisit this
topological property of the conserved charges in terms of linking number in a section
below.

2.1.2 Aspects of symmetries in quantum field theory

Now let us move on to quantum analogues of symmetries. Continuous and discrete
symmetries can be accommodated through unitary operators, while anti-unitary
operators are solely for discrete symmetries. This is the content of the famous
Wigner’s theorem.

In the context of continuous symmetries, the corresponding transformation’s
unitary operator can be systematically constructed from the Noether charge, as:

U(Σ) = eiεaQa(Σ). (2.13)

where Σ is a spatial manifold or a time slice. Note that, since Qas are independent
of the time slice ΣD−1, the unitary operators U(Σ)s constructed from them as in
Eq. (2.13) are also independent of the time slice Σ. As discussed above, since Q(Σ)
count particles in the system which is conserved, the above charged operators U(Σ)
are local operators which create and destroy particles at their point of insertions.

Now we shall move on to the concept of Ward identities. These identities are
quantum equivalents of the classical conservation laws stated in Eq. (2.5). They

12



generate relationships among the correlation functions of a theory and are derivable
from the path integral. Consider the following partition function:

Z =
∫
DΦ eiS[Φ]. (2.14)

The correlation functions can be expressed as:

⟨Π⟩ ≡ 1
Z

∫
DΦ Π eiS[Φ], (2.15)

where Π symbolises a general product of fields, represented as Π ≡
N∏
j=1

Φ(xj). Since
the fields are simply integration variables, we have the liberty to rename them or
adjust these integration variables. Initially, the fields are renamed from Φ to Φ′, then
a variable change in the path integral is implemented, in accordance with Eq. (2.2).
This leads to:

⟨Π⟩ = 1
Z

∫
DΦ

N∏
j=1

Φ(xj)eiS[Φ]

= 1
Z

∫
DΦ′

N∏
j=1

Φ′(xj)eiS[Φ′]

= 1
Z

∫
J DΦ

Π +
N∑
j=1

Φ(x1) . . . εa(xj)δaΦ(xj) . . .Φ(xN)
 ei(S+δS)

= 1
Z

∫
(1 + iδA)DΦ

Π +
N∑
j=1

Φ(x1) . . . εa(xj)δaΦ(xj) . . .Φ(xN)
 (1 + iδS)eiS

= 1
Z

∫
DΦ

Π +
∑
j

Φ(x1) . . . εa(xj)δaΦ(xj) . . .Φ(xN) + iδS Π + iδAΠ + · · ·
 eiS,

(2.16)

where we have neglected higher order terms like O(ε2
a) and above, thereby treating

εa(xj)s as small parameters. The ellipses in the last line contain terms higher order
in variation of the likes: O(δS δaΦ),O(δA δaΦ),O(δA δS) and above. J is the
Jacobian for the transformation of the measure and A captures anomalies, if any,
in the system. We shall discuss anomalies later in this chapter.
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Now using the variation of action in the form provided in Eq. (2.3) we get:

∫
dDx εa(x)

∑
j

δ(D)(x− xj)⟨Φ(x1) . . . δaΦ(xj) . . .Φ(xN)⟩ − i⟨∂µjµa (x) Π⟩+ i⟨Aa(x) Π⟩
 = 0.

(2.17)

In the above equation, we have parameterised the anomaly as δA ≡
∫
dDx εaAa(x).

For now we can take A = 0 or, Aa = 0, implying that there are no anomalies. The
above equation, due to arbitrariness of εa(x)s, then gives the Ward identities as5:

i⟨∂µjµa (x) Π⟩ =
∑
j

δ(D)(x− xj)⟨Φ(x1) . . . δaΦ(xj) . . .Φ(xN)⟩, (2.18)

Since Π does not depend on xµ we can take the derivative out to get:

i∂µ⟨jµa (x) Π⟩ =
∑
j

δ(D)(x− xj)⟨Φ(x1) . . . δaΦ(xj) . . .Φ(xN)⟩, (2.19)

For simplicity let us take Π as a single field Φ(y). This simplifies Eq. (2.19) to:

∂µ⟨jµa (x) Φ(y)⟩ = −iδ(D)(x− y)⟨δaΦ(y)⟩. (2.20)

2.1.3 Spontaneous symmetry breaking of conventional sym-
metries

Now let us discuss spontaneous symmetry breaking (SSB) of conventional symme-
tries and the emergence of Goldstone modes. The Goldstone theorem articulates
that when a continuous global symmetry undergoes spontaneous breaking, massless
excitations, known as Goldstone bosons, manifest in the spectrum. Here we shall
differ from the textbook treatment of the subject and derive Goldstone’s theorem
in two slightly different ways. This way we can generalise these derivations later to
the case of higher-forms symmetries.

Let us consider the Ward identity Eq. (2.20). By applying a Fourier transform

5Here we have not been careful about time-ordering in the path-integral. This is fine for the
Euclidean case and for the Lorentzian case we can analytically continue from the Euclidean result.
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to x, we get the following:
∫
dDx eipx∂µ⟨jµa (x) Φ(y)⟩ = −i

∫
dDxeipxδ(D)(x− y)⟨δaΦ(y)⟩

implying, − i
∫
dDx eipxpµ⟨jµa (x) Φ(y)⟩ = −ieipy⟨δaΦ(y)⟩ (2.21)

where we have used: pµ = i∂µ. Now let use jµa (p) =
∫
dDx eipxjµa (x) to write the

above as,

pµ⟨jµa (p) Φ(y)⟩ = eipy⟨δaΦ(y)⟩

implying, pµ⟨jµa (p) e−ipyΦ(y)⟩ = ⟨δaΦ(y)⟩. (2.22)

Let us integrate both sides over y in Eq. (2.22) to get:

pµ⟨jµa (p)Φ(−p)⟩ =
∫
dDy⟨δaΦ(y)⟩ = ⟨δaΦ(p = 0)⟩. (2.23)

The term ⟨δaΦ(p = 0)⟩ on the right hand side is an order parameter that depicts
the different phases of the theory. The symmetric (or unbroken) phase corresponds
to ⟨δaΦ(p = 0)⟩ = 0. On the other hand, if ⟨δaΦ(p = 0)⟩ ≠ 0, spontaneous symmetry
breaking has occurred.

In the case of a SSB phase, the correlation function ⟨jµa (p)Φ(−p)⟩ must ex-
hibit a pole at zero momentum. To see this from above, let us first note that,
⟨jµa (p)Φ(−p)⟩ ∼ c1(p) pµ.6 Now, in SSB: ⟨δaΦ(p = 0)⟩ = d1 ̸= 0, where d1 is some
constant independent of the momentum pµ. To satisfy this we must have c1(p) ∼ 1

p2 .
In other words, we have at zero momentum:

⟨jµa (p)Φ(−p)⟩ ∼ pµ

p2 . (2.24)

This indicates the presence of massless physical excitations within the spectrum.
Such excitations are referred to as Goldstone bosons. This proves the Goldstone’s
theorem stated above. The above proof can be found in [28].

Now let us look at an alternative approach to the above proof (see [40] and [41]).
To proceed, let us first write some of the above expressions in the language of
differential forms (see appendix A for a review).

6This is obtained by noting the index structure on the current given in left hand side.
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Noether charges in the language of differential forms

In the language of differential forms, the Noether charges, as given in Eq. (2.6),
can be expressed as an integral over a closed7 (D− 1)-dimensional sub-manifold Σ,
formulated as:

Q(Σ) =
∫

Σ
⋆j = 1

(D − 1)!

∫
Σ
jµ ϵ

µ
µ1...µD−1dx

µ1 ∧ . . . ∧ dxµD−1 . (2.25)

Now for the Ward identity, as in Eq. (2.18), consider integrating it over a D-
dimensional manifold ΩΣ whose boundary is the (D − 1)-dimensional sub-manifold
Σ, that is, ∂ΩΣ = Σ. As a result, the left-hand side of Eq. (2.20) can be written as:

∫
ΩΣ
⟨d ⋆ j Φ(y)⟩ =

∫
Σ
⟨⋆j Φ(y)⟩

= ⟨Q(Σ)Φ(y)⟩, (2.26)

where we used Stokes’ theorem in the first line. Given Eq. (2.20), we then get:

⟨Q(Σ)Φ(y)⟩ = −i
∫

ΩΣ
dDx δ(D)(x− y)⟨δaΦ(y)⟩. (2.27)

Alternative proof of Goldstone’s theorem

Now we are ready for the alternate proof of Goldstone’s theorem. For this we will
consider working with Euclidean path integrals8.

Let us consider a theory with a global U(1) symmetry, with associated conserved
current j. From Eq. (2.20) we can write down its Ward identity in the presence of a
charged operator O(x) with charge Q as9:

d ⋆ j(x)O(0) = iQO(0)δ(D)(x) (2.28)

Let us now integrate both sides of this equation over a solid D-ball of radius R
centered at the origin, as in Figure 2.3. We find the equation

(∫
SD−1(R)

⋆j

)
O(0) = iQO(0) (2.29)

7We will see later why this property of closedness is needed.
8In this case, the Ward identity would be as given in Eq. (2.20) but the ‘i’ on the right hand

side won’t be there. Here, to simplify notation, we have dropped the angled brackets.
9The charged operator transforms under the symmetry as: O(x)→ eiεQO(x), where x ∈ Σ.
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where on the left hand side we have used Stokes’ theorem and hence now the integral
is taken over the boundary of the D-ball, that is ∂SD(R) = SD−1(R).

Figure 2.3: Charge operator defined on an SD−1 of radius R wrapping operator O(0)
at the origin.

Finally, let us take the expectation value on both sides:
〈(∫

S3(R)
⋆j

)
O(0)

〉
= iQ ⟨O(0)⟩ (2.30)

Now, if we are in the SSB phase, then ⟨O(0)⟩ ̸= 0, and the integral on the left
hand side must be both nonzero and independent of the radius of the (D−1)-sphere
R. Due to spherical symmetry, we see that the correlation of the local operator j
on the (D − 1)-sphere and O(0) must therefore depend on R as

⟨ji(x)O(0)⟩ ∼ iQniR−3 (2.31)

where ni is an outwardly pointing normal vector on the (D − 1)-sphere. The R-
dependence is fixed by demanding that the integral over the (D − 1)-sphere results
in an R-independent constant. Therefore, there is a power-law correlation in the
theory and not an exponential one. This is a signature of long range order in the
theory. Thus, we see the existence of a gapless excitation which is the Goldstone
mode.

2.1.4 Linking number and finite transformations

The right hand side of Eq. (2.27) comprises the term
∫

ΩΣ
dDx δ(D)(x− y), which can

be recognised as the intersection number of ΩΣ and y. This intersection number is
17



equivalent to the link number of Σ and y (see appendix J for a review):

Link(Σ, y) =
∫

ΩΣ
dDx δ(D)(x− y), (2.32)

The value of this link number is either 0 or 1, depending on whether y is inside the
region ΩΣ or not. Consequently, equation (2.27) can be expressed as:

⟨Q(Σ)Φ(y)⟩ = −iLink(Σ, y)⟨δΦ(y)⟩. (2.33)

The linking number defined in Eq. (2.32) is clearly topological since it is impervi-
ous to deformations of the surface Σ, given the deformations do not cross the point
y. Furthermore, the charge Q(Σ) can also be considered a topological invariant. We
already saw this before but let us see this here in the language of differential forms.

This is evident when considering a deformation of the original region ΩΣ to
Ω′

Σ′ = ΩΣ ∪ Ω0, such that y /∈ Ω0. This leads to:

⟨Q(Σ + ∂Ω0) Φ(y)⟩ =
∫

ΩΣ∪Ω0
⟨d ⋆ jΦ(y)⟩ =

∫
ΩΣ
⟨d ⋆ jΦ(y)⟩+

∫
Ω0
⟨d ⋆ jΦ(y)⟩

=
∫

ΩΣ
⟨d ⋆ jΦ(y)⟩ = ⟨Q(Σ)Φ(y)⟩. (2.34)

In the equation above, since y /∈ Ω0, we have: d ⋆ j = 0 inside the correlator in
the last term of the first line. Thus, we get, Q(Σ + ∂Ω0) = Q(Σ) as long as such
a deformation doesn’t hit any charged operators. Hence, the conservation law is
converted into the fact that the operator Q(Σ) is topological.

The finite form of relation Eq. (2.33) can also be expressed as follows:

⟨U(g,Σ)Φ(y)⟩ = R(g)⟨Φ(y)⟩. (2.35)

The above relationship holds if y and Σ are linked. Here, U(g,Σ) is the unitary topo-
logical operator associated with the symmetry group g, and R is the representation
in which the fields transform:

U(g,Σ) = eiαaQa , R(g) = eαata . (2.36)

In these expressions, tas correspond to the generators in the representation that Φ
transforms in. For infinitesimal parameters αa, the relation in Eq. (2.33) is imme-
diately restored with the identification δaΦ ≡ taΦ. This is referred to as a 0-form
symmetry, implying that the charged operators that transform under the symmetry
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are local operators Φ(y) supported at a point, i.e., within a 0-dimensional region.
Alternatively, the transformation parameter is a closed 0-form, which is simply a
constant (as can be seen from Eq. (2.1)).

Even in the context of discrete symmetries, where a conserved charge does not
exist, we can define a topological unitary operator in the same way as in Eq. (2.35).
In fact, consider the unitary operator for a discrete symmetry, U(g) (devoid of any
parameter), and corresponding acting it on a local operator:

⟨U(g)Φ(y)U−1(g)⟩ = R(g)⟨Φ(y)⟩. (2.37)

In the above equation, the operator U(g) is assumed to be defined at a time y0+ϵ, and
the operator U−1(g) at the time y0− ϵ. Equal time is inferred in the limit as ϵ→ 0.
Additionally, a spatial slice can be associated with the operator U(g). We then
assume that [U(g), pµ] = 0, where pµ is the generator of spacetime translations. This
suggests that the spacetime region associated with U(g) can be smoothly deformed
into a closed one, through a series of transformations as illustrated in Fig. 2.4.
Hence, the left-hand side of Eq. (2.37) can be expressed as:

⟨U(g)Φ(y)U−1(g)⟩ = ⟨U(g,Σ)Φ(y)⟩, (2.38)

when y and Σ are linked10. This leads us to conclude that the relation in Eq. (2.35)
is applicable to discrete symmetries as well.

Figure 2.4: A sequence of deformations leading to the association of a closed surface
Σ to the operator: U(g,Σ).

10Note that, here the conjugation action as given in the first figure in Fig. 2.4 for two different
time slices transforms into what is called the lasso action – as given in the third figure of Fig. 2.4
– when Σ encircles the point y and is compact. This is the content of Eq. (2.38).
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The aforementioned construction offers a compelling viewpoint on symmetries in
relativistic theories. Specifically, we can establish a direct correspondence between
symmetry generators and topological operators:

Symmetry Generator ⇔ Topological Operator, (2.39)

Here, the charged operators are associated with objects that have a nontrivial
linkage with the topological operators. This perspective is insightful and paves the
way for a natural extension of the concept of symmetry to encompass the higher-form
case.

2.2 1-form symmetry
In the course of advancing our understanding of symmetries, we now venture into a
more generalised framework, specifically targeting the case of a 1-form symmetry11.
To pave the way, let’s revisit the conventional understanding of symmetries, desig-
nated as a 0-form symmetry. In this context, the symmetry parameter – let us call
it ξ0 – adheres to the characteristics of a closed 0-form, that is, dξ0 = 0, as it is
associated with a global symmetry. Translating this into the language of differential
forms, the relation denoted by Eq. (2.3) can be reformulated as:

δS =
∫

MD

⋆j ∧ dξ0, (2.40)

Like before, in the above equation, we have taken the parameter ξ0 to be a local
function of spacetime, implying that, dξ0 is no more closed. Performing integra-
tion by parts and factoring in the equation of motion, this expression leads to the
following expected relation:

d ⋆ j = 0. (2.41)

Now let us explore the following situation where a global symmetry is governed
by a parameter that represents a closed 1-form, denoted as ξ1 = ξµdx

µ. Again as
the symmetry is global we should have: dξ1 = 0. Extending the earlier expression
Eq. (2.40) by removing the closeness of the parameter ξ1, we get:

δS =
∫

MD

⋆j ∧ dξ1, (2.42)

11The discussion on p-form symmetries, with p > 1, will be undertaken shortly.
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In this scenario, ⋆j is a (D − 2)-form, making j a 2-form and in components the
conservation equation d ⋆ j = 0 becomes:

∂µj
µν = 0. (2.43)

Given that ⋆j is a (D−2)-form, drawing parallels with the conventional scenario
(as demonstrated in Eq. (2.25)), one can evidently define the charge within a closed
ΣD−2 sub-manifold:

Q(ΣD−2) ≡
∫

ΣD−2
⋆j. (2.44)

Let us pause and ask ourselves what does this operator count? It counts the con-
served string number in the system, where strings are one dimensional extended
objects which do not end in space or in time. So, an integral over a codimension-2
surface12 is enough to “catch” all the strings, as shown in Fig. 2.5. In this case
the charged operators – which we explore in the next section – create and destroy
strings. Additionally, note that„ here the associated conserved 2-form current in
Eq. (2.43) has one extra index compared to that of the usual 1-form current as-
sociated to conventional 0-form symmetries. This extra index can be intuitively
understood as labelling the direction in which a string points in spacetime.

Figure 2.5: Integration over a (D−2)-manifold: ΣD−2, counts the number of strings
that cross it at an given instant of time.

Here also, if we move ΣD−2 up and down in time or left and right in space,
or if we deform it to Σ′

D−2 without hitting any charged operators, then owing to

12In a D-dimensional manifold, a sub-manifold of codimension p has dimensions D − p.
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the conservation equation Eq. (2.43) we will get the same charge: Q(ΣD−2). As
discussed before, this means: Q(ΣD−2) is topological.

Our next task is to find out the charged operators which transform under this
symmetry. In other words, we seek objects that exhibit a nontrivial linking with the
sub-manifold: ΣD−2.

2.2.1 Operators charged under 1-form symmetry

To unravel the characteristics of charged entities under a 1-form symmetry, it is
helpful to return to the foundational concepts of a 0-form symmetry. In this frame-
work, an infinitesimal global transformation, governed by a constant parameter ξ,
prompts a transformation in a local operator as:

Φ(x)→ Φ′(x) = Φ(x) + ξδΦ(x). (2.45)

This equation encapsulates our initial assumption: the charged operators under
the symmetry behave as local operators, supported on 0-dimensional regions of
spacetime.

One natural question arises from this premise: can we conclusively ascertain that
charged entities are inherently local operators? Using the Hilbert space perspective,
the transformation expressed in Eq. (2.45) is seen to originate from the action of the
charged operator, defined over a spatial slice of dimension D − 1 ≡ d, at a fixed
instant of time – a time slice. This comes from observing the fact that charged
operators in this case capture the conserved particle number in the system, which is
obtained by integrating over a codimension-1 manifold. So, from this perspective let
us come up with a way to associate the parameters of transformations to manifolds.
The concept of Poincaré duality relating manifolds13 (see appendix J for a review)
essentially provides this association.

Specifically, the Poincaré duality allows for a (d− p)-form to be associated with
a p-dimensional manifold. The components of this Poincaré dual (d − p)-form are
expressed as:

ξip+1...id(x) ≡ 1
p!(d− p)!

∫
Σp

ϵi1...ipip+1...id δ
(d)(x− y) dyi1 ∧ · · · ∧ dyip . (2.46)

13Not to be confused with the Poincaré duality relating p-form to q-form fields in D dimensions.
Though these two concepts are related they are not the same thing.
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From this construction, the parameter of the global symmetry is recognised as the
(d− p)-form, denoted ξd−p(Σp), built from a sub-manifold of dimension p. Notably,
the closed nature of ξd−p – which is required for the symmetry to be global – is
implicit from the above construction. We shall see this below.

In the above language, the parameter marking the transformation of a conven-
tional 0-from symmetry is identified, modulo a scaling factor, with the Poincaré
dual of the spatial manifold Σd, essentially a 0-form constant. This can be seen by
setting p = d in (2.46):

ξ0(x) = 1
d!

∫
Σd

ϵi1...id δ
(d)(x− y) dyi1 ∧ · · · ∧ dyid = 1, (2.47)

where the equalling of the above expression to unity follows from definition of the
d-dimensional delta function.

Thus, we see that the parameters associated with conventional 0-form symme-
tries are closed 0-forms, supported on 0-dimensional regions of the manifold. Con-
sequently, such parameters can be linked to the transformations of similar entities –
specifically, entities supported on 0-dimensional regions of the manifold, identified
as local operators.

Extension to 1-form symmetries

Now let us generalise the previous picture to the case of 1-form symmetries. Let us
consider a sub-manifold with dimension p = d−1. The associated Poincaré dual for
this manifold is the 1-form, ξ1(Σd−1), which has the following components:

ξid(x) = 1
(d− 1)!

∫
Σd−1

ϵi1...id−1id δ
(d)(x− y) dyi1 ∧ · · · ∧ dyid−1 . (2.48)

Objects that transform under the 1-form symmetry are referred to as line operators
because they have support specifically along a line. For any given operator situated
along a line, denoted as C, the transformation parameter (considering a constant
factor that can be absorbed into the parameter) is represented as:

∫
C
ξ1(Σd−1) =

∫
C
ξidx

i. (2.49)

Delving deeper, the line operator undergoes an infinitesimal transformation, de-
fined as:

W [C]→ W ′[C] = W [C] +
∫

C
ξ1(Σd−1)δW [C], (2.50)
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An important aspect to note is that even when the line C is a closed loop, the
integral

∫
C ξ1(Σd−1) might not be zero, despite the condition dξ1 = 0. One might use

the Stokes’ theorem to transform the line integral into a surface integral with C acting
as the boundary, as represented by

∫
C=S ξ1(Σd−1) =

∫
S dξ1. However, topological

constraints might inhibit the application of the Stokes’ theorem, especially when
both C and Σd−1 intersect.

Further investigation confirms that ξ1 = ξidx
i is indeed closed, primarily because

the boundary for Σd−1 is absent14. This can be seen by setting p = d − 1 in the
following formula (see appendix J) relating the exterior derivative of ξ1 with that of
the boundary of the sub-manifold Σd−1:

dξd−p(Σp) = (−1)pξd−(p−1)(∂Σp). (2.51)

We see from above that if ∂Σd−1 = ∅ then dξ1 = 0.
Expanding our focus, we can redefine the charge manifold from Σd−1 to ΣD−2 –

now an arbitrary closed manifold in spacetime15. Additionally, the term “line op-
erator” (a time-invariant operator acting on the Hilbert space) can be extended to
include what is termed as a “defect” line. This term refers to an operator that not
only spans spatial dimensions but also extends temporally. The symmetry transfor-
mation for such a defect line is:

W [C]→ W ′[C] = W [C] +
∫

C
ξ1(ΣD−2)δW [C], (2.52)

where the line C now extends along the time axis.
Given the above mathematical formulation, we can now extract the consequential

Ward identities. Let us focus on the case of a single defect for simplicity. We have:

⟨W [C]⟩ =
∫
DΦW [C]eiS[Φ]

=
∫
DΦ′ W ′[C]eiS[Φ′]

=
∫
DΦ

(
W [C] +

∫
C
ξ1(ΣD−2)δW [C]

)
(1 + iδS) eiS[Φ], (2.53)

where δS has been defined previously in (2.42). Note that, here to go to the second

14Σd−1 cannot have a boundary else, upon integration over it, we won’t catch all the strings in
the system.

15Here we have relaxed the spatial condition on ΣD−2 but we still consider a closed manifold as
the closedness is necesssary to associate a form to it by the Poincaré duality procedure.
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equality above we have assumed DΦ = DΦ′. We believe that this is a reasonable
assumption since we are dealing with 1-form symmetries and unlike the 0-form case
where the violation of this equality – which is non-invariance of the integral measure
– is a signature of the presence 0-form anomalies. However, here since Φ is a “local”
collection of fields the transformation of the integral measure built out from it should
not be able to diagnose 1-form anomalies. This is because, as discussed above, for
1-form symmetries the charged operators are line operators and not local operators.
However, if we can write down a path integral in some kind of a loop space where
the dynamical variables depend upon loops and hence so does the integral measure
then probably in this case, the non-invariance of the “loop-integral-measure” might
be a signature of the presence of 1-form anomalies. Such loop space path integrals
(or actions) for 1-form symmetries have been considered in [36]. For details on
higher-form anomalies see [42–44] and references therein.

To express this variation in components, we can represent it as:

δS =
∫
dDx jµν∂µξν = −

∫
dDx ξν ∂µj

µν . (2.54)

From the relationship outlined in (2.53), it becomes evident that,

i
∫
dDx ξν(x)⟨∂µjµν(x)W [C]⟩ =

∫
C
dyνξν(y)⟨δW [C]⟩

=
∫
dDx ξν(x)

∫
C
dyν δ(D)(x− y)⟨δW [C]⟩,

i
∫
dDx ξν(x)

⟨∂µjµν(x)W [C]⟩ −
∫

C
dyν δ(D)(x− y)⟨δW [C]⟩

 = 0. (2.55)

Now arbitrariness of ξν(x) implies:

⟨∂µjµν(x)W [C]⟩ = −i
∫

C
dyν δ(D)(x− y)⟨δW [C]⟩, (2.56)

This equation essentially is the Ward identity for a single line defect.
With this foundational understanding of the 1-form symmetry, we are now

equipped to investigate further extensively the potential implications and conse-
quences arising from this symmetry structure.

2.2.2 1-Form symmetry in D = 4

Probing further the properties and consequences of 1-form symmetries, we focus our
attention on a particular case of D = 4 spacetime dimensions. First, we consider
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“true” line operators and not defect lines.
Within this framework, the conservation laws are expressed as:

∂µj
µν = ∂0j

0ν + ∂1j
1ν + ∂2j

2ν + ∂3j
3ν = 0. (2.57)

A direct corollary of these conservation laws is the conservation of the respective
charges,

Q1 =
∫
dx2dx3j01, Q2 =

∫
dx3dx1j02, Q3 =

∫
dx1dx2j03, (2.58)

which are defined over spatial 2-dimensional sub-manifolds. Note the independence
of Q1 on x1, Q2 on x2, and Q3 on x3. This stems directly from Eq. (2.57) with ν = 0,

∂1j
10 + ∂2j

20 + ∂3j
30 = 0, (2.59)

then integrating this expression over the corresponding 2-dimensional spaces and
throwing away total derivative terms.

Now the Ward identity: Eq. (2.56) reads in D = 4:

⟨∂µjµν(x)W [C]⟩ = −i
∫

C
dyν δ(4)(x− y)⟨δW [C]⟩. (2.60)

Let us choose ν = 3 in the above equation to obtain:

⟨∂0j
03(x)W [C]⟩+ ⟨∂1j

13(x)W [C]⟩+ ⟨∂2j
23(x)W [C]⟩ = −i

∫
C
dy3 δ(4)(x− y)⟨δW [C]⟩.

(2.61)
Upon integrating both sides across the interval

∫ y0+ϵ
y0−ϵ dx

0 ∫ dx1 ∫ dx2, we arrive at16:

⟨[Q3,W [C]]⟩ = −i
∫
dx1dx2

∫
C
dy3δ(3)(x⃗− y⃗)⟨δW [C]⟩. (2.62)

We see that the integral on the right side captures the intersection between a two-
dimensional plane (spanned by x1 and x2) and the curve C that extends in direction
x3. This is visually depicted in Fig. 2.6. A similar logic can be extrapolated to
curves C aligned along other directions.

16Below on the left hand side we get expectation value of the commutator due to the time-
ordering in the path-integral.
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Figure 2.6: Intersection of a spatial 2D slice spanned along x1 − x2 directions with
that of the line C extending along the third spatial direction x3.

Moving on, to confer a topological significance to our charge, we revisit the Ward
identity, Eq. (2.60)17. Upon integrating both sides over a region Ω3, where ∂Ω3 = S2,
we get:

∫
Ω3

(dΩ3)ν⟨∂µjµν(x)W [C]⟩ = −i
∫

Ω3
(dΩ3)ν

∫
C
dyνδ(4)(x− y)⟨δW [C]⟩. (2.63)

where (dΩ3)ν is the oriented element of integration on Ω3.
Taking a closer look at the above equation, we can identify the intersection

number as the link between the curve C and S2,
∫

Ω3
(dΩ3)ν

∫
C
dyνδ(4)(x− y) = Link(S2, C). (2.64)

Therefore, Eq. (2.63) becomes:

⟨Q(S2)W [C]⟩ = −iLink(S2, C)⟨δW [C]⟩, (2.65)

which is the higher-form analogue of Eq. (2.33). The above topological nature is
justified as long as C is infinitely extended or is a closed loop in spacetime so that
it can link with the corresponding sub-manifold.

Note that, for a line aligned along direction x3, the surface S2 is embedded in a
three-dimensional space defined by x0–x1–x2.

17Now we shall consider the general case where C can align along any spacetime directions and
not just the spatial ones.
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2.2.3 q-form symmetries

In our quest to dig deeper into symmetries, we now turn our attention to the general
scenario of a q-form symmetry. For a given (q + 1)-form conserved current j, the
associated conservation law is captured by the relation d ⋆ j = 0. By taking this
conservation equation and integrating it over a (D − q)-dimensional spatial region
ΩD−q, whose boundary is denoted as ∂ΩD−q = ΣD−q−1 and then using Stokes’, we
get: ∫

ΩD−q

d ⋆ j =
∫

ΣD−q−1
⋆j. (2.66)

From this relationship, it becomes evident that the charge, when associated with
the q-form symmetry over the boundary ΣD−q−1, is defined as:

Q(ΣD−q−1) =
∫

ΣD−q−1
⋆j. (2.67)

The (D−q−1)-dimensional manifold, represented by ΣD−q−1, can be mapped to
a complementary D−1− (D−q−1) = q-form via the Poincaré duality. This q-form
then serves as the transformation parameter. In a quantum theoretical context,
these symmetries correspond to operators that are supported on a q-dimensional
manifold. Such a viewpoint not only enhances our understanding of symmetries but
also elegantly intertwines topological constructs with conservation laws.

2.2.4 Higher-form symmetries in free Maxwell

The free Maxwell theory provides an illustrative example highlighting the signifi-
cance of higher-form symmetries. The action is given as:

S[a] =
∫
− 1

2e2f ∧ ⋆f =
∫
dDx

(
− 1

4e2fµνf
µν
)
, (2.68)

where a is the U(1) gauge field which transforms as: a→ a+ dΛ. f = da is its field
strength.

An important consideration arises when employing a compact gauge group U(1)
instead of its non-compact counterpart. With this choice, the gauge field a behaves
as an angular variable. This angular behaviour imposes certain quantisation con-
ditions, particularly the quantisation of the U(1) charges or, the electric charges.
This comes from invariance of the path-integral under large gauge transformations –
gauge transformations which are not connected to the identity of the corresponding
Lie group. We shall see this below.
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Let us ask ourselves: what are the observables of the theory described by Eq. (2.68)?
An intuitive response gravitates towards gauge-invariant objects, constructed from
the field strength fµν . These objects manifest as local operators. However, can one
conceive extended gauge-invariant entities? The answer is yes and these are the
Wilson line operators/defects defined as:

Wqe [C] ≡ exp
(
iqe

∮
C
a
)
, (2.69)

where qe is the electric U(1) charge.
As discussed before, the curve C should either be infinitely extended or be a

closed-loop to maintain gauge invariance. The parameter qe, symbolising the charge
associated with the Wilson line, is an integer. Its integral nature is a testament to
the compact nature of the underlying gauge group. A lucid pathway to discern this
integral nature is achieved by visualising the temporal dimension as a unit circle S1

with length L0. Under this conception, a gauge function can be sculpted to envelop
the unit circle:

Λ = 2π x
0

L0
. (2.70)

Such a formulation leads to the compactness condition for the temporal compo-
nent of the gauge field, a0 as:

a0 ∼ a0 + 2π
L0
, (2.71)

which is evident from the gauge transformation of a.
Now if the Wilson line in Eq. (2.69) is extended along the time direction, its in-

variance under large gauge transformations leads to the conclusion that qe is quan-
tised.

Proceeding further the line operator in Eq. (2.69) epitomizes the worldline tra-
jectory of a probe charged particle – which has no dynamics. To see this let us
evaluate the expectation value of the Wilson loop.

⟨Wqe [C]⟩ =
∫
Da exp

(
iqe

∮
C
a
)
eiS[a]. (2.72)

Let us introduce a conserved current associated with a particle moving along a
curve parametrized by y⃗(x0)

j0(x0, x⃗) = qeδ
(d)(x⃗− y⃗(x0)) j⃗(x0, x⃗) = qe

dy⃗(x0)
dx0 δ(d)(x⃗− y⃗(x0)), (2.73)
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which can be succinctly written as,

jµ(x0, x⃗) = qe
dyµ(x0)
dx0 δ(d)(x⃗− y⃗(x0)), (2.74)

with the identification: y0 = x0. Thus, the Wilson line can be written as:

Wqe [C] = exp
(
iqe

∮
C
dyµaµ(y)

)
= exp

(
iqe

∫
dx0dy

µ(x0)
dx0 aµ(x0, y⃗)

)

= exp
(
iqe

∫
ddx δ(d)(x⃗− y⃗(x0))

∫
dx0dy

µ(x0)
dx0 aµ(x0, x⃗)

)

= exp
(
i
∫
dDx jµaµ

)
. (2.75)

Therefore, the expectation value of the Wilson loop corresponds simply to coupling
the theory to non-dynamical charged matter, parametrised by the current jµ,

⟨Wqe [C]⟩ =
∫
Da eiS[a]+i

∫
dDxjµaµ . (2.76)

Next let us move on to the equations of motion. From the action presented in
Eq. (2.68) we get,

1
e2d ⋆ f = 0, df = 0. (2.77)

When we dissect these equations into their component-wise representations, they
take the form

1
e2∂µf

µν = 0, ∂µ3 (ϵµ1µ2µ3...µDfµ1µ2) = 0. (2.78)

In the above expressions, we have introduced the components of the dual field
strength, a concept that can be explained as a (D − 2)-form.

It is clear from the equations of motion that the underlying theory possesses two
distinct conserved 2-form currents and hence two distinct higher-form symmetries.
These can be categorized as the 1-form electric and the (D − 3)-form magnetic
symmetries. The conserved currents for these symmetries are defined as je ≡ 1

e2f

and jm ≡ 1
2π ⋆ f .18 The corresponding charges are:

Qe(ΣD−2) =
∫

ΣD−2
⋆je = 1

e2

∫
ΣD−2

⋆f (2.79)

18Here the 2π is just by convention and why this convention is chosen will become clear in the
upcoming section.
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and for the magnetic symmetry:

Qm(Σ2) =
∫

Σ2
⋆jm = 1

2π

∫
Σ2
⋆(⋆f) = 1

2π

∫
Σ2
−f. (2.80)

For ease of reference, these symmetries are generally denoted as

U(1)(1)
e × U(1)(D−3)

m . (2.81)

We notice from above that there is no magnetic symmetry when D = 2. In scenarios
where D = 3, the magnetic symmetry is seen as a standard 0-form symmetry.
Interestingly, when D = 4, both the electric and magnetic symmetries are observed
as 1-form symmetries.

To find the unitary operators that are responsible for generating these symmetries
we exponentiate the associated charges. Referring to Eq. (2.79) and Eq. (2.80), these
operators can be given as:

Ue(αe,ΣD−2) = eiαeQe(ΣD−2), Um(αm,Σ2) = eiαmQm(Σ2), (2.82)

with the transformation parameters satisfying αe ∼ αe + 2π and αm ∼ αm + 2π.
When we incorporate dynamical charged matter with charge n > 1, then the

U(1)(1)
e symmetry breaks down to a ZN 1-form symmetry. This breakdown of sym-

metry can be attributed to the screening of charges resulting from virtual pair cre-
ation19. To put this into context, let’s consider the electric charge Qe(ΣD−2), which
is defined over a closed surface ΣD−2. This charge effectively perceives only the
values of charges modulo N , since it can encircle a single member of a virtual pair,
as depicted in Fig. 2.7. Consequently, the unitary operator Ue(αe,ΣD−2) specified
in Eq. (2.82) is mandated to be identity operator while acting on objects possessing
charges in multiples of N , leading to

eiαeQe(ΣD−2) = eiαeNk = 1, k ∈ Z. (2.83)

From this, one can infer that the transformation parameter can be expressed as
αe = 2π

N
, suggesting that eiαe belongs to the ZN group.

19In the next chapter, we will discuss a similar phenomenon where electric field gets screened
and becomes short-ranged in a conducting medium like charged plasma. In this setting it is known
as the Debye screening.
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Figure 2.7: Screening of charges owing to virtual pair creation.

Another way to see the above is the following. Consider the finite version of the
Ward identity as given in Eq. (2.35). In this equation, let us have: Σ = ΣD−2 and
the associated objects to be line operators instead of local operators on which the
charged operators act in. This equation should then be understood as an operator
equation, valid within general correlation functions provided that there are no other
operator insertions that link non-trivially with ΣD−2 and C. This can be understood
as the result of shrinking the surface ΣD−2 to zero size on the line operator. This is
allowed owing to the topological nature of the operator. Observe the left hand side
figure given in Fig. 2.8. The link is established when the “green” circle shrinks to
zero size on the “black” line operator.

Now due to the presence of charged matter in the theory, the Wilson lines can
end on them. Thus, there is a way in which we can unlink ΣD−2 and C, as depicted
in Fig. 2.8. This is the case of trivial linking (see [45]) which means Ue(ΣD−2) here
essentially becomes the identity operator. Now from the definition of Ue(ΣD−2) as
given in Eq. (2.82) and noting that the charges are multiples of N , that is: Qe = Nk

(k ∈ Z), we get that: αe = 2π
N

for Ue(ΣD−2) to be topological.
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Figure 2.8: Topological operators wrapping line operators can unlink if the line
operators end on charges. On the left we have a non-trivial linking and on the right
a trivial linking. In this case, both sides have to match for U(ΣD−2) to be topological
implying ΣD−2 is the identity operator.

In an attempt to gain a deeper understanding of the magnetic symmetry in the
system, it is helpful to express ⋆f using a novel gauge field, denoted as ã such that
⋆f = dã. ã is a D−3 form. Now the idea is to express the action given in Eq. (2.68)
with ã as the dynamical variable instead of a. This has been worked out in the
appendix B and can be expressed as:

S[ã] =
∫
dDx

(
−e

2

2 h ∧ ⋆h.
)

(2.84)

where h = dã. Note that the coupling constant: e2 now appears in the numerator
of the action instead of the denominator. This action remains invariant under the
associated gauge transformations, which can be presented as:

ã→ ã+ dλ. (2.85)

where λ is a (D − 4)-form.
Beyond the local gauge-invariant observables derived from the field strength ∗f ,

its viable to look at gauge-invariant extended entities. An example of such an object
is:

Tqm [ΓD−3] = exp
(
i2πqm

∫
ΓD−3

ã

)
, (2.86)

33



which are supported on a (D− 3)-dimensional manifold denoted by ΓD−3. Here, qm
represents the magnetic charge. These are the so called ’t Hooft operators, which
are the charged objects under the magnetic (D − 3)-form symmetry.

Expanding on Maxwell in D = 4

In this section we shall expand the discussion of the previous section to the case
D = 4. In this case, we encounter the higher-form symmetry of the form U(1)(1)

e ×
U(1)(1)

m .20

Given this context, the conservation laws referenced in Eq. (2.78) simplify and
are represented more succinctly as:

∂µf
µν = 0, ∂ρ (ϵµνρσfµν) = 0. (2.87)

Here, the conservation law given on the left is associated to the conservation of
the electric field lines in the absence of charged matter, or in other words it states
that electric field lines cannot end in absence of charges. The conservation law on
the right hand side, which is nothing but the Bianchi identity, is associated to the
conservation of magnetic field lines or in other words it states that magnetic fields
lines do not end. This is just the Gauss’ law21.

Expanding further on the charges detailed in Eq. (2.79) and Eq. (2.80), we get:

Qe(Σ2) =
∫

Σ2
⋆je =

∫
Σ2
⋆f (2.88)

and, similarly:

Qm(Σ2) =
∫

Σ2
⋆jm = 1

2π

∫
Σ2
⋆(⋆f) = 1

2π

∫
Σ2
−f, (2.89)

where we understand Σ2 to be a closed manifold.
When we speak about charged operators within this context, they manifest as

20Since the dimension of the coupling constant e2 is: [e2] = 4−D, it is dimensionless in D = 4
and hence, here we set it to 1 for simplicity.

21A curious thing to note is that, in the electric frame – where a was the dynamical variable
– d ⋆ f = 0 or conservation of je required the use of equations of motion but df = 0 or the
conservation of jm followed from the Bianchi identity. However, in the magnetic frame – where
ã is the dynamical variable, one can readily see that this situation is exactly reversed. This is a
general feature of the duality between these two frames where on-shell currents becomes topological
currents and vice-verse while going between a frame and its dual.
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Wilson and ’t Hooft lines, expressed as22:

Wqe [C] = exp
(
iqe

∮
C
a
)
, Tqm [C] = exp

(
i2πqm

∮
C
ã
)
. (2.90)

With our deliberate inclusion of the 2π factor in the ’t Hooft operator, we ensure
that the magnetic charge, denoted as qm, follows quantisation in a manner similar
to the electric charge qe, such that qm ∈ Z. The logic behind this becomes apparent
when the Wilson line is taken along a closed curve. When considering this scenario,
the curve can be envisioned as the boundary of two distinct surfaces, namely X2

and X ′
2. This relationship can be presented as:

Wqe [C] = exp
(
iqe

∮
C
a
)

= exp
(
iqe

∫
X2
f
)

= exp
(
iqe

∫
X′

2

f

)
, (2.91)

where in the second equality we use Stokes’ theorem.
Considering the orientation of the surfaces X2 and X ′

2, the equation above leads
to:

1 = exp
(
iqe

∫
Σ2=X2∪X′

2

f

)

= exp (i2πqeQm(Σ2)) = 1. (2.92)

Thus, it becomes evident that magnetic charges located within Σ2, as quantified by
Qm(Σ2), assume integral values. Armed with this crucial insight, we can elucidate
the periodic behavior of the field ã, when considering large gauge transformations.
Let us consider the following action:

S[f, ã] =
∫
dDx

(
− 1

4e2fµνf
µν + 1

2 ãµϵ
µνρσ∂νfρσ

)
, (2.93)

where ã can be treated as a Lagrange multiplier to enforce the closure of f .
Next consider this system placed in a manifold characterized by a periodic time

structure, say S1×Ω3, such that ∂Ω3 = S2. A large gauge transformation of ã that

22Physically speaking, Wilson loop – where C is a closed loop – measures magnetic flux through
an enclosed surface Σ which is enclosed by the loop. This scenario is like measuring the magnetic
field lines poking through a surface which is enclosed by an electric current loop which in this case
is the Wilson loop. Similarly, ’t Hooft loop measures electric flux through surfaces they enclose.
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winds the temporal direction: ã0 → ã0 + λ0, leads to:

δS =
∫ L0

0
dx0

∫
d3x

1
2λ0ϵ

0ijk∂ifjk

= 1
2λ0

∫ L0

0
dx0

∫
S2
dSi ϵ

ijkfjk

= −λ0

∫ L0

0
dx0

∫
S2
dS⃗ · B⃗

= −λ0L02πZ, (2.94)

where the last equality follows from the fact that Qm(Σ2) considered in the previous
paragraph are integral magnetic charges located within Σ2 = S223. In other words,
magnetic field lines poking through Σ2 = S2 is quantised as was seen above.

