
Heavy-to-light Decays on the Lattice

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Eike Hermann Müller

A thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

to the

University of Edinburgh

2009





Abstract

Precise predictions of hadronic matrix elements in heavy meson decays are important

to constrain the fundamental parameters in the Standard Model of particle physics.

The CKM matrix element Vub can be extracted from experimental data on the decay

B → πℓν if the hadronic form factor is known. In addition, loop suppressed rare decays

of B-mesons, such as B → K∗γ and B → K(∗)ℓℓ, provide valuable insight into new

physics models.

Hadronic form factors for exclusive meson decays can be calculated in the framework

of lattice QCD. As the wavelength of heavy quarks is not resolved on currently available

lattices I use an effective nonrelativistic theory to discretise the heavy degrees of

freedom. In addition, the discretisation errors in the final state meson are reduced

by working in a moving frame.

I review the phenomenology of rare B decays and describe how lattice QCD can

contribute to calculating the relevant form factors. As the short distance physics in

the effective theory is different from that of QCD, the Lagrangian and decay currents

need to be renormalised. I show how this can be achieved in the framework of lattice

perturbation theory.

I calculate the perturbative renormalisation constants of the leading order operators

in the heavy quark Lagrangian. Motivated by nonperturbative studies I extend

this approach to higher order kinetic terms which break rotational invariance. In

combination with simulations in the weak coupling regime of the theory, results from

diagrammatic lattice perturbation theory are used to calculate the heavy quark self-

energy corrections and predict the fundamental parameters of QCD. I calculate the one

loop correction on a finite lattice with twisted boundary conditions which is used for

the extraction of higher order perturbative corrections. I renormalise the heavy-light

current to one loop order in lattice mNRQCD and present results from nonperturbative

studies. Finally, I discuss how the results are used in the calculation of hadronic form

factors.
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Overview

This work is organised as follows:

After a brief review of the particles and forces in the Standard Model I discuss how

the measurement of B meson decays helps to constrain the CKM matrix in chapter 1.

In this chapter I also discuss the impact of lattice QCD calculations on the CKM

parameters and comment on indirect new physics searches. Chapter 2 focuses on

the prediction of rare B meson decays. These processes are described by integrating

out physics at the electroweak scale to construct a Lagrangian which is written as

an expansion in local operators of the low energetic fields. I outline how theoretical

predictions both for inclusive and exclusive decays can be obtained. In the second part

of this chapter I discuss how heavy quarks are treated in an effective theory which

can be discretised on a lattice. Basic concepts of lattice QCD and the discretisation

of fermionic fields using improved actions are reviewed in chapter 3. Chapter 4 is

more technical and specific to this work. I construct the heavy quark lattice action

and explain how it can be radiatively improved by calculating corrections in lattice

perturbation theory. My calculation of the heavy quark self-energy and renormalisation

parameters of operators in the mNRQCD action is presented in chapter 5. I compare

to nonperturbative simulations and describe how my results are used to constrain the

polynomial fit of high-β data. In chapter 6 I extend the analysis to higher order

kinetic terms in the NRQCD Lagrangian. I pay particular attention to regulating IR

divergences in the integrand. Finally, in chapter 7, I calculate the one loop correction

to the heavy-light vector- and tensor current. I review results of the nonperturbative

calculation and comment on the extrapolation of the relevant form factors. My results

are summarised in chapter 8 which also contains a detailled discussion of systematic

errors. Several more technical aspects are relegated to the appendices.
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Chapter 1

Introduction and motivation

1.1 The Standard Model of particle physics

The so called “Standard Model of Particle Physics” is the widely accepted theory

describing the interactions of subatomic particles (for an overview see for example

[2, 3]). It is a relativistic quantum field theory with local SU(3)×SU(2)×U(1) gauge

symmetry and it describes the forces between the matter fields as being mediated

by the exchange of integer spin gauge bosons. The only particle that has not been

detected yet is the Higgs boson [4] which is responsible for spontaneous electroweak

symmetry breaking and gives mass to fields in a gauge invariant way. Over the last 30

years all other particles have been observed and their properties have been measured

extensively1. So far the Standard Model has withstood all experimental tests to very

high accuracy.

1.1.1 Particles and interactions

The following table lists the four forces in nature together with their relative strength

at a lengthscale of L ∼ 1 fm [6]:

Force Relative strength

The strong force (binding together protons and nuclei) 1

Electromagnetism 10−2

The weak force (responsible for radioactive beta decay) 10−7

Gravitation 10−39

I will not discuss gravitation as it is so weak that it does not play a role in present

high energy experiments and as yet it has not been possible to successfully quantise

the gravitational field.

1See, for example, [5] for a comprehensive listing of particle properties.
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Chapter 1. Introduction and motivation

Lepton T T 3 Q Y

(νe)L 1/2 1/2 0 −1

e−L 1/2 −1/2 −1 −1

e−R 0 0 −1 −2

Quark T T 3 Q Y

uL 1/2 1/2 2/3 1/3

dL 1/2 −1/2 −1/3 1/3

uR 0 0 2/3 4/3

dR 0 0 −1/3 −2/3

Table 1.1: Electroweak quantum numbers of quarks and leptons as in [2]. T is the total
weak Isospin, T 3 its three component, Q = T 3 + Y/2 the electric charge and Y the
hypercharge. The subscripts L and R denote left- and right-handed particles.

The fundamental matter fields carry spin 1/2 and can be split into two groups:

leptons, experiencing the electromagnetic and weak force and quarks which in addition

interact via the strong force.

The electroweak interactions are described by the Glashow-Salam-Weinberg Model

[7, 8, 9].

Before spontaneous symmetry breaking the gauge group is SU(2)L×U(1)Y , where

the index L indicates that only left-handed particles can interact via charged weak

currents and U(1)Y is the hypercharge group. SU(2)L is often called the Weak Isospin

group. The whole group is broken down to the electromagnetic gauge group U(1)em by

the vacuum expectation value of the Higgs field.

The matter fields can be organised into multiplets according to their quantum

numbers under the different gauge groups (see Tab. 1.1). The left handed leptons

are organised into an Isospin doublet containing a massless, neutral neutrino and an

electron with charge −e. In addition there is an Isospin singlet containing the right

handed electron. There are no right handed neutrinos in the Standard Model.

A similar structure exists for the quarks, the left-handed particles are organised

into an Isospin doublet with an up quark of charge +2/3e whereas the down quark

has charge −1/3e. The right-handed quarks come in SU(2)L singlets and each quark

belongs to the fundamental SU(3)c colour-triplet.

It turns out that in addition to the electron, its neutrino and the two quarks, there

are two further families of particles with the same quantum numbers but different

masses as shown in Tab. 1.2 where I also list the masses of the other fundamental

particles. It is common to refer to the u (up), d (down) and s (strange) quarks as

light as their masses are much smaller than the hadronic scale ΛQCD ≈ 500 MeV. This

hierarchy of scales can be used to construct an effective low energy theory that exploits

the chiral symmetry of the Lagrangian in the massless limit [10, 11]. The mass of the

heavy quarks c (charm) and b (bottom or beauty) is larger than ΛQCD. Here a different

4



1.1. The Standard Model of particle physics

Leptons e− 511 keV µ− 105.66 MeV τ− 1.78 GeV

νe 0 νµ 0 ντ 0

Quarks u 1.5 − 3.3 MeV c 1.27+0.07
−0.11 GeV t 171.2 ± 2.1 GeV

d 3.5 − 6.0 MeV s 104+26
−34 MeV b 4.20+0.17

−0.07 GeV

Photon γ 0

Gluons G 0

Weak gauge- W± 80.4 GeV

bosons Z0 91.2 GeV

Table 1.2: Masses of fundamental particles as in [5], see the notes there for an explanation
of the quark mass definitions.

effective theory can be constructed where in the lowest order approximation the quarks

are treated as infinitely heavy [12, 13, 14]. In chapter 4 it is shown how this effective

theory can be discretised on a space time lattice and used to predict decays of heavy

B mesons to light final states. The t (top) quark is so heavy that it decays before it

can form bound states and it only has an indirect impact on low energy phenomena.

In the effective theory I discuss in section 2.2 it will only affect the numerical value of

the Wilson coefficients which multiply low energy operators.

The forces between the matter fields are mediated by the gauge bosons of the

corresponding group. For the electromagnetic force this is the photon and for the

strong force there are 8 gluons which themselves carry colour charges and interact with

each other. In contrast to these the mediators of the weak force are not massless but

have masses of the order of the vacuum expectation value of the Higgs field which

spontaneously breaks the electroweak symmetry group down to the electromagnetic

subgroup. The two charged gauge bosons W± have a mass of around 80 GeV and the

mass of the neutral Z0 is about 90 GeV. Like the top quark the weak gauge bosons

can be integrated out and do not appear as independent degrees of freedom at hadronic

scales.

In its minimal form the Higgs field is a charged scalar Isospin doublet which acquires

a vacuum expectation value by spontaneous symmetry breaking. Three of its four

degrees of freedom turn into the longitudinal polarisations of the massive weak gauge

bosons. Direct detection of the remaining uncharged scalar is one of the main goals of

the LHC and this discovery will complete the Standard Model.
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Chapter 1. Introduction and motivation

1.2 Flavour changing currents and the CKM matrix

As the quarks have non-zero masses, their mass eigenstates can be different from their

weak interaction eigenstates. This introduces interactions between the families via the

exchange of charged W±-bosons. The interaction term in the Lagrangian contains the

Cabibbo-Kobayashi-Maskawa matrix [15, 16] VCKM and can be written as

W+
µ (uL, cL, tL)γµVCKM(dL, sL, bL)T + (h.c.) (1.1)

where W+
µ is the field of a weak gauge boson. The matrix

VCKM =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


 (1.2)

is unitary in the Standard Model and experiments indicate that the off diagonal

elements are small (for an overview see [5]). VCKM can be parametrised by four

parameters, three real angles and one CP-violating phase. If this phase is non-zero, as

measurements of the CKM-triangle show, weak interactions are not invariant under a

simultaneous charge (C) reversal and parity (P) transformation.

The standard parametrisation is the approximation proposed in [17] which uses

λ = |Vus| ≈ 0.22 as a small expansion parameter

VCKM =




1 − λ2

2 λ Aλ3(ρ− iη)

−λ 1 − λ2

2 Aλ2

Aλ3(1 − ρ− iη) −Aλ2 1


+ O(λ4). (1.3)

Unitarity leads to a set of relations among the CKM parameters which can be

interpreted geometrically as triangles in the complex plane. Only one of these triangles

is not near-degenerate, after normalisation the corresponding relation is

VudV
∗
ub

VcdV
∗
cb

+
VtdV

∗
tb

VcdV
∗
cb

+ 1 = 0. (1.4)

This can be used to relate the sides and angles to elements of the CKM matrix, see

Fig. 1.3. The apex of the triangle lies at ρ+ iη so that a finite value of η is a sign of

CP violation.
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1.2. Flavour changing currents and the CKM matrix

γ

α

β

V  V*

V  V*

V  V*
V  V*

(   ,   )ρ

ub

cd

ud

cb

td tb

cbcd

η

(1,0)(0,0)

Table 1.3: CKM triangle in the complex plane

1.2.1 Measuring the sides of the CKM triangle

In nature free quarks can not be observed and VCKM can only be extracted from decays

of strongly bound particles. In Tab. 1.4 I list the absolute values of the CKM matrix

elements which are obtained by combining results from different sources, including

both inclusive and exclusive decays2 and B meson mixing [5]. In the last column

I also give examples for exclusive observables which can be used in this extraction;

experimentally these have the advantage of a well defined final state. The prediction of

inclusive and exclusive decays requires different techniques and it is useful to consider

both as inconsistencies between them can provide information on contributions from

new physics.

Note that the dominant uncertainty in |VudV ∗
ub/(VcdV

∗
cb)|, which is one of the sides

of the CKM triangle in Fig. 1.3, comes from |Vub| (see dark green circle in Fig. 1.1).

The value quoted in Tab. 1.4 is dominated by the inclusive measurement. To extract

Vub from exclusive measurements matrix elements of heavy-light operators need to be

calculated. Hadronic form factors have been predicted by the HPQCD collaboration

[18]. With experimental input from the BaBar, Belle and Cleo collaborations

they report |Vub| = (3.55 ± 0.25(exp.) ± 0.50(theor.)) · 10−3 where the dominant

error is theoretical. Results obtained using other parametrisations with theoretical

uncertainties of comparable or larger size are collected in [19]. In a recent calculation

[20] the form factors are parametrised in a model independent way; using input from

a lattice calculation and combining with data from the BaBar experiment the authors

of this study find |Vub| = (3.38 ± 0.36) · 10−3.

In Fig. 1.1 I show all constraints on the CKM triangle in the complex (η, ρ)-plane

[5]. The plot clearly demonstrates that so far the measurements from a wide range

2The hadronic final state in an inclusive decay contains an arbitrary number of particles and is
only specified by its quantum numbers. For example, in the decay B → Xsγ the symbol Xs describes
any number of hadrons with total strangeness s = 1. Exclusive decays have a defined final state, as in
B → πℓν.
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Chapter 1. Introduction and motivation

(VCKM )ij value rel. error observable

|Vud| 0.97418 ± 0.00027 0.028% Nuclear beta decay, π → ℓν

|Vus| 0.2255 ± 0.0019 0.84% K → πℓν

|Vub| (3.93 ± 0.36) · 10−3 9.2% B → πℓν

|Vcd| 0.230 ± 0.011 4.8% D → πℓν

|Vcs| 1.04 ± 0.06 5.8% D → Kℓν, Ds → ℓν

|Vcb| (41.2 ± 1.1) · 10−3 2.7% B → Dℓν

|Vtd| (8.1 ± 0.6) · 10−3 7.4% BB-mixing

|Vts| (38.7 ± 2.3) · 10−3 5.9% BsBs-mixing

|Vtb| > 0.74 top decay, Br(t→ Wb)/Br(t→Wq)

Table 1.4: Absolute values of CKM matrix elements from [5] and selection of (exclusive)
processes which can be used for extraction of these matrix elements. Each value in the
second column is obtained from a combination of inclusive and processes, not necessarily
the ones listed in the last column.

of observables are consistent with each other and it is desirable to reduce theoretical

uncertainties even further to keep up with the increasing precision of experimental

measurements.

CKM triangle and lattice QCD

The differential decay rate of the semileptonic decay B → πℓν is proportional to the

product of |Vub|2 and the square of the strong form factor f+(q2). In this process

q = p − p′ is the momentum transfer between the initial- and final state mesons and

the Fermi constant is denoted by GF :

dΓ(B → πℓν)

dq2
=

G2
F |Vub|2

192π3m3
B

[
(m2

B +m2
π − q2)2 − 4m2

Bm
2
π

]
|f+(q2)|2 (1.5)

The form factors f+ and f0 parametrise heavy-light matrix elements of the vector

current,

〈π(p′)|sγµb|B(p)〉 = f+(q2)

(
pµ + p′µ − M2

B −M2
π

q2
qµ
)

+ f0(q
2)
M2
B −M2

π

q2
qµ.

(1.6)

In [18] these form factors are calculated in lattice QCD. This is done using two

approximations which are also crucial for this work:

1. The heavy quark is treated in an effective nonrelativistic theory.

8



1.2. Flavour changing currents and the CKM matrix

Figure 1.1: Constraints on the CKM triangle from [5]. The shaded regions have 95%
confidence level.

2. Vacuum polarisation effects of light quarks can be included for masses close to

the physical value by using an improved discretisation of the light fermion action.

As the hadronic particles in the final state are light, the squared momentum transfer q2

can become very small. In the rest frame of the decaying B the pion in the final state

has large momentum and the lattice calculation is spoilt by the associated substantial

discretisation errors. On the other hand, most experimental measurements are obtained

at small q2 [21, 22, 23] so extending the prediction of form factors to this region is

important to improve the constraints on |Vub|. The same problem arises in other decays

with light hadronic particles in the final state such as B → K(∗)ℓ+ℓ− or B → K∗γ where

q2 = 0. As will be discussed in detail in section 4.1.2 this problem can be solved by

another improvement over previous work, namely

3. The heavy quark is discretised in a moving frame.

The resulting formalism has been developed in [1, 24, 25, 26, 27, 28] and is known as

moving NRQCD. Calculation of radiatively improved non-perturbative lattice matrix

elements is currently carried out by the HPQCD collaboration [29, 30].

In addition, lattice QCD can contribute to improving the constraints on CKM

parameters by calculating the B and K bag parameters. The neutral Bq meson mass

9



Chapter 1. Introduction and motivation

splitting is proportional to |Vtq|2 and the bag parameter BBq , defined by [31]

〈B0|(bq)V−A(bq)V−A|B0〉 =
8

3
mBqBBqf

2
Bq

(1.7)

where the subscript V −A denotes the vector-axialvector structure of the weak interac-

tion. This quantity can be calculated in lattice QCD from matrix elements of four quark

operators; theoretical uncertainties are reduced in the ratio fBs

√
BBs/(fBd

√
BBd

), so it

is advantageous to use the experimental measurement of ∆mBs/∆mBd
instead of ∆mBb

alone. As Vts ≈ −Vcb this helps to constrain the other side of the CKM triangle (yellow

and orange circles in Fig. 1.1). Recently the HPQCD collaboration has calculated

BBd
and BBs using a nonrelativistic action for the heavy quark and including vacuum

polarisation effects from light sea quarks [32].

Similarly, the CP-violating parameter ǫK in neutral kaon mixing is proportional to

the kaon bag parameter BK

〈K0|(sd)V −A(sd)V −A|K0〉 =
8

3
mKBKf

2
K , (1.8)

|ǫK | = BKη [(1 − ρ)c1 + c2] ,

where c1 and c2 are known constants [31]. This leads to another constraint on the CKM

triangle (light green band in Fig. 1.1).

1.2.2 Measuring CP violation

The angles of the unitarity triangle can be inferred from CP-violating processes. The

angle β is constrained by measuring the time-dependent asymmetry in B → J/ψKS .

For the decay to the CP eigenstate f = J/ψKS [33] the asymmetry is

ACP (t) =
Γ(B0(t) → f)− Γ(B

0
(t) → f)

Γ(B0(t) → f) + Γ(B
0
(t) → f)

= − sin(2β) cos(∆mBt). (1.9)

The time dependent asymmetry in this process is a very clean observable which does

not suffer from large hadronic uncertainties. As can be seen from Fig. 1.1 this leads to

very tight constraints on β.

The other angles of the CKM triangle can be constrained by other processes which,

however, suffer from larger uncertainties .

1.2.3 Flavour changing neutral currents

In addition to these charged currents there are also flavour changing neutral currents

(FCNCs). In the Standard Model these are forbidden at tree level but generated at one

10



1.3. Searching for new physics

b
t

W

s

γ γ

b s
t̃

W̃ , H̃

Q7

C
(SUSY)
7 (µ)C

(SM)
7 (µ)

Figure 1.2: Loop suppressed flavour changing neutral current (FCNC) in the Standard Model
(left) and SUSY (right). The local operator in the effective theory, which is obtained by
integrating out physics at the electroweak scale, is shown in the centre.

loop level (see the left diagram Fig. 1.2 for an example). At energies well below the

electroweak scale these currents can be written as the product of a Wilson coefficient,

which encodes the physics at very small length scales, and a local effective operator

which is usually suppressed by some powers of 1/mW . This factorisation simplifies

the problem significantly: different extensions of the Standard Model will only modify

the value of the Wilson coefficients C(µ), while QCD matrix elements of the effective

operator are independent of the physics at the electroweak scale. I will discuss rare B

decays and effective theories for flavour changing currents in more detail in chapter 2.

1.3 Searching for new physics

Although until now the Standard Model has passed all experimental tests there are

reasons why it is believed that it has to be interpreted as an effective approximation

of a more fundamental model. The parameters of the theory like masses and coupling

constants are not predicted and a successful extension of the Standard Model has to

explain the hierarchy in particle masses spanning several orders of magnitude. It is also

highly desirable to unify all forces in nature, including gravitation. Numerous models

have been put forward for solving all these problems but to date there is no consensus

on a unique “Theory of Everything”.

There are two strategies for extending our knowledge beyond what we know about

the Standard Model. The first approach is the direct production of new particles.

As these have not been observed in the energy range that is currently accessible this

requires an increase of the collision energy in new particle accelerators. The Large

Hadron Collider is designed to reach a centre-of-mass energy of 14 TeV and will be

able to produce and measure potential new particles in the TeV range. Two of its

experiments (ATLAS and CMS) are specifically designed for these direct searches for

new physics.
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Chapter 1. Introduction and motivation

Alternatively one can study the effect of new particles on the properties of Standard

Model particles which will be modified by virtual corrections. The advantage of this

approach is that one does not necessarily have to make any assumptions on new physics

models, instead they can be parametrised by adding additional higher order operators

to the Standard Model Lagrangian. At the Large Hadron Collider the LHCb detector

is specifically built for studying the properties of B mesons which will be produced in

unprecedented quantities at the accelerator.

In addition to precise measurements this requires very exact theoretical predictions

of the Standard Model processes, the latter is particularly challenging for strongly

interacting particles. The aim of the HPQCD collaboration is the calculation of

precise lattice matrix elements. The work presented in this thesis contributes to this

programme by further improvement of the lattice action and decay currents used in the

simulations.

12



Chapter 2

Physics of rare B-decays

Of particular interest for indirect new physics searches are processes which are known

to be suppressed in the Standard Model. Rare B decays as B → K∗γ or B → K(∗)ℓ+ℓ−

are mediated by flavour changing neutral currents and can only occur at the loop level

in the Standard Model. Contributions from virtual new particles in the loop, such as in

the SUSY diagram in Fig. 1.2, are expected to be of comparable size to the contribution

from the Standard Model.

In the first part of this chapter I discuss the radiative decay B → K∗γ. I focus on

this decay as it is sensitive to the tensor current; I have calculated the perturbative

renormalisation of this current in an effective nonrelativistic lattice theory for the first

time. In the second part I describe how the large mass of the b quark can be exploited

to treat heavy particles in an effective low energy theory.

2.1 Experimental results

Decays of B mesons have been measured extensively at the so called B factories at

KEK in Japan and SLAC in the United States. At these asymmetric electron-positron

colliders the centre of mass energy of the colliding particles is tuned to the unstable

Υ(4s) resonance which subsequently decays into BB pairs. This way it is possible to

accumulate a lot of statistics and the BaBar detector at SLAC and Belle at KEK have

recorded a large number of events. As the colliding beams have different energies, the

produced B-mesons are not at rest in the laboratory frame and time dependent CP

asymmetries can be studied in addition to branching ratios.

2.1.1 Inclusive decay

As of April 2009 the world average from the Heavy Flavour Averaging Group for

Eγ > 1.6 GeV is [19]

Br(B → Xsγ) = (3.52 ± 0.23 ± 0.09) · 10−4 (2.1)

13



Chapter 2. Physics of rare B-decays

where the first error is due to the statistical and systematic uncertainty, whereas the

second uncertainty estimates nonperturbative corrections due to the Fermi motion of

the b quark inside the decaying B meson. This number includes results from the

BaBar and Belle experiments and a measurement of the CLEO-c detector at the Cornell

Electron Storage Ring CESR.

2.1.2 Exclusive decays

The latest (preliminary) results for the branching ratios obtained at BaBar are [34]

Br(B0 → K∗0γ) = (4.58 ± 0.10(stat.) ± 0.16(sys.)) · 10−5, (2.2)

Br(B+ → K∗+γ) = (4.73 ± 0.15(stat.) ± 0.17(sys.)) · 10−5.

Over the last four years the collaboration has reduced both statistical and systematical

errors by nearly a factor two and for both channels they are now smaller than 5% which

has to be compared to the 7% error in the inclusive measurement (2.1). It should be

noted that the new results differ significantly from the previous numbers in [35].

The corresponding results of the Belle collaboration are [36]

Br(B0 → K∗0γ) = (4.01 ± 0.21(stat.) ± 0.17(sys.)) · 10−5, (2.3)

Br(B+ → K∗+γ) = (4.25 ± 0.31(stat.) ± 0.24(sys.)) · 10−5.

The world average presented by the Heavy Flavour Averaging Group is [19]

Br(B0 → K∗0γ) = (4.40 ± 0.15) · 10−5, (2.4)

Br(B+ → K∗+γ) = (4.57 ± 0.19) · 10−5.

In the Standard Model this decay proceeds by transforming a left-handed bottom quark

into a right-handed strange quark quark under emission of a right-handed photon. The

transition with opposite helicities is strongly suppressed but might be sizable in some

new physics models. Although direct measurements of the photon polarisation are

difficult, one can constrain the size of the bR → sLγR transition by measuring the time

dependent CP asymmetry for the decay to a hadronic CP eigenstate M0 and a photon

[37], see section 2.2.2 . M0 can be realised by using the decay of K∗0 to KS,Lπ
0.. The

asymmetry is parametrised as

AM0γ(t) =
Γ(B0 →M0γ(t)) − Γ(B

0 →M0γ(t))

Γ(B0 →M0γ(t)) + Γ(B
0 →M0γ(t))

(2.5)

= CK∗γ cos(∆mBt) + SK∗γ sin(∆mBt).
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2.2. Effective Lagrangians for electroweak physics

The (preliminary) results from the BaBar experiment are SK∗γ = −0.08 ±
0.31(stat.) ± 0.05(sys.) and CK∗γ = −0.15 ± 0.17(stat.) ± 0.03(sys.) [38]. These

quantities have also been measured by the Belle collaboration who find SK∗0γ =

−0.32+0.36
−0.33(stat.) ± 0.05(sys.) [39].

In the future more results are expected from the LHCb detector and the planned

Super B collider.

2.2 Effective Lagrangians for electroweak physics

Particles at the electroweak energy scale µW ∼ mW ,mt ∼ 100 GeV do not contribute

directly to low energy matrix elements at the bottom quark scale µb ∼ mb ≈ 5 GeV.

Due to the uncertainty principle virtual heavy particles can only travel distances of

the order ∼ 1/µW which is much shorter than the typical time ∼ 1/µb. This implies

that fluctuations at the electroweak scale, which might include physics beyond the

Standard Model, can be integrated out to obtain an effective theory with local, point-

like interactions. The subsequent discussion follows the comprehensive overview in

[40].

For the ∆B = 1, ∆S = 1 transition the effective Hamiltonian at leading order in

mb/mW can be written as a linear combination of eight operators,

Heff(b→ sγ) = −4GF√
2
VtbV

∗
ts

8∑

j=1

Cj(µ)Qj . (2.6)

Here GF is the Fermi constant and the unitarity of the CKM matrix and the relation

VubV
∗
us/(VtbV

∗
ts) ≪ 1 has been used to eliminate all but one combination of CKM matrix

elements (this implies that operators, which can be obtained from Q1 and Q2 by

replacing c 7→ u, are suppressed and are not shown in (2.7)). I use the operator
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basis in [41],

Q1 = (cLβγ
µbLα)(sLαγµcLβ), (2.7)

Q2 = (cLαγ
µbLα)(sLβγµcLβ),

Q3 = (sLαγ
µbLα)

∑

q=u,d,c,s,b

(qLβγµqLβ),

Q4 = (sLαγ
µbLβ)

∑

q=u,d,c,s,b

(qLβγµqLα),

Q5 = (sLαγ
µbLα)

∑

q=u,d,c,s,b

(qRβγµqRβ),

Q6 = (sLαγ
µbLβ)

∑

q=u,d,c,s,b

(qRβγµqRα),

Q7 =
e

16π2
mbsLασ

µνbRαFµν with σµν =
i

2
[γµ, γν ],

Q8 =
g

16π2
mbsLασ

µνT aαβbRβG
a
µν .

Fµν (Gaµν) is the electromagnetic (chromodynamic) field strength tensor; α and β

are colour indices. In the effective Hamiltonian the physics is factorised into two

contributions: effects at the electroweak scale are encoded in the µ-dependent Wilson

coefficients Cj(µ) and matrix elements of the operators Qj are evaluated between low

energy particle states. The dependence on the unphysical scale µ, which separates the

two regimes, cancels in physical predictions. However, at a finite order in perturbation

theory this cancellation is usually only approximate.

The first two operators arise from an electroweak current-current interaction, see

Fig. 2.1 and in the Standard Model Q2 is the only operator with a nonvanishing matrix

element at tree level, Q1 has a different colour structure which can only be generated

by gluon exchange between the quark lines. The other four quark operators Q3, . . . , Q6

and the (chromo-) magnetic tensor currents Q7, Q8 are generated by penguin diagrams,

Figs. 2.2 and 2.3. In the Standard Model their Wilson coefficients are given at leading

order by Inami-Lim functions [42] which depend on the ratio xt = mt/mW . In other

new physics models the Wilson coefficients will be different.

As photons and gluons can couple to internal charm quarks (Fig. 2.4) the one loop

matrix elements of the four quark operators do not necessarily vanish. It turns out

that they depend on the regularisation scheme and in particular on the treatment of

γ5 in d dimensions [43, 44]. This can be summarised as

〈Qi〉one−loop = yi〈Q7〉tree, 〈Qi〉one−loop = zi〈Q8〉tree (2.8)

where yi and zi are scheme dependent. To compensate for this the coefficients C7 and
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2.2. Effective Lagrangians for electroweak physics

b s

q q

W

b

q

s

q

Figure 2.1: Electroweak current-current interaction and effective vertex. Diagrams of this
type and QCD corrections, which can change the quark colour structure, generate the local
operators Q1 and Q2.

qq

sb

g, Z, γ

W

t

q

b s

q

Figure 2.2: One loop penguin interaction and effective vertex. Diagrams of this type
generate the local operators Q3,. . . ,Q6.

W
sb

b s

γ
γ

t

Figure 2.3: Magnetic penguin interaction and effective vertex. Diagrams of this type
generate the local operator Q7. The corresponding diagram for Q8 can be obtained by
replacing the external photon by a gluon.

c

γ

b

c

s

Q3,...,6Q1,2

sb

γ

Figure 2.4: Loop diagrams of four quark operators that contribute to b→ sγ.
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W
sb

t γ, Z0
ℓ−

ℓ+

b s

ℓ+

ℓ−

Figure 2.5: Effective operators in b→ sℓℓ.

C8 can be redefined in an regularisation scheme independent way by replacing

C7(µ) 7→ Ceff
7 (µ) = C7(µ) +

6∑

i=1

yiCi(µ), (2.9)

C8(µ) 7→ Ceff
8 (µ) = C8(µ) +

6∑

i=1

ziCi(µ).

In the following I will work with these coefficients but drop the superscript “eff” for

simplicity.

2.2.1 Operators in b → sℓ+ℓ−

For the decay B → K(∗)ℓ+ℓ− two additional operators contribute with the leptonic

current coupling to the hadronic heavy-light vector current, see Fig. 2.5,

Q9 = e2(sLγµbL)
∑

ℓ

(ℓγµℓ), Q10 = e2(sLγµbL)
∑

ℓ

(ℓγµγ5ℓ). (2.10)

2.2.2 Tensor operators with opposite chirality

In addition to Q7 and Q8, which change a left handed b-quark into a right-handed s-

quark, there are corresponding operators with opposite chirality. In the Standard Model

only left handed quarks couple to the electroweak gauge bosons and the chirality has

to be flipped on one of the external quark lines. This is only possible by insertion of

a mass term mψLψR + (h.c.) which will generate a factor of mb for the bR → sL and

a factor of ms for the bL → sR transition. The strong interaction conserves chirality

so even after including radiative corrections these additional operators are suppressed

by a relative factor ms/mb. As argued in [37] this is not necessarily true for some

new physics models. Even though it is difficult to measure the photon polarisation

directly the size of these operators can be constrained by studying the time dependent
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CP asymmetry

AM0γ(t) =
Γ(B0 →M0γ(t)) − Γ(B

0 →M0γ(t))

Γ(B0 →M0γ(t)) + Γ(B
0 →M0γ(t))

(2.11)

where M0 is a hadronic CP eigenstate, for example K∗0 → KL,Sπ
0. This asymmetry

is nonzero if both B0 and B
0

can decay to a common final state. As the photon

polarisation can in principle be observed this is only possible if the transition bL → sR

is allowed. Indeed one finds

AM0γ(t) ∼ sin(2ψ) sin(∆mBt) (2.12)

where tanψ is the relative strength of the bL → sR and the bR → sL operator.

2.3 Theoretical predictions

Using the Hamiltonian in (2.6) predictions for physical processes can now be obtained

in three steps:

1. Matching at the electroweak scale. Compute an amplitude both in the full theory

and in the effective theory and adjust the Wilson coefficients at the electroweak scale,

Cj(µW ) such that the amplitudes agree. To illustrate the procedure I first work in

the leading log (LL) approximation and then comment on the current status of the

next-to-next-to-leading-log (NNLL) O(α2
s) calculation in section 2.3.1.

At the lowest order QCD corrections are not taken into account in this step and

only C2, C7 and C8 are nonzero,

C2(µW ) = 1, (2.13)

C7(µW ) =
3x3

t − 2x2
t

4(xt − 1)4
log xt +

−8x3
t − 5x2

t + 7xt
24(xt − 1)3

,

C8(µW ) =
−3x2

t

4(xt − 1)4
log xt +

−x3
t + 5x2

t + 2xt
8(xt − 1)3

.

Here C7 and C8 are given by Inami-Lim functions [42] from integrating out the top

quark and electroweak vector bosons. For mt = 170 GeV, mW = 80.425 GeV one has

C7(mW ) = −0.193, C8(mW ) = −0.096. (2.14)

This is the only step which depends on physics at the electroweak scale; in extensions

of the Standard Model with new particles in the loop the Wilson coefficients Ci(µW )
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q

b bs

q q q

s

γ, g γ, g

Figure 2.6: Penguin loop diagrams.

will be different.

For example, in [45] it is shown how C7(µW ) and C8(µW ) change in a two Higgs

doublet model. The W boson in the loop in Fig. 1.2 can be replaced by a charged

Higgs boson. The numerical size of these changes depends on the parameters of the

specific model. In [45] it is reported that the inclusive decay rate B → Xsγ, which in

the LL approximation is proportional to |C7(µb)|2, can be enhanced by about a factor

of three compared to the Standard Model.

2. Renormalisation group running. As there is a huge separation between the elec-

troweak scale and the mass of the b quark large logarithms of the form αℓs logk(µ2
W/µ

2
b))

are resummed using the renormalisation group equations. The LL approximation

corresponds to ℓ = k. The scale dependence of the Wilson coefficients is described

by the anomalous dimension matrix γ(g),

µ
dCi(µ)

dµ
= γij(g(µ))Cj(µ). (2.15)

This can be solved for Ci(µ) with the initial conditions Ci(µW ) in (2.13). At LL one

only keeps the lowest order term in the expansion

γ(g) =
αs
4π
γ(0) +

α2
s

(4π)2
γ(1) + . . . . (2.16)

The matrix γ(0) is given explicitly in [43, 44]. It turns out that none of the other

operators mixes into Q1 and Q2. This is because gluons do not change flavour and

the mixing could only come from the penguin diagrams in Fig. 2.6. However, in these

diagrams one has to sum over all flavours in the lowest quark line. The dimension five

tensor operators do not mix into the dimension six quark operators, as expected in

a mass independent renormalisation scheme. Schematically the anomalous dimension
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µb 2.5 GeV 5.0 GeV 10.0 GeV

C1(µb) −0.019 −0.016 −0.013

C2(µb) −0.629 −0.711 −0.788

C3(µb) −0.107 −0.078 −0.055

C4(µb) −0.125 −0.093 −0.066

C5(µb) −0.023 −0.017 −0.011

C6(µb) −0.013 −0.009 −0.006

C7(µb) −0.336 −0.300 −0.269

C8(µb) −0.158 −0.144 −0.131

Table 2.1: Wilson coefficients of the effective Lagrangian (2.6) at three different scales in the
leading logarithmic approximation. I use mZ = 91.1876 GeV, mW = µW = 80.425 GeV
and αs(mZ) = 0.118 in the numerical evaluation.

matrix can be written as

γ =




3 − 6 7, 8

3 − 6

3 − 6

7, 8

7, 8

3 − 6

1, 2

7, 8

1, 21, 21, 2



. (2.17)

Solving the RG equations the contribution from C2 to the tensor operators turns out

to be particularly large. In [40] the coefficient C7 is calculated for mt = 170 GeV and

αs(MZ) = 0.118,

C7(µb = 5 GeV) = 0.695 C7(µW ) + 0.085 C8(µW ) − 0.158 C2(µW ) (2.18)

= 0.695(−0.193) + 0.085(−0.096) − 0.158 = −0.300.

For C8 a similar enhancement by Q2 is observed.

The leading order Wilson coefficients of all operators can be computed using the

“magic numbers” in Tabs. 6 and 23 of [40] and are collected in Tab. 2.1. Note that,

apart from C2(µb), the Wilson coefficients of all four quark operators are small.
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Chapter 2. Physics of rare B-decays

3. Matrix elements. Finally, using the effective Hamiltonian and the Wilson

coefficients at a scale µb ∼ mb matrix elements for physical processes have to be

computed. For inclusive decays this can be done using quark hadron duality and it

is sufficient to consider the process on the quark level. However, for exclusive decays,

where the quarks are bound within hadrons, this is much more challenging. Before I

discuss the evaluation of exclusive matrix elements in more detail I review the status

of the NNLL calculation.

2.3.1 NNLL calculation

The error on the experimental value of the inclusive B → Xsγ branching ratio is of

the order of 7%. As the accuracy of the NLL calculation is known to be around 10%

[46] this motivated a NNLL order calculation of this process which was completed

in 2006 [47, 48]. The results of the matching calculation and the calculation of the

anomalous dimension matrix are universal and can be used both for inclusive and

exclusive processes.

In the NNLL approximation matching at the electroweak scale is carried out at

O(α2
s). To compute the mixing between four quark operators it is necessary to evaluate

three loop diagrams. As a photon (or gluon) can be attached to the internal charm line

calculations of four loop diagrams are necessary for the mixing of four quark operators

to the dipole operators.

Inclusive branching ratio

To complete the calculation of the decay width the operator product expansion

Γ(B → Xsγ) = Γ(b→ Xparton
s γ) + ∆(nonpert.) (2.19)

is used where nonperturbative corrections are suppressed by (ΛQCD/mb)
2. The partonic

rate can be written as

Γ(b→ Xparton
s )Eγ>E0 =

G2
Fαemm

2
b,MS

(µ)m3
b,pole

32π4
|VtbV ∗

ts|2
∑

ij

Ci(µ)Cj(µ)Gij(E0, µ).

(2.20)

Here Gij(µ) denotes the contribution from (Qi, Qj) interference to the matrix element.

Gij can be calculated using the optical theorem which connects the imaginary part

of the forward matrix element to the total cross section. To this end the imaginary

parts of the heavy quark self-energy correction induced by the operators Qi and Qj are

calculated, see Fig. 2.7.
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s
b

Q7Q7

b

Figure 2.7: O(αs) correction to the inclusive matrix element arising from Q7-Q7

interference. The dashed line indicates one possible cut of the diagram.

So far only the dominant (C7, C7) part from the dipole operator is known which

requires a two loop calculation. For the three loop matrix elements of four quark

operators an approximation in the charm quark mass is necessary which introduces

additional uncertainties.

To reduce systematic uncertainties, in particular to cancel the dependence on the

fifth power of the bottom quark mass and on the largely unknown CKM factor |VtbV ∗
ts|2,

the branching ratio is normalised to Br(B → Xceν).

The final result for a lower cut of E0 = 1.6 GeV on the photon spectrum is [47]

Br(B → Xsγ) = (3.15 ± 0.23) · 10−4 (2.21)

which has to be compared to the experimental result in (2.1). The systematic error

comes from nonperturbative corrections, uncertainties in the input parameters, higher

order radiative corrections and the ambiguity in the mc interpolation.

2.3.2 Exclusive matrix elements

As heavy quarks are bound within mesons the prediction of exclusive matrix elements is

more difficult. The decay amplitude of B → K∗γ can be split into a local part, arising

from the tensor operator Q7, and nonlocal effects from Q8 and four quark operators,

A(B → K∗γ) = −4GF√
2
VtbV

∗
ts

[
C7(µ)〈K∗γ|Q7(0)|B〉 (2.22)

+
∑

j 6=7

Cj(µ)

∫
d4x

(2π)4
e−iq·x〈K∗γ|T{Aµ(x)jµem(x)Qj(0)}|B〉

]

where jµem = e
∑

qQqqγ
µq is the electromagnetic current (Qq denotes the charge

of quark q). Only the local contribution can be calculated directly on the lattice.
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B V

b

q q

q

Figure 2.8: W annihilation diagram.

Calculating matrix elements of nonlocal operators is inherently difficult; several

methods such as phenomenological models combined with perturbation theory [49,

50, 51], vector meson dominance [52] and operator product expansions in combination

with QCD sum rules [53, 54, 55] have been used to estimate their size. In [56] these

calculations are reviewed for the decay B → V γ, where V is any vector meson such

as ρ, ω, ψ or K∗. In this analysis the operators Q3,...,6 are neglected due to their small

Wilson coefficients.

For a first, very rough estimate of the relative importance of the different operators

in the electroweak Lagrangian consider the branching ratios from the local amplitude

only. This is estimated in [56] as

Br(B0 → K∗0γ) = 4.5 · 10−5, Br(B± → K∗±γ) = 4.6 · 10−5. (2.23)

Comparison with the central values of the latest world average of experimental

measurements in (2.4) suggests that the nonlocal contributions are small.

In the following I describe the contributions from different operators in the effective

Hamiltonian and finally outline the lattice calculation of the local tensor operator Q7.

Weak annihilation

The weak annihilation amplitude in Fig. 2.8 is generated by four quark operators and

can be calculated at leading order using factorisation. Note that, as the exchanged

W boson is charged, this process does not contribute to the radiative decay of neutral

mesons. More specifically, in [56] it is shown that for the decay B → ργ the amplitude

can be written as the sum of two contributions,

A ∼ −fBpµ〈ρ−γ|(du)µV−A|0〉 +mρ−fρ−(ǫ∗ρ)µ〈γ|(ub)µV−A|B−〉 (2.24)

corresponding to the photon coupling to the ρ- and B-meson. fB and fρ− are the meson

decay constants whereas ǫ∗ρ is the polarisation vector of the vector meson. The first

contribution can be calculated exactly in the chiral limit whereas the matrix element
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B V

u, c

b q

q

Figure 2.9: Penguin diagram with u- and c-loops.

〈γ|(ub)µV−A|B−〉 can be expressed in terms of the two form factors which parametrise

the decay B → γeν. At higher order gluons can connect the mesons in the initial and

in the final state and the matrix element does not factorise as in (2.24). However,

it is argued in [56] that these effects are small and factorisation remains a very good

approximation.

The amplitude in the decay to a final state K∗ is strongly CKM suppressed by

VubV
∗
us/(VtbV

∗
ts) ∼ 0.02 relative to the contribution from the electromagnetic tensor

operator. It is calculated in [51] in the framework of the quark model described in

[57, 49]. The leading quark-antiquark Fock states inside the mesons are described by

phenomenological ansatz and perturbative corrections to the decay amplitude from

gluon exchange are calculated in perturbation theory. The relative size of the weak

annihilation contribution to the branching ratio is relatively small, around 6%.

Long distance contributions from internal c-quark loops

The dominant contribution to the long distance amplitude induced by the b → scc

operators (see Fig. 2.9) is usually assumed to come from the diagram where the photon

couples to the charm quark loop. This is confirmed by the perturbative calculation

combined with a quark model in [51] where it is found that the main contribution

generated by Q2 comes from diagrams where the photon couples to the cc loop and the

gluon connects this loop to either the b or s quark. Only Q7 contributes at tree level

but in [51] it is found that the O(αs) contribution of the four quark operator is of the

same order as the one loop correction to the electromagnetic tensor operator Q7.

