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Abstract. During the late stages of a neutron star binary inspiral finite-size
e↵ects come into play, with the tidal deformability of the supranuclear density
matter leaving an imprint on the gravitational-wave signal. As demonstrated in
the case of GW170817—the first direct detection of gravitational waves from
a neutron star binary—this can lead to strong constraints on the neutron star
equation of state. As detectors become more sensitive, e↵ects which may have
a smaller influence on the neutron star tidal deformability need to be taken into
consideration. Dynamical e↵ects, such as oscillation mode resonances triggered
by the orbital motion, have been shown to contribute to the tidal deformability,
especially close to the neutron star coalesence, where current detectors are most
sensitive. We calculate the contribution of the various stellar oscillation modes
to the tidal deformability and demonstrate the (anticipated) dominance of the
fundamental mode. We show what the impact of the matter composition is
on the tidal deformability, as well as the changes induced by more realistic
additions to the problem, e.g. the presence of an elastic crust. Finally, based
on this formulation, we develop a simple phenomenological model describing
the e↵ective tidal deformability of neutron stars and show that it provides a
surprisingly accurate representation of the dynamical tide close to merger.

1 Introduction

The breakthrough detections of gravitational waves from binary neutron star inspirals [1, 2]
have led to renewed focus on the elusive neutron star equation of state. The problem has a
number of complicating aspects—both relating to the observational data and the theoretical
underpinning—but the essential question is quite simple: to what extent can we use obser-
vations to constrain the state and composition of matter under the extreme conditions that
neutron stars represent?

Much of the recent focus has been on the neutron star tidal deformability, essentially
the extent to which the tidal interaction with a binary companion deforms the neutron star
fluid. This is a useful measure as it can be extracted from (or, at least, constrained by) the
gravitational-wave signal [3, 4]. Notably, the celebrated GW170817 event [1] has led to a
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constraint on a suitable weighted average tidal deformability, corresponding (roughly) to a
neutron star radius in the range 10 − 13 km [5] (the result is somewhat model dependent).
Moreover, as this radius range agrees well with the constraints obtained from the “Neutron
Star Interior Composition Explorer” (NICER) observations of PSR J0030+0451 [6, 7] and
PSR J0740+6620 [8, 9], a consistent picture is beginning to emerge.

The deformability (often expressed in terms of the dimensionless Love number, kl) repre-
sents the static contribution to the neutron star’s tidal response (equilibrium tide). In addition,
there is a dynamical tide. This is traditionally represented by the excitation of the di↵erent
oscillation modes of the star. The resonance problem was first considered some time ago [10–
12], but the issue is back in focus following the suggestion that the (fundamental) f -mode
of the star may be excited to a relevant level, even though it may not reach resonance during
the inspiral [13–15]. The associated e↵ect on the inspiral signal is weak, but its inclusion has
been demonstrated to improve waveform models [16, 17].

An interesting question to pose is to what extent the composition of the neutron star
matter enters the problem. As the star is deformed by the tidal interaction, matter is driven
out of equilibrium and it is easy to argue that the relevant nuclear reactions are too slow to
re-establish equilibrium on the time scale of inspiral. For neutron star cores dominated by a
conglomerate of neutrons, protons, and electrons, the relevant equilibration time scales are

tmU ⇠
2 months

T 6
9

, tdU ⇠
20 s
T 4

9

, (1)

for the modified and direct Urca reactions, respectively. The temperature is scaled to hot
systems, T9 ⌘ T/109 K, but inspiraling neutron stars are old and cold, typically in the range
T9  0.01, which would make both tmU and tdU much longer than the time it takes a given
system to move through the sensitivity band of a ground-based interferometer (⇠ minutes).

The upshot of the equilibration argument is that the equation of state is no longer
barotropic, as has been assumed in virtually every previous analysis of the tidal problem.
Hence, we want to establish to what extent a “frozen” matter composition leads to a notice-
able e↵ect on, for example, the Love number, and whether this in turn a↵ects the extraction
of neutron star parameters from an observed signal.

In the following, we outline the work presented in Refs. [15, 18, 19].

