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1 . INTRODUCTION 

The standard SU(2) x U(1) model of the electroweak interaction is in an 
+ 

excellent position after 

masses in the range where 

the discovery of the weak vector bosons w-,z with 1) 2) they have been expected ' • Although this 

means a strong support of the theory crucial further steps are neces sary in 

order to establish the standard model: the search for the Higgs scalar as 

the signal for spontaneous symmetry breaking, and precision measurements of 
the vector boson masses and boson-fermion couplings in the accessible fer­

mionic processes in present and future colliders. 

Electroweak proces ses between fermions can be described with help of 

essentially 3 parameters each of them related to a typical low energy ex­
periment: 

the electric charge e = ,IIITIC; , a-1 = 137. 03604, as obtained e.g. from the 

Thomson limit of Compton scattering; 

the Fermi constant GF' obtained from the muon lifetime; 

the electroweak mixing angle sin20W ' obtained from neutrino scattering. 

On the other hand the boson masses l\i•Mz can directly be measured in 

pp collisions. The minimal standard model, where W±,Z get their mas ses via 

a Higgs mechanism with a scalar doublet, predicts relations between l\i•Mz 
. 2 and the parameters GF' sin 0W ' a: 

1 . 
20 - Sln -W ( 1. 1 )  

. . 20 . Furthermore, if sin -W or MW, MZ are known, all the fermionic neutral current 
coupling constants are also fixed: 

( 1. 2) 

These coupling constants can best be measured in e+e- +ff experiments. Thus 

we are in a situation where the theoretical relations become more and more 
encircled by sensitive experiments which subject the standard model to the 
hard tests it deserves. 

Precision experiments require adequate theoretical predictions. The 

theoretical relations MW++ Mz, MZ ++ vf,af are in general different for 



different orders of perturbation theory. The inclusion of higher order 

effects, the "radiative corrections", becomes a necessity with increasing 
experimental accuracy. Such precision tests beyond the tree level not only 

probe the internal consistency of the theory (renormalizability) , but are 
also required to seperate the standard model from possible extensions 
(supersymmetry, more-Z-models, composite models, • • .  ) . 
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The following sections contain a discussion of the 1-loop renormaliza­

tion of the standard model and applications of the radiative corrections to 
fermion processes. Thereby we restrict the discussion to leptonic processes 

since these allow the cleanest access to the more subtle parts of the theory 

avoiding theoretical uncertainties as far as possible. 

2. RENORMALIZATION 

Calculations beyond the tree level require the choice of a renormali­

zation scheme. This defines 

what the free parameters in the Lagrangian are, and 

how these are related to measurable quantities. 

The list of work in 1-loop corrections to processes with low momentum trans­

fer q2 3l - 13) and to e+e- processes with q2 � MW
2 14) - 23) is quite long. 

The great variety of different renormalization schemes makes it difficult 

to compare directly the obtained results. It should be pointed out, how­

ever, that there is meanwhile a satisfactory agreement between the indivi­
dual calculations in the questionable points. 

Nevertheless there are still several possible sources of confusions 

when talking about radiative corrections: 

different parameter sets yield different values for physical observables 

(e.g. the forward-backward asymmetry in e+e- � µ+µ-) if the tree level 

relations are used. Inclusion of radiative corrections with the same set 

of parameters as in lowest order removes this differences • 

The definition . 20 . . of 
_
sin ·w is no longer unique beyond the tree level. 

For comprehensive tests it is desirable to have the calculation of all 

the different processes under consideration within a common renormalization 
scheme. A scheme with an evident physical interpretation, which is also 
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. . . 24) , 5), T), 1 1)-23) convenient for practical use,  is the on-shell scheme : 

The free parameters are the mas ses � 'MZ,�'mf of the gauge and Higgs 

bosons and fermions together with the electromagnetic fine structure con­
stant a. The renormalization conditions fix the masses as the pole positions 

of the corresponding 2-point functions. 

An example of a non-on-shell scheme is the MS scheme 10) where the re­
normalization conditions consist simply in subtracting the singular 
parts of the 1-loop 2- and 3-point functions. The free parameters have 

to be related to the physical masses in a second step . 

Though different renormalization schemes are in principle equivalent 
due to renormalization group invariance we prefer for the following dis­

cussion the on-shell scheme because of its better physical transparency. 

