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1. INTRODUCTION

The standard SU(2) x U(1) model of the electroweak interaction is in an
excellent position after the discovery of the weak vector bosons Wi,Z with
masses in the range where they have been expected s 2). Although this
means a strong support of the theory crucial further steps are necessary in
order to establish the standard model: the search for the Higgs scalar as
the signal for spontaneous symmetry breaking, and precision measurements of

the vector boson masses and boson—-fermion couplings in the accessible fer-

mionic processes in present and future colliders.

Electroweak processes between fermions can be described with help of
essentially 3 parameters each of them related to a typical low energy ex-
periment:
the electric charge e = vima, a_1 =137.0360k4, as obtained e.g. from the
Thomson limit of Compton scattering;
the Fermi constant GF’ obtained from the muon lifetime;

the electroweak mixing angle sin26w, obtained from neutrino scattering.

On the other hand the boson masses M, ,M, can directly be measured in

W'z
pp collisions. The minimal standard model, where Wt,Z get their masses via

a Higgs mechanism with a scalar doublet, predicts relations between Mw’MZ

and the parameters GF’ sin2®w, o

- T D~ 2 2
1 - sin®oy = M7/, M -m/@GFsmew (1.1)

. .2 ..
Furthermore, 1f sin OW or MW’MZ are known, all the fermionic neutral current

coupling constants are also fixed:

hig .
a, = I. /2sin6_cosO
f s

3 W W (1.2)

£
3
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. 2 .
£ 2 Qf sin Ow)/ZSanwcosew.
These coupling constants can best be measured in e+e_ > T experiments. Thus
we are in a situation where the theoretical relations become more and more
encircled by sensitive experiments which subject the standard model to the

hard tests it deserves.

Precision experiments require adequate theoretical predictions. The

theoretical relations Mw < M, M, < Vpsap BrE in general different for



different orders of perturbation theory. The inclusion of higher order
effects, the "radiative corrections", becomes a necessity with increasing
experimental accuracy. Such precision tests beyond the tree level not only
probe the internal consistency of the theory (renormalizability), but are
also required to seperate the standard model from possible extensions

(supersymmetry, more-Z-models, composite models, ...).

The following sections contain a discussion of the 1-loop renormaliza-—
tion of the standard model and applications of the radiative corrections to
fermion processes. Thereby we restrict the discussion to leptonic processes
since these allow the cleanest access to the more subtle parts of the theory

avoiding theoretical uncertainties as far as possible.

2. RENORMALIZATION

Calculations beyond the tree level require the choice of a renormali-

zation scheme. This defines

- what the free parameters in the Lagrangian are, and
- how these are related to measurable quantities.

The 1list of work in 1-loop corrections to processes with low momentum trans-

2 3) - 13) 2 14) - 23) is quite long.

fer q and to e+e_ processes with g2 ~ Mw
The great variety of different renormalization schemes makes it difficult
to compare directly the obtained results. It should be pointed out, how-—
ever, that there is meanwhile a satisfactory agreement between the indivi-

dual calculations in the questionable points.

Nevertheless there are still several possible sources of confisions

when talking about radiative corrections:

- different parameter sets yield different values for physical observables
(e.g. the forward-backward asymmetry in e+e_ hd u+u_) if the tree level
relations are used. Inclusion of radiative corrections with the same set

of parameters as in lowest order removes this differences.

- The definition of sin20w is no longer unique beyond the tree level.

For comprehensive tests it is desirable to have the calculation of all
the different processes under consideration within a common renormalization

scheme. A scheme with an evident physical interpretation, which is also
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convenient for practical use, i1s the on-shell scheme :
The free parameters are the masses MW’MZ’MH’mf of the gauge and Higgs

bosons and fermions together with the electromagnetic fine structure con-
stant o. The renormalization conditions fix the masses as the pole positions

of the corresponding 2-point functions.

0)

An example of a non-on-shell scheme is the MS scheme ! where the re-
normalization conditions consist simply in subtracting the singular
parts of the 1-loop 2- and 3-point functions. The free parameters have

to be related to the physical masses in a second step.