2 The effective Love number

The tide raised by a binary companion (here treated as a point particle) induces a linear
response in the primary. In order to quantify this response, we solve the linearised fluid
equations in Newtonian gravity. Assuming that the star is non-rotating, the tidal perturbation
is described by the Euler equation

−!2⇠i +
1
⇢
riδp −

1
⇢2 δ⇢ri p + riδΦ = −riχ, (2)

where ⇠i denotes the tidal displacement vector, ⇢ is the density, p is the pressure, Φ is the
gravitational potential, δ denotes Eulerian perturbations, and ! is the tidal frequency. In a
coordinate system centred on the primary, which we will take to have mass M?, the tidal
potential χ is given by

χ = −GM0
X

l≥2

lX

m=−l

Wlmrl

Dl+1(t)
Ylme−im (t), (3)

where M0 is the mass of the secondary. The orbit of the companion is taken to be in the
plane [D(t), ⇡/2,  (t)] where D is the binary separation and  is the orbital phase. For l =

2
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Wlmrl

Dl+1(t)
Ylme−im (t), (3)

where M0 is the mass of the secondary. The orbit of the companion is taken to be in the
plane [D(t), ⇡/2,  (t)] where D is the binary separation and  is the orbital phase. For l =

2 (which leads to the main contribution to the gravitational-wave signal), we have W20 =

−p⇡/5, W2±2 =
p

3⇡/10, and W2±1 = 0.
We now aim to express the driven response of the fluid in terms of a set of normal modes,

corresponding to solutions ⇠n (where n is a label that identifies the modes, say in terms of
the number of nodes in the radial eigenfunction and the corresponding spherical harmonics).
Letting the mode frequency be !n, we have

⇠i =
X

n

an⇠
i
n. (4)

The Love number is generally defined as

kl =
1
2
δΦ(R)
χ(R)

, (5)

Then, after expressing the perturbed gravitational potential in terms of the displacement vec-
tor, we get

kl = −
1
2
+

2⇡
2l + 1

X

n

Q̃2
n

!̃2
n − !̃2

"
1 − !̃2

 
Vn

Wn

!

R

# "
1 − !̃2

n

 
Vn

Wn

!

R

#−1

, (6)

where frequencies have been normalised as !̃ = !/(GM?/R3), each mode is decomposed
into its radial and horizontal components as

⇠in =

 
Wn
rir
r

!
Ylm + VnriYlm, (7)

and we have introduced the “overlap integral”

Q̃n = −
1

M?Rl

Z
δ⇢⇤nrl+2dr. (8)

In the low-frequency limit (i.e., in the equilibrium tide approximation), we get

kl ⇡ −
1
2
+

2⇡
2l + 1

X

n

Q̃2
n

!̃2
n

"
1 − !̃2

n

 
Vn

Wn

!

R

#−1

. (9)

As a quantitative test of Eq. (9), we compare results for three models corresponding to a
background configuration with a polytropic equation of state of the form p / ⇢Γ, with Γ = 2.
Since, as noted before, the nuclear reactions required to establish chemical equilibrium are too
slow to act on the inspiral timescale, it would be reasonable to assume that the composition
of a perturbed fluid element is held frozen, as the system sweeps through the sensitivity
band of a ground based detector. This changes the response of the stellar fluid to the tidal
driving which, in turn, allows us to estimate the impact the matter composition has on the
problem. Composition gradients can be accounted for by adjusting the adiabatic index Γ1 =

(@ ln p/@ ln ⇢)ad, which is evaluated at fixed composition. Our reference model is barotropic
(Γ1 = Γ) and we compare it to two stratified models, with Γ1 = 2.05 and 7/3, respectively.

The numerical results, listed in Table 1, demonstrate the relative importance of g-modes
(buoyancy modes) for strongly stratified models. In each case, the mode sum converges to the
expected value for the Love number which, for a barotropic model with Γ = 2, should be kl ⇡
0.259909 and the results from Table 1 do, indeed, converge towards this number. This tells us
that the sum over the star’s di↵erent oscillation modes provides an alternative representation

3
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Table 1. The accumulated contribution to the Love number from the di↵erent modes, in order of
relevance of the contribution, for the three di↵erent models we consider. We expect (for the barotropic
Γ = 2 case) to have kl ⇡ 0.259909. If we add up the contributions from the di↵erent modes in each

case, the result converges to the expected answer. The mode sum is always dominated by the f -mode,
with a modest correction from the other modes of the star, but the enhanced importance of the g-modes

with increasing stratification is notable.

