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Abstract

Task offloading frameworks play a crucial role in modern healthcare by optimizing resource utilization, reducing compu-
tational burdens, and enabling real-time medical decision-making. However, existing Digital Twin (DT)-based healthcare
models suffer from high latency, inefficient resource allocation, cybersecurity vulnerabilities, and computational limita-
tions when processing large-scale patient data. These constraints pose significant risks in time-sensitive applications
such as ICU monitoring, robotic-assisted surgeries, and telemedicine. To address these limitations, this paper introduces
a Quantum-Enhanced DT-loT framework, integrating Artificial Intelligence (Al), Quantum Computing (QC), DT, and the
Internet of Things (loT) for real-time, secure, and efficient healthcare task offloading. The proposed system introduces two
key optimization algorithms: (1) DTH-ATB-MAPPO, which dynamically adjusts task scheduling and resource distribution,
and (2) AQDT-loT, which enhances computational efficiency and cybersecurity compliance in 6 G-enabled loT networks.
By leveraging Approximate Amplitude Encoding (AAE) and Grover’s search, the framework enhances task offloading
efficiency, enabling faster decision-making and optimized resource distribution across 6 G-enabled loT networks. Empiri-
cal evaluations show that quantum preprocessing improved Task Offloading Success Rate (TOSR) by 32% and reduced
the Error Rate (ER) by 80%, significantly outperforming traditional DT-based healthcare models. These enhancements
enable. Additionally, theoretical analysis demonstrates computational speed enhancements, adaptive cybersecurity
mechanisms, and improved system scalability, positioning this framework as a viable candidate for future cloud-based
quantum healthcare infrastructures, even in resource-constrained hospital environments.

Article Highlights

e The integration of quantum computing in healthcare accelerates operational tasks, allowing for smoother task del-
egation and a reduction in computational faults.

e Advanced quantum models optimize resource allocation, decrease expenses, and prolong the operational lifespan
of wearable medical technologies.

e Arobust and scalable quantum architecture fortifies Al-enhanced healthcare, guaranteeing instantaneous diagnostics
and remote patient care.
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1 Introduction

The integration of Digital Twins (DTs), 6 G networks, and Quantum Computing (QC) presents transformative opportunities
for modern healthcare systems. DTs, as virtual representations of physical systems, enable real-time monitoring, predictive
analytics, and personalized healthcare solutions [1]. These capabilities are particularly crucial in chronic disease man-
agement, intensive care monitoring, and real-time medical interventions, where efficient data processing and decision-
making are essential. Recent progressions have elucidated the efficacy of DT across multifarious sectors, encompassing
healthcare, intelligent edifices, and manufacturing, thereby illustrating how data-centric modeling, surveillance, and
optimization augment system efficacy and decision-making mechanisms [2]. Furthermore, DTs have been progressively
amalgamated with artificial intelligence-driven predictive analytics, facilitating real-time healthcare surveillance and
secure management of patient data [3].

However, numerous pivotal obstacles impede the extensive implementation of DT-loT healthcare systems, particularly
within the domain of real-time applications. The escalating influx of real-time healthcare data, when juxtaposed with the
constrained computational capabilities of edge devices, engenders substantial limitations in the efficiency of task off-
loading and the allocation of resources. Conventional artificial intelligence-based task scheduling paradigms frequently
encounter challenges related to elevated latency, fluctuating network conditions, and computational bottlenecks, result-
ing in delays concerning emergency diagnostics and the optimization of treatment protocols [4-6].

DT offloading frameworks from traditional computing are generally inadequate for managing time-sensitive medical
data streams and predictive analytics. On the other hand, QC provides remarkable advancements in parallel process-
ing and optimization which makes it exceptional for speeding up task allocation, reducing error rates, and bolstering
cybersecurity measures in healthcare systems [7].

Furthermore, the reliance on interconnected loT and DT systems introduces significant cybersecurity threats, poten-
tially compromising patient data through cyberattacks and breaches [8]. While many studies have assessed cloud and
edge computing models for healthcare systems, emerging hybrid Al-quantum computing approaches offer promising
insights into addressing security and computational challenges [9]. Researchers have explored the role of quantum
computing in loT, uncovering notable enhancements in network efficiency, security, and computational speed [10].

Addressing these challenges requires an advanced computational framework that enhances task execution efficiency,
ensures system scalability, and strengthens security compliance within healthcare networks. Recent research has under-
scored the importance of hybrid cloud-edge Al frameworks in DT-based healthcare systems, advocating for real-time pre-
dictive analytics and secure data transmission [11, 12]. However, existing cloud-edge architectures still face latency issues,
particularly in high-density loT environments, requiring further optimization in scheduling and resource allocation [13].

To address these pressing challenges, this study proposes the AQDT-loT framework, a Quantum-Enhanced Al-Digital
Twin-loT system designed to optimize task offloading, enhance security, and improve computational efficiency in health-
care applications. The proposed framework utilizes IBM Quantum, thereby obviating the necessity for local quantum
computing infrastructure and facilitating viable and scalable computational solutions in healthcare.

1.1 Key contributions

This research builds upon DTH-ATB-MAPPO [14] by adding quantum preprocessing to improve offloading efficiency and
cyber security mechanisms. Furthermore, it adds a hybrid security method that involves RSA and AES-256 to provide
protection for key and encrypted data transmission in accordance with [15]. This study makes the following important
contributions:

1. Advancing DTH-ATB-MAPPO with Quantum Computing:

- Quantum preprocessing is integrated into reinforcement learning-based task scheduling, leading to improve-
ments in Task Offloading Success Rate (TOSR) and Error Rate (ER).

2. Proposing AQDT-loT for Al-Quantum Integration:
- Anovel Al-Quantum-Digital Twin-loT (AQDT-loT) framework is introduced for optimized healthcare task execution.

- Approximate Amplitude Encoding (AAE) and Grover’s search are leveraged to enhance real-time decision-making
in quantum-assisted task offloading.
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3. Enhancing Cybersecurity with ACTO:

- Quantum-enhanced encryption and real-time threat mitigation mechanisms are implemented to secure patient-
sensitive data against cyber threats.
- Compliance with HIPAA and GDPR is ensured to safeguard healthcare data privacy.

4. Validating Cloud-Based Quantum Feasibility with IBM Quantum:

— The scalability and cost-effectiveness of IBM Quantum’s cloud-based quantum computing are demonstrated for
healthcare applications.

- Quantum-powered healthcare solutions are validated for deployment without requiring on-premises quantum
infrastructure, making them viable for resource-limited hospitals.