Though different renormalization schemes are in principle equivalent
due to renormalization group invariance we prefer for the following dis-

cussion the on-shell scheme because of its better physical transparency.
Starting point is the classical Lagrangian

Loy = foﬁ’B’ge’gv) v Lylesnta)

(2.1)
+ g5 VgosB) + Lyl vputie,)

£

G
corresponding gauge couplings 8, and 8¢5 'tH is the Higgs part with the

is the gauge part with the SU(2) and U(1) fields ﬁu and Bu and the

scalar doublet ¢ and with p?,A as the potentidl parameters; JEFG contains
the fermion-gauge field interaction with left and right handed fermion fields
¥, g » and ‘{FH is the Higgs-fermion Yukawa term with coupling constants 8s

b

that induces the fermion masses.

In the fields and parameters of (2.1) the SU(2) x U(1) symmetry of 421
is manifestly apparent. The physical content, however, becomes more trans-

parent after switching to the "physical" fields and parameters

+
W aZ,YQ e’%’MZJVLH:mf (2-2)

There is no room for sin28w as an additional independent quantity. The
simplest choice in terms of (2.2) that makes the Z-y mixing term in (2.1)
vanish, is
-~
sin Ow =1 - My /MZ (2.3)

which will be used throughout the forthcoming discussions.



The systematic way for obtaining physical results in higher order is
scheduled in table 1 for the method with symmetric field renormalization.
Since it is convenient to work in a renormalizable gauge ('t Hooft-Feynman
gauge) the gauge fixing term ;(fix and corresponding Faddeev-Popov part 25)
have to be added to 5fcl. The multiplicative renormalization assigns a field
renormalization constant /i; to each multiplet of fields and a parameter
renormalization constant to each parameter in the symmetric from (2.1).
Expanding Zi =1+ 6Zi yields the renormalized ;e which can now be re-ex-—
pressed in terms of the physical set (2.2) (besides the physical Higgs H
also the unphysical Higgs fields ¢i,x and ghost fields u®* are present).

From § follow the counter terms, also re-written in terms of (2.2), which
have to be added to the loop integrals. The renormalization constants azi

in the counter terms are then fixed by imposing appropriate renormalization
conditions. The results are finite Green functions from which the S-matrix
elements for the various processes of interest are obtained. The Slavnov-
Taylor identities 26) allow to control the consistency of the procedure and

to check the final results.

The renormalization conditions give the parameters in (2.2) the physical
meaning which we expect them to have. The first class are the on-shell con-

ditions which make the particle content of the theory evident:

Re ===-(:)===== / , = 0, ====(:)==== / =0

2 = 2 = 2
A Z k MZ W W ok Mw
(2.4)
Re ----O---- / =0, ——O— = 0.
H H x? = MH2 £ f k2 = mf2

(The bubbles mean the 1-loop contributions to the self energies together

with the counter terms.)

The second class defines the electric charge in the Thomson limit and

allows to recover the ordinary QED as a simple substructure:
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(2.4) and (2.5) are sufficient to calculate radiative corrections to fermi-
onic processes with mf2 << ng. A more detailed description can be found in
ref. 18). The results can be summarized in terms of the renormalized vector

boson propagators

s K k s KK o
Au\)(k) = (- gu\) + %2 ) AT + %2 AL s 0 = Y,W,Z,Y2
and boson-fermion vertices Fuaff(kQ).

For external fermion masses mf2 << Mw2 it is sufficient to deal with

the transverse propagators only. These are related to self energies * in

the following way:

8 = i/(x? - M; + za(kz)), a = Y,Z,W (2.7)
Z 1 Z 1
A; =—# oY (ke)kz—_—g (2.8)

Z

The vertex corrections can be expressed in terms of vector and axialvector

form factors

ff . .
PZ =-ie nyu ey, [FVY(ke) - FAY(k2>Y5]
(2.9)
72ef . _ ) 7 .z
Pu = 1eyu(vf afvs) tiey, [FV (k2) Py (kz)Ys]-

A complete list of the self energies and charged and neutral form factors

is given in ref. 18). To get an impression 2 examples are displayed: Fig. 2
shows the weak vector form factor of the ee-Z coupling (after splitting off
the QED part); other form factors are of similar magnitude. The only sizable
weak corrections are the diagonal boson self energies, shown in fig. 1 for I

(z

Z

y is of similar magnitude). The y-Z mixing is < 1072 up to k? = (200 GeV)2.

