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Abstract

Precise predictions of hadronic matrix elements in heavy meson decays are important
to constrain the fundamental parameters in the Standard Model of particle physics.
The CKM matrix element V,; can be extracted from experimental data on the decay
B — 7lv if the hadronic form factor is known. In addition, loop suppressed rare decays
of B-mesons, such as B — K*v and B — K® ¢, provide valuable insight into new
physics models.

Hadronic form factors for exclusive meson decays can be calculated in the framework
of lattice QCD. As the wavelength of heavy quarks is not resolved on currently available
lattices 1 use an effective nonrelativistic theory to discretise the heavy degrees of
freedom. In addition, the discretisation errors in the final state meson are reduced
by working in a moving frame.

I review the phenomenology of rare B decays and describe how lattice QCD can
contribute to calculating the relevant form factors. As the short distance physics in
the effective theory is different from that of QCD, the Lagrangian and decay currents
need to be renormalised. I show how this can be achieved in the framework of lattice
perturbation theory.

I calculate the perturbative renormalisation constants of the leading order operators
in the heavy quark Lagrangian. Motivated by nonperturbative studies I extend
this approach to higher order kinetic terms which break rotational invariance. In
combination with simulations in the weak coupling regime of the theory, results from
diagrammatic lattice perturbation theory are used to calculate the heavy quark self-
energy corrections and predict the fundamental parameters of QCD. I calculate the one
loop correction on a finite lattice with twisted boundary conditions which is used for
the extraction of higher order perturbative corrections. I renormalise the heavy-light
current to one loop order in lattice mNRQCD and present results from nonperturbative
studies. Finally, I discuss how the results are used in the calculation of hadronic form

factors.
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Overview

This work is organised as follows:

After a brief review of the particles and forces in the Standard Model I discuss how
the measurement of B meson decays helps to constrain the CKM matrix in chapter 1.
In this chapter I also discuss the impact of lattice QCD calculations on the CKM
parameters and comment on indirect new physics searches. Chapter 2 focuses on
the prediction of rare B meson decays. These processes are described by integrating
out physics at the electroweak scale to construct a Lagrangian which is written as
an expansion in local operators of the low energetic fields. I outline how theoretical
predictions both for inclusive and exclusive decays can be obtained. In the second part
of this chapter I discuss how heavy quarks are treated in an effective theory which
can be discretised on a lattice. Basic concepts of lattice QCD and the discretisation
of fermionic fields using improved actions are reviewed in chapter 3. Chapter 4 is
more technical and specific to this work. I construct the heavy quark lattice action
and explain how it can be radiatively improved by calculating corrections in lattice
perturbation theory. My calculation of the heavy quark self-energy and renormalisation
parameters of operators in the mNRQCD action is presented in chapter 5. I compare
to nonperturbative simulations and describe how my results are used to constrain the
polynomial fit of high-G data. In chapter 6 I extend the analysis to higher order
kinetic terms in the NRQCD Lagrangian. I pay particular attention to regulating IR
divergences in the integrand. Finally, in chapter 7, I calculate the one loop correction
to the heavy-light vector- and tensor current. I review results of the nonperturbative
calculation and comment on the extrapolation of the relevant form factors. My results
are summarised in chapter 8 which also contains a detailled discussion of systematic

errors. Several more technical aspects are relegated to the appendices.
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Chapter 1

Introduction and motivation

1.1 The Standard Model of particle physics

The so called “Standard Model of Particle Physics” is the widely accepted theory
describing the interactions of subatomic particles (for an overview see for example
(2, 3]). Tt is a relativistic quantum field theory with local SU(3) x SU(2) x U(1) gauge
symmetry and it describes the forces between the matter fields as being mediated
by the exchange of integer spin gauge bosons. The only particle that has not been
detected yet is the Higgs boson [4] which is responsible for spontaneous electroweak
symmetry breaking and gives mass to fields in a gauge invariant way. Over the last 30
years all other particles have been observed and their properties have been measured
extensively!'. So far the Standard Model has withstood all experimental tests to very

high accuracy.

1.1.1 Particles and interactions

The following table lists the four forces in nature together with their relative strength
at a lengthscale of L ~ 1 fm [6]:

Force Relative strength
The strong force (binding together protons and nuclei) 1
Electromagnetism 1072

The weak force (responsible for radioactive beta decay) 1077
Gravitation 10739

I will not discuss gravitation as it is so weak that it does not play a role in present
high energy experiments and as yet it has not been possible to successfully quantise

the gravitational field.

!See, for example, [5] for a comprehensive listing of particle properties.

3



Chapter 1. Introduction and motivation

Lepton T T3 Q Y Quark T T3 Q Y
(ve)r 12 1/2 0 -1 u /2 1/2  2/3 1/3
e 1/2 -1/2 -1 -1 dy, /2 -1/2 -1/3 1/3
UR 0 0 2/3 4/3
en 0 0 -1 -2 dr 0 0 -1/3 —-2/3

Table 1.1: Electroweak quantum numbers of quarks and leptons as in [2]. T is the total
weak Isospin, T2 its three component, Q@ = T3 + Y/2 the electric charge and Y the
hypercharge. The subscripts L and R denote left- and right-handed particles.

The fundamental matter fields carry spin 1/2 and can be split into two groups:
leptons, experiencing the electromagnetic and weak force and quarks which in addition
interact via the strong force.

The electroweak interactions are described by the Glashow-Salam-Weinberg Model
[7, 8, 9].

Before spontaneous symmetry breaking the gauge group is SU(2), x U(1)y, where
the index L indicates that only left-handed particles can interact via charged weak
currents and U (1)y is the hypercharge group. SU(2) is often called the Weak Isospin
group. The whole group is broken down to the electromagnetic gauge group U(1)em by
the vacuum expectation value of the Higgs field.

The matter fields can be organised into multiplets according to their quantum
numbers under the different gauge groups (see Tab. 1.1). The left handed leptons
are organised into an Isospin doublet containing a massless, neutral neutrino and an
electron with charge —e. In addition there is an Isospin singlet containing the right
handed electron. There are no right handed neutrinos in the Standard Model.

A similar structure exists for the quarks, the left-handed particles are organised
into an Isospin doublet with an up quark of charge +2/3e whereas the down quark
has charge —1/3e. The right-handed quarks come in SU(2)y, singlets and each quark
belongs to the fundamental SU(3). colour-triplet.

It turns out that in addition to the electron, its neutrino and the two quarks, there
are two further families of particles with the same quantum numbers but different
masses as shown in Tab. 1.2 where I also list the masses of the other fundamental
particles. It is common to refer to the u (up), d (down) and s (strange) quarks as
light as their masses are much smaller than the hadronic scale Aqcp ~ 500 MeV. This
hierarchy of scales can be used to construct an effective low energy theory that exploits
the chiral symmetry of the Lagrangian in the massless limit [10, 11]. The mass of the
heavy quarks ¢ (charm) and b (bottom or beauty) is larger than Aqcp. Here a different

4



1.1. The Standard Model of particle physics

Leptons e~ 511 keV o 105.66 MeV 7~ 1.78 GeV
Ve 0 vy 0 Vs 0
Quarks u 1.5-33MeV ¢ 1277007 GeV ¢ 171.24+2.1 GeV
d 35-6.0MeV s 104728 MeV b 4207507 GeV
Photon ol 0
Gluons G 0
Weak gauge- W+ 80.4 GeV
bosons 70 91.2 GeV

Table 1.2: Masses of fundamental particles as in [5], see the notes there for an explanation
of the quark mass definitions.

effective theory can be constructed where in the lowest order approximation the quarks
are treated as infinitely heavy [12, 13, 14]. In chapter 4 it is shown how this effective
theory can be discretised on a space time lattice and used to predict decays of heavy
B mesons to light final states. The ¢ (top) quark is so heavy that it decays before it
can form bound states and it only has an indirect impact on low energy phenomena.
In the effective theory I discuss in section 2.2 it will only affect the numerical value of

the Wilson coefficients which multiply low energy operators.

The forces between the matter fields are mediated by the gauge bosons of the
corresponding group. For the electromagnetic force this is the photon and for the
strong force there are 8 gluons which themselves carry colour charges and interact with
each other. In contrast to these the mediators of the weak force are not massless but
have masses of the order of the vacuum expectation value of the Higgs field which
spontaneously breaks the electroweak symmetry group down to the electromagnetic
subgroup. The two charged gauge bosons W have a mass of around 80 GeV and the
mass of the neutral Z° is about 90 GeV. Like the top quark the weak gauge bosons
can be integrated out and do not appear as independent degrees of freedom at hadronic

scales.

In its minimal form the Higgs field is a charged scalar Isospin doublet which acquires
a vacuum expectation value by spontaneous symmetry breaking. Three of its four
degrees of freedom turn into the longitudinal polarisations of the massive weak gauge
bosons. Direct detection of the remaining uncharged scalar is one of the main goals of
the LHC and this discovery will complete the Standard Model.
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1.2 Flavour changing currents and the CKM matrix

As the quarks have non-zero masses, their mass eigenstates can be different from their
weak interaction eigenstates. This introduces interactions between the families via the
exchange of charged W*-bosons. The interaction term in the Lagrangian contains the

Cabibbo-Kobayashi-Maskawa matrix [15, 16] Vg and can be written as
W:_(UL,EL,ZL)’Y“VCKM(CZL, SL, bL)T + (h.c.) (1.1)

where WJ’ is the field of a weak gauge boson. The matrix

Vud Vus Vub
Vekn = [ Vea Ves Ve (1.2)
Via Vis Vi

is unitary in the Standard Model and experiments indicate that the off diagonal
elements are small (for an overview see [5]). Vogay can be parametrised by four
parameters, three real angles and one CP-violating phase. If this phase is non-zero, as
measurements of the CKM-triangle show, weak interactions are not invariant under a

simultaneous charge (C) reversal and parity (P) transformation.

The standard parametrisation is the approximation proposed in [17] which uses

A = |Vus| = 0.22 as a small expansion parameter

1-— )‘72 A AX3(p — in)
Voexku = -\ — )‘72 AN2 + (9()\4). (1.3)
AN (1 —p—in) —AN? 1

Unitarity leads to a set of relations among the CKM parameters which can be
interpreted geometrically as triangles in the complex plane. Only one of these triangles

is not near-degenerate, after normalisation the corresponding relation is

VudVih N ViaVi,
VeaViy, — VedVg

+1 = 0. (1.4)

This can be used to relate the sides and angles to elements of the CKM matrix, see
Fig. 1.3. The apex of the triangle lies at p + in so that a finite value of 7 is a sign of

CP violation.
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(p.n)

Vud V:f,
Vea Vb

(0,0) (1,0)

Table 1.3: CKM triangle in the complex plane

1.2.1 Measuring the sides of the CKM triangle

In nature free quarks can not be observed and Vg s can only be extracted from decays
of strongly bound particles. In Tab. 1.4 I list the absolute values of the CKM matrix
elements which are obtained by combining results from different sources, including
both inclusive and exclusive decays? and B meson mixing [5]. In the last column
I also give examples for exclusive observables which can be used in this extraction;
experimentally these have the advantage of a well defined final state. The prediction of
inclusive and exclusive decays requires different techniques and it is useful to consider
both as inconsistencies between them can provide information on contributions from
new physics.

Note that the dominant uncertainty in |V,,qV. /(VeqVy;)|, which is one of the sides
of the CKM triangle in Fig. 1.3, comes from |V,;| (see dark green circle in Fig. 1.1).
The value quoted in Tab. 1.4 is dominated by the inclusive measurement. To extract
Vi from exclusive measurements matrix elements of heavy-light operators need to be
calculated. Hadronic form factors have been predicted by the HPQCD collaboration
[18].  With experimental input from the BaBar, Belle and Cleo collaborations
they report |Vip| = (3.55 £ 0.25(exp.) £ 0.50(theor.)) - 1072 where the dominant
error is theoretical. Results obtained using other parametrisations with theoretical
uncertainties of comparable or larger size are collected in [19]. In a recent calculation
[20] the form factors are parametrised in a model independent way; using input from
a lattice calculation and combining with data from the BaBar experiment the authors
of this study find |V,| = (3.38 £0.36) - 1073.

In Fig. 1.1 T show all constraints on the CKM triangle in the complex (7, p)-plane

[5]. The plot clearly demonstrates that so far the measurements from a wide range

2The hadronic final state in an inclusive decay contains an arbitrary number of particles and is
only specified by its quantum numbers. For example, in the decay B — X the symbol X, describes
any number of hadrons with total strangeness s = 1. Exclusive decays have a defined final state, as in
B — mlv.
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(Verm)ij value rel. error observable
|Vl 0.97418 £ 0.00027  0.028%  Nuclear beta decay, m — (v
\A 0.2255 4 0.0019 0.84% K — mly
Vs (3.934£0.36) - 1072 92% B — 7l
V.l 0.230 + 0.011 48% D — ity
IV 1.04 £ 0.06 58% D — Klv, Dy — (v
Vs (41.24+1.1)-1073 2.71% B — Dlv
|Vial (8.1+£0.6)-1073 7.4%  BDB-mixing
Vi|  (387+£23)-1073  59%  B,B,-mixing
[Vin| > 0.74 top decay, Br(t — Wb)/Br(t — Wq)

Table 1.4: Absolute values of CKM matrix elements from [5] and selection of (exclusive)
processes which can be used for extraction of these matrix elements. Each value in the
second column is obtained from a combination of inclusive and processes, not necessarily
the ones listed in the last column.

of observables are consistent with each other and it is desirable to reduce theoretical
uncertainties even further to keep up with the increasing precision of experimental

measurements.

CKM triangle and lattice QCD

The differential decay rate of the semileptonic decay B — wfv is proportional to the
product of |V,;|?> and the square of the strong form factor fi(g?). In this process
g = p — p is the momentum transfer between the initial- and final state mesons and

the Fermi constant is denoted by Gf:

dl'(B — mlv) G|Vl

= [(m% +m2 —¢*)? —dmEmZ] | f+(*)*  (1.5)
dg? 19273 m3,

The form factors fy and fp parametrise heavy-light matrix elements of the vector

current,

M3% — M?

2 g2
c@)FHBR) = Fold) (pup'ﬂ—Tﬂqﬂ)m(q?)u

Lt
q.
q2
(1.6)

In [18] these form factors are calculated in lattice QCD. This is done using two

approximations which are also crucial for this work:

1. The heavy quark is treated in an effective nonrelativistic theory.
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Figure 1.1: Constraints on the CKM triangle from [5]. The shaded regions have 95%
confidence level.

2. Vacuum polarisation effects of light quarks can be included for masses close to

the physical value by using an improved discretisation of the light fermion action.

As the hadronic particles in the final state are light, the squared momentum transfer ¢
can become very small. In the rest frame of the decaying B the pion in the final state
has large momentum and the lattice calculation is spoilt by the associated substantial
discretisation errors. On the other hand, most experimental measurements are obtained
at small ¢? [21, 22, 23] so extending the prediction of form factors to this region is
important to improve the constraints on |V,;|. The same problem arises in other decays
with light hadronic particles in the final state such as B — K®¢+¢~ or B — K*~ where
¢> = 0. As will be discussed in detail in section 4.1.2 this problem can be solved by

another improvement over previous work, namely
3. The heavy quark is discretised in a moving frame.

The resulting formalism has been developed in [1, 24, 25, 26, 27, 28] and is known as
moving NRQCD. Calculation of radiatively improved non-perturbative lattice matrix
elements is currently carried out by the HPQCD collaboration [29, 30].

In addition, lattice QCD can contribute to improving the constraints on CKM

parameters by calculating the B and K bag parameters. The neutral B, meson mass

9
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splitting is proportional to [V;,|* and the bag parameter B B, defined by [31]

(B\Ga)v-aGa)v-alB®) = Smn,By, i3, (17)

where the subscript V' — A denotes the vector-axialvector structure of the weak interac-
tion. This quantity can be calculated in lattice QCD from matrix elements of four quark
operators; theoretical uncertainties are reduced in the ratio fp, \/B—BS /(fB, \/B—Bd ), so it
is advantageous to use the experimental measurement of Amp, /Ampg, instead of Amp,
alone. As Vi; & —V,y, this helps to constrain the other side of the CKM triangle (yellow
and orange circles in Fig. 1.1). Recently the HPQCD collaboration has calculated
Bp, and Bp, using a nonrelativistic action for the heavy quark and including vacuum
polarisation effects from light sea quarks [32].

Similarly, the CP-violating parameter e in neutral kaon mixing is proportional to

the kaon bag parameter By

K5y -aGdvalK®) = SmiBifi, (19)
lex| = Brnl[(1—p)e + e,

where ¢; and ¢ are known constants [31]. This leads to another constraint on the CKM

triangle (light green band in Fig. 1.1).

1.2.2 Measuring CP violation

The angles of the unitarity triangle can be inferred from CP-violating processes. The
angle [ is constrained by measuring the time-dependent asymmetry in B — J/¢Kg.
For the decay to the CP eigenstate f = J/¥Kg [33] the asymmetry is
—0
L(B(t) = ) —T(B(t) — [)

Acp(t) = B0 = f) F(Eo(t) =5 = —sin(20) cos(Ampt). (1.9)

The time dependent asymmetry in this process is a very clean observable which does
not suffer from large hadronic uncertainties. As can be seen from Fig. 1.1 this leads to
very tight constraints on [.

The other angles of the CKM triangle can be constrained by other processes which,

however, suffer from larger uncertainties .

1.2.3 Flavour changing neutral currents

In addition to these charged currents there are also flavour changing neutral currents
(FCNCs). In the Standard Model these are forbidden at tree level but generated at one

10
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W () U (y %7
_— — 3

b B f; o S Q7 b V’\/ t \‘. s
W W, H

Figure 1.2: Loop suppressed flavour changing neutral current (FCNC) in the Standard Model
(left) and SUSY (right). The local operator in the effective theory, which is obtained by
integrating out physics at the electroweak scale, is shown in the centre.

loop level (see the left diagram Fig. 1.2 for an example). At energies well below the
electroweak scale these currents can be written as the product of a Wilson coefficient,
which encodes the physics at very small length scales, and a local effective operator
which is usually suppressed by some powers of 1/my,. This factorisation simplifies
the problem significantly: different extensions of the Standard Model will only modify
the value of the Wilson coefficients C(u), while QCD matrix elements of the effective
operator are independent of the physics at the electroweak scale. 1 will discuss rare B

decays and effective theories for flavour changing currents in more detail in chapter 2.

1.3 Searching for new physics

Although until now the Standard Model has passed all experimental tests there are
reasons why it is believed that it has to be interpreted as an effective approximation
of a more fundamental model. The parameters of the theory like masses and coupling
constants are not predicted and a successful extension of the Standard Model has to
explain the hierarchy in particle masses spanning several orders of magnitude. It is also
highly desirable to unify all forces in nature, including gravitation. Numerous models
have been put forward for solving all these problems but to date there is no consensus
on a unique “Theory of Everything”.

There are two strategies for extending our knowledge beyond what we know about
the Standard Model. The first approach is the direct production of new particles.
As these have not been observed in the energy range that is currently accessible this
requires an increase of the collision energy in new particle accelerators. The Large
Hadron Collider is designed to reach a centre-of-mass energy of 14 TeV and will be
able to produce and measure potential new particles in the TeV range. Two of its
experiments (ATLAS and CMS) are specifically designed for these direct searches for

new physics.

11
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Alternatively one can study the effect of new particles on the properties of Standard
Model particles which will be modified by virtual corrections. The advantage of this
approach is that one does not necessarily have to make any assumptions on new physics
models, instead they can be parametrised by adding additional higher order operators
to the Standard Model Lagrangian. At the Large Hadron Collider the LHCb detector
is specifically built for studying the properties of B mesons which will be produced in
unprecedented quantities at the accelerator.

In addition to precise measurements this requires very exact theoretical predictions
of the Standard Model processes, the latter is particularly challenging for strongly
interacting particles. The aim of the HPQCD collaboration is the calculation of
precise lattice matrix elements. The work presented in this thesis contributes to this
programme by further improvement of the lattice action and decay currents used in the

simulations.

12



Chapter 2

Physics of rare B-decays

Of particular interest for indirect new physics searches are processes which are known
to be suppressed in the Standard Model. Rare B decays as B — K*y or B — K®)¢t¢~
are mediated by flavour changing neutral currents and can only occur at the loop level
in the Standard Model. Contributions from virtual new particles in the loop, such as in
the SUSY diagram in Fig. 1.2, are expected to be of comparable size to the contribution
from the Standard Model.

In the first part of this chapter I discuss the radiative decay B — K*v. I focus on
this decay as it is sensitive to the tensor current; I have calculated the perturbative
renormalisation of this current in an effective nonrelativistic lattice theory for the first
time. In the second part I describe how the large mass of the b quark can be exploited

to treat heavy particles in an effective low energy theory.

2.1 Experimental results

Decays of B mesons have been measured extensively at the so called B factories at
KEK in Japan and SLAC in the United States. At these asymmetric electron-positron
colliders the centre of mass energy of the colliding particles is tuned to the unstable
Y (4s) resonance which subsequently decays into BB pairs. This way it is possible to
accumulate a lot of statistics and the BaBar detector at SLAC and Belle at KEK have
recorded a large number of events. As the colliding beams have different energies, the
produced B-mesons are not at rest in the laboratory frame and time dependent CP

asymmetries can be studied in addition to branching ratios.

2.1.1 Inclusive decay

As of April 2009 the world average from the Heavy Flavour Averaging Group for
E, > 1.6 GeV is [19]

Br(B — Xsv) = (3.524+0.23+0.09) - 10~* (2.1)

13
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where the first error is due to the statistical and systematic uncertainty, whereas the
second uncertainty estimates nonperturbative corrections due to the Fermi motion of
the b quark inside the decaying B meson. This number includes results from the
BaBar and Belle experiments and a measurement of the CLEO-c detector at the Cornell
Electron Storage Ring CESR.

2.1.2 Exclusive decays

The latest (preliminary) results for the branching ratios obtained at BaBar are [34]

Br(BY — K*%y) = (4.58 4 0.10(stat.) + 0.16(sys.)) - 107°, (2.2)
Br(BT — K*Ty) = (4.7340.15(stat.) + 0.17(sys.)) - 107°.

Over the last four years the collaboration has reduced both statistical and systematical
errors by nearly a factor two and for both channels they are now smaller than 5% which
has to be compared to the 7% error in the inclusive measurement (2.1). It should be
noted that the new results differ significantly from the previous numbers in [35].

The corresponding results of the Belle collaboration are [36]

Br(BY — K*%y) = (4.01 4 0.21(stat.) + 0.17(sys.)) - 107°, (2.3)
Br(BT — K*Ty) = (4.254+0.31(stat.) 4+ 0.24(sys.)) - 107°.

The world average presented by the Heavy Flavour Averaging Group is [19]

Br(BY — K*%) = (4.4040.15)-107°, (2.4)
Br(BT — K*Ty) = (4.57+0.19)-107°.

In the Standard Model this decay proceeds by transforming a left-handed bottom quark
into a right-handed strange quark quark under emission of a right-handed photon. The
transition with opposite helicities is strongly suppressed but might be sizable in some
new physics models. Although direct measurements of the photon polarisation are
difficult, one can constrain the size of the b — spyg transition by measuring the time
dependent CP asymmetry for the decay to a hadronic CP eigenstate M° and a photon
[37], see section 2.2.2 . MY can be realised by using the decay of K* to K57L7TO.. The

asymmetry is parametrised as

| T(BY — MO%(t)) - T(B” — M%(t))
A= B0 = amy) + 1 = M) 29

= Cg+ycos(Ampt) + S+ sin(Ampt).

14
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The (preliminary) results from the BaBar experiment are Sg-, = —0.08 £
0.31(stat.) & 0.05(sys.) and Cg+y = —0.15 £ 0.17(stat.) £ 0.03(sys.) [38]. These
quantities have also been measured by the Belle collaboration who find Sg«o, =
—0.3275:30 (stat.) & 0.05(sys.) [39].

In the future more results are expected from the LHCDb detector and the planned

Super B collider.

2.2 Effective Lagrangians for electroweak physics

Particles at the electroweak energy scale py ~ my, my ~ 100 GeV do not contribute
directly to low energy matrix elements at the bottom quark scale pp ~ my ~ 5 GeV.
Due to the uncertainty principle virtual heavy particles can only travel distances of
the order ~ 1/uy which is much shorter than the typical time ~ 1/p;. This implies
that fluctuations at the electroweak scale, which might include physics beyond the
Standard Model, can be integrated out to obtain an effective theory with local, point-
like interactions. The subsequent discussion follows the comprehensive overview in
[40].

For the AB =1, AS = 1 transition the effective Hamiltonian at leading order in

my/my can be written as a linear combination of eight operators,

8
Ao —1) = LRV Y GG (2.6)

j=1

Here G is the Fermi constant and the unitarity of the CKM matrix and the relation
Vi Vil / (Ve Vih) < 1 has been used to eliminate all but one combination of CKM matrix
elements (this implies that operators, which can be obtained from (1 and Q2 by

replacing ¢ +— u, are suppressed and are not shown in (2.7)). I use the operator

15
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basis in [41],

Q1 = (CLsY"bra)(BLayucLs); (2.7)
Q2 = (CLa¥"bra)Brsvucrs);
Qs = (LaV'bra) Y (Trgvudre);
q=u,d,c,s,b
Qi = (SLa¥brs) Y. (@rWdra),
q=u,d,c,s,b
Qs = (Spa7"bra) Z (qRﬁ’YMQRﬁ)a
q=u,d,c,s,b
Qs = (51a7'brs) Y, (ArgYudra),
q=u,d,c,s,b
e _ . 7
Qr = mesLaauubRaFy,y with J’“’:i[y“,y”],
g _
QS = meSLaO"ngﬁbRﬁqu.

Fu (Gy,) is the electromagnetic (chromodynamic) field strength tensor; a and 3
are colour indices. In the effective Hamiltonian the physics is factorised into two
contributions: effects at the electroweak scale are encoded in the p-dependent Wilson
coefficients C'j(1) and matrix elements of the operators @); are evaluated between low
energy particle states. The dependence on the unphysical scale p, which separates the
two regimes, cancels in physical predictions. However, at a finite order in perturbation
theory this cancellation is usually only approximate.

The first two operators arise from an electroweak current-current interaction, see
Fig. 2.1 and in the Standard Model Q)5 is the only operator with a nonvanishing matrix
element at tree level, Q1 has a different colour structure which can only be generated
by gluon exchange between the quark lines. The other four quark operators Qs, ..., Qg
and the (chromo-) magnetic tensor currents Q7, Qs are generated by penguin diagrams,
Figs. 2.2 and 2.3. In the Standard Model their Wilson coefficients are given at leading
order by Inami-Lim functions [42] which depend on the ratio z; = m;/my . In other
new physics models the Wilson coefficients will be different.

As photons and gluons can couple to internal charm quarks (Fig. 2.4) the one loop
matrix elements of the four quark operators do not necessarily vanish. It turns out
that they depend on the regularisation scheme and in particular on the treatment of

v5 in d dimensions [43, 44]. This can be summarised as

(Qi>ono—loop - yi<Q7>treea <Qi>0ne—loop =z <Q8>tree (28)
where y; and z; are scheme dependent. To compensate for this the coefficients C7 and
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q q><q
b S

Figure 2.1: Electroweak current-current interaction and effective vertex. Diagrams of this
type and QCD corrections, which can change the quark colour structure, generate the local
operators (01 and Q).