By addressing these challenges, the proposed Quantum-Enhanced DT-loT framework establishes an adaptive, secure,
and scalable approach for next-generation healthcare systems, ensuring efficiency in real-time medical decision-making
and cybersecurity compliance.

1.2 Paper organization

The remainder of this paper is structured as follows: Sect. 2 presents related work, outlining key challenges and existing
research. The proposed system model is described in Sect. 3, with a focus on integrating DTs, Al, and quantum computing
for healthcare task offloading. Section 4 details the algorithm design, emphasizing task scheduling and cybersecurity.
Implementation and evaluation, including deployment and security validation, are discussed in Sect. 5. Section 6 presents
practical simulations, demonstrating real-world feasibility. Insights, scalability, and limitations are analyzed in Sect. 7,
while Sect. 8 concludes the study by summarizing key findings and future directions.

Table 1 includes the key symbols used in the mathematical equations throughout this paper.

2 Related work

Healthcare has been transformed by the convergence of QC, DT, and 6 G network integration, each analyzed for its indi-
vidual and combined potential in revolutionizing healthcare delivery. QC advancements are expected to accelerate drug
development and reduce treatment costs, particularly in medical imaging, where Rossman’s quantum-enhanced ISM
reconstruction algorithm demonstrated reduced scan times and improved clinical efficiency [16-18]. Quantum Machine
Learning (QML) has further been explored in diagnostics and personalized therapies, enhancing predictive healthcare
applications [19]. Additionally, quantum-enabled resource allocation in DT-empowered quantum networks has been
proposed as a method for real-time healthcare optimization, ensuring efficient computational resource distribution [20].

Emerging technologies such as 6 G connectivity, quantum computing, and generative Al offer promising solutions
for enhancing real-time data processing, predictive analytics, and immersive healthcare environments [21]. However,
challenges remain in integrating QC into healthcare systems, particularly in areas of cost, system complexity, and regu-
latory adaptation [22]. These advancements lay the foundation for further research into the roles of Al, QC, and 6 G in
shaping future healthcare models [23].

Health information surveillance has increasingly focused on disease-specific data collection, with multisensor data
aggregation providing a more comprehensive view of patient status [24]. Traditionally, such data collection was frag-
mented across healthcare sectors [25], limiting the potential for real-time, cross-institutional health monitoring. However,
recent advancements have emphasized the integration of multisensor technologies to enhance continuous patient
monitoring and predictive diagnostics [26-28].

DT technology, initially adopted in manufacturing, smart cities, and industrial automation, has now gained promi-
nence in healthcare due to its ability to create real-time virtual representations of patient physiology and healthcare
systems. Recent studies have explored Al-generated digital twins, leveraging real-time data and multiomics analysis
to enable personalized medicine, disease prediction, and treatment optimization [29]. In one study, Marksteiner et al.
demonstrated the feasibility of cyber-digital twins (CDTs) for healthcare, showing how these virtual patient models
can improve diagnostics and therapeutic outcomes by simulating treatment responses before actual implementation
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Table 1 Nomenclature Table

Symbol  Definition Symbol Definition

N; Necessity of offloading task i G Computational requirement (CPU/GPU cycles)

D; Data size for execution E4 Residual energy of device d

a By Weighting factors for computation, data, and energy 7., Network latency

R; Security risk factor 8,4 Weighting factors for latency and security risks

olf’ef Offloading decision for task i Shet Network condition

0 Offloading threshold Ry, Maximum acceptable security risk

P; Probability of offloading task i N ax Maximum necessity score

Mg Quantum speedup coefficient Ay Digital Twin accuracy

St Social factors (e.g., patient demographics) Toc Quantum task execution time

n Quantum processing weight C Computational complexity of quantum task offloading

q; Qubit contribution V4 Quantum decoherence coefficient

% Quantum efficiency factor O(N) Classical computational complexity

O(\/N)  Grover’s Search X Healthcare dataset

lw) Quantum state representation ¢ Amplitude coefficients in quantum encoding

0; Rotation angle in Approximate Amplitude Encoding o,f’f’f Optimized offloading decision

ER Error Rate E. Computational errors

E, Security-based errors (cyberattacks, data breaches)  p, Computational error weight

s Security error weight ACTO,,, Adaptive security response

IDS Intrusion Detection System R Risk evaluation score

Sthreat Threat severity level DTH-ATB-MAPPO Digital Twin Healthcare-Enhanced Asynchronous
Team-Based Multi-Agent Proximal Policy Optimiza-
tion

AQDT-loT  Al-Quantum-Digital Twin-loT Framework AAE Approximate Amplitude Encoding

QSvVT Quantum Singular Value Transformation SHD Secure Healthcare Data

[30]. These advancements reinforce the growing role of DTs in predictive healthcare, enabling data-driven clinical
decision-making while addressing traditional inefficiencies in patient monitoring and personalized treatment.

Digital twin integration has significantly enhanced personalized healthcare and hospital management. Sai et al.
demonstrated its effectiveness in diabetes management by improving glycemic control compared to standard care
models [31]. At the hospital level, Benedictis et al. optimized resource allocation, reducing patient waiting times by
15% [32]. Additionally, Al-generated DTs have been proposed for personalized treatment and predictive healthcare,
addressing logistical inefficiencies and improving decision-making [33].

The emergence of 6 G technology is expected to enable ultra-reliable, low-latency communication, essential
for telesurgery and real-time remote diagnostics. Research suggests that 6 G will facilitate seamless integration of
communication and data, enhancing health monitoring devices and Al-driven analytical tools in medicine [34]. A
comprehensive survey by Abdul et al. highlighted its transformative impact on telehealth, intelligent health systems,
and real-time care through ultralow latency and high reliability [35]. Moreover, Zhou et al. [36] proposed coopera-
tive DTs within dynamic and distributed ecosystems, demonstrating adaptive resource allocation and real-time data
synchronization, further strengthening the role of 6 G in healthcare.

