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Abstract

In this thesis we investigate the formation of inhomogeneous chiral symmetry breaking
phases, characterized by a spatially modulated quark-antiquark condensate. In order
to determine the relevance of this kind of structure for the phase diagram of strongly
interacting matter, we employ the Nambu-Jona-Lasinio model for two light quark flavors
and study the properties of the ground state of the system. After observing the appearance
of an inhomogeneous “island” at low temperatures and intermediate chemical potentials
in the model phase diagram, we compare different one- and two-dimensional crystalline
shapes for the chiral condensate, in order to determine which one is the thermodynamically
most favored. Once having determined the favored shape for the ground state the system,
we study in more detail the properties of this inhomogeneous phase. We then investigate
the effects on it of common model extensions like the inclusion of vector interactions and
an effective coupling with the Polyakov loop. Finally, in order to compare our results with
recent predictions on inhomogeneous structures from quarkyonic matter studies, we study
the model phase structure at higher chemical potentials and determine that the favored
shape for the system ground state changes. A careful discussion on the interpretation of
these results is included as well.






Zusammenfassung

In dieser Arbeit untersuchen wir die Bildung von inhomogenen, die chirale Symmetrie
brechenden Phasen, welche durch ein rdumlich variierendes Quark-Antiquark Kondensat
charakterisiert werden. Um herauszufinden, ob solche Strukturen im Phasendiagramm von
stark wechselwirkender Materie relevant sind, nutzen wir ein Nambu-Jona-Lasinio-Modell
mit zwei leichten Quark-Freiheitsgraden und untersuchen die FEigenschaften des Grundzu-
stands des Systems. Nachdem wir einen inhomogenen Bereich (“Insel”) bei kleinen Tem-
peraturen und mittlerem chemischen Potential im Phasendiagramm des Modells gefun-
den haben, untersuchen wir verschiedene ein- und zweidimensionale Kristallstrukturen
fiir das chirale Kondensat, um den thermodynamisch niedrigsten Zustand zu bestimmen.
Im Anschluss bestimmen wir ausfiihrlich die Eigenschaften der gefundenen inhomogenen
Phasen und untersuchen die Auswirkungen von typischen Erweiterungen des Modells wie
die Hinzunahme von Vektorwechselwirkungen und das Ankoppeln an den Polyakov-Loop.
Abschlielend vergleichen wir unsere Ergebnisse mit jiingsten Vorhersagen von Studien
iiber quarkionische Materie bei hohem chemischen Potential und finden, dass sich dort
der bevorzugte Grundzustand des Systems dndert. Wir enden mit einer Diskussion und
Interpretation der Ergebnisse.
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You can’t always get what you want /
But if you try sometimes, you just might find /
You’ll get what you need.

— The Rolling Stones
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1. Introduction

The standard model of particle physics is nowadays the widely accepted fundamental
quantum field theory describing known particles and their interactions, with the exception
of gravitational forces. Its elegant description of the fundamental forces among particles in
terms of local gauge symmetries has proven to be extremely successful over the last years,
with a great number of experimental confirmations culminating in the recent discovery of
a possible signal for the Higgs boson [I].

The gauge theory in the standard model describing strong interactions is called quantum
chromodynamics (QCD), and is based on the SU(3) color group. Its matter content
consists of quarks, which are spin 1/2 point-like particles considered to be the fundamental
constituents of hadrons, while the interaction is mediated by massless spin 1 gauge bosons
called gluons. Both quarks and gluons carry color, which plays the role of a charge (in
analogy with the electric one) for strong interactions. However, due to the non-abelian
structure of the theory, QCD features more interaction vertices compared to quantum
electrodynamics, resulting in a completely different behavior.

Other than color, quarks carry an additional “flavor” internal degree of freedom: one
thus distinguishes between up, down, strange, charm, beauty and top quarks.

The most prominent feature of QCD, which renders it still nowadays, more than 40 years
after its introduction, one of the most interesting and challenging subjects in contemporary
physics, is its strongly coupled nature for low energies. Indeed, it has been determined
that the strength of the interaction between quarks and gluons grows at large distances,
or equivalently for small energies or momenta. This property results in a whole series
of characteristic low energy features, like confinement and spontaneous chiral symmetry
breaking, and is believed to be largely responsible for the observed values of the hadron
masses, as well as for the impossibility to observe free quarks experimentally. On the
other hand, the value of the coupling decreases at high energies, leading to the so-called
asymptotic freedom [2 [3], which allowed to identify quarks as fundamental constituents
of hadronic matter.

Since the value of the strong coupling constant increases with decreasing energies, well-
established perturbative techniques (which have proven to be extremely successful in quan-
tum electrodynamics at all scales of interest) are applicable only to study high energy and
short distance processes involving strong interactions, but turn out to be completely inad-
equate to describe ground state and vacuum properties of QCD, including hadron spectra.
The typical energy scale where non-perturbative effects are expected to dominate is given
by the so-called Agcp, which is found to be around 200 MeV. This Agcp can be inter-
preted as a characteristic energy scale for the theory. It is comparable, for example, to
the typical hadron masses and sizes (for this it is sufficient to recall that in natural units
200 MeV corresponds to approximately 1 fm).
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In the present work, we will mainly focus on the aspect of dynamical mass generation, a
non-perturbative phenomenon which can be related to the spontaneous breaking of chiral
symmetry by the QCD ground state and the consequent formation of a gg condensate.

While being aware that vacuum properties of the theory are still not yet completely
understood, nuclear physicists have recently drawn their attention towards the mapping
of the QCD phase diagram, that is, the study of the behavior of strongly interacting mat-
ter at non-zero temperature 7' and baryon density (or equivalently chemical potential 1)
[4, 5, 6l [7]. Inspired by the asymptotic freedom property of the theory, it has been argued
already several years ago that above a given temperature close to Agcp, any hadronic
system should experience a phase transition, and behave as a free chirally symmetric gas
of deconfined partons [§]. This simplistic assumption has been subsequently refined, and
nowadays we expect to have such a free gas phase only at asymptotically high temper-
atures. It is worth noting that although chiral symmetry breaking and confinement are
both related to the strongly coupled nature of the theory, it is not clear a priori whether
the phase transition will involve both of them at the same time, or if two transitions will
occur at separate values of temperature and baryon chemical potential.

Most of the current knowledge on the QCD phase diagram revolves around the u = 0
axis. This is in fact the region which is being currently experimentally accessed by heavy-
ion collisions at RHIC in Brookhaven and LHC at CERN. On the theory side, ab-initio
lattice QCD calculations have been able to give estimates on the critical temperature and
the nature of the phase transition, which according to the latest results is rather expected
to be a crossover [9] 10 [11].

On the other hand, in spite of considerable efforts, our current understanding of the
phase diagram at low temperatures and intermediate baryon chemical potentials is still
rather scarce. On the experimental side, current heavy ion colliders are not able to access
this region, although future facilities like FAIR at GSI in Darmstadt and NICA at JINR
in Dubna do aim to explore properties of dense and cold strongly interacting matter
through high luminosity low energy collisions [I2, [I3]. Some insight on this region of the
phase diagram may be inferred from the phenomenology of compact stars, a field which in
any case presents several experimental challenges as well (for dedicated reviews, see e. g.
141 [15]). From the theory point of view, current lattice calculations are unable to provide
reliable results at intermediate and high densities due to the so-called sign problem. The
most widely employed tools to study this region are then effective models, which share
some basic properties with QCD but feature simplified interactions and are as such more
easily tractable. More refined techniques using functional methods based on full QCD
have been applied to this problem as well, although they require considerably more effort
and have still limited predictive power [16] [I7].

The phase structure of QCD at low temperatures in the chemical potential direction is at
any rate expected to be rich (for dedicated reviews, see e. g. [I8, [19]). Indeed, while chiral
symmetry is expected to be restored at high densities, other effects may appear, like the
formation of a color-superconducting phase [20] 211, 22] 23] (see [24] for a recent review).
This kind of phase is expected to be the true ground state of QCD at asymptotically high
chemical potentials, although its possible extension to intermediate densities is not yet
clearly determined and current results are strongly model-dependent [25], 18] [24].



The low temperature and intermediate density regime could also be characterized by
the formation of inhomogeneous phases, characterized by a spatial dependence of the
properties of the system, possibly leading to the formation of crystalline structures (a
brief recent review on the topic is presented in [20]).

The idea of inhomogeneous phases for strongly interacting matter is certainly not a
new one. More than 50 years ago, Overhauser suggested that the true ground state of
nuclear matter might be characterized by the presence of large static density waves [27].
Aside from that, nuclear matter is also expected to form “pasta” phases, characterized by
different kinds of spatial inhomogeneities according to the density of the system [28]. The
Skyrme picture describing nucleons as chiral solitons has also been successfully employed in
describing dense strongly interacting matter, and seems to predict the formation of three-
dimensional crystalline structures [29] B0]. More recent studies of cold nuclear matter using
holographic models seem to predict the formation of spatially inhomogeneous structures
as well [31].

Spatially dependent states have also been discussed in the context of pion condensation
within the framework of sigma models. In those cases as well the condensate field is
expected to be spatially modulated [32].

Crystalline phases are also expected to be relevant in the context of (color-)super-
conductivity, which, in spite of being driven by different physical effects, has many formal
analogies with the mechanism of spontaneous chiral symmetry breaking in QCD. The well-
known BCS effect involves quarks at the Fermi surface, since the essence of the Cooper
instability lies in the zero free energy cost required to excite a pair [33]. In presence of
imbalanced Fermi surfaces, a condition which can arise in a superconductor in presence of
an external magnetic field or for quark matter in the interior of a neutron star, the phase
space for formation of Cooper pairs is however reduced and different pairing mechanisms
may come into play [34]. One of the most plausible outcomes is the formation of pairs
with nonzero total momentum, leading to a spatially inhomogeneous gap (for a dedicated
review, see [35]). The study of these crystalline superconducting phases has been mostly
conducted through effective model analyses considering different shapes for the inhomo-
geneous gap, with the most popular being a single plane wave, the so-called Fulde-Ferrell
ansatz [36], although real sinusoidal solutions have been investigated as well (the LOFF
case [37]).

In a recent numerical analysis considering more general solutions, it has been determined
that the preferred one-dimensional shape for the color-superconducting gap in presence of
imbalanced Fermi surfaces is a solitonic structure that can be well fitted by Jacobi ellip-
tic functions [38]. Although numerical investigations mainly considered one-dimensional
modulations for the gap function, Ginzburg-Landau analyses have determined that the for-
mation of higher-dimensional crystalline structures may lead to an even bigger gain in the
free energy [39, 40, 411 [42] In particular, for the case of crystalline color-superconductivity
the system is expected to form a full three-dimensional structure, and it appears that the
cubic shape is the most favored.

Inhomogeneous phases play an important role in theories defined in one spatial dimen-
sion, which are often used as toy models to understand qualitative features of their higher
dimensional counterparts. Of particular interest for us are the 141-dimensional Gross-
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Neveu (GN) model [43] and its chiral counterpart, the NJLy model, which share with
QCD the phenomenon of spontaneous chiral symmetry breaking and have the advantage
of being for the most part analytically solvable [44] [45] 46, [47), 48, [49].

Until recently, the phase diagram of the GN model was expected to feature a phase
transition from an homogeneous chirally broken to a chirally restored phase, similar to the
naive picture developed for the QCD phase diagram. This picture has been dramatically
revised by a recent analysis which has revealed the presence of a crystalline phase, charac-
terized by a spatially modulated chiral condensate. In particular, it has been shown that
in the GN model, similarly to what happens for one-dimensional superconducting gaps,
the chiral order parameter assumes a solitonic shape and can be parametrized in terms of
Jacobi elliptic functions [45] 46 [50]. On the other hand, for the NJLs model it has been
argued that a chiral transformation can map the vacuum results into any finite chemi-
cal potential, resulting in a phase for low temperatures extending to arbitrarily high u
where the chiral order parameter assumes a plane wave shape (a so-called “chiral spiral”)
[44, 48, 49, bI).

It is known in general that one-dimensional models will always favor the formation of
inhomogeneous condensates as long as an attractive interaction is present, due to the effect
of nesting of the Fermi surface [52,[563,[64]. As such, they can only hint on the importance of
inhomogeneous phases, but in order to assess the role of these phases in higher dimensions
a full analysis on the system of interest is required. In particular, for a 34+1-dimensional
system crystalline phases are expected to form only for sufficiently strong couplings in
the relevant channels [55] 54]. The outcome for QCD is therefore unclear, but since in
the intermediate density region we still expect a strong coupling regime, inhomogeneous
phases cannot be ruled out a priori.

Let us then come back to our main topic of interest for the present work, namely the pos-
sibility for spatially inhomogeneous chiral symmetry breaking phases, characterized by a
spatially modulated shape of the chiral condensate, in the QCD phase diagram. The usual
picture for chiral symmetry breaking involves the pairing between quarks and antiquarks,
which becomes disfavored at high chemical potentials since the excitation of antiparticles
becomes increasingly expensive in terms of free energy. At finite densities however we
can expect a significant contribution to the gq condensate coming from quark-hole paring
56, 57, 54, B8]. In particular, we can imagine that the favored pairing pattern would in-
volve quarks and holes carrying finite momenta, both pointing in the same direction, and
that the resulting condensate would then also be characterized by a nonzero momentum,
resulting in spatial inhomogeneities.

In order to investigate this kind of condensate, we turn back to quark matter in 3+1
dimensions. The idea of a crystalline chiral condensate has already been proposed several
years ago for QCD at high densities [56], although a successive weak coupling analysis
showed that at asymptotic densities this kind of phase is favored over color superconduc-
tivity only if the number of colors N, is assumed to be unrealistically large [57, [59].

This kind of analysis however cannot lead to any conclusive result in the intermediate
density regime, where the coupling is not yet expected to be small. While of course
an investigation using ab-initio methods based on full QCD would eventually be able to
provide a definite answer, lattice simulations cannot currently confirm or rule out the
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Figure 1.1.: Sketch of the QCD phase diagram. Starting from the confining and chi-
rally broken phase at low temperatures and densities, if we increase the
chemical potential a crystalline phase may appear before the onset of color-
superconductivity. The position of the critical point might be affected by the
presence of such phase.

possibility for the appearance of chiral crystalline phases [60].

For this region, effective models have been employed to study the impact of spatial
modulations of the chiral condensate on the phase diagram. Most analyses until now have
been performed by enforcing simple shapes of the chiral order parameter. In particular, the
most widely employed is the so-called “chiral density wave”, which amounts to a simple
plane wave modulation. In spite of this simplistic ansatz, the phase diagram has been
shown to be dramatically modified when allowing for the formation of crystalline phases,
with the appearance of an inhomogeneous “island” around the usual phase transition line
from the chirally broken to the symmetric phase [61], 54 [62].

The main goal of the present work is to extend this kind of analysis, by allowing for more
general shapes of the chiral condensate and determine how the phase structure is modified.
For this, we will employ the Nambu—Jona-Lasinio (NJL) model, which has been already
extensively applied to study the dynamics of spontaneous chiral symmetry breaking in
quark matter. A complementary investigation using the similar Quark-Meson (QM) model
will be performed as well. Our analysis will then be extended by considering some common
extensions of the model, namely the coupling with the Polyakov loop and the inclusion of
repulsive vector interactions. We will also investigate the effects of inhomogeneous phases
on the position of the critical point, whose existence is one of the main questions revolving
around the QCD phase diagram [63] [64] [4]. A sketch of the possible phase diagram we
have in mind is presented in Fig. [Tl

Finally, we would like to recall another recent theoretical development proposed in order
to achieve a better understanding of the finite density behavior of QCD, revolving around
the concept of the so-called “Quarkyonic” matter. For this, the limit of QCD for a large
number of colors (N, — 00) is taken, leading to the suppression of several effects [65], [66],
and thus allowing to give qualitative estimates on some features of the phase diagram.
In has then been argued that at low temperatures and intermediate chemical potentials
matter may behave in a new way, with a system characterized by the presence of a Fermi
sea with quark degrees of freedom whose excitations are however confined [67].
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Although an early definition of quarkyonic matter was that of a confined, yet chirally
restored matter, the current understanding is that chiral symmetry is still broken in this
quarkyonic phase, although in a spatially inhomogeneous way. In particular, it has been
argued that in this framework the interaction at high densities involves particles on the
Fermi surface, and the effective problem of chiral symmetry breaking is dimensionally
reduced. This in turn leads to the formation of “quarkyonic chiral spirals”, in analogy
with the NJLy model [58, [68]. As the chemical potential increases, the Fermi sphere is
expected to be deformed in patches, allowing for the formation of additional chiral spirals,
which superimpose to form increasingly complex crystalline structures [69] [70]. Since
throughout this work we will allow for crystalline structures in more than one spatial
dimension, we will seek to confront qualitatively our results with these predictions.

The thesis is structured as follows: in Chapter 2 after briefly reviewing the QCD
Lagrangian and its symmetries of interest for us, we introduce the NJL and the QM model
and describe the procedure for implementing spatial modulations of the chiral condensate
in mean-field approximation. More details on the formalism, as well as the numerical
implementation, are reported in appendices [Bland [l In Chapter Bl we present numerical
results for the various shapes of the chiral condensate we considered, and determine which
one is energetically favored in the model ground state. Once having determined the favored
shape for the chiral condensate, we perform a more detailed analysis of the model phase
diagram in Chapter @ Chapter Blis devoted to the discussion of the effects of introducing
vector interactions and an effective coupling with the Polyakov loop on chiral crystalline
phases. Finally, in Chapter [6]l we investigate the phase structure of the model at higher
chemical potentials, in order to compare with recent quarkyonic matter studies.

Most of the results presented in Chapters [l [l and [ have already been published in

71, 72, [73].



2. Formalism

In this chapter we present our formalism. After briefly reviewing the symmetries of QCD
we are mainly interested in, we introduce the Nambu—-Jona-Lasinio model and describe the
procedure for tackling inhomogeneous chiral condensates. Our conventions are presented
in Appendix [A] while more details on our calculations are shown in Appendix [Bl and
Appendix [l

2.1. QCD and symmetries

The concept of symmetry is a powerful tool that can be used to characterize properties
of a theory, and is as such widely employed in modern physics. In particular, a common
practice when studying theories which are not easily solvable is to introduce simplified
models featuring the same symmetries, since their qualitative behavior can be expected
to be very similar.

Since we are interested in describing strongly interacting matter, our starting point is
the QCD Lagrangian:

1 - N
Locp = _iFgquy + w(Z’}/“D” —m). (2.1)

The first part of Eq. (2)) contains the gauge field stress tensor

Fi, = 0uA} — Ou AL — gfpcAupAve, (2.2)

and thus describes the gluon contribution, whereas the second part is the Dirac Lagrangian
for the quark fields 1, including the covariant derivative D, which provides the minimal
coupling between matter and gauge bosons:

Dy =8 +igA%a (2.3)

here g is the strong coupling constant, A, are Gell-Mann matrices acting on quarks, which
lie in the fundamental representation of the color gauge group, and a, b, ¢ are color indices.

The matrix m = diag{m,, mg, ms, ...} contains the bare (or current) quark masses.
While up and down quarks are characterized by similar and comparatively small current
masses (m, ~ mg ~ 5 MeV), we know that charm, beauty and top quarks have masses
above 1 GeV and are as such not expected to play a role in low and intermediate en-
ergy phenomena. The strange mass on the other hand sits on an intermediate value of
approximately 100 MeV, so that this quark degree of freedom might become relevant at
intermediate densities and temperatures.
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If we aim to build a simple effective model to describe low energy QCD phenomenology,
we can nevertheless restrict ourselves to the two lightest quark flavors. In this case, if we
consider their bare masses to be equal (m, = mg), it can be seen that QCD exhibits an
SUy (Ny = 2) global symmetry, that is, its Lagrangian is invariant under transformations
given by

W — T2y (2.4)

where T is a vector containing Pauli matrices acting on flavor space. If the bare quark
masses are additionally set to zero (i. e. we consider the so-called chiral limit, m, = mg =
0), we have an additional SU4(2) global symmetry, resulting in an invariance under the
transformation

b — N0y (2.5)

These two global symmetries can be rewritten as SUL(2) x SUg(2). This is the so-called
chiral symmetry of QCD, reflecting the fact that left-handed and right-handed fields trans-
form independently (for a pedagogical introduction, see e. g. [74]). Since degenerate chiral
partners are not observed in the hadron spectrum, chiral symmetry is expected to be
spontaneously broken by the QCD vacuum.

Strictly speaking, QCD is not exactly chirally symmetric (we know that 0 # m, #
mg # 0), and indeed we do not observe experimentally massless Goldstone bosons [75]
associated with its spontaneous breaking. One can nevertheless speak of an approximate
symmetry, and expect the effects of the explicit breaking to be small. This is reflected for
example in the small mass of the pion, which can then be interpreted as pseudo-Goldstone
boson in this context.

Knowing that our main focus is on the low temperature and intermediate chemical po-
tential region of the phase diagram of strongly interacting matter, we choose to employ an
effective model which shares some of the QCD symmetries, in spite of featuring simplified
interactions. In particular, since we are interested in the phenomenon of spontaneous chi-
ral symmetry breaking, we will mostly make use of the well-known Nambu-Jona-Lasinio
(NJL) model. For completeness, we will also perform a partial investigation using the
similar Quark-Meson (QM) model.