Figure 2.2: One loop penguin interaction and effective vertex. Diagrams of this type
generate the local operators Q3,. ..,Qs.

Figure 2.3: Magnetic penguin interaction and effective vertex. Diagrams of this type
generate the local operator (7. The corresponding diagram for (Jg can be obtained by
replacing the external photon by a gluon.

Figure 2.4: Loop diagrams of four quark operators that contribute to b — s7.

17
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Figure 2.5: Effective operators in b — sé/.

Cg can be redefined in an regularisation scheme independent way by replacing
6
Cr(p) — 5% (n) = Cr(w) + Y 4iCilw), (2.9)
i=1

6
Cs(p) — C§" (1) = Cs(p) + Y 2 Calp).
i=1

In the following I will work with these coefficients but drop the superscript “eff” for

simplicity.

2.2.1 Operators in b — s€T¢~

For the decay B — K ()¢t ¢~ two additional operators contribute with the leptonic

current coupling to the hadronic heavy-light vector current, see Fig. 2.5,

Qo = €*(5pyubr) Y ((4*0), Q10 = €*(5rubr) Y ([ s50). (2.10)
4 4

2.2.2 Tensor operators with opposite chirality

In addition to ()7 and @Qg, which change a left handed b-quark into a right-handed s-
quark, there are corresponding operators with opposite chirality. In the Standard Model
only left handed quarks couple to the electroweak gauge bosons and the chirality has
to be flipped on one of the external quark lines. This is only possible by insertion of
a mass term m g + (h.c.) which will generate a factor of my, for the bgp — sy and
a factor of my for the by — sg transition. The strong interaction conserves chirality
so even after including radiative corrections these additional operators are suppressed
by a relative factor mgs/mp. As argued in [37] this is not necessarily true for some
new physics models. Even though it is difficult to measure the photon polarisation

directly the size of these operators can be constrained by studying the time dependent
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CP asymmetry

D(B° — M%(t)) — (B’ — M°(t))
D(BO — MO%(t)) + T(B® — MOy(t))

Appo,(t) = (2.11)

where MV is a hadronic CP eigenstate, for example K*0 — K L75’7T0. This asymmetry
is nonzero if both BY and B’ can decay to a common final state. As the photon
polarisation can in principle be observed this is only possible if the transition by, — sg

is allowed. Indeed one finds
Appo(t) ~ sin(24) sin(Ampt) (2.12)

where tan ¢ is the relative strength of the by, — sg and the b — sy, operator.

2.3 Theoretical predictions

Using the Hamiltonian in (2.6) predictions for physical processes can now be obtained

in three steps:

1. Matching at the electroweak scale. Compute an amplitude both in the full theory
and in the effective theory and adjust the Wilson coefficients at the electroweak scale,
Cj(puw) such that the amplitudes agree. To illustrate the procedure I first work in
the leading log (LL) approximation and then comment on the current status of the
next-to-next-to-leading-log (NNLL) O(a?) calculation in section 2.3.1.

At the lowest order QCD corrections are not taken into account in this step and

only Cs, C7 and Cg are nonzero,

Colpw) = 1, (2.13)
33 — 222 —8x3 — ba? + Tay
C _ t t 1 t t
7(1uW) 4($t — 1)4 0g Ty + 24($t — 1)3 )
—322 —x3 + 5x? + 214
C _ t t t

Here C7 and Cg are given by Inami-Lim functions [42] from integrating out the top

quark and electroweak vector bosons. For m; = 170 GeV, myy = 80.425 GeV one has
C7(mw) = —0.193, Cs(mw) = —0.096. (2.14)

This is the only step which depends on physics at the electroweak scale; in extensions

of the Standard Model with new particles in the loop the Wilson coefficients C;(uw)
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Figure 2.6: Penguin loop diagrams.

will be different.

For example, in [45] it is shown how C7(uw) and Cg(uw ) change in a two Higgs
doublet model. The W boson in the loop in Fig. 1.2 can be replaced by a charged
Higgs boson. The numerical size of these changes depends on the parameters of the
specific model. In [45] it is reported that the inclusive decay rate B — X7, which in
the LL approximation is proportional to |C7(u)|?,
of three compared to the Standard Model.

can be enhanced by about a factor

2. Renormalisation group running. As there is a huge separation between the elec-
troweak scale and the mass of the b quark large logarithms of the form o/ logk(u%‘/ /1))
are resummed using the renormalisation group equations. The LL approximation
corresponds to ¢ = k. The scale dependence of the Wilson coefficients is described

by the anomalous dimension matrix (g),

dCi(p)
dp

Yij (9(1))Cj (1) (2.15)

This can be solved for C;(x) with the initial conditions C;(uw ) in (2.13). At LL one

only keeps the lowest order term in the expansion

_ % o, %
v(9) = ot (477)27 +.... (2.16)
The matrix () is given explicitly in [43, 44]. It turns out that none of the other
operators mixes into Q1 and Q). This is because gluons do not change flavour and
the mixing could only come from the penguin diagrams in Fig. 2.6. However, in these
diagrams one has to sum over all flavours in the lowest quark line. The dimension five
tensor operators do not mix into the dimension six quark operators, as expected in

a mass independent renormalisation scheme. Schematically the anomalous dimension
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b 25 GeV  5.0GeV 10.0 GeV

Ci(my)  0.019  0.016 0.013
Co(my)  0.629  0.711 0.788
Cs(w) —0.107  —0.078  —0.055
Ci(w) 0125  0.093 0.066
Cs(my)  0.023  0.017 0.011
Co(ws)  0.013  0.009 0.006
Cr(w) —0.336  —0.300  —0.269
Cs(w) —0.158 —0.144  —0.131

Table 2.1: Wilson coefficients of the effective Lagrangian (2.6) at three different scales in the
leading logarithmic approximation. | use myz = 91.1876 GeV, my = puw = 80.425 GeV
and as(mz) = 0.118 in the numerical evaluation.

matrix can be written as

»< *< >é€<
N |
'3 6 3
O A A
v o= O ;2/\3—6 \ig . (2.17)

o 0 .

Solving the RG equations the contribution from C5 to the tensor operators turns out
to be particularly large. In [40] the coefficient C7 is calculated for m; = 170 GeV and
as(Mz) = 0.118,

Cr(upy =5 GeV) = 0.695 C7(puw) + 0.085 Cs(pw) — 0.158 Co(puy)  (2.18)
= 0.695(—0.193) + 0.085(—0.096) — 0.158 = —0.300.

For Cg a similar enhancement by Qo is observed.

The leading order Wilson coefficients of all operators can be computed using the
“magic numbers” in Tabs. 6 and 23 of [40] and are collected in Tab. 2.1. Note that,

apart from Cy(uyp), the Wilson coefficients of all four quark operators are small.
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3. Matrix elements. Finally, using the effective Hamiltonian and the Wilson
coefficients at a scale pp ~ mp matrix elements for physical processes have to be
computed. For inclusive decays this can be done using quark hadron duality and it
is sufficient to consider the process on the quark level. However, for exclusive decays,
where the quarks are bound within hadrons, this is much more challenging. Before I

discuss the evaluation of exclusive matrix elements in more detail I review the status
of the NNLL calculation.

2.3.1 NNLL calculation

The error on the experimental value of the inclusive B — X, branching ratio is of
the order of 7%. As the accuracy of the NLL calculation is known to be around 10%
[46] this motivated a NNLL order calculation of this process which was completed
in 2006 [47, 48]. The results of the matching calculation and the calculation of the
anomalous dimension matrix are universal and can be used both for inclusive and
exclusive processes.

In the NNLL approximation matching at the electroweak scale is carried out at
O(a?). To compute the mixing between four quark operators it is necessary to evaluate
three loop diagrams. As a photon (or gluon) can be attached to the internal charm line
calculations of four loop diagrams are necessary for the mixing of four quark operators

to the dipole operators.

Inclusive branching ratio

To complete the calculation of the decay width the operator product expansion
P(E _ XS’Y) _ F(b _ Xgarton,y) + A(nonpcrt.) (219)

is used where nonperturbative corrections are suppressed by (Aqcp/ my)?. The partonic

rate can be written as

2 —2 3
GrQemTy 1r5(1)MG pole
3274

L(b— XD p ~p, Ve Vis? Y Ci(i)C; (1) G (Bo, ).
ij
(2.20)

Here G;j(1) denotes the contribution from (Q;, Q) interference to the matrix element.
Gj;j can be calculated using the optical theorem which connects the imaginary part
of the forward matrix element to the total cross section. To this end the imaginary
parts of the heavy quark self-energy correction induced by the operators ); and Q; are

calculated, see Fig. 2.7.
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2.3. Theoretical predictions

Figure 2.7: O(as) correction to the inclusive matrix element arising from Q7-Q7
interference. The dashed line indicates one possible cut of the diagram.

So far only the dominant (C7,C7) part from the dipole operator is known which
requires a two loop calculation. For the three loop matrix elements of four quark
operators an approximation in the charm quark mass is necessary which introduces
additional uncertainties.

To reduce systematic uncertainties, in particular to cancel the dependence on the
fifth power of the bottom quark mass and on the largely unknown CKM factor |Vi, Vi |2,
the branching ratio is normalised to Br(B — X.ev).

The final result for a lower cut of Ey = 1.6 GeV on the photon spectrum is [47]
Br(B— Xyy) = (3.154£0.23)-107* (2.21)

which has to be compared to the experimental result in (2.1). The systematic error
comes from nonperturbative corrections, uncertainties in the input parameters, higher

order radiative corrections and the ambiguity in the m,. interpolation.

2.3.2 Exclusive matrix elements

As heavy quarks are bound within mesons the prediction of exclusive matrix elements is
more difficult. The decay amplitude of B — K™~ can be split into a local part, arising

from the tensor operator ()7, and nonlocal effects from Q)g and four quark operators,

AB = K*y) = —%%b%’é[07(u)<K*7|Q7(0)|B> (2:22)

d*r  _,
+ S [ o AT A @) ()0 O15)]
J#T

where jb, = ezq Qqq7"q is the electromagnetic current (), denotes the charge

of quark ¢g). Only the local contribution can be calculated directly on the lattice.
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Chapter 2. Physics of rare B-decays

Figure 2.8: W annihilation diagram.

Calculating matrix elements of nonlocal operators is inherently difficult; several
methods such as phenomenological models combined with perturbation theory [49,
50, 51], vector meson dominance [52] and operator product expansions in combination
with QCD sum rules [53, 54, 55] have been used to estimate their size. In [56] these
calculations are reviewed for the decay B — V', where V is any vector meson such
as p,w,® or K*. In this analysis the operators )3 . ¢ are neglected due to their small
Wilson coefficients.

For a first, very rough estimate of the relative importance of the different operators
in the electroweak Lagrangian consider the branching ratios from the local amplitude

only. This is estimated in [56] as
Br(B® — K*%4) =4.5-107%, Br(B* — K**y) =4.6-107°. (2.23)

Comparison with the central values of the latest world average of experimental
measurements in (2.4) suggests that the nonlocal contributions are small.
In the following I describe the contributions from different operators in the effective

Hamiltonian and finally outline the lattice calculation of the local tensor operator Q7.

Weak annihilation

The weak annihilation amplitude in Fig. 2.8 is generated by four quark operators and
can be calculated at leading order using factorisation. Note that, as the exchanged
W boson is charged, this process does not contribute to the radiative decay of neutral
mesons. More specifically, in [56] it is shown that for the decay B — pvy the amplitude

can be written as the sum of two contributions,

A~ = fepulp” AI(du)_ 4l0) +m,- fo (€)Y (@) 4| BT) (2.24)

corresponding to the photon coupling to the p- and B-meson. fp and f,- are the meson

*

P
contribution can be calculated exactly in the chiral limit whereas the matrix element

decay constants whereas € is the polarisation vector of the vector meson. The first
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2.3. Theoretical predictions

Figure 2.9: Penguin diagram with u- and c-loops.

(7|(@b)i,_ 4|B~) can be expressed in terms of the two form factors which parametrise
the decay B — ~yer. At higher order gluons can connect the mesons in the initial and
in the final state and the matrix element does not factorise as in (2.24). However,
it is argued in [56] that these effects are small and factorisation remains a very good
approximation.

The amplitude in the decay to a final state K* is strongly CKM suppressed by
Vi Vi / (Ve Vis) ~ 0.02 relative to the contribution from the electromagnetic tensor
operator. It is calculated in [51] in the framework of the quark model described in
[57, 49]. The leading quark-antiquark Fock states inside the mesons are described by
phenomenological ansatz and perturbative corrections to the decay amplitude from
gluon exchange are calculated in perturbation theory. The relative size of the weak

annihilation contribution to the branching ratio is relatively small, around 6%.

Long distance contributions from internal c-quark loops

The dominant contribution to the long distance amplitude induced by the b — séc
operators (see Fig. 2.9) is usually assumed to come from the diagram where the photon
couples to the charm quark loop. This is confirmed by the perturbative calculation
combined with a quark model in [51] where it is found that the main contribution
generated by Q2 comes from diagrams where the photon couples to the éc loop and the
gluon connects this loop to either the b or s quark. Only Q7 contributes at tree level
but in [51] it is found that the O(«s) contribution of the four quark operator is of the
same order as the one loop correction to the electromagnetic tensor operator (7.

This process can be described as the decay B — V'1),,, where the 1, is a bound ¢c
vector state, such as J/1, which subsequently decays into a photon, see Fig. 2.10. In

this approximation the long-distance amplitude can be written as

A = Qe GO dbn)AB — Vi)

: 2.25
2 — M2 +iM,T, (2.25)

n,€n
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Chapter 2. Physics of rare B-decays

I/

Figure 2.11: Chromomagnetic tensor diagram.

where €, is the polarisation of the vector meson 1, with mass M, and width [',.
For real photons with ¢> = 0 the sum is dominated by the lowest lying resonances.
The mass of the J/v is 3.097 GeV so that long distance effects from charm loops are

expected to be suppressed.

This argument is supported by the explicit calculation in [53] where the charm
quark is integrated out to obtain an effective b5gy operator suppressed by 1/m?2. The
matrix element of this local operator is calculated using QCD sum rules and found to

be small, contributing around 5% of the dominant amplitude from Q7.

Note that the contribution from ¢c loops is not CKM suppressed for the decay to
a K™ in a final state, whereas wu loops are. The latter is not necessarily the case for

decays to other vector mesons, such as the p.

Chromomagnetic tensor operator

The contribution from the chromomagnetic tensor operator is shown in Fig. 2.11 where
the photon can couple to any internal quark. The size of this contribution is estimated
in [50]. There the decay amplitude is calculated for both the electromagnetic and the
tensor operator in the framework of a quark model. The contribution of Q)g is found

to be suppressed relative to Q7 by a factor Aqcep/mp x Cg/Cr = 5%.
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2.3. Theoretical predictions

Figure 2.12: Four quark penguin operators (Q3...Qg) and W exchange (@1 and Q2)

diagrams.
b u, c
€ )
q q

Figure 2.13: Penguin annihilation diagram (does not contribute to B — K*v).

Four quark penguins, W-exchange and penguin annihilation

The contribution of four quark penguin operators Qs . .. Qs and W-exchange via 1, Q2
is shown in Fig. 2.12. The contribution from ()1- and (Qo-like operators with ¢ replaced
by w is strongly CKM suppressed for B — K*y. The W-exchange diagram can be
treated in a similar way to the weak annihilation process in Fig. 2.8. However, for
B — K™ this process is suppressed by the small Wilson coefficients of the operators
Q@s3,...,Q6. The penguin annihilation diagram in Fig. 2.13 only produces flavour

singlets in the final state and is not relevant for the decay B — K™*~.

Figure 2.14: Electromagnetic tensor diagram
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Chapter 2. Physics of rare B-decays

Local contribution from electromagnetic tensor operator

The local contribution to the decay B — K™~ is given by the operator Q7 in (2.7), see
Fig. 2.14, and this contribution can be calculated in lattice QCD. One thus needs to
calculate matrix elements of the tensor operator T = iso"*”b. If the momentum of
the decaying meson is denoted by p and the momentum and polarisation of the final
state vector particle by p’ and e then the matrix element can be parametrised by three

form factors as

(K*(p,)|T™|B(p)) = eaT (2.26)
with
2 2 2
m — M 7% m — M«
T 50‘“1/5[ <pﬁ +pp— z 2 W) Ti(¢%) + & 2 K qsTo(q?)

(2.27)

For a physical photon with (p — p')? = ¢* = 0 the factor multiplying 75(0) is zero and
T1(0) = T»(0) = T(0) as the matrix element is finite for all ¢2.

2.3.3 Calculation with relativistic fermions

The authors of [58] calculate the tensor form factor on the lattice by simulating at
unphysically light bottom quark masses my and then extrapolate in 1/m using heavy
quark scaling laws. An O(a) improved Wilson action is used to discretise the quark
fields. All gauge configurations in [58] are quenched.

They first simulate directly at large recoil and use soft collinear effective theory
(SCET) [59] for the extrapolation in the heavy quark mass. At ¢* = 0 the momentum
of the final state meson is close to the light cone. In SCET the collinear part of the light
quark momentum is integrated out. This is similar to HQET, where the high energy
fluctuations of the heavy quark do not appear in the effective theory. However, the
light quark can emit both soft- and collinear gluons and stay near its mass shell; both
gluonic degrees of freedom are kept as dynamic fields in SCET. A systematic power
counting in A, the ratio between the perpendicular and collinear part of the light quark
momentum, can be established.

The result of the lattice calculation is
TO) = 0.24(3)7591 (2.28)
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2.3. Theoretical predictions

The first error is statistical /fitting whereas they estimate the systematical uncertainty
by comparing to results on two lattices with coarser lattice spacing.

They also extrapolate to the physical quark mass while keeping ¢? fixed. The form
factors 177 and 15 can then be extrapolated to zero using a phenomenological ansatz

for their dependence on the momentum transfer,

F
1—@) 1 —a@)’

_F
C1-¢%/p

Ti(¢%) = To(q?) (2.29)
with §? = ¢?/ m2B§. The results they obtain with this method are compatible with the
result in (2.28).

An older study of B — K*v form factors using relativistic, O(a) improved Wilson
fermions can be found in [60]. The authors calculate the form factors that parametrise
the matrix elements (P|gy*b|B), (V|y*(1 —~°)|B) and <V\q,,a“”1+%]B>, where P and
V denote pseudoscalar and vectors mesons respectively. For each ¢? they simulate at
four values of the heavy quark mass around m,. and extrapolate to the physical value
by fitting to an expansion in the inverse mass. This fit is constrained by using heavy

quark symmetry to relate different form factors.

2.3.4 mNRQCD calculation

The HPQCD collaboration uses an effective action which is a systematic expansion
in the inverse quark mass. Instead of approaching the physical heavy quark mass by
extrapolating from unphysically light quark masses the leading term in this expansion
corresponds to an infinitely heavy quark mass. The action includes corrections up to
(and including) O(1/m?) in heavy-light power counting. An additional advantage of
this approach is that the heavy quark propagator in this nonrelativistic theory can be
calculated very effectively by a single sweep through the lattice.

A drawback of the method is that the heavy quark expansion is only valid if the
energies and momenta of the process under study are much smaller than the heavy
quark scale. This is not the case at the physical, large recoil point ¢> = 0 where
the energy of the light quark is of the order mp/2. Instead, all our calculations are
performed around the zero recoil point ¢ = ¢2,,, where the final state meson is at rest.
The lattice data is then extrapolated to the physical point using the phenomenological
ansatz for the form factors in (2.29), this is described in more detail in section 2.3.5.

As ¢? decreases in the lattice calculation, the discretisation errors in the final state
meson grow. Instead of using standard NRQCD, where the heavy quark is discretised
in the rest frame of the decaying B meson, we discretise the effective heavy quark action

in a moving frame. Although due to Lorentz invariance the two frames are equivalent
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Chapter 2. Physics of rare B-decays

'HQET/NRQCD

form factor

T.@%)

T,(0)

9°=0 AR
Lattice mMNRQC
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D" = O

-

Lattice NRQCD

Figure 2.15: Schematic form of the form factors T 5 as a function of g. The shaded regions
show the validity of the continuum heavy quark theory (blue) and the lattice discretisations,
NRQCD (red) and mNRQCD (green).

in the continuum, this is not true on the lattice. Working in the moving frame extends
the range of accessible ¢? and will improve the fit of form factors, see Fig. 2.15.

As discussed above the contribution of four quark operators to the matrix element
in the transition b — sv is small at ¢> = 0 (remember, however, that Q; has a large
influence on the Wilson coefficient C). At larger ¢2, especially near éc resonances, four
quark operators are important and the lattice calculation with the chromomagnetic
operator (7 only does not include these effects.

Matrix elements of the operator @7 in mNRQCD are currently being calculated by
Stefan Meinel [61] and Zhaofeng Liu [30]. In chapter 7 I show how radiative corrections
to these operators can be obtained in lattice perturbation theory. Using radiatively
improved leading order operators in combination with tree level matrix elements of the

1/m currents will improve the accuracy of the form factor calculation.

2.3.5 Phenomenological form factors

To extrapolate the lattice results to ¢> = 0 a physically motivated ansatz for the
tensor form factors leg(q2), which is valid for the whole ¢? region, has to be made.
In [62] a parametrisation for the form factors fo(¢?) and fy(¢?) in the vector current
matrix element (V(p')[wy,b|B(p)) is suggested. It is shown that after constraining the
parameters with lattice data at large ¢® the results agree with those from light cone

sum rules at small ¢?. In [58] this analysis is extended to the tensor current.
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2.3. Theoretical predictions

The form factors have to fulfil the following conditions:

1. T1(0) = T»(0). This follows from (2.27) as the matrix element has to be finite for
2
q‘ — 0.

2. At large ¢* ~ ¢2,. = (mp — mg~)?, where HQET is valid, the matrix element
scales like /mp as the only dependence on the heavy quark mass comes from the

normalisation of the B state. This implies

1/2 —1/2
Ti(q® = ) ~ My To(q® = ¢P) ~ mp">. (2.30)

3. In the high recoil region ¢> — 0 the additional scaling law T} 2(q> — 0) ~ més/ 2

holds.

4. Dispersion relations relate the form factors to resonances R and multiparticle

states above the cut at teys = (mp + mg+)?,

Res 2_,,2 Th, ¢ o Tmd T 5(t
Toogt) = Y nSren 2] 1, i) )

2 _ 2 —_ a2 _4¢°
7 mp —(q T St t—q° — i€

For T} the nearest resonance in the crossed channel J¥ = 1~ isat m B: = 5.42 GeV.
Usually the multiparticle continuum and resonances well above ¢2,. = (mp —
my+)? are modelled by a small number of resonances so that the form factors can

be written as a sum of pole terms.

The authors of [62, 58] note that scaling laws can not be satisfied by using a single
resonance structure for both 7% (¢?) and T5(¢?) and that the pole at ¢ = m2B§ should
be included. They suggest the parametrisation

Ci Cy

n _C1+C'2
=7 1-C

1 - Cy?

Ti(q*) = Ta(q?) (2.32)
with % = ¢*/m%..

The additional constraint T7(E) = mp/(2E)T2(F) in the high energy region
E — 00, mp — oo (where E denotes the energy of the final state meson) can be used

to reduce the number of parameters to three,

F
(1-¢)(1—ag?)’

_F
1=/

Ta(q?) (2.33)

Ty (q%) =

The corresponding expressions for the vector form factors fy o are obtained by

replacing 11 — fy, To — fo and mps — mp-.
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Figure 2.16: Analytical transformation to the z plane

Analyticity

The form factors are analytic functions of ¢? everywhere in the complex plane apart

from poles and branch cuts. The transformation [20]

VI— @t — T ty]ty
V1=t + /1 —to/ts

2 to) = (2.34)
maps the branch cut at ¢ > (mp + mx~)? onto the unit circle and the rest of the real
axis onto the interval [—1,+1] where it is legitimate to expand in a Taylor series in z,
see Fig. 2.16. In the transformation t( is arbitrary and t1 = (mp £ mK*)2. The form

factor can then be written as

1
P 2(¢?)91,2(¢% to)

iak(to)z(qz,to)k- (2.35)

k=0

Ti2(q%)

The functions

Pia(g®) = I[I a-&/m) (2.36)

pe{poles of T 2}

contain all poles of Tj 2(q?) and ¢1.2(g?,to) is an arbitrary function which, guided by
physical arguments, can be chosen such as to suppress higher order coefficients ai. One

furthermore has, due to the B} pole in T:
Pi(q*,t0) = 1 — ¢*/mi, Py(q% to) = 1. (2.37)
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2.4. Heavy quark physics

The advantage of this parametrisation is that it does not make any assumptions, apart
from analyticity and the presence of sub-threshold poles. 1 will use it to estimate
the systematic uncertainty associated with the choice of a particular form factor

parametrisation.

2.4 Heavy quark physics

Inside hadrons quarks are bound by the strong force which is described by a local SU(3)
gauge theory known as Quantum Chromodynamics (QCD). After briefly reviewing

QCD I discuss how heavy quarks can be treated in the framework of an effective theory.

2.4.1 Quantum chromodynamics

Let U = (¢, 45, 1y)7 denote a three component quark spinor (r, b, g standing for the
“colours” red, blue and green) representing a strongly interacting matter field. Under
a local SU(3). gauge transformation parametrised by a(x), a = 1,...,8 this field will

transform as
U(z) — @)  with o) =a®(@)T" (2.38)

where T are the generators of the group SU(3). To keep the Lagrangian invariant
under local transformations it is necessary to introduce a spin-one field A7 in the
adjoint representation and to use covariant instead of ordinary derivatives. Ignoring

strong CP-violation the gauge invariant Lagrangian is given by
1 _
L =%+ L% = —3 tr[F, FMY) + W (i) —m)V (2.39)

with the covariant derivative! D, = 0, +igT"Aj,. The first term, containing the field
strength tensor Fy, = Fj T with F), = 9,4} — 0,A], — gfabcAZA,Ii, describes the
kinetic energy and self interactions of the gauge bosons. The second term contains an
expression of the form @AZ\I/ which couples the gauge field to matter.

This theory is generally known as Quantum Chromodynamics (QCD). In the
interacting theory the coupling constant g is scale dependent. It turns out that due to
the self interactions in the non-Abelian case as = ¢2/(47) decreases for large energy

scales, in particular one finds that at one loop order

1
olu) = Bolog (12 /A cp) (240)

!The sign convention for the coupling constant g is the one used in [63] which differs from the one
in [3].

33



Chapter 2. Physics of rare B-decays

State 25+, Mass

m(1S) 1Sy 9389 MeV
T(1S) 381 9460 MeV
xwo(1P) 3P 9859 MeV
i (1P) 3P 9893 MeV
xp2(1P) 3Py 9912 MeV
T(25) 381 10023 MeV
xw0(2P) 3Py 10233 MeV
o1 (2P) 3Py 10255 MeV
x2(2P) 3Py, 10269 MeV
T (39) 381 10355 MeV

Table 2.2: Observed bottomonium states below the BB threshold. All data is taken from
[5] except for the recent measurement of the 7;,(1.5) ground state reported in [64]; see these
references for a detailled analysis of errors.

with Gy = (33 — 2Ny)/(127) and Ny the number of quark flavours. This also implies
that at energies below Aqcp ~ 500 MeV the perturbative expansion in the coupling
constant breaks down and one has to resort to other methods. Today the most successful
model-independent approaches either exploit the symmetries of the theory to construct
an effective low energy expansion or rewrite the theory so that it can be simulated on

a space time lattice. I discuss lattice field theory in chapter 3.