This study addresses the need for an efficient and reliable task offloading framework in healthcare by integrating
Al, QC, DT, and loT. Existing approaches lack this comprehensive combination, leading to inefficient resource utili-
zation, high latency, and increased task execution errors. To bridge this gap, the AQDT-loT algorithm is proposed,
incorporating quantum preprocessing and DT models to enhance task offloading decisions. This integration improves
efficiency and reliability in future loT-6 G networks. Table 2 presents a comparative analysis of current task offloading
frameworks, highlighting the unique contributions and advantages of the proposed approach.
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Table2 ComparisonofTask — papric M1 M2 M3 M4 M5 M6 M7 M8 M9
Offloading Frameworks in
Healthcare and loT Our work / v/ v/ v/ v/ v/ J/ v/ v/
[37]12024 X X v v v v v v X
[38]2024 v v v v X v v v v
[39] 2024 v v X v X v v v v
[40] 2023 v X v v X X X v v
[41]12025 X v v v v v X v v
[42] 2024 v v v v X X v v X
[43] 2024 v v v X v v v v v
[44]1 2024 v v v v v X v X v
[45] 2024 v v v v X v X v v

M1: TOSR; M2: ER; M3: Energy Efficiency; M4: Latency Reduction; M5: Security Protocol; M6: Confidentiality
& Integrity; M7: Healthcare Application; M8: Network Adaptability; M9: Adaptability to Network Conditions

3 System model

A method for data security and integrity is proposed in the realm of DTH systems’ edge computing. This study employs
a multi-faceted approach to optimize task offloading in healthcare systems using advanced technologies such as DT,
QC, Al, and IoT. The proposed framework integrates these technologies within a 6 G network environment to enhance
the efficiency, security, and personalization of healthcare interventions as shown in Fig. 1.

3.1 Problem statement

Modern healthcare systems increasingly incorporate DT, QC, and loT devices within 6 G networks to improve resource
use, patient care, and data security. However, integrating these technologies poses challenges. Current frameworks often
fail to maintain data integrity, reduce latency, and optimise real-time task offloading due to computational demands
and the need for secure, adaptive systems.

Specific challenges are posed by task offloading, as data-intensive tasks must be dynamically distributed across edge,
cloud, and loT devices to ensure patient safety, privacy, and operational efficiency are upheld. Cybersecurity threats,
e.g., Denial of Service (DoS) attacks and data breaches, further intensify the complexities of secure data management,
necessitating the implementation of robust protective measures.

The AQDT-loT algorithm is introduced in this research to manage task offloading through quantum-enhanced DT mod-
els combined with Al-driven scheduling. Adaptive task distribution, secure data management, and enhanced response
times are enabled by this framework, effectively addressing critical gaps in healthcare task offloading and data security.

3.2 Framework design

The integration of partial and binary offloading techniques with DT, QC, and SHD technologies led to the formulation of
a framework that provides a complete structure for the creation of personalized healthcare interventions. Two principal
algorithms were central to this model: Digital Twin Healthcare-Enhanced Asynchronous Team-Based Multi-Agent Proximal
Policy Optimization (DTH-ATB-MAPPO) and Al-Quantum-Digital Twin-Internet of Things (AQDT-IoT).

In addition, the devised framework incorporates quantum data preprocessing techniques, enhancing quantum data
representation through approximate amplitude encoding (AAE). This approach optimizes input encoding, ensuring
that quantum state formulation for healthcare-related tasks requires less computational effort. Such an improvement
facilitates the seamless integration of quantum models into data-centric healthcare applications.

3.3 Task offloading strategy
1. Dynamic Assessment of Offloading Necessity: The DTH-ATB-MAPPO methodology was introduced to analyze off-

loading needs, considering a device’s computational power and remaining energy. This necessity, N;, was calculated
as follows:
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Fig. 1 Framework of Task Offloading in Quantum Al DT-Enhanced 6 G Healthcare Networks

C; represents the computational requirements, quantified in CPU/GPU cycles, whereas D; signifies the quantity of
data that necessitates transmission. E, pertains to the residual energy of device d. The weighting factors a, g, y are
utilized to assess the relative significance of each parameter in the decisions related to task offloading [14]. While
this mathematical representation proficiently encapsulates the limitations related to resource availability, it fails to
incorporate considerations of network latency and potential security vulnerabilities, which are indispensable in the
context of real-time healthcare systems. Elevated latency can precipitate delays in medical diagnostics, and tasks
allocated to compromised edge nodes may be susceptible to cyber threats. To integrate these supplementary vari-
ables, we refine Eq. (1) in the following manner:
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N = aC + pD; + yEy + 67pe + AR;, 2

where 7, denotes the latency associated with the network, quantified as the duration required for the transmis-
sion and processing of data throughout the communication infrastructure, and R; signifies the security risk variable,
reflecting the probability of a task being susceptible to cyber threats, including unauthorized data breaches, malware
infiltrations, or DoS attacks. The additional weighting factors 6 and 4 quantify the impact of latency and security risks
on the necessity of offloading.

The proposed enhancement ensures that tasks requiring substantial computational resources, involving large data
transfers, operating with limited energy, experiencing high latency, or facing significant security threats are given
priority for offloading, thereby improving real-time healthcare operations in 6 G networks. Furthermore, Quantum
Singular Value Transformation (QSVT) is applied to enhance decision-making, leveraging quantum computing to
dynamically adjust task allocation across computational nodes [46].

2. Offloading Decision: The decision to offload a task is determined by evaluating the necessity score N;, the network
condition S,,.,, and the security risk factor R;. The original decision model considers only the necessity and network
condition:

net’

3)

odec — { 1ifN;,>6andS,, > o,
i 0 otherwise.

where 6 represents the predefined offloading threshold and S, denotes the network condition, ensuring that

offloading occurs only when the network has sufficient resources (S,,.; > o). However, this model does not account

for potential cybersecurity threats that may compromise the reliability of offloaded tasks. In real-time healthcare

applications, where data integrity and security are paramount, offloading should be restricted if a computing node

exhibits a high security risk. To address this limitation, the decision model is extended by introducing a security risk

threshold R,;;:

ofec — { 1ifN; > 0,5, = 0, and R, < Ry, @

0 otherwise.

where R; represents the security risk factor, quantifying the likelihood of a cyberattack or unauthorised access, while
Ry, is the maximum acceptable risk level for a node to be considered safe for offloading.

From the derived Eq. (3) to (4), task offloading is designed to prioritize nodes that are not only computationally effi-
cient and well-connected but also secure, effectively reducing the risks posed by malware infections, data breaches,
and DoS attacks.

3. Offloading Execution: The execution of offloading decisions follows a partial or binary approach, where the prob-
ability of offloading a task is determined based on its necessity score relative to the most critical task in the system.
The original probability function is given by:

P —mi < Ni-0 | ) )
i=min| ———, 1),

’ Nmax -0

where N, represents the maximum necessity score among all tasks. This equation ensures that tasks with higher
necessity scores are prioritised for offloading, while those with lower necessity remain local or are partially offloaded.
However, in quantum-enhanced task execution, quantum processing speedup must be considered, as quantum-

enabled tasks are processed more efficiently. To integrate this enhancement, the necessity normalisation is modified
to include the quantum efficiency factor n,.:

P. = min ( N~ 0 1)
.= 1 _—, , 6
I nqc(Nmax —-0) (6)

where 7, represents the quantum speedup coefficient, which accounts for the advantage provided by quantum
computing in task execution.

