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Abstract. The subject of quantum reference frame transformations gets popular lately
with some interesting new theoretical development partly for the reason that the physics
involved is becoming experimentally accessible. The position of a position eigenstate
when observed from an object with ‘uncertainty’ in position would be seen with ‘uncer-
tainty’. In fact, even the existence of entanglement is reference frame-dependent. We
present an improved formulation of such a transformation and give a novel way to de-
scribe exactly by ‘how much’ the ‘value of the position’ has changed which fully encodes
all information about the changes, including the ‘uncertainty’ and entanglement. That
is an application of the notion of noncommutative values of physical quantities we in-
troduced to understand the reality of quantum physics and beyond. Some implications
on fundamental physics will also be discussed. In particular, we suggest thinking about
quantum gravity as a theory of general quantum relativity, alleviating Penrose’s notion
of incompatibility of qauntum mechanics with the relativity principle.

1 Introduction

The question about the compatibility of quantum physics with the relativity principle is of fundamental
importance. The Relativity principle is about the descriptions of physics from different frames of reference.
Any understanding of the latter rests firstly on our model of spacetime. A traditional thinking about
spacetime in quantum physics easily gives a case for the incompatibility. As Penrose has argued [1],
there seems to be an absolute difference between a particle with a definitive position, as in a position
eigenstate, and one that is in a nontrivial superposition of more than one such eigenstate. No reference
frame transformation can reconcile the two pictures is the claim. We present here explicit illustrations of
the contrary. The recently popular notion of quantum reference frame transformations [2] can be used
to show that the nature of a state as superpositions of eigenstates (say for the position observables), its
Heisenberg uncertainties of observables, and even the entanglement of the particle or object with other
parts of the full composite system are reference frame-dependent. We present a novel way to describe
exactly ‘how much’ the ‘value of the position’ has changed which fully encodes all information about
the changes, including the ‘uncertainty’ and entanglement [3]. That is an application of the notion of
noncommutative values of physical quantities we introduced [4] to understand the reality of quantum
physics [5] and beyond. There is a quantum relativity principle, one about quantum reference frame
transformations, that is the correct picture about the subject matter. It is about the proper way to think
about spacetime within quantum mechanics. The physical picture of space has to come from the notion
of all positions a particle can take. A classical picture modeled by real number geometry cannot serve
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the purpose well. The full information a particle in a specific state has about its position in space is
definitely beyond the possible eigenvalue outcomes we can get from its projective measurements. Our
noncommutative values of the position observables give a good mathematical description about that. The
corresponding geometric picture [6, 7] is to be based on noncommutative geometry [8, 9, 10].

Our understanding of spacetime is one of the most fundamental issue in physics. Einstein taught us
that gravitation is spacetime curvature and his gravitational theory is the theory of general relativity.
Then, the theory of quantum gravity should be one of general quantum relativity. We sketch some of our
recent results towards the direction at the last part of the presentation.

2 Quantum Reference Frame Transformations

Let us look directly at a quantum spatial translation as the position of a quantum particle C relative to
another quantum particle B. The spatial translation is a change of relative position coordinates as seen
from an inertial (laboratory) frame A (simply called particle A here) to the relative position coordinates
as seen from another particle B as the new reference frame. It has been well-appreciated that it is a
canonical transformation to be given explicitly as

4 (A) ~(B) A(A) A(B) A(B)

Iy > Ly Pg _(pA + Do ),

4 (A) 5(B) __ »(B) H(A) A(B)

T — g =™, Y — e (1)

Here, notation like £$* denote the observable & of particle B as observed from particle A as the frame.

The expressions has the position and momentum observables each as a singlequantum quantity. General-
ization to the case that each is a three-vector of independent components would be straightforward. The
transformation as a quantum spatial translation is easy to appreciate. The part of the position observ-
ables read as classical ones would be exactly what one has in a classical theory. The part of momentum
observables is what is required to make the full transformation a canonical one, i.e. to have the Poisson
bracket %[, -] or all Z-p commutators preserved. Implicitly, the thinking about quantum reference frame
transformations has hidden in it an intuitive but formally not so trivial [7] picture of the position and
momentum observables as (noncommutative) coordinates of the phase space for the quantum system.
Quantum reference frame transformations are symmetry transformations of the latter.
The quantum spatial translation can be written in terms of a unitary operator

o = B R )
x = Fag€ ) ( )

(h = 1), where P, is a parity-swap that sends |z), ® |y).. to |-z), ® |y),, mapping from Hg" @ H",
the Hilbert space for states of the composite system BC' as described from A, to H’ ® H, the Hilbert
space for states of the composite system AC as described from B. One can easily check that it gives

. & G A A
exactly the above operator transformations from O — S, OS] [2]. We have e %0 " naively behaves as
a translation in 25 by the ‘parameter’ 25" and as a translation in p5* by the ‘parameter’ —f and the

subsequent action of P, finishes the job.