2.4.2 Separation of scales

The mass of the bottom quark is larger than the hadronic scale Aqgcp. This separation
of scales has interesting consequences and can be used to explain a wide range of
phenomena in heavy quark physics with simple arguments.

At leading order the heavy quark mass does not contribute to the dynamics inside
mesons containing heavy quarks. This can be seen, for example, from the bottomonium
spectrum in Tab. 2.2 where the mass splittings are of order of the hadronic scale. More

precisely the mass of particles in the spectrum can be written as

@ Adep
{n} myp

M{n} = 2my + CLF{%)}AQCD +a

T (2.41)

The coefficients ag;)} are group theoretical factors of order one and depend on the
quantum numbers {n} of the bb state, such as spin and orbital angular momentum.

Many aspects of heavy meson spectra, such as near-degeneracy of spin-states and
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2.4. Heavy quark physics

the weak quark mass dependence of energy splittings, can be explained by treating
the heavy quark in an effective theory where the high energy excitations have been

integrated out and new symmetries emerge.

2.4.3 Effective theories for heavy quarks

Originally Heavy Quark Effective Theory (HQET) was formulated in [12, 13, 14] and
the subsequent derivation of the Lagrangian follows [65]. Consider a meson containing
one heavy and one light quark. The field of a heavy quark with mass m moving with
velocity v can be written as

Y(x) = e MUC[ht(x) +hy ()] with (2.42)

(2

P.hl =ht, P_hf =0, Pih, =0, P_h, =h, (2.43)

where Py = (14 ). The heavy mass is much larger than the QCD scale and at lowest
order in 1/m the quark acts as a static colour source. Interactions with the light degrees
of freedom will only change its velocity at O(Aqcp/m). The external momentum muv
has been removed from A so that the wavelength of typical fluctuations of this field
is small. An effective theory for the infrared modes is now constructed by integrating
out h; and expanding in 1/m.

The heavy quark action in QCD, [ d*z ¢ (x)(ilp) — m)(z), can be written as
/d4:13 {ij - Dhf — Ty, (iv- D+ 2m)hy + hy il) | hy + hy i} Lhj} (2.44)

where a/| = a* — v*(v - a). In the path integral the fields h; can be integrated out by
completing the square and performing the Gaussian integral. The resulting Lagrangian
is at tree level

. —+ 1
& = hyiw-Dhi —h, D | -

_— h. 2.45
w-D—i—2mlpL v ( )

By expanding to O(1/m) one finally obtains a set of local operators

+O-,LL1/G

_ - D2 _ nv
PMHQET) 3%, Dt — h:ﬁhj — gh, hi +O(1/m?).  (2.46)

4m

G is the chromomagnetic field strength tensor and o, = %[’y,“’y,,] a commutator
of gamma matrices. Note that in the v = 0 frame the kinetic operator reduces to

—D?/(2m) whereas the chromomagnetic operator can be written as —go - B/(2m). As
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Chapter 2. Physics of rare B-decays

expected, the dispersion relation is nonrelativistic, E(p) = p?/(2m). The derivation
can be extended to include higher order terms in the 1/m expansion without difficulty.

Beyond tree level the couplings receive radiative corrections. It can be shown,
however, that some of the operators are protected from renormalisation by an additional
symmetry of the heavy quark Lagrangian known as reparametrisation invariance [66].
If the total heavy quark momentum is written as p = pext + pres = muv-+k then momenta
of order Aqcp can be moved between the external momentum pey; and the residual
momentum pres without changing the physics. This fixes the relative coefficient between
the static term v- D and the kinetic term D? /(2m) to all orders in perturbation theory.

Alternatively the heavy quark effective Lagrangian can be derived by writing down
all operators that are compatible with the symmetries of the system. The prefactors
have then to be adjusted by on-shell matching. For this it is necessary to compute
matrix elements both in full QCD and the effective theory. Although the theories
agree for small momenta their short distance behaviour is completely different and the
matching coefficients correct for this ultraviolet mismatch. As QCD is perturbative
above the heavy quark scale the matching can be done perturbatively.

Finally it should be remarked that four quark operators in the heavy quark action
are suppressed by additional powers of the strong coupling constant. They can only

arise at loop level in full QCD.

Heavy Quark Effective Theory

The effective Lagrangian has an infinite number of terms and to make physical
predictions one has to find a way of ordering the operators according to their relative
importance. Power counting rules are not an inherent property of the effective
Lagrangian but have to be derived from the physics of the system under study.

In mesons containing one heavy and one light quark there are only two energy scales,
the dynamic scale Aqcp and the mass of the heavy quark. Any operator of dimension
d will be suppressed by (Aqcp/m)?* relatively to the leading order static operator
v+ D. To make predictions with a given precision it is then sufficient to include only a
finite number of operators.

For infinitely heavy quarks the symmetries of the HQET Lagrangian are different
from those of finite mass QCD. The leading order term does not depend on the heavy
quark spin and mass which has observable effects on the heavy-light meson spectrum.
In particular one expects that to a good approximation the mass of any heavy-light
meson is given by my = m + A with A ~ Aqcp. Fine and hyperfine splittings are
expected to be suppressed by an additional factor of Aqcp/m.

Experimentally one finds that the splitting between pseudoscalar and vector states
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Figure 2.17: Schematic picture of heavy-light (left) and heavy-heavy (right) meson systems.
The heavy degrees of freedom are coloured in red, the light quark in blue.

D, D* as well as B, B* is small and the mass differences sz* — m2B and m%* — m%

are of comparable size. At next order in the 1/m expansion the expectation values of
the kinetic and the chromomagnetic operators can be parametrised by two additional
numbers for each multiplet. Masses of different spin states can then be derived using

simple group theoretical relations, see for example [67].

Nonrelativistic QCD

The situation is more complicated for mesons with two heavy quarks. Here the kinetic
term can not be treated as a correction as it is essential for stabilising the bound state
as a hydrogen-like system. Instead of expanding in Agcp/m the relative velocity vy
of the quark-antiquark pair plays a crucial role. Besides Aqcp and the hard scale m
there are two additional scales in the problem: the heavy quark momentum is of the

order of the soft scale muvye (the inverse of which determines the size of the meson due

2

to the uncertainty principle) and its energy of the order of the ultrasoft scale muvy,.

The leading order Lagrangian in the rest frame is
_ _. D?
L INRACD) - R Dokt — g i (2.47)

Dy is a temporal derivative and scales like an energy mvfel, whereas the spatial
derivative D scales as a momentum muy,.. Both terms in the leading Lagrangian have
the same power in the relative velocity v,e. The size of m and v, can be estimated
from the bottomonium spectrum, see Tab. 2.2. The heavy quark mass is given by

half the energy of the Y(15) state from which one obtains m ~ 4.7 GeV. The spin

2
rel*

excitations are of the order of M (Y(2S)) — M(Y(1S)) ~ 560 MeV and orbital-angular-
momentum splittings of M (xps) — M (Y (1S)) ~ 430 MeV. This gives an estimate of

mvfe1 ~ 500 MeV and vfel ~ 0.1. Indeed it turns out that both for charmonium and

independent energy splittings are of the order of mvZ,. For the low-lying states radial
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operator

D MUrel
Dy mvfd
gAp (Coulomb gauge) mvZ,
gA (Coulomb gauge)  muv2,
gE mzvf’d
gB m%fd

Table 2.3: NRQCD power counting rules derived in [68]. Rules for gauge-invariant operators
are independent of the choice of gauge.

bottomonium mvrzd is very close to Aqcp which suggest that in this range the ultrasoft
scale is independent of the quark mass [68].

It is expected that systematic errors from the relativistic expansion are reduced to
below the 1%-level by including terms of order vfel in the effective Lagrangian.

Power counting rules for other operators are derived in [68]. There it is shown how
powers of v, can be assigned to the vector potential and the chromomagnetic field
such that the field equations of the heavy quark and chromomagnetic field are self

consistent, see Tab. 2.3.

2.4.4 Renormalisation

Due to the different power counting the renormalisation of HQET and NRQCD has to
be discussed separately.

For HQET it turns out that the leading, static theory is renormalisable. When
computing the radiative corrections to some operator O the 1/m terms will be treated as
operator insertions in the path integral. Any divergences that arise from combinations
of O and these insertions can be absorbed into the coefficients of operators of the same
or lower order in 1/m. This implies that the theory can be renormalised order by
order, i.e. if one wants to make predictions with a given accuracy § = (Aqcp/m)"
only operators up to dimension n + 3 [69] have to be taken into account. It has to be
kept in mind, however, that the relation between bare and renormalised parameters is
not necessarily finite. Higher order operators can “mix down” in a cutoff dependent
renormalisation scheme, i.e. an operator of dimension n, can renormalise a lower
dimensional operator with dimension n_ by terms proportional to (Acysoe/m )"+ "—. If
one only works with renormalised operators this is of course not a problem. However,
in the lattice regularisation bare parameters are used which will diverge with some

power of Acytoff ~ 1/a. This restricts the allowed range of accessible a and taking the
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continuum limit becomes impossible. Although this is a drawback it should be noted
that discretisation errors only form part of the error budget in a lattice calculation.
Even if they can not be removed completely, they can be reduced by using improved
actions and their size can be estimated and quoted together with the central value
obtained in a lattice simulation.

For NRQCD the 1/m corrections are already contained in the propagator and
the leading order theory is not renormalisable. Here there is an infinite number of
divergences which can not be absorbed by low energy constants, so the desired order-
by-order renormalisation of the theory seems to be impossible. It has to be kept in mind,
though, that even an unrenormalisable theory is still predictive if the cutoff dependence
of the coupling constants is taken into account properly. In principle the cutoff
dependence of physical quantities can be reduced by going to a sufficiently high order
in the perturbative expansion (or by fixing the couplings nonperturbatively). To avoid
both power divergences in lattice perturbation theory and large discretisation errors one
is restricted to work in the window of lattice spacings given by 1/m < a < 1/Aqcp.
In the future sufficiently fine lattices with am < 1 might become available and a
relativistic fermion action can be used.

After reviewing the lattice discretisation of QCD in the next chapter I describe how

heavy quarks are discretised on a spacetime lattice in chapter 4.
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Chapter 3

Lattice Field Theory

A very successful approach to quantising field theories was proposed by Feynman
[70]. Tt is particularly useful when an expansion in a small parameter, such as the
coupling constant, is not possible. Predictions from the full theory can be obtained by
discretising it on a space time lattice and evaluating the remaining integrals numerically
using Monte Carlo methods. This approach has been successfully applied to study the
nonperturbative dynamics of strongly interacting particles as described by QCD. Since
this idea was originally proposed in [71] a tremendous increase in available computing
power, advanced algorithms and better understanding of conceptual problems have
enabled the lattice community to make predictions of high accuracy at parameter values

that are close to the physical ones.

“Gold plated” observables with at most one hadronic particle in the final state are
of particular interest as these can be studied very reliably in lattice QCD, as has been
reported in the proceedings of recent lattice conferences. In particular the HPQCD
collaboration uses dynamical sea quarks and a highly improved light quark action and
has recently calculated spectra and decay constants of mesons containing light and

charm quarks [18, 72, 73, 74] as well as neutral B mixing matrix elements [32].

These calculations have now reached a level of precision that makes it possible to
compare them to experimental data. In a recent update Davies et al. [74] reported a
30 discrepancy between lattice predictions and experiment of the Dy decay constant
fp., which is proportional to Vs, and good agreement for fp. In a new experimental

measurement of fp_ [75] this discrepancy has been reduced but is still significant.

3.1 The Feynman path integral

The time ordered vacuum expectation value of a product of operators O;(x) which

depend on the fermion fields ¢ (x), ¥(x) and the gluon field A, (x) at the space time
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point x can be written as a ratio of functional integrals

[ DYDYDA, Oi(@1)... Op(wy)e S Al
O|T{O (1) ... O1(z,)}0) = e .

(3.1)

The theory is formulated in Euclidean space where the Minkowski time coordinate ¢
has been replaced by —it to avoid rapid oscillations in the integrand. S[i,, Al is
the action which can be obtained by integrating the Euclidean version of the QCD
Lagrangian (2.39) over space and time.

In the discretised version of the theory the fields are only defined at points of
a hypercubic space time lattice L C Z*. The shortest distance between any two
points is the lattice spacing a which naturally introduces an ultraviolet cutoff of 7/a
in momentum space and renders all predictions of the theory finite. The infinite
dimensional functional integrals are replaced by products of ordinary integrals which
can be evaluated numerically using stochastic methods. To this end Monte Carlo
techniques are used to generate a set of statistically independent field configurations
distributed according to e~*. Expectation values of operators as in (3.1) can then be

obtained as averages over these configurations.

3.2 Lattice QCD action

When discretising QCD on a lattice it is desirable not to break gauge invariance
as otherwise a considerable amount of fine tuning is necessary to obtain the same
renormalised coupling constant for all gluon vertices. This can be achieved by using
the gauge invariant link variables U,(x) instead of the gluon fields. The quantities are
related by

Uz) = P {exp [z’ag / T Au(z)} } ~ o [iagAu(e + 5] (32)

where P stands for path-ordering. The links transform as U, (z) — @)U, (x)e~"(@+ai)
under gauge transformations so that quantities such as (z)U,(z)...U,(y — ad)y(y)
or traced closed loops of links are gauge invariant and can be used in the construction

of the action.

The simplest gluon action proposed in [71] is constructed from products of links

around a 1 x 1 loop, usually called a plaquette,
Up = Up(@)Uy(z + ap) Ul (x + a0)U} (z), (3.3)
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Sa = ﬁz (1 — %tr [UP + U;}) with (= 6/92. (3.4)
P

By expanding in powers of a this can be shown to be identical to the continuum action
up to discretisation errors of O(a?).

The fermionic part of the action can be written as
Spo= a'y d(a) Ay +m)d(@) (3.5)

with the discrete version of the covariant derivative

1

Afp() = oo (Uu@)a + o) = U@ — ap)(a — o)) (3.6)

Again it is straightforward to check that this is identical to the continuum expression

up to errors quadratic in the lattice spacing.

3.3 Improved actions

Ultimately one is not interested in observables on the lattice but in those in the
continuum limit a — 0. Discretising the theory will introduce errors which (at leading
order) scale with some power of the lattice spacing. The most naive way of removing
these lattice artifacts would be to use finer lattice spacings.

Taking the lattice spacing to zero is equivalent to removing the cutoff in other
regularisation schemes, the theory should become independent of the lattice structure
and hence correlation functions (in lattice units) will diverge. If one would simply
keep the number of lattice points constant the physical lattice size will eventually
become smaller than the correlation length of the lightest particle in the theory leading
to notable finite size effects. To avoid these problems the physical volume is kept
constant and larger and larger lattices have to be used when approaching the continuum
limit. In practice for a fixed physical lattice size the computational cost is proportional
to approximately 1/a®. This is because in addition to the increase of lattice points
proportional to 1/a*, standard Monte Carlo techniques produce highly autocorrelated
configurations as long range correlations dominate when the continuum limit is
approached [76, 77]. Finite size effects from the exchange of pseudoscalar particles
of mass mpg between copies of hadronic particles are proportional to exp[—mpglL]
where L > 1/mpg is the linear lattice size in physical units. As the quarks become
more chiral mpg decreases and L needs to be increased. Eventually the brute force
reduction of lattice artifacts by using lattices with more and more points becomes

computationally unfeasible.
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Another way to overcome these difficulties is to include additional irrelevant
operators in the Lagrangian which systematically remove discretisation errors at finite
a. This process is called improvement.

For example, in (3.5) the improved derivative

2
im a —
AP = A= S ATALAL 40 (3.7)

could be used where the forward and backward derivatives AZ and A are defined in
(A.9).
An improved version of the gluonic part of the action with errors of O(a?) is

constructed by adding 2 x 1 gauge invariant Wilson loops to it

5 a?
SG = _ﬁ Z <§P/.u/ - E(RHV + Ryy,)) (38)
T,u>v
where
1 A~ A~
P = 3 Re{t[Un(2)Us(z + afp)Uf(w + a?)U}(2)]} (3.9)
1 . . . . .
R, = 3 Re{tr[U,(x)Uy(z + app)U,(x + 2au)Ul(m +ap + au)Ui(x + aV)UJ(x)]},

So far I have only described improvement at tree level: radiative corrections will re-
introduce errors of O(asa?) and the coefficients in (3.8) have to be adjusted to account
for this. This can be done nonperturbatively or in perturbation theory as the corrections
come from highly energetic gluons and the strong coupling constant «y is small at the
scale of the lattice cutoff 1/a.

3.3.1 Mean field improvement

It has turned out [78, 79], however, that a large amount of these corrections can be
removed by dividing each link by its mean field value ug. This is closely related to the
problem of defining a sensible expansion parameter in the perturbative expansion of
lattice quantities.

The bare coupling constant o, receives large renormalisations which can be
removed by partial resummation. The coefficients in the perturbative series of, for
example, a small Wilson loop are much smaller if it is expressed in terms ay (¢q) instead,
where ay (q) is defined via the static heavy quark potential,

Vig) = —%W. (3.10)
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Here C(r) is the Casimir operator in the fundamental representation. The lattice
theory is formulated in terms of links U,, = expliagA,] instead of the gauge potentials.
Expanding U, in the strong coupling constant this generates additional quark-gluon
vertices with an arbitrary number of gluons. Although these are suppressed by powers
of the lattice spacing, the gluon lines can be connected to give tadpole diagrams which
are ultraviolet divergent and proportional to some power of 1/a, which leads to a

constant shift at O(a,) between the bare coupling constant and ay

2
Bo log <a1q> + (large constant)| + .. ) . (3.11)

av(q) = oat <1 + Qat

As these renormalisations are process independent they can be largely removed by
dividing each link U, in the lattice action by its expectation value ug. As the link is
not gauge invariant wug is usually defined to be the fourth root of the mean plaquette or
the expectation value of U, in Landau gauge. In this work I will always use the latter
definition. Although there is no formal proof in practise this strategy of “tadpole”- or
“mean-field” improvement is very successful.

A tadpole improved gluon action is therefore obtained from (3.8) by replacing P, —
Py /ud and R, — Ry, /u§ which will remove the majority of O(a®ay) corrections. The

leading power of ug can be absorbed in the inverse coupling constant, 3 — 3/ ué.

3.4 Fermions on the lattice

A closer look at the naive action in (3.5) reveals that in addition to the physical fermion
with on-shell momenta well below the lattice cutoff there are 15 additional spurious
degrees of freedom. This can be seen by studying the dispersion relation of the free
theory which has additional solutions near the boundary of the Brillouin zone. More

generally the action is invariant under the set of transformations

d(@) [ ls) e ™ () (3.12)

p

where the components of the vector ¢ can be zero or one. Even if these doublers are
projected out in external states they can be created in intermediate states by absorption
of highly virtual gluons with momenta of the order 7 /a.

There are several ways of dealing with this problem. The original idea of Wilson
was to add a higher order operator to the action to give the doublers a mass of the order
of the lattice cutoff and decouple them from the theory in the continuum limit (see,

for example [63]). The O(a) errors generated by this term can be removed by adding
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an additional operator of the same dimension, the so called clover term [80]. A more
serious drawback is that Wilson-type fermions explicitly break chiral symmetry which
requires fine tuning of the mass that is not protected from additive renormalisation any
more. Chiral symmetry is also often desirable as it prevents mixing of operators with
different handedness. An additional problem of the Wilson Dirac operator is that it
can have very small eigenvalues which can cause problems when inverting this operator
to compute correlators.

To overcome these problems actions with a modified definition of chiral symmetry
have been constructed. It can be shown that in this case the Dirac operator D has
to fulfil the Ginsparg-Wilson relation 5D + D75 = aD~;D [81]. One realisation is
Neuberger’s operator [82] which is non-local and costly to simulate. Another way of
designing an action with chiral symmetry is to formulate the theory in five dimensions.
If the mass is a suitably chosen function of the fifth coordinate s, for example a sign
function that is +M for positive and —M for negative s, there will be massless chiral
solutions bound to the domain wall s = 0 in the effective four dimensional theory [83].

However, also this approach is computationally challenging.

3.4.1 Staggered fermions

The discretisation of relativistic fermions used in this work is the staggered formulation.
Here, by using a local field transformation ¢ (z) — ¢'(z) = Q(z)y(z), the action
is diagonalised in Dirac space. The transformation matrix is given by Q(z) =
750971952952 and by using Q(x)1y,Q(x + af) = (—1)0+@1FF2u-1 = o (z) the action

can be rewritten as
§ = Y ¥ @au) (Vule) (@ + ai) - Ula = o) vz — o))
+m > Y (@) (@). (3.13)

The four components of the new spinor field are independent and the number of degrees
of freedom can be reduced to four by only simulating one component of the field.
Although the field transformation 1 (z) — Q(z)1(x) complicates the construction
of operators, an advantage of this formulation is that the action has a remnant chiral
symmetry and it is easy to simulate as the spin degrees of freedom have been removed.
This makes the generation of gauge configuration with dynamical sea quarks very cost
efficient. This is particularly important when working at masses that are close to the
physical ones to reduce systematic errors. The remaining four degrees of freedom are
usually called tastes, they are not independent and can still transform into each other

by the exchange of highly virtual gluons with momenta p ~ 7/a. These unwanted taste
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changing interactions are not present in the continuum, suppressing them by suitable

modifications of the action will lead to a substantial reduction of discretisation errors.

3.4.2 Improved actions for fermions

As the exchange of gluons close to the boundary of the Brillouin zone is a highly
ultraviolet process taste changing interactions can be suppressed by adding effective
four quark operators to the action. However, a more efficient solution is to modify the
high-energy behaviour of the quark-gluon vertex. In [84] it is shown how this can be
achieved by smearing the gluon fields. Then lattice artifacts at O(a?) can be removed
by a further modification of the links and tree level improvement of the first order
derivative as described in Section 3.3. The derivation starts with the naive fermion

action
S = D W) (WAL +m) v(z). (3.14)

To suppress taste changing interactions at tree level and remove O(a?) errors one

proceeds as follows:

Link smearing. Each link variable U, is replaced by F,U, with the “Fat7” smearing

operator

(3.15)

symm.

2A(2)
Fy = H<1+a 4”)

pFEL

where Ag) is a second order covariant derivative acting on the link U, (z). By expanding
the smeared link in gluon fields A, it can be shown that the exchange of taste-changing

gluons with a momentum component of 7/a is forbidden.

O(a?) Symanzik improvement. The remaining O(a?) errors in the action can be
removed by an additional smearing of the link fields. This is done by modifying the

smearing operator to

a?(A,)?
pPF L
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where A, is a first order derivative of the link field. Finally the derivative in the action

(3.14) is improved by adding a third order derivative, usually called the “Naik”-term,

2
+ ASQ _ Ax(V) _ @ +\3
AL e AR = AT — (AT (3.17)
The additional superscript V' indicates that the smeared links V), = .7-"[} 5Q U,, are used
instead of U, in the covariant derivative. In addition, the links are divided by ug to

reduce mean field corrections,

ASQTad __ AS
A Q — (Au Q)U#'_}U‘L/uo. (3.18)
The a? tadpole improved (ASQTad) action is given by
SAsQTad = ZE(m) (’YuAﬁSQTad + m) (). (3.19)

This action has tree level errors of O(a*); errors of O(asa?) are strongly reduced. As for
the naive action the number of degrees of freedom can be reduced to four by staggering
the fields.

Taste changing interactions can be suppressed even further by repeated smearing

of the links. In [85] two levels of smearing with an intermediate reunitarisation

2 A 2
FESQ - F, S (2”) Ur, (3.20)
pFEL

are suggested. The operator U projects the smeared link back to SU(3). By measuring
mass splittings between the 16 different Goldstone bosons and other observable
quantities the authors of [85] conclude that this reduces taste splitting by an additional

factor of around three.

The derivative acting on the quark field is given by
2 3
HISQ _ +(W a +(X
A= A (149 (A5 (3.21)

In the first difference operator the HISQ-smeared link variables W, = ,I:I ISQUM are
used. In the Naik term only one level of smearing followed by reunitarisation is
sufficient, the links used there are given by X, = UF,U,. The € - term can be tuned
to remove O((am)*) errors which are sizeable for charm quarks.

The Highly Improved Staggered Quark (HISQ) action has been used extensively

for studies of the mesons containing charm quarks [73, 74]. Its relative simplicity and
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low computational cost makes it possible to include the effects of fermionic vacuum
polarisation at small values of the sea quark mass. In the staggered formulation the
number of degrees of freedom is usually reduced to 2 or 1 by taking the square- or fourth
root of the sea quark determinant that is obtained by integrating out the anticommuting
Grassmann fields.

While this has lead to some debate on the validity of this method, this problem is
not directly relevant for the perturbative calculations in this thesis. In perturbation
theory the spurious degrees of freedom can be accounted for by dividing every (naive)
closed fermion loop by 16. In addition, in the radiative corrections to the heavy quark
self-energy and to heavy-light currents vacuum polarisation effects of light quarks only

arise at two loop order.
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Chapter 4

Heavy quarks on the lattice and

perturbative renormalisation

In the previous chapter I always implicitly assumed that the quark mass is much smaller
than the inverse lattice spacing. On lattices currently used with a ~ 0.1 fm this is the
case for light quarks; for charm quarks sufficient accuracy can be reached by using
the HISQ action described in section 3.4.2. Bottom quarks, however, have a Compton
wavelength that is smaller than the lattice spacing and hence a direct simulation with

a relativistic fermion action will not give meaningful results.

In this chapter I show how this problem can be solved by using a discretised version
of the nonrelativistic quark action described in section 2.4.3. I discuss the methods for

calculating radiative corrections to the effective action in lattice perturbation theory.

4.1 Lattice NRQCD

Nonrelativistic lattice actions for heavy quarks have been developed in [86, 87, 88]
and were substantially improved in [89]. In the next section I present an alternative
derivation of the nonrelativistic continuum action and show how the theory can be

discretised on a lattice.

4.1.1 Derivation of lattice NRQCD

The following discussion follows [1, 90, 91]. In the first step, quark- and antiquark
fields are decoupled by a Foldy-Wouthuysen-Tani (FWT) transformation. This method
automatically generates the correct tree level couplings and is easily generalised to a
moving frame of reference. Knowledge of the explicit relation between the QCD field
and the corresponding quantity is also essential for the construction of heavy-light

operators in chapter 7. In the continuum this transformation relates the relativistic
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field W(z) to the field W(z) in the effective theory,

U(z) = Tpwre ™ F(z), = “) (4.1)

X

The factor e~™*"" removes the rest mass from the Lagrangian. In the Dirac basis 7 is
diagonal so that v describes the quark and x the antiquark field. The transformation
can be constructed recursively order by order in inverse powers of the heavy quark

mass. Up to corrections of O(1/m?) it is given by

Trwr = exp [21 (i - D)} exp [ﬁ <—%970‘Y : Eﬂ (4.2)

m

< o | o (- (O4E) + 57 DF )|

where E and B are the chromo-electric and -magnetic fields. The Lagrangian can be

written as
¢ - Wa)|np+ 24 Lx.p (43)
- 7o 2m = 2m ‘
k(972080 o
with
) ol 0
0 o

As expected particle- and antiparticle- fields decouple and the action can be written as

a sum of two independent actions in the two-component spinor fields ¢ and Y.