From the derived Egs. (5) to (6), the offloading probability is adjusted to reflect the efficiency gains from quantum-
enabled processing, ensuring that critical tasks benefit from accelerated execution while optimising resource alloca-
tion across quantum and classical nodes.
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4. Integration with DT: The framework is continuously updated with real-time task information and environmental
changes, ensuring adaptability in task offloading decisions. The necessity of offloading a task is dynamically adjusted
based on DT accuracy and social factors, leading to the refined necessity equation:

N/ = N, + 6Aq + €S, (7)

A, denotes the accuracy of a Digital Twin, signifying the extent to which the model replicates actual real-world sce-
narios. In a parallel manner, S; encompasses social determinants, which incorporate patient demographics, accessibil-
ity considerations, and external factors. The weighting coefficients, 5 and ¢, modulate the impact of these variables
on offloading determinations, thereby ensuring a balanced and flexible methodology.

While Eq. (7) accounts for task adaptation based on DT feedback and social determinants, it does not consider
the quantum execution speed of offloaded tasks. Since quantum computing accelerates processing, the necessity
of offloading should decrease for tasks that benefit from quantum speedup. To reflect this effect, we introduce a
quantum execution time factor T, leading to the modified equation:

Ni' =N, + 6A4 + €5 — ’7ch' (8)

where 7 serves as the quantum processing weight, regulating the influence of quantum speedup on the necessity
estimation and ensuring that tasks benefiting from quantum acceleration are appropriately adjusted in the offload-
ing decision process.

Through the transition from Egs. (7) to (8), the necessity of offloading is dynamically adjusted to account for real-
time DT updates, social determinants, and quantum acceleration effects, ensuring a more adaptive and efficient task
allocation strategy.

5. Quantum Computational Complexity: QC plays a critical role in enhancing the performance of DT modelling and
simulation, particularly in optimising resource-intensive healthcare tasks. The computational complexity C associ-
ated with quantum-based task offloading is subject to the influence of various determinants, which encompass the
quantity of qubits, the computational overhead specific to the task, and the efficacy of quantum parallelism facilitated
by phenomena such as superposition and entanglement.

(@) General Formulation of Quantum Computational Complexity: For a given quantum task, the total compu-
tational complexity can be represented as:

C= ) () ©)
i=1

where f(g;) denotes the computational contribution of each qubit g;, and n represents the total number of
qubits involved in processing. The overall complexity is derived from two fundamental contributions: linear
computational cost and quantum parallelism advantage.
(b) Computational Contribution of Individual Qubits:
(i) Linear Contribution of Qubits: The computational cost associatedwith processing a quantum task scales propor-
tionally to the number ofqubits. This contribution can be expressed as:

n
G = Z“i Qi (10)
i=1

where g, represents a complexity coefficient pertinent to a specific task,which is contingent upon the nature of
the quantum computation beingexecuted.
(i) Quantum Parallelism Contribution: Quantum algorithms leveragesuperposition and entanglement to enhance
computational efficiency,reducing the effective complexity compared to classical methods. Acommonly used quan-
tum efficiency factor, /12, models this improvement:

n
gi
G=20b — (11)
,-; V2
where (3; represents the scaling coefficient associated with quantumspeedup.
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(iii) Final Computational Complexity Expression: By combining thelinear and quantum parallelism contributions
from Eqgs. 10 and 11, thetotal computational complexity of quantum task execution is given by:

C=;(ai'qi+ﬁi'%> (12)

this equation reflects both classical-like computational scaling andquantum-enabled efficiency gains.

(c) Impact of Quantum Decoherence on Computational Complexity: While quantum computing offers significant
speedup, real-world quantum processors suffer from quantum decoherence, which introduces computational errors
and additional processing overhead. To account for this limitation, we introduce a decoherence factor y4, which
models the impact of noise on quantum task execution:

c g; 2
C= OG- q+pi-—=-v4-G; | (13)
2( N >

thetermy, - ql.2 models the quadratic scaling of errors as the number of qubits increases, reflecting practical quan-
tum hardware limitations.
(d) Justification for the Quantum Efficiency Factor LZ: The inclusion of the Lz factor in Eq. 11 is justified based on

V2 V2

the following quantum principles:

¢ Quantum Interference Effects: In quantum mechanics, probabilistic states collapse upon measurement. The probabil-
ity amplitude of entangled states follows a Lz scaling, effectively reducing the number of computational steps.

\/—

e Quantum Speedup in Algorithms: Algorithms such as Grover’s Search reduce computational complexity from O(N)
to O(\/N), following a similar lz scaling pattern. This is particularly beneficial for quantum-assisted task offloading

7

in large-scale healthcare applications.

4 Algorithm design

4.1 Quantum-enhanced task offloading with AQDT-loT

The Al-Quantum-Digital Twin-loT (AQDT-loT) algorithm integrates quantum computing, DTs, and Al-driven optimization to
enhance task offloading efficiency in resource-constrained 6 G healthcare networks. The approach leverages Approximate

Amplitude Encoding (AAE) to encode healthcare data into quantum states, facilitating more efficient task allocation and
execution. Given a healthcare dataset:

X={x3,%5....X,}, X €R (14)

where each x; represents a task feature, such as computational load, patient vitals, or network latency, the encoding
process maps these features into quantum states using AAE. The quantum state representation is given by:

) =Y cli), (15)
i=1

n
DGl ~1, (16)
i=1

where the coefficients ¢; are computed as:
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0, =arcsin (18)

This transformation normalisess task features, ensuring compatibility with quantum registers and reducing the classical-
to-quantum computational overhead.

Quantum-Assisted Offloading Decision via Grover's Search Once task features are encoded into quantum states,
quantum search algorithms enhance the decision-making process. The optimal offloading decision is formulated as:

n
0% =arg min <aCi +BD; +vEg+ A 2 |ci|2), (19)

i=1

where 1 acts as a quantum regularization parameter, ensuring encoding efficiency. Grover’s algorithm is then applied to
accelerate task selection, achieving a complexity reduction from O(N) to O(\/N), significantly improving decision-making
for large-scale healthcare applications. Quantum-Enhanced AQDT-loT Offloading Algorithm The following algorithm
outlines the step-by-step execution of AQDT-loT, incorporating quantum preprocessing, Al-based optimization, and
MEC task offloading.

Algorithm 1 Quantum-Enhanced AQDT-loT Offloading Algorithm

1: procedure AQDT-ToT(tasks)

2: for each task in tasks do

3: Compute necessity N; using Eq. 1 based on computational, data, and energy
requirements.