Starting point is the classical Lagrangian 

:f
G is the gauge part with the SU(2) and U( 1) fields W and B and the µ µ 

( 2. 1) 

corresponding gauge couplings g2 and g1; ,tH is the Higgs part with the 
scalar doublet ¢ and with µ2 ,A  as the potential parameters; �FG contains 
the fermion-gauge field interaction with left and right handed fermion fields 
�L, R  , and iFH is the Higgs-fermion Yukawa term with coupling constants gf 
that induces the fermion masses. 

In the fields and parameters of (2. 1) the SU(2) x U( 1) symmetry of .'(c£ 
is manifestly apparent. The physical content, however, becomes more trans­
parent after switching to the "physical" fields and parameters 

. . 2 There is no room for sin 8W as an additional independent quantity. The 
simplest choice in terms of (2. 2) that makes the Z-y mixing term in (2. 1) 
vanish, is 

( 2. 3) 

which will be used throughout the forthcoming discussions. 
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The systematic way for obtaining physical results in higher order is 

scheduled in table 1 for the method with symmetric field renormalization. 

Since it is convenient to work in a renormalizable gauge ( 1t Hoeft-Feynman 

gauge) the gauge fixing term �fix and corresponding Faddeev-Popov part 25) 

have to be added to �ci· The multiplicative renormalization assigns a field 

renormalization constant ;z; to each multiplet of fields and a parameter 

renormalization constant to each parameter in the symmetric from (2. 1). 

Expanding Zi = 1 + oZi yields the renormalized ;!. which can now be re-ex­

pressed in terms of the physical set (2.2) (besides the physical Higgs H 

also the unphysical Higgs fields �±,x and ghost fields ua are present). 

From oJ/. follow the counter terms, also re-written in terms of (2. 2), which 
have to be added to the loop integrals. The renormalization constants oZi 
in the counter terms are then fixed by imposing appropriate renormalization 
conditions. The results are finite Green functions from which the S-matrix 
elements for the various processes of interest are obtained. The Slavnov­
Taylor identities 26) allow to control the consistency of the procedure and 

to check the final results. 

The renormalization conditions give the parameters in (2. 2) the physical 

meaning which we expect them to have. The first class are the on-shell con­

ditions which make the particle content of the theory evident: 

Re ====O== I o, =V=1 0 
z z k2 M 2 w w k2 Mw 2 z 

(2. 4) 
Re ----0 - -- I o, --+--0--1 o. 

H H k2 = MH2 f f k2 m 2 f 

(The bubbles mean the 1-loop contributions to the self energies together 

with the counter terms. ) 

The second class defines the electric charge in the Thomson limit and 

allows to recover the ordinary QED as a simple substructure: 

0 0 0 
( 2.5) 

Res (�+ � 1 , Res ( � + --o--+-) 
y y y e,µ, . • • 



+ ;(ci(W,B,�L R,¢; g2, g1, µ2, A' gf) , 

R-gauge 

£ = tci + ,f fix + £ghost 

+ 
unitary gauge i'c2(w-,Z,y,�L,R'H; e,�,MZ, MH,mf 

tree level calculations 

w + lz� R, B + lz� B 
Renormalization (Z . l 1 + oZi) 

�L + lzL�L' �R + lz
R�R 

.p + + a ) o<,.(w-, Z, y, H; �-,x,u; e, �,MZ' �'mf + o.i(w±
, z,y, . . . ) 

ST 

Feynman rules counter terms identities 

renormalization 
conditions renormalization constants 

renormalized Green functions Table 1: Strategy for 1-loop 
calculations. 

S-Matrix elements 

00 
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(2. 4) and (2.5) are sufficient to calculate radiative corrections to fermi­

onic processes with mf
2 << �2. A more detailed description can be found in 

ref. 18). The results can be summarized in terms of the renormalized vector 
boson propagators 

and boson-fermion vertices r aff(k2). 
)1 

a = y,W,Z,yZ 

For external fermion masses mf
2 << MW2 it is sufficient to deal with 

the transverse propagators only. These are related to self energies I" in 

the following way: 

i - k2 

a = y,Z,W ( 2. T) 

( 2. 8) 

The vertex corrections can be expressed in terms of vector and axialvector 

form factors 

( 2. 9) 