We have given an alternative formulation of the transformation in terms of position eigenstates [3].
The formulation allows the transformation to be seen more directly as a symmetry transformation within
the Hilbert space of H, ® Hs @ He, with the initial and final frames of reference taken as the ‘states’ |0),
and |0),, .e. the zero vectors. We introduce the use of the zero vector under the following considerations.
A zero vector of course has no observable physical properties. Any operator acts on it trivially. That
corresponds exactly to the idea that a frame of reference does not see itself as a dynamical object, and
hence cannot have a state with any nontrivial observable properties. We emphasize that it is not enough
that the description of a composite state of BC' as observed from A has no nontrivial content for its
own position, £, even if only the quantum spatial translation is concerned. First of all, the idea of
writing that state of BC' as observed from A as a vector within H, ® Hz ® H, should be independent of
which particular quantum reference frame transformation one may want to formulate. For example, it
should not depend on if we want to consider the quantum spatial translation of a quantum momentum
translation. In the picture of Eq.(1) as presented in Ref.[2], there is no pi* and p5”’ to considered as
there is no 2 and £5”’. The zero position eigenstate of A has nontrivial p{*’ with quantum fluctuations,
and would lead to similar pS”’ after the quantum translation. Our formulation with the zero vector is
free from that and gives consistent results. Of course whatever makes up the physical frame of reference
would be observed as a usual object from another frame of reference. The spatial translation is then

presented as the action of the unitary operator

0, = Sl o [da'dy |-a'¥e'l, o1y — Wl ®)
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which takes a generic state

0) =10}, @ faudy vie,y) ), @ b (4)
to
Ocl) = [dedy (o) =), ©10), @ |y 2), .
= [asdy vy +3) -2, 10}, @) - (5)

S is a simple swap sending |2), ® |z), @ |y), to |z), ® |2), ® |y),. It can further be checked explicitly
that

U, / d'dx'dy’ @' |2\, ® 2’ Y|, © Iy Xyl Ul = / dzdxdy (—z) |x)z], ® |2)z], @ [y)Yl. ,

U, / dz'da’dy’ of |2 )2'|, @ &' }a'|, @ Iy X/ | Uf = / dzdzdy (y — z) [z)Xz|, ® |2)(z]; @ [y)Yl. »
(6)
~(B) _

which are exactly U,&5V Ul = —2(® and U, 250U} = 287 — (%), Now, we can write explicitly £5% — 25
as i:c—Uzi‘CU;f =T, = —Uzi‘BUCI, or &%) = Uzi’cﬁj _U:L‘j:BU;I as the classical analog of z/, = o —x5. One
can also check explicitly for the momentum observables. Unitary transformations on the Hilbert space
are generally canonical transformations anyway. U, disagrees with a naive form of S, as an operator on
Hs ® Hg ® He but is the only consistent formulation for composition of such transformations.

Ref.[2] presents some very illustrative nice pictures of the effects of the transformation in its figure 3.
We gives here explicit analytical expressions for the four cases in that figure. The results are to be used
in our analysis below. They are, in terms of simplified notations and with the zero vectors for the frames
omitted, as

(a) |zo>®/dy¢<y>|y> — |—zo>®/dy¢<y>|y—zo>;
(b) %um e ® [y v)ly)

- % (I—m1>®/dy ¢(y)|y—z1>+|—z2>®/dy ¢(y)|y_m2>> :
(c): clxy, Yo + 1) + 8|Tay Yo + T2) — (c]—z2) +5|—22)) @ |yo) ;

(@ : /dm¢<m>|m7yo+m> — /dm¢<m>|—m>®|yo>; (1)

where ¢ = cos(g)efTzc and s = sin(%)e%7 0 <6< mm0< (< 2m used to write a generic linear
combination of two states. Given the above presentation, the interpretation of the simplified notations
should be unambiguous. Case (a) has as the initial state a product of position eigenstate for B and
a generic state for C' (together with |0),). The final state maintains being a product state as shown
(involving |—z), and |0),).' Case (b) has the transformation of a product state to one with nontrivial
entanglement (between A and C). Initial state for case (c) rather generalized somewhat the one in the
figure, as a not necessarily equal combinations of two perfectly correlated parts of products of position
eigenstates of B, and C' with a fixed difference in eigenvalue. The translation to have B as the reference
frame gives the final state as a product with the part for C' as a simple eigenstate. The perfect correlation
makes all the quantum fluctuations of C' unobservable from B. (d) is really just a more general form
of (c) with the same basic feature. Note that (b) is much like the inverse of (c¢) or (d). The initial and
final state of (b) for |¢)) = |y,) can be identified essentially with the final and initial state of (c) with
c=5= 5, respectively.

