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Abstract 

 

The unified propagator theory hypothesis is that physical ‘reality’ should be 

described by path integrals with maximal unitary propagation on the (infinite) 

space of Cayley Algebras. In previous work a chiral extension was shown that 

allows unit norm ‘propagation’ in a 9 dimensional subspace of the sedenions, and 

a further chiral extension was shown to have unit norm propagation in a 10 

dimensional subspace of the bi-sedenions. It was then proven that there are no 

further chiral extensions beyond 10 dimensions. In this paper we explore 

restricting the propagation mechanism to be multiplication by a general bi-

sedenion unit norm element that is a small perturbation from the unit element. In 

doing this we see a precipitous phase transition in propagation behavior, allowing 

propagation, when the perturbation becomes sufficiently small, and this is more 

than the incremental change in perturbation would suggest. The maximal 

perturbation magnitude allowed for a propagating path construction has been 

experimentally determined to be none other than alpha, the fine structure constant, 

hitherto only determined experimentally. 
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1 Introduction 

 

The Feynman-Cayley Path Integral proposed in [1] was part of an effort to 

identify a maximal mathematical framework within which to have a unified 

propagator theory. For a normed division algebra, N(xy)=N(x)N(y), where unit 

norm propagation has long been known (Hurwitz’s theorem) for multiplication by 

a unit norm member of the algebra. The normed division algebras include the 

Real, Complex, Quaternion, and Octonion algebras, but then fail to have a norm 

for the higher Cayley algebras, particularly the next two Cayley algebras in the 

hierarchy, referred to here as the Sedenions and Bi-Sedenions. In [1] it was shown 

how one-dimensional chiral extensions were possible into the Sedenion algebra, 

and again into the Bi-Sedenion algebra, but then no further. Previously efforts to 

embed the standard model of physics were restricted, if propagation of unit norm 

was desirable, to a standard Octonion with its eight components (minus one free 

component due to unit norm constraint, giving rise to an element of S7). Using the 

aforementioned chiral extensions, a larger space of viable propagators is possible 

[1], that offers more ‘room’ to accommodate the standard model, and that also has 

natural chiral properties, as already observed in the standard model. 

 

In this paper, the prior computational work that allowed the original discovery of 

the chiral Bi-Sedenion propagation is taken further. Now the propagation, or lack 

thereof, is studied for path integrals involving multiplicative unit-norm ‘steps’  via 

(right) multiplication by unit norm members of the bi-sedenions. As expected, 

when working with propagation steps in the special chiral subspace of the bi-

sedenions, the unit norm is precisely preserved. Also, as expected, when working 

with propagation steps allowing for right multiplication steps involving general 

elements of the Bi-Sedenions, the unit norm is not preserved, and norm 

evaluations rapidly fall from unit value to nearly zero (Results for the different Bi-

Sedenion propagations possible is given in the Results section.). So, unit norm 

multiplications no longer preserve a unit norm value for general unit norm Bi-

Sedenion propagations… what of Bi-Sedenion propagation that comprises a unit 

norm from the general space, but restricted in a perturbative sense, where all 

imaginary components contribute a total perturbation (“delta”) from the original 

purely real unit norm that is kept ‘small’ (delta << 1). Surprising results are found 

for unit norm propagation involving general unit norm Bi-Sedenions that are 

restricted in this manner to provide small perturbative path propagation steps (e.g., 

with real component 1-delta, where delta is the magnitude of the other 31, 

imaginary, components in the Bi-Sedenions). The first surprise is that unit norm 

propagation appears possible perturbatively, in the sense outlined, for general Bi- 
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Sedenions. The second surprise is that the maximal perturbation amount allowed 

in the dimensionless parameter delta appears to be none other than alpha (the fine 

structure constant), where the analysis showing this (in the Results) thereby 

provides the first known non-experimental derivation for the mysterious alpha 

parameter. To quote from R. Feynman [2]: 

 