In all expressions sinee is always to be understood as a book-keeping

W

device in the sense of (2.3).
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Fig. 1: Z self energy I,(k?) Fig. 2: Weak contribution to the e-Z
Lower curve: ReZZ/(k2 - MZZ) vector form factor.

Upper curve: Im ZZ/MZI‘Z

3. RADIATIVE CORRECTIONS IN LOW ENERGY PROCESSES

3.1 Muon decay:

The 1life time T of the muon decaying via u Vue;e is calculated in the

Fermi model to be

G2 8m_2
A _F _ 5 __¢
T 192 My y m 2 y (s 6QED) (3.1)
n W
. - -5 -2 =& (25 oy s 111
with G_ = 1.1663L(2) - 10 7 GeV <. § = ( m2) is the familiar QED
F o7) @D T 2m L

correction in the Fermi model .

The standard model in lowest order F - i V.
describes the u decay by single W ex— w F
change (Fig. 3). A comparison of the e
analytic result for T with (3.1) _
leads to the relation Fig. 3 »E

2
o et Cr (3.2)
2 = 2 - = .
8Mw BMW 51n0w >

which allows to calculate Mw if sineew is known.
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Inclusion of radiative corrections means replacement of the W propagator
and the vertices by their renormalized versions (together with v wave func-
tion renormalization) and adding the 2-boson box diagrams (which are finite
without renormalization). The dominating weak correction is the W self

energy:

L ] SO N B
Q? - F > 9z - ng " Ew<q2> = w2 T - ZW(O)/MWZ (3.3)

which appears as a multiplicative correction factor to the Born amplitude.

Summing up all 1-loop corrections leads to

2
1 _ ot 5 e 1 .
T, 38 M (1 m? ) [Mw2 sin®6, (7 - sw)] (1 + Somp) (3.4)

with the weak correction

ZW(O) ) T—hsineow

=  + —5 (6 +
W M hrsin Ow

2 =
2 sin’e, log cos?@,) = 0.07. (3.5)

Identifying (3.4) with the Fermi result (3.1) yields the corrected version
of the relation (3.2):

(37.281 Gev)?2

e or 2 = ST oa T (3.6)
y °F Myt T sin 0, (7 - o)

FoV2 sz sin2®w(1 - SW

G

The simple form (3.6) is a consequence of the factorization of the 1-loop

amplitude for g2 = O into the V-A current-current term times a constant

(expressed by the model parameters) which is identified with GF' Thus GF
includes automatically higher order weak contributions by definition. The
use of (3.2), where a tree level quantitiy is put equal to Gp» to derive a
value of sinzew for the NC couplings if Mw (or MZ) is given has therefore

to be treated with caution in general.

Gw in (3.5) is not really a constant but depends on sinEOW, My and (via

EW) on the other masses in the model. For M = 0.217, m, =36 GeV:

28)

6w = 0.0696 * 0.0020 .

= in?
H MZ’ sin OW

The uncertainty is due to the light quark contribution in Ew. This ha-

dronic part can be evaluated with help of a dispersion integral over
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+ - 9), 29) ; :
o(e’ e - hadrons) . Recently, an update analysis of the hadronic
contribution has been performed by Jegerlehner 30) who finds a smaller error
and a somewhat larger mean value:
8. = 0.0711 + 0.0007 (3.7)

W
31)

An independent analysis by Cole et al. yields a hadronic uncertainty of

+ 0.0013. An estimate of higher order effects to 6w by means of the renorma-
lization scheme dependence 30), 32) adds a further uncertainty even larger
than in (3.7). A quadratic summation leads to * 0.0013, which may be consi-
dered as a realistic value for the total uncertainty (without the unknown
Higgs and top mass).

M, in (3.6) can be eliminated in favor of M,:

(37.281 GeV)?
- sineew)m - sw) (3.8)

My = Sine

If M, will be known with high accuracy (AMZ/MZ V5 -10_h) from LEP, sinQOw

is fixed by inverting (3.8) in terms of a,MZ,GF 18), 23). Then all obser-
vables can be calculated with these parameters which are known to best pre-

cision.