1C, A, and B in the figure (3 of Ref.[2]) correspond to A, B, and C of our notation, respectively.
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3 Description with Noncommutative Values of Observables

The generic formulation gives a quantum spatial translation of C' as @ changed into Z. — Zp, with then
both observables Z. and % as dynamic variables. In the classical case, we typically consider a simple
translation of a coordinate by a fixed amount, like changing to ' = x — a. Taking that as a classical
reference frame transformation, we can see a as the xz-coordinate value of the particle to serve as the new
frame of reference. For such a classical reference frame transformation on a quantum system, we have for
example

S, = elvBrC (8)

to describe a translation of the position of particle C' generated by p. by the real number value of x; = a.
When we put that into the form of going from frame A to frame B both as classical frames, the translation
gives

o) P, EY i (©)

with no changes to any momentum. Here, 5" and 2{”’ can be seen as positions of B and A as observed,

so long as they can be seen as classical objects. For later convenience, let us use * and / to denote
the quantities before and after a transformation, as the initial (here frame A) and final (here frame B)
expressions. The translation would then give

af = -l W =d —ay=dt—a. (10)

The important conceptual notion is the noncommutative value of a quantum observable [4, 7] allows us
to look at the exact analog for the quantum translation. It gives a rigorous way of seeing an individual
definite quantum translation as a generalization of the classical one of translating by a fixed value of
distance a, given by the initial position of a quantum particle B for any specific quantum state B has.
That is to say, we have

ol = ~losly, &l =1l — 25, (11)

where [#5], is that ‘distance’ translated not as the variable &5 but an explicit ‘value’ specific to the state
|¢) as the analog of the real number a of the classical case. That distance ‘value’ obviously cannot be
a single real number. The latter simply cannot encode the full quantum information about the position
of B at a fixed state |¢) including quantum fluctuations and entanglement features it may have which
are of key interest about quantum reference frame transformations as illustrated above. For Case (b),
for example, the initial B state is a superposition of two eigenstates of £%. That nontrivial nature,
versus that of Case (a), is what gives the interesting entanglement results between C' and A and that
is independent of the initial state of C. With further specification of the state of C', one would have
consistently [Zc] f;, = [2c]y — [5]; where we have |¢) and |¢) as the initial and final state considered for
the more general situation as states of the corresponding composite systems.

Let us elaborate more on the notion of the noncommutative value as a description of the full quantum
information involved. One usually looks at the information a specific state carries about an observable
through the results of the projective measurements. Yet, a single eigenvalue outcome carries hardly any
useful information. The naive thinking is to take the expectation value from the measurement results,
maybe also to note its Heisenberg uncertainty, which is the standard deviation of the distribution of
the latter. The theory predicts, however, the full statistical distribution that can be checked up to any
required precision without theoretical uncertainty. So, the full information is at least the full statistics.
That can be expressed through the sequence of real numbers as all the moments of the distribution.
That is a lot more information than what can be encoded in a single real number. The statistical
distribution does not encode the full information involved. It has been appreciated, for example, that
position and momentum distributions do not have enough information to determine the state [11]. The
notion of a noncommutative value of a quantum observable we introduced earlier [4, 7], is exactly a
concrete mathematical way to describe the full information. It generalized the mathematical idea of a
state, on an algebra, as a functional from a physical point of view. Such a functional on a commutative
algebra is an algebraic homomorphism, keeping the algebraic relationships among the observables in their
values for the state. The classical observable algebra as a commutative algebra has, for each state, those
real number functional values as the physical values. The homomorphic property is important. When
our theory predicts any relation among the observables as dynamical variables, we have to check them
through those values as experimentally determined. Exact verifications of those algebraic relations, up
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to the experimentally manageable precisions, rest on that homomorphic property. Let us denote a state
by ¢ and write that evaluation map as

taking a classical observable [ as a function of the position and momentum observables to its real number
value [3]¢. The homomorphic property

[aB + s = alBle +00le . [B7]e = [Blse (12)

here is obvious for the observables, # and v as real-valued functions, f; and f,, on the phase space. For
example, if our theory says the energy F, of a one-dimensional harmonic oscillator with m = % and k=1,
is given by

