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Abstract 

An MeV ultrafast electron diffraction (MUED) instru-
ment system is a unique characterization technique used to 
study ultrafast processes in a variety of materials by a 
pump-probe method. This technology can be advanced fur-
ther into a turnkey instrument by using data science and 
artificial intelligence (AI) mechanisms in conjunction with 
high-performance computing. This can facilitate auto-
mated operation, data acquisition, and real-time or near-
real-time data processing with minimal intervention by a 
beamline scientist. The AI-based system controls can also 
provide real-time electron beam optimization or provide 
virtual diagnostics of the beamline operational parameters. 
Deep learning can be applied to the MUED diffraction pat-
terns to recover valuable information on subtle lattice var-
iations that can lead to a greater understanding of a wide 
range of material systems. A data-science-enabled MUED 
facility will also facilitate the application of this technique 
to a wider user base, and provide an automated or semi-
automated state-of-the-art instrument, with a beamline sci-
entist assisting in the overall data collection process. Up-
dates on research and development efforts for the MUED 
instrument in the Accelerator Test Facility of Brookhaven 
National Laboratory are presented. 

INTRODUCTION 
An MeV ultrafast electron diffraction (MUED) system 

is a pump-probe characterization technique for studying ul-
trafast processes in materials. The MUED beamline at the 
Brookhaven National Laboratory’s (BNL’s) Accerleator 
Test Facility (ATF) operates at 3 MeV. The use of relativ-
istic electron beams leads to decreased space-charge ef-
fects compared to typical ultrafast electron diffraction ex-
periments employing energies in the keV range [1-3]. 
MUED has a higher scattering cross section with material 
samples as compared to other probes such as X-ray free 
electron lasers (FELs), and as such allows access to higher-
order reflections in the diffraction patterns due to the short 
electron wavelengths. 

However, this is a relatively young technology, and sev-
eral factors contribute to making it challenging to utilize, 
such as beam energy instabilities that can lower the effec-
tive spatial and temporal resolution. Because there are 
many types of samples that are scientifically important but 

the groups that wish to study them are not necessarily ex-
perts in MUED beamlines, it is attractive that the data col-
lection process become more automated. In recent years, 
machine learning (ML) approaches to materials and char-
acterization techniques have provided a new path towards 
unlocking new physics by improving existing probes and 
increasing the user’s ability to interpret data. Ideally, anom-
alous contribution detection and removal should not re-
quire a priori knowledge of what those contributions 
would be or how they would present themselves in the data. 
Particularly, with proper preprocessing, ML methods can 
be employed to control characterization probes in near-real 
time, acting as virtual diagnostics, or ML can be deployed 
to extract features and effectively denoise data. With re-
spect to denoising, convolutional neural network (CNN) 
architectures, such as auto encoder models, are an attrac-
tive and more powerful alternative to conventional de-
noising techniques. The autoencoder models provide a 
method of unsupervised learning of latent space represen-
tation of data that can help reduce data noise. It should be 
noted that noise and anomalies aren’t necessarily the same 
thing, as systematic stochastic noise issues may be present. 
In principle, AI/ML can facilitate distinguishing both. 

By supplying a paired training dataset of “noisy” and 
“clean” data, these ML models can effectively denoise 
measurements [4, 5]. This method relies on the existence 
of an ideal dataset with no noise, which can be obtained by 
simulation or by averaging existing noisy datasets. How-
ever, in some cases these are not accessible or practical to 
use. Generative adversarial networks (GANs) are a more 
suitable option when no “clean” data are available and have 
been proven to perform well for blind image denoising [6]. 
They can be trained to estimate and generate the noise dis-
tribution, thus producing paired training datasets that can 
be fed to an autoencoder model. These approaches can lead 
to increased resolution if employed to denoise, for exam-
ple, diffraction patterns. In addition, deep CNN architec-
tures can be used for data analysis. Laanait et al. measured 
diffraction patterns of different oxide perovskites using 
scanning transmission electron microscopy and, by apply-
ing a custom ML algorithm, were able to invert the materi-
als structure and recover 3-dimensional atomic distortions 
[7]. ML is just now being applied to the MUED technique, 
where it can certainly enable advances that can further un-
derstanding of ultrafast material processes. 
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EXPERIMENTAL 
The MUED instrument is located at the Accelerator Test 

Facility at Brookhaven National Laboratory. A schematic 
of the experimental setup is presented in Fig. 1. The details 
of data collection are very briefly described here. The 
femtosecond electron beam is generated using a frequency-
tripled Ti:Sapphire laser that illuminates a copper photo-
cathode, generating a high brightness beam. The electrons 
are bunched in a 1.6-cell rf cavity and accelerated to 
3 MeV. Current parameters of the electron beam source op-
timized for stability are presented in Table 1. The sample 
chamber is located downstream from the source with a mo-
torized holder for up to nine samples with cryogenic cool-
ing capabilities and a window to allow laser pumping of 
the material. The detector system is placed 4 m down-
stream of the photocathode to collect the diffraction pat-
terns. The detector consists of a phosphor screen followed 
by a copper mirror (with a hole for non-diffracted electrons 
to pass through) and a CCD Andor camera of 512 pixels × 
512 pixels with a large aperture lens. 