For the invariance of the path integral under such a large gauge transformation,
we shoudl have eiδS = 1. This in turn enforces a condition on λ0 as:

λ0 = n

L0
, n ∈ Z. (2.95)

Such large gauge transformations compactify the field ã as:

ãµ ∼ ãµ + nµ
Lµ
. (2.96)

Applying the above large gauge transformation to the ’t Hooft line as given in
Eq. (2.90) leads to the quantisation of the magnetic charge: qm ∈ Z.

Moreover, by adopting Σ2 = S2 positioned within a purely spatial domain, the
aforementioned charges can be understood to essentially capture the electric and
magnetic fluxes:

Qe(S2) = 1
4

∫
S2
dSµνϵµνρσf

ρσ =
∫
S2
dS⃗ · E⃗ (2.97)

and, concurrently:

Qm(S2) = 1
4π

∫
S2
dSµνfµν = 1

2π

∫
S2
dS⃗ · B⃗. (2.98)

The charged objects under the above charges (objects that links with S2 in D = 4)
are line defects that are extended entirely along the time direction, that is, they
correspond just to electric and magnetic charges at rest in space. Thus, at a given
instant of time, these charges defined in Eq. (2.97) and Eq. (2.98) can detect the
presence of electric and magnetic flux through the surface S2.

23This can also be seen from considering the Dirac quantisation as can be seen in Eq. (L.3).

36



2.2.5 Abelian nature of p-form symmetries for p ≥ 1

Let us consider the unitary topological operators associated with 1-form symmetry
which are supported on (D − 2)-manifolds: U(g,ΣD−2). Then it is easy to see that
they must form an Abelian group since we can pass (D − 2)-dimensional surfaces
past each other without intersection:

U (1)(g′,Σ′
D−2)U (1)(g,ΣD−2) = U (1)(g,ΣD−2)U (1)(g′,Σ′

D−2), (2.99)

where ΣD−2 and Σ′
D−2 are parallel space-like surfaces at different times, acting on

the same Hilbert space. This argument can now be generalised to the case of p-form
symmetries with p ≥ 2. We know that for a p-form symmetry the the topological
operators are supported on a ΣD−p−1 manifold. Now in D-dimensions we can pass
(D − p− 1)-dimensional surfaces past each other without intersection, for example
consider parallel spacelike hypersurfaces of dimension equalling D−p−1 at constant
time. The only obstruction to this arises when p = 0 as in this case infinitely
extended (D − 1)-dimensional surfaces cannot be taken past one another without
having them intersect. Thus, conventional 0-form symmetries can be non-Abelian
as we already know. However, for p ≥ 1, p-form symmetries are always Abelian
[21, 46, 47]. Now since p-form symmetries are always Abelian for p > 0, the only
effective IR action we can write down is the kinetic term for the Goldstones24:

S = − 1
2g2

∫
F ∧ ⋆F (2.100)

where F = dA and above is the generalised Maxwell action.

2.2.6 Spontaneous symmetry breaking of higher-form sym-
metries

In this section we shall discuss spontaneous breaking of continuous 1-form symme-
tries [40, 47,48]. For concreteness, we shall consider the example of QED in D = 4.
For this we shall follow a derivation as given in [28]. Then, we shall present a general
proof of Goldstone’s theorem for SSB regarding continuous p-form symmetries with
p > 1. This will be based on the derivation given in [40].

24If Goldstone bosons are the only massless fields in the IR
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Goldstone mode for SSB of continuous 1-form symmetry

In our quest to understand the Goldstone excitations, we can employ a method
analogous to the approach used for ordinary symmetries, detailed in Sec. (2.1.3).

We begin by considering the Ward identity as given in Eq. (2.56). For the sake
of clarity and to maintain continuity in our discussion, we reproduce it here:

⟨∂µjµν(x)W [C]⟩ = −qe
∫

C
dyνδ(D)(x− y)⟨W [C]⟩. (2.101)

which is obtained by using ⟨δW [C]⟩ = −iqe⟨W [C]⟩ in Eq. (2.56).
To analyze this expression in the frequency domain, we take its Fourier transform,

by integrating over
∫
dDx eipx on both sides. This leads us to:

ipµ⟨jµν(p)W [C]⟩ = qef
ν(p, C)⟨W [C]⟩, (2.102)

after the following identification:

f ν(p, C) ≡
∫

C
dyνeipy. (2.103)

The above Fourier transform is intriguing due to its unique properties. At the
outset, it is generically non-vanishing at p = 0. We can express this as:

f ν(0, C) ≡
∫

C
dyν ̸= 0. (2.104)

Additionally, the transform satisfies:

pνf
ν(p, C) =

∫
C
dyνpνe

ipy

= −i
∫

C
dyν∂νe

ipy = 0, (2.105)

which is valid for any closed curve C. In the last equality above we have used Stokes’
theorem.

Building upon this foundation, consider the expression Eq. (2.102) in the limit
p→ 0:

lim
p→0

ipµ⟨jµν(p)W [C]⟩ = qef
ν(0, C)⟨W [C]⟩. (2.106)

In scenarios where ⟨W [C]⟩ ̸= 0 – which is typically observed in a SSB phase of the
theory – the correlation function ⟨jµν(p)W [C]⟩ should exhibit a pole at p = 0. This
can be seen by first noting that ⟨jµν(p)W [C] ∼ c1(p)[pµf ν(p, C)−pνfµ(p, C)]. This is
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obtained by noting the index structure of the 2-form current on the left hand side and
recalling that it is anti-symmetric in its indices. Now, in SSB: ⟨δaΦ(p = 0)⟩ = d1 ̸= 0,
where d1 is some constant independent of the momentum pµ. To satisfy this we must
have c1(p) ∼ 1

p2 . In other words, we have at zero momentum:

⟨jµν(p)W [C]⟩ ∼ pµf ν(p, C)− pνfµ(p, C)
p2 . (2.107)

This means that there are massless/gapless modes in the spectrum. Their exis-
tence is a direct consequence of the spontaneous breaking of the continuous 1-form
symmetry.

SSB of magnetic 1-form symmetry for QED in D = 4

In this section we shall see that for the case of Maxwell, in D = 4, the Goldstone
modes arising due to the spontaneous breaking of the magnetic 1-form symmetry
is precisely the photon. First let us note that the corresponding conserved current
jρσ ∼ ϵµνρσf

µν creates gapless excitations from the vacuum in the broken phase as:

|G⟩ ∼ jµν(x)|0⟩, (2.108)

where |G⟩ stands for the state corresponding to the Goldstone mode.
To proceed, let us note the free field expansion in terms of ladder operators

satisfying ∂2aµ = 0 25:

aµ(x) = 1
(2π)3

∫ d3p⃗√
2|p⃗|

4∑
λ=1

eµλ(p)
[
aλ(p)e−ipx + a†

λ(p)eipx
]
, (2.109)

where eµλ(p) are four linearly independent polarization vectors – out of which not
all are physical since some of them do not satisfy ⟨0|∂µaµ|0⟩ = 0 (negative norm
states) and other states have zero norms (see [49]). We exclude these to get only
two physical polarisations – say corresponding to λ = 1, 2 in the above equation –
which is the correct number of physical degrees of freedom for the gauge field aµ in

25We work in the Feynman gauge here.
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4D.26 Then, a single photon state is created by:

|λ, p⃗⟩ = a†
λ(p)|0⟩, λ = 1, 2, (2.110)

with the ladder operators satisfying:

[aλ(p), a†
λ′(p′)] = (2π3)δλ,λ′δ(3)(p⃗− p⃗′), λ, λ′ = 1, 2. (2.111)

Next let us compute fµν from Eq. (2.109). We have:

fµν = i

(2π)3

∫ d3p⃗√
2|p⃗|

[
eνλ(p) pµ

[
−aλ(p)e−ipx + a†

λ(p)eipx
]
− (µ↔ ν)

]
,

leading to, ⟨0|fµν = i

(2π)3

∫ d3p⃗√
2|p⃗|
⟨0|aλ(p) [eµλ(p) pν − eνλ(p) pµ] e−ipx. (2.112)

With the above set up, now let us compute the matrix element between |λ′, p⃗′⟩ and
|G⟩ ∼ ϵµνρσf

µν(x)|0⟩

⟨G|λ′, p⃗′⟩ = ⟨0|ϵµνρσfµν(x)|λ′, p⃗′⟩

= i

(2π)3

∫ d3p⃗√
2|p⃗|

ϵµνρσ [eµλ(p) pν − eνλ(p) pµ] e−ipx⟨0|aλ(p) a†
λ′(p′)|0⟩

= i

(2π)3

∫ d3p⃗√
2|p⃗|

ϵµνρσ [eµλ(p) pν − eνλ(p) pµ] e−ipx(2π3)δλ,λ′δ(3)(p⃗− p⃗′),

= i√
2|p⃗′|

ϵµνρσ
[
eµλ′(p′) p′ν − eνλ′(p′) p′µ

]
e−ip′x ̸= 0, (2.113)

where we have normalised the vacuum as: ⟨0|0⟩ ≡ 1.
We see from above that the Goldstone mode has non-vanishing overlap with

a single photon state. Thus, we see that the Goldstone excitation is the photon
itself. This also justifies, robustly, why photon is massless in D = 4: since it is a
Goldstone mode for the spontaneous breaking of the continuous magnetic 1-form
symmetry associated with the conservation of magnetic flux.

26In D-dimensions, a gauge field aµ will have D − 2 physical degrees of freedom. Compare this
to the graviton’s, hµν , degrees of freedom which equals D(D−3)

2 . We see that for D = 4, both of
these have two degrees of freedom.
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Alternative proof for SSB of p-form symmetries

Now we will generalise the proof presented in Sec. 2.1.3 for the case of higher-form
symmetry. As before we shall follow the discussion in [40]. Let us denote the charged
operator under this symmetry to be: W [C] which has support over a p-dimensional
sub-manifold C. The expectation value of this charged operator at long distances
captures the phases of the theory (see appendix K for a discussion). If at long
distances we have:

⟨W [C]⟩ ∼ e−Tp+1Area(C), (2.114)

where Area(C) denotes area (or, volume) of a minimal (p+1)-dimensional hypersur-
face which is enclosed by C – then we are in the symmetric/unbroken phase. This
is the area law criterion.

On the other hand if we have, at long distances:

⟨W [C]⟩ ∼ e−TpPerimeter(C), (2.115)

where Perimeter(C) denotes the volume of the C itself – then we are in the SSB
phase. This is the perimeter law criterion.

Next say we are in the SSB phase. We can re-define W [C] as:

W [C] ≡ eTpPerimeter(C)W [C], (2.116)

where this re-definition removes the perimeter dependence. This operator satisfies
the same Ward identity as was satisfied by its precursor. So, we have:

(d ⋆ j)W [C] = iQδC(x)W [C] (2.117)

where j is a (p+1) form which is the conserved current for the symmetry Q denotes
the charge and δC(x) is a (D− p) form generalised delta-functional with support on
C.27

Next we take C to be a p dimensional plane with infinite extent and consider a
(D − p) dimensional ball BD−p with radius R that intersects C at a single point28,

27This generalised delta functional is defined as:
∫

MD
Ap ∧ δ(D−p)(Cp) =

∫
Cp
Ap which basically

projects the integration of Ap over MD to over Cp ⊂ MD on which δ(D−p)(Cp) ≡ δC(x ∈ Cp) is
supported on (see [50] and appendix J for more details).

28Recall, from the discussion in appendix J that a p-dimensional sub-manifold and (D − p)-
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as depicted in Fig. 2.9. The boundary of BD−p is a (D − p − 1) sphere, that is:
∂BD−p = SD−p−1. This sphere wraps C and R is the perpendicular distance from
C to SD−p−1. Integrating both sides of Eq. (2.117) over BD−p and using Stokes’
theorem we get:

W [C]
∫
SD−p−1(R)

⋆j = iQW [C]. (2.118)

Let us take the vacuum expectation value of both sides of the above expression.
Since we re-defined W [C] in a way so as to remove the perimeter dependence, by
construction W [C] will have a constant expectation value, say d1 independent of R.
So, the correlation function on the left hand side above should behave as,

⟨ji(R)W [C]⟩ = iQd1n
iRD−p−1 (2.119)

where ni is an outward pointing normal vector on SD−p−1. The above equation shows
the existence of a power law correlation implying the presence of long range order in
the system. In other words, we have atleast one massless mode which is precisely the
Goldstone mode arising out of the spontaneous breaking of the continuous p-form
symmetry.

Figure 2.9: Intersection of BD−p and Cp at a point. The boundary of BD−p wis the
sphere SD−p−1 which wraps Cp.

dimensional sub-manifold can intersect at a point, a 0-dimensional sub-manifold, inside a D-
dimensional manifold.
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2.3 Anomalies
In this section, we consider an important novel possibility in the quantum theory
which is absent in the classical theory, namely anomalies.

As alluded to already, around Eq. (2.16), an anomaly arises when the path in-
tegral measure no longer remains invariant under a classical symmetry. So in the
quantum theory these transformations are not symmetries at all.

To give a concrete description of anomalies let us consider the integrated Ward
identity as given in Eq. (2.17) but let us take ⟨Π⟩ = ⟨1⟩ for simplicity. Then, we get,

⟨∂µjµa (x)⟩ = ⟨Aa(x)⟩. (2.120)

Thus, the anomaly function Aa(x), essentially quantifies the extent to which the
current is no longer conserved. Now let us note some terminologies. When, Aa(x)
behaves as a fixed external field, or as a background field, then the resulting anomaly
is termed as a ’t Hooft anomaly. In this case, in some sense we can turn off this
external field and still get a conserved current in the theory. On the contrary, if Aa(x)
behaves as a dynamical field, which can fluctuate, then we cannot simply turn it off
since it now is a fluctuating dynamical operator which we have to integrate over in
the path integral. In this case the resulting anomaly is termed as a Adler-Bell-Jackiw
or ABJ anomaly.

A classic example is to consider a theory of massless Dirac fermions in D = 4.
Let us couple it to electromagnetism, The action is:

S[a, ψ] =
∫
d4x

(
− 1

4e2f
2 + ψ̄

(
/∂ − i/a

)
ψ
)

(2.121)

It is well known that, due to the fermions being massless, the chiral current:
jµA = ψ̄γµγ5ψ is conserved classically. However, upon quantisation we get (see [51]
for a detailed derivation of the anomaly in this theory),

∂µj
µ
A = −k ϵµνρσfµνfρσ = k ϵµνρσJ

µνJρσ (2.122)

where k ≡ 1
16π2 is the anomaly coefficient. In forms notation the above equation

becomes: d ⋆ jA ∼ k f ∧ f ∼ k (⋆J ∧ ⋆J), with J being the conserved 2-form current
associated with the conservation of magnetic flux. Thus, we have an anomaly.

Now let us freeze the electromagnetic sector, or let us not integrate over the
gauge field aµ in the path integral. Then, we can drop the Maxwell term in the
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above action. In this case, F ∧ F on the right hand side of Eq. (2.122) behaves
as a fixed external source which can be turned off to still get a conserved current.
Conferring to our nomenclature: this is precisely a ’t Hooft anomaly.

Let us contrast this case to the scenario when aµ is no more a background gauge
field but rather is a dynamical one and is to be integrated over the path integral.
In this case, there is no way to get a conserved current since we cannot turn off a
dynamical operator, so we get the famous ABJ anomaly [52].

2.3.1 Helicity and Linking

Next let us see what physical insight we can get from Eq. (2.122) in the case of an
ABJ anomaly. Let us consider an integrated version of Eq. (2.122) over some 3D
manifold M3,

∆QA

∆t =
∫

M3
d3x ∂tj

0
A = k∆

(∫
M3

a ∧ da
)
, (2.123)

where QA is the axial charge defined as QA ≡
∫

M3
d3x j0

A and ∆
( ∫

. . .
)

in the last
equality denotes the change in the integral under consideration. The right hand side,
in the last equality, of the equation is defined as the change in helicity associated
with magnetic field lines. It is well known that helicity is a conserved quantity in
ideal systems like in ideal charged fluids [53–55]. Helicity is related to the linking of
magnetic field lines (see [53] for details, and appendix J for a brief overview). Now
for the left hand side, we know that this integral counts the chiral particle number in
the system. So, the content of Eq. (2.123) is: we can change the chirality or, helicity
of our system provided we change the linking of closed magnetic loops along with
it, see Fig. 2.10.
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Figure 2.10: On the left hand side we have change in chirality/helicity, denoted by
∆H, and on the right hand side we have change in the linking of magnetic loops,
denoted by ∆L.

So, this is the physical insight captured by the anomaly equation in Eq. (2.122).
We refer the reader to Sec. 3.3 for applications of anomalies in hydrodynamics.

2.4 Non-invertible symmetries
Let us recall Wigner’s theorem. It states that conventional symmetries or 0-form
symmetries in quantum mechanics are implemented by (anti-)unitary operators.
Such operators were constructed in for example Eq. (2.13) and being unitary these
have inverses. In higher spacetime dimensions and for a general class of symmetries,
this may not be always true. In particular, symmetries can be non-invertible – they
are implemented by conserved operators without an inverse. However, these non-
invertible symmetries lead to new conservation laws, selection rules, and dynamical
constraints on RG flows. Next let us discuss one such non-invertible symmetry in
the very familiar setting of QED in D = 4 couple to massless Dirac fermion.

2.4.1 Non-invertible chiral symmetry in D = 4

Note that, as discussed in Sec. 2.3, the chiral current: jµA = ψ̄γ5γ
µψ obeys the ABJ

anomaly equation,
d ⋆ jA = 1

4π2f ∧ f, (2.124)
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which leads to the non-conservation of jA at the quantum level. Does this mean
there is no hope to have any symmetry principle here? It turns out (see [37,38]) in
this case there still exist a non-invertible symmetry. Let us see below how this is
constructed and how it works out.

Let us first try to get a conserved current out of the anomaly equation. Consider
the following re-definition of the chiral current,

⋆j̃A = ⋆jA −
1

4π2a ∧ da, (2.125)

where due to the anomaly we have the following conservation equation: d ⋆ j̃A = 0.
However, this re-defined current is not gauge-invariant. Normally when such gauge
non-invariant terms are there one tends to integrate these terms to make them gauge-
invariant. So, consider the following operator – in flat spacetime – constructed out
of the redefined current,

Ûα(R3) = exp
[
iα
∫
R3
⋆j̃A

]
= exp

[
iα
∫
R3

(
⋆jA −

1
4π2a ∧ da

)]
(2.126)

This is a nice topological and gauge-invariant operator in flat spacetime. So, in some
sense U(1)A is still a symmetry in flat spacetime. This is reflected in the helicity
conservation law regarding the scattering amplitudes of electrons and positrons – a
selection rule that follows from the U(1)A symmetry (see Chapter 8 of [56]).

However, its topological nature is only true in flat spacetime as for generic space-
times29 the parameter α – which is the level for the Chern-Simons term a ∧ da – is
not properly quantised to make Ûα(M3) gauge-invariant under large gauge trans-
formations and hence it is generally not well-defined (see appendix L for details
regarding quantisation of Chern-Simons level).

Now let us provide an alternative viewpoint on the ABJ anomaly. We will see
that the chiral symmetry is not totally broken by the ABJ anomaly. Rather, it turns
into a non-invertible global symmetry.

29Even in flat spacetimes, if we have a magnetic monopole configuration, then it creates nontrivial
topology, again leading to the violation of the U(1)A symmetry.
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2.4.2 Insights from fractional quantum hall effect

Following the construction in [37], let us focus on the case where the chiral rotation
angle, α, is a fraction of the form:

α = 2π
2N (2.127)

where N is any positive integer. So, under this we have: ψ → e
i

N
γ5ψ. The naive

operator Û 2π
2N

(M3) is still not gauge-invariant, because the Chern-Simons term is
now of the form:

i

4πN

∫
M3

a ∧ da (2.128)

which has a fractional level 1/N .
Note that, condensed-matter theorists can immediately recognise the above CS

term as the effective response action for the fractional quantum Hall (FQH) state
in 1 + 2D with filling fraction ν = 1/N (see [57]).

However, as we saw above, this CS term is not gauge invariant. This begs the
following question: How can a realistic physical system – the fraction quantum hall
system – be described by an action which is not gauge invariant? Again we will take
inspiration from condensed matter to remedy this situation. To be more precise,
the gauge-invariant action for the fractional quantum hall effect is given as:

∫
M3

iN

4π A ∧ dA+ i

2πA ∧ da , (2.129)

where an additional dynamical U(1) gauge field A has been introduced. This new
action (2.129) is gauge-invariant because both the levels are now properly quantised
(see appendix L).

Naively, one is tempted to integrate out A in (2.129) and find A = − a
N

. Substi-
tuting this into (2.129) returns (2.128). Though this manipulation is not globally
correct because both a and A are properly normalized gauge fields with quantized
magnetic fluxes, i.e.,

∮
da,

∮
dA ∈ 2πZ, yet it provides a heuristic understanding of

the relation between them. In any case, in the context of the FQH effect, (2.129) is
the precise, gauge-invariant effective action.

Let us now return to our original setting: QED in D = 4. Motivated by the
above discussion, let us consider the following operator [37, 38]:

D 1
N

(M3) =
∫

M3
[DA]M3 exp

[∫
M3

i
( 2π

2N ⋆ jA + N

4πA ∧ dA+ 1
2πA ∧ da

)]
, (2.130)
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where, we have introduced a new degree of freedom: A. It is an auxiliary 1-form
gauge field. It only lives on the 3-manifoldM3. Hence, it does not introduce any new
asymptotic states in the theory and the theory is still QED in D = 4. Note that, the
bulk physics away from the 3-manifold remains the same. Referring to our previous
nomenclature, D 1

N
(M3) can be viewed as a defect whenM3 extends along the time

direction. This defect operator does not have an inverse since, D 1
N
×D− 1

N
̸= 1 (see

Fig. (2.11)). To see this note that, D†
1
N

= D− 1
N

. Though naively one might think
that the rational axial phase rotation with α = 1

N
can be undone by the negative of

it, that is, for α = − 1
N

, we show below that this is not the case in the sense that
the operator D 1

N
does not have an inverse. Consider the following multiplication,

D 1
N
×D− 1

N
=
∫

[DA]M3 [DĀ]M3 exp
[∫

M3

(
iN

4π A ∧ dA−
iN

4π Ā ∧ Ā+ i

2π (A− Ā) ∧ da
)]
,

̸= 1,

(2.131)

which shows that D 1
N

is not unitary. An intuitive way to understand this is that
Eq. (2.130) takes the form of an integral of unitaries, which is not unitary (for more
details see [27]).

Figure 2.11: Non-invertibility of defect operators as D 1
N

(M3)×D− 1
N

(M3) ̸= 1.

The above operator D 1
N

is gauge-invariant because both Chern-Simons terms
have properly quantised levels. It can also be shown to be topological30.

Now let us discuss about its action on charged operators. Let us take M3 = S3

for simplicity. Now just like a usual 0-form defect operator, when this defect operator
is collapsed onto a corresponding charged local operator, it also performs an axial

30Showing this is rather involved and uses a procedure called half-gauging and hence we do not
review it here. Instead we refer the readers to the original articles: [37, 38]
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rotation by an angle α = 1
N

:

Uα(S3)O(x) = eiαQO(x) (2.132)

where S3 wraps x.
So, the continuous 0-form axial symmetry is broken by the ABJ anomaly to a

0-form non-invertible symmetry where the defect opearators as in Eq. (2.130) are
labelled by rationals.

In the construction above we only looked at α = 1
N

. References [37,38] generalise
the above construction for α = p

N
with gcd(p,N) = 1. Interestingly, [41, 58] take a

complimentary viewpoint to the above construction. Instead of a fractional rotation
angle α, they consider a continuous angle and introduce a compact scalar field θ

which is the additional degree of freedom living only on the defect manifold. This
allows for the construction of a locally conserved current and to prove a Goldstone’s
theorem for this non-invertible symmetry.

Let us conclude this chapter by noting that such non-invertible symmetries
are abundantly present in lower dimensional setting where they are better under-
stood. For instance, any diagonally-invariant 2D RCFT admits topological defect
lines (TDLs) associated to each primary operator [59]. These TDLs are also called
Verlinde lines in this setting. These Verlinde lines can be both invertible and non-
invertible. Consider, 2D Ising model which is the M(4, 3) minimal model. It has a
Verlinde line referred to as the N -line associated with the spin field primary. This
Verlinde line is a non-invertible line which is responsible for the famous Kramers-
Wannier duality in the Ising model [60].

49



CHAPTER 3

Hydrodynamics

Let us say we are interested in the time-dependent, long distance and late time
physics of a strongly interacting quantum field theory at finite temperature. A
natural question to ask is: what are the degrees of freedom we need to keep track
of to understand this low energy dynamics? To answer this question we need to
understand on the evolution time scales of two kinds of quantities: non-conserved
and conserved. Most quantities, which are non-conserved, evolve very rapidly, say
with a time scale of the order of microscopic scales which in this case could be the
temperature: ωtypical ∼ O(T ). On the contrary, imagine creating a lump of conserved
charges in the system say, a lump of U(1) charges. Let us say this is represented by
the blue blobs in the solution given in Fig. 3.1. This lump of conserved charges will
evolve rather very slowly owing to their conservation: ωconserved ∼ O(L−1), where L
is the length scale associated with a blue blob.

Figure 3.1: Evolution of conserved charges in a system.
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So, conserved quantities are crucial to understanding the late time, low energy
dynamics of a system. These will be natural degrees of freedom of our low-energy
effective field theory.

Let us begin by considering a system which has conserved stress-energy tensor,
T µν and also enjoys a global U(1) symmetry with jµ as the associated conserved
current. The conservation equations are,

∂µT
µν = 0, ∂µj

µ = 0, (3.1)

Given these conserved quantities, there exists a well-established framework to con-
struct the low-energy effective field theory, called hydrodynamics. First of all, note
that, usual hydrodynamic variables are: T – temperature, uµ = (ut, u⃗) – fluid veloc-
ity, normalised as uµuµ = −1, and µ – chemical potential. Next we have constitutive
relations, which express the above microscopic conserved quantities as functions of
the above hydrodynamic variables. In the thermal equilibrium state of the system,
the fluid variables are constant functions of the spacetime. Hydrodynamics is con-
cerned with small fluctuations of the system around the thermal equilibrium, and
hence we consider derivative expansions of the hydrodynamic variables. That is, we
write the constitutive relations order-by-order in derivatives of T, uµ, µ, in a speci-
fied derivative scheme. Due to the smallness of the fluctuations, zeroth-order term
is greater than the first-order term and so on. The constitutive relations are1:

T µν = (ε+ p)uµuν + pgµν +O(∂T, ∂uµ, ∂µ) jµ = nuµ +O(∂T, ∂uµ, ∂µ), (3.2)

where ε is the energy density, p is the pressure and n is the charge density. When
no deviations from thermal equilibrium are allowed, we are in the regime of ideal
hydrodynamics. The leading order pieces in the above relations are the constitutive
relations for ideal hydrodynamics. Conventionally, for dissipative hydrodynamics,
one considers first-order derivative terms in the gradient expansion and the coeffi-
cients appearing here are called transport coefficients. Some examples are viscosities,
resistivities, conductivities, etc. These transport coefficients have to be computed
from the microscopics2 and in this way dissipation can be interpreted as a trans-

1These so called constitutive relations are obtained by first decomposing the relevant tensors into
irreducible tensor structures and then using hydrodynamic assumptions to express the coefficients
of these irreducible tensor structures as functions of the fluid variables.

2These transport coefficients are computed using what are called Kubo formula (see appendix
I) which relate these coefficients to correlators of operators in the microscopic theory.
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fer of energy from the IR to the UV degrees of freedom through these transport
coefficients.

Now the central idea of hydrodynamics is to use the conservation equations as
equations of motion to study the evolution of the hydrodynamic variables. In this
way, we can study perturbations away from equilibrium. Consider the following
perturbations around the respective equilibrium values3: T0 → T0 + δT , u⃗0 → δu⃗0

and µ0 → µ0 + δµ. Now we consider plane wave solutions of the form, δT, δu⃗, δµ ∼
e−iωt+ik⃗·x⃗. Plugging this into the Eq. (3.1) and going to momentum space gives us
algebraic equations of a degenerate system of equations which can be solved by
demanding vanishing of its determinant to obtain dispersion relations of the form,
f(ω, k⃗) = 0. Normally, these are of the following two kinds:

ω(k⃗) = ±vs |⃗k|+O(k2) ω(k⃗) = −iDk2, (3.3)

where the first mode is the sound mode with vs being the speed of sound and the
second mode is the diffusive mode with D being the diffusion constant (see Fig.
3.2).

Figure 3.2: Two typical modes in hydrodynamics. The left hand side is the diffusive
mode where a lump of charge slowly diffuses over time. The right hand side is a
sound mode where the lump propagates in time and as it propagates it undergoes
diffusion.

Based on the above discussion, we see that, hydrodynamics is a genuine effective
field theory in the sense that it can be improved by an order-by-order in derivative
expansion of the fluid variables. Furthermore, it is entirely dictated by the global
symmetries of the system. The universality of hydrodynamics is based on the fact
that, in the long wavelength limit, the microscopic details are washed out and the
effective theory is fully described by the equations of state and a few parameters in

3Equilibrium values are denoted by the subscript 0. Note that, in equilibrium, the fluid velocity
is chosen to be u⃗0 = 0, that is, the fluid is at rest.
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the gradient expansion: the transport coefficients. The validity regime of hydrody-
namics is in time scales much larger than the mean free time and in length scales
much larger than the mean free path.

For more details we refer the reader to [12] which is an excellent review on this
subject.

In the next section we shall briefly review ordinary non-anomalous magneto-
hydrodynamics and then move on to the modern formulation of non-anomalous
magnetohydrodynamics in terms of higher-form symmetries [30].

3.1 Brief review of ordinary MHD
Traditionally, if we couple the conservation equations given in Eq. (3.1) to Maxwell
equations in some perturbative scheme then the resulting equations describe mag-
netohydrodynamics. The equations are:

∂B⃗

∂t
= ∇× E⃗, ∂E⃗

∂t
+∇× B⃗ = −σE⃗ + 8kµAB⃗, (3.4)

where k is the anomaly coefficient, µA is the chiral chemical potential and the term
8kµAB⃗ is the anomaly-induced term which we can neglect in this chapter where
we are focusing only on non-anomalous magnetohydrodynamics. E⃗ and B⃗ are the
electric and magnetic fields respectively. σ denotes the conductivity.

Now let us analyse the electric and the magnetic fields. Note that, in a conducting
medium, the electric field is short-ranged and gets screened. This is the phenomenon
of Debye screening. Let us consider the local chemical potential, µ(t, x⃗). Here this
can be thought of as being the electric potential4. Hence, in equilibrium we have the
electric field as gradient of the chemical potential, Eλ ∼ ∂λµ ∼ O(∂). Thus, this is
how Debye screening is manifested that is in a gradient expansion the electric field
doesn’t appear at zeroth order in derivative but rather in first order in derivatives
of µ. As far as the magnetic field is concerned it can be as larger as we want, that
is, B ∼ O(1). So, in this case, conventionally, the magnetic field serves as another
hydrodynamic variable5.

4This is because, the usual chemical potential is defined as: µ =
(

∂E
∂N

)
V,S

which comes from the
first law of thermodynamics: dE = TdS−pdV +µdN . The definition suggests that, in equilibrium,
at constant entropy and volume, µ is the energy cost reuqired to add an infinitesimal particle to
the system. Now if we are dealing with electric charges, then N = Q and µ is like the electric
potential.

5Let us contrast this case to the case of an insulator where there are only dipoles but no
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Now let us consider the familiar example of a relativistic system – e.g. an in-
teracting complex scalar field – with an conventional U(1) global symmetry. A
microscopic Lagrangian for the system might take the form:

S =
∫
d4x [−(∂µϕ)∗(∂µϕ) + V (ϕ∗ϕ)] , (3.5)

where we have frozen the electromagnetic sector and are only focusing on the charged
matter sector. The dynamical case will be studied in the next section.

Within the hydrodynamic expansion, we can express the current operator jµ(x)
for the symmetry in thermal equilibirum to leading order in derivatives (and linear
order in the chemical potential) as follows:

jt = χµ+ · · · ji = −σ (∂iµ− Ei,ext) + · · · . (3.6)

Let us try to motivate these constitutive relations from elementary electrodynamics.
First of all, we neglect stress-energy fluctuations thereby freezing the temperature
T 6. So, in thermal equilibrium µ(t, x⃗) – the chemical potential is the basic degree
of freedom. χ – the charge susceptibility – is a thermodynamic quantity. The
equation for the time component of the current is just the definition of static charged
susceptibility. The expression for ji in terms of gradients of the chemical potential is
called the Fick’s law which states that the flow of current is proportional but opposite
to the gradient of the of chemical potential. Ei,ext is an external applied electric field,
and σ is a transport coefficient called the conductivity, which determines the amount
of current flow in response to the applied electric field. This is the familiar Ohm’s
law.

Since σ determines the amount of current flow in response to an applied electric
field. This leads to the Kubo formula (see appendix I) which determines σ in terms
of a real-time current correlation function:

σ = lim
ω→0

( 1
−iω

GR
jx,jx(ω, k⃗ = 0)

)
(3.7)

Furthermore, σ also determines the diffusion constant of the system: imposing

electric charges. Here, µ is no longer a relevant hydrodynamic variable. If we are interested in
the hydrodynamics of such a system subject to external electric and magnetic fields, we are free
to choose B ∼ O(1) and E ∼ O(1) in the derivative expansion, as due to the absence of electric
charges the electric field is no more screened.

6As the energy density is a function of the temperature so freezing it implies freezing the
temperature.
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current conservation ∂µjµ = 0 and setting Ei,ext = 0, we find the following dispersion
relation for the diffusion of charge:

µ(t, x) ∼ µ0e
−iωt+ikx ω = −iDk2 D = σ

χ
. (3.8)

It is a non-trivial statement about hydrodynamics that the quantity obtained from
the Kubo formula in Eq. (3.7) determines real-time dynamics as in Eq. (3.8).

3.2 Relativistic MHD and higher-form symmetry
We now turn to the main question of interest, the description of relativistic magne-
tohydrodynamics in terms of symmetry principles. For an illustrative microscopic
description consider the quantum field theory of Maxwell electrodynamics in four
dimensions, coupled to electrically charged matter, as described e.g. by the following
action:

S =
∫
d4x

[
−(Dµϕ)∗(Dµϕ) + V (ϕ)− 1

4e2f
µνfµν

]
, (3.9)

with Dµϕ = ∂µϕ− ie aµϕ and fµν = ∂µaν − ∂νaµ.
Note that if we place this theory at finite temperature, the degrees of freedom

of a thermally excited plasma are electrically charged particles, interacting via elec-
tric and magnetic fields, see Fig. 3.3. We would like to understand the universal
hydrodynamic theory describing the infrared finite-temperature physics. This frame-
work is usually called relativistic magnetohydodynamics (see e.g. [61] for a review).
As discussed in the previous section, it is traditionally constructed by considering
Maxwell’s equations coupled to a charge current that is assumed to be in thermal
equilibirum following relations similar to Eq. (3.6).

Figure 3.3: Interaction of charged particles in a plasma at fintite temperature.

Note however that such a construction relies on knowledge of the microscopic
equations of motion, and implicitly requires the existence of a separation between
the electromagnetic degrees of freedom aµ and the thermalized ϕ degrees of freedom.
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Such a separation may be well-justified if the electromagnetic coupling e is weak;
however in this work we would like to study systems where e is generally O(1), and
is not parametrically small in any sense.

More generally, it would be conceptually satisfying to have a construction of
MHD that relies only on global symmetries and does not require any access to
microscopic degrees of freedom such as aµ, or treating the magnetic field as a hy-
drodynamic variable. Such a formulation is made possible by the understanding of
higher-form global symmetries [21] in electrodynamics. Indeed, as described in the
previous chapter, the global symmetry of Maxwell electrodynamics is a 1-form sym-
metry associated with the conservation of magnetic flux lines. This global symmetry
results in a conserved current Jµν :

∂µJ
µν = 0 Jµν = 1

2ϵ
µναβfαβ. (3.10)

This 1-form symmetry is the true global symmetry of electromagnetism, and is a
useful starting point for an understanding of the phases of electrodynamics and will
serve as an invaluable guiding principle to organise the low energy effective field
theory.

In particular, it was shown in [30] that one indeed can reformulate MHD using
this higher-form symmetry – i.e. magnetic flux conservation – as the organizing
principle, resulting in a framework constrained only by effective theory and global
symmetries. Here we present only the results of the construction, directing readers
to [30] for a detailed discussion.

It is useful to consider coupling an external 2-form source bµν to (3.9) as

S → S +
∫
d4x bµνJ

µν . (3.11)

Now let us write the 2-form current given in Eq. (3.10) as, Jµν = ϵµνρσ∂ρaσ where
aλ is the gauge potential of electromagnetism. Next we put this expression of Jµν

in Eq. (3.12) and do an integration by parts so that the derivative now hits the bµν .
We get,

∆S[b] =
∫
d4x aσϵ

µνρσ∂ρbµν =
∫
d4x aσj

σ
ext, (3.12)

where jσext ≡ ϵµνρσ∂ρbµν is interpreted as an external current such that the field
strength db behaves like an external background electric charge density to which the
system responds.
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Now from (3.10) we see that in terms of the conventional electric and magnetic
fields, we have

J ti = Bi J ij = ϵijkEk (3.13)

Next we consider fluctuations about the thermal state with no background mag-
netic field as in [62]. So, we can expand the magnetic flux current in constitutive
relations in a higher-form analogue of Eq. (3.6), that is we add an extra index to the
constitutive relations in Eq. (3.6):

J ti = Ξµi J ij = −ρ (∂iµj − ∂jµi + (db)0ij) , (3.14)

where we have worked only to linear order in the magnetic field, and have ignored
the stress-energy tensor; the full construction can be found in [30]. The notation
here has been picked to highlight the parallel with conventional hydrodynamics in
(3.6), and we now unpack it again using concepts from elementary electrodynamics.

Here µi is a vector-valued chemical potential which can be thought of as the
thermodynamic variable conjugate to magnetic flux. Ξ is a thermodynamic param-
eter that relates the conserved density Bi to its chemical potential: in conventional
language it is the magnetic permeability µ 7.

b is an applied source as in (3.12). As shown above, db can be understood as
an applied external electric charge current, jµext = ϵµαβγ∂αbβγ, often called the “free
charge current” in elementary electrodynamics.

Finally, ρ is a transport coefficient – it is precisely the resistivity. Now let us
motivate this identification, for more details see [30]. Let us compare the second
equation in Eq. (3.14) to the the second equation in Eq. (3.6). These two equations
are reciprocal of each other in the sense that, in the former case: j⃗ ∼ σE⃗ext and in the
latter case: E⃗ ∼ ρ⃗jext. Thus, when interpreted as a response-source equation (see
appendix I), the former implies that σ is the transport coefficient which determines
the current flow response to applied external electric field – this is precisely the
definition of conductivity. Transport coefficient ρ determines the response of the
electric field to an applied external current density – this is precisely the definition
of resistivity. However, as noted previously, the latter scenario is based only a
symmetry-based approach but the former scenario makes sense in some sort of a
weak coupling regime. This suggests that the Kubo formula of resistivity (see below)

7In fact, in elementary electrodynamics µi is precisely the field often called Hi, i.e. the object
whose curl is given by the free charge current. Also, recall, B = (mag. permeability)× H. Here we
choose to use the notation µi here to highlight the analogy with a conventional chemical potential.
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in terms of correlations of the electric field is a universal formula unlike the Kubo
formula for conductivity. This idea was noted in [30] and we explore it further in a
recent work by computing both the above transport coefficients from classical lattice
simulations [63].

Since ρ determines the response of the electric field to an applied external current
density. Indeed, it can be obtained from the following Kubo formula (see [64]):

ρ = lim
ω→0

( 1
−iω

GR
Jxy ,Jxy(ω, k⃗ = 0)

)
(3.15)

Note that this is a correlation function for the electric field, as we have Jxy = Ez.
Also, if we consider the equation of motion ∂µJ

µν = 0, then (setting the source
db = 0) we find the following diffusive dispersion relation for the magnetic field

Bz(t, x) ∼ B0e
−iωt+ikx ω = −iDk2 D = ρ

Ξ . (3.16)

This is the familiar expression for magnetic diffusion in a plasma. As already noted
in the previous section, this is a non-trivial statement about hydrodynamics that the
quantity obtained from the Kubo formula in (3.15) determines real-time dynamics
as in (3.16).

3.2.1 Phase structure of dynamical electromagnetism at fi-
nite temperature

In this section we shall describe the symmetries of non-anomalous dynamical elec-
tromagnetism at finite temperature. These ideas are mostly well-known, the precise
explanation we present in terms of higher-form symmetry was explained in [65],
following work in the hydrodynamic context from [33–35].

For this let us put the scalar QED action given in Eq. (3.9) at finite temperature
that is we take the background spacetime to be of the form M≡ S1 × R3.