This process can be described as the decay B → V ψn, where the ψn is a bound cc

vector state, such as J/ψ, which subsequently decays into a photon, see Fig. 2.10. In

this approximation the long-distance amplitude can be written as

A = Qce
∑

n,ǫn

(ǫ∗n)µ〈0|cγµc|ψn〉A(B → V ψn)

q2 −M2
n + iMnΓn

. (2.25)
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γ

c

s

J/ψ

γ

b s b

c

Figure 2.10: Resonant contribution to b→ sγ from four quark operators.

B V

b

q

q

Figure 2.11: Chromomagnetic tensor diagram.

where ǫn is the polarisation of the vector meson ψn with mass Mn and width Γn.

For real photons with q2 = 0 the sum is dominated by the lowest lying resonances.

The mass of the J/ψ is 3.097 GeV so that long distance effects from charm loops are

expected to be suppressed.

This argument is supported by the explicit calculation in [53] where the charm

quark is integrated out to obtain an effective bsgγ operator suppressed by 1/m2
c . The

matrix element of this local operator is calculated using QCD sum rules and found to

be small, contributing around 5% of the dominant amplitude from Q7.

Note that the contribution from cc loops is not CKM suppressed for the decay to

a K∗ in a final state, whereas uu loops are. The latter is not necessarily the case for

decays to other vector mesons, such as the ρ.

Chromomagnetic tensor operator

The contribution from the chromomagnetic tensor operator is shown in Fig. 2.11 where

the photon can couple to any internal quark. The size of this contribution is estimated

in [50]. There the decay amplitude is calculated for both the electromagnetic and the

tensor operator in the framework of a quark model. The contribution of Q8 is found

to be suppressed relative to Q7 by a factor ΛQCD/mB × C8/C7 ≈ 5%.
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B V
q q

qb

Figure 2.12: Four quark penguin operators (Q3 . . . Q6) and W exchange (Q1 and Q2)
diagrams.

B V

u, cb

q q

Figure 2.13: Penguin annihilation diagram (does not contribute to B → K∗γ).

Four quark penguins, W -exchange and penguin annihilation

The contribution of four quark penguin operators Q3 . . . Q6 and W -exchange via Q1, Q2

is shown in Fig. 2.12. The contribution from Q1- and Q2-like operators with c replaced

by u is strongly CKM suppressed for B → K∗γ. The W -exchange diagram can be

treated in a similar way to the weak annihilation process in Fig. 2.8. However, for

B → K∗γ this process is suppressed by the small Wilson coefficients of the operators

Q3, . . . , Q6. The penguin annihilation diagram in Fig. 2.13 only produces flavour

singlets in the final state and is not relevant for the decay B → K∗γ.

B V

b

q

q

Figure 2.14: Electromagnetic tensor diagram
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Local contribution from electromagnetic tensor operator

The local contribution to the decay B → K∗γ is given by the operator Q7 in (2.7), see

Fig. 2.14, and this contribution can be calculated in lattice QCD. One thus needs to

calculate matrix elements of the tensor operator T µν = isσµνb. If the momentum of

the decaying meson is denoted by p and the momentum and polarisation of the final

state vector particle by p′ and ǫ then the matrix element can be parametrised by three

form factors as

〈K∗(p′, ǫ)|T µν |B(p)〉 = ǫαT αµν (2.26)

with

T αµν = ǫαµνβ
[(

pβ + p′β −
m2
B −m2

K∗

q2
qβ

)
T1(q

2) +
m2
B −m2

K∗

q2
qβT2(q

2)

+
2pα

q2
ǫµνσλqσp

′
λ

(
T2(q

2) − T1(q
2) +

q2

m2
B −m2

K∗

T3(q
2)

)]
.

(2.27)

For a physical photon with (p − p′)2 = q2 = 0 the factor multiplying T3(0) is zero and

T1(0) = T2(0) ≡ T (0) as the matrix element is finite for all q2.

2.3.3 Calculation with relativistic fermions

The authors of [58] calculate the tensor form factor on the lattice by simulating at

unphysically light bottom quark masses mH and then extrapolate in 1/mH using heavy

quark scaling laws. An O(a) improved Wilson action is used to discretise the quark

fields. All gauge configurations in [58] are quenched.

They first simulate directly at large recoil and use soft collinear effective theory

(SCET) [59] for the extrapolation in the heavy quark mass. At q2 = 0 the momentum

of the final state meson is close to the light cone. In SCET the collinear part of the light

quark momentum is integrated out. This is similar to HQET, where the high energy

fluctuations of the heavy quark do not appear in the effective theory. However, the

light quark can emit both soft- and collinear gluons and stay near its mass shell; both

gluonic degrees of freedom are kept as dynamic fields in SCET. A systematic power

counting in λ, the ratio between the perpendicular and collinear part of the light quark

momentum, can be established.

The result of the lattice calculation is

T (0) = 0.24(3)+0.04
−0.01. (2.28)
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The first error is statistical/fitting whereas they estimate the systematical uncertainty

by comparing to results on two lattices with coarser lattice spacing.

They also extrapolate to the physical quark mass while keeping q2 fixed. The form

factors T1 and T2 can then be extrapolated to zero using a phenomenological ansatz

for their dependence on the momentum transfer,

T1(q
2) =

F

(1 − q̃2)(1 − αq̃2)
, T2(q

2) =
F

1 − q̃2/β
(2.29)

with q̃2 = q2/m2
B∗

s
. The results they obtain with this method are compatible with the

result in (2.28).

An older study of B → K∗γ form factors using relativistic, O(a) improved Wilson

fermions can be found in [60]. The authors calculate the form factors that parametrise

the matrix elements 〈P |qγµb|B〉, 〈V |γµ(1− γ5)|B〉 and 〈V |qνσµν 1+γ5
2 |B〉, where P and

V denote pseudoscalar and vectors mesons respectively. For each q2 they simulate at

four values of the heavy quark mass around mc and extrapolate to the physical value

by fitting to an expansion in the inverse mass. This fit is constrained by using heavy

quark symmetry to relate different form factors.

2.3.4 mNRQCD calculation

The HPQCD collaboration uses an effective action which is a systematic expansion

in the inverse quark mass. Instead of approaching the physical heavy quark mass by

extrapolating from unphysically light quark masses the leading term in this expansion

corresponds to an infinitely heavy quark mass. The action includes corrections up to

(and including) O(1/m2) in heavy-light power counting. An additional advantage of

this approach is that the heavy quark propagator in this nonrelativistic theory can be

calculated very effectively by a single sweep through the lattice.

A drawback of the method is that the heavy quark expansion is only valid if the

energies and momenta of the process under study are much smaller than the heavy

quark scale. This is not the case at the physical, large recoil point q2 = 0 where

the energy of the light quark is of the order mB/2. Instead, all our calculations are

performed around the zero recoil point q2 = q2max where the final state meson is at rest.

The lattice data is then extrapolated to the physical point using the phenomenological

ansatz for the form factors in (2.29), this is described in more detail in section 2.3.5.

As q2 decreases in the lattice calculation, the discretisation errors in the final state

meson grow. Instead of using standard NRQCD, where the heavy quark is discretised

in the rest frame of the decaying B meson, we discretise the effective heavy quark action

in a moving frame. Although due to Lorentz invariance the two frames are equivalent
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Figure 2.15: Schematic form of the form factors T1,2 as a function of q. The shaded regions
show the validity of the continuum heavy quark theory (blue) and the lattice discretisations,
NRQCD (red) and mNRQCD (green).

in the continuum, this is not true on the lattice. Working in the moving frame extends

the range of accessible q2 and will improve the fit of form factors, see Fig. 2.15.

As discussed above the contribution of four quark operators to the matrix element

in the transition b → sγ is small at q2 = 0 (remember, however, that Q2 has a large

influence on the Wilson coefficient C7). At larger q2, especially near cc resonances, four

quark operators are important and the lattice calculation with the chromomagnetic

operator Q7 only does not include these effects.

Matrix elements of the operator Q7 in mNRQCD are currently being calculated by

Stefan Meinel [61] and Zhaofeng Liu [30]. In chapter 7 I show how radiative corrections

to these operators can be obtained in lattice perturbation theory. Using radiatively

improved leading order operators in combination with tree level matrix elements of the

1/m currents will improve the accuracy of the form factor calculation.

2.3.5 Phenomenological form factors

To extrapolate the lattice results to q2 = 0 a physically motivated ansatz for the

tensor form factors T1,2(q
2), which is valid for the whole q2 region, has to be made.

In [62] a parametrisation for the form factors f0(q
2) and f+(q2) in the vector current

matrix element 〈V (p′)|uγµb|B(p)〉 is suggested. It is shown that after constraining the

parameters with lattice data at large q2 the results agree with those from light cone

sum rules at small q2. In [58] this analysis is extended to the tensor current.
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2.3. Theoretical predictions

The form factors have to fulfil the following conditions:

1. T1(0) = T2(0). This follows from (2.27) as the matrix element has to be finite for

q2 → 0.

2. At large q2 ≈ q2max = (mB −mK∗)2, where HQET is valid, the matrix element

scales like
√
mB as the only dependence on the heavy quark mass comes from the

normalisation of the B state. This implies

T1(q
2 ≈ q2max) ∼ m

1/2
B , T2(q

2 ≈ q2max) ∼ m
−1/2
B . (2.30)

3. In the high recoil region q2 → 0 the additional scaling law T1,2(q
2 → 0) ∼ m

−3/2
B

holds.

4. Dispersion relations relate the form factors to resonances R and multiparticle

states above the cut at tcut = (mB +mK∗)2,

T1,2(q
2) =

∑

R

Resq2=m2
R
T1,2(q

2)

m2
R − q2

+
1

π

∫ ∞

tcut

dt
Im{T1,2(t)}
t− q2 − iǫ

. (2.31)

For T1 the nearest resonance in the crossed channel JP = 1− is atmB∗

s
= 5.42 GeV.

Usually the multiparticle continuum and resonances well above q2max = (mB −
mK∗)2 are modelled by a small number of resonances so that the form factors can

be written as a sum of pole terms.

The authors of [62, 58] note that scaling laws can not be satisfied by using a single

resonance structure for both T1(q
2) and T2(q

2) and that the pole at q2 = m2
B∗

s
should

be included. They suggest the parametrisation

T1(q
2) =

C1

1 − q̃2
+

C2

1 − C3q̃2
, T2(q

2) =
C1 + C2

1 − C4q̃2
(2.32)

with q̃2 = q2/m2
B∗

s
.

The additional constraint T1(E) = mB/(2E)T2(E) in the high energy region

E → ∞, mB → ∞ (where E denotes the energy of the final state meson) can be used

to reduce the number of parameters to three,

T1(q
2) =

F

(1 − q̃2)(1 − αq̃2)
, T2(q

2) =
F

1 − q̃2/β
. (2.33)

The corresponding expressions for the vector form factors f+,0 are obtained by

replacing T1 7→ f+, T2 7→ f0 and mB∗

s
7→ mB∗ .

31



Chapter 2. Physics of rare B-decays

Re{z}

Im{z}

|z|=1

Re{q  }

Im{q  }

2

2

mB*
2

s

B K*
(m  +m    )

2

Figure 2.16: Analytical transformation to the z plane

Analyticity

The form factors are analytic functions of q2 everywhere in the complex plane apart

from poles and branch cuts. The transformation [20]

z(q2, t0) =

√
1 − q2/t+ −

√
1 − t0/t+√

1 − q2/t+ +
√

1 − t0/t+
(2.34)

maps the branch cut at q2 > (mB +mK∗)2 onto the unit circle and the rest of the real

axis onto the interval [−1,+1] where it is legitimate to expand in a Taylor series in z,

see Fig. 2.16. In the transformation t0 is arbitrary and t± = (mB ±mK∗)2. The form

factor can then be written as

T1,2(q
2) =

1

P1,2(q2)φ1,2(q2, t0)

∞∑

k=0

ak(t0)z(q
2, t0)

k. (2.35)

The functions

P1,2(q
2) =

∏

p∈{poles of T1,2}

(
1 − q2/m2

p

)
(2.36)

contain all poles of T1,2(q
2) and φ1,2(q

2, t0) is an arbitrary function which, guided by

physical arguments, can be chosen such as to suppress higher order coefficients ak. One

furthermore has, due to the B∗
s pole in T1:

P1(q
2, t0) = 1 − q2/m2

B∗

s
, P2(q

2, t0) = 1. (2.37)
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2.4. Heavy quark physics

The advantage of this parametrisation is that it does not make any assumptions, apart

from analyticity and the presence of sub-threshold poles. I will use it to estimate

the systematic uncertainty associated with the choice of a particular form factor

parametrisation.

2.4 Heavy quark physics

Inside hadrons quarks are bound by the strong force which is described by a local SU(3)

gauge theory known as Quantum Chromodynamics (QCD). After briefly reviewing

QCD I discuss how heavy quarks can be treated in the framework of an effective theory.

2.4.1 Quantum chromodynamics

Let Ψ = (ψr, ψb, ψg)
T denote a three component quark spinor (r, b, g standing for the

“colours” red, blue and green) representing a strongly interacting matter field. Under

a local SU(3)c gauge transformation parametrised by αa(x), a = 1, . . . , 8 this field will

transform as

Ψ(x) 7→ eiα(x)Ψ(x) with α(x) = αa(x)T a (2.38)

where T a are the generators of the group SU(3). To keep the Lagrangian invariant

under local transformations it is necessary to introduce a spin-one field Aaµ in the

adjoint representation and to use covariant instead of ordinary derivatives. Ignoring

strong CP-violation the gauge invariant Lagrangian is given by

L = LG + LF = −1

2
tr[FµνF

µν ] + Ψ(iD/ −m)Ψ (2.39)

with the covariant derivative1 Dµ = ∂µ + igT aAaµ. The first term, containing the field

strength tensor Fµν = F aµνT
a with F aµν = ∂µA

a
ν − ∂νA

a
µ − gfabcAaµA

b
ν , describes the

kinetic energy and self interactions of the gauge bosons. The second term contains an

expression of the form ΨAaµΨ which couples the gauge field to matter.

This theory is generally known as Quantum Chromodynamics (QCD). In the

interacting theory the coupling constant g is scale dependent. It turns out that due to

the self interactions in the non-Abelian case αs = g2/(4π) decreases for large energy

scales, in particular one finds that at one loop order

αs(µ) =
1

β0 log(µ2/Λ2
QCD)

(2.40)

1The sign convention for the coupling constant g is the one used in [63] which differs from the one
in [3].
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State 2S+1LJ Mass

ηb(1S) 1S0 9389 MeV

Υ(1S) 3S1 9460 MeV

χb0(1P ) 3P0 9859 MeV

χb1(1P ) 3P1 9893 MeV

χb2(1P ) 3P2 9912 MeV

Υ(2S) 3S1 10023 MeV

χb0(2P ) 3P0 10233 MeV

χb1(2P ) 3P1 10255 MeV

χb2(2P ) 3P2 10269 MeV

Υ(3S) 3S1 10355 MeV

Table 2.2: Observed bottomonium states below the BB threshold. All data is taken from
[5] except for the recent measurement of the ηb(1S) ground state reported in [64]; see these
references for a detailled analysis of errors.

with β0 = (33 − 2Nf )/(12π) and Nf the number of quark flavours. This also implies

that at energies below ΛQCD ∼ 500 MeV the perturbative expansion in the coupling

constant breaks down and one has to resort to other methods. Today the most successful

model-independent approaches either exploit the symmetries of the theory to construct

an effective low energy expansion or rewrite the theory so that it can be simulated on

a space time lattice. I discuss lattice field theory in chapter 3.

2.4.2 Separation of scales

The mass of the bottom quark is larger than the hadronic scale ΛQCD. This separation

of scales has interesting consequences and can be used to explain a wide range of

phenomena in heavy quark physics with simple arguments.

At leading order the heavy quark mass does not contribute to the dynamics inside

mesons containing heavy quarks. This can be seen, for example, from the bottomonium

spectrum in Tab. 2.2 where the mass splittings are of order of the hadronic scale. More

precisely the mass of particles in the spectrum can be written as

M{n} = 2mb + a
(0)
{n}ΛQCD + a

(1)
{n}

Λ2
QCD

mb
+ . . . . (2.41)

The coefficients a
(k)
{n} are group theoretical factors of order one and depend on the

quantum numbers {n} of the bb state, such as spin and orbital angular momentum.

Many aspects of heavy meson spectra, such as near-degeneracy of spin-states and
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2.4. Heavy quark physics

the weak quark mass dependence of energy splittings, can be explained by treating

the heavy quark in an effective theory where the high energy excitations have been

integrated out and new symmetries emerge.

2.4.3 Effective theories for heavy quarks

Originally Heavy Quark Effective Theory (HQET) was formulated in [12, 13, 14] and

the subsequent derivation of the Lagrangian follows [65]. Consider a meson containing

one heavy and one light quark. The field of a heavy quark with mass m moving with

velocity v can be written as

ψ(x) = e−im v·x[h+
v (x) + h−v (x)] with (2.42)

P+h
+
v = h+

v , P−h
+
v = 0, P+h

−
v = 0, P−h

−
v = h−v (2.43)

where P± = 1
2(1±v/ ). The heavy mass is much larger than the QCD scale and at lowest

order in 1/m the quark acts as a static colour source. Interactions with the light degrees

of freedom will only change its velocity at O(ΛQCD/m). The external momentum mv

has been removed from h+
v so that the wavelength of typical fluctuations of this field

is small. An effective theory for the infrared modes is now constructed by integrating

out h−v and expanding in 1/m.

The heavy quark action in QCD,
∫
d4x ψ(x)(iD/ −m)ψ(x), can be written as

∫
d4x

{
h

+
v iv ·Dh+

v − h
−
v (iv ·D + 2m)h−v + h

+
v iD/ ⊥h

−
v + h

−
v iD/ ⊥h

+
v

}
(2.44)

where aµ⊥ = aµ − vµ(v · a). In the path integral the fields h−v can be integrated out by

completing the square and performing the Gaussian integral. The resulting Lagrangian

is at tree level

L = h
+
v iv ·Dh+

v − h
+
v D/ ⊥

1

iv ·D + 2m
D/ ⊥h

+
v . (2.45)

By expanding to O(1/m) one finally obtains a set of local operators

L
(HQET) = h

+
v iv ·Dh+

v − h
+
v

D2
⊥

2m
h+
v − gh

+
v

σµνG
µν

4m
h+
v + O(1/m2). (2.46)

Gµν is the chromomagnetic field strength tensor and σµν = i
2 [γµ, γν ] a commutator

of gamma matrices. Note that in the v = 0 frame the kinetic operator reduces to

−D2/(2m) whereas the chromomagnetic operator can be written as −gσ ·B/(2m). As
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Chapter 2. Physics of rare B-decays

expected, the dispersion relation is nonrelativistic, E(p) = p2/(2m). The derivation

can be extended to include higher order terms in the 1/m expansion without difficulty.

Beyond tree level the couplings receive radiative corrections. It can be shown,

however, that some of the operators are protected from renormalisation by an additional

symmetry of the heavy quark Lagrangian known as reparametrisation invariance [66].

If the total heavy quark momentum is written as p = pext+pres = mv+k then momenta

of order ΛQCD can be moved between the external momentum pext and the residual

momentum pres without changing the physics. This fixes the relative coefficient between

the static term v ·D and the kinetic term D2
⊥/(2m) to all orders in perturbation theory.

Alternatively the heavy quark effective Lagrangian can be derived by writing down

all operators that are compatible with the symmetries of the system. The prefactors

have then to be adjusted by on-shell matching. For this it is necessary to compute

matrix elements both in full QCD and the effective theory. Although the theories

agree for small momenta their short distance behaviour is completely different and the

matching coefficients correct for this ultraviolet mismatch. As QCD is perturbative

above the heavy quark scale the matching can be done perturbatively.

Finally it should be remarked that four quark operators in the heavy quark action

are suppressed by additional powers of the strong coupling constant. They can only

arise at loop level in full QCD.

Heavy Quark Effective Theory

The effective Lagrangian has an infinite number of terms and to make physical

predictions one has to find a way of ordering the operators according to their relative

importance. Power counting rules are not an inherent property of the effective

Lagrangian but have to be derived from the physics of the system under study.

In mesons containing one heavy and one light quark there are only two energy scales,

the dynamic scale ΛQCD and the mass of the heavy quark. Any operator of dimension

d will be suppressed by (ΛQCD/m)d−4 relatively to the leading order static operator

v ·D. To make predictions with a given precision it is then sufficient to include only a

finite number of operators.

For infinitely heavy quarks the symmetries of the HQET Lagrangian are different

from those of finite mass QCD. The leading order term does not depend on the heavy

quark spin and mass which has observable effects on the heavy-light meson spectrum.

In particular one expects that to a good approximation the mass of any heavy-light

meson is given by mH = m + Λ with Λ ∼ ΛQCD. Fine and hyperfine splittings are

expected to be suppressed by an additional factor of ΛQCD/m.

Experimentally one finds that the splitting between pseudoscalar and vector states
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Figure 2.17: Schematic picture of heavy-light (left) and heavy-heavy (right) meson systems.
The heavy degrees of freedom are coloured in red, the light quark in blue.

D, D∗ as well as B, B∗ is small and the mass differences m2
B∗ −m2

B and m2
D∗ −m2

D

are of comparable size. At next order in the 1/m expansion the expectation values of

the kinetic and the chromomagnetic operators can be parametrised by two additional

numbers for each multiplet. Masses of different spin states can then be derived using

simple group theoretical relations, see for example [67].

Nonrelativistic QCD

The situation is more complicated for mesons with two heavy quarks. Here the kinetic

term can not be treated as a correction as it is essential for stabilising the bound state

as a hydrogen-like system. Instead of expanding in ΛQCD/m the relative velocity vrel

of the quark-antiquark pair plays a crucial role. Besides ΛQCD and the hard scale m

there are two additional scales in the problem: the heavy quark momentum is of the

order of the soft scale mvrel (the inverse of which determines the size of the meson due

to the uncertainty principle) and its energy of the order of the ultrasoft scale mv2
rel.

The leading order Lagrangian in the rest frame is

L
(NRQCD)
0 = h

+
0 iD0h

+
0 − h

+
0

D2

2m
h+

0 . (2.47)

D0 is a temporal derivative and scales like an energy mv2
rel, whereas the spatial

derivative D scales as a momentum mvrel. Both terms in the leading Lagrangian have

the same power in the relative velocity vrel. The size of m and vrel can be estimated

from the bottomonium spectrum, see Tab. 2.2. The heavy quark mass is given by

half the energy of the Υ(1S) state from which one obtains m ≈ 4.7 GeV. The spin

independent energy splittings are of the order of mv2
rel. For the low-lying states radial

excitations are of the order of M(Υ(2S))−M(Υ(1S)) ≈ 560 MeV and orbital-angular-

momentum splittings of M(χbJ) −M(Υ(1S)) ≈ 430 MeV. This gives an estimate of

mv2
rel ≈ 500 MeV and v2

rel ≈ 0.1. Indeed it turns out that both for charmonium and
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operator

D mvrel

D0 mv2
rel

gA0 (Coulomb gauge) mv2
rel

gA (Coulomb gauge) mv3
rel

gE m2v3
rel

gB m2v4
rel

Table 2.3: NRQCD power counting rules derived in [68]. Rules for gauge-invariant operators
are independent of the choice of gauge.

bottomonium mv2
rel is very close to ΛQCD which suggest that in this range the ultrasoft

scale is independent of the quark mass [68].

It is expected that systematic errors from the relativistic expansion are reduced to

below the 1%-level by including terms of order v4
rel in the effective Lagrangian.

Power counting rules for other operators are derived in [68]. There it is shown how

powers of vrel can be assigned to the vector potential and the chromomagnetic field

such that the field equations of the heavy quark and chromomagnetic field are self

consistent, see Tab. 2.3.

2.4.4 Renormalisation

Due to the different power counting the renormalisation of HQET and NRQCD has to

be discussed separately.

For HQET it turns out that the leading, static theory is renormalisable. When

computing the radiative corrections to some operator O the 1/m terms will be treated as

operator insertions in the path integral. Any divergences that arise from combinations

of O and these insertions can be absorbed into the coefficients of operators of the same

or lower order in 1/m. This implies that the theory can be renormalised order by

order, i.e. if one wants to make predictions with a given accuracy δ = (ΛQCD/m)n

only operators up to dimension n + 3 [69] have to be taken into account. It has to be

kept in mind, however, that the relation between bare and renormalised parameters is

not necessarily finite. Higher order operators can “mix down” in a cutoff dependent

renormalisation scheme, i.e. an operator of dimension n+ can renormalise a lower

dimensional operator with dimension n− by terms proportional to (Λcutoff/m)n+−n− . If

one only works with renormalised operators this is of course not a problem. However,

in the lattice regularisation bare parameters are used which will diverge with some

power of Λcutoff ∼ 1/a. This restricts the allowed range of accessible a and taking the
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2.4. Heavy quark physics

continuum limit becomes impossible. Although this is a drawback it should be noted

that discretisation errors only form part of the error budget in a lattice calculation.

Even if they can not be removed completely, they can be reduced by using improved

actions and their size can be estimated and quoted together with the central value

obtained in a lattice simulation.

For NRQCD the 1/m corrections are already contained in the propagator and

the leading order theory is not renormalisable. Here there is an infinite number of

divergences which can not be absorbed by low energy constants, so the desired order-

by-order renormalisation of the theory seems to be impossible. It has to be kept in mind,

though, that even an unrenormalisable theory is still predictive if the cutoff dependence

of the coupling constants is taken into account properly. In principle the cutoff

dependence of physical quantities can be reduced by going to a sufficiently high order

in the perturbative expansion (or by fixing the couplings nonperturbatively). To avoid

both power divergences in lattice perturbation theory and large discretisation errors one

is restricted to work in the window of lattice spacings given by 1/m . a . 1/ΛQCD.

In the future sufficiently fine lattices with am ≪ 1 might become available and a

relativistic fermion action can be used.

After reviewing the lattice discretisation of QCD in the next chapter I describe how

heavy quarks are discretised on a spacetime lattice in chapter 4.
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Chapter 3

Lattice Field Theory

A very successful approach to quantising field theories was proposed by Feynman

[70]. It is particularly useful when an expansion in a small parameter, such as the

coupling constant, is not possible. Predictions from the full theory can be obtained by

discretising it on a space time lattice and evaluating the remaining integrals numerically

using Monte Carlo methods. This approach has been successfully applied to study the

nonperturbative dynamics of strongly interacting particles as described by QCD. Since

this idea was originally proposed in [71] a tremendous increase in available computing

power, advanced algorithms and better understanding of conceptual problems have

enabled the lattice community to make predictions of high accuracy at parameter values

that are close to the physical ones.

“Gold plated” observables with at most one hadronic particle in the final state are

of particular interest as these can be studied very reliably in lattice QCD, as has been

reported in the proceedings of recent lattice conferences. In particular the HPQCD

collaboration uses dynamical sea quarks and a highly improved light quark action and

has recently calculated spectra and decay constants of mesons containing light and

charm quarks [18, 72, 73, 74] as well as neutral B mixing matrix elements [32].

These calculations have now reached a level of precision that makes it possible to

compare them to experimental data. In a recent update Davies et al. [74] reported a

3σ discrepancy between lattice predictions and experiment of the Ds decay constant

fDs , which is proportional to Vcs, and good agreement for fD. In a new experimental

measurement of fDs [75] this discrepancy has been reduced but is still significant.

3.1 The Feynman path integral

The time ordered vacuum expectation value of a product of operators Oj(x) which

depend on the fermion fields ψ(x), ψ(x) and the gluon field Aµ(x) at the space time
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point x can be written as a ratio of functional integrals

〈0|T{O1(x1) . . .O1(xn)}|0〉 =

∫
DψDψDAµ O1(x1) . . .On(xn)e

−S[ψ,ψ,Aµ]

∫
DψDψDAµ e−S[ψ,ψ,Aµ]

.

(3.1)

The theory is formulated in Euclidean space where the Minkowski time coordinate t

has been replaced by −iτ to avoid rapid oscillations in the integrand. S[ψ,ψ,Aµ] is

the action which can be obtained by integrating the Euclidean version of the QCD

Lagrangian (2.39) over space and time.

In the discretised version of the theory the fields are only defined at points of

a hypercubic space time lattice L ⊂ Z4. The shortest distance between any two

points is the lattice spacing a which naturally introduces an ultraviolet cutoff of π/a

in momentum space and renders all predictions of the theory finite. The infinite

dimensional functional integrals are replaced by products of ordinary integrals which

can be evaluated numerically using stochastic methods. To this end Monte Carlo

techniques are used to generate a set of statistically independent field configurations

distributed according to e−S . Expectation values of operators as in (3.1) can then be

obtained as averages over these configurations.

3.2 Lattice QCD action

When discretising QCD on a lattice it is desirable not to break gauge invariance

as otherwise a considerable amount of fine tuning is necessary to obtain the same

renormalised coupling constant for all gluon vertices. This can be achieved by using

the gauge invariant link variables Uµ(x) instead of the gluon fields. The quantities are

related by

Uµ(x) = P

{
exp

[
iag

∫ x+aµ̂

x
dz Aµ(z)

]}
≈ exp

[
iagAµ(x+

a

2
µ̂)
]

(3.2)

where P stands for path-ordering. The links transform as Uµ(x) 7→ eiα(x)Uµ(x)e
−iα(x+aµ̂)

under gauge transformations so that quantities such as ψ(x)Uµ(x) . . . Uν(y − aν̂)ψ(y)

or traced closed loops of links are gauge invariant and can be used in the construction

of the action.

The simplest gluon action proposed in [71] is constructed from products of links

around a 1 × 1 loop, usually called a plaquette,

UP = Uµ(x)Uν(x+ aµ̂)U †
µ(x+ aν̂)U †

ν (x), (3.3)
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SG = β
∑

P

(
1 − 1

6
tr
[
UP + U †

P

])
with β = 6/g2. (3.4)

By expanding in powers of a this can be shown to be identical to the continuum action

up to discretisation errors of O(a2).

The fermionic part of the action can be written as

SF = a4
∑

x

ψ(x)(γµ∆
±
µ +m)ψ(x) (3.5)

with the discrete version of the covariant derivative

∆±
µψ(x) =

1

2a

(
Uµ(x)ψ(x+ aµ̂) − U †

µ(x− aµ̂)ψ(x − aµ̂)
)
. (3.6)

Again it is straightforward to check that this is identical to the continuum expression

up to errors quadratic in the lattice spacing.

3.3 Improved actions

Ultimately one is not interested in observables on the lattice but in those in the

continuum limit a→ 0. Discretising the theory will introduce errors which (at leading

order) scale with some power of the lattice spacing. The most naive way of removing

these lattice artifacts would be to use finer lattice spacings.

Taking the lattice spacing to zero is equivalent to removing the cutoff in other

regularisation schemes, the theory should become independent of the lattice structure

and hence correlation functions (in lattice units) will diverge. If one would simply

keep the number of lattice points constant the physical lattice size will eventually

become smaller than the correlation length of the lightest particle in the theory leading

to notable finite size effects. To avoid these problems the physical volume is kept

constant and larger and larger lattices have to be used when approaching the continuum

limit. In practice for a fixed physical lattice size the computational cost is proportional

to approximately 1/a6. This is because in addition to the increase of lattice points

proportional to 1/a4, standard Monte Carlo techniques produce highly autocorrelated

configurations as long range correlations dominate when the continuum limit is

approached [76, 77]. Finite size effects from the exchange of pseudoscalar particles

of mass mPS between copies of hadronic particles are proportional to exp[−mPSL]

where L ≫ 1/mPS is the linear lattice size in physical units. As the quarks become

more chiral mPS decreases and L needs to be increased. Eventually the brute force

reduction of lattice artifacts by using lattices with more and more points becomes

computationally unfeasible.
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Chapter 3. Lattice Field Theory

Another way to overcome these difficulties is to include additional irrelevant

operators in the Lagrangian which systematically remove discretisation errors at finite

a. This process is called improvement.

For example, in (3.5) the improved derivative

∆imp
µ = ∆±

µ − a2

6
∆+
µ∆±

µ∆−
µ + O(a4) (3.7)

could be used where the forward and backward derivatives ∆+
µ and ∆−

µ are defined in

(A.9).

An improved version of the gluonic part of the action with errors of O(a4) is

constructed by adding 2 × 1 gauge invariant Wilson loops to it

SG = −β
∑

x,µ>ν

(
5

3
Pµν −

a2

12
(Rµν +Rνµ)

)
(3.8)

where

Pµν =
1

3
Re{tr[Uµ(x)Uν(x+ aµ̂)U †

µ(x+ aν̂)U †
ν (x)]} (3.9)

Rµν =
1

3
Re{tr[Uµ(x)Uµ(x+ aµ̂)Uν(x+ 2aµ̂)U †

µ(x+ aµ̂+ aν̂)U †
µ(x+ aν̂)U †

ν (x)]}.

So far I have only described improvement at tree level: radiative corrections will re-

introduce errors of O(αsa
2) and the coefficients in (3.8) have to be adjusted to account

for this. This can be done nonperturbatively or in perturbation theory as the corrections

come from highly energetic gluons and the strong coupling constant αs is small at the

scale of the lattice cutoff 1/a.

3.3.1 Mean field improvement

It has turned out [78, 79], however, that a large amount of these corrections can be

removed by dividing each link by its mean field value u0. This is closely related to the

problem of defining a sensible expansion parameter in the perturbative expansion of

lattice quantities.

The bare coupling constant αlat receives large renormalisations which can be

removed by partial resummation. The coefficients in the perturbative series of, for

example, a small Wilson loop are much smaller if it is expressed in terms αV (q) instead,

where αV (q) is defined via the static heavy quark potential,

V (q) = −4πC(r)αV (q)

q2
. (3.10)
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3.4. Fermions on the lattice

Here C(r) is the Casimir operator in the fundamental representation. The lattice

theory is formulated in terms of links Uµ = exp[iagAµ] instead of the gauge potentials.

Expanding Uµ in the strong coupling constant this generates additional quark-gluon

vertices with an arbitrary number of gluons. Although these are suppressed by powers

of the lattice spacing, the gluon lines can be connected to give tadpole diagrams which

are ultraviolet divergent and proportional to some power of 1/a, which leads to a

constant shift at O(αs) between the bare coupling constant and αV

αV (q) = αlat

(
1 + αlat

[
β0 log

(
π

aq

)2

+ (large constant)

]
+ . . .

)
. (3.11)

As these renormalisations are process independent they can be largely removed by

dividing each link Uµ in the lattice action by its expectation value u0. As the link is

not gauge invariant u0 is usually defined to be the fourth root of the mean plaquette or

the expectation value of Uµ in Landau gauge. In this work I will always use the latter

definition. Although there is no formal proof in practise this strategy of “tadpole”- or

“mean-field” improvement is very successful.

A tadpole improved gluon action is therefore obtained from (3.8) by replacing Pµν 7→
Pµν/u

4
0 and Rµν 7→ Rµν/u

6
0 which will remove the majority of O(a2αs) corrections. The

leading power of u0 can be absorbed in the inverse coupling constant, β 7→ β/u4
0.

3.4 Fermions on the lattice

A closer look at the naive action in (3.5) reveals that in addition to the physical fermion

with on-shell momenta well below the lattice cutoff there are 15 additional spurious

degrees of freedom. This can be seen by studying the dispersion relation of the free

theory which has additional solutions near the boundary of the Brillouin zone. More

generally the action is invariant under the set of transformations

ψ(x) 7→
∏

ρ

(iγ5γρ)
ζρeix·ζ π/aψ(x) (3.12)

where the components of the vector ζ can be zero or one. Even if these doublers are

projected out in external states they can be created in intermediate states by absorption

of highly virtual gluons with momenta of the order π/a.

There are several ways of dealing with this problem. The original idea of Wilson

was to add a higher order operator to the action to give the doublers a mass of the order

of the lattice cutoff and decouple them from the theory in the continuum limit (see,

for example [63]). The O(a) errors generated by this term can be removed by adding
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Chapter 3. Lattice Field Theory

an additional operator of the same dimension, the so called clover term [80]. A more

serious drawback is that Wilson-type fermions explicitly break chiral symmetry which

requires fine tuning of the mass that is not protected from additive renormalisation any

more. Chiral symmetry is also often desirable as it prevents mixing of operators with

different handedness. An additional problem of the Wilson Dirac operator is that it

can have very small eigenvalues which can cause problems when inverting this operator

to compute correlators.

To overcome these problems actions with a modified definition of chiral symmetry

have been constructed. It can be shown that in this case the Dirac operator D has

to fulfil the Ginsparg-Wilson relation γ5D + Dγ5 = aDγ5D [81]. One realisation is

Neuberger’s operator [82] which is non-local and costly to simulate. Another way of

designing an action with chiral symmetry is to formulate the theory in five dimensions.

If the mass is a suitably chosen function of the fifth coordinate s, for example a sign

function that is +M for positive and −M for negative s, there will be massless chiral

solutions bound to the domain wall s = 0 in the effective four dimensional theory [83].

However, also this approach is computationally challenging.

3.4.1 Staggered fermions

The discretisation of relativistic fermions used in this work is the staggered formulation.

Here, by using a local field transformation ψ(x) 7→ ψ′(x) = Ω(x)ψ(x), the action

is diagonalised in Dirac space. The transformation matrix is given by Ω(x) =

γx0
0 γx1

1 γx2
2 γx3

3 and by using Ω(x)†γµΩ(x+ aµ̂) = (−1)x0+x1+···+xµ−1 = αµ(x) the action

can be rewritten as

S =
∑

x

ψ
′
(x)αµ(x)

(
Uµ(x)ψ

′(x+ aµ̂) − Uµ(x− aµ̂)†ψ′(x− aµ̂)
)

+ m
∑

x

ψ
′
(x)ψ′(x). (3.13)

The four components of the new spinor field are independent and the number of degrees

of freedom can be reduced to four by only simulating one component of the field.

Although the field transformation ψ(x) 7→ Ω(x)ψ(x) complicates the construction

of operators, an advantage of this formulation is that the action has a remnant chiral

symmetry and it is easy to simulate as the spin degrees of freedom have been removed.

This makes the generation of gauge configuration with dynamical sea quarks very cost

efficient. This is particularly important when working at masses that are close to the

physical ones to reduce systematic errors. The remaining four degrees of freedom are

usually called tastes, they are not independent and can still transform into each other

by the exchange of highly virtual gluons with momenta p ∼ π/a. These unwanted taste
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3.4. Fermions on the lattice

changing interactions are not present in the continuum, suppressing them by suitable

modifications of the action will lead to a substantial reduction of discretisation errors.

3.4.2 Improved actions for fermions

As the exchange of gluons close to the boundary of the Brillouin zone is a highly

ultraviolet process taste changing interactions can be suppressed by adding effective

four quark operators to the action. However, a more efficient solution is to modify the

high-energy behaviour of the quark-gluon vertex. In [84] it is shown how this can be

achieved by smearing the gluon fields. Then lattice artifacts at O(a2) can be removed

by a further modification of the links and tree level improvement of the first order

derivative as described in Section 3.3. The derivation starts with the naive fermion

action

S =
∑

x

ψ(x)
(
γµ∆

±
µ +m

)
ψ(x). (3.14)

To suppress taste changing interactions at tree level and remove O(a2) errors one

proceeds as follows:

Link smearing. Each link variable Uµ is replaced by FµUµ with the “Fat7” smearing

operator

Fµ =
∏

ρ6=µ

(
1 +

a2∆
(2)
ρ

4

)∣∣∣
symm.

(3.15)

where ∆
(2)
ρ is a second order covariant derivative acting on the link Uµ(x). By expanding

the smeared link in gluon fields Aµ it can be shown that the exchange of taste-changing

gluons with a momentum component of π/a is forbidden.

O(a2) Symanzik improvement. The remaining O(a2) errors in the action can be

removed by an additional smearing of the link fields. This is done by modifying the

smearing operator to

FASQ
µ = Fµ −

∑

ρ6=µ

a2(∆ρ)
2

4
(3.16)
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where ∆ρ is a first order derivative of the link field. Finally the derivative in the action

(3.14) is improved by adding a third order derivative, usually called the “Naik”-term,

∆±
µ 7→ ∆ASQ

µ = ∆±(V )
µ − a2

6

(
∆±
µ

)3
. (3.17)

The additional superscript V indicates that the smeared links Vµ = FASQ
µ Uµ are used

instead of Uµ in the covariant derivative. In addition, the links are divided by u0 to

reduce mean field corrections,

∆ASQTad
µ =

(
∆ASQ
µ

)
Uµ 7→Uµ/u0

. (3.18)

The a2 tadpole improved (ASQTad) action is given by

SASQTad =
∑

x

ψ(x)
(
γµ∆

ASQTad
µ +m

)
ψ(x). (3.19)

This action has tree level errors of O(a4); errors of O(αsa
2) are strongly reduced. As for

the naive action the number of degrees of freedom can be reduced to four by staggering

the fields.

Taste changing interactions can be suppressed even further by repeated smearing

of the links. In [85] two levels of smearing with an intermediate reunitarisation

FHISQ
µ =


Fµ −

∑

ρ6=µ

a2 (∆ρ)
2

2


UFµ (3.20)

are suggested. The operator U projects the smeared link back to SU(3). By measuring

mass splittings between the 16 different Goldstone bosons and other observable

quantities the authors of [85] conclude that this reduces taste splitting by an additional

factor of around three.

The derivative acting on the quark field is given by

∆HISQ
µ = ∆±(W )

µ − a2

6
(1 + ǫ)

(
∆±(X)
µ

)3
. (3.21)

In the first difference operator the HISQ-smeared link variables Wµ = FHISQ
µ Uµ are

used. In the Naik term only one level of smearing followed by reunitarisation is

sufficient, the links used there are given by Xµ = UFµUµ. The ǫ - term can be tuned

to remove O((am)4) errors which are sizeable for charm quarks.

The Highly Improved Staggered Quark (HISQ) action has been used extensively

for studies of the mesons containing charm quarks [73, 74]. Its relative simplicity and
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3.4. Fermions on the lattice

low computational cost makes it possible to include the effects of fermionic vacuum

polarisation at small values of the sea quark mass. In the staggered formulation the

number of degrees of freedom is usually reduced to 2 or 1 by taking the square- or fourth

root of the sea quark determinant that is obtained by integrating out the anticommuting

Grassmann fields.

While this has lead to some debate on the validity of this method, this problem is

not directly relevant for the perturbative calculations in this thesis. In perturbation

theory the spurious degrees of freedom can be accounted for by dividing every (naive)

closed fermion loop by 16. In addition, in the radiative corrections to the heavy quark

self-energy and to heavy-light currents vacuum polarisation effects of light quarks only

arise at two loop order.
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Chapter 4

Heavy quarks on the lattice and

perturbative renormalisation

In the previous chapter I always implicitly assumed that the quark mass is much smaller

than the inverse lattice spacing. On lattices currently used with a ∼ 0.1 fm this is the

case for light quarks; for charm quarks sufficient accuracy can be reached by using

the HISQ action described in section 3.4.2. Bottom quarks, however, have a Compton

wavelength that is smaller than the lattice spacing and hence a direct simulation with

a relativistic fermion action will not give meaningful results.

In this chapter I show how this problem can be solved by using a discretised version

of the nonrelativistic quark action described in section 2.4.3. I discuss the methods for

calculating radiative corrections to the effective action in lattice perturbation theory.