A complete list of the self energies and charged and neutral form factors 

is given in ref. 18). To get an impression 2 examples are displayed: Fig. 2 
shows the weak vector form factor of the ee-Z coupling (after splitting off 
the QED part); other form factors are of similar magnitude. The only sizable 

weak corrections are the diagonal boson self energies, shown in fig. 1 forIZ 
(IW is of similar magnitude). The y-Z mixing is < 10-2 up to k2 = (200 GeV)2• 

In all expressions sin28W is always to be understood as a book-keeping 

device in the sense of (2. 3r. 
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Fig. 1: z self energy IZ (k2) 
Lower curve: Reiz/(k2 - Mz2) 
Upper curve: Im Iz!Mzrz 

Fig. 2: Weak contribution to the e-Z 
vector form factor. 

3. RADIATIVE CORRECTIONS IN LOW ENERGY PROCESSES 

3. 1 Muon decay: 

The life time Tu of the muon decaying via u >+ vueve is calculated in the 
Fermi model to be 

G 2 
_ _ 

F_ m 5 ( 1  T - 192'113 µ 
u 

Sm 2 e - � 
µ 

( 3. 1) 

with GF = 1. 16634( 2) · 10-5 Gev-2, liQED = 2C!.'1T ( 2: - '112) is the familiar QED 
correction in the Fermi model 27). 

The standard model in lowest order 

describes the µ decay by single W ex­
change (Fig. 3).  A comparison of the 
analytic result for Tu with (3.1) 
leads to the relation 

p 

Fig. 3 

which allows to calculate MW if sin2GW is known. 

, 

( 3 .2) 



Inclusion of radiative corrections means replacement of the W propagator 

and the vertices by their renormalized versions (together with v wave func­

tion renormalization) and adding the 2-boson box diagrams (which are finite 

without renormalization). The dominating weak correction is the W self 

energy: 

q2 - l\i2 
1 -

l\i2 (3,3) 

which appears as a multiplicative correction factor to the Born amplitude. 

Summing up all 1-loop corrections leads to 

T 
µ 

�m 5 ( 1  3841T µ 

with the weak correction 

( 3.4) 

0.07, ( 3, 5) 

Identifying (3.4) with the Fermi result (3. 1) yields the corrected version 

of the relation (3.2): 

(37. 28 1 GeV)2 
sin28w ( 1 - owl 

( 3.6) 

The simple form (3.6) is a consequence of the factorization of the 1-loop 

amplitude for q2 � 0 into the V-A current-current term times a constant 
(expressed by the model parameters) which is identified with GF. Thus GF 
includes automatically higher order weak contributions by definition. The 
use of (3.2), where a tree level quantitiy is put equal to GF, to de�ive a 

value of sin28W for the NC couplings if l\i (or MZ) is given has therefore 

to be treated with caution in general. 

1 1  

ow in (3.5) i s  not really a constant but depends on sin28W ' MW and (via 

l:W) on the other masses in the model. For MH = MZ, sin28W = 0,217 , mt=36 GeV: 
28) ow = 0.0696 ± 0. 0020 • 

The uncertainty is due to the light quark contribution in i:W. This ha­
dronic part can be evaluated with help of a dispersion integral over 
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o (e+e- +hadrons) 9), 29). Recently, an update analysis of the hadronic 

contribution has been performed by Jegerlehner 3o) who finds a smaller error 
and a somewhat larger mean value: 

6w = 0 . 07 1 1  ± 0.0007 ( 3. 7) 

An independent analysis by Cole et al. 3 1) yields a hadronic uncertainty of 
± 0.00 13. An estimate of higher order effects to 6W by means of the renorma­

lization scheme dependence 3o), 32) adds a further uncertainty even larger 

than in (3,7), A quadratic summation leads to ± 0 . 00 13, which may be consi­

dered as a realistic value for the total uncertainty (without the unknown 
Higgs and top mass). 

MW i n  (3.6) can be eliminated in favor of MZ: 

(37 . 281 GeV)2 

If MZ will be known with high accuracy (6Mz!Mz � 5 • 10-4) 
. . . . (3 8) . 18), 23) is fixed by inverting . in terms of a,MZ,GF 

-

( 3 . 8) 

from LEP, sin28W 
Then all obser-

vables can be calculated with these parameters which are known to best pre­
cision. 