E=p>+22=pp+az, (13)
we need to have on any state ¢, say one with x = 2, p = 3,

[E]s = [p*]s + [2%) = [Plolple + [z]pl]s = 33 +22 =13 (14)

We spell out in details what should be trivial here only to bring home the point that most have not
paid enough attention to. That is what should be the required property of the evaluation map on the
observable algebra that a state is, from the mathematical point of view. The notion of noncommutative
value is to look at a quantum state as a homomorphic map on the quantum observable algebra. The set
of values as the image of such a map then has to be a noncommutative algebra. After all, real number is
a set of mathematical symbols, as a commutative algebra, that has been used successfully to model the
notion of values of physical quantities in classical physics. It fails to do the same for quantum physics.
Then we should consider finding a new model for the job. Intuitive concepts are not classical. Quantum
notions about concept is physics are not less intuitive. The corresponding classical notions are only what
we are more familiar with. The philosopher Quine called real numbers convenient fiction. That is, of
course, about the real number values of physical quantities, as he also stated that to be is to be the value
of a variable. With quantum physics, real number values are no longer good enough. We need the new
convenient fiction, our noncommutative values or even moncommutative numbers.

For a noncommutative algebra, the functionals as states are given by the having the values as the
expectation values. The idea can be promoted to give a one-to-one homomorphism. We can this the
full expectation value function as a function on the quantum phase space and look at the sequence of
coefficients of its local Taylor series expansion on a state. The sequence is state specific, fully predicted
by the theory, and all numbers in it can be determined experimentally at least in principle. Most
importantly, there is a noncommutative product between two such sequences for two observables to
retrieve the sequence for the product observable. With the latter product, the set of such sequences
for form an algebraically isomorphic image of the observable algebra. In short, a state |¢) defines a

homomorphism [-]4 that takes an observable /3 to an element of the noncommutative algebra of its value

[B]¢ The latter as a noncommutative value can be represented by the sequence of Taylor coefficients.
Yet, we can have much simplified representation of is essentially including only the first three coefficients
due to specific mathematical properties of the expectation value functions [4].

3.1  Noncommutative Values of Observables
Let us first give a representation of the noncommutative value of a quantum observable 3 on a given

physical state. For the f;(z,, Z,) function being the expectation value function of Hermitian operator 3,
we have

Vi =0nfs = —FiZn + Y _ Zm(B), (15)

where (3)™ are the matrix element <m| s |n> over an orthonormal basis (m|n) = 07", and 2™ the complex

coordinates of a normalized state |¢) = >, 2™ |n), n runs over the dimension of the Hilbert space for the
system under consideration. The set of 2™ also serves as the homogeneous coordinates of the projective
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Hilbert space as a Kéhler manifold [12]. One can check that
For = B+ D Ve Viu s

B =BG,

l

Visw = —foaZn+ ) Zn (B, (16)

where V,

Yn

= Onf, is just the complex conjugate of V, for any (Hermitian) operator 4. We can take the

noncommutative/quantum value [3], as represented by the sequence and complex number values of the
quantities {f;, V5., (5)}, evaluated on the state. The noncommutative value of an observable as the

product 3% is then the noncommutative product for two noncommutative values, i.e. [B’ﬂqs = [/3’](;5*,i (9]¢
with elements of the sequence as given by the equations above. The equation gives the explicit definition of
the noncommutative (Kéhler) product x,derived from the notion of such a product between expectation
value functions first introduced in Ref.[13]. For any specific state, the map from the observable algebra to
the noncommutative values, taken as a noncommutative algebra with the product as given is obviously a
homomorphism, maintaining the algebraic relation among the observables in their values. In particular,

for =3 Am [m)m| at |n), we have

F=My Vi =2 — ) =0, (B =8"An .

So, an eigenstate of an observable always has all corresponding Vj, being zero, and degenerate eigenstates
for an observable have identical noncommutative values. Moreover, B =l gives f = r, have the
noncommutative value behaving essentially as a commutative classical real number value. Note that the
matrix element (3)7 can be expressed in terms of f;, Vi, and ks = 0,0 f5 [4], hence the full sequence

for the noncommutative value can be obtained from a given expectation value function f; on the projective
Hilbert space without knowing a priori the explicit operator form of the B In fact, one can check if a
function f(z,, z,) is indeed an f; without knowing 3 [7, 13]. Moreover, the classical value 7 as a constant
noncommutative value has also ;= 0. The particular representation of the noncommutative value,
which is really a single quantity as an element in a noncommutative algebra, is chosen as the optimal one
for an easy and more transparent illustration of the theoretical issue address in this presentation. The
sequence of complex numbers representing a [B]¢ has three parts. The V;, part is the key focus here.
It gives important inforn}ation about how much the state differs from an eigenstate, hence the quantum

nature of the quantity [5]4. For example, the Heisenberg uncertainty characterizing the spread of the
eigenvalue results from projective measurements about the expectation value is given by