“It's one of the greatest damn mysteries of physics: a magic number that comes to 

us with no understanding by man. You might say the ‘hand of God’ wrote that 

number, and ‘we don't know how He pushed his pencil.’ We know what kind of a 

dance to do experimentally to measure this number very accurately, but we don't 

know what kind of dance to do on the computer to make this number come out, 

without putting it in secretly!“ 

 

The third surprise was to consider the number of natural parameters in the 

resulting theory. There is the naturally appearing aforementioned value of 

max_delta=alpha, where the limit is pushed on maximal propagate-able 

perturbation into the general Bi-Sedenion space of unit norm right multiplication 

steps along a ‘path’. So in the perturbation context, we can extend the massless 

propagation sector to a massive propagation (or coupled propagation) sector. The 

Bi-Sedenions have 32 components, where strict unit-norm propagation in the 

Octonion plus two chiral dimensions accounts for 10 of those components, 

leaving 22 free components to ‘emerge’ from the universal propagation trajectory. 

While the alpha constant for maximal perturbative propagation seems to be the 

same for all emergent trajectories, the actual trajectory arising along a given path, 

or series of right multiplications, appears to differ. So in a multiverse hypothesis 

(such as [3]), the parameters would simply be what is seen. This brings us to the 

standard model which has 19 parameters (with alpha derivable from those 19), 

where those parameters provide the key masses and mixing angles. Since there are 

22 emergent parameters indicated here, and 19 are needed for the standard model, 

this still leaves three free parameters, which is consistent with the modern 

minimal extension to the standard model involving three ‘sterile’ neutrinos [4]. 

The Minimal extended standard model is thus indicated by these model 

representation capabilities as well (and also by recent experimental results [5]). 

Thus, the unified propagator theory described here appears to be consistent with 

the current standard model extensions under consideration, and provides a unified 

theory of light and dark matter. 
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2 Background on Cayley Algebras 

 

The list representation for hypercomplex numbers will make things clearer in 

what follows so will be introduced here for the first seven Cayley algebras: 

Reals: X0   (X0) . 

Complex: (X0 + X1 i)  (X0 , X1 ) . 

Quaternions: (X0 + X1 i + X2 j + X3 k)   (X0 , X1 , X2 , X3)   (X0 , … , X3) . 

Octonions: (X0 , … , X7) with seven imaginary numbers. 

Sedenions: (X0 , … , X15) with fifteen imaginary numbers. 

Trigintaduonions (a.k.a Bi-Sedenions): (X0 , … , X31) with 31 imaginary numbers. 

Bi-Trigintaduonions: (X0 , … , X63) with 63 types of imaginary number. 

 

Consider how the familiar complex numbers can be generated from two real 

numbers with the introduction of a single imaginary number ‘i’, {X0 , X1}   (X0+ 

X1 i). This construction process can be iterated, using two complex numbers, {Z0 , 

Z1} , and a new imaginary number ‘j’: 

(Z0 + Z1 j) =  (A+Bi ) + (C+Di ) j  = A+Bi + Cj +Dij = A+Bi + Cj +Dk,  

 

where we have introduced a third imaginary number ‘k’ where ‘ij=k’. In list 

notation this appears as the simple rule ((A,B),(C,D)) = (A,B,C,D). This iterative 

construction process can be repeated, generating algebras doubling in 

dimensionality at each iteration, to generate the 1, 2, 4, 8, 16, 32, and 64 

dimensional algebras listed above. The process continues indefinitely to higher 

orders beyond that, doubling in dimension at each iteration, but we will see that 

the main algebras of interest for physics are those with dimension 1, 2, 4, and 8, 

and sub-spaces of those with dimension 16 and 32 dimensional algebras. 