The sensitivity to the Higgs mass MH is not very striking: A variation 

of MH from 10 GeV to 500 GeV leads to a shift in sin28W of 0.0035 (from 
( 3. 8) for fixed MZ). 6W is, however, more sensitive to a heavy top quark or 
a next generation with large mass splitting 15), 6). 33), which reduce the 

magnitude of ow or even reverse its sign (for mt > 240 GeV). 

3 . 2  Neutrino electron scattering: 

A sensitive measurement of sin28W can be obtained in terms of the ratio 

of neutrino and antineutrino cross sections 

R o(vµe)/o(vµe), which reads in lowest order: 

+ s + 1;2 
- s + 1;2 with !; (3,9) 



The lowest order diagramm consists of 

single Z exchange (Fig. 4). In higher 

order those corrections contribute to 
R which alter the ve/ae ratio: the 

y-Z mixing propagator , the electro­
magnetic neutrino vertex (charge 

radius of v), and box diagrams with 
2 massive boson exchanges. Their in­
clusion modifies the simple form (3,9): 
R0 (sin28w) + R (sin28w;MZ,� 'mf). 

z 

e e 

Fig. 4 

R becomes now dependent also on the other model parameters. The dependence 

13 

of R on sin28W is displayed in Fig. 5, For values sin28W � 0.23 the correc-
. 13) 18) tions to R are very small ' • The influence of the other parameters 

on the determination of sin28w (if R is fixed) are: 

� 10 1000 GeV 

mt 30 60 GeV 

llMZ ± 5 GeV 

hadronic 1mcertainty 

R 

1 

.2 .25 .3 

0.0024 

0.0008 

± 0.0003 

± 0.0003 

Fig. 5: R = o(v e)/o(v e) µ µ 
The thickness of the corrected curve 
indicates the variation with 
MH = 10 - 300 GeV (from ref. 18). 
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Compared to the expected accuracy of 6sin20W = 0 . 005 in the CHARM experiment 
the theoretical uncertainties are not very significant . R can therefore be 
considered as a function of sin28W only , also in higher order . The present 

. 37) . 20 0 21 5 + 0 032 + 0 0 12 CHARM calue from R is sin -W = • - • - • • 

4. RADIATIVE CORRECTIONS IN + - + -e e + µ µ 
+ - + -

The two Born diagrams for e e + µ µ 

yield the differential cross section for unpolarized beams: 

do 
drl 

Cl y 

Cl yZ 

z 
Cl 

with 

�
s
2 ( � y  + �yZ + �

z
) ,  ( )2 4S v v v s = Pe- + pe+ ' 

1 + c2 

(2 v2 ( 1 + c 2 ) + 2a 2 • 2c J Re X, 
= E v2 + a2)2 ( 1  + c2) + 4v2a2 • 2c J Ix 1 2. 

The 1-loop corrections to (4 . 1) can be divided into 3 classes: 

( 4. 1) 

( 4.2) 

a) The QED corrections to the y exchange graph (virtual photons + real 

photon bremsstrahlung): " reduced QED corrections" . Also the QED vacuum 
polarization is included . 

b) The QED corrections (real +virtual photons) also to the Z exchange 

graph. a+b: "full QED corrections (fig . 6) . 

c) Weak corrections: non-QED part of the y vacuum polarization, the Z self 
energy and y-Z mixing, non photonic vertex corrections and box diagrams 

with 2Z and 2W exchange. 



Fig. 6: 

HH 
KK 
HH 
HK 

+ - + -Full QED corrections to e e + µ µ 
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. 34)-36) . . . f t hl The QED corrections a, b, include the emission o bremss ra ung 
quanta which have to be integrated over their phase space to give an inclu­
sive 2-particle cross section: 

d(l y dl"l dl"l dk0 µ y y 

Adding to doB the virtual photon corrections the result becomes infrared 
finite: instead of the IR singularity the details of the y phase space 
enter the final result. Conventionally an acollinearity cut to the outgoing 
µ+µ- momenta and/or an energy cut to the emitted photon is applied: 

This type of corrections therefore depends on the details of the experiments 
and is conveniently treated by Monte Carlo simulation35). Beyond that, type b) 
corrections depend on the model parameters v, a, Mz, rz. The weak corrections 
c) are independent of experimental cuts; they include the more subtle parts 
of the tneory beyond the tree level. 