Next let us integrate out the matter. This will result in an effective action for
aµ = (aτ , ai) where the Maxwell part will remain as it is with only the temporal com-
ponent, denoted by Euclidean time τ , now running along the compactified thermal
cycle with radius β.

Now let us ask: what are the symmetries of this effective action? To answer this,
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first let us obtain the effective action.
∫
Da exp(iΓ[a]) =

∫
DaDϕDϕ∗ exp

[
i
∫
d4x

(
− 1

4e2f
2 − ϕ∗(D2 +m2)ϕ

)]
, (3.17)

where f 2 = fµνfµν and m is the mass of the complex scalar field. Now since the
original action is quadratic in ϕ we can evaluate the path integral exactly using the
formula,

∫
DϕDϕ∗ exp

[
i
∫
d4x (ϕ∗Mϕ+ JM)

]
= N

detM exp(iJM−1J), (3.18)

where N is a normalisation constant, M denotes the differential operator and J is
an external source. So, for the scalar QED Lagrangian we find,

∫
Da exp(iΓ[a]) = N

∫
Da exp

[
i
∫
d4x

(
− 1

4e2f
2
)] 1

det (−D2 −m2) . (3.19)

The above equation will be satisfied if,

exp
[
iΓ[a] + i

∫
d4x

f 2

4e2

]
= N

det (−D2 −m2) ,

implying, iΓ[a] + i
∫
d4x

f 2

4e2 = −ln[det (−D2 −m2)] = −Tr[ln (−D2 −m2)],

(3.20)

For simplicity let us just focus on evaluating the time component in the above
determinant and consider: aµ = (aτ , 0). Using the worldline formulation of QFT
(see [66]), the above effective action can be written in terms of a path integral over
paths as,

Γ[a] = −ln[det (−D2 −m2)] =
∫

[dX] exp(−mL(X)) + i
∫
X
a (3.21)

where X denote a particle worldline and L(x) is its length function. To evaluate
this path integral we have to add particle and anti-particle contributions running
along the directions of τ and opposite to τ respectively (see Fig. 3.4).

59



Figure 3.4: Particles and anti-particles running along and opposite to τ .

We get,

Γ[a]τ = e−mβ+iaτβ + e−mβ−iaτβ = e−mβ cos(βaτ ), (3.22)

where the subscript τ denotes the temporal contribution to the effective action.
Thus, the full effectve action becomes,

S[a] = β
∫
d3x

(
c1(daτ )2 + c2fijf

ij + c3 cos(βaτ )
)

(3.23)

where the exterior derivative d is now for the three non-compact spatial directions,
fij = ∂iaj − ∂jai and i, j = 1, 2, 3 denotes the spatial directions.

As we saw above, the cosine term comes from electric worldlines wrapping the
finite temperature direction. This captures the physics of Debye screening and we
can define the Debye mass as c3 ≡ e−mβ. Note that aτ is a periodic variable with
periodicity β−1. The 3D photon remains massless, while the time component of the
photon picks up a mass due to the coupling to charged particles moving around
the Euclidean time circle. This is precisely the Debye mass above. Now in 3D, the
Poincaré dual of a 1-form is a scalar (see appendix B). So, we get ai ↔ ψ where
ψ is a massless scalar and is precisely the Goldstone mode. The magnetic field is
now Bi = ∂iψ. Thus, ψ is the magnetic dual of the 3D photon. Being a Goldstone
mode, the dual effective action, written in terms of ψ, will contain only derivative
of ψ implying a usual shift symmetry for this mode: ψ → ψ + Λτ (xi).

Now let us see how Jµν decomposes in the dimensionally reduced theory on
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S1 × R3. On R3 we have,

U(1)(0) 0-form symmetry → J iτ → Bi = Jτi is magnetic 3-vector, (3.24)

U(1)(1) 1-form symmetry → J ij → E i = 1
2ϵ

ijkJjk is electric 3-vector. (3.25)

Also, Jτi = ϵijk∂jak and J ij = ϵijk∂kaτ . Now, in equilibrium, to leading order in
derivatives, E i vanishes, due to Debye screening. As discussed above, the U(1)(0)

symmetry is spontaneously broken in the normal phase8 of the theory (see also [65]).

3.3 Anomalies in hydrodynamics
Now let us discuss some important applications of anomalies [67,68]. From Eq. (2.122),
we have,

∂ρA
∂t

= −8k E⃗ · B⃗ (as, fµν f̃µν = 4E⃗ · B⃗) (3.26)

where we have taken j⃗A = 0 and ρA is the chiral charge density. Above is the local
change rate in chirality. Chirality is defined in the following way: if a particle has
its spin and momentum aligned then it is called a right-handed particle while if its
spin and momentum are anti-aligned then it is called a left-handed particle.

Let us consider a Dirac sea of massless fermions with charges e and −e in the
presence of a background magnetic field, B⃗. In absence of external fields, chirality
is conserved and we have two disconnected Fermi surfaces, consisting of left-handed
and right-handed fermions. The chirality of the fermions can be changed by adia-
batically by switching on external fields, in particular an electric field parallel to a
magnetic field.

Consider Fig. 3.5. On the left image the system is chirally balanced and so the
current generated by movement of right-handed particles along B⃗ is cancelled by
the current generated by movement of left-handed particles opposite to B⃗.

Now let us consider turning on an electric field E⃗ parallel to B⃗. This would
now lead to a change in chirality. The positive charges will move along E⃗ and the
negative charges will move opposite to E⃗. Thus, due to this imbalanced chirality
there will be a net electric current parallel to B⃗. This phenomenon of generation of

8In fact, the normal phase of the theory is defined as the phase where the U(1)(0) symme-
try is spontaneously broken as in this case the magnetic field lines are unscreened. While in a
superconducting phase these field lines are confined.
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an electric current parallel to an external magnetic field is called the chiral magnetic
effect (CME).

Let us consider the energy balance of this chirality change right-handed fermion
requires removing a particle from the left-handed Fermi surface and adding it to
the right-handed Fermi surface. The energy cost for this process will be: µA dNA,
where µA is the chiral chemical potential and NA is the chiral particle number. Now
multiplying this energy by the rate of chirality change will give us the energy needed
per unit time. This energy, if there are no losses in the system, will be equal to the
power delivered by the CME current. This power will be equal to the product of
the current with the electric field. Thus,

∫
d3x j⃗V · E⃗ = µA

dNA

dt
= −8kµA

∫
d3x E⃗ · B⃗ (3.27)

Since E⃗ is parallel to B⃗ we get in the limit of E⃗ → 0,

j⃗V = −8kµAB⃗, (3.28)

where j⃗V is called the density of the CME current9.

9Note the minus sign above follows from our convention.
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Figure 3.5: The chiral magnetic effect. The left hand side depicts a chirally balanced
system and hence no net electric current generation. The right hand side depicts a
chirally imbalanced system leading to the generation of an electric current parallel
to the external magnetic field.

There is an analogous effect called the chiral seperation effect (CSE), which gives
rise to an axial current parallel to an external magnetic field: j⃗A = −8kµelB⃗, where
µel is the electric potential: Eλ = ∂λµel.
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CHAPTER 4

Holography

In this chapter we shall briefly review the AdS/CFT conjecture [5]. We assume the
reader is familiar with it and hence we will be very brief and qualitative.

4.1 Holographic principle
Let us first state the holographic principle and explain heuristically what holography
means. Consider an isolated system of mass E and entropy S0 in an asymptotically
flat spacetime1. Let A be the area of a sphere that encloses the system. Let MA be
the mass of a Black Hole of horizon area A. Since the isolated system is not a black
hole, for gravitational collapse to happen we must have E ≤MA.

Let us add (MA − E) of energy to the system, keeping A fixed. Furthermore,
let us say the final state is a black hole. By the second law of thermodynamics we

1An asymptotically flat spacetime is a spacetime which reduces to flat Minkowski spacetime
when we take the radial coordinate r →∞.
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have,

∆S ≥ 0 ⇒ SBH − S0 − S ′︸︷︷︸
entropy of

added energy

≥ 0,

implying, SBH ≥ S0 + S ′︸︷︷︸
entropy of

added energy

(4.1)

Thus, Eq. (4.1) implies [69,70],

S0 ≤ SBH = A

4ℏGN

If we assume that a black hole is the most massive object inside an area A (since
the area A depends upon the mass MA) then the above inequality implies that the
maximal entropy inside a region boundary by area A, in a gravitational setting, is

Smax = A

4ℏGN

(4.2)

Now let us recall the definition of von Neumann entropy:

S = −Tr(ρ lnρ)

where ρ denotes the density matrix for the system. For a system with anN−dimension
Hilbert space, we have (since maximal entropy implies minimal information.):

Smax = lnN

Thus we get:

ρmax = 1
N
1 (4.3)

as every state is equally distributed. Therefore, “the effective dimension” of the
Hilbert space for a system inside a region of area A is bounded by (in the presence
of gravity):

lnN ≤ A

4ℏGN

= A

4 l2p
(4.4)
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where lp is the Planck length.
Now in typical physical systems, we have: [dim ∼ e# of dofs]

# of dofs ∼ lnN (4.5)

Then, the number of degrees of freedom (dofs) of any quantum gravity system inside
area A ≤ A

4 lp2 The bound is certainly violated in non-gravitational systems whose
number of degrees of freedom (which is equal to ln N) is proportional to the volume
rather than the area. For example, consider a 3D lattice of spins with lattice spacing
‘a’. Let the total volume be V and the non-hypotenuse length between two lattice
sites be L. Then2,

# of spins = V

a3 = A

a2 ·
L

a
≥ A

l2p
(for large L)

N = 2V/a3 ⇒ Smax = V

a3 ln 2 ≥ SBH (for largeV ) (4.6)

Thus, we see that, Quantum Gravity leads to a huge reduction of the number of
degrees of freedom. Quantum Field Theory has infinite degrees of freedom propor-
tional to volume V but when it is coupled to gravity, then the number of degrees of
freedom is reduced. According to the Holographic principle,

“In Quantum Gravity, a region of boundary area A can be fully described by no
more than A

4ℏGN
= A

l2p
degrees of freedom, that is, 1 degree of freedom per Planck

equation.”

4.1.1 Renormalisation Group flow

In a local and well-defined quantum field theory, the behavior of observables is
dependent on the specific energy scale under consideration. To rigorously examine
how the couplings in the theory evolve when the energy scale µ changes, one can
analyze the beta-function equation [71]:

βg(g(µ)) = µ∂µg(µ), (4.7)

where g denotes the coupling parameter.
The key insight is that the beta-function equation Eq. (4.7) is entirely local with

2For a system of n spins, say spin 1
2 , we have : N ∼ 2n.
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respect to the energy scale µ, and can be interpreted as a dynamical equation in
an augmented dimension µ. This allows us to extend the system’s dependence
from the original spacetime coordinates (t, x) to an enlarged coordinate set (t, x, µ).
In this framework, the beta-function equation serves as the governing equation in
the extra µ-dimension. To better grasp this concept, one can think in terms of the
Renormalization Group (RG) flow, particularly in the Wilsonian sense [72]. Altering
the energy scale can be viewed as a coarse-graining process or, equivalently, as
employing a different unit of measurement, as depicted in Fig. 4.1. By aligning
system snapshots along the energy scale dimension, one effectively constructs a
(D+1)-dimensional spacetime3. In this spacetime, as one moves from the boundary
towards the infrared region, the length scale undergoes dilation, akin to the coarse-
graining procedure.

Figure 4.1: A pictorial representation of coarse-graining and re-interpretation of the
energy scale as an extra dimension. Figure taken from [1,2]

Now we will switch gears and present below the GKPW dictionary [17,18]:

Zgrav[ϕi0(x); ∂M] =
〈

exp
(∑

i

∫
ddxϕi0(x)Oi(x)

)〉
CFT on ∂M

(4.8)

where i runs over all the light fields in the bulk effective field theory, and correspond-
ingly over all the low-dimension local operators in CFT and Zgrav is the gravitational
partition function in asymptotically AdS space. This dictionary can be expanded in
to the following table:

3Say, if originally, (t, x) corresponded to a D dimensional spacetime
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Table 4.1: The Holographic dictionary

Boundary Bulk

CFT in R1,d−1 ←−−−−−−→ AdSd+1 gravity

Conformal Symmetry SO(2, d) ←−−−−−−→ AdSd+1 isometry SO(2, d)

U(1) global symmetry ←−−−−−−→ U(1) gauge symmetry

Global SUSY ←−−−−−−→ Local SUSY

Representations of conformal
group SO(2, d)

←−−−−−−→ Representations of the
isometry group SO(2, d)

Conformal local operators ←−−−−−−→ Bulk fields

Scalar operators (Ô) ←−−−−−−→ Scalar fields (ϕ(x))

Vector operators (Ĵµ) ←−−−−−−→ Vector fields (AM)

Tensor operators (T̂µν) ←−−−−−−→ Tensor fields (hMN)

Deformations
∫
ddxϕ0(x)Ô ←−−−−−−→ ϕ(x) in bulk (dual to Ô) has

a boundary value ϕ0 (which
is the source for Ô in the
boundary theory)

4.2 Membrane paradigm
If we consider the AdS radius r as an energy scale within the framework of Wilso-
nian renormalization, it’s intriguing to suggest that low-energy dynamics are encap-
sulated by the deep interior regions of the AdS spacetime, as depicted in Fig. 4.1.
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In finite-temperature systems, the IR cutoff is set by the presence of a black hole
horizon. Given that the Quantum Field Theory at long distances is described by
hydrodynamic principles, it’s tempting to consider, using holography, the area near
the black hole horizon, often referred to as the “stretch horizon”, as kind of a fluid.
This fluid could potentially be identical to that in the dual QFT [73–75].

Upon more rigorous scrutiny of the fluid/gravity correspondence, it becomes
evident that the notional fluid at the horizon and the fluid modeled by the dual
Quantum Field Theory (QFT) are generally distinct entities [76–79]. This distinc-
tion arises because the hydrodynamic properties of the dual QFT are influenced
not just by the stretch horizon, but also by the AdS spacetime. However, certain
hydrodynamic characteristics of the so-called fictitious fluid at the horizon can be
related to those in the dual QFT [75]. This correlation is possible due to the pres-
ence of conserved currents along the radial direction in AdS (along the r-direction).
These currents facilitate the transfer of hydrodynamic information from the stretch
horizon to the boundary, enabling a mapping to the dual QFT.
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CHAPTER 5

Anomalous electrodynamics, 1-form symmetry and holography

In this chapter we will discuss the finite temperature physics of a magnetohydrody-
namic chiral plasma, i.e. an electrodynamic plasma with an axial U(1)A current jA
that is afflicted by an Adler-Bell-Jackiw anomaly:

∂µj
µ
A = − 1

16π2 ϵ
µνρσfµνfρσ . (5.1)

Here it is understood that this expression arises in a theory of dynamical electro-
magnetism, and fµν is the field strength of this fluctuating gauge field. We stress
that the non-conservation of the axial current is given by a dynamical operator.

While the analysis presented here will be from a more formal, holographic, per-
spective, the system has clear phenomenological interest, with applications to baryon
number violation [80–84], primordial magnetic fields [67, 85, 86], magnetised baryo-
genesis [87–89], and Dirac and Weyl semi-metals in condensed matter systems (for
a review see [90]).

As described in [80], a quantity of interest in U(1) anomalous processes is the
relaxation rate of the chiral charge density j0

A. This is what we seek to compute
here. In our opinion a fully universal hydrodynamic treatment of this problem has
not yet been given; indeed it is somewhat unclear whether one should exist.

We begin by carefully stating the problem and distinguishing it from the large
existing literature on anomalous hydrodynamics. To orient ourselves, it is helpful
to first imagine a weakly-coupled realization of the physics that we are interested
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in. Consider the following Lagrangian describing a massless Dirac fermion coupled
to dynamical electromagnetism with photon a:

S[a, ψ] =
∫
d4x

(
− 1

4e2f
2 + ψ̄

(
/∂ − i/a

)
ψ
)

(5.2)

We will be interested in placing this system at finite temperature and understanding
the hydrodynamic description.

What are the global symmetries of this system? It has a 1-form U(1)(1)-symmetry
associated with the conservation of magnetic flux:

∂µJ
µν = 0 Jµν ≡ 1

2ϵ
µνρσfρσ (5.3)

We will denote a p-form U(1)-symmetry by U(1)(p) [21].
The symmetry associated with vector phase rotations of the ψ field ψ → eiαψ

is gauged and does not correspond to a global symmetry. Classically, the theory
appears to have a conventional (i.e. 0-form) U(1)(0)

A -symmetry associated with ψ →
eiαγ

5
ψ; however at the quantum mechanical level the conservation of the associated

current is broken by the Adler-Bell-Jackiw anomaly Eq. (5.1). Note that the right-
hand side of this expression is an operator, as f is a fluctuating dynamical field.
This should be contrasted with the case of a ’t-Hooft anomaly, where the right-hand
side of a current-conservation equation involves a fixed external source that can be
set to zero.

We are interested in understanding the realization of the symmetries at finite
temperature. This is the domain of hydrodynamics, which describes how conserved
quantities relax towards thermal equilibrium. Hydrodynamics in the presence of a
’t-Hooft anomaly is a rich and well-studied field [91,92] (see also [90]). The situation
with the anomaly above is somewhat different. As the right-hand side is a fluctuating
operator, there is no longer a strictly universal sense in which the axial current is
conserved. Thus it appears that the only true global symmetry of the system is the
1-form symmetry Eq. (5.3). A naive application of the conventional formalism of
hydrodynamics applied to this system would then only involve a study of the 1-form
symmetry in thermal equilibrium. Such an analysis was performed in [30], where it
was shown that the resulting framework is essentially a reformulation of conventional
relativistic magnetohydrodynamics, i.e. a description of an electrodynamic plasma (a
holographic description of this plasma from this point of view was given in [31,62]).
The only conserved quantity here is the usual magnetic flux, and this description of
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course makes no reference to the axial current whatsoever.
Nevertheless, to us this situation seems somewhat unsatisfactory; after all, from

an applied viewpoint, it seems clear that the finite-temperature dynamics of Eq. (5.2)
has a rich and physically relevant phenomenology. This physics is usually accessed
by coupling the equations of (ungauged) hydrodynamics with a ’t Hooft anomaly
to weakly coupled electrodynamics “by hand” [85, 93]; in particular see [94] which
constructs a hydrodynamic theory in a formal expansion in the anomaly coeffi-
cient. These constructions are not fully universal, and the domain of validity of
the resulting theories is not entirely clear. In particular, recent work using classi-
cal lattice simulations [80, 81] that computes the charge relaxation rate ΓA shows a
disagreement with the predictions of the above hydrodynamic theories, suggesting
that short-distance fluctuations play an important role that is not captured by the
non-universal theories above.

It is difficult to come up with a universal hydrodynamic theory for this model. In
fact, towards the end of our analysis, we will see that we have reasons to believe that
such a universal hydrodynamic description might not exist for such a set up. For now
we will explore this problem in a new way, by using holographic duality to explore
aspects of the finite-temperature dynamics of a system in the same universality
class as the weakly coupled theory described above. To construct our holographic
dual theory, we must first carefully understand the symmetries in a manner that is
independent of the description. One route to understand this is to note that the
right-hand side of the expression above can be written in terms of the current Jµν

for the 1-form symmetry:

∂µj
µ
A = k ϵµνρσJ

µνJρσ k ≡ 1
16π2 (5.4)

We may now try to describe the dynamics of a system with a conserved 2-form
current Jµν and a 1-form axial current jµA that satisfies the above non-conservation
equation; this may be thought of as a kind of intertwining of the (genuine) 1-form
symmetry and the (broken by the anomaly) 0-form symmetry. (To our knowledge,
this particular intertwining does not appear to have a precise universal characteriza-
tion in the field theory literature; however see further discussion in the conclusion).1

We will first construct a holographic model that possesses the above symmetries.

1The works: [37, 38] present a precise field-theoretical characterization of the ABJ anomaly in
terms of non-invertible symmetries. In the next chapter, we shall use some of this technology to
come up with an effective theory from chiral MHD.
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We will then perform a preliminary investigation of the resulting holographic system.
In particular, we study the system in the presence of a background magnetic field.
We will explicitly compute the charge relaxation rate in this model and compare it
both to elementary hydrodynamics with weakly coupled electromagnetism and to
recent lattice results; we will find agreement with hydrodynamics at low magnetic
fields, but disagreement at large magnetic fields; this suggests that UV fluctuations
are important for a quantitative determination of this relaxation rate.

A short outline of the rest of this chapter is as follows. In Section 5.1 we review
a simple hydrodynamic discussion of the charge relaxation rate. In Section 5.2 we
introduce the holographic model that we will study in the remainder of the chapter.
In Section 5.3 we place this model at finite temperature and study some aspects of
static response (i.e. the analogue of the charge susceptibility). In Sections 5.4 and
5.5 we study finite-frequency response (both analytically at small frequencies and
numerically) and we conclude with a brief discussion in Section 6.5.

5.1 Hydrodynamic calculation of relaxation rate
We begin our study by defining the relaxation rate that we will compute and using
elementary physical arguments to understand what may control it; at the end we
will compare the resulting physics to our holographic construction.

We first review the usual hydrodynamic computation of this charge relaxation
rate. This is done in the usual framework of “chiral MHD”. As described above, this
means we assume a certain anomalous contribution to the dynamical electric current
and couple it perturbatively to an MHD sector. We particularly highlight [94], where
the authors perform a hydrodynamic study where the anomaly coefficient k is treated
perturbatively; they compute the chiral charge relaxation rate ΓA for small k. In
this limit, they find that, ΓA ∼ k2 B2 with B being the magnetic field.

We review a similar calculation below: this is physically instructive but as dis-
cussed above is not truly universal. This calculation is a very slight generalization
of the one presented in [80].

In our notation the anomaly takes the form

∂µj
µ
A = −2kfµν f̃µν = kϵµνρσJ

µνJρσ, (5.5)

where jµA is the chiral current, F̃µν is the Hodge dual of the field strength Fµν . (In
the case of a single Dirac fermion studied in [80] we have 2k = − e2

8π2 , where e is the
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electromagnetic coupling.)
For the homogeneous case (see [80]), we have j⃗A = 0 and thus the anomaly

equation becomes (for j0
A ≡ ρ = χµA),

χ
dµA
dt

= −8k
V

∫
d3x E⃗ · B⃗, (as, fµν f̃µν = 4E⃗ · B⃗) (5.6)

where µA is the space-independent axial chemical potential, ρ the axial charge den-
sity, and χ the axial charge susceptibility, which in principle could depend on the
temperature and background magnetic field.

Thus, we have the chiral relaxation rate as,

dµA
dt

= − 8k
χV

∫
d3x E⃗ · B⃗, (5.7)

Following [80] we give below the chiral MHD equations as,

∂B⃗

∂t
= ∇× E⃗, ∂E⃗

∂t
+∇× B⃗ = −σE⃗ + 8kµAB⃗. (5.8)

where σ is the electric conductivity of the plasma, and we have assumed that the
density of electric charge is zero, and the plasma has zero velocity. The last term:
8kµAB⃗, is the contribution from the chiral magnetic effect (CME)2. This system of
equations is complemented by the anomaly equation above (Eq. (5.7)).

Now if we neglect the time-derivative of E⃗ in (5.8) we can express E⃗ in terms of
B⃗ using (5.8). Then, we get for long-range fluctuations of the gauge fields (that is
∇× B⃗ → 0),

dµA
dt

= − 8k
σχV

∫
d3x

(
8kµAB⃗

)
· B⃗ = −64k2B2

σχ
µA ≡ −ΓAµA, (5.9)

where in the last equality ΓA is defined as the rate of chirality non-conservation in
the presence of an external homogeneous magnetic field B⃗. The solution of Eq.(5.9)
goes as,

µA(t) = e−ΓAtµA,0 (where µA,0 is an integration constant) (5.10)

2Note that there is a factor of 2 difference in the CME between the expression here and that
of [80]. This is owing to the fact that in [80], µA couples to j0

A

2 while here in the definition of µA,
we have chosen it to couple to j0

A.
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From Eq.(5.9) we see that,

ΓA = 64k2B2

σχ
. (5.11)

i.e. the relaxation rate is quadratic in the magnetic field. We will compare this
elementary discussion to an explicit holographic calculation later.

We note that in [80,81], the authors perform a numerical lattice computation in
determining the chiral charge relaxation rate ΓA. They also found it to be quadratic
in the magnetic field B. As mentioned above, it was observed that the pre-factor in
ΓA ∼ B2 is approximately 10 times that of the theoretical predictions of the same
pre-factor from hydrodynamics. Calculating this pre-factor in a strongly coupled
yet solvable holographic model and comparing it to the existing literature serves as
a pragmatic motivation for this study.

5.2 Overview of holographic model
In this section, we will present a bulk holographic theory which realizes the pattern
of symmetry non-conservation in Eq. (5.4). We will begin by presenting the bulk
action and demonstrating the deformed Ward identity; in the next section, we will
describe how we arrived at this theory from dualizing a different bulk action. (For
a summary of our conventions and notation see Appendix A.)

5.2.1 Holographic bulk action

We desire a bulk theory with the following properties: it should have a bulk massless
2-form BMN ; as explained in detail in [62], this is associated with a global 1-form
symmetry in the boundary, as BMN is dual to the boundary 2-form current Jµν .
The action should also have a vector field which we call EM . EM is dual to a vector
operator representing the axial current jµA on the boundary; this vector operator
should be understood as the axial current, and it is not conserved. Thus, EM
should not enjoy a bulk gauge symmetry. (We will see in a later section that EM is
of the form AM − ∂Mϕ, where AM and ϕ enjoy (bulk) gauge symmetries in such a
way that EM is gauge-invariant). However, the divergence of jµA on the boundary
is not completely unconstrained; rather its divergence should be related to the a
double-trace operator of the 2-form current Jµν by the following anomaly equation

∂µj
µ
A = k ϵµνρσJ

µνJρσ (5.12)
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where k is a parameter that should enter the bulk action.
We now present a bulk action which satisfies the above properties3:

S[E,B] =
∫
d5x
√
−g

[
−1

4G
2 − 1

12H
2 + 16k2 (E ·H)2 − k

3 ϵPQRMNH
PQRELH

LMN

]
.

(5.13)

Here G = dE and H = dB are the field strengths of E and B respectively, and
we have defined H2 = HPQRHPQR, (E ·H)2 = ELH

LMNEPHPMN . The theory has
an invariance under a 1-form gauge symmetry:

B → B + dΛ (5.14)

with Λ an arbitrary 1-form. E clearly enjoys no explicit gauge symmetry; note
however that the “mass” terms for E have a specific structure, involving couplings
to H that are parameterized by a single coupling k. We will show that this structure
encodes the anomaly Eq. (5.12). This action should be understood as being correct
to order O(E2); as we will show, the anomaly structure Eq. (5.12) above is only
correctly represented to that order. Below we will also present an algorithm that
can be used to obtain an action that is correct to all orders in E, though we will
not require it for our purposes.

Motivated by studies pertaining to similar anomalies, a bulk action involving
anomaly-inspired mass terms for gauge fields was studied in [95] (see Eq.(30) in
[95]). There, the anomaly is thought to be sourced by a dynamical non-Abelian
gauge field, which does not have an associated 1-form symmetry. In our case, the
dynamical gauge field is Abelian, and thus the non-conservation of the current is
precisely related to a 2-form current with universal dynamics; thus our action takes
a more constrained form (and describes somewhat different physics) compared to
that in [95].4

The variation of the action above with respect to B results in the following

3In the action below one can certainly have higher order terms consistent with the symme-
try structure described above but they won’t contribute to the holographic calculation which we
describe at linear order in k.

4We note that [95] also consider external vector Abelian magnetic fields; however these fields
act as sources and are non-dynamical.
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equations of motion:

− 1
2∂L

(√
−gHLMN

)
− k ∂L

[√
−g ϵLMNQREPHPQR

]
− k

3∂L
[√
−g HPQR

(
ELϵPQRMN + EMϵPQRNL + ENϵPQRLM

)]
= 0. (5.15)

and similarly, we have the following equations for the variation with respect to E:

1√
−g

∂M
(√
−gGML

)
= −32k2HLQREPHPQR + k

3 ϵPQRMNH
PQRHLMN . (5.16)

Note that if k = 0 these equations of motion decouple into free Maxwell equations
for E and B respectively. Here we work only to linearized order in E.

We would now like to interpret this bulk physics holographically. We begin with
the 2-form B. As usual, we may construct the boundary 2-form current Jµν by
varying the action with respect to the boundary value of Bµν (see appendix A for
convention regarding the boundary current defined below)

Jµν(x) = 2 δS

δBµν (∞) (5.17)

The on-shell variation of the boundary value of the action may be reduced to a
variation with respect to the radial derivative ∂rBµν , and we thus find

Jρσ(x) = 2 lim
r→∞

δS

δ (∂r (Bρσ)) (5.18)

= lim
r→∞

√
−g

[
−Hrρσ − 2k ϵrρσµνEαHαµν −

2k
3
[
Hαβγ{Erϵαβγρσ + Eρϵαβγσr + Eσϵαβγrρ}

]]
(5.19)

Here the first term is standard [62]; the others arise from the physics associated with
the anomaly. We have omitted terms of order O(E2); this is because in this work
we will study only the linearized equations of motion of E.

Note that the radial component of the bulk wave equation Eq. (5.15) for B2

ensures that we have
∂µJ

µν(x) = 0 (5.20)

i.e. that the 2-form current is conserved.
We now turn to E. We may construct the dual current as in Eq. (6.89):

jµA = δS

δEµ (∞) = −
√
−gGrµ (r →∞). (5.21)
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The last expression is standard for the boundary operator dual to a vector field.
Let us now understand the non-conservation of jµA, i.e. let us derive Eq. (5.12)

holographically at linear order in O(E). From the above expression for the 2-form
current at the boundary let us now compute5 k J ∧4 J :
[
−k4 ϵαβµνJ

αβJµν
]

=
(√
−g
)2

(
8k2
√
−g

EαHαµνH
rµν − k

4 ϵαβµνH
rαβHrµν

)
(5.22)

(Note the explicit appearance of factors of the determinant of the metric; this arises
from the fact that from the point of view of the bulk Jαβ is not a tensor, as can be
seen from its definition in Eq. (5.18)). Now let us consider L = r in Eq. (5.16),

32k2HrµνEαHαµν − k
√
−gϵαβµνHrαβHrµν = −∂σGσr, (σ ̸= r) (5.23)

Usually in AdS/CFT this component of the bulk Maxwell equations of motion
is a radial constraint that enforces the conservation of the current jµA; here we see
that the current is instead not conserved. Using Eq. (5.22) we see that it is equal to

∂σj
σ
A = ∂σ

(√
−gGσr

)
= kϵαβµνJ

αβJµν (5.24)

i.e. equivalent to Eq. (5.12) as desired.
This shows that this holographic theory is in the correct universality class, by

which we mean that it correctly links the non-conservation of the 1-form axial current
with a bilinear constructed from the 2-form current Jµν . The fact that E has no
gauge symmetry at all in the bulk is dual to the fact that its non-conservation is
given in terms of a dynamical operator that cannot be turned off. We note also that
the intermediate steps are somewhat complicated and rely on the detailed structure
of the action Eq. (5.13). The reader who is willing to take this action as a given and
is interested only in results can now skip to the next section, where we compute the
holographic observables of interest.

In the remainder of this section we describe how we construct this action through
bulk Poincaré duality.

5Note, the boundary metric is flat. Thus we have the following expression relating boundary
and bulk Levi-Civita tensors, ϵrabcd =

√
−g ϵabcd.
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5.2.2 Dualizing the action

Our approach to constructing the bulk action is essentially the bulk dual of the
operation of “gauging a global U(1) symmetry”; i.e. we begin by considering the
very well-studied bulk action [95–97]6 for a theory with two 0-form global symmetries
U(1)A × U(1)V with a mixed ’t Hooft anomaly between them:

S5 [A1, V1] =
∫

M5

(
−1

2F2 ∧ ⋆F2 −
1
2G2 ∧ ⋆G2 − 4k A1 ∧ F2 ∧ F2 −

4k
3 A1 ∧G2 ∧G2

)
.

(5.25)

Here A1 and V1 are two 1-form potentials which are holographically dual to the
0-form axial and vector currents respectively, and F2 = dV1 and G2 = dA1. The
action is invariant (up to a boundary term) under the following gauge symmetries:

A1 → A1 + dΛ0 V1 → V1 + dλ0. (5.26)

The boundary variation of the above gauge-transformation is nonzero, and it is well-
understood [96] that this means that the dual field theory has a ’t Hooft anomaly
for the axial current:

∂µj
µ
A = kϵµνρσ

(
FµνFρσ + 1

3GµνGρσ

)
(5.27)

where F and G are the field strengths of the fixed external sources for the vector
and axial currents respectively.

We now want to study a field theory where we have “gauged” the global symmetry
U(1)V . In this operation the boundary gauge field V1 will become dynamical, and
we will thus lose the 0-form symmetry U(1)V . However we expect to obtain a new
1-form symmetry (and 2-form current) associated with the conserved magnetic flux
in our new U(1) gauge theory; in holographic duality, we thus expect to obtain a
new 2-form bulk field which we call B2.

It is thus very natural to expect that the bulk operation equivalent to “gauging”
on the boundary is to perform a bulk Poincaré duality on the bulk 1-form poten-
tial V1, replacing it with a 2-form B2. Similar operations have a long history in
AdS/CFT, and may be viewed as a higher-form generalization of [99]; see [100,101]

6We also found the exposition in [68,98] useful.
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for applications of such holographic operations in hydrodynamics. Also, see [102,103]
for recent work in a similar holographic context.

We now describe the dualization process below, which proceeds essentially as it
would in flat space. This is a well-posed operation, but to the best of our knowledge
the details are not present in the literature for a non-linear action of the form
Eq. (5.25) even in flat space. We will see some interesting wrinkles arising from the
presence of the mixed Chern-Simons term.

Poincaré dualization

We follow the usual algorithm to dualize V1, as can be found e.g. in Appendix B
of [104] (see also [105]). The action does not depend on V1 directly, but only on
its field strength F2; it is thus possible to treat F2 as the dynamical variable rather
than V1. However we then need to impose its closure dF2 = 0 through the use of a
Lagrange multiplier B2.

We construct the parent action S5p by adding the Lagrange multiplier term’s
action (Sc) to the action S5. We get for S5p,7

S5p [A1, F2, B2] =
∫

M5
−1

2F2 ∧ ⋆F2 −
1
2G2 ∧ ⋆G2 − 4k A1 ∧ F2 ∧ F2 −

4k
3 A1 ∧G2 ∧G2︸ ︷︷ ︸

S5

+
∫

M5
dB2 ∧ F2︸ ︷︷ ︸
Sc

, (5.28)

where,
Sc =

∫
M5

dB2 ∧ F2 =
∫

M5
d(B2 ∧ F2)−B2 ∧ dF2 (5.29)

Then, δB2Sc = 0 gives dF2 = 0 (closure of F2). Now imposing the equation of motion
δF2S5p = 0 yields,

⋆F2 = dB2 − 8k (A1 ∧ F2), (5.30)

The standard procedure is to now solve for dB2 as a function of F2 and eliminate
the latter from the action entirely.

7In the action S5p, F2 is now a dynamical field.
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Gauge symmetries of S5

Before doing so, we discuss the symmetries: note that the realization of the 0-
form gauge symmetry associated with A1 has changed, as F2 is now closed only
on-shell. In the action as given in Eq. (5.28), consider instead the following gauge
transformations,

A1 → A1 + dΛ0, B2 → B2 + 8kΛ0 F2 . (5.31)

It is easy to show that with the above gauge transformations, the action S5p as given
in Eq. (5.28) is gauge-invariant but the equation of motion Eq. (5.30) is not (off-
shell). It fails to be gauge-invariant by a term 8kΛ0 dF2; since F2 is an independent
dynamical field now, it is not necessarily a closed 2-form unless we impose B2’s
equations of motion. This may appear problematic: the action is gauge-invariant
under the gauge transformations but the equations of motion are not off-shell gauge-
invariant under the same gauge transformations. We shall remedy this below by
introducing a new auxiliary field ϕ0. The equations of motion of ϕ0 shall serve as
a constraint (which we refer to as a gauge-invariant constraint) for imposing the
closure of F2 ∧ dF2.

Alternatively, we can introduce ϕ0 by the following argument. Taking a step
back, let us first consider variations of the action S5 as given in Eq.(5.25) w.r.t. the
gauge transformations as given in Eq.(5.26). We have,

δS5 = 8kΛ0F2 ∧ dF2 + 8k
3 Λ0 G2 ∧ dG2 + boundary terms, (5.32)

where the first two terms on the LHS vanish owing to the fact that both F2 and G2

in S5 are closed 2-forms. This then ensures the invariance of S5 (up to boundary
terms) under gauge transformations (5.26). However, in the dualized form S5p, F2

is an arbitrary 2-form and not necessarily closed. So, due to the non-closure of
F2 we now may or may not have F2 ∧ dF2 = 0 (off-shell). Therefore, in addition
to imposing the closure of F2 by a Lagrange multiplier B2 we have to add to S5p

another Lagrange multiplier to impose the constraint F2 ∧ dF2 = 0 (gauge-invariant
constraint). From the degree of the term F2 ∧ dF2, it is clear that the Lagrange
multiplier in this case would be a 0-form, say ϕ0. Furthermore, as S5p has to remain
gauge-invariant under A1 → A1 +dΛ0, ϕ0 has to be a gauge field with its own gauge
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transformation given as, ϕ0 → ϕ0 + Λ0 (by construction). Then, we have S5p as,

S5p =
∫

M5
−1

2F2 ∧ ⋆F2 −
1
2G2 ∧ ⋆G2 − 4k A1 ∧ F2 ∧ F2 −

4k
3 A1 ∧G2 ∧G2 + dB2 ∧ F2

−
∫

M5
8k ϕ0 F2 ∧ dF2, (5.33)

which can be re-written as,

S5p =
∫

M5
−1

2F2 ∧ ⋆F2 −
1
2G2 ∧ ⋆G2 − 4k (A1 − dϕ0) ∧ F2 ∧ F2 −

4k
3 A1 ∧G2 ∧G2 + dB2 ∧ F2,

(5.34)

with E1 ≡ A1 − dϕ0 being a vector field. Note that the emergence of the gauge-
invariant field E1 is precisely the structure anticipated earlier, which we now see
emerges naturally when demanding off-shell gauge-invariance. We also note that
the equations of motion of ϕ0 are redundant – they follow automatically from the
equations of A1.8

Now let us give below the gauge transformations of A1 and ϕ0,

A1 → A1 + dΛ0, ϕ0 → ϕ0 + Λ0. (5.35)

With these gauge transformations the F2 equation of motion, F2 = −⋆[dB2 − 8k (E1 ∧ F2)],
remains gauge-invariant even off-shell, and everything is consistent with the Poincaré
dualization procedure. Clearly, S5p is also invariant under (5.35) up to boundary
terms.

The conclusion of the above discussion is that one should be careful while per-
forming Poincaré dualization, as at times one may be required to impose a gauge-
invariant constraint along with the usual closure constraint.

Inverse operation

Let us now proceed to eliminate F2 from the action. We can now invert Eq. (5.30)
to get F2 in terms of E1 and B2 as below. See Appendix B.2 for details of this

8Another way to understand ϕ0 is that eiϕ0 is an operator that is charged under the bulk 0-form
“instanton” current ⋆5F ∧F ; in a conventional formalism where F = dA, this current is conserved
identically. However, in this formalism its conservation must be enforced by ϕ0’s equations of
motion.
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calculation.

FMN = − c̃1

6 ϵPQRMNH
PQR + 8c̃1k E

PHPMN + 64
3 c̃1k

2 HPQRELϵPQRL[MEN ].

(5.36)

where HPQR = ∂PBQR + ∂QBRP + ∂RBPQ (as, H3 = dB2) and c̃1 ≡ 1
1+64k2E2 .

Note that, if in S5 we have k → 0, F2’s equations of motion become F2 = −⋆dB2

and if we take k → 0 in the above equation we get F2 = − ⋆ dB2. FMN above has
been written in such a way so that it is manifestly anti-symmetric.

Now let us substitute Eq.(5.36) into Eq.(5.34) to obtain below the full non-linear
bulk action,

S5p =
∫

M5

√
−g d5x

[{
−H

2

12 −
k

3 ϵPQRMNH
PQREDH

DMN + 16k2
(

(E ·H)2 − 2
3E

2H2
)

−64k3ϵPQRMNE
PELH

LQREJH
JMN + 256k4

(
E2(E ·H)2 − 1

3E
4H2

)}
c̃2

1

+
{
k

3 ϵ
PQRMNEPGQRGMN −

1
4G

2
}]

. (5.37)

Note that truncating the above action to O(E2) results in the quadratic action in
Eq.(5.13) above, which we will use for the remainder of this study, in which we
consider only small fluctuations about equilibrium.

Now we give below the full 2-form current Jµν obtained from the action above
Eq.(5.37),

Jρσ = 2 lim
r→∞

δS5p

δ (∂rBρσ)

= lim
r→∞

√
−g

[
−Hrρσ − 2kϵrρσµνEηHηµν −

2k
3 Hαβγ

(
Erϵαβγρσ + Eρϵαβγσr + Eσϵαβγrρ

)
+ 64

(
k2 + 32k4E2

)
Eα (ErHαρσ + EρHασr + EσHαrρ)− 8

(
1 + 32k2E2

)
k2E2Hrρσ

− 256k3EαE
κHκβγ

(
Erϵαβγρσ + Eρϵαβγσr + Eσϵαβγrρ

)]
c̃2

1. (5.38)

Now one can, in principle, check that the anomaly structure of Eq.(5.12) can be
obtained from the above 2-form current by performing an order-by-order (in k)
comparison of coefficients on both sides of Eq.(5.12). We have checked this explicitly
to O(k3).
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A note on the role of boundary terms

Often one needs to be careful while considering variations of a holographic bulk ac-
tion like the one given in Eq. (5.37). This is because to have a well-defined variational
principle for the bulk action one needs to add appropriate counter-terms to cancel
off the boundary terms resulting from variation of the action. This goes under the
scheme of holographic renormalisation (see [106] for details). In this work, though,
we haven’t been careful while considering variations of the action in Eq. (5.37), we
give a qualitative argument below as to why addition of local counter-terms won’t
affect the general results obtained here. However, a careful detailed analysis of holo-
graphic renormalisation of the action in Eq. (5.37) is an interesting direction for a
future work to rigorously justify the argument given below.