4.1 Lattice NRQCD

Nonrelativistic lattice actions for heavy quarks have been developed in [86, 87, 88]

and were substantially improved in [89]. In the next section I present an alternative

derivation of the nonrelativistic continuum action and show how the theory can be

discretised on a lattice.

4.1.1 Derivation of lattice NRQCD

The following discussion follows [1, 90, 91]. In the first step, quark- and antiquark

fields are decoupled by a Foldy-Wouthuysen-Tani (FWT) transformation. This method

automatically generates the correct tree level couplings and is easily generalised to a

moving frame of reference. Knowledge of the explicit relation between the QCD field

and the corresponding quantity is also essential for the construction of heavy-light

operators in chapter 7. In the continuum this transformation relates the relativistic
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Chapter 4. Heavy quarks on the lattice and perturbative renormalisation

field Ψ(x) to the field Ψ̃(x) in the effective theory,

Ψ(x) = TFWT e
−imx0γ0

Ψ̃(x), Ψ̃ =


ψ
χ


 . (4.1)

The factor e−imx
0γ0

removes the rest mass from the Lagrangian. In the Dirac basis γ0 is

diagonal so that ψ describes the quark and χ the antiquark field. The transformation

can be constructed recursively order by order in inverse powers of the heavy quark

mass. Up to corrections of O(1/m4) it is given by

TFWT = exp

[
1

2m
(iγ · D)

]
exp

[
1

2m2

(
− ig

2
γ0γ · E

)]
(4.2)

× exp

[
1

2m3

(
g

4
γ · (Dad

0 E) +
1

3
(iγ · D)3

)]

where E and B are the chromo-electric and -magnetic fields. The Lagrangian can be

written as

L = Ψ̃(x)
[
iγ0D0 +

D2

2m
+

g

2m
Σ · B (4.3)

+
g

8m2
γ0
(
Dad · E + iΣ · (D × E − E × D)

) ]
Ψ̃(x) + O(1/m3)

with

Σj =


σ

j 0

0 σj


 . (4.4)

As expected particle- and antiparticle- fields decouple and the action can be written as

a sum of two independent actions in the two-component spinor fields ψ and χ.

The Lagrangian in (4.3) is correct up to order Λ2
QCD/m

2 in heavy-light power

counting. To include all terms of order v4
rel in heavy-light mesons an additional kinetic

operator D4/(8m3) has to be added. This term can be derived by expanding the

relativistic kinetic energy Ekin −m =
√

k2 +m2 −m = k2

2m − k4

8m3 + k6

16m5 + . . . .

Rotation to Euclidean space is achieved by making the replacements

x0 7→ −ix4
E = −iτ, x 7→ xE , (4.5)

Ψ̃(x) 7→ Ψ̃(xE), Ψ̃(x) 7→ Ψ̃(xE),

A0(x) 7→ iA4(xE), A(x) 7→ A(xE),
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4.1. Lattice NRQCD

so that the Lagrangian is given by

L = Ψ̃(x)
[
γ0D4 −

D2

2m
− g

2m
Σ · B (4.6)

− g

8m2
γ0
(
Dad · E + Σ · (D × E − E × D)

)
− 1

8m3
D4
]
Ψ̃(x) + O(1/m3).

On the lattice the Hamiltonian is split into a leading order kinetic operator H0 and

a correction δH which contains interaction terms and higher order operators. In the

past, various alternative discretisations have been suggested and in this work I follow

the most recent convention in [92]. The action that describes the dynamics of particle

solutions has the form

S =
∑

x,τ

ψ+(x, τ) [ψ(x, τ) −K(τ)ψ(x, τ − 1)] (4.7)

with kernel

K(τ) =

(
1 − δH

2

)(
1 − H0

2n

)n
U †

4 (x, τ − 1)

(
1 − H0

2n

)n(
1 − δH

2

)
. (4.8)

The operators are

H0 = −∆(2)

2m
, (4.9)

δH = −
(
∆(2)

)2

8m3
− g

2m
σ · B − g

8m2
σ ·
(
∆̃

(±) × Ẽ − Ẽ × ∆̃
(±)
)

+
ig

8m2

(
∆̃

(±) · Ẽ − Ẽ · ∆̃(±)
)

+ δHcorr..

The finite difference operators are defined in appendix A.2. Improved derivatives and

fields are denoted by “∼”. In the continuum the Leibniz rule Dad · E = D · E − E · D
holds but on the lattice the two discretisations of the adjoint derivative are not

equivalent. The correction term δHcorr. reduces discretisation errors both in the spatial

and the temporal direction. The first can be removed up to corrections of O(a4p4) by

including the correction − 1
12∆(4) to the kinetic operator ∆(2). However, for performance

reasons, it is advantageous to leave H0 unchanged and include this correction in δHcorr.

as well. The errors in the temporal direction can be reduced without introducing higher

order time derivatives by fixing δHcorr.,t such that

e−aH
∗

0/2 =

(
1 − aH0

2n

)n(
1 − aδHcorr.,t

2

)
. (4.10)

where the improved kinetic operator H∗
0 contains the improved second order derivative.
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O(a2E2) errors can be removed by choosing

δHcorr.,t = −aH
2
0

4n
= −

(
∆(2)

)2

16nm2
. (4.11)

The full correction term is

δHcorr. =
∆(4)

24m
−
(
∆(2)

)2

16nm2
. (4.12)

The stability parameter n is introduced to stabilise the time evolution of the propagator

for small quark masses. It has to be chosen such that
∣∣1 − H0

2n

∣∣ < 1. In the free theory

this can be shown to be equivalent to n > 3/(2am); gluons are known to relax this

bound slightly [89].

The heavy-quark Green function satisfies the simple evolution equation

G(x, τ ;x′, τ ′) = K(τ)G(x, τ − 1;x′, τ ′) (4.13)

which can be solved recursively.

Mean field corrections

As the time derivative in (4.8) is realised by a backward finite difference there are no

mean field corrections to wavefunction renormalisation. This can be seen by replacing

all links in the momentum space propagator by u0 [89],

G(p0,p) =
1

1 − u0e−ip0T (p)
with T (p) =

(
1 − H0(p)

2n

)2n (
1 − δH(p)

2

)2

.

(4.14)

After Fourier-transforming in the time coordinate,

G(p; τ, τ ′) = (u0T (p))τ
′−τ ≡ Z

(mf)
ψ exp

[
−(τ ′ − τ)E(mf)(p)

]
(4.15)

the mean field wavefunction renormalisation Z
(mf)
ψ = 1 and mean field energy

E(mf)(p) = − log[u0T (p)] can be read off.

4.1.2 Extension to a moving frame

In decays like B → πℓν, B → K(∗)ℓ+ℓ− or B → K∗γ the hadronic particles in the

final state can have large momenta pf in the rest frame of the B meson. This would

introduce large discretisation errors which for q2 → 0 scale as some power of ∼ am/2. It
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is thus desirable to extend the formalism to a moving frame where pf is reduced while

still keeping the momentum fluctuations in the B meson small. As Lorentz boosts and

the lattice discretisation do not commute, this will lead to an action which differs from

the NRQCD action derived in the previous section.

The momentum of the b quark can parametrised as

p = mu+ k (4.16)

where u is usually chosen to be the velocity of the B meson, u = pB/m. The four

velocity is given by u = (γ, γv) with γ = (1− v2)−1/2. Only the residual momentum k

is discretised on the lattice. The kinetic energy is then obtained by expanding

Ekin =
√

(mγv + k)2 +m2 − γm (4.17)

= v · k +
k2 − (v · k)2

2γm
+ . . . .

From this the leading order “kinetic” part of the Hamiltonian in the moving frame can

be read off as

H = −iv · D − D2 − (v · D)2

2γm
. (4.18)

By choosing the frame velocity v antiparallel to the momentum pf of the hadronic

particle in the final state, the overall discretisation error can be minimised. When

picking an optimal frame the following considerations have to be taken into account:

Discretisation errors. In the rest frame of the B the residual momentum k has a

distribution with a width of order ΛQCD. Due to momentum conservation the typical

momentum of the light spectator quark is of the same order. The heavy quark

is nonrelativistic and its energy has a distribution of width Λ2
QCD/(2m) ≪ ΛQCD.

In a moving frame the width of the momentum distribution is boosted to γΛQCD.

Both the NRQCD action used in this work and the ASQTad and HISQ actions have

no discretisation errors of O(a2k2) but there are O(αsa
2k2) errors due to radiative

corrections. To get an estimate for the velocity of the optimal frame the momenta of

all quarks are required to be of the same size. The increase in discretisation errors in

the heavy meson is proportional to γ2Λ2
QCD − Λ2

QCD. Assuming that the two valence

quarks in the final state meson share its momentum equally, each carrying pf/2, the

increase in discretisation errors when going from zero momentum to pf is proportional
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Figure 4.1: Optimal frame velocity as a function of q2.

to (|pf |/2)2. For a given q2 the frame velocity v is chosen such that

(γ2 − 1)Λ2
QCD =

1

4
|pf |2. (4.19)

In Fig. 4.1 I plot the optimal frame velocity as a function of q2. At maximum recoil

v ≈ 0.7 will lead to minimal discretisation errors. It should be emphasised that this is

only a very rough estimate, the optimal frame velocity depends on the details of the

lattice calculation. I carry out all perturbative calculations in this thesis for a range of

frame velocities.

Statistical errors. The precision of lattice calculations is also affected by statistical

errors in the Monte Carlo evaluation of the path integral. Although in principle these

can be made arbitrarily small by accumulating enough statistics they can be sizeable

in practise due to limited computing power.

Consider the B meson two-point function 〈B†(pB, 0)B(pB , τ)〉. For large τ this

function decays like exp[−EB(pB)τ ] where the energy EB(pB) increases with the frame

velocity. The variance of the correlator is

σ2(τ) = 〈[B†(pB, 0)B(pB , τ)][B
†(pB , 0)B(pB , τ)]

†〉 − 〈B†(pB , 0)B(pB, τ)〉2.
(4.20)

For large times τ this expression is dominated by the first term which can couple to a

56



4.1. Lattice NRQCD

combination of a heavy-heavy (HH) meson and a light-light meson (LL) at rest. The

variance decays like exp[−(MHH +MLL)τ ] and the signal-to-noise ratio is given by

〈B†(pB , 0)B(pB, τ)〉
σ(τ)

∝ exp

[
−
(
EB(pB) − 1

2
MHH − 1

2
MLL

)
τ

]
(4.21)

which approaches zero for large τ . As EB(pB) increases with the frame velocity it

will deteriorate more rapidly for large v. For the computation of B decay form factors

statistical errors in the light meson two-point function and the three point function

have to be taken into account as well.

The signal-to-noise ratio can be improved by constructing more elaborate sources

which increase the overlap with the ground state. Zhaofeng Liu [30] uses random wall

sources to reduce statistical errors in the two- and three-point functions.

Convergence of heavy quark expansion. The heavy quark expansion is only valid if

the momentum scales in the final state are much smaller than the mass of the heavy

quark. In particular the energy and the momentum of the final state meson with mass

mF are:

E′ =
p · p′
mB

=
m2
B +m2

F − q2

2mB
, p′ =

√
E′2 −m2

F . (4.22)

The energy and momentum are plotted as a function of the momentum transfer q2 in

Fig. 4.2. Hadronic form factors calculated at large q2 have to be extrapolated to q2 = 0

by using the phenomenological parametrisations discussed in section 2.3.5.

4.1.3 Derivation of the mNRQCD action

The derivation in section 4.1.1 can be extended to a moving frame of reference. This

was first done by Kerryann Foley in her PhD thesis [90] and here I follow the analysis

in [1]. An additional complication is that in a moving frame the FWT transformation

introduces higher order time derivatives which would make the recursive calculation of

heavy quark Greens functions impossible. These higher order derivatives can, however,

be removed by an additional field transformation.

I work in two frames, one moving with velocity v and coordinates x and the rest

frame of the B meson with coordinates x′. Quantities in the two frames are related by a

Lorentz-transformation, x = Λx′. The fields in full QCD are transformed by a spinorial

boost, Ψ(x) = S(Λ)Ψ′(x′), Ψ(x) = Ψ
′
(x′)S(Λ). In the rest frame the NRQCD action

can be derived as above by a FWT transformation Ψ′(x′) = T ′
FWT e

−imx′0γ0
Ψ̃′(x′). One

arrives at the Lagrangian in (4.3) where all quantities are understood to be in the rest
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Figure 4.2: Energy E′/mB (solid curves) and momentum p′/mB (dashed) of the final state
meson as a function of q2.

frame, i.e. I replace x 7→ x′, E 7→ E′ etc.

I now express quantities in this frame by those in the moving frame where the action

will be discretised. In this frame a new field Ψ̃(x) ≡ Ψ̃′(x′), Ψ̃(x) ≡ Ψ̃
′
(x′) is defined.

This way the action kernel still commutes with γ0. One finds

L = Ψ̃(x)
[
iγ0u ·D +

(u ·D)2 −D2

2m
+

g

2m
Σ · B′ (4.23)

+
g

8m2
γ0
(
Dad
µ uνF

µν + iǫjkℓΣ
jΛµk{Dµ, E

′
ℓ}
) ]

Ψ̃(x).

For ease of notation not all chromodynamic fields have been expressed in the moving

frame. Higher order time derivatives in the Lagrangian are removed by a set of field

transformations. To this end the Lagrangian is written as

L = γΨ̃

[
O0 +

1

γm
O1 +

1

(γm)2
O2

]
Ψ̃ + O(1/m3) (4.24)

with

O0 = iγ0(D0 + v · D), (4.25)

O1 =
1

2

(
(u ·D)2 −D2

)
+
g

2
Σ · B′,

O2 =
g

2
γγ0

(
Dad
µ uνF

µν + iǫjkℓΣ
jΛµk{Dµ, E

′
ℓ}
)
.
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4.1. Lattice NRQCD

Time derivatives in O1 are removed by a field transformation

Ψ̃ = exp

(
1

γm
U

)
Ψ̃(1), Ψ̃ = Ψ̃(1) exp

(
1

γm
U

)
. (4.26)

The Lagrangian in the new fields is

γΨ̃(1)

[
O0 +

1

γm
O(1)1 +

1

(γm)2
O(1)2

]
Ψ̃(1) (4.27)

with new operators

O(1)1 = O1 + {U,O0} (4.28)

O(1)2 = O2 + {U,O1} + UO0U +
1

2
{U2,O0}.

By choosing U = i
4γ

0
[
(γ2 − 1)D0 + (γ2 + 1)v · D

]
all time derivatives are removed

from O(1)1. Time derivatives can be removed from the 1/m2 terms in the Lagrangian

by an additional higher order field transformation

Ψ̃(1) = exp

(
1

(γm)2
V

)
Ψ̃(2), Ψ̃(1) = Ψ̃(2) exp

(
1

(γm)2
V

)
. (4.29)

The explicit expression of V can be found in [1].

Finally the fields are rescaled by a factor 1/
√
γ to normalise the coefficient of the

leading order kinetic term to one,

Ψ̃(2) =
1√
γ

Ψv, Ψ̃(2) =
1√
γ

Ψv. (4.30)

Again it turns out that a further kinetic operator has to be added to include all terms

to O(v4
rel) in heavy-heavy power counting. The missing term is obtained by expanding

the relativistic dispersion relation

Ekin =
√

(γmv + k)2 +m2 − γm (4.31)

= v · k +
1

2γm

(
k2 − (v · k)2

)
+

1

4γ2m2

(
−{v · k,k2} + 2(v · k)3

)

+
1

8γ3m3

(
−k4 + 3{k2, (v · k)2} − 5(v · k)4

)
+ . . . .

Some terms are written as anticommutators as this is how they would arise from a field

transformation. The operator

1

8γ3m3

(
D4 − 3{D2, (v · D)2} + 5(v · D)4

)
(4.32)
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Chapter 4. Heavy quarks on the lattice and perturbative renormalisation

has to be added to the Lagrangian. The continuum Lagrangian in Euclidean space is

L = Ψv

[
γ0D4 − iγ0v · D − D2 − (v · D)2

2γm
− g

2γm
Σ · B′ (4.33)

− i

4γ2m2
γ0
(
{v · D,D2} − 2(v · D)3

)

+
g

8m2
γ0
(
iDad · E + v · (Dad × B)

)

− g

8γm2
γ0Σ · (D × E′ − E′ × D)

+
g

8(1 + γ)m2
γ0{v · D,Σ · (v × E′)}

− (2 − v2)g

16m2
γ0(Dad

4 + iv · Dad)(v · E)

− ig

4γ2m2
γ0{v · D,Σ · B′}

− 1

8γ3m3

(
D4 − 3{D2, (v · D)2} + 5(v · D)4

) ]
Ψv.

The action can be discretised as in the nonmoving case. Again the Hamiltonian is

split into two parts and the kernel is written as in (4.8), with operators

H0 = −iv ·∆± − ∆(2) − ∆
(2)
v

2γm
, (4.34)

δH = − i

4γ2m2

({
∆(2),v ·∆±

}
− 2∆(3)

v

)
(4.35)

− 1

8γ3m3

((
∆(2)

)2
− 3

{
∆(2),∆(2)

v

}
+ 5∆(4)

v

)

− g

2γm
σ · B̃′

− g

8γm2
σ ·
(
∆̃

± × Ẽ′ − Ẽ′ × ∆̃
±
)

− ig

4γ2m2

{
v · ∆̃±

,σ · B̃′

}

+
g

8(γ + 1)m2

{
v · ∆̃±

,σ · (v × Ẽ′)
}

+
g

8m2

(
i(∆± · Ẽ − Ẽ · ∆±) + v · (∆ad × B̃)

)

− (2 − v2)g

16m2

(
∆ad

4 + iv ·∆ad
)(

v · Ẽ
)

+ δHcorr..
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4.2. Radiative corrections

δHcorr. contains spatial and temporal correction terms which can be derived as for the

NRQCD action. For v 6= 0 the first term in H0 is of O(p) instead of O(p2). It is thus

necessary to expand up to order H4
0 in (4.10). Neglecting operators of order 5 and

higher one finally obtains the correction

δHcorr. = H̃0 −H0 (4.36)

− 1

4n

(
− (v · ∆±)2 +

{
iv ·∆±,∆(2)

}
− 2i∆

(3)
v

2γm

+
(∆(2))2 −

{
∆(2),∆

(2)
v

}
+ ∆

(4)
v

4γ2m2

)

− 1

12n2

(
i∆(3)

v +

{
∆(2),∆

(2)
v

}
− 3∆

(4)
v

2γm

+
(v ·∆−)∆(2)(v · ∆+) + (v ·∆+)∆(2)(v · ∆−)

4γm

)

− (2 + n)

64n3
∆(4)
v .

This concludes the derivation of the mNRQCD action on the lattice. It can be used

both for heavy-heavy and heavy-light systems. This has the advantage of providing

additional tests of the formalism. The heavy-quark propagator can be computed

very efficiently in nonperturbative simulations so that the calculation of heavy-heavy

meson spectra and decay constants gives more precise results which can be compared

to experimental measurements (see also Figs. 5.8 and 5.9 for a comparison between

heavy-heavy and heavy-light results).

The mNRQCD action derived above is correct up to O(Λ2
QCD/m

2) in heavy-light-

and to O(v4
rel) in heavy-heavy power counting. Relative errors in the energy splitting

of heavy-heavy systems are of O(v4
rel) which is around 1% in the bottomonium system

where v2
rel ∼ 0.1. In [93] it is argued that the errors might be smaller for splittings

between states with similar wave functions. Spin dependent terms enter at sub-leading

order and spin dependent splittings have larger relative errors.

4.2 Radiative corrections

Beyond tree level the nonrelativistic lattice actions derived in the previous sections

are modified by quantum corrections. The ultraviolet behaviour of the effective heavy

quark action is different from relativistic QCD in the continuum which will introduce

O(αs) errors when the action is used to calculate hadronic quantities. Knowing these

systematic uncertainties is important for various reasons:
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Chapter 4. Heavy quarks on the lattice and perturbative renormalisation

• Hadronic observables, as for example the Υ-spectrum [93], have reached very high

accuracy and it is important to account for radiative corrections of the heavy

quark action. In [93] a detailed error budget is presented, radiative corrections

are of the same order as relativistic corrections. In chapter 5 I calculate these

radiative corrections for the mNRQCD action.

• For the same reason radiative corrections to matrix elements in heavy-light decays,

which are of the same size as 1/m corrections in the heavy quark expansion, need

to be calculated. This is the subject of chapter 7.

• By relating the bare parameters in the lattice theory to those in continuum QCD,

the fundamental parameters of QCD can be extracted from lattice simulations.

This requires the calculation of renormalised quantities, as for example the heavy

quark mass. This is discussed in more detail in section 4.2.2.

In principle the parameters of the heavy quark action can be tuned nonperturba-

tively by adjusting them such that they reproduce experimental results. This, however,

can be very time consuming as it has to be done for each individual lattice and reduces

the predictive power of the theory, in particular if the action contains a large number

of operators as is the case for mNRQCD.

The RI-MOM scheme [94] can be used to calculate the renormalisation constants of

transition operators by fixing the on-shell matrix elements to their value at tree level.

The results can then be converted to the MS scheme with continuum perturbation

theory.

In this work I use a perturbative method on the lattice and compute renormalisation

constants order by order in the strong coupling constant. This is legitimate as it corrects

for the mismatch in the ultraviolet at momenta p & π/a where QCD is perturbative;

for typical lattices a . 0.1 fm so that π/a & 6 GeV and the strong coupling constant

is small, αs(π/a) ≈ 0.2.

4.2.1 Perturbative matching

The perturbative matching procedure works as follows: Calculate the radiative

corrections 1 + αsc
(1),lat
j + . . . to an on-shell quantity on the lattice. For example,

corrections to the kinetic terms in the action can be extracted from the two-point

function of the heavy quark, the coefficient of the chromomagnetic interaction term

σ ·B can be obtained from considering scattering off an external chromomagnetic field.

For an external current, such as the heavy-light tensor current, compute an on-shell

matrix element. The expansion of the same quantity in continuum perturbation theory

is 1 + αsc
(1),con
j + . . . . The coefficient of the corresponding operator in the lattice action
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4.2. Radiative corrections

or the heavy-light current can then be corrected according to

cj 7→ cj

(
1 + αs(c

(1),con
j − c

(1),lat
j ) + . . .

)
. (4.37)

4.2.2 Renormalisation parameters from high-β simulations

In addition to calculating hadronic quantities lattice simulations can be used to extract

the fundamental parameters of QCD. This has been done in [95] for the strong coupling

constant. After tuning the bare lattice parameters an ultraviolet Wilson loop is

measured. The same quantity can be calculated in lattice perturbation theory as a

power series in the strong coupling constant and the series is well behaved if the coupling

in the potential scheme [79] (see also (3.10)) is used instead of the bare lattice coupling.

By inverting this relation αV can be extracted from the simulation and converted to

the MS scheme using conventional continuum perturbation theory. αMS
s (MZ) obtained

in this way agrees very well with the experimental measurement and has an error of

comparable size.

In [74, 96, 97] the charm quark mass is calculated by relating the bare lattice mass

to an on-shell mass which can then be converted to the mass in the MS scheme.

To achieve sufficient accuracy it is necessary to extend the perturbative calculation

beyond one loop level. In the continuum this is straightforward and the bottleneck

is the lattice calculation. As the gauge potential enters via the link Uµ = exp[igaAµ]

there are additional vertices with an arbitrary number of gluons which increases the

number of diagrams that need to be evaluated (see for example Fig. 1 in [96]). For

highly improved actions, such as HISQ, the Feynman rules are very complicated and

evaluation of all these diagrams in diagrammatic perturbation theory is computationally

very expensive. Instead, a different method has been suggested in [98]: by simulating in

the weak coupling limit, which corresponds to high values of the parameter β, and fitting

to a polynomial in the strong coupling constant, the coefficients in the perturbative

expansion can be extracted. This has been done very successfully for a wide range of

quantities, including Wilson loops [99, 100, 101], the expectation value of the mean

link used for tadpole improvement [102], the additive mass renormalisation in HQET

[103, 99, 100] and quark masses for simple lattice actions [98, 104, 105, 106].

Calculation of the two loop renormalisation parameters of the HISQ is under way

[96, 97, 74]. Here a mixed strategy is used: The high-β simulations are carried out

in the quenched limit. At O(αs) fermionic loops do not contribute, so the coefficient

c(1) from the high-β fit will be the same as from diagrammatic perturbation theory

which provides a very useful check of both methods. The two loop coefficients c
(2)
gluonic

from high-β simulations contains gluonic contributions only. However, there are only
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Chapter 4. Heavy quarks on the lattice and perturbative renormalisation

Figure 4.3: Fermionic two-loop contributions to the heavy quark self-energy

four diagrams with fermion loops, see Fig. 4.3, which can be readily evaluated

in diagrammatic perturbation theory. In addition, if the one loop coefficient from

diagrammatic perturbation theory is known for finite lattice size, it can be used as

an input to stabilise the higher order fit of lattice data. This is usually done with a

constrained fitting technique [107] as it is expected that higher order coefficients are of

order one if a well behaved expansion parameter such as αV is used.

In section 5.2 I calculate the one loop renormalisation coefficients of the mNRQCD

action on a finite lattice. The results are used to stabilise the high-β fits from

simulations by Horgan and Lee [108].

Nonperturbative tunnelling

Whereas the techniques in section 4.2.3 assume an infinite lattice with a gluon mass as

an infrared regulator, nonperturbative high-β simulations are carried out on a lattice

with finite extent L3 × T . In a small box the gluon action has an additional Z(N)

symmetry. If each link in a given lattice plane is multiplied by the same element

z = eiπn/N from the centre of the gauge group closed paths of links remain unchanged.

This transformation changes the value of the Polyakov line

Pµ = tr{Uµ(x)Uµ(x+ µ̂) . . . Uµ(x+ Lµ̂)} (4.38)

according to Pµ 7→ zPµ. Although the expectation value Pµ, averaged over a large

number of gauge configurations, is zero, its effective potential will have N minima in the

complex plane which are related by multiplication by eiπ/N . The perturbative expansion

is around one of these minima and on a finite lattice there will be nonperturbative

tunnelling between the vacua. If one wants to extract the perturbative expansion from

high-β simulations it is desirable to suppress these effects. As demonstrated in [100]

this can be achieved by using twisted boundary conditions [109, 110]. An additional

advantage is that this introduces a lower momentum cutoff which acts as a regulator

for infrared divergences in the perturbative calculation.
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4.2. Radiative corrections

Twisted boundary conditions

Twisted boundary conditions are imposed on the gauge fields by requiring that the

shifted link at x+ Lν̂ satisfies

Uµ(x+ Lν̂) = ΩνUµ(x)Ω
−1
ν with ν = 1, 2. (4.39)

As the order of shifts does not matter the two twist matrices have to satisfy

Ω1Ω2 = zΩ2Ω1 with z = e2πi/N ∈ Centre{SU(N)}. (4.40)

As explained in appendix B this changes the spectrum of the chromodynamic field Aµ.

In addition to the lattice momentum, which is a multiple of 2π/L, an additional twisted

component proportional to 2π/(NL) is introduced. The colour degrees of freedom are

replaced by the twist vector.

4.2.3 Lattice perturbation theory

In principle, perturbative calculations on the lattice are not different from those in the

continuum, in fact the lattice can just be seen as yet another regularisation scheme

(which, however, breaks Lorentz invariance which is only restored in the continuum

limit). As in the continuum the calculation proceeds in two steps:

1. Extract the Feynman rules from the action.

2. Integrate the Feynman diagrams over phase space.

In practise, however, the lattice calculation is more complicated. The lattice action is

written in terms of the links variables Uµ instead of the gauge fields Aµ which generates

additional vertices with an arbitrary number of gluons. As Lorentz symmetry is broken

the Feynman rules, even for simple actions, are very complicated. Writing down the

Feynman rules of state-of-the-art highly improved actions as ASQTad or HISQ by hand

becomes an extremely tedious task. Due to the complicated structure of the integrand

it is also usually impossible to solve the resulting integrals analytically.

These problems can be overcome by automating the extraction of Feynman rules

and evaluating the resulting integrals numerically by using a Monte Carlo integrator

such as Vegas [111].

Automated generation of Feynman rules

Originally the idea was laid out by Lüscher and Weisz [109] and in [112, 113] an

implementation of the algorithm in Python is described; the package is commonly
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Chapter 4. Heavy quarks on the lattice and perturbative renormalisation

known as HiPPy. I adapted the code to the actions that are needed for the perturbative

calculations carried out in this work.

Due to gauge invariance all terms in the fermionic action can be written as a linear

combination of fermion fields connected by a Wilson line, ψ(x)L(x, y;U)ψ(y). L(x, y;U)

is a product of link variables which can be expanded in the strong coupling constant g

Uµ(x) = exp
[
agAµ(x+

a

2
µ̂)
]

=
∞∑

r=0

[
agAµ(x+ a

2 µ̂)
]r

r!
(4.41)

where anti-Hermitian generators of SU(N) are used. In momentum space the Wilson

line is then given in terms of gluon fields as

L(x, y;U) =
∑

r

(ag)r

r!

∑

k1,µ1,a1

· · ·
∑

kr,µr ,ar

Ãa1µ1
(k1) . . . Ã

ar
µr

(kr) (4.42)

× Vr(k1, µ1, a1; . . . ; kr, µr, ar).

Inserting this in the action and using the Fourier expansion of the fermion fields with

momenta p and q (and colour indices b and c) it can be shown that the Feynman rule for

the emission of r gluons is −grVF,r where the vertex function VF,r is the symmetrised

product of a colour factor CF,r and a reduced vertex function YF,r,

VF,r(p, b; q, c; k1, µ1, a1; . . . ; kr, µr, ar) = (4.43)

1

r!

∑

σ∈Sr

σ · CF,r(b, c; a1, . . . , cr) σ · YF,r(p, q; k1, µ1; . . . ; kr, µr).

Sr is the group of permutations of r objects. The reduced vertex function can always

be written as an exponential

YF,r(p, q; k1, µ1; . . . ; kr, µr) =

nr∑

n=1

Γnfne
i
2
(p·x+q·y+k1·v

(n)
1 +···+kr·v

(n)
r )

(4.44)

where Γn is the Dirac structure and fn the amplitude associated with a specific term.

This implies that the Feynman rules can be encoded in a list of entities of the form

(µ1, . . . , µr;x, y; v1, . . . , vr; f,Γ) which is generated by the Python code and stored in

a file. As reduced vertex functions are always given as sums of exponentials, derivatives

with respect to particle momenta can be obtained by algebraic manipulations. This

avoids numerical instabilities which might arise when approximating derivatives by

finite differences.

The entity list is generated by the HiPPy code by repeated application of the
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convolution formulae in [114]: for an action of the form ψABψ the Feynman rule for

one gluon emission can be obtained as the Feynman rule for no gluon emission from A

and one gluon emission from B plus the rule for one gluon from A and no gluon emission

from B. For two gluons there are three cases: (1) both gluons come from A, (2) one

gluon comes from A and the other from B or (3) both from B. The generalisation to an

arbitrary number of gluons is obvious. These formulae translate into rules for adding

and multiplying entity lists for simple blocks in the action. The advantage of carrying

out the convolution in the HiPPy code is that the list is automatically compressed: if

two entries differ only in their amplitudes, they can be replaced by a single entry with

the sum of the amplitudes.

Sometimes it might also be advantageous to carry out the convolution in the

numerical integration code, in this case the HiPPy code writes a set of vertex files

for each factor in the action. For example, the kernel of the mNRQCD action is split

into blocks as

1 −ABCBA (4.45)

with A =
(
1 − δH

2

)
, B =

(
1 − H0

2n

)n
and C = U †

4 . Combining these factors in the

Fortran code is advantageous if no further compression is possible. In the case of

mNRQCD, AB and BA sit on different time slices. A and B are stored separately as

the combined vertex file would be very large. In addition, as B mainly contains spin

dependent terms, not much compression between A and B is expected. The colour

structure is implicit and can be dealt with in the integration routine.

Extending the algorithm to gluonic actions is described in [112, 113].

Link smearing. The construction of highly improved actions often involves repeated

smearing of the link variables; in particular the HISQ action is constructed from the

“Fat7”-smeared, reunitarised links UFµUµ. Using the expansion algorithm described

above will be practically impossible due to the large number of terms generated. Instead

the expansion can be performed in two steps [115]. The reunitarised link UFat7R
µ (x) ∈

U(3) is parametrised by fields Bµ(x) in the Lie algebra,

UFat7R
µ (x) = UFµUµ(x) = exp

[
agBµ

(
x+

a

2
µ̂
)]

(4.46)

and Wilson lines can be expanded in terms of these fields as in (4.42) with Ãaµ(k) 7→
B̃a
µ(k). The Feynman rules for the emission of Bµ-fields can then be extracted from

vertex functions V
(B)
F,r as described above. To obtain the Feynman rules for the gluon-
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b(1) b(2)

b(1)
b(1)

V
(B)
F,2V

(B)
F,1V

(B)
F,1

Figure 4.4: Diagrams for one- and two-gluon emission in actions with link smearing.

fields, B̃µ has to be expressed in terms of the Ãµ,

B̃µ(k) = b(1)ρ (k)Ãρ(k) +
∑

k1+k2=k

b(2)ρ1ρ2(k1, k2)Ãρ1(k1)Ãρ2(k2) + . . . (4.47)

which introduces additional form factors b
(1)
ρ , b

(2)
ρ1ρ2 , etc. This is represented graphically

in Fig. 4.4. The rule for one-gluon-emission is given by the vertex function V
(B)
F,1

multiplied by the form factor b(1). Two gluons can either come from a two-gluon vertex

V
(B)
F,2 multiplied by two form factors b(1) or by the emission of one Bµ gluon which

is converted into an Aµ-field by b(2). In addition to the vertex files with the reduced

vertices the Python-code also writes an “algebra” file which contains the form factors

b(j). In the numerical integration code these are then combined according to the rules

outlined above. This procedure can be iterated for multiple levels of smearing.

Hard wired gluon propagator

To speed up the code I wrote a hard-wired version of the gluon propagator. The general

form of the gauge action is [116]

Sg = −β
∑

x,µ>ν

(
cG0 Pµν + cG1 (Rµν +Rνµ)

)
with cG0 + 8cG1 = 0. (4.48)

where the 1 × 1 plaquette and 2 × 1 rectangle are given in (3.9). In particular cG1 = 0

corresponds to the Wilson action, cG1 = − 1
12 is the tree level Symanzik improved action.

The action is expanded in terms of the gluon fields Aµ in momentum space. The

quadratic term can only be inverted after adding a gauge fixing term ξ−1
∑

µ(k̂µAµ(x))
2

with k̂µ = 2 sin(kµ/2). Common choices are ξ = 1 (Feynman gauge) and ξ = 0 (Landau

gauge). It is also possible to work in a noncovariant gauge by fixing the gauge with

ξ−1
∑

j(∆
(±)
j Aj(x))

2 where j runs over spatial values only, Coulomb gauge corresponds

to ξ = 0. To regulate infrared singularities a gluon mass term λ2δµν can be added.

The two-point function M
(0)
ξ (k) is a 4× 4 matrix whose entries are functions of the

gluon momenta. This matrix can be inverted using a computer-algebra package such as

Mathematica but it turns out that it is advantageous to first write it asM
(0)
ξ = M (0)+
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4.3. Numerical evaluation of Feynman diagrams

gξ(k)P where only gξ(k) depends on the gauge fixing parameter. Pµν(k) = k̂µk̂ν/k̂
2 is

a projector on a one-dimensional subspace. As P commutes with M (0) the propagator

is given by

Gξ,µν(k) =

(
1

gξ(k)
− 1

gξ=1(k)

)
Pµν(k) +

f
(N)
µν (k)

f (D)(k)
(4.49)

where the functions f
(N)
µν (k) and f (D)(k) are obtained by inverting M

(0)
ξ=1(k).

A similar decomposition is possible in Coulomb gauge.

For the Symanzik improved gluon action hard wiring leads to a speed up of a factor

5 in the gluon propagator if no derivatives of the propagator need to be calculated.

With derivatives up to second order there is no difference in speed. It should be noted

that by suitable routing of the external momentum through the diagram it is often not

necessary to know derivatives of the gluon propagator.

4.3 Numerical evaluation of Feynman diagrams

A set of Fortran routines is used to evaluate the Feynman integrals. Specific modules

read the vertex files written by the HiPPy code and construct Feynman rules for

fundamental vertices according to (4.44).

For example, the function vert_qqg(k,lorentz,colour) will return the vertex

(T c)baVµ(k2, k1; k3) for emission of a gluon with momentum k3, colour c and Lorentz

index µ by a quark with initial momentum k1 and final momentum k2. The colour of the

quark changes from a to b. k=(/k1, k2, k3/), lorentz=(/µ/) and colour=(/a, b, c/)

are Fortran arrays.

The colour structure is dealt with in the Fortran integration routines and the

same reduced vertex files, generated by the HiPPy code, can be used for both periodic

and twisted boundary conditions. In the first case the Clebsch Gordon coefficient is

given by a combination of colour matrices. On a twisted lattice a small twist vector is

added to the lattice momentum and the colour factors are replaced by traces over the

Γn matrices introduced in appendix B. For example, the gluon r-point function will

have a Clebsch Gordon coefficient of

Cr(k1, . . . , kr) =
1

N
(tr{Γn1 . . .Γnr} + (−1)r tr{Γnr . . .Γn1}) . (4.50)

The function tayl_vert_qqg(k,lorentz,colour) returns a TaylUR object [117]

which, in addition to the value of the vertex, also stores its derivatives with respect

to the particle momenta. To this end each momentum vector object has a field route

that stores the fraction of this momentum which will be differentiated. If, for example,
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one is interested in Vµ(k+p/2, k−p/2;−k) and derivatives with respect to p one would

set k%route=0, p%route=1 and call the vertex routine with (k-p/2,k+p/2,-k). The

Leibniz rule is implemented by overloading multiplication of TaylUR objects.

Finally, the integral over momentum space is carried out by the stochastic

integration algorithm described in the following section.

4.3.1 Stochastic integration

Without loss of generality, consider the following integral over the n-dimensional unit

volume Ω = [0, 1]n

I =

∫

Ω
dnxf(x), (4.51)

where f(x) is an arbitrary, not necessarily analytical or even continuous function.

If the points x1, . . . ,xM are randomly chosen from Ω according to the probability

density p(x) with p(x) > 0,
∫
Ω p(x) = 1 the integral I can be approximated by the

sum

S =
1

M

M∑

i=1

f(xi)

p(xi)

M → ∞−→ I. (4.52)

The variance of S depends on the choice of p(x) and, for nonnegative f , can be

minimised by choosing p similar to f . Of course the choice of p(x) is limited by the

requirement that it has to be possible to generate points distributed according to p(x).

In practise the construction of a suitable p(x) may be difficult. The Vegas-algorithm,

invented by G. P. Lepage [118, 111], recursively constructs a suitable distribution p(x)

for arbitrary f(x) and is applicable under very general circumstances.

In one dimension the algorithm works a follows:

Initialise. Divide [0, 1] into N intervals by choosing a number of points 0 = x0 < x1 <

· · · < xN−1 < xN = 1 and construct a density p(x) as

p(x) =
1

N∆xi
xi−1 ≤ x < xi where ∆xi = xi − xi−1. (4.53)

In the beginning the points will usually be distributed uniformly in [0, 1].
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x4 x5x3
x2x1

f(x)

p(x)

Figure 4.5: Vegas grid refinement in one dimension.

Step 1. Now, choose Neval points x distributed according to this density1 and evaluate

S according to (4.52) using p(x). Also, for each interval, compute

f i =
∑

x∈[xi−1,xi)

|f(x)| ≈ 1

∆xi

∫ xi

xi−1

dx |f(x)|. (4.54)

Step 2. Divide each interval ∆xi into mi + 1 subintervals where

mi = K
f i∆xi∑
j f j∆xj

. (4.55)

K is typically about 1000.

Step 3. To keep the same number of intervals in each iteration subintervals have to

merged so that there are N intervals in the end. Using this new division of the unit

interval construct a new p(x) and continue with Step 1.

In this way the probability distribution p(x) is constructed iteratively. p(x) will be

large where f(x) is large and the sampling points for the evaluation of the integral are

concentrated there.

Steps 1 to 3 are iterated Niter times. In each iteration the integrand is evaluated

Neval times. A combined estimate S of the integral with error σS can be obtained from

the individual evaluations Sk, σk in each iteration

S = σ2
S

Niter∑

k=1

Sk
σ2
k

,
1

σ2
S

=

Niter∑

k=1

1

σ2
k

. (4.56)

Before recording Sk and σk, usually N
(warm)
iter thermalisation steps are performed,

each with N
(warm)
eval evaluations of the integrand to allow p(x) to converge against the

1This can be done by generating points y uniformly distributed in the interval [0, 1] and mapping
them to x by y ∈

ˆ

i−1
N

, i
N

´

→ xi−1 + ∆xi(Ny + 1 − i).
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Figure 4.6: Vegas grid in two dimensions.

optimal density.

In n dimensions the unit interval in each dimension is divided into N subintervals,

i.e. the following product ansatz for p(x) is used

p(x) = p1(x1) . . . pn(xn). (4.57)

By varying the pk(xk) subject to the condition that the probability distribution is

normalised it can be shown that the variance is minimised if

pk(xk) ∼
(∫̂

Ω
dn−1x

f2(x)

p̂(x)

)1/2

(4.58)

is chosen.
∫̂
Ω denotes an integral over all variables except xk and p̂(x) is the product

in (4.57) without the factor pk(xk).

Hence the same algorithm as above can be used in each dimension if f
(k)
i is defined

as follows

(
f

(k)
i

)2
=

∑

xk∈[x
(k)
i−1,x

(k)
i )

∑̂
x

f2(x)

p̂2(x)
(4.59)

≈ 1

∆x
(k)
i

∫ x
(k)
i

x
(k)
i−1

dxk

∫̂

Ω
dn−1x

f2(x)

p̂(x)

where the x
(k)
i divide the unit interval in dimension k , see Fig. 4.6, and

∑̂
x stands

for summation in all dimensions except k. x = (x1, . . . , xk, . . . , xn) denotes the points

generated according to the distribution p(x) in each iteration step.
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By using the product ansatz in (4.57) for the probability density integrands with

peaks or ridges parallel to a coordinate axis can be sampled very efficiently by adjusting

the Vegas grid. This is not possible for integrands with, for example, a diagonal ridge

as in this case the points would still be distributed uniformly on each coordinate axis.

Sometimes this problem can be solved by changing the coordinate system. In my

implementation of the integration code both spherical and cartesian coordinates can

be used for the spatial loop momentum.

Peaked integrands

In perturbative lattice calculations the integrand can be very peaked if the integration

contour passes close to poles in a propagator. In principle Vegas will adapt to this by

adjusting the grid and sampling around this peak. However, often this problem only

arises in the infrared region of the integrand where the integration contour is pinched

by the gluon poles. For small momenta the lattice integrand reduces to the continuum

expression whose IR behaviour can be calculated analytically. It is then possible to

construct a subtracted integrand where the peaks cancel point by point and the errors

in the Vegas integral are reduced:

I =

∫
d4k

(2π)4
f(k)

︸ ︷︷ ︸
IR divergent

(4.60)

=

∫
d4k

(2π)4

(
f(k) − f (sub)(k)

)

︸ ︷︷ ︸
IR finite, Vegas

+

∫
d4k

(2π)4
f (sub)(k)

︸ ︷︷ ︸
IR divergent, analytical

= I + I(sub).