4: Encode healthcare task features using Approximate Amplitude Encoding

(Egs. 17 and 18).
Evaluate the quantum-optimised ofloading decision Of"* using Eq. 19.

5

6 if Of"" ==1 then

7 Offload task to MEC node.
8 else

9 Process task locally.

10: end if

11: end for

12: end procedure

A comprehensive overview of the quantum-enhanced task offloading process is illustrated in Fig. 2, depicting the
end-to-end execution of AQDT-IoT.

4.1.1 Performance evaluation

To assess the effectiveness of AQDT-IoT, two key performance metrics were evaluated: Task Offloading Success Rate
(TOSR) and Error Rate (ER).

The Task Offloading Success Rate (TOSR) quantifies the efficiency of AQDT-loT in successfully offloading tasks to
MEC nodes:

Number of Successfully Offloaded Tasks

TOSR =
Total Number of Tasks

(20)

Tasks were simulated with varying computational intensities and network conditions to evaluate the algorithm’s per-
formance. The offloading process was guided by Al-driven scheduling and quantum-enhanced preprocessing, which
improved resource utilisation and latency reduction.

@ Discover



Discover Applied Sciences (2025) 7:525 | https://doi.org/10.1007/542452-025-07101-2

Research
(IoT Sensors, DT, . Quantum Cicui
Real-Time Monitoring) : ~
............. LW Ry R, R
Quantum Encoding o
(Approximate Amplitude [+ + R a R A R Al i
5 B s 0 AU i V) 1 Re 2 : -Quantum Fusion
: Encoding, 6) —)- = (AQDT-IoT Framework,
. T X Adaptive Scheduling)
" |Grover' Search, Optmizaton, |+~ * & R D D R U
O(VN)  Specdup - : : : : :
Chssical . : : : : ]
(Filters, Normalzation, | ~ =~ " T AT T T T ' . . : : Cybersecurity Protection
Feature Extracton, Al L Ru W, Re —@ G-}—) ) Output Data
Mode) : (Quatum Encryption,
n 0 . Secure Key Management)

Al Decision Making Optimized Task Execution
L (DTH-ATB-MAPPO, RL J (Cloud-Based Quantum

Hybrid Al-Quantum|

Offloading Model

Optiniztion) Computing IBM Quantum)

!
/@ 11

Fig. 2 Hybrid Al-Quantum Offloading Architecture for Secure and Optimized Computing

In the realm of healthcare, ER in Task Offloading gauges execution blunders stemming from cyber perils or system
breakdowns, which jeopardize diagnostic accuracy and patient well-being, computed as the fraction of errors to overall
tasks, encompassing computational mishaps, data transfer glitches, and cybersecurity threats.

The ER formula is expressed as:

_ Number of Computational Errors

ER. =
¢ Total Number of Tasks

(21)

The assessment procedure encompasses four distinct phases: task formulation, analysis, error detection, and conclusive
computation. An elevated ER, indicates deficiencies within the system that necessitate enhanced security protocols.
To account for security-based errors, the formula is refined as:

2(pcEc+ piE)

= . 22
Total Number of Tasks 22)

E. represents computational inaccuracies arising from the limitations of devices, whereas E, encompasses security vulner-
abilities such as data breaches and Denial of Service (DoS) attacks. The scaling factors p, and p, modulate their influence
on the calculations of error rates, thereby enhancing the model for precise oversight in 6 G healthcare networks.

4.2 ACTO’s dynamic security adaptation

The ACTO framework dynamically adjusts security measures in response to continuous network monitoring, employing
a three-layered approach:

1. Real-time Monitoring and Intrusion Detection: ACTO continuously monitors network activity using advanced
Intrusion Detection Systems (IDS) and anomaly-based behavior detection. Any deviation from standard network
behavior triggers an immediate security assessment and initiates adaptive countermeasures.

2. Risk-Based Adaptive Response Mechanisms: Upon detecting a security threat, ACTO evaluates the risk level R
based on anomaly confidence scores and threat severity. Security responses are dynamically adjusted according to
the evaluated risk and real-time network conditions. For instance:

¢ Inthe event of a DoS attack, critical healthcare data is rerouted to stable and secure nodes, effectively isolating
compromised areas.

e Ifransomware or data breaches are detected, ACTO automatically encrypts data transmissions and triggers secure
backup protocols.

3. Threat Categorization and Security Adjustments: ACTO classifies threats into four severity levels (low, medium,
high, and critical), each triggering a specific security response. Minor threats activate enhanced encryption, while
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major incidents, such as ransomware attacks, lead to comprehensive task rerouting and encrypted data replication
across secure nodes.

To mathematically model ACTO’s cybersecurity adaptation, the security response function is defined as:
ACTOq, = f(IDS, R, Sthreat) (23)

where:

ACTO,,, represents the adaptive cybersecurity response.

f(+)is the function dynamically adjusting security measures.

IDS denotes the Intrusion Detection System output, identifying anomalies.

R represents the risk evaluation score, incorporating anomaly confidence and attack probability.

The severity level of S,;,.,; Serves as a determinant for the corresponding security measures that should be enacted.

Case Study: A ransomware attack targeting a hospital’s patient management system. When encryption anomalies are
detected, ACTO initiates an adaptive response, dynamically rerouting critical operations such as real-time patient moni-
toring and emergency response to unaffected nodes. Simultaneously, sensitive patient data is encrypted using ACTO'’s
secure transmission methods to prevent unauthorized access.

5 Implementation and evaluation

The proposed framework was rigorously assessed employing critical metrics to evaluate its efficacy within the domain
of healthcare applications.

5.1 Simulation setup

The simulation setup included both hardware and software components designed to replicate real-world healthcare
environments:

e Hardware: Simulations ran on an MSI GF63 Thin 11SC laptop with an Intel Core i7 Processor, 16 GB RAM, and a 512 GB
SSD for efficient multi-task handling.

e MEC Nodes: ESP32-WROVER-B devices, with 4MB RAM, Wi-Fi, and Bluetooth, served as MEC nodes, processing
offloaded tasks from healthcare devices.

e Sensors: Various sensors simulated diverse healthcare scenarios:

InvenSense MPU6050 for motion sensing.

NXP MAG3110 for magnetic field measurements.
FBM320 for atmospheric pressure.

STMicro HTS221 for humidity and temperature.
ROHM BH1750FVI for ambient light.

MAX30102 for pulse and oxygen saturation.
MLX90614 for non-contact temperature.

NoupwbN-=

e Cloud Computing: IBM Quantum supported data processing, storage, and scalability for quantum task processing. The
adoption of cloud-based quantum services eliminates the need for dedicated quantum hardware within healthcare
facilities while allowing seamless integration of quantum-enhanced task offloading.