Usually, these boundary terms: δ(boundary) and hence the counter-terms are
local function of sources. We saw above that the bulk action in Eq. (5.37) correctly
reproduces the ABJ anomaly structure Eq. (5.12). Note that, as argued above, this
anomaly is of the ABJ kind, that is, the right hand side of Eq. (5.12) – the operator
J2 – is a dynamical operator and hence is not a local function of the sources. On
the contrary, if we were dealing with anomaly of the ’t Hooft kind instead, then in
that case, the operator appearing on the right hand side of the ’t Hooft anomaly
equation, say J2, will now be a local function of the sources. Hence, the addition of
local counter-terms, to get a well-defined variation principle, will affect anomaly of
the ’t Hooft kind but we believe they won’t affect the anomaly of the ABJ kind.

5.3 Finite temperature physics: zero frequency
With the holographic action in hand, we will now study the plasma that is obtained
from the realization of these symmetries at finite temperature. To heat up our
system, we consider the background metric given by the usual planar black brane
background

ds2 = r2
(
−f(r)dt2 + dx⃗2

)
+ dr2

r2f(r) , (5.39)

where f(r) = 1 −
(
rh

r

)4
and where we are working in units where the AdS radius

R = 1. The Hawking temperature of the black brane is T = rh

π
. We are interested

in the physics in the presence of a background magnetic field in the z direction, i.e.
a configuration where ⟨J tz⟩ = −b. From the holographic dictionary Eq. (5.19), we
see that this means that Hrtz ̸= 0; solving the equations of motion Eq. (5.15) we see
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that the background profile is:

Hrtz = b

r3 , Hrtz = − b
r
, E = 0. (5.40)

Note that, here we are working in the so called probe limit – where we neglect the
backreaction of the magnetic field onto the geometry. In other words, we assume
the above background profile (Eq.(5.40)) doesn’t affect the metric components given
in Eq.(5.39). This is justified in the high-temperature limit; at low temperatures
this backreaction cannot be neglected, and one would replace the background with
a magnetic brane solution [107, 108]. Now we will begin our study by computing
the static axial charge susceptibility χ in the presence of the background magnetic
field. For a theory with a conserved charge, the susceptibility can be defined as:

χ = ∂⟨jtA⟩
∂µA

, (5.41)

leading to, ⟨jtA⟩ = χµA (in the linear regime), (5.42)

where µA is the axial chemical potential. In the case of a non-conserved axial current
the precise definition of the axial chemical potential as a dynamical hydrodynamic
variable is somewhat more subtle (see e.g. [96]), but in thermal equilibrium it can
be understood as the value of the axial source At, which coincides with Et when all
fields are static.

5.3.1 Susceptibility

In this section we shall consider the low frequency limit of Eq.(5.16) and compute
the axial charge susceptibility in this model. From Eq.(5.16) we find,

δEr = (iωr2)∂r (δEt) + 4kbf∂r (δBxy)
r2ω2 − 64b2k2f

, (with L = r in Eq.(5.16)) (5.43)

∂2
r (δEt) + iω∂r (δEr) +

(3
r

)
∂r (δEt) +

(3
r

)
iωδEr = 64b2k2

r6f
δEt −

4kbiω
r6f

δBxy,

(with L = t in Eq.(5.16)) (5.44)
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Now plugging δEr from Eq.(5.43) in Eq.(5.44) and taking the ω → 0 limit we
obtain9,

∂2
r (δEt) +

(3
r

)
∂r (δEt)−

64b2k2

r6f
δEt = 0 . (5.45)

General solution

Let us define the following dimensionless combination of temperature and back-
ground magnetic field for later convenience:

ζ(b/T 2) ≡

√
r4
h − 64b2k2

r2
h

=
(

b

T 2π2

)√√√√ π4

(b2/T 4) − 64k2. (5.46)

In the small magnetic field limit (with T fixed), that is b→ 0, we have,

ζ(b/T 2) →
b→0

1− 32k2

π4

(
b

T 2

)2

− 512k4

π8

(
b

T 2

)4

+O
( b

T 2

)6
 (5.47)

In the large magnetic field limit (with T fixed), that is b→∞, we have,

ζ(b/T 2) →
b→∞

8ik
π2

(
b

T 2

)
− iπ2

16k

(
b

T 2

)−1

− iπ6

4096k3

(
b

T 2

)−3

+O
( b

T 2

)−5
 (5.48)

Notice from the definition of ζ (in Eq.(5.46)), it appears that ζ = 0 could be a point
of non-analyticity for the susceptibility χ(ζ); we shall show below that χ is actually
a function of ζ2 and not of ζ and hence is analytic at ζ = 0.

Solving Eq.(5.45) analytically we find the general solution as,

δEt(r)gen = d1 r
1+ζ
h r−1−ζ

2F1

(
−1

4 −
ζ

4 ,
1
4 −

ζ

4; 1− ζ

2; r
4

r4
h

)

+ d2 r
1−ζ
h r−1+ζ

2F1

(
−1

4 + ζ

4 ,
1
4 + ζ

4; 1 + ζ

2; r
4

r4
h

)
, (5.49)

where d1 and d2 are integration constants. From Eq.(5.49) we will fix them such
that δEt(r) is regular near the horizon (or in the interior). The boundary condition

9Note that we could have obtained Eq.(5.45) by directly taking ω → 0 limit in Eq.(5.44). This
is because in ω → 0 limit δEr and δEt decouple.
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we seek is δEt(r = rh)gen = 0. We define

δEt(r, rh, b, k, d3)|p ≡ r1+ζ
h r−1−ζ

2F1

(
−1

4 −
ζ

4 ,
1
4 −

ζ

4; 1− ζ

2; r
4

r4
h

)

+ d3 r
1−ζ
h r−1+ζ

2F1

(
−1

4 + ζ

4 ,
1
4 + ζ

4; 1 + ζ

2; r
4

r4
h

)
, (5.50)

(such that δ(Et)gen = d1 δEt(r, rh, b, k, d3)|p and d3 := d2/d1)

Then we evaluate δEt(r = rh, rh, b, k, d3)|p at the horizon and find,

δEt(r = rh, rh, b, k, d3)|p =
Γ
(
1− ζ

2

)
Γ
(

3
4 −

ζ
4

)
Γ
(

5
4 −

ζ
4

) +
d3 Γ

(
1 + ζ

2

)
Γ
(

3
4 + ζ

4

)
Γ
(

5
4 + ζ

4

) (5.51)

We further fix d3 as

d3(rh, b, k) = −
Γ
(
1− ζ

2

)
Γ
(

3
4 + ζ

4

)
Γ
(

5
4 + ζ

4

)
Γ
(
1 + ζ

2

)
Γ
(

3
4 −

ζ
4

)
Γ
(

5
4 −

ζ
4

) (5.52)

Note that, d3 is chosen such a way that δEt(r = rh, rh, b, k, d3)|p = 0 or in other
words, δEt(r = rh)gen = 0.10

Regular solution

After d3 is fixed as above we obtain the following regular solution,

δEt(r) = r1−ζ
h r−1−ζ Γ

(
1− ζ

2

)[
r2ζ
h 2F̃1

(
−1

4 −
ζ

4 ,
1
4 −

ζ

4; 1− ζ

2; r
4

r4
h

)
−

2−ζ r2ζ Γ
(

3
2 + ζ

2

)
Γ
(

3
2 −

ζ
2

) 2F̃1

(
−1

4 + ζ

4 ,
1
4 + ζ

4; 1 + ζ

2; r
4

r4
h

) , (5.53)

where 2F̃1 is the regularized hypergeometric function.
Now we examine Eq.(5.53) in the vanishing magnetic field limit that is for b = 0,

δEt(r) →
b→0
−1 + r2

h

r2 +O
( 1
r2

)
. (5.54)

10Note that, δEt(r = rh, rh, b, k, d3)|p is a ‘particular’ solution (hence the notation δEt|p) which
satisfies the boundary condition δEt(r = rh)gen = 0.
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Now let us look at the boundary expansion of Eq.(5.53)
(
up to O

(
1
r2

))
),

δEt(r) →
r→∞

(
− 1
r4
h

) 1
4 − ζ

4

r1−ζ
h

(− 1
r4
h

) ζ
2

r2ζ
h − tan

((
1
4 + ζ

4

)
π

) √
π Γ

(
1− ζ

2

)
Γ
(

1
4 −

ζ
4

)
Γ
(

5
4 −

ζ
4

)


+ 2
r2

(
− 1
r4
h

) 3
4 − ζ

4

r5−ζ
h

(− 1
r4
h

) ζ
2

r2ζ
h − cot

((
1
4 + ζ

4

)
π

) √
π Γ

(
1− ζ

2

)
Γ
(
−1

4 −
ζ
4

)
Γ
(

3
4 −

ζ
4

)
 .

(5.55)

Notice that the above expression is of the form, A+Br−2. From this we can find the
charge susceptibility as χ = −2B

A
(using the definition of the current from Eq. (5.21)).

χ(rh, b) = − 2r2
h

(
ζ2 − 1
16π2 cos

(
ζπ

2

)
Γ2
(

1− ζ
4

)
Γ2
(

1 + ζ

4

))
= −2r2

h g(ζ) ≡ −2T 2 g̃(b/T 2),

(5.56)

where11 g̃(b/T 2) = π2g(ζ) ≡ ζ2−1
16 cos

(
ζπ
2

)
Γ2
(

1−ζ
4

)
Γ2
(

1+ζ
4

)
. Note that g(ζ) is man-

ifestly an even function of ζ. Hence, g(ζ) is analytic as a function of ζ2 and not
ζ which we wanted to show (see Eq. (5.46)), and g(ζ) is analytic at ζ = 0 (see
Appendix C for further details on the ζ = 0 case).

Note that lim
ζ→±1

g(ζ) = −1. Furthermore, the vanishing magnetic field limit is
b = 0 which corresponds to ζ = ±1 (from the definition of ζ). Hence, we find that
in the vanishing magnetic field limit, χ(rh, b = 0) = 2r2

h, which is the usual charge
susceptibility for the conventional black brane, and matches with what we would
have gotten from computing the susceptibility from Eq.(5.54)).

In the field-theoretical study [80], the corresponding susceptibility was taken to
be the free fermion result at zero magnetic field χs = 1

6 T
2. Let us contrast this

to the susceptibility obtained above in Eq.(5.56) from holography. A key difference
is that the proportionality factor relating χ and T 2 is no longer a constant but a
function of b/T 2, namely g̃(b/T 2). (Presumably a similar effect would exists in a
perturbative approach, where one would simply consider the effects of Landau levels
on the charge susceptibility).

A plot of χ/T 2 as a function of kb/T 2 is shown in Figure 5.1.

11We have used Γ(1 + x) = xΓ(x) and Γ(x)Γ(1 − x) = π
sin(πx) to obtain Eq.Eq. (5.56) from

Eq.(5.55).
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Figure 5.1: χ/T 2 as a function of kb/T 2

5.4 Hydrodynamic limit
We now solve the bulk equations of motion in a small frequency limit; we will see an
analogue of the chiral magnetic effect appear in this limit, and we will also reproduce
from the bulk certain aspects of the hydrodynamic calculation in Section 5.1.

Let us begin by noting from Eq. (5.19) that the equation of motion for the 2-form
B2 can be written as

∇PHPQR = 0 (5.57)

where the 3-form H3 is defined as

HPQR ≡ HPQR + 2k
[
ϵPQRMNELHLMN

]
+ 2k

3
[
HLMN

(
EP ϵLMNQR + EQϵLMNRP + ERϵLMNPQ

)]
(5.58)

with H3 = dB2. This general form – i.e. that the equation of motion can be written
as the divergence of a 3-form H3 – follows from the fact that the action is a function
of dB2 alone.

We are now interested in solving these equations of motion in a hydrodynamic
limit, i.e. with ω

T
→ 0. When taking a small frequency limit in AdS/CFT, it is

useful to use the formalism of the membrane paradigm [75]. The usual infalling
membrane boundary condition as applied to the modified field-strength H results
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in the following condition at the black hole horizon:

√
−gHrxy(rh) = Htxy(rh)Σ(rh) Σ(r) ≡

√
−g
−grrgtt

gxxgyy (5.59)

See [62] for an application of these techniques to a minimally coupled 2-form B2.
Importantly, it is shown there that the quantity Σ(rh) can be understood as the
conventional electric resistivity ρ.

We now study the consequences of this boundary condition for fluctuations about
a background field configuration where Hrtz ̸= 0 as in Eq. (5.40). We will study a
configuration where the nonzero components of the fluctuations are Hrxy,Htxy, Et
and Er.

We begin by writing out:

Htxy = Htxy + 8k
√
−gEtHrtz (5.60)

(where we have used an orientation in which ϵtxyrz < 0). The boundary condition
Eq. (5.59) thus implies that at the horizon we have

√
−gHrxy(rh) = Σ(rh)

(
Htxy + 8k

√
−gEtHrtz

) ∣∣∣∣∣
r=rh

(5.61)

We would now like to propagate this information to the boundary, where it can
be given an interpretation in the field theory. The equations of motion in the low-
frequency limit take the form

∂r
(√
−gHrxy

)
= 0 ∂rHtxy = 0 (5.62)

where the former is the xy component of the diagonal equation of motion Eq. (5.57)
and the latter is the Bianchi identity associated with H3 = dB2. Thus we can
evaluate the expression above at the AdS boundary:

√
−gHrxy(∞) = Σ(rh)

(
Htxy(∞) + 8k

√
−gEt(rh)Hrtz(rh)

)
(5.63)

Now we note that Jxy = − limr→∞
√
−gHrxy, and we thus find that

Jxy = −Σ(rh)
(
Htxy(∞) + 8k

√
−gEt(rh)Hrtz(rh)

)
(5.64)

Here Jxy may be understood as the electric field in the z direction Ez; as explained

90



before, J tz = −√−gHrtz is the background magnetic field. Now Htxy is the applied
source; let us set it to zero. We then find the following expression:

Jxy = 8kΣ(rh)Et(rh)J tz (5.65)

Let us now pause to dissect this result. This appears reminiscent of the chiral
magnetic effect; in the conventional language of electric and magnetic fields as in
Eq. (7.1), Jxy is proportional to the electric field in the z direction; thus we see that
in the absence of external sources, there is an electric field parallel to the applied
magnetic field, where the constant of proportionality is 8kΣ(rh)Et(rh). In comparing
to field theory, we note that Σ(rh) = ρ, i.e. the conventional electric resistivity in
this theory.

Of course, if we are at precisely zero frequency, then we are required to have
that Et(rh) = 0. This is completely consistent with the known physics of the
chiral magnetic effect, which states that the equilibrium value of the chiral magnetic
effect for the consistent vector current is zero [90].12 This is thus an unexciting but
expected result.

Now we should note however that in this work we are interested in small fluctu-
ations around equilibrium. If ω ̸= 0, then it is no longer required that Et(rh) = 0
(indeed, in the conventional case of a massless gauge field, this quantity is no longer
even gauge invariant). Let us instead allow Et(r) ̸= 0 and use the small frequency
analysis above to compute the relaxation rate of the axial charge. Here we will make
contact with the hydrodynamic calculation above, and we will thus study a situation
where Et(∞) = 0, i.e. there is no axial source applied.

We first use Eq. (5.24) to write down

∂tj
t
A = 8kJxyJ tz (5.66)

This equation holds at all r, (indeed, from above, all of the expressions in it are
radially constant), and so we can evaluate it at the boundary to find:

−iωjtA = 64k2Σ(rh)(J tz)2Et(rh) (5.67)

12Here – as explained in detail in [90] – one must be careful about the distinction between the
consistent and covariant currents; the covariant chiral magnetic effect is not zero, but the consistent
one receives contributions both from the axial chemical potential and the value of the axial gauge
field source, which precisely cancel in equilibrium.
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Solving this for ω we find:

ω = 64i
(
Et(rh)
jtA

)
Σ(rh)

(
kJ tz

)2
. (5.68)

Thus we see that there is a diffusion pole, where the coefficient of the pole varies
as the magnetic field squared. We stress that the approximation made was ω → 0;
from above we see that this also requires that kJ tz → 0. Away from that limit, we
expect to see deviations from the quadratic expression above.

Let us also examine the pre-factor of the expression in the limit kJ tz → 0. We see
that the ratio of Et(rh) and jtA appears. We can evaluate this from Eq.(5.54) (with
the appropriate boundary conditions: Et(rh) ̸= 0 and Et(∞) = 0) and Eq.(5.21) to
get,

Et(rh)
jtA

→
r→∞

− 1
2r2

h

≡ −χ−1. (5.69)

We thus find (evaluating Σ(rh) = 1
rh

from Eq. (5.39)):

ω = −32ik2
(
b2

r3
h

)
. (5.70)

We should compare it to the expectation from elementary hydrodynamics given in
Eq. (5.11). Putting in the holographic expressions for the field-theoretical quantities
in Eq. (5.11) in the small magnetic field limit, using σ = 1

ρ
= rh, and χ = 2r2

h, and
B = b, we find that Eq. (5.11) becomes ΓA = 32k2b2

r3
h

, i.e. precisely the same as the
pole exhibited above. This agreement is not surprising; indeed it can be seen that
the derivation above parallels in the bulk the hydrodynamic calculation leading to
Eq. (5.11).

However, here we see the limitations of the hydrodynamic calculation – in par-
ticular, we see explicitly in this holographic model that the analytic calculation is
expected to break down if kJ tz is not small; i.e. the result above is valid only in the
small b limit. In the next section we explicitly compute the same relaxation rate
numerically and compare with lattice results.

In this work we have neglected the backreaction of the charge degrees of freedom
on the geometry. Our calculation is also entirely classical, in that we have ignored
fluctuations, which in this framework are suppressed by 1

N
, with N a proxy for the

number of field-theoretical degrees of freedom. It is reasonable to ask whether such
effects will change the picture above. As the actual low-frequency calculation in the
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bulk essentially exactly parallels the hydrodynamic calculation (given in Sec.5.1),
it seems reasonable to expect that such corrections would change individually the
values of things like ΓA and the resistivity ρ, but not change the relationship between
them that we find here (see for instance Eq. (5.68)). This is broadly the expectation
from the usual fluid-gravity correspondence. We note however that there are known
examples in a similar hydrodynamic context where loop effects in the bulk can
qualitatively change the infrared physics (see e.g. [109,110]). Generally such effects
can be anticipated on field-theoretical grounds, and we return to this issue in the
conclusion.

5.5 Numerical results
In this section we calculate the quasi-normal modes of our system using standard
holographic techniques.

5.5.1 Contributing equations of motion

From here on we shall work in ingoing Eddington-Finkelstein coordinates (r, v, x, y, z)
rather than the Schwarzschild coordinates used above (see Appendix A for a brief
review of the coordinate system). First let us give some useful expressions,

Er = (Ev + r2fEr), Ev = Er,

Hrxy = f

r2∂r (Bxy)−
iω

r4Bxy, Hvxy = 1
r4∂r (Bxy) .

We will study finite frequency fluctuations about the equilibrium solution Eq. (5.40).
Consider H → H0 + δH and E → E0 + δE with E0 = 0 and H0 = Hrvz, which
are the background solutions Eq.(5.40) (in the ingoing coordinates). H0 and E0 are
the background fields and δH and δE are the fluctuations of the fields that we are
interested in.

Before proceeding to solve Eq.(5.15) let us first note that we are interested in
wave-like solutions for δB and δE of the form e−iωv. So, we are considering the
corresponding wave vector to be of the form pµ = (ω, p⃗) = (ω, 0), i.e. the only non-
zero momentum is in the time direction. Furthermore, since the magnetic field is in
the z-direction, the little group for fluctuations is SO(2): the group of rotations in
the x− y plane. Therefore, we have the following contributing equations of motion
in the relevant channels for the fluctuations: in the antisymmetric tensor channel
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(i.e. from the (ρσ = xy) components of Eq.(5.15)),

−
[
∂v
(√
−g δHvxy

)
+ ∂r

(√
−g δHrxy

)]
−8k

[
∂v
(√
−g δEvϵrvzxyHrvz

)
+ ∂r

(√
−g δErϵrvzxyHrvz

)]
= 0. (ρσ = xy)

(5.71)

Similarly, from Eq.(5.16) we have

64k2H2 δEv − 4kϵrvzxyHrvz δHvxy = − 1√
−g

∂r
(√
−g δGrv

)
, (5.72)

64k2H2 δEr − 4kϵrvzxyHrvz δHrxy = − 1√
−g

∂v
(√
−g δGvr

)
. (5.73)

In the above contributing equations of motion, we have not considered terms with
∂x, ∂y, ∂z as we have set spatial momenta to vanish. The vector channel involving
δEx, δHxyz decouples and we will not consider it.

In these coordinates, the background solutions (5.40) become,

Hrvz = b

r3 , Hrvz = − b
r
. (5.74)

Now we solve for δEr in Eq.(5.73) to obtain,

δEr = iωr4 ∂r(δEv) + 64k2b2δEv + 4kbr2f ∂r(δBxy)− 4kbiωδBxy

γ̃
, (5.75)

where γ̃ := r4ω2 − 64b2k2r2f .
Next we give Eqs.(5.71) and (5.72) in terms of the fields with all indices down-

stairs,

∂2
r (δBxy) [−rf ] + ∂r (δBxy)

[
−f − 4r4

h

r4 + 2iω
r

]
+ δBxy

[−iω
r2

]

−∂r (δEv)
[

8kb
r

]
+ δEv

[
8kb
r2

]

−∂r (δEr) [8kbrf ] + δEr

[
−8kbf − 32kbr4

h

r4 + 8kbiω
r

]
= 0, (5.76)

−64b2k2

r4 δEr −
4kb
r4 ∂r (δBxy) = ∂2

r (δEv) +
(3
r

)
∂r (δEv) + iω∂r (δEr) +

(3
r

)
iωδEr.

(5.77)

If we substitute δEr from Eq.(5.75) into Eqs.(5.76) and (5.77), then we obtain two
coupled ODEs – these are somewhat lengthy so we do not present them explicitly,
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but we solve them numerically below.

5.5.2 Numerics

Now we shall solve Eq.(5.76) and Eq.(5.77) numerically using a mid-point shooting13

method (see e.g. [111] for a discussion of the shooting method, with some previous
applications to quasinormal modes in [112, 113]). Below we present some details of
the boundary conditions; the reader interested only in the results can feel free to
skip to the next section.

Logarithmic fall-off

Bxy has a logarithmic fall-off near the boundary, associated with the fact that
the double-trace deformation associated with J2 on the boundary is marginally
(ir)relevant [62]. As explained in detail in that work, the correct boundary condi-
tion at the UV cut-off u = uΛ takes the form:

Bxy (uΛ)− J

κ
= 0, (5.78)

where J = u∂uBxy and κ the double-trace coupling for J2. The form of Bxy we take
is,

Bxy(u) = d0 +
∑
j

dj u
j + ln(u)

d′
0 +

∑
j

d′
j u

j

 (5.79)

where the di are expansion coefficients. Using Eq. (5.78) we then find:

d0+
∑
j

dj u
j+ln(uΛ)

d′
0 +

∑
j

d′
j u

j

−1
κ

∑
j

jdj u
j + d′

0 +
∑
j

d′
j u

j +
∑
j

j uj ln(z)d′
j

 = 0.

Now at u = uΛ, (5.80) becomes (for u→ 0),

d0 + ln(uΛ)d′
0 −

d′
0
κ

= 0

d0 = d′
0

[
ln
(
e

1
κ/uΛ

)]
. (5.80)

13In mid-point shooting method we numerically integrate the boundary solution from boundary
and horizon solution from horizon and adjust these till they meet somewhere in the middle and
this adjustment yields the QNM.
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Thus, at the boundary (u = 0) we obtain Bxy as,

Bxy(u) = d′
0 ln

(
ue

1
κ/uΛ

)
+
∑
j

dj u
j + (ln(u))

∑
j

d′
j u

j,

Bxy(u) = d′
0 ln (u/u∗) +

∑
j

dj u
j + (ln(u))

∑
j

d′
j u

j. (5.81)

where u∗ = uΛe
− 1

κ is an RG-invariant combination of the double-trace coupling
and the UV cutoff; this is the analogue of the Landau pole in regular QED, and by
dimensional transmutation all physical results can depend on this alone (see [62,114]
for a discussion in the holographic context).

Now since Bxy at the boundary has a logarithmic fall-off, the coupled nature of
the equations of motion as given in Eq.(5.76) and Eq.(5.77) imply that Ev has the
following form at the boundary:

Ev(u) = u2

c0 +
∑
j

cj u
j

+ ln(u)
∑

j

ccj u
j

 . (5.82)

The logarithm appearing in this boundary condition appears to follow from the fact
that the axial current jµA mixes with the 2-form current Jµν .

Next we present the numerical results; see Appendix D.1 for further details on
the numerical implementation.

Hydrodynamic mode

The lowest quasinormal mode ωl = −iΓA approaches the origin as b approaches
zero. For small b (i.e. for 0 < b ≤ 3) it varies with b as

ΓA(rh, b) = 0.048
(
b2

r3
h

)
. (5.83)

where the prefactor was obtained from a numerical fit, and where we have restored
rh on dimensional grounds.

Next we move onto some higher values of b to show that away from a small
neighbourhood of b = 0; the quadratic b2 behaviour of no longer captures the full
dependence and we obtain a more complicated function of b. We consider 0 < b ≤ 6.5
and obtain the behaviour shown in Fig.(5.2), where the orange curve is as given in
Eq.(5.83). Note that both the curves above match till about b ≈ 3.

Now let us compare the above result obtained from numerics to the result ob-
tained in Section 5.4 using the membrane paradigm formalism (in the kJ tz → 0
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Figure 5.2: ΓA vs b with k = 0.0375 and rh = 1 (blue curve is numerics, orange
curve is quadratic fit)

limit) in Eq.(5.70). Note that if we put k = 0.0375 in Eq.(5.70) then we find,

ΓA(rh, b) = 0.045
(
b2

r3
h

)
. (5.84)

in approximate agreement (within 6%) with the small-frequency limit of the numer-
ics. As mentioned in that section, the membrane paradigm analysis also agrees with
elementary hydrodynamics arguments arising from treating electrodynamics pertur-
batively; thus we conclude that at small b the conventional chiral MHD approach
from weakly gauged electrodynamics is valid.

However, from Fig.(5.2) we notice that for b ≫ 1, the functional dependence of
ΓA on b is no longer quadratic, and is a non-trivial function of b. This function
now appears to depend on UV physics, and is not simply determined by other
thermodynamic quantities such as the susceptibility χ.

For example, we can try to improve the hydrodynamic result for ΓA in Eq. (5.11)
with the holographically determined susceptibility in Eq. (5.56). The resulting plot
as a function of the magnetic field B = b is shown in Figure 5.3. It appears barely
different from the quadratic dependence as χ does not depend strongly on b. Indeed
if we expand this improved hydrodynamic attempt at approximating Γimproved

A as a
series in b we get,

Γimproved
A (b) = 32 k2

(
b2

r3
h

)
+O(b4) = 0.045 b2 +O(b4). (5.85)
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Figure 5.3: Γimproved
A from Eq. (5.11) (i.e. chiral MHD with weakly coupled electro-

dynamics) as a function of b with k = 0.0375 and rh = 1; note it does not capture
the non-trivial dependence on b seen in the numerical results of Figure 5.2
.

where in the second equality above we have put k = 0.0375 and rh = 1 (for a
comparison with the numerical parameters) and the coefficient of O(b2) is 100 times
that of the coefficient of O(b4). Thus the dependence of the charge susceptibility on
b is insufficient to account for the non-trivial dependence of ΓA(b), and it appears
to not be determined by thermodynamic data.

Finally, in our numerical investigation we also observed many non-hydrodynamic
gapped modes. These do not seem to have model-independent relevance, but we
discuss them in Appendix D.2.

5.6 Discussion and outlook
In this chapter we have discussed a holographic model that is in the same univer-
sality class as a massless Dirac fermion coupled to QED at finite temperature, i.e.
where axial charge is non-conserved due to an anomaly with a dynamical operator
(involving a topological density constructed from the 2-form current associated with
magnetic flux conservation) on the right hand side. We described the bulk dualiza-
tion process by which we constructed the holographic model and computed some
basic observables.

Perhaps our most significant result was explicit computation of the axial charge
relaxation rate ΓA in the presence of a background magnetic field; we found that
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due to the anomaly the axial charge density jtA is not conserved, and instead obeys
an equation of the form jtA ∼ e−ΓAt, where ΓA was numerically found through
solving the bulk equations of motion. It is a nontrivial function of the background
magnetic field B and the temperature T , and can be seen in Figure 5.2. Note that
at small magnetic field this relaxation rate is quadratic in the field B; indeed as the
pole approaches the origin the pre-factor may be computed analytically from the
small frequency limit of the bulk equations of motion. This pre-factor can also be
obtained from elementary magneto-hydrodynamic arguments that essentially treat
the anomaly coefficient perturbatively, as reviewed in Section 5.1. The resulting
pre-factor agrees with our holographic computation, and we thus find that at small
magnetic fields:

Γhol
A (B → 0) ≈ γMHDB2 (5.86)

At larger magnetic fields this is a non-trivial function of B and can only be obtained
from a full holographic treatment. 14

We now discuss the previous literature on this result. A lattice study of a field-
theoretical model in the same universality class was recently performed in [80,81]; in
particular, [80] studied the diffusion of the operator F ∧F (which can be related to
the charge relaxation rate by a fluctuation-dissipation argument), and [81] directly
measured ΓA. Those works numerically observe an expression of the form:

Γlattice
A (B) ≈ γlatticeB2, (5.87)

Interestingly, those works found that γlattice/γMHD ≈ 10, i.e. that the pre-factor
obtained from the lattice differs from the hydrodynamic estimate by an order of
magnitude [81]. In those works it was argued that this means that short-distance
physics that is not taken into account in the hydrodynamic analysis is important.
Interestingly, this is not what we find from our (UV-complete) holographic calcula-
tion; instead our holographic result precisely coincides with the hydrodynamic result
at small magnetic fields, differing from it only at larger fields when the magnetic
field itself probes UV scales.

It is interesting to speculate on the cause of this discrepancy between the lat-

14We note that Eq.(5.11) states that the relaxation rate vanishes in the limit of vanishing mag-
netic field. It is at the moment not clear to us whether this is an artifact of the classical description;
for example it is possible that when one includes fluctuations there is a non-vanishing relaxation
rate even at zero magnetic field. In principle this could be evaluated using an appropriate Kubo
formula of the topological density; we take up this computation in chapter 7. and we thank Luca
Delacrétaz for this comment [115].
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tice and holography. An ingredient entering into the computation of γMHD is the
resistivity of the electromagnetic sector; in holography it is very easy to see how
this enters into the calculation and separate it from the anomalous dynamics but
in a purely field-theoretical treatment it seems possible that uncertainties in this
conductivity – a notoriously complicated quantity to calculate from first principles
– could cloud this analysis, as was already suggested in [81]. It would be interesting
to perform further tests of this hypothesis, perhaps by computing more observables
from holography and the lattice and comparing them further.

If we take our results at face value, it suggests that for this observable, a hydro-
dynamic treatment of conventional MHD (treating the anomaly as a perturbation)
is sufficient at weak magnetic fields, though it differs quantitatively from the true
result at stronger fields.15

There are many directions for future research. Our bulk action Eq.(5.37) permits
the explicit study of a strongly interacting system in the same universality class as
the chiral plasma. It would be very interesting to understand other phenomena, e.g.
if the instabilities (due to non-vanishing p⃗) [94] exist in this model, or the study of
chiral magnetic waves [117].

From a field-theoretical point of view, it would be very interesting to go further
than our holographic considerations and construct a true effective hydrodynamic
theory for this system. Indeed this was one of the motivations for our construction
of the holographic action Eq. (5.37), though it is sufficiently complicated that it does
not shed much immediate light on how (or whether) an effective description could
be computed. Indeed, the prospect of such an analysis is clouded by the fact that we
are not aware of a completely universal field-theoretical description of the anomaly
Eq. (5.1); conventional lore would tell us the axial symmetry is simply completely
broken, though as we have argued this appears to miss important physics associated
with the fact that it is broken not by a generic operator but rather by a topological
density ⋆J ∧ ⋆J constructed from the current of a 1-form symmetry. Indeed, along
these lines recent work describes a novel higher group structure that is present when
the axial symmetry is spontaneously broken [118–120]. It would be very interesting
to understand whether such an analysis could be extended to the phase when the
axial symmetry is unbroken or realized at finite temperature, as a first step towards
constructing a hydrodynamic EFT. This is what we take up next in the following

15This is philosophically aligned with previous results [116] that argue that various transport
coefficients are generically renormalized if the gauge fields sourcing the anomaly are dynamical.
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CHAPTER 6

EFT and Generalised symmetries

In this chapter, motivated by the results and discussion of the previous chapter, we
discuss some progress towards formulating an effective theory of the chiral magne-
tohydrodynamic plasma. As discussed earlier, this can be understood as a finite-
temperature system with a U(1)A current that is not conserved due to the Adler-
Bell-Jackiw anomaly [121,122], i.e. we have

d ⋆ jA = − 1
4π2F ∧ F , ∂µj

µ
A = −k ϵµνρσFµνFρσ, (6.1)

if we consider ordinary QED with massless Dirac fermions1 coupled to dynamical
electromagnetism, we obtain this expression with k = 1

16π2 .
In the case of an ABJ anomaly, naively one might assume that as the current

is not conserved, the corresponding symmetry is simply explicitly broken and plays
no role in constraining the dynamics. This statement is somewhat too fast: indeed,
recent work [37,38] has shown that in such a system, one can construct topological
defect operators that count the axial charge, but these defect operators no longer
obey a simple group composition law – in other words the symmetry becomes non-
invertible (a partial list of references on non-invertible symmetries in higher dimen-
sions are [45,123–133]). This constitutes a precise non-perturbative characterization

1A single species of Dirac fermions also has a U(1)3
A ’t Hooft anomaly which we will ignore here;

it could be included by using the well-understood technology for the hydrodynamics of ’t Hooft
anomalies [91,92].
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of the manner in which the ABJ anomaly deforms the naive classical symmetry, and
makes clear that – at least in the vacuum – a system with an ABJ anomaly is in a
distinct universality class to one with no U(1) symmetry at all. The understanding
of the dynamical consequences of such a symmetry is still in its infancy; see e.g. [41]
for an extension of Goldstone’s theorem to this setting and [58] for gauging of such
non-invertible symmetries.

The understanding of this non-invertible symmetry allows us to give a universal
characterization of the chiral magnetohydrodynamic plasma: it is a system which
realizes the non-invertible symmetry of [37,38] at finite temperature. In this chapter
we make some attempts at describing the plasma from this point of view.

The existence of such non-invertible defect implies that there exist a conserved 2-
form current Jµν and a 1-form current jµ which satisfy the following Ward identity2:

∂µJ
µν = 0 ∂µj

µ = k ϵµνρσJµνJρσ (6.2)

If the system admits a weakly coupled description in terms of a U(1) photon whose
field strength is Fµν , then Jµν = 1

2ϵ
µνρσFµν ; however we will not assume such a de-

scription in what follows. It is our understanding that any system which has vector
and tensor fields that obey these two operator equations will allow the construction
of the appropriate non-invertible defect operators; we will verify this in our con-
structions below. Our task is to understand how the symmetry structure Eq. (6.2)
is realized in thermal equilibrium (and for small fluctuations around it).

Note on convention: In this chapter, we shall label the U(1) gauge field as
Aµ instead of aµ and so the corresponding field strength will be labelled by F = dA

instead of f = da. This is because we will reserve the symbol aµ to label an external
gauge field which would couple to the dimensionally reduced chiral current jµ on
M = S1 × R3. Furthermore, we shall label Dirac fermions by Ψ instead of ψ since
the latter symbol will be used to label a 3D Goldstone mode. These notational
changes are for this chapter only.

2Note that from here on we shall drop the subscript A from the non-conserved 1-form current
jµ since we shall be studying a general effective theory which is in the same universality class as
that of QED at finite temperature.
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6.1 Comparison to other approaches
The construction of the hydrodynamic description of a theory with an ABJ anomaly
has a long history. For the convenience of the reader we briefly summarize some of
this literature.

Early work in describing MHD in the presence of a finite chemical potential µA
for the axial charge includes [86]. They show the generic existence of instabilities in
the presence of finite µA.

Ref. [85] constructs a description of the axial charge density in terms of an
effective dynamical axion θ.

They work in the limit where the fluid velocity is frozen uµ = δµt , and the presence
of the dynamical axion means that the construction somewhat resembles an axial
superfluid; in particular their equations of motion depend on spatial gradients of
θ. A generalization of [85] to the case where the fluid velocity uµ is dynamical can
now be found in [134]. Upon taking the limit of small magnetic diffusivity (i.e. that
controls the diffusion of 1-form current), they found that ∂iθ dependence drop out
of the equations of motion. This set of equations is what is generally referred to
as chiral magnetohydrodynamics, and has numerous astrophysics applications. A
relativistic extension to a generic spacetime can be found in [135].

An interesting construction of dissipative chiral MHD from first principles using
an entropy current was performed in [94]. The consistency of their derivative expan-
sion required the anomaly coefficient k in Eq. (6.1) to be a small parameter of order
O(∂1). Another construction for the relativistic hydrodynamic description can be
found in [93], where the effect of the anomaly on the electric charge current [91] is
added to the Maxwell equation.

Finally, an equilibrium effective action for the theory with ’t Hooft anomaly
organised with uµ, T ∼ O(∂0) with the background gauge fields be O(∂0) and field
strengths be O(∂1) can be found in e.g. [116, 136, 137]. In [116] the U(1) current is
weakly gauged, resulting in a system with an ABJ anomaly, and it was found that
most transport coefficients receive radiative corrections.

One major difference between our work and those earlier is that the bulk of the
literature assumes the existence of a U(1)(0)

V vector electrical charge current, which
is then coupled to dynamical electromagnetism in some manner, assuming some
dynamics (e.g. Maxwell) for the electromagnetic sector. Philosophically, this can
be thought of as weakly gauging a theory with a ’t Hooft anomaly to convert it into
an ABJ anomaly.
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From a modern point of view, however, the introduction of a photon which then
interacts strongly with the plasma seems like an unnecessary intermediate step.
An alternative approach is to attempt to bypass the weakly gauged construction
completely, and simply directly attempt to describe the global symmetry structure,
analogous to what was done for pure MHD in [30]. Here we take some steps in that
direction; i.e. we try construct an action-based approach to chiral MHD by realizing
the symmetry structure Eq. (6.2) directly in a minimal fashion without constructing
an electric charge current or coupling it to a Maxwell field.

Our work here has something of an exploratory character; we do not write down
the most general actions possible, rather constructing the simplest actions that dis-
play the required physics. We also always work in a limit where the fluid velocity and
temperature are frozen. Nevertheless, we will see that this is sufficient to reproduce
many aspects of chiral MHD phenomenology.

We now present a brief summary of this chapter. In section 6.2 we present a
brief overview of the Schwinger-Keldysh or Closed Time Path (CTP) formalism
following [13]. In Section 6.3, we study the equilibrium sector of the hydrodynamic
theory by placing the theory on S1×R3 and constructing an equilibrium generating
functional. We study the decomposition of the symmetry breaking pattern under
dimensional reduction and present an algorithm (order by order in the anomaly
coefficient k) to compute the part of the action that is not invariant under gauge
transformations of the axial source. We demonstrate that this construction leads to
the chiral separation effect.

After analysing the equilibrium sector, next we move onto the dissipative sector
in Section 6.4. We construct a real time effective action using the Schwinger-Keldysh
formalism. We do this by “gluing” together two independent theories for the 0-
form and 1-form sectors in a way that preserves the anomaly structure, resulting
in a dissipative action whose variation results in the expected equations of motion.
A shortcoming with this construction (described in detail below) is that we are
unable to preserve the so-called “diagonal shift” symmetry that is present in usual
hydrodynamic actions describing 0-form symmetries in a normal phase. We conclude
with a brief discussion in Section 6.5.

We also refer the reader to the following recent work [138], which takes a different
approach towards constructing an Schwinger-Keldysh effective action of the chiral
plasma.

105



6.2 Brief overview of Schwinger-Keldysh formal-
ism

In this section we present a brief overview of the Schwinger-Keldysh formalism which
we shall use to construct our effective field theory capturing dissipation. We shall
follow closely the exposition as given in [13]. As we go along, we shall see the
advantages of this approach of constructing effective theories in later parts of this
section.

To begin, let us consider an initial state at time t0 described by a density matrix
ρ0. Its time evolution is given as,

ρ(t) = U(t, ti) ρ0 U
†(t, ti), (6.3)

where t > ti and U(t, ti) is the unitary time evolution operator from ti to t 3. Here,
we have suppressed all spatial dependence and we will do so in this section. Since the
density matrix ρ0 has two legs, its time evolution can be understood by considering
two real time contours as given in the left hand side of Fig. 6.1. Thus, ρ(t) can be
understood as the path integrals corresponding to these two contours – one going
forward in time from ti to t under the action of U and one going backward in time
from t to ti under the action of U †.

Figure 6.1: On the left hand side, we have ρ(t) described as two path integrals with
one describing a forward time evolution and the other describing a backward time
evolution. On the right hand side, we have the path-integral representation of the
expectation value with an operator insertion. This given correlator can be evaluated
without having any backward time evolution.

Using the above path-integral representation for ρ(t), we can now consider ex-

3Note that, here the time evolution of the density matrix is performed by the usual conjugation
action carried out by the unitary operator U , but in an order opposite to the time evolution of
operators in the Heisenberg picture. A quick way to see this oppositely ordered conjugation is by
considering: ρ0 ≡ |ψ⟩⟨ψ| which is nothing but the density matrix of a pure quantum state |ψ⟩, and
then performing its time evolution.
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pectation value of the form,

Tr(ρ(t)V ) = Tr(ρ0V (t)) ≡ ⟨V (t)⟩ρ0 , (6.4)

where the operator V is inserted at some time t in one of the contours of Eq. (6.3)
and taking the trace amounts to joining the two contours at some time tf > t. This
resulting contour is sometimes called the closed time path (see right hand side of Fig.
6.1). Note that, here we only require a forward time evolution as the operator V (t)
is inserted along the forward-evolving contour. We can also consider more general
correlation functions of the kind depicted in Fig. 6.2,

⟨W (t4)V (t2)W (t3)V (t1)⟩ρ0 = Tr(ρ0W (t4)V (t2)W (t3)V (t1)), (6.5)

where, t1 < t2 < t4 < t3 and computing this correlator involves, at certain path-
integral segments, to go backward in time.