2.2. The NJL model

In this section we introduce the NJL model, characterized by a chirally invariant non-
renormalizable four-fermion interaction (for dedicated reviews, see e. g. [76, [77, [78], [18]).
The original work of Nambu and Jona-Lasinio dates back to before QCD, when the
model aimed to provide a field-theoretical description of nucleons, featuring a mechanism
for dynamical mass (gap) generation in analogy with the microscopic theory of super-
conductivity [79, 80]. With the advent of QCD, the fermionic fields in the Lagrangian
have been reinterpreted as quarks, incorporating additional quantum numbers, 4. e. color
degrees of freedom. The NJL model shares the same global symmetries with Quantum
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Chromodynamics, but features no gluons and therefore no running coupling and no con-
finement.
In its simplest form, the two-flavor NJL Lagrangian reads [80]

Lngr = Y(iv"0, — M)y + Gs ((P)* + (Yir°1a1)?) | (2.6)
where the first part is nothing but the free Dirac Lagrangian, while the second part
describes the four-fermion interactions. The interaction term features a scalar (y1)) and
a pseudo-scalar (@Zi’yE’Taw) term, both characterized by the same coupling constant Gg,
describing an attractive interaction in these quark—anti-quark channels. In our formalism,
the field 1 represents quarks which in 3+1 dimensions are described by 4-component Dirac
spinors. In the two-flavor approximation which we will employ in this work, quarks have
Ny = 2 isospin and N, = 3 color degrees of freedom. Here {7*} and ~+° are Dirac matrices
and 7, are Pauli matrices acting on the two-dimensional isospin space. The flavor index a
runs from 1 to 3. The matrix m contains the bare masses for the two quark flavors, which
in this work are assumed to be degenerate:

m = diag{m,, mq} = m diag{1,1}. (2.7)

Due to the nature of the 4-fermion vertex in Eq. (2.4), the NJL model is non-renorma-
lizable. This is reflected in the dimensionful coupling constant Gg, which carries the
units of an inverse energy squared. The model will therefore require some regularization
procedure to render its results finite, and the outcoming phenomenology will depend on
the prescription used. In this sense, the model is to be interpreted as an effective low-
energy theory for strongly interacting quarks, and is as such not expected to be reliable
above a given scale, identified by the regulator used. The value of the regulator A, together
with the coupling constant GGg, are model parameters which will need to be fixed. This is
typically done by fitting vacuum observables, as described in Appendix

2.2.1. Mean-field approximation

Throughout this work, we will make use of the widely employed mean-field (or equivalently
Hartree) approximation. This basically amounts to replacing in the Lagrangian Eq. (2.0])
the field bilinears we are interested in by their expectation values, and neglecting higher
order fluctuations [81 [78, [I8]. The resulting action becomes gaussian in the fermionic
fields, which may be then integrated out. Specifically, we introduce the expectation val-
ues for the scalar and pseudoscalar condensate, (Y1) = ¢g(x) and (Yiy %) = ¢%(z)
respectively, and write

bp = ¢s(x) +0ds,  Pin’Tay = ¢h(x) + 6% . (2.8)
After neglecting O(3¢?) terms, the mean-field Lagrangian becomes
Lymr = ST -V, (2.9)

where we identified in the first part of the expression the mean-field inverse quark propa-
gator
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S7Hx) = in"9 — m + 2Gs(ds(@) + iy’ Tadb(2)) (2.10)

and the second field-independent part gives the contribution of the condensates,

V = Gs(¢s(x)’ + ob(x)) . (2.11)

It is useful to rewrite the mean-field Lagrangian as
Lr =720 — H)Y -V, (2.12)

where we isolated the temporal derivative in the inverse quark propagator and introduced
the hermitian effective mean-field Hamiltonian operator

H =" [in' 0 +m — 2Gs(ds + 7’ Tadp)] - (2.13)

For computational reasons, in the following we will restrict ourselves to a diagonal structure
in isospin space, thus not allowing for charged pion condensation (which is not expected
to happen in any case at zero isospin chemical potential):

¢p = bdas (2.14)

and relabel the resulting ¢% (z) mean field as ¢p(x). The mean-field H can then be reduced
to a direct product in flavor space of two isospectral Hamiltonians H:

H =" [=i7'0; + m — 2Gs(ps + i7" 13¢p)] = Hy @ H—, (2.15)

where '
Hy =1" [—iv'0; + m — 2Gs(ds £ i pp)] (2.16)

It is worth mentioning at this point that although in principle the mean fields may carry
an explicit spatial and temporal dependence, most model analyses performed so far neglect
both possibilities. For the present work, we will still consider our condensates to be static
(i. e. time-independent), but allow them to be spatially dependent:

os(z) — ds(x), op(z) — op(x). (2.17)

As it will become evident in the following, this generalization greatly complicates the
calculations, and the problem for an arbitrary three-dimensional spatial modulation will
in general not be treatable. Indeed, all of our results in the following are obtained by
enforcing an ansatz for a given shape of the chiral condensate. For later convenience, we
also introduce an inhomogeneous ”mass” function

M(x) =m —2Gs(¢s(x) +igp(x)), (2.18)
from which the condensate part in £y, can be rewritten as

M) = mP

V= 4Gg

(2.19)
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Figure 2.1.: Dispersion relation E(k) for massless (solid line) and massive (dashed line)
quarks

We can also obtain an expression for the mean-field Hamiltonian in terms of the combina-
tion M and its complex conjugate, instead of the single mean-fields. For that, we explicit
the Dirac structure using the chiral representation for the gamma matrices (see Appendix
[Al for our conventions) and arrive at the following expression for H, in coordinate space:

Hy =~ [—i7'0; + m — 2Gs(¢s + iv°dp)] = ( ]\Zj(‘i) i\gxg ) , (2.20)

where ¢’ are 2x2 Pauli matrices. The lower component #_ can be obtained by simply
swapping M with M*. Since the two are isospectral, in the following we will always
consider H4 only and call it H.

While the mean-field approach we developed in this section will clearly fail to describe
accurately critical phenomena, we expect to be able to obtain from it some insight on the
phase structure of the model. In particular, we aim to get a qualitative picture of how
the phase diagram is modified when allowing for the formation of crystalline phases. For
this, after briefly reviewing its vacuum phenomenology, we will discuss the extension of
the model to finite temperatures and densities.

2.2.2. Vacuum phenomenology: dynamical chiral symmetry breaking

Due to the attractive interaction in the quark-antiquark channel, the NJL model exhibits
spontaneous chiral symmetry breaking in vacuum. This implies that it is energetically
favorable for the system to develop a gap in the energy spectrum, or equivalently a “con-
stituent” mass for the quarks. Since the vacuum is not expected to spontaneously break
translational invariance, in this section we will focus on homogeneous chiral condensates
only.

This property can be intuitively understood by picturing the filled Dirac sea character-
izing the vacuum state of the model (Fig. 2]). In presence of a gap, the negative energy
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Figure 2.2.: Dyson equation for the NJL quark propagator in Hartree approximation. Thin
lines denote bare propagators, thick lines full ones.

branch gets shifted downwards and the overall energy of the system is lowered. This effect
will compete with the positive contribution coming from the condensation energy V, and
an equilibrium value for the gap will be determined by the balance between these two.

The phenomenon of spontaneous chiral symmetry breaking is also apparent when cal-
culating the Dyson equation for the quarks (Fig. 2.2]), which in Hartree approximation
leads to the so-called “gap equation”

4

Myge = m + 2@'G5/(;l7§4 T S(p) (2.21)
where the trace operation comes from the presence of a fermion loop and My, is the
so-called vacuum “constituent” quark mass. Since for a spatially homogeneous chiral
condensate in this approximation the self-energy is local, one simply obtains a constant
shift in the fermion mass, i. e. quarks acquire an effective mass due to the interaction with
the background mean-field chiral condensate. This “gap equation” is analogous to the
ones typically encountered in (color-)superconductivity studies when determining the gap
in the energy spectrum, and has to be solved self-consistently to determine the value of
the constituent quark mass.

The NJL model can therefore account for the phenomenon of spontaneous chiral sym-
metry breaking in vacuum, through which quarks acquire their effective mass dressed by
strong interactions. A very rough first estimate for this constituent mass for the two light
quarks can be simply given by one third of the nucleon mass, My, = My /3 ~ 310 MeV.

2.2.3. Extension to finite temperature and chemical potential

Other than successfully describing vacuum phenomenology, the NJL model can be em-
ployed to study quark matter properties at finite temperature and density. In particular,
we are interested in studying how medium effects like the presence of a Fermi sea of quarks
affect the chiral condensate. For this, following standard methods of thermal field theory,
we switch to a periodic imaginary time and use the conventional Matsubara formalism.
The preferred ground state of the system can then be determined by minimizing the grand
canonical thermodynamic potential €2 of the model.

The thermodynamic potential per unit volume as a function of temperature 7" and quark
chemical potential © can be written as a functional trace over the logarithm of the inverse
quark propagator [82]. In particular, within our mean-field approximation, we can write
the thermodynamic potential as an effective action in the expectation values introduced in
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Sec. Z2T] using the path integral formalism. For a system in a four-volume V; = % x V', it
is given by the following functional integral over the fermionic fields 1,1 of the euclidean
action Sg:

UT.piosp) = —ylog [ DIDYesp(Se)

= —% log/'DlﬁDi/J exXp (/‘/4 d4xE(£MF(t = —iT, X) + M¢70¢)>2.22)

where a finite chemical potential has been introduced through the addition of a term p1)y%1)
in the definition of the inverse propagator (or equivalently of the mean-field Lagrangian).
As previously mentioned, since the mean-field Lagrangian is bilinear in the Grassmann
variables v, ), the gaussian integral in Eq. (Z22)) can be readily evaluated, leading to

1og/D¢D¢exp </V d'zg (VS — V)) = log DetS™! — /V drzp V. (2.23)

The logarithm of the determinant of the inverse quark propagator, which is an operator
in Dirac, euclidean four-volume (or equivalently four-momentum), flavor and color space,
can be turned into the trace of the logarithm of the propagator. This relation is obvious
if the operator can be diagonalized, which is indeed our case. One thus arrives at the
following expression:

T

St T
Q= _VTrDirac,color,flavor,VZ; log <T> + V /‘/4 d4xE V. (224)

In standard NJL, the inverse propagator is diagonal in color space, so the trace over it will
simply amount to a factor of .. In flavor space, as mentioned before, the two components
H are isospectral and will contribute equally. One thus obtains an additional Ny factor.
In order to calculate the other traces, we have to diagonalize the remaining parts of the
inverse quark propagator. For this, we first switch to momentum space by writing spinor
fields and condensates as Fourier series. For a system in a finite volume V', we have

6 = 5 D e = S e, (2:25)
Pn

Wn  Pn
_ 1 _ .
Ba) = o STt (2.26)
Pn

When Fourier-transforming to momentum space, the physical quantities will depend on
spatial three-momenta and discrete frequencies w,, due to the anti-periodic boundary
conditions imposed on the time direction in order to introduce a finite temperature:

it=7€[0,T], pn= ( Z;’" > . (2.27)
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For static condensates, the time component of the associated four-momentum is zero, that
is,

M(x) = ZMkne—iknw — ZMkne-l-ikn-x’ k,, = < kO > ) (2.28)
kn kn "

We can then plug in these Fourier expansions in the mean-field Lagrangian Eq. (2.9)
and obtain the following expression for the inverse propagator in momentum space (the
procedure is worked out in detail in the Appendix [B]):

Sp_ri,Pn = /yo iwnépn7pm - 707 : pnépmpm - ’YO Z Mkn 6pn7pm+kn + lu’ép'mpm 5"va‘~'n
kTL
_ 07,
= 7 [anépmpm - 7-[pn:pm + Népn,Pm] 5mewn ’ (229)

which is diagonal in the Matsubara frequencies since the chiral condensate is assumed to
be static.

Using once again the chiral representation for the Dirac matrices, a generic element of
the mean-field Hamiltonian in momentum space will look like

N _ < —0 Pm 5pmapn qu quépmvpn+qk > . (230)
PP qu Mc*lk 5pm:pn7Qk 0 Pm 6pm,Pn

In presence of an inhomogeneous chiral condensate, the diagonalization of H is a highly
non-trivial task, since quarks may exchange momenta by scattering off the condensate, as
can be seen from the off-diagonal elements in Eq. (Z30). Consequently, quark momenta
are not fixed and the mean-field propagator is not diagonal in momentum space.

What we have then for the thermodynamic potential is

Q= —-TN¢N, Z Trpirac,p Log (1{ (twn, — H + u)) + % / dxV, (2.31)
- 1%
where we already performed the trace in color and flavor space, and are left with a trace
over Dirac and three-momentum space as well as a sum over Matsubara frequencies wy,.
As previously noted, H is an Hermitian operator and can therefore be diagonalized. In
the following we will call F its eigenvalues in Dirac and momentum space. For brevity
we will sometimes include the chemical potential in the definition of H, and the resulting
eigenvalues will be labeled E — i = E,,. Since the inverse propagator Eq. (Z29) is diagonal
in the Matsubara frequencies, we can make use of the well-known relation (up to an
irrelevant temperature-independent constant) [82]

iwn + B\ _ By ~Eu/TY _ By
Tzn:log <T> —7+T10g<1+e » >—Tlog 2 cosh o7 ) | (2.32)

to perform the discrete frequency sum in Eq. (237]). Our final expression for the thermo-
dynamic potential is therefore (again, up to an irrelevant constant)
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E — 1 M(x) —ml|?
T, p; M(x)) = —TNgN.Y log <2cosh <2T“>>+V/V’(Z>%M
E

- ka + Qconcl, (233)

where we have also identified for later convenience the kinetic contribution €, , described
by the log(cosh) term, as well as the condensate energy Q.onq. In conclusion, the expres-
sion for the thermodynamic potential basically amounts to a sum over the eigenvalues of
the effective Hamiltonian operator defined in Eq. (230), whose structure in Dirac and
momentum space depends on the given shape of the chiral condensate.

In order to determine the thermodynamically favored shape of the mean-field M (x), we
must perform a functional minimization of €2 with respect to M. Alternatively, we can
look for extrema of the thermodynamic potential by performing a functional derivative
with respect to M and look for its zeros. This leads to in-medium gap equations, which
have again to be solved self-consistently:

Y’
oM (x)

—0 M) = f(M(x). (2.34)

Since, as will become clear in the following when we define our numerical approach, in
general the gap equations will become complicated matrix equations, we will mainly work
by minimizing directly the thermodynamic potential. Details on this procedure and results
will be described in Chapter

2.2.4. Regularization

The expression obtained for the NJL thermodynamic potential Eq. ([233]) is formally
divergent. This is due to the presence of an integral over all single particle energies,
including the occupied states in the (infinitely filled) Dirac sea, which characterizes the
vacuum state of the model.

In order to render our results finite, it is therefore necessary to regularize these diverging
contributions in €2. Since the NJL model is non-renormalizable, divergencies cannot be
consistently absorbed at all orders in the free parameters and results will depend on the
regularization scheme introduced to render the vacuum contribution finite.

The expression obtained for €2, includes however both vacuum and medium contri-
butions. If we blindly choose to regularize the full expression, we risk of introducing
unwanted artifacts. A possible outcome is for example an artificial © dependence of the
order parameter [83], analogous to the one obtained in [38] on isospin chemical potential.
In order to prevent this, we note that if the energy spectrum of the effective Hamilto-
nian Eq. (213]) is symmetric around E = 0, it is possible to rewrite the thermodynamic
potential isolating the Dirac sea contribution. One can namely write the kinetic part of

Eq. 33) as
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E—
Qpin = —NyN.T Z log (2 cosh <2T,u>>

E>0

_ _NchE;){E + Tlog [(1 +exp <—E; “)) (1 + exp (-E;”»} }

= —NyNe D [foaelB) + frnea(B; Ty p)] (2.35)
E>0

where only the first T" and p-independent term f,q. is divergent. The f,,cq term describes
the medium contributions to the thermodynamic potential, and is finite since temperature
and chemical potential provide a natural cutoff for it. This becomes evident if one considers

the zero temperature limit, where the medium term contains a step function ending at
E=p

foea = Tog [ (14030 (- E2)) (1 enp (~ZE2) )] 225 G- Bt - ).

(2.36)
Our preferred regularization scheme throughout this thesis is a Pauli-Villars regularization
which we apply only to the diverging vacuum term. This amounts to the replacement [77]

civa?+ jA?, (2.37)

fvac(x) — fPV(x) =

M

Il
=)

J

with cg =1, ¢ = =3, ¢co = 3, ¢c3 = —1 and a regulator A.
The regularized thermodynamic potential will therefore be given by

Qpin = =Ny N, Z fPv(E) + fonea(E;T, )] . (2.38)
E>0

It is well known that most covariant regularization schemes result in rather small con-
stituent quark masses, which may lead to unphysical features. Because of this, we will fix
our parameters to the pion decay constant in the chiral limit but instead of the value of
the vacuum chiral condensate, we will enforce a given constituent quark mass.

For completeness, we will discuss different regularization schemes, as well as more details
on the parameter fitting, in appendix [Cl

2.3. The Quark-Meson model

Since the NJL model requires to specify a regularization scheme which can in principle
affect the results, aside from investigating different regularization schemes, as an additional
cross-check we will also consider a slightly different model which shares many features with
it, but is (at least in principle) renormalizable. In this section we therefore introduce the
Quark-meson(QM) model [84] B5], which is described by the Lagrangian density
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EQM - 1/_} (i7u8M - g(U + i757—a7ra)) ¢ - U(U7 ﬂ—a) ’ (239)

where the meson kinetic contributions together with the “mexican hat” potential driving
the spontaneous breaking of chiral symmetry are contained in

—% (Opo0*o + 0, OH 1) + 2 (0% + mom — v2)2 —co. (2.40)
Here 9 is again a 4Ny N.-dimensional quark spinor, o the scalar field of the sigma meson
and 7% the pseudo-scalar fields of the pion triplet. In mean-field approximation we treat
the fields o and 7% as classical and replace them by their expectation values [85] [86].
We can then use low-energy relations to connect the parameters ¢, g, A and v? with
hadronic observables. For the thermodynamic potential in mean-field approximation we
only include the contributions of the fermionic fluctuations and approximate

U(o,m%) =

T — _
Qom(T, pyo(x),7(x)) = —Vlog/Dz/JszDaDTra exp (/ 0 V(EQM +/L1/J’yoi/})>
z€0,4]x

TN, 1
hﬂ; _ VCZTID’f’VLOg (T (iwn-l-HQM—M))

1 a
—I—V/deU(a(x),W (x)), (2.41)

where o(x) and 7%(x) are non-vanishing expectation values of the respective fields. Lim-
iting ourselves, as done previously, to cases with 7!(x) = 7?(x) = 0, the Hamiltonian
reads

Houw = —ir"7'0i+1° (90(x) +ig7°m°n°(x)) , (2.42)

and we have to evaluate the same functional trace-logarithm as in the case of the NJL
model, but now with the identification M (x) = g(o(x) + i73(x)).

As previously mentioned, the QM model is renormalizable, which means that the diver-
gences in the functional trace-logarithm can be absorbed by the model parameters. Instead
of a proper renormalization [87] we will however follow Refs. [85] 86], where it has been
assumed that the vacuum contributions can be well approximated by i [, U(o(x), m%(x))
with the parameters directly adopted to phenomenology. As a result, we can evaluate the
thermodynamic potential on the same level as for the NJL model.






3. Diagonalization of the Hamiltonian: zero
temperature results

As outlined in the previous chapter, the evaluation of the model thermodynamic potential
basically boils down to obtaining the spectrum of the mean field Hamiltonian (Eq. (Z13)).
As it turns out, the diagonalization of H for an arbitrary spatial dependence of the mean
fields is a non-straightforward task, and in order to proceed several simplifying assumptions
will be required.

In particular, to render the problem numerically accessible we will focus on one- and
two-dimensional spatial modulations of the chiral condensate. These lower-dimensional
structures are simpler to implement due to the Lorentz-invariance of the system which
allows to work with dimensionally reduced effective Hamiltonians. In the present chap-
ter, the practical implementation of the diagonalization procedure will be outlined and
numerical results at zero temperature will be discussed.

All results obtained in this section are obtained in the chiral limit m = 0 and regularized
using the Pauli-Villars prescription described in Sec. B.22.4] with a parameter set fitted to
obtain a vacuum constituent quark mass of M,,. = 300 MeV (values are reported in

Appendix [D.T]).

3.1. Homogeneous chiral condensates

As a starting point which can be used as comparison with our results for inhomogeneous
phases, let us briefly review the well established homogeneous case. If the chiral condensate
is spatially constant, its Fourier expansion Eq. (Z.28) will obviously contain only the zeroth
term, all the other coefficients being zero:

My, = Mooy, 0 - (3.1)

The Hamiltonian is then diagonal in momentum space, a generic element on its diagonal
being given by

Hpp = ("7 P+7" M) . (3.2)

The eigenvalues of one of these 4 by 4 blocks on the momentum diagonal Hp, p, are Ey(p) =
+4/p? + M?, twice degenerate (for brevity we renamed My to M). This is the standard
dispersion relation obtained in NJL, describing a system of free massive quasiparticles (see
Fig. [ZT]). The thermodynamic potential is then given by
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_ Ey —p 1 2
QT,p) = NchTEZ()IOg [2 cosh( 5T )] + GV /V | M7, (3.3)
(o

Switching from the energy sum to a momentum integral we obtain the familiar expression

2 M2 —
1+exp< k3 “>]

M2
} 4Gg

QUT, 11; M) homog = 2NfN/ 3{\/ 24+ M2+ Tlog

+ Tlog

1+ exp (3.4)

which is the standard result for homogeneous phases in NJL.

We can rewrite Eq. (4] in a way that will be useful for later comparison. For this, we
change integration variable from momentum to energy E = /p? + M2. We arrive then
at

2

Frert R

oo
T, 1. M) = =Ny No [ 4 prom(B) fuae () + ea BT )] +
0
where fyac and fy,eq have been defined in Sec. 2.2.4] and we introduced an effective density
of states for homogeneous phases ppom, given by

prom(E) = —0(E ~ M) E (B2~ 11, (3.6)

with the step function reflecting the presence of a gap M in the energy spectrum (cf.
Fig. 21). At this point, we can regularize by substituting fy,.. — fpy as outlined in
Sec. 224l Results for homogeneous phases are presented in Fig. Bl at zero temperature,
the value of the chiral condensate (or equivalently of the constituent quark mass) remains
constant as a function of chemical potential until the value 4 = M is reached. Beyond
that value, a Fermi sea of massive quarks starts forming and medium effects lower the
value of the constituent mass. Soon chiral restoration is reached through a first-order
phase transition, where the chiral condensate value jumps to zero. This is the standard
scenario for chiral restoration: in presence of a Fermi sea, the excitation of antiquarks
becomes more and more energetically costly, until the formation of a chiral condensate is
eventually disfavored.