The subtraction integrand satisfies f (sub)(k) → f(k) for k → 0 and I(sub) can be

calculated analytically.

Parallelisation

Due to the complexity of lattice Feynman rules the function evaluations in perturbative

calculations can be computationally very expensive. To accumulate sufficient statistics

for the perturbative integrals I use a parallel version of the Vegas algorithm where the

workload is shared between a large number of processors2. To minimise communications

the processors are divided into farms, see Fig. 4.7. The layout is chosen such that nodes

2By processor I mean a fundamental unit which can run a single process. This is not to be
confused with an individual node in a cluster or a CPU which can have multiple cores, each of which
might accommodate a process.
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Figure 4.7: Processor layout in parallel Vegas. Each farm has a master processor (grey)
and the final result is accumulated by the global master (black).

within a farm can communicate with each other much faster than with nodes in other

farms. This can for example be the case if they are located on the same physical

chip. The integral is evaluated independently by each farm and the results are finally

combined and collected on the master node.

The calculations for this work were carried out on the “Eddie” cluster of the

Edinburgh Compute and Data Facility [119]. In its original setup this high performance

cluster consists of 128 worker nodes, each with two dual core CPUs. The nodes are

standard IBM x3550 servers with 3.0GHz Intel Xeon processors and 8MB of RAM. In

the beginning of 2008 the system was upgraded with 118 additional worker nodes with

two quad core CPUs each, giving 1456 cores in total. The nodes are connected by a

gigabit Ethernet network. 60 dual core nodes are in addition equipped with a faster

Infiniband interconnect with a latency of 2.11ns and bandwith of 956MB/s which is

about eight times the bandwith of the ethernet connection. In its current setup the

total computing power of the cluster is around 10TFlops [119].

4.3.2 Mode summation

On a finite lattice with twisted boundary conditions the integral over the loop

momentum is replaced by a discrete momentum sum,

∫
d4k

(2π)4
f(k, k4) 7→ 1

L3T

L−1∑

j1,...,j3=0

T−1∑

j4=0

f

(
(j1, j2, j3)

2π

L
, j4

2π

T

)
. (4.61)

Instead of summing over colour indices an additional sum over the twisted part of

the momentum vector has to be performed. This is most conveniently done within

each individual diagram routine for a given untwisted momentum. I adapted the mode

summation (4.61) for parallel machines by splitting the sum between processors.

For very large lattices performing the mode summation directly can be computa-

tionally very expensive. The sum has an exact representation as an integral over a
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piecewise defined function,

1

L

L−1∑

j=1

f

(
2πj

L

)
=

∫ π

−π

dk

2π
f(k) (4.62)

with

f(k) = f

(
2πj

L

)
for

2πj

L
≤ k <

2π(j + 1)

L
, 0 ≤ j ≤ L− 1. (4.63)

This integral can then be evaluated in Vegas.
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Chapter 5

Heavy quark renormalisation

parameters

As argued in section 4.2 renormalisation of the operators in the heavy quark action is

important to predict the properties of heavy mesons to high accuracy. In this chapter I

show how the renormalisation constants can be obtained in lattice perturbation theory.

I give results for the leading kinetic terms in the mNRQCD action.

Horgan and Lee [108] calculate renormalisation parameters at higher loop order

by simulations in the weak coupling regime of the lattice theory. To suppress

nonperturbative tunnelling between equivalent Z(3) vacua they use twisted boundary

conditions [109, 110]. These have the additional advantage of introducing a lower

momentum cutoff and thus regulate potential infrared singularities in a gauge invariant

way. Adapting the perturbative calculation for twisted boundary conditions is

straightforward. I compare my results to those from high-β simulations and find good

agreement. In addition, my one loop results are used as an input for the fitting of

high-β results as a polynomial in the strong coupling constants to stabilise the fit and

extract higher order terms.

5.1 Leading order kinetic terms in mNRQCD

Beyond tree level the coefficients of the operators in H0, the kinetic part of the

Hamiltonian (see (4.34)), deviate from unity. They can be expanded in the strong

coupling constant cj = 1 + αsc
(1)
j + . . . where the cj are adjusted such that the heavy

quark dispersion relation agrees with the continuum expression. This requires the

calculation of renormalisation parameters Zj = 1 +αsδZj + . . . both in the continuum

and on the lattice.

5.1.1 Renormalisation parameters

I calculate the renormalisation parameters of the heavy quark action on the lattice to

O(αs) in mean field improved lattice perturbation theory.
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p pp + k p p

k

k

Figure 5.1: One loop corrections to the heavy quark self-energy.

In particular I discuss the following quantities:

• heavy quark wavefunction renormalisation Zψ,

• zero point energy shift E0,

• renormalisation of the frame velocity Zv and

• mass renormalisation Zm.

In the continuum the frame velocity is a symmetry parameter and does not get

renormalised. On the lattice there exists a separate theory for each choice of the

frame velocity, which can now be interpreted as a coupling constant in the action that

is renormalised by quantum fluctuations. The zero point energy, which vanishes in the

continuum due to Lorentz invariance, is nonzero on the lattice and indeed diverges like

1/a for dimensional reasons. Of particular interest is the renormalisation Zp of the

external momentum P = γMv as this quantity is not renormalised in the continuum

due to reparametrisation invariance [66, 67, 120].

On the lattice all renormalisation parameters can be extracted from the corrections

to the heavy quark self-energy Σ. At O(αs) this quantity is given by the one loop

diagrams in Fig. 5.1 and counterterms that come from mean field improving the action

by replacing Uµ 7→ Uµ/u0. The derivation in the following sections was laid out in

[90, 121] and has been taken from [1].

Wavefunction renormalisation. The wavefunction renormalisation, Zψ, can be com-

puted as follows: At tree-level the heavy quark propagator is

G0(z) =
z

z − z0
, (5.1)
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where z = eip4 and

z = z0 ≡
(

1 − H0(p)

2n

)2n(
1 − δH(p)

2

)2

(5.2)

is the on-shell (tree-level) value. At one loop the propagator is

G−1(z) = G−1
0 (z) − αsΣ(z) = Z−1

ψ

z − z1
z

where αsΣ(z) is the self-energy (to order αs), containing both rainbow and tadpole

diagrams. Let the new “one-loop” on-shell value be z1, which is the solution of

G−1(z1) = G−1
0 (z1) − αsΣ(z1) = 0 . (5.3)

Expanding Σ(z) around the new on-shell value and using z1 − z0 = O(αs) the

wavefunction renormalisation is, at one-loop,

Zψ ≃ 1 + αs

[
Σ + z

∂Σ

∂z

]
z=z0

= 1 + αs

[
Σ − i

∂Σ

∂p4

]
on shell

. (5.4)

Other renormalisation parameters. To derive expressions for the other renormalisa-

tion parameters I use the following argument from [122].

At tree level one has in momentum space (up to O(p2)):

H0(p) = v · p +
p2 − (v · p)2

2γm
+ . . . , (5.5)

δH(p) = − 1

4n
(v · p)2 + . . . .

By combining this with (5.2) and expanding in p I find that the pole in the tree level

propagator (5.1) is given by

ω = ω0(p) = v · p +
p2 − (v · p)2

2γm
(5.6)

where ω = −ip4 is the energy in Minkowski space. At one loop the inverse propagator

is

G(p, ω)−1 = 1 − eω−ω0(p) − αsΣ(p, ω0(p))
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so that

ω(p) = ω0(p) − αsΣ(p, ω0(p)) (5.7)

≡ vR · p +
p2 − (vR · p)2

2γRmR
− αsδω(p)

with vR = Zvv, γR = (1 − v2
R)−1/2, mR = Zmm and αsδω(p) = E0 + . . . . Here and

in the following I assume that the boost velocity points in one of the lattice directions,

which guarantees that only the magnitude of v is renormalised. The self energy can

now be expanded in small momenta

Σ(p, ω) = Σ0(ω) + Σv(ω) v · p + Σ1(ω)
p2

2γm
+ . . .

and the renormalisation constants can be expressed in terms of the coefficients Σ
(ℓ)
j in

the expansion

Σj(ω) =
∞∑

ℓ=0

Σ
(ℓ)
j ωℓ.

I find

E0 = αsΣ
(0)
0 , (5.8)

Zv = 1 − αs(Σ
(1)
0 + Σ(0)

v ),

Zm = 1 + αs((Σ
(1)
0 + Σ

(0)
1 ) + γ2v2(Σ(0)

v + Σ
(1)
0 )),

and have for the renormalisation of the external momentum pext,R = γRmRvR ≡ Zppext

with

Zp = 1 + αs(Σ
(0)
1 − Σ(0)

v ). (5.9)

In actual calculations I consider the real parts of parameters Σ
(ℓ)
j . It is convenient to
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define

Ω0 = Re Σ
(0)
0 = Σ(0),

Ω1 = −Re Σ
(1)
0 = Im

∂Σ

∂p4

∣∣∣∣∣
p=0

,

Ω2 = Re Σ
(0)
1 = γmRe

∂2Σ

∂p2
z

∣∣∣∣∣
p=0

,

Ωv = Re Σ(0)
v =

1

v
Re

∂Σ

∂px

∣∣∣∣∣
p=0

, (5.10)

taking the frame velocity v to point in the x-direction. The renormalisation parameters

are then expressed as

Zψ = 1 + αs(Ω0 + Ω1),

E0 = αsΩ0,

Zv = 1 − αs(Ωv − Ω1),

Zm = 1 + αs(Ω2 − Ω1) + αs(Ωv − Ω1)v
2γ2 ,

Zp = 1 − αs(Ωv − Ω2). (5.11)

Dispersion relation and energy shift. The renormalised dispersion relation in

mNRQCD is given by

ω(k) = vR · k +
k2 − (vR · k)2

2γRmR
− δω(k) + . . . (5.12)

with

δω(k) = E0 +A
(vR · k)2

2γRmR
. (5.13)

This has to be compared to the corresponding expression in QCD

ω(QCD)(k) =
√

(γRmRvR + k)2 +m2
R (5.14)

= γRmR + vR · k +
k2 − (vR · k)2

2γRmR
+ . . .

from which one obtains a shift in the zero point energy of a heavy quark of

Cv = ω(QCD)(k = 0) − ω(k = 0) (5.15)

= γRmR +E0.
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I write Cv = γm(1 + αsδCv + . . . ) and the one loop correction is given by

δCv = Ω2 − Ω1 +
Ω0

γm
. (5.16)

The shift Cv and the renormalisation of the external momentum can be obtained

nonperturbatively by computing the energy Ev(k) of a heavy-heavy system which can

be written as

Ev(k) + 2Cv =
√

(2Zpγmv + k)2 +M2
kin + . . . . (5.17)

Perturbative and nonperturbative results are compared in section 5.1.7.

5.1.2 One loop integrals

The one loop integrals in Fig. 5.1 are evaluated using automated perturbation theory

as described in section 4.2.3. The two integrands for the self-energy are

f
(lat)
rainbow = 4π wh(1)a

µ (k + p,−p, k)D(0)
h (k + p)wh(1)a

ν (p,−k − p, k)D(0)
g,µν(k),

f
(lat)
tadpole = 4π wh(2)

µν (p,−p, k,−k)D(0)
g,µν(k). (5.18)

Here wh
(1)a
µ (k1, k2; q1) and wh

(2)ab
µν (k1, k2; q1, q2) denote the one- and two-gluon vertices.

D
(0)
h (k) is the heavy quark propagator and D

(0)
g,µν(k) the gluon propagator.

Derivatives with respect to external momenta, which are needed for the calculation

of the Ωj, are implemented in the TaylUR code by overloading the Leibniz rule.

Contour shift

On an infinite Euclidean lattice the energy integral is over the unit circle |z| = 1 with

z = eip4 . As can be seen from Fig. 5.2 the heavy quark pole can move outside the unit

circle and the integration contour has to be deformed to ensure that no poles are crossed

when Wick rotating back to Minkowski space. For certain momentum configurations

it will be necessary to integrate over the circle |z| = R with

1 < max{z−, |zh|} < R < z+. (5.19)

To satisfy this condition I shift the integration contour to z → Rz with R =
√

|zhz+|
for z− < |zh|. As a precaution, the code stops in case a loop momentum with |zh| ≥ z+

is encountered and Wick rotation to Minkowski space is not possible. However, in all

integrals I calculated this has never been the case. Keeping the contour as far away
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z  =1||

z− zh

z+

z  =R| |

4z=exp[ik ]

Figure 5.2: Poles in the complex z plane and integration contour (dashed circle). If |zh| >
z− I shift the contour halfway between the heavy quark- and larger gluon pole according to
z 7→ Rz with R =

√
|zhz+|.

from the poles as possible avoids large peaks in the integrand which potentially spoil

the convergence of the Vegas integration.

The heavy quark action contains no higher order time derivatives and it is easy to

obtain an explicit expression for the position of the pole in the propagator

D
(0)
h (v, k) =

1

1 − z−1
(
1 − H0(v,k)

2n

)2n (
1 − δH(v,k)

2

)2 .

The denominator vanishes for

z = zh ≡
(

1 − H0(v,k)

2n

)2n(
1 − δH(v,k)

2

)2

. (5.20)

For unimproved Wilson gluons the propagator in Feynman gauge is

D(0)
g,µν(k) = δµν


4

3∑

ρ=0

sin2 kρ
2

+ λ2




−1

= δµν

(
2 − z − z−1 + k̂

2
+ λ2

)−1

(5.21)

with k̂
2 ≡ 4

∑3
j=1 sin2 kj

2 .

From this the two gluon poles can be obtained

z± =
1

2

(
2 + k̂

2
+ λ2 ±

√
(k̂

2
+ λ2)(k̂

2
+ λ2 + 4)

)
∈ R. (5.22)
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ωh
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Re{k  }

∆
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Figure 5.3: Wick rotation to Euclidean space for HQET in the continuum. If the heavy
quark pole ωh lies to the left of the imaginary axis the contour has to be rotated around
−∆ = v · k − δ.

In particular these poles satisfy z+z− = 1 and it is not necessary to shift the contour

for the tadpole diagram.

For improved gluon actions there are additional poles z
(imp)
± but, as argued in

appendix C.1 they always satisfy |z(imp)
− | < z− and z+ < |z(imp)

+ | so that even in this

case it is sufficient to satisfy the condition (5.19).

The additional contour shift which is necessary in Euclidean space has been

discussed in the literature [123, 124]. As can be seen from Fig. 5.3 it is possible to

rotate the deformed contour back to Minkowski space in a way that preserves causality.

For negative v · k the heavy quark pole lies to the left of the imaginary axis and it is

necessary to rotate around −∆ = v · k − δ instead of the origin of the k0 plane.

Infrared divergences

The constants Ωj are potentially infrared divergent. In all gauge invariant renormalisa-

tion parameters such as Zv, Zm and E0 these divergences cancel. However, it turns out

that Ω1, Ω2 and Ωv itself and the wavefunction renormalisation in Feynman gauge are

logarithmically divergent. To deal with these divergences note that any lattice theory

has the same infrared behaviour as the corresponding continuum theory. It is therefore

easier to analyse the corresponding continuum integrals. After performing the integral

over the temporal momentum as a contour integral it can be shown that the tadpole

diagram and all its derivatives are infrared finite. The same is true for the rainbow

diagram, however, its derivatives behave for low momentum as ∼
∫
dk
k and are thus
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logarithmically divergent. To regulate this divergence I introduce a finite gluon mass

λ. The advantage of this approach is that the same method can be used to regulate the

continuum QCD integral. It is crucial to use the same regulator to ensure that infrared

divergences cancel in the matching coefficients. The infrared divergent part of Ωj 6=0 is

then

Ωj 6=0 = − 2

3π
log a2λ2. (5.23)

For wavefunction renormalisation in Feynman gauge I find the same IR divergence in

continuum QCD (see (D.11)) and the matching coefficients are well defined in the limit

λ→ 0.

The calculations in section 5.2 are carried out in a finite volume with twisted

boundary conditions. This introduces a lower momentum cutoff and it is not necessary

to use a finite gluon mass to regulate infrared divergences.

IR subtraction function for δZψ

The infrared divergence will manifest itself in large peaks in the integrand which

can potentially spoil the convergence of the Vegas integration. To deal with the

remaining infrared divergence in the wavefunction renormalisation I construct a suitable

subtraction function. Note that in principle f (sub) is arbitrary as long as it: agrees with

the lattice integrand for small loop momenta k; is ultraviolet-finite in d = 4 dimensions;

and can be evaluated analytically. The resulting integral (which is not restricted to the

Brillouin zone) is evaluated in appendix J.1 and gives

δZ
(sub)
ψ = − 2

3π
log λ2/m2 + O(λ/m). (5.24)

This corresponds exactly to the logarithmic divergence found in (5.23). The subtracted

integral δZψ is evaluated numerically,

δZψ =

∫
d4k

(2π)4

(
θBZ(k)f (lat)(k) − f (sub)(k)

)
+ δZ

(sub)
ψ (5.25)

≡ δZψ − 2

3π
log a2λ2

where θBZ(k) is equal to 1 inside the Brillouin zone and vanishes for any |kµ| > π/a.

Direct calculation for different gluon masses

The alternative way of isolating the IR divergent behaviour is to perform the integration

for different values of λ and then obtain the desired log λ2 behaviour by numerically
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Figure 5.4: Wavefunction renormalisation (in Feynman gauge) for different values of the
infrared regulator λ. I show a linear fit C0 + CIR log λ2 with χ2/dof = 0.17. The slope is
CIR = −0.21220(14) ≈ − 2

3π and in agreement with (5.23). In the inset I show the results
normalised to the linear fit function. I use the simple heavy quark action defined in (5.26);
the frame velocity is v = 0.3.

fitting a line through the points. In Fig. 5.4 I show the wavefunction renormalisation for

λ2 varying from 10−8 to 10−4. Using a logarithmic scale on the horizontal axis I find

a very clear linear behaviour, which demonstrates the desired dependence on log λ2.

After fitting to C0 + CIR log λ2, I obtain C0 = −0.1291(18) and CIR = −0.21220(14).

The coefficient of the logarithmic term is in excellent agreement with the analytical

result CIR = −2/(3π) = −0.21221. The constant term has to be compared to the

infrared finite part of the wavefunction renormalisation in Tab. 5.6.

This method can only be applied if Vegas is able to cope with divergences of

the integrand in the infrared region. For simple integrals, such as the wavefunction

renormalisation in mNRQCD, this seems to be the case. As discussed in chapter 6, more

severe infrared peaks prohibit the direct evaluation of other renormalisation parameters.

Even for formally IR finite integrals subtraction functions need to be introduced. In

addition, the evaluation of the integrand for different gluon masses and the subsequent

fit requires additional computational resources and complicates the analysis. In this

work I will not pursue this approach and always use a subtraction function where

necessary.
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5.1. Leading order kinetic terms in mNRQCD

5.1.3 Mean field corrections

As discussed in section 3.3.1 mean field corrections can be included by dividing each

link in the action by its expectation value u0. I work in Landau gauge and expand

the link in a power series in the strong coupling constant, u0 = 1 − αsu
(2)
0 + . . . . For

the Wilson gluon action the first order coefficient has been evaluated to u
(2)
0 = 0.9735

[102], for the Symanzik improved action the authors of [125] find u
(2)
0 = 0.750. In

perturbation theory mean field corrections are included as counterterms to the two-

point function. I use the computer algebra package Form [126] to replace each link

in the kinetic part of the heavy quark action according to Uµ 7→ Uµ/u0, U
†
µ 7→ U †

µ/u0

taking care to cancel adjacent links in the opposite direction, UµU
†
µ 7→ 1. Ideally this

cancellation should be carried out after expanding the entire action kernel K = 1 −(
1 − δH

2

) (
1 − H0

2n

)n
U †

4

(
1 − H0

2n

)n (
1 − δH

2

)
, I refer to this as “complete” cancellation.

In the lattice simulation code for evaluating nonperturbative matrix elements this turns

out to be prohibitively difficult. As it is important to use the same convention in

both calculations, I choose to cancel adjacent links only within H0 and δH separately,

which I call “partial” cancellation. This does not imply that in this case mean field

improvement is incomplete in any sense as it has to be understood as a prescription

for improving the convergence of the perturbative series. Numerically the difference in

the size of perturbative mean field improvement corrections between “complete” and

“partial” cancellation is never more than around 10%, see for example Tab. 5.5.

After expanding u0 = 1−αsu
(2)
0 + . . . and collecting the O(αs) terms in the action

kernel, links are replaced according to Uµ 7→ eikµ , U †
µ 7→ e−ikµ and the constants

Ω
(tadpole)
j can be obtained by taking appropriate derivatives as in (5.10).

5.1.4 Results

Heavy quark actions

In addition to the full O(1/m2, v4
rel) mNRQCD action derived in section 4.1.3 I adapted

the HiPPy code to generate Feynman rules for various other actions of varying

complexity. In particular I use the following simple action with no interaction term

δH. The Hamiltonian is defined by

H0 = −iv ·∆± − ∆(2) − ∆
(2)
v

2γm
, δH = 0, (5.26)

where all derivatives are unimproved. Note that this action differs from the one in

[90, 121] by a more local discretisation of the (v · D)2 term.

I calculate renormalisation constants both for the simple action in (5.26) and for
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Chapter 5. Heavy quark renormalisation parameters

the full O(1/m2, v4
rel) mNRQCD action. In the first case I work with the unimproved

Wilson action whereas in the second case the gluon action is Symanzik improved. In

both calculations I use m = 2.8, n = 2; the heavy quark mass corresponds to the one

on coarse MILC lattices [93].

In appendix F I summarise additional results for an improved action which contains

all O(1/m) terms.

Mean field corrections

I find the following analytical expressions for mean field corrections: for the simple

action in (5.26) and “partial” cancellation they are

Ω
(tadpole)
0 = −Ω

(tadpole)
1 = u

(2)
0

(
1 +

3 − v2

γm

)
,

Ω
(tadpole)
2 = Ω(tadpole)

v = −u(2)
0

(
2 +

2n− 1

2n

3 − v2

γm

)
. (5.27)

For the full O(1/m2, v4
rel) mNRQCD action I obtain

Ω
(tadpole)
0 = −Ω

(tadpole)
1

= u
(2)
0

[
1 + 7

3 − v2

6γm
− 3 − 6v2 + 5v4

2γ3m3
+

1

4n

(
−v2 +

−3 + 2v2 − v4

γ2m2

)

+
1

6n2

−5v2 + 3v4

γm
− n+ 2

16n3
v4

]
,

Ω
(tadpole)
2 = −u(2)

0

[
5

3
+ 7

3 − v2

6γm
+

3 − 3v2

γ2m2
− 3 − 6v2 + 5v4

2γ3m3

+
1

4n

(
−v2 +

−3 + 2v2 − v4

γ2m2

)
+

1

6n2

(
2v2 +

−5v2 + 3v4

γm

)

−n+ 2

16n3
v4

]
,

Ω(tadpole)
v = Ω

(tadpole)
2 − u

(2)
0

[
2v2

γ2m2
− v2

6n2

]
.

For v = 0 these expressions reduce to the ones obtained in [92]. In both cases the

difference between Ω
(tadpole)
2 and Ω

(tadpole)
v , which defines the renormalisation of the

external momentum, is small. In appendix E I present the corresponding expressions

for “complete” cancellation. As an additional check of my derivation I verified that I

88



5.1. Leading order kinetic terms in mNRQCD

λ2 E0 δZψ δZm

10−12 −0.9436(22) −0.13285(48) −0.4981(15)

10−9 −0.9431(22) −0.13284(48) −0.4980(15)

10−6 −0.9438(22) −0.13297(48) −0.5000(15)

10−3 −0.9250(20) −0.12636(44) −0.4917(14)

λ2 δZv δZp δCv

10−12 −0.4401(16) −0.0187(14) −0.1331(35)

10−9 −0.4388(16) −0.0186(13) −0.1333(36)

10−6 −0.4387(15) −0.0182(13) −0.1351(36)

10−3 −0.4327(14) −0.0184(13) −0.1338(33)

Table 5.1: Heavy quark renormalisation parameters for different gluon masses λ2. An
infrared subtraction function has been used to calculate δZψ. The heavy quark action is
the simple action defined in (5.26), the frame velocity v = 0.3. Mean field corrections for
“partial” cancellation are included.

can reproduce the results in [121].

Tab. 5.4 shows numerical values for the simple action defined in (5.26) with m = 2.8

and n = 2 both for “partial” and “complete” cancellation, the corresponding numbers

for the full O(1/m2, v4
rel) action are collected in Tab. 5.5. I conclude that the difference

between the two cancellation schemes is small.

Gluon mass dependence

After introducing a suitable subtraction function for wavefunction renormalisation in

Feynman gauge all renormalisation parameters should be independent of the gluon

mass if λ2 is sufficiently small. I demonstrate this in Tab. 5.1 and Fig. 5.5 where I

show results for λ2 between 10−12 and 10−3. Within errors they are independent of

the gluon mass for λ2 < 10−6 and I conclude that an extrapolation to λ2 = 0 is not

necessary, in the following I will work with λ2 = 10−6.

Vegas integration

To test both the automated generation of Feynman rules and the numerical integration

routine I also compare to results reported in [90, 121]1 with m = 2.0, n = 2 and find

perfect agreement within errors.

1I would like to thank Christine Davies for providing me with updated values for the renormalisation
parameter Ωv in [90].
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Figure 5.5: Heavy quark renormalisation parameters for different gluon masses λ2,
normalised to the values at λ2 = 10−12. An infrared subtraction function has been used
to calculate δZψ. The points are offset horizontally for better legibility. The heavy quark
action is the simple action defined in (5.26), the frame velocity v = 0.3. Mean field
corrections for “partial” cancellation are included.
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5.1. Leading order kinetic terms in mNRQCD

In Tabs. 5.2 and 5.3 I list values for the Ωj without mean field corrections. I only

show the infrared finite part of Ωj without the infrared divergence −2/(3π) log λ2. All

results are obtained in Feynman gauge with a subtraction function for the wavefunction

renormalisation.

The renormalisation parameters (including mean field corrections for “partial”

cancellation of UµU
†
µ) are given in Tabs. 5.6 and 5.7 and plotted in Figs. 5.6 and 5.7.

For the simple action I perform 5 iterations of 200, 000 function evaluations each both

for thermalisation and measurement. The renormalisation parameters of the full action

are evaluated with 10 iterations of 200, 000 function evaluations each. The calculations

were carried out on the Eddie cluster [119]; on 64 processors this took about 4 hours

wallclock time.

5.1.5 Observations

As can be seen by comparing Tabs. 5.2 and 5.4 the inclusion of mean field corrections

reduces the size of the renormalisation parameters significantly: for not too large

frame velocities they are all of order one, as expected for a well behaved perturbative

expansion. The same can be observed for the full action, see Tabs. 5.3 and 5.5. It is

interesting to compare Fig. 5.6 to the corresponding results in Fig. F.1 in appendix F.

I checked explicitly that the chromomagnetic interaction term has neglegible influence

on the renormalisation parameters. Improving the action reduces the size of some

renormalisation constants, in particular it halves the renormalisation of the heavy quark

mass. The dependence on the frame velocity is smaller for all radiative corrections

except E0. I explain this by the fact that improvement reduces the size of Lorentz

symmetry breaking for all parameters which are also present in the continuum. For

dimensional reasons E0 diverges as 1/a in the continuum limit and is not reduced

by improvement of the action. The additional terms in the full O(1/m2, v4
rel) action

introduce further breaking of Lorentz invariance and increase the v dependence again.

As discussed in more detail in the following section, the renormalisation of the external

momentum is small for the simplest action but increases with the frame velocity for

actions of increasing complexity.

91



Chapter 5. Heavy quark renormalisation parameters

v Ω0 Ω1 Ω2 Ωv

0.00 −2.9851(24) −2.8619(24) −3.9967(29) —

0.01 −2.9879(24) −2.8645(24) −3.9987(29) −4.003(23)

0.10 −2.9721(24) −2.8483(25) −3.9889(29) −3.9741(39)

0.20 −2.9299(23) −2.8033(24) −3.9567(29) −3.9474(31)

0.30 −2.8564(23) −2.7252(24) −3.9022(29) −3.8826(29)

0.40 −2.7490(22) −2.6092(23) −3.8218(29) −3.7898(28)

0.50 −2.6085(22) −2.4540(22) −3.7104(30) −3.6702(27)

0.60 −2.4260(20) −2.2462(21) −3.5651(33) −3.5087(27)

0.70 −2.2057(18) −1.9859(20) −3.3833(39) −3.3157(25)

0.75 −2.0832(18) −1.8335(20) −3.2742(45) −3.2110(26)

0.80 −1.9371(17) −1.6482(19) −3.1333(57) −3.0851(26)

0.85 −1.7790(16) −1.4343(20) −3.0029(80) −2.9447(26)

0.90 −1.5992(15) −1.1742(22) −2.820(13) −2.7790(29)

0.95 −1.3887(13) −0.8223(29) −2.480(29) −2.5639(36)

Table 5.2: Infrared finite part of Ωj for the simple mNRQCD action defined in (5.26). Mean
field corrections are not included.

v Ω0 Ω1 Ω2 Ωv

0.00 −2.36685(40) −2.03045(62) −3.0487(13) —

0.01 −2.36672(39) −2.03042(62) −3.0470(13) −3.039(18)

0.10 −2.35534(40) −2.02033(62) −3.0276(13) −3.0192(24)

0.20 −2.32049(39) −1.98900(62) −2.9668(13) −2.9695(16)

0.30 −2.26205(38) −1.93675(62) −2.8646(14) −2.8857(14)

0.40 −2.17678(37) −1.86081(61) −2.7199(14) −2.7636(13)

0.50 −2.06318(35) −1.75964(61) −2.5330(15) −2.6023(12)

0.60 −1.91598(33) −1.62928(62) −2.3020(17) −2.4059(12)

0.70 −1.72666(31) −1.46150(63) −2.0220(20) −2.1623(11)

0.75 −1.61272(30) −1.36128(65) −1.8614(24) −2.0247(11)

0.80 −1.48224(28) −1.24847(69) −1.6828(29) −1.8794(11)

0.85 −1.33083(27) −1.12528(82) −1.4925(41) −1.7275(12)

0.90 −1.15125(25) −1.0118(11) −1.2930(68) −1.5972(15)

0.95 −0.92738(24) −1.0698(21) −1.236(19) −1.6559(25)

Table 5.3: Infrared finite part of Ωj for the full O(1/m2, v4
rel) mNRQCD action. Mean field

corrections are not included.
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5.1. Leading order kinetic terms in mNRQCD

v Ω
(tadpole)
0 /u

(2)
0 Ω

(tadpole)
2 /u

(2)
0

0.00 2.07143 −2.80357

0.01 2.07134 −2.80350

0.10 2.06250 −2.79688

0.20 2.03578 −2.77684

0.30 1.99142 −2.74356

0.40 1.92961 −2.69721

0.50 1.85056 −2.63792

0.60 1.75429 −2.56571

0.70 1.64018 −2.48013

0.75 1.57581 −2.43185

0.80 1.50571 −2.37929

0.85 1.42848 −2.32136

0.90 1.34093 −2.25570

0.95 1.23391 −2.17543

v Ω̂
(tadpole)
0 /u

(2)
0 Ω̂

(tadpole)
2 /u

(2)
0

0.00 2.0236 −2.77966

0.01 2.0235 −2.77959

0.10 2.01422 −2.77273

0.20 1.98607 −2.75198

0.30 1.93913 −2.71742

0.40 1.87337 −2.66909

0.50 1.78867 −2.60697

0.60 1.6847 −2.53092

0.70 1.56055 −2.44032

0.75 1.49021 −2.38905

0.80 1.41349 −2.33317

0.85 1.32898 −2.27161

0.90 1.23351 −2.20199

0.95 1.11797 −2.11746

Table 5.4: Mean field improvement correction for the simple mNRQCD action defined in

(5.26) and both “partial” (Ω
(tadpole)
j ) and “complete” (Ω̂

(tadpole)
j ) cancellation of UµU

†
µ. I

do not show Ω
(tadpole)
1 = −Ω

(tadpole)
0 , Ω̂

(tadpole)
1 = −Ω̂

(tadpole)
0 , Ω

(tadpole)
v = Ω

(tadpole)
2 and

Ω̂
(tadpole)
v = Ω̂

(tadpole)
2 explicitly.
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v Ω
(tadpole)
0 /u

(2)
0 Ω

(tadpole)
2 /u

(2)
0 Ω

(tadpole)
v /u

(2)
0

0.00 2.13384 −3.18316 —

0.01 2.13375 −3.18300 −3.18302

0.10 2.12459 −3.16713 −3.16923

0.20 2.09650 −3.11915 −3.12728

0.30 2.04863 −3.03967 −3.05682

0.40 1.97963 −2.92963 −2.95725

0.50 1.88797 −2.79071 −2.82813

0.60 1.77221 −2.62561 −2.66939

0.70 1.63091 −2.43793 −2.48127

0.75 1.54999 −2.33677 −2.37612

0.80 1.46143 −2.23103 −2.26313

0.85 1.36379 −2.12013 −2.14118

0.90 1.25365 −2.00163 −2.00714

0.95 1.12074 −1.86625 −1.85110

v Ω̂
(tadpole)
0 /u

(2)
0 Ω̂

(tadpole)
2 /u

(2)
0 Ω̂

(tadpole)
v /u

(2)
0

0.00 2.10610 −3.14336 —

0.01 2.10600 −3.14319 −3.14321

0.10 2.09592 −3.12639 −3.12898

0.20 2.06507 −3.07557 −3.08573

0.30 2.01267 −2.99112 −3.01321

0.40 1.93722 −2.87358 −2.91083

0.50 1.83666 −2.72404 −2.77787

0.60 1.70836 −2.54438 −2.61351

0.70 1.54900 −2.33743 −2.41672

0.75 1.45625 −2.22476 −2.30557

0.80 1.35355 −2.10633 −2.18513

0.85 1.23910 −1.98182 −2.05402

0.90 1.10911 −1.84923 −1.90880

0.95 0.95262 −1.70037 −1.73901

Table 5.5: Mean field improvement correction for the full O(1/m2, v4
rel) mNRQCD action

and both “partial” (Ω
(tadpole)
j ) and “complete” (Ω̂

(tadpole)
j ) cancellation of UµU

†
µ. I do not

show Ω
(tadpole)
1 = −Ω

(tadpole)
0 and Ω̂

(tadpole)
1 = −Ω̂

(tadpole)
0 explicitly.
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v E0 δZψ δZm

0.00 −0.9686(24) −0.12323(49) −0.4221(15)

0.01 −0.9715(24) −0.12348(50) −0.4215(15)

0.10 −0.9642(24) −0.12379(50) −0.4299(16)

0.20 −0.9481(23) −0.12657(50) −0.4496(16)

0.30 −0.9178(23) −0.13124(52) −0.4869(16)

0.40 −0.8705(22) −0.13984(54) −0.5479(17)

0.50 −0.8070(22) −0.15447(58) −0.6398(20)

0.60 −0.7182(20) −0.17982(63) −0.7948(23)

0.70 −0.6090(18) −0.21983(74) −1.0719(30)

0.75 −0.5492(18) −0.24972(83) −1.3070(35)

0.80 −0.4713(17) −0.28893(95) −1.6772(45)

0.85 −0.3884(16) −0.3446(12) −2.3686(63)

0.90 −0.2938(15) −0.4250(16) −3.800(10)

0.95 −0.1875(13) −0.5664(26) −8.377(21)

v δZv δZp δCv

0.00 — — −0.0761(17)

0.01 −0.425(23) −0.029(23) −0.0745(18)

0.10 −0.4109(30) −0.0000(28) −0.0831(18)

0.20 −0.4227(21) −0.0082(18) −0.1002(18)

0.30 −0.4252(18) −0.0177(15) −0.1321(18)

0.40 −0.4334(16) −0.0288(13) −0.1804(19)

0.50 −0.4497(16) −0.0433(13) −0.2403(21)

0.60 −0.4726(16) −0.0553(12) −0.3237(25)

0.70 −0.5122(16) −0.0660(11) −0.4245(34)

0.75 −0.5442(16) −0.0671(11) −0.4776(41)

0.80 −0.5864(17) −0.0599(11) −0.5337(54)

0.85 −0.6411(18) −0.0476(11) −0.6262(78)

0.90 −0.7142(19) −0.0210(11) −0.709(13)

0.95 −0.8250(21) −0.0353(11) −0.720(29)

Table 5.6: Infrared finite renormalisation parameters for the simple mNRQCD action defined
in (5.26), including mean field corrections for “partial” cancellation.
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v E0 δZψ δZm

0.00 −0.76647(40) −0.33639(48) −0.2313(12)

0.01 −0.76641(39) −0.33630(47) −0.2297(12)

0.10 −0.76190(40) −0.33501(47) −0.2275(12)

0.20 −0.74812(39) −0.33149(48) −0.2194(12)

0.30 −0.72558(38) −0.32530(48) −0.2037(12)

0.40 −0.69206(37) −0.31597(49) −0.1789(13)

0.50 −0.64720(35) −0.30354(50) −0.1421(13)

0.60 −0.58682(33) −0.28670(52) −0.0910(15)

0.70 −0.50349(31) −0.26516(55) −0.0158(17)

0.75 −0.45023(30) −0.25144(58) −0.0337(19)

0.80 −0.38616(28) −0.23377(63) −0.0901(24)

0.85 −0.30798(27) −0.20554(77) −0.1502(32)

0.90 −0.21101(25) −0.1395(11) −0.1933(51)

0.95 −0.08682(24) −0.1425(21) −0.038(14)

v δZv δZp δCv

0.00 — — −0.0425(12)

0.01 −0.221(18) −0.002(18) −0.0441(12)

0.10 −0.2154(23) −0.0061(20) −0.0454(12)

0.20 −0.2074(15) −0.0025(12) −0.0510(12)

0.30 −0.1928(12) −0.0087(10) −0.0626(12)

0.40 −0.1696(11) −0.02131(89) −0.0799(13)

0.50 −0.1376(10) −0.04175(86) −0.1039(14)

0.60 −0.1037(10) −0.06974(87) −0.1350(16)

0.70 −0.06305(91) −0.10943(92) −0.1731(19)

0.75 −0.04380(89) −0.1394(10) −0.1964(23)

0.80 −0.02967(90) −0.1746(11) −0.2256(29)

0.85 −0.01915(93) −0.2235(11) −0.2580(40)

0.90 −0.0203(10) −0.2966(13) −0.3127(67)

0.95 −0.0383(13) −0.4374(16) −0.402(18)

Table 5.7: Infrared finite renormalisation parameters for the full O(1/m2, v4
rel) mNRQCD

action, including mean field corrections.
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Figure 5.6: Infrared finite renormalisation parameters for the simple mNRQCD action
defined in (5.26), including mean field corrections.
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Figure 5.7: Infrared finite renormalisation parameters for the full O(1/m2, v4
rel) mNRQCD

action, including mean field corrections.
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Chapter 5. Heavy quark renormalisation parameters

5.1.6 Reparametrisation invariance

In the continuum

There is some ambiguity in how the heavy quark momentum p = mu+ k is split into

mu and a residual momentum k. Choosing

u 7→ u+ ǫ/m, k 7→ k − ǫ (5.28)

instead should give the same physical results if 2u · ǫ + ǫ2 = 0 is chosen to preserve

u2 = 1. In the continuum the HQET Lagrangian

LHQET = ψ

(
iu ·D − D2 − (v ·D)2

2m

)
ψ (5.29)

is invariant under (5.28) accompanied by a field transformation ψ 7→ eiǫ·x
(
1 + /ǫ

2m

)
ψ

[66, 67, 120]. As this is a symmetry of the renormalised Lagrangian the relative

coefficients of the leading order term and the O(1/m) kinetic operator in (5.29) are

fixed to all orders in perturbation theory.

In [1] the discussion is extended to actions written in noncovariant form. The action

in section 4.1.3 is not covariant so consider a transformation of the spatial part of the

four momentum p = γmv+k instead. For simplicity I consider the simple Hamiltonian

H0 = −iv · D − D2

2γm
. (5.30)

It is easy to see that the transformation

v 7→ v + ǫ, ψ 7→ e−iγmv·ǫψ (5.31)

leaves the theory invariant if one requires 2v · ǫ + ǫ2 = 0 to preserve the length of

the frame velocity v. This implies that the external momentum p = γmv is not

renormalised as the relative coefficient between the two terms in (5.30) is fixed to all

orders in perturbation theory.

On the lattice

The discretised version of (5.30) reads

H
(lat)
0 = −iv · ∆(±) − ∆(2)

2γm
. (5.32)
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5.1. Leading order kinetic terms in mNRQCD

Under the transformation (5.31) this transforms to

H
(lat)
0 7→ H

(lat)
0 +

1

2
γma2

∑

j

vjǫj∆
(+)
j ∆

(−)
j ψ + O(a2ǫ2). (5.33)

If the frame velocity points in a lattice direction, vjǫj can be replaced by −1
2ǫ2 and it

can be seen that the breaking of reparametrisation invariance is of O(a2ǫ2). Using an

improved derivative operator instead one finds that

H
(lat)
0 7→ H

(lat)
0 +

1

6
γma4

∑

j

vjǫj∆
(+)
j ∆

(−)
j ∆

(+)
j ∆

(−)
j ψ + O(a4ǫ2). (5.34)

and with the same argument as above the breaking of reparametrisation invariance

is of O(a4ǫ2). I calculated the renormalisation of the external momentum both with

unimproved and improved derivatives for am = 2.8, n = 2 and v = 0.75 and find

δZp = −0.067(1) (unimproved) and δZp = −0.039(1) (improved).

Additional terms in the action will break reparametrisation invariance which will

also be affected by the fact that the kinetic operator always appears in the form(
1 − aH0

2n

)n
.

I study the influence of (v ·D)2/(2γm) by simulating with the same parameters as

above (m = 2.8, n = 2 and v = 0.75) now including ∆
(2)
v /(2γm) in the action (with

unimproved derivatives) and find δZp = 0.066. The effect of this term is about twice the

size and of different sign as the breaking of the symmetry due to lattice artifacts. I also

expect the breaking to be proportional to v2/(2γm), i.e. it should rise quadratically

for small v, reach a maximum at v =
√

2/3 ≈ 0.8 and then drop to zero for v → ∞.

Quantitatively this is exactly the behaviour observed in Fig. 5.6. For the full action in

5.7 the renormalisation of the external momentum is small for small frame velocities

but becomes sizable for v → 1. I explain this increased breaking of reparametrisation

invariance by the presence of additional operators in the full action.

5.1.7 Comparison to nonperturbative calculations

The renormalisation Zp of the external momentum and the energy shift Cv can be

obtained from nonperturbative calculations by measuring the two-point function of

heavy-heavy and heavy-light mesons for different residual momenta. For each p the

energy Ev(p) is obtained by fitting a sum of exponentials to the correlator. Zp, Cv and

the meson mass Mkin are then extracted as described in [1, 90].
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Chapter 5. Heavy quark renormalisation parameters

Value of the strong coupling constant

To compare to these results a value for the strong coupling constant has to be chosen.

I use the strong coupling constant defined in the potential scheme [79]. A typical

momentum scale q∗ in a perturbative integral can be defined by [79, 127]

αV (q∗loop)Iloop = αV (q∗loop)

∫
d4k

(2π)4
I(k) =

∫
d4k

(2π)4
I(k)αV (k). (5.35)

Using the one-loop running of αV (q2) = αV (q2)
1+αV β0 log q2/q2

≈ αV − β0α
2
V log q2/q2 this

reduces to

log(q∗loop)2 =

∫
d4k

(2π)4 I(k) log k2

∫
d4k

(2π)4
I(k)

. (5.36)

This value has to be combined with the one from mean field improvement. I calculate

the typical momentum scale of the one loop correction to 1
3 tr [Uµ] ∝ tr [A2

µ] and find

aq∗tadpole = 2.64319(17) for the Symanzik improved gluon action. For the Wilson gluon

action I obtain aq∗tadpole = 2.77368(16) which agrees with [128].