Γ1 = 2 Γ1 = 2.05 Γ1 = 7/3
mode kl mode kl mode kl

f 0.27528 f 0.27055 f 0.24685
+p1 0.25887 +p1 0.25526 +g1 0.26115
+p2 0.26021 +p2 0.25653 +p1 0.25052
+p3 0.26015 +g1 0.25878 +g2 0.25556

+g2 0.25960 +p2 0.25653
+g3 0.25993 +g3 0.25856
+g4 0.26008 +g4 0.25944

+g5 0.25983
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Figure 1. Relative contributions to the tidal deformability (compared to that of the f -mode alone). The
three panels show, from left to right: the barotropic case Γ1 = Γ = 2, Γ1 = 2.05 and Γ1 = 7/3. Individual
modes are colour coded (as indicated in the panels), with the same colour representing the same mode
in all panels.

for the Love number. It is important to note that this is true also for the stratified models. The
f -mode provides the dominant contribution in all cases (as expected given that this mode
most closely resembles the tidal driving force), but in order to have a precise representation
we need to account for both p-modes (pressure modes) and g-modes.

Having demonstrated that the sum over the star’s oscillation modes provides a precise
description of the tidal response in the static limit, let us turn to the dynamical response
associated with finite frequencies, given by Eq. (6). It provides a closed expression for the
frequency dependent tidal response (encoded in kl). This allows us to quantify the level at
which each individual mode contributes to the overall result. Results for the three di↵erent
values of Γ1 we have considered are presented in Fig. 1. The di↵erent panels show the
relative contributions to the tidal deformability (compared to that of the f -mode alone). The
resonances associated with each mode, which occur when !̃ = !̃n, are easily distinguishable
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Figure 2. The evolution of the mode energies for varying binary separation. The energy is given in
units of E0 = GM2

?/R. The model with Γ1 = 2.05 is shown in the left-hand panel, while the Γ1 = 7/3
case is provided in the right-hand panel. The energy of a mode increases when it becomes resonant
during the inspiral. The breaking energy limit Eb of the crust is represented by a circle or a square (see
legend), which, respectively, denote the breaking energy for two choices of the crust breaking strain.

in each case and the resonance associated with the f -mode leads to a common feature in all
panels. The results tell us that modes other than the f -mode contribute to the overall result at
the few percent level. These results are important as they provide the first demonstration of
the level at which frozen matter composition impacts on the tidal response across the range
of frequencies relevant for a binary inspiral.

3 Adding the crust

When we turn to dynamical features of the tide, we need to be mindful of the fact that a neu-
tron star interior is a little bit more complicated than a prescribed pressure-density relation.
Nuclei in the lower density region are expected to freeze to form the so-called crust. This
is important because the tidal response can be expressed as a sum over the stellar oscillation
modes and the additional features of the interior physics may bring new modes into play and
shift existing ones.

With this in mind, we studied the tidal response of a binary neutron star in models in-
cluding an elastic crust and a fluid ocean. We showed that the presence of the crust does not
significantly a↵ect the fundamental, pressure, and buoyancy modes. As expected, the contri-
bution to the Love number from the (crustal) shear modes is negligible, while the interface
and surface g-modes have an impact similar to the first core g-modes. The influence of these
modes, albeit small compared to the f -mode, increases for strongly stratified models.

Oscillations may be amplified by tidal resonances during the binary inspiral. This ampli-
fication is not only important for the gravitational-wave signal, but also for the impact that
mode resonances can have on the crust. Thus, we studied the dynamical tidal evolution and
determined the mode energy during the orbital shrinking. Our results confirm that the funda-
mental mode dominates the dynamical tides even when it is far from resonance. However, the
interface modes are resonantly excited at an earlier stage and may accumulate enough energy
to fracture the crust. This is mainly due to their peaked radial displacement at the crust-core
or crust-ocean surface transition. The fundamental mode reaches the crust breaking limit in
all our models, but not until the final part of the inspiral. Finally, we showed that the first
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g-mode can fracture the crust only for strongly stratified stars and (again) in the very final
phase of inspiral. These results are shown in Fig. 2.