Suitable material systems for MUED require careful 
preparation with typical lateral sizes of 100-300 μm and 
roughly - 100 nm thickness to assure electron transparency. 
Laser fluency is adjusted to avoid radiation-induced dam-
age to the sample. 

 
Figure 1: MUED beamline schematic. 

 
Table 1: MUED Source Parameters for Typical Operation 

Beam Energy 3 MeV 
Electrons per pulse 1.25 × 106 
Temporal resolution 180 fs 
Beam diameter 100-300 μm 
Repetition rate 5-48 Hz 
Electron fluence 88-880 s-1μm-2 
  

A schematic of the data pre-processing for ML applica-
tion for noise detection and removal is presented in Fig. 2. 
A given image (dataset) is divided into an array of tiles in 
Fig. 2(a). Noting that for N samples with white noise all 
frequencies contribute equally to a function, these tiles are 
examined for those having an inverse participation ratio 
(IPR) value of 1/N. The IPR is a measure of the contribu-
tion of each frequency (in this case spatial). These tiles are 
ignored.  The resulting image is shown in Fig. 2c. 

 

UPDATES 
The team has traveled to the ATF facility for beamline 

training and to gain more intimate understanding of the 
data collection process and facility operations.  A proce-
dure for beamline operations has been drafted, with the ex-
pectation that the “knobs” identified for manual alignment 
and data evaluation can be used in the ML-based approach.  
A method for remote communication with the beamline has 
been identified and tested. A camera API environment has 
been initialized, and computer code to call Andor library 
functions and confirm communication between stand-
alone scripts and the camera has also been developed.for 
image export to the Argonne Leadership Computing Facil-
ity (ALCF).  

 
 

 
Figure 2: ML schematic for data denoising. 

CONCLUSIONS AND FUTURE PLANS 
MeV ultrafast electron diffraction (MUED) is a pump-

probe system to measure dynamic material structure evo-
lution in the time range from femtoseconds to nanosec-
onds. A convolutional autoencoder model was developed 
to reconstruct large sets of diffraction patterns. The model 
trained on all data (unsupervised). An anomaly was found 
to produce a large reconstruction error or different feature 
vector values. Anomaly detection is ongoing, and multiple 
approaches are being considered. The large datasets ex-
pected from the ATF are well suited for data analysis on a 
high-performance computing system, such as at the Ar-
gonne Leadership Computing Facility, located at Argonne 
National Laboratory. There is an existing account at 
THETA and THETAGPU for this work. 

In order to evaluate data quality by use of a beamline 
sample, and extension to the beamline with a spectrometer 
for energy calibration has been initiated and is depicted in 
Fig. 3. 

This work has been further documented in several talks 
[8-15]. Also, a manuscript is in preparation on unsuper-
vised anomaly detection for MeV ultrafast electron diffrac-
tion (M. Fazio et al.; in preparation.). Applications of ML 
combined with MeV ultrafast electron diffraction at facili-
ties such as the ATF are expected to encompass not only 
materials science; interest has been expressed in global se-
curity challenges such as pandemics and alternative solar-
based energy source development. 
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Figure 3: Downstream portion of the MUED beamline with 
spectrometer extension. 
 

Finally, some of our team members are part of the Center 
for Bright Beam (CBB) [16] and are working to improve a 
similar photocathode RF electron injector system to that of 
the MUED located at the main ATF linac [17]. This 
knowledge can also be transferred to the MUED user facil-
ity after it has been fully implemented on the ATF. Based 
on previous work funded by the DOE on laser control for 
the laser for a laser wakefield accelerator (LWFA), have 
developed a machine learning-based (ML-based) model of 
a laser system for an RF electron in which correlates the 
inputs and outputs using 3 hidden layers (N) and 5, 10, and 
15 neurons [18]. Based on this approach, which utilizes 
SLM (Spatial Light Modulator) technology, we are seeking 
to optimize the set of inputs, which include the drive laser 
shape and the photoinjector and electron beam setpoint pa-
rameters to produce an optimized electron beam output 
based mostly on shaping the laser beam’s profile. Again, 
the application is also in a similar approach for the MUED 
to control the inputs and outputs of the laser system and 
represents a significant contribution to the field of laser 
technology and machine learning and highlights a promis-
ing avenue for future research and potential practical appli-
cations in diverse fields through an inter-institution collab-
orative effort that merges experimental and architectural 
approaches to laser (and accelerator) control).  
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