The two values are combined according to [129],

log(q∗) =
Iloop log(q∗loop) + Itadpole log(q∗tadpole)

Iloop + Itadpole
. (5.37)

In Tab. 5.8 I give aq∗ for the infrared finite renormalisation parameters. For v < 0.4 it

was not possible to obtain a clean signal for the external momentum renormalisation,

here I choose q∗ = 2/a. For the values where q∗(Zp) can not be calculated reliably the

external momentum renormalisation is extremely small. The same problem arises for

the mass renormalisation at some velocities where δZm is small.

After including mean field corrections the scales for E0, Zm and Zv are relatively

small, corresponding to a large value of αs. Qualitatively the same result was found

in [114]. The integrals have substantial contributions from the infrared region of

the one loop integral and their perturbative series is not very well behaved. On

the other hand, the scale for the physical parameters Zp and Cv which can also be

measured in nonperturbative simulations, is typically larger than 2/a, corresponding

to αV (q∗) . 0.3.

The running of the strong coupling constant has been calculated in [95] by measuring

short distance observables on the lattice. I use their value of α0 = αV (7.5 GeV) and
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5.1. Leading order kinetic terms in mNRQCD

v aq∗(E0) aq∗(δZm) aq∗(δZv) aq∗(δZp) aq∗(δCv)

0.00 −0.794(11) −0.597(17) — — −3.48(36)

0.01 −0.754(11) −0.634(19) −0.41(19) — −2.74(26)

0.10 −0.751(11) −0.598(18) −0.292(19) — −2.73(27)

0.20 −0.751(11) −0.564(17) −0.408(17) — −2.91(25)

0.30 −0.727(10) −0.546(18) −0.461(17) — −2.68(18)

0.40 −0.731(11) −0.481(19) −0.518(20) −1.82(41) −2.32(13)

0.50 −0.708(10) −0.327(16) −0.473(21) −2.39(27) −2.60(11)

0.60 −0.739(12) −0.133(12) −0.392(21) −2.26(15) −2.452(82)

0.70 −0.670(11) — −0.441(35) −2.31(10) −2.297(64)

0.75 −0.654(11) — −0.340(37) −2.317(82) −2.159(54)

0.80 −0.597(11) — −0.314(49) −2.237(64) −2.356(55)

0.85 −0.503(11) −5.90(64) −0.324(77) −2.132(52) −2.113(44)

0.90 −0.3201(88) −3.05(37) −0.50(11) −2.180(43) −2.166(51)

0.95 −0.1097(67) — −1.64(21) −2.069(28) −2.180(83)

Table 5.8: Values of aq∗ for various IR finite renormalisation parameters

integrate the evolution equation

q2
dαV (q)

dq2
= −β0α

2
V − β1α

3
V − β2α

4
V + O(α5

V ) (5.38)

numerically to obtain αV at a specific scale. On the coarse MILC configurations the

inverse lattice spacing is a−1 = 1.6 GeV. [93].

Numerical results

In Figs. 5.8 and 5.9 I show both perturbative and nonperturbative results for the

renormalisation of the external momentum and the energy shift between QCD and

mNRQCD. The nonperturbative results have been calculated by Stefan Meinel [91]. I

estimate the part of the two loop correction, which comes from the running of αV in the

loop integral, by varying the scale q∗ in the range q∗/2, . . . , 2q∗. This is shown as a grey

error band on the perturbative numbers in the plot. Note that this is only part of the

two loop uncertainty. The discrepancy between the nonperturbative and perturbative

results suggests that there are additional higher order corrections, to quantify these

a two loop calculation is necessary. This calculation is currently carried out by a

combination of high-β simulations and diagrammatic perturbation theory, see section

5.2.
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Figure 5.8: Energy shift Cv/(γm) from perturbation theory and nonperturbative simulations
for the full O(1/m2, v4

rel) mNRQCD action with m = 2.8, n = 2.
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rel) mNRQCD action with m = 2.8,
n = 2.
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5.2. Finite lattice with twisted boundary conditions

5.2 Finite lattice with twisted boundary conditions

I calculate the heavy quark self-energy on a finite lattice with twisted boundary

conditions. As in the high-β calculations in [108] I use two different heavy quark

actions: The simple action in (5.26) with m = 2.0 and n = 2, and the full O(1/m2, v4
rel)

action with the same stability parameter and m = 2.8. In both cases I use a Symanzik

improved gluon action. At the time of writing results from high-β fits were available

for the zero point energy shift of the simple mNRQCD action. Below I show results

both for unconstrained and constrained polynomial fits of the αs dependence of this

renormalisation parameter. In the latter case the one loop coefficient is fixed by

my calculation in diagrammatic perturbation theory. I also computed the O(αs)

radiative corrections for other renormalisation parameters on a finite lattice with

twisted boundary conditions, results for both the simple and the full mNRQCD action

are collected in appendix G.

To check my calculations for internal consistency I first verify that I can reproduce

the numbers in the infinite volume limit by extrapolation in the inverse lattice size.

Infinite volume extrapolation

On an infinite lattice the integration contour has to be deformed in the k0 plane such

that no poles are crossed when Wick rotating back to Minkowski space. On a finite

lattice the integral is replaced by a sum over discrete momenta and it is not obvious

how the residue theorem can be applied. However, the difference between the mode

summation and the integral only introduces finite volume errors which vanish in the

infinite volume limit and I conclude that the same contour shift can be applied in both

cases.

I compare results on a finite lattice of size T × L3 (with T = 3L) to the infinite

volume, T = L = ∞ result in Fig. 5.10 where I show the zero point energy for the full

action and a range of frame velocities. I extrapolate the finite volume result assuming

a quadratic dependence on the inverse linear lattice size 1/L,

E0 = E0(L = ∞) +
1

L
E

(1)
0 +

1

L2
E

(2)
0 . (5.39)

The results are shown in Tab. 5.9 and Fig. 5.10. To estimate the parametrisation errors

on E0(L = ∞) and E
(1)
0 I perform an additional linear fit leaving out the L = 4 point.

The difference between the linear and quadratic fit parameters is the error quoted in

the third and fourth column of Tab. 5.9. I also show the infinite volume result. The

results from the infinite volume calculation and the extrapolation to L = ∞ agree

within errors, as expected.
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Chapter 5. Heavy quark renormalisation parameters

v E0(L = ∞) E0(L = ∞) [fit] E
(1)
0 [fit] E

(2)
0 [fit]

0.0 −0.76647(40) −0.7684(39) 0.743(61) 0.2277(13)

0.2 −0.74812(39) −0.7504(39) 0.720(61) 0.227615(71)

0.4 −0.69206(37) −0.6944(40) 0.644(62) 0.23034(68)

0.6 −0.58682(33) −0.5887(42) 0.502(65) 0.24154(29)

0.8 −0.38616(28) −0.3869(47) 0.234(74) 0.2732(10)

Table 5.9: Result from infinite volume perturbation theory (second column) and quadratic
fit to the finite volume results. The parametrisation error in the third and fourth column
is estimated by comparing the fit parameters from a linear fit without the L = 4 point to
the central values of the quadratic fit. Mean field corrections are included.
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Figure 5.10: Infinite volume extrapolation of the zero point energy E0 obtained on a L3×T
lattice (empty symbols). I also show a quadratic fit in the inverse linear lattice size 1/L and
the infinite volume result (filled symbols). I use the full O(1/m2, v4

rel) action with m = 2.8
and n = 2. All mean field corrections are included in the plot.
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5.2. Finite lattice with twisted boundary conditions

5.2.1 High-β simulations

Nonperturbative calculations are carried out by Ron Horgan and Andrew Lee [108].

They generate quenched gauge configurations for different values of the inverse coupling

constant β. For sufficiently large β the results can be expanded in the strong coupling

constant αs as nonperturbative effects are suppressed by twisted boundary conditions.

For each value of β the heavy quark propagator is measured for a range of lattice

momenta and fitted to a suitable function after fixing to Landau gauge. For the simple

mNRQCD action described in (5.26) the functional dependence is assumed to be

G(τ ;p2,v · p, (v · p)2) = (1 + a1 + a6p
2 + a7v · p)e(a2−a3)τ (5.40)

×
[
1 − a4

v · p
2n

− p2 − a5(v · p)2

2na3

]2nτ

.

By expanding in small momenta it can be shown that

Cv = a2, mRγR = a3, Zv = a4, E0 = a2 − a3. (5.41)

To reach sufficiently small momenta generalised boundary conditions are applied for

the external quark fields [130],

ψ(x+ Lĵ) = e2πiθjψ(x), ψ(x+ Lĵ) = e−2πiθjψ(x) for j = 1, 2, 3. (5.42)

The real numbers θj are arbitrary parameters which can be used to tune the lattice

momenta. Combining this with the twist described in section 4.2.2 the spatial lattice

momenta are

pj =
2π

L

(
mj + θj +

nj
3

)
(5.43)

with mj ∈ 0, . . . , L− 1, θj ∈ R and nj ∈ {0, 1, 2}. The restrictions on the twist vector

nj are described in section 4.2.2.

Finally, the results for each renormalisation parameter are fitted to a polynomial in

the strong coupling constant.

5.2.2 Numerical results

Tab. 5.10 shows the coefficients of a polynomial fit in αs to the zero point energy shift

from high-β simulations [108]. In Tab. 5.11 I present results from a constrained fit

where the one loop results are taken from diagrammatic lattice perturbation theory.

In both cases the simple mNRQCD action in (5.26) is used in combination with a

Symanzik improved gluon action.
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lattice v = 0.0 v = 0.2 v = 0.4 v = 0.8

43 × 12 1 loop −2.5186(27) −2.4703(27) −2.3231(28) −1.7161(32)

2 loops −0.10(14) −0.13(15) −0.20(15) −0.22(15)

3 loops −8.9 ± 1.2 −9.4 ± 1.2 −10.6 ± 1.1 −8.8 ± 1.1

63 × 18 1 loop −2.5901(18) −2.5387(17) −2.3827(14) −1.7706(69)

2 loops −0.25(11) −0.35(11) −0.653(92) −0.83(36)

3 loops −11.0 ± 1.0 −10.2 ± 1.0 −7.33±0.91 −8.9 ± 3.0

83 × 24 1 loop −2.6321(69) −2.5797(67) −2.4146(64) −1.812(16)

2 loops −0.24(36) −0.33(36) −0.93(34) −0.01(67)

3 loops −15.1 ± 3.3 −14.8 ± 3.3 −8.9 ± 3.3 −20.0 ± 5.2

Table 5.10: Zero point energy shift E0 for the simple action defined in (5.26) [108]. I show
results from an unconstrained fit in the strong coupling constant. Each entry contains (from
top to bottom): one loop coefficient, two loop coefficient and the three loop coefficient.
Mean field corrections are not included.

In Fig. 5.11 I compare the O(αs) results from diagrammatic perturbation theory

and the linear coefficient in an unconstrained fit to high-β simulations.

Comparison of fit models

The two different fits have been analysed by an F -test [131, 108]. This statistical

tool is used to compare two “nested”2 models with different numbers of parameters;

it makes a quantitative statement about whether extending a simple model with more

free parameters significantly improves the fit to the same data. In our case, the simple

model corresponds to the constrained fit, it can be extended by keeping the one loop

coefficient as an independent parameter. For each lattice size and frame velocity the

value of the statistic F = Ffit is calculated from the fit results. This quantity is

distributed according to a known probability density which depends on the degrees of

freedom. The null hypothesis is that the fit is not significantly improved by adding

more free parameters to the model, i.e. that the unconstrained fit does not give better

results than the constrained fit. For each calculated value of Ffit one can then look

up the probability that F is larger than Ffit. The null hypothesis is rejected if this

probability is smaller than a given threshold. In Tab. 5.12 I show this probablity as

calculated from the fits in Tabs. 5.10 and 5.11.

2Model 1 is nested in model 2 if any regression curve in model 1 can be reproduced by some choice
of parameters in model 2.
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lattice v = 0.0 v = 0.2 v = 0.4 v = 0.8

43 × 12 1 loop −2.5175 −2.4682 −2.3184 −1.6785

2 loops −0.051(71) −0.038(76) −0.003(86) −1, 61(26)

3 loops −8.58(80) −8.73(82) −9.17(83) −0.2 ± 2.3

63 × 18 1 loop −2.5906 −2.5393 −2.3832 −1.7126

2 loops −0.228(52) −0.312(52) −0.625(46) −3.41(42)

3 loops −11.19(67) −10.44(68) −7.58(60) −9.7 ± 4.3

83 × 24 1 loop −2.6254 −2.5732 −2.4140 −1.7284

2 loops −0.55(17) −0.63(17) −0.96(15) −3.06(59)

3 loops −12.7 ± 2.1 −12.4 ± 2.3 −8.6 ± 2.1 −0.3 ± 5.9

Table 5.11: Zero point energy shift E0 for the simple action defined in (5.26). I show
results from an constrained fit in the strong coupling constant [108]. Each entry contains
(from top to bottom): one loop coefficient from diagrammatic perturbation theory, two
loop coefficient and the three loop coefficient. Mean field corrections are not included.
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Figure 5.11: O(αs) correction to the zero point energy shift: I plot the difference between
one-loop diagrammatic perturbation theory and the linear coefficient of a fit to high-β
simulations. Mean field corrections are not included.
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lattice v = 0.0 v = 0.2 v = 0.4 v = 0.8

43 × 12 72.14% 49.98% 14.67% 0.00%

63 × 18 81.12% 75.15% 75.18% 0.00%

83 × 24 39.29% 39.08% 93.17% 0.02%

Table 5.12: Probability of obtaining an F value equal or larger than that calculated from
the two fits in Tabs. 5.10 and 5.11.

5.2.3 Observations

For velocities up to v = 0.4 the results for the one loop coefficients in Tabs. 5.10

and 5.11 agree within statistical errors. Using an F -test with 5% rejection level, the

unconstrained fit to the lattice data only gives significantly better results for the largest

considered frame velocity of v = 0.8. This agrees with the previous statement about

the equality of one loop coefficients. The two loop coefficients in the unconstrained

fit are small on all lattices except the largest, their values change, in some cases

significantly, especially at large frame velocities, if the one loop coefficient is constrained

by diagrammatic perturbation theory. Their errors are reduced if the value of the one

loop coefficient is fixed. In all cases the three loop coefficients are very large with errors

of the order of 10% and larger.
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Chapter 6

Kinetic terms in the NRQCD action

In the following I discuss the perturbative renormalisation of kinetic terms in the

nonmoving NRQCD action up to O(p4); this is the first order where terms breaking

rotational symmetry can enter the dispersion relation. This work was motivated

by numerical simulations carried out Iain Kendall in Glasgow who found that the

energy splitting between heavy-heavy mesons with identical p2 but different
∑3

j=1 p
4
j

is relatively large [132]. One of the possible explanations are large renormalisations

of terms in the NRQCD action that break rotational invariance. Indeed it was found

empirically in the same nonperturbative study that a matching coefficient of c5 = 2.6

removes the energy splitting between mesons with different
∑

j p
4
j . In this chapter I

compare this to my results from perturbative calculations.

6.1 Heavy quark action

Full NRQCD action. The heavy quark action I use in this section is the full

O(1/m2, v4
rel) NRQCD action defined in (4.8), (4.9) and (4.12); the kinetic terms in

the action are

H0 = −∆(2)

2m
, δH = −c1

(
∆(2)

)2

8m3
+ c5

∆(4)

24m
− c6

1

4n

(
∆(2)

)2

4m2
. (6.1)

As both c1 and c6 multiply the operator
(
∆(2)

)2
one of these coefficients is redundant.

I define

c̃1 ≡
(
c1 +

m

2n
c6

)
/
(
1 +

m

2n

)
(6.2)

so that the tree level values c1 = c6 = 1 correspond to c̃1 = 1.

In some simulations I also include an additional correction −∆(6)/(180m) in δH

which removes O(a6) discretisation errors at tree level.
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Morningstar’s action. To verify my results I compare my matching coefficients for

the action setup in [122]. There the kernel is

K = u0U4(x, τ) −
(

1 − H0

2n

)n
(1 − δH)

(
1 − H0

2n

)n
. (6.3)

Note that the time derivative is realised by a forward finite difference. For the simple

setup used there the interaction term is given by

δH = −c1
(
∆(2)

)2

8m3

(
1 +

m

2n

)
+ c2

a2∆(4)

24m
+ c3

ig

8m2

(
∆(±) · E − E · ∆(±)

)

− c4
g

8m2
σ ·
(
∆(±) × E − E × ∆(±)

)
− c5

g

2m
σ · B. (6.4)

In this expression the non rotationally-invariant fourth order derivative is mean field

improved as

∆(4) =

3∑

k=1

(
u−1

0 (Uk + U †
k) − 2

)2
. (6.5)

Compared to (6.1) the coefficients are ordered slightly differently. In particular my c̃1

corresponds to c1 and my c5 is equivalent to c2 used by Morningstar.

The unimproved Wilson gluon action is used with this NRQCD action.

6.2 Derivation of renormalisation parameters

This section is an extension of the derivation in section 5.1.1 to higher order kinetic

terms in NRQCD. I adapted the calculation in [122] to my action setup.

The (naive) derivative operators ∆(2) and ∆(4) can be written in momentum space

as

∆(2) 7→ −p2 +
a2p4

12
+ O((ap)6), ∆(4) 7→ p4 + O((ap)6) (6.6)

with p2n =
∑3

j=1 p
2n
j . Note that for n > 1 this term breaks rotational invariance. In

the following I will always work up to (and including) terms of O((ap)4).

The position of the renormalised pole ω(p) is found by identifying the zeros of the

inverse propagator

D−1
h (ω,p) = 1 − eω(p)Γn(p)2nΛn(p) − αsΣ(ω0(p),p). (6.7)
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6.2. Derivation of renormalisation parameters

One finds

ω(p) = ω0(p) − αsΣ(ω0(p),p) (6.8)

with

ω0(p) =
p2

2m
− (p2)2

8m3
+ αs

{
−c̃(1)1

(
1

2n
+

1

m

)
(p2)2

8m2
+ c

(1)
5

p4

24m

}
.

(6.9)

The self-energy is written as in [122]

Σ(ω,p) = Σ0(ω) + Σ1(ω)
p2

2m
+ Σ2(ω)

(p2)2

8m2
+ Σ3(ω)p4. (6.10)

The functions Σj(ω) can be extracted by taking suitable combinations of partial

derivatives,

Σ0(ω) = Σ(p = 0), Σ1(ω) = m
∂2Σ

∂p2
z

∣∣∣
p=0

, (6.11)

Σ2(ω) = m2 ∂4Σ

∂p2
y∂p

2
z

∣∣∣
p=0

, Σ3(ω) =
1

24

(
∂4Σ

∂p4
z

− 3
∂4Σ

∂p2
y∂p

2
z

)

p=0

.

They can be further expanded in a Taylor-series in ω as Σm(ω) =
∑∞

ℓ=0 Σ
(ℓ)
m ωℓ.

From this one obtains

ω(p) =
p2

2mR
− (p2)2

8m3
R

− αsδω(p).

The renormalised mass is mR = Zmm with

Zm = 1 + αs

(
Σ

(1)
0 + Σ

(0)
1

)
(6.12)

and the correction term

δω(p) = W0 +

(
W1 + c̃

(1)
1

(
1

2n
+

1

m

))
(p2)2

8m2
+

(
W2 −

c
(1)
5

24m

)
p4

W0 = Σ
(0)
0 (6.13)

W1 =
2Σ(1)

m
+ 2Σ

(2)
0 +

3Σ
(0)
1

m
+ 2Σ

(1)
1 + Σ

(0)
2

W2 = Σ
(0)
3
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Chapter 6. Kinetic terms in the NRQCD action

In particular the O(αs) corrections to c̃1 and c5, which cancel the radiative corrections,

can be obtained,

c̃
(1)
1 = −

(
1

2n
+

1

m

)−1

W1, c
(1)
5 = 24mW2. (6.14)

The corresponding expressions for Morningstar’s action described in (6.3) and (6.4) can

be found in [122].

6.2.1 Mean field improvement

I calculate the mean field corrections to c̃
(1)
1 and c

(1)
5 for “partial” cancellation of UµU

†
µ

as described in detail in section 5.1.3 and find

c̃
(1)(tadpole)
1 /u

(2)
0 = −1

8

(
1 +

m

2n

)−1 [12
n2

− 1

n
+

1

2m

(
3

n2
− 4

)

+
6

m2

(
1

n
− 12

)
+

6

m3

]
, (6.15)

c
(1)(tadpole)
5 /u

(2)
0 = −4

3
+

1

4m
+

3

m2
− 3

8nm2
− 3

4m3
.

I also checked that I can reproduce the analytical expressions in [122].

If I include the ∆(6) operator in the action the latter expression changes to

c
(1)(tadpole)
5 /u

(2)
0 = −3

5
+

7

20m
+

3

m2
− 3

8nm2
− 3

4m3
. (6.16)

Numerical results for several masses and stability parameters are collected in Tab. 6.1.

6.3 Implementation of derivatives

To extract W1 and W2 using (6.13) I implement the higher order derivatives using two

different approaches:

Analytical mixed derivatives. The TaylUR code can handle higher order mixed

derivatives of the form (∂/∂xj)
n(∂/∂xk)

m for (n+m) ≤ Max_Taylor_order. However,

derivatives up to n + m = 4 need to be calculated and this slows down the code

significantly. To improve the performance, unnecessary mixed derivatives can be

“switched off” and the Leibniz rule is not overloaded for these.

Numerical derivatives. Alternatively I implement higher order mixed derivatives

using finite differences. For this I compute the second order derivative with respect
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6.3. Implementation of derivatives

m n ∆(6)? c̃
(1)(tadpole)
1 /u

(2)
0 c

(1)(tadpole)
5 /u

(2)
0

2.3 2 — 0.8537 −0.7546

2.8 2 — 0.4859 −0.9195

1.95 4 — 1.8300 −0.5420

2.8 4 — 0.8241 −0.9075

3.4 4 — 0.5269 −1.0275

1.95 4 X — −0.2426

2.8 4 X — −0.1385

3.4 4 X — −0.2647

Table 6.1: Mean field corrections to c̃
(1)
1 and c

(1)
5 for the full NRQCD action for different

masses and stability parameters. The last three rows show results with ∆(6) included in the
action.

to pz analytically by using a TaylUR object. Additional higher order derivatives are

realised by finite differences, for example

(∂/∂pz)
2(∂/∂py)

2Σ(p) =
∂2
zΣ(p+ δp · ŷ) + ∂2

zΣ(p− δp · ŷ) − 2∂2
zΣ(p)

(δp)2

(6.17)

where ∂z = ∂/∂pz etc.

I analysed the speed of the code depending on which realisation of mixed higher

order derivatives is used. Masking unwanted derivatives leads to a speedup of roughly

one order of magnitude but the code is still about a factor of ten slower than for

numerical derivatives, so these should be used if possible, i.e. if the function to be

integrated is sufficiently smooth.

In appendix H I demonstrate that large peaks in the infrared region of the

rainbow integral lead to numerical instabilities when using finite differences. It is

thus mandatory to use analytical mixed derivatives in the calculation of this particular

diagram.

On the other hand the integrand of the numerically more expensive tadpole diagram

is much smoother in the infrared. This is because this diagram does not contain a heavy

quark propagator whose power can be raised by derivatives with respect to the external

momentum. Here it is sufficient to use finite differences to represent higher order mixed

derivatives.
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Chapter 6. Kinetic terms in the NRQCD action

6.4 Numerical results

6.4.1 VEGAS integrals

The integrals I evaluate are

W1 =

∫
d4k

(2π)4
D1f

(lat) W2 =

∫
d4k

(2π)4
D2f

(lat) (6.18)

where f (lat) = f
(lat)
rainbow + f

(lat)
tadpole is the lattice integrand as given explicitly in (5.18).

As can be seen from (6.11) and (6.13) the derivative operators D1 and D2 are

defined as

D1f = − 2

m

∂

∂p0
Im{f} − 2

∂2

∂p2
0

Re{f} + 3
∂2

∂p2
z

Re{f}

− 2m
∂3

∂p2
z∂p0

Im{f} +m2 ∂4

∂p2
y∂p

2
z

Re{f}, (6.19)

D2f =
1

24

(
∂4

∂p4
z

Re{f} − 3
∂4

∂p2
y∂p

2
z

Re{f}
)

where all derivatives are evaluated at p = 0.

Although bothW1 and W2 are infrared finite quantities the integrand of the rainbow

diagram has large peaks in the infrared region. Convergence of the Vegas integration

can be improved significantly by introducing suitable subtraction functions D1f
(sub)

and D2f
(sub) which are discussed in appendix J.2. I thus write the lattice integrals as

a sum of a subtracted lattice integral and the integral over the subtraction function

W1 = I
(lat−sub)
1 + I

(sub)
1 , W2 = I

(lat−sub)
2 . (6.20)

Note that for W2 the integral over the subtraction function vanishes due to

rotational invariance in the continuum. The integrand of the subtraction integral for

W1 is simple so evaluation of this integral is numerically inexpensive and can be carried

out to very high accuracy.

Evaluation of the two-gluon vertex is expensive and it turns out that around 2/3 of

the time is spent on evaluating the tadpole diagram. On the other hand the integrand

is relatively smooth as the external derivatives only act on the two-gluon vertex and

do not generate higher powers of the quark propagator. It is thus legitimate to use

numerical derivatives when evaluating this diagram. This leads to a further speedup of
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6.4. Numerical results

results from [122] my calculation

−A = E0 = Ω0 −3.44(5) −3.389(3)

B = δZm = Ω0 − Ω1 + Ω2 −1.92(5) −1.897(8)

c
(2)
1 −0.90(5) −0.947(3)

c
(2)
2 −1.10(5) −1.075(2)

Table 6.2: Heavy quark renormalisation parameters from [122] and my calculation. The
heavy quark action is defined in [122] with heavy quark mass m = 2.0 and stability
parameter n = 2, the gluon action is the unimproved Wilson action and mean field
corrections are not included.

the code if I split up the first integral in (6.20) as

W1 = I
(lat−sub)
1,rainbow + I

(lat)
1,tadpole + I

(sub)
1 (6.21)

=

∫
d4k

(2π)4

[
D1f

(lat)
rainbow −D1f

(sub)
]

+

∫
d4k

(2π)4
D1f

(lat)
tadpole

+

∫
d4k

(2π)4
D1f

(sub)

where numerical derivatives are used in I
(lat)
tadpole. The corresponding expression for W2

is

W2 = I
(lat−sub)
2,rainbow + I

(lat)
2,tadpole (6.22)

=

∫
d4k

(2π)4

[
D2f

(lat)
rainbow −D2f

(sub)
]

+

∫
d4k

(2π)4
D2f

(lat)
tadpole.

Comparison to the literature

To verify my code I reproduce the results for E0, δZm, c
(2)
1 and c

(2)
2 given in [122]. I

use the simple action setup described there with the Wilson gluon action. The results

(without inclusion of mean field corrections) are shown in Fig. 2 of [122] (I estimate

the errors from reading off the exact numbers from the plot to be 0.05). For E0 and

δZm I use a gluon mass of λ2 = 10−6. The calculation of the higher order kinetic terms

c
(2)
1 and c

(2)
2 is discussed in detail in appendix H.3 where I also demonstrate that the

results are numerically stable for λ→ 0 and an extrapolation in the gluon mass is not

necessary. The results in Tab. 6.2 are obtained by averaging results for λ2 = 10−6,

10−9 and 10−12. In the following I will work with λ2 = 10−6. Within errors I find

perfect agreement with the results in [122].
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Chapter 6. Kinetic terms in the NRQCD action

m n gluons I
(lat−sub)
1,rainbow I

(lat)
1,tadpole I

(sub)
1 W1

2.3 2 Wilson 1.035(12) 0.4455(30) −1.4603(37) −0.020(13)

2.8 2 Symanzik 0.820(12) 0.1176(16) −1.1974(31) −0.260(12)

1.95 4 Symanzik 1.225(12) 0.8801(28) −1.7234(41) −0.382(13)

2.8 4 Symanzik 0.830(12) 0.2065(15) −1.1974(31) −0.161(13)

3.4 4 Symanzik 0.653(12) 0.1031(14) −0.9891(26) −0.233(12)

Table 6.3: The integrals I
(lat−sub)
1,rainbow , I

(lat)
1,tadpole, I

(sub)
1 and their sum W1 for different action

parameters and the full O(1/m2, v4
rel) NRQCD action.

m n ∆(6)? gluons 102 × I
(lat−sub)
2,rainbow 102 × I

(lat)
2,tadpole 102 ×W2

2.3 2 — Wilson −0.253(27) −1.9968(81) −2.250(28)

2.8 2 — Symanzik −0.069(16) −1.7338(60) −1.665(17)

1.95 4 — Symanzik −0.494(36) −1.2120(56) −1.706(36)

2.8 4 — Symanzik −0.051(16) −1.6678(59) −1.617(17)

3.4 4 — Symanzik −0.142(11) −1.6321(60) −1.490(13)

1.95 4 X Symanzik −0.8836(80) −1.2362(21) −0.3526(83)

2.8 4 X Symanzik −0.2195(38) −0.0206(10) −0.2400(39)

3.4 4 X Symanzik −0.0614(26) −0.2613(9) −0.3227(28)

Table 6.4: The integrals I
(lat−sub)
2,rainbow , I

(lat)
2,tadpole and their sum W2 for different action

parameters and the full heavy quark action. The results in the last three rows are obtained
with a NRQCD action which contains the ∆(6) improvement term that removes tree level
discretisation errors in the kinetic terms at O(p6).

6.4.2 Results for the full NRQCD action

I compute c̃
(1)
1 and c

(1)
5 for the full O(1/m2, v4

rel) NRQCD action defined by (6.1)

both with Wilson gluons and Symanzik improved glue and the masses chosen in the

nonperturbative simulations carried out by Stefan Meinel and Iain Kendall, see section

6.5.

The values of the individual integrals I
(lat−sub)
1,rainbow , I

(lat)
1,tadpole, I

(sub)
1 and W1 are given

in Tab. 6.3; the corresponding results for W2 can be found in Tab. 6.4.

Both for W1 and W2 the dominant uncertainty comes from the subtracted rainbow

diagram, I
(lat−sub)
rainbow . After adding on the value of the subtraction integral, the rainbow

diagram is of comparable magnitude but different sign as the tadpole diagram for W1

whereas I
(lat−sub)
2,rainbow is usually significantly smaller than I

(lat)
2,tadpole for W2.
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6.4. Numerical results

In Tab. 6.6 I list values for c̃
(1)
1 and c

(1)
5 . For Wilson gluons I use u

(2)
0 = 0.9735

from [102] and for the improved gluon action u
(2)
0 = 0.750 (see [125]). I also plot my

results, together with those I obtained using Morningstar’s action in Fig. 6.1.
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Chapter 6. Kinetic terms in the NRQCD action

m n gluons c̃
(1)
1 [VEGAS only] c̃

(1)
1

2.3 2 Wilson −0.029(19) −0.802(19)

2.8 2 Symanzik −0.428(20) −0.793(20)

1.95 4 Symanzik −0.599(21) −0.774(21)

2.8 4 Symanzik −0.333(26) −0.951(26)

3.4 4 Symanzik −0.556(30) −0.952(30)

Table 6.5: Results for the coefficient c̃
(1)
1 for different action parameters and the full heavy

quark action. The numbers in the fourth column do not include the mean field corrections.
In the last column I give the final results.

m n ∆(6)? gluons c
(1)
5 [VEGAS only] c

(1)
5

2.3 2 — Wilson −1.242(15) −0.507(15)

2.8 2 — Symanzik −1.119(12) −0.429(12)

1.95 4 — Symanzik −0.799(17) −0.392(17)

2.8 4 — Symanzik −1.087(11) −0.406(11)

3.4 4 — Symanzik −1.216(10) −0.445(10)

1.95 4 X Symanzik −0.1650(39) −0.0170(39)

2.8 4 X Symanzik −0.1613(26) −0.0574(26)

3.4 4 X Symanzik −0.2633(23) −0.0648(23)

Table 6.6: Results for the coefficient c
(1)
5 for different action parameters and the full

O(1/m2, v4
rel) heavy quark action. The numbers in the fifth column do not include mean

field corrections. In the last column I give the final results. The results in the last three
rows are obtained with a NRQCD action which contains the ∆(6) improvement term that
removes tree level discretisation errors in the kinetic terms at O(p6).
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Figure 6.1: Results for the coefficient c̃
(1)
1 (top) and c

(1)
5 (bottom) for different action

parameters, including mean field corrections. Note that including the O(p6) improvement
term ∆(6) changes the coefficients significantly. I also show the numbers I obtained for

c
(2)
1 and c

(2)
2 with the Morningstar action [122], in this case I use the one loop value of

u
(2)
0 = π/3 given there.
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lattice E(2, 2, 1) − E(3, 0, 0)

163 × 32 lattice, Wilson glue 0.00094(38)

203 × 64 coarse MILC lattice 0.00082(78)

163 × 48 super coarse MILC lattice 0.00133(10)

Table 6.7: Energy splittings between mesons with different
∑

j p
4
j from numerical

simulations.

6.5 Nonperturbative results

The presence of rotationally noninvariant terms in the Lagrangian leads to a splitting

between the energies of mesons with three-momentum p = (2, 2, 1)2π
L and p = (3, 0, 0)2π

L .

Iain Kendall [132] and Stefan Meinel [61] have computed this energy difference for

different lattices:

• 163×32 lattice, β = 6/g2 = 5.8, Wilson gluons (quenched). The heavy quark mass

is m = 2.3, stability parameter n = 2 [Stefan Meinel, using gauge configurations

described in [133]].

• 163 × 48 super coarse MILC lattice with β = 10/g2 = 6.458, 2 + 1 flavours of

rooted staggered quarks, m = 3.4, n = 4 [Iain Kendall].

• 203 × 64 coarse MILC lattice with β = 10/g2 = 6.76, 2 + 1 flavours of rooted

staggered quarks, m = 2.8, n = 2 [Stefan Meinel].

The heavy quark action is always the full O(1/m2, v4
rel) NRQCD action. The results

are summarised in Tab. 6.7. In all cases, except for the coarse MILC lattice with

Symanzik gluons, the splitting is significantly different from zero.

It turns out that the energy splitting on the super coarse MILC lattice can be set

to zero by choosing c5 = 2.6 [132].

6.6 Observations

After including mean field corrections the O(αs) coefficients are of the order of one.

For the full O(1/m2, v4
rel) NRQCD action with stability parameter n = 4 they do not

show a strong heavy quark mass dependence. The choice of stability parameter has

only a very small influence on c
(1)
5 and a slightly larger impact on c̃

(1)
1

Including the O(a6) improvement term ∆(6)/(180m) reduces the size of the

renormalisation of the rotationally noninvariant term
∑

j p
4
j by a factor of 5 − 10.

This indicates that this term significantly reduces discretisation errors which break
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6.6. Observations

without ∆(6) with ∆(6)

E0 −0.76647(40) −0.73290(40)

δZψ −0.77338(48) −0.79006(47)

δZm −0.2313(12) −0.2347(12)

Table 6.8: Leading order renormalisation parameters with and without the ∆(6)/(180m)
term in the NRQCD action. I use the full O(1/m2, v4

rel) NRQCD action with m = 2.8
and n = 2. The gluon action is Symanzik improved. Mean field corrections for “partial”
cancellation of UµU

†
µ are included.

rotational invariance. Note that although the term is of O(a6) is is only suppressed by

two powers of the lattice spacing relative to the fourth order renormalisation parameters

which I calculate. In the continuum, where the theory is rotationally invariant, the

coefficient c
(1)
5 vanishes. I checked that the influence of ∆(6)/(180m) on the leading

order renormalisation parameters is small, see Tab. 6.8.

The nonperturbative results obtained by Iain Kendall predict a strong correction

to the ∆(4) term. This does not agree with I find in my perturbative calculations.

One explanation for this discrepancy are large two-loop effects. However, the NRQCD

action is not the only ingredient of the lattice calculation where rotational symmetry

is broken. The simulations were carried out on relatively coarse lattices and the effect

might be reduced on finer configurations where the dispersion relation can be probed

for smaller, nonrelativistic lattice momenta; more work is needed to clarify this. The

results in Tab. 6.7 suggest that the energy splitting is reduced on the coarse MILC

lattice, however, the errors on this number still need to be reduced significantly. In

my perturbative calculations I also see a strong influence of the O(a6) improvement

term which was included with the tree level coefficient in nonperturbative simulations.

Instead of fixing this term to its classical value and tuning the ∆(4) nonperturbatively

it might be better to fit both the O(a4) and O(a6) coefficients simultaneously to avoid

a spurious minimum of χ2. An alternative approach would be to fix the O(a4) term to

the perturbative result and adjust the coefficient of the O(a6) term by nonperturbative

tuning.
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Chapter 7

Matching of heavy-light currents

In this chapter I match the heavy-light vector and tensor currents to the effective heavy

quark theory on the lattice. The vector current

Q
(V )µ
0 = qγµΨ (7.1)

arises in the b→ q transition of the semileptonic decay B → πℓν, see (1.6). The heavy

quark field is denoted by Ψ(x) and the light quark by q(x). Hadronic matrix elements

of this current are also needed for predictions of the rare decay B → K(∗)ℓ+ℓ−; in the

operators Q9 and Q10 (see section 2.2.1) the heavy-light current sγµPLb is coupled to

the leptonic (axial-) vector current. I set the light quark mass, which is much smaller

than the hadronic scale ΛQCD, to zero throughout the matching calculation. Then it

is legitimate to drop chiral projectors PR/L = 1±γ5
2 as the matching coefficients do not

depend on them.

The electromagnetic tensor operator Q
(T )µν
0 , coupled to the field strength Fµν ,

appears in the b→ s Hamiltonian and is defined as

Q7 ≡ Q
(T )µν
0 Fµν =

e

16π2
m(qσµνΨ)Fµν (7.2)

where I have already dropped the chiral projector. In the following I use the notation

Q
(Γ)
0 = ρ(Γ)qΓΨ (7.3)

with

ρ(V ) = 1 (vector), ρ(T ) =
e

16π2
m (tensor). (7.4)

For the matching calculation it is necessary to calculate one loop matrix elements

〈q|Q(Γ)
0 |b〉 both in the continuum and on the lattice. In the continuum this is done

between an on-shell heavy quark with momentum p and a light quark with momentum

p′ in the final state. In the following I perform this calculation as an expansion in
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pµres/m, p′µ/m, s/m2 where s/m = 2p · p′/m = 2E′ is (twice) the energy of the final

state quark in the rest frame of the decaying meson. The heavy quark momentum is

p = mu+ pres.

7.1 Continuum calculation

Due to Lorentz invariance the matrix element can be written as

〈q|Q(Γ)
0 |b〉con =

∑

j

Z
(Γ,con)
j 〈q|Q(Γ)

j |b〉tree (7.5)

where the operators Q
(Γ)
j are defined by their Dirac structure:

• Vector:

Q
(V )µ
0 = qγµΨ, Q

(V )µ
1 =

pµ

m
qΨ, Q

(V )µ
2 =

p′µ

m
qΨ. (7.6)

As pµ = muµ+pµres the second operator contributes at leading order in 1/m where

it can be written as Q
(V )µ
1 = uµqΨ.

• Tensor:

Q
(T )µν
0 = ρ(T ) (qσµνΨ) , (7.7)

Q
(T )µν
1 =

2iρ(T )

m
(q (γµpν − γνpµ) Ψ) ,

Q
(T )µν
2 =

2iρ(T )

m

(
q
(
γµp′ν − γνp′µ

)
Ψ
)
,

Q
(T )µν
3 =

2iρ(T )

m

(
q
(
pµp′ν − pνp′µ

)
Ψ
)
.

Again, both Q
(T )µν
0 and Q

(T )µν
1 are leading order in 1/m.

The mixing matrix can be expanded in the strong coupling constant

Z
(Γ,con)
j = δ0j + αsδZ

(Γ,con)
j + . . . (7.8)

and the one loop coefficients are computed order by order in the heavy quark expansion.

In particular I find for the one loop matrix element in the static limit, where 1/m

corrections are ignored,
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• Vector:

δZ
(V,con)
0 =

αs
3π

(
−11

4
− 3

2
log λ2/m2

)
,

δZ
(V,con)
1 =

2

3π
. (7.9)

• Tensor:

δZ
(T,con)
0 =

1

3π

(
−27

4
− 3

2
log λ2/m2 + 4 logm2/µ2

)
,

δZ
(T,con)
1 = δZ

(T,con)
2 = δZ

(T,con)
3 = 0. (7.10)

Details of the calculation can be found in appendix I where I also include O(1/m)

corrections and compare my expressions to the literature.

Note that for the tensor current the MS mass is used. The on-shell mass is defined

perturbatively both in the continuum and on the lattice so in principle the following

matching calculation should be carried out in the on-shell scheme and then converted

to an MS mass (see (D.14)). In (7.10) this conversion is understood to be carried out

implicitly at the end of the calculation.

In contrast to the vector operator, which is protected from renormalisation by gauge

invariance, the tensor operator is not conserved and its anomalous dimension does not

vanish. Indeed I find in appendix I.3:

γ
(con)
T =

8αs
3π

+ . . . (7.11)

which agrees with what is reported in [45].

7.2 Matching to lattice mNRQCD

On the lattice I construct operators Q
(Γ,lat)
0 which have the same on-shell matrix

elements as the continuum operators Q
(Γ)
0 ,

〈q|Q(Γ,lat)
0 |b〉lat = 〈q|Q(Γ)

0 |b〉con. (7.12)

In this section I construct these operators at leading order in the heavy quark expansion

and show how one loop coefficients can be adjusted such that (7.12) holds at O(αs).

125



Chapter 7. Matching of heavy-light currents

7.2.1 Operators

At tree level the operator in the effective theory is obtained from (7.1) and (7.2) by

applying the field transformation

Ψ(x) = Λ1/2T̃ (x̃)e−imγ
0u·xADt

1√
γ

Ψ̃(+)
v (7.13)

where in Ψ̃
(+)
v = (ψv, 0)

T I only keep the positive energy, particle component. Up

to corrections of O(1/m2) the Foldy-Wouthuysen transformation T and the field

transformation ADt are given by

T = 1 +
iD/

2m
− i

u/ (u ·D)

2m
, (7.14)

ADt = 1 +
iγv2D0

4m
+
iγ(1 − v2/2)v · D

2m
.

These expressions can be simplified using the leading order equation of motion,

u ·DΨ̃
(+)
v = 0 and one finally finds for the field transformation

Ψ(x) =
1√
γ

Λ1/2

(
1 − iγ0v · D

2m
+
iγ · D
2m

+
iv · D
2γm

)
Ψ̃(+)
v . (7.15)

By inserting this into (7.6) and (7.7) the tree level currents in the effective theory

to O(1/m) can be read off. The coefficients of the different operators in the 1/m

expansion will get renormalised by radiative corrections. Matrix elements of the 1/m

operators are only calculated at tree level; they are expected to give corrections of

O(ΛQCD/m) ∼ 10% relative to the leading order. This is smaller than the naive

estimate of radiative corrections to leading order operators which is expected to be

O(αs) ∼ 30%.

At leading order in the 1/m expansion both the Foldy-Wouthuysen transformation

T̃ (x̃) and the field transformation ADt are equal to the identity and can be dropped.