3.2. Inhomogeneous chiral condensates: general approach

The numerical diagonalization of H for an arbitrary spatially modulated chiral condensate
is a highly non-trivial task. Since the mean-field Hamiltonian has to be diagonalized in
momentum space, one is in principle dealing with an infinite matrix with a continuous
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Figure 3.1.: Results for the value of the constituent quark mass as a function of chemical
potential at T' = 0 for an homogeneous chiral condensate

set of elements, and the nested Dirac structure effectively quadruples the size of the prob-
lem. The numerical implementation of such a diagonalization is as such not completely
straightforward.

In order to be able to perform our analysis, we therefore follow the procedure developed
in [38] in the similar context of crystalline color-superconductivity and assume that the
spatially modulated chiral condensate forms a periodic structure in coordinate space. This
allows us to exploit the symmetries of the system and in particular Bloch’s theorem to
factorize the momentum integration in the expression for the thermodynamic potential.
Indeed, for an arbitrary periodic modulation we can define a reciprocal lattice (RL) in
momentum space, and for quarks scattering with this crystalline condensate we know that
momenta which do not differ by an element of the RL will not be coupled (a more detailed
discussion of this property is shown in Appendix [H]). This in turn implies that H can be
decomposed into a block diagonal form, where each block H(k) is labeled by an element
of the first Brillouin zone (BZ):

H= > MHk). (3.7)

keBZ

It is then possible to decompose the eigenvalue sum in Eq. (233) into a momentum
integration over the BZ times a sum over the discrete eigenvalues of each block [38]. It
is worth noting that H (k) is still infinite in momentum space, and a numerical cutoff will
have to be introduced. This will be discussed in more detail in Appendix [I.

In the following, we will briefly outline the dimensional reduction procedure and present
results for different kinds of modulations of the chiral condensate. A recent analysis using
Ginzburg-Landau (GL) arguments has shown that close to the location of the chiral critical
point, the preferred shape for the chiral condensate is that of a one-dimensional crystal
[88]. We will instead focus on what happens at zero temperature, where GL analyses are
unable to provide reliable results. Another GL prediction states that all possible kinds of
inhomogeneous modulations should share a common phase transition line to the chirally
restored phase, as long as the transition is a second-order one [89]. We will also check
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numerically the validity of this statement against our results.

3.2.1. Lower-dimensional modulations

For general periodic structures, although the numerical diagonalization procedure is now
in principle straightforward, its practical implementation still turns out to be computa-
tionally demanding. In order to simplify the problem, we therefore limit the generality
of our ansatz Eq. ([Z28) to lower-dimensional modulations. In this case, the momentum
integration required for the evaluation of the thermodynamic potential may be split into
the parts p| along the direction of the modulation and p, perpendicular to it. One thus
obtains, for a d-dimensional modulation,

3—d _
Qpin = NfN/ d27r de é ZTlog [2 cosh <(pL,2pT||),u)] , (3.8)
where E(p,p)) are the eigenvalues of H(p = p| + PpL). The expression for {2, still
contains the eigenvalues E of the full effective Hamiltonian in three spatial dimensions.
Following [90], we will show that the problem can however be dimensionally reduced for
lower-dimensional modulations by help of Lorentz symmetry. For this, suppose we have a
representation S(A) for the Lorentz transformation A that acts on the momentum operator
of free spinors P* = (H, P;)" as

S(A)P*STYHA) = AH P”. (3.9)

If the system is translationally invariant in one or more directions, the corresponding mo-
menta P) commute with the Hamiltonian H and we can label its eigenstates also by p | , the
eigenvalue of P . Now take 1) g to be the eigenvector with Hiy g = Ay o and PPy o = 0,

o
A", to be the Lorentz transformation that boosts (), 0)* to ()\\ /1+ pi/AQ, pJ_> and de-
fine

U TR, = (\/1+pi/A2)_2sl<A>w,o. (3.10)

The prefactor implements the proper normalization for the conventional choice of S(A) [91]
and it is straightforward to check that

m
Puw)\\/m,m_ - <)\\/m,ln) wAWM. (3.11)

Therefore the whole eigenvalue spectrum can be constructed from the subspace spanned
by {¥x0} and for the kinetic part of the thermodynamic potential we obtain

M/14+Dp% /A2 —pu

2T

1 dpy
Qpein (T, : M(x)) = —TN;No—
T4 M () = TNy Neg, 3 | o

B log | 2 cosh

(3.12)
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In general we are therefore able to constrain ourselves to a lower dimensional model if we
want to determine the quasi-particle spectrum for an inhomogeneous phase with a lower
dimensional modulation: the eigenvalue spectrum for the full 34+1-dimensional problem
can be obtained by simply boosting the eigenvalues of a dimensionally reduced Hamiltonian
H(py = 0). If the lower-dimensional problem is still not analytically treatable, we can
project again the p| momenta onto the BZ for a given lattice structure and rewrite the
kinetic term as

& p, [ d% E(pi.k) —p
Qpin = —NfNC/ T / @) zE:Tlog [2 cosh <2T>] : (3.13)
BZ

where d is the dimension of the spatial modulation, k labels the BZ momenta, E(p_,k)
are the boosted eigenvalues of the dimensionally reduced # (k).

3.3. One-dimensional modulations

As shown in the previous section, if we restrict ourselves to lower-dimensional spatial
modulations of the chiral condensate, the diagonalization of the mean-field Hamiltonian
can be significantly simplified. The simplest case one can consider at this point is obviously
a one-dimensional modulation of the chiral order parameter:

M(x) — M(z). (3.14)

The kind of system we are considering therefore features a chiral condensate varying in
one spatial direction only, while remaining constant along the two transverse ones. This
can be interpreted as some kind of “lasagne” phase, similar to the one considered in the
context of nuclear matter studies, with constant slices in the zy plane and modulations in
the z direction only.

In coordinate space, the effective dimensionally reduced Hamiltonian for an arbitrary
one-dimensional modulation is given by

Hip (3.15)

In the following sections we will consider different kinds of one-dimensional modula-
tions, diagonalize the corresponding Hamiltonian and minimize the thermodynamic po-
tential with respect to the variational parameters characterizing the shape of the chiral
condensate.



24 Diagonalization of the Hamiltonian: zero temperature results

3.3.1. Chiral density wave

The simplest possible one-dimensional shape for the chiral order parameter is given by
a single plane wave (the so-called “Chiral density wave”, CDW), whose wave vector Q
can be taken to point in the z direction without loss of generality: Q = Q¢€,. This
kind of ansatz is analogous to the Fulde-Ferrell solutions introduced in the context of
(color-) superconductivity, and can be implemented in our analysis by limiting the Fourier
expansion for the order parameter to the first term only:

z) = Z M, 9% = My ei9% (3.16)

This solution is therefore characterized by the magnitude of its wave vector ) and by its
amplitude M;. In the simpler case of a one-dimensional system, in order to minimize the
energy the wave number of the modulation would equal the diameter of the Fermi sphere
[52 53], [54]. This exact relation is lost in higher dimensions, although the wave vector is
still expected to be of the same order of magnitude as the chemical potential.

The thermodynamic potential for this modulation is given by

2
Q(T,/J,;Q,M1> = _Nf / d yan / Z {fvac +fmed(E T :U’)} + i\é (3'17)

)\>0

with E = sgn(A,)1/A2 4+ p? boosted eigenvalue, Ay, being the eigenvalue of the dimension-
ally reduced Hamiltonian

D
ngvp‘fn/ = ’YO [’yzpfldpnﬁum + MlépmperQ] ’ (318)
where all momenta are now one-dimensional ones along the z direction.

For the particular case of the chiral density wave, an analytical expression for the eigen-
value spectrum has been obtained [54}[49], so that no numerical diagonalization is required.
In particular, it is possible to encode its shape in a spectral density function popw (E).
The thermodynamic potential can thus be written, similarly to Eq. (8.3, as

Qkin = _Nch Z [fvac(E) + fmed(E; T: M)]
E>0

= _Nch /OOO dE PCDW(E) [fvac(E) + fmed(E;T’ :u)] ) (319)

where E are the boosted energies for the full 3+1D system and the density of states is
given by
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Figure 3.2.: Results of the minimization of the thermodynamic potential for the varia-
tional parameters ) and M; characterizing the CDW modulation.

poow(B) = 555 {08~ G- /(B - @2 - ag

+ H(E—Q+M1)0(E+Q—M1)\/(E+Q)2 — M}

+ 60 - My - E) (¢<E+@>2 - Mz Qp —M%) b (3:20)

where for compactness we introduced Q = 2Q.

The results of the minimization of the thermodynamic potential at T" = 0 for the
variational parameters M7 and ) are shown in Fig. It is possible to see that the
inhomogeneous phase kicks in through a first-order phase transition at a given chemical
potential slightly smaller than the one at which the chiral restoration for homogeneous
phases would occur. At that given value, the free energy associated with a nonzero @)
(which turns out to be of the same order as pu, as expected) becomes lower than the one of
the homogeneous phase, for which Q = 0. As a result, chiral restoration occurs then at a
higher chemical potential compared to homogeneous phases, and is realized via a second
order transition as the amplitude of the order parameter gradually melts to zero.

3.3.2. Sinusoidal modulation

As a next step, we can build up the simplest real one-dimensional modulation by consid-
ering the sum of the first positive and negative harmonics, both characterized by the same
amplitude (My = M_y):

M(z) = Z M,,e™%% = 20 cos(Qz) = M cos(Qz) . (3.21)
n==+1

The effective Hamiltonian is then
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H;?jpm - 70 [FYprL(Smem + Ml(spn@m‘f‘Q + Ml(spmpm—Q] . (322)

Unlike for the CDW ansatz, in this case no analytical expression for the spectral density
could be found, so that H had to be diagonalized numerically in Dirac and momentum
space (details on the calculations are presented in Appendix [I)).

Numerical results of the minimization of the thermodynamic potential are presented in
Fig. It is possible to see that the order parameters have a very similar behavior to
those for the chiral density wave, although for the cosine the onset of the inhomogeneous
phase occurs at a slightly lower value of chemical potential. Chiral restoration occurs again
via a second order phase transition, occurring (at least within our numerical precision of
around 0.5 MeV) at the same value of chemical potential as for the CDW modulation,
consistently with GL predictions [89].
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Figure 3.3.: Results of the minimization of the thermodynamic potential for the vari-
ational parameters () and M = 2M; characterizing the real sinusoidal
modulation.

3.3.3. Solitonic solutions

For the case of real one-dimensional modulations of the chiral order parameter, it is possible
to introduce a more general ansatz which does not require a numerical diagonalization of
the model Hamiltonian. For this, we first note that Hip (Eq. (83)) can be block-
diagonalized into

Han(M(2)*) > ’

where

Han(u) = (0 M) (320
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This means that the model Hamiltonian can be rewritten as a direct sum of two Hamil-
tonians (Eq. (824)), which are formally identical to that of the 1+1-dimensional chiral
Gross-Neveu model. In turn, this suggests that we can reuse specific solutions already
investigated in detail when studying lower-dimensional models, and analytical expressions
for the eigenvalue spectrum of the problem can be obtained.

In particular, we will focus on a real ansatz for the order parameter, which can be
expressed in terms of Jacobi elliptic functions:

sn(Az|v)en(Az|v)
dn(Az|v)

This kind of solution is characterized by its amplitude A and by the so-called elliptic
modulus v, which determines the shape of the modulation (a brief reminder on elliptic
functions is presented in Appendix [El).

For this particular kind of solution, the pseudoscalar part of the chiral condensate is
zero and the density of states can be calculated starting from the eigenvalue spectrum of
the GN model [45] and reads (more details on the calculation are presented in appendix

[ET)

M(z) = Av (3.25)
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where K and F are the complete and incomplete elliptic integrals of 1st kind, respectively,
and E are the (complete or incomplete) elliptic integrals of 2nd kind. Furthermore we
introduced the notations 7 = 1 — v, § = arcsin(E/(v/PA)), and 6 = arcsin(A/E).

The thermodynamic potential can therefore be cast into

Q(Tv M3 Aa V) = _Nch/O dE psoliton(E) [fvac(E) + fmed(E; Tv M)}

1 L
— M(z)? 2
e O (327

where L = 4K(v)/A is the period of the modulation.

Results on the parameters A and v are shown on the left side of Fig. B4 Although
the onset of the inhomogeneous phase occurs at a similar (albeit slightly lower) value of
chemical potential compared to the other one-dimensional modulations considered, the
nature of the phase transition is different. This can be seen by looking at the shape of
the solutions obtained, and in particular by observing that for v = 1 the mass modulation

(3.26)
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of Eq. (B25) becomes a hyperbolic tangent. This particular shape has an infinite period
and features a single kink at z = 0, and is as such degenerate with the homogeneous
solutions in the thermodynamic limit. At the onset of the inhomogeneous phase, the
elliptic modulus v varies smoothly from 1 to a slightly smaller value as infinitely distant
solitons come close together, and the transition is therefore second order. On the right side
of the inhomogeneous window, chiral symmetry is again restored via a second order phase
transition as the amplitude of the order parameter gradually melts to zero (a more detailed
discussion of the behavior of solitonic order parameters will be given in Sec. [£.2]). Since
the parameter dependence of the chiral condensate for the solitonic solutions is different
from the previous modulations considered, a naive comparison of the results for the order
parameters A and v might be misleading. In order to provide a better comparison with
the solutions calculated in the previous sections, we therefore show on the right side of
Fig. B4 the combination Av, which may be roughly interpreted as an amplitude for the
solitonic modulationd] (cfr. Eq. 325)), and a wave vector ) = 27/ L associated with the
period of the elliptic functions, L = 4K(v)/A. There it can be seen that @ has a steep
but continuous increase from 0 to a finite value at the onset of the inhomogeneous phase,
reflecting the nature of the second-order phase transition.

108 <
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290 300 310 320 330 340 350
H (MeV)

Figure 3.4.: Left: Results of the minimization of the thermodynamic potential for the
variational parameters A and v characterizing the solitonic solutions. Right:
combination Av and wave vector @) = 27 /L.

3.4. Two-dimensional modulations

Having considered several one-dimensional modulations, we now move on to two-dimensio-
nal structures. Without loss of generality, we assume the chiral condensate to vary in the
zy-plane and to be constant in the z-direction. The corresponding dimensionally-reduced
effective Hamiltonian reads

! Another possible quantity which may be considered is /(M (z)2), which will be shown in chapter H
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10y +0y  M(z,y)

| id. -9, M(z,y)
Hop = M(z,y)* i, — 0, , (3.28)
M(z,y)* —i0y + 0y
which in momentum space becomes
—pz+ipy M
_ —Px — ipy M
Hop = . , ) 3.29
20 > W (3.29)

M~ Pz + ipy

where we omitted the Kronecker deltas stating which momenta are coupled since here
we are mainly interested in showing the Dirac structure. It is intended of course that
the blocks containing M will in general be outside the momentum diagonal, and their
position will depend on the type of modulation considered. This Hamiltonian can be
block-diagonalized only for real M (x,y), i.e. for ¢p(x) = 0 [90]. In this case we can cast
the problem into the form

M —Px — ipy

—Px + Z.py -M

1) = (3.30)

-M —Pz — Py
—pz +ipy M

Unlike for the one-dimensional case, in two spatial dimensions different crystalline shapes
may be realized. We will therefore consider different lattice geometries and assume the
mass functions to have simple symmetric shapes consistent with these structures (details
in Appendix [H.J]). The Fourier expansion of the order parameter is given by

M(z,y) =) My, pe'dmm>, (3.31)

where the two indices m and n label the two-dimensional momenta of the reciprocal lattice.
Although the diagonalization procedure for two-dimensional modulations is in principle
straightforward as for the one-dimensional ones, it turns out to be computationally much
more demanding, and numerical uncertainties are bigger (more details are presented in
Appendix [I]).

3.4.1. Egg carton

The first two-dimensional case we will consider is a square lattice with a unit cell spanned
by two perpendicular vectors of length a in z and y direction. The corresponding elements
of the RL are then given by qm, = Q(mé, + né,) with Q = 27/a and integers m
and n. While the general mass function consistent with this lattice structure would be
given by Eq. (831) with arbitrary Fourier coefficients M, ,,, we restrict ourselves to a
simple ansatz for a real symmetric mass function with a small number of non-vanishing
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Fourier coefficients. Specifically we choose My =My 1 =M_11 = M_;_; = M/4 and
M, » = 0 in all other cases. This yields

M(z,y) = M cos(Qz) cos(Qy) , (3.32)

which has an egg-carton-like shape (see Fig. B.H left) and is symmetric under discrete
rotations by /2.

Results for the numerical minimization in the parameters  and M are shown on the
right side of Fig. It is possible to see how the variational parameters for this kind of
two-dimensional modulation behave rather similarly to those associated with the simple
one-dimensional structures previously considered. In particular, the onset to the inhomo-
geneous phase where the wave vector () jumps to a finite value via a first order phase
transition lies at a value of chemical potential which is very closdd to the one found for
the one-dimensional solutions. Once again, as expected from GL arguments, the second-
order chiral restoration transition is exactly at the same chemical potential value as for
the one-dimensional modulations.
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Figure 3.5.: “Egg-carton” modulation, Eq. (332)). Left: shape of the mass function
M(x,y) in coordinate space. Right: results of the numerical minimization
of the thermodynamic potential for the variational parameters () and M.

3.4.2. Honeycomb

The second case we consider is a mass function with hexagonal symmetry. Here we start
from a unit cell spanned by two vectors of length a, enclosing an angle of 7/3. Choos-
ing the first one to be aligned with the z-axis, the elements of the RL are given by

2n—m 5

Amn = Q(méy + 769)’ with integers m and n, and Q = 27/a as before. For the

mass function we choose M, , = M/6 on the corners of a regular hexagon, (m,n) €
{(1,0),(-1,0),(0,1),(0,—1),(1,1),(—1,—-1)}, and M,, ,, = 0 in all other cases. This yields

M(z,y) = % [2 cos (Q) cos (13Qy> +cos(23Qy)} : (3.33)

V3 V3

2The onsets of all the crystalline phases considered lie within a window of around 3 MeV in chemical
potential, p ~ 308 — 311 MeV.




Comparison of free energies 31

which is symmetric under discrete rotations by 7/3 (see Fig. Bl left). Note that the
normalization of the amplitude was chosen to match the homogeneous case M (z,y) = M
when @ goes to zero.

Results of the numerical minimization are presented in Fig. right. Once again,
the first-order onset of the inhomogeneous phase lies at a very similar value of chemical
potential as for the other modulations considered, and, as expected, chiral restoration
occurs at the same point as for the others.
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Figure 3.6.: Honeycomb ansatz, Eq. (833]). Left: shape of the mass modulation in coor-
dinate space. Right: results of the numerical minimization of the thermody-
namic potential for the variational parameters ) and M.

3.5. Comparison of free energies

As seen from the numerical results of the minimization procedure presented in the previous
sections, at zero temperature each crystalline structure considered in this chapter turned
out to be favored over homogeneous solutions in a chemical potential window which is
roughly the same for all modulations studied. We stress again that these calculations
have been performed by enforcing each time a given shape of the spatial modulation,
characterized by a set of variational parameters.

In order to determine what is the favored crystalline shape for the ground state of the
model, it is therefore necessary to compare the free energies associated with the different
modulations considered. The solution characterized by the lowest free energy (in our case,
of thermodynamic potential Q) at the minimum for a given value of chemical potential
will be the thermodynamically favored one.

As a first step, we will confront the free energies of the different one-dimensional mod-
ulations we introduced. We will then successively investigate whether two-dimensional
structures turn out to be favored over one-dimensional ones.

3.5.1. Most favored 1D modulation

We present in Fig. B the free energies associated with the different one-dimensional
structures considered, together with the homogeneous counterparts. We always subtract
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Figure 3.7.: Thermodynamic potential relative to the restored phase for the one-
dimensional modulations of the chiral condensate at T' = 0. The lowest free
energy is found for the one-dimensional Jacobi elliptic function.

the free energy of the unbroken phase, so that all curves reach zero as chiral symmetry is
restored.

From our results, it is possible to see that close to the onset of the inhomogeneous
phase, the solitonic solutions introduced in Sec. turn out to be the most favored.
After a rather narrow chemical potential window they become however degenerate with
the one-dimensional cosine discussed in Sec. This should not come as a surprise, for
Jacobi elliptic functions are a very general ansatz which can assume a sinusoidal shape
as the elliptic modulus goes to zero, and this behavior of the free energies simply implies
that the favored shape for the chiral condensate towards the chiral restoration transition
is indeed that of a single cosine. We can therefore claim that, among all one-dimensional
modulations considered, the soliton lattice introduced in Sec. is the most favored.

On the other hand, another interesting results is that the complex CDW modulation
discussed in Sec. B3] turns out to be always disfavored when compared to real ones
throughout the whole inhomogeneous window. This might come as a surprise, since we
have shown that the eigenvalue problem is reduced to that for the NJLo model, where
the plane wave solution is believed to be the favored one [44]. In our case however,
it can be seen that the Hamiltonian is actually a direct product of two NJLy ones, so
that the structure of the thermodynamic potential becomes different. In particular, in
[90] it has been shown in the context of a Ginzburg-Landau expansion that the NJL
thermodynamic potential can be written as a sum of the NJLo thermodynamic potential
and its conjugate. This particular structure leads to a bigger gain in free energy for a
real sinusoidal modulation compared to the complex plane wave. We also note that the
same behavior has been found in the context of superconductivity, where GL analyses have
determined that the favored shape for the order parameter in higher dimensional systems
is a real one as well [37, [40].