 

Addition of hypercomplex numbers is done component-wise, so is 

straightforward. For hypercomplex multiplication, list notation makes the freedom 

for group splittings more apparent, where any hypercomplex product ZxQ to be 

expressed as (U,V)x(R,S) by splitting Z=(U,V) and Q=(R,S). This is important 

because the product rule, generalized by Cayley, uses the splitting capability.  The 

Cayley algebra multiplication rule is: 

 

(A,B)(C,D) = ([ACD*B],[BC*+DA]), 

 

where conjugation of a hypercomplex number flips the signs of all of its 

imaginary components: 
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(A,B)* = Conj(A,B) = (A*,B) 

The specification of new algebras, with addition and multiplication rules as 

indicated by the constructive process above, is known as the Cayley-Dickson 

construction, and this gives rise to what is referred to as the Cayley algebras in 

what follows. 

The key software solution to discover/verify the results computationally is the 

recursive Cayley definition for multiplication, which avoids use of lookup tables 

and avoids commutation and associativity issues encountered at higher order. It is 

shown in the Methods. Further details on Cayley algebras, and the Sedenions and 

Bi-Sedenions in particular, are given in [1]. 

 

3 Methods 

 

The Cayley subroutine takes the references to any pair of Cayley numbers 

(represented in list form, so represented as simple arrays), and multiplies those 

Cayley numbers and returns the Cayley number answer (in list form, thus an 

array). The main usage was with randomly generated unit norm Cayley numbers 

that were multiplied (from right) against a “running product”. Tests on unit norm 

hold for millions of running product evaluations in cases where the unit norm 

propagations are validated (running like the perfectly meshed gears of a machine, 

or the perfectly ‘braided’ threads of a very long string). 

 

---------------------------------- cayley_multiplication.pl -------------------------------------------

- 

sub cayley { 

    my ($ref1,$ref2)=@_; 

    my @input1=@{$ref1}; 

    my @input2=@{$ref2}; 

    my $order1=scalar(@input1); 

    my $order2=scalar(@input2); 

    my @output; 

    if ($order1 != $order2) {die;} 

    if ($order1 == 1) { 

        $output[0]=$input1[0]*$input2[0]; 

    } 

    else{ 

        my @A=@input1[0..$order1/2-1]; 

        my @B=@input1[$order1/2..$order1-1]; 

        my @C=@input2[0..$order1/2-1]; 

        my @D=@input2[$order1/2..$order1-1]; 

        my @conjD=conj(\@D); 

        my @conjC=conj(\@C); 

        my @cay1 = cayley(\@A,\@C); 

        my @cay2 = cayley(\@conjD,\@B); 

        my @cay3 = cayley(\@D,\@A); 

        my @cay4 = cayley(\@B,\@conjC); 
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        my @left; 

        my @right; 

        my $length = scalar(@cay1); 

        my $index; 

        for $index (0..$length-1) { 

            $left[$index] = $cay1[$index] - $cay2[$index]; 

            $right[$index] = $cay3[$index] + $cay4[$index]; 

        } 

        @output=(@left,@right); 

    } 

    return @output; 

} 

 

---------------------------------- cayley_multiplication.pl -------------------------------------------

- 

 

Unit-norm multiplicative ‘step’ generation method 

The randomly generated propagation step is for a unit norm that has a randomly 

generated small perturbation. Consider the eight element octonion denoted: {x0, 

x1, x2,…x7}, where the real component is x01: 

 

(x0)2 = 1 -  (xi)2 , 

And where each xi is generated by a randomly generated number uniformly 

distributed on the interval (-0.5 .. 0.5), with an additional perturbation-factor ‘‘,  

 

 

 

e.g., the max magnitude imaginary perturbation from pure real (x0=1), measured 

with L1 norm,  is simply 7 times /2 (for seven imaginary components). 

 

For the octonions unrestricted unit norm propagation is possible, i.e., all of the 

components can be independently generated and then normalized to have L2 norm 

=1. So, the restriction to x01 isn’t needed. The same is true on the (left) chiral 

extension spaces: 

Propagating chiral left sedenion:  {x0, x1, x2,…x7, x8},  with x9=0, 

…, x15=0,  

and the 

Propagating chiral left bi-sedenion:  {x0, x1, x2,…x7, x8, x16},   with 

x9=0, …, x15=0,x17=0, …, x31=0. 
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Consider now the propagating chiral left bi-sedenion with the a small non-

propagating component (here x9 nonzero is chosen), and now let’s return to 

formally requiring  x01 on propagation steps: 

 

Propagating small perturbation chiral left bi-sedenion: {x0, x1, 

x2,…x7, x8, x9, x16},   with x10=0, …, x15=0,x17=0, …, x31=0. 