Figure 6.2: This is the path-integral representation of the correlation function
⟨W (t4)V (t2)W (t3)V (t1)⟩ρ0 with t1 < t2 < t4 < t3. Note that, here we see that
backward time evolution needs to be taken into account to evaluate this given cor-
relator.

Now let us discuss an ordering of general correlators in the above formalism. For
this consider the following correlator (see Fig. 6.3),

⟨P(V1(t1)W1(t2)V1(t3)W2(t4)V2(t5))⟩ρ0 = ⟨T̃ (W2(t4)V2(t5))T (V1(t1)W1(t2)V1(t3))⟩ρ0 ,

(6.6)

where t1 < t5 < t2 < t4 < t3. The subscript ‘1’ denotes operators inserted along
the forward-evolving (or upper) contour and the subscript ‘2’ denotes the operators
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inserted along the backward-evolving (or lower) contour. On the left hand side of
the equation we have a path-ordering denoted by P . On the right hand side of
Eq. (6.6), we have made explicit that operators inserted on the upper segment are
time-ordered (denoted by T ), while those on the lower segment are anti time-ordered
(denoted by (̃T )), and the operators on the second segment always lie to the left of
those on the first segment in the path-ordering. This is the prescription for ordering
of general correlators in the Schwinger-Keldysh formalism.

Figure 6.3: This is the path-integral representation of a correlator on the closed time
path (CTP).

6.2.1 Connected correlators and Green’s functions

Let us now discuss how to obtain connected correlators from a generating functional
involving operators insertions on the CTP. First of all note that, on the CTP we will
have two copies of the fields, leading to a doubling of fields of our system, since we
have two real-time contours. With this in mind, consider the following generating
functional of the fields4,

exp (W [ϕ1i, ϕ2i]) = Tr
{
ρ0P

(
exp

[
i
∫
dt (O1i(t)ϕ1i(t)−O2i(t)ϕ2i(t))

])}
, (6.7)

where Oi denote generic operators and ϕi their corresponding sources. The ‘−’ sign
on the right hand side in the above equation comes from the fact that on the lower
segment on CTP there is a anti-time ordering leading to a reverse direction of the
temporal integration. Note that, O1i and O2i refer to the same operator but on
different segments of the CTP while ϕ1i and ϕ2i are different fields. For simplicity,
we will take all sources ϕi to be real and all the operators Oi to be Hermitian and
bosonic.

4Here we will take ti → −∞ and tf →∞ for convenience.
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Now let us move onto another basis, which is convenient to use for certain cal-
culations, called the r − a basis. The relation between the 1− 2 and r − a bases is
the following,

ϕri = 1
2(ϕ1i + ϕ2i), (6.8)

ϕai = ϕ1i − ϕ2i, (6.9)

where the r-type fields are physical and a-type fields are noise. In this basis, Eq. (6.7)
can be written as,

exp (W [ϕri, ϕai]) = Tr
{
ρ0P

(
exp

[
i
∫
dt (ϕai(t)Ori(t) + ϕri(t)Oai(t))

])}
, (6.10)

We can now obtain path-ordered correlation functions by taking functional deriva-
tives of W with respect to ϕis and then setting the sources to zero.

Gα1...αn(t1, . . . , tn) ≡ 1
inr

δnW

δϕᾱ1(t1) . . . δϕᾱn(tn)

∣∣∣∣∣
ϕa,r=0

, (6.11)

= ina⟨P(Oα1(t1) . . .Oαn(tn))⟩, (6.12)

where α1, . . . , αn ∈ (a, r), ᾱ = r, a for α = a, r. nr, na denotes the number of r, a
indices respectively in {α1, . . . , αn} and nr + na = n. One can verify that know
Green’s functions like the advanced, retarded, symmetric Green’s functions can now
be expressed in terms of the r−a Green’s functions defined above as follows (see [13]
for more details),

Gra(x1, x2) = GR(x1, x2),

Gar(x1, x2) = GA(x1, x2),

Grr(x1, x2) = GS(x1, x2),

(6.13)

where GR, GA and GS denote the retarded, advanced and the symmetric Green’s
functions respectively.

6.2.2 KMS condition

In this subsection, we shall see how the Kubo-Martin-Schwinger (KMS) condition
is implemented on the CTP. Let us begin by considering an observable A in the

109



Heisenberg picture,

A(t) = eitH A(0) e−itH ,

whose expectation value on a thermal state at temperature T = β−1 is given as,

⟨A⟩β = 1
Z

Tr(e−βHA), with, Z ≡ Tr(e−βH),

Now let us define the following Green’s functions,

Gβ
+(t, A,B) ≡ ⟨AtB⟩β,

= 1
Z

Tr(e−βHeitHAe−itHB),

= 1
Z

Tr(e−βHAe−itHBeitH),

= ⟨AB−t⟩β,

(6.14)

where the third equality above follows from the cyclic property of the trace and
noting that [e−βH , e±itH ] = 0. Let us now define another similar Green’s function,

Gβ
−(t, A,B) ≡ ⟨BAt⟩β,

= 1
Z

Tr(e−βHBeitHAe−itH),

= 1
Z

Tr(e−βHe−itHBeitHA),

= ⟨B−tA⟩β,

(6.15)

Thus, using the above we get,

Gβ
+(t, A,B)−Gβ

−(t, A,B) = ⟨[At, B]⟩. (6.16)

Let us analytically continue to imaginary times with z = t+ is and t, s ∈ R. Then,
we get,

Gβ
+(z, A,B) = 1

Z
Tr(ei(z+iβ)HAe−izHB), (6.17)

Gβ
−(z, A,B) = 1

Z
Tr(BeizHAe−i(z−iβ)H), (6.18)

implying, Gβ
+(z − iβ, A,B) = Gβ

−(z, A,B), (6.19)

or, for z = t ∈ R : ⟨At−iβB⟩β = ⟨BAt⟩β, (6.20)
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where the last equation above is called the KMS condition and it reflects the peri-
odicity of the Green’s functions in imaginary time (for more details see [139]).

Now recall from Eq. (6.7) that,

eW [ϕ1i,ϕ2i] = Tr
{
ρ0 T̃

(
exp

[
−i
∫
dtO2i(t)ϕ2i(t)

])
T
(

exp
[
i
∫
dtO1i(t)ϕ1i(t)

])}
,

(6.21)

where we have expressed Eq. (6.7) in terms of time-ordered and anti time-ordered
factors. Now, consider: ρ0 = 1

Z0
e−β0H with Z0 ≡ Tr(e−β0H). Then, Eq. (6.21)

becomes,

eW [ϕ1i,ϕ2i] = 1
Z0

Tr
{
e−β0H T̃

(
exp

[
−i
∫
dtO2i(t)ϕ2i(t)

])
T
(

exp
[
i
∫
dtO1i(t)ϕ1i(t)

])}
,

= 1
Z0

Tr
{
e−(β0−θ)H T̃

(
exp

[
−i
∫
dtO2i(t)ϕ2i(t)

])
e(β0−θ)He−β0HeθH×

× T
(

exp
[
i
∫
dtO1i(t)ϕ1i(t)

])}
, (6.22)

where θ ∈ [0, β0] is a constant and by the cyclic property of trace all the e±θH

factors cancel off to identity and hence the inclusion of such factors above makes
sense. Now, note that for arbitrary a ∈ [−β0, β0], we have, for the anti time-ordered
factor (inside thermal averages):

e−aH T̃
(

exp
[
i
∫
dtO1i(t)ϕ1i(t)

])
eaH = T̃

(
exp

[
i
∫
dtO1i(t)ϕ1i(t− ia)

])
, (6.23)

and similarly for the time-ordered factor. Using this, we can write Eq. (6.22) as,

eW [ϕ1i,ϕ2i] = 1
Z0

Tr
{
e−β0HT

(
exp

[
i
∫
dtO1i(t)ϕ1i(t+ iθ)

])
×

T̃
(

exp
[
i
∫
dtO2i(t)ϕ2i(t− i(β0 − θ))

])}
, (6.24)

≡ exp [WT [ϕ1i(t+ iθ), ϕ2i(t− i(β0 − θ))]] , (6.25)

where since in the first equation above the time-ordering appears before the anti
time-ordering, we have introduced a new notation to denote this as WT . See Fig.
6.4 for integration contours defining WT .
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Figure 6.4: The top figure defines the integration contour for W and the bottom
figure defines the integration contour for WT .

Note that, Eq. (6.24) is the KMS condition now expressed in the of Schwinger-
Keldysh formalism. As evident from Fig. 6.4, the KMS condition relates correlators
with ρ0 as the initial state to correlators with ρ0 as the final state.

Now say that at the microscopic level the system has a discrete symmetry Θ
which can include any combination of C,P, T such that [Θ, H] = 0. Then, this can
be combined with the KMS condition above to get the following constraint on W

(for more detailes see [13]),

W [ϕ1i(x), ϕ2i(x)] = W [ϕ̃1i(x), ϕ̃2i(x)], (6.26)

where we have restored the spatial dependence and xµ = (t, x⃗) and,

ϕ̃1i(x) = Θϕ1i(t− iθ, x⃗),

ϕ̃2i(x) = Θϕ2i(t+ i(β0 − θ), x⃗),
(6.27)

for arbitrary constant: θ ∈ [0, β0].

6.2.3 Application: a theory of diffusion

In this subsection, we shall apply the above formalism to construct a Schwinger-
Keldysh effective theory to incorporate diffusion. Consider a system with U(1)
symmetry at fixed temperature which in turn implies that we are freezing the stress-
tensor degrees of freedom. Thus, the only conserved current in this system will be
the U(1) current Jµ. In the Schwinger-Keldysh formalism we need to consider two
copies of this current. Let us couple these currents to sources (or background gauge

112



fields) and write down the generating functional.

exp (W [A1µ, A2µ]) = Tr
{
ρ0P

(
exp

[
i
∫
ddxA1µJ

µ
1 − i

∫
ddxA2µJ

µ
2

])}
. (6.28)

The advantage of the above generating functional W is that conservation of the
currents Jµ1 and Jµ2 now boils down to invariance of the above path-ordered path
integral under gauge transformations of the background gauge fields: A1µ and A2µ.

W [A1µ, A2µ] = W [A1µ + ∂µλ1, A2µ + ∂µλ2], (6.29)

for arbitrary functions λ1,2
5. Now the goal is to write down an effective field theory

(EFT) for collective variables associated with the currents: Jµ1,2 of the following
form:

exp (W [A1µ, A2µ]) =
∫
Dϕ1Dϕ2 exp

(
iIEFT

[
ϕ1,2;Aµ1,2

])
, (6.30)

such that Eq. (6.29) is satisfied and equations of motion for ϕ1,2 should be equivalent
to conservation of currents Jµ1,2. For this to work, ϕ1,2 have to be scalar fields and
they should appear with the external fields Aµ1,2 in the following combination:

B1,2
µ ≡ A1,2

µ + ∂µϕ
1,2, (6.31)

which implies that ϕ1,2 are Stueckelberg fields associated with the gauge symmetries
as given in Eq. (6.29). These will serve as the dynamical hydrodynamic variables.
Thus, we have for the effective action,

exp (W [A1µ, A2µ]) =
∫
Dϕ1Dϕ2 exp (iIEFT [B1µ, B2µ]) . (6.32)

Now B1,2
µ and IEFT[B1,2

µ ] are invariant under the following gauge transformations,

A1,2
µ → A1,2

µ − ∂µλ1,2, ϕ1,2 → ϕ1,2 + λ1,2, (6.33)

Now we can define “off-shell” hydrodynamic currents Ĵµ1,2 from the functional vari-
ation of this effective action,

Ĵµ1 (x) ≡ δIEFT

δA1µ(x) , Ĵµ2 (x) ≡ − δIEFT

δA2µ(x) , (6.34)

5Here we assume that λ1,2 vanish at spacetime infinities.
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It then readily follows from Eq. (6.32) that,

δIEFT

δϕ1,2(x) = −∂µĴµ1,2(x) = 0, (6.35)

Note that correlation functions of currents Jµ1,2 for the full theory Eq. (6.28) are given
by those of the off-shell currents Ĵµ1,2 in the EFT Eq. (6.32). For instance,

⟨P (Jµ1 (x)Jν2 (y))⟩ = − δW

δA1µ(x)A2µ(y)

∣∣∣∣∣
A1=A2=0

=
∫
Dϕ1Dϕ2 e

IEFT[∂µϕ1,∂µϕ2]Ĵµ1 (x)Ĵν2 (y).

(6.36)

To describe diffusion let us now restrict to a system at finite temperature, and
assume that the system is in a liquid phase. At this stage, there is still a distinction
of a normal phase and a superfluid phase where the U(1) symmetry is spontaneously
broken. Interestingly, if one directly writes down the most general local derivative
expansion of IEFT

[
B1,2
µ

]
, the theory describes a superfluid phase. To describe a

normal phase one needs to impose a further symmetry. To understand this, note
that, given the U(1) symmetry, each local fluid element can have an independent
phase rotation which should be independent of time, that is, phases of the form:
eiλ(x⃗). Now, physically we can view the system as a continuum of fluid elements,
and interpret Bsµ with (s = 1, 2) as the “local” external sources for these fluid
elements, which include not only external background gauge fields Asµ, but also
contributions from dynamical variables ϕs. For example, we can define the local
chemical potentials as,

µs(x) = Bs0(x). (6.37)

Now due to above spatial phase-rotation argument, to describe a system for which
the U(1) symmetry is not spontaneously broken, we require the EFT to be invariant
under a time-independent, gauge transformations of B1,2

µ which we will refer as the
chemical shift symmetry 6,

B1i → B1i − ∂iλ(x⃗), B2i → B2i − ∂iλ(x⃗), (6.38)

or, equivalently: ϕr → ϕr − λ(x⃗), ϕa → ϕa. (6.39)

6Here i denotes the spatial coordinates.
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To summarize, in order to write down the EFT for hydrodynamic variables
corresponding to a conserved U(1) current in a normal phase, we need to impose
the following conditions on IEFT

[
B1,2
µ

]
(for more details see [13]):

• The KMS symmetry: IEFT
[
B1,2
µ

]
= IEFT

[
B̃1,2
µ

]
where the relation between

tilde and un-tilde fields is given in Eq. (6.27). This is also sometimes referred
to as the dynamical KMS symmetry.

• Unitary constraints

• Rotation and translation symmetries

• chemical shift symmetry as given in Eq. (6.38)

With this, one can write down the final effective Lagrangian density at quadratic
order in Br,a, and to linear order in derivatives as,

LEFT = iσ

β0
(Bai)2 + χBa0Br0 − σBai∂0Bri, (6.40)

with σ ≥ 0 and χ as constants. We can get the off-shell currents as,

Ĵr0 = χµ, Ĵri = σ(Ei − ∂iµ) + iσ

β0
Bai,

Ĵa0 = χBa0, Ĵai = σ∂0Bai,

(6.41)

where we have introduced the local chemical potential, µ ≡ Br0 = Ar0+∂0ϕr and the
background electric field, Ei ≡ ∂iAr0−∂0Ari. With this definitions, it is readily clear
that the transports, σ is the electrical conductivity and χ is the charge susceptibility.

The equations of motion for ϕr,a lead to the current conservation: ∂µĴµr,a = 0.
Now let us turn off the unphysical sources: Aaµ = 0 which leads to ϕa = 0 from
∂µĴ

µ
a = 0. We then find: Ĵµa = 0 and Bai = 0. So, now the other conservation

equation ∂µĴ
µ
r = 0 becomes,

∂0n−D∂2
i n = −σ∂iEi, with, D ≡ σ

χ
, and, n ≡ Ĵ0

r , (6.42)

where D is the diffusion constant, n is the number density and the above equation
expresses the diffusion of the U(1) charge.

Note that, in Eq. (6.41), at leading order in the a-field expansion Ĵµr are ex-
pressed in terms of µ and Ei, that is, Bri does not appear by itself. This is a
consequence of the chemical shift symmetry Eq. (6.38) (or, equivalently Eq. (6.39))
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which forbids presence of terms ∂iϕr and hence to all orders in derivatives (in the
action, corresponding equations of motion and constitutive relations) and even at a
nonlinear level; Bri can only appear either with a time derivative ∂0Bri = −Ei+∂iµ

or through Frij ≡ ∂iBrj − ∂jBri = ∂iArj − ∂jAri. In the first of these expressions
we will have terms like ∂0∂iϕr which does not transform under the chemical shift
(as λ(x⃗) does not depend upon time), and in the second of these expressions the
∂iϕr terms will cancel off due to anti-symmetrisation and commutativity of ordinary
spatial derivatives.

Let us conclude this overview by noting that the Schwinger-Keldysh formalism is
a very convenient for writing down hydrodynamic effective actions for the following
reason. Say, we are interested in studying a system which has additional global sym-
metries along with the U(1) symmetry that we discussed above. Then, one can think
of gluing these additional symmetry sectors along with the U(1) sector by adding
auxiliary fields to the effective action in such a way that is dictated by the symme-
tries. As long as these additional terms do not introduce any couplings between the
upper and the lower segments of the closed time path contours, the effective action
will preserve the dynamical KMS symmetry: Eqs.(6.26)-(6.27) manifestly. Thus, we
shall use this technology to construct effective hydrodynamic action which obey the
symmetry structure between the 0-from and the 1-form sector as given in Eq. (6.2).

6.3 Equilibrium sector
In this section, we develop an action which realises the finite-temperature equilib-
rium sector of a hydrodynamic theory which is in the same universality class as that
of quantum electrodynamics (QED) at finite temperature. Since, this action would
describe the equilibrium sector, it should not contain any time derivatives of the
fields in it, by definition. We first review the symmetry structure of our theory.

6.3.1 Symmetries

Consider a massless QED at finite temperature, whose weakly coupled physics is
described by the following Lagrangian,

S[A,Ψ,Ψ] =
∫
d4x

(
− 1
g2F

2 + Ψ γµ (∂µ − iAµ) Ψ
)
, (6.43)
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where A is the dynamical gauge field and Ψ is a massless Dirac fermion and F = dA.
The above action has a U(1)(0) axial current, denoted by jµ = Ψγµγ5Ψ which is
non-conserved, due to the ABJ anomaly, and a U(1)(1) 2-form current, denoted by
Jµν = 1

2ϵ
µνρσFρσ which is conserved due to the Bianchi identity. Furthermore, the

non-conservation of the axial current obeys the following equation (see appendix
F.1 for details on how non-invertible defect insertion is equivalent to saturating the
anomaly equation as in Eq. (6.1)),

∂µj
µ = k ϵαβρσJ

αβJρσ,
(

where, k ≡ 1
16π2

)
. (6.44)

Though we are inspired by massless QED, we will keep the constant k arbitrary in
what follows. The partition function is a function of two sources aµ and bµν via

Z[a, b] =
∫
D[A]D[Ψ]D[Ψ̄] exp

(
−S +

∫
d4x

(
jµaµ + 1

2J
µνbµν

))
(6.45)

where ϵµνρσ(db)νρσ ≡ jµext can be thought of as an external current insert to the
system.

From here on, we will be agnostic to the details of the matter field except that it
has the same global symmetry as the above theory. The equilibrium effective action
we construct will be based only on the data encoded in the background field a and
b. This has the same spirit as [35, 136, 140] albeit in a more simplified metric and
equations of state.

1-form symmetry in thermal equilibrium

Let us briefly review the notion of hydrodynamics with 1-form symmetries by con-
sidering ordinary MHD, i.e. a simple system in thermal equilibrium which has only
a single 1-form symmetry (see [30, 65]). We performed this analysis already in Sec.
3.2.1 but we briefly mention some of it here to remind ourselves of the setting. The
1-form conservation equation takes the following form,

∂µJ
µν = 0, (6.46)

Since we are interested in finite temperature physics, let us put our theory on S1×R3

and we shall denote the S1 direction as τ (the Euclidean time). Now let us see how
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Jµν decomposes in the dimensionally reduced theory on S1 × R3. On R3 we have,

U(1)(0) 0-form symmetry → J iτ → Bi = J iτ is magnetic 3-vector, (6.47)

U(1)(1) 1-form symmetry → J ij → E i = 1
2ϵ

ijkJjk is electric 3-vector. (6.48)

Now, in equilibrium, to leading order in derivatives, E i vanishes and the U(1)(0)

symmetry is actually spontaneously broken in the normal phase of the theory (see
[65]). So, for this spontaneously broken symmetry we will have a Goldstone mode
which we denote by ψ (this Goldstone mode may be thought of as the unscreened
magnetic field in the plasma). Furthermore, due to the above symmetry breaking,
ψ has a shift symmetry of the form,

ψ → ψ + Λτ (xi), (6.49)

where in the original theory, Λµ(xi) is to be understood as a τ -independent 1-form
symmetry parameter.

Now let us define the source for U(1)(0) to be biτ . The transformation of biτ is
as follows,

biτ → biτ + ∂iΛτ , (6.50)

The source for U(1)(1) is going to be bij with the following gauge transformation,

bij → bij + ∂iΛj − ∂jΛi. (6.51)

where (i, j, k) = (x, y, z) to be considered in M3 = R3.
Let us now include the 0-form non-conserved axial current jµ in our theory. It

decomposes on S1 × R3 into jτ and ji. Note that the source for jτ is aτ and we
define the source for ji to be ai which have the following gauge transformations,

aτ → aτ , (6.52)

ai → ai + ∂iλ. (6.53)

Note that due to the anomaly, the equilibrium action will “strictly” not be gauge
invariant with respect to the gauge transformations given in Eq. (6.53), but this
gauge non-invariance will be quite constrained by the anomaly equation given in
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Eq. (6.44) as we shall see below.7

The gauge transformations Eq. (6.49) and Eq. (6.50) together indicate that Bi ≡
∂iψ − biτ is a gauge-invariant 3-vector. Furthermore, we also have the following
gauge-invariant tensors: hijk ≡ (db)ijk and Hij ≡ (dB)ij and (da)ij. These will be
the basic building blocks for our hydrodynamic equilibrium action.

6.3.2 Euclidean action

Let us develop an effective action which describes the equilibrium sector of our
theory. For this, let us first note that, in our theory ψ is the only dynamical variable
and aµ, bµν are sources for the currents jµ and Jµν respectively. Furthermore, let
us note that this equilibrium effective action should be separately C, P , T , CP and
CPT invariant since the microscopic theory in Eq. (6.43) is invariant under each of
these symmetries respectively. We tabulate in Table 6.1 the transformation of each
of the sources under the discrete symmetries (see Appendix A.4 for details).

Table 6.1: Discrete Symmetry Table

Symm. aτ ai bij bkτ ∂i

P −1 +1 −1 +1 −1
T +1 −1 +1 −1 +1
C +1 +1 −1 −1 +1
CP −1 +1 +1 −1 −1

With this we can write down an effective action (upto O(∂2)) for the equilibrium
sector. We focus on the state where a, b, B are small. The first few terms in this

7Note that in the dimensionally reduced 3d theory we formally have a new non-invertible sym-
metry arising from the non-conservation of the current ji:

d ⋆ j ∼ k(⋆J iτ ∧ ⋆J ij), (6.54)

where one views J iτ and J ij as currents for U(1)(0) and U(1)(1) in the 3d theory respectively.
Similar non-invertible symmetries have recently been studied in [141].
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expansion that preserved all the discrete symmetries are as follow

S [ψ] =
∫
R3

[
⋆
(1

2χA (aτ )2
)

+ 1
2χB (B ∧ ⋆B) + 1

2χC aτ (a ∧ da) + 1
2χG aτ (B ∧ dB)

+1
2χI (H ∧ ⋆H) + 1

2χK (da ∧ ⋆da) + 1
2χN aτ (⋆h) (B ∧ da)

+1
2χO(⋆h) (h) + 1

2χP aτ (⋆h) (a ∧ dB)
]
, (6.55)

The coefficient χA is the susceptibility of the axial charge sector and χB may be
thought of as the susceptibility of the 1-form charge; physically it controls the
amount of magnetic field produced in terms of a given 1-form chemical potential,
which can be thought of as an applied external electric current [30]. In the above
action, each of the coefficients should be allowed to be an even function of aτ (and an
arbitrary function of the 0th order vector norm B2). The extra explicit factors of aτ
render some of the coefficient functions odd under aτ → −aτ and guarantee the cor-
rect discrete transformation properties of the action. In the above action ‘⋆’ denotes
the 3-dimensional Hodge dual; we reserve the notation ‘⋆4’ for the 4-dimensional
Hodge dual.

Finally, in this section we will seek to illustrate the minimum physics from impos-
ing the anomaly constraint; let us then set all of the coefficients except χA, χB, χO
to zero. Then we have,

S [ψ] =
∫
R3

d3x
[1
2χA (aτ )2 + 1

2χB
(
BiB

i
)

+ 1
12χOhijkh

ijk
]
, (6.56)

where we now further assume that the remaining χA, χB, χO are simply constants.
This action, however, does not have the non-invertible symmetry as the insertion of
symmetry defect operator is not topological, see Appendix F.1 for further details.
It turns out that the above action has to be modified by adding terms that are not
gauge-invariant under Eq. (6.53) in a very specific manner. We will see that this is
sufficient to reproduce some of the chiral MHD phenomenology.

Gauge non-invariant term

If the action above is gauge-invariant under transformations of the axial source
Eq. (6.53) and it will not yield the Ward identity in the dimensionally reduced theory
i.e.

∂ij
i = 4k ϵijkJ ijJkτ . (6.57)
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To remedy this issue, we modify the action Eq. (6.56) into the following form

S [ψ] =
∫
R3

d3x
[1
2χA (aτ )2 + 1

2χB
(
BiB

i
)

+ 1
12χO hijkh

ijk + k aiV
i
]
, (6.58)

where the V i is an arbitrary vector that depends on aτ , ai, Bi, their derivatives and
h = db. This is due to the fact that the action is invariant under the background
gauge transformation of bij in Eq. (6.51). The currents in this theory can be written
as

jτ = δS
δaτ

= χA aτ , ji = δS
δai

= k V i + k
δV j

δai
aj, ,

J iτ = δS
δbiτ

= −χBB
i + k

δV j

δbiτ
aj , J ij = δS

δbij
= −ϵijk∂kf,

(6.59a)

Notice that the constitutive relation for J ij is a total derivative of a 3-form Hijk =
ϵijkf . This is due to the fact that S can only depends on the the total derivative of
bij. A precise form of f in terms of V i is

f = ϵijk
[
χO
12 hijk + k

6am
∂ (V m)
∂(∂kbij)

]
. (6.59b)

To find a form of V i which yield the Ward identity Eq. (6.57), we perform a
transformation a→ a+ dλ in the action Eq. (6.58) to obtain the Ward identity

∂ij
i = k ∂i

[
V i + δV j

δai
aj

]
(6.60)

Demanding the r.h.s. of Eq. (6.60) to be the same as those in Eq. (6.57) and write
J ij in terms of f as in Eq. (6.59a), we find that

∂i

[
V i + δV j

δai
aj

]
= 4ϵijkJ ijJkτ = −8

[
∂i
(
J iτf

)
− f∂iJ iτ

]
= −8∂i(J iτf) (6.61)

where, to get the last equality, we use the conservation law ∂iJ
iτ = 0 in Eq. (6.46)

(upon dimensionally reduced on the thermal cycle). Substitute the form of J iτ and
f from Eq. (6.59a) and Eq. (6.59b) will provide us with a functional equation for V i.

Finding solutions to this is a well-posed but complicated task; while it seems
possible that exact expressions should exist for arbitrary k we have not been able to
find them. To make progress, we thus consider a formal expansion in the anomaly
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coefficient k:
V i = V i

(0) + k V i
(1) +O(k2) , (6.62)

Solving Eq. (6.61), order by order in k, we find that

V i
(0) = 2

3χBχOB
iϵmpqhmpq = 4χBχOB

i|h| ,

V i
(1) = 8αai + 8γ (a ·B)Bi

(6.63)

where we denote |h| = 1
6ϵ
ijkhijk, (a · b) = aiB

i , α ≡ (χ2
OχB)|h|2 and γ ≡ (χ2

Bχ0).
Thus the action for non-invertible symmetry can be written as

S [ψ] =
∫
R3

d3x
[1
2χA (aτ )2 + 1

2χB
(
BiB

i
)

+ 1
12χOh

2

+4k ai
{
χBχO|h|B

i + 2k
(
χOχB

) [
χO|h|

2ai + χB (a ·B)Bi
]}] (6.64)

Equations of motion

We first derive the equations of motion for the ψ field, δS
δψ

= 0,

∂lBl + 4k χO∂l (|h|al) = 16k2 χBχO∂l [al (a ·B)] . (6.65)

We note the curious fact that due to the explicit presence of ai factor in the above
equation, the equations of motion is no longer invariant under transformations of
the axial source ai → ai + ∂iλ.

Such phenomena occur even in simpler systems; for example let us consider axion
electrodynamics, whose action takes the form:

Saxion[θ, a] ∼
∫
d4x

[
(dθ − a)2 + θF ∧ F + F 2 + F ∧ b

]
(6.66)

where F = da and bρσ is the source for the 2-form current Jµν ≡ 1
2ϵ
µνρσFρσ.

The equations of motion for F from the above action are,

d ⋆ F = Fdθ, (6.67)

Clearly, under a shift of the axion, θ → θ + Λ, the above equations of motion is no
longer gauge-invariant, and it cannot be made so without spoiling gauge-invariance
of the dynamical U(1) gauge symmetry. This is arising from the existence of the
gauge non-invariant term θF ∧ F in the action; here we see a similar phenomenon,
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except that we do not even have a degree of freedom analogous to θ in the action;
rather the effect of the anomaly must be saturated using couplings to the axial
source alone.

It seems possible that there is a more elegant way to couple a source to this
current so that some sense of invariance under transformations of the source is
preserved, perhaps using the non-invertible symmetry structure. See [58] for some
recent work in this direction.

Physical consequences

In this section we interpret the result of the above section. Note that the magnetic
field B is defined as, Bi = J iτ and the electric field E is defined as Ei = 1

2ϵipqJ
pq.

Now recall from Eq. (6.59a) that the form of Jpq is greatly constrained; as Jpq =
δS
δbpq

= −∂m (Hmpq) for appropriately chosen Hmpq, we see that Ei ∼ ∂iα̃ where
Hmpq = α̃ ϵmpq. In other words, invariance under 1-form transformations of the
source bij Eq. (6.51) is an extremely fancy way to demonstrate the elementary fact
that in equilibrium, the electric field is always the spatial gradient of a potential.
As is conventional, we will call this potential the electric chemical potential µel.

Putting in the specific expressions from above, we find (at O(k)),

Em = ∂mµel, (6.68)

where, µel ≡ −
χO
2 |h| − 2kχBχO (a ·B) , (6.69)

Bm = −χBBm − 4k χBχO|h|am. (6.70)

Note that in the absence of the anomaly, µel is simply proportional to hijk; this is the
component of the applied source that corresponds to applying an external electric
charge density ρel [30].

Using the above equations and Eq. (6.59a) we find (at O(k)),

ji = −8kJ iτf = 4k
[
χOχB|h|B

i + 2kχ2
OχBa

i|h|2 + 2kχOχ
2
B (a ·B)Bi

]
= 8kµelBi,

(6.71)

In other words, up to the order in k that we have been able to calculate, there is
an axial current flow in the direction of the magnetic field, with coefficient precisely
given by kµel. This is a well-known expression; it is the chiral separation effect
[142–144], see also [90] for a review.

It is interesting to note that the coefficient of the chiral separation effect is given
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precisely by its value in the (ungauged) theory where we have a ’t Hooft anomaly;
the nonlinear terms in k conspire precisely to make this possible. We stress that in
our starting action we have chosen a minimal set of terms Eq. (6.56) to explore the
physics from the anomaly. It seems entirely possible that adding more terms will
alter this relation, as is expected from [116], who found that including dynamical
electromagnetism generically renormalizes all transport coefficients. We leave the
investigation of this important issue to later work.

To conclude: here we constructed a Euclidean effective action that captures
the simplest features of the axial anomaly. We demonstrated that it is possible
(though somewhat cumbersome) to construct a generating function that saturates
the anomaly equation; the resulting answers display the known physics of the chiral
separation effect. We stress that we never weakly gauge electromagnetism; rather
we simply directly discuss the universality class of the gauged theory.

6.4 Dissipative action
In this section, we move beyond the equilibrium construction of the previous section
and construct a dissipative action that realizes this anomaly structure. We will
use the recently constructed formalism for finite-temperature dissipative actions
[14, 15, 145]; which we review in section 6.2 (see [13] for a detailed review of this
technology). As we freeze the stress-energy sector we will require only a subset of
the full technology. We will construct an effective action representing the symmetry
structure described above, and we will see that already interesting physics appears
at the first order in derivatives.

We note from the outset that while this does result in a useful action principle
for obtaining the correct equations of motion, we do not currently feel that this is
the most elegant formulation of the problem, for reasons explained below.

The strategy that we take is to first consider two theories which capture the
dissipative dynamics of the charges associated with a conserved U(1) 0-form sym-
metry (with an associated axial charge current jµ) and a 1-form symmetry (with an
associated magnetic flux current Jµν). We then “glue” these two theories together
in a manner which results in the U(1) 0-form symmetry being broken down in the
manner described by the anomaly equation Eq. (6.2). We will see that the imple-
mentation of this structure is most convenient if we introduce some auxiliary fields;
upon eliminating these fields we find Eq. (6.2) on-shell.

We begin with the Lagrangian densities for the two subsectors for the 1-form
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and 0-form sectors respectively:

L0[a; θ] = iσ

β
A2
ai + χAAa0Ar0 − σAai∂0Ari (6.72)

L1[b; Φ] = iρ

β
G2
aij + χBGa0iGr0i − ρGaij∂0Grij (6.73)

where we have
A = a+ dθ , G = b+ dΦ . (6.74)

where the time-component of the 1-form field Φt reduced to ψ in equilibrium con-
figuration presented in Section 6.3. The Lagrangian Eq. (6.72) and Eq. (6.73) each
describes the charge diffusion process of 0-form and 1-form symmetry respectively.
It is also follows that this is the most general Lagrangian in each sector that pre-
served all C, P and T symmetry at first order in derivative and quadratic order in
amplitude of A and G see e.g. [13,146].

Here and throughout we use a notation where lowercase letters are applied
sources and uppercase or greek letters are dynamical fields. For illustrative purposes
we work with the simplest possible actions, i.e. only keeping terms to quadratic or-
der in the fields. Eq. (6.72) describes the diffusive dynamics of an ordinary 0-form
conserved charge in terms of the scalar Stuckelberg θ, the construction is reviewed
in [13]. Eq. (6.73) has recently been constructed in [146] to describe diffusive dy-
namics of the magnetic field in terms of a vector Stuckelberg Φ; it should be clear
that it is a 1-form generalization of Eq. (6.72).

In general one obtains the currents through functional differentiation with respect
to the sources:

δS =
∑
s=r,a

∫
d4x

(
jµs a

s
µ + 1

2J
µν
s δbsµν

)
. (6.75)

As usual, the invariance of the action under the following combined transformations
of the sources and dynamical fields:

a→ a+ dΛ(x) θ → θ − Λ(x) (6.76)

b→ b+ dξ(x) Φ→ Φ− ξ(x) (6.77)

(where Λ is a scalar and ξ a 1-form) implies conservation of the currents jµ and Jµν

as defined in Eq. (6.75).
Let us briefly discuss the physical interpretation of the coefficients appearing

in the action above. ρ is the electrical resistivity; as stressed in [30], in a univer-
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sal formulation of magnetohydrodynamics, it is ρ that is a fundamental transport
coefficient, and not the electrical conductivity. In particular, ρ can be matched to
microscopics through the following Kubo formula, in terms of the retarded correlator
of the 2-form current Jxy.

ρ = lim
ω→0

1
−iω

GR
xy,xy(ω) (6.78)

σ is the conductivity of the U(1) 0-form axial charge (and is unrelated to the vector
electrical conductivity). χA and χB are charge susceptibility of 0-form and 1-form
symmetry that appears in the zeroth derivative level of Eq. (6.55).

6.4.1 Combining theories using auxiliary fields

We would now like to glue these two theories together so that jµ is no longer precisely
conserved, but instead so that we find the following expression in the final combined
theory:

∂µj
µ = kϵµνρσJµνJρσ (6.79)

where this expression is now understood to hold on both legs of the doubled Schwinger-
Keldysh contour, i.e. for the 1-type and 2-type fields individually. To do so, we intro-
duce two new sets of auxiliary fields: two 2-forms Σr,a and two 1-forms Cr,a. These
fields are useful to “unwrap” the non-linearities that are present in the anomaly
equation; to obtain the physical currents they should be eliminated, as we do ex-
plicitly below. We thus consider the following combined action:

L[a, b; θ,Φ,Σ, C] = L0[a; θ]+L1[b+Σ; Φ]−1
4
(
ϵµνρσΣa

µνdC
r
ρσ + ϵµνρσΣr

µνdC
a
ρσ

)
+Lanom[θ, C],

(6.80)
where Lanom[θ, C] takes the form:

Lanom[θ, C] = −k
(
θ1ϵ

µνρσdC1
µνdC

1
ρσ − θ2ϵ

µνρσdC2
µνdC

2
ρσ

)
(6.81)

Note the direct coupling to the Stuckelberg field θ clearly breaks its shift symmetry.
It will often be useful for us to rewrite this action in the r − a basis:

Lanom[θ, C] = k
(
θa
(
ϵµνρσdCr

µνdC
r
ρσ + 1

4ϵ
µνρσdCa

µνdC
a
ρσ

)
+ 2θrϵµνρσdCa

µνdC
r
ρσ

)
(6.82)

Varying the action with respect to θ1,2, we find:

∂µj
µ
1 = −kϵµνρσdC1

µνdC
1
ρσ (6.83)
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We now note that the Σ fields couple to the 1-form sector as a direct shift of the
external 2-form source b, i.e. always in the combination b+Σ. Thus the equations of
motion for the auxiliary field Σr,a are determined by the variation of L1 with respect
to b: δΣL1 = δbL1. This results in the following equations of motion:

δL1

δbaµν
= 1

4ϵ
µνρσ(dCr)ρσ (6.84)

(and similarly for r ↔ a). However the left-hand side is by construction the 2-form
current Jr Eq. (6.75). Thus we see that the role of the Σ fields is to simply to
precisely correlate the Cr,a fields with the 2-form currents as:

Jµνr,a = 1
2ϵ

µνρσdCr,a
ρσ (6.85)

Inserting this into Eq. (6.83) we find exactly the desired expression Eq. (6.79); thus
this construction always relates the non-conservation of the axial current with the
magnetic flux in the correct fashion.

A modern understanding of Eq. (6.79) is that it permits the construction of
topological defect operators that measure the axial charge [37,38]; in Appendix F.2
we verify that such defect operators can be constructed in this theory (indeed we
have one such operator living on each of the legs of the Schwinger-Keldysh contour).

We note some facts about this construction:

1. The structure does not depend on the precise form of the 0-form and 1-form
theories L0 and L1, but only on their invariances under symmetries.

2. As none of the new terms we have added introduce any couplings between the
two legs of the time contour, the action is automatically invariant under the
so-called KMS symmetry; this acts on all fields and sources ϕ as

ϕa(x)→ Θϕa(x) + iβΘ∂tϕr(x) (6.86)

ϕr(x)→ Θϕr(x) (6.87)

with Θ an anti-unitary symmetry representing time-reversal.

3. The action has a rather undesirable feature: it is not invariant under the
“diagonal shift” symmetry in the scalar sector. To be more precise, in an
action-based formulation of hydrodynamics one typically requires that the
action be invariant under shifting the r-type Stuckelberg θr by an arbitrary
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spatially dependent phase, i.e.

θr(t, xi)→ θr(t, xi) + λ(xi) (6.88)

where λ(xi) is an arbitrary function of space [14,15,147]. Invariance under this
symmetry is generally required to forbid arbitrary spatial gradients of ∂iθr in
the action or constitutive relations; if this diagonal symmetry is broken then
one should add such spatial gradients to the action, and we then generically
end up in a superfluid phase for the corresponding symmetry (in this case
U(1)A).

In our construction, the non-anomalous part of the action Eq. (6.72) is invari-
ant under the “diagonal shift” symmetry, but the anomalous part Eq. (6.82)
is not. In the dual variables that we are using, it is not straightforward to
make the action invariant under this diagonal shift. This is undesirable: in
the case of the ’t Hooft anomaly, the interplay between the diagonal shift and
the realization of the anomaly plays a very important role [16,148,149].

At the moment, we are unclear on the precise implications of breaking this diagonal
shift symmetry. We will proceed with this action and find physically very reasonable
results; however, as there is no symmetry preventing us from adding ∂iθr terms to the
action we cannot in good-faith call this an effective field theory; rather it is simply
an action which one can use to obtain a consistent set of equations of motion. Given
the unclear formal status of chiral MHD, this still seems to be of value, and we leave
to the future a more refined understanding of the interplay of the diagonal shift
symmetry and the non-invertible character of the axial anomaly.

6.4.2 Chiral MHD phenomenology

We now study some simple consequences of varying this action. From Eq. (6.75)
above we have from the magnetic sector

J0i
r = χBG̃r0i J ijr = 2iρ

β
G̃aij − ρ∂0G̃rij (6.89)

J0i
a = χBG̃a0i J ija = ρ∂0G̃aij (6.90)

where we have defined a shifted G which takes into account fluctuations of the new
auxiliary field Σ:

G̃ ≡ G+ Σ = b+ dΦ + Σ . (6.91)
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Similarly, in the axial charge sector we have:

j0
r = χAAr0 jir = 2iσ

β
Aai − σ∂0Ari (6.92)

j0
a = χAAa0 jia = −σ∂0Aai (6.93)

Finally, varying the action with respect to Ca, we find the following expression for
Σ:

∂[ρΣr
µν] = 8k∂[ρθ

rdCr
µν] (6.94)

When studying classical equations of motion it is self-consistent to set all a-type
fields to zero after variation of the action; we have done this above. In the remainder
of this section we will thus omit the “r” superscript on all quantities; everything that
remains is an r-type field.