The results of Fig. 3.7 also allow us to comment on the importance of higher harmonics
in our general Fourier analysis outlined in Eq. (Z28)). Indeed, one can interpret the Jacobi
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0 v Ms/M,  Ms/M; My /M,y My /M,

307.5  0.99999 -0.238386 0.080631 -0.0282258 0.00992179
308.0 0.99955 -0.129363 0.019598 -0.0029789 0.00045285
309.0 0.98920 -0.062376 0.004167 -0.0002784 0.00001861
310.0 0.97740 -0.046727 0.002295 -0.0001128 0.00000554
315.0 0.90805 -0.020578 0.000432 -0.0000091 0.00000002
320.0 0.83034 -0.011740 0.000132 -0.0000016 0.00000000

Table 3.1.: Values of the higher order nonzero harmonics for a generic one-dimensional
modulation at different values of chemical potential close to the onset of the
inhomogeneous phase (7' = 0). Results are normalized to the value of the first
harmonic (n = 1) in order to show their relative weights. Even harmonics are
found to be zero.

elliptic function solutions as a very general kind of ansatz which can in principle include
an arbitrarily high number of harmonics, and the comparison of free energies shows that
the presence of higher frequencies plays a relevant role only in a narrow chemical potential
window close to the onset of the inhomogeneous phase. This is clearly visible from table
31l where the results for the first harmonics obtained via a Fourier decomposition of the
Jacobi elliptic functions at given values of chemical potential are shown.

It is nevertheless worth mentioning that, in spite of their marginal role for the free energy
gain as a function of chemical potential, higher harmonics are crucial for producing the
solitonic shapes which can allow for a smoother interpolation between the homogeneous
chirally broken and the inhomogeneous phase. In that sense, their presence affects the
order of the phase transition, which turns out to be second order only for the solitonic
solutions. Finally, when looking at the shape of the density of the system (a thorough
investigation will be presented in Sec. £2), it becomes clear that the narrow chemical
potential window discussed above will result in a rather broad range for the average density
of the system (n), so that an Q((n)) plot will look rather different from Fig. Bl

3.5.2. Most favored: 1D vs 2D

This section is devoted to the comparison of the free energies associated with the two-
dimensional shapes considered with the one obtained from the most favored one-dimen-
sional solitonic solutions. From Fig. B.8]it is possible to see that the “egg-carton” ansatz
of Sec. B4l turns out to be favored over the hexagonal solution of Sec. Both
two-dimensional structures considered are however disfavored when compared to the one-
dimensional solitons.

In this context it is instructive to introduce a rectangular structure, which interpolates
continuously between a square lattice and a one-dimensional periodic modulation. Specif-
ically, we can generalize the “egg-carton” ansatz of Eq. (832)) by allowing for different
wave vectors along the two perpendicular directions of the modulation, leading to
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M (z,y) = M cos(Qzx) cos(Qyy) , (3.34)

which reduces to a single cosine varying in one spatial dimension when one of the two
wave numbers goes to zero.

Starting from this ansatz, we minimize the thermodynamic potential with respect to the
amplitude M for fixed wave numbers (), and ), and then study the result as a function of
Q. and @,. Since we know already that the square-lattice solution along the line @, = @y
is disfavored against the one-dimensional cosine, we are mainly interested in the question
whether the former corresponds to a local minimum or to a saddle point in the @, — Qy
plane.

Our result for u = 325 MeV is presented in Fig. B9, showing that the solution at
Qs = Qy is a local minimum. One can also see that in the vicinity of the minimum
the potential remains rather flat along the direction perpendicular to the line @, = Q.
Going along this valley, we find two saddle points at (Q, Qy) = (175 MeV, 400 MeV) and
(400 MeV,175MeV). Unfortunately, the computing time rises strongly with decreasing
wave numbers, so that we could not continue this analysis to values of @, or @, lower
than 100 MeV. However, it is not hard to imagine how beyond the saddle points the valley
approaches the absolute minima at vanishing @, or @, corresponding to a one-dimensional
cosine.

At this point, one may ask whether our observation that the two-dimensional crystalline
structures are disfavored against the one-dimensional ones is caused by the restricted
ansatz for the mass functions. Taking into account more Fourier modes would lead to
additional variational parameters and could thus lower the free energy. It is however
unlikely that this would change our results considerably. As seen in the previous section,
the difference in free energy between the Jacobi elliptic function and the one-dimensional
cosine is negligible in a large chemical-potential range and always much smaller than the
difference to the two-dimensional solutions. We therefore expect that the corrections to
the considered two-dimensional shapes are small as well.

In order to check this, we extend the simple “egg carton” ansatz (Eq. (8:32])) into

3
M(z,y) = Z M, cos(nQx) cos(nQy) . (3.35)
n=1

The minimization of the thermodynamic potential with respect to the variational pa-
rameters (M, Ma, Ms, Q) leads, within numerical errors, to My = M3 = 0 throughout the
whole inhomogeneous window. Although numerical uncertainties are more significant than
for the one-dimensional case, it is safe to say that the inclusion of those higher harmonics
considered above does not lead to an appreciable gain in free energy.

It appears therefore that the preferred shape for the model ground state features a
one-dimensional soliton lattice formed by the chiral condensate which can be described
in terms of Jacobi elliptic functions, as discussed in Sec. It is worth recalling at
this point that these are mean-field results, and that it is known that one-dimensional
crystalline structures are washed out by thermal fluctuations at finite temperature [92].
This statement refers to the fact that the modulation is not rigid, but fluctuates locally, as
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Thermodynamic potential relative to the restored phase for the two-
dimensional modulations of the chiral condensate and the solitonic one-
dimensional solutions at T" = 0. The lowest free energy is once again found
for the one-dimensional Jacobi elliptic function.
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Figure 3.9.: Value of the thermodynamic potential at 7" = 0 and p = 325 MeV for a
rectangular lattice, Eq. [8.34), as a function of @, and Q,. At each point, {2
was minimized with respect to M.
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in a liquid crystal. The system’s spatially modulated nature is however still encoded in the
behavior of long range correlations [93]. Keeping this property in mind, in the following
we will nevertheless stick to our mean-field results and investigate in more details the
properties of these solitonic solutions.



4. Solitonic solutions

Since, as shown on the previous chapter, the preferred shape for the chiral condensate
among all those considered is the one-dimensional solitonic lattice expressed in terms
of Jacobi elliptic functions, we present here some additional results obtained using this
particular kind of ansatz. In particular, the full (7', 1) phase diagram and density profiles
plots will be shown. The procedure for tackling these solitons away from the chiral limit
will also be outlined.

We briefly recall that for this ansatz the mass modulation is given by

sn(Az|v)en(Az|v)
dn(Az|v)

and is characterized by its amplitude A as well as by the elliptic modulus parameter v.

Since the shape of the mass function now varies with v, in order to provide some insight
on the average magnitude of the chiral condensate for this kind of ansatz we show in
Fig. L1l the chemical potential dependence of /(M (2)?) at T = 0. It is possible to see
that the onset of the inhomogeneous phase is marked by a rapid drop in the average
mass as infinitely spaced solitons come together in a very narrow window of chemical
potential (see also Appendix [E]). Another visible feature from this plot is the presence of
small medium effects before the onset of the inhomogeneous phase, as u becomes bigger
than the vacuum constituent quark mass M, = 300 MeV and quarks start forming an
homogeneous Fermi sea. In order to provide a more realistic description of the phase
transition, it would perhaps be more desirable to jump from the vacuum directly into the
inhomogeneous phase, a condition which can be achieved by tuning our parameters to
obtain a slightly bigger vacuum constituent quark mass. This refitting will be pursued
later on, for now we note that this effect is in any case rather small, and we expect that
most of our results are qualitatively unaffected by it.

M(z) = Av , (4.1)

4.1. Phase diagram

In this section we investigate the model phase structure with the introduction of the
solitonic modulations of the chiral condensate. For this, we extend the analysis of Sec.
to finite temperature and determine where the solitonic solutions are favored over the
homogeneous ones. As can be seen in Fig. 2] when allowing for such solutions, an
inhomogeneous “island” appears around the would-be first order phase transition line
that was obtained when restricting to homogeneous phases only. It is worth noting that
the location of this phase does not coincide with the spinodal regio appearing around

!That is, the region where the model thermodynamic potential has different minima, associated with
chirally broken and restored solutions.
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Figure 4.1.: /(M (z)?) for the solitonic ansatz of Eq. (1)) as a function of y for 7= 0.

the first order transition line for homogeneous phases, although its size is affected by the
strength of the chiral phase transition [90].

Contrary to previous studies on simpler modulations like the chiral density wave, it
can be seen that the inhomogeneous phase is surrounded everywhere by second-order
transition lines joining at a Lifshitz point (LP), whose position coincides with the location
of the critical point [90, 89]. Since we numerically checked that at zero temperature these
solitonic solutions are the most favored among all those considered, and a complementary
GL analysis has shown that higher dimensional modulations are disfavored in the vicinity
of the critical point [88], we expect the phase diagram presented in Fig. L2 to be the most
accurate, at least within the NJL model in mean-field approximatiorﬁ
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Figure 4.2.: Model (T, ) phase diagram. Left: homogeneous phases only, the solid line
denotes a first-order phase transition turning into a second-order one (dot-
ted line) at the critical point (square). Right: phase diagram including soli-
tonic inhomogeneous condensates: the shaded area denotes the inhomoge-
neous phase, surrounded by second-order (dotted) lines joining at a Lifshitz

point (circle).

%We note however that this result might be modified if we allow for the formation of color-superconducting

phases.
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4.2. Density profiles

Unlike for the CDW ansatz, in the case of the real solitonic solutions the density of
the system is spatially modulated, following the shape of the chiral condensate. In this
section we present some exemplary shapes for this spatially modulated density inside the
inhomogeneous phase. For simplicity, we limit ourselves to the chiral limit and work at
zero temperature, although this is not essential.

In mean-field the density profile is given by the expectation value (a more detailed
derivation is presented in Appendix [F)

n(x) = (W (x)y(x)) = % Y UEx)E(x) (n4(E) = n_(E)) (4.2)
E

where the 1 p(x) are eigenfunctions of the Hamiltonian H (Eq. ([Z13))) for the eigenvalues
E and ny(F) are the Fermi occupation numbers:
ne = (14 exp((E F p)/T))~". (4.3)

For the one-dimensional solitonic modulations, ()1 (z) will only depend on the one-
dimensional eigenvalues A of the GN Hamiltonian (Eq. (8:24])) and we can write

ne) = 5 [ [ GEuEnE aaE) - @), @)

where p1p(A) is the spectral density of the one-dimensional GN model [45], 46], 50, 49] and

(VA + 5((M(2)/A)? +v —2)

DOINONE GUAY —E() K (4.5)

The resulting density profiles at T" = 0 and four different chemical potentials are shown in
the lower part of Fig. Comparing them with the corresponding mass functions M (z),
which are displayed in the upper part of the figure, we find that the density distributions
follow closely the positions of the solitons, i.e., of the zero-crossings of the mass functions.
In a bag-model like picture, this can be interpreted as the quarks being squeezed by the
bag pressure of the domains with broken chiral symmetry into the regions of space where
chiral symmetry is almost restored. From a topological point of view, these quarks are
related to zero energy modes localized on the domain-wall.

These features are seen most clearly at p = 307.5 MeV, which is just above the phase
boundary from the homogeneous broken phase. Here the solitons are well separated,
leading to strongly localized density peaks as functions of z. When p is increased the
solitons quickly start to overlap and the density profiles become more and more washed
out. At the second-order transition to the restored phase, the order parameter melts and
the density profile smoothly approaches the uniform density of the restored phase. This is
illustrated by the example of u = 345 MeV, which is close to the phase boundary. Note,
however, that already at p = 325 MeV the density variations are relatively small. We
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Figure 4.3.: Spatially dependent constituent mass function M (z) (upper row) and cor-
responding density profile (lower row) for 7" = 0 and, from left to right,
w = 307.5, 309, 325, and 345 MeV. The density is normalized to the density

in the restored phase, 1,5 = ?,)]:5 ,u3.

can therefore state that the density of the system approaches a constant value as we move
towards the chiral restoration transition. In particular, we expect it to be constant in the
proximity of the Lifshitz point.

4.3. Finite quark masses

All the results so far have been obtained in the chiral limit. When considering the solitonic
solutions, the extension of the model to include explicit breaking of chiral symmetry is
nevertheless straightforward. It can be seen that the introduction of finite current quark
masses (m # 0) leads to a generalization of the order parameter to [46]

Motitonm(2) = A (V sn(blv)sn(Az|v)sn(Az + blv) + cn(b\zﬂdn(b[u)) . (4.6)
’ sn(blv)
Here b is an additional parameter to be varied together with A and v when minimizing
the thermodynamic potential. It can be seen [46, Q0] that for the solitonic solutions the
inclusion of finite current quark masses simply amounts to modifying the density of states
in the expression for g, into

E T}
Psoliton,m(E> = \/ﬁpsoliton( E? — 5A2)9(E - \/EA) ’ (4'7)

where 6 € [0,00] is defined through the relation sn(bjv) = ﬁ. The chiral limit, i.e.
m = 0, corresponds to ¢ = 0 or equivalently b = K(v).
The resulting phase diagram for a bare quark mass of m = 5 MeV is reported in Fig. [£.4]

Since there is no exact order parameter to distinguish the homogeneous broken from the
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restored phase in this case, there are strictly speaking only two phases, a homogeneous and
an inhomogeneous one, and, hence, no Lifshitz point. Nevertheless we can easily identify
the remnant of the LP as a cusp in the phase boundary. For simplicity, we will call this
point a Lifshitz point as well. From Fig. 4] it can be seen that the inclusion of a finite
current quark mass reduces the size of the inhomogeneous window, which however is not
destroyed. The Lifshitz point is shifted towards lower temperatures and higher chemical
potentials. Above the LP, chiral restoration occurs through a smooth crossover without
the formation of an inhomogeneous condensate.
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Figure 4.4.: Phase diagram with solitonic solutions for a bare quark mass of m =5 MeV.
The shaded area indicates the inhomogeneous phase.

4.4. Quark-Meson model results

For completeness, we present here the phase diagram obtained when allowing for the
solitonic solutions in the quark-meson model. In the following, we will only consider the
chiral limit. Since we are not considering vacuum fluctuations explicitly (see Sec. [Z3)),
the phase diagram for homogeneous phases features a first order line reaching up to the
¢ = 0 axis, with no critical point. Consequently, the inhomogeneous phase reaches the
temperature axis as well, as shown in Fig. It is known that either the introduction
of a realistic pion mass or the proper inclusion of vacuum fluctuations have the effect of
moving the critical point back into the phase diagram [87], and for the case of finite pion
masses it has been shown that the inhomogeneous phase follows the critical point and the
Lifshitz point reappearsﬁ [90].

3We note however that in the Quark-Meson model the Lifshitz point does not necessarily coincide with
the critical point, unless the mass of the sigma meson is equal to twice the consituent quark mass. This
result can be obtained from a GL analysis.
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Figure 4.5.: Phase diagram of the Quark-Meson model when including the solitonic solu-
tions. The inhomogeneous phase (shaded area) extends up to the temperature
axis.



5. Effects of model extensions on
inhomogeneous phases

This chapter is devoted to the discussion of the effects on the inhomogeneous “island”
discussed in the previous chapter of some common extensions of the NJL model. In
particular, we will focus on the introduction of vector interactions and of an effective
coupling with the Polyakov loop. Similarly to the previous chapter, we will mostly consider
the one-dimensional solitonic solutions.

5.1. Inclusion of vector-channel interactions

In view of finite density investigations, an important extension of the original NJL model

is given by the inclusion of an isoscalar vector-channel interaction term. This kind of

interaction naturally arises in the NJL model when motivating the interaction from a

one-gluon exchange in QCD [76] and was already shown to be of particular importance in

the Walecka model at finite densities [94]. More recently, its influence on the location and

emergence of critical points in the phase diagram has attracted new interest [95] [96], 97, [08].
The model Lagrangian is given by

L= (7" —m) ¥+ G ((58)° + (bir°7°0)?) = Gy (y"0)* . (5.1)

When performing the mean-field approximation, one must introduce additional conden-
sates, related to the expectation values of this new operator (157“@!)). The spatial part
of this vector condensate is usually neglected, since for homogeneous matter one does
not expect the system to break translational invariance. Of course this assumption is no
longer valid if translational symmetry is already spontaneously broken by the formation
of a crystalline condensate, in the following we will however for computational reasons
perform this approximation as well.
We are then left with only the temporal part of the vector condensate,

n(x) = (7)), (5.2)

which has the form of a quark number density (1/1)), in the same way as the term con-
taining the chemical potential in Eq. ([2.22]). Performing the mean-field approximation, we
obtain

(pytap)? ~ —n(x)? + 2n(z) Py . (5.3)
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5.1.1. Homogeneous case

As mentioned in the previous section, the term including the density mean field has the
same shape in Ly/r as the one containing the chemical potential. In presence of an
homogeneous chiral condensate (and consequently baryon density), it is therefore possible
to simply reabsorb this new term in a redefinition of the quark chemical potential, which
becomes then a new quantity to be determined self-consistently [81) Q9] (18, [06]. For this,
we introduce a “renormalized” chemical potential

p=p—2Gyn, (5.4)

and the thermodynamic potential becomes simply

Q(T,M;M) = _Nch/O dEphom(E§ M) [fvac(E)+fmed(E;Tvﬂ)]
(M —m)*>  (p— )
+ 1Gs 10y (5.5)

where f,.q has the exact same shape as in standard NJL without vector interactions,
but with u replaced by fi. The equilibrium value for the constituent quark mass and
the renormalized chemical potential can be obtained by solving the equations giving the
stationary conditions:

o 0 o

R
It is worth mentioning at this point that the second stationary condition in Eq. (5.6 is
known to lead to a maximum for fi instead of a minimum. As such, this must not be inter-
preted as a minimization of the free energy, but rather as a constraint for thermodynamical
consistency [18].

In this work, the value of Gy is treated as a free parameter, which will be varied in
order to study its effect on the phase diagram. Starting from a color-current interaction
and performing a Fierz transformation one would get Gy /Ggs = 1/2, whereas fits to the
vector meson spectrum typically yield larger values [76, 100]. In the following we will
therefore vary Gy between zero and Gg. We will also restrict ourselves to repulsive vector
interactions, similar as in the Walecka model [94].

Results for homogeneous order parameters in the chiral limit are shown in Fig. 5.1l The
inclusion of repulsive vector interactions shifts the phase transition line towards higher
chemical potentials and lowers the position of the critical point (CP). Above a given value
of Gy between Gg/5 and Gg/2, the chiral restoration transition becomes second order
everywhere, and the critical point disappears from the phase diagram.

0. (5.6)

5.1.2. Inhomogeneous case: solitonic solutions

The problem of including vector interactions for the solitonic solutions discussed in the
previous chapter cannot be solved exactly in a straightforward manner. Indeed, for this
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Figure 5.1.: The phase diagram for homogeneous phases in the chiral limit for different
values of the vector coupling G'yy. The blue solid lines represent the first-order
phase transition, which turns to second order (blue dot-dashed lines) at the
critical point (square).

kind of spatially modulated chiral condensate, as seen in Sec.[£2]the density is not constant
and the renormalized chemical potential becomes a spatially dependent quantity as well.
In order to be able to reuse the known analytical results for the density of states in the ex-
pression for the thermodynamic potential, we choose to sacrifice complete self-consistency
and approximate the density by its spatial average,

1

n(x) - n = (n(x))x = V/den(x). (5.7)

As a consequence, i becomes constant as well, and the problem reduces to the known case
without vector interactions at a shifted value of the chemical potential given by

fi=p—2Gyn, (5.8)

Of course, at first sight, it seems rather questionable whether the replacement Eq. (5.7)
is a good approximation in an inhomogeneous phase. However, by looking at the density
profiles for the solitonic solutions discussed in Sec. 2] we can argue that it can be justified
in the vicinity of the second-order phase boundary to the restored phase, and in particular
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for the Lifshitz point.
Within this setup the average density is given by

n = Nch /dEpsoliton(E)(n+ - n*) ) (5'9)
0

with the usual occupation numbers ny = 1/(1 + exp((E F f1)/T)). We emphasize that,
besides explicitly depending on fi via the occupation numbers, n is a functional of M (x)
via the density of states psoliton(E).

At this stage it is worth noting that for most quantities all dependence on Gy can be

absorbed into . In particular the form of the gap equation (Eq. (5.6])) and, hence, its
solutions M (x) are identical to the case without vector interaction upon replacing p — fi.
As obvious from Eq. (£9), the same is true for the average density 7. As a consequence,
the mass functions M (x) at a given 7 do not depend on Gy . For homogeneous phases this
is a well-known result [I8]. The remaining effect of Gy is on the one hand side to map
i onto p via Eq. (5.8]), and on the other hand to shift the value of the thermodynamic
potential of a solution by —Gy 2. This will be important for the explanation of our results
later on.
In Fig. we present the p — T phase diagrams for various values of Gy, focusing on
the region where the domain-wall soliton lattice is preferred. The calculations have been
performed in the chiral limit. For comparison we have also indicated the transition lines
one obtains when the analysis is limited to homogeneous phases.

As previously discussed, for Gy = 0 the Lifshitz point precisely agrees with the critical
point of the purely homogeneous analysis. It turns out, however, that this is no longer true
for Gy > 0: whereas with increasing vector coupling the critical point moves downwards
in temperature and eventually disappears from the phase diagram, we observe that the
Lifshitz point is only shifted in the p-direction, while remaining at the same temperature.
Consequently, unlike the first-order boundary in the purely homogeneous case, the exis-
tence of the inhomogeneous phase is not inhibited by the vector interaction. At vanishing
temperature the transition from the homogeneous broken to the inhomogeneous phase is
only slightly varying with Gy, whereas the transition from the inhomogeneous to the re-
stored phase significantly shifts, thus enhancing the domain where inhomogeneous phases
are favored.