The Lagrangian in (4.3) is correct up to order AéCD /m? in heavy-light power
counting. To include all terms of order vfel in heavy-light mesons an additional kinetic
operator D*/(8m3) has to be added. This term can be derived by expanding the
relativistic kinetic energy FEiyj, — m = V/ k2 +m?2—m= L. % + % + ...

2m

Rotation to Euclidean space is achieved by making the replacements

2% —ixh, = —ir, T—xp, (4.5)
U(x) = ¥(wp), U(z) — ¥(wp),
Ao(z) — iAs(zR), A(z) — A(zg),
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so that the Lagrangian is given by

= D?
z = \11(;;;)[701)4—%—%2-3 (4.6)
_ 9 0(pd, . _ L pag 3
2o (D E+X - (DxE E><D)> 8m3D}xIJ(x)+O(1/m ).

On the lattice the Hamiltonian is split into a leading order kinetic operator Hy and
a correction §H which contains interaction terms and higher order operators. In the
past, various alternative discretisations have been suggested and in this work I follow
the most recent convention in [92]. The action that describes the dynamics of particle

solutions has the form
S = > (@, 7)W=, 1) - K(r)p(, 7 —1)] (4.7)

with kernel

The operators are

A®)
Hy — - (4.9)
A@)? . - -
JH = _( ) _ioﬂB—Loﬂ(A(i)XE—EXA(i))
8m3 2m 8m?

+ 8% (A(i) E-E. A(i)) 4 §Heom..
The finite difference operators are defined in appendix A.2. Improved derivatives and
fields are denoted by “~”. In the continuum the Leibniz rule D* - E =D -E — E - D
holds but on the lattice the two discretisations of the adjoint derivative are not
equivalent. The correction term 6 H.qpr. reduces discretisation errors both in the spatial
and the temporal direction. The first can be removed up to corrections of O(a*p*) by
including the correction — %A(‘l) to the kinetic operator A®. However, for performance
reasons, it is advantageous to leave H(y unchanged and include this correction in éd Hcopr.,
as well. The errors in the temporal direction can be reduced without introducing higher

order time derivatives by fixing 6 Hcorr. ¢ such that

. Hy\" adH,
—aHg/2 _ 1_u 1 20T corrt 4.10
e < 2n> < 5 . (4.10)

where the improved kinetic operator Hj contains the improved second order derivative.
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O(a%E?) errors can be removed by choosing

2
_ _alf (%)
5Hcorr.,t - = An - 16nm2 . (411)

The full correction term is

A® (A<2>)2
OHeom. = S = Te— (4.12)

The stability parameter n is introduced to stabilise the time evolution of the propagator
for small quark masses. It has to be chosen such that |1 — %‘ < 1. In the free theory
this can be shown to be equivalent to n > 3/(2am); gluons are known to relax this
bound slightly [89].

The heavy-quark Green function satisfies the simple evolution equation
Gz, 7;2',7) = K((1)G(z,7—1;2',7) (4.13)
which can be solved recursively.

Mean field corrections

As the time derivative in (4.8) is realised by a backward finite difference there are no
mean field corrections to wavefunction renormalisation. This can be seen by replacing

all links in the momentum space propagator by ug [89],

Clpo.p) = ! with T(p)z(l—HO(”)>2" (1—5H(p)>2.

1 — uge=oT(p) 2n 2
(4.14)
After Fourier-transforming in the time coordinate,
Gpimt) = (wI(p) =2 exp |~(' =nEM(p)|  (4.15)
the mean field wavefunction renormalisation Zl(ﬁmf) = 1 and mean field energy

EMD(p) = —log[ugT(p)] can be read off.

4.1.2 Extension to a moving frame

In decays like B — wlv, B — K®/{t¢~ or B — K*v the hadronic particles in the
final state can have large momenta p; in the rest frame of the B meson. This would

introduce large discretisation errors which for ¢ — 0 scale as some power of ~ am/2. It
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is thus desirable to extend the formalism to a moving frame where p is reduced while
still keeping the momentum fluctuations in the B meson small. As Lorentz boosts and
the lattice discretisation do not commute, this will lead to an action which differs from

the NRQCD action derived in the previous section.

The momentum of the b quark can parametrised as
p = mu+tk (4.16)

where v is usually chosen to be the velocity of the B meson, u = pg/m. The four
velocity is given by u = (v, yv) with v = (1 — v?)~/2. Only the residual momentum k

is discretised on the lattice. The kinetic energy is then obtained by expanding

Egn = V(myv+k)2+m2—ym (4.17)

k2 o -k 2
= v-k+ L + ...
2ym
From this the leading order “kinetic” part of the Hamiltonian in the moving frame can

be read off as

D’ — (v-D)?

H = —w-D-—
2vm

(4.18)
By choosing the frame velocity v antiparallel to the momentum p; of the hadronic
particle in the final state, the overall discretisation error can be minimised. When

picking an optimal frame the following considerations have to be taken into account:

Discretisation errors. In the rest frame of the B the residual momentum k has a
distribution with a width of order Aqcp. Due to momentum conservation the typical
momentum of the light spectator quark is of the same order. The heavy quark
is nonrelativistic and its energy has a distribution of width A%QCD /(2m) < Aqcp.
In a moving frame the width of the momentum distribution is boosted to yAqcp.
Both the NRQCD action used in this work and the ASQTad and HISQ actions have
no discretisation errors of O(a?k?) but there are O(a a’k?) errors due to radiative
corrections. To get an estimate for the velocity of the optimal frame the momenta of
all quarks are required to be of the same size. The increase in discretisation errors in
the heavy meson is proportional to ’yzAéCD — A?QCD. Assuming that the two valence
quarks in the final state meson share its momentum equally, each carrying p/2, the

increase in discretisation errors when going from zero momentum to Dy is proportional
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Figure 4.1: Optimal frame velocity as a function of ¢2.

to (Ipsl/ 2)2. For a given ¢? the frame velocity v is chosen such that

1
(" —=DA{ep = Z|pf|2' (4.19)

In Fig. 4.1 I plot the optimal frame velocity as a function of ¢?. At maximum recoil
v & 0.7 will lead to minimal discretisation errors. It should be emphasised that this is
only a very rough estimate, the optimal frame velocity depends on the details of the
lattice calculation. I carry out all perturbative calculations in this thesis for a range of

frame velocities.

Statistical errors. The precision of lattice calculations is also affected by statistical
errors in the Monte Carlo evaluation of the path integral. Although in principle these
can be made arbitrarily small by accumulating enough statistics they can be sizeable
in practise due to limited computing power.

Consider the B meson two-point function (Bf(pg,0)B(pg,7)). For large 7 this
function decays like exp|— Ep(pp)7] where the energy Ep(pp) increases with the frame

velocity. The variance of the correlator is

o*(r) = (BY(pp,0)B(py, 7B (ps,0)B(ps, 7)) — (B (p5,0)B(ps,7))°.
(4.20)

For large times 7 this expression is dominated by the first term which can couple to a
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4.1. Lattice NRQCD

combination of a heavy-heavy (HH) meson and a light-light meson (LL) at rest. The

variance decays like exp[—(Mpgg + Mpr)7] and the signal-to-noise ratio is given by

<BT(pB7 O)B(pB7 T)>
o(7)

which approaches zero for large 7. As Ep(pp) increases with the frame velocity it

X exp [— (EB(pB) - %MHH - %MLL> T} (4.21)

will deteriorate more rapidly for large v. For the computation of B decay form factors
statistical errors in the light meson two-point function and the three point function
have to be taken into account as well.

The signal-to-noise ratio can be improved by constructing more elaborate sources
which increase the overlap with the ground state. Zhaofeng Liu [30] uses random wall

sources to reduce statistical errors in the two- and three-point functions.

Convergence of heavy quark expansion. The heavy quark expansion is only valid if
the momentum scales in the final state are much smaller than the mass of the heavy
quark. In particular the energy and the momentum of the final state meson with mass

mp are:

2

i 2 2
g o P _mptmp - P =JE? —m2. (4.22)
mp 2mp

The energy and momentum are plotted as a function of the momentum transfer ¢* in

Fig. 4.2. Hadronic form factors calculated at large ¢2 have to be extrapolated to ¢ = 0

by using the phenomenological parametrisations discussed in section 2.3.5.

4.1.3 Derivation of the mNRQCD action

The derivation in section 4.1.1 can be extended to a moving frame of reference. This
was first done by Kerryann Foley in her PhD thesis [90] and here I follow the analysis
in [1]. An additional complication is that in a moving frame the FWT transformation
introduces higher order time derivatives which would make the recursive calculation of
heavy quark Greens functions impossible. These higher order derivatives can, however,
be removed by an additional field transformation.

I work in two frames, one moving with velocity v and coordinates x and the rest
frame of the B meson with coordinates x’. Quantities in the two frames are related by a
Lorentz-transformation, = Az’. The fields in full QCD are transformed by a spinorial
boost, W(z) = S(A)V ('), ¥(x) = ¥ (2/)S(A). In the rest frame the NRQCD action

10,0 %

can be derived as above by a FWT transformation ¥/ (2) = Thype” 7 W' (z'). One

arrives at the Lagrangian in (4.3) where all quantities are understood to be in the rest
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Figure 4.2: Energy E'/mp (solid curves) and momentum p’/mp (dashed) of the final state
meson as a function of ¢.

frame, i.e. I replace z — 2/, E — E’ etc.

I now express quantities in this frame by those in the moving frame where the action
~ ~ = —/
will be discretised. In this frame a new field ¥(z) = V'(2'), ¥(z) = ¥ (2/) is defined.
This way the action kernel still commutes with 4°. One finds

- -D)? — D?
Z = Uz [wou py D =D 9 (4.23)
2m 2m
+ 255" (Dt P + i IN Dy, B} ) | B(a).

For ease of notation not all chromodynamic fields have been expressed in the moving
frame. Higher order time derivatives in the Lagrangian are removed by a set of field

transformations. To this end the Lagrangian is written as

— 1 1 =
3 ES L N 1/m3 4.24
< 0 [(90 + 7m(91 + (ym)? 02] +0(1/m?) (4.24)
with
Oy = i’yO(Do +v- D)a (4.25)
0O = %((U'D)Q_Dz)_‘_gz'B/’
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4.1. Lattice NRQCD

Time derivatives in Op are removed by a field transformation
- 1 - = = 1
U = exp <—U> Yy, U =W exp <—U> . (4.26)
ym m
The Lagrangian in the new fields is

— 1 1 _
'Y\I’(l) |:O() + ’y—mo(l)l + Wo(l)z] \I’(l) (4.27)

with new operators

0(1)1 = 01 +{U,0p} (4.28)
1
Oy = O02+{U 01} +UOU + 5{U2, Oo}.
By choosing U = 240 [(v* = 1)Dg + (v* + 1)v - D] all time derivatives are removed

from O(y);. Time derivatives can be removed from the 1/ m? terms in the Lagrangian

by an additional higher order field transformation

- 1 - = = 1
Yoy = —=V | v Uy =0 . 4.2
(1) = exp <(7m)2 > 2 (1) = ¥z exp ( V) (4.29)
The explicit expression of V' can be found in [1].

Finally the fields are rescaled by a factor 1/,/7 to normalise the coefficient of the

leading order kinetic term to one,
- 1 = 1
Vi) = =", Vi) =—=
A A

Again it turns out that a further kinetic operator has to be added to include all terms

T,. (4.30)

to O(vfd) in heavy-heavy power counting. The missing term is obtained by expanding

the relativistic dispersion relation

BEgn = (ymv+k)2+m2—ym (4.31)
Lo 2 2 3
= v-k:+27m(k: —('v'k:))+472m2(—{'v-k:,k:}+2('v-k:))

g (TR 3% (k) =5 k) £

Some terms are written as anticommutators as this is how they would arise from a field

transformation. The operator

1

g3 (D' =3{D% (v- D)’} +5(v- D)) (4.32)
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Chapter 4. Heavy quarks on the lattice and perturbative renormalisation

has to be added to the Lagrangian. The continuum Lagrangian in Euclidean space is

Y =

— D? — (v-D)?
\I/v[fyOD4—z'fy°v-D— WD _ 9 5 p (4.33)
2ym 2ym
7
- W’YO ({”‘D7D2}—2(U’D)3)
9 .0(:pad ad
! (zD "E+v- (D ><B))
- 89 "S- (D x E' — E' x D)
ym
9 0 /
- J .D.3. E
* 3T yme) {v-D, 2 (vxE)}
2 —v?)g a . a
— (MTQ)VO(DZLCI—’_ZU'D d)(’UE)
- 472m27 {’U' ) : }
1

S7n (D' =3{D% (v D)’} +5(v - D)) | w..

The action can be discretised as in the nonmoving case. Again the Hamiltonian is

split into two parts and the kernel is written as in (4.8), with operators

60

0H

Hy = —iv~Ai—%mA§), (4.34)
_ ‘472%712 ({a®,0- a*} —2a0) (4.35)

- (5 -2 {a a7} 3

- %Lma-é'

- 8;7]7120‘ <Ai x E' — E' x Ai>

B 4’y m2 { A o B }

+ ’y-i- 1 m2 { (v x E,)}

o 2((Ai E-E- A%+ -(Aadxé))

220 (o 10 a) (5 B)

6Hcorr. .



4.2. Radiative corrections

O0H .orr. contains spatial and temporal correction terms which can be derived as for the
NRQCD action. For v # 0 the first term in Hy is of O(p) instead of O(p?). It is thus
necessary to expand up to order Hé in (4.10). Neglecting operators of order 5 and

higher one finally obtains the correction

§Heorr. = Ho— Hy (4.36)
: A (3)
1 o {iv AT AP} 2iA7
4n< (v- A%+ 2ym
(A(z))z _ {A(Z),Agz)} +A§,4)
i dy?m? >
2) A(2) (4)
12n2 v 2ym
N (v-A—)A@)(U.A+)+(U-A+)A<2>(U.A—)>
4ym
_ @4n) @
64n3 "

This concludes the derivation of the mNRQCD action on the lattice. It can be used
both for heavy-heavy and heavy-light systems. This has the advantage of providing
additional tests of the formalism. The heavy-quark propagator can be computed
very efficiently in nonperturbative simulations so that the calculation of heavy-heavy
meson spectra and decay constants gives more precise results which can be compared
to experimental measurements (see also Figs. 5.8 and 5.9 for a comparison between
heavy-heavy and heavy-light results).

The mNRQCD action derived above is correct up to O(AéCD /m?) in heavy-light-
and to O(vfd) in heavy-heavy power counting. Relative errors in the energy splitting
of heavy-heavy systems are of O(vfel) which is around 1% in the bottomonium system
where vfel ~ 0.1. In [93] it is argued that the errors might be smaller for splittings
between states with similar wave functions. Spin dependent terms enter at sub-leading

order and spin dependent splittings have larger relative errors.

4.2 Radiative corrections

Beyond tree level the nonrelativistic lattice actions derived in the previous sections
are modified by quantum corrections. The ultraviolet behaviour of the effective heavy
quark action is different from relativistic QCD in the continuum which will introduce
O(ay) errors when the action is used to calculate hadronic quantities. Knowing these

systematic uncertainties is important for various reasons:
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e Hadronic observables, as for example the T-spectrum [93], have reached very high
accuracy and it is important to account for radiative corrections of the heavy
quark action. In [93] a detailed error budget is presented, radiative corrections
are of the same order as relativistic corrections. In chapter 5 I calculate these

radiative corrections for the mNRQCD action.

e For the same reason radiative corrections to matrix elements in heavy-light decays,
which are of the same size as 1/m corrections in the heavy quark expansion, need

to be calculated. This is the subject of chapter 7.

e By relating the bare parameters in the lattice theory to those in continuum QCD,
the fundamental parameters of QCD can be extracted from lattice simulations.
This requires the calculation of renormalised quantities, as for example the heavy

quark mass. This is discussed in more detail in section 4.2.2.

In principle the parameters of the heavy quark action can be tuned nonperturba-
tively by adjusting them such that they reproduce experimental results. This, however,
can be very time consuming as it has to be done for each individual lattice and reduces
the predictive power of the theory, in particular if the action contains a large number
of operators as is the case for mNRQCD.

The RI-MOM scheme [94] can be used to calculate the renormalisation constants of
transition operators by fixing the on-shell matrix elements to their value at tree level.
The results can then be converted to the MS scheme with continuum perturbation
theory.

In this work I use a perturbative method on the lattice and compute renormalisation
constants order by order in the strong coupling constant. This is legitimate as it corrects
for the mismatch in the ultraviolet at momenta p 2 7/a where QCD is perturbative;
for typical lattices a < 0.1 fm so that 7/a 2 6 GeV and the strong coupling constant

is small, as(m/a) ~ 0.2.

4.2.1 Perturbative matching

The perturbative matching procedure works as follows: Calculate the radiative

. 1),lat
corrections 1 + asc§- )la

4+ ... to an on-shell quantity on the lattice. For example,
corrections to the kinetic terms in the action can be extracted from the two-point
function of the heavy quark, the coefficient of the chromomagnetic interaction term
o - B can be obtained from considering scattering off an external chromomagnetic field.
For an external current, such as the heavy-light tensor current, compute an on-shell
matrix element. The expansion of the same quantity in continuum perturbation theory

(1),con

is1+ ozscj1 + .... The coefficient of the corresponding operator in the lattice action
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4.2. Radiative corrections

or the heavy-light current can then be corrected according to

¢ ¢ (1 + as(cg-l)’cmﬂ - c§1)’1at) +.. ) . (4.37)

4.2.2 Renormalisation parameters from high-3 simulations

In addition to calculating hadronic quantities lattice simulations can be used to extract
the fundamental parameters of QCD. This has been done in [95] for the strong coupling
constant. After tuning the bare lattice parameters an ultraviolet Wilson loop is
measured. The same quantity can be calculated in lattice perturbation theory as a
power series in the strong coupling constant and the series is well behaved if the coupling
in the potential scheme [79] (see also (3.10)) is used instead of the bare lattice coupling.
By inverting this relation ay can be extracted from the simulation and converted to
the M S scheme using conventional continuum perturbation theory. aéVTS(M z) obtained
in this way agrees very well with the experimental measurement and has an error of
comparable size.

In [74, 96, 97] the charm quark mass is calculated by relating the bare lattice mass
to an on-shell mass which can then be converted to the mass in the M S scheme.

To achieve sufficient accuracy it is necessary to extend the perturbative calculation
beyond one loop level. In the continuum this is straightforward and the bottleneck
is the lattice calculation. As the gauge potential enters via the link U, = exp[iga4,]
there are additional vertices with an arbitrary number of gluons which increases the
number of diagrams that need to be evaluated (see for example Fig. 1 in [96]). For
highly improved actions, such as HISQ, the Feynman rules are very complicated and
evaluation of all these diagrams in diagrammatic perturbation theory is computationally
very expensive. Instead, a different method has been suggested in [98]: by simulating in
the weak coupling limit, which corresponds to high values of the parameter 3, and fitting
to a polynomial in the strong coupling constant, the coefficients in the perturbative
expansion can be extracted. This has been done very successfully for a wide range of
quantities, including Wilson loops [99, 100, 101], the expectation value of the mean
link used for tadpole improvement [102], the additive mass renormalisation in HQET
[103, 99, 100] and quark masses for simple lattice actions [98, 104, 105, 106].

Calculation of the two loop renormalisation parameters of the HISQ is under way
[96, 97, 74]. Here a mixed strategy is used: The high-3 simulations are carried out
in the quenched limit. At O(as) fermionic loops do not contribute, so the coefficient
¢ from the high-3 fit will be the same as from diagrammatic perturbation theory

2)

which provides a very useful check of both methods. The two loop coefficients Caluonic

from high-3 simulations contains gluonic contributions only. However, there are only
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T S L

Figure 4.3: Fermionic two-loop contributions to the heavy quark self-energy

four diagrams with fermion loops, see Fig. 4.3, which can be readily evaluated
in diagrammatic perturbation theory. In addition, if the one loop coefficient from
diagrammatic perturbation theory is known for finite lattice size, it can be used as
an input to stabilise the higher order fit of lattice data. This is usually done with a
constrained fitting technique [107] as it is expected that higher order coefficients are of

order one if a well behaved expansion parameter such as ay is used.

In section 5.2 I calculate the one loop renormalisation coefficients of the mNRQCD
action on a finite lattice. The results are used to stabilise the high-3 fits from

simulations by Horgan and Lee [108].

Nonperturbative tunnelling

Whereas the techniques in section 4.2.3 assume an infinite lattice with a gluon mass as
an infrared regulator, nonperturbative high-# simulations are carried out on a lattice
with finite extent L3 x T. In a small box the gluon action has an additional Z(N)
symmetry. If each link in a given lattice plane is multiplied by the same element
z = e™/N from the centre of the gauge group closed paths of links remain unchanged.

This transformation changes the value of the Polyakov line
P, = tr{U,(x)Up(x+f)...Us(x+ L)} (4.38)

according to P, + zP,. Although the expectation value P,, averaged over a large
number of gauge configurations, is zero, its effective potential will have N minima in the
complex plane which are related by multiplication by ¢™/N | The perturbative expansion
is around one of these minima and on a finite lattice there will be nonperturbative
tunnelling between the vacua. If one wants to extract the perturbative expansion from
high-3 simulations it is desirable to suppress these effects. As demonstrated in [100]
this can be achieved by using twisted boundary conditions [109, 110]. An additional
advantage is that this introduces a lower momentum cutoff which acts as a regulator

for infrared divergences in the perturbative calculation.
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4.2. Radiative corrections

Twisted boundary conditions
Twisted boundary conditions are imposed on the gauge fields by requiring that the
shifted link at x + L satisfies

Uy +Lo) = QU,(x)Q,'  with v=1,2. (4.39)

v

As the order of shifts does not matter the two twist matrices have to satisfy
My = 2028 with z = >N € Centre{SU(N)}. (4.40)

As explained in appendix B this changes the spectrum of the chromodynamic field A4,,.
In addition to the lattice momentum, which is a multiple of 27 /L, an additional twisted
component proportional to 27 /(N L) is introduced. The colour degrees of freedom are

replaced by the twist vector.

4.2.3 Lattice perturbation theory

In principle, perturbative calculations on the lattice are not different from those in the
continuum, in fact the lattice can just be seen as yet another regularisation scheme
(which, however, breaks Lorentz invariance which is only restored in the continuum

limit). As in the continuum the calculation proceeds in two steps:
1. Extract the Feynman rules from the action.
2. Integrate the Feynman diagrams over phase space.

In practise, however, the lattice calculation is more complicated. The lattice action is
written in terms of the links variables U, instead of the gauge fields A, which generates
additional vertices with an arbitrary number of gluons. As Lorentz symmetry is broken
the Feynman rules, even for simple actions, are very complicated. Writing down the
Feynman rules of state-of-the-art highly improved actions as ASQTad or HISQ by hand
becomes an extremely tedious task. Due to the complicated structure of the integrand
it is also usually impossible to solve the resulting integrals analytically.

These problems can be overcome by automating the extraction of Feynman rules
and evaluating the resulting integrals numerically by using a Monte Carlo integrator
such as VEGAS [111].

Automated generation of Feynman rules

Originally the idea was laid out by Liischer and Weisz [109] and in [112, 113] an

implementation of the algorithm in PYTHON is described; the package is commonly
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known as HIPPY. I adapted the code to the actions that are needed for the perturbative

calculations carried out in this work.

Due to gauge invariance all terms in the fermionic action can be written as a linear
combination of fermion fields connected by a Wilson line, 1 (x)L(x, y; U)¢(y). L(z,y;U)

is a product of link variables which can be expanded in the strong coupling constant g

a . [agA,(z+20)]"
Uu(z) = exp [agAu(x—FE,&)} :Z 9 Au(@ + 571) (4.41)

|
r.
r=0

where anti-Hermitian generators of SU(NN) are used. In momentum space the Wilson

line is then given in terms of gluon fields as

Z Sy AT (k) A () (4.42)

k1,p1,a1 krypir ar
X ‘/'7«(]{71,#1,&17 SRR kTHuTyar)'

L(z,y;U)

Inserting this in the action and using the Fourier expansion of the fermion fields with
momenta p and ¢ (and colour indices b and ¢) it can be shown that the Feynman rule for
the emission of r gluons is —g" Vg, where the vertex function Vg, is the symmetrised

product of a colour factor Cr, and a reduced vertex function Yz,

VEr(p,biq, ¢ ki pasans sk, iy ) = (4.43)
1
=D 0-Crpbycar,...c) o Yer(p, gk, pas sk pir).
rl 3
oeSy

S, is the group of permutations of r objects. The reduced vertex function can always

be written as an exponential

Ny
Yoo gk, pg; ik e) =Y Dy fpe2@oravthivs etk

n=1

(4.44)

where I',, is the Dirac structure and f, the amplitude associated with a specific term.
This implies that the Feynman rules can be encoded in a list of entities of the form
(1, -« oy s T, Y301, - ., s f, T') which is generated by the PYTHON code and stored in
a file. As reduced vertex functions are always given as sums of exponentials, derivatives
with respect to particle momenta can be obtained by algebraic manipulations. This
avoids numerical instabilities which might arise when approximating derivatives by

finite differences.

The entity list is generated by the HIPPY code by repeated application of the
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convolution formulae in [114]: for an action of the form ¥ AB the Feynman rule for
one gluon emission can be obtained as the Feynman rule for no gluon emission from A
and one gluon emission from B plus the rule for one gluon from A and no gluon emission
from B. For two gluons there are three cases: (1) both gluons come from A, (2) one
gluon comes from A and the other from B or (3) both from B. The generalisation to an
arbitrary number of gluons is obvious. These formulae translate into rules for adding
and multiplying entity lists for simple blocks in the action. The advantage of carrying
out the convolution in the HIPPY code is that the list is automatically compressed: if
two entries differ only in their amplitudes, they can be replaced by a single entry with

the sum of the amplitudes.

Sometimes it might also be advantageous to carry out the convolution in the
numerical integration code, in this case the HIPPY code writes a set of vertex files
for each factor in the action. For example, the kernel of the mNRQCD action is split

into blocks as
1—-ABCBA (4.45)

with A = ( — JTH), B = (1 — %)n and C = Ul. Combining these factors in the
FORTRAN code is advantageous if no further compression is possible. In the case of
mNRQCD, AB and BA sit on different time slices. A and B are stored separately as
the combined vertex file would be very large. In addition, as B mainly contains spin
dependent terms, not much compression between A and B is expected. The colour

structure is implicit and can be dealt with in the integration routine.

Extending the algorithm to gluonic actions is described in [112, 113].

Link smearing. The construction of highly improved actions often involves repeated
smearing of the link variables; in particular the HISQ action is constructed from the
“Fat7”-smeared, reunitarised links U/F,U,. Using the expansion algorithm described
above will be practically impossible due to the large number of terms generated. Instead
the expansion can be performed in two steps [115]. The reunitarised link U Eatm(w) €
U(3) is parametrised by fields By, (x) in the Lie algebra,

Uiatm(aj) = UFU,(z) =exp [agB“ <:p + g,&)} (4.46)

and Wilson lines can be expanded in terms of these fields as in (4.42) with le(k‘) —

Bg(k:) The Feynman rules for the emission of B,-fields can then be extracted from

)

vertex functions Vlgé as described above. To obtain the Feynman rules for the gluon-
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Figure 4.4: Diagrams for one- and two-gluon emission in actions with link smearing.

fields, BM has to be expressed in terms of the flu,

Bu(k) = bV®E)A,(R)+ > b2 (ki ka) Ay, (k1) Ap, (ke) + ... (4.47)
k1+ko=k

which introduces additional form factors bf,l), bg)m, etc. This is represented graphically

in Fig. 4.4. The rule for one-gluon-emission is given by the vertex function V}ﬁ)
multiplied by the form factor b5(). Two gluons can either come from a two-gluon vertex
V}g) multiplied by two form factors b) or by the emission of one B,, gluon which
is converted into an A,-field by b?) . In addition to the vertex files with the reduced
vertices the PYTHON-code also writes an “algebra” file which contains the form factors
b@). In the numerical integration code these are then combined according to the rules

outlined above. This procedure can be iterated for multiple levels of smearing.