(DB =fo — 2= Vi I*. (17)

For a convenient analysis of the noncommutative value for the position operator on states as described
by wavefunction, we need the form of the noncommutative value Schrodinger representation. Note that
the wavefunction ¢(z) is really a collection of infinite numbers of complex number coordinates as (x|®),
one for each eigenstate |x) for the value of x, —co < z < co. A complex function can be seen as a
collection of complex numbers (functional values) one at each point of z. Then, the matrix elements

(3)%" = (2'||z) are to be expressed together as a two-variable function; for example, (£)% = z6(z' — ).

The coordinate derivatives corresponding to V3, may then be expressed together as a function which is

the functional derivative d4f;. That is, we have [B]¢ = {f, 00/, (3)Z'} as the noncommutative value.
From

_ [z d(a)ro(a)
Jiz 6()o(x)

taken as a functional of the (normalized) wavefunction, we have the set of infinite coordinate derivatives
can be expressed as the functional derivative

£:(9) (18)

of

§¢ (¢) = &(x)(x - xo) ) (19)

Vi(a) = 85 £:(9) =
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where z, here denotes the expectation value of f, evaluated for the fixed ¢(z). There is one value of V;(x)
at each z value matching to the coordinate value of ¢(x). For the momentum observable, we have

Jdz é(x )@5(96) _ Jdz [10:0(2)]¢(2)
O = et s e 2
which gives
V;;(I) = 5¢f;(¢) = (Zam _po)é(m) ) (21)

where p, again denotes the expectation value. One can check that we have [3]

o= =i [dn $@)e0,0) = L4+ [do V)T ()
o = =i [do 6(@)a0.6(0) + 6(@) = 4 + [dn V@)Vi(o) (22)
and
o o= V()= Valw) =0, (23)

3.2 The Quantum Amount Transformed

With the results above, we can move on to illustrate the change in noncommutative values of the position
observables in the quantum spatial translations. Let us do that for Case (d). The first thing to note is
that an expectation value function f;(¢) is of course invariant under any unitary transformation. As the
terms in the sequence representing the corresponding noncommutative value are all fixed by the values
of the derivatives of f;(¢) for a physical state, the whole noncommutative value should be invariant. For
the quantum spatial translation with Z, — Zo — Z4, the operator i. before and after the transformation
are different operators on the same Hilbert space, as position operator formulated on differently defined
position eigenstate basis which gives the easily appreciable picture of the translation, as |y) — |y — ).
The noncommutative values of the position observable of C' for any physical state changes. That is exactly
like the translation (of reference frame) in classical physics 2z — 2 — .4, the explicit operators describing
the same position of C are two different (quantum) position coordinate observables and they have different
values. However, there is a further subtlety as the d,f;(¢) and (3)% terms have values which depend
on the choice of basis of the Hilbert space. We can only compare two noncommutative values explicitly
in the sequence representations when the latter has the dg4f;(¢) and (ﬁ);' terms expressed in the same
basis. Say, we have to compare the initial and final value of x. through expressing both noncommutative
values in either the eigenstate basis before or after the transformation. We are only going to present the
key results for Case (d) here. Full results for all the cases above are available in Ref.[3].

d):  1¢) = [dzp(z) |z, yo +2) — ) =Sz|d) = [dr1(x) |-z) @ |yo)

The initial state wavefunction is ¢(x,y) = ¥ (x)d(y — = — yo). We have

¢ fin = (& = 20)Y(2)8(y — = yo) ,
5¢féc =Y —Yo— 330)1/_](1')5(3/ —T—yo) = (z 1'0)1;(1')5(3/ —T =),

where z,, again, denotes the value of f;,, and the value of f;. is then y, + z,. The nature of the results
not as products of a function of z and another of y is the signature of the nontrivial entanglement here
seen in the noncommutative values of the observables. In addition, the equality of the two is the signature
of their perfect correlation. The final state wavefunction is ¢'(a’,y') = ¥(—2')0(y' — yo), with