 

For the small perturbation steps that are randomly generated, there are now ten 

imaginary components, so in what follows, the maximum magnitude of the 

imaginary components, measured with L1 norm, denoted , is =10/2=5. 

 

4 Results 

 

Norm, N, decay (from 1) with propagations on bi-sedenions with x9 nonzero 

have been examined on repeated dataruns consisting of 1,000,000 multiplicative 

(small path step) iterations each. The decay from ‘1’ is significant in the initial 

studies, so only the exponent of the norm is shown initially: 

 

 

 N (at 1M iter.) Index of 1st rczc #rczc (at 1M iter.) 

0.5 e-36 14 75291 (at 0.5M) 

0.5 e-43 19 73982 (at 0.5M) 

0.5 e-38 9 75053 (at 0.5M) 

0.5 e-35 11 75369 (at 0.5M) 

0.5 e-35 36 74769 (at 0.5M) 

Table 1. Repeated runs showing a range of different norm, N, decay with 

propagations on bi-sedenions with x9 nonzero (“rczc” is used for ‘real 

component zero-crossing’). 

 

 

There appears to be randomness on the choice of slope (fall-off), but once 

propagating many iterations, the choice that is selected appears to be kept (i.e., is 

an emergent, stable over many iterations, structure, in the fall-off behavior). A 

similar range of randomness in fall-off curves appears for the other parameters if 

unfrozen instead – Table 2 shows this where x10 is nonzero instead of x9. 
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 N (at 1M iter.) Index of 1st rczc #rczc (at 1M iter.) 

0.5 e-44 31 74878 (at 0.5M) 

0.5 e-34 13 75088 (at 0.5M) 

0.5 e-44 23 74527 (at 0.5M) 

0.5 e-45 9 74588 (at 0.5M) 

0.5 e-39 9 75108 (at 0.5M) 

Table 2. Using x10 nonzero instead of x9, again have repeated runs showing a 

range of different norm, N, decays with propagations on bi-sedenions (“rczc” is 

used for ‘real component zero-crossing’). 

 

For Table 3, 4, & 5, we consider smaller perturbations, with delta=0.01: 

 

 N (at 1M iter.) Index of 1st rczc #rczc (at 1M iter.) 

0.1 0.23128 426 27737 

0.1 0.86074 300 28718 

0.1 0.79330 872 28490 

0.1 0.85927 488 29144 

0.1 0.39766 527 29644 

Table 3. Repeating with the perturbation reduced to 0.1 with propagations on bi-

sedenions with x9 nonzero (“rczc” is used for ‘real component zero-crossing’). 

 

 N (at 1M iter.) Index of 1st rczc #rczc (at 1M iter.) 

0.1 0.44672 619 28759 

0.1 0.81644 416 28652 

0.1 0.46067 278 29589 

0.1 0.95643 933 28382 

0.1 0.79521 281 28569 

Table 4. Repeating with the perturbation reduced to 0.1 with propagations on bi-

sedenions with x10 nonzero (“rczc” is used for ‘real component zero-crossing’). 

 

 N (at 1M iter.) Index of 1st rczc #rczc (at 1M iter.) 

0.1 1 358 26807 

0.1 1 555 27241 

0.1 1 580 27534 

0.1 1 395 26625 

0.1 1 618 26990 

Table 5. Repeating with the perturbation reduced to 0.1 and considering 

propagations with all non-propagating components zero, e.g., back to a test of 

unit-norm propagation on the chiral bisedenion subspace. 
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Note how even in the norm preserving propagation, the context of 0.1 non real-

component mixing ‘perturbation’ still leads to a zero-crossing for the real 

component (that starts at 1) similar to the non-propagating perturbations 

considered. Evidently, the mixing seen under multiplication during each 

propagation step can be very significant even at perturbation of 0.1. So let’s 

consider 0.01, with results shown in Tables 6, 7, & 8. 