To ensure real-world applicability, the cloud-based framework was designed to interact with loT healthcare sen-
sors in a hospital-like setting. Anonymized records from the MIMIC-IIl dataset were used to support evaluation under
realistic healthcare conditions [47]. The cloud-based quantum workflow follows these steps:
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1. Data Collection: loT sensors continuously monitor patient vitals (e.g., heart rate (HR), oxygen levels (Sp02), body
temperature (BT)) and transmit data to the DT system.

2. Digital Twin Analysis: The DT framework simulates patient conditions and determines necessary healthcare
computations.

3. Quantum Processing (Cloud-Based):

- Quantum AAE encodes healthcare tasks for efficient preprocessing.
- Grover’s search optimizes task allocation, ensuring rapid offloading decisions.

4. Task Execution: Optimised offloading tasks are dispatched to MEC nodes, reducing latency and energy consump-
tion.
5. Decision Refinement: The DT model updates continuously, ensuring adaptive and self-improving task schedul-

ing.

This integration with IBM Quantum ensures that hospitals can utilize quantum computing without requiring dedi-
cated on-premise quantum infrastructure, enabling cost-effective and scalable healthcare solutions.

e Quantum Computing: Quantum preprocessing simulations employed Qiskit 0.24.1, implementing algorithms like
Grover’s for optimised task offloading. IBM Quantum utilised to facilitate quantum-enhanced decision-making, with
quantum algorithms deployed in cloud environments. The flexibility of cloud quantum services ensures that health-
care institutions can scale their quantum computing capabilities without major infrastructure investments, making
it a viable real-world solution.

e Communication Protocols: MQTT was used within the loT network for low-bandwidth, high-latency conditions, with
HTTP and HTTPS for secure data exchange.

The system adhered to the Ultra-Reliable Low Latency Communications (URLLC) standard, ensuring data transmission
with <1 ms latency and up to 2 Gbps quantum-enhanced data rate, suitable for remote diagnostics and surgical assis-
tance. Simulation parameters, including bandwidth, latency, and qubit usage, are detailed in Table 3.

5.2 Analysis of task offloading performance

The cumulative ER was plotted over time against the number of tasks, comparing QC and non-QC performance, as
shown in Fig. 3. The blue line represents ER with QC, while the orange line shows ER without QC. Quantum preprocessing
stabilized the cumulative error at an average of 0.1, regardless of task load, highlighting its efficacy in minimizing errors
and ensuring precise task processing.

A comparative execution time analysis between classical and quantum offloading is presented in Fig. 4. The results
indicate that quantum task offloading significantly reduces execution time, achieving a speedup factor of approximately
14.6x over classical methods. This improvement is attributed to Grover’s algorithm and Approximate Amplitude Encod-
ing, which optimize task scheduling and minimize processing delays.

Figure 5 illustrates Task Offloading Success Rates (TOSR) with and without QC. Higher median success rates (approx.
0.8) were observed on the left side of the box plot, with a narrow interquartile range indicating consistent success.

Table 3 Parameters for

‘ . 2 Parameters Description Value

Simulation Scenarios in

Quantum-Enhanced 6 G Network Type Classification of 6G network utilized URLLC

Healthcare Networks Quantum Data Rate Data transfer speed enhanced by QC Up to 2 Gbps
Network Latency Expected latency in a 6G network enhanced with QC <1ms
Health Data Update Interval ~ Frequency of updates to the digital twin's patient data  Every 10 seconds
Simulation Duration Total duration for each simulation scenario 3 hours
a Coefficients for quantum complexity calculation [0.5,0.8,0.6]
p for quantum complexity calculation [0.2,0.3,0.4]
qubits Number of qubits used for quantum processing [5,10,15]
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The upper quartile was found to reach near-optimal levels, while the lower quartile remained above 0.4, suggesting
that a relatively high success rate was maintained even under challenging conditions.

The scatter plot in Fig. 6 compares TOSR and ER with and without QC. Consistently low error rates were maintained
with QC, clustering around optimal performance at high success rates. In contrast, the non-QC setup exhibited
greater variability in error rates, even at moderate success rates, demonstrating the efficiency gained through QCin
high-performance settings.

@ Discover



Discover Applied Sciences (2025) 7:525 | https://doi.org/10.1007/542452-025-07101-2

Research
Fig.6 Scatter Plot of Task Scatter Plot of Success vs. Error Rates
. 1.0 ith Quantum
Offloading Success Rates vs. + Withou quantim

Error Rates

Error Rate (ER)
°
S

°
S

02

©°° cecoceee oo
0.0 *

0.0 02 04 06 08 10
TOSR

5.3 Protocol verification and security analysis

The ACTO (ADTHO) protocol was verified using the Scyther security verification tool, which analyzed key security
properties such as secrecy, authenticity, and agreement among the Initiator (I), Responder (R), and a central server
(Q). As shown in Fig. 7, all security claims-Secret secKeyl, Secret nl, Secret reqNonce, Alive, and Niagree-were validated
without detected vulnerabilities, confirming the protocol’s robustness against cyber threats.

Beyond formal verification, ACTO's adaptive cybersecurity responses are designed to minimize system performance
degradation by distributing tasks across secure nodes.

5.3.1 Deployment and validation through APl integration and testing
To evaluate ACTO's real-world security performance, a Flask-based APl was implemented for healthcare task process-

ing, and Postman was used to simulate various cyber threats.
Implementation Workflow:

Fig.7 Scyther Verification Scyther results : autoverify x
Results for ACTO Protocol e A —
ADTHO | ADTHO, 12 Secret secKeyl Ok Verified No attacks. |
ADTHO,I13 Secret nl Ok Verified No attacks. |

ADTHO,l4  Secret reqNonce Ok Verified No attacks. |

ADTHO, 15 Secret nR Ok Verified No attacks.
ADTHO, 16 Secret taskKey Ok Verified No attacks.
ADTHO, 17 Alive Ok Verified No attacks.
ADTHO, I8 Weakagree Ok Verified No attacks. |
ADTHO, 19 Niagree Ok Verified No attacks.
ADTHO,110  Nisynch Ok Verified No attacks.
R ADTHO,R2  Secret nR Ok Verified No attacks.
ADTHO,R3  Secret taskKey Ok Verified No attacks. |
ADTHO,R4  secret nl Ok Verified No attacks.
ADTHO,R5  Alive Ok Verified No attacks.
ADTHO,R6  Weakagree Ok Verified No attacks.
ADTHO,R7  Niagree Ok Verified No attacks. |
ADTHO,R8  Nisynch Ok Verified No attacks.
Q ADTHO,Q2 Secret secKeyl Ok Verified No attacks.
ADTHO,Q3  Secret taskKey Ok Verified No attacks.
ADTHO,Q4  Secret nl ok Verified No attacks. |

ADTHO,Q5 Secret reqNonce Ok Verified No attacks.