4 A phenomenological model

Based on the formalism presented in Sec. 2, we also developed a “phenomenological” model
describing the dynamical tides in neutron star binaries. Our results demonstrate that the
dynamical contribution to the tide is dominated by the excitation of the f -mode of the star,
something that was established a long time ago [10] in work aimed at quantifying the impact
of mode resonances on the gravitational-wave signal. Based on this, the basic idea is to
include only the f -mode contribution to the mode sum and accept the contribution from
other modes as a “systematic error.” Based on the stratified Newtonian models considered
before, we expect this error to be below the 5% level.

After doing this, the relation for the e↵ective Love number that we end up with is

ke↵
l ⇡

!̄2
f kl

!̄2
f − δ(2⌦̄)2

+
(2⌦̄)2

!̄2
f − δ(2⌦̄)2

2
666664
δ

2
−
!̄2

f

C3

✏

l

 
kl +

1
2

!3777775 . (10)

Here, the f -mode frequency is normalised as !̄ f ⌘ M?! f and can be obtained by a well-
known “universal relation” in terms of the (static) tidal deformability kl [20]. The orbital
frequency is denoted by ⌦̄ and the stellar compacness by C, which may also be expressed in
terms of kl via another universal relation [21]. The factor ✏/l represents the ratio (Vf /Wf )R,
with ✏ = 1 in a homogeneous star (and ✏ ⇡ 0.9 for the polytropic models considered in
Sec. 2). Finally, the parameter δ accounts for two relativistic e↵ects: the gravitational red-
shift of the mode frequencies and the rotational frame-dragging induced by the orbital mo-
tion. An argument by Ref. [14] suggests that the two e↵ects almost cancel, so—as a first
approximation—we are motivated to simply remove the gravitational redshift altogether, im-
plying that we may take δ = 1− 2C. Hence, we now have an explicit analytic formula for the
e↵ective Love number in terms of the result in the static limit, kl, the orbital frequency ⌦̄ and
the (to some extent) free parameter ✏.

As a suitable comparison (in fact, the only comparable results in the literature), we con-
sider the results for the dynamical tide from Refs. [13, 14], which are similar in spirit as
they introduce the notion of an e↵ective tidal deformability. However, the main focus of
Refs. [13, 14] was to extend the e↵ective-one-body framework to account for the dynamical
tide. In addition to this, Ref. [14] provides an approximate analytical formula from matched
asymptotics, which has been tested against numerical relativity simulations. As it appears to
perform well in such comparisons, it provides a natural benchmark against which to test our
simple closed-form expression.

Focussing on the example illustrated by Ref. [14], i.e., an equal mass neutron star binary
with M? = 1.35 M� and R = 13.5 km, it is easy to demonstrate that we obtain an accurate
representation of the dynamical tide throughout the relevant frequency range (up to close to
merger) by tuning the parameter ✏. The e↵ective Love number obtained from Eq. (10) is
compared to the results from Ref. [14] in Fig. 3, for both l = 2 and l = 3. As our formula
still leaves ✏ as a free parameter, we show results for the range ✏ = 0.85 − 0.9 and, as is clear
from the result in the figure, the corresponding curves for ✏ = 0.875 provide an excellent
match to the results from Ref. [14]. The essence of the comparison is that our formula (10)
performs (perhaps surprisingly) well. It may be phenomenological in origin, but there can
be little doubt that our simple expression provides an e↵ective representation of the required
behaviour, and hence reflects the underlying physics.
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approximation—we are motivated to simply remove the gravitational redshift altogether, im-
plying that we may take δ = 1− 2C. Hence, we now have an explicit analytic formula for the
e↵ective Love number in terms of the result in the static limit, kl, the orbital frequency ⌦̄ and
the (to some extent) free parameter ✏.