An observable of particular interest is the forward-backward asymmetry 
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0(8 < TI/2) - 0(8 > TI
/2) 

0(8 < TI/2) + 0(8 > TI/ 2) 

It reads in lowest order (from (4. 1)): 

x = detector acceptance. 

4.1 PETRA/PEP energies: 

At energies well below MZ (4.3) can be approximated by 

A�B 1+�2;3 • 2a2 s�M 2 , a 
z 

- 1 

( 4. 3) 

(4.4) 

. 17) 20) The inclusion of the dominant weak correction, the Z boson self energy ' 

Ez modifies (4. 4) to 

i\; 0.07 . ( 4. 5) 

The other weak corrections are negligible (table 2). Realistic cuts as used 

by experimentalists yield an almost cancellation of the QED corrections to 
Z exchange and the weak correction. Therefore only the model independent 
reduced QED corrections have to be applied to the data and the experimental 
result has to be compared with (4.4). This is valied over a wide range of the 

d . 29 18) . . . 4 parameters MZ an sin -W • The theoretical prediction for AFB at 3 .5 GeV 
is displayed in F�.g. 7. The PETRA data show the tendency to smaller values 
of sin28W than derived from MW , MZ measurements and v scattering. 

Born 
reduced QED 
full QED 
Z self energy 

lll % 

- 7.62 
- ,5 .Bo 
- 5.28 

- 5.83 

y-Z mixing - 5. 83 
vertex corrections - 5. 82 
massive boxes - 5.83 

Table 2: AFB at 34. 5 GeV 

omax = 100, �E = 0.5 Ebeam 

93 GeV , MW = 82. 1 GeV , 

100 GeV , mt = 30 GeV 



Fig. T: AFB at 34.5 GeV. 
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O/o -----�I 
Same cuts as in table 2; the MZ band 
corresponds to the 1-o limit2l. 

10 

6 

.2 .25 

Mz 
94.7 
91.3 

There is also another way to discuss AFB making use of our knowledge from 

the µ lifetime: Inserting cos8W = Mw!Mz in (4.4 - 5) together with (3 . 6) 

yields: 

A weak 
FB 

2 
x G�z s 

--�--1+x2/3 4nav2 s-MZ2 

. . . . . 16) In this representation the resulting weak correction is very small 

( 4.6) 

(6A;�ak < 0. 00 1) since ow and oz are of the same magnitude. The tree level 
formula for AFB in terms of GF ,MZ includes the main part of the weak correc­

tions. In this case, however , one has to respect the full QED corrections. 

2 4.2 On resonance (s = Mz )forward-backward and polarization asymmetry 

This simple behaviour of AFB encountered well below the Z resonance is 
no longer valid for AFB on the Z : due to the on-shell subtraction of the 

2 Z self energy there is no large contribution from Ez(MZ ) which could com-

pensate the correction in (3.6). Thus we find large differences if we elimi­

nate sin28W in terms of GF, MZ either by (3.2) or by (3.8) and use the Born 
2 formula for AFB at s MZ : 

AFB (x=1) 
O. 1 OT with ( 3. 2) 

0. 039 with (3.8) 
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In order to avoid such big differences the use of MW and MZ for sin28W 
= 1-�2/MZ

2 would be a better method. This is, however, limited by the ex­
perimental precision of the W mass. 

The cleanest way to discuss �B is the following: calculate 

Aweak (sin2ew) FB 

as function of sin28w (besides MZ'�). 

( 4. 7) 

weak . · b z oA
FB is the sum of all weak 1-loop corrections eyond the self energy, 

which is a small quantity(< 0. 005). Then extract a value for sin28W from 
a measured ��p via 

oAQED + Aweak (sin28W) FB FB 
A exp 

FB (4.7•) 
• 2 I 2 ( ) and compare this with sin28W from other sources like 1-� MZ or eq. 3.8 

Equivalently: Calculate sin28W from (3.8) for given Mz and insert this 
into (4. 71);we obtain a value which has to be compared with �P. Fig. 8 

weak shows the dependence of AFiJ , eq. (4.7), on sin28W. 