 

 N (at 100K iter.) Index of 1st rczc #rczc (at 100K iter.) 

0.01 1.01143 48027 156 

0.01 0.99173 0 0 

0.01 1.021529 82489 24 

0.01 1.0009355 31342 316 

0.01 1.0013 53429 50 

Table 6. Repeating with the perturbation reduced to 0.01 with propagations on bi-

sedenions with  x9 nonzero. 

 

Note that the zero counts on the second datarun aren’t particularly significant 

since the third run had its first zero-crossing at 82489, This simply presents the 

likely possibility that the first zero crossing in the second run simply did not occur 

in the first 100K iterations under observation. 

 

 N (at 100K iter.) Index of 1st rczc #rczc (at 100K iter.) 

0.01 1.00305 49631 325 

0.01 1.00272 83242 63 

0.01 1.001873 62510 166 

0.01 1.000101 43666 178 

0.01 0.9956 53451 219 

Table 7. Repeating with the perturbation reduced to 0.01 with propagations on bi-

sedenions with  x10 nonzero. 

 

 N (at 100K iter.) Index of 1st rczc #rczc (at 100K iter.) 

0.01 1 32901 139 

0.01 1 43551 302 

0.01 1 81880 56 

0.01 1 34585 542 

0.01 1 37826 111 

Table 8. Repeating with the perturbation reduced to 0.01 and considering 

propagations with all non-propagating components zero, e.g., back to a test of 

unit-norm propagation on the chiral bisedenion subspace. 
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If we repeat with =0.001, we get approximate unit norm preservation (e.g., a 

stable oscillation about N=1 appears to occur), where mixing is never so 

significant that there occurs a zero-crossing in the real component (see Table 9 for 

summary). 

 

 N (at 1M iter.) Index of 1st rczc #rczc (at 1M iter.) 

0.5 e-36 14 75291 (at 0.5M) 

0.1 0.23128 426 27737 

0.01 1.01143 48027 156 (at 0.1M) 

0.001 1.0000149 n/a 0 

Table 9. Summary of norm propagation results with delta at different scales. 

If we wish to find the maximal  where mixing is never so significant that even a 

single zero-crossing occurs in the real component we have the results shown in  

 

 

Table 10 (only the x9 nonzero perturbation propagation case is shown). 

 

 N (at 1M iter.) Index of 1st rczc #rczc (at 1M iter.) 

0.007 1.0010 210774 1777 

0.006 1.0040 198967 1743 

0.005 0.99998 175311 1451 

0.004 0.99855 136624 828 

0.003 0.999745 449593 229 

0.002 0.999965 457410 909 

0.0015 0.9990772 868253 224 

0.001475 0.999990 972837 27 

0.00146 0.9997605 (2M) 1884455 133 (at 2M iter.) 

0.0014595 1.0000569 (2M) 1886191 219 (at 2M iter.) 

    

0.0014585    

    

0.0014575 1.000249 (2M) n/a 0  (at 2M iter.) 

0.001455 1.000011 (2M) n/a 0  (at 2M iter.) 

0.00145 0.999883 n/a 0 

0.0014 0.9999989 n/a 0 

0.0013 1.0000109 n/a 0 

0.00125 1.00016825 n/a 0 

 

Table 10. Summary of norm propagation results from a search for the max delta 

which permits approximate norm =1 propagation, with no real-component decay 

to non-positive allowed. 
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The maximal perturbation parameter  allowing approximate norm=1 

propagation, with no real-component decay to non-positive allowed (i.e., no zero-

crossing), is shown for =0.0014575 on an iteration window of 2,000,000. From 

Table. 10, we see that the max delta with #rczc=0 lies somewhere between 

0.0014575 and 0.0014595, and estimating this to be the midpoint, we have the 

estimated max delta to be: 0.0014585 (as shown in the Table). 