As usual, we now define the axial chemical potential to be

µA = A0 = (∂0θ + a0) (6.95)

It is also convenient to define the following vector “chemical potential” for the 1-form
charge:

µi = G̃0i = (b+ Σ + dA)0i (6.96)

so that we can write

∂0(b+ Σ + dA)ij = h0ij + (dΣ)0ij + ∂iµj − ∂jµi (6.97)

where h = db. We can then write the currents as

J0i = χBµ
i (6.98)

J ij = −ρ(∂iµj − ∂jµi + (dΣ)0ij) (6.99)

where we have set the sources h = db = 0.
We now see the first effect of the anomaly; the Σ field is now contributing to the

spatial components J ij; in a conventional formulation of the theory this component
of the 2-form current is the electric field. We may explicitly find expressions for the
currents by using Eq. (6.94) and Eq. (6.85) to eliminate dC and Σ. To this order in
derivatives this is a linear set of equations that can in principle be straightforwardly
solved; in practice the expressions are somewhat cumbersome.

We present first the answer assuming the the system is spatially homogenous
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(∂i = 0). We set to zero all sources except for the axial source at. We then find:

(dΣ)0ij = 8k(∂0θ)ϵijkJ0k (6.100)

which then leads to the following expressions for the currents

j0 = χAµA ji = 0

J0i = χBµ
i J ij = −8kρ (µA − at) ϵijkJ0k

(6.101)

Let us examine the expression for J ij; we see that the same transport coefficient
ρ that determines the resistivity determines the strength of the electric field E i ∼
kρ(µA − at)Bi. This is a manifestation of the chiral magnetic effect. In a more con-
ventional weakly-gauged description, this arises from considering the vector current
jiel ∼ kµAB

i and relating it to the electric field through the electrical conductivity
E i = σelj

i
el. However, in a formulation of MHD based only around symmetries, it is

difficult to give a precise meaning to either jel or σel [30]; here we see (as expected)
that in this dual language the CME is controlled by ρ instead.

The equations of motion arise from varying the action with respect to θ and Φ,
and are the (non)-conservation of the respective currents:

∂µj
µ = kϵµνρσJµνJρσ ∂µJ

µν = 0 (6.102)

Putting in the constitutive relations for the currents, we now find that µi is constant
in time, but that µA necessarily evolves according to the following equation:

µ̇A = −64k2 ρ

χA
(J0i)2(µA − at) (6.103)

Thus we find that µA relaxes towards the externally applied at with an exponential
decay, i.e.

µA − at ∼ e−ΓAt ΓA = 64k2 ρ

χA
(J0i)2 . (6.104)

This equilibrium configuration is consistent with what one would get from gauging
procedure shown in Eq. (E.1). It also allows us to make sense of the constitutive
relation in Eq. Eq. (6.101) as a small expansion around equilibrium configuration
in the late time limit where e−ΓAt ≪ 1. This kind of procedure is common in the
study of hydrodynamics with weakly broken global symmetry, see e.g. [150,151] for
recent discussions. The presentation of the decay rate ΓA suggests a useful formula
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for it in the small J0i limit, i.e.

ΓA = c(J0i)2 c = 32k2

χA

(
lim
ω→0

1
−iω

GR
xy,xy(ω)

)
(6.105)

where we have used the Kubo formula for ρ Eq. (6.78).
We see that as t→∞, an equilibrium configuration can have a nonzero value of

J0i (as dictated by the unbroken 1-form symmetry), but that µA will always be equal
to at, and that even homogenous fluctuations around this value are damped. Of
course for an ordinary conserved current fluctuations of µ obey a diffusion equation
and are undamped in the homogenous limit.

6.4.3 Spatial derivatives

We now allow nonzero spatial dependence, i.e. we allow ∂i ̸= 0. It was demonstrated
above that the equilibrium state takes the form:

µA = at J0i = χBµ
i (6.106)

where all the fields are constant in space and time. We now consider linearized
perturbations µi → µi + δµi, µA → µA + δµA around this background configuration.
We find the following expressions for the currents:

J0i = χB(µi + δµi) J ij = −ρ (∂iδµj − ∂jδµi)− 8kρχBδµAϵ
ijkµk (6.107)

j0 = χAδµA ji = −σ∂iδµA (6.108)

where as before we have assumed that the external sources have vanishing field
strength, i.e. da = db = 0.

These expressions are what one might expect on physical grounds; in particular
we record the expression for J ij in the conventional language of the electric field
E i = 1

2ϵ
ijkJjk:

E = ρ(χ−1
B ∇× B − 8k(µA − at)B) (6.109)

(where the first term receives contributions only from the fluctuations in B, whereas
the second receives contributions from fluctuations in µA and the background in B).

We note that the equations of motion can be written only in terms of µA, and
do not require explicit mention of the Stuckelberg field θ. This happens because θ
enters only through ∂tθ, and spatial gradients ∂iθ do not appear; this can be traced
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back to the precise form of the expression Eq. (6.94) and Eq. (6.99). We note that
this was not obviously guaranteed. In the usual formulation of effective actions for
hydrodynamics this property is enforced by the diagonal shift symmetry. As we
noted previously, our system does not have this symmetry, and it seems possible
that at higher orders in non-linearities and/or derivatives spatial gradients of the
Stuckelberg field will appear. We leave this possibility for later investigation.

As a simple application we study the dispersion relations in this framework. We
orient the background field in the z direction µz and consider a fluctuation δµy with
momentum q in the x direction8, so that perturbations have the spacetime depen-
dence e−iωt+iqx. From Eq. (6.102) it is straightforward to find two modes ω1,2(q).
The expressions are somewhat cumbersome, so we record them in two limits. We
assume ρ

χ
B

< σ
χ

A

, and we first present the “high” momentum limit:

ω1(q) = −iq2 σ

χA

(
1− 64k2B2χB

ρχA − σχB
1
q2 +O(q−4)

)
(6.111)

ω2(q) = −iq2 ρ

χB

(
1 + 64k2B2χB

ρχA − σχB
1
q2 +O(q−4)

)
(6.112)

Here “high” means that q2 ≫ k2B2

σ
, i.e we are looking at scales higher than the

scale determined by the anomaly. We see that in this regime the two modes are
essentially those of the diffusion of conventional 0-form charge and that of magnetic
field lines respectively, with the two diffusion constants set by Da = σ

χ
A

and Db =
ρ
χ

B

; i.e. in this regime we find the physics of the original non-anomalous model.
At low q we find instead the following interesting dispersion relations, which we

expand in the first few orders in the spatial momentum q.

ω1(q) = −64iB2k2ρ

χA
− iq2

(
ρ

χB
+ σ

χA

)
+O(q4) (6.113)

ω2(q) = −i σ

64B2k2χB
q4 +O(q6) (6.114)

We see that the 0-form diffusive mode is now gapped in the IR, as we saw above in
Eq. (6.104). The leading momentum-dependence of this mode now has a dissipative

8Had we set q to be in the direction parallel with µi, the two modes modes ω1, ω2 depends
quadratically on q i.e.

ω1 = −32iB2k2ρ

χA

− iq2 σ

χA

, ω2 = −iq2 ρ

χB

. (6.110)
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character, where the dissipation rate is interestingly controlled by the sum of the
diffusion rates of the original magnetic and axial charge sector respectively.

The second “subdiffusive” mode – which at high momenta becomes the diffusion
of magnetic flux –interestingly starts at O(q4) unlike the usual diffusion where ω ∼
−iq2 commonly found in hydrodynamic systems. It should be noted here that the
modes ω ∼ −iq4 has been observed in various anisotropic systems with intricate
symmetry structure such as a system with ’t Hooft anomaly at strong mangetic field
[152], systems with conserved multipole moment [153,154] and easy-axis Heisenberg
spin chain with integrability-breaking perturbation [155] to name a few. Its physical
origin seems to be tied to these somewhat exotic symmetry patterns and deserves
further investigation.

We should also mentioned that, often in the chiral MHD literature, the system
exhibits various kinds of interesting instabilities which have potential applications in
astrophysical plasma. However, our focus is on the perturbation around equilibrium
configuration and study how the system relaxed back to equilibrium. Had we chosen
to perform a perturbation around constant µ ̸= 0 and at = 0, we will also find
unstable solution as those in e.g. [86].

6.5 Discussion and outlook
In this chapter we documented some progress towards a description of chiral MHD
that relies only on the global symmetries. One of our results was be an expression
for the low-field limit of the chiral charge relaxation rate ΓA. This suggests that in
the limit of small B field, this expression is universal, and takes the form:

ΓA = cB2 c = 64k2

χA
lim
ω→0

1
−iω

GR
Ez ,Ez(k → 0, ω) (6.115)

where we have rephrased Eq. (6.104) in terms of conventional electric and magnetic
fields.

Formulas of this sort are well-known (see e.g. [80,156]), but are usually presented
in terms of the electrical conductivity σel instead, which makes sense only in a
weakly-gauged description. Note that as ρ and not σel enters into this derivation, in
principle this relation makes sense even when the electrodynamic sector is strongly
coupled. Due to the issues with universality described earlier, we cannot claim
that we have shown that this formula universally describes the decay rate. It is
however in agreement with holographic results exhibited in [156], and it would be
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very interesting to compare it to recent lattice results [80, 81], where it may be
possible to independently measure ρ and χA on the lattice. As described in those
works, at the moment lattice computations for this prefactor are in disagreement
with elementary hydrodynamic arguments based around a gauged vector current,
and one might imagine that our more universal treatment is of value.

This expression suggests that as B → 0 the relaxation rate ΓA vanishes. At this
point we should note that we have been working in a classical theory and have not
included any sort of fluctuations, i.e. we have essentially interpreted the operator
⟨JJ̃⟩ to be ⟨J⟩⟨J̃⟩ 9. This is clearly only an approximation, and it seems possible
that incorporating fluctuations could result in a B-independent contribution to ΓA.
This would then become the dominant effect at small B. However, as we will see
in the next chapter this will not be the case and the chiral decay rate will actually
vanish in the limit of vanishing magnetic field at 1-loop.

We conclude with a brief symmary of our results. Had our symmetry simply
be a product of explicitly broken 0-form U(1), with a lifetime (ΓA)−1 and unbroken
1-form U(1) symmetry, one would expect the theory in the deep IR at t ≫ (ΓA)−1

to only consist of a 1-form symmetry, i.e. to be indistinguishable from those in [30].
We show that the theory with a system with ABJ anomaly is differ from an ordinary
MHD both in and out of equilibrium.

In the equilibrium sector, the physics that we get is that of the chiral separation
effect (CSE). Surprisingly, the formula that describes the CSE on our case exactly
matches with the one present in Eq.(4.15) of [90], where in the latter it was derived
in a weakly-coupled way with non-dynamical electromagnetism. We see that if
we correct for the electric and magnetic fields to O(k), then the functional form
of the CSE remains the same. However, we have not presented the most general
equilibrium action in the sense that it can have more terms in it and then one
needs to check if the functional form of the CSE still remains same or if it receives
correction (as shown in [116]) even after addition of more terms to the equilibrium
action. We shall return this exercise in future. However, the crucial point to note
here is that we get this chiral MHD phenomenology even though we never make any
reference to electromagnetism.

In the dissipative sector, we derive the physics of the chiral magnetic effect. The
coefficients appearing in this effect can be derived from Kubo formulae, as given

9We note that in the presence of some limit (e.g. large N) allowing classicality we can consider
such an approximation.
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in [30], and in this sense they are somewhat universal. However, the dissipative
action is not invariant under a diagonal shift symmetry. We shall return to this
point later in future to resolve this issue with the dissipative action. We also found
that, while the density in ordinary MHD relaxed to equilibrium through diffusion
process with ω ∼ −iq2, a theory with ABJ anomaly relaxed to the equilibrium
configuration through subdiffusion process with ω ∼ −iq4. While this is not the
first time that such a mode is found, it would be interesting to investigate whether
or not it is signature of non-invertible symmetry of this type.
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CHAPTER 7

Chiral decay rate in vanishing magnetic field

This chapter is concerned with fluctuation-driven effects in chiral magnetohydro-
dynamics. We begin by briefly stating the problem. A chiral plasma belongs to
the same universality class (in the context of global symmetry) as that of massless
Dirac fermions coupled to dynamical QED at finite temperatures (see chapter 5
and [156]), a fact which has been iterated many times in the thesis now. Let us
reacll the symmetry structure of the chiral plasma,

∂µJ
µν = 0, Jµν ≡ 1

2ϵ
µνρσfρσ, (7.1)

∂µj
µ
A = k ϵµνρσJ

µνJρσ (7.2)

We can define the electric and magnetic fields, in the usual way as in electro-
dynamics, in terms of the components of the 2-form current as follows: J0i = Bi.
Thus, El = 1

2ϵijlJ
ij.

Let us denote the topological density by the operator

Q(x) = ϵµνρσfµνfρσ . (7.3)

The non-conservation equation for the axial charge then reads

∂µj
µ
A = −kQ(x) (7.4)

This non-conservation equation leads one to expect that in a thermal state the axial
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charge should decay exponentially in time as nA ∼ e−ΓAt. In a formal limit where
the anomaly coefficient k is taken to be small, the decay rate for the axial charge is
given by the following formula (see Eq.(2.8) in [80])1:

ΓA = lim
Ω→0

k2

χAΩImGR
QQ(Ω, p⃗ = 0) (7.5)

where χA is the axial charge susceptibility and GR
QQ(Ω, p⃗) is the retarded correlation

function of the topological density2. This expression is perturbative in k but makes
no assumptions on the dynamics of the degrees of freedom entering the topological
charge density. Let us now explore some implications of this formula.

First, we note that in elementary language, Q(x) = 8E⃗ · B⃗. Let us consider a
state with a background magnetic field B⃗ ̸= 0 pointing along the z axis, and study
only the fluctuations of the electric field about the equilibrium (i.e. assuming that
B⃗ does not fluctuate). We then find the following expression for the axial charge
decay rate, in terms of the retarded correlation function of the electric field operator
E.

ΓA = 64k2B2

χA
lim
Ω→0

1
ΩImGR

Ez ,Ez
(Ω) (7.6)

This formula was derived from an effective theory for chiral MHD in the previous
chapter. In particular, we note that the resistivity ρ of the plasma is defined in terms
of a Kubo formula for the electric field, as explained in [30]. Thus this expression
states that the axial charge relaxation rate is:

ΓA = 64k2B2ρ

χA
. (7.7)

This expression can be understood from elementary arguments involving a quasipar-
ticle description [80], and has also been verified in a holographic model in chapter 5.
It has also been subject to numerical investigation in classical simulations [80, 81],
which displayed a robust linear scaling of the decay rate with B2, though the pref-
actor is at the moment poorly understood.3

Importantly, this expression states that as the magnetic field B is taken to zero,
the lifetime of the axial charge is arbitrarily long. Indeed it is this parametric
separation of scales that allowed the construction of the effective theories in the

1This expression can be derived from the so called memory matrix formalism in hydrodynamics.
See [157] for a review.

2We are grateful to L. Delacretaz for suggesting this route for calculation [115]
3This will be discussed in work to appear with A. Florio.
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previous chapter and in [138], and the fact that this separation is in principle possible
implicitly lies behind the extensive phenomenological literature on this subject.

Upon reflection, however, this is a somewhat strong statement – in particular, the
right hand side of Eq. (7.5) does not obviously appear to vanish at zero B. One may
imagine that the thermal fluctuations of the topological density E⃗ · B⃗ would create
a nonzero decay rate which would become the dominant decay channel when the
applied magnetic field is sufficiently small. This would lead to a crossover between
the classical result Eq. (7.5) at moderately strong B and some nonzero fluctuation-
driven effect at small B. If the decay rate does not vanish at zero B, it would have
significant consequences: it would mean that at sufficiently long time scales the axial
charge simply does not exist as a hydrodynamic degree of freedom. In particular, it
would mean that the effective field theories described in [158] are unstable towards
the inclusion of fluctuations.

One might be tempted to argue that the right-hand side of Eq. (7.5) is likely to
vanish as follows: the infrared limit of the correlation function is presumably related
to the integral of the Euclidean correlation function of Q(τ, x⃗) over all Euclidean
spacetime. But we know that Q is a total derivative:

Q = ∂µK
µ Kµ ≡ ϵµνρσaνfρσ (7.8)

and thus the integral will receive contributions only from field configurations with
nontrivial topological structure. However in an Abelian gauge theory with vanishing
background B field there are no U(1) instantons, and thus the integral is zero. The
argument is somewhat heuristic and it seems to us that it depends sensitively on
boundary conditions at infinity. We were unable to formulate a completely satisfac-
tory version of this argument, and indeed the art of extrapolating real-time dynam-
ical physics from Euclidean non-perturbative data is quite subtle (see e.g. [159]).

In this work we thus directly compute the leading contribution to the decay rate
ΓA from thermal fluctuations by evaluating the Kubo formula Eq. (7.5) in the state
with zero background magnetic field. In particular, we will evaluate the contribution
to the retarded correlation function Q(x) = 8E⃗ · B⃗ arising from a one-loop calcula-
tion where the propagating degrees of freedom are diffusive MHD waves, the leading
low-frequency degrees of freedom in the MHD plasma. Importantly, we will demon-
strate explicitly that these fluctuations do result in a nontrivial real-time correlation
function GR

QQ(Ω) for the topological density – which we calculate as a function of
frequency Ω – but that this function vanishes quickly enough at small frequency that
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it does not result in non-vanishing fluctuation-driven decay rate. This is consistent
with the heuristic argument above, and (to this order) is consistent with safe use of
the effective hydrodynamic description.

7.1 Fluctuations
In this section, we compute the finite-frequency real-time topological susceptibility
arising from magnetohydrodynamic fluctuations. In particular, we are interested in
computing the retarded correlation function

GR
QQ(Ω) = −i

∫
dtd3xeiΩt Tr

(
e−βH [Q(x⃗, t), Q(0)]

)
θ(t) . (7.9)

where the operator Q = 8E⃗ · B⃗. We will now write the retarded correlation function
above in terms of correlation function of E⃗ and B⃗; those can then be evaluated using
an appropriate model for the dynamics.

A convenient way to proceed is to express the retarded correlation function in
terms of the Euclidean finite-temperature correlation function GE

QQ(iΩl), which is
defined on a discrete set of Euclidean Matsubara frequncies iΩl = 2πiZ

β
. The retarded

correlation function at real Ω is related to the Euclidean one by the usual formula

GR
QQ(Ω) = GE

QQ(iΩl = Ω + iϵ) (7.10)

The Euclidean correlator can be explicitly written as:

GE
QQ(iΩl) =

∫ β

0
dτ
∫
d3xe−iΩlτ ⟨Q(τ, x⃗)Q(0)⟩ (7.11)

To proceed, we use Q(x) = 8E⃗ · B⃗. We also assume all correlations in the fluid are
Gaussian. This is a reasonable starting point, as generally in hydrodynamics it is
expected that the current densities are themselves weakly coupled at long distances
so that a classical treatment is valid4.

This assumption means that we can factorize the correlators in Euclidean space

4In low-dimensional hydrodynamics there are known examples where non-linearities are relevant
in the IR (see e.g. [12] for a review) but to our knowledge this is not expected to be the case for
(3+1)d MHD.
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as follows:

〈(
E⃗ · B⃗

)
(x)

(
E⃗ · B⃗

)
(0)
〉

= δpqδrs [⟨Ep(x)Er(0)⟩ ⟨Bq(x)Bs(0)⟩+ ⟨Ep(x)Bs(0)⟩ ⟨Bq(x)Er(0)⟩] ,
(7.12)

Note that in this expression we have assumed that there is no background topological
density, i.e. ⟨E⃗ · B⃗⟩ = 0; this follows from CP invariance of the thermal state.

This can be conveniently interpreted as a Feynman diagram bubble evaluated
in Euclidean spacetime, where the propagators of the bubble are the two-point
correlators ⟨Ep(x)Er(0)⟩ etc, see Fig. 7.1. Indeed, expressed in this form the problem
has a great deal of formal similarity to the classic problem of evaluating (e.g.) a
one-loop conductivity in terms of the propagators of the microscopic charged degrees
of freedom – in both cases we are interested in determining the correlation function
of an operator (i.e. Q) which is a bilinear in terms of fields with quadratic – and
known – correlations (i.e. E⃗ and B⃗).

Figure 7.1: A bubble diagram representing the four-point function as given in
Eq. (7.12).

Following the standard approach for that problem5, it is convenient to write the
expression in (Euclidean) frequency space, where we find that it becomes

GE
QQ(iΩl) = 64T

∑
iωm

∫ d3p

(2π)3

(
GE
EiEj

(iΩl + iωm)GE
BiBj

(iΩl) +GE
EiBj

(iΩl + iωm)GE
BiEj

(iΩl)
)

(7.13)
The above expression includes the same sum over the index structure that is present
in Eq. (7.12).

We now note that we do not have access to the Euclidean correlation functions
of the electric and magnetic fields GE

EiBj
etc. in any suitable form. However from

5See e.g. [160] or a review in a holographic context in [161].
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magnetohydrodynamics we do have access to the Lorentzian spectral densities for
these correlations at small real frequencies6. It is thus convenient to rewrite this
expression in terms of these spectral densities, which can be done using standard
finite-temperature techniques (reviewed in Appendix G.1) to obtain:

GE
QQ(iΩl) = −64

∫ d3p

(2π)3

∫ dω1

2π
dω2

2π

[
f(ω1)− f(ω2)
ω1 − ω2 − iΩl

]
(ρEiEj

(ω1)ρBiBj
(ω2) + ρEiBj

(ω1)ρBiEj
(ω2))

(7.14)

where ρEE and ρEB are the spectral densities associated with the retarded correlation
functions of E⃗ and B⃗, i.e.

ρEiEj
(ω, p) = − 1

π
ImGR

EiEj
(ω, p), (7.15)

and similarly. Here f(x) is the Bose distribution function7:

f(ω) = 1
eβω − 1 (7.16)

We have reduced the problem to evaluating integrals over these spectral densities.
We now discuss these correlation functions.

7.1.1 Kinematics of plasma correlations

In the remainder of this section, we discuss the tensor structure of the correlators
⟨BB⟩, ⟨EE⟩ and ⟨EB⟩, expressing them in terms of scalar functions of momenta and
frequencies and describing what is known about them from magnetohydrodynamics.

Tensor structure of correlators

In this work we are interested in fluctuations about the plasma at finite temperature
with zero background magnetic field B⃗0 = 0. We will restrict attention to a parity-
invariant theory. Here we record the constraints on the correlation functions arising
from parity invariance and magnetic flux conservation.

The most general possible tensor decomposition of the retarded correlation func-

6It is in general not trivial to analytically continue approximate expressions from real to Eu-
clidean frequencies.

7Note a sight abuse of notation here: we also have labelled the field strngth of the U(1) gauge
field as fµν . However, from the context it should be clear which f we are referring to.

141



tions is,

⟨EiEj⟩ = A(ω, |p⃗|)δij +X(ω, |p⃗|)pipj
p2 + U(ω, |p⃗|)ϵijk

pk

|p⃗|
,

⟨BiBj⟩ = C(ω, |p⃗|)δij + Y (ω, |p⃗|)pipj
p2 + V (ω, |p⃗|)ϵijk

pk

|p⃗|
,

⟨EiBj⟩ = M(ω, |p⃗|)δij +N(ω, |p⃗|)pipj
p2 +K(ω, |p⃗|)ϵijk

pk

|p⃗|
,

(7.17)

where we remind ourselves that p2 above denote the square of the norm of the
3-vector: p⃗. At times we will use the short-hand notation for the above scalar
functions, Zω to denote Z(ω, |p⃗|).

Noting that E⃗ is a vector and B⃗ a pseudo-vector under parity, the scalar co-
efficient functions Uω, V ω, Mω and Nω are all odd under parity and thus vanish
in a parity-invariant state. Thus, Aω, Xω and Cω, Y ω will be expressed in terms
of the diagonal components of the ⟨EiEj⟩ and ⟨BiBj⟩ correlators, respectively. On
the contrary, Kω will be expressed in terms of the off-diagonal components of the
⟨EiBj⟩.

To impose the constraints from conservation of Jµν , let us assume a plane wave
basis of the form ei(p⃗·x⃗−ωt). Without loss of generality in this section we take the
spatial momentum to be aligned along the z-direction, that is, pz ̸= 0 implying,
p2 = p2

z and |p⃗| = pz. Now let us look at the various components of Eq. (7.1).
Individually, the temporal and z components give: J0z = 0. The remaining spatial
components, that is for i ∈ {x, y}, we get:

Jzi = ω

pz
J0i, (7.18)

Using Eq. (7.18) and the definition of E⃗, B⃗ in terms of the components of the 2-form
current, we can find expressions for the scalar functions, given in Eq. (7.17), in terms
of the relevant two-point functions of the form ⟨JµνJρσ⟩.

Let us first look at the ⟨BiBj⟩ correlator. Since J0z = 0, we have ⟨BzBz⟩ = 0.
This implies, Cω + Y ω = 0. From the diagonal x, y-components, we get: Cω =
⟨BiBi⟩, where i ∈ {x, y}. Following a similar analysis for the ⟨EiEj⟩ correlator, we
get from its diagonal z-component: Aω + Xω = ⟨EzEz⟩. Its remaining diagonal
components give: Aω = ⟨EiEi⟩. Finally, we can use Eq. (7.18) to relate Aω and Cω
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as follows,

Cω = p2

ω2A
ω. (7.19)

The value of the scalar function Kω is yet to be determined. This can be done
by looking at the cross correlator: ⟨EiBj⟩, which we do next. First of all, note that
for i ̸= j we have,

⟨EiBj⟩ = Kϵijk
pk

|p⃗|
= ⟨BjEi⟩ , ⟨BiEj⟩ = −Kϵijk

pk

|p⃗|
= −⟨EiBj⟩ .

Now since any correlator with Bz in it vanishes, as J0z = 0, we have from above that
any correlator with Ez in it should also vanish. This is because these correlators
just differ from each other by a minus sign. So, for non-vanishing cross correlators
of the form: ⟨EiBj⟩, we must have i, j ̸= z. Choosing i, j = x, y, we get,

⟨ExBy⟩ = Kω =
〈
JyzJ0y

〉
= − ω

pz

〈
J0yJ0y

〉
= − ω

pz
⟨ByBy⟩ = − ω

pz
Cω = −pz

ω
Aω,

(7.20)

where the third equality results from Eq. (7.18) and the last equality comes from
Eq. (7.19).

Thus, to conclude, we have the following expressions for the correlators of E⃗ and
B⃗:

⟨EiEj⟩ = A(ω, |p⃗|)δij +X(ω, |p⃗|)pipj
p2 ,

⟨BiBj⟩ = p2

ω2A(ω, |p⃗|)
{
δij −

pipj
p2

}
,

⟨EiBj⟩ = −A(ω, |p⃗|)ϵijk
pk

ω
.

(7.21)

So far our considerations have been purely kinematical. We now turn to the
specific dynamics of the finite-temperature plasma; now the low-frequency limits of
these functions can be obtained from magnetohydrodynamics.

A general formulation of magnetohydrodynamics in terms of higher-form symme-
try was given in [30]. In particular, the transverse channel Aω contains the physics
of diffusion of magnetic field lines, and the precise correlator needed was recorded
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in [62].

GR
Jzx,Jzx(ω, pz)MHD = A(ω, |p⃗|)MHD = −iω2ρ

ω + iDp2 , (7.22)

Here ρ is the resistivity of the plasma, and D the diffusion constant for magnetic
field lines. It can be expressed in terms of the resistivity and magnetic permeability8

Ξ of the plasma as
D = ρ

Ξ . (7.23)

The longitudinal channel X appears only in the electric field channel and controls the
physics of Debye screening. It is not expected to have any universal hydrodynamic
structure, and is presumably analytic in frequency and momenta at low frequencies.
We will see explicitly that it does not contribute at this order to the correlations of
the topological density Jµν J̃µν .

7.1.2 Computation of correlator

Now we are set to compute the factors in the momentum space version of Eq. (7.12).
The first term in this factor which consists of same pairing correlators is given as,

δijδkl [⟨EiEk⟩ω1 ⟨BjBl⟩ω2 ] = p2

ω2
2
δijδkl

[{
Aω1δik +Xω1

pipk
p2

}{
Aω2

(
δjl −

pjpl
p2

)}]

= 2p2

ω2
2
Aω1Aω2 , (7.24)

Similar computation for the second term which consists of cross corelators, gives,

δijδkl
[
⟨EiBl⟩ω1

⟨BjEk⟩ω2

]
= δijδkl

{
−Aω1ϵilm

pm

ω1

}{
−Aω2ϵkjn

pn

ω2

}
= Aω1Aω2

pmp
n

ω1ω2
ϵjkmϵkjn = − 2p2

ω1ω2
Aω1Aω2 . (7.25)

Now we can compute the product of spectral densities as given in Eq. (7.14), using
the above eqautions and Eq. (7.15).

ρEiEj
(ω1)ρBiBj

(ω2) = 1
π2

2p2

ω2
2
aω1aω2 , ρEiBj

(ω1)ρBiEj
(ω2) = − 1

π2
2p2

ω1ω2
aω1aω2 .

(7.26)

8The magnetic permeability can formally be thought of as the 1-form charge susceptibility, i.e.
the thermodynamic quantity that measures the amount of magnetic field created by an applied
field.
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where aω = ImAω. 9

7.1.3 Correlation of topological density

We now compute the correlator of the topological density Eq. (7.14). More precisely,
we will explicitly compute the following frequency-dependent quantity

ΓA(Ω) = k2

χAΩImGR
QQ(Ω, p⃗ = 0) (7.27)

Evaluated at Ω = 0 this determines the decay rate of the axial charge, as explained
in Eq. (7.5). However in this section we will compute its full frequency dependence.

From Eq. (7.14) we have,

ImGR
QQ(Ω) = −64

∞∫
−∞

d3p

(2π)3

∞∫
−∞

dω1

2π
dω2

2π

[
f(ω1)− f(ω2)

π

]
δ(ω1 − ω2 − Ω) 2p2

ω1ω2
2
(ω1 − ω2)aω1aω2 ,

(7.28)

To obtain the above we used Ωl = −iΩ + ε to go to real frequencies in Eq. (7.14)
and used the identity,

Im
( 1
ω1 − ω2 − Ω− iε

)
= πδ(ω1 − ω2 − Ω).

Next we evaluate the ω1 integral and replace ω2 by ω for notational simplicity. Then
we have (see Eq. (7.5)):

ΓA(Ω) = −64k2

χA

1
Ω


∞∫

0

4πp2dp

(2π)3

∞∫
−∞

dω

4π3 [f(ω + Ω)− f(ω)] 2p2

(ω + Ω)ω2 Ω aω+Ωaω

 ,
(7.29)

where we have changed to polar coordinates in momentum space using d3p = 4πp2dp.
Given an explicit expression for aω, the above expression is in principle exact

(assuming only Gaussian correlations in the plasma). To obtain an explicit answer,
we now compute the contribution arising from hydrodynamic fluctuations alone, i.e.
we set aω equal to its results from the MHD correlator from Eq. (7.22). In a given
UV complete theory, this is not the full answer, as aω will not agree with the MHD

9This aω here should not be confused with the U(1) gauge field denoted by the same letter aµ.
This is an abuse of notation but the context will make it clear what is being referred to.
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result at high frequencies; however we expect that it should capture the dominant
infrared contribution. Plugging in the MHD value Eq. (7.22) for aω, we find,

ΓA(Ω) = − 64k2

χA

1
Ω


∞∫

0

4πp2dp

(2π)3

∞∫
−∞

dω

4π3 [f(ω + Ω)− f(ω)] 2p2

(ω + Ω)ω2 Ω

×
(

ω2ρ

ω2 +D2p4

)(
(ω + Ω)2ρ

(ω + Ω)2 +D2p4

)}
(7.30)

. Simplifying this result we find:

ΓA(Ω) = −16k2ρ2

π5χA

∞∫
−∞

dω

[f(ω + Ω)− f(ω)]ω(ω + Ω)2
∞∫

0

dp
p4

[(ω + Ω)2 +D2p4][ω2 +D2p4]

 .
(7.31)

This integral is even in Ω, as can be seen from the change of variables ω → −ω and
the identity f(x) + f(−x) = −1. This is expected from Eq. (7.5) and the fact that
the imaginary part of the retarded correlator of the bosonic operator Q is an odd
function of frequency.

Next, evaluating the p-integral we find

ΓA(Ω) = − 16k2ρ2

2
√

2π4D
5
2χA

∞∫
−∞

dω [f(ω + Ω)− f(ω)] ω(ω + Ω)2

Ω(2ω + Ω)

(√
|ω + Ω| −

√
|ω|
)
.

(7.32)

We will first perform the remaining integral over ω for Ω > 0. Let us denote the
integrand in Eq. (7.32) by L(ω,Ω).

Note that the integrand is now non-analytic as a function of ω and ω+Ω, arising
from singularities in the integrand of Eq. (7.31) at small p when either of these
frequencies vanish. We must thus separate the ω integral into the following three
ranges

ω ∈ (−∞,−Ω) ∪ (−Ω, 0) ∪ (0,∞) . (7.33)

First let us perform the integration for ω ∈ (0,∞), i.e. the integral of interest is:

I+(Ω) =
∞∫

0

dω [f(ω + Ω)− f(ω)] ω(ω + Ω)2

Ω(2ω + Ω)
(√

ω + Ω−
√
ω
)
. (7.34)

We wish to extract the dependence on Ω in the limit that Ω ≪ β. This integral
is convergent and can readily be done numerically; however obtaining an analytical
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handle on the small Ω limit of this integral is subtle. To see this note that expansion
of the integrand in powers of Ω leads to an expression which is analytic in Ω. Naively,
proceeding this way one is led to believe that ΓA is also analytic in Ω. However,
this is not the case; if we attempt to proceed naively, the integral over each term in
the Taylor expansion in Ω fails to converge near ω = 0, indicating that the integral
itself not analytic as a function of Ω though the integrand is.

We thus need to carefully extract this non-analytic dependence of the decay
rate on Ω. To do this we use the fact that there is a hierarchy of scales Ω ≪ β−1

to introduce a cut-off Λ such that Ω ≪ Λ ≪ β−1. With this, we can separate
the integral in Eq. (7.34) into IR, i.e. ω ∈ (0,Λ) and UV, i.e. ω ∈ (Λ,∞) parts.
The non-analytic dependence on Ω will come from the IR part. At the end of the
calculation we will take Λ→ 0.

To do the IR part, we expand the integrand about β → 0, and work to all orders
in Ω. We then integrate the resulting expansion for the range: ω ∈ (0,Λ). We find
the following result, which we have presented in a series expansion in Ω.

I+(Ω)IR =
(
−
√

Λ
2β + βΛ5/2

120 −
β3Λ9/2

4320 +O
(
Λ13/2

))
Ω +

(
5

6β −
π

4
√

2β
− sinh−1(1)

2
√

2β

)
Ω3/2

+
(

1
8β
√

Λ
+ 5βΛ3/2

288 − 3β3Λ7/2

4480 +O
(
Λ11/2

))
Ω2

+
(
− 1

24βΛ3/2 −
19β3Λ5/2

28800 + β5Λ9/2

24192 +O
(
Λ13/2

))
Ω3

+
(

139β
10080 −

βπ

192
√

2
− β sinh−1(1)

96
√

2

)
Ω7/2

+
(

11
640βΛ5/2 + 5β

1536
√

Λ
− 13β3Λ3/2

55296 +O
(
Λ7/2

))
Ω4 +O(Ω5), (7.35)

Note the presence of a non-analytic series of terms starting at O(Ω 3
2 ). An interesting

thing to note is that, in the above equation, the analytic terms in O depend upon
the cut-off Λ, while the non-analytic pieces are independent of Λ, and are exact
expressions which are functions of β. This suggests that the analytic pieces will
receive contributions from the UV part while the non-analytic pieces are exact.
Also, in the above equation there seems to be IR divergences in the analytic pieces
about Λ = 0. As we will see below these will be cancelled from the UV part of the
integral; of course the final answer cannot depend on Λ.

We now turn to the UV part of the integral ω ∈ (Λ,∞). Here we can simply
expand the integrand in powers of Ω; the integral over each term will converge, with
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any putative IR divergences cutoff by Λ. So, the UV limit of integration is simpler;
expanding the integrand we find:

L+(ω,Ω) Ω→0−−−→ − eβωβω3/2

4(1− eβω)2 Ω + β
√
ω

64

(
2βω coth

(
βω

2

)
− 5

)
csch

(
βω

2

)2

Ω2

− β2√ω
768 csch

(
βω

2

)4

(4βω (2 + cosh (βω))− 15 sinh (βω)) Ω3

+
β
(
4β3ω3

(
11 cosh

(
βω
2

)
+ cosh

(
3βω

2

))
− 5 (3 + 16β2ω2 + (−3 + 8β2ω2) cosh (βω)) sinh

(
βω
2

))
192 e−5βω

2 (1− eβω)5 ω3/2
Ω4

+O(Ω5). (7.36)

The linear in Ω piece in the above expansion is free of any IR divergences and can be
immediately integrated over the full range, ω → (0,∞). The term in Ω2 is slightly
more subtle; integrating it over ω ∈ (Λ,∞) we find that the leading dependence on
Λ is − 1

8βΛ1/2 , which indeed precisely cancels the Λ-dependent divergent term in the
quadratic piece in Eq. (7.35). We have explicitly verified that a similar cancellation
takes place for the terms up to O(Ω4), and on general grounds it must happen to
all orders in the Ω expansion. Next we can numerically integrate the UV part, term
by term in the range ω ∈ (Λ,∞) and finally take Λ→ 0.

Note that, the non-analytic pieces are controlled only by the IR integral while
the analytic pieces received contribution both from the IR and the UV parts of the
integral. Hence, in this sense, the non-analytic pieces are universal.

We may treat the remaining two pieces of the integral in Eq. (7.33) in the same
way; we leave the details of these integrals to the Appendix H.1. Now gathering
everything together we find the Ω-dependence of the integral to be:

ΓA(Ω) = 16k2ρ2

2
√

2π4D
5
2χA

{
π

2
√

2β
Ω3/2 − 0.3236√

β
Ω2 + πβ

96
√

2
Ω7/2 − 0.00518 β3/2Ω4 +O(Ω6)

}
,

(7.37)

where the numerical coefficients of the analytic pieces are obtained by numerical
integration and hence are approximate values. On the contrary, the numerical coef-
ficients of the non-analytic pieces are exact values which do not receive UV correc-
tions, and their dependence on the IR data ρ and D is expected to be universal.

We now recall that our computation above assumed Ω > 0. Note that, due to
the non-analytic dependence on Ω, strictly speaking we do not know the behavior
for Ω < 0. We explicitly compute the 1-loop integral for Ω < 0 in Appendix H.1.2
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and show that ΓA(−Ω) = ΓA(Ω) as required. So, for Ω ∈ R, the decay rate is given
as,

ΓA(Ω) = 16k2ρ2

2
√

2π4D
5
2χA

{
π

2
√

2β
|Ω|3/2 − 0.3236√

β
Ω2 + πβ

96
√

2
|Ω|7/2 − 0.00518 β3/2Ω4 +O(Ω6)

}
,

(7.38)

which is now manifestly even.
Finally, we may note that Eq. (7.38) implies that ΓA(Ω → 0) = 0. As claimed,

the 1-loop decay rate itself vanishes in the vanishing magnetic field limit. We discuss
the implications of this result further in the conclusion.

7.2 Discussion and outlook
Above we presented an explicit calculation of the real-time topological susceptibility
– i.e. the retarded correlation function GR

QQ of the operator Q = E⃗ · B⃗ – arising
from hydrodynamic fluctuations about an equilibrium with vanishing magnetic field
B⃗ = 0 in a magnetohydrodynamic plasma.

In the presence of a finite B field a classical calculation leads to ΓA ∼ B2ρ
χA

at zero
frequencies, as shown in Eq. (7.7). The goal of this calculation was to determine the
leading fluctuation-induced contribution to the decay rate at vanishing B field. If
this is non-zero, then strictly speaking in the infrared limit axial charge should not
be considered a hydrodynamic variable.

Importantly, however, we found that the resulting correlation function vanishes
at low frequencies, as shown explicitly in Eq. (7.37). This has the immediate im-
plication that in a chiral plasma, the decay rate of axial charge (as computed to
one-loop order in hydrodynamics) remains zero if background magnetic field is zero,
i.e. the classical analysis here is trustworthy. In our analysis we have also computed
the first few terms in a small frequency expansion in Ω; it is interesting to note that
the presence of gapless diffusive modes results in a non-analytic dependence on Ω,
though this dependence begins at O(Ω 3

2 ) and so is soft enough not to contribute to
the decay rate itself.

It is interesting to compare this to corresponding results for a non-Abelian
plasma, where the quantity analogous to Eq. (7.5) is the Chern-Simons diffusion
rate, i.e. the low-frequency limit of the correlation function of the non-Abelian
topological density Tr(faµν f̃aµν). This quantity has been extensively studied both at
weak-coupling [162] and from holography [163], and is certainly not zero.
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A universal way to understand the difference between the Abelian and non-
Abelian case is the following: in the Abelian case studied here the topological density
in question can be understood as a bilinear in a conserved 2-form current Jµν =
1
2ϵ
µνρσfρσ, i.e. the anomaly equation Eq. (7.2) reads:

∂µj
µ
A = k ϵµνρσJ

µνJρσ (7.39)

This 2-form current is associated with the continuous U(1) 1-form symmetry that
protects magnetic flux conservation in electrodynamics [21]. The presence of this
continuous 1-form symmetry gives a great deal of extra structure to this problem.
This structure is not present for non-Abelian gauge theory, where at most we have
a discrete 1-form symmetry. At a calculational level, it was the presence of this con-
tinuous symmetry current (and its subsequent realization in thermal equilibrium)
which allowed us to obtain non-trivial constraints on the infrared physics from mag-
netohydrodynamics.