The Lorentz boost matrix is (in Minkowski space)

Λ1/2 =
1√

2(1 + γ)

(
(1 + γ) − γvv̂ · γγ0

)
. (7.16)

In the continuum the operator basis Q
(Γ)
0 , Q

(Γ)
1 is used (see, for example, [67] where

the matching calculation between QCD and continuum HQET is performed at leading

order in the heavy quark expansion). On the lattice Lorentz invariance is broken and

another operator basis is used. First, consider the operator Q
(Γ)
0 which is split into the
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7.2. Matching to lattice mNRQCD

sum of two operators with different Dirac structure, Q
(Γ)
0 = Q

(Γ)
0,1 +Q

(Γ)
0,2 with

Q
(Γ)
0,1 = ρ(Γ)f1(v)q(x)ΓΨ̃(+)

v , (7.17)

Q
(Γ)
0,2 = −ρ(Γ)f2(v)q(x)Γv̂ · γγ0Ψ̃(+)

v .

The velocity dependence has been absorbed in the functions

f1(v) =

√
1 + γ

2γ
, f2(v) = v

√
γ

2(1 + γ)
(7.18)

and v̂ is a unit vector in the direction of the frame velocity, which is chosen to be

parallel to a lattice axis.

The other leading order tree level matrix elements of operators with Γ = γµ replaced

by Γ̃ = uµ (vector) and Γ = σµν replaced by Γ̃ = 2(γµuν − γνuµ) (tensor) can always

be expressed as linear combinations of Q
(Γ)
0,1 and Q

(Γ)
0,2 , for example

Q
(Ṽ )0
0,1 = γQ

(V )0
0,1 , Q

(Ṽ )0
0,2 = −γQ(V )0

0,2 , (7.19)

Q
(Ṽ )‖
0,1 = (1 + γ)Q

(V )‖
0,2 , Q

(Ṽ )‖
0,2 = (1 − γ)Q

(V )‖
0,1 .

The Lorentz index can be timelike (0), parallel (‖) or orthogonal (⊥) to the frame

velocity. Clearly, the decomposition in (7.19) is not Lorentz invariant.

On the lattice the two operators in (7.17) mix under renormalisation,

〈q|Q(Γ)
0,j |b〉lat =

∑

k

(
δjk + αsδZ

(Γ,lat)
jk + . . .

)
〈q|Q(Γ)

0,k |b〉tree (7.20)

It is convenient to work in the basis Q
(Γ)
0,± = Q

(Γ)
0,1 ± Q

(Γ)
0,2 as only the operator Q

(Γ)
0,+

contributes at tree level. In the continuum the one loop matrix element is (see section

(7.1))

〈q|Q(Γ)
0,+|b〉con = (1 + αsδZ

(Γ,con)
+ )〈q|Q(Γ)

0,+|b〉tree + αsδZ
(Γ,con)
− 〈q|Q(Γ)

0,−|b〉tree.

(7.21)

• Vector: One has to distinguish whether the Lorentz index of the current is

timelike, parallel or perpendicular to the frame velocity. (7.19) is used to calculate
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Chapter 7. Matching of heavy-light currents

the mixing matrix elements Z
(Γ,con)
± :

δZ
(V,con)0
+ = δZ

(V,con)
0 , δZ

(V,con)0
− = γδZ

(V,con)
1 ,

δZ
(V,con)‖
+ = δZ

(V,con)
0 + δZ

(V,con)
1 , δZ

(V,con)‖
− = −γδZ(V,con)

1 , (7.22)

δZ
(V,con)⊥
+ = δZ

(V,con)
0 , δZ

(V,con)⊥
− = 0.

• Tensor: Here δZ
(T,con)
1 is zero, so there is no dependence on the Lorentz indices

δZ
(T,con)
+ = δZ

(T,con)
0 , δZ

(T,con)
− = 0. (7.23)

Combining (7.20) and (7.21) the lattice operator which has the same one loop matrix

elements as the continuum operator is

Q
(Γ,lat)
0 =

(
1 + αsc

(Γ)
+

)
Q

(Γ)
0,+ + αsc

(Γ)
− Q

(Γ)
0,− (7.24)

with

c
(Γ)
+ = δZ

(Γ,con)
+ − δZ

(Γ,lat)
++ , c

(Γ)
− = δZ

(Γ,con)
− − δZ

(Γ,lat)
+− . (7.25)

Mixing matrix

In the (1, 2) basis of operators the mixing matrix can be split into a diagonal part and

a contribution ξµνjk from one particle irreducible (1PI) diagrams,

δZ
(Γ,lat)
jk =

(
δZ

(Γ)
mult − δZfj

)
δjk + ξ

(Γ)
jk . (7.26)

For the vector current the multiplicative renormalisation contains the wavefunction

renormalisations only, δZ
(V )
mult = 1

2 (δZq + δZψ) whereas for the tensor current there is

an additional contribution from mass renormalisation, δZ
(T )
mult = 1

2 (δZq + δZψ) − δZm.

The relation between renormalised and bare parameters is vR = Zvv, γR = (1−v2
R)−1/2,

mR = Zmm and q =
√
ZqqR, Ψ =

√
ZψΨR where all renormalisation constants can be

expanded in the strong coupling constant as Zx = 1+αsδZx+ . . . . The renormalisation

of the velocity functions f1,2 is fj,R = Zfj
fj with

δZf1 =
1 − γ

2
δZv , δZf2 =

1 + γ

2
δZv . (7.27)
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I then find

δZ
(Γ,lat)
++ = δZ

(Γ)
mult −

1

2
δZv + ξ

(Γ)
++, (7.28)

δZ
(Γ,lat)
+− =

γ

2
δZv + ξ

(Γ)
+−.

Even though I use only the leading order heavy-light operators I still include 1/m

corrections in the action. Next I isolate infrared divergences in the renormalisation

constants and find (in Feynman gauge)

δZq =
1

3π
log a2λ2 + Fq, (7.29)

δZψ = − 2

3π
log a2λ2 + Fψ(v, am),

δZm = Fm(v, am),

δZv = Fv(v, am),

ξ
(Γ)
++ = − 1

3π
log a2λ2 + F

(Γ)
ξ++

(v, am),

ξ
(Γ)
+− = F

(Γ)
ξ+−

(v, am).

The infrared divergence of ξ
(Γ)
++ is independent of the Dirac structure Γ due to heavy

quark symmetry and and can be inferred from the subtraction integral discussed in

section 7.2.1. The functions Fx are infrared finite and can be expanded in powers of

the inverse heavy quark mass on the lattice,

Fx(v, am) = F (0)
x (v) +

1

am
F (1)
x (v) +

1

a2m2
F (2)
x (v) + . . . . (7.30)

This gives the final expressions for the matching coefficients c
(Γ)
± ,
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• Vector:

c
(V )0
+ (v, am) = − 11

12π
− 1

2
(Fq + Fψ(v, am)) +

1

2
Fv(v, am)

+
1

2π
log a2m2 − F

(V )0
ξ++

(v, am),

c
(V )‖
+ (v, am) = − 1

4π
− 1

2
(Fq + Fψ(v, am)) +

1

2
Fv(v, am)

+
1

2π
log a2m2 − F

(V )‖
ξ++

(v, am),

c
(V )⊥
+ (v, am) = − 11

12π
− 1

2
(Fq + Fψ(v, am)) +

1

2
Fv(v, am)

+
1

2π
log a2m2 − F

(V )⊥
ξ++

(v, am),

c
(V )0
− (v, am) =

2γ

3π
− γ

2
Fv(v, am) − F

(V )0
ξ+−

(v, am), (7.31)

c
(V )‖
− (v, am) = −2γ

3π
− γ

2
Fv(v, am) − F

(V )‖
ξ+−

(v, am),

c
(V )⊥
− (v, am) = −γ

2
Fv(v, am) − F

(V )⊥
ξ+−

(v, am).

For v = 0 there is only one operator qγµΨ̃
(+)
v with matching coefficients

c(V )0(am) = − 1

4π
− 1

2
(Fq + Fψ(am)) +

1

2π
log a2m2 − F

(V )0
ξ (am),

c(V )j(am) = − 11

12π
− 1

2
(Fq + Fψ(am)) +

1

2π
log a2m2 − F

(V )j
ξ (am).

(7.32)

The matching coefficient of the zero component of the (axial-) vector current at

v = 0.0 has been calculated in [92].

• Tensor:

c
(T )µν
+ (µ/m, v, am) = − 9

4π
− 1

2
(Fq + Fψ(v, am)) + Fm(v, am)

+
1

2
Fv(v, am) − F

(T )µν
ξ++

(v, am)) (7.33)

+
1

2π
log a2m2 +

4

3π
logm2/µ2,

c
(T )µν
− (v, am) = −γ

2
Fv(v, am) − F

(T )µν
ξ+−

(v, am).
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For v = 0 there is only one operator e
16π2m qσµνΨ̃

(+)
v with matching coefficient

c(T )µν(µ/m, am) = − 9

4π
− 1

2
(Fq + Fψ(am)) + Fm(am) − F

(T )µν
ξ (am)

+
1

2π
log a2m2 +

4

3π
logm2/µ2. (7.34)

The ultraviolet behaviour of the lattice theory is described by the logarithmic terms

in (7.31) and (7.33), in particular the log a2m2 term is a UV divergence which is

independent of the Dirac structure of the renormalised operator due to heavy quark

symmetry. As the short distance behaviour of the effective theory is different from

continuum QCD its coefficient differs from the one of the logm2/µ2 term in (7.33).

The anomalous dimension of the lattice operator can be obtained by noting that the

renormalised operator is related to the bare operator by multiplication with Z
(lat)
Γ , i.e.

Q
(Γ,ren)
0,+ =

(
Z

(lat)
Γ

)−1
Q

(Γ)
0,+. (7.35)

The counterterm has to be chosen such that is absorbs the logarithmic UV divergence

in δZ
(Γ,lat)
++ ,

Z
(lat)
Γ = 1 − αs

2π

[
log a2µ2

lat + (finite terms)
]
+ . . . (7.36)

where µlat is an arbitrary scale which has to cancel in physical results. I find

γ
(lat)
Γ =

1

Z
(lat)
Γ

dZ
(lat)
Γ

d log µlat
= −αs

π
+ . . . .

In [67] the anomalous dimension of a heavy-light operator with arbitrary Dirac structure

is derived in HQET with dimensional regularisation. The expression quoted in (3.24)

of [67] agrees with my result.

The heavy quark renormalisation parameters have been calculated in chapter 5.

Wavefunction renormalisation of massless ASQTad quarks is given in [92] and I calculate

it for HISQ quarks in the following section. Finally the one particle irreducible matrix

elements can be found by evaluating the one loop diagram in Fig. 7.1.

Light quark wavefunction renormalisation

The inverse renormalised propagator for massless ASQTad/HISQ quarks is

G−1(p) = G−1
0 (p) − αsΣ(p) (7.37)
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b s

p

k

p′

q

Figure 7.1: One particle irreducible diagram at one loop

with the inverse tree level propagator

G−1
0 (p) =

∑

µ

iγµ sin pµ

(
1 − 1

6
sin2 pµ

)
(7.38)

and the self-energy at one loop,

Σ(p) =
∑

µ

iγµ sin pµBµ(p). (7.39)

There is no term proportional to the unit matrix at all orders. This is due to Chiral

symmetry of the massless quark action which is invariant under the transformation

ψ 7→ eiǫγ5ψ, ψ 7→ ψeiǫγ5 . This also implies that the dispersion relation starts with

a linear term, for three momentum p = (px, 0, 0) the pole of the propagator is at

−ip0 = E = E(px) = (const.) × px + . . . .

The wavefunction renormalisation is then given by the residue of the pole in the

propagator,

G(p) =
γ0E(1 − αsB0) − iγxpx(1 − αsBx)

−E2(1 − αsB0)2 + p2
x(1 − αsBx)2

+ . . . (7.40)

≡ −γ0 − iγx
2

Zq
E − E(px)

+ . . . .

It follows that

δZq = 1 + αsB0(0), E(px) = [1 + αs(B0(0) −Bx(0))] px = px (7.41)

where the second relation follows from hypercubic invariance of the lattice.

The rainbow diagram which contributes to δZq is IR divergent in Feynman gauge,

so as for heavy quarks I split the wavefunction renormalisation into an IR finite part
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I(lat−sub) + I
(sub)

I(tad) I(MF) δZq

ASQ (my results) −0.79815(39) 1.60004(16) −1.726 −0.92411(42)

ASQ from [92] −0.798(3) 1.600(1) −1.726 −0.924(3)

HISQ −0.8155(12) 0.4250(10) — −0.3905(16)

Table 7.1: Light quark wavefunction renormalisation. I only show the IR finite parts of the
result.

and a logarithmic divergence (the latter agrees with the one found in the continuum,

see (D.6) in appendix D),

δZq = δZq +
1

3π
log a2λ2 (7.42)

I evaluate the IR finite contribution by constructing a suitable subtraction function

which is needed to guarantee the convergence of the integrals, see section J.4.

The tadpole diagram is slightly more expensive to evaluate but as the integrand

is smoother it can be evaluated with lower statistics. As a useful check I first obtain

results for the ASQTad action, which have been published in [92]. I choose to evaluate

the subtract rainbow integral I(lat−sub) with 1, 000, 000 function evaluations and 20

Vegas iterations which took 1.8h on 64 processors. Although the tadpole integral

I(tad) was only evaluated with 200, 000 function evaluations (taking 0.6h) the error on

results is a factor of approximately three smaller. There is an additional contribution

of I(MF) = −9
4u

(2)
0 from mean field improvement, which is −1.726 if the fourth root of

the plaquette is used to extract u
(2)
0 = 0.767 [92]. I summarise my findings in Tab. 7.1

where I also show the results in [92] which are in perfect agreement with what I find.

I then repeat the calculation for the HISQ action, the results are collected in the

last row of Tab. 7.1. Note that in this case there is no mean field improvement as the

links in the HISQ action are reunitarised.
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One particle irreducible matrix elements

TheO(αs) one particle irreducible (1PI) correction to the operatorsQ
(Γ)
0,j = ρ(Γ)fjqΓSjΨ̃

(+)
v

(with S1 = Id, S2 = −γ · v̂γ0) is given by

〈q|Q(Γ)
0,j |b〉lat,1PI = αsρ

(Γ)fjus(p
′)Σ

(Γ)
j U (7.43)

= αs
∑

k=1,2

ξ
(Γ)
jk 〈q|Q(Γ)

0,k |b〉tree

= αsρ
(Γ)

∑

k=1,2

ξ
(Γ)
jk fkus(p

′)ΓSkU

where the heavy-quark four spinor is

U (σ) =


χ

(σ)

0


 , with χ(σ) ∈






1

0


 ,


0

1





 . (7.44)

To extract ξ
(Γ)
jk replace the spinors by Euclidean on-shell projection operators,

∑

σ=↑,↓

u(σ)
s (p′)u(σ)

s (p′) = −ip/ ′ ≡ Πs(p
′)

∑

σ=↑,↓

U (σ)U (σ)T =
1

2
(1 + γ0) ≡ Πb (7.45)

and take traces

Tj = Tr
[
Πs(p

′)Σ
(Γ)
j ΠbΠ

(Γ)
]
. (7.46)

In this expression Σ
(Γ)
j is given by the integrand of the 1PI diagram and Π(Γ) is a

suitable projection operator which depends on the Dirac structure of Σ
(Γ)
j . I tested the

integration algorithm and correct implementation of the projection operators in (7.46)

by reproducing the analytical results of the subtraction integral in (7.48).

Infrared subtraction function

I use a gluon mass to regulate the infrared divergence in the 1PI integral. As for

the heavy quark wavefunction renormalisation I construct an appropriate subtraction

function f (sub) to smoothen the Vegas integrand, the 1PI matrix elements can be

written as

ξ
(Γ)
jk =

∫
d4k

(2π)4

(
f

(Γ,lat)
jk − f

(sub)
jk

)
+

∫
d4k

(2π)4
f

(sub)
jk (7.47)

= ξ
(Γ,lat)
jk + ξ

(sub)
jk
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As discussed in detail in appendix J.3, the value of the subtraction integral is

ξ
(sub)
jk =

∫
d4k

(2π)4
f

(sub)
jk = −δjk

3π

(
1 + log λ2/m2

)
+ O(λ/m). (7.48)

7.2.2 Numerical results

In the following I show results for the matching coefficients both for the simple heavy

quark action defined in (5.26) and for the full O(1/m2, v4
rel) action. In both cases I

use a heavy mass of m = 2.8 and a stability parameter n = 2. The gluon action is

the Wilson action for the simple mNRQCD action and Symanzik improved for the full

O(1/m2, v4
rel) action. For the simple action I show results obtained with the ASQTad

light quark action whereas for the full O(1/m2, v4
rel) action I use both the ASQTad and

the HISQ action.

The heavy quark renormalisation parameters δZψ , δZm and δZv are taken from

Tabs. 5.6 and 5.7. The wavefunction renormalisation of the massless light quark is

−0.92411(42) for ASQTad quarks and −0.3905(16) for HISQ quarks (see Tab. 7.1).

In Tabs. 7.2 to 7.7 I list results both for the vector- and tensor current matching

coefficients.

For the vector current I calculate the matching coefficients for three different Lorentz

indices:

1. µ points in the temporal direction, µ = 0

2. µ is parallel to the frame velocity, µ =‖

3. µ is orthogonal to the frame velocity, µ =⊥

For v = 0.0 I consider µ = 0, µ = 1 and µ = 2. For the tensor current there are four

different cases:

1. µ points in the temporal direction and ν is parallel to the frame velocity,

(µ, ν) = (0, ‖)

2. µ points in the temporal direction and ν is orthogonal to the frame velocity,

(µ, ν) = (0,⊥)

3. µ is parallel and ν orthogonal to the frame velocity,

(µ, ν) = (‖,⊥)

4. both µ and ν are orthogonal to the frame velocity,

(µ, ν) = (⊥,⊥)
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For v = 0.0 I choose (µ, ν) = (0, 1), (µ, ν) = (0, 2), (µ, ν) = (1, 2) and (µ, ν) = (2, 3).

As the light quark is massless and because of σ01 = −γ5σ23 the matching coefficients

for (0, ‖) and (⊥,⊥) are identical. The same holds for (0,⊥) and (‖,⊥) because of

σ02 = γ5σ13. For v = 0 this implies that the matching coefficients for all combinations

of (µ, ν) are identical as there is no preferred direction.

The renormalisation scale of the tensor current is µ = m.

136



7.2. Matching to lattice mNRQCD

v c(V )0 c(V )1 c(V )2

0.00 0.26575(41) 0.05410(41) 0.05379(41)

v c
(V )0
+ c

(V )‖
+ c

(V )⊥
+

0.10 −0.1259(23) −0.0865(23) −0.1748(23)

0.20 −0.1268(14) −0.0846(14) −0.1816(15)

0.30 −0.1217(12) −0.0899(11) −0.1840(12)

0.40 −0.1145(10) −0.0961(10) −0.1886(11)

0.50 −0.1049(10) −0.1060(10) −0.1957(11)

0.60 −0.0876(10) −0.1238(10) −0.2036(11)

0.70 −0.0604(10) −0.1510(10) −0.2175(11)

0.75 −0.0407(11) −0.1708(11) −0.2285(12)

0.80 −0.0139(11) −0.1980(11) −0.2430(13)

0.85 −0.0283(13) −0.2402(13) −0.2597(15)

0.90 −0.0966(15) −0.3084(15) −0.2828(18)

0.95 −0.2321(20) −0.4438(20) −0.3158(25)

v c
(V )0
− c

(V )‖
− c

(V )⊥
−

0.10 −0.3950(21) −0.0314(21) −0.2315(21)

0.20 −0.4059(13) −0.0272(13) −0.2425(13)

0.30 −0.4164(11) −0.0287(11) −0.2522(11)

0.40 −0.4352(10) −0.0283(10) −0.2697(10)

0.50 −0.4662(10) −0.0242(10) −0.2982(10)

0.60 −0.5149(11) −0.0161(11) −0.3413(11)

0.70 −0.5999(12) −0.0055(12) −0.4142(12)

0.75 −0.6700(13) −0.0285(13) −0.4730(13)

0.80 −0.7738(14) −0.0660(14) −0.5570(14)

0.85 −0.9358(17) −0.1295(17) −0.6839(17)

0.90 −1.2234(22) −0.2493(22) −0.9015(22)

0.95 −1.9150(34) −0.5553(34) −1.4063(34)

Table 7.2: Vector current matching coefficients for the simple heavy quark action defined
in (5.26). The ASQTad action is used to discretise the light quark.
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v c(T )0,1 c(T )0,2 c(T )1,2 c(T )2,3

0.00 0.0512(16) 0.0518(16) 0.0514(16) 0.0513(16)

v c
(T )0,‖
+ c

(T )0,⊥
+ c

(T )‖,⊥
+ c

(T )⊥,⊥
+

0.10 −0.1726(27) −0.1203(27) −0.1215(27) −0.1721(27)

0.20 −0.1604(21) −0.1029(21) −0.1028(21) −0.1578(21)

0.30 −0.1238(20) −0.0598(20) −0.0600(20) −0.1223(20)

0.40 −0.0669(20) −0.0083(20) −0.0081(20) −0.0652(20)

0.50 −0.0181(22) −0.1095(22) −0.1098(22) −0.0202(22)

0.60 −0.1653(25) −0.2825(25) −0.2823(25) −0.1670(25)

0.70 −0.4287(32) −0.5870(31) −0.5864(31) −0.4300(32)

0.75 −0.6529(37) −0.8420(37) −0.8408(37) −0.6544(37)

0.80 −1.0086(46) −1.2390(46) −1.2379(46) −1.0101(46)

0.85 −1.6821(64) −1.9725(64) −1.9716(64) −1.6842(64)

0.90 −3.092(10) −3.472(10) −3.471(10) −3.093(10)

0.95 −7.635(21) −8.184(21) −8.183(21) −7.639(21)

v c
(T )0,‖
− c

(T )0,⊥
− c

(T )‖,⊥
− c

(T )⊥,⊥
−

0.10 −0.2311(21) −0.1810(21) −0.1811(21) −0.2332(21)

0.20 −0.2423(13) −0.1886(13) −0.1887(13) −0.2429(13)

0.30 −0.2524(11) −0.1932(11) −0.1933(11) −0.2527(11)

0.40 −0.2702(10) −0.2030(10) −0.2032(10) −0.2703(10)

0.50 −0.2990(10) −0.2205(10) −0.2209(10) −0.2987(10)

0.60 −0.3424(11) −0.2487(11) −0.2495(11) −0.3418(10)

0.70 −0.4156(12) −0.3020(12) −0.3028(12) −0.4148(12)

0.75 −0.4741(13) −0.3488(13) −0.3496(13) −0.4735(13)

0.80 −0.5581(15) −0.4196(15) −0.4204(15) −0.5572(15)

0.85 −0.6852(17) −0.5323(17) −0.5334(17) −0.6841(17)

0.90 −0.9026(22) −0.7362(22) −0.7372(22) −0.9014(22)

0.95 −1.4067(34) −1.2349(34) −1.2358(34) −1.4060(34)

Table 7.3: Tensor current matching coefficients for the simple heavy quark action defined
in (5.26). The ASQTad action is used to discretise the light quark.
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Figure 7.2: Matching coefficients for the simple heavy quark action defined in (5.26), vector
current (top) and tensor current (bottom). The ASQTad action is used to discretise the
light quark.
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v c(V )0 c(V )1 c(V )2

0.00 0.04293(52) 0.26970(40) 0.26929(39)

v c
(V )0
+ c

(V )‖
+ c

(V )⊥
+

0.10 −0.1945(21) −0.0553(22) −0.1384(18)

0.20 −0.1965(12) −0.0500(13) −0.1411(12)

0.30 −0.2005(10) −0.0419(11) −0.1444(10)

0.40 −0.20708(84) −0.0293(10) −0.15071(88)

0.50 −0.21660(77) −0.01038(88) −0.15972(84)

0.60 −0.22620(73) −0.01358(85) −0.16775(85)

0.70 −0.24297(71) −0.05349(80) −0.17817(87)

0.75 −0.25596(72) −0.08412(80) −0.18243(91)

0.80 −0.27674(77) −0.12920(85) −0.1862(10)

0.85 −0.3201(13) −0.2078(13) −0.1917(12)

0.90 −0.4258(16) −0.3633(17) −0.1981(15)

0.95 −0.6340(19) −0.6496(19) −0.2002(23)

v c
(V )0
− c

(V )‖
− c

(V )⊥
−

0.10 −0.1533(22) −0.3227(22) −0.1301(17)

0.20 −0.1547(13) −0.3220(13) −0.1274(10)

0.30 −0.1598(10) −0.3183(10) −0.12224(81)

0.40 −0.16838(86) −0.31106(85) −0.11325(72)

0.50 −0.18137(81) −0.29887(80) −0.09967(67)

0.60 −0.19460(80) −0.28291(80) −0.08532(68)

0.70 −0.21033(81) −0.25390(80) −0.06649(69)

0.75 −0.21513(84) −0.23150(83) −0.05808(73)

0.80 −0.21139(91) −0.20128(91) −0.05445(80)

0.85 −0.1934(11) −0.1530(12) −0.0561(10)

0.90 −0.1348(13) −0.0713(14) −0.0774(12)

0.95 −0.0615(23) −0.0848(23) −0.1354(22)

Table 7.4: Vector current matching coefficients for the full O(1/m2, v4
rel) heavy quark

action. The ASQTad action is used to discretise the light quark.
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v c(T )0,1 c(T )0,2 c(T )1,2 c(T )2,3

0.00 0.0762(12) 0.0761(12) 0.0763(12) 0.0761(12)

v c
(T )0,‖
+ c

(T )0,⊥
+ c

(T )‖,⊥
+ c

(T )⊥,⊥
+

0.10 −0.0507(24) −0.0159(21) −0.0157(22) −0.0463(24)

0.20 −0.0559(17) −0.0206(16) −0.0214(16) −0.0526(17)

0.30 −0.0675(16) −0.0325(15) −0.0321(15) −0.0652(16)

0.40 −0.0861(15) −0.0496(15) −0.0497(15) −0.0846(15)

0.50 −0.1148(16) −0.0748(15) −0.0750(15) −0.1136(16)

0.60 −0.1605(17) −0.1135(16) −0.1136(16) −0.1595(17)

0.70 −0.2302(19) −0.1666(18) −0.1668(18) −0.2295(19)

0.75 −0.2791(21) −0.1984(21) −0.1992(21) −0.2782(21)

0.80 −0.3379(26) −0.2280(25) −0.2292(25) −0.3368(26)

0.85 −0.3997(34) −0.2381(34) −0.2385(34) −0.3995(34)

0.90 −0.4468(53) −0.1653(53) −0.1682(53) −0.4454(53)

0.95 −0.296(14) −0.209(14) −0.209(14) −0.297(14)

v c
(T )0,‖
− c

(T )0,⊥
− c

(T )‖,⊥
− c

(T )⊥,⊥
−

0.10 −0.1184(20) −0.0849(18) −0.0871(18) −0.1189(20)

0.20 −0.1147(11) −0.0839(11) −0.0855(11) −0.1149(11)

0.30 −0.10781(85) −0.07967(86) −0.08054(86) −0.10774(85)

0.40 −0.09607(74) −0.07144(76) −0.07214(77) −0.09583(74)

0.50 −0.07857(69) −0.05896(72) −0.05912(72) −0.07848(69)

0.60 −0.05889(69) −0.04414(72) −0.04412(72) −0.05860(69)

0.70 −0.03355(70) −0.02162(73) −0.02142(73) −0.03332(70)

0.75 −0.02163(74) −0.00812(77) −0.00787(76) −0.02131(74)

0.80 −0.01460(82) −0.00494(84) −0.00522(84) −0.01425(82)

0.85 −0.0143(10) −0.0198(10) −0.0199(10) −0.0140(10)

0.90 −0.0366(13) −0.0321(13) −0.0316(13) −0.0365(13)

0.95 −0.0999(22) −0.0122(22) −0.0118(22) −0.0999(22)

Table 7.5: Tensor current matching coefficients for the full O(1/m2, v4
rel) heavy quark

action. The ASQTad action is used to discretise the light quark.
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Figure 7.3: Matching coefficients for the full O(1/m2, v4
rel) heavy quark action, vector

current (top) and tensor current (bottom). The ASQTad action is used to discretise the
light quark.
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v c(V )0 c(V )1 c(V )2

0.00 −0.10157(94) −0.03847(88) −0.03876(88)

v c
(V )0
+ c

(V )‖
+ c

(V )⊥
+

0.10 −0.1348(27) −0.1963(27) −0.1601(23)

0.20 −0.1337(16) −0.1930(17) −0.1573(15)

0.30 −0.1301(13) −0.1887(14) −0.1517(13)

0.40 −0.1243(12) −0.1824(13) −0.1422(12)

0.50 −0.1162(12) −0.1726(12) −0.1283(12)

0.60 −0.1103(11) −0.1623(12) −0.1123(12)

0.70 −0.1005(11) −0.1447(12) −0.0898(12)

0.75 −0.0925(11) −0.1301(12) −0.0765(12)

0.80 −0.0791(11) −0.1056(12) −0.0621(13)

0.85 −0.0474(12) −0.0573(13) −0.0430(15)

0.90 −0.0262(14) −0.0430(14) −0.0176(17)

0.95 −0.1850(22) −0.2445(22) −0.0017(27)

v c
(V )0
− c

(V )‖
− c

(V )⊥
−

0.10 −0.0324(25) −0.1545(25) −0.1211(20)

0.20 −0.0318(14) −0.1542(14) −0.1175(12)

0.30 −0.0285(10) −0.1515(10) −0.11148(89)

0.40 −0.02201(90) −0.14535(90) −0.10092(77)

0.50 −0.01214(84) −0.13517(83) −0.08499(71)

0.60 −0.00259(83) −0.12285(83) −0.06640(70)

0.70 −0.00797(84) −0.09962(83) −0.04179(70)

0.75 −0.01022(87) −0.08223(86) −0.02974(73)

0.80 −0.00477(93) −0.05912(93) −0.02228(81)

0.85 −0.0120(11) −0.0203(11) −0.02032(94)

0.90 −0.0648(13) −0.0454(13) −0.0367(12)

0.95 −0.2400(23) −0.1828(23) −0.0936(22)

Table 7.6: Vector current matching coefficients for the full O(1/m2, v4
rel) heavy quark

action. The HISQ action is used to discretise the light quark.
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v c(T )0,1 c(T )0,2 c(T )1,2 c(T )2,3

0.00 −0.2296(17) −0.2305(17) −0.2325(17) −0.2315(17)

v c
(T )0,‖
+ c

(T )0,⊥
+ c

(T )‖,⊥
+ c

(T )⊥,⊥
+

0.10 −0.3677(64) −0.3385(58) −0.3391(59) −0.3642(65)

0.20 −0.3662(38) −0.3432(35) −0.3416(35) −0.3640(37)

0.30 −0.3734(30) −0.3541(28) −0.3524(28) −0.3727(30)

0.40 −0.3892(27) −0.3712(25) −0.3709(25) −0.3885(28)

0.50 −0.4127(26) −0.4002(23) −0.4001(23) −0.4114(26)

0.60 −0.4492(27) −0.4419(24) −0.4427(24) −0.4484(27)

0.70 −0.5045(30) −0.5065(25) −0.5059(25) −0.5059(29)

0.75 −0.5408(32) −0.5477(27) −0.5441(27) −0.5438(32)

0.80 −0.5834(38) −0.5873(31) −0.5857(31) −0.5885(38)

0.85 −0.6306(48) −0.6155(41) −0.6112(41) −0.6308(47)

0.90 −0.6541(68) −0.5801(59) −0.5765(60) −0.6593(68)

0.95 −0.479(16) −0.254(15) −0.242(15) −0.492(16)

v c
(T )0,‖
− c

(T )0,⊥
− c

(T )‖,⊥
− c

(T )⊥,⊥
−

0.10 −0.1367(65) −0.0982(57) −0.0936(54) −0.1167(63)

0.20 −0.1253(33) −0.0936(31) −0.0920(30) −0.1156(32)

0.30 −0.1138(23) −0.0895(22) −0.0891(22) −0.1085(22)

0.40 −0.1007(17) −0.0833(18) −0.0831(18) −0.0964(17)

0.50 −0.0826(14) −0.0726(16) −0.0726(16) −0.0787(14)

0.60 −0.0607(12) −0.0620(15) −0.0608(15) −0.0578(12)

0.70 −0.0318(12) −0.0458(14) −0.0433(14) −0.0288(12)

0.75 −0.0171(12) −0.0359(14) −0.0339(15) −0.0140(12)

0.80 −0.0070(13) −0.0287(16) −0.0245(15) −0.0049(13)

0.85 −0.0023(14) −0.0161(17) −0.0148(16) −0.0005(14)

0.90 −0.0154(17) −0.0099(20) −0.0090(19) −0.0144(17)

0.95 −0.0760(26) −0.0301(28) −0.0281(28) −0.0752(26)

Table 7.7: Tensor current matching coefficients for the full O(1/m2, v4
rel) heavy quark

action. The HISQ action is used to discretise the light quark.
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Figure 7.4: Matching coefficients for the full O(1/m2, v4
rel) heavy quark action, vector

current (top) and tensor current (bottom). The HISQ action is used to discretise the light
quark.
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7.2.3 Observations

The magnitude of all matching coefficients is reduced by including mean field

corrections, for the full O(1/m2, v4
rel) mNRQCD action the dependence on the frame

velocity is weak and all matching coefficients are of order one or smaller. Compared to

the simple mNRQCD action the divergence for v → 1 is suppressed.

Vector current

At vanishing frame velocity the matching coefficient for the zero component of the

vector current, c(V )0 = 0.04293(52) in Tab. 7.4, is in perfect agreement with the

corresponding value ρ̃0 = 0.043(2) in Tab. III of [92]. For v = 0 I find that the

matching coefficients c(V )1 and c(V )2 agree within errors as expected from rotational

invariance (or, more precisely, the subgroup of O(3) that corresponds to the interchange

of spatial lattice directions).

When the full O(1/m2, v4
rel) mNRQCD action is used the splitting between the

different Lorentz components of the matching coefficients is reduced. This reduction is

more pronounced if the HISQ action is used for the light quark. Improving the action

should reduce this splitting as the results are closer to those in the continuum limit

where the theory is Lorentz invariant. However, this reduction is not as pronounced as

in the case of the tensor current (see below).

Tensor current

For the tensor current I find that the splitting between the (0, ‖) and (0,⊥) as

well as the (‖,⊥) and (⊥,⊥) matching coefficients is reduced by using the full

O(1/m2, v4
rel) mNRQCD action and becomes even smaller when the HISQ action is

used to discretise the light quark. The matching coefficients c
(T )µν
+ depend on the

continuum renormalisation scale µ. For ASQTad light quarks and µ = m I find that

these coefficients are very small. Their magnitude is increased by using the HISQ action

to discretise the light quark.

7.3 Nonperturbative calculation of form factors

Nonperturbative form factors have been computed by Stefan Meinel [29] for the decay

of a B meson to pseudoscalar and vector mesons in the final state F using a simple

mNRQCD action which is correct to O(1/m). These calculations are currently repeated

by Zhaofeng Liu [30] with the full O(1/m2, v4
rel) mNRQCD action used in this thesis.

In the new calculation O(1/m) corrections to the heavy-light currents will be included.
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Figure 7.5: Two- and three-point functions on the lattice

7.3.1 Methods

To extract matrix elements and form factors two- and three point functions (see Fig.

7.5) are measured,

CFΓB(k(p),k(q);x0, y0, z0) =
∑

y,z

〈0|ΦF (x)J (lat)Γ(y)Φ†
B(z)|0〉e−i(p′·x+k(q)·y−k(p)·z)

CBB(k(p);x0, y0) =
∑

x

〈0|ΦB(x)Φ†
B(y)|0〉e−ik(p)·(x−y) (7.49)

CFF (p′;x0, y0) =
∑

x

〈0|ΦF (x)Φ†
F (y)|0〉e−ip′·(x−y)

J (lat)Γ is the vector- or tensor- current, expanded in terms of mNRQCD operators.

ΦB(z) and ΦF (x) are local interpolating operators with the quantum number of the

initial- and final state meson. To increase the overlap with the ground state smeared

wavefunctions can be used after gauge fixing. The residual momenta k(p), k(q) are

defined by

p = k(p) + Zpγmv q = k(q) + Zpγmv (7.50)

where the external momentum renormalisation is Zp ≈ 1 (see section 5.1.7). Setting

t = |x0 − y0| and T = |x0 − z0| the correlators are then fitted to sums of exponentials,

CFΓB(k(q),k(p); t, T ) →
K−1∑

k=0

L−1∑

ℓ=0

A
(FJB)
kℓ (−1)kt(−1)ℓ(T−t)e−E

′

k
te−Eℓ(T−t),

CBB(k(p); t) →
L−1∑

ℓ=0

A
(BB)
ℓ (−1)ℓ(t+1)e−Eℓt, (7.51)

CFF (p′; t) → 16
K−1∑

k=0

(−1)k(t+1)e−E
′

k
t
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(the oscillating minus signs arise from the use of the ASQTad light quark action [20]).

As a constrained curve fitting technique [107] is used, a relatively large number of

exponentials can be included and one is not restricted to using data at large t and T − t
only.

By inserting a complete set of states in (7.49) it can be shown that the ground state

fit parameters are related to field renormalisation of the mesons and the decay matrix

element to pseudoscalar (P ) or vector mesons (V ),

A
(PV B)
00 =

√
ZP

2EP

√
ZB

2EB
〈P (p′)|J (lat)V |B(p)〉,

A
(V TB)
00 =

√
ZV

2EV

√
ZB

2EB

∑

s

ǫj(p
′, s)〈V (p′, ǫ(p′, s))|J (lat)T |B(p)〉. (7.52)

For the two point function one finds

A
(BB)
0 =

ZB
2EB

, (7.53)

A
(PP )
0 =

∑

s

ZP
2EP

,

A
(V V )
0 =

∑

s

ZV
2EV

ǫ∗j(p
′, s)ǫj(p

′, s).

Finally, form factors f+, f0 and T1, T2, T3 can be extracted from the matrix elements

in (7.52) by using the parametrisations in (1.6) and (2.27).

7.3.2 Results

The calculations were performed on 400 coarse MILC gauge configurations [134] of size

203 × 64. These configurations include the vacuum polarisation effects of 2+ 1 flavours

of light sea quarks with masses of amu = amd = 0.007 and ams = 0.05. The ASQTad

action is used for discretising the sea quarks and the one loop Symanzik improved

gauge action, which reduces to (3.8) at tree level, for the gluons. The pion mass on

these ensembles is around 300 MeV and the inverse lattice spacing a−1 = 1.6 GeV

[93, 134]. The light valence quark masses are chosen to be amu = amd = 0.007,

ams = 0.04. As in the perturbative calculations the heavy quark mass is am = 2.8 and

the stability parameter n = 2.

Extrapolation in q2

In Fig. 7.6 I show results for the vector form factors f+ and f0. The solid curve is the

simultaneous fit to the phenomenological ansatz in (2.33).
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7.3. Nonperturbative calculation of form factors

The error bands on the curves are estimated from propagation of the errors as

described in [135]. The optimal fit parameters are

F = 0.277, α = 0.569, β = 1.293 (7.54)

with the covariance matrix

cov(F,α, β) =




−0.0053 −0.0159 −0.0158

−0.0512 −0.0475

−0.0480


 . (7.55)

From this I obtain the value at q2 = 0 as

f+(q2 = 0) = f0(q
2 = 0) = 0.277(73). (7.56)

This error is statistical only. There is also an uncertainty associated with the choice of

a specific phenomenological form factor parametrisation. Quantifying this ambiguity is

not a well defined problem as the “correct” analytical dependence of f+ and f0 on q2

is not known. I estimate the parametric uncertainty by making minimal assumptions

about the form factors and comparing different parametrisations. As remarked in

section 2.3.5 f+ and f0 are analytical functions of q2 everywhere in the complex plane,

apart from poles and branch cuts. After transforming variable from q2 to

z =

√
1 − q2/t+ −

√
1 − t0/t+√

1 − q2/t+ +
√

1 − t0/t+
(7.57)

they can be expanded in a Taylor series in z

f+(q2)P (q2) ≡ g+(z) =

∞∑

k=0

a
(+)
k zk, f0(q

2) ≡ g0(z) =

∞∑

k=0

a
(0)
k zk (7.58)

I perform two fits to g+ and g0, truncating at different orders in the polynomial

expansion:

• fit1: constant g0(z) = a
(0)
0 , linear g+(z) = a

(+)
0 +a

(+)
1 z. I leave out the data point

with largest q2 for both f0 and f+.

• fit2: linear g0(z) = a
(0)
0 + a

(+)
1 z, quadratic g+(z) = a

(+)
0 + a

(+)
1 z + a

(+)
2 z2.

In both cases I impose the constraint f+(0) = f0(0). I choose t0 = 0.65t− as in [20].

In Fig. 7.7 I show the data in the variable z and the two polynomial fits to g+(z) and

g0(z) in the range [z(q2max, t0), z(0, t0)]. Due to the large statistical errors it is not easy
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Figure 7.6: Vector form factors f+(q2), f0(q
2) from [29]. I show both the fit to the

BK parametrisation [62] and two parametrisations of different order in the analytical z
expansion.
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Figure 7.7: Polynomial fit to the vector form factor as a function of z.
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to constrain the series coefficients and this should be regarded as an exploratory study;

the results will refined once more higher statistics are available. The χ2/(d.o.f.) is 0.02

for fit1 and 0.05 for fit2.

The difference between the two fit results is an estimate for the uncertainty in the

parametrisation, see Fig. 7.6. I find

f+,0(0) = 0.447 (fit1), f+,0(0) = 0.327 (fit2). (7.59)

The result from the higher order fit lies within the statistical error band. The error is

of the same order as the statistical error.

In [18] the vector form factor has been calculated by the MILC collaboration

in nonmoving NRQCD (see this paper for further references to older studies on

unquenched gauge configurations1). Using the Becirevic-Kaidalov ansatz it is given

at q2 = 0

f+,0(0) = 0.27(2)(4) (Dalgic et al., [18]). (7.60)

The first error is due to statistics and the chiral extrapolation whereas the second

estimates other systematic uncertainties.

The results in [136] have been obtained on the MILC gauge configurations and the

Fermilab action for the heavy quarks. The value reported there is

f+,0(0) = 0.23(2) (Okamoto et al. [136]). (7.61)

Tensor form factor

I perform the same analysis for the tensor form factors T1 and T2. Here I find

F = 0.281, α = 0.641, β = 1.364 (7.62)

with the covariance matrix

cov(F,α, β) =




−0.0183 −0.0628 −0.0954

−0.2180 −0.3265

−0.5030


 . (7.63)

1Note that the result in [62] where the Becirevic Kaidalov parametrisation was originally introduced
is obtained on quenched configurations. The value of f+,0(0) = 0.38(8) given there does not agree very
well with the recent, unquenched results.
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Chapter 7. Matching of heavy-light currents

From this I obtain the value at q2 = 0

T1,2(q
2 = 0) =





0.28(13) BK parametrisation

0.221 fit1

0.152 fit2.