 

As mentioned in the Methods, for the small perturbation steps that are randomly 

generated there are ten imaginary components. Evaluating the magnitude of the 

perturbation in terms of the relation between real component (approximately 1) 

and the maximum magnitude of the imaginary components, measured with L1 

norm, denoted , we have =10/2=5. Thus, the maximum perturbation allowed 

for unitary propagation is estimated to be =.0072925, which is the fine structure 

constant, where: 1/=137=1/. 

 

5 Discussion & Conclusion 

 

The unified propagator theory is that physical ‘reality’ should be described by the 

maximal unitary propagation on the (infinite) space of Cayley Algebras. The real 

(1), complex (2), quaternionic (4), and octonionic (8) Cayley algebras allow 

unitary propagation without constraint: if a unit norm element is multiplied (on 

the right, say) by a second unit norm element, then the resulting element has unit 

norm (the numbers in parentheses are the number of real components in the 

elements of the algebra – the Cayley algebras double in dimensionality at each 

higher order). In [1], a chiral extension is shown that allows unit norm 

‘propagation’ in a nine dimensional subspace of the sedenions (16), and a further 

chiral extension is shown to have unit norm propagation in a ten dimensional 

subspace of the bi-sedenions (32). It was then proven [1] that there were no 

further chiral extensions beyond ten dimensions. 

In this paper we explore restricting the propagation mechanism to be 

multiplication (on the right, say) by a unit norm element that is a small 

perturbation from the unit element. In doing this we see a precipitous phase 

transition in propagation behavior when the perturbation becomes sufficiently 

small, and this is more than the incremental change in perturbation would suggest. 

The maximal perturbation magnitude allowed for a propagating path construction 

mechanism has been experimentally determined to be none other than alpha, the 

fine structure constant, hitherto only determined experimentally. 

The propagator with stationary phase (when compared to similar propagation 

histories), then gives rise to the familiar classical, semiclassical, or quantum trajectory 
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behavior. As with the standard sum on paths construction, the phases of paths 

without stationary phase cancel and are eliminated from consideration – this 

eliminates propagation not just by the non-perturbative non-unitary decay 

trajectories within the bi-sedenions, but the higher Cayley non-decaying 

(divergent norm) trajectories. (Not shown in the Results are propagation efforts 

for Cayley algebrs higher than Bi-Sedenion. At the next higher, 64-element, 

algebra, consideration of perturbation with a small x32 component, rather than 

nonzero x9 component, yield norm evaluations that diverge very rapidly.) In 

effect, the fine structure constant is selected to allow for maximal perturbative 

propagation. So the unified propagator theory appears to suggest maximal unitary 

propagation in the context of unit norm multiplication by perturbed unit elements 

with imaginary component having magnitude less than alpha. If ‘reality’ wanted 

to propagate ‘information’ within a single algebra construct, and allow for 

maximal information transmission, that object would evidently be an element of 

the max_delta=alpha perturbation bi-sedenions on an (emergent) trajectory in the 

bi-sedenion algebra. 

Propagation with the max-perturbation alpha step then leads to emergent 

trajectories as far as real-component zero-crossing frequency, and norm 

oscillation frequency about unity (and emergent fall-off from unity trajectories if 

max-perturbation exceeds alpha). This gives rise to a partially emergent unified 

propagator with 22 emergent parameters, with inter-relation between a subset to 

arrive at the alpha parameter as described (independent of the individual emergent 

parameters). As noted previously, the standard model has 19 parameters, and the 

minimal extended standard model [4], incorporates three sterile neutrinos, for a 

total of 22 parameters. Thus, the unified propagator theory is consistent with the 

minimal extended standard model, and adds further credence to the existence of 

(three) sterile neutrinos as indicated in recent experimental studies [5]. Since 

sterile neutrinos are one of the prime candidates for dark matter, this provides a 

potential theoretical framework in which to address that mystery as well. 

In further work the max_delta=alpha value will be determined to higher precision, 

and agreement with the highest precision experimental result known from QED 

[6] (1/ = 137.035999070 (98)) will be tested. 
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