The sensitivity to the Higgs mass MH is not very striking: A variation
of M, from 10 GeV to 500 GeV leads to a shift in sin2®w of 0.0035 (from
(3.8) for fixed MZ). 6w is, however, more sens%tig? to ? heavy top quark or
15), . 33

a next generation with large mass splitting , which reduce the

magnitude of éw or even reverse its sign (for m, > 240 GeV).

3.2 Neutrino electron scattering:

A sensitive measurement of sin®6, can be obtained in terms of the ratio

of neutrino and antineutrino cross sections

R = o(vue)/o(ﬁue), which reads in lowest order:

<

2
RO = 1—1’—5—% with € = 1 - k sin®g = % (3.9)

M
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The lowest order diagramm consists of

single Z exchange (Fig. 4). In higher v v,

order those corrections contribute to g
R which alter the ve/ae ratio: the
Y-Z mixing propagator, the electro- VA

magnetic neutrino vertex (charge

radius of v), and box diagrams with g =
2 massive boson exchanges. Their in-
clusion modifies the simple form (3.9):

Ro(sinEOw) > R(sinzengZ,MH,mf).

Fig. k4

R becomes now dependent also on the other model parameters. The dependence

of R on sin?@;, is displayed in Fig. 5. For values sin2@w ~ 0.23 the correc-

v 13), 18)

tions to R are very small . The influence of the other parameters

on the determination of sinzew (if R is fixed) are:

MH = 10 - 1000 GeV 0.0024
mt = 30 - 60 GeV 0.0008
AMZ = + 5 GeV + 0.0003
hadronic uncertainty + 0.0003
\
R IN
\<—Born
B \
\ i R = olv e)/o(¥ e)
. 5 = g(v a
1.6+ \ 18- 0 ue "
The thickness of the corrected curve
indicates the variation with
] My = 10 - 300 GevV (from ref. 18).
L.
1 -
. N
smzeW N
1 ' i
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Compared to the expected accuracy of AsinZOw = 0.005 in the CHARM experiment
the theoretical uncertainties are not very significant. R can therefore be
considered as a function of sin?d . only, also in higher order. The present

37) sin®, = 0.215 £ 0,032 * 0,012,

CHARM calue from R is W

L. RADIATIVE CORRECTIONS IN e'€ - u'u_

. + - + -
The two Born diagrams for e e > pu

e P-

yield the differential cross section for unpolarized beams:

S A (1)
of =1+ c2
oY = [2 v2 (1 + c2) + 2a2 . 20] Re ¥, (k.2)
o2 =[(v2 +a2)2 (1 + c?) + Lvea? EC] fxl2,

with
« = s/(s - MZ2 +iMT), o= cosd, O =3 (e ,u" ), v,a from (1.2).

The 1-loop corrections to (L.1) can be divided into 3 classes:

a) The QED corrections to the y exchange graph (virtual photons + real
wn

photon bremsstrahlung):" reduced QED corrections". Also the QED vacuum

polarization is included.

b) The QED corrections (real + virtual photons) also to the Z exchange

graph. a+b: "full QED corrections (fig. 6).

c) Weak corrections: non-QED part of the y vacuum polarization, the Z self
energy and y-Z mixing, non photonic vertex corrections and box diagrams

with 2Z and 2W exchange.
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Fig. 6: Full QED corrections to ete” » u+u_
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The QED corrections 34)-36) a, b, include the emission of bremsstrahlung
quanta which have to be integrated over their phase space to give an inclu-

sive 2-particle cross section:

do 5
B a®c
== dk® A, oo
ae de_ dk
Jﬂ Y Ty aa da, dk]

Adding to doB the virtual photon corrections the result becomes infrared
finite: 1instead of the IR singularity the details of the Yy phase space
enter the final result. Conventionally an acollinearity cut to the outgoing
u+u- momenta and/or an energy cut to the emitted photon is applied:

3, w) s

nax® K5 < AE.

This type of corrections therefore depends on the details of the experiments
and is conveniently treated by Monte Carlo simulation35). Beyond that, type b)
corrections depend on the model parameters v, a, MZ, FZ' The weak corrections
¢) are independent of experimental cuts; they include the more subtle parts

of the theory beyond the tree level.