Since polarization experiments become feasible at the SLC we also dis-
cuss the polarization asymmetry�: If the e beam is longitudinally pola­
rized (with degree PL) one can define�= aufaL where a(e+e- + µ+µ-) = 

Ao 2va 
�D = v2+a2 

M 2 we have in lowest order: z 

In analogy to (4. 7) we calculate 

( 4.8) 

with the weak corrections o�eak in terms of sin28W. � is also displayed 
in Fig. 8. It can be seen that � is more senitive to sin28W than �B· 

Both types of asymmetries if considered as functions of sin28W are in­
dependent of the light quark uncertainties. Therefore 

Aexp Aexp + . 28 + 
FB ' -,, sin -W 
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. 3 

Fig. 8: On-resonance forward-backward 
and polarization asymmetry, sin28W­
dependence . 
Mz = 93 GeV , MH = 1 00 G.eV (from 

ref. 22) • 
• 2 

.1 

.2 sin2 e.,,, . 25 

would allow a test of the theory with the Higgs mass as the only source of 

uncertainty: MH between 10 GeV and 1000 GeV leads to a variation in sin28W 
of 0. 0014. The method is, however , limited by the accuracy of the mas s  

measurements: I f  6�/� 6Mz!Mz 10-3 is as sumed the experimental uncer-

tainty would be 6sin28W 0. 002. 

A more precise value f©r sin28W can be obtained by (3.8) even with the 

inherent hadronic uncertainty: 

hadronic uncertainty ± 0. 0020 ± 0. 0013 ± 0. 0001 

± O.OOOT ± 0. 0004 ± 0. 0002 

This accuracy matches the (optimistic?) precision with which sin28W can be 

determined from the polarization asymmetry AL (6sin28W = ± 0. 0006). Com­

binung �· eq. (4. 8) , with (3.8) for fixed MZ would furthermore exhibit 

some sensitivity to the Higgs mass: MH = 10-500 GeV leads to a shift in 

AL of - 0. 015 Numerical results for various masses can be found in ref. 23 

A final remark concerns the full QED corrections around the z0• They depend 

on the experimental conditions and the Z0 parameters in a rather involved 
34)-36) way changing the shape of the resonance and of �B • The on-resonance 

value of �· however, is relatively stable under QED corrections36). Further­
more, the problem of multiple bremsstrahlung and exponentiation of the 

. 34) , 36 ) 0 t . . t . . leading logs around the Z deserve more de ailed inves igations. 
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5, CONCLUSIONS 

+ . 2 Actual measurements of the w-,z masses and of sin GW already indicate 

the presence of higher order effects in electroweak processes between fer­

mions. More accurate measurements in the near future colliders LEP and SLC 

will allow to test the standard model beyond the tree level. At the 1-loop 

level a big amount of work has already been done with a satisfactory agree­
ment between the individual calculations for the standard processes: µ-decays, 
v-scattering, and e

+
e- + µ+µ-. 

In the on-shell renormalization scheme the physical meaning of the used 

parameters (particle masses) and the transparency of the calculations are 

most evident. In this scheme the mixing angle can be unambigously defined 
via sin28W = 1-�2/MZ

2 with the physical boson masses. All experimental in­

formation coming from Tµ' v-scattering, polarization and forward-backward 

asymmetries in e+e-, . • .  can be expressed in terms of Mz,Mw or MZ, sin28w, 
if the corresponding radiatively corrected expressions are used. Two in­

dependent experiments are needed to fix the input data (e.g. MZ and Tµ)' 
the others representing tests of the theory. 

The energies up to� (200 GeV)2 the dominant weak corrections are the 

diagonal W and Z self energies. Consequently, the weak corrections are 

large in lifetime of the muon (W self energy) 

small in the ratio o (v e)/o(v e), where no diagonal self energy correc-µ µ 
tions_ are present; 

in e+e- +µ+µ- the magnitude of the weak corrections depends on the para­

meters used for tree and 1-loop calculations. 

Around the Z0 peak the QED corrections (real + virtual photon correc­
tions) are particularly significant. These do not contain further theoreti­

cal information beyond the tree level (except on QED) but they influence 
the experimental determination of the Z width, cross sections and asymme­

tries quite remarkably. For reliable discussions of precision experiments 
on the Z0 further careful investigations of multi-photon effects are indis­

pensable. 
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