Sor fL, = (@' + 2o) b (=) (y — wo) ,
S 1L, = () = yo)b(—2")3(y —yo) =0,
checking out [ch]g =[]}, and [ic — J%A]f;, = [#]}. The result of [:ic]i, = [ic]l — [2]}, has zero

Og f from the cancellation d4 fZ — 8¢ fm The perfect correlation between the observables leads to
their difference bearing zero umcertamty7 as a result of the cancellation of the uncertainties. We can also
read the transformation in the reverse, taking the final product state of ¢(z’,y') given in the reference
frame of B as the initial, which would be then expressed as the entangled state of ¢(x,y) in the reference
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frame of A upon the quantum spatial translation. The difference between the [:i:c]{;, and [Z]} above
as —[iB]é = [i’A]é,, reads as a function of =’ and ¢/, as the Hilbert space coordinates in the position

eigenstate basis in the frame of B, shows no entanglement as ¢(z’,y’) and d, f:%B or dg 1! factorize into

Ta
a product of functions of ' and y'. This inverse transformation picture essentially illustrates the key
features of case (b), i.e. of turning a product state into one with entanglement. While the difference in

[i:c]{;, and [i’c]’d) in case (a) above has factorizable expressions in terms of z-y or z’-y/, here the result has

a factorizable expression only in terms of x’-y’. Note that though [i:c]{;, has a nonfactorizable expression
in terms of x-y, we cannot say that the latter show entanglement. x is about the eigenstate or eigenvalue
of B which has no meaning with B as the reference frame. One can further check that [ﬁc]i, = [ﬁc]; and

A1t

[ﬁA]i/ = _[ﬁA]é) - [pC]¢

3.3 Qubit Systems and Noncommutative Numbers
We want to go beyond our discussion of the noncommutative values of the quantum observables in relation
to the picture of quantum spatial translations as the focus of the presentation here. In Ref.[3], formulation
of an example of quantum reference transformations in a qubit system is also presented, together with
the analysis of the changes in noncommutative values of cases of states as the parallel of those for the
quantum translations above. We say a couple of words about that here to give readers an idea about the
kind of quantum transformations.

The transformation considered is the parallel of the translation by 25 above taken up by the observable
Gy, (as observed from A). For each qubit, we have only two base vectors, |0) and [1) as eigenstates of &,
with eigenvalues plus and minus 1. The analog of |—xz')a’|, is clearly |0)X1], and |1)0], flipping the sign
of the eigenvalues, hence taking

Osp

— =0y, [0, =), [y, —10),, (24)

However, 6,, — 0y, — 3, d, for the parallel of |y — 2’)(y/|., is impossible as the observables have no
eigenstates wiith 0 and +2 as eigenvalues. A sensible choice is to have the unitary transformation based
on |0), — \/L§(|O>C + [1),.). Explicitly, in the simplified notation, the transformation is given by

01, ©100) — [0}, ® (110} + [11)).
01, ©101) — [0}, ® <= (110) = 11)).
0, 10) — [0}, & —=(01) = 00))
0}, © 111) — [0}, © —= (|01} + [00)) (25)

S

2

On the basic operators, it gives

Oip s Oz O35 — 03,05, 01,05, —03,

O1oy Oop s O3 = — 03,0355 =05 =03, O, - (26)

The transformation of course preserves the commutation relations among the operators. On the four-
dimensional two-qubit composite Hilbert spaces, we have a noncommutative value with the key part to
analyzed as

[0]47 = {f07 Vﬂom Vﬂmv VUlO? Vﬂn} : (27)

The mathematical form of the noncommutative values of quantum observables for a system with a Hilbert
space of a small dimension is certainly much simpler and may be easier to appreciate.

Let us also sketch a different, probably conceptually and practically more interesting representation
of an algebra of the noncommutative values, for the simplest quantum system, a qubit. It is conceptually
more interesting because it can be seen as an algebra of noncommutative numbers [16]. As such, it may
stand a better chance to be directly determined experimentally as a single piece of quantum information,
though doing anything of the kind requires completely revolutionary thinking about how we use and
calibrate our apparatus.
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We start with some interesting quotes from Dirac. Dirac’s founding contribution to the theory of
quantum mechanics is to give a full abstract quantum observable picture of Heisenberg’s basic idea of
taking the observables beyond the notion of real number-valued variables while keeping our physics picture
about the dynamical theory. Dirac introduced the quantum Poisson bracket

{.7 } = %[7 ]

in terms of the algebraic commutator for the Hamiltonian formulation, keeping the position and momen-
tum observables as canonical coordinate variables of the phase space, i.e

AToA 1 LN %
{$ 7pj} = E[I 7pj} :5]' . (28)