An observable of particular interest is the forward-backward asymmetry
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L oole</2) - ole > T/2)
B 5o < /2) + olo > "/2)

It reads in lowest order (from (L.1)):

x  2a’Rex+hv?a?lx]? (4.3)
T+x2/3 T+2v?Rex+(v2+a®)?[[? * '

AFB(|cosO\ < x) =

x = detector acceptance.

4.1 PETRA/PEP energies:

At energies well below M, (4,3) can be approximated by

o . _ X . 2 _S -]
Arp 1+x2/3 2a S—MZ2 > @ hsin@wcos@w (k.4

The inclusion of the dominant weak correction, the Z boson self energy17)’2o)

I, modifies (L.4) to

ReEZ(s)
. 2
s MZ

AveRK - po /(1-5,), 8, = - R 0.07 . (4.5)

FB FB

The other weak corrections are negligible (table 2). Realistic cuts as used
by experimentalistsyieldan almost cancellation of the QED corrections to

Z exchange and the weak correction. Therefore only the model independent
reduced QED corrections have to be applied to the data and the experimental
result has to be compared with (L.4). This is valied over a wide range of the
parameters M, and sin29w18). The theoretical prediction for Apg at 34,5 Gev
is displayed in Fig. T. The PETRA data show the tendency to smaller values

of sinzew than derived from Mw,M measurements and v scattering.

Z
AFB(|cos®| < 0.8) in % Table 2: Apn at 3k.5 GeV
- o -
Born - T7.62 6max =107, AE = 0.5 Ebeam
reduced QED -5.80 M, = 93 GeV, M, = 82.1 GeV,
full QED - 5.2
ull Q 5.28 My = 100 GeV, m_ = 30 GeV

7 self energy - 5.83

Y-2Z mixing - 5.83

vertex corrections - 5.82

massive boxes - 5.83
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Fig. T: App at 3L.5 GeV.

Same cuts as in table 2; the MZ band
corresponds to the 1-¢ 1limit2)7

% |

There is also another way to discuss AFB making use of our knowledge from

the p lifetime: Inserting cos@, = Mw/MZ in (4.4 - 5) together with (3.6)

)
yields:

2
weak _ X GFMZ s 1_6W

App T Tix?/3 Tnav2 5-M,° ’ -5, (L.6)

6)

In this representation the resulting weak correction is very small1

(AA;;ak < 0.001) since Sw and SZ are of the same magnitude. The tree level
formula for A in terms of G_,M

FB oz includes the main part of the weak correc-

tions. In this case, however, one has to respect the full QED corrections.

2
L.2 On resonance (s = M, )forward-backward and polarization asymmetry

This simple behaviour of A encountered well below the Z resonance is

FB

no longer valid for AFB on the Z : due to the on-shell subtraction of the

2
7 self energy there is no large contribution from I,(M, ) which could com-

Z( Z
pensate the correction in (3.6). Thus we find large differences if we elimi-

nate sinZOw in terms of Gp,M, either by (3.2) or by (3.8) and use the Born
formula for A at s = M,°:

FB Z
3y2g2 0.107 with (3.2)
Ag (X:1) = 2452)2
FB (v +a )

0.039 with (3.8)
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In order to avoid such big differences the use of Mw and MZ for sinzew =

= 1—Mw2/MZ2 would be a better method. This is, however, limited by the ex-

perimental precision of the W mass.
The cleanest way to discuss AFB is the following: calculate

S 4 GAweak - Aweak

o8 ¥B FB (sinzew) (b.7)

. - .
as function of sin?0y (besides MZ’MH)'

GA;Eak is the sum of all weak 1-loop corrections beyond the Z self energy,
which is a small quantity (< 0.005). Then extract a value for sinZOw from
exp .
a measured AFB via
QED weak ,_. , _ ,&XP L7
SApp + A (sin®ep) = Ay (b.77)

and compare this with sin20, from other sources like 1—MW2/MZ2 or eq. (3.8)

W

Equivalently: Calculate sin20w from (3.8) for given M, and insert this
into (4.T);we obtain a value which has to be compared with A;;p. Fig. 8
k .
shows the dependence of A;ga > eq. (L.7), on sin?ey.
Since polarization experiments become feasible at the SLC we also dis-

cuss the polarization asymmetry AL: If the e beam is longitudinally pola-

rized (with degree PL) one can define AL = OU/OL where 0(e+e— > u*u_) =

= G,

- 2 3 .
U + PLc For s = MZ we have in lowest order:

L

2va

AE = VZeg?