Hard wired gluon propagator

To speed up the code I wrote a hard-wired version of the gluon propagator. The general

form of the gauge action is [116]

Sy = -0 Z (cg;P“,, + (R + Ruu)) with ¢§ +8cF =0. (4.48)
T, u>v

where the 1 x 1 plaquette and 2 x 1 rectangle are given in (3.9). In particular ¢§' = 0

L
12

The action is expanded in terms of the gluon fields 4, in momentum space. The

corresponds to the Wilson action, ¢ = is the tree level Symanzik improved action.
quadratic term can only be inverted after adding a gauge fixing term £~ M(IQ:HAH(Q:))Q
with k, = 2sin(k,/2). Common choices are £ = 1 (Feynman gauge) and { = 0 (Landau
gauge). It is also possible to work in a noncovariant gauge by fixing the gauge with
&y j(A§i)Aj (7))? where j runs over spatial values only, Coulomb gauge corresponds
to £ = 0. To regulate infrared singularities a gluon mass term /\25;w can be added.
The two-point function Mg(o)(k:) is a 4 x 4 matrix whose entries are functions of the
gluon momenta. This matrix can be inverted using a computer-algebra package such as
MATHEMATICA but it turns out that it is advantageous to first write it as M, éo) = MO 4
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ge(k)P where only ge¢(k) depends on the gauge fixing parameter. P, (k) = l;:ul;:,,//;;2 is
a projector on a one-dimensional subspace. As P commutes with M) the propagator

is given by

1 1
Gew(k) = (gg(k) ~ (k)> P (k) + FO(h) (4.49)

where the functions fl(g)(k) and f(P)(k) are obtained by inverting Mf(o)l(k:).

A similar decomposition is possible in Coulomb gauge.

For the Symanzik improved gluon action hard wiring leads to a speed up of a factor
5 in the gluon propagator if no derivatives of the propagator need to be calculated.
With derivatives up to second order there is no difference in speed. It should be noted
that by suitable routing of the external momentum through the diagram it is often not

necessary to know derivatives of the gluon propagator.

4.3 Numerical evaluation of Feynman diagrams

A set of FORTRAN routines is used to evaluate the Feynman integrals. Specific modules
read the vertex files written by the HIPPY code and construct Feynman rules for
fundamental vertices according to (4.44).

For example, the function vert_qqg(k,lorentz,colour) will return the vertex
(T)paVyu(ka, k15 k3) for emission of a gluon with momentum k3, colour ¢ and Lorentz
index p by a quark with initial momentum k; and final momentum ky. The colour of the
quark changes from a to b. k=(/ky, ko, ks/), lorentz=(/u/) and colour=(/a,b,c/)
are FORTRAN arrays.

The colour structure is dealt with in the FORTRAN integration routines and the
same reduced vertex files, generated by the HIPPY code, can be used for both periodic
and twisted boundary conditions. In the first case the Clebsch Gordon coefficient is
given by a combination of colour matrices. On a twisted lattice a small twist vector is
added to the lattice momentum and the colour factors are replaced by traces over the
I';, matrices introduced in appendix B. For example, the gluon r-point function will
have a Clebsch Gordon coefficient of

Colhrr o k) = %(tr{Fm...Fm}—i-(—1)Ttr{Fnr,...Fm}). (4.50)

The function tayl_vert_qqg(k,lorentz,colour) returns a TAYLUR object [117]
which, in addition to the value of the vertex, also stores its derivatives with respect
to the particle momenta. To this end each momentum vector object has a field route

that stores the fraction of this momentum which will be differentiated. If, for example,
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one is interested in V,,(k+p/2,k—p/2; —k) and derivatives with respect to p one would
set kjroute=0, pjroute=1 and call the vertex routine with (k-p/2,k+p/2,-k). The
Leibniz rule is implemented by overloading multiplication of TAYLUR, objects.

Finally, the integral over momentum space is carried out by the stochastic

integration algorithm described in the following section.

4.3.1 Stochastic integration

Without loss of generality, consider the following integral over the n-dimensional unit

volume €2 = [0, 1]"

I = /Qd"acf(a:), (4.51)

where f(x) is an arbitrary, not necessarily analytical or even continuous function.

If the points x1,...,x,s are randomly chosen from 2 according to the probability
density p(xz) with p(z) > 0, [,p(x) = 1 the integral I can be approximated by the

sum

S = M;p(wi) I. (4.52)

The variance of S depends on the choice of p(x) and, for nonnegative f, can be
minimised by choosing p similar to f. Of course the choice of p(x) is limited by the
requirement that it has to be possible to generate points distributed according to p(a).
In practise the construction of a suitable p(x) may be difficult. The VEGASs-algorithm,
invented by G. P. Lepage [118, 111], recursively constructs a suitable distribution p(x)

for arbitrary f(a) and is applicable under very general circumstances.

In one dimension the algorithm works a follows:

Initialise. Divide [0, 1] into N intervals by choosing a number of points 0 = zp < 21 <

<+ < xny-1 <zny =1 and construct a density p(z) as

1
p(z) = NAL T <x < where Ax; = x; — x;_1. (4.53)
1

In the beginning the points will usually be distributed uniformly in [0, 1].
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4.3. Numerical evaluation of Feynman diagrams

Figure 4.5: VEGAS grid refinement in one dimension.

Step 1. Now, choose Ny, points x distributed according to this density! and evaluate

S according to (4.52) using p(z). Also, for each interval, compute

o= Y Uelegs [ delfe) (1.5

TE[Ti—1,%4)
Step 2. Divide each interval Ax; into m; + 1 subintervals where

BT 4.55
Zj fiAx; ( :

K is typically about 1000.

Step 3. To keep the same number of intervals in each iteration subintervals have to
merged so that there are N intervals in the end. Using this new division of the unit
interval construct a new p(z) and continue with Step 1.

In this way the probability distribution p(z) is constructed iteratively. p(z) will be
large where f(x) is large and the sampling points for the evaluation of the integral are
concentrated there.

Steps 1 to 3 are iterated Nje, times. In each iteration the integrand is evaluated
Neval times. A combined estimate S of the integral with error og can be obtained from

the individual evaluations Si, o) in each iteration

Z
=
]
g

S=o (4.56)

S

iter Sk
-3
1 9k

=

|

tolqw| =
ol

Ii
-

MF

N(Warm)

itor thermalisation steps are performed,

Before recording Sy and oy, usually

each with Ne(ya?rm) evaluations of the integrand to allow p(z) to converge against the

!This can be done by generating points y uniformly distributed in the interval [0, 1] and mapping
them to = by y € [%7 %) — xi—1 + Azi(Ny + 1 — ).
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Phd ?(5
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X&l) X(zl) X(31) X3 Xg

Figure 4.6: VEGAS grid in two dimensions.

optimal density.

In n dimensions the unit interval in each dimension is divided into N subintervals,

i.e. the following product ansatz for p(x) is used

p($) = pl(wl) e pn(xn) (457)

By varying the pg(xg) subject to the condition that the probability distribution is

normalised it can be shown that the variance is minimised if

_ 1/2
pr(zK) ~ (/an_lm > (4.58)

—

is chosen. fQ denotes an integral over all variables except zj and p(x) is the product
in (4.57) without the factor py(xg).

fi(f)
p(z)

Hence the same algorithm as above can be used in each dimension if fz(k) is defined

as follows

@™y -y 3L (4.59)
®) L0y p*(x)

xR €lr, ) @,
(k) -
1 z; 2
— / dxk/ d“—lm—f/(f)
Axi mgﬂ Q p(:l?)

divide the unit interval in dimension k , see Fig. 4.6, and /Z\m stands

Q

(k)

i

for summation in all dimensions except k. © = (z1,...,Zk,...,Z,) denotes the points

where the z

generated according to the distribution p(x) in each iteration step.
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4.3. Numerical evaluation of Feynman diagrams

By using the product ansatz in (4.57) for the probability density integrands with
peaks or ridges parallel to a coordinate axis can be sampled very efficiently by adjusting
the VEGAS grid. This is not possible for integrands with, for example, a diagonal ridge
as in this case the points would still be distributed uniformly on each coordinate axis.
Sometimes this problem can be solved by changing the coordinate system. In my
implementation of the integration code both spherical and cartesian coordinates can

be used for the spatial loop momentum.

Peaked integrands

In perturbative lattice calculations the integrand can be very peaked if the integration
contour passes close to poles in a propagator. In principle VEGAS will adapt to this by
adjusting the grid and sampling around this peak. However, often this problem only
arises in the infrared region of the integrand where the integration contour is pinched
by the gluon poles. For small momenta the lattice integrand reduces to the continuum
expression whose IR behaviour can be calculated analytically. It is then possible to
construct a subtracted integrand where the peaks cancel point by point and the errors
in the VEGAS integral are reduced:

4
[ = / %f(k) (4.60)
N

IR divergent
4 4
— [ (10 = 5w+ [ e

IR finite, VEGAS IR divergent, analytical
= T+ 16,

The subtraction integrand satisfies f&") (k) — f(k) for k — 0 and I") can be

calculated analytically.

Parallelisation

Due to the complexity of lattice Feynman rules the function evaluations in perturbative
calculations can be computationally very expensive. To accumulate sufficient statistics
for the perturbative integrals I use a parallel version of the VEGAS algorithm where the
workload is shared between a large number of processors?. To minimise communications

the processors are divided into farms, see Fig. 4.7. The layout is chosen such that nodes

2By processor I mean a fundamental unit which can run a single process. This is not to be
confused with an individual node in a cluster or a CPU which can have multiple cores, each of which
might accommodate a process.
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farm 1 farm 2 farm 3 farm 4

B (o) [2][s]| | @ [x] (2] [s] || @ [1] [2] [s] || @H [2] [2] []

t/ master \P//‘

farm masters

Figure 4.7: Processor layout in parallel VEGAS. Each farm has a master processor (grey)
and the final result is accumulated by the global master (black).

within a farm can communicate with each other much faster than with nodes in other
farms. This can for example be the case if they are located on the same physical
chip. The integral is evaluated independently by each farm and the results are finally

combined and collected on the master node.

The calculations for this work were carried out on the “Eddie” cluster of the
Edinburgh Compute and Data Facility [119]. In its original setup this high performance
cluster consists of 128 worker nodes, each with two dual core CPUs. The nodes are
standard IBM x3550 servers with 3.0 GHz Intel Xeon processors and 8 MB of RAM. In
the beginning of 2008 the system was upgraded with 118 additional worker nodes with
two quad core CPUs each, giving 1456 cores in total. The nodes are connected by a
gigabit Ethernet network. 60 dual core nodes are in addition equipped with a faster
Infiniband interconnect with a latency of 2.11ns and bandwith of 956MB/s which is
about eight times the bandwith of the ethernet connection. In its current setup the

total computing power of the cluster is around 10 TFlops [119].

4.3.2 Mode summation

On a finite lattice with twisted boundary conditions the integral over the loop

momentum is replaced by a discrete momentum sum,

4 L-1 T-1
/(gﬂl;f(k,m) - % > Zf((jl,jz,j?,)z%,ﬂz%). (4.61)

J150-,J3=0 j4a=0

Instead of summing over colour indices an additional sum over the twisted part of
the momentum vector has to be performed. This is most conveniently done within
each individual diagram routine for a given untwisted momentum. I adapted the mode
summation (4.61) for parallel machines by splitting the sum between processors.

For very large lattices performing the mode summation directly can be computa-

tionally very expensive. The sum has an exact representation as an integral over a
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4.3. Numerical evaluation of Feynman diagrams

piecewise defined function,
L-1
1 i\ " dk
zZf(—L ) - [ 5w (4.62)
with
- 2mg 2mg 2m(7+ 1
F(k) = f<%> for %§k<%, 0<j<L-1.  (4.63)

This integral can then be evaluated in VEGAS.
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Chapter 5

Heavy quark renormalisation

parameters

As argued in section 4.2 renormalisation of the operators in the heavy quark action is
important to predict the properties of heavy mesons to high accuracy. In this chapter 1
show how the renormalisation constants can be obtained in lattice perturbation theory.
I give results for the leading kinetic terms in the mNRQCD action.

Horgan and Lee [108] calculate renormalisation parameters at higher loop order
by simulations in the weak coupling regime of the lattice theory. To suppress
nonperturbative tunnelling between equivalent Z(3) vacua they use twisted boundary
conditions [109, 110]. These have the additional advantage of introducing a lower
momentum cutoff and thus regulate potential infrared singularities in a gauge invariant
way. Adapting the perturbative calculation for twisted boundary conditions is
straightforward. I compare my results to those from high-3 simulations and find good
agreement. In addition, my one loop results are used as an input for the fitting of
high-3 results as a polynomial in the strong coupling constants to stabilise the fit and

extract higher order terms.

5.1 Leading order kinetic terms in mNRQCD

Beyond tree level the coefficients of the operators in Hp, the kinetic part of the
Hamiltonian (see (4.34)), deviate from unity. They can be expanded in the strong
coupling constant ¢; = 1+ ascg»l) + ... where the ¢; are adjusted such that the heavy
quark dispersion relation agrees with the continuum expression. This requires the
calculation of renormalisation parameters Z; = 14 a,0Z; + ... both in the continuum

and on the lattice.

5.1.1 Renormalisation parameters

I calculate the renormalisation parameters of the heavy quark action on the lattice to

O(as) in mean field improved lattice perturbation theory.
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k
k ﬁ
p p+k P p p

Figure 5.1: One loop corrections to the heavy quark self-energy.

In particular I discuss the following quantities:

e heavy quark wavefunction renormalisation Z,
e zero point energy shift Fy,

e renormalisation of the frame velocity Z, and
e mass renormalisation Z,,.

In the continuum the frame velocity is a symmetry parameter and does not get
renormalised. On the lattice there exists a separate theory for each choice of the
frame velocity, which can now be interpreted as a coupling constant in the action that
is renormalised by quantum fluctuations. The zero point energy, which vanishes in the
continuum due to Lorentz invariance, is nonzero on the lattice and indeed diverges like
1/a for dimensional reasons. Of particular interest is the renormalisation Z, of the
external momentum P = vMwv as this quantity is not renormalised in the continuum
due to reparametrisation invariance [66, 67, 120].

On the lattice all renormalisation parameters can be extracted from the corrections
to the heavy quark self-energy ¥. At O(ag) this quantity is given by the one loop
diagrams in Fig. 5.1 and counterterms that come from mean field improving the action
by replacing U, + U,/ug. The derivation in the following sections was laid out in
[90, 121] and has been taken from [1].

Wavefunction renormalisation. The wavefunction renormalisation, Z,, can be com-

puted as follows: At tree-level the heavy quark propagator is

Go(2) = (5.1)
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5.1. Leading order kinetic terms in mNRQCD

where z = €4 and

s (1 Y (Y -

is the on-shell (tree-level) value. At one loop the propagator is

12_2:1

GH(2) = Gyl (2) —asB(2) = Z,, .
where asX(z) is the self-energy (to order ay), containing both rainbow and tadpole

diagrams. Let the new “one-loop” on-shell value be z1, which is the solution of
G l(z1) = Gyl (21) — asX(z1) = 0. (5.3)

Expanding 3(z) around the new on-shell value and using z; — zp = O(as) the

wavefunction renormalisation is, at one-loop,

0%

7 |
1= .
z=z0 8p4 on shell

Z¢:1+a5[2+z—

5 = 1+a8[2—

(5.4)

Other renormalisation parameters. To derive expressions for the other renormalisa-

tion parameters I use the following argument from [122].

At tree level one has in momentum space (up to O(p?)):

2 _ (v.p)2
Ho(p) = Wp+2—%E£L+UW (5.5)
SH(p) — —%#wpf+””

By combining this with (5.2) and expanding in p I find that the pole in the tree level
propagator (5.1) is given by

2 2
p°—(v-p)

w = wo(p) Pt (5.6)
where w = —ipy4 is the energy in Minkowski space. At one loop the inverse propagator
is

G(p,w)™ = 1—e70® —q,%(p,wo(p))

79



Chapter 5. Heavy quark renormalisation parameters

so that
w(P) = wo(p) — asX(p,wo(p)) (5.7)
2 _ (vp D)2
= ’UR‘p‘i‘I)z(—RI))—OZS(SW(p)
YRMR

with vg = Z,v, yg = (1 —v%)"V2, mp = Z,;m and aséw(p) = Fy + .... Here and
in the following I assume that the boost velocity points in one of the lattice directions,
which guarantees that only the magnitude of v is renormalised. The self energy can

now be expanded in small momenta

2

Y(p,w) =Xo(w) + Ey(w) v-p+ El(w)Q:—m +...

and the renormalisation constants can be expressed in terms of the coefficients Eg-z) in

the expansion
¢
Yi(w) = Z Eg- St
(=0
I find

By = a5, (5.8)
Z = 1-asl) )
L = 1+as((2(()1)+2§0))+’Y2U2(21()0)+281))),

and have for the renormalisation of the external momentum peyy p = YRMRVR = ZpPext
with

Z, = 1+a,(sV —x0). (5.9)

(2

()

In actual calculations I consider the real parts of parameters X e It is convenient to
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5.1. Leading order kinetic terms in mNRQCD

define

Q) = —RexV) —m 2=
Opa|
p=0
2
Qs = Re 2&0) = ymRe o> )
op?
p=0
Q, =Re 20 = LRe 32 , (5.10)
v Opa|

taking the frame velocity v to point in the z-direction. The renormalisation parameters

are then expressed as

Zy =1+ as(Qo + ),

Eo = asQo,

Zy=1—as(Qy, — ),

Zm =14 as(Qy — Q1) + as(Q, — Q1)v*A?,

Zy=1— ay(Qy — Q). (5.11)

Dispersion relation and energy shift. The renormalised dispersion relation in
mNRQCD is given by

k2 — (vg - k)?
wlk) = wvrp-k —dw(k) + ... 5.12
(k) = on ST (k) (5.12)
with
(vr - k)?
owlk) = Eyp+ A 5.13
(k) e (5.13)

This has to be compared to the corresponding expression in QCD

WPk =\ (rpmpon + k)2 +m3, (5.14)
k2— -k?2
(Vg )Jr

= ~Yrmpr+vgr-k+
2yrmp

from which one obtains a shift in the zero point energy of a heavy quark of

Cy, = WPk =0)—wk=0) (5.15)
= ~vyrmpg + Ey.
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I write C, = ym(1 + as6C, + ...) and the one loop correction is given by

Q
5Cy = Qy— O+ —2L. (5.16)
ym
The shift C, and the renormalisation of the external momentum can be obtained
nonperturbatively by computing the energy F, (k) of a heavy-heavy system which can

be written as

By(k) +2C, = \/(2Zymv + k)2 + ME, + ... (5.17)

Perturbative and nonperturbative results are compared in section 5.1.7.

5.1.2 One loop integrals

The one loop integrals in Fig. 5.1 are evaluated using automated perturbation theory

as described in section 4.2.3. The two integrands for the self-energy are

Y = dr wh(D(k +p, —p, k)DL (k + p)wh(V(p, —k — p, k) DY), (k)
10 = 4w wh@)(p, —p,k, ~k)D), (k). (5.18)

Here whf})a(k‘l, k2;q1) and whfﬁj)ab(kl, k25 q1, q2) denote the one- and two-gluon vertices.
D,(LO)(k) is the heavy quark propagator and Dg?&,,(k) the gluon propagator.
Derivatives with respect to external momenta, which are needed for the calculation

of the €2;, are implemented in the TAYLUR code by overloading the Leibniz rule.

Contour shift

On an infinite Euclidean lattice the energy integral is over the unit circle |z| = 1 with
z = et As can be seen from Fig. 5.2 the heavy quark pole can move outside the unit
circle and the integration contour has to be deformed to ensure that no poles are crossed
when Wick rotating back to Minkowski space. For certain momentum configurations

it will be necessary to integrate over the circle |z| = R with
1 <max{z_, |z} < R < 2. (5.19)

To satisfy this condition I shift the integration contour to z — Rz with R = /|zp24|
for z_ < |zp|. As a precaution, the code stops in case a loop momentum with |zj,| > z4
is encountered and Wick rotation to Minkowski space is not possible. However, in all

integrals I calculated this has never been the case. Keeping the contour as far away
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Figure 5.2: Poles in the complex z plane and integration contour (dashed circle). If |z| >
z_ | shift the contour halfway between the heavy quark- and larger gluon pole according to

z+— Rz with R = +/|zp24].

from the poles as possible avoids large peaks in the integrand which potentially spoil

the convergence of the VEGAS integration.

The heavy quark action contains no higher order time derivatives and it is easy to

obtain an explicit expression for the position of the pole in the propagator

1
1=zt (1 Bk () 8GR
The denominator vanishes for
Ho(v,k)\*" SH(v, k)\>
=z = (1-—— (l-—F5— ) - 2
z Zh < on > 5 (5 0)

For unimproved Wilson gluons the propagator in Feynman gauge is

-1

3
k ) -1
D) = G |4 sin? L4072 =4, (2 R )\2)
p=0
(5.21)
with &~ = 42?:1 sin? %”
From this the two gluon poles can be obtained
1 . ~ ~
o= s <2 CE N R A 4)> e R. (5.22)
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-1 imfk }
LA
w | Refk }
I % _______ —
:

Figure 5.3: Wick rotation to Euclidean space for HQET in the continuum. If the heavy
quark pole wy, lies to the left of the imaginary axis the contour has to be rotated around
-A=v-k-9.

In particular these poles satisfy z4z_ = 1 and it is not necessary to shift the contour
for the tadpole diagram.

For improved gluon actions there are additional poles zgmp)

but, as argued in

. . (imp) (imp) . .
appendix C.1 they always satisfy [227"/| < z_ and z; < |z | so that even in this
case it is sufficient to satisfy the condition (5.19).

The additional contour shift which is necessary in Euclidean space has been
discussed in the literature [123, 124]. As can be seen from Fig. 5.3 it is possible to
rotate the deformed contour back to Minkowski space in a way that preserves causality.
For negative v - k the heavy quark pole lies to the left of the imaginary axis and it is

necessary to rotate around —A = v - k — § instead of the origin of the kg plane.

Infrared divergences

The constants €2; are potentially infrared divergent. In all gauge invariant renormalisa-
tion parameters such as Z,, Z,, and Ej these divergences cancel. However, it turns out
that Qq, Q9 and 2, itself and the wavefunction renormalisation in Feynman gauge are
logarithmically divergent. To deal with these divergences note that any lattice theory
has the same infrared behaviour as the corresponding continuum theory. It is therefore
easier to analyse the corresponding continuum integrals. After performing the integral
over the temporal momentum as a contour integral it can be shown that the tadpole
diagram and all its derivatives are infrared finite. The same is true for the rainbow

diagram, however, its derivatives behave for low momentum as ~ f % and are thus
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logarithmically divergent. To regulate this divergence I introduce a finite gluon mass
A. The advantage of this approach is that the same method can be used to regulate the
continuum QCD integral. It is crucial to use the same regulator to ensure that infrared
divergences cancel in the matching coefficients. The infrared divergent part of €2; is
then

2
Qo = —3-log a?\?. (5.23)

For wavefunction renormalisation in Feynman gauge I find the same IR divergence in
continuum QCD (see (D.11)) and the matching coefficients are well defined in the limit
A — 0.

The calculations in section 5.2 are carried out in a finite volume with twisted
boundary conditions. This introduces a lower momentum cutoff and it is not necessary

to use a finite gluon mass to regulate infrared divergences.

IR subtraction function for 6Z,,

The infrared divergence will manifest itself in large peaks in the integrand which
can potentially spoil the convergence of the VEGAS integration. To deal with the
remaining infrared divergence in the wavefunction renormalisation I construct a suitable
subtraction function. Note that in principle f®UP) is arbitrary as long as it: agrees with
the lattice integrand for small loop momenta k; is ultraviolet-finite in d = 4 dimensions;
and can be evaluated analytically. The resulting integral (which is not restricted to the

Brillouin zone) is evaluated in appendix J.1 and gives
(sub) 2 2/, 2
6z, " = ~3: log A*/m* + O(\/m). (5.24)

This corresponds exactly to the logarithmic divergence found in (5.23). The subtracted

integral (57¢ is evaluated numerically,

57y = / (547’;4(eBz(k)fUat)(k)—f<sub>(k))+5Zf;“b> (5.25)

— 2
02y — 3 log a?\?

where fpz(k) is equal to 1 inside the Brillouin zone and vanishes for any |k,| > 7/a.

Direct calculation for different gluon masses

The alternative way of isolating the IR divergent behaviour is to perform the integration

for different values of A\ and then obtain the desired log A?> behaviour by numerically
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VEGAS integration ——+—
o T fit Co + Cg log(\?)
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Figure 5.4: Wavefunction renormalisation (in Feynman gauge) for different values of the
infrared regulator \. | show a linear fit Cy + Cig log A2 with x?/dof = 0.17. The slope is

Cr = —0.21220(14) ~ —2 and in agreement with (5.23). In the inset | show the results

normalised to the linear fit function. | use the simple heavy quark action defined in (5.26);
the frame velocity is v = 0.3.

fitting a line through the points. In Fig. 5.4 I show the wavefunction renormalisation for
A2 varying from 1078 to 10~*. Using a logarithmic scale on the horizontal axis I find
a very clear linear behaviour, which demonstrates the desired dependence on log A\2.
After fitting to Cg + Cir log A2, T obtain Cp = —0.1291(18) and Cig = —0.21220(14).
The coefficient of the logarithmic term is in excellent agreement with the analytical
result Cig = —2/(37) = —0.21221. The constant term has to be compared to the

infrared finite part of the wavefunction renormalisation in Tab. 5.6.

This method can only be applied if VECGAS is able to cope with divergences of
the integrand in the infrared region. For simple integrals, such as the wavefunction
renormalisation in mNRQCD, this seems to be the case. As discussed in chapter 6, more
severe infrared peaks prohibit the direct evaluation of other renormalisation parameters.
Even for formally IR finite integrals subtraction functions need to be introduced. In
addition, the evaluation of the integrand for different gluon masses and the subsequent
fit requires additional computational resources and complicates the analysis. In this
work I will not pursue this approach and always use a subtraction function where

necessary.
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5.1.3 Mean field corrections

As discussed in section 3.3.1 mean field corrections can be included by dividing each
link in the action by its expectation value ug. I work in Landau gauge and expand

the link in a power series in the strong coupling constant, ug = 1 — ozsu((]2) +.... For

the Wilson gluon action the first order coefficient has been evaluated to u(()2) = 0.9735
[102], for the Symanzik improved action the authors of [125] find u(()z) = 0.750. In
perturbation theory mean field corrections are included as counterterms to the two-
point function. I use the computer algebra package FORM [126] to replace each link
in the kinetic part of the heavy quark action according to U, — U, /uo, U): — U,I/uo
taking care to cancel adjacent links in the opposite direction, U,U, jl — 1. Ideally this
cancellation should be carried out after expanding the entire action kernel K = 1 —
( — 5TH) ( — %)n Ul (1 — %)n (1 — 5TH), I refer to this as “complete” cancellation.
In the lattice simulation code for evaluating nonperturbative matrix elements this turns
out to be prohibitively difficult. As it is important to use the same convention in
both calculations, I choose to cancel adjacent links only within Hy and 0 H separately,
which I call “partial” cancellation. This does not imply that in this case mean field
improvement is incomplete in any sense as it has to be understood as a prescription
for improving the convergence of the perturbative series. Numerically the difference in
the size of perturbative mean field improvement corrections between “complete” and
“partial” cancellation is never more than around 10%, see for example Tab. 5.5.