At that point, of course, nobody has any idea about the geometry of that phase space, or maybe the space
as coordinated by #¢. They have already given up the classical geometric picture of the physical space
though. The modern noncommutative geometry is the natural candidate for that. The resurrection of
the Newtonian space picture along Schrodinger’s theory of wave mechanics is a key source of confusion,
which also led to the Bohr-Born picture with all its mysterious implications, though Schrédinger himself
soon gave up the idea of his wavefunction being about a physical wave. That was not the idea behind
the theory of Heisenberg and Dirac. We see even the picture of matrix mechanics from Born and Jordan
is quite a compromise of the more revolutionary idea of the couple. Note that formal equivalence of two
theories certainly does not reconcile the different conceptual interpretations. Dirac introduced the term
g-number variables for the quantum observables as a new kind of numbers, essentially our new convenient
fiction. We quote:

To distinguish the two kinds of numbers, we shall call the quantum variables g-numbers and the
numbers of classical mathematics which satisfy the commutative law c-numbers, while the word number
alone will be used to denote either a g-number or a c-number.” [14]

Owing to the fact that we count the time as a c-number, we are allowed to use the notion of the value
of the dynamical variable at any instance of time. This value is a ¢-number, capable of being represented
by a generalized ‘matriz’, . . . [15]

A difficulty then is that, as Dirac also stated,

At present one can form no picture of what a g-number is like. [14]

And he has never given up an answer. His g-numbers we would like to call noncommutative numbers.
Well, if the observables are taken as operators, or matrices, on the Hilbert space, it is difficult to think
about how they can have different values for different states. Moreover, with the (projective) Hilbert
space as the quantum phase space, there seems to be no need to find a new geometry for the theory.
One needs to reconcile the Hilbert space picture with Dirac’s intuitive idea of the phase space with the
observables as coordinates [7].

Our notion of the noncommutative values discussed above fits well into Dirac’s idea of the g-number
values, except for the fact that we have not been able to express the form of the Kéhler product in a
state-independent manner. For the g-numbers as numbers, one needs a general product rule. The set
of noncommutative values of observables for a specific state is an isomorphic image of the observable
algebra. To have those values directly taken as numbers with a noncommutative product, we need to
have the algebra of the values from all different states embedded into a single algebra.

The notion of g-number, or noncommutative number, is a natural one, even from the point of view
of extensions of the notion of numbers in the history of mathematics. It starts with natural numbers.
One can see it as the effort to find solutions to algebraic equations that led to the extensions. When
no solution to an algebraic equation exists, the solution would be invented as a new kind of number
that extends the system. Here is a list of simple equations that could be seen as each leading to the
introduction of the new kind of number given:

x+2=0 — negative numbers
20 —1=0 — rational numbers
22-2=0 — real numbers

224+1=0 — complex numbers

Going to equations with more than one variable, for example, we have

ry—x—1=0 - (Ivy):{(iaQ%(%v_i)?'“}'
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But then we can have
zy—yr—1=0 — noncommutative numbers.
With the equation for the (quantum) variables
&p—p& —i(h) =0

there is no solution for it within real or complex numbers. That should not mean we do not have definite
real number values for the variables but we need a new kind of numbers to give the solutions. That is
the noncommutative/g-numbers, and the wisdom of Dirac.

Inspired by a study of quantum information flows in qubit systems from the Heisenberg picture
by Deutsch and Hayden[17], we have introduced another formulation of the noncommutative values of
observables, called the DH-matrix values [18]. They are just matrices, hence mathematically the natural
candidates of numbers with a noncommutative product. Carefully analysis of the idea and a presentation
of a full conventional scheme for the consistent assignment of the DH-matrix values to all observables with
any state are given in Ref.[16]. In summary, the usual representation of observables as specific matrices
is indeed a representation in terms of the DH-matrix values for a chosen reference states. Any other state
can be given in terms of a unitary transformation U, acting on the latter. Each state |¢) may then be
seen as described by U, which maps the observable to its value. In the explicit example for the case
of a single qubit, an observable is a dynamical variable as an abstract operator on the two-dimensional
Hilbert space, 8. Its values for the state |¢) is conventionally given by

8l = U ' (29)

where

@z( ) 16) = U, |0) = c[0) + 1) . (30)

S c

with ¢ = cos(g)e%w, s = sin(g)e%7 0<6<m 0<1y < 2w, |0) being the reference state and the Pauli
matrix o itself assigned value. Note that vales physical quantities are only meaningful as relative to one
another. The absolute or exact value of one is only conventionally taken, through the introduction of
the units and beyond. [§%], with |¢) specified is a value, as a fixed quantity. Taken the state with the
parameter c and s as variables, we have 3’ with its nature as a dynamical variable restore. In that sense,

quantum mechanics is not matrix mechanics, but matrix-valued mechanics.