The observed Gy -dependence of the phase diagram can easily be understood when we
recall that the stationary condition (Eq. (5.6])) depends on Gy only through . Conse-
quently its solutions M (x) at given (fi, T') are independent of Gy and thus equal to the
solutions at Gy = 0 where i = pu. At Gy > 0, we can then translate these solutions into
solutions at shifted values of p, which are obtained from Eq. (58). For a given mass func-
tion this mapping is unique since the average density n also depends on Gy only through
i, see Eq. (B.9).

The consequences of this mapping can be elaborated further for the phase transition lines.
We first consider the case of second-order phase transitions as found in our calculation.
When approaching the second-order transition from any direction, for each extremum in
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Figure 5.2.: The phase diagram in the chiral limit for different values of the vector cou-
pling when allowing for the domain-wall soliton lattice. The black dashed
lines represent the second-order transition lines joining at the Lifshitz point
(dot), the shaded region represents the inhomogeneous phase. The blue solid
lines represent the first-order phase transition obtained when limiting to ho-
mogeneous order parameters, which turns to second order (blue dot-dashed
lines) at the critical point (square).

the thermodynamic potential that is relevant for the transition the density approaches the
same value and consequently all extrema are mapped to the same value of u. Since there is
only one extremum left on one side of the phase transition, we only have to make sure that
the additional extremum on the other side cannot be mapped beyond the phase transition
line, thus generating a spinodal region. For the transitions into the restored phase this is
guaranteed by the fact that the restored solution has the highest possible density at given fi
and that the density increases with ji. Therefore no other solution can be mapped beyond
the transition line for Gy > 0. Similarly the homogeneous broken solution has the lowest
density at given i and therefore no inhomogeneous solution can be mapped below the
transition line when going from the inhomogeneous into the homogeneous broken phase.
Consequently all second-order transition lines for Gy = 0 are mapped onto second-order
transition lines for Gy > 0. In particular, this explains why the Lifshitz point stays at the
same temperature, as the mapping leaves 1" untouched.
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From the arguments given above, it follows immediately that the phase diagram in the
f-T plane is independent of Gy. Moreover, since in this case n(7, 1) is uniquely given by
Eq. (59) and therefore also independent of Gy, this means that the n-7" phase diagram
is independent of Gy as well. This diagram is presented in Fig. 5.3l
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Figure 5.3.: The phase diagram in the n — T plane. The transition lines do not depend on
Gy for Gy > 0.

A slight complication of this picture arises if there is a first-order phase transition at
Gy = 0, which occurs when limiting to homogeneous phases. In this case we have a
spinodal region enclosing the first-order phase transition line, where the thermodynamic
potential has several extrema at the same value of u: two local minima and one local
maximum. As before, this means that at Gy > 0 we have several solutions at the same
value of fi. However, since the local extrema correspond to different masses and therefore
to different densities, they will now be mapped onto different values of u by Eq. (G.4):
more precisely, solutions with lower masses will be shifted to higher values of u than
solutions with higher masses. As a consequence, the spinodal region shrinks with increasing
Gy, i.e., at fixed temperature the first-order transition gets weakened and eventually
becomes second order. This explains why the CP moves to lower temperatures and finally
disappears from the phase diagram, as seen in the previous section. (see also Ref. [96] for
a detailed discussion of this effect).

Finally, we would like to comment on the slopes of the three phase transition lines in the
Lifshitz point. For Gy = 0 all of them are equal, i.e., the phase boundaries are tangential.
In the i — T plane, this remains of course true for Gy > 0. However, when we employ
Eq. (B.8) to map fi onto p we have to keep in mind that the average density n at given T’
and ji depends on the constituent quark mass M. The latter vanishes identically at the
two phase boundaries to the restored phase, but is nonzero at the boundary between the
homogeneous broken and the inhomogeneous phase, approaching zero only towards the
Lifshitz point. Depending on the corresponding critical exponent, this can affect the slope
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of this boundary in such a way that it meets the two others with a non-vanishing angle at
Gy > 0. As one can see in Fig. 5.2 this is indeed the case.

As previously discussed, the assumption of a uniform density profile is most questionable
at the transition from the homogeneous broken to the inhomogeneous phase at low tem-
peratures. In fact, at Gy > 0, a local density approximation would result in a lower value
of i within the solitons. This reflects the repulsive nature of the vector interaction, which
disfavors localized density peaks. We therefore expect that the formation of well sepa-
rated solitons, as we find near the boundary to the homogeneous broken phase at 7" = 0,
eventually becomes inhibited by the vector interaction. Related to this, the second-order
phase transition from the homogeneous broken to the inhomogeneous phase may partially
turn into a first-order transition at Gy > 0. On the other hand, our assumption of a
uniform density becomes gradually better with increasing p or T and is fully justified at
the phase transition line to the restored phase. In particular the phase boundary itself
and the Lifshitz point are not affected by the approximation. This will be shown more
rigorously in Appendix [Gl by means of a Ginzburg-Landau analysis.

5.1.3. Chiral density wave

Complementary support for the results of the previous section can be obtained from inves-
tigations of the chiral density wave defined in Eq. (B816). Although, at least at Gy = 0,
this kind of modulation is disfavored compared to the domain-wall soliton, a constant
density profile is no assumption here, but a property of the state. This is most easily seen
by applying a global chiral transformation of the form v — exp(iy573 qz0/2)1 with some
constant zg. While the density (T (x)i(x)) is invariant under this transformation, it leads
to a phase shift in M (x) which is equivalent to a translation by zg in the z-direction. Hence
the density must be uniform. The replacement Eq. (B.7) is therefore an exact manipula-
tion for the CDW, which will allow us to comment on the corresponding approximation
for the solitons. We can therefore perform a completely self-consistent mean-field calcula-
tion, leading to the phase diagrams shown in Fig. 5.4l The calculations have again been
performed in the chiral limit and for Gy = 0 (left panel) and Gy = Gg (right panel). The
regions where the CDW is favored against the homogeneous broken and restored phases
are indicated by the shaded areas. For comparison we have also indicated the boundaries
of the regime where the solitons are favored (dashed lines).

As previously discussed, the transition from the CDW to the chirally restored phase is
second order and agrees exactly with the transition from the soliton lattice to the restored
phase. In particular, this also holds for the Lifshitz point. On the other hand, the
transition from the homogeneous broken phase to the state where the CDW is preferred
is first order. For this reason, given the arguments of the previous section, it is directly
depending on Gy, not only through fi. As a result, the phase boundary, which at Gy, =0
almost coincides with the corresponding phase boundary of the soliton phase, moves away
from it at Gy = Gg. This effect is however rather mild. Moreover we find that the
first-order transition line from the homogeneous broken to the CDW phase is much less
affected by the vector interaction than the second-order transition line from the CDW to
the restored phase. The qualitative behavior of the phase diagram as a function of Gy
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Figure 5.4.: Phase diagrams in the p—T plane at Gy = 0 (left) and Gy = Gg (right). The
dashed lines have the same meaning as in Fig. and represent the second-
order phase boundaries between the homogeneous broken phase, the restored
phase and the inhomogeneous phase with domain-wall solitons, respectively.
The shaded area indicates the region where the CDW is favored compared
to homogeneous phases (but not to the solitons). Here the blue solid line
represents the first-order phase boundary from the broken homogeneous phase
to the CDW, while the phase boundary from the CDW to the restored phase
is second order and coincides with the boundary from the soliton phase to the
restored phase.

is therefore similar to our results for the soliton lattice. Since we expect the CDW to be
disfavored compared to the solitons, we can take the CDW result as a lower limit for the
area occupied by an inhomogeneous phase. This suggests that the effect of assuming a
uniform density profile for the solitons is not drastic.

5.1.4. Quark number susceptibilities

The divergence of susceptibilities near a critical point has led to suggestions for how to
locate the CP in the QCD phase diagram experimentally [64] and therefore attracted
significant interest also in model studies. Since the critical point as a cornerstone of the
phase diagram is essentially replaced by the Lifshitz point in our study, we first want to
discuss the behavior in its vicinity. For simplicity we will limit ourselves to the number
susceptibility

0’0 on
Xnn - - 8M2 - alu ) (510)
which corresponds to the change in density with u when going along a line of constant
temperature. For this reason the behavior of x,, near the Lifshitz point is in fact deter-
mined by the behavior when going from the homogeneous broken to the restored phase
and not by the inhomogeneous phase. Consequently, since the Lifshitz point coincides
with the CP for Gy = 0, we find the same divergent behavior as when limiting to homo-
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geneous phases for Gy = 0. This is illustrated on the right hand side of Fig. 5.5 showing
a 1/+y/pier — p-like singularity when approaching the Lifshitz point from the left. However,
for Gy > 0 the behavior is qualitatively altered: The would-be CP when limiting to ho-
mogeneous phases is hidden inside the domain of a inhomogeneous phase and the Lifshitz
point does not correspond to the endpoint of the second-order phase transition line when
limiting to homogeneous phases. For this reason the number susceptibility does not di-
verge near the Lifshitz point for Gy > 0. This can easily be understood in the context of
a Ginzburg-Landau expansion, as discussed in Appendix
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Figure 5.5.: Averaged density (upper panel) and number susceptibility (lower panel) for
vanishing temperatures (left) and for the temperature at the Lifshitz point
(right) as a function of chemical potential and for Gy = 0.

Focusing on Gy = 0 first and investigating the number susceptibility numerically in the
regime where soliton lattices are energetically preferred, we find the results shown in
Figs. and (left). Since all transition are second order, the averaged number density
changes continuously when varying temperature and chemical potential. At the transition
from the homogeneous broken to the inhomogeneous phase the change is however very
rapid as discussed in the following and Yy, diverges. This is most prominent at 7" = 0
and decreases when going towards the Lifshitz point.

In order to get an intuition for the qualitative behavior of x,,, we consider the GN model
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Figure 5.6.: Number susceptibility in the p — T plane at Gy = 0 (left) and Gy = Gg/2
(right). For Gy = 0 the number susceptibility diverges at the transition from
broken to inhomogeneous phase.

and focus on the density as a function of chemical potential ngy (1) at vanishing temper-
atures. As can be extracted from Refs. [45], (0] it is given by

7.(2

= —— Myue, 5.11
ngN 2Z/K(l/) vac ( )
where M, as the fermion mass in the vacuum sets the scale and the elliptic modulus as a
function of chemical potential is given through the implicit relation 7mv/vu = 2E(v) Myqe.
At the transition from homogeneous to inhomogeneous phase at ji., = %Mmc the number
density then behaves like

2
7 Myac

ngN 1/ 7 1\
log(pt/per — 1)

(5.12)
which leads to a (1 — per) log? (1 — pier)] ™ *-like singularity in the number susceptibility.
A straightforward generalization of Eq. (.12 to three spatial dimensions suggests that
for Gy = 0 the change An in the average number density near the transition from the
broken homogeneous to the inhomogeneous phase at 1 = p.-(7') should be given by

3
_ cl
An = ——-— (5.13)
log(p/per — 1)
with some temperature-dependent coefficient c¢. Indeed, our numerical results are consis-
tent with this behavior, thus explaining the divergence of xnn at © = picr.
In contrast, for Gy > 0 the mapping i — p via Eq. (B.8) leads to a qualitatively different
behavior. For this case we find

on Ou 1 on
X of" O 1+ 2Gy 92 Ofi| (5:14)
H A(p)
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Therefore a divergence in On/du at Gy = 0 does not result in a divergent number suscep-
tibility for Gy > 0, but merely leads to a jump of order 1/2Gy . This is illustrated on the
right hand side of Fig.

5.1.5. Finite current quark masses and vector interaction

For completeness we present in Fig. B.7] results for the phase diagram of the solitonic
solutions at a non-vanishing current quark mass m = 5 MeV and various values of Gy .
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Figure 5.7.: 4 — T phase diagram for different values of Gy and a current quark mass
m = 5MeV. The dots indicate the Lifshitz points above which the second
order transition lines join and turn into a crossover.

It has already been shown in Sec. that the Lifshitz Point shifts to smaller tempera-
tures and larger chemical potentials with increasing m. The dependence on Gy however
stays qualitatively the same as in the chiral limit: the Lifshitz point is only shifted in the
p-direction upon increasing GGy and the domain of inhomogeneous phases in the y — T
diagram is stretched. The explanation for this behavior is identical to the one given in

Sec. for the chiral limit.

5.2. Effects of Polyakov loop dynamics

The NJL model describes a system of self-interacting quarks and does not include gluonic
degrees of freedom. As such, it does not confine, and is known to feature unphysical effects
like the possibility for the decay of a meson into free quarks.

In order to mimic features of confinement, in particular to suppress the contribution of
free constituent quarks in the confined phase, and in order to include gluonic contributions
to the pressure, the NJL model can be coupled to an effective description of the Polyakov
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loop [10T], 102]. The resulting model is known as the Polyakov-loop extended Nambu—
Jona-lasinio (PNJL) model.
The Polyakov loop is defined by

L(x) =Pexp

1T
i/o dr AT, x)] , (5.15)

where Ay(1,x) = 1Ag(t = —i7,x) is the temporal part of a gauge field A, = gAZ)‘Q—a at
imaginary time. In pure Yang-Mills theory, the traced expectation values of L and its

hermitean conjugate,
1

(= (Tel), 0= ]\;:(TrcLU, (5.16)
can be related to the free energies of a static quark or antiquark, ¢ ~ e ' o/T f ~
e~ Fa/T [103, 104], and are therefore order parameters for the confinement-deconfinement
transition.

To include the Polyakov-loop dynamics in the NJL model, the quarks are minimally
coupled to a background gauge field by introducing a covariant derivative D,,:

8# — D“ = (9“ + iAoéuo . (5.17)

Furthermore, a local potential U(¢,¢) is added to the thermodynamic potential, which is
essentially constructed to reproduce ab-initio results of pure Yang-Mills theory at finite

temperature [10T, [105].
The PNJL Lagrangian thus reads

Lpnir = P(iy" Dy — ) + Gs (09)? + (in a)?) + UL, D) . (5.18)
In the most simple approach, the gauge field is taken to be a space-time independent
mean field A4, and the effect of the covariant derivative in the kinetic part amounts to the

replacement [102]
Nefmea(E) —  fENJL(E) = Tlog (1 4+ e 3E-m/T L 39~ (E=m/T 4 37 e_2(E_“)/T>
+ Tlog (1 + e 3ETW/T 4 3 e~ (EHm/T o 3€e_z(E+“)/T> . (5.19)

However, as can be seen from Eqs. (B.15]) and (5.16]), a constant mean field A4 would always
result in complex conjugate values for £ and £. This should be considered as an artifact,
since their interpretation as being related to the free energies of quarks and antiquarks
means that ¢ and £ should be real and, at finite chemical potential, different from each
other. In order to by-pass this problem, we therefore follow the viewpoint of Ref. [95]
that, after the replacement Eq. (519), £ and £ should be treated as independent real mean
fields, rather than the components of A4. This is also consistent with the fact that the
potential & which is added to the thermodynamic potential is given in terms of £ and ¢ as
well. For simplicity we take Fukushima’s parametrization [95],

U, = —bT(54e—a/TM+1og[1—65@—3(55)2+4(£3+Z3)]), (5.20)
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Figure 5.8.: Phase diagram of the NJL (solid line) and PNJL (dashed line) model for
homogeneous phases.

with two parameters a and b. Other prescriptions, like the polynomial [I01] or the loga-
rithmic [I05] potential, would lead to very similar results.

5.2.1. Homogeneous case

The PNJL thermodynamic potential for homogeneous condensates is given by

o] M2
Q(Tnua M) = _Nf/ dEphom(E) [chvac(E) + fnlzé\c[lJL(E;T7 :U’)] + = +u(‘€a€) )
0

4Gg
(5.21)
and the thermodynamically stable states can be determined by solving the in-medium gap
equations

9o 0 (5.22)

oM or ot
When including the coupling with the Polyakov loop, one and two-quark excitations are
suppressed in the confined phase, as can be seen from Eq. (B.19). This results to a stretch
of the chiral phase transition curve towards higher temperatures, as shown Fig. There
it is also possible to see that the position of the phase transition at 7" = 0 is unchanged in
PNJL. This is due to the fact that at vanishing temperature the Polyakov-loop dynamics
decouples completely from the quark sector due to the way the PNJL model is constructed.
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Figure 5.9.: Phase diagram of the NJL (solid line) and PNJL (dashed line) model allowing
for one-dimensional spatial modulations of the order parameter.

5.2.2. Inhomogeneous case

When dealing with inhomogeneous phases, ¢ and ¢ are naturally expected to be spatially
dependent, presumably following the density profile in some way. Nevertheless, similar to
the treatment of ji in the previous sections, we will assume spatially independent values
of ¢ and 7, even in the inhomogeneous phase. This is not only to keep the technical side
of the calculation trackable, but also the assumptions made in order to derive Eq. (£.19)
and the unknown kinetic contributions to Eq. (5:20]) suggest such a conservative approach
as a first step. Within this kind of approximation, the thermodynamic potential can then
be obtained from Eq. (B21]) by replacing the density of states and the condensate term
with the appropriate ones for the kind of modulation considered.

Since we consider the NJL model with Gy = m = 0 as our starting point, we shall limit
ourselves to this case when studying the role of the Polyakov loop. We employ the same
parameter set as in Ref. [95] (values are reported in Appendix [D.3]).

In Fig. we compare the phase diagrams for the NJL model with that of the PNJL
model, allowing for phases with the one-dimensional solitonic modulation in both cases.
Similar to what happens for homogeneous phases, the most notable effect of the coupling
with the Polyakov loop is a stretch of the phase diagram in the T-direction. We point out
here that a Ginzburg-Landau analysis suggests that the coupling with the Polyakov loop
might lead to another splitting between the critical point and the Lifshitz point, similar to
the case of vector interactions. A numerical cross-check shows however that, at least with
our parameter set, this effect is so small that it is not possible to distinguish the position
of the two points. A more detailed analysis of this behavior is therefore postponed to
future work.

In Fig. the value of / is presented via color coding in the region of the phase diagram
where the inhomogeneous phase is favored. We find that ¢ and ¢ are rather small in the
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Figure 5.10.: Polyakov loop expectation value ¢ in the p-T' plane in the vicinity of the
inhomogeneous phase.

entire inhomogeneous phase, reaching their maximum values £ =~ 0.15 and £ ~ 0.2 near the
Lifshitz point. In this context we recall that at vanishing temperature the Polyakov-loop
dynamics decouples completely from the quark sector, and as a consequence £ = £ = 0 at
T = 0, independent of the density. While it is unclear whether this feature of the model
is realistic, it means that our assumption of space-independent Polyakov-loop expectation
values cannot have a large effect. Even if ¢ and ¢ followed the density profile, the results
would not be very different, because at low temperatures their values are very small
anyway, whereas at higher temperatures the density differences get washed out.

5.2.3. PNJL and large N.

Aside from providing a more realistic description of confined quark matter, the PNJL
model can be used to investigate the influence of the number of colors on the phase dia-
gram [I06]. For this, the coupling to the Polyakov loop is crucial, since the NJL mean-field
results without it are N.-independent. The study of Ref. [I06] was restricted to homo-
geneous phases, and its main focus was to see how the region of confined but chirally
restored matter develops. Some time ago, this was thought to be a possible manifestation
of quarkyonic matter, whereas according to the present picture chiral symmetry is inho-
mogeneously broken in the quarkyonic phase [58 [69] [70]. Therefore, since the latter has
been derived in the large-N. limit, it is particularly interesting to combine the approach
of [I06] with our formalism, and to study the behavior of the inhomogeneous phase in the
PNJL model at large N..

As the exact implementation of the Polyakov-loop expectation value is not unique at
arbitrary N., we follow Ref. [I06] and change the function f,eq in the thermodynamic
potential into
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Figure 5.11.: PNJL phase diagram varying the number of colors: N, = 3 (left), N, = 10
(center), N. = 50 (right). The shaded region indicates the inhomogeneous
phase.

fned = O(E,—p)lT (e%Eru)/T n e,(EW)/T)

+ 0(u—E) [(u — E,)+(T (e—W—EWT + e_(/”Ep)/Tﬂ . (5.23)

which basically amounts to a leading-order expansion for small ¢ and is as such expected
to be accurate at large NN, in the confined phase. We furthermore rescale the Polyakov
loop potential and the coupling constants via

_ N2 _1 _
3](55, UL D) - U D). (5.24)

Our results for N, = 3, 10 and 50 with the domain-wall solitonic ansatz are shown
in Fig. B0l By increasing the number of colors, the inhomogeneous phase is enlarged
and stretches towards higher temperatures, approaching the upper limit given by the
pure glue transition temperature (7, = 270 MeV in our parametrization of the Polyakov
loop potential). The transition lines between homogeneous and inhomogeneous phases
become more and more vertical, assuming a shape resembling the expected form for the
phase diagram in the large N, limit [67]. The size of the inhomogeneous phase is not
dramatically enhanced in the p direction, since as previously mentioned in the PNJL
model the Polyakov loop decouples from the NJL sector at T = 0. Therefore, since
the latter is N¢-independent in mean-field approximation, the transitions at T" = 0 are
unchanged.

Gs—)



6. Inhomogeneous phases at higher densities

This chapter focuses on the study of inhomogeneous phases at higher chemical potentials.
The main motivation behind this comes from recent quarkyonic matter studies, suggesting
that at sufficiently high densities chiral symmetry might be spontaneously broken in an
inhomogeneous way [58], and in particular through the formation of increasingly complex
crystalline structures [69} [70].

In the following we therefore push the model to its validity limits and check what is the
favored shape for the ground state of the model at high chemical potentials, beyond the
inhomogeneous island discussed in the previous sections. A thorough discussion on the
reliability of these results is included as well.