More generally, it has recently been shown that a precise characterization of the
anomaly Eq. (7.39) is possible in terms of non-invertible symmetries [37, 38]: i.e.
there still exist topological operators that count axial charge, but these operators
no longer obey a standard group composition law, and there is no longer a sim-
ple conserved current. Our understanding of the dynamical consequences of such
non-invertible symmetries is still in its infancy. However it seems that one way to
understand the calculation above is that the finite temperature dynamics of a charge
density protected by a non-invertible symmetry is somewhat constrained – for ex-
ample, it will not relax to nothingness unless an external magnetic field is applied.
This result is philosophically consistent with [41], which showed that at zero tem-
perature a form of Goldstone’s theorem applies to such non-invertible symmetries in
that there is a protected gapless mode when the symmetry is spontaneously broken.

This suggests that the calculation above could be reorganized to make the role
played by the non-invertible symmetry more manifest. One possible way to do so
would be to use at one-loop level the effective theories constructed in [138, 158],
which realize the symmetries more directly. It would be very interesting to obtain
a robust argument for the vanishing of this relaxation rate to all loop order in
hydrodynamics. Another direction for future work is to compare our results for
GR
QQ(ω) to real-time lattice computations such as those in [80,81], where one might

hope that the non-analytic dependence on Ω in Eq. (7.37) – which are in principle
fully determined by hydrododynamic data – could be verified from the lattice. We
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hope to return to this in the future.
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CHAPTER 8

Conclusion

In this thesis, we conducted a thorough exploration of the finite temperature physics
of a system afflicted by the Adler-Bell-Jackiw anomaly or chiral anomaly. We focused
on systems belonging to the universality class of the chiral plasma. A defining
feature of these systems is the non-conservation of the axial current due to the
chiral anomaly, as described by a dynamical operator fµν f̃µν derived from the field-
strength tensor. Seeking a universal framework for this physics, we reformulated this
operator in terms of the 2-form current associated with magnetic flux conservation.

Utilizing this universal structure, we undertook a holographic study of the sys-
tem, constructing a dual bulk theory that exhibited the described symmetry struc-
ture. In this study, we probed various aspects of finite temperature anomalous mag-
netohydrodynamics, such as charge susceptibility and axial charge relaxation rate,
as functions of temperature and magnetic field. Our findings in the small magnetic
field regime aligned with basic hydrodynamics weakly coupled to an electrodynamic
sector, but notable deviations emerged at larger fields.

Furthermore, we examined chiral magnetohydrodynamics in light of the univer-
sal symmetry structure embedded in the anomaly. We formulated ”effective actions”
to capture both the equilibrium physics and the physics of dissipation. From these
effective actions, we reproduced some familiar aspects of chiral MHD phenomenol-
ogy, including chiral separation and magnetic effects. Our formalism also facilitated
the construction of non-invertible axial symmetry defect operators in real time.

In addition, we studied the axial charge relaxation rate in the limit of vanishing
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magnetic field. Our analysis revealed that it vanished at zero frequency, suggesting
that the axial charge dissipation rate disappears at zero background magnetic field.
This outcome might indicate that the symmetry structure encoded in the anomaly
is shielded by the non-invertible defect operators, as 1-loop effects do not disrupt it.

Overall, this research represents a modest step in the ongoing quest to better
understand the complex physics of systems affected by the chiral anomaly. The
insights gained through holography, hydrodynamics, and effective field theory ap-
proaches contribute to the existing body of knowledge on the dynamics and univer-
sal features of chiral systems and their late-time behavior. We hope the results and
methods presented here may prove helpful for further investigations in this intriguing
field.
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APPENDIX A

Notations, Conventions and Discrete symmetries

A.1 Notations and Conventions
We work in natural units with c = ℏ = 1 and our metric signature is mostly plus:
(−,+,+, · · · · · · ,+).

For boundary indices we have µνρσλ · · · and for bulk indices we haveMNPQR · · · .
We have for the epsilon symbol, ϵ̃0123··· = +1 and for the volume form, ϵ = +√−g dDx,
in D spacetime dimensions.

In ingoing EF coordinates (r, v, x, y, z) we have,

ds2
5 = −r2f(r)dv2 + 2dvdr + r2

(
dx2 + dy2 + dz2

)
, (A.1)

√
−g = r3, (A.2)

ϵrvzxy = r3ϵ̃rvzxy = r3, (A.3)

ϵrvzxy = −r−3, (A.4)

where f ≡ f(r) :=
(

1− r4
h

r4

)
and ∂rf(r) = 4r4

h

r5 .
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A.2 Conventions regarding differential forms
Let A be a p-form and B be a q-form,

(A ∧B)p+q = (p+ q)!
p!q! A[µ1...µpBµp+1...µp+q ] (A.5)

where [. . .] in the subscript denotes complete anti-symmetrisation of the involved
indices.

The exterior derivative is given as,

(dA)µ1...µp+1 = (p+ 1)∂[µ1Aµ2...µp+1] (A.6)

Let us give below some more identities involving differential forms:

d(Ap ∧Bq) = dAp ∧Bq + (−1)pAp ∧ dBq (A.7)

Ap ∧Bq = (−1)pqBq ∧ Ap (A.8)

Ap ∧ ⋆Bp = Bp ∧ ⋆Ap (A.9)

The square of the Hodge star acting on a p form in D dimensions on a metric with
s minus signs in its eigenvalues is

⋆2 = (−1)s+p(D−p) (A.10)

Also,
⋆Ap = 1

p!ϵ
ν1...νp

µ1...µD−p
Aν1...νp (A.11)

which gives,
⋆ϵ = (−1)s, ⋆1 = ϵ =

√
−g dDx (A.12)

Next we record a few useful identities relating differential forms to their compo-
nents, starting with:

Ap ∧ ⋆Ap = 1
p!Aµ1···µpA

µ2···µpϵ, (A.13)

Integrating we find,
∫

MD

Ap ∧ ⋆Ap = 1
p!

∫
MD

dDx
√
−gAµ1···µpA

µ1···µp . (A.14)
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We will also sometimes use expressions of the following form,

∫
M5

H3 ∧ F2 = (−1)s
2!3!

∫
M5

d5x
√
−gϵµνραβHµνρFαβ (A.15)

where s is the number of minus signs in the metric.

A.3 Conventions regarding definition of the bound-
ary current

For this let us consider free Maxwell action in D spacetime (bulk) dimensions as
given below,

S = 1
2

∫
MD

Fp+1 ∧ ⋆Fp+1 = 1
2

∫
MD

1
(p+ 1)! (Fp+1)2 (A.16)

where (Fp+1)2 ≡ F µ1...µp+1Fµ1...µp+1 . The boundary dual of the above theory has a
magnetic (D−p−3)-form symmetry, JD−p−2 ≡ ⋆ Fp+1|r→∞. So, in D = 5 spacetime
(bulk) dimensions we have the usual story that J2 ≡ ⋆ F2|r→∞ (with r being the
holographic radial coordinate).

Now let us Poincaré dualize the above action to get,

Sdual = 1
2

∫
MD

HD−p−1 ∧ ⋆HD−p−1 = 1
2

∫
MD

1
(D − p− 1)! (HD−p−1)2 (A.17)

where, HD−p−1 = dBD−p−2 with BD−p−2 being the Lagrange multiplier to enforce the
closure of Fp+1 during the dualization procedure. The dualization gives, HD−p−1 =
⋆Fp+1 which in turn implies that,

JD−p−2 = HD−p−1|r→∞ . (A.18)

The AdS/CFT dictionary we need to define the boundary current is,
〈

exp
(

1
p!

∫
bµ1...µpJ

µ1...µp

)〉
CFT

= Zgrav[Bµ1...µp(r →∞) = bµ1...µp ]

leading to, Jµ1...µp = p! lim
r→∞

δSbulk

δ
(
∂rBµ1...µp

) , (A.19)

Note that there is a factor of p! in the definition of the boundary current in A.19.
This factor is needed to get A.18. Let us show this below.
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Now let us obtain the boundary current from Sdual using A.19.

δS

δ
(
∂rBµ1...µD−p−2

) = 1
2(D − p− 1)!

∂ (HD−p−1)2

∂
(
∂rBµ1...µD−p−2

) = 1
2(D − p− 1)!2H

rµ2...µD−p−2 (D − p− 1)

= 1
(D − p− 2)!H

rµ2...µD−p−1 (A.20)

Thus, we see that to get A.18, we should have the following normalization in the
boundary current definition,

Jµ2...µD−p−1 = (D − p− 2)! lim
r→∞

δSbulk

δ
(
∂rBµ2...µD−p−1

) , (A.21)

So, A.21 explains the factor of p! in A.19.

A.4 Discrete symmetries
Here we record some background on the construction of Table 6.1 of discrete sym-
metries. Note that aµ is the axial source and hence it is a pseudo-vector and has
the same transformation under discrete symmetry as that of Ψγµγ5Ψ. Next let us
look at bµν . Since bµν is the source for the 2-form current, it couples in the action
as ϵµνbµνFρσ, where Fρσ is the field strength of the vector gauge field. So, bij cou-
ples to F kτ and Bk(= bkτ ) couples to F ij. F µν being a 2-index object we will have
the following transformations of its components under discrete symmetries, F kτ will
transform as ΨσkτΨ and F ij will transform as ΨσijΨ. Once we have identified
the above discrete transformations, we may now use standard results (e.g. those
in [164]).

157



APPENDIX B

Poincaré duality and Inverse operation

B.1 Poincaré Duality
As a first example consider Maxwell’s action in D spacetime dimensions (see for
example [105]). The action is given as,

S = 1
2

∫
MD

Fp+1(Ap) ∧ ⋆Fp+1(Ap), (B.1)

where Fp+1 = dAp is a (p+ 1) form and Ap ∈
∧p (MD

)
. The EOMs are,

dFp+1 = 0, (B.2)

d ⋆ Fp+1 = 0. (B.3)

where Eq. (B.2) is the Bianchi Identity and Eq. (B.3) is the source part of EOM
let us call it ‘s-EOM’. Note that here Fp+1 is a closed (p+ 1) form.

We are interested in dualizing Fp+1 (the field strength) in Eq. (B.1). Naively,
note that if we have,

HD−p−1 := ⋆Fp+1, (B.4)

leading to, ⋆HD−p−1 = ⋆(⋆Fp+1) = ±Fp+1, (B.5)

thereby EOMs, d ⋆ HD−p−1 = 0, and dHD−p−1 = 0 (B.6)
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where locally due to Poincare lemma we can haveHD−p−1 = dBD−p−2 whereBD−p−2 ∈∧D−p−2(MD). Note the above interchanges the Bianchi Identity and s-EOM. In the
above, naively we see that a p form potential Ap is dual to a D−p−2 form potential
BD−p−2. Let us do a small counting argument. The no. of linearly independent p
forms in D dimension is D!

(D−p)!p! . However, if we are looking at physical DoFs, then
the physical DoFs of Ap is (D−2)!

(D−p−2)!p! (as Ap has D−2 polarisations in D dimensions).
Now note that, the physical DoFs of a p form and its dual D− p− 2 form are equal.

B.1.1 Poincaré Dualization

Consider an arbitrary (not necessarily closed) (p + 1) form Fp+1. Take BD−p−2 ∈∧D−p−2(MD) which will play the role of a Lagrange multiplier to impose the closure
constraint of Fp+1. Now consider the action,

Sc = (−1)p
∫

MD
dBD−p−2 ∧ Fp+1, (B.7)

where the (−1)p infront of the integral is present by convention.
We can add Sc to a parent action Sp given as,

Sp =
∫

MD

1
2Fp+1 ∧ ⋆Fp+1 + (−1)pdBD−p−2 ∧ Fp+1. (B.8)

Note that we can rewrite Sc as,

Sc = (−1)p
∫

MD
d(BD−p−2 ∧ Fp+1) + (−1)D−p−1BD−p−2 ∧ dFp+1, (B.9)

leading to, Sc =
∫

MD
(−1)D−1BD−p−2 ∧ dFp+1 (ignoring surface term), (B.10)

which gives for BD−p−2’s EOM,

dFp+1 = 0 ⇒ Fp+1 = dAp (locally by Poincare lemma). (B.11)

Then (locally) due to Poincare lemma we can re-write Sp as,

Sp =
∫

MD

1
2(dAp) ∧ (⋆dAp) + (−1)pdBD−p−2 ∧ dAp, (B.12)
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which gives EOMs as,

d ⋆ Fp+1 = 0, (A′
ps EOM) (B.13)

dFp+1 = 0. (B′
D−p−2s EOM) (B.14)

Now in order to obtain the dual description of Eq. (B.1) we vary Sp as in Eq. (B.8)
w.r.t. Fp+1. Varying Sp as in Eq. (B.8) w.r.t. Fp+1 we obtain,

(⋆Fp+1)µ1···µD−p−1 dx
ν1 ∧ · · · ∧ dxνp+1 ∧ dxµ1 ∧ · · · ∧ dxµD−p−1

+(−1)p(dBD−p−2)µ1···µD−p−1 dx
µ1 ∧ · · · ∧ dxµD−p−1 ∧ dxν1 ∧ · · · ∧ dxνp+1 = 0

leading to, (⋆Fp+1)µ1···µD−p−1 dx
ν1 ∧ · · · ∧ dxνp+1 ∧ dxµ1 ∧ · · · ∧ dxµD−p−1

=(−1)p+1(−1)(p+1)(D−p−1)(dBD−p−2)µ1···µD−p−1

dxν1 ∧ · · · ∧ dxνp+1 ∧ dxµ1 ∧ · · · ∧ dxµD−p−1

leading to, ⋆ Fp+1 = (−1)(p+1)(D−p)dBD−p−2 = (−1)(p+1)(D−p)H, (B.15)

where HD−p−1 := dBD−p−2 (field strength for BD−p−2). Now one can see that,

Fp+1 = (−1)p(⋆HD−p−1), (B.16)

leading to, SD = 1
2

∫
MD

HD−p−1(BD−p−2) ∧ ⋆HD−p−1(BD−p−2)

(replacing HD−p−1 in Eq. (B.8)), (B.17)

where, SD is the dual action to S and now clearly the Bianchi Identity and s-EOM
are interchanged. Note that in the whole Poincare Dualization procedure it is the
field strength Fp+1 which is dualized to HD−p−1 and not the potential Ap.

So, the theories given by S and SD are therefore equivalent and we can only
consider potentials upto rank D

2 − 1 (as, Ap is dual to BD−p−2 and so, D− p− 2 = p

which gives, p = D
2 − 1). The above discussion on Poincare Dualization suggests

that if one considers Sp (as given in Eq. (B.12)) for the action of Maxwell EM in
D = 4 then one can recover both pair of EOMs from Sp as presented in Eqns. (B.13)
and (B.14).

B.1.2 Toy Example S3 : A1 ∧ F2

Now we consider another action S (in D = 3) and we want to look at its dual
description. As before we shall dualize the field strength and not the potential.
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Consider the following action,

S3 =
∫

M3

1
2F2 ∧ ⋆F2 + 1

2G2 ∧ ⋆G2 + kA1 ∧ F2, (B.18)

where F2 = dV1 and hence is a closed 2 form, A1 and V1 are a 1 forms, G2 = dA1

and k is a constant scalar. Now again a naive look tells us that V1 shall have a
corresponding dual potential in the dual description which will be a 0 form say θ0

(as, p↔ D− p− 2 and D = 3, p = 1 for this case). Notice that S3 in this case is at
the level of S as given in Eq. (B.1).

Now proceeding as before, let us define a parent action which shall contain a
Lagrange multiplier (which shall be a 0 form in this case) to ensure the closure of
an arbitrary (not necessarily closed) 2 form F2. We have,

S3p =
∫

M3

1
2F2 ∧ ⋆F2 + 1

2G2 ∧ ⋆G2 + kA1 ∧ F2 + (−1)1dθ0 ∧ F2. (B.19)

We define Sc as,

Sc =
∫

M3
(−1)1dθ0 ∧ F2. (B.20)

Notice that,

(−1)dθ0 ∧ F2 = (−1)d(θ0 ∧ F2) + (−1)0θ0 ∧ dF2

Hence, we can re-write Sc as (ignoring the surface term),

Sc =
∫

M3
θ0 ∧ dF2

where varying the above Sc w.r.t. θ0 gives, dF2 = 0 (closure of F2 through θ0).
Now let us vary S3p w.r.t. F2. Then δF2S3p = 0 gives,

(⋆F2)µ1 dx
ν1 ∧ dxν2 ∧ dxµ1 + (−1)(dθ0)µ1 dx

µ1 ∧ dxν1 ∧ dxν2

+ k(A1)µ1 dx
µ1 ∧ dxν1 ∧ dxν2 = 0

leading to, (⋆F2)µ1 dx
ν1 ∧ dxν2 ∧ dxµ1 = (dθ0)µ1 dx

ν1 ∧ dxν2 ∧ dxµ1

− k(A1)µ1 dx
ν1 ∧ dxν2 ∧ dxµ1

leading to, ⋆ F2 = dθ0 − kA1, (B.21)

leading to, F2 = −(⋆dθ0 − k(⋆A1)). (B.22)
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Let us define B2 := ⋆dθ0 which implies, ⋆B2 = −dθ0. Now let us compute the dual
action S3D by putting the obtained values of F2 and ⋆F2 in S3p,

S3D =
∫

M3

1
2 [(k(⋆A1)−B2) ∧ ((−B2)− kA1)] + kA1 ∧ (k(⋆A1)−B2)

+ ⋆B2 ∧ (k(⋆A1)−B2) + 1
2G2 ∧ ⋆G2

=
∫

M3

1
2 [kA1 ∧ (k(⋆A1)−B2) + ∗B2 ∧ (k(⋆A1)−B2)] + 1

2G2 ∧ ⋆G2

=
∫

M3

1
2G2 ∧ ⋆G2 + 1

2(dθ0 − kA1) ∧ ⋆(dθ0 − kA1). (B.23)

B.2 Inverse operation
In terms of tensor-index notation, Eq.(5.30) is,

FMN = −1
2ϵPQRMN (∂PBQR) + 4k ϵPQRMN APFQR,

leading to,
[
δQMδ

R
N − 4k ϵIJKMN gJQgKRAI

]
FQR = −1

2ϵIJKMN ∂I(BJK), (B.24)

leading to, OQRMN FQR = −1
2ϵIJKMN ∂I(BJK), (B.25)

where OQRMN ≡ δQMδ
R
N − 4k ϵIJKMN gJQgKRAI .

Now the task is to invertOQRMN to obtain (O−1)MN
LK such thatOQRMN (O−1)MN

LK =
δQL δ

R
K .1 Then, (O−1)MN

LK would enable us to write F2 in terms of B2 and A1 and
their derivatives which is what we are after.

Note that we are not assuming that OQRMN or (O−1)MN
LK is anti-symmetric at

this point. However, ultimately they will be contracted with FQR (for instance, see
Eq.(B.24)), and their symmetric parts would cancel out and things will turn out to
be consistent.

Let us consider the most general (O−1)MN
LK possible (arranged in ascending pow-

ers of A1) and then we shall demand it to be OQRMN ’s inverse. The most general
expression for (O−1)MN

LK is,

(O−1)MN
LK = c0 δ

M
L δ

N
K + c̄0 δ

M
K δ

N
L + 4c1k ϵPIJLK AP gIMgJN + 16c2k

2δML A
NAK

+ 16c̄2k
2δNL A

MAK + 16c′

2k
2δNKA

MAL + 16c̃2k
2δMK A

NAL, (B.26)

where c0, c̄0, c1, c2, c̄2, c
′
2, c̃2 are coefficients to be determined by demanding that

1Note that δQ
L δ

R
KFQR = FLK . So, in the space of 2 forms δQ

L δ
R
K is the identity operator.
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(O−1)MN
LK is the inverse of OQRMN (their subscript is numbered as per the powers of

A1 they are coefficients of). Note that we cannot have any more powers of A1 in the
above expression (in the sense of anti-symmetric indices of A1) as when they would
be contracted with ϵPIJQR they would cancel. Note that, every term other than
terms whose coefficients are c0 and c̃0 have to come with some powers of k otherwise
on k → 0 limit they would not give the proper inverse of the OQRMN

∣∣∣
k→0

= δQMδ
R
N

as they would survive the k → 0 limit.
Now demanding, OQRMN (O−1)MN

LK = δQL δ
R
K we get the following equation,

(c0 + 32c1k
2A2)δQL δRK + (c̄0 − 32c1k

2A2)δQKδRL + (c1 − c0 + c̄0)4k ϵPIJLKAP gIQgJR

+ (c2 − 2c1)16k2 δQLA
RAK + (c̄2 + 2c1)16k2 δRLA

QAK + (c′

2 − 2c1)16k2 δRKA
QAL

+ (c̃2 + 2c1)16k2 δQKA
RAL = δQL δ

R
K

So the above equation is satisfied if,

c1 = 1
1 + 64k2A2 , c0 = 1 + 32k2A2

1 + 64k2A2 , c̄0 = 32k2A2

1 + 64k2A2 , (B.27)

c2 = c
′

2 = 2c1 = 2
1 + 64k2A2 , c̄2 = c̃2 = −2c1 = −2

1 + 64k2A2 . (B.28)

One can readily check that with the above values for the coefficients (O−1)MN
LK as

given in Eq.(B.26) is the inverse of OQRMN (and also gives the correct inverse in the
k → 0 limit when c0 → 1 and only the term with c0 as the coefficient survives).

Next we multiply, Eq.(B.25) with (O−1)MN
LK to get Eq.(5.36),

For completeness here we express the differential forms that make up S5p in terms
of their components (up to quadratic orders in E),

− 1
2F2 ∧ ⋆F2 →

[
H2

12 − 48k2 (E ·H)2 + 32
3 k

2H2E2 + 2k
3 ϵPQRLKH

PQREMH
MLK

]
c̃2

1,

(B.29)

+H3 ∧ F2 →
[
−H

2

6 −
64
3 k

2H2E2 − 2k
3 ϵPQRLKH

PQREMH
MLK + 32k2 (E ·H)2

]
c̃2

1,

(B.30)

− 4kE1 ∧ F2 ∧ F2 →
[
32k2 (E ·H)2 − k

3 ϵPQRLKH
PQREMH

MLK

]
c̃2

1, (B.31)

− 1
2G2 ∧ ⋆G2 → −

1
4G

2, (B.32)

and when expanded in powers of small k, c̃2
1 = 1− 128 k2E2 +O(k4).
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APPENDIX C

ζ → 0 and hypergeometric differential equation

Note that if we naively put ζ = 0 in (5.49), then we do not get two linearly indepen-
dent solutions at ζ = 0. This is related to the structure of the Riemann differential
equation about the point ζ = 0. Here we give the general solution to Eq.(5.45) in
the limit of ζ → 01,

δEt(r)gen|ζ→0 = rh
r

[
m1 2F1

(
−1

4 ,
1
4; 1; r

4

r4
h

)
+m2

{
2F1

(
−1

4 ,
1
4; 1; r

4

r4
h

)
ln
(
r4

r4
h

)

+
∞∑
i=0

(a)i (b)i
(c)i i!

(
r4

r4
h

)i (
ψ
(
i− 1

4

)
+ ψ

(
i+ 1

4

)
− 2ψ (1 + i)

)
 ,
(C.1)

where a = −1
4 , b = 1

4 , c = 1, ψ(x) ≡ d
dx

ln(Γ(x)) is the digamma function, m1 and
m2 are integration constants, and (a)i is the rising Pochhammer symbol defined as,

(a)i :=


1, i = 0

a(a+ 1) · · · · · · (a+ i− 1), i > 0

1For more information see section 15.10 of [165].

164



APPENDIX D

Shooting method and Gapped modes

D.1 Implementation of numerics
In this appendix we aim to find a searching condition for the numerical implemen-
tation of our quasinormal modes. To do this we perform a simple linear algebra
exercise. Suppose we have N fields ΦI(r). Let ΦI

a(r) be a basis for the solutions
that are ingoing at horizon (a ∈ {1, · · · · · · , N}). Let ΦI

α(r) be a basis for the AdS
boundary solutions with an appropriate boundary condition (α ∈ {1, · · · · · · , N}).
Let r∗ be the matching point. We wish to know when ∃ Ca and Dα such that,

∑
a

CaΦI
a(r∗) =

∑
α

DαΦI
α(r∗), (D.1)

∑
a

CaΦ
′I
a (r∗) =

∑
α

DαΦ′I
α (r∗), (D.2)

which implies that there exists a solution that satisfies both sets of boundary con-
ditions.

We can frame the above as a linear algebra problem. ConsiderXA
a :=

{
ΦI
a(r∗),Φ′I

a (r∗)
}

(with A ∈ {1, · · · · · · , 2N}) and view XA
a as a subspace of R2N . Similarly, consider

Y A
α :=

{
ΦI
α(r∗),Φ′I

α (r∗)
}
. We wish to know when the subspaces XA

a and Y A
α overlap.

This condition will then imply the existence of a solution that would satisfy both
sets of boundary conditions Eq. (D.1) and Eq. (D.2). Let us consider

(
Y ⊥

)A
b

that
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satisfies,

∑
A

(
Y ⊥

)A
b
Y A
α = 0, (D.3)

where b ∈ {1, · · · · · · , N}.
Then we want,

∑
A

(
Y ⊥

)A
b
XA
a = 0, (D.4)

to have a non-trivial solution. Eq.(D.4) will have a non-trivial solution if and only
if,

det
a,b

[∑
A

(
Y ⊥

)A
b
XA
a

]
= 0. (D.5)

Eq.(D.5) is the QNM searching condition that we have been looking for. Next
we perform the numerics1 with the mid-point shooting method. For the matching
point, we have, ym = 0.6. The numerical parameters used are,

Tolerance (tm) Horizon radius (rh) UV cut-off (uΛ)
0.1 1 0.1

Double-trace coupling (κ) RG parameter (u∗) Anomaly coefficient (k)
−1/ ln(10) 1 0.0375

D.2 Non-hydrodynamic (gapped) modes and quasi-
normal mode table

We observe from the numerics that, there exists a higher (generically) complex non-
hydrodynamic mode ∀ b ∈ [0.00001, 20]. This mode seems to be independent of b as
it exists ∀ b ∈ [0.00001, 20] and has the value,

Γcplx
non-hydro,0 = ±0.965− 1.736i, (D.6)

1An order of convergence of 10−11 and lower has been treated as zero in the numerics. The
numerical results that are presented have been verified (up to very slight variations) for the match-
ing point in the range ym ∈ [0.2, 0.8]. We have also dropped a few terms in the UV and the IR
expansions of the fields and have verified the robustness of the numerical results.
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However, ∀ b ∈ (0, 15.3], Γcplx
non-hydro,0 is not the lowest QNM and for ∀ b ≥ 15.4,

Γcplx
non-hydro,0 becomes the lowest QNM.

We also give below some more generically complex non-hydro (gapped) modes
which exist ∀ b ∈ [0.00001, 20],

Γcplx
non-hydro,1 = ±3.359− 3.697i, (D.7)

Γcplx
non-hydro,2 = ±5.334− 5.663i, (D.8)

Γcplx
non-hydro,3 = ±7.175− 6.797i, (D.9)

Γcplx
non-hydro,4 = ±8.96− 8.604i, (D.10)

Γcplx
non-hydro,5 = ±10.537− 7.337i, (D.11)

Γcplx
non-hydro,6 = ±13.102− 5.463i, (D.12)
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Table D.1: Lowest QNM (ΓA) vs magnetic field (b)

S.No b −iΓA

0 10−5 −2.3721962 × 10−12 i
1 0.1 −0.000450031 i
2 0.2 −0.0018005 i
3 0.3 −0.00405253 i
4 0.4 −0.00720806 i
5 0.5 −0.0112698 i
6 0.6 −0.0162414 i
7 0.7 −0.0221275 i
8 0.8 −0.0289337 i
9 0.9 −0.036667 i
10 1.0 −0.0453354 i
11 1.1 −0.0549485 i
12 1.2 −0.0655176 i
13 1.3 −0.0770557 i
14 1.4 −0.0895777 i
15 1.5 −0.103101 i
16 1.6 −0.117644 i
17 1.7 −0.13323 i
18 1.8 −0.149884 i
19 1.9 −0.167633 i
20 2.0 −0.186508 i
21 2.1 −0.206544 i
22 2.2 −0.227778 i
23 2.3 −0.250252 i
24 2.4 −0.27401 i
25 2.5 −0.299101 i
26 2.6 −0.325573 i
27 2.7 −0.353477 i
28 2.8 −0.382864 i
29 2.9 −0.41378 i
30 3.0 −0.446263 i
31 3.1 −0.480341 i
32 3.2 −0.516016 i
33 3.3 −0.553261 i

168



APPENDIX E

Equilibrium configuration

E.1 Equilibrium configuration from gauging pro-
cedure

In this section, we will analyse the equilibrium configuration from the point of view of
gauging the the anomalous U(1) symmetry. We will show that the gauging procedure
put constraints on the equilibrium parameter of the ungauged theory. These kind of
constaints are well-known but there are subtleties upon turning on the background
fields gauge fields which play crucial roles in the perturbation around equilibrium
configuration considered in the next section.

In the simplest example of a theory with anomaly-free 0-form U(1) global sym-
metry. The equilibrium partition function can be constructed in terms of thermo-
dynamic quantities and background metric gµν and background gauge fields aµ as
in [136,140] namely1

W0 = − logZ0 =
∫
d4x
√
g (p(T, gµν , µ, fµν) + higher-derivative terms) (E.1)

where µ/T = log
(
exp

(∫ 1/T
0 dτaτ

))
is the U(1) holonomy around the thermal cycle

τ and f = da is the field strength. From this, one can write the local expression for

1In the convention of [136, 140], the field strength is treated as first derivative quantity. Here,
however, we will treat it as zeroth derivative quantity as in [166]
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chemical potential as
µ = uµ (aµ + ∂µθ) (E.2)

where uµ is the unit vector along the thermal S1 direction which, for flat space, is
nothing but uµ = δµτ . While it is common to choose a gauge where µ = uµaµ, it is
possible to turn have nonzero chemical potential without external gauge field aτ by
choosing the parameter θ = µτ with a singularity at τ = 0 ∼ β. This distinction
is important as the chemical potential and background aτ corresponds to different
quantities when the U(1) is the axial global symmetry. In this framework, the U(1)
current can be written as

jµ = 1
√
g

δW

δaµ
= ρuµ +∇νM

µν (E.3)

where ρ = ∂p/∂µ and Mµν = ∂p/∂fµν . In this configuration there is no relation
between ρ and Mµν except that they depends on the arbitrary function p.

The story is quite different upon promoting the background aµ to the dynamical
gauge field Aµ. Upon doing this the partition function becomes

− logZgauged[b] = W0 +WEM +
∫
d4xAµj

µ
ext , WEM = 1

4e2

∫
d4xFµνF

µν (E.4)

with F = dA and ⋆jext = db is the external current. The equations of motion for
Aµ implies that there is an additional relation

δ

δAµ
(W0 +WEM) + jµext = 0 , ρuµ +∇νM

µν
gauged + jµext = 0 (E.5)

where Mµν
gauged = δ(W0 + WEM)/δFµν . We now see that there is a new relation

between ρ and Mµν
gauged which does not exist before gauging. In a state where the

electric field vanishes, this is nothing but the charge neutrality condition in plasma.
It should also be noted that this form of the Eq. (E.5) is applicable for arbitrarily
nonlinear form of WEM which may or maynot be the Maxwell action. One may view
this relation as a generalisation of Guass and Ampere’s law.

E.1.1 Gauging U(1) symmetry in a theory with mixed anomaly

We will now consider how a constraint such as Eq. (E.5) is modified when the un-
gauged theory has a mixed anomaly. We shall now consider a theory with mixed
anomaly between vector U(1) and axial U(1) which yield the Ward identity Eq. (6.1)
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upon gauging. The ungauged theory partition function consist of

W0 = Winv[µA, µv, fA, fv] +Wanom[a, v, µA, µv, fA, fv] (E.6)

where µA, a, fA = da and µv, v, fv = dv are chemical potential, background gauge
field and field strength of the axial and vector U(1) global symmetry respectively.
This action is not invariant with respect to the background gauge transformation
and so do the consistent currents obtained via varying W0 with respect to the the
background gauge field. The invariant partition function Wcov can be made out of
W0 by attaching the 4d theory to a 5d bulk with the Chern-Simons term ICS which
satisfy dICS = kfA∧fv∧fv, see e.g. [116,167] for a modern summary. The covariant
currents can be obtained via the usual variation

jµa,cov = jµA + jµA,BZ , jµA = δW0

δaµ
, jµA,BZ = δICS

δaµ
(E.7)

and similar expression for jµv,cov obtain by simply chaning a → v. The expression
for jµA,cov and jµv,cov is well-known in the literature in the scheme where fA, fv are
treated as first derivative derivative quantities. In our case, where we treat f as a
zeroth derivative quantity and focus on the case of space with uµ = δµτ and T be a
constant, we find that

jiv,cov = 8kµaBi + ∂jM
ij , jiv,BZ = 8katBi , M ij = ϵijk

δWinv

δBk
(E.8)

where Bi = ϵijk(fv)jk is the background magnetic field at this stage.
Upon gauging the vector U(1) in 4d theory describes by W0 i.e. promoting the

background v to the dynamical gauge field V and add the source term and kinetic
term as in Eq. (E.4), the equations of motion for AV implies that there is a condition
on the consistent current

jiv + jiext = 0 (E.9)

We find that the spatial component becomes

∂jM
ij
gauge + 8k(µA − at)Bi + jiext = 0 (E.10)

whereM ij
gauge = δ(Winv+WEM)/δFV,ij with FV = dV be the dynamical field strength.
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In the case where the partition function is dominated by magnetic field

Winv +WEM =
∫
d4x

(
1

2χB
BiBi + subleading terms

)
(E.11)

with χB be the susceptibility of the 1-form U(1) density. In such a state, we find
that, in the absence of the source.

ϵijk∂jBk + 8χBk(µA − at)Bi = 0 (E.12)

The relation Eq. (E.12) must be satisfied for any theory with ABJ anomaly in a
homogeneous configuration and it has very simple solutions. Upon contracting with
Bi one finds that this relation implies

µA − at = 0 , Bi ̸= 0 or µA ̸= at , Bi = 0 . (E.13)

The choice where µA − at = 0 is the only one that allows finite magnetic field and
will be the equilibrium configuration of focus in the remaining of this work.

One may wonder, from the definition of chemical potential in Eq. (E.2) why is
it not possible for us to perform a background gauge transformation a → a + dλ

to guarantee that µ is always at. There are at two ways to argue why is is not
automatically satisfied. First of all, the current jµ which coupled to a is not a
conserved current due to the r.h.s. of Eq. (6.1) and thus the source a and a + dλ

are not equivalent. Second, one can see from a Landau-level calculation for Weyl
fermion, see e.g. [90]. There, the source at indicates the difference in energy at the
tips of the right-handed and left-handed Weyl cone while the chemical potential µ
is conjugate to the difference of occupation number between left- and right-handed
fermions.
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APPENDIX F

Defect operator insertions

F.1 Defect operator insertion in equilibrium
In this section, we outline how the non-invertible defect leads to the Ward identity
in Eq. (6.2). The non-invertible codimension-1 defect defined in [37,38] is on a closed
surface Σ can be written as

D̂ p
N

(Σ) = exp
[
i
∫

Σ

(2πp
2N ⋆ j +AN,p[⋆4J/N ]

)]
(F.1)

with N and p mod N are two coprime and the 2-form J is the conserved current asso-
ciated to the 1-form global symmetry. AN,p is the Lagrangian density of the minimal
TQFT with ZN 1-form global symmetry with the 1-form ZN anomaly parametrised
by an integer p. In a particular case when p = 1, we have

exp
[
i
∫

Σ
AN,1[⋆4J/N ]

]
=
∫
D[ā] exp

[
i
∫

Σ

(
N

4π ā ∧ dā+ 1
2π ā ∧ ⋆4J

)]
(F.2)

This describes the fractional quantum Hall system as integrating out ā yield Ndā+
⋆4J = 0 and resulting in Chern-Simons term with fractional coefficient p/N . The
Chern-Simons living on the defect has a ZN anomaly [21] which can be cancelled
when attached to a bulk TQFT on M, such that ∂M = Σ, with the following
action [168]

Sbulk =
∫

M

(
N

4πB ∧B + N

2πB ∧ dc
)

(F.3)
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with c is the 1-form U(1) gauge field whose equation of motion forced B to be the a
ZN 2-form gauge field (to be identified with NB = ⋆4J). The minimal TQFTAN,p is
then defined as a theory living on Σ = ∂M with coefficient of B∧B in Eq. (F.3) from
N/4π to Np/4π. The fusion algebra, which shows the non-invertibility D̂ p

N
×D̂− p

N
̸=

1 can be found in [37, 38]. An alternative description for D̂ with the arguements
p/N extended to U(1) valued can also be found in [41,58].

A theory is said to have non-invertible global symmetry of this type when the
operator D̂ p

N
(Σ) is topological. That is, one can continuously deform the surface

Σ to Σ′ without changing the partition function. As a consequence, if we consider
two nearby surface Σ,Σ′ which enclosed a small fluid element living in a small (and
topologically trivial) m4 such that ∂m4 = Σ ∪ Σ′, we find that D̂(Σ) and D̂(Σ′) are
identical if only (consider p = 1 for simplicity)

1 = exp
[(∫

Σ
−
∫

Σ′

)( 2π
2N ⋆ j +AN,1[⋆4J/N ]

)]
=
∫
D[ā] exp

[∫
m4

(
π

N
d ⋆ j + N

4πdā ∧ dā+ 1
2πdā ∧ ⋆4J

)]
= exp

[∫
m4

(
π

N
d ⋆ j − 1

4πN J ∧ J
)] (F.4)

Converting the term in the parenthesis in components, we find the Ward identity
Eq. (6.2).

To analyse the equilibrium of a theory with non-invertible symmetry, we can
put it on a manifold S1 × R3 as in Section 6.3. In this case, let us consider a
local fluid element in m4 which also contain the thermal cycle S1. The topological
condition Eq. (F.4) implies the (dimensionally reduced) Ward identity Eq. (6.57)1.
Notice that, had the equilibrium partition function only consist of susceptibility of
0-form and 1-form global symmetry and thus described by the action

S =
∫
d3x

[1
2χA(aτ )2 + 1

2χB(BiB
i)
]
. (F.5)

i.e. when χO in Eq. (6.56) is turned off, the topological property Eq. (F.4) is trivially
satisfied. This is because both ji and ϵijkJ iτJ jk vanishes identically. However, as one
turned on χO in Eq. (6.56), then ji = 0 but ϵijkJ iτJ jk = 2χiB∂if ̸= 0 which means
that the non-invertible defect is not topological (see Eq. (6.59) for the notation).

1It is possible that, upon dimensionally reduced on the thermal S1, the non-invertible defect in
Eq. (F.1) will give rises to codimension-0 and codimension-1 defect in three dimensions similar to
those in [141]. This is an interesting future direction, however we will only consider the consequence
of Eq. (F.4) at the level of the Ward identity in this work.
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Thus, the action with nonzero χA, χB and χO has to be modified in a nontrivial way
as demonstrated in Section 6.3.2.

F.2 Defect operator insertion in dissipative the-
ory

F.2.1 Defect operator insertion

In this section we shall discuss defect insertions in the dissipative action given in
6.80. Following [13] we have, (1, 2) as the two degrees of freedom in Schwinger-
Keldysh formalism. Also, in the r − a basis, the “r” type fields are somewhat like
the physical fields and the “a” type fields are somewhat like noise. So, to go from
here to the equilibrium phase we neglect the time derivatives and put ϕa = 0. The
basic transformation among the two bases is,

ϕr = 1
2 (ϕ1 + ϕ2) , ϕa = (ϕ1 − ϕ2) , (F.6)

ϕ1 = ϕr + 1
2ϕa, ϕ2 = ϕr −

1
2ϕa. (F.7)

Dissipative Action

Let us consider the dissipative acion in the main text, i.e. Eq. (6.80)

L[a, b; θ,Φ; Σ, C] = LMHD + La − 2 (Σa ∧ dCr + Σr ∧ dCa) + Lanom[θ, C]. (F.8)

where a, b denote external sources, θ,Φ denote dynamical fields and Σ, C are auxil-
iary fields or Lagrange multipliers. The 1-form currents as follows,

jr = δS
δaa

, ja = δS
δar

, (F.9)

where S is now to be understood as the dissipative action. Similarly, we obtain the
2-from currents as,

Jr = δL
δΣa

= dCr , Ja = δL
δΣa

= dCa . (F.10)

This implies in terms of these new Cr and Ca fields, the currents Jr and Ja are now
identically conserved.

The part of the action that involves the axial charge fluctuation can be written
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in the 1, 2 basis as follows

La = iσ

β
A2
ai + χAAa0Br0 − σAaiAri,0, (F.11)

= iσ

β

[
A2

1i + A2
2i − 2A1iA2i

]
+ χA

2
[
A2

1t − A2
2t

]
− σ

2 [A1i (A1i,t + A2i,t)− A2i (A1i,t + A2i,t)] , (F.12)

where A = a+ dθ. Similar decomposition can also be done in for the MHD part i.e.

LMHD = iρ

β0
G̃2
aij + χBG̃a0iG̃r0i − σG̃aijG̃rij,0. (F.13)

where G̃ = b+ dΦ + Σ, as well as the Lagrange multiplier

Σa ∧ dCr + Σr ∧ dCa = Σ1 ∧ dC1 − Σ2 ∧ dC2 . (F.14)

For this action to be compatible with the non-invertible defect, we have to add
additional terms Lanom of the following form

Lanom = −4K (θ1dC1 ∧ dC1 − θ2dC2 ∧ dC2) . (F.15)

At this stage, K can be any function of thermodynamic quantities which may or
may not has to do with the constant k = 1/16π2 in the Ward identity. Here, we
will show that, for the defect insertion to be consistent, the function K must be a
constant and equal to k.