After expanding ug =1 — ozsu(()2) + ... and collecting the O(a;) terms in the action

kernel, links are replaced according to U, +— etkn U): — e "1 and the constants
Q(tadpolc)

; can be obtained by taking appropriate derivatives as in (5.10).

5.1.4 Results
Heavy quark actions

In addition to the full O(1/m?,v%) mNRQCD action derived in section 4.1.3 I adapted
the HIPPY code to generate Feynman rules for various other actions of varying
complexity. In particular I use the following simple action with no interaction term
6H. The Hamiltonian is defined by
AR _ A(z)
Hy=—iv - AT - ———— =" 6H =0, (5.26)
29m

where all derivatives are unimproved. Note that this action differs from the one in
[90, 121] by a more local discretisation of the (v - D)? term.

I calculate renormalisation constants both for the simple action in (5.26) and for
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the full O(1/m?,v1) mNRQCD action. In the first case I work with the unimproved
Wilson action whereas in the second case the gluon action is Symanzik improved. In
both calculations I use m = 2.8, n = 2; the heavy quark mass corresponds to the one

on coarse MILC lattices [93].

In appendix F I summarise additional results for an improved action which contains
all O(1/m) terms.

Mean field corrections

I find the following analytical expressions for mean field corrections: for the simple

action in (5.26) and “partial” cancellation they are

au ole tad ole 2 3
Q(tdpl) Q( pl)_u()<|_|_ ,-Yv>’
Q ladpoe S‘Z adpo. 2 fz 3 J 2[

For the full O(1/m?,v};) mNRQCD action I obtain

Q((]tadpolo) _ _Qgtadpolo)
_ 92 _ 2 4 1 - 2 2 .4
) P i e N (I e e
6ym 2v3m3 An ~2m?2
L—5v2 + 30t on +2v4
6n2  ym 16n3 |’
5 .3—0v2 3-3v 3—60°+5!
el @12 2 0 2o 2T v
3 6ym ¥2m 2v3m
— | —v - — (20 v T ov
4n 72771,2 6n2 ym
n+2 4,
1603 ]
Q(tadpole) Q(tadpole) (2) 202 02
v — 2 - uo V2m2 - W .

For v = 0 these expressions reduce to the ones obtained in [92]. In both cases the
difference between Qgtadpde) and foadp"le), which defines the renormalisation of the
external momentum, is small. In appendix E I present the corresponding expressions

for “complete” cancellation. As an additional check of my derivation I verified that 1
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5.1. Leading order kinetic terms in mNRQCD

A2 Ey 67y 87 m
10712 —0.9436(22) —0.13285(48) 0.4981(15)
1079 —0.9431(22) —0.13284(48) 0.4980(15)
1076 —0.9438(22) —0.13297(48) 0.5000(15)
1073 —0.9250(20) —0.12636(44) 0.4917(14)

A2 82, 52, 5C,
10712 —0.4401(16) 0.0187(14) 0.1331(35)
1079 —0.4388(16) 0.0186(13) 0.1333(36)
1076 —0.4387(15) 0.0182(13) 0.1351(36)
1073 —0.4327(14) 0.0184(13) 0.1338(33)

Table 5.1: Heavy quark renormalisation parameters for different gluon masses A2. An
infrared subtraction function has been used to calculate 571/,. The heavy quark action is
the simple action defined in (5.26), the frame velocity v = 0.3. Mean field corrections for
“partial” cancellation are included.

can reproduce the results in [121].

Tab. 5.4 shows numerical values for the simple action defined in (5.26) with m = 2.8
and n = 2 both for “partial” and “complete” cancellation, the corresponding numbers
for the full O(1/m?, vl,) action are collected in Tab. 5.5. I conclude that the difference

between the two cancellation schemes is small.

Gluon mass dependence

After introducing a suitable subtraction function for wavefunction renormalisation in
Feynman gauge all renormalisation parameters should be independent of the gluon
mass if A? is sufficiently small. I demonstrate this in Tab. 5.1 and Fig. 5.5 where I
show results for A? between 107'? and 10~3. Within errors they are independent of
the gluon mass for A2 < 107% and I conclude that an extrapolation to A> = 0 is not

necessary, in the following I will work with A% = 1076.

Vegas integration

To test both the automated generation of Feynman rules and the numerical integration
routine I also compare to results reported in [90, 121]' with m = 2.0, n = 2 and find

perfect agreement within errors.

'T would like to thank Christine Davies for providing me with updated values for the renormalisation
parameter Q, in [90].
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Figure 5.5: Heavy quark renormalisation parameters for different gluon masses \?,
normalised to the values at A> = 1072, An infrared subtraction function has been used
to calculate 57¢. The points are offset horizontally for better legibility. The heavy quark
action is the simple action defined in (5.26), the frame velocity v = 0.3. Mean field
corrections for “partial” cancellation are included.
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5.1. Leading order kinetic terms in mNRQCD

In Tabs. 5.2 and 5.3 I list values for the €2; without mean field corrections. I only
show the infrared finite part of 2; without the infrared divergence —2/(37)log A%. All
results are obtained in Feynman gauge with a subtraction function for the wavefunction

renormalisation.

The renormalisation parameters (including mean field corrections for “partial”
cancellation of U,U, E) are given in Tabs. 5.6 and 5.7 and plotted in Figs. 5.6 and 5.7.
For the simple action I perform 5 iterations of 200,000 function evaluations each both
for thermalisation and measurement. The renormalisation parameters of the full action
are evaluated with 10 iterations of 200,000 function evaluations each. The calculations
were carried out on the EDDIE cluster [119]; on 64 processors this took about 4 hours

wallclock time.

5.1.5 Observations

As can be seen by comparing Tabs. 5.2 and 5.4 the inclusion of mean field corrections
reduces the size of the renormalisation parameters significantly: for not too large
frame velocities they are all of order one, as expected for a well behaved perturbative
expansion. The same can be observed for the full action, see Tabs. 5.3 and 5.5. It is
interesting to compare Fig. 5.6 to the corresponding results in Fig. F.1 in appendix F.
I checked explicitly that the chromomagnetic interaction term has neglegible influence
on the renormalisation parameters. Improving the action reduces the size of some
renormalisation constants, in particular it halves the renormalisation of the heavy quark
mass. The dependence on the frame velocity is smaller for all radiative corrections
except Ey. I explain this by the fact that improvement reduces the size of Lorentz
symmetry breaking for all parameters which are also present in the continuum. For
dimensional reasons Ej diverges as 1/a in the continuum limit and is not reduced
by improvement of the action. The additional terms in the full O(1/m? v2)) action
introduce further breaking of Lorentz invariance and increase the v dependence again.
As discussed in more detail in the following section, the renormalisation of the external
momentum is small for the simplest action but increases with the frame velocity for

actions of increasing complexity.
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Chapter 5. Heavy quark renormalisation parameters

Table 5.2: Infrared finite part of §2; for the simple mMNRQCD action defined in (5.26). Mean
field corrections are not included.

v Qo O 0, Q,
0.00 —2.9851(24) 2.8619(24) 3.9967(29) —
0.01 —2.9879(24) 2.8645(24) 3.9987(29) 4.003(23)
0.10 —2.9721(24) 2.8483(25) 3.9889(29) 3.9741(39)
0.20 —2.9299(23) 2.8033(24) 3.9567(29) 3.9474(31)
0.30 —2.8564(23) 2.7252(24) 3.9022(29) 3.8826/(29)
0.40 —2.7490(22) 2.6092(23) 3.8218(29) 3.7898(28)
0.50 —2.6085(22) 2.4540(22) 3.7104(30) 3.6702(27)
0.60 —2.4260(20) 2.2462(21) 3.5651(33) 3.5087(27)
0.70 —2.2057(18) 1.9859(20) 3.3833(39) 3.3157(25)
0.75 —2.0832(18) 1.8335(20) 3.2742(45) 3.2110(26)
0.80 —1.9371(17) 1.6482(19) 3.1333(57) 3.0851(26)
0.85 —1.7790(16) 1.4343(20) 3.0029(80) 2.9447(26)
0.90 —1.5992(15) 1.1742(22) 2.820(13) 2.7790(29)
0.95 —1.3887(13) 0.8223(29) 2.480(29) 2.5639(36)

(% QO Ql QQ QU
0.00 —2.36685(40) 2.03045(62) 3.0487(13) —
0.01 —2.36672(39) 2.03042(62) 3.0470(13) 3.039(18)
0.10 —2.35534(40) 2.02033(62) 3.0276(13) 3.0192(24)
0.20 —2.32049(39) 1.98900(62) 2.9668(13) 2.9695(16)
0.30  —2.26205(38) 1.93675(62) 2.8646(14) 2.8857(14)
0.40 —2.17678(37) 1.86081(61) 2.7199(14) 2.7636(13)
0.50 —2.06318(35) 1.75964(61) 2.5330(15) 2.6023(12)
0.60 —1.91598(33) 1.62928(62) 2.3020(17) 2.4059(12)
0.70 —1.72666(31) 1.46150(63) 2.0220(20) 2.1623(11)
0.75 —1.61272(30) 1.36128(65) 1.8614(24) 2.0247(11)
0.80 —1.48224(28) 1.24847(69) 1.6828(29) 1.8794(11)
0.85 —1.33083(27) 1.12528(82) 1.4925(41) 1.7275(12)
0.90 —1.15125(25) 1.0118(11) 1.2930(68) 1.5972(15)
0.95 —0.92738(24) 1.0698(21) 1.236(19) 1.6559(25)

Table 5.3: Infrared finite part of €2; for the full O(1/m?, vl,) mMNRQCD action. Mean field
corrections are not included.
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5.1. Leading order kinetic terms in mNRQCD

Qétadpole) /u(()2) Qétadpole) /u(()2)

0.00 2.07143 —2.80357
0.01 2.07134 —2.80350
0.10 2.06250 —2.79688
0.20 2.03578 —2.77684
0.30 1.99142 —2.74356
0.40 1.92961 —2.69721
0.50 1.85056 —2.63792
0.60 1.75429 —2.56571
0.70  1.64018 —2.48013
0.75 1.57581 —2.43185
0.80 1.50571 —2.37929
0.85 1.42848 —2.32136
0.90 1.34093 —2.25570
0.95 1.23391 —2.17543

Qétadpole) /u(2) Qétadpole) /u(2)

v 0 0

0.00 2.0236 —2.77966
0.01 2.0235 —2.77959
0.10 2.01422 —2.77273
0.20 1.98607 —2.75198
0.30 1.93913 —2.71742
0.40 1.87337 —2.66909
0.50 1.78867 —2.60697
0.60 1.6847 —2.53092
0.70  1.56055 —2.44032
0.75  1.49021 —2.38905
0.80 1.41349 —2.33317
0.85 1.32898 —2.27161
0.90 1.23351 —2.20199
0.95 1.11797 —2.11746

Table 5.4: Mean field improvement correction for the simple mNRQCD action defined in

(5.26) and both “partial” (Q&tadpde)) and “complete” (Qg-tadpde)) cancellation of UNU,I. I

Qgtadpole) _ _Q(()tadpole), Q&tadpole) _ _Qétadpole)' Qz()tadpole) _ Qgtadpole) and

explicitly.

do not show

A (tadpole A (tadpole
Qz() p ):Q; pole)
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Chapter 5. Heavy quark renormalisation parameters

Q((]tadpdo)/u(()z) Qgtadpolo)/u((f) Qgtadpolc)/u((f)

0.00 2.13384 —3.18316 —

0.01 2.13375 —3.18300 —3.18302
0.10 2.12459 —3.16713 —3.16923
0.20 2.09650 —3.11915 —3.12728
0.30  2.04863 —3.03967 —3.05682
0.40 1.97963 —2.92963 —2.95725
0.50 1.88797 —2.79071 —2.82813
0.60 1.77221 —2.62561 —2.66939
0.70  1.63091 —2.43793 —2.48127
0.75  1.54999 —2.33677 —2.37612
0.80 1.46143 —2.23103 —2.26313
0.85 1.36379 —2.12013 —2.14118
0.90 1.25365 —2.00163 —2.00714
0.95 1.12074 —1.86625 —1.85110

Q((]tadpolo)/u@) Qgtadpolo)/u@) Qvtadpolc)/u@)

v 0 0 0

0.00 2.10610 —3.14336 —

0.01 2.10600 —3.14319 —3.14321
0.10 2.09592 —3.12639 —3.12898
0.20 2.06507 —3.07557 —3.08573
0.30 2.01267 —2.99112 —3.01321
0.40 1.93722 —2.87358 —2.91083
0.50 1.83666 —2.72404 —=2.77787
0.60 1.70836 —2.54438 —2.61351
0.70  1.54900 —2.33743 —2.41672
0.75  1.45625 —2.22476 —2.30557
0.80 1.35355 —2.10633 —2.18513
0.85 1.23910 —1.98182 —2.05402
0.90 1.10911 —1.84923 —1.90880
0.95 0.95262 —1.70037 —1.73901

Table 5.5: Mean field improvement correction for the full O(1/m?, v,) mNRQCD action

and both “partial” (Qg-tadpde)) and “complete” (Q&tadpde)) cancellation of UMUﬂ:. | do not

Qgtadpole) _ _Qétadpole) and Q&tadpole) _ _Qétadpole)

show explicitly.
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5.1. Leading order kinetic terms in mNRQCD

(% E() (571/, (5Zm
0.00 —0.9686(24)  —0.12323(49) 0.4221(15)
0.01 —0.9715(24)  —0.12348(50) 0.4215(15)
0.10 —0.9642(24)  —0.12379(50) 0.4299(16)
0.20 —0.9481(23)  —0.12657(50) 0.4496(16)
0.30 —0.9178(23)  —0.13124(52) 0.4869(16)
040 —0.8705(22)  —0.13984(54) 0.5479(17)
0.50 —0.8070(22)  —0.15447(58) 0.6398(20)
0.60 —0.7182(20)  —0.17982(63) 0.7948(23)
0.70 —0.6090(18)  —0.21983(74) 1.0719(30)
0.75 —0.5492(18)  —0.24972(83) 1.3070(35)
0.80 —0.4713(17)  —0.28893(95) 1.6772(45)
0.85 —0.3884(16)  —0.3446(12) 2.3686(63)
0.90 —0.2938(15)  —0.4250(16) 3.800(10)
0.95 —0.1875(13)  —0.5664(26) 8.377(21)

v 57, 57, 5C,
0.00 — — 0.0761(17)
0.01 —0.425(23) —0.029(23) 0.0745(18)
0.10 —0.4109(30)  —0.0000(28) 0.0831(18)
020 —0.4227(21) 0.0082(18) 0.1002(18)
0.30 —0.4252(18) 0.0177(15) 0.1321(18)
0.40 —0.4334(16) 0.0288(13) 0.1804(19)
0.50 —0.4497(16) 0.0433(13) 0.2403(21)
0.60 —0.4726(16) 0.0553(12) 0.3237(25)
0.70 —0.5122(16) 0.0660(11) 0.4245(34)
0.75 —0.5442(16) 0.0671(11) 0.4776(41)
0.80 —0.5864(17) 0.0599(11) 0.5337(54)
0.85 —0.6411(18) 0.0476(11) 0.6262(78)
0.90 —0.7142(19) 0.0210(11) 0.709(13)
0.95 —0.8250(21)  —0.0353(11) 0.720(29)

Table 5.6: Infrared finite renormalisation parameters for the simple mNRQCD action defined
n (5.26), including mean field corrections for “partial” cancellation.
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Chapter 5. Heavy quark renormalisation parameters

(Y EO (57¢ (5Zm
0.00 —0.76647(40)  —0.33639(48) 0.2313(12)
0.01 —0.76641(39) —0.33630(47) 0.2297(12)
0.10 —0.76190(40)  —0.33501(47) 0.2275(12)
0.20 —0.74812(39)  —0.33149(48) 0.2194(12)
0.30 —0.72558(38)  —0.32530(48) 0.2037(12)
040 —0.69206(37)  —0.31597(49) 0.1789(13)
0.50 —0.64720(35) —0.30354(50) 0.1421(13)
0.60 —0.58682(33)  —0.28670(52) 0.0910(15)
0.70 —0.50349(31)  —0.26516(55) 0.0158(17)
0.75  —0.45023(30) —0.25144(58) —0.0337(19)
0.80 —0.38616(28) —0.23377(63) —0.0901(24)
0.85 —0.30798(27)  —0.20554(77)  —0.1502(32)
090 —0.21101(25)  —0.1395(11)  —0.1933(51)
0.95 —0.08682(24) 0.1425(21)  —0.038(14)

v 57, 57, 5C,
0.00 — — —0.0425(12)
0.01  —0.221(18) —0.002(18) —0.0441(12)
0.10 —0.2154(23) 0.0061(20) —0.0454(12)
0.20 —0.2074(15) 0.0025(12)  —0.0510(12)
030 —0.1928(12)  —0.0087(10)  —0.0626(12)
040 —0.1696(11)  —0.02131(89)  —0.0799(13)
0.50 —0.1376(10)  —0.04175(86)  —0.1039(14)
0.60 —0.1037(10)  —0.06974(87)  —0.1350(16)
0.70 —0.06305(91)  —0.10943(92)  —0.1731(19)
0.75 —0.04380(89)  —0.1394(10)  —0.1964(23)
0.80 —0.02967(90)  —0.1746(11)  —0.2256(29)
0.85 —0.01915(93)  —0.2235(11)  —0.2580(40)
0.90 —0.0203(10)  —0.2966(13)  —0.3127(67)
0.95 —0.0383(13)  —0.4374(16)  —0.402(18)

Table 5.7: Infrared finite renormalisation parameters for the full O(1/m?,v) mNRQCD
action, including mean field corrections.
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Figure 5.6: Infrared finite renormalisation parameters for the simple mMNRQCD action
defined in (5.26), including mean field corrections.
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Figure 5.7: Infrared finite renormalisation parameters for the full O(1/m?,v},) mNRQCD
action, including mean field corrections.
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Chapter 5. Heavy quark renormalisation parameters

5.1.6 Reparametrisation invariance
In the continuum

There is some ambiguity in how the heavy quark momentum p = mu + k is split into

mu and a residual momentum k. Choosing
u— u+€e/m, k—k—e (5.28)

instead should give the same physical results if 2u - € + € = 0 is chosen to preserve

u? = 1. In the continuum the HQET Lagrangian

2 M2
Zuger = U (Zu D — M) (0 (5.29)

2m
is invariant under (5.28) accompanied by a field transformation 1 + e'€® (1 + %) Y
[66, 67, 120]. As this is a symmetry of the renormalised Lagrangian the relative
coefficients of the leading order term and the O(1/m) kinetic operator in (5.29) are
fixed to all orders in perturbation theory.
In [1] the discussion is extended to actions written in noncovariant form. The action

in section 4.1.3 is not covariant so consider a transformation of the spatial part of the

four momentum p = ymwv +k instead. For simplicity I consider the simple Hamiltonian

D2
Hy = —iv-D——. (5.30)
2ym
It is easy to see that the transformation
v v+ €, P > eV EY (5.31)

leaves the theory invariant if one requires 2v - € + €2 = 0 to preserve the length of
the frame velocity v. This implies that the external momentum p = ~ymwv is not
renormalised as the relative coefficient between the two terms in (5.30) is fixed to all

orders in perturbation theory.

On the lattice

The discretised version of (5.30) reads
g = —jp. A = (5.32)
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5.1. Leading order kinetic terms in mNRQCD

Under the transformation (5.31) this transforms to

lat lat) | 1 ) A (-

g gl 5yma’ ZvjejAg. ATy 4+ 0(a2e?). (5.33)
j

If the frame velocity points in a lattice direction, v;e; can be replaced by —%62 and it

can be seen that the breaking of reparametrisation invariance is of O(a?¢?). Using an

improved derivative operator instead one finds that

a a 1 - -
Hy™) o H™ - 2yma® v ATVATIAIAT Y+ 0('e). (5.34)
J

and with the same argument as above the breaking of reparametrisation invariance
is of O(a%€?). T calculated the renormalisation of the external momentum both with
unimproved and improved derivatives for am = 2.8, n = 2 and v = 0.75 and find
0Z, = —0.067(1) (unimproved) and §Z, = —0.039(1) (improved).

Additional terms in the action will break reparametrisation invariance which will
also be affected by the fact that the kinetic operator always appears in the form
(1"

2n

I study the influence of (v - D)?/(2ym) by simulating with the same parameters as
above (m = 2.8, n = 2 and v = 0.75) now including A1()2)/(27m) in the action (with
unimproved derivatives) and find 67, = 0.066. The effect of this term is about twice the
size and of different sign as the breaking of the symmetry due to lattice artifacts. I also
expect the breaking to be proportional to v?/(2ym), i.e. it should rise quadratically
for small v, reach a maximum at v = \/ﬁ ~ 0.8 and then drop to zero for v — oo.
Quantitatively this is exactly the behaviour observed in Fig. 5.6. For the full action in
5.7 the renormalisation of the external momentum is small for small frame velocities
but becomes sizable for v — 1. I explain this increased breaking of reparametrisation

invariance by the presence of additional operators in the full action.

5.1.7 Comparison to nonperturbative calculations

The renormalisation Z,, of the external momentum and the energy shift C, can be
obtained from nonperturbative calculations by measuring the two-point function of
heavy-heavy and heavy-light mesons for different residual momenta. For each p the
energy I, (p) is obtained by fitting a sum of exponentials to the correlator. Z,, C,, and

the meson mass My, are then extracted as described in [1, 90].
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Chapter 5. Heavy quark renormalisation parameters

Value of the strong coupling constant

To compare to these results a value for the strong coupling constant has to be chosen.
I use the strong coupling constant defined in the potential scheme [79]. A typical

momentum scale ¢* in a perturbative integral can be defined by [79, 127]

4 4
v (Gsop)Tioop = v (Gop) / %I(/@) - / %I(/ﬁ)av(/ﬁ). (5.35)

av (7?)

Using the one-loop running of ay (¢?) = TravBolos 2/~ OV — ﬁoa%/ log ¢?/q* this

reduces to

J 5 1(k) log
J &1 (k)

108 (dfoop)” = (5.36)

This value has to be combined with the one from mean field improvement. I calculate
the typical momentum scale of the one loop correction to % tr[U,] o< tr [A%] and find
aq;‘adpole = 2.64319(17) for the Symanzik improved gluon action. For the Wilson gluon
action I obtain agj,q,., = 2-77368(16) which agrees with [128].

The two values are combined according to [129],

[loop + [tadpolo . .

In Tab. 5.8 I give ag* for the infrared finite renormalisation parameters. For v < 0.4 it
was not possible to obtain a clean signal for the external momentum renormalisation,
here I choose ¢* = 2/a. For the values where ¢*(Z,) can not be calculated reliably the
external momentum renormalisation is extremely small. The same problem arises for

the mass renormalisation at some velocities where 67, is small.

After including mean field corrections the scales for Ey, Z,, and Z, are relatively
small, corresponding to a large value of «,. Qualitatively the same result was found
in [114]. The integrals have substantial contributions from the infrared region of
the one loop integral and their perturbative series is not very well behaved. On
the other hand, the scale for the physical parameters Z,, and C, which can also be
measured in nonperturbative simulations, is typically larger than 2/a, corresponding
to ay(¢*) < 0.3.

The running of the strong coupling constant has been calculated in [95] by measuring

short distance observables on the lattice. I use their value of oy = ay (7.5 GeV) and
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5.1. Leading order kinetic terms in mNRQCD

v aq*(Eo) aq*(0Zm) aq*(6Zy) aq*(07Zp) aq*(6Cy)
0.00  0.794(11) 0.597(17) — — 3.48(36)
0.01  0.754(11) 0.634(19) 0.41(19) — 2.74(26)
0.10  0.751(11) 0.598(18) 0.292(19) — 2.73(27)
0.20  0.751(11) 0.564(17) 0.408(17) — 2.91(25)
0.30  0.727(10) 0.546(18) 0.461(17) — 2.68(18)
040  0.731(11) 0.481(19) 0.518(20) 1.82(41) 2.32(13)
0.50  0.708(10) 0.327(16) 0.473(21) 2.39(27) 2.60(11)
0.60  0.739(12) 0.133(12) 0.392(21) 2.26(15) 2.452(82)
0.70  0.670(11) — 0.441(35) 2.31(10) 2.297(64)
0.75  0.654(11) — 0.340(37) 2.317(82) 2.159(54)
0.80  0.597(11) — 0.314(49) 2.237(64) 2.356(55)
0.85  0.503(11) 5.90(64) 0.324(77) 2.132(52) 2.113(44)
0.90  0.3201(88) 3.05(37) 0.50(11) 2.180(43) 2.166(51)
0.95  0.1097(67) — 1.64(21) 2.069(28) 2.180(83)

Table 5.8: Values of ag* for various IR finite renormalisation parameters

integrate the evolution equation

QdaV(Q)
dq?

= —foai — ot — Baay + O(ay) (5.38)

numerically to obtain ay at a specific scale. On the coarse MILC configurations the

inverse lattice spacing is a=! = 1.6 GeV. [93].

Numerical results

In Figs. 5.8 and 5.9 I show both perturbative and nonperturbative results for the
renormalisation of the external momentum and the energy shift between QCD and
mNRQCD. The nonperturbative results have been calculated by Stefan Meinel [91]. T
estimate the part of the two loop correction, which comes from the running of oy in the
loop integral, by varying the scale ¢* in the range ¢*/2,...,2¢*. This is shown as a grey
error band on the perturbative numbers in the plot. Note that this is only part of the
two loop uncertainty. The discrepancy between the nonperturbative and perturbative
results suggests that there are additional higher order corrections, to quantify these
a two loop calculation is necessary. This calculation is currently carried out by a
combination of high-3 simulations and diagrammatic perturbation theory, see section
5.2.
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Chapter 5. Heavy quark renormalisation parameters

16 L perturbation theory —s— |
nonperturbative, heavy-heavy —=—
1al nonperturbative, heavy-light —e— |
E
g L2t 1
1 " # = f B 5 - IE -
0.8 ‘

0 0.2 0.4 0.6
frame velocity v

Figure 5.8: Energy shift C, /(ym) from perturbation theory and nonperturbative simulations
for the full O(1/m? v2,) mNRQCD action with m = 2.8, n = 2.

rel

perturbation theory —s—

Lar nonperturbative, heavy-heavy —s=— |

nonperturbative, heavy-light —e—

0.8 : :
0 0.2 0.4 0.6

frame velocity v

Figure 5.9: External momentum renormalisation Z, from perturbation theory and
nonperturbative simulations for the full O(1/m?, v ) mNRQCD action with m = 2.8,

n=2.
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5.2. Finite lattice with twisted boundary conditions

5.2 Finite lattice with twisted boundary conditions

I calculate the heavy quark self-energy on a finite lattice with twisted boundary
conditions. As in the high-3 calculations in [108] T use two different heavy quark
actions: The simple action in (5.26) with m = 2.0 and n = 2, and the full O(1/m? v2))
action with the same stability parameter and m = 2.8. In both cases I use a Symanzik
improved gluon action. At the time of writing results from high-g3 fits were available
for the zero point energy shift of the simple mNRQCD action. Below I show results
both for unconstrained and constrained polynomial fits of the oy dependence of this
renormalisation parameter. In the latter case the one loop coeflicient is fixed by
my calculation in diagrammatic perturbation theory. I also computed the O(ay)
radiative corrections for other renormalisation parameters on a finite lattice with
twisted boundary conditions, results for both the simple and the full mNRQCD action
are collected in appendix G.