ADTHO,Q6  Alive Ok Verified No attacks.
ADTHO,Q7  Weakagree Ok Verified No attacks.
ADTHO,Q8  Niagree Ok Verified No attacks. |
ADTHO,Q9 Nisynch Ok Verified No attacks.

Done.
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1. Flask APl Deployment: A lightweight REST APl was developed to handle patient data transactions and secure task

offloading.

2. Simulating Cyber Threats: Using Postman, the following attack scenarios were tested:

e Unauthorised Access Attempts: Simulated repeated login failures tested the effectiveness of RSA-based authen-
tication. As shown in Fig. 8, unauthorised attempts were detected and logged via Postman API testing.

¢ Denial of Service (DoS) Attack: High-volume request flooding was initiated to test MEC node overload resilience.
ACTO successfully mitigated excessive API requests using rate-limiting mechanisms, as demonstrated in Fig. 9.

o DataTampering Attack (MitM): Malicious modifications of encrypted patient records were attempted to assess
the integrity of AES-256 encryption. As seen in Fig. 10, ACTO ensured that data remained encrypted and secure,
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Fig. 10 Secure data integrity maintained under a simulated Man-in-the-Middle attack using AES-256 and RSA encryption

effectively preventing MitM attacks. Also, detected unauthorized access attempts using intrusion detection and
anomaly-based analysis (Fig. 11).

5.3.2 Ethical considerations in quantum-enhanced healthcare

Ensuring equity in artificial intelligence and quantum-enhanced healthcare decision-making is imperative to mitigate
biases in medical forecasts. The AQDT-loT framework is specifically constructed to integrate a variety of diverse and
impartial datasets, thereby reducing the likelihood of prejudicial outcomes. Furthermore, transparency and explicability
constitute fundamental elements, enabling healthcare practitioners to comprehend quantum-augmented recommen-
dations prior to their implementation, thus cultivating trust in the decision-making process. Moreover, as regulatory
frameworks such as HIPAA and GDPR progress, the ACTO security model is engineered to adaptively revise its protocols,
thereby guaranteeing ongoing adherence to emerging data protection regulations. This flexibility ensures that patient
information remains safeguarded while upholding the integrity and ethical standards necessitated by contemporary
healthcare systems.

6 Practical simulations for healthcare applications

The AQDT-loT framework integrates IBM Quantum for cloud-based execution of computationally intensive tasks, elimi-
nating the need for on-premises quantum infrastructure while ensuring scalability and efficiency.

6.1 IBM quantum hardware for real-time offloading

IBM Quantum provides a set of cloud-accessible quantum backends that facilitate secure and scalable task offloading.
Figure 12 presents the IBM Quantum backends utilised in this study, including ‘ibm_brisbane’, ‘ibm_kyiv) and‘ibm_sher-
brooke’ These quantum processors execute task scheduling algorithms, leveraging AAE and Grover’s search for optimal
decision-making in resource allocation.

To ensure high reliability in quantum-assisted task execution, IBM Quantum provides hardware calibration metrics
that help assess performance constraints. Figures 13, 14, 15, 1617 present key qubit metrics, including anharmonic-
ity, frequency, readout assignment errors, and coherence times (T;, T,), which influence the efficiency and stability of
quantum-based healthcare computations.

(.

* Running on http //127 0.0.1:5000
Press CTRL+C
* Restarting th stat

* Debugger is active!
* Debugger PIN: 132-841-264
127.0.0.1 - - [12/Feb/2025 11:00:11] "

Fig. 11 Flask server logs showing unauthorized access rejection due to missing authentication credentials

$ python3 -c "import qiskit_ibm_runtime; print(qiskit_ibm_runtime.QiskitRuntimeService().backends())"

[<IBMBackend("ibm_| br1sbane )>, <IBMBackend('ibm_kyiv')>, <IBMBackend('ibm_ sherbrooke )>1

Fig. 12 IBM Quantum backends used for task offloading, showcasing real hardware access for quantum execution
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IBM Quantum processors operate at microwave frequencies, and their performance depends on qubit anharmonicity
and resonance frequencies. Figure 13 illustrates the qubit anharmonicity distribution (GHz) across the IBM Quantum
hardware used in this study. This metric impacts gate fidelities and the feasibility of executing multi-qubit operations
essential for complex healthcare diagnostics.

Similarly, Fig. 14 depicts the qubit frequency range (GHz) across the IBM Quantum devices. Higher frequency stability
correlates with reduced qubit dephasing, ensuring accurate quantum computations in patient monitoring and Al-assisted
healthcare diagnostics.

Quantum computations are susceptible to readout errors, which impact the accuracy of healthcare task offloading.
Figure 15 presents the readout assignment error distribution across IBM Quantum hardware, providing insights into the
reliability of measurement outcomes during quantum-enhanced medical computations.

Since quantum healthcare applications rely on multi-qubit operations, the system’s stability depends on the two-
qubit gate error rate. Figures 16 and 17 illustrate the coherence properties of IBM Quantum processors, specifically the
T, (decoherence time) and T, (relaxation time). Longer coherence times ensure higher computational accuracy, making
quantum-assisted healthcare task scheduling more efficient.

6.1.1 Impact of IBM quantum in healthcare task offloading

The integration of IBM Quantum hardware with AQDT-loT enables:

- Task Execution Reliability: Calibration data helps optimise task selection strategies based on qubit performance.

- Optimised Decision-Making: Quantume-assisted Grover’s search prioritises high-complexity medical tasks, ensuring
rapid execution.

- Energy Efficiency: Offloading computationally demanding Al tasks to quantum processors reduces power consump-
tion in hospital IT infrastructures.
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- Security Compliance: IBM Quantum’s cloud-based encryption ensures secure patient data transmission, mitigating
cybersecurity risks in healthcare networks.

6.1.2 Quantum-enhanced use cases in healthcare

Example 1: Wearables and Real-Time Patient Monitoring: Within a hospital network, wearable loT health sensors con-
tinuously monitor vital parameters such as heart rate, oxygen saturation, and body temperature. These devices generate
large volumes of real-time health data, which, if processed locally, could overload on-site computing infrastructure and
delay critical decision-making.

To mitigate this, the AQDT-loT algorithm applies quantum preprocessing via IBM Quantum APIs, utilising techniques
such as:

e Approximate Amplitude Encoding (AAE) for efficient quantum feature mapping.
e Grover's search algorithm for rapid task offloading decisions.
e Quantum-enhanced DT updates to optimise patient monitoring and predictive diagnostics.