(7.64)

The corresponding plots are shown in Figs. 7.9 and 7.8. The results for the tensor form

factor have to be compared to the results by Becirevic et al., who find

T (q2 = 0) = 0.24(3)+0.04
−0.01 (Becirevic et al. [58]) (7.65)

where the errors are statistical/systematic.
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Figure 7.8: Vector form factors T1(q
2), T2(q

2) from [29]. I show both the fit to the
BK parametrisation [62] and two parametrisations of different order in the analytical z
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Figure 7.9: Polynomial fit to the tensor form factor as a function of z.
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Chapter 8

Discussion

In this chapter I briefly review the methods used in this work, summarise my results

and discuss systematic uncertainties of the approach. I finally outline possible further

developments.

8.1 Summary of methods and results

In the first chapter I argue that heavy-light decays can be used to constrain the entries

of the CKM matrix. In addition, rare decays of B mesons are loop suppressed in

the Standard Model and offer an excellent opportunity to test new physics models.

The prediction of exclusive decays requires the evaluation of hadronic matrix elements.

After integrating out the physics at the electroweak scale these decays are described by

an effective theory in the continuum. I review the contribution of various operators in

the low energy Hamiltonian to heavy-light matrix elements and analyse their relative

importance. Lattice QCD can be used to calculate matrix elements of local operators

in a model independent way. This calculation is independent of the physics at the TeV

scale which only changes the value of the Wilson coefficients. In the Standard Model

the Wilson coefficients are now known at next-to-next-to-leading-log precision.

On presently available configurations the inverse lattice spacing is of the order of or

smaller than the bottom quark mass. High energy fluctuations of the heavy quark field

at this scale are integrated out to obtain an effective theory which can be discretised

on a lattice. It is important to calculate hadronic form factors in the large recoil

region where most experimental data can be found; for the decay B → K∗γ only the

point q2 = 0 is physical. A very successful approach for extending the calculation to

smaller q2 is to discretise the theory in a moving frame of reference. Over the last

years the m(oving)NRQCD action has been developed and extensively tested by the

HPQCD collaboration. The recent increase in precision of experimental results, which

is expected to improve in the future, justifies work on further reducing systematic errors

in this approach.

The heavy quark action can be systematically improved to reduce both nonpertur-
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bative errors in the heavy quark expansion and discretisation artifacts. Beyond tree

level the effective theory differs from full QCD at momentum scales of the order of the

heavy quark mass where a perturbative treatment of radiative corrections is justified

by the small value of the strong coupling constant. I calculate one loop corrections

to the action and heavy-light lattice operators in perturbation theory. In particular,

the calculation of radiative corrections to the tensor current is a new result which will

help to increase the precision in theoretical predictions of hadronic form factors for the

rare decay B → K∗γ. As the operators in the lattice action are very complicated I use

a Python code to automatically generate Feynman rules and perform the integrals

over phase space with the adaptive Monte Carlo integrator Vegas. Wherever possible

I have verified the correctness of my calculations by comparing to published results

for simpler setups. I also report on results from nonperturbative lattice simulations

obtained by other members of the HPQCD collaboration and discuss how heavy-light

form factors of the vector- and tensor-current can be extrapolated to the large recoil

region.

The results of my perturbative calculations are summarised in the following two

sections:

8.1.1 Heavy quark renormalisation parameters

I calculate the one loop radiative corrections of the leading order coefficients in

the moving NRQCD action. I find that, after including mean field corrections,

all renormalisation parameters are of order one and smaller. In particular the

renormalisation of the external momentum is small for not too large frame velocities, as

is expected from approximate reparametrisation invariance on the lattice. Care has to

be taken when choosing the integration contour to ensure that it can be Wick rotated to

Minkowski space. The heavy quark wavefunction renormalisation is infrared divergent

in Feynman gauge. I use a gluon mass to regulate the logarithmic divergence and

repeat the continuum calculation with this infrared regulator. As the effective theory

and full QCD agree in the infrared regime this artificial dependence on the gluon mass

cancels in the matching coefficients. By comparing to published results for simple

lattice setups I verify that my calculations are correct. I discuss the setting of the

typical scale in loop integrals and compare my results to nonperturbative calculations

of renormalisation parameters. The small mismatch might be explained by higher order

radiative corrections or nonperturbative effects and further work is necessary to resolve

this discrepancy.

In addition, I also present results obtained on a finite lattice. Twisted boundary

conditions suppress nonperturbative tunnelling in numerical simulations and serve as an
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infrared regulator by introducing a lower momentum cutoff. My results are compared

to high-β simulations on quenched gluon configurations. I find agreement between the

two methods and my one loop results from diagrammatic perturbation theory are used

to constrain the polynomial fit of high-β data. This reduces the errors on the two loop

coefficients.

Motivated by nonperturbative studies I also calculate the renormalisation of higher

order kinetic terms for the NRQCD action in a nonmoving frame. Care has to be

taken in the phase space integration as large peaks in the infrared region can spoil

the convergence of the Vegas integral. I demonstrate the infrared stability of my

results by varying the gluon mass and test my approach by reproducing results for

other heavy quark actions in the literature. The perturbative matching coefficient of

the O(a4) term, which breaks rotational invariance, is of the order one. Although my

results are of the same order of magnitude as those in previous perturbative studies

with similar actions, they are not compatible with the large correction that is found

by nonperturbative tuning of this term. However, these simulations have only been

carried out on relatively coarse lattices and with large momenta. Other ingredients of

the simulation, such as the gluon action, can have large discretisation errors. Further

nonperturbative calculations are needed to reach a definitive conclusion. I find that

including a further O(a6) correction to the lowest order kinetic term reduces the size

of radiative corrections substantially but has only a small impact on the lowest order

renormalisation parameters. Including this term also reduces the size of the matching

coefficient obtained in nonperturbative simulations; however, the reduction is only

about a factor two and the discrepancy persists.

8.1.2 Renormalisation of heavy-light currents

I calculate the perturbative one loop matching coefficients of the leading order heavy-

light vector and tensor currents. The continuum integrals are expanded in powers of

the inverse heavy quark mass. After constructing suitable operators the one particle

irreducible three point functions on the lattice are evaluated numerically with Vegas.

Infrared subtraction functions are introduced to stabilise the Monte Carlo integration.

An additional ingredient of the matching calculation is the light quark wavefunction

renormalisation. After verifying that I can reproduce published results for the ASQTad

action I calculate the wavefunction renormalisation of massless HISQ quarks at one

loop.

I show results for different heavy quark actions, using both the ASQTad and the

HISQ action to discretise the light quark. If the full O(1/m2, v4
rel) mNRQCD action

and ASQTad quarks are used the matching coefficients are around 0.4αs for the vector
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current and even smaller, around 0.2αs for the tensor current at the renormalisation

scale µ = m and not too large frame velocities. With αs = αV (2/a) ≈ 2/a I

conclude that the size of the leading order radiative corrections is around 12% for the

vector current and around 6% for the tensor current. This is the same order as 1/m

nonperturbative corrections but smaller than the naive estimate of O(αs) ≈ 30%. In a

nonmoving frame I find agreement with published results for the renormalisation of the

zero component of the vector current. The splitting between the matching coefficients

for different Lorentz indices of the current is reduced by using the full O(1/m2, v4
rel)

mNRQCD action in combination with the HISQ light quark action. This reduction is

much more pronounced for the tensor current. I interpret this as partial restoration of

Lorentz invariance by improvement of the action.

8.1.3 Nonperturbative form factor calculation

Finally, I report on the calculation of nonperturbative heavy-light form factors carried

out within the HPQCD collaboration. So far these calculations have been performed

with a simplified mNRQCD action which is correct at O(1/m). Currently the

simulations are repeated for the full O(1/m2, v4
rel) mNRQCD with tree level 1/m

corrections to the currents. Eventually these matrix elements will be combined with

my results for the radiative corrections to the leading order operators. Lattice data at

high momentum transfer q2 is extrapolated to the large recoil region q2 ≈ 0 using a

phenomenological ansatz for the form factors, systematic uncertainties in this ansatz

are estimated. I compare to results obtained in the literature. The nonperturbative

results presented in this thesis should be seen as preliminary and will be updated with

new data.

8.2 Discussion of uncertainties

As in every theoretical prediction it is important to quantify all uncertainties. In

the lattice calculation discretisation errors are reduced by using improved actions. As

mNRQCD is an effective action this introduces additional uncertainties, both from the

heavy quark expansion and the renormalisation of operators. In the following I estimate

the sources of errors and give a breakdown of all uncertainties in Tab. 8.1.

8.2.1 Finite volume effects

On a periodic lattice hadronic states can interact with their copies in a shifted lattice

volume. The lightest particle in the theory is the pseudoscalar meson with mass mPS.

Over the size of the lattice volume its wavefunction decays as exp[−mPSL] where L is
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the linear size of the lattice, so this exchange process is suppressed by an exponential

factor. Finite volume errors increase as the quark mass becomes more chiral. For the

“coarse” MILC configurations used in the numerical simulation the authors of [134] find

amPS ≈ 0.19 on the 203 × 64 lattice with amℓ/ams = 0.007/0.05, so a naive estimate

of finite volume errors would be

exp[−mPSL] ∼ e−4 ≈ 2%. (8.1)

The authors of [20] calculate the vector form factors f+, f0 on MILC lattices with

a Fermilab heavy quark and ASQTad light quarks. They estimate the finite volume

error on the form factors in finite volume heavy meson staggered perturbation theory

(HMSχPT) and conclude that the uncertainty on f+(q2) does not exceed 0.5%. In the

following I estimate the error from finite volume effects to be of the order of 1%.

8.2.2 Discretisation errors

Gluon action. The simple Wilson gluon action has errors of O(a2). In the Symanzik

improved action these are removed at tree level and one loop [78] and the discretisation

errors in this action are of O(a4, α2
sa

2).

Light quark action. The ASQTad action does not have O(a2) errors at tree level.

O(αsa
2) errors from highly virtual taste-changing gluon interactions are suppressed by

smearing of link variables. Taste breaking effects are reduced by a further factor of

3 − 4 in the HISQ action; the authors of [85] conclude that the remaining errors from

taste changing interactions are around 1%.

Heavy quark action. For the nonrelativistic heavy quark action discretisation errors

in the different lattice directions have to be discussed separately. Errors in the spatial

directions are reduced by using improved derivatives and chromodynamic fields in the

leading Hamiltonian. The corresponding errors in the temporal direction are reduced

by an improved time evolution, as discussed at the end of section 4.1.1. The remaining

errors are of O(a4) at tree level. In the higher order terms of the action unimproved

derivatives are used, however, as they are multiplied by higher powers of the inverse

quark mass they are O(a2/m2) . O(a4) as am & 1; on the coarse MILC lattices the

heavy quark mass is am = 2.8.

Radiative corrections will introduce errors of O(αsa
2). In numerical simulations

a tadpole improved, tree level action has been used. As demonstrated in this work,

tadpole improvement reduces the size of radiative corrections.
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The nonrelativistic heavy quark theory is constructed such that the fluctuations

both in the light and heavy quark within theB meson are of order ΛQCD. By discretising

the theory in a moving frame the same is true for the quarks in the final state meson.

I conclude that the leading discretisation errors from the actions are O(αs(aΛQCD)2).

On the coarse lattices with a−1 = 1.6 GeV and using αV (2/a) ≈ 0.3 and ΛQCD ≈
500 MeV I estimate the leading discretisation errors to be O(3%). As remarked above,

this is probably a conservative estimate as radiative corretions are reduced by tadpole

improvement and O(αsa
2) errors from the exchange of high energetic gluon are small

in the ASQTad and HISQ actions. To obtain a more realistic quantitative estimate of

discretisation errors would require simulation at different lattice volumes to measure

the coefficients of αnsa
m dependent terms.

Heavy-light operators. As the derivatives in the O(1/m) heavy-light operators are

unimproved this introduces discretisation errors of O(a2/m). On the coarse lattice with

am = 2.8 these errors are O((aΛQCD)2/(am)) = O(3.5%) and comparable to those from

the actions.

8.2.3 Heavy quark expansion

At tree level the heavy quark action is correct up to (and including) O(1/m2, v4
rel).

Errors in heavy meson energy splittings are then O((ΛQCD/m)2, v4
rel) ∼ 1%. Radiative

corrections will renormalise the operators in the action, leading to corrections of

O(αs/m,αsv
2
rel). However, some terms in the 1/m action are protected from

renormalisation by reparametrisation invariance and it is found that this symmetry is

only broken by higher order lattice artifacts in the discretised theory. In the mNRQCD

action used in nonperturbative simulations all coefficients in the action were set to their

tree level values. The errors are expected to be O(αsΛQCD/m,αsv
2
rel) ∼ 3%, where I

assume v2
rel ≈ 0.1.

For the calculation of meson masses and form factors the relevant hadronic scale is

ΛQCD. As discussed in section 4.1.2 additional scales enter in heavy-light decays. Here

the energy E′ and momentum p′ of the final state meson have to be small compared

to the heavy quark mass. By including 1/m operators for the calculation of the decay

matrix element these errors are reduced to O(αsE
′/m,E′2/m2) ∼ 8%. As can be seen

from Fig. 4.2 one has E′ . 0.25 for the smallest q2 in the form factor calculation.

8.2.4 Higher order radiative corrections

In this work the renormalisation constants of operators in the heavy quark action

and the matching coefficients have been calculated at the one loop order in lattice
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perturbation theory. Higher order corrections enter at O(α2
s) ∼ 9%. Again, this is a

conservative estimate as radiative corrections are reduced by tadpole improvement of

the action. Further work on renormalising the heavy quark action to two loop order,

using a combination of lattice perturbation theory and high-β simulations is currently

carried out [108, 137].

Mixing down

As the lattice introduces a momentum cutoff, higher order operators can mix down

to lower order operators under renormalisation. This can be seen immediately from

dimensional arguments: An operator Q
(1)
j with a derivative operator will generate

corrections proportional to αs/(am) to the leading order operator Q(0). As am & 1

this seems to violate the power counting in 1/m. However, if instead one changes basis

and works with subtracted higher order operators,

Q
(1)sub
j = Q

(1)
j − αsξj0Q

(0), (8.2)

these will not mix down to the leading operator at O(αs). Nonperturbative matrix

elements of Q
(1)sub
j are suppressed by 1/m as expected from power counting.

8.2.5 Form factor extrapolation

To extrapolate the lattice data for heavy-light form factors requires a phenomenological

ansatz for its functional dependence on the momentum transfer q2. The uncertainties

can be estimated by comparing results using different functional forms, see discussion

in section 7.3.2. There I find that, for currently available data, this uncertainty is

comparable to that from statistical/fitting errors.

8.2.6 Chiral extrapolation

The light quark masses used in the simulations are unphysically heavy, the lightest

pseudoscalar particle on the most chiral ensemble of coarse lattices has a mass of

mPS ≈ 300 MeV which has to be compared to that of a physical pion, mπ ≈ 140 MeV.

Chiral perturbation theory, an expansion in the light quark masses and small meson

momenta, is used to extrapolate to the physical point. In [18] the chiral extrapolation

is carried out for the vector form factors. As can be seen from Figs. 10 to 12 in [18] the

difference between the most chiral data point (which corresponds to the quark masses

used in our simulations) and the physical point never exceeds 10%. I take this as a naive

upper limit on corrections from the chiral corrections to our results. To extrapolate to

the chiral limit more calculations with different light quark masses are necessary.
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Source of error estimate

Finite volume effects ∼ 1%

Discretisation [actions] O(αs(aΛQCD)2) . 3%

Discretisation [operators] O((aΛQCD)2/(am)) ∼ 3.5%

Heavy quark expansion [action] O(αsΛQCD/m,αsv
2
rel) ∼ 3%

Heavy quark expansion [operators] O(αsE
′/m,E′2/m2) ∼ 8% (at q2 ≈ 16 GeV2)

Radiative corrections O(α2
s) . 9%

Chiral extrapolation . 10%

Table 8.1: Summary of uncertainties

8.2.7 Statistical/fitting errors

Statistical errors are still relatively large and increase with the frame velocity. They

can be reduced by using more elaborate sources. Currently, calculations with random

wall sources are carried out by Zhaofeng Liu [30].

8.3 Outlook

There are several ways of extending the work presented in this thesis. Using an

improved heavy quark action which includes radiative corrections to the operators

has a wide impact on the precision of predictions both for heavy-heavy and heavy-light

mesons. Recent experimental discoveries, such as that of the ηb(1s) meson [64] justify

further development and improvement of the lattice heavy quark action.

To achieve sufficient precision it is necessary to renormalise other operators in the

action. The chromomagnetic σ · B term is of particular interest as it determines the

hyperfine splitting between the Υ(1s) state and the ηb(1s) meson. The perturbative

calculation has to be carried out in background field gauge as only in this gauge the one

loop effective potential has the same symmetries as the tree level action. While so far

the radiative corrections have only been calculated for higher order kinetic terms in the

nonmoving NRQCD action, it is straightforward to extend this to the corresponding

operators in the mNRQCD action.

Precise knowledge of the heavy quark mass renormalisation, which is obtained

from radiative corrections to the self-energy, will help to constrain this fundamental

parameter of the Standard Model. High-β simulations for extracting higher order loop

corrections are carried out on quenched gauge configurations and only include gluonic

contributions to the heavy quark self-energy. To complement these calculations it is

necessary to include the effects of fermionic vacuum polarisation. This can be done in
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diagrammatic perturbation theory, at two loop order only a small number of diagrams

needs to be evaluated. Calculating higher order loop corrections will also help to

understand the current, small discrepancy between perturbative calculations of leading

order renormalisation constants and results from nonperturbative lattice simulations.

Naively, two loop radiative corrections to the leading order (in the 1/m expansion)

heavy light currents are expected to be around 9% and of the same order as 1/m

corrections, so it is necessary to calculate the coefficients at next order in the αs

expansion.

Clearly, the statistics of nonperturbative heavy-light form factor calculations need

to be increased to improve the extrapolation to physical momenta transfers q2.

As long as the lattice spacing of available configurations is larger than the Compton

wavelength of the heavy quark it is justified to work with the effective, nonrelativistic

discretisation used in this work. In the future, when sufficiently fine lattices might

become available, it is desirable to use a relativistic quark action instead. For charm

quarks with a mass of around 1.2 GeV first results have been obtained by the HPQCD

collaboration. The HISQ action is used for the valence quarks. The finest ASQTad

configurations generated by the MILC collaboration have a = 0.045 fm [138], so that

am is about one. Note that the cost of a simulation scales with a high power of the

inverse lattice spacing. For analysing experimental results expected within the next

few years it is clearly necessary to use an effective lattice action for heavy quarks to

achieve sufficient accuracy.

It should be stressed that the form factor calculations I present in this thesis only

give the local contribution to the rare decays B → K∗γ and B → K(∗)ℓℓ. As discussed

in detail in 2.3.2 there are other, nonlocal contributions which can not be calculated

in lattice QCD. Although there are indications that these contributions are small in

the Standard Model, the size of these effects is hard to quantify. To make complete

predictions for these processes, the lattice approach has to be combined with other

methods.
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Appendix A

Conventions

In this appendix I summarise some conventions and notation used in this work.

A.1 Euclidean space ↔ Minkowski space

The following conventions are used to relate quantities in Minkowski space (labelled

by (M)) with metric gµν = diag(+1,−1,−1,−1) to the corresponding expressions in

Euclidean space with metric δµν = diag(+1,+1,+1,+1).

A.1.1 Four-vectors and derivatives

x0 = x0 = ix0
(M) = ix

(M)
0 xj = xj = xj(M) = −x(M)

j (A.1)

∂0 = ∂0 = −i∂0
(M) = −i∂(M)

0 ∂j = ∂j = −∂j(M) = ∂
(M)
j

A.1.2 Gauge fields

As the covariant derivative Dµ = ∂µ + igAµ transforms as ∂µ the gauge field Aµ is

defined in Euclidean space as follows:

A0 = A0 = −iA0
(M) = −iA(M)

0 Aj = Aj = −Aj(M) = A
(M)
j (A.2)

The chromoelectric field E and the chromomagnetic field B are thus

Ek = Ek = iEi(M) and Bk = Bk = Bi
(M). (A.3)

where they are defined by

Ek = −F0k = −(∂0Ak − ∂kA0) and Bk = −1

2
ǫkℓmFℓm. (A.4)

ǫkℓm is completely antisymmetric with ǫ123 = +1.
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In Euclidean space the chromodynamic fields in the rest frame (E′, B′) and lattice

frame (E, B) are related by

E′ = γ

(
E + iv × B − γ

1 + γ
v(v · E)

)
, (A.5)

B′ = γ

(
B + iv × E − γ

1 + γ
v(v · B)

)
.

A.1.3 Dirac matrices

To ensure that the Dirac matrices in Euclidean space satisfy {γµ, γν} = 2δµν define

γ0 = γ0 = γ0
(M) = γ

(M)
0 , γj = γj = −iγj(M) = iγ

(M)
j . (A.6)

Thus γ5 = γ0γ1γ2γ3 = iγ0
(M)γ

1
(M)γ

2
(M)γ

3
(M) = γ

(M)
5 . The definition of γ5 in

d 6= 4 dimension can cause problems. For the continuum calculation a completely

anticommuting γ5 is used; this corresponds to the naive dimensional regularisation

(NDR) scheme [40].

I also define in Euclidean space

σµν =
1

2
[γµ, γν ]. (A.7)

The Pauli-Dirac representation for gamma matrices in Minkowski space is

γ0
(M) =


I 0

0 −I


 γj(M) =


 0 σj

−σj 0


 γ

(M)
5 = iγ0γ1γ2γ3 =


0 I

I 0


 (A.8)

where σj are the Pauli matrices.

A.2 Lattice derivatives and field strength

I give explicit expressions for the discretised derivatives I use in the lattice action. All

expressions are constructed from the elementary forward-, backward- and symmetric

difference operators

∆+
µψ(x) = Uµ(x)ψ(x + µ̂) − ψ(x), (A.9)

∆−
µψ(x) = ψ(x) − U−µ(x)ψ(x − µ̂),

∆±
µψ(x) =

1

2
[Uµ(x)ψ(x + µ̂) − U−µ(x)ψ(x − µ̂)] .
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For performance reasons, a maximally local discretisation of higher-order operators is

used by balancing the occurrence of these three types. All expressions are symmetrised.

Unimproved derivatives

∆(2n) =
3∑

j=1

(∆+
j ∆−

j )n (A.10)

∆(2)
v =

1

2

3∑

j,k=1

vjvk
(
∆+
j ∆−

k + ∆−
j ∆+

k

)

∆(3)
v =

1

2

3∑

j,k,ℓ=1

vjvkvℓ
(
∆+
j ∆±

k ∆−
ℓ + ∆−

j ∆±
k ∆+

ℓ

)

∆(4)
v =

1

2

3∑

j,k,ℓ,m=1

vjvkvℓvm
(
∆+
j ∆−

k ∆+
ℓ ∆−

m + ∆−
j ∆+

k ∆−
ℓ ∆+

m

)

Improved derivatives

∆̃±
j = ∆±

j − 1

6
∆+
j ∆±

j ∆−
j (A.11)

∆̃(2) = ∆(2) − 1

12

3∑

j=1

∆+
j ∆−

j ∆+
j ∆−

j

∆̃(2)
v = ∆(2)

v +
1

4

3∑

j,k=1

vjvk∆+
j ∆−

j ∆+
k ∆−

k

− 1

12

3∑

j,k=1

vjvk
(
∆+
j ∆−

j ∆+
j ∆−

k + ∆−
j ∆+

j ∆−
j ∆+

k

+∆+
j ∆−

k ∆+
k ∆−

k + ∆−
j ∆+

k ∆−
k ∆+

k

)

Unimproved adjoint derivative

∆ad
µ F̃ρσ(x) =

1

2

(
Uµ(x)F̃ρσ(x+ µ̂)U †

µ(x) − U−µ(x)F̃ρσ(x− µ̂)U †
−µ(x)

)

(A.12)

Improved field strength tensor

F̃µν(x) =
5

3
Fµν(x) −

1

6

(
Uµ(x)Fµν(x+µ̂)U †

µ(x) (A.13)

+ U−µ(x)Fµν(x−µ̂)U †
−µ(x) − (µ↔ ν)

)
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Fµν(x) =
−i
2g

(
Ωµν(x) − Ω†

µν(x)
)

(A.14)

Ωµν(x) =
1

4

∑

{(α,β)}µν

Uα(x)Uβ(x+α̂)U-α(x+α̂+β̂)U-β(x+β̂)

with

{(α, β)}µν = {(µ, ν), (ν, -µ), (-µ, -ν), (-ν, µ)} for µ 6= ν (A.15)
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Twisted boundary conditions

In the following I summarise some technical details on twisted boundary conditions

[109, 110] which are used for the high-β simulations discussed in section 4.2.2.

B.1 Basic formalism

Consider a four dimensional lattice with finite spatial extent L and temporal extent T .

The latter can be infinite as I will only consider twist in up to three (spatial) directions.

In [109] the formalism is outlined for twist in two directions.

B.1.1 Gauge fields

For a gauge link Uµ(x) the shifted field at x+ Lν̂ is given by

Uµ(x+ Lν̂) = ΩνUµ(x)Ω
−1
ν with ν = 1, 2. (B.1)

As the order of shifts does not matter the two twist matrices have to satisfy

Ω1Ω2 = zΩ2Ω1 with z = e2πi/N ∈ Centre{SU(N)}. (B.2)

It is not necessary to know the explicit form of the matrices Ων ; they have the following

properties:

• The Ων are fixed up to unitary transformations.

• Any matrix which commutes with Ω1 and Ω2 is a multiple of the unit matrix.

• ΩN
ν = (−1)N−1Id.

In perturbative calculations the gauge potential Aµ(x) is used which is related to the

links by Uµ(x) = egaAµ(x). Aµ(x) is traceless, antihermitian and satisfies the same

periodicity condition as the links,

Aµ(x+ Lν̂) = ΩνAµ(x)Ω
−1
ν . (B.3)
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2

L

π2 π
NL

k

l

1 2
π

NL

2(n  ,n  ,0,0)

Figure B.1: The total lattice momentum k is split into an untwisted contribution ℓ which
is a multiple of 2π

L and a twisted part 2π
NLn. For twist in two directions the integer valued

twist vector is n = (n1, n2, 0, 0) with 0 ≤ n1, n2 ≤ N − 1.

In momentum space the gauge potential can be expanded in plane waves

Aµ(x) =
1

L3TN

∑

k

Γke
ikxe

i
2
kµaÃµ(k), (B.4)

and Γk is a complex N ×N matrix which satisfies the condition

ΩνΓkΩ
−1
ν = eikνLΓk. (B.5)

Using ΩN
ν = (−1)N−1Id this implies that kν is a multiple of 2π

LN . It is convenient to

split the momentum in a untwisted component ℓ, which is a multiple of 2π
L , and a

twisted component 2π
LN n. For twist in two directions the integer valued twist vector is

n = (n1, n2, 0, 0) with 0 ≤ n1, n2 ≤ N − 1, see Fig. B.1. It turns out that Γk only

depends on the twisted part of the momentum, so in the following I write Γn instead.

The solution of (B.5) is unique up to a phase which can be chosen such that

Γn = Ω−n2
1 Ωn1

2 z
1
2
(n1+n2)(n1+n2−1). (B.6)

Again, it is not necessary to know an explicit representation of the Γn as they will only

appear in traces (for the gluonic action) or between quark spinors (in the fermionic
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action). The following properties can be used to evaluate these traces:

Γn=0 = Id, (B.7)

tr{Γn} = 0 unless n = 0, (B.8)

Γ†
n = z−

1
2
(n,n)Γ−n, (B.9)

Γn′Γn = Γn′+nz
1
2
(〈n′,n〉−(n′,n)). (B.10)

Here the symmetric and antisymmetric products are defined as

(n′, n) = n′1n1 + n′2n2 + (n′1 + n′2)(n1 + n2), (B.11)

〈n′, n〉 = n′1n2 − n′2n1.

As the vector potential has to be traceless, condition (B.8) implies that Ãµ(k) = 0 if the

twisted part of k vanishes. For every momentum ℓ there are N2 − 1 degrees of freedom

which are characterised by their twist vector n = (n1, n2, 0, 0) with 0 ≤ n1, n2 ≤ N − 1

and (n1, n2) 6= (0, 0). In particular this implies that there is an infrared cutoff as the

momentum can not be smaller than 2π
NL . Note that the number of degrees of freedom

has not changed: the sum over colour indices a = 1, ..., N2 − 1 has been replaced by a

sum over twist vectors.

The formalism can be extended to more than two twisted directions. In general the

twist matrices satisfy

ΩµΩν = zµνΩνΩµ with zµν = e2πinµν/N ∈ Center{SU(N)}. (B.12)

The antisymmetric tensor nµν completely defines the nature of the boundary conditions.

In [102] explicit expressions are given for the QCD gauge group SU(3) and up

to four twisted directions. All relations in the previous section, in particular the

expressions for Clebsch Gordon coefficients, remain unchanged. The only difference

is that the third and fourth component of the twist vector are nonzero. They are

however constrained by (B.5) and one finds n = (n1, n2,−(n1 + n2), 0) in three and

n = (n1, n2,−(n1 + n2), n1 − n2) in four dimensions [102]. All calculations in section

5.2 were carried out with three twisted directions.

B.1.2 Fermionic variables

Fermionic variables can be introduced by replacing SU(N) quark spinors by N × N

matrices which transform in colour-smell space [139].
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Appendix C

Poles of improved propagators

For certain loop momenta the integration contour in a given one loop diagram has

to be deformed to ensure that it can be Wick rotated back to Minkowski space

without violating causality. For this it is essential to know the position of poles of

all propagators. It is straightforward to find an analytic expression for these poles

for the naive gluon and light fermion actions. However, this is not true any more for

the Symanzik improved gluon action or the improved relativistic light quark actions,

ASQTad and HISQ.

C.1 Symanzik improved gluons

I first analyse the poles of the Symanzik improved gluon propagator discussed in [116].

The gluon two-point function is in Feynman gauge

Mµν =

(∑

ρ

qµρk̂
2
ρ + λ2

)
δµν + (1 − qµν)k̂µk̂ν (C.1)

where qµν = 1 + 1
12(k̂2

µ + k̂2
ν) and k̂µ = 2 sin(kµ/2).

To find the poles of the propagator, I first compute the determinant of this matrix

which is a polynomial in k̂2
j and ω = k̂2

0 . For a given three momentum kj ∈ [−π, π] the

zeros of this expression in the z = eik0 plane can be obtained by solving detM(ω) = 0

and then using ω = 2 − z − 1/z.1 Note that the solutions come in pairs, (z+, z−) with

z+z− = 1 so that one of them lies inside, the other outside the unit circle.

It turns out that for a given three momentum there are 14 solutions. In Fig. C.1

these are plotted in the complex z-plane for 1,000 randomly chosen kj. For the gluon

mass a value of λ2 = 10−6 was chosen. To compare the poles in the improved propagator

to the naive poles, their absolute value is computed and it is compared to that of the

1It turns out, that the determinant can be factored as det M(ω) = (ω +
P3

j=1 k̂2
j + λ2) det M̃(ω) so

that one solution coincides with the root of the naive propagator. Numerically, for small λ2 one of the
solutions of det M̃(ω) = 0 is very close to the naive solution.
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-10

 0
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 0  10  20
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 {

z}

Re {z}

|z| = 1

Figure C.1: Poles of the Symanzik improved gluon propagator in the complex plane

naive poles given by

z
(naive)
± =

1

2

(
2 + k̂

2
+ λ2 ±

√
(k̂

2
+ λ2)(k̂

2
+ λ2 + 4)

)
(C.2)

with k̂
2

= 4
∑3

j=1 sin2(kj/2).

In Fig. C.2 these absolute values are plotted for the same random three momenta.

As can be seen from this plot the absolute value of an improved pole is either larger

than z
(naive)
+ or smaller than z

(naive)
− but it never lies between these values.

I performed a similar analysis for the propagator in Coulomb gauge and find that

also in this case the poles of the Symanzik improved propagator always lie outside the

band defined by z
(naive)
− < |z| < z

(naive)
+ .

C.2 Improved relativistic fermions

The same analysis can be performed for the poles of the ASQ/HISQ propagator. The

denominator for massless quarks

D =
∑

ν

sin2(kν)

(
1 +

1

6
sin2(kν)

)2

(C.3)
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Figure C.2: Absolute value of poles in the naive and Symanzik improved gluon propagator

as a function of |k̂| = 2
√∑3

j=1 sin2(kj/2).

can be written as a function of ω = sin2(k0). For a given three momentum kj ∈ [−π, π]

the cubic equation D(ω) = 0 can be solved by writing it in standard form

y3 − 12y + 36
◦
k

2

− 16 = 0 with y = ω + 4 (C.4)

where I use the notation
◦
k

2

=
∑3

j=1 sin2(kj). Defining

q = 18
◦
k

2

− 8, D = q2 − 64, P = 2 sgn q (C.5)

this cubic equation with real coefficients has either three real or one real and a pair of

complex solutions depending on the sign of the discriminant D [131].

• D ≤ 0 ⇔
◦
k

2

≤ 8/9:

y1 = −2P cos β, y2,3 = 2P cos
(
β ± π

3

)
with β =

1

3
arccos

q

P 3
. (C.6)
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-5
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Figure C.3: Poles of the massless ASQ/HISQ fermion propagator in the complex plane

• D > 0 ⇔
◦
k

2

> 8/9:

y1 = −2P cosh β, y2,3 = P (cosh β ± i
√

3 sinhβ) with β =
1

3
arccosh

q

P 3
.

(C.7)

For each ω = y − 4 one obtains four solutions for z = eik0 as

z±± = ±
√

1 − 2ω ± 2
√
ω2 − ω. (C.8)

Fig. C.3 shows the distribution of the poles in the complex plane. The light quark

mass was chosen to be zero. As above, for a given kj the absolute value of the poles

in the massless ASQ/HISQ propagator is compared to that of the poles in the naive

propagator which are given as

z
(naive)
±± = ±

√

1 + 2
◦
k

2

± 2

√
◦
k

2

(1 +
◦
k

2

). (C.9)

Fig. C.4 shows the absolute values of the massless naive and ASQ/HISQ poles as a

function of
◦
k

2

. For each kj ∈ [−π, π] the poles in the improved propagator lie outside
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Figure C.4: Absolute value of poles in the massless naive and ASQ/HISQ fermion propagator

as a function of a|
◦
k| =

√∑3
j=1 sin2(kj).

the region defined by |z(naive)
±+ | < |z| < |z(naive)

±− |.

I study how the poles move in the complex plane as a function of the three

momentum. To take care of causality the ǫ prescription is employed by subtracting

iǫ from the denominator which becomes

D =
∑

ν

sin2(kν)

(
1 +

1

6
sin2(kν)

)2

− iǫ. (C.10)

I analyse the behaviour of the poles outside the unit circle with positive real part, see

Fig. C.5. All other poles can be obtained from these by replacing z → 1/z,−z,−1/z.

For
◦
k = 0 the physical pole lies on the unit circle and has a small negative imaginary

part. There are two additional spurious poles at larger Re{z} one with a small negative

and one with a small positive part. As |
◦
k| increases the physical pole moves outwards

whereas one of the spurious poles moves outwards just below the real axis and the other

inwards just above the real axis. For
◦
k

2

= 8/9 the physical pole touches one of the

spurious poles and both, now being complex conjugates of each other, start to move

away from the real axis.
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Re{z}

Im{z}

|z|=1

Figure C.5: Movement of three of the twelve poles in the ASQ/HISQ propagator in the

complex plane. The arrows indicate increasing |
◦
k|.

C.3 Poles of three point functions

In this section I discuss the poles of one particle irreducible three point integrals that

arise in the calculation of the renormalisation of the vector- and tensor current in

chapter 7.

As for the self-energy calculations in chapter 5 care has to be taken when choosing

the integration contour in the k0 plane. For certain values of the loop momentum the

heavy quark pole can lie outside the unit circle and the integration contour has to be

deformed to ensure that it can be Wick-rotated back to Minkowski space.

Let the position of the heavy quark pole in the z plane be denoted by zh and the

poles of the naive gluon propagator by z− and z+. The poles of the naive light quark

action are z
(ℓ)
− and z

(ℓ)
+ whereas the six poles of the improved light quark action are

located at z
(ℓ)
1,−, z

(ℓ)
2,−, z

(ℓ)
3,− and z

(ℓ)
1,+, z

(ℓ)
2,+, z

(ℓ)
3,+ (and the corresponding positions with

opposite sign). Analytical expressions are given in section C.2. Note that only one of

the poles is physical.

From the calculation of heavy quark renormalisation parameters it is known that

|zh| < z+ and as the poles of the Symanzik improved gluon action lie outside the band

defined by z− < |z| < z+ the same holds for improved gluons. It is thus only necessary

to study the relative position of the heavy quark poles and the poles of the improved

light quark propagator.

C.3.1 Simple heavy quark action.

For the unimproved heavy quark action defined in (5.26) at mass m = 2.8 and

stability parameter n = 2 I generated a large number of gluon momenta k and verified

that for each k one has |zh| < min{z(ℓ)
1,+, z

(ℓ)
2,+, z

(ℓ)
3,+}. I performed this check for two

frame velocities, v = 0.3 and v = 0.95. In the integration code I first test whether
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−
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+
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Figure C.6: Integration contour for the unimproved action. The ASQTAD light quark poles
are denoted by ×, the poles in the naive light quark propagator by ⊠, the naive gluon poles
by ◦ and the heavy quark pole by �.
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mNRQCD [full]
mNRQCD [simple]

Figure C.7: Absolute values of poles as a function of x with k = (x, 0, 0). The frame
velocity is v = 0.95, the heavy quark mass m = 2.8 and the stability parameter n = 2.

|zh| < {|z(ℓ)
+ |, |z+|} as the naive light quark positions can be calculated very easily

and |z(ℓ)
+ | < |z(ℓ)

+,j|. If this is the case I shift the contour halfway between |zh| and

min{|z(ℓ)
+ |, |z+|}, see Fig. C.6. If |zh| > |z(ℓ)

+ | I use the smallest |z(ℓ)
+,j | instead of |z(ℓ)

+ |.

C.3.2 Full heavy quark action.

For the full O(1/m2, v4
rel) heavy quark action the situation is more complicated. It

turns out that at high frame velocities and for certain configurations in momentum

space the heavy quark pole can cross poles of the light propagator outside the unit

circle. To illustrate this I plot the following quantities in Fig. C.7 for k = (x, 0, 0) and

−π < x < π:
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Figure C.8: Integration contour for momentum space configurations with pole crossing.
The light quark poles are denoted by ×, the naive gluon poles by ◦ and the heavy quark
pole by �.

• |zh|: Absolute value of the heavy quark poles (green) both for the full mNRQCD

action and the simple action with H0 only. The mass of the heavy quark is

chosen to be m = 2.8 in both cases, the stability parameter is n = 2 and the

frame velocity v = 0.95.

• z±: Naive gluon poles (red)

• |z(ℓ)
±,j|: Absolute value of the light quark poles (blue), see appendix C.2.

We have |z(ℓ)
−,3| < |z(ℓ)

−,2| ≤ |z(ℓ)
−,1| < 1 < |z(ℓ)

+,1| ≤ |z(ℓ)
+,2| < |z(ℓ)

+,3|

From the plot it can be seen that for certain negative values of x one has |z(ℓ)
+,1| < |zh| <

|z(ℓ)
+,2|. For the full action the dispersion relation is closer to the one in the continuum

which bends |zh| up for momenta antiparallel to the frame velocity. On the other hand

the dispersion relation of the light quark action has doublers at the edge of the Brillouin

zone.

To be able to Wick-rotate back to Minkowski space in these cases it is necessary to

deform the contour such that it encloses the heavy quark pole but not the light quark

poles outside the unit circle, see Fig. C.8.

For each spatial momentum k generated by the Vegas integration code I first check

if a pole shift using the naive poles is possible. If not I compute the exact positions of

the ASQ poles (see appendix C.2 and in particular Fig. C.5 which shows the movement

of the light quark poles in the complex planes) and distinguish the following cases:
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C.3. Poles of three point functions

1. |zh| < |z(ℓ)
−,1| or |zh| < z−. Shifting the contour is not necessary.

2. z−, |z(ℓ)
−,j | < |zh| < z+, |z(ℓ)

+,1|. I shift the contour halfway between |zh| and

min{z+, z(ℓ)
+,1}.

3. |z(ℓ)
+,j | < |zh| < |z(ℓ)

+,j+1|, z+. It is necessary to integrate along three contours: (a)

counterclockwise without shift, (b) clockwise with shifting the contour between

|z(ℓ)
+,j | and |zh| and (c) counterclockwise with the contour between |zh| and

min{|z(ℓ)
+,j+1|, z+}.

Note that pole crossing only occurs for large momenta. I conclude that this is a lattice

artifact which would disappear in the continuum limit.
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Appendix D

Quark field renormalisation parameters

in continuum QCD

In this chapter I discuss the one-loop renormalisation of the mass and wavefunction

of relativistic quarks in the continuum. I work in 4 − ǫ dimensions to regulate UV

divergences and use a gluon mass term to render the integrals IR finite. I give explicit

expressions for renormalisation parameters in the on-shell- and the MS-scheme.

D.1 Renormalisation of quark fields in QCD

Bare (denoted by superscript (0)) and renormalised quantities are related via

ψ(0) = Zψψ = (1 + αsδZψ + . . . )ψ, m(0) = Zmm = (1 + αsδZm + . . . )m. (D.1)

The quadratic part of the QCD Lagrangian is

L = iZψψ∂/ ψ − ZψZmψmψ (D.2)

= ψ(i∂/ −m)ψ + αsψ(δZψi∂/ − (δZψ + δZm)m)ψ + . . . .

At O(αs) the correction to the heavy quark self energy is given by the sum of the

+−iΣ =

Figure D.1: O(αs) correction to the quark self-energy in continuum QCD
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Appendix D. Quark field renormalisation parameters in continuum QCD

rainbow diagram and the counterterm in Fig. D.1

−iΣ(p) = (µ2)ǫ/2(ig)2T aT a
∫

ddk

(2π)d
γµ
i(k/ + p/ +m)

(k + p)2 −m2
γµ

−i
k2 − λ2

(D.3)

+ iαs(δZψp/ − (δZψ + δZm)m)

=
iαs
3π

Γ(ǫ/2)(4π)ǫ/2(µ2)ǫ/2
(
A(p2)p/ −B(p2)m

)

+ iαs(δZψp/ − (δZψ + δZm)m)

with

A(p2) = (2 − ǫ)

∫ 1

0
dx (1 − x)

[
x(x− 1)p2 + xm2 + (1 − x)λ2

]−ǫ/2
(D.4)

B(p2) = (4 − ǫ)

∫ 1

0
dx
[
x(x− 1)p2 + xm2 + (1 − x)λ2

]−ǫ/2
.

D.1.1 On-shell scheme

In the on-shell scheme where the renormalised propagator is i/(p/ −m) the counterterms

are fixed by the two conditions

Σ(p/ = m) = 0,
dΣ

dp/
(p/ = m) = 0. (D.5)

Massless quarks. For m = 0 one has A(0) = 1 − ǫ
4 − ǫ

2 log λ2 and obtains

αsδZ
(os)
ψ =

αs
3π

(
−2

ǫ
+

1

2
+ log λ2/µ2

)
with

2

ǫ
=

2

ǫ
− γE + log 4π.

. (D.6)

Massive quarks. The mass counterterm is IR finite and given by

αsδZ
(os)
m =

αs
3π

Γ(ǫ/2)(4π)ǫ/2(µ2)ǫ/2
(
A(m2) −B(m2)

)
(D.7)

=
αs
3π

(
−3

2

ǫ
+ 3 logm2/µ2 − 4

)
.