As a suitable comparison (in fact, the only comparable results in the literature), we con-
sider the results for the dynamical tide from Refs. [13, 14], which are similar in spirit as
they introduce the notion of an e↵ective tidal deformability. However, the main focus of
Refs. [13, 14] was to extend the e↵ective-one-body framework to account for the dynamical
tide. In addition to this, Ref. [14] provides an approximate analytical formula from matched
asymptotics, which has been tested against numerical relativity simulations. As it appears to
perform well in such comparisons, it provides a natural benchmark against which to test our
simple closed-form expression.

Focussing on the example illustrated by Ref. [14], i.e., an equal mass neutron star binary
with M? = 1.35 M� and R = 13.5 km, it is easy to demonstrate that we obtain an accurate
representation of the dynamical tide throughout the relevant frequency range (up to close to
merger) by tuning the parameter ✏. The e↵ective Love number obtained from Eq. (10) is
compared to the results from Ref. [14] in Fig. 3, for both l = 2 and l = 3. As our formula
still leaves ✏ as a free parameter, we show results for the range ✏ = 0.85 − 0.9 and, as is clear
from the result in the figure, the corresponding curves for ✏ = 0.875 provide an excellent
match to the results from Ref. [14]. The essence of the comparison is that our formula (10)
performs (perhaps surprisingly) well. It may be phenomenological in origin, but there can
be little doubt that our simple expression provides an e↵ective representation of the required
behaviour, and hence reflects the underlying physics.

0.01 0.02 0.03 0.04 0.05 0.06

ΩM
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0.1
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0.3

k
eff

l=2

l=3

Figure 3. Comparing the e↵ective Love number ke↵
l from Eq. (10) with δ = 1 − 2C to the results from

Ref. [14], for both l = 2 and l = 3. The dashed horizontal lines represent the static Love number (ke↵
l in

the ⌦ ! 0 limit). The results of Ref. [14] are shown as solid curves (blue for l = 2 and red for l = 3).
Estimates from Eq. (10) are shown for the range ✏ = 0.85 − 0.9, with the latter representing the lower
edge of the filled band in each case. The particular choice ✏ = 0.875 (dashed black curves) provides an
an excellent fit to the results from Ref. [14]. Finally, we indicate the region beyond the (approximate)
merger frequency, ⌦M & 0.057 in this case, by the shaded area in the figure.

It is worth noting that, while the two sets of results diverge for large values of ⌦M in
Fig. 3 (where M = M? + M0), the corresponding frequencies are close to (or indeed beyond)
the merger frequency. As the picture of two separate, tidally deformed, bodies breaks down
there is no reason to expect the model to make sense beyond this point. The post-merger
region is indicated by the shaded area in Fig. 3.

5 Implications

We have discussed the tidal response of a neutron star during the late stages of neutron star
binary inspiral. In particular, we have focussed on the role of the matter composition. This
issue has previously been ignored as studies have almost exclusively focussed of barotropic
fluid models. However, it is natural to argue (given the time scale involved) that the matter
composition should remain “frozen” during the late stages of binary inspiral, leading to a
stratified perturbation problem (where the adiabatic index of the perturbation is di↵erent from
that of the equilibrium background). This connects with previous work on tidal resonances,
which has quantified the role of the g-modes (which rely on stratification for their existence).

Our numerical results indicate that the di↵erence is at (or below) the level of a few per-
cent. However, it is nevertheless important to quantify this contribution. We need to do this
in order to understand systematic “errors” associated with the assumed physics, which ul-
timately determines the accuracy with which we can hope to extract stellar parameters like
the radius from observations. Today’s gravitational-wave detectors are not at a level where a
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change of a percent in the tidal response makes much di↵erence, but one might want to keep
an eye on these issues for future reference.

The problem is also important from the physics point of view. Having quantified the level
at which the matter composition enters the discussion, we can compare to the role of other
elements of neutron star physics, like an elastic crust. Moreover, this formalism allowed us to
develop a phenomenological, physically motivated, model for the e↵ective tidal deformability
of a neutron star binary, adding frequency dependence that comes into play during the late
stages of inspiral. A comparison against alternative descriptions suggests that we have at
hand a simple, yet accurate, description of the tidal imprint. This should make the model an
attractive alternative for an implementation of the matter e↵ects in gravitational-wave data
analysis algorithms.
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