6.1. An inhomogeneous “continent”

As shown in Fig. 6] above some critical chemical potential a second inhomogeneous
phase appears in the model phase diagram. This phase seems to extend to arbitrarily
high p, with steadily growing amplitude and wave number of the spatial modulation. This
inhomogeneous “continent” is present for all kinds of spatial modulations we considered,
and its onset is again given by a second-order phase transition. In this case, we recall
again that GL analyses reveal that the phase boundary is the same for all inhomogeneous
solutions [89]. Within some parametrizations, especially when one chooses a stronger
coupling to enforce a larger value of the constituent quark mass in vacuum, the continent
turns out to be even directly connected to the inhomogeneous island discussed until now,
as can be seen in Fig.

Since the continent appears at relatively high chemical potentials and is characterized
by large wave numbers for the chiral condensate, the first natural interpretation for it is
that of an artifact of the regularization used. While this might indeed be the case, we will
argue that the effect is at least non-trivial. In order to achieve some better understanding
on the observed behavior, it might be worth analyzing in detail the mechanisms that
within the model lead to the formation of an inhomogeneous condensate. Since, as argued
above, we expect these considerations to be roughly independent of the particular ansatz
chosen for the spatial modulation, we focus on the simplest possible case, namely the
CDW (Eq. (BI6).

In this case, we obtain for the thermodynamic potential

2

Q_Qrest - _Nch /OOC?E [pCDW(E7M7 Q) _p'rest(E)vaac(Ea A)"i'fmed(E)]_‘_%a (61)

where we have subtracted the free energy of the restored phase and explicitly indicated
the dependence of the different terms on the Pauli-Villars cutoff A, the amplitude M and
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Figure 6.1.: Left: Phase diagram with inhomogeneous island and continent. Right: Am-
plitude and wave number for the CDW ansatz at T' = 0.
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Figure 6.2.: Phase diagram for solitonic solutions with a parameter set fitted to give a
vacuum constituent quark mass of M,,. = 330 MeV. The inhomogeneous
phase (shaded area) extends up to arbitrarily high chemical potentials.
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Figure 6.3.: Functions entering the integrand in the thermodynamic potential, Eq. (G1).
Left: The red solid line represents the Pauli-Villars regularized function fyqc,
corresponding to the Dirac sea contribution, while the blue dashed line in-
dicates the sum fi4c + fined at T = 0 and g = 600 MeV. The two lines
coincide above F = pu, since the medium does not contribute beyond that
point. Right: Density of states p(E, M, Q) relative to the restored case,
prest(E) = p(E,0,0), for homogeneous condensates with M = 300 MeV (red
dashed line), M = 100 MeV (green dash-dotted line), and for a CDW with
M =100 MeV, @ = 1000 MeV (blue solid line).

the wave number @ of the CDW. In particular we note that only the function f,,. depends
on the regularization whereas only the density of states depends on the wave number.

Since the condensate term always disfavors (homogeneous or inhomogeneous) chiral
symmetry breaking, a necessary condition for a non-trivial phase is that the first term
is negative, i. e. the integral must be positive. The functions which enter the integrand
are displayed in Fig. for several cases. As shown in the left panel, the Pauli-Villars
regularized vacuum function f,q. (red solid line) is negative for all energies. Hence, in
vacuum, the density of states minus its value for the chirally restored solution should be
negative as well to obtain a positive integrand. Indeed, as seen on the right, for Q = 0
the difference p — prest is always negative and its absolute value increases with increasing
M. Thus, a larger constituent quark mass leads to an increase of the free-energy gain in
the kinetic term, which is stabilized by the condensate term at some optimum value of M.
This is the usual mechanism for spontaneous chiral symmetry breaking in vacuum.

In contrast to fiq., the function f,,.q is positive. Hence, when medium effects are
included, the sum f,4c + fimeda becomes less and less negative at small energies until it
eventually changes sign. As an example the case T = 0, p = 600 MeV is shown in the
left panel of Fig. (blue dashed line). Since at 7" = 0 the medium only contributes to
energies F < p, the sum fyoc + freq remains negative at large energies, but altogether the
formation of homogeneous condensates, related to a negative function p — prest, becomes
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progressively disfavored by the medium contributions, thus leading to chiral restoration if
we restrict ourselves to @ = 0.

The situation changes, however, when we allow for a CDW with Q > 2M. In this case
P — Prest is positive at small energies and changes sign at F ~ Q/2— M?/(2Q) (see Fig.[6.3]
blue solid line on the right). Hence, by properly choosing @, it can be achieved that the
factors fuae + fmed and p — prest have the same sign for all energies, thus more or less
optimizing the free energy gain in the kinetic part of the thermodynamic potential. As
fvac + fmed changes sign slightly below E = u at large p, this estimate yields @ ~ 2u for
the favored value.

These arguments support the statement that the formation of an inhomogeneous chiral
condensate is a medium-induced effect [58), [61], [54]. In our case it is technically related
to the fact that both, p — press with @ > 2M and f,,.q, are positive at small energies.
Therefore, since none of these functions but only the vacuum term is affected by the regu-
larization, the appearance of the continent does not immediately look like a regularization
artifact.

Of course, the dynamical formation of the inhomogeneous condensate eventually de-
pends on the interplay of f,q. and f,eq, and the explicit expression for the Dirac sea term
will naturally influence the quantitative details. For example, by allowing for a larger
cutoff A, the vacuum part becomes larger and the second continent is shifted to higher
chemical potentials. However, the same is true for the standard chiral phase transition
between homogeneous phases, where this is usually not considered to be a major problem.

The existence of the inhomogeneous continent is not restricted to Pauli-Villars regular-
ization, but the very same behavior is also present when the vacuum term is regularized
following the Schwinger proper-time prescription (described in Appendix [C2.3). On the
other hand, when the thermodynamic potential is regularized by introducing a three-
momentum cutoff, it is clear that a restriction of the in- and outgoing momenta also
restricts the size of the wave number to which they can couple. Hence, large values of
Q@ are strongly disfavored and the second inhomogeneous phase, if it exists at all, cannot
extend to arbitrary large values of . However, unlike the previous examples, this is 0b-
viously a regularization effect, since the suppression of large @) is directly caused by the
cutoff, and for this reason the authors of Ref. [70] introduce a form factor which restricts
the quark momenta to the vicinity of the Fermi surface, rather than to small absolute
values.

An example where large values of () are suppressed in a seemingly more physical way
is the quark-meson model. For the CDW ansatz, which in the QM model reads

o(x) = frcos(Q - x), m3(x) = frsin(Q-x), (6.2)
the kinetic term of the mesons in Eq. (2.40) yields a contribution

mesons 1

which suppresses large values of @ (see Ref. [26] for more details). As a result, a numerical
investigation seems to indicate that the inhomogeneous continent is not present in the QM
model.
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From this one might naively conclude that the emergence of the continent in the NJL
model is due to the absence of derivative terms in the Lagrangian. However, it is well
known that in the NJL model the contribution Eq. (6.3]) is already contained in the
vacuum part of the thermodynamic potential, which carries a dependence on @) through
the energy spectrum [26], 54, [I07]. Indeed, if one expands

Qvac(M7 Q) - Qvac(My O) + 51}(10,2 Q2 + 51}(10,4 Q4 + ... (64)

one can show in a regularization independent way that the so-called spin stiffness is given
by
Lo

ﬁvac,? - 5 T (65)
giving rise to a term like Eq. (€3] in the thermodynamic potential. Hence, if we were
allowed to neglect all other terms in Eq. (€4]), we could conclude that large values of @
and, thus, the inhomogeneous continent are suppressed in the same way as in the QM
model. However, in the continent region, @ is certainly not small (compared with M or
f=). In any case, it is clear that the stability against large values of ) cannot be discussed
in terms of a Taylor expansion for small Q).

We therefore look at the higher orders in the series in order to get an idea how these
additional contributions (which become more and more relevant at higher values of Q)
influence the previous considerations. In particular the coefficient of the Q*-term is di-
mensionless and therefore expected to stay finite, even if the cutoff is sent to infinity. For
instance, if we employ proper-time regularization (see Appendix [C.2.3)), we obtain

2 2 N+N 2
Bracy = —2Nche—MQ//\"”l\ngzj\fr2 - —ﬁ + O(%). (6.6)
The most important observation is that this term is negative, i. e. it weakens the effect
of the Q*-term. Although the value of the coefficient is relatively small, the Q*-term
dominates the Q?-term when @ is of the order of 10 times f;.

In Fig. G4l we compare the full proper-time regularized vacuum thermodynamic potential
with the results of a Taylor expansion to the orders @2 and Q*. In agreement with our
considerations above, the Q?-result gets reduced by the higher orders. Although the effect
is overestimated by the Q*term, this leads to a much more moderate increase of Q4.
in the continent region. As a consequence, the vacuum contributions do not disfavor the
formation of a CDW strongly enough in this region to compete with the favoring effects
of the medium contributions.

A very systematic investigation of the large-Q) behavior of the vacuum effective potential
has been performed more than 20 years ago in Ref. [I0§]. Although it turned out that
the exact behavior beyond the universal Q?-order is strongly regularization dependent, in
all cases considered, €2,,. eventually becomes negative, meaning that even the vacuum is
unstable against the formation of a CDW with very large (). While this is clearly unphys-
ical and should therefore be ignored, there is no reason why corrections to the Q?-terms
should not be present at all. Unfortunately, these corrections are very model dependent
and theoretical input from outside is needed to pin them down. In fact, inhomogeneous
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Figure 6.4.: Proper-time regularized vacuum thermodynamic potential for a CDW with
fixed amplitude M = 100 MeV as a function of the wave number @, using
parameters from [54]. The value for @ = 0 has been subtracted. The full
result (black solid line) is compared with the Taylor series truncated at order
Q? (red dashed line) and order Q* (blue dotted line).

phases at arbitrary large p have been predicted for the 1 4+ 1-dimensional Gross-Neveu
model [50] as well as for QCD in the large-N, limit ﬂEGﬂE Therefore, the continent may
be not as exotic as it appears.

6.2. Favored phase at high densities

As mentioned in the introduction, recent quarkyonic-matter studies suggest that increas-
ing the chemical potential leads to the formation of higher-dimensional chiral crystalline
structures with growing geometrical complexity [70]. While no definite scale was given,
this could be a hint that the chemical potentials considered so far are too low for two-
dimensional crystals to be favored. This motivates us to extend our investigations to
higher values of .

Of course, we have to keep in mind that the NJL model is a low-energy effective model
with a limited range of validity. In particular, since the continent appears in a region
where the chemical potential is of the order of the regulator masses, we have to be cau-
tious not to overinterpret the results. However, as thoroughly discussed in the previous
section, although the inhomogeneous continent is sensitive to regularization effects, it is
not obviously created by them.

Here we simply take the inhomogeneous continent as a “model laboratory” to study
the competition of one- and two-dimensional chiral crystals as a function of p. To this
end, we use a slightly modified parameter set with a vacuum constituent quark mass of
330 MeV (parameter values are reported in Appendix [D.]). Without modifying any other
qualitative behavior of the model, this has the advantage that the inhomogeneous island

'For N. = 3, they are, however, disfavored against color superconductivity 5y
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Figure 6.5.: Free-energy differences between inhomogeneous phases with different modu-
lations, evaluated at T' = 0.

merges with the continent (as shown in Fig. [2]), so that the comparison of the different
crystalline phases can be performed on a continuous interval, without being interrupted
by the restored phase.

In Fig. the differences between the free energies of three inhomogeneous phases with
different modulations are displayed as functions of p. As we have seen before, at low chem-
ical potentials the two-dimensional crystals are disfavored against the one-dimensional
domain-wall soliton lattice. Above pu == 450 MeV, however, the two-dimensional square
lattice leads to a lower free energy. At u =~ 600 MeV, the hexagon surpasses the one-
dimensional modulation as well, and finally becomes the most favored shape at pu =~
900 MeV. Thus, while being aware that the model cannot be trusted blindly in this high
density region, it is nevertheless remarkable that we recover the same sequence of crys-
talline phases as described in Ref. [70].






7. Conclusions

In this work we have investigated inhomogeneous chiral symmetry breaking phases within
the NJL model.

As a first step, we developed within the usual mean-field approach a systematic way for
evaluating the grand canonical thermodynamic potential associated with different kinds of
spatial modulations of the chiral condensate, involving the diagonalization of an effective
Hamiltonian operator. By limiting ourselves to lower-dimensional modulations and ex-
ploiting the Lorentz invariance of the system, we have been able to reduce the calculation
of the energy spectrum of the model to the diagonalization of simpler Hamiltonians. The
assumption of an underlying crystalline structure furthermore allowed us to factorize our
problem in a similar way to what is described by Bloch’s theorem in solid state physics,
so that a comprehensive numerical analysis could be performed.

With these tools at hand, we determined the appearance of an inhomogeneous island
in the phase diagram, in agreement with previous studies on chiral crystalline phases
61} 54, 621

The emergence of this island at intermediate densities, close to and beyond the usual
chiral restoration transition for homogeneous phases suggests that in presence of a Fermi
sea of quarks the dominant mechanism for chiral condensation becomes no longer the usual
quark-antiquark pairing, but rather the formation of quark-hole pairs, characterized by a
finite momentum.

We then compared the free energies of different kinds of spatial modulations, in order to
determine which crystalline shape is favored in the inhomogeneous phase. One of our main
results is the finding that at zero temperature and intermediate chemical potentials, in
the region where the chiral phase transition would take place if the analysis was restricted
to homogeneous condensates, the most favored shape of the chiral condensate is that of a
one-dimensional domain-wall lattice expressed in terms of Jacobi elliptic functions, leading
to a solitonic shape of the chiral condensate close to the transition from the chirally broken
phase. The would-be first order phase transition obtained when restricting the analysis
to homogeneous phases only is then completely surrounded by an inhomogeneous phase,
which is delimited by second-order lines joining at a Lifshitz point, which coincides with
the previous location of the critical point.

In this region, we find that two-dimensional modulations are disfavored against one-
dimensional ones, indicating that their greater kinetic energy cost is not sufficiently com-
pensated by a larger gain in condensation energy. Supporting this consideration, we
find that a hexagonal structure, is even less favored than the simpler square lattice in
this regime. Moreover, since a Ginzburg-Landau analysis has revealed that also close
to the Lifshitz point phases with higher-dimensional modulations are disfavored against
one-dimensional ones [88], we do not expect that higher-dimensional structures appear at
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finite temperature, at least in mean-field approximation. A numerical analysis to confirm
these expectations would of course be desirable. Even though in light of our results it ap-
pears that higher dimensional structures are disfavored when compared to one-dimensional
ones, without a complete numerical study we cannot rule out the possibility that three-
dimensional crystalline structures might form the favored ground state for quark matter.
In particular, the picture of particles sitting in localized “bags” (a generalization of the
results of Sec. to three-dimensional structures) looks particularly attractive, and with
an appropriate description of confinement it could in principle be employed to describe
nuclear matter starting from its quark content.

Although being favored in mean-field approximation, it is worth recalling that strictly
speaking one-dimensional modulations of the order parameter are washed out by thermal
fluctuations at finite temperature [92]. This statement refers to the fact that the mod-
ulation is not rigid, but fluctuates locally. The system’s spatially modulated nature is
however still encoded in the behavior of long range correlations [93].

Once having determined the favored shape for the chiral condensate, we have analyzed
the role of the isoscalar-vector interaction and the dynamics of the Polyakov loop on this
kind of inhomogeneous ground state. When extending the model including a repulsive
vector interaction, we found significant qualitative modifications of the phase structure:
in contrast to the critical point when limiting to homogeneous phases, the Lifshitz point
is not shifted towards smaller temperatures when increasing the strength of the vector
interaction, but remains at the same temperature and density. Moreover, the domain of
inhomogeneous ground states in the y—7T phase diagram increases. Since the Lifshitz point
therefore no longer coincides with the critical point, the critical behavior in its vicinity
and also near the phase transition lines to the inhomogeneous phase changes. This is
underlined by the fact that the number susceptibilities remain finite, i. e. there are no
singularities.

Our investigation of this part is complemented by an extensive numerical study, includ-
ing the determination of density profiles in the inhomogeneous phase, the phase diagram
when only allowing for chiral spirals, the evaluation of number susceptibilities and the
incorporation of finite current quark masses. Furthermore, we performed a generalized
Ginzburg-Landau expansion for elaborating the dependence of Lifshitz and critical point
on the vector interaction. Part of this comprehensive study is also motivated in order to
back up an approximation employed within our mean-field calculation, namely to use the
spatially averaged number density when evaluating the thermodynamic potential. A fully
self-consistent analysis considering a spatially modulated density as well as the spatial
parts of the vector condensate would of course be most desirable, and for one-dimensional
modulations is expected to be numerically feasible.

Probably less spectacular but nevertheless worth checking is the behavior of our model
when the quarks are coupled to the Polyakov loop in order to suppress their contribution to
the thermodynamic potential in chirally broken phases, thus mimicking confinement. This
effect mostly leads to a stretch in the temperature direction of the p — 7" phase diagram,
similar to the case of homogeneous phases. This implementation of the PNJL model for
inhomogeneous phases has also been used as a starting point to study the effects of the
number of colors on these chiral crystalline structures. The large N, extension of the model
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is however not unique, and improvements on the approximation used could be possible.
Aside from that, our PNJL implementation always implies a spatially constant expectation
value of the Polyakov loop, and it would be interesting to relax this assumption.

As a final step, we analyzed the phase structure of the model at higher chemical po-
tentials. The most striking result is the appearance of a second inhomogeneous phase,
seemingly extending to arbitrarily high chemical potentials. Although this may appear to
be a regularization artifact, we argue that it should rather be interpreted as a characteristic
feature of the NJL model which might have physical relevance.

In this region, beyond a given value of chemical potential, we find that the structure of
the ground state changes from having one-dimensional modulations to a two-dimensional
square lattice and, at even higher i, to an hexagonal shape. Although the results must not
be trusted blindly in this high-density regime, which lies at the edge of the expected range
of validity of the model, we find it nevertheless noteworthy that we reproduce qualitatively
the behavior recently proposed for quarkyonic matter [70]. Quasicrystalline structures
with discrete rotational symmetries higher than six, which have also been discussed in
Ref. [70], are much more difficult to implement in our model since we heavily rely on
the translational periodicity to perform our numerical calculations. These structures are
anyway expected to appear only at even higher chemical potentials. It is also interesting
that a similar sequence of phases was predicted for a 2D superconductor in a magnetic
field [42].

In conclusion, although we recognize that the NJL model has several limitations and
that the regularization procedure may in principle affect its results, our findings seem to
suggest that inhomogeneous chiral symmetry breaking phases may play a more relevant
role than expected in the QCD phase diagram. In this sense, our complementary study
using the Quark-Meson model seems to support the picture of an inhomogeneous region
appearing in the phase diagram. We recall in any case that all calculations were performed
at the mean-field level, and that a systematic improvement to include fluctuations would
be a logical next step to make our calculations more realistic.

We also note that the intermediate density region where the inhomogeneous island
appears may be relevant for the physics of compact stellar objects like neutron stars,
and that the resulting equation of state might be compared with present astrophysical
data. In order to provide reliable predictions for this kind of system however our model
study should first implement charge neutrality. This is typically done by enforcing different
chemical potentials for the up and down quark species, and can in principle be implemented
within our setup. Furthermore, in this range of densities the strange quark may become a
relevant degree of freedom, and an extension of the model to three flavors would also be
an interesting next step.

Finally, we note that this chemical potential region may belong to the realm of color
superconductivity as well, and it would therefore be necessary to study the competition
of inhomogeneous chiral condensation with diquark pairing as well. A combination of the
present study with the one developed in [38] for inhomogeneous color-superconductors
might predict the formation of a “mixed” phase where diquarks condense in the chirally
restored bags described in Sec. This is a fascinating possibility which is definitely
worth investigating.



A. Conventions

Throughout the whole thesis, natural units have been employed:

Greek letters p, v, ... indicate Lorentz indices running from 0 to 3. We always make use
of the Einstein convention, for which we sum over repeated indices.
Our convention for the Minkowski metric is

N = diag{l, -1, -1, -1} . (A.2)
Scalar products of four-vectors assume then the form
z-p=atp,= po + z'p; = 2%po — x - p. (A.3)

In our calculations, we mainly use the chiral representation for the Dirac matrices:

o (01 v 0 oF 5 (-10

—dk 0 0 1

and here o' are Pauli matrices:

de (V) () (D 0) e

Some common abbreviations that appear in the thesis are:
e CP : Critical point
e LP : Lifshitz point
e BZ : Brillouin zone

e RL : Reciprocal lattice

QM : Quark-meson (model)

e GL : Ginzburg-Landau



B. Details on the formalism

In this appendix we present more details on the calculations performed in chapter Bl

B.1. Mean-field Lagrangian

In order to obtain expression Eq. ([Z9) from Eq. (2.6]), we expand the field bilinears around
their expectation values. We take the scalar channel as template and define ¢(z) = (1)),
then write (in the following we will for brevity omit the z dependence of the quantities of
interest)

VY= ¢+ ¢ = 8¢ = Yp — ¢, (B.1)

from which

¢ + 2¢np — 2¢°
2p1) — @7 (B.2)

(y)? = ¢* + 20¢¢

With this substitution for both the scalar and pseudoscalar bilinears, the mean-field La-
grangian becomes

Lyr = P(ir 0, — m + 2Gs(bs + iy 1a0p))b — Gs(d% + ¢%7) . (B.3)

B.2. Inverse propagator in momentum space

We review here in more detail the required steps to obtain an expression for the mean-field
inverse quark propagator in momentum space. For this, we start from the definition of
the euclidean action,

SE = / deX([:MF(t = —’iT, X) + /“7/_}'701”
x€[0,4]xV
_ / drdx [i(x) S~ (@) (x) + V)]
xE[O,%]XV

= SE"+SE", (B4)

where in the last line we isolated the condensate part ng?”d = fxE[O kv drdxy. If we
T

now consider only the first part and plug in the expression (Eq. (ZI0)) for the inverse
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quark propagator S~!(z), with the spinors written as Fourier expansions (Eq. (225) and

Eq. ([226])), we obtain

) - .
Spn — v / dxdr Y Y by, €T [in 0y — M(x) + 1 p] b, e (B.5)

WnWm PmPn

V/ dxdr Y Y e TP iy (—ip)) ZMkn et o0 wpne-"w-pn'x)

WnWm PmPn

/dXdT Z Z i(wWm —wn T¢ —ipm X ﬁn_ZMkneikn-x_f_,yOH wpneipn-x7

WnWm PmPn kn

at this point one can recognize a representation of the Kronecker delta in the complex
exponentials involving the Matsubara frequencies,

T Wn,,Wm

/ dr eilom—wnyr — L5 (B.6)

and write

Skm o /dxz Z wpm —iPmX 7/}’ Wn = Pn — ZMkn 1knx_|_,y m ¢pn lpnx

Wn PmPn

then factor out a 7°, recalling that (%)% = 1:

dx Y e P iw, — A0y pn =20 My, €™ | 4y, P

Wn PmPn k,

and finally recognize again another delta representation in the exponential of spatial mo-
menta,

1V - .
VT Z Z wpmVO Wn0p,,pm — ’YO’Y *PnOp,,pm — ’YO Z M, 0p,,.pm+kn T HOp,po | Ypn -
Wn PmPn ky,

We thus finally obtain the expression we employ for the effective action containing the
inverse quark propagator in momentum space:
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. 1 _ .
ngn = T Z Z ¢pm 70 an(spmpm - 707 : pndpn,pm - ryo Z Mkn 5pn1pm+kn + :U’(Spn,pm d]pn
Wn PmPn kp,

S Sy (B.7)

Wn PmPn



C. Regularization

This appendix is devoted to a more thorough discussion of different possible regularization
schemes for the NJL model.