The wavefunction renormalisation has IR divergent contributions, it can be written

αsδZ
(os)
ψ = −αs

3π
Γ(ǫ/2)(4π)ǫ/2(µ2)ǫ/2

(
A(m2) + 2m2 d(A−B)

dp2
(m2)

)
. (D.8)
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D.1. Renormalisation of quark fields in QCD

The IR divergence is contained in the following Feynman-parameter integral

m2d(A−B)

dp2
(m2) = ǫ

∫ 1

0
dx

x(x2 − 1)

x2 + (1 − x)λ2/m2
. (D.9)

Neglecting terms of O(λ/m) one can replace x2 + (1 − x)λ2/m2 7→ x2 + λ2/m2 and

evaluation of the remaining integral is straightforward

∫ 1

0
dx

x(x2 − 1)

x2 + λ2/m2
=

1

2

(
(1 + λ2/m2) log

[
1 +m2/λ2

]
− 1
)

(D.10)

= −1

2
(1 + log λ2/m2) + O(λ/m).

I find for the wavefunction counterterm

αsδZ
(os)
ψ =

αs
3π

(
−2

ǫ
+ logm2/µ2 − 4 − 2 log λ2/m2

)
. (D.11)

D.1.2 MS-scheme

In this scheme only the UV divergences are absorbed in the counterterms,

αsδZ
(MS)
ψ = −αs

3π

2

ǫ
, αsδZ

(MS)
m = −αs

π

2

ǫ
. (D.12)

This implies that the mass in the MS scheme depends on the renormalisation scale µ.

The relation between the masses in the two different schemes is given by

m(0) = Z(MS)
m m(MS) = Z(os)

m m(os) (D.13)

and at one loop one obtains

m(MS)(µ) =
(
1 +

αs
3π

(
3 logm2/µ2 − 4

))
m(os). (D.14)
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Appendix E

Mean field corrections

In the following I give explicit expressions for the mean field corrections to Ωj for

the simple action defined in (5.26) and the full O(1/m2, v4
rel) mNRQCD action and

“complete” cancellation of adjacent links, UµU
†
µ 7→ 1.

For the simple action I find for the mean field corrections with stability parameter

n = 2

Ω̂
(tadpole)
0 = −Ω̂

(tadpole)
1 = u

(2)
0

(
1 − v2

8
+

3 − v2

γm
− 3 − 2v2 + v4

8γ2m2

)
,

Ω̂
(tadpole)
2 = Ω̂(tadpole)

v = u
(2)
0

(
− 2 +

v2

16
+

−9 + 3v2

4γm
+

3 − 2v2 + v4

16γ2m2

)
,

whereas for the full O(1/m2, v4
rel) action I obtain

Ω̂
(tadpole)
0 = −Ω̂

(tadpole)
1 = u

(2)
0

(
1 − v2

3
− 19v4

768
− v6

1024

+
2688 − 852v2 + 11v4 − 13v6

768γm

− 3456 − 4920v2 + 2497v4 − 264v6 + 15v8

3072γ2m2

− 516 − 1264v2 + 1058v4 + 275v6 − 15v8

768γ3m3

− −591 + 1460v2 − 1358v4 + 448v6 + 5v8

256γ4m4

− 81 − 216v2 + 246v4 − 128v6 + 25v8

64γ5m5

)
,
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Appendix E. Mean field corrections

Ω̂
(tadpole)
2 = u

(2)
0

(
− 5

3
+

7v2

32
+

13v4

512
+

v6

2048

+
−10880 + 4480v2 − 215v4 + 35v6

3072γm

+
−12480+10288v2 +4321v4−360v6+15v8

6144γ2m2

+
2412 − 4864v2 + 3974v4 + 311v6 − 15v8

1536γ3m3

+
−879 + 2100v2 − 1982v4 + 640v6 + 5v8

512γ4m4

+
81 − 216v2 + 246v4 − 128v6 + 25v8

128γ5m5

)
,

Ω̂(tadpole)
v = u

(2)
0

(
− 5

3
+

11v2

48
+

29v4

1536
+

v6

2048

+
−5440 + 1860v2 − 51v4 + 16v6

1536γm

− 12480 + 712v2 − 3521v4 + 320v6 − 15v8

6144γ2m2

+
2412 − 3016v2 + 2306v4 + 299v6 − 15v8

1536γ3m3

+
−879 + 1812v2 − 1614v4 + 544v6 + 5v8

512γ4m4

+
81 − 216v2 + 246v4 − 128v6 + 25v8

128γ5m5

)
.

Numerical values for Ω̂
(tadpole)
j and Ω

(tadpole)
j with a heavy quark mass of m = 2.8 and

stability parameter n = 2 are presented in Tabs. 5.4 and 5.5.
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Appendix F

Perturbative results for a simple action

In this appendix I show results for the renormalisation parameters and matching

coefficients of another simple mNRQCD action. The action has improved kinetic terms

and time evolution equation. H0 is the same as in (4.34) whereas δH = contains the

correction term δHcorr. and the chromomagnetic interaction term σ · B. I use a heavy

quark mass m = 2.8, stability parameter n = 2 and the Symanzik improved gluon

action.
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Figure F.1: Renormalisation parameters for a simple mNRQCD with improved derivatives
and time evolution equation. The action is complete to O(1/m) and contains the
chromomagnetic interaction term σ·B in δH. Mean field corrections for partial cancellation
of UµU

†
µ are included in the results.
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Appendix F. Perturbative results for a simple action

v E0 δZψ δZM

0.00 −0.7421(19) −0.31472(49) −0.2421(11)

0.01 −0.7394(19) −0.31488(49) −0.2419(11)

0.10 −0.7322(19) −0.31304(49) −0.2434(11)

0.20 −0.7235(19) −0.30767(49) −0.2464(11)

0.30 −0.7078(19) −0.29832(49) −0.2529(12)

0.40 −0.6763(18) −0.28628(51) −0.2536(12)

0.50 −0.6264(17) −0.27122(52) −0.2550(13)

0.60 −0.5648(16) −0.25447(55) −0.2535(15)

0.70 −0.4795(14) −0.23405(59) −0.2353(18)

0.75 −0.4247(14) −0.22159(64) −0.2167(22)

0.80 −0.3607(13) −0.20573(71) −0.1985(27)

0.85 −0.2834(12) −0.17797(86) −0.1815(35)

0.90 −0.1863(11) −0.1119(12) −0.1760(58)

0.95 −0.0721(11) −0.1757(24) −0.331(15)

v δZv δZp δCv

0.00 — — −0.0230(13)

0.01 −0.239(20) −0.020(20) −0.0222(13)

0.10 −0.2156(25) −0.0141(24) −0.0190(13)

0.20 −0.2098(16) −0.0270(15) −0.0155(13)

0.30 −0.1871(13) −0.0444(12) −0.0068(13)

0.40 −0.1588(11) −0.0646(11) −0.0020(14)

0.50 −0.1231(10) −0.0896(10) −0.0203(15)

0.60 −0.0846(10) −0.1180(10) −0.0445(17)

0.70 −0.0457(10) −0.1451(11) −0.0691(21)

0.75 −0.02686(95) −0.1554(11) −0.0819(25)

0.80 −0.0138(10) −0.1622(12) −0.0967(32)

0.85 −0.0056(10) −0.1596(12) −0.1135(44)

0.90 −0.0061(11) −0.1448(14) −0.1211(75)

0.95 −0.0265(15) −0.0939(16) −0.078(20)

Table F.1: Renormalisation parameters for a simple mNRQCD with improved derivatives
and time evolution equation. The action is complete to O(1/m) and contains the
chromomagnetic interaction term σ·B in δH. Mean field corrections for partial cancellation
of UµU

†
µ are included in the results.
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v c(V )0 c(V )1 c(V )2

0.00 0.04393(58) 0.25368(43) 0.25304(43)

v c
(V )0
+ c

(V )‖
+ c

(V )⊥
+

0.10 −0.1700(25) −0.0685(26) −0.1351(22)

0.20 −0.1712(14) −0.0639(15) −0.1340(14)

0.30 −0.1778(11) −0.0547(12) −0.1398(11)

0.40 −0.18664(92) −0.0402(11) −0.1476(10)

0.50 −0.19902(84) −0.0188(10) −0.15572(95)

0.60 −0.21389(80) −0.01056(94) −0.16457(95)

0.70 −0.23520(78) −0.05634(90) −0.1725(10)

0.75 −0.25351(80) −0.09238(92) −0.1763(11)

0.80 −0.28028(86) −0.1437(10) −0.1779(12)

0.85 −0.3327(12) −0.2313(12) −0.1813(13)

0.90 −0.4487(14) −0.3921(15) −0.1881(17)

0.95 −0.6611(22) −0.6779(22) −0.1842(28)

v c
(V )0
− c

(V )‖
− c

(V )⊥
−

0.10 −0.1282(25) −0.3209(25) −0.1210(20)

0.20 −0.1293(14) −0.3207(14) −0.1192(12)

0.30 −0.1404(11) −0.3128(11) −0.11005(89)

0.40 −0.15354(95) −0.30199(93) −0.09906(77)

0.50 −0.17123(88) −0.28581(87) −0.08459(71)

0.60 −0.19018(88) −0.26354(86) −0.06858(70)

0.70 −0.20794(91) −0.22948(89) −0.05292(73)

0.75 −0.2144(10) −0.20375(93) −0.04530(78)

0.80 −0.2112(10) −0.1709(10) −0.04299(88)

0.85 −0.1940(12) −0.1200(12) −0.0482(10)

0.90 −0.1419(15) −0.0340(15) −0.0674(13)

0.95 −0.0496(26) −0.1211(26) −0.1208(25)

Table F.2: Vector current matching coefficients for a simple mNRQCD with improved
derivatives and time evolution equation. The action is complete to O(1/m) and contains
the chromomagnetic interaction term σ · B in δH.
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v c(T )0,1 c(T )0,2 c(T )1,2 c(T )2,3

0.00 0.0712(12) 0.0713(12) 0.0713(12) 0.0713(12)

v c
(T )0,‖
+ c

(T )0,⊥
+ c

(T )‖,⊥
+ c

(T )⊥,⊥
+

0.10 −0.0326(27) −0.0268(24) −0.0242(24) −0.0327(27)

0.20 −0.0314(17) −0.0218(16) −0.0231(16) −0.0283(17)

0.30 −0.0186(16) −0.0087(15) −0.0087(15) −0.0161(16)

0.40 −0.0107(15) −0.0016(15) −0.0015(15) −0.0089(15)

0.50 −0.0003(16) −0.0172(16) −0.0163(16) −0.0006(16)

0.60 −0.0048(18) −0.0324(17) −0.0329(17) −0.0047(18)

0.70 −0.0101(21) −0.0403(20) −0.0411(20) −0.0104(21)

0.75 −0.0290(24) −0.0432(23) −0.0439(23) −0.0286(24)

0.80 −0.0497(29) −0.0578(28) −0.0582(28) −0.0502(29)

0.85 −0.0693(38) −0.1009(37) −0.1009(38) −0.0698(38)

0.90 −0.0790(60) −0.2151(59) −0.2162(59) −0.0780(60)

0.95 −0.068(15) −0.591(15) −0.593(15) −0.067(15)

v c
(T )0,‖
− c

(T )0,⊥
− c

(T )‖,⊥
− c

(T )⊥,⊥
−

0.10 −0.1005(25) −0.0975(21) −0.0968(21) −0.1056(24)

0.20 −0.1014(12) −0.0955(11) −0.0969(11) −0.1010(12)

0.30 −0.09086(87) −0.08654(87) −0.08758(88) −0.09069(87)

0.40 −0.07726(75) −0.07456(76) −0.07508(77) −0.07714(75)

0.50 −0.05815(76) −0.05822(76) −0.05820(77) −0.05914(76)

0.60 −0.03780(74) −0.03781(76) −0.03768(76) −0.03890(74)

0.70 −0.01702(76) −0.01168(78) −0.01203(78) −0.01752(76)

0.75 −0.00725(80) −0.00443(83) −0.00404(83) −0.00753(80)

0.80 −0.00272(90) −0.01952(93) −0.01922(93) −0.00318(90)

0.85 −0.0068(11) −0.0367(11) −0.0371(11) −0.0068(11)

0.90 −0.0273(14) −0.0529(14) −0.0528(14) −0.0270(14)

0.95 −0.0867(25) −0.0353(25) −0.0357(25) −0.0863(25)

Table F.3: Tensor current matching coefficients for a simple mNRQCD with improved
derivatives and time evolution equation. The action is complete to O(1/m) and contains
the chromomagnetic interaction term σ · B in δH.
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Figure F.2: Matching coefficients for a simple mNRQCD with improved derivatives and
time evolution equation, vector current (top) and tensor current (bottom). The action is
complete to O(1/m) and contains the chromomagnetic interaction term σ · B in δH.
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Appendix G

Finite volume renormalisation

parameters

In this appendix I show results for the heavy quark renormalisation parameters on a

finite lattice with twisted boundary conditions.

As in the nonperturbative calculations in [108] I use two different heavy quark

actions: The simple action in (5.26) with m = 2.0 and n = 2, and the full O(1/m2, v4
rel)

action with the same stability parameter and m = 2.8. In both cases I use a Symanzik

improved gluon action. I include mean field corrections for “partial” cancellation of

UµU
†
µ as described in section 5.1.3. All three spatial directions are twisted.

G.1 Numerical results

I work on four different lattices of size 12×43, 18×63, 24×83 and 30×103 and for five

frame velocities, v = 0.0, 0.2, 0.4, 0.6 and 0.8. The results for the one loop correction to

the zero point energy E0, the renormalisation of the heavy quark mass, frame velocity

and the external momentum as well as the energy shift between QCD and the effective

heavy quark theory are listed in Tabs. G.1 to G.5 for the simple action defined in (5.26)

and for the full O(1/m2, v4
rel) action in Tabs. G.6 to G.10. In Figs. G.1 to G.5 I also

plot the renormalisation parameters as a function of the frame velocity.

v = 0.0 v = 0.2 v = 0.4 v = 0.6 v = 0.8

43 × 12 −0.64249 −0.63066 −0.59233 −0.51905 −0.39751

63 × 18 −0.71563 −0.70176 −0.65711 −0.57233 −0.43158

83 × 24 −0.75045 −0.73559 −0.68786 −0.59748 −0.44736

103 × 30 −0.77082 −0.75538 −0.70581 −0.61207 −0.45635

∞ −0.8260(19) −0.8116(19) −0.7538(18) −0.6507(16) −0.4714(14)

Table G.1: Zero point energy shift E0 for the simple action defined in (5.26).
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v = 0.0 v = 0.2 v = 0.4 v = 0.6 v = 0.8

43 × 12 −0.35046 −0.36356 −0.408 −0.51532 −0.90748

63 × 18 −0.40063 −0.417 −0.47235 −0.604 −1.06894

83 × 24 −0.42635 −0.4445 −0.50585 −0.65066 −1.15245

103 × 30 −0.44227 −0.46159 −0.52682 −0.68007 −1.20427

∞ −0.5074(12) −0.5312(12) −0.6138(13) −0.8045(17) −1.4252(33)

Table G.2: Mass renormalisation δZm for the simple action defined in (5.26).

v = 0.0 v = 0.2 v = 0.4 v = 0.6 v = 0.8

43 × 12 — −0.36011 −0.34443 −0.32862 −0.33484

63 × 18 — −0.40693 −0.38917 −0.37146 −0.3806

83 × 24 — −0.43032 −0.41149 −0.39274 −0.40306

103 × 30 — −0.44452 −0.42503 −0.40558 −0.41639

∞ — −0.4966(17) −0.4748(12) −0.4497(11) −0.4606(12)

Table G.3: Velocity renormalisation δZv for the simple action defined in (5.26).

v = 0.0 v = 0.2 v = 0.4 v = 0.6 v = 0.8

43 × 12 — −0.01155 −0.00204 −0.00185 −0.02264

63 × 18 — −0.00689 −0.00906 −0.0236 −0.01171

83 × 24 — −0.00374 −0.01599 −0.03701 −0.03285

103 × 30 — −0.00146 −0.02084 −0.04636 −0.04763

∞ — −0.0168(17) −0.0516(12) −0.1038(10) −0.14240(91)

Table G.4: Renormalisation δZp of the external momentum for the simple action defined
in (5.26).

v = 0.0 v = 0.2 v = 0.4 v = 0.6 v = 0.8

43 × 12 −0.02922 −0.0396 −0.07095 −0.12285 −0.19295

63 × 18 −0.04282 −0.05625 −0.0971 −0.16613 −0.26284

83 × 24 −0.05112 −0.0662 −0.11225 −0.19076 −0.3017

103 × 30 −0.05686 −0.07301 −0.12243 −0.20711 −0.32712

∞ −0.0944(32) −0.1129(32) −0.1780(31) −0.2913(31) −0.4650(45)

Table G.5: Energy shift δCv for the simple action defined in (5.26).
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v = 0.0 v = 0.2 v = 0.4 v = 0.6 v = 0.8

43 × 12 −0.56835 −0.55623 −0.51892 −0.4481 −0.31137

63 × 18 −0.6382 −0.6241 −0.58061 −0.49832 −0.34035

83 × 24 −0.67193 −0.65685 −0.61026 −0.52217 −0.35341

103 × 30 −0.6918 −0.67612 −0.62766 −0.53608 −0.3608

∞ −0.76647(40) −0.74812(39) −0.69206(37) −0.58682(33) −0.38616(28)

Table G.6: Zero point energy shift E0 for the full O(1/m2, v4
rel) action.

v = 0.0 v = 0.2 v = 0.4 v = 0.6 v = 0.8

43 × 12 −0.11692 −0.10126 −0.04553 −0.08422 −0.40454

63 × 18 −0.15507 −0.14068 −0.08988 −0.02584 −0.2959

83 × 24 −0.17505 −0.1614 −0.11341 −0.00518 −0.23633

103 × 30 −0.18739 −0.17422 −0.12799 −0.02426 −0.19923

∞ −0.2313(12) −0.2194(12) −0.1789(13) −0.0910(15) −0.0901(24)

Table G.7: Mass renormalisation δZm for the full O(1/m2, v4
rel).

v = 0.0 v = 0.2 v = 0.4 v = 0.6 v = 0.8

43 × 12 — −0.11476 −0.0867 −0.03848 −0.02601

63 × 18 — −0.14889 −0.11681 −0.06344 −0.00187

83 × 24 — −0.16637 −0.1323 −0.07603 −0.01063

103 × 30 — −0.17698 −0.14169 −0.08355 −0.01825

∞ — −0.2074(15) −0.1696(11) −0.1037(10) −0.02967(90)

Table G.8: Velocity renormalisation δZv for the full O(1/m2, v4
rel) action.

v = 0.0 v = 0.2 v = 0.4 v = 0.6 v = 0.8

43 × 12 — −0.01828 −0.05769 −0.14434 −0.3323

63 × 18 — −0.01441 −0.04918 −0.12496 −0.2907

83 × 24 — −0.0119 −0.04409 −0.11362 −0.26586

103 × 30 — −0.01014 −0.04069 −0.10628 −0.24993

∞ — −0.0025(12) −0.02131(89) −0.06974(87) −0.1746(11)

Table G.9: Renormalisation δZp of the external momentum for the full O(1/m2, v4
rel) action.
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v = 0.0 v = 0.2 v = 0.4 v = 0.6 v = 0.8

43 × 12 −0.08607 −0.09816 −0.14084 −0.2339 −0.42503

63 × 18 −0.07286 −0.08391 −0.12242 −0.2039 −0.3655

83 × 24 −0.06492 −0.07538 −0.11155 −0.18678 −0.33096

103 × 30 −0.05968 −0.06975 −0.10445 −0.1759 −0.309

∞ −0.0425(15) −0.0510(15) −0.0799(15) −0.1350(18) −0.2256(30)

Table G.10: Energy shift δCv for the full O(1/m2, v4
rel) action.
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Figure G.1: Zero point energy shift E0 for the simple action defined in (5.26) (blue, open
symbols) and the full O(1/m2, v4

rel) mNRQCD action (red, filled symbols).
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(blue, open symbols) and the full O(1/m2, v4

rel) mNRQCD action (red, filled symbols).

-0.4

-0.2

 0

 0.2

 0.4

 0  0.2  0.4  0.6  0.8  1

co
ef

fic
ie

nt
 o

f α
s

frame velocity v

12 × 43

18 × 63

24 × 83

30 × 103

∞
12 × 43

18 × 63

24 × 83

30 × 103

∞

Figure G.5: Renormalisation of the energy shift Cv between QCD and mNRQCD for the
simple action defined in (5.26) (blue, open symbols) and the full O(1/m2, v4

rel) mNRQCD
action (red, filled symbols).

200



Appendix H

Infrared stability

In this appendix I study the infrared structure of the integrals for higher order kinetic

terms in the NRQCD action discussed in section 6. A thorough investigation of this

region of phase space was motivated by instabilities which arose when using numerical

approximations to higher order derivatives in the rainbow diagram. In the following

I study the lattice integral both for numerical and analytical mixed derivatives and

demonstrate that it is essential to use analytical derivatives for small gluon masses.

As the Feynman rules are very simple for the continuum NRQCD subtraction

function and the instabilities arise in the infrared region of the integrand I work with

the integrals I
(sub)
1 and I

(sub)
2 defined in (6.21) and (6.22). This is legitimate as the

integrals have the same infrared structure as the integrals on the lattice.

H.1 Structure of the integrand

I evaluate the subtraction function for fixed spatial momentum k and a range of

temporal k0. This is done using both numerical and analytical derivatives as defined

in section 6.3; in both cases the gluon mass is fixed to λ2 = 10−6.

For the spatial momentum k = (0, 0, 0) I expect both theW1 and theW2 subtraction

functions to vanish for all k0 (I checked this in Mathematica by coding up the

functions explicitly). As can be seen from Figs. H.1 and H.2 this is only true if I use

analytical derivatives. Otherwise there is a narrow but sizable peak in the integrand

which has large contributions to the integral.

To demonstrate that it is legitimate to use numerical derivatives for noninfrared

momenta I also compare the corresponding quantities for k = (0.2, 0.2, 0.2) in Figs.

H.3 and H.4. Here, even though the integrand is very large in some regions of phase

space, the agreement between the two curves is very good.
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Figure H.1: W1 subtraction function integrand D1f
(sub) for k = (0, 0, 0).
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Figure H.2: W2 subtraction function integrand D2f
(sub) for k = (0, 0, 0).
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203



Appendix H. Infrared stability

λ2 numerical analytical

10−1 −1.556(4) −1.560(5)

10−2 −1.63(1) −1.63(1)

10−3 −1.63(3) −1.63(2)

10−4 −1.5(1) −1.68(3)

10−5 −1.2(3) −1.69(3)

10−6 −1.9(9) −1.70(4)

10−7 — −1.65(5)

10−8 — −1.60(6)

10−9 8.5(35.8) −1.64(7)

10−10 — −1.52(9)

10−11 — −1.57(10)

10−12 −9500(1300) −1.54(11)

Table H.1: Integration results for W1 for various gluon masses λ2 both with numerical finite
differences and analytical derivatives. The results in the second column for λ2 ≤ 10−9 are
clearly dominated by statistical errors.

H.2 Integral for small gluon masses

Having identified a potential infrared instability I now integrate the subtraction function

for W1 for a range of gluon masses. In Tab. H.1 and Fig. H.5 I present my results (10

iterations, 20, 000 function evaluations) both for numerical and analytical derivatives.

For λ2 ≥ 10−3 the final value for I
(sub)
1 is within statistical errors independent of

whether I use finite differences or analytical derivatives. For smaller gluon masses,

however, the results obtained with numerical derivatives are no longer stable. The

errors on the results from analytical derivatives show a slight increase as the gluon

mass is reduced to below 10−6 but become essentially independent of λ2. I conclude

that it is legitimate to use λ2 = 10−6.

H.3 Subtracted lattice integrals

To verify that the integrals in section 6.4.1 which are constructed from lattice Feynman

rules are indeed independent of the gluon mass I evaluate the different contributions

to W1 and W2 for various values of λ. This also confirms that no instabilities are

introduced by using a numerical approximation for higher order derivatives in the

tadpole diagram. I carry out the calculation for the simpler action setup with a Wilson

gluon action described in [122].
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Figure H.5: W1 for various gluon masses λ2.

I calculate W1 and W2 by evaluating the integrals in (6.21) and (6.22). Due to

the different action definition in [122] the derivative operators in (6.19) are modified

slightly, D1 is replaced according to

D1f 7→ D̃1f =

(
1 +

2

m

)
Re{f} − 2

(
1 +

1

m

)
∂

∂p0
Im{f} − ∂2

∂p2
z

Re{f}

+ (3 + 2m)
∂2

∂p2
z

Re{f} − 2m
∂3

∂p2
z∂p0

Im{f}

+ m2 ∂4

∂p2
y∂p

2
z

Re{f}. (H.1)

As only the derivatives generate large peaks in the integrand I use a modified version

if D̃1 acts on the subtraction function.

D̃
(sub)
1 f (sub) = D̃1f

(sub) −
(

1 +
2

m

)
Re{f (sub)}. (H.2)
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λ2 I
(lat−sub)
1,rainbow I

(lat)
1,tadpole I

(sub)
1 W1

10−3 5.375(4) 0.9325(9) −5.587(4) 0.721(6)

10−6 5.439(4) 0.9325(9) −5.663(1) 0.709(4)

10−9 5.442(4) 0.9326(9) −5.665(2) 0.710(5)

10−12 5.442(4) 0.9338(9) −5.665(3) 0.711(5)

Table H.2: The integrals I
(lat−sub)
1,rainbow , I

(lat)
1,tadpole and I

(sub)
1 and their sum W1 for different

squared gluon masses λ2. I
(lat)
1,tadpole was evaluated using numerical finite differences whereas

analytical derivatives were used for the other integrals.

I finally find

W1 = I
(lat−sub)
1,rainbow + I

(lat)
1,tadpole + I

(sub)
1 (H.3)

=

∫
d4k

(2π)4

[
D̃1f

(lat)
rainbow − D̃

(sub)
1 f (sub)

]
+

∫
d4k

(2π)4
D̃1f

(lat)
tadpole

+

∫
d4k

(2π)4
D̃

(sub)
1 f (sub).

For W2 I use the expression in (6.22).

For the action in [122] with m = 2.0, n = 2 as above I evaluate the three integrals

in (6.21) for a range of gluon masses λ2.

• Lattice rainbow. I ran 10 iterations, 200, 000 function evaluations (both for

thermalisation and measurement) of the integral I
(lat−sub)
1,rainbow . On 64 cores this

takes not more than two hours.

• Lattice tadpole. With the same number of iterations and function evaluations I

calculate I
(lat)
1,tadpole. As I use numerical finite differences the integration can be

carried out in half an hour on 64 cores. I use δp = 10−6 in the finite differences.

• Subtraction integral. Evaluation of the subtraction integral I
(sub)
1 is much

cheaper. On 64 cores 20, 000, 000 function evaluations and 10 iterations take

around 30 minutes.

The results are summarised in Tab. H.2 and Fig. H.6.

As can be seen from Fig. H.6 the results are independent of the gluon mass for

λ2 ≤ 10−6 within statistical errors. To obtain a final result I take the weighted average

of the results for λ2 ≤ 10−6. This gives.

W1 = 0.710(2) (H.4)
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λ2 I
(lat−sub)
2,rainbow I

(lat)
2,tadpole W2

10−3 0.00025(7) 0.02215(2) 0.02240(7)

10−6 0.00020(7) 0.02215(2) 0.02235(7)

10−9 0.00026(7) 0.02214(2) 0.02240(7)

10−12 0.00027(7) 0.02215(2) 0.02242(7)

Table H.3: The integrals I
(lat−sub)
2,rainbow , I

(lat)
2,tadpole and their sum W2 for different squared gluon

masses λ2. I
(lat)
2,tadpole was evaluated using numerical finite differences whereas analytical

derivatives were used for the subtracted rainbow integral.

Using

c
(2)
1 = −

(
1

2n
+

1

m

)−1

W1 (H.5)

I finally obtain with m = 2.0 and n = 2

c
(2)
1 = −0.946(3). (H.6)

This is in perfect agreement with the value of c
(2)
1 in Fig. 2 of [122].

I repeat the same analysis for W2. The results are listed in Tab. H.3 and plotted

in Fig. H.7. Again average the results for λ2 ≤ 10−6 to I find

W2 = 0.02239(4). (H.7)

Using

c
(2)
2 = 24m W1 (H.8)

I finally obtain

c
(2)
2 = 1.075(2). (H.9)

This is in perfect agreement with the value of c
(2)
2 in Fig. 2 of [122].

I summarise that the dependence on the gluon mass is very weak and it is not

necessary to extrapolate in λ.
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Appendix I

Radiative corrections to currents in the

continuum

In this appendix I evaluate one-loop corrections to the vector and tensor operators with

Dirac structure γµ and mσµν in the continuum to O(1/m). In QCD they are given by

δMµ
(V ) =

∫
ddk

(2π)d
(−igT aµǫ/2)γρ i(k/ + p/ ′)

(k + p′2)
γµ
i(k/ + p/ +m)

(k + p)2 −m2
(−igT aµǫ/2)γρ

× −i
k2 − λ2

+ (wavefunction counterterms) (I.1)

=
αs
3π

∫
γρ(k/ + p/ ′)γµ(k/ + p/ +m)γρ +

1

2
(δZQ + δZq)γ

µ

δMµν
(T ) =

∫
ddk

(2π)d
(−igT aµǫ/2)γρ i(k/ + p/ ′)

(k + p′2)
mσµν

i(k/ + p/ +m)

(k + p)2 −m2
(−igT aµǫ/2)γρ

× −i
k2 − λ2

+ (wavefunction-, mass- and operator counterterms)

=
αs
3π

∫
γρ(k/ + p/ ′)mσµν(k/ + p/ +m)γρ (I.2)

+

[
1

2
(δZQ + δZq) + δZm − δZT

]
mσµν

where I write three-point integrals as

∫
f(k) = 16π2(µ2)ǫ/2

∫
ddk

i(2π)d
f(k)

((k + p)2 −m2)(k + p′)2(k2 − λ2)
. (I.3)
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I.1 Basis integrals

I solve integrals for up to two loop momenta in the numerator,
∫

{1, kµ, kµkν}.
Introducing Feynman parameters I find

∫
{1, kµ, kµkν} = 32π2

∫ 1

0
dx

∫ 1

0
dy y

∫
ddk

i(2π)d
{1, kµ, kµkν}k 7→k−(1−y)p−y(1−x)p′)

[k2 − ∆(s)]3

(I.4)

with ∆(s) = (1 − y)2m2 + y(1 − y)(1 − x)s+ yxλ2. Expanding in s = 2p · p′ these can

be reduced to nine scalar basis integrals a
(m)
n , δa

(m)
n

∫
1 = J (0)(s) =

1

m2
a(0) + . . . , (I.5)

∫
kµ = J

(1)
1 (s)pµ + J

(1)
2 (s)p′µ =

(
1

m2
a

(1)
1 +

s

m4
δa

(1)
1

)
pµ +

1

m2
a

(1)
2 p′µ + . . . ,

∫
kµkν = J

(2)
1 (s)gµν + J

(2)
2 (s)pµpν + J

(2)
3 (s)(pµp′ν + p′µpν) + J

(2)
4 (s)p′µp′ν + . . .

=
(
a

(2)
1 +

s

m2
δa

(2)
1

)
gµν +

(
1

m2
a

(2)
2 +

s

m4
δa

(2)
2

)
pµpν

+
1

m2
a

(2)
3 (pµp′ν + p′µpν) + . . . .

As an instructive example consider the evaluation of δa
(1)
1 . In this case the numerator

in (I.4) is given by T (k− (1−y)p−y(1−x)p′) = kµ− (1−y)pµ−y(1−x)p′µ and to pick

up a
(1)
1 and δa

(1)
1 I only keep the term proportional to pµ. I expand the denominator

in s and keep the coefficient of the linear term which is

∂

∂s

1

[k2 − ∆(s)]3

∣∣∣
s=0

=
3y(1 − y)(1 − x)

[k2 − ∆(0)]4
. (I.6)

After the momentum integration I can express δa
(1)
1 as a Feynman parameter integral

δa
(1)
1 = 32π2m4

∫ 1

0
dx

∫ 1

0
dy y

∫
ddk

i(2π)d
3y(1 − y)(1 − x)

−(1 − y)

[k2 − ∆(0)]4
(I.7)

= −m4

∫ 1

0
dx

∫ 1

0
dy

(1 − x)y2(1 − y)2

[(1 − y)2m2 + xyλ2]2
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δa
(1)
1 = −λ̂−4

∫ 1

0
dy(1 − y)2

∫ 1

0
dx

(
1 + ω

(x+ ω)2
− 1

x+ ω

)
with ω =

(1 − y)2

yλ̂2

= −λ̂−4

(
1

2
λ̂2 −

∫ 1

0
dy(1 − y)2 log

[
1 +

yλ̂2

(1 − y)2

])
.

I use the abbreviation λ̂ = λ/m. The remaining integral is evaluated using

Mathematica and I obtain, after expanding in λ̂,

δa
(1)
1 = −

(
2

3
+

π

3λ̂
+

1

2
log λ̂2

)
+ O(λ̂). (I.8)

Ignoring terms of O(λ̂) and higher the remaining integrals are solved similarly, I find:

a(0) = −
(

1 +
π

λ̂
+

1

2
log λ̂2

)
, (I.9)

a
(1)
1 = −1

2

(
1 + log λ̂2

)
, δa

(1)
1 = −

(
2

3
+

π

3λ̂
+

1

2
log λ̂2

)
,

a
(1)
2 =

5

6
+

2π

3λ̂
+

1

2
log λ̂2,

a
(2)
1 =

1

4

(
2

ǫ
− logm2/µ2 + 3

)
, δa

(2)
1 =

1

8

(
log λ̂2 +

3

2

)
,

a
(2)
2 = −1

2
, δa

(2)
2 = −1

8

(
5 + 2 log λ̂2

)
,

a
(2)
3 =

1

4

(
log λ̂2 +

3

2

)
.

Note that only a
(2)
1 is ultraviolet divergent with 2/ǫ = 2/ǫ− γE + log 4π.

I.2 Matrix elements

Expanding the matrix elements I find after some Dirac algebra

δMµ
(V ) = b

(V )
1 γµ + b

(V )
2

pµ

m
+ b

(V )
3 sγµ + b

(V )
4

p′µ

m
+ b

(V )
5

s

m2

pµ

m
+ O(1/m2)

δMµν
(T ) = b

(T )
1 mσµν + b

(T )
2 2i(γµp′ν − γνp′µ) + b

(T )
3

s

m2
mσµν + O(1/m2).

(I.10)

Using on-shell counterterms for the massless and heavy quark as given in (D.6), (D.7)

and (D.11) and absorbing the UV divergence in the non-conserved tensor current in
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the MS scheme by choosing δZT = −4αs/(3π)2
ǫ I obtain for the vector current

b
(V )
1 =

αs
3π

(
4(1 − ǫ)a

(2)
1 + 2a

(2)
2 + 2a

(1)
1

)
+

1

2
(δZQ + δZq) (I.11)

=
αs
3π

(
−3

2
log λ̂2 − 11

4

)

b
(V )
2 =

αs
3π

(−4)a
(2)
2 =

αs
3π

2

b
(V )
3 = 2

αs
3π

(2δa
(2)
1 + δa

(2)
2 + a

(2)
3 + a(0) + δa

(1)
1 + a

(1)
2 + a

(1)
1 )

=
αs
3π

(
−29

12
− 3

2
log λ̂2 − 4π

3λ̂

)

b
(V )
4 =

αs
3π

(−4)(a
(2)
3 + a

(1)
1 ) =

αs
3π

(
log λ̂2 +

1

2

)

b
(V )
5 =

αs
3π

(−4)δa
(2)
2 =

αs
3π

(
5

2
+ log λ̂2

)

and for the tensor current

b
(T )
1 =

αs
3π

2a
(1)
1 +

1

2
(δZQ + δZq) + δZm − δZT =

αs
3π

(
−27

4
− 3

2
log λ̂2 + 4 logm2/µ2

)

b
(T )
2 =

αs
3π

(−2)a
(1)
1 =

αs
3π

(
1 + log λ̂2

)

b
(T )
3 =

αs
3π

2
(
a(0) + a

(1)
1 + δa

(1)
1 + a

(1)
2

)
=
αs
3π

(
−8

3
− 4π

3λ̂
− 2 log λ̂2

)
(I.12)

I.3 Comparison to the literature

In [140]1, eqn. (4), the expansion coefficients of the time component of the axial

vector current are given as a1, . . . , a5. Due to chiral symmetry of the light quark they

can be compared to b
(V )
1 , . . . , b

(V )
5 in (I.11). As s = 2p · p′ I expect a1 = 1 + b

(V )
1 ,

a2 = b
(V )
2 , a3 = 2b

(V )
3 , a4 = b

(V )
4 and a5 = 2b

(V )
5 . I find perfect agreement for all

IR divergent terms, there is, however, a mismatch for the IR finite term in a3 ↔ b
(V )
3 .

This discrepancy is not relevant for the results presented in this thesis as I only consider

radiative corrections to the leading order currents.

1I would like to thank Junko Shigemitsu for providing me with further details of the calculation.
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Anomalous dimension of the tensor operator

The anomalous dimension of the tensor operator is given by

γ(T ) =
1

ZT

dZT
d log µ

(I.13)

If the counterterm ZT is expanded in inverse powers of ǫ,

ZT = 1 +

∞∑

k=1

1

ǫk
Z

(k)
T (I.14)

and the µ dependence of the coupling dg(µ)/d log µ = −ǫg/2+β(g) is used this implies

that

γ
(con)
T = −g2 dZ

(1)
T

dg2
=

8αs
3π

. (I.15)

This agrees with what is found in [45].
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Appendix J

Infrared subtraction functions

In this chapter I discuss infrared subtraction functions which are added to the lattice

integrand to improve the convergence of infrared divergent Vegas integrals. I solve

the subtraction integral analytically.

J.1 Wavefunction renormalisation

A subtraction function for the rainbow diagram in Fig. 5.1 needed in the calculation

of the heavy quark wavefunction renormalisation can be constructed as follows:

At lowest order in the heavy quark expansion the continuum integrand (in Euclidean

space) is given by

αsΣ =

∫
d4k

(2π)4
(−gT avµ)D(0)

h (v, k + p)(−gT avµ)
1

k2 + λ2
(J.1)

where v0 = i and the heavy quark propagator is in the static limit

D
(0)
h (v, k) =

−i
k0 − iv · k (J.2)

Furthermore the derivative with respect to p0 at p = 0 is

∂D
(0)
h (v, p + k)

∂p0

∣∣∣
p=0

= −i
( −i
k0 − iv · k

)2

. (J.3)

Inserting this into the integral for Ω1 one will obtain both a logarithmic infrared and a

logarithmic ultraviolet divergence. To render the integral UV finite without changing

the infrared behaviour I replace

−i
k0 − iv · k 7→ 2γm

(k +mu)2 +m2
(J.4)
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and find

αsΩ
(sub)
1 = Im{

∫
d4k

(2π)4
(−gT avµ)(−i)

(
2γm

(k +mu)2 +m2

)2

(−gT avµ)
1

k2 + λ2
}.

(J.5)

Evaluating integral (J.5) and neglecting all terms which vanish in the limit λ/m→ 0

I obtain the analytical expression

Ω
(sub)
1 = − 2

3π
log λ2/m2 + O(λ/m). (J.6)

J.2 Higher order kinetic terms

The integrand I use as a subtraction function for the evaluation of higher order kinetic

terms in the NRQCD action in section 6.4.1 is the continuum version of the rainbow

diagram,

f (sub) = −16π

3

1

k2 + k2
0 + λ2

1

i(p0 + k0) + (k+p)2

2m − ((k+p)2)2

8m3

.

(J.7)

For p = 0 the poles are at iω± ± ǫ and iωh + ǫ with

ω± = ±
√

k2 + λ2, ωh =
k2

2m
− (k2)2

8m3
. (J.8)

To be able to Wick rotate back to Minkowski space the integration contour has to

separate the positive energy poles ω+, ωh from the negative energy gluon pole ω−. It

is easy to show that ω+, ωh > ω− for |k| < 2m (but ωh < ω− for |k| → ∞), so I

impose a hard spherical cutoff Λ = 2m on the modulus of the spatial momentum. This

is legitimate as it only changes the ultraviolet behaviour. I always shift the contour

midway between the two closest poles to improve convergence.

Note that the integral over D2f
(sub) (with D2 defined in (6.19)) vanishes due to

rotational invariance, even after imposing a hard cutoff |k| < 2m. The integral over

D1f
(sub) is evaluated numerically which can be done with very high statistics due to

the simplicity of the integrand.
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J.3 One particle irreducible corrections to heavy-light opera-

tors

I construct a subtraction function for the one particle irreducible diagrams discussed

in section 7.2.1. In Euclidean space one has

Mj =

∫
d4k

(2π)4

[
us(p

′)(−igT aγρ)
−ik/
k2

fjΓSjU
]
D

(0)
h (k)(−gT avρ)

1

k2 + λ2

≡ αsfj us(p
′)Σ

(sub)
j U (J.9)

where ΓSj with Γ = {γµ, σµν} and S1 = Id, S2 = −γ · v̂γ0 is the Dirac structure of the

operator. Again I render the integral UV finite by replacing

D
(0)
h (k) =

−i
k0 − iv · k 7→ 2γm

(k +mu)2 +m2
. (J.10)

As in (7.43) I write us(p
′)Σ

(sub)
j U as follows

fjus(p
′)Σ

(sub)
j U =

16π

3
fj

∫
d4k

(2π)4
us(p

′)(−iγρ)
−ik/
k2

ΓSjU (J.11)

× 2γm

(k + p)2 +m2
(−vρ)

1

k2 + λ2

=
∑

k=1,2

fkξ
(sub)Γ
jk us(p

′)ΓSkU.

I evaluate the subtraction integral analytically in Minkowski space. The matrix element

is given in (J.9)

iMj =

∫
d4k

(2π)4
us(p

′)(−igT aγρ) i

k/ + iǫ
ifjΓSjU (J.12)

× 2mγi

(k + p)2 −m2 + iǫ
(−igT avρ)

−i
k2 − λ2 + iǫ

= αs
16π

3
fj

∫
d4k

(2π)4
2m us(p

′)u/ k/ ΓSjU

(k2 + iǫ)((k + p)2 −m2 + iǫ)(k2 − λ2 + iǫ)

≡ αsifjIjus(p
′)Γµνj U.
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The integral which needs to be solved is

∫
d4k

(2π)4
kµ

(k2 + iǫ)((k + p)2 −m2 + iǫ)(k2 − λ2 + iǫ)
(J.13)

= − 1

2m

i

16π2

(
1 + log λ2/m2

)
+ O(λ/m).

From this follows

Ij = −αs
3π

(
1 + log λ̂2

)
and

ξ
(sub.)
jk = −δjk

3π

(
1 + log λ̂2

)
. (J.14)

Note that due to heavy quark symmetry this result is independent of the Dirac structure

Γ of the operator.

J.4 Light quark wavefunction renormalisation

The subtraction integrand for massless light quark wavefunction renormalisation in

section 7.2.1 is

f (sub)(k) = −32π

3

k2 − 2k2
0

k2(k2 + λ2)
exp

[
−k2/Λ2

]
. (J.15)

Λ is an arbitrary UV cutoff, and the integral is readily solved to give

I(sub) =

∫
d4k

(2π)4
f (sub)(k) (J.16)

=
1

3π

(
γE − log a2Λ2

)
+

1

3π
log a2λ2.
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