In analogy to (4.7) we calculate

A2 + sAgeak = A;eak(sinzew) (4.8)
weak

with the weak corrections GAL in terms of sinaew. AL is also displayed

in Fig. 8. It can be seen that AL is more senitive to sinZOw than AFB'

Both types of asymmetries if considered as functions of sinZOw are in-

dependent of the light quark uncertainties. Therefore

ASXP  ex

FB ? AL

P In2 m 2 2
+ sin Ow « 1 Mw /MZ
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Fig. 8: On-resonance forward-backward
and polarization asymmetry, sinQOw—

dependence.
M, = 93 GeV, My = 100 GeV (from
ref. 22).

sinZg,,

would allow a test of the theory with the Higgs mass as the only source of
uncertainty: MH between 10 GeV and 1000 GeV leads to a variation in sinzew
of 0.0014. The method is, however, limited by the accuracy of the mass

. _ 103
measurements: If AMW/Mw AMZ/MZ = 10

0.002.

is assumed the experimental uncer-

1l

tainty would be AsinZOw

A more precise value fer sinzew can be obtained by (3.8) even with the

inherent hadronic uncertainty:

I+

hadronic uncertainty 0.0020 + 0.0013 + 0.0007

Asin?0

I+
+
+

W 0.000T + 0,0004 + 0.0002

This accuracy matches the (optimistic?) precision with which sin2@w can be

in20. = _
L (Asin Ow = + 0,0006). Com

binung A, eq. (4.8), with (3.8) for fixed M, would furthermore exhibit
some sensitivity +to the Higgs mass: MH = 10-500 GeV leads to a shift in

determined from the polarization asymmetry A

AL of = 0.015 Numerical results for various masses can be found in ref. 23 .

A final remark concerns the full QED corrections around the Z°. They depend

on the experimental conditions and the Z° parameters in a rather involved

34)-36)

. The on-resonance

way changing the shape of the resonance and of AFB
36)

value of AL, however, is relatively stable under QED corrections . Further-

more, the problem of multiple bremsstrahlung and exponentiation of the

leading logs3h)’36) around the Z° deserve more detailed investigations.
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5. CONCLUSIONS

Actual measurements of the Wt,Z masses and of sin2®w already indicate
the presence of higher order effects in electroweak processes between fer-
mions. More accurate measurements in the near future colliders LEP and SLC
will allow to test the standard model beyond the tree level. At the 1-loop
level a big amount of work has already been done with a satisfactory agree-
ment between the individual calculations for the standard processes: p—-decays,

. + - + -
v-scattering, and e e > ppu .

In the on-shell renormalization scheme the physical meaning of the used
parameters (particle masses) and the transparency of the calculations are
most evident. In this scheme the mixing angle can be unambigously defined
via sin2®w = 1—Mw2/MZ2 with the physical boson masses. All experimental in-
formation coming from T, v-scattering, polarization and forward-backward

. . + - . .
asymmetries in e e , ... can be expressed in terms of MZ’M or MZ, 51n26w,

W
if the corresponding radiatively corrected expressions are used. Two in-
dependent experiments are needed to fix the input data (e.g. M, and Tu),

the others representing tests of the theory.

The energies up to ~ (200 GeV)? the dominant weak corrections are the

diagonal W and Z self energies. Consequently, the weak corrections are

- large in lifetime of the muon (W self energy)
-~ small in the ratio o(vue)/o(vue), where no diagonal self energy correc-—

tions are present;

. + - - . .
in e e -+ u+u the magnitude of the weak corrections depends on the para-

meters used for tree and 1-loop calculations.

Around the Z° peak the QED corrections (real + virtual photon correc-
tions) are particularly significant. These do not contain further theoreti-
cal information beyond the tree level (except on QED) but they influence
the experimental determination of the Z width, cross sections and asymme-
tries quite remarkably. For reliable discussions of precision experiments
on the Z° further careful investigations of multi~photon effects are indis-

pensable.
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