By offloading computationally intensive tasks to cloud-based quantum services, the system ensures that healthcare
professionals receive instant alerts on critical patient conditions, reducing response times and improving patient safety.

Example 2: Remote Telemedicine Consultations: In remote healthcare scenarios, telemedicine consultations rely on
real-time patient data sharing through secure digital twin models. IBM Quantum enhances telemedicine applications
by enabling:

o Efficient task scheduling for real-time patient data processing.
e Secure transmission of encrypted patient vitals between DTs and cloud-based quantum services.
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e Optimised resource allocation for bandwidth-intensive operations (e.g., live video consultations with Al-assisted
diagnostics).

For example, during a virtual consultation, patient oxygen levels, environmental humidity, and heart rate variability are
streamed in real time. Quantum-enhanced DT models use Grover’s search and Al-driven predictions to assess potential
respiratory distress and optimise remote interventions. This cloud-based approach ensures scalability and reliability,
even in bandwidth-constrained environments.

6.2 Scalability of AQDT-loT in real-time healthcare networks

In addition to scalability, the efficiency of data transmission was evaluated using the compression ratio (Ccomm) as a
metric for communication cost:

Original Size

C =\
Compressed Size

comm (24)
The AQDT-loT framework was tested under increasing loT device densities and MEC node workloads, demonstrating its
ability to maintain low latency, high efficiency, and reliable task scheduling (Fig. 18).

e Latency: As shown in Fig. 18, average latency remains below 1 ms, even with a substantial increase in active loT
devices, due to the quantum preprocessing framework, which reduces decision-making complexity from O(N) to
O(\/N).This low-latency operation is critical for applications like remote surgeries and real-time diagnostics, where
rapid response times are vital.

¢ Energy Efficiency: Quantum-enhanced task scheduling reduced overall power consumption. Figure 18 shows that,
as the number of devices increased, power consumption remained consistent, with up to a 20% reduction compared
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Fig. 18 System Scalability: System Scalability: Latency, Power Consumption, and TOSR vs Number of loT Devices
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to classical offloading systems. This energy efficiency is particularly beneficial for battery-operated wearable devices
in continuous operation.

e Computational Load Balance: As the number of tasks and sensors increased, the system effectively managed the
load, maintaining TOSR of approximately 90%. This ensured that even in high-demand healthcare environments (e.g.,
during mass patient monitoring or diagnostic imaging), critical operations like real-time sensor data analysis were
handled reliably without interruption.

7 Insights and implications
7.1 Strategicinsights on quantum computing in healthcare

As quantum computing advances, its feasibility and cost-effectiveness for healthcare applications continue to improve.
Cloud-based quantum resources, particularly IBM Quantum, eliminate infrastructure costs while enhancing compu-
tational scalability for real-time patient monitoring, medical diagnostics, and secure data transmission. This flexibility
ensures that healthcare organizations can scale computational resources efficiently without major upfront investments,
aligning quantum processing capabilities with real-world patient care needs.

7.2 Cost-benefit analysis

To evaluate the practical impact of quantum computing in healthcare, a cost-benefit analysis was conducted, comparing

traditional systems (C-S) to Quantum-Enhanced Systems (Q-ES). Table 4 summarises key performance improvements:
Key Insights: Task offloading success rate (TOSR) increased significantly, rising from 68% in traditional computing to

90% with quantum systems, marking a 32% improvement in efficiency. Similarly, the error rate (ER) dropped from 5% to

Tablev4 Comparison between Metric cS Q-ES Improvement

Classical and Quantum-

Enhanced Systems TOSR 68% 90% +32%
ER 5% 1% 80%
Computational Speed O(N) o \/ﬁ) 2x faster
Energy Consumption High 20% lower +20% savings
Cost of Infrastructure Medium Low (cloud-based) Cost-effective

Q-ES: Quantum-Enhanced System; TOSR: Task Offloading Success Rate; ER: Error Rate; C-S: Classical System
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just 1%, demonstrating an 80% reduction due to quantum processing. Classical computing, constrained by O(N) com-
plexity, is surpassed by quantum-enhanced systems (Q-ES), which optimize processing to O(\/N), effectively doubling
computational speed. Moreover, conventional systems exhibit high energy consumption, whereas quantum scheduling
reduces energy usage by 20%, promoting efficiency in resource utilization. Infrastructure costs in traditional systems
range from moderate to high, but quantum cloud solutions present a scalable and cost-effective alternative, making
advanced computing more accessible to healthcare facilities.

8 Conclusion

This study demonstrated the effectiveness of integrating DT, QC, Al, and loT within a 6 G-enabled healthcare framework.
The proposed DTH-ATB-MAPPO and AQDT-IoT algorithms significantly improved task offloading and resource optimisa-
tion, enabling personalised and efficient healthcare interventions.

Empirical evaluations demonstrated that quantum preprocessing improved Task Offloading Success Rate (TOSR) by
32% while reducing ER by 80%. These improvements translated to faster and more reliable decision-making, which is
critical for real-time patient monitoring and emergency response scenarios.

Simulations confirmed that quantum-enhanced task scheduling significantly outperformed conventional offload-
ing models, achieving higher success rates and lower error margins. Statistical analyses-including box plots and scatter
plots-demonstrated that QC improved prediction accuracy and system reliability, reinforcing its role in optimising task
execution, workload distribution, and cybersecurity resilience.

Future research should focus on enhancing offloading strategies through adaptive Al-driven models, reinforcement
learning, and hybrid quantum-classical scheduling techniques. Further investigations into quantum noise mitigation
and error correction mechanisms will be crucial to improving scalability and real-world deployment feasibility.

Despite its promise, the integration of QC into real-world healthcare infrastructures presents technical, financial, and
operational challenges. Issues such as hardware limitations, high latency in cloud-based quantum services, and interop-
erability with classical computing frameworks must be addressed. Additionally, cybersecurity risks, including quantum-
based threats and data encryption vulnerabilities, necessitate ongoing advancements in post-quantum cryptography
and secure authentication models.

A major challenge in adopting cloud-based quantum computing-such as IBM Quantum-is cost scalability. While cloud
access eliminates infrastructure costs, quantum processing time remains expensive, especially for real-time, high-fre-
quency medical computations. Future optimisations should explore cost-efficient hybrid quantum-classical computing
models to maximise computational performance while reducing financial burdens on healthcare providers.

By continuing to refine quantum-enhanced healthcare frameworks, the potential for faster, more secure, and energy-
efficient medical data processing can be fully realised, shaping the future of intelligent, data-driven patient care.
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