As mentioned already in chapter @] the expression obtained for the thermodynamic
potential involves a diverging sum over the energies of the system. Since the NJL model is
non-renormalizable, unphysical divergencies cannot be reabsorbed in redefining the model
parameters, and a regularization scheme has to be specified instead.

C.1. Isolating vacuum and medium contributions

The typical diverging expression we encounter in our calculations has the form

/Z dE p(E) T log (2 cosh (EQ;“» , (1)

and contains both a divergent vacuum contribution fy4., increasing like |E|, as well as a
finite medium part fy,eq. As thoroughly discussed in chapter B the specific form of p(E)
will depend on the shape of the chiral condensate. It can be seen however that for big
values of E the density of states will always grow like O(E?) [,

The integrand of Eq. ([CI)) can be rewritten as

E—,U, _E—p F—
Tlog<2cosh< 5T ))Tlog(e T +1)+7, (C.2)

2

we can also note at this point that the function in Eq. (C2]) is even in the argument
(E — ). This is obvious if we recall that the expression for the hyperbolic cosine is simply

et +e "
2

In order to single out the vacuum contributions, we must assume that the eigenvalue

spectrum of the effective Hamiltonian is symmetric. This turns out to be the case for all

kinds of modulations considered in this work. In particular, we can write (for simplicity

in the following we will omit the density of states p(E) as well as the integration variable
dE)

cosh(x) = (C.3)

LA simple way of understanding this is to look at the density of states for the non-interacting massless
particle case, which is simply given by p(E) = E?/n?, and realize that for asymptotically high energies
(or equivalently momenta), the effects of chiral symmetry breaking, which no matter the pattern are
always expected to be of order Agcop, will always be negligible.
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e (E28)
h {E_“+£TE_“W+MgP+mm< E;M>]+bgb+@m<—_%juﬂ}
OOT{IH log [1+exp <_E;“)] tlog [exp (ET”) <exp (-E;“ +1)]}

i oo (Ext) | crusfon(E2)) e

which is a familiar expression from homogeneous NJL in which the first term denotes the
diverging vacuum contribution.
The zero temperature limit of Eq. (C2]) is given by

x—p\\ 10 |E—pf
T log <2(zosh< ST >> 5 (C.5)

This can be seen immediately by expanding the cosh in two exponentials and by observing
that only one of them survives in the limit 7" — 0, according to the sign of (F — ). If we
now again assume that the energy spectrum is symmetric around zero, we can rewrite the
expression for Eq. (C]) at zero temperature as

/iJE;M _ AWHZ?M+AMI—2—M
Ny
e [ e [
:/0 E+/O (n—E), (C.6)

where in the second last line —F has been rewritten as ¥ —2FE. This is the standard result
found for homogeneous NJL for zero temperature.

Having now isolated the vacuum contributions from the medium ones, we can consider
different regularization schemes.
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C.2. Regularization schemes

C.2.1. Three-momentum cutoff

The energy sum in Eq. [Z33]) can be effectively rewritten as an integral over quark mo-
menta. This is the standard procedure when dealing with homogeneous phases, where the
inverse quark propagator is diagonal in momentum space and each energy is basically that
of a free quasiparticle dressed with a constituent mass and characterized by a well-defined
momentum: F = /p%+ M2. The simplest and most widely employed regularization
scheme in NJL model studies consists of imposing a sharp cutoff Ag(3) on the magnitude
of the maximum allowed momentum for the quarks. Typical values for this sharp cutoff
are of a few hundred MeV [77, [I8]. The expression for the thermodynamic potential in
this case becomes

Q%) / d3pTlog (2 cosh <E(p)_“>) . (C.7)
[PI<Ao(s) 2T

This obviously renders all expressions finite, and can be interpreted as a crude implemen-
tation of the asymptotic freedom property, since quarks are expected to interact weakly
at high momenta. This naive interpretation however clearly fails when dealing with in-
homogeneous condensates, since the quark momenta are not fixed and the quasi-particle
energies can no longer be labeled by a conserved three-momentum. For inhomogeneous
pairing, the practical implementation of such a scheme would involve a cut on the max-
imum allowed momenta p,, p, in the effective Hamiltonian, Eq. (Z30). Such a cut will
however artificially reduce the phase space for the formation of a crystalline condensate,
which may be expected to carry a momentum Q ~ Ag(3), and will seriously limit any
possibility for inhomogeneous pairing.

For this reason, more refined methods which mostly act on the quark energies rather
than momenta are the preferred choice when dealing with inhomogeneous phases.

C.2.2. Free energy regularization

An alternative and less constraining regularization scheme acting on the particle energies
rather than momenta may be introduced by going back to the expression for the thermo-
dynamic potential Eq. (Z31I)) and replacing the logarithm by its Schwinger proper-time
representation,

log A — — / e ™ (C.8)

where we introduced a blocking function f(7) as a regulator. Thus, our regularization
scheme is defined by specifying f(7).

The most simple prescription would be to put a lower bound in the proper-time variable,
f(1) = 0(1 — 1/A?). However, as we would like to keep a structure which allows us to
perform the Matsubara sum analytically, we prefer the function

F(r)=1—3e ™ 4 367274 _ o=37A% (C.9)
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Inserting this into Eq. (C.8), this amounts to the replacement
log A — log A —3log (A + A?) + 3log (A + 2A%) —log (A + 3A?%), (C.10)

and we can carry out the Matsubara sum in the usual way. The regularized version of
Eq. [233) then reads:

3 .
T, p) = /dE p(E) > ¢ {Ei + 2T log (1 + e‘Eﬁ/T)} + Qeond (C.11)
§=0
where cg = —c3 =1, ¢; = —co — 3 and

El,=\/E,+j\>, E,=E-—p. (C.12)

This kind of prescription is similar to the Pauli-Villars regularization. Note, however, that
according to Eq. (C12) we replace the free energies in a Pauli-Villars-like manner, which
is not exactly the same as introducing regulator particles with large masses, as in the
standard Pauli-Villars regularization.

A shortcoming of this kind of prescription is that the obtained value for the constituent
quark mass acquires an unwanted dependence on the chemical potential, which is included
in our definition of the free energy. As such, this regularization method will not be
employed in the following.

We finally note that the replacement Eq. (C8) is not exact. Indeed, we know that

< dr —TA
— 76 = —T(0, TjowA) = vE + log(T10wA) + O(Tiow) s (C.13)

low
where g is the Euler-Mascheroni constant. It is however possible to see that the intro-
duction of an appropriate blocking function removes the constant terms and allows to take
the limit 75, — 0. As a simple case, we can consider f(7) =1 — e~ TA?
integration on the right side of Eq. (C.8):

and perform the

*©d > d
— lim —Tf(T)e*TA = — lim & (e*”‘ — e*T(AJrAQ))
Tiow—0 Tiow T Tlow—0 Tiow T
= _lim —T(0,710wA) + T'(0, Tiow (A + A?))
Tlow

= log (AfA2> = log(A) — log(A + A?%). (C.14)

The constant terms and the 7;,,, parameter dependence in the logarithms cancel obviously
for the blocking function Eq. (C3) as well, leaving only the expression Eq. (CI0).

C.2.3. Vacuum proper-time regularization

In order to remove the artificial medium dependence obtained by regularizing the free
energies, it is useful to take one step back and single out the diverging vacuum contribu-
tions to the thermodynamic potential from the medium effects. For this we follow [54]
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and rewrite only the vacuum part of €2 using the Schwinger proper time representation of
the logarithm. More specifically, using the zero temperature formalism 2,4, (aside from
a 2Ny N, factor coming from the trace over spin, color, flavor) can be written as

dk
Qae = — | —L 1og A, C.15
/C g o8 (C.15)

where, similarly to the previous section, A is basically the inverse quark propagator.
Inserting the proper time representation and Wick-rotating on kg, we get

d4k'E OodS i A
Qvae = — —ets 1
/c(2w>4/0 s (C.16)

For the homogeneous case, this reduces to

Qhom /OO d4kE /OO %ei(—k%—kQ—MQ)s
0

vac oo (27_(_)4 s
- [ [ty
—00 ™ 0 T
o0 d'T 1 7M2
= —_ T d
/0 73 16m2°¢ (G.17)

Inserting back the appropriate multiplicity factors, we arrive at

NN, [*dr _
qhom _ i / T oM (C.18)
0

we' = ger Jo 9
Let us now consider for simplicity a one-dimensional modulation of the chiral condensate
like the CDW, characterized by a wave vector Q determining the size of the BZ. After

exploiting the dimensional reduction procedure of Sec. B2 T]and integrating over transverse
momenta, we are left with (inserting all the appropriate multiplicity factors)

NiN., [* dr [9dk 2
QCbw _ tfte / i -7 1
vac Q73/2 o 5/2 o 2m ;} € ) (C 9)

with A(k) eigenvalues of the dimensionally reduced Hamiltonian. As a cross-check, we can
obtain from here the homogeneous case (Eq. (C.I8))), for which the integral over the BZ
extends over the whole p, range and

A= /p2+ M? (twice degenerate) , (C.20)
leading to

N¢N. [ dr [ 2.4 2
hom __ f¥e —(pz+M=)T
Qo 167T5/2/0 75/2/ dp,2e . (C.21)
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The p, integral can be carried out analytically, leading to Eq. (CIS).

At this point, the simplest way to regularize the proper time integral involves introducing
a sharp cut 1/A on the lowest allowed proper time. A possible value is reported in
Appendix [D.11

C.2.4. Pauli-Villars

As mentioned already in Sec. 224 our preferred regularization scheme throughout this
thesis is a Pauli-Villars regularization which we apply only to the diverging vacuum term.
This amounts to the replacement [77]

Mw

fvac(fr) — fPV('r) «T2+]A2 (022)

7=0

with ¢g =1, ¢ = =3, o = 3, c3 = —1 and a cutoff scale A.

C.3. Parameter fitting

Having chosen a regularization scheme, we proceed to determining the model parameters
G and A by fitting vacuum phenomenology. The typical procedure involves fitting values
for the chiral condensate (1) and the pion decay constant. For Pauli-Villars those are

given by [77]

3 .
n 3Myac . Mgac + ]A2
() = =2 S (M4 7)o (M2 I (©23)
]:0 vac
2 N Mgac vac + ]A2
2= Z ejlog (=55, (C.24)

where M, is the constituent mass for the chirally broken phase in the vacuum.

The NJL model with a proper-time regularization and adjusted to these quantities is
however known to give constituent quark masses of around 200 MeV in vacuum. Hence
it gives an undesired phenomenology with regard to the QCD phase diagram, since quasi-
particles will start forming a Fermi surface at pu ~ Myq.. This is phenomenologically
unacceptable for p < My /3 ~ 300 MeV, where My is the nucleon mass. We instead fix
our parameters by enforcing a value for the constituent quark mass M,,. and determine
A by fitting Eq. (C24) to the appropriate value of f, which in the chiral limit is taken to
be 88 MeV [77]. We then determine the coupling Gg from the vacuum gap equation [77]

: Mg, + jA?
Myae = —GstN chzc] 2 4+ A log <W> : (C.25)
7=0

vac



D. Parameter sets

D.1. NJL parameters

Throughout most of this work we choose a parameter set fitted to give a vacuum con-
stituent quark mass of My.. = 300 MeV. In Chapter [6] we however also perform calcula-
tions using parameters giving a vacuum constituent quark mass of My, = 330 MeV.

In table [D.1] we report the parameter sets used for the Pauli-Villars regularization used
in most of our NJL calculations, according to the enforced value for the vacuum constituent
quark mass for a fixed f, = 88 MeV.

Myee (MeV) A (MeV) Gg A2

300 757.048  6.002
330 728.368  6.599

Table D.1.: Parameter sets for Pauli-Villars regularization.

For the comparisons of chapter [0l involving the use of vacuum proper-time regularization
as described in Sec. [C2.3] we use the parameters from [54]:

Myee (MeV) A (MeV) Gg A2
330 660.37  6.35

Table D.2.: Parameter set for vacuum proper time regularization.

D.2. QM parameters

For the quark-meson model, we fit the parameters to the pion-decay constant f., the
constituent quark mass in the vacuum My, the pion mass m, and o-meson mass m,
through the relations

(o) = fr , (%) =0, c:m%fﬁ )
9= Myac/ fr » AZ(mg—mi)Q/(Qfﬁ) ) U2=f73—m3r/)\ .

The parameter set we employed is reported in table [D.3
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Myoe MeV) M, (MeV)  fr (MeV) M, (MeV)
300 600 88 0

Table D.3.: Parameter set for the quark-meson model

D.3. PNJL parameters

For the Polyakov-loop potential, we adopt the parameters of Ref. [95], shown in table [D.4l
The parameter a is fixed by the condition that for pure gluo-dynamics the phase transition
takes place at T' = 270 MeV, while b is chosen to have a crossover around 1" = 200 MeV at
i = 0 when quarks are included. Since we are mainly interested in the qualitative effect
of the Polyakov loop, we did not perform a refit of b within our regularization scheme. We
checked, however, that this parameter choice gives reasonable results for the behavior of
the order parameters at pu = 0.

a (MeV) b (MeV?)
664.0 7.55100

Table D.4.: Parameter set for the PNJL potential



E. More details on the solitonic solutions

For completeness, we review here some more details on the solitonic solutions introduced
in Sec. [3.3.31 We recall that in the chiral limit the order parameter is given by

sn(Az|v)en(Az|v)
dn(Azlv)

where A is a scale parameter and sn, cn, dn are elliptic Jacobi functions with elliptic
modulus v. We furthermore note that this expression can be rewritten as

M(z) = Av , (E.1)

M(z) = VA sn(A'z|V)) (E.2)
where 1/ = (32=)2 and A = (1 + VI — v)A.

1+vV1-v
This allows us to comment on the shape of the mass functions by simply plotting

sn(z|v) for different values of the elliptic modulus. We are in particular interested in
what happens at the onset of the inhomogeneous phase, where v varies from 1 to 0.9 in a
chemical potential window of less than 10 MeV. For this, we plot in Fig. [E] the function
sn(z|v) at several values of v close to 1, to give an idea of how infinitely spaced solitons
get close together as the elliptic modulus decreases. The period of these functions, plotted
in Fig. [E2] is given by 4K(v), with K complete elliptic integral of first kind. As can be
seen from Fig. [E:2] the period becomes infinite for v — 1, as sn(z|v) reduces to tanh(z).
For more details on the Jacobi elliptic functions, we refer to standard texts on special

functions like [109].

E.1. Density of states

For the solitonic solutions, the one-dimensional density of states is given by [45] [110]

1 A2—A2E(v)/K(v) A2 A2) (A2 — (1= )A2) >0
pip(\) = { Aol J (V= (1 =v)a?) (E.3)
0 , else.

Within our dimensionally reduced framework (see Sec. B.2.1]), the evaluation of the ther-
modynamic potential for the full 3+1-dimensional system then reduces to evaluating ex-
pressions of the form

0= [G2r (wiern). (E4)
A
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Figure E.1.: Shape of sn(z|v) for several values of v close to 1.
Top row: v = 0.999999999999, v = 0.9999999999, v = 0.99999999 ;
Bottom row: v = 0.999999, v = 0.9999, v = 0.99. The z scale is the same for
all figures, ranging from z = —50 to 50.
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Figure E.2.: Quarter period for the elliptic functions, L/4 = K(v).
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where f(x) is an even function. After introducing the density of states of the GN model
p1D, We can rewrite this as

= 2/ d/\/ 2 pip(A <sgn()\)y//\2 —i—pi) ) (E.5)

where the overall factor of two stems from the degeneracy of the two Hamiltonians
Hon(M) and Hon(M*) in Hip (see Eq. B23)). If we now use the symmetry prop-
erty of the eigenvalue spectrum p1p(A) = pip(—A) and define f(z) = f(x) + f(—z), we
can obtain

Q = / d)\/dpéplp (\/ﬁ)
_ % dEEQ/_ldumD(Eu)f(E)
_ /0 OOdEp(E)f (E) , (E.6)

where we introduced the energies E for the 3+1-dimensional system and defined the ef-
fective density of states

p(E) = % du E*pip(Eu). (E.7)

After plugging the one-dimensional density of states Eq. (E3]) in Eq. (E7) and perform-
ing the integration, carefully considering the different bands, we arrive at the explicit
expression

p(E) = £4 { O0(ViA - E) |E

T2

| — |
=
S~—
+
N
=
|
oS
|
—_
N—
=
—
=
A
e,

+ 0(E—ViA)O(A - E) [E(D) + <E(”) - 1) K(ﬁ)]
E(0)7) + (E(” - 1) F(olp) + V&= AIE = DN)] } ,

(E.8)

+ 0(E-A)

where K and F are the complete and incomplete elliptic integrals of 1st kind, respectively,
E are the (complete or incomplete) elliptic integrals of 2nd kind, and we introduced the
notations 7 = 1 — v, = arcsin(E/(vV7A)), and 6 = arcsin(A/E).

As an cross-check we can consider the limits ¥ — 1 and v — 0, which should correpond
to the inhomogeneous broken and restored solutions, respectively.
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For v = 1(7 = 0), only the second and third terms in Eq. (E.8)) contribute (since the
first step functions reduces to (0 — E), and we are considering positive energies only).
Furthermore, we note that

E(z]0) = F(z[0), K(0) = E(0), E(1) =1, E(1)/K(1) =0, (E.9)

so that the second contribution becomes identically zero, and we are left with only the
last part of the third term, which reduces to

pE)yy = BB~ A)W(E? AT, (E.10)

which is the effective density of states in an homogeneous phase with a quasiparticle gap

A.
For the case v = 0, both the first and third term contribute. We make use of the

property

E(arcsin(x)|1) = =, (E.11)
and see that both terms are equal, so the step functions add up to 1 and we are left with
1

— E?, (E.12)

P(E),—g =

which corresponds to the density of states for a massless ultra-relativistic gas.



F. Spatially dependent density

In this section we present more details on the derivation of the expression for the spatial
density of the system employed in Sec.

Our starting point is the thermodynamic potential of the system, introduced in Chapter
Neglecting the condensate terms which are irrelevant for the density, it is given by

Q = —‘:Clog/Dz;Dwexp (/ d4w3—1w) (F.1)
T S T S-1

We now introduce an operator A = 7S~ whose eigensystem in momentum spac is
defined by
AP = A = (iwn — Eg) vy, (F.3)

where Ej; are the eigenvalues of the Hamiltonian operator H (Eq. (213)).
If we now include a finite chemical potential 1, we obtain (neglecting from now on color,
flavor and spin factors for brevity)

E. —
0= —TZlog Ak = —TZlog(iwn+u—Ek) = —TZlog [2 cosh <l~:2T,ttﬂ . (F.4)

n,k n,k k

The particle density is given by

o) 0 Ek_/i
= ——=T —log |2 cosh F.
" on ~ T2 oy Og[ ( 2T ﬂ (F-5)
_ 1 Ey —p
= 3 Ek tanh< 5T ) (F.6)

which, when exploiting the symmetry of the eigenvalue spectrum around E = 0, reduces
to the familiar

n:—;;o {tanh (EQ_T’“‘> +tanh(_b;T_ “)] =S (g -g), ()

E>0

Lin euclidean space, a basis is given by the spatial momenta k and the discrete Matsubara frequencies wy,
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with the usual occupation numbers n.

If we wish now to obtain an expression for the spatially-dependent particle density, we
can take a step back and perform a change of basis to coordinate space. For this, let us
consider a generic expression for an observable O of the type (it is always implied that we
are talking about thermal expectation values)

0= Z f(Ebasis) , (FS)

basis

recalling that for the case of the density, f(E) o< tanh((E —p)/27T). In a momentum basis,
if we perform the Matsubara sum as before, it will be

0= /d3k f(Ey) = /d3k: O(k). (F.9)

In coordinate space, if we assume for simplicity that the Matsubara sum has already been
performed here as well (that is, we are working in a mixed representation where only the
time component has been Fourier-transformed), the expression will look like

0= /d% f(Ey) = /d3x0(x). (F.10)

As mentioned before, in order to get from one expression to the other it is possible to
insert a complete basis,

O(x) = (x|0[x) =D (x[K') (K'|O[k) (kx) (F.11)
%
If we consider in particular the solitonic modulations of the order parameter considered in

chapter @ eigenfunctions will be labeled by one-dimensional energies A, so that the change
to that basis leads to

O(x) = / p1 S () (VO (Alx) = / Ppi S Wl ()00),  (F12)
A

AN
and we known from Ref. [45] that

(VA +5((M(2)/A)* +v —2)

NEONE = == A Ep R (F.13)

Putting now everything together and including back the appropriate factors, for the spa-
tially modulated density we obtain

n:) = NpNe [ aapO) [ SRl () —n(B) . (R0
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where p1p(A) is the spectral density of the one-dimensional GN modef. Similar to the
determination of the effective density of states performed in Appendix [E]] it is then a
tedious but straightforward exercise to cast the expression for the density profile into the
form

nsoliton(z) - Nch/ dr pD,soliton(Ev Z) (1’L+(E) - TL_(E)) 5 (F15)
0

where the density matrix element pp soliton (£, 2) can be related to psoliton (£), Eq. (3:26),
upon the replacement

pD,soliton(Eyz) = psoliton(E) (F'16)

B3 ((22) +v-2)

2The combination 1/); (2)1,(2) is a boost-invariant quantity.