To check my calculations for internal consistency I first verify that I can reproduce

the numbers in the infinite volume limit by extrapolation in the inverse lattice size.

Infinite volume extrapolation

On an infinite lattice the integration contour has to be deformed in the kg plane such
that no poles are crossed when Wick rotating back to Minkowski space. On a finite
lattice the integral is replaced by a sum over discrete momenta and it is not obvious
how the residue theorem can be applied. However, the difference between the mode
summation and the integral only introduces finite volume errors which vanish in the
infinite volume limit and I conclude that the same contour shift can be applied in both
cases.

I compare results on a finite lattice of size T' x L3 (with 7" = 3L) to the infinite
volume, T'= L = oo result in Fig. 5.10 where I show the zero point energy for the full
action and a range of frame velocities. I extrapolate the finite volume result assuming

a quadratic dependence on the inverse linear lattice size 1/L,

Ey = Eo(L=00)+ %Egﬂ + é @ (5.39)
The results are shown in Tab. 5.9 and Fig. 5.10. To estimate the parametrisation errors
on Ey(L = oo0) and E(()l) I perform an additional linear fit leaving out the L = 4 point.
The difference between the linear and quadratic fit parameters is the error quoted in
the third and fourth column of Tab. 5.9. I also show the infinite volume result. The
results from the infinite volume calculation and the extrapolation to L = oo agree

within errors, as expected.
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Chapter 5. Heavy quark renormalisation parameters

v Eo(L = o) Eo(L = o) [fit] ESV [it] EP [fit]
0.0 —0.76647(40 0.2277(13)

(40) (39) (61)
0.2 —0.74812(39) (39) (61) 0.227615(71)
0.4 —0.69206(37)  —0.6944(40) 0.644(62) 0.23034(68)
(33) (42) (65)
(28) (47) (74)

0.6 —0.58682(33 0.24154(29)
0.8 —0.38616(28 0.2732(10)

Table 5.9: Result from infinite volume perturbation theory (second column) and quadratic
fit to the finite volume results. The parametrisation error in the third and fourth column
is estimated by comparing the fit parameters from a linear fit without the L = 4 point to
the central values of the quadratic fit. Mean field corrections are included.

0.3 ./9%6/6/

0.4} .
s v=0.0 O
S v=0.2 O
5 03  v=04 &
= v=06 o
8 067 1 v=08 o
o

0.7}

_08 | 1 1

0 0.1 0.2 0.3

1/L

Figure 5.10: Infinite volume extrapolation of the zero point energy Ej obtained ona L3 x T
lattice (empty symbols). | also show a quadratic fit in the inverse linear lattice size 1/L and
the infinite volume result (filled symbols). | use the full O(1/m? v1,) action with m = 2.8
and n = 2. All mean field corrections are included in the plot.
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5.2. Finite lattice with twisted boundary conditions

5.2.1 High-3 simulations

Nonperturbative calculations are carried out by Ron Horgan and Andrew Lee [108].
They generate quenched gauge configurations for different values of the inverse coupling
constant (3. For sufficiently large § the results can be expanded in the strong coupling
constant «g as nonperturbative effects are suppressed by twisted boundary conditions.
For each value of 3 the heavy quark propagator is measured for a range of lattice
momenta and fitted to a suitable function after fixing to Landau gauge. For the simple
mNRQCD action described in (5.26) the functional dependence is assumed to be

G(r;p®v p,(v-p)?) = (1+a1+agp®+agv-p)e® )7 (5.40)
2 27 2nT
v-p p’—as(v-p)
X 1— a4 -
2n 2nas

By expanding in small momenta it can be shown that
Cy = ag, MRYR = a3, Zy = ay, Ey=as — as. (5.41)

To reach sufficiently small momenta generalised boundary conditions are applied for
the external quark fields [130],

Yo+ L)) = i), Plo+ Lj) = e > ™p(x)  for j=1,2,3.  (5.42)

The real numbers 6; are arbitrary parameters which can be used to tune the lattice
momenta. Combining this with the twist described in section 4.2.2 the spatial lattice

momenta are

2 n;
p; = T <mj + 9j + gj) (5.43)

with m; €0,...,L —1, §; € R and n; € {0,1,2}. The restrictions on the twist vector
n; are described in section 4.2.2.
Finally, the results for each renormalisation parameter are fitted to a polynomial in

the strong coupling constant.

5.2.2 Numerical results

Tab. 5.10 shows the coefficients of a polynomial fit in a; to the zero point energy shift
from high-3 simulations [108]. In Tab. 5.11 I present results from a constrained fit
where the one loop results are taken from diagrammatic lattice perturbation theory.
In both cases the simple mNRQCD action in (5.26) is used in combination with a

Symanzik improved gluon action.
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Chapter 5. Heavy quark renormalisation parameters

lattice v=20.0 v=0.2 v=04 v=0.8
43 x 12 1 loop —2.5186(27) —2.4703(27) —2.3231(28) —1.7161(32)
2 loops  0.10(14) 0.13(15) 0.20(15)  —0.22(15)

3loops —89+12 —94+12 —106+1.1 -88+1.1
63 x 18 1loop —2.5901(18) —2.5387(17) —2.3827(14) —1.7706(69)
2loops —0.25(11)  —0.35(11)  —0.653(92) —0.83(36)
3loops —11.0+1.0 —102+1.0 —7.33£091 -—8.9+3.0
8 x24 1loop —2.6321(69) —2.5797(67) —2.4146(64) —1.812(16)
2 loops —0.24(36)  —0.33(36)  —0.93(34)  —0.01(67)
3loops —151+33 —148+33 —89+33 —20.0+52

Table 5.10: Zero point energy shift Ey for the simple action defined in (5.26) [108]. | show
results from an unconstrained fit in the strong coupling constant. Each entry contains (from
top to bottom): one loop coefficient, two loop coefficient and the three loop coefficient.
Mean field corrections are not included.

In Fig. 5.11 T compare the O(ay) results from diagrammatic perturbation theory

and the linear coefficient in an unconstrained fit to high-{ simulations.

Comparison of fit models

The two different fits have been analysed by an F-test [131, 108]. This statistical
tool is used to compare two “nested”? models with different numbers of parameters;
it makes a quantitative statement about whether extending a simple model with more
free parameters significantly improves the fit to the same data. In our case, the simple
model corresponds to the constrained fit, it can be extended by keeping the one loop
coefficient as an independent parameter. For each lattice size and frame velocity the
value of the statistic F' = Fg is calculated from the fit results. This quantity is
distributed according to a known probability density which depends on the degrees of
freedom. The null hypothesis is that the fit is not significantly improved by adding
more free parameters to the model, i.e. that the unconstrained fit does not give better
results than the constrained fit. For each calculated value of Fg; one can then look
up the probability that F' is larger than Fg;. The null hypothesis is rejected if this
probability is smaller than a given threshold. In Tab. 5.12 I show this probablity as
calculated from the fits in Tabs. 5.10 and 5.11.

2Model 1 is nested in model 2 if any regression curve in model 1 can be reproduced by some choice
of parameters in model 2.
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5.2. Finite lattice with twisted boundary conditions

lattice v=20.0 v=0.2 v=04 v=0.8
43 %12 1loop —2.5175 —2.4682 —2.3184 —1.6785
2 loops 0.051(71) 0.038(76)  —0.003(86) —1,61(26)
3 loops —8.58(80) —8.73(82) —9.17(83) 0.2+2.3
62 x 18 1loop —2.5906 —2.5393 —2.3832 —1.7126
2 loops —0.228(52) —0.312(52) —0.625(46) —3.41(42)
3 loops —11.19(67) —10.44(68) —7.58(60) 9.7+4.3
8 x24 1loop —2.6254 —2.5732 —2.4140 —1.7284
2 loops —0.55(17) —0.63(17) —0.96(15) 3.06(59)

3loops —12.7+21 —124+£23 -—-86=£2.1 0.3£59

Table 5.11: Zero point energy shift Ej for the simple action defined in (5.26). | show
results from an constrained fit in the strong coupling constant [108]. Each entry contains
(from top to bottom): one loop coefficient from diagrammatic perturbation theory, two
loop coefficient and the three loop coefficient. Mean field corrections are not included.

0.02 | i

oy |

S 002} 1
O -

& -0.04 | P
Q I

§ 006 ¢ 12 x 43 —=— } |

3 -
_0.08 L 18X63 i
24 x 8% —e—
0.1 | i

0 0.2 0.4 0.6 0.8
frame velocity v

Figure 5.11: O(ay) correction to the zero point energy shift: | plot the difference between
one-loop diagrammatic perturbation theory and the linear coefficient of a fit to high-(
simulations. Mean field corrections are not included.
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Chapter 5. Heavy quark renormalisation parameters

lattice v =10.0 v=0.2 v=20.4 v=0.8
43 %12 72.14% 49.98% 14.67% 0.00%
6% x 18 81.12% 75.15% 75.18% 0.00%
8 x 24 39.29% 39.08% 93.17% 0.02%

Table 5.12: Probability of obtaining an F' value equal or larger than that calculated from
the two fits in Tabs. 5.10 and 5.11.

5.2.3 Observations

For velocities up to v = 0.4 the results for the one loop coefficients in Tabs. 5.10
and 5.11 agree within statistical errors. Using an F-test with 5% rejection level, the
unconstrained fit to the lattice data only gives significantly better results for the largest
considered frame velocity of v = 0.8. This agrees with the previous statement about
the equality of one loop coefficients. The two loop coefficients in the unconstrained
fit are small on all lattices except the largest, their values change, in some cases
significantly, especially at large frame velocities, if the one loop coefficient is constrained
by diagrammatic perturbation theory. Their errors are reduced if the value of the one
loop coefficient is fixed. In all cases the three loop coefficients are very large with errors

of the order of 10% and larger.
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Chapter 6

Kinetic terms in the NRQCD action

In the following I discuss the perturbative renormalisation of kinetic terms in the
nonmoving NRQCD action up to O(p*); this is the first order where terms breaking
rotational symmetry can enter the dispersion relation. This work was motivated
by numerical simulations carried out lain Kendall in Glasgow who found that the
energy splitting between heavy-heavy mesons with identical p? but different z;’:l p;*
is relatively large [132]. One of the possible explanations are large renormalisations
of terms in the NRQCD action that break rotational invariance. Indeed it was found
empirically in the same nonperturbative study that a matching coefficient of ¢5 = 2.6
removes the energy splitting between mesons with different ; p;*. In this chapter I

compare this to my results from perturbative calculations.

6.1 Heavy quark action

Full NRQCD action. The heavy quark action I use in this section is the full
O(1/m?,v% ) NRQCD action defined in (4.8), (4.9) and (4.12); the kinetic terms in

rel

the action are

A®) (A®)? A 1 (A@)?
HO__2m’ O =—a 8m3 +C524m_CGR 4m?2

(6.1)

As both ¢; and ¢g multiply the operator (A(2))2 one of these coefficients is redundant.
I define

& = (c1 n %CG> / (1 + %) (6.2)

so that the tree level values ¢; = ¢g = 1 correspond to ¢; = 1.

In some simulations I also include an additional correction —A©)/(180m) in 6H

which removes O(a®) discretisation errors at tree level.
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Chapter 6. Kinetic terms in the NRQCD action

Morningstar’s action. To verify my results I compare my matching coefficients for
the action setup in [122]. There the kernel is

H() HO

K = wuUs(z,7)— <1 - %> (1—6H) <1 - %> . (6.3)

Note that the time derivative is realised by a forward finite difference. For the simple

setup used there the interaction term is given by

_(a®) a?AW g (A ()
0H = —eig— (1450 ) + e — +ags (AP E-B-AW)
— 048%0' (A(i) x E—Ex A% ) — 05—0' B. (6.4)

In this expression the non rotationally-invariant fourth order derivative is mean field

improved as

3
AW = Y (uo Uy + U} — 2) . (6.5)
k=1

Compared to (6.1) the coefficients are ordered slightly differently. In particular my ¢
corresponds to ¢; and my cj is equivalent to co used by Morningstar.

The unimproved Wilson gluon action is used with this NRQCD action.

6.2 Derivation of renormalisation parameters

This section is an extension of the derivation in section 5.1.1 to higher order kinetic
terms in NRQCD. I adapted the calculation in [122] to my action setup.

The (naive) derivative operators A and A® can be written in momentum space
as
a2p?

=+ O((ap)°), AW pt 4+ O((ap)®) (6.6)

A(z) — —p2 +

with p?" = 22:1 p?”. Note that for n > 1 this term breaks rotational invariance. In

the following I will always work up to (and including) terms of O((ap)*).
The position of the renormalised pole w(p) is found by identifying the zeros of the

inverse propagator

Dy'(w,p) = 1-e"P0y(p)* An(p) — asE(wo(p). p). (6.7)
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6.2. Derivation of renormalisation parameters

One finds
wp) = w(p) - asX(wo(p),p) (6.8)
with
2 22 22 4
_ p_ (p) (1 1IN, mp
wo(p) = 2m  8m3 +a5{ 2 Tm) smr TG 2am [
(6.9)
The self-energy is written as in [122]
p’ (p*)? 4
Y(w,p) = Yo(w)+ El(w)% + Yo (w) sz T Y3(w)p™. (6.10)

The functions ¥;(w) can be extracted by taking suitable combinations of partial

derivatives,
Yo(w) =X(p=0) Yi(w) = ma2—2 (6.11)
0 — p= ) 1 - apg p=07 .
o'y 1 (842 o'y )
Yo (w) = m? , Yo(w) = — _
2(w) Op20p? |p=0 3(w) 24 \ op? Op20p? o0
They can be further expanded in a Taylor-series in w as %,,(w) = >_;2, Z%)wg.
From this one obtains
2 22
_ . (P)
w(p) = omm  Smi, as0w(p).
The renormalised mass is mpr = Z,,m with
Zm = 1+a, (20 +20) (6.12)
and the correction term
(1)
_ (o (L 1Y) @) %\
5w(p) = Wyo+ <W1—|—Cl <2n +m>> 2 + | Wy A P
W, = s (6.13)
22(1) E(O)
Wi = Lox® ¢ B o) 50
m
W, = =
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Chapter 6. Kinetic terms in the NRQCD action

In particular the O(ay) corrections to ¢ and c5, which cancel the radiative corrections,

can be obtained,

1 1\ !
il =- (% + E) Wi, ¢! = 24mW. (6.14)

The corresponding expressions for Morningstar’s action described in (6.3) and (6.4) can
be found in [122].

6.2.1 Mean field improvement

I calculate the mean field corrections to 6&1) and cél) for “partial” cancellation of U MU,JE

as described in detail in section 5.1.3 and find

(D(tadpole) , (2 _ 1 my~triz 1 1 /3
‘1 [ug” = 8<1+2n) [nz n+2m n? 4
6 1 6
+ — (5 —12> + ﬁ] (6.15)
(Dadpoe) ;) _ 41 3 3 3
5 0 3 4m  m2  8nm?2  4m3’

I also checked that I can reproduce the analytical expressions in [122].

If T include the A®) operator in the action the latter expression changes to

((tadpole) , 2 _ 3 7 3 3 3
% Jug” = 5 + 20m + m2  8nm?2  4m3’ (6.16)

Numerical results for several masses and stability parameters are collected in Tab. 6.1.

6.3 Implementation of derivatives

To extract W7 and Wy using (6.13) T implement the higher order derivatives using two

different approaches:

Analytical mixed derivatives. The TAYLUR code can handle higher order mixed
derivatives of the form (0/0z;)"(0/0xy)™ for (n+m) < Max_Taylor_order. However,
derivatives up to n + m = 4 need to be calculated and this slows down the code
significantly. To improve the performance, unnecessary mixed derivatives can be

“switched off” and the Leibniz rule is not overloaded for these.

Numerical derivatives. Alternatively I implement higher order mixed derivatives

using finite differences. For this I compute the second order derivative with respect
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6.3. Implementation of derivatives

A(G) 2 6gl)(tadpole) /u(()2) C(l) (tadpole) /USZ)

m n 5

23 2 — 0.8537 —0.7546
28 2 — 0.4859 —0.9195
195 4 — 1.8300 —0.5420
28 4 — 0.8241 —0.9075
34 4 — 0.5269 —1.0275
1.95 4 v — 0.2426
28 4 v — —0.1385
34 4 v — —0.2647

Table 6.1: Mean field corrections to égl) and cél) for the full NRQCD action for different
masses and stability parameters. The last three rows show results with A®) included in the
action.

to p, analytically by using a TAYLUR object. Additional higher order derivatives are

realised by finite differences, for example

925 (p+0p - 4) + 02(p — dp - §) — 2025 (p)
(6p)?

(0/0p-)*(8/0py)*S(p) =
(6.17)

where 0, = 9/0p. etc.

I analysed the speed of the code depending on which realisation of mixed higher
order derivatives is used. Masking unwanted derivatives leads to a speedup of roughly
one order of magnitude but the code is still about a factor of ten slower than for
numerical derivatives, so these should be used if possible, i.e. if the function to be

integrated is sufficiently smooth.

In appendix H I demonstrate that large peaks in the infrared region of the
rainbow integral lead to numerical instabilities when using finite differences. It is
thus mandatory to use analytical mixed derivatives in the calculation of this particular

diagram.

On the other hand the integrand of the numerically more expensive tadpole diagram
is much smoother in the infrared. This is because this diagram does not contain a heavy
quark propagator whose power can be raised by derivatives with respect to the external
momentum. Here it is sufficient to use finite differences to represent higher order mixed

derivatives.
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Chapter 6. Kinetic terms in the NRQCD action

6.4 Numerical results

6.4.1 VEGAS integrals

The integrals I evaluate are

d*k d*k
W= / (27T)4D1f(lat) o= / (27T)4D2f(1at) (6.18)

where f(at) — (lat) ft;?i; .l is the lattice integrand as given explicitly in (5.18).

rainbow

As can be seen from (6.11) and (6.13) the derivative operators D; and Do are
defined as

Dif = —551 {1} - 2 Rel) + 3R )
03 o4
syt )+ el (6.19)

34 3

where all derivatives are evaluated at p = 0.

Although both W7 and W5 are infrared finite quantities the integrand of the rainbow
diagram has large peaks in the infrared region. Convergence of the VEGAS integration
can be improved significantly by introducing suitable subtraction functions Dy f&uP)
and Dy f®"P) which are discussed in appendix J.2. I thus write the lattice integrals as

a sum of a subtracted lattice integral and the integral over the subtraction function

W, = I{lat—sub) + I{SUb), Wy = 12(lat—sub)‘ (620)

Note that for W5 the integral over the subtraction function vanishes due to
rotational invariance in the continuum. The integrand of the subtraction integral for
W7 is simple so evaluation of this integral is numerically inexpensive and can be carried

out to very high accuracy.

Evaluation of the two-gluon vertex is expensive and it turns out that around 2/3 of
the time is spent on evaluating the tadpole diagram. On the other hand the integrand
is relatively smooth as the external derivatives only act on the two-gluon vertex and
do not generate higher powers of the quark propagator. It is thus legitimate to use

numerical derivatives when evaluating this diagram. This leads to a further speedup of
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6.4. Numerical results

results from [122] my calculation

—A=Ey=Q —3.44(5) —3.389(3)
B=0Zm=0 -0 +Q  1.92(5 1.897(8)
P —0.90(5) —0.947(3)

P 1.10(5) 1.075(2)

Table 6.2: Heavy quark renormalisation parameters from [122] and my calculation. The
heavy quark action is defined in [122] with heavy quark mass m = 2.0 and stability
parameter n = 2, the gluon action is the unimproved Wilson action and mean field
corrections are not included.

the code if I split up the first integral in (6.20) as

W, = I(lat—sub) +[(lat) +I£sub) (621)

1,rainbow 1,tadpole
d'k (1at) sub d'k  (lat)
= / (27.‘-)4 [Dl rainbow le( ):| + / (27‘1’)4 Dy tadpole

d*k
(sub)
+ / —(%)4D1f

. . . . lat . .
where numerical derivatives are used in 02 The corresponding expression for Wy

tadpole*
is

W, = I(lat—sub)+l(lat)

2, rainbow 2 tadpole

(6.22)

d'k (lat) sub d'k  ab)
= /W {D2frainbow - D2f( )] +/ (271')4 D2ftadpole'

Comparison to the literature

To verify my code I reproduce the results for Ey, 0Z,,, c§2) and c§2) given in [122]. 1

use the simple action setup described there with the Wilson gluon action. The results
(without inclusion of mean field corrections) are shown in Fig. 2 of [122] (I estimate
the errors from reading off the exact numbers from the plot to be 0.05). For Ey and
8Z,, 1 use a gluon mass of A2 = 107%. The calculation of the higher order kinetic terms
c§2) and 052) is discussed in detail in appendix H.3 where I also demonstrate that the
results are numerically stable for A — 0 and an extrapolation in the gluon mass is not
necessary. The results in Tab. 6.2 are obtained by averaging results for A2 = 1079,
1072 and 10~'2. In the following I will work with A\?> = 1076, Within errors I find

perfect agreement with the results in [122].
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m_nglons  ILNGEY Lihae L Wi

23 2  Wilson 1.035(12) 0.4455(30)  —1.4603(37)  0.020(13)
28 2 Symanzik 0.820(12) 0.1176(16)  —1.1974(31)  —0.260(12)
1.95 4 Symanzik 1.225(12) 0.8801(28)  —1.7234(41)  0.382(13)
28 4 Symanzik 0.830(12) 0.2065(15)  —1.1974(31)  —0.161(13)
34 4 Symanzik 0.653(12) 0.1031(14)  —0.9891(26) —0.233(12)

(sub)

Table 6.3: The integrals I{lf;milgfg, Ifktlgipole' I and their sum W for different action

parameters and the full O(1/m?, v,) NRQCD action.

m n A0O? gluons 102 x IS?;;;IQ 102 Iél?;épolc 102 x Wo
23 2 — Wilson 0.253(27) 1.9968(81) 2.250(28)
28 2 —  Symanzik —0.069(16) 1.7338(60) 1.665(17)
1.95 4 —  Symanzik 0.494(36) 1.2120(56) 1.706(36)
28 4 —  Symanzik —0.051(16) 1.6678(59) 1.617(17)
34 4 —  Symanzik —0.142(11) 1.6321(60) 1.490(13)
195 4 v  Symanzik  0.8836(80)  —1.2362(21)  —0.3526(83)
2.8 4 v Symanzik 0.2195(38) 0.0206(10) 0.2400(39)
34 4 v  Symanzik  0.0614(26) 0.2613(9) 0.3227(28)

Table 6.4: The integrals Iéli;nilgx IZ(I?;Bipole and th.eir sum Wy for different ac.tion
parameters and the full heavy quark action. The results in the last three rows are obtained
with a NRQCD action which contains the A©) improvement term that removes tree level

discretisation errors in the kinetic terms at O(p®).

6.4.2 Results for the full NRQCD action

I compute égl) and cél) for the full O(1/m? v%,) NRQCD action defined by (6.1)
both with Wilson gluons and Symanzik improved glue and the masses chosen in the
nonperturbative simulations carried out by Stefan Meinel and Iain Kendall, see section
6.5.

The values of the individual integrals I (lat—sub) - y(lat) 75

1,rainbow > ~1,tadpole’ *1 and Wl are given

in Tab. 6.3; the corresponding results for W5 can be found in Tab. 6.4.

Both for W7 and W5 the dominant uncertainty comes from the subtracted rainbow
I(lat sub)

dla‘gra‘m’ rainbow

After adding on the value of the subtraction integral, the rainbow
diagram is of comparable magnitude but different sign as the tadpole diagram for W3

whereas Iélf;mit]zv) is usually significantly smaller than Iélf;ép ole for Wa.
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6.4. Numerical results

In Tab. 6.6 I list values for 651) and cél). For Wilson gluons I use u((]2) = 0.9735
from [102] and for the improved gluon action u(()2) = 0.750 (see [125]). I also plot my

results, together with those I obtained using Morningstar’s action in Fig. 6.1.
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Chapter 6. Kinetic terms in the NRQCD action

m n  gluons 651) [VEGAS only] égl)

23 2  Wison —0.020(19) 0.802(19)
2.8 2 Symanzik  0.428(20) 0.793(20)
1.95 4 Symanzik —0.599(21) 0.774(21)
2.8 4 Symanzik  0.333(26) 0.951(26)
34 4 Symanzik  0.556(30) 0.952(30)

Table 6.5: Results for the coefficient Egl)for different action parameters and the full heavy
quark action. The numbers in the fourth column do not include the mean field corrections.
In the last column | give the final results.

m n A©®?  gluons cél) [VEGAS only] cél)

23 2  —  Wilon  1.242(15) 0.507(15)
28 2 —  Symanzik  1.119(12) 0.429(12)
1.95 4 — Symanzik 0.799(17) 0.392(17)
2.8 4 — Symanzik 1.087(11) 0.406(11)
34 4 —  Symanzik  1.216(10) 0.445(10)
195 4 Symanzik —0.1650(39) 0.0170(39)
28 4 v Symanzik  0.1613(26) 0.0574(26)
34 4 v  Symanzik  0.2633(23) 0.0648(23)

Table 6.6: Results for the coefficient cél) for different action parameters and the full
O(1/m?,v%)) heavy quark action. The numbers in the fifth column do not include mean
field corrections. In the last column | give the final results. The results in the last three
rows are obtained with a NRQCD action which contains the A©) improvement term that

removes tree level discretisation errors in the kinetic terms at O(p®).
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6.4. Numerical results

1-1 T T T T T T T T
1 L i
i ]
09 r ' )
07t )
T 06 '_
=2, 05+ .
1O ]
0471 o Wilson glue, n=2 —<— |
0.3 | Symanzik glue, n=2 —&— ]
0.2 Symanzik glue, n=4 —&— -
01 F Morningstar, n=2, Wilson glue —e— |
0 1 1 1 1 1 1 1 1
2 22 24 26 28 3 32 34
m
0-6 T T T T T T T T
0.5 ¢ ]
° -
0.4 |i s ]
NI Wilson glue, n=2 —o— |
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o Symanzik glue, n=4 —=—
0.2 | Symanzik glue including pj6, n=4 —o—
Morningstar, n=2, Wilson glue —e—
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O @
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m
Figure 6.1: Results for the coefficient Egl) (top) and cél) (bottom) for different action
parameters, including mean field corrections. Note that including the O(p%) improvement
term A changes the coefficients significantly. | also show the numbers | obtained for
with the Morningstar action [122], in this case | use the one loop value of
2)

u(() = 7/3 given there.
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Chapter 6. Kinetic terms in the NRQCD action

lattice E(2,2,1) — E(3,0,0)
162 x 32 lattice, Wilson glue 0.00094(38)
203 x 64 coarse MILC lattice 0.00082(78)
162 x 48 super coarse MILC lattice 0.00133(10)

Table 6.7: Energy splittings between mesons with different sz§ from numerical
simulations.