4 From Quantum Relativity to Quantum Gravity

Our noncommutative geometric perspective sees quantum mechanics as a theory of particle dynamics in
quantum spacetime, naturally with quantum frames of reference. The perspective and its emphasis on
the position coordinate observables as physical coordinates of the geometry have been adopted to look
at some problems related to gravitation, having the classical metric promoted to a quantum observable.
Firstly, we have studied the Equivalence Principle and established the version about a particle as the exact
analog of the classical case, with quantum geodesic equations [19]. In classical Hamiltonian dynamics, the
particle phase space as the cotangent bundle of its position space has a symplectic geometry independent
of the existence of the Riemannian metric. For any general position coordinates z® taken, one has the
conjugate momentum as a cotangent vector and the canonical conditions of the Poisson bracket. The
same can be checked to hold for the quantum case. We have, generally,

{ja7ﬁb} = 6;;1 3 {i‘a7i‘b} =0= {7ﬁb} . (31)
The Hamiltonian vector fields define the coordinate partial derivatives as derivations:
83&‘1 = {'7]3(1} ) 8]30 = _{'7§:a} . (32)

The quantum geodesic equations in a classical or quantum Rindler frame [20] the instantaneous free-falling
frame maintains the simple form of

d*zn div dz°
T4 (2)—— =0.
d82 dS Vo'(x) dS 0 (33)
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The general form of the quantum geodesic equations as equations of free particle motion, with the
invariant Hamiltonian

- 1 1
H = o—pag*"pp == 5—0"Dy (34)
obtained have a more complicated form [21]. Yet, they are noncommutative generalizations of the classical
ones and particle mass-independent. That forms the base for a theory of quantum mechanics in curved
spacetime with all the appealing features the conventional approach missed [22]. A Schrodinger wave-
function representation, what the latter assumed, is indeed generally not admissible. Moreover, one has
a coordinate system-based, or metric-dependent, notion of Hermiticity for the momentum observables.

The above paragraphs sketch some of the results related to gravitation. All is hinged on the noncom-
mutative geometric perspective. Noncommutative geometries are certainly not real number geometries.
The position coordinate observables as quantum observables are g-number variables taking g-number val-
ues. The conjugated momentum observables are intrinsically bounded to the position ones and the full
phase space is a more proper picture of quantum spacetime [7]. The phase space for standard quantum
mechanics, with Cartesian ©¢, may well be considered the noncommutative geometric notion of ‘Euclidean’
geometry. The geometry they by coordinated any %, and p,, is then a g-number geometry. Quantum
physics is g-number physics, as Dirac observed. Quantum reference frame transformations changing the
g-number values coordinate description of it are what is naturally behind a Quantum Relativity Principle.
Quantum gravity is then a theory of General Quantum Relativity. That is a comprehensive picture we
aim at establishing in details in the future.

Perhaps we can provides a few words about the relation of our approach may have to existing theories
of quantum gravity. First of all, it is important to note that there is no such theory with its basic
approach more or less established to be correct. We have rather contending candidates work on quite
different starting points with different focuses [23]. Yet, most of them have in common the adopting of a
classical, real number, geometric picture of spacetime and implement some quantization procedures to a
classical theory. Our approach, however, starts with a quantum picture of spacetime following and fully
implementing the otherwise naive Heisenberg-Dirac idea on taking physical quantities as quantum ones.
Instead of looking at some quantum field theory on classical geometry, we want to consider gravitational
field of quantum spacetime but still have to work towards that. De Witt was an important pioneer of the
traditional approach [24]. We have outlined the different results on the step before that, as formulating
quantum mechanics in curved spacetime, from our perspective preserving more of the conceptual notions
that work in classical physics at the quantum level. Conceptually, our more general geometric background
can accommodate as classical approximations the ones adopted in the traditional approach. We can avoid
most of the difficulties and controversal issues of the different quantization procedures, but need to learn
to deal with the noncommutative quantum quantities. At some levels of approximation, our approach
would be expected to yield results consistent with the traditional one.

Further development of various aspects of the mathematical theory of g-numbers and their extensions
would be interesting, and relevant to physics. One may have to look into, for example, an extension of
algebra with ¢g-numbers taking up the role of the scalars. Quantum information may be seen as g-number
information and we could have g-number technology.
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