G. Ginzburg-Landau expansion for vector
interactions

This appendix is devoted to the discussion of a Ginzburg-Landau analysis on the effects
of vector interactions on the position of the chiral critical point (CP) and the Lifshitz
point (LP). In the vicinity of a second-order phase transition and in particular of a critical
point, the thermodynamic potential can be expanded as an effective action in M (x) =
M(x) — My and 6ji(x) = fi(x) — fig around their values M (x) = My and d/i(x) = fip in
the restored phase. For simplicity, we restrict ourselves to the chiral limit, so that My =0
and therefore 6M (x) = M(x). However, unlike in the numerical studies performed in
Sec. B.1.21 we will not assume fi(x) to be spatially uniform.

At given temperature and chemical potential the expansion then takes the form

M = 000.jio] + 5 / dx Qa1 (M (x), 67(x)) (G.1)
with

Qar(M(x),6/1(x))
= 20| M(x)[* + c2,001(x)? + 3,0 M (x)|*67u(x) + ¢307(x)°

+ ea,al M(x)|* + o VM () + ca,e| M (x)[?07u(x)? + ca,a001(x) " + ca,e(VIAX))? + ...
(G.2)
when expanding to fourth order in M (x), d(x) and gradients acting on these functions.
The symmetries of the theory and of the background simplify the expansion: linear terms
vanish as we are expanding around a homogeneous solution of the gap equations, odd
terms in M (x) vanish by chiral symmetry and odd numbers of derivatives vanish due to
rotational symmetry.

Taking M (x) to be the small scale of interest, we first aim at an estimate for §fi(x; M (x))
defined through the stationary constraint

02

OOft | 0 (), 671() =673 M ()

= 0. (G.3)

Because of the absence of a linear term in M (x) we conclude that §ji(x; M (x)) ~ O(|M (x)|?).
More precisely,

Sji(x; M (x)) = —%;W(X)P T (G.4)

Consequently, the expansion of Q¢qr (M (x)) = Qarn(M(x), dfu(x; M(x))) to fourth order is
given by
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Qar(M(x)) = Qqarl0, fio] + c2,a| M (x)[?
3 a 4 2
+ Caq — . d |IM(x)|* + cap| VM (%) + ..., (G.5)
C2b

which allows us to determine the Lifshitz and the critical points from the GL coefficients.
The latter is characterized by vanishing quadratic and quartic mass terms, while at the
former the quadratic term and the gradient term are zero:

LP: 0= coq = cap,

C3.a
P: =2 = C4a— 7 - :
C 0 C2, C4, 462’1, (G 6)

As outlined in Ref. [89] for the NJL model without vector interactions, it is a straight-
forward exercise to work out the explicit form of the GL coefficients. As obvious from
Eqs. (B3] the kinetic part of the thermodynamic potential, Qy,, and, hence, its contri-
butions to the GL coefficients depend on Gy only indirectly through fig and T. The only
explicit dependence on Gy therefore originates from the condensate term Q.onq and only
affects co ;. For this reason the Lifshitz point as a function of fig and 7" is independent of
Gy, in agreement with our findings in Sec.

In contrast there is an explicit dependence of the location of the critical point on Gy

through cg 3. One finds
1 p2 T2
cap = ———— N, (“0 + ) : (G.7)

where the first term on the right hand side is due to Qcong, while the second term is due
to Quin. Since we are expanding around a homogeneous restored solution, the latter is
just given by the corresponding term in an ideal Fermi gas at temperature 1" and chemical
potential [ig. Here we have neglected the contributions from the regulator terms, which
would arise in our specific model. However, these terms are small in the region of interest
and therefore do not lead to qualitative changes. Hence, 1/cy vanishes for Gy = 0 and
decreases monotonously with increasing positive values of Gy,. Furthermore ¢4, typically
decreases when increasing jig or decreasing 7' in the vicinity of the critical point. Put
together, we conclude from Eq. (G6) that the CP moves to smaller temperatures upon
increasing Gy . Moreover, discarding possible issues related to the regularization of the
UV-divergent vacuum contribution to the thermodynamic potentia, we find c4q = cap,
as in the case without vector interaction. For Gy = 0 we therefore recover the result of
Ref. [89] that the LP and the CP coincide.

Since 6fi(x) ~ O(M (x)?) we can also conclude that the thermodynamic potential expanded
around jig to order O(|M(x)|?) and arbitrary gradients coincides with that of the model

IFor a renormalizable theory divergent GL coefficients are subject to renormalization; the present discus-
sion is consistent for a regularization scheme acting on the energy spectrum as applied in this work.
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for Gy = 0 upon replacing u — jig. As a result, the second-order phase transition from
any inhomogeneous to the chirally restored phase, being triggered by these contributions,
is only depending on Gy through jig, as it was already obtained in Sec. after applying
further truncations.

On the other hand, the present analysis is not applicable to the transition from the ho-
mogeneous broken to inhomogeneous phase, where the mass function is not related to a
small parameter, when we go away from the LP. As we have argued earlier, even the order
of the phase transition may change in this regime when vector interactions are included.
Qualitatively the same properties as discussed here for the NJL model with a vector
interaction also show up in the Gross-Neveu model with a Thirring interaction (GNT
model) at leading order in the large N-expansion [71].



H. Lattice structures and symmetries

In this appendix we discuss some of the symmetry properties of lattice strucutres which
allow us to perform our numerical analysis.

When considering spatial modulations for the chiral condensate, it is naturally possi-
ble to allow for different crystalline structures. Once having set the underlying lattice
structure, the chiral condensate will be allowed to assume a spatial dependence compati-
ble with the periodicity in the different directions. For one-dimensional structures, there
is obviously no freedom to build an arbitrary structure and the only quantity defining
the underlying lattice is the period in the z direction, whereas in two spatial dimensions
different patterns are possible.

If we assume a periodic structure for the chiral condensate, the evaluation of the ther-
modynamic potential can be dramatically simplified by employing well established results
from solid state physics. For this, we start from the generic definition of a Bravais lattice
(BL) as the set of all points defined as a linear combination of the basis vectors {a;} with
integer coefficients {n;}. The index 7 runs up to the number of spatial dimensions. For a
three-dimensional lattice we therefore have

R = nja; + nsas + n3ag, n, € 2 (Hl)

A primitive cell can be defined as a cell containing a single lattice point that when trans-
lated covers the whole lattice without overlaps. A Wigner-Seitz (WS) cell is a primitive
cell with the full lattice symmetry. It can be alternatively defined as the region of space
that is closer to a single lattice point than to any other point.

Once having defined our lattice structure in coordinate space, we can introduce the con-
cept of reciprocal lattice (RL), a lattice of momenta arising due to the crystal periodicity
and the loss of traslational symmetry in the system. If we consider a generic plane wave
e’ we say that for it to have the lattice periodicity, its wave vector k must be in the
reciprocal lattice. That is, for R € BL,

K e RL if ®0+tR) _Kr KR _1 yReBL (H.2)
The RL is thus generated by a set of b; for which

biaj = 271'(52']' (H3)

A primitive cell of the RL has volume (27)2/veey, with vee being the volume of the
WS cell. The Wigner-Seitz primitive cell of the RL is called first Brillouin zone. For an
homogeneous chiral condensate, the Brillouin zone is infinite.

For periodic shapes of the chiral condensate, the only allowed wave vectors in the Fourier
expansion of the spatial modulation will therefore lie in the RL. It is then clear from
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Eq. (230) that when quarks scatter with the chiral condensate, they will only be able to ex-
change these determined momenta and the problem can therefore effectively be factorized.
In particular, due to this periodicity, the Hamiltonian operator can be block-diagonalized,
with each block characterized by a momentum of the BZ.

"= Mk, (H.4)

keBZ

and for each of these block, we know that scattering with the quark condensate will only
couple momenta differing by a RL element. This in turn allows to map momenta in the
matrix H(k) in a grid structure, where each element is separated from the others by a RL
vector, and the momentum integration can be effectively factorized in an integral over the
Brillouin zone and a sum over the eigenvalues {\;} of the grid-structured H (k).

H.1l. Two-dimensional lattice structures

In this section we briefly outline the procedure followed to build the two-dimensional
crystalline structures considered in our analysis.

We start from a generic unit cell spanned by the vectors a; and as. A periodic modu-
lation on this lattice will fulfill

M(x) = M(x + na; + maz). (H.5)

This in turn allows for a Fourier expansion of the order parameter,
M(x) = Mpype >, (H.6)
m,n
with the reciprocal lattice for the momenta defined by

Amn - a1 = 27Tm Qmn - A2 = 27N (H.7)

Explicitly, in cartesian coordinates this becomes
< ax., ) _ 27 ( Magy — Naiy > (FL.8)
qg@n 1302y — A1yA2y na1; — Magy
A generic parametrization on the (x,y) plane for the lattice basis vectors can be given by

[ a [ bcosyp
al_(O) ’ az_(bsingc))’ (H.9)

from which the definition of the RL vectors in cartesian coordinates follows:

27 mbsin ¢
Amn = absin ¢ < na — mbcos ¢ > ' (H.10)

For the first vectors of the RL which define the Brillouin zone one has



94 Lattice structures and symmetries

0 2 bsin ¢ 2m 0
oo < 0 ) ' D= sin ¢ ( —bcos ) ’ o1 bsin g ( 1 > ( )

For the simplest case, namely a square lattice, we choose the angle between the two
lattice basis vectors (Eq. ([L9)) to be ¢ = 7, and their lengths to be the same: a = b.
The two basis vectors are therefore

a1:<8>, a2:<2>, (H.12)

and the Brillouin zone is given by

0 2 (1 2 (0
0100—<0>, Oho—a(()), QOl—a<1>- (H.13)

For brevity we introduce @ = 2%. The Fourier expansion for M(x) in this particular
lattice is
M(x) =Y Mype @ =" My, ™9 (H.14)
m,n m,n

A simple real ansatz on top of this lattice can be built by limiting the sum to

=) () (D) (2w

and by choosing the same amplitude for all of these modes, M,,, = A, one obtains

M(X) - A [eiQxeiQy + eine—iQy +€—ineiQy + e—iQme—iQy]
= 4Acos(Qy) cos(Qz)] . (H.16)

An alternative choice would be

<7:>:{<(1J><_01><(1)><_01>} (H.17)

again with the same amplitude A for all modes, leading to M(z,y) = 2A(cos(Qz) +
cos(Qy)). This is however equivalent to the previous ansatz in a frame rotated by m/4
and with @ replaced by Q/v/2.

To calculate useful quantities like (M (z,y)?) one has to perform integrals over the
Wigner-Seitz (WS) cell of the lattice defined by the vectors a and b, where the volume of
this cell is simply given by
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Figure H.1.: Momenta in the RL for the hexagonal symmetry solution (Eq. (H.23).

a a 2
Vivs :/0 dy/o dr = a® = <25> (H.18)

Let us now consider a different lattice structure. by choosing the angle between the two
basis vectors to be ¢ = % and their lengths to be the same (a = b), we obtain a triangular
lattice. The two basis vectors are then

a1:<g>, a2:<a%2/2>, (H.19)

and the Brillouin zone is given by

QO0=<8>, Q10=;\7/r§<\_/:1§g>, qmzf\%((l)). (H.20)

Here we define for brevity Q = 27,

av/3
Now M (x) can be expanded as a Fourier series in this particular lattice as

: 3 (o _m
M) = 3 M@ = 37 My $m0i(-3)0 (H21)
m,n m,n
One can pick a simple ansatz with some symmetry by limiting the sum to (Fig. [H.1])

() =) () () (5) () ()

and by choosing the same amplitude M,,, = A for all of these modes, we obtain
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Mx) = A {ez@y 4 VB2, —i/2Qy | ~iQu | —iQVB/20,i/2Qy | ,iQV/2%i/2Qy | ,~iQV/2w ,~i/2Qy

2A

s () e (3)]-

Another possible ansatz that can be built on top of this triangular lattice is given by
the sum over the harmonics

()= %) () () -

M(z,y) = A [e_iQy + 2629 cos <\£§Qaj>] . (H.25)

leading to

Due to the lower symmetry of this complex modulation, its numerical treatment is however
more involved. Since it appears that real modulations are usually energetically favored
over complex ones, we choose to postpone the study of this last ansatz to future work and
focus our efforts on the study of real modulations.

For this lattice, the volume of the WS cell is given by

a3 a+-L 2
Vs = / ’ dy/ e = ST aQﬁ. (H.26)
0 % V3Q? 2

(H.23)



. Numerical diagonalization of the
Hamiltonian

With the notable exceptions of the chiral density wave and the solitonic solutions, there
are no analytical expressions for the eigenvalue spectrum of the mean-field Hamiltonian
‘H (Eq. (213)) in Dirac and momentum space for an inhomogeneous order parameter. In
order to calculate the thermodynamic potential associated with a given crystalline shape,
a numerical diagonalization of the model Hamiltonian has therefore to be performed. As
a template describing the basics of our numerical implementation, we discuss here the
simple case of the one-dimensional real sinusoidal modulation introduced in Sec.

M(z) = 2Mj cos(Qz) . (I.1)

After plugging this kind of modulation in the mean-field Hamiltonian Eq. (2.30]), we obtain
the following structure in Dirac and momentum space:

Hg?’jpm = 70 [’y ’ pnépmpm + Mlépnapm“l‘Q + Mlépn,pm—Q] . (12)

For our numerical implementation we exploit the lattice symmetries described in Appendix
[ and build a set of Hamiltonians, one for each momentum k& of the Brillouin zone. The
elements of these Hamiltonians # (k) will be 4 by 4 Dirac blocks, each one characterized
by momenta separated by reciprocal lattice elements. In the case of the one-dimensional
cosine, momentum elements will be given by p, = k+n@, with n integer and ) wave vector
of the modulation. Since only the £1 harmonics are involved, only the first off-diagonal
elements are filled, so that the matrix has a banded structure.

Even after identifying this block structure, the H (k) are still infinite matrices, as the
index n can run from —oo to co. We therefore implement a numerical cutoff Ap on the
maximum allowed momentum. In practice we write each H (k) as

Op(k—NQ) Ho
Ho Op(k— (N -1)Q) Ho
Lo Op(k = (N -2)Q)

Uo Up(k+NQ)
(1.3)
where N is the cutoff-dependent integer that determines how big the matrix is, 4. e. basi-
cally how many times the modulation wave vector (and thus the BZ size) is contained in
the momentum cutoff Ap:
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N = (nearest integer)jg. (L.4)

Within this setup, smaller BZ sizes will therefore result in larger matrices. In practice, the
numerical diagonalization becomes no longer feasible for modulations with small (below
~ 100 MeV) wave vectors. This is not expected to be a dramatic limitation anyway, since
we expect the typical values for @) to be of order p =~ 300 MeV in our inhomogeneous
window.

For the one-dimensional cosine, the diagonal blocks are given by

-p, 0 0 O
0O p. 0 O
0 0.3 2
Op(pz) =77 P=7"7"p- 0 0 p. 0 | (L5)
0 0 0 -—p.
while the off-diagonal ones are
0 0 M O
0 0 0 M
_ A0 _ 1
0 M O 0
The condensate part ..,,q can be readily evaluated, giving
1 L M?
Q8 = —— | dzM(2)* = - L7
= g |, MO = 5a (L7)

where L = 27/Q is the period of the modulation.

I.1. Cutoff and asymptotic density of states

Since our matrices are cut in momentum space, one might expect cutoff effects at the
edges. In order to reduce these, we also cut the integration over the (boosted) eigenvalues
at a certain value Ap < ApEl . Beyond that, we use an asymptotic expression for the
density of states.

We know that asymptotically the density of states is, for a one-dimensional real order

parameteil] [90]:
E? (M(2)%)  (M(2)F) + (M'(2)?)

!Although A has been varied to test the numerical stability of the results, a typical value for it is
AE ~ AP — QMUGC.

2This expression can be obtained by expanding p(E, (M (x))) in powers of 1/E, which (for dimensional
arguments) can lead only to specific terms depending on powers of (M (x)) and its gradients. The
prefactors can then be obtained by matching the expression with a GL expansion of the thermodynamic
potential.
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The generalization of Eq. (L§) for a two-dimensional modulation can be obtained
by requiring a rotationally invariant expression which reduces to Eq. ([8) for the one-
dimensional case. This consists in substituting

(M) — (M) = 7 /V d dy M(z, ), (19)
(M(2)") — (M(z,y)") = Vl /V d dy M(z,9)* (1.10)
(M'(2)2) — (VM (z,y)? ny/v dz dy <8M %f) : (%ﬂj,%ﬂj) . 1)
We get therefore
2 T 2 T 4 T 2
P?qD(E) _ % _ <M(2ﬂ—72y) > o <M( 7y) >8";2<(EV2M( 7y)) > +O(E_4). (1'12)

With this asymptotic contribution the thermodynamic potential is then

Qpin (T, p; M (x)) = QpE — NN, / dEpA(E) {5V (B) + fmea(E)} (1.13)
where in Qﬁz’i the eigenvalue sum is performed up to a numerical cutoff Ag, that is,

Qnp = —4(‘7;:’;??{0 /BZ dkxdky/o dp, > {[fV(EL) + fmea(EL)] 6(Ap — |EL])}

A>0

(L.14)
with A(k) eigenvalues of the 2D Hamiltonian and E; = 1/A(k)? + p? boosted energies.

1.2. Analytical expressions for the chiral density wave modulation

If the spatial dependence of the chiral condensate is described by a plane wave modulation
(CDW), an analytical expression for the eigenvalue spectrum of the mean-field Hamiltonian
can be derived. While a detailed derivation is already reported in [54} [49], in this section we
just want to point out how the same analytical expression can be derived by looking at the
shape of the Hamiltonian in Dirac and momentum space and recognizing a block-diagonal
structure.

Explicitly, in our Fourier expansion of the order parameter Eq. (2.28]), we keep only the
first component:

M(z) = M9 (1.15)
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where the wave vector () of the modulation determines the size of the first Brillouin zone
for our chiral crystal. Some authors prefer to insert a factor of 2 in the definition of the
wave vector, for reasons that will become apparent in the following. For our purposes, it
is better to work with the equivalent expression M(z) = Mje™"?%,

In Dirac and momentum space, the mean-field Hamiltonian for this kind of modulation
will look like

—pi 0 0 0] 0 0 0 0 0 0 00
0 p 0 0 0 0 0 0 0 0 00
0 0 p O My 0 0 0 0 0 00
" 0 0 0 —p 0 M 0 0 0 0 00
0 0 M 0 —pis1 0 0 0 0 0 00
0 0 0 M 0 piy1 O 0 0 0 00
0 0 0 0 0 0 piy1 O My 0 0 0
0 0 0 0] 0 0 0 —pin 0 M, 0 0

with the momenta in the various blocks defined as p; = k +1iQ, k € BZ,i € N.

At this point we can notice that the matrix is block-diagonal, (aside from the first
two and the last two entries, which are immediately diagonal due to the numerical cutoff
implemented) and the blocks on the diagonal (which have been highlighted in red) are
given by

pi 0 My 0

e T B
Puog =M 0 —pisn O |

0 M 0 Dit+1

(1.16)

and the eigenvalues of a given block m are given by

J—— <\/25?n+M12iQ>, (L17)

where we introduced Q = Q/2 and p,, = k + mQ.
The expression for the thermodynamic potential is

Q 00
AT QM) x [ ak [ doips 0 1(EL). (118)
Ak

where E| =/ /\2 + pi and f(x) is the usual integrand. Focusing on the one-dimensional

eigenvalues (the problem can be subsequently boosted along the two transverse directions,
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as described in Sec. B2J]), in principle one would have to sum over the infinite grid of
momenta,

Q Q o0
/0 dk%jf(xk)— /0 kS FOm), (1.19)

m=—0Q0

where the {\,,} are the eigenvalues of the single blocks. At this point one can see that
the combined sum and integral over the BZ are simply a way to rewrite the integral over
the full p, range (we will relabel p, = p in the following). We can thus write

0
/ kS FO) = / i 3 1. (1.20)
0 A

Dirac
We now plug in the expression found for the one-dimensional eigenvalues,
Ap) = £ (\/ p? + M12 + Q) and convert the integration variable from momentum to

energy. For this, consider as an example the case A = \/p? + M? + Q, from which A\—Q =
p? + M? > 0. One can then rewrite

A= PP MP+QF+2Q4/p? + MY =p* + MP 4+ Q* +2Q(\ - Q),
PP = (A-Q)? - M}, (L.21)

from which

d A —Q)? — M7
A= L2 _ —— dp. (1.22)
VP + Mi A—Q
Starting from this, we would like to recover the result from [49] for the density of states of
the one-dimensional chiral density wave (or chiral spiral). The chiral spiral has a spectrum
with a single band, its density of states being

1 h-e
A -Qr -

L) = (1.23)

After inverting Eq. (L22)) and plugging the result in Eq. (L20), we can rewrite the equation
as [ dAp(X)f(A), and by comparing the two expressions we see that we recover one part
of the density of states. The same procedure can be applied for the other eigenvalues,
leading to the full expression Eq. ([23]).
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