Non-invertible defect operator insertion

Due to the doubling of the degrees of freedom we now have two defect operators
constructed as in [37, 38]. Inserting the non-invertible defect turns the Schwingker-
Keldysh generating function into

Z = exp (−iS))→ Z ′ = D̂1D̂2 exp (iS) (F.16)

where D̂1 and D̂2 are

D̂1 =
∫
D[ā1] exp

(∫
M

( 2π
2N ⋆ j1 + N

4π ā1 ∧ dā1 + 1
2π ā1 ∧ dC1

))
, (F.17)

D̂2 =
∫
D[ā2] exp

(∫
M

( 2π
2N ⋆ j2 + N

4π ā2 ∧ dā2 + 1
2π ā2 ∧ dC2

))
, (F.18)
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where if M = R3 then defect is inserted at t = 0 (temporal insertion) and if
M = R1,2 then defect is inserted at z = 0 (spatial insertion).

We shall assume that, apriori, to begin with, all fields are smooth across the
defects. Let us first consider inserting the non-invertible defect at z = 0. The
currents involved in this analysis are,

jrz = δS
δaaz

= 2iσ
β
Aaz − σ∂tArz,

jaz = δS
δarz

= σ∂tAaz,

(F.19)

or in the 1,2 basis, we have

⋆j1z = jrz + 1
2jaz = 2iσ

β
(A1z − A2z)− σ∂t (A2z) ,

⋆j2z = jrz −
1
2jaz = 2iσ

β
(A1z − A2z)− σ∂t (A1z) .

(F.20)

Consider the equation of motion of θ1, θ2 in the presence of the non-invertible
defect, we get

4K dCs ∧ dCs + 2iσ
β

[θ1 − θ2],zz + 2iσ
β

( 2π
2N

)
d

dz
δ(z) + (. . .) = 0 , (F.21)

where s = 1, 2. Here (. . .) includes terms with less than two z derivatives. Both
equations yield the solution

∆(θ1 − θ2) ≡ (θ1 − θ2)
∣∣∣∣
z+ϵ
− (θ1 − θ2)

∣∣∣∣
z−ϵ

= − 2π
2N (F.22)

The equation of motion for ā1, ā2, we have

Ndās + dCs|z=0 = 0, (F.23)

which can be used to replaced dās in terms of dCs. Finally, C1’s and C2’s equations
of motion are

2dΣs + 8Kd (θsdCs) + (−1)sdās2π δ(z) = 0, (F.24)

Combined all the equations of motion together, one finds that,

K = 1
16π2 , (F.25)
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where note that, when s = 1 and s = 2, Eq. (F.24) is satisfied by the following
conditions

∆θ1 = − π
N
, ∆θ2 = 0 , and ∆θ1 = 0 , ∆θ2 = π

N
, (F.26)

respectively.
So, in order for the theory to be compatible with non-invertible defect insertion

we see that K = k.
Similar analysis can be done for the defect insertion localised in the time direction

at t = 0, with jzr,a in Eq. (F.19) replaced by jtr,a, and results in Eq. (F.25) without
giving additional constraints.
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APPENDIX G

Matsubara sums

G.1 Finite temperature conventions and Matsub-
ara sums

Here we review some identities that are useful for performing the frequency integrals
in the main text. All of these results are standard, and further background can be
found e.g. in [169].

Consider a quantum field theory with a bosonic Hermitian operator O(t, x⃗). We
study the theory in the thermal state with temperature β−1. There are various basic
two-point functions for O, including the Euclidean correlation function,

GE(τ, x⃗) ≡ ⟨O(τ, x⃗)O(0)⟩, (G.1)

and the retarded real-time correlation function

GR(t, x⃗) = −iθ(t) Tr
(
e−βH [O(t, x⃗),O(0)]

)
. (G.2)

The Euclidean correlation function in frequency space can be written in terms of
the spectral density ρ(Ω):

GE(iωn) =
∫ dΩ

2π
ρ(Ω)

iωn + Ω (G.3)
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We may also obtain the retarded correlator from the Euclidean one by evaluating
the latter at a real frequency:

GR(Ω) = GE(iωl = Ω + iϵ) (G.4)

Inserting Eq. (G.3) into Eq. (G.4) and using the identity

Im
( 1
x− iϵ

)
= πδ(x) (G.5)

we conclude that the imaginary part of GR(ω) directly measures the spectral density.

ImGR(ω) = −πρ(ω) (G.6)

It is shown in [169] that for a bosonic operator ρ(ω) is an odd function of ω, and
furthermore is positive for positive ω, i.e. ωρ(ω) > 0.

G.1.1 Performing Matsubara sums

We will need to perform a loop sum over Euclidean frequencies. Here we review a
standard trick to express such sums in terms of the corresponding spectral densities,
following the discussion in [161]. Consider summing over a set of discrete Matsubara
frequencies iΩm = 2πm

β
, m ∈ Z. We can express this in terms of a contour integral

over a contour C in the complex ω plane, i.e.

T
∑
iωm

→ 1
2πi

∫
C
dω

1
2 coth

(
βω

2

)
(G.7)

Here the hyperbolic function in the integrand has poles at each of the discrete
Matsubara frequencies along the imaginary axis, and the contour C is a series of
disjoint circles which encircles each of these poles.

To see an application of this, consider evaluating the following sum, where iΩl

is a Matsubara frequency and ω1,2 are two real frequencies:

S(iΩl, ω1, ω2) = T
∑
iωm

1
i(ωm + Ωl)− ω1

1
iωm − ω2

(G.8)

From above we see that this can be written as the following contour integral:

S(iΩl, ω1, ω2) = 1
2πi

∫
C
dω

1
2 coth

(
βω

2

)
1

ω + iΩl − ω1

1
ω − ω2

(G.9)
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Now consider deforming the contour C into two parallel lines, one running down
the imaginary ω axis at infinitesimal real positive ω and the other running up the
imaginary ω axis at infinitesimal real negative ω. We can now attempt to deform
these lines away to infinity. At large |ω| the integrand behaves as |ω|−2. The
contribution to the integrand at infinity can be neglected, and the full integral arises
from the contribution at the non-Matsubara poles of the integrand, which appear
only at ω = ω1 − iΩl and ω = ω2. Performing the integral by residues we find

S(iΩl, ω1, ω2) = −1
2

(
coth

(
β(ω1 − iΩl)

2

)
− coth

(
βω2

2

))
1

ω1 − iΩl − ω2
(G.10)

which after some algebra can be seen to be equal to

S(iΩl, ω1, ω2) = −f(ω1)− f(ω2)
ω1 − iΩl − ω2

(G.11)

where we have used the fact that eiβΩl = 1 on a Matsubara frequency. Here f(ω) is
the Bose distribution function:

f(ω) = 1
eβω − 1 (G.12)

Let us now use this form to perform a frequency sum. In the bulk of the text we
will find ourselves needing to calculate sums of the form

F (iΩl) = T
∑
iωm

GE
1 (iΩl + iωm)GE

2 (iΩl) (G.13)

where here GE
1,2(iΩ) are two (possibly different) Euclidean propagators. It is very

convenient to express this in terms of the spectral densities ρ1,2(ω) associated with
these propagators. To do this, we first use Eq. (G.3) and then perform the sum over
iωm using Eq. (G.11) to find

F (iΩl) = −
∫ dω1

2π
dω2

2π (f(ω1)− f(ω2))
ρ1(ω1)ρ2(ω2)
ω1 − iΩl − ω2

. (G.14)

This expression is used to obtain Eq. (7.14) in the main text.
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APPENDIX H

Details of the loop integration

H.1 Details of the 1-loop integration

H.1.1 Ω > 0

Here we give details of the remaining parts of the 1-loop integration with Ω > 0.
As described around Eq. (7.33), the frequency integral in Eq. (7.32) must be split

up into three parts
ω ∈ (−∞,−Ω) ∪ (−Ω, 0) ∪ (0,∞) . (H.1)

The last integral was performed in detail in the bulk of the text. In this Appendix
we perform the other two using the same methods. We begin with ω ∈ (−Ω, 0). To
do this integral let us perform the following change of variable: ω → −ω and then
perform the integration over the positive range: ω ∈ (0,Ω). The integral of interest
is:

I−
1 (Ω) =

Ω∫
0

dω [f(Ω− ω)− f(−ω)] ω(Ω− ω)2

Ω(2ω − Ω)
(√

Ω− ω −
√
ω
)
, (H.2)

To do the above integral, we expand the integrand about β → 0 and then integrate
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term by term. We get,

I−
1 (Ω) = (−2 +

√
2 sinh−1(1))
2β Ω3/2 + β(−26 + 15

√
2 sinh−1(1))

1440 Ω7/2

+ β3(214− 105
√

2 sinh−1(1))
2419200 Ω11/2. (H.3)

As expected the above integral is non-analytic in Ω and these pieces, as discussed
before, do not receive any UV corrections.

Next let us move on to performing the integration over the range: ω ∈ (−∞,−Ω).
As before let us do the variable change: ω → −ω and then the integration has to
be performed over the range: ω ∈ (Ω,∞). The integral of interest is:

I−
2 (Ω) =

∞∫
Ω

dω [f(Ω− ω)− f(−ω)] ω(Ω− ω)2

Ω(2ω − Ω)
(√

ω − Ω−
√
ω
)
, (H.4)

We can perform the above integration using the methods employed to do the inte-
gration in Eq. (7.34). We obtain the following results.

I−
2 (Ω)IR =

(√
Λ

2β −
βΛ5/2

120 + β3Λ9/2

4320 +O
(
Λ13/2

))
Ω +

(
1

6β −
π

4
√

2β
− sinh−1(1)

2
√

2β

)
Ω3/2

+
(

1
8β
√

Λ
+ 5βΛ3/2

288 − 3β3Λ7/2

4480 +O
(
Λ11/2

))
Ω2

+
(

1
24βΛ3/2 + 19β3Λ5/2

28800 − β5Λ9/2

24192 +O
(
Λ13/2

))
Ω3

+
(

43β
10080 −

βπ

192
√

2
− β sinh−1(1)

96
√

2

)
Ω7/2

+
(

11
640βΛ5/2 + 5β

1536
√

Λ
− 13β3Λ3/2

55296 +O
(
Λ7/2

))
Ω4 +O(Ω5). (H.5)

Comparing Eq. (H.5) with Eq. (7.35) we see that, for the analytic pieces: the terms
with odd powers of Ω are of opposite signs and the terms with even powers of Ω
have the same sign.
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H.1.2 Ω < 0

Here we work out the 1-loop integration with Ω < 0. For simplicity, let us define
t = −Ω with t > 0. From Eq. (7.32) we get,

ΓA(−t) = − 16k2ρ2

2
√

2π4D
5
2χA

∞∫
−∞

dω [f(ω − t)− f(ω)] ω(ω − t)2

(−t)(2ω − t)

(√
|ω − t| −

√
|ω|
)
.

(H.6)

From the structure of the square-root above we see that the integral should be
integrated over the following intervals,

ω ∈ (−∞, 0) ∪ (0, t) ∪ (t,∞)

Contrast this to the intervals in the Ω > 0 case. Both are mirror images of each
other. Now let us do the integral over the range, ω ∈ (−∞, 0). This integral, after
a change of variable: ω → −ω becomes,

ΓA(−t) = 16k2ρ2

2
√

2π4D
5
2χA

∞∫
0

dω [f(−ω − t)− f(−ω)] ω(ω + t)2

t(2ω + t)
(√

ω + t−
√
ω
)

= − 16k2ρ2

2
√

2π4D
5
2χA

∞∫
0

dω [f(ω + t)− f(ω)] ω(ω + t)2

t(2ω + t)
(√

ω + t−
√
ω
)
(H.7)

where to get to the second equality we used the identity: f(−x) = −1− f(x). Note
that the above integral is the same as the integral in Eq. (7.34).

Similarly, using the above identity, one can show that ΓA(−t) for ω ∈ (0, t)
matches with the integral in Eq. (H.2) and ΓA(−t) for ω ∈ (t,∞) matches with the
integral in Eq. (H.4). Thus, we get: ΓA(Ω) = ΓA(−Ω), as expected.
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APPENDIX I

Linear response theory

In this appendix we shall briefly review linear response theory and Kubo formulae.
We shall follow the exposition in [170] quite closely.

I.1 Sources in quantum mechanics
In the context of quantum mechanics, the observables of the system are represented
as operators, denoted as Oi. We will operate in the Heisenberg picture, where these
operators are time-dependent, written as O = O(t). Left on their own, the dynamics
of these operators would be governed by a Hamiltonian H(O). However, perturbing
it is achieved by adding an extra term to the Hamiltonian, given by

Hsource(t) = ϕi(t)Oi(t). (I.1)

Here, the variables ϕi are sources. They represent external fields that are un-
der our control and can be thought of as analogous to driving forces in classical
mechanics.

I.2 Linear response
We are interested in understanding how our system reacts to the presence of a
source. We want to understand how the correlation functions of the theory change
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when we introduce a source (or multiple sources) denoted by ϕi. We assume that
the source is a small perturbation of the original system. This assumption provides
a simple framework where progress can be made. Mathematically, this means that
we assume the change in the expectation value of any operator is linear in the
perturbing source. We can express this as follows:

δ(Oi(t)) =
∫
dt′χij(t; t′)ϕj(t′) (I.2)

Here, χij(t; t′) is referred to as a response function. A similar expression could
be written for a classical dynamical system, where δ⟨Oi⟩ would be replaced by xi(t),
and ϕ would be substituted with the driving force Fj(t). Then classical equations
of motion would imply that the response function is the Green’s function for the
system. As a result, response functions are often referred to as Green’s functions,
and they are sometimes denoted as G rather than χ.

Moving forward, we will assume that our system is invariant under time trans-
lations. In this case, the response function can be written as follows:

χij(t; t′) = χij(t− t′) (I.3)

We define the Fourier transform of the function f(t) to be

f(ω) =
∫
dt eiωtf(t), f(t) =

∫ dω

2π e
−iωtf(ω) (I.4)

In particular, we adhere to the convention where the distinction between the two
functions relies solely on their arguments.

Taking the Fourier transform of (Eq. (I.2)) yields,

δ⟨Oi(ω)⟩ =
∫
dt′
∫
dteiωtχij(t− t′)ϕj(t′)

=
∫
dt′
∫
dteiω(t−t′)χij(t− t′)eiωt

′
ϕj(t′)

= χij(ω)ϕj(ω) (I.5)

This analysis reveals that the response is “localized” in frequency space. When you
subject something to vibrations at frequency ω, its response occurs at the same
frequency ω. Anything beyond this phenomenon falls within the realm of nonlinear
response.
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I.2.1 Analyticity and Causality

When dealing with a real source ϕ in conjunction with a Hermitian operatorO, which
implies a real expectation value ⟨O⟩, the associated function χ(t) is necessarily real.
Let us explore the implications of this for the Fourier transform χ(ω). It is helpful
to introduce new notation for the real and imaginary components.

χ(ω) = Reχ(ω) + iImχ(ω)

≡ χ′(ω) + iχ′′(ω)

The response function χ(ω) comprises both real and imaginary components, each
with distinct interpretations. Let us examine each of these components in detail.

Imaginary Part: We can write an imaginary piece as

χ′′ = − i2[χ(ω)− χ∗(ω)]

= − i2

∫ +∞

−∞
dtχ(t)[eiωt − e−iωt]

= − i2

∫ +∞

−∞
dteiωt[χ(t)− χ(−t)]

The imaginary component of χ(ω) arises from the portion of the response func-
tion that is not invariant under time reversal, denoted by t→ −t. In essence, χ′′(ω)
is indicative of the directionality of time. Given that microscopic systems are typ-
ically time-reversal invariant, the presence of the imaginary component χ′′(ω) can
be attributed to the occurrence of dissipative processes.

The term χ′′(ω) is referred to as the dissipative or absorptive component of
the response function, and is also commonly known as the spectral function. This
component encodes information about the density of states within the system that
participate in absorption processes.

It is important to note that χ′′(ω) exhibits the properties of an odd function,

χ′′(−ω) = −χ′′(ω)

Real part: Performing the same analysis as above shows us that

χ′(ω) = 1
2

∫ +∞

−∞
dt eiωt[χ(t) + χ(−t)]

The real component of the response function, irrespective of the direction of
187



time, is termed the reactive portion of the response function. Characteristically, it
behaves as an even function,

χ′(−ω) = χ′(ω)

Before proceeding further, it is necessary to briefly discuss the implications of
reintroducing the labels i, j to the response functions. Analogous to the preced-
ing analysis, the dissipative response function is found to originate from the anti-
Hermitian component.

χ′′
ij = − i2[χij(ω)− χ∗

ji(ω)]

Causality

In accordance with the principle of causality, which posits that the past cannot be
influenced, any response function must adhere to the following condition:

χ(t) = 0 for all t < 0

Consequently, χ is frequently designated as the causal Green’s function or the re-
tarded Green’s function, occasionally represented by the notation GR(t). Let’s ex-
amine the implications of this fundamental causality constraint for the Fourier ex-
pansion of χ.

χ(t) =
∫ +∞

−∞

dω

2π e
−iωtχ(ω)

When t < 0, the integral can be carried out by closing the contour in the upper-half
plane, such that the exponent transforms into −iω× (−i|t|)→ −∞. Consequently,
the result must be zero.

The value of the integral is dictated by the sum of the residues encompassed by
the contour. Therefore, for the response function to become zero for all t < 0, it is
necessary for χ(ω) to lack poles in the upper-half plane. This implies that causality
necessitates:

χ(ω) is analytic for Imω > 0
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I.3 Kubo formula
Typically, in any given scenario, a source is only turned on for a single operator.
Nonetheless, we might be interested in investigating how this source influences the
expectation value of any other operator within the theory, denoted as ⟨Oi⟩. By lim-
iting ourselves to small values of the source, this can be approached using standard
perturbation theory. To this end, we introduce the time evolution operator:

U(t, t0) = T exp
(
−i
∫ t

t0
Hsource(t′)dt′

)

which is designed to satisfy the operator equation idU/dt = HsourceU . Subsequently,
transitioning to the interaction picture, the states evolve as follows:

|ψ(t)⟩I = U(t, tO)|ψ(t0)⟩I

Typically, we will be operating within an ensemble of states characterized by a
density matrix ρ. If, in the distant past (as t→∞), the density matrix is represented
by ρ0, then at a finite time, it evolves according to:

ρ(t) = U(t)ρ0U
−1(t)

where U(t) = U(t, t0 → −∞). Using this, we can determine the expectation value
of any operator Oj when the sources ϕ are present. By employing first-order per-
turbation theory (as indicated from the third line below), we obtain:

⟨Oi(t)⟩|ϕ = Tr ρ(t)Oi(t)

= Tr ρ0(t)U−1(t)Oi(t)U(t)

≈ Tr ρ0(t)
(
Oi(t) + i

∫ t

−∞
dt′[Hsource(t′),Oi(t)] + . . .

)
= ⟨Oi(t)⟩|ϕ=0 + i

∫ t

−∞
dt′[Hsource(t′),Oi(t)] + . . .

By incorporating our specific formulation of the source Hamiltonian, we can derive
the variation in the expectation value, δ⟨Oi⟩ = ⟨Oi⟩ϕ − ⟨Oi⟩ϕ=0,

δ⟨Oi⟩ = i
∫ t

−∞
dt′⟨[Oj(t′),Oi(t)]⟩ϕj(t′)

= i
∫ +∞

−∞
dt′θ(t− t′)⟨[Oj(t′),Oi(t)]⟩ϕj(t′) (I.6)
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where, in the second line, we have simply employed the step function to expand the
time integration range to +∞. By comparing this to our initial definition provided
in Eq. (I.2), it becomes apparent that the response function in a quantum theory is
expressed by the two-point function.

χij(t− t′) = −iθ(t− t′)⟨[Oi(t),Oj(t′)]⟩ (I.7)

This is referred to as the Kubo formula. The step function in the above equation
justifies the retarded nature of the correlators (see [170] for more details).
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APPENDIX J

Linking number

J.1 Gauss linking number and magnetic helicity
Let us start by observing a nice relation between the Biot-Savart law for magneto-
statics and linking number between loops1 (see [171]). To focus on the Biot-Savart
law for magnetostatics we need the following Maxwell equations:

∇ · B⃗ = 0, ∇× B⃗ = µ0j⃗, (J.1)

where the first equation is called the Gauss’ law for magnetostatics and the second
equation is called the Ampere’s law.

Gauss’ law above gives us B⃗ in terms of the vector potential: B⃗ = ∇ × A⃗.
Plugging this gives us the Poisson equation2: ∇2A⃗ = −µ0j⃗. Its solutions in Cartesian
coordinates can be given as:

A⃗(r⃗′) = µ0

4π

∫
d3r

j⃗(r⃗)
|r⃗′ − r⃗|

. (J.2)

1To be precise, this is called the Gauss’ linking number.
2Recall, the vector calculus identity: ∇ × (∇ × A⃗) = ∇(∇ · A⃗) − ∇2A⃗ and use the Coulomb

gauge: ∇ · A⃗ = 0.
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Now taking the curl of the above equation gives us the Biot-Savart law,

B⃗(r⃗′) = µ0

4π

∫
d3r

j⃗(r⃗)× (r⃗′ − r⃗)
|r⃗′ − r⃗|3

= µ0I

4π

∮
C

dr⃗ × (r⃗′ − r⃗)
|r⃗′ − r⃗|3

, (J.3)

where the last equality holds when we are interested in the magnetic field generated
by a current flowing along a closed curve C. In this case, we note that: j⃗ d3r =
j⃗A dr⃗ = I dr⃗, with A denotes the cross-sectional area of the wire3.

Now consider a set up where there is another closed loop C ′ which is the boundary
of a surface Σ′ , ∂Σ′ = C ′ , such that this loop does not intersect C (see Fig. J.1). We
are interested in computing the following line integral along it:

Gℓ =
∮

C′
B⃗(r⃗′) · dr⃗′ = µ0I

4π

∮
C′
dr⃗

′ ·
∮

C

dr⃗ × (r⃗′ − r⃗)
|r⃗′ − r⃗|3

, (J.4)

where in the second equality we used the expression for B⃗(r⃗′) as obtained in Eq. (J.3).
Now using Stokes’ theorem, we can write the line integral as a surface integral as,

Gℓ =
∫

Σ′

(
∇′ × B⃗(r⃗′)

)
· dΣ⃗′ = µ0

∫
Σ′
j⃗ · dΣ⃗′ , (J.5)

where in the last equality we have used the Ampere’s law.

Figure J.1: In the above figure, the linking number between C and C ′ is 2 and hence
we see that the current pokes through the surface Σ′ twice at intersection points
marked 1 and 2 on Σ′ .

Let us now discuss an interesting consequence of the expression in Eq. (J.5). Let

3We are doing an abuse of notation here by calling both j⃗ and I as currents. To be precise, I
is the current and j⃗ is called the current density.
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us say that the closed curves C and C ′ link ℓ times. Then, the current j⃗ pokes
through the surface Σ′ exactly ℓ times, see Fig. J.1. Thus, in Eq. (J.5), Gℓ = µ0Iℓ.
Thus, from Eq. (J.4) we get an integral representation of the linking number between
two arbitrary non-intersecting loops C and C ′ :

ℓ = 1
4π

∮
C′

∮
C
dr⃗

′ ·
[
dr⃗ × (r⃗′ − r⃗)
|r⃗′ − r⃗|3

]
, (J.6)

where the above integral is a topological invariant.
Our next task is to motivate helicity of magnetic field lines in terms of the Gauss

linking number obtained above. To see this, let us parameterise our closed curves
C and C ′ as follows. Let σ parameterise C and and we label points on C as x⃗(σ).
Similarly, for the curve C ′ , let τ be the curve parameter and say points on it are
labelled by y⃗(τ). Furthermore, let us define: r⃗ ≡ y⃗ − x⃗. Then the above linking
number becomes4:

ℓ12 = 1
4π

∮
C

∮
C′

dx⃗

dσ
·
[
dr⃗

r3 ×
dy⃗

dτ

]
dσdτ. (J.7)

Now let us make the following assumption5: magnetic helicity sums the Gauss
linking number over every pair of field lines within a volume. Note that, a magnetic
field contains an infinite number of field lines, each with an infinitesimal flux and
some of them may ergodically fill some finite volume in space without forming closed
loops. However, to make our life simple let us say we can approximate the magnetic
field in a closed volume V by closed flux tubes such that, B⃗.n̂|∂V = 0, where n̂ is the
outward normal vector at the boundary ∂V . Let us say there are N flux tubes and
each tube carries a flux Phii with i = 1, . . . , N . Then, by our above assumption we
get the helicity as:

Hm =
N∑

i,j=1
ℓijΦiΦj, (J.8)

If we take N → ∞ and Φi,Φj → 0 for i, j = 1, . . . , N then we get from Eq. (J.7)

4Here we associate a subscript “12” with ℓ to capture the orientation aspect of the linking
number, implying ℓ12 = −ℓ21.

5This is a classic result [172] which we try to motivate here.
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and Eq. (J.8),

Hm = 1
4π

∫ ∫
B⃗(x⃗) ·

[
r⃗

r3 × B⃗(y⃗)
]
d3x d3y (J.9)

In the Coulomb gauge the vector potential in terms of the magnetic field is given
as,

A⃗(x⃗) = 1
4π

∫ r⃗

r3 × B⃗(y⃗) d3y (J.10)

using which we get for Hm,

Hm =
∫
A⃗(x⃗) · B⃗(x⃗) d3x =

∫
A⃗ · (∇× A⃗) d3x (J.11)

which is the definition of magnetic helicity. Thus, we see that our assumption indeed
holds. In terms of differential forms, the above definition of helicity can be written
as,

Hm =
∫
A ∧ dA = lim

N→∞
Φi,Φj→0

N∑
i,j=1

ℓijΦiΦj (J.12)

J.2 Generalised delta function
Consider a D-dimensional manifoldMD and a p < D dimensional sub-manifold Cp.
We define a D − p form δ-functional, δ(D−p)Cp, for Cp as:

∫
Cp

Ap =
∫

MD

Ap ∧ δ(D−p)(Cp), (J.13)

J.2.1 δ-functional representation in flat space

In flat space, we have the following integral representation for δ(D−p)(Cp)

δ(D−p)(Cp) =
ϵm1...mpmp+1...mD

p!(D − p)! ×

×


∫

Cp

δp(x− y) dym1 ∧ · · · ∧ dymp︸ ︷︷ ︸
coordinates on Cp

 ∧ dxmp+1 ∧ · · · ∧ dxmD (J.14)

We see from above that this is a way to associate (D − p) form to a p-dimensional
sub-manifold Cp. This is the Poincaré duality relation between forms and manifolds.
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Now let us justify the above integral representation below. Say,

D = 1⇒ p = 1⇒ δ(0)(C1) =
∫
C1
δ(x− y)dy (J.15)

Now,
∫

M1
A1δ

(0)(C1) =
∫

M1
dxA1(x)

∫
C1
δ(x− y)dy

=
∫

C1

∫
M1

dxδ(x− y)A1(x)dy =
∫

C1
A1(y)dy (J.16)

A little more rigorous justification is presented below.

From Eq. (J.14), consider6:
∫

MD

Ap ∧ δ(D−p)(Cp)︸ ︷︷ ︸
projects integration
of Ap to Cp ⊂MD

= #
∫

MD

Aµ1...µp(x)dxµ1 ∧ · · · ∧ dxµp ∧ ϵm1...mD

∫
Cp

δ(p)(x− y)dym1 ∧ · · · ∧ dymp∧

∧ dxmp+1 ∧ · · · ∧ dxmD

= #
∫

Cp

dym1 ∧ · · · ∧ dymp ∧
∫

MD

Aµ1...µp(x)dxµ1 ∧ · · · ∧ dxµpδp(x− y)×

× ϵm1...mD
dxmp+1 ∧ · · · ∧ dxmD

= #
∫

Cp

(. . . )
∫

MD

Aµ1...µp(x)
√
−g dDxδµ1

m1 . . . δ
µp
mp
δpx− y

= #
∫

Cp

Am1...mp(y)dym1 ∧ · · · ∧ dymp ∼
∫

Cp

Ap (J.17)

J.2.2 Exterior derivation of δ-functional

The exterior derivative of δD−p(Cp) is given as:

dδD−p(Cp) = (−1)pδD−(p−1)(∂Cp) (J.18)

6Below, we denote the combinatorial factor as the one which appears in Eq. (J.14) as #
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Now let us prove the above. Consider,
∫

MD

Ap−1 ∧ δD−(p−1)(∂Cp)

=
∫
∂Cp

=
∫

Cp

dAp−1 =
∫

MD

dAp−1 ∧ δD−p(Cp)

Now: d(Ap−1 ∧ δD−p(p)) = dAp−1 ∧ δD−p(Cp) + (−1)p−1Ap−1 ∧ dδD−p(Cp)

⇒
∫

MD

Ap−1 ∧ δD−(p−1)(∂Cp)

=
∫

MD

d(Ap−1 ∧ δD−p)− (−1)p−1
∫

MD

Ap−1 ∧ dδD−p

=Ap−1 ∧ δD−p |∂MD︸ ︷︷ ︸
0 [as, δD−p |∂MD

→ 0]

+(−1)p
∫

MD

Ap−1 ∧ dδD−p(Cp)

⇒ dδD−p(Cp) = (−1)pδD−(p−1)(∂Cp) (J.19)

J.2.3 Intersection number

Let Cp and Sq be two sub-manifolds ofMD with p ≤ D and q ≤ D. If p+q ≥ D, then
dim(Cp∩Sq) = p+q−D. Let us denote the intersecting surface as Ip+q−D ≡ Cp∩Sq.
If p + q < D, then Cp ∩ Sq can be thought of as a sub-manifold of Mp+q. In this
case, we have:

Ip+q ≡ Cp ∩ Sq ⊆Mp+q ⊂MD (J.20)

Consider p+ q ≥ D. Then,

δD−p+D−q(Ip+q−D) = δD−p(Cp) ∧ δD−q(Cq) (J.21)

Now let us saturate the aforementioned inequality, that is, p + q = D. Then,
Ip+q−D = I0, that is, I0 is the space of points.

Now, let us define intersection number of Cp and Sq (with p+ q = D):

I(Cp,Sq) =
∫

MD

δD(I0) =
∫

MD

(Cp) ∧ δp(Sq) (J.22)

Note: by definition,
∫

MD
δD = 1 and now if I0 = {p1, p2, . . . , pn} where pi is a point.
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Then
∫

MD
δD(I0) = n = # of points in I0

7.

Thus, I(Cp,Sq) = number of points at which Cp and Sq intersect. Now, if Cp has
a boundary ∂Cp, then,

Link(∂Cp,Sq) = I(Cp,Sq) (J.23)

Note: I(Cp,Sq) is defined only when p + q = D ⇒ Link(∂Cp,Sq) is defined only
when: (p− 1) + q + 1 = D 8.

7Since
∫

MD
A0δ

D(I0) =
∫

I0
A0 =

n∑
i=1

1 ·A0 = n ·A0

8where dim∂Cp = p− 1
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APPENDIX K

Area, perimeter and phases

K.1 SSB and expectation values
In this section section, we explore the spontaneous symmetry breaking of higher-
form symmetries, following the works of [21, 40, 47]. For specificity, we focus on
1-form symmetries in gauge theories, where the charged objects are represented by
Wilson and ’t Hooft lines. Here we follow the exposition as given in [28].

A crucial aspect of this discussion is identifying the vacuum expectation value of
the Wilson loop as the order parameter for the electric 1-form symmetry, serving to
differentiate between various phases. Given a closed curve C, the expectation value
⟨W [C]⟩ usually depends on geometric attributes, such as the area enclosed by C or
its perimeter:

⟨W [C]⟩ ∼ e−Area[C] or ⟨W [C]⟩ ∼ e−Perimeter[C]. (K.1)

Distinct decay behaviors naturally indicate different phases. For a large loop C, the
area law decays much more quickly than the perimeter law, leading to an effective
result of:

⟨W [C]⟩ ∼ e−Area[C] → 0, (K.2)

while, on the other hand:

⟨W [C]⟩ ∼ e−Perimeter[C] ̸= 0. (K.3)
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Another commonly encountered decay behavior, even weaker than the perimeter law,
is known as Coulomb behavior. This decay exhibits a scale-invariant dependence on
the loop parameters. We will delve into this behavior in greater detail shortly.

Analogous to the case of ordinary symmetries, the perimeter and Coulomb laws
are understood as indicating a non-zero value of the order parameter and are thus
associated with phases where the 1-form symmetry is spontaneously broken. To
gain a better understanding, let us discuss the relationship between the expectation
value of the Wilson loop in Euclidean spacetime and the static potential between
two charged probe particles. The concept involves considering a loop, as shown in
Fig. K.1, with a straightforward physical interpretation: a pair of opposite charges
is created in the distant past by a source that is slowly turned on, and the charges
are then gently separated from each other at a distance R. After an extended time
T , the pair is annihilated, again slowly.

Figure K.1: Wilson loop describing a pair of static particles.

We are interested in the corresponding vacuum expectation value:

⟨W [C]⟩ = ⟨TrPei
∮

C a⟩, (K.4)

computed in Euclidean spacetime, following the approach of [28,173]. As this object
is gauge-invariant, we can select a convenient gauge. Let us choose the axial gauge,
a0 = 0, so that there is no contribution from the sections of C along the time direction
T . Additionally, without loss of generality, let us consider that R is aligned with
direction x1. In this situation, the above expression simplifies to:

⟨W [C]⟩ = ⟨[Pei
∫ R

0 dx1a1(T,x1,...)]i j[Pei
∫ 0

R
dx1a1(0,x1,...)]j i⟩. (K.5)
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To simplify the notation, let us define

ψi j(T ) ≡ [Pei
∫ R

0 dx1a1(T,x1,...)]i j. (K.6)

Using this, equation Eq. (K.5) becomes

⟨W [C]⟩ = ⟨ψi j(T )ψ†j
i(0)⟩. (K.7)

Recalling that the Euclidean time T is related to the real time by t→ −iT , the time
evolution is given by ψi j(T ) = eHTψi j(0)e−HT . Inserting a complete set of energy
eigenstates |n⟩ into Eq. (K.7), we get

⟨W [C]⟩ =
∑
n

e−TEn(R)⟨ψi j(0)|n⟩⟨n|ψ†j
i(0)⟩

=
∑
n

e−TEn(R)|⟨ψi j(0)|n⟩|2. (K.8)

As T →∞, only the lowest-energy state contributes significantly,

⟨W [C]⟩ ∼ e−TE0(R). (K.9)

Because the charges are static, the energy reduces to the potential, and we finally
obtain

V (R) = − lim
T→∞

1
T

ln⟨W [C]⟩. (K.10)

Thus, the behavior of the Wilson loop determines the form of the static potential
between charges.

K.1.1 Phases of gauges theories

Let us discuss the typical behaviors of the expectation value of the Wilson loop
associated with Fig. K.1.

Area law

Suppose it behaves according to the area law,

⟨W [C]⟩ ∼ e−σTR, (K.11)
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where σ is a dimensionful constant. As per Eq. (K.10), this results in a linear
potential,

V (R) = σR. (K.12)

Therefore, the energy required to separate charges increases linearly with the dis-
tance R, leading to the confinement of the charges. In other words, the area law for
⟨W [C]⟩ indicates confinement.

Perimeter law

Next, let us consider the perimeter law,

⟨W [C]⟩ ∼ e−ρ(T+R), (K.13)

where ρ is a dimensionful constant. This behavior results in a constant potential,

V (R) = ρ. (K.14)

As the energy cost to separate charges at a large distance is finite, this potential
does not confine the charges. We express this by saying that the perimeter law
corresponds to a deconfining phase.

Coulomb law

Lastly, let us consider the Coulomb or scale-invariant law. In this case, ⟨W [C]⟩
decays more slowly than the perimeter law, depending on the dimensionless ratios
T/R or R/T ,

⟨W [C]⟩ ∼ e−αT
R

−βR
T , (K.15)

where α and β are dimensionless constants. The corresponding potential is

V (R) = α

R
, (K.16)

which is precisely the Coulomb potential. Naturally, this also corresponds to a
deconfining phase.
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APPENDIX L

CS term quantisation and fraction quantum Hall effect

L.1 Quantisation of Chern-Simons level
Consider CS theory in 2 + 1 dimensions1:

SCS = k

4π

∫
R2×S1

d3xϵµνρAµ∂νAρ (L.1)

Consider guage transformation:

Aµ → Aµ + ∂µω ⇒ ψ → eieω/ℏψ (L.2)

where, normally, we assume ω is single valued but only eieω/ψ needs to be single
valued.
⇒ ω = 2πℏτ

eβ
makes the e2πiτ/β single valued.

Let us consider a large guage transformation (not connected to the identity of
Lie algebra) A0 → A0 + 2πℏ

eβ
.

Now consider R2 → S2 and place a magnetic monopole inside it.

1In the expression below there is an additional factor of i coming from Wick rotation
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Recall Fτi = Ei and Fij = Bij. By Dirac quantisation condition, we get:

1
2π

∫
S2
F12 = ℏ

e
(L.3)

Now evaluate SCS on a configuration with A0 = a0 (constant periodic) and F12

satisfying Eq. (L.3).

⇒ SCS = k

4π

∫
S2×S1

d3x[A0F12 + A1F20 + A2F01] (L.4)

Now, given our background S2×S1, we do not have τ dependence⇒ ∂0 term vanish.

A1F20 = A1( ∂τa0 −�
��*0

∂0A2 ) (where the first term is non-zero due to non-trivial topology.)

= −(∂τA1)a0 (after IBP) (L.5)

similarly, A2F01 = A2(���*0
∂0A1 − ∂1a0)

= (∂1A2a0) (L.6)

⇒ SCS = k

4π

∫
S2 × S1d3x(2A0F12)

= k

2π

∫
S2×S1

d3xA0F12

= k
∫
S1
dτA0

[ 1
2π

∫
S2
d2xD12

]
= kℏ

e

∫
S1
a0dτ = kℏa0

e
β (L.7)

Now, under a0 → a0 + 2πℏ
eβ

, we have

SCS → SCS + 2πℏ2k

e2︸ ︷︷ ︸
fine as long as quantum partition function is guage invariant
⇒ eiSCS/ℏ → eiSCS/ℏ

⇒ exp

[
2πiℏk
e2

]
= 1

⇒ ℏk
e2 ∈ Z with ℏ = 1 = e(natural units)

⇒ k ∈ Z (L.8)

Thus, the CS level k is integrally quantized. (L.9)

203



L.2 Effective action for fractional quantum Hall
states

L.2.1 Exploration of Chern-Simons dynamics

In a d = 2 + 1 dimensional context, the simplest form of a topological field theory
involves a dynamic gauge field denoted as Aµ associated with the group U(1). It’s
important to emphasize that this is distinct from the gauge field related to electro-
magnetism, which let us continue to represent as aµ. Instead, Aµ emerges as a result
of the combined behavior of numerous underlying electrons.

We commonly think of gauge fields as representing massless degrees of freedom,
at least in the classical context. Their dynamics are typically described using the
Maxwell action, given by:

SMaxwell[A] = − 1
4g2

∫
d3xFµνF

µν (L.10)

In this expression, F µν = ∂µAν − ∂νAµ and g2 is a coupling constant. The corre-
sponding equations of motion can be derived as ∂µF µν = 0. However, in d = 2+1 di-
mensions, there is only one permissible polarization. In summary, the U(1) Maxwell
theory in d = 2 + 1 dimensions characterizes a single massless degree of freedom.

However, as we have already discussed, there exists an alternative action that
can be written for gauge fields in d = 2 + 1 dimensions. The Chern-Simons action,

SCS[a] = k

4π

∫
d3xϵµνρAµ∂νAρ (L.11)

As we discussed in the previous section, the coefficient k must be an integer
(when measured in units of e2/ℏ) if the emergent U(1) symmetry is compact.

Let’s explore how the Chern-Simons term influences both the classical and quan-
tum dynamics. Consider the following action, which is a combination of the two
terms we’ve discussed:

S = SMaxwell + SCS (L.12)

The equation of motion for the field aµ now becomes:

∂µF
µν + kg2

4π ϵ
νρσFρσ = 0 (L.13)
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This equation no longer describes a massless photon. Instead, any excitation in
this system will decay exponentially over time. Solving these equations reveals
that the addition of the Chern-Simons term effectively gives the photon a mass
m. Equivalently, the spectrum now possesses an energy gap Egap = mc2. A quick
calculation shows that it can be expressed as:

Egap = kg2

2π (L.14)

As the coupling constant g2 approaches infinity, the photon becomes infinitely
massive, leaving us with no physical excitations. One might naturally question what
the Chern-Simons theory describes, considering there are no propagating degrees of
freedom in this case. The next section aims to address this question.

L.2.2 The effective theory for the Laughlin states

We are now prepared to present the effective theory for the fractional quantum Hall
or, Laughlin states at filling fraction ν = 1/m. These Hall states have an emergent,
compact U(1) gauge field Aµ. While this is a dynamical field, it should be included
in our effective action. We can express the partition function as:

Z[aµ] =
∫
DAµeiSeff[A;a]/ℏ (L.15)

Here, DAµ is a shorthand notation for all the standard gauge-fixing considerations
needed to define a path integral for a gauge field.

Our next task is to formulate Seff[A; a]. We need to introduce a coupling between
Aµ and aµ. Since aµ must couple to the electron current jµ, we must establish a
relationship between Aµ and jµ. The current can be expressed as:

jµ = e2

2πℏϵ
µνρ∂νAρ (L.16)

The conservation of this current, ∂µjµ = 0, is basically an identity, when written in
this form. This relationship implies that the magnetic flux of Aµ can be interpreted
as the electric charge that couples to aµ. The normalization comes directly from the
compact emergent U(1) gauge symmetry, which couples to particles with charge e.
In this case, the minimal allowed flux is given by the Dirac quantization condition:

1
2π

∫
S2
F12 = ℏ

e
(L.17)
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The relationship given in Eq. (L.16) ensures that the minimum charge is
∫
j0 = e,

as expected.
Let us propose the following effective action:

Seff[A; a] = e2

ℏ

∫
d3x

1
2πϵ

µνρaµ∂νAρ −
m

4πϵ
µνρAµ∂νAρ + . . . (L.18)

The first term is a “mixed” Chern-Simons term that arises from the aµjµ coupling;
the second term is the simplest new term we can introduce. Following the same
arguments we used earlier, the level must be an integer: m ∈ Z. The ellipsis
above represent additional, less relevant terms, including the Maxwell term from
Eq. (L.10). At large distances, these terms will have no significant impact, so we
will disregard them. The above action is the effective action for Laughlin states at
filling fraction ν = 1/m (see [57] for more details).
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