6.5 Nonperturbative results

The presence of rotationally noninvariant terms in the Lagrangian leads to a splitting
between the energies of mesons with three-momentum p = (2,2, 1) 27“ and p = (3,0,0) 27”
Tain Kendall [132] and Stefan Meinel [61] have computed this energy difference for

different lattices:

e 16x32 lattice, 3 = 6/¢> = 5.8, Wilson gluons (quenched). The heavy quark mass
is m = 2.3, stability parameter n = 2 [Stefan Meinel, using gauge configurations
described in [133]].

e 16 x 48 super coarse MILC lattice with 3 = 10/¢g?> = 6.458, 2 + 1 flavours of
rooted staggered quarks, m = 3.4, n = 4 [lain Kendall].

e 20 x 64 coarse MILC lattice with 8 = 10/g?> = 6.76, 2 + 1 flavours of rooted
staggered quarks, m = 2.8, n = 2 [Stefan Meinel].

The heavy quark action is always the full O(1/m?,v) NRQCD action. The results
are summarised in Tab. 6.7. In all cases, except for the coarse MILC lattice with
Symanzik gluons, the splitting is significantly different from zero.

It turns out that the energy splitting on the super coarse MILC lattice can be set

to zero by choosing c5 = 2.6 [132].

6.6 Observations

After including mean field corrections the O(as) coefficients are of the order of one.
For the full O(1/m?,v}) NRQCD action with stability parameter n = 4 they do not
show a strong heavy quark mass dependence. The choice of stability parameter has
only a very small influence on cél) and a slightly larger impact on égl)

Including the O(a®) improvement term A(%)/(180m) reduces the size of the
renormalisation of the rotationally noninvariant term Zj p? by a factor of 5 — 10.

This indicates that this term significantly reduces discretisation errors which break
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without A(©) with A(©)
Ey  —0.76647(40)  —0.73290(40)
6Zy —0.77338(48)  —0.79006(47)
87, 0.2313(12) 0.2347(12)

Table 6.8: Leading order renormalisation parameters with and without the A©)/(180m)
term in the NRQCD action. | use the full O(1/m?,v%) NRQCD action with m = 2.8

rel
and n = 2. The gluon action is Symanzik improved. Mean field corrections for “partial”

cancellation of UuUl are included.

rotational invariance. Note that although the term is of O(a%) is is only suppressed by
two powers of the lattice spacing relative to the fourth order renormalisation parameters
which I calculate. In the continuum, where the theory is rotationally invariant, the
coeflicient cél) vanishes. T checked that the influence of A /(180m) on the leading
order renormalisation parameters is small, see Tab. 6.8.

The nonperturbative results obtained by lain Kendall predict a strong correction
to the A® term. This does not agree with I find in my perturbative calculations.
One explanation for this discrepancy are large two-loop effects. However, the NRQCD
action is not the only ingredient of the lattice calculation where rotational symmetry
is broken. The simulations were carried out on relatively coarse lattices and the effect
might be reduced on finer configurations where the dispersion relation can be probed
for smaller, nonrelativistic lattice momenta; more work is needed to clarify this. The
results in Tab. 6.7 suggest that the energy splitting is reduced on the coarse MILC
lattice, however, the errors on this number still need to be reduced significantly. In
my perturbative calculations I also see a strong influence of the O(a%) improvement
term which was included with the tree level coefficient in nonperturbative simulations.
Instead of fixing this term to its classical value and tuning the A nonperturbatively
it might be better to fit both the O(a*) and O(a%) coefficients simultaneously to avoid
a spurious minimum of x2. An alternative approach would be to fix the O(a*) term to
the perturbative result and adjust the coefficient of the O(a%) term by nonperturbative

tuning.
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Chapter 7

Matching of heavy-light currents

In this chapter I match the heavy-light vector and tensor currents to the effective heavy

quark theory on the lattice. The vector current
v _
Q" = g (7.1)

arises in the b — ¢ transition of the semileptonic decay B — mfv, see (1.6). The heavy
quark field is denoted by ¥(z) and the light quark by ¢(z). Hadronic matrix elements
of this current are also needed for predictions of the rare decay B — K®)¢t¢=: in the
operators Qg and Q¢ (see section 2.2.1) the heavy-light current $y*Ppb is coupled to
the leptonic (axial-) vector current. I set the light quark mass, which is much smaller

than the hadronic scale Aqcp, to zero throughout the matching calculation. Then it

is legitimate to drop chiral projectors Pg/r, = 1i275 as the matching coefficients do not
depend on them.

The electromagnetic tensor operator Q(()T)“ Y. coupled to the field strength F,,

appears in the b — s Hamiltonian and is defined as

v € — uv
Q- =Q\""F,, = (@ V) Ey (7.2)

where I have already dropped the chiral projector. In the following I use the notation
r _
Q) = pgrv (7.3)
with

V) =1 ector 1) = Lm tensor). 7.4

p (vector), p o2 ) (7.4)

For the matching calculation it is necessary to calculate one loop matrix elements
(q\Q(()F)\b> both in the continuum and on the lattice. In the continuum this is done
between an on-shell heavy quark with momentum p and a light quark with momentum

p’ in the final state. In the following I perform this calculation as an expansion in
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Chapter 7. Matching of heavy-light currents

Phes/m, p'*/m, s/m? where s/m = 2p - p//m = 2E' is (twice) the energy of the final
state quark in the rest frame of the decaying meson. The heavy quark momentum is
P = MU ~+ Pres-

7.1 Continuum calculation

Due to Lorentz invariance the matrix element can be written as

@R Beon = D 2 (qlQS D) ree (75)
J

where the operators Qgr) are defined by their Dirac structure:
e Vector:
(V) (V)u _ P! V"
Qo "= @’y”\II, Ql "= EG\I@ 2 "= %g\l’- (7-6)

As p* = mut + phes the second operator contributes at leading order in 1 /m where
it can be written as ng)“ = utqWv.

e Tensor:
Q(()T)/W = oM (Go"v), (7.7)
Qm %ﬁi i @ (""" = ") V),
o = 20T g (e ),
QM — %ﬁi D (@ ("p"” —p"p™) ¥) .

Again, both Q(()T)” " and QgT)” " are leading order in 1/m.

The mixing matrix can be expanded in the strong coupling constant
Z"M = g+ sz (7.8)

and the one loop coefficients are computed order by order in the heavy quark expansion.
In particular I find for the one loop matrix element in the static limit, where 1/m

corrections are ignored,
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7.2. Matching to lattice mNRQCD

e Vector:
(V,con) % _E - § 2 2
2
5Z(V,con) —— .
{ o (7.9)
e Tensor:
(T,con) i _g o § 2 2 27,2
BVA = o < 1 210g)\ /m= +4logm=/u” |,
5Z£T’COH) _ 5Z§T,COH) _ 5Z?(’T7C0H) — 0. (7.10)

Details of the calculation can be found in appendix I where I also include O(1/m)

corrections and compare my expressions to the literature.

Note that for the tensor current the M.S mass is used. The on-shell mass is defined
perturbatively both in the continuum and on the lattice so in principle the following
matching calculation should be carried out in the on-shell scheme and then converted
to an M S mass (see (D.14)). In (7.10) this conversion is understood to be carried out

implicitly at the end of the calculation.

In contrast to the vector operator, which is protected from renormalisation by gauge
invariance, the tensor operator is not conserved and its anomalous dimension does not

vanish. Indeed I find in appendix [.3:

(con) Bavs
T - 37

(7.11)

which agrees with what is reported in [45].

7.2 Matching to lattice mNRQCD

T lat)

On the lattice I construct operators Q(() ’ which have the same on-shell matrix

elements as the continuum operators Q(()F),

@™ ) = (@ QT[B) con. (7.12)

In this section I construct these operators at leading order in the heavy quark expansion

and show how one loop coefficients can be adjusted such that (7.12) holds at O(cs).
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Chapter 7. Matching of heavy-light currents

7.2.1 Operators

At tree level the operator in the effective theory is obtained from (7.1) and (7.2) by
applying the field transformation

70~y —imAyOux L =
() = AypT(@)e ™ ADt\—ﬁ\ygﬂ (7.13)
where in \ilz(,ﬂ = (wU,O)T I only keep the positive energy, particle component. Up
to corrections of O(1/m?) the Foldy-Wouthuysen transformation 7' and the field

transformation Ap, are given by

i) g (u-D)

T = 14—+ —j~— 14
+2m ! om (7.14)
%Dy iv(l —v2%/2)v - D

ADt = 14+ ’Y4m0+ fY( 277<) .

These expressions can be simplified using the leading order equation of motion,
u - D\ilg,—” = 0 and one finally finds for the field transformation
1
\P(ZE) - ﬁA1/2 1-—
By inserting this into (7.6) and (7.7) the tree level currents in the effective theory
to O(1/m) can be read off. The coefficients of the different operators in the 1/m

expansion will get renormalised by radiative corrections. Matrix elements of the 1/m

ov-D iy D v D) G+, (7.15)

2m 2m 2ym

operators are only calculated at tree level; they are expected to give corrections of
O(Aqcp/m) ~ 10% relative to the leading order. This is smaller than the naive
estimate of radiative corrections to leading order operators which is expected to be
O(as) ~ 30%.

At leading order in the 1/m expansion both the Foldy-Wouthuysen transformation
T(a?) and the field transformation Ap, are equal to the identity and can be dropped.
The Lorentz boost matrix is (in Minkowski space)

Ao (L+7) —yd-v"). (7.16)

2(1+7)
In the continuum the operator basis Q((]F), Qgr) is used (see, for example, [67] where
the matching calculation between QCD and continuum HQET is performed at leading
order in the heavy quark expansion). On the lattice Lorentz invariance is broken and

another operator basis is used. First, consider the operator QSF) which is split into the
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7.2. Matching to lattice mNRQCD

sum of two operators with different Dirac structure, Q(()F) = Q(()ljl) + Q(()ljz) with

QY = p™ fi(v)g(a) B, (7.17)
QY = —pﬁiﬁcMGer@-vw°¢$”.

The velocity dependence has been absorbed in the functions

L+7 v
v) =4/ —, V) =0, | ——— 7.18
f1(v) o fa(v) 50 1) (7.18)
and ¥ is a unit vector in the direction of the frame velocity, which is chosen to be

parallel to a lattice axis.

The other leading order tree level matrix elements of operators with I' = 4 replaced
by T' = u* (vector) and I' = ¢/ replaced by T' = 2(’yﬂu” —v"ut) (tensor) can always

be expressed as linear combinations of Q((]’ and QO 5, for example

V)0 V)0
Qo,l = ’YQ01 ) ((),2) = _’YQ((),2) ) (7.19)
Vv (v 1% 1%
Q((),l)” =(1+ ’Y)Qo,2)”= ((),2)” =(1- ’Y)Q((),l)”'

The Lorentz index can be timelike (0), parallel (]|) or orthogonal (L) to the frame

velocity. Clearly, the decomposition in (7.19) is not Lorentz invariant.

On the lattice the two operators in (7.17) mix under renormalisation,
r T lat r
@RS Bhae = D (d + asdZ ™ + ) (al QOB ree (7.20)
k

(1"

It is convenient to work in the basis QO L= + Q02 as only the operator QO i

contributes at tree level. In the continuum the one loop matrix element is (see section

(7.1))

@RI eon = (1+ a8Z ) (g|QY) 1) iree + 5828 (q| QS [b) -

(7.21)

e Vector: Ome has to distinguish whether the Lorentz index of the current is

timelike, parallel or perpendicular to the frame velocity. (7.19) is used to calculate
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Chapter 7. Matching of heavy-light currents

the mixing matrix elements Z(ir’con):
5Z—(i_\/,con)0 _ 6Z(g\/,con)7 5Z(_V,Con)0 _ V5Z£V,Con)7
5Z—(i_\/,con)|| _ 5Zév,con) + 5Z£V,Con)7 5Z—V,Con)|| _ _’}Iézf\/,con)7 (722)
(5Z5_V7C0n)l _ 6ZéV,Con)7 5Z—V,con)J_ —0.

T,con) . . . .
e Tensor: Here 5Z{ ) is zero, so there is no dependence on the Lorentz indices

5ZiT,Con) — 6Z(§T7C0n)7 5Z(T’Con) =0. (723)

Combining (7.20) and (7.21) the lattice operator which has the same one loop matrix

elements as the continuum operator is

Q(()F’lat) = (1 + ascf)) Q(()ljl + asc(_F)Q(()lz (7.24)
with
CEE) _ 6Z—(i_1",con) o 5Z—(i_1"_;_lat)’ C(_l") _ 5Z(_F,con) o 5Z—(E_,lat)' (725)

Mixing matrix

In the (1,2) basis of operators the mixing matrix can be split into a diagonal part and

a contribution 5% from one particle irreducible (1PI) diagrams,

mult

T,lat r r
625 = (6200 —925,) djn + €51 (7.26)
For the vector current the multiplicative renormalisation contains the wavefunction
renormalisations only, 5Zr(n‘3t = % (024 + 6Zy) whereas for the tensor current there is
an additional contribution from mass renormalisation, <5Zr(nz:l)1t =1(62,+62y) — 6Zpm,.
The relation between renormalised and bare parameters isvp = Z,v, Yyp = (1—'0%%)_1/ 2,
mpg = Zym and q¢ = \/Z4qr, ¥ = \/Zy¥r where all renormalisation constants can be
expanded in the strong coupling constant as Z, = 1+as0Z, +.... The renormalisation
of the velocity functions f12 is fj r = Zy, f; with
1—

1
625, = — 167, 57y, = %520. (7.27)
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7.2. Matching to lattice mNRQCD

I then find
a 1
5z = 570 _ 50Zu+ ¢, (7.28)
5Zf_’lat) _ %52” i ff—)-

Even though I use only the leading order heavy-light operators I still include 1/m
corrections in the action. Next I isolate infrared divergences in the renormalisation

constants and find (in Feynman gauge)

1
6Z, = gloga2/\2—|—Fq, (7.29)

2
0Zy = —alogcﬁ)\z + Fy(v,am),
0Zm = Fn(v,am),
0Z, = Fy(v,am),

r 1 r

SFJ)F = 3 log a®\? + Ff(+)+ (v,am),
r r

g__) = Féﬁ(v,am).

The infrared divergence of 552 is independent of the Dirac structure I' due to heavy
quark symmetry and and can be inferred from the subtraction integral discussed in
section 7.2.1. The functions F, are infrared finite and can be expanded in powers of

the inverse heavy quark mass on the lattice,

FA ()4 ..., (7.30)

1
F, — () )
(am) = FO@)+——F(0) + I

a

()

This gives the final expressions for the matching coefficients c} ’,
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e Vector:
V)0 11 1 1
cg_ ) (v,am) = ~Tom " 3 (Fy + Fy(v,am)) + §Fv(v,am)
1 V)0
+ %logcﬂm2 - F€(++) (v, am),
Aol ro1 1
cy (v,am) = ~2= "3 (Fy + Fy(v,am)) + EFv(v,am)
1 1%
+ . log a’*m? — Féj”(v, am),
V)L 11 1 1
cg_ ) (v,am) = ~Tom " 3 (Fy+ Fy(v,am)) + §Fv(v,am)
1 V)L
+ %logcﬂmz — F£(++) (v,am),
2
A )O(U,am) = 3—7’: - %Fv(v,am) — Féf}o(v,am), (7.31)
2
c(_v)”(v,am) = —% — %Fv(v,am) Fl )”(v,am),
c(v)l(v,am) = —sz(v, am) — Fg(le(v, am).

For v = 0 there is only one operator Gv“i’gﬂ

V%am) = —4i - %
T
V)i (am) = 1

127

with matching coefficients
1

(Fy + Fy(am)) + o log a?m? — Fév)o(am),
™

1 1 j
b (Fy + Fy(am)) + o log a®*m? — Fév)] (am).

(7.32)

The matching coefficient of the zero component of the (axial-) vector current at

v = 0.0 has been calculated in [92].

e Tensor:
(1) 9 1
" (p/myv,am) = T E(Fq—l—Fw(v,am)) + Fp(v,am)

1 v

+ §Fv(v,am) —Fg(fi” (v,am)) (7.33)
1 4

+ . log a®m? + 3 logm? /1,

c(_T)W(v,am) = —%Fv(v,am) - Féﬁw(v,am).
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(+)

For v = 0 there is only one operator yg=—m go*” Uy with matching coefficient
(T)v _ 91 (T)pu
c (u/m,am) = 43 (Fy + Fyp(am)) + Fip(am) — Fg" 7 (am)
+ L log a?m? + il log m?/u? (7.34)
21 3 ) )

The ultraviolet behaviour of the lattice theory is described by the logarithmic terms
in (7.31) and (7.33), in particular the loga®?m? term is a UV divergence which is
independent of the Dirac structure of the renormalised operator due to heavy quark
symmetry. As the short distance behaviour of the effective theory is different from
continuum QCD its coefficient differs from the one of the logm?/u? term in (7.33).
The anomalous dimension of the lattice operator can be obtained by noting that the

renormalised operator is related to the bare operator by multiplication with Zﬁlat), ie.

T",ren lat)) ! T
Q™ = (2") el (7.35)

The counterterm has to be chosen such that is absorbs the logarithmic UV divergence
in g7 "1
++

Z(lat) 1— Qs

© = 5 [log a®pity, + (finite terms)] + ... (7.36)

where p1,; is an arbitrary scale which has to cancel in physical results. I find

Afat) _ 1 ant e T
r Zl(,lat) d1og fi1a m

In [67] the anomalous dimension of a heavy-light operator with arbitrary Dirac structure
is derived in HQET with dimensional regularisation. The expression quoted in (3.24)
of [67] agrees with my result.

The heavy quark renormalisation parameters have been calculated in chapter 5.
Wavefunction renormalisation of massless ASQTad quarks is given in [92] and I calculate
it for HISQ quarks in the following section. Finally the one particle irreducible matrix

elements can be found by evaluating the one loop diagram in Fig. 7.1.

Light quark wavefunction renormalisation
The inverse renormalised propagator for massless ASQTad/HISQ quarks is

G'p) = Gy'(p) —asX(p) (7.37)
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Figure 7.1: One particle irreducible diagram at one loop

with the inverse tree level propagator
1 . 1.5
G, (p) = Zwu sinp, (1 — g5l Py (7.38)
"
and the self-energy at one loop,

YX(p) = Zz”m sinp, B, (p). (7.39)
I

There is no term proportional to the unit matrix at all orders. This is due to Chiral
symmetry of the massless quark action which is invariant under the transformation
P — €5, ) — e’ This also implies that the dispersion relation starts with
a linear term, for three momentum p = (p,,0,0) the pole of the propagator is at
—ipo = FE = E(p;) = (const.) X py + ....

The wavefunction renormalisation is then given by the residue of the pole in the
propagator,

VOE(l - asBO) - i’ympm(l - asBm)

_’70 _i’ym Zq
2 E _E(pm)

+....
It follows that
0Z; =14 asBy(0), E(ps) = [1 4+ as(Bo(0) — Bx(0))] pz = pa (7.41)

where the second relation follows from hypercubic invariance of the lattice.

The rainbow diagram which contributes to 67, is IR divergent in Feynman gauge,

so as for heavy quarks I split the wavefunction renormalisation into an IR finite part
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J(lat—sub) +T(SIJb) J(tad) J(MF) 67,
ASQ (my results) —0.79815(39) 1.60004(16) —1.726 —0.92411(42)
ASQ from [92] —0.798(3) 1.600(1)  —1.726  —0.924(3)
HISQ ~0.8155(12)  0.4250(10)  —  —0.3905(16)

Table 7.1: Light quark wavefunction renormalisation. | only show the IR finite parts of the
result.

and a logarithmic divergence (the latter agrees with the one found in the continuum,

see (D.6) in appendix D),
A 1 242
02y = 044+ a3 log a®\ (7.42)

I evaluate the IR finite contribution by constructing a suitable subtraction function

which is needed to guarantee the convergence of the integrals, see section J.4.

The tadpole diagram is slightly more expensive to evaluate but as the integrand
is smoother it can be evaluated with lower statistics. As a useful check I first obtain
results for the ASQTad action, which have been published in [92]. T choose to evaluate
the subtract rainbow integral [ (lat—sub) with 1,000,000 function evaluations and 20
VEGAS iterations which took 1.8h on 64 processors. Although the tadpole integral
1) wwas only evaluated with 200,000 function evaluations (taking 0.6h) the error on
results is a factor of approximately three smaller. There is an additional contribution
of T(MF) — —%ugz) from mean field improvement, which is —1.726 if the fourth root of
the plaquette is used to extract u((]2) = 0.767 [92]. I summarise my findings in Tab. 7.1

where I also show the results in [92] which are in perfect agreement with what I find.

I then repeat the calculation for the HISQ action, the results are collected in the
last row of Tab. 7.1. Note that in this case there is no mean field improvement as the

links in the HISQ action are reunitarised.
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One particle irreducible matrix elements

The O(ay) one particle irreducible (1PI) correction to the operators Q(()I;-) = p1) f,qrs; i
(with S; = 1d, Sy = —v - ¥0) is given by

(@) Bhasier = asp® ()= U (7.43)

= Qg Z gjk Q|Q |b>trco

k=1,2

= ap®™ Y &) fu()rSeU

k=1,2

where the heavy-quark four spinor is

() 1\ (o
v@ = (Y], with @ ¢ , . (7.44)
0 o) \1

To extract SJ(I];) replace the spinors by Euclidean on-shell projection operators,

Z uga) (p/)ﬂga) (pl) _ —’Ljﬁ I — Hs(p/) Z U (1 + '70) 11, (7.45)
o=T,] o=T,]

and take traces
T, = Tr [Hs(p’)zg.”nbn(”}. (7.46)

™)

In this expression X7 is given by the integrand of the 1PI diagram and M is a
suitable projection operator which depends on the Dirac structure of Eg'r)' I tested the
integration algorithm and correct implementation of the projection operators in (7.46)

by reproducing the analytical results of the subtraction integral in (7.48).

Infrared subtraction function

I use a gluon mass to regulate the infrared divergence in the 1PI integral. As for
the heavy quark wavefunction renormalisation I construct an appropriate subtraction
function fG"P) to smoothen the VEGAS integrand, the 1PI matrix elements can be

written as

@ d'k (T"lat) (sub) d'k (sub)
Sk = /(277) (f ~Jin > /(277)4 gk (7.47)

S(F Jlat) + S(sub
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7.2. Matching to lattice mNRQCD

As discussed in detail in appendix J.3, the value of the subtraction integral is

sub d4k sub 5k
g / Gl = o (1 +loeX/m?) £ O0/m).  (748)

7.2.2 Numerical results

In the following I show results for the matching coefficients both for the simple heavy
quark action defined in (5.26) and for the full O(1/m? vl)) action. In both cases I
use a heavy mass of m = 2.8 and a stability parameter n = 2. The gluon action is
the Wilson action for the simple mNRQCD action and Symanzik improved for the full
O(1/m?,vl,) action. For the simple action I show results obtained with the ASQTad
light quark action whereas for the full O(1/m?,vl)) action I use both the ASQTad and
the HISQ action.

The heavy quark renormalisation parameters 0Zy, 6Z,, and 0Z, are taken from
Tabs. 5.6 and 5.7. The wavefunction renormalisation of the massless light quark is
—0.92411(42) for ASQTad quarks and —0.3905(16) for HISQ quarks (see Tab. 7.1).
In Tabs. 7.2 to 7.7 I list results both for the vector- and tensor current matching
coefficients.

For the vector current I calculate the matching coefficients for three different Lorentz

indices:
1. p points in the temporal direction, u =0
2. u is parallel to the frame velocity, p =||
3. u is orthogonal to the frame velocity, u =1

For v = 0.0 I consider 4 = 0, u = 1 and p = 2. For the tensor current there are four

different cases:

1. p points in the temporal direction and v is parallel to the frame velocity,

(1, v) = (0, 1)

2. u points in the temporal direction and v is orthogonal to the frame velocity,
(b, v) = (0, 1)

3. p is parallel and v orthogonal to the frame velocity,
(v) = (I, L)

4. both p and v are orthogonal to the frame velocity,
(,v) = (L, 1)
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Chapter 7. Matching of heavy-light currents

For v = 0.0 I choose (p,v) = (0,1), (i, v) = (0,2), (1, v) = (1,2) and (p,v) = (2,3).

As the light quark is massless and because of 091 = —75093 the matching coefficients
for (0,|]) and (L,Ll) are identical. The same holds for (0, L) and (]|, L) because of
002 = 5013. For v = 0 this implies that the matching coefficients for all combinations
of (u,v) are identical as there is no preferred direction.

The renormalisation scale of the tensor current is p = m.
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v (V)0 V)1 (V)2
0.00 0.26575(41) 0.05410(41) 0.05379(41)
v CS_V)O CS_V)H CS_V)J_
0.10 —0.1259(23) 0.0865(23)  —0.1748(23)
020 —0.1268(14) 0.0846(14)  —0.1816(15)
0.30 —0.1217(12) 0.0899(11)  —0.1840(12)
0.40 —0.1145(10) 0.0961(10)  —0.1886(11)
0.50 —0.1049(10) 0.1060(10)  —0.1957(11)
0.60 —0.0876(10) 0.1238(10)  —0.2036(11)
0.70  —0.0604(10) 0.1510(10)  —0.2175(11)
0.75 —0.0407(11) 0.1708(11)  —0.2285(12)
0.80 —0.0139(11) 0.1980(11)  —0.2430(13)
0.85  0.0283(13) 0.2402(13)  —0.2597(15)
0.90  0.0966(15) 0.3084(15)  —0.2828(18)
0.95  0.2321(20) 0.4438(20)  —0.3158(25)
v C(_V)O C(_V)H C(_V)J_
0.10  0.3950(21)  —0.0314(21) 0.2315(21)
020  0.4059(13)  —0.0272(13) 0.2425(13)
0.30  0.4164(11)  —0.0287(11) 0.2522(11)
040  0.4352(10)  —0.0283(10) 0.2697(10)
050  0.4662(10)  —0.0242(10) 0.2982(10)
0.60  0.5149(11)  —0.0161(11) 0.3413(11)
0.70  0.5999(12) 0.0055(12) 0.4142(12)
0.75  0.6700(13) 0.0285(13) 0.4730(13)
0.80  0.7738(14) 0.0660(14) 0.5570(14)
085  0.9358(17) 0.1295(17) 0.6839(17)
0.90  1.2234(22) 0.2493(22) 0.9015(22)
0.95  1.9150(34) 0.5553(34) 1.4063(34)

Table 7.2: Vector current matching coefficients for the simple heavy quark action defined
in (5.26). The ASQTad action is used to discretise the light quark.
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Chapter 7. Matching of heavy-light currents

v AT)0,1 (10,2 (11,2 o(7)2,3
0.00 0.0512(16) 0.0518(16) 0.0514(16) 0.0513(16)

. ATl S0t (DI 4L
0.10 —0.1726(27)  —0.1203(27)  —0.1215(27)  —0.1721(27)
020 —0.1604(21)  —0.1029(21)  —0.1028(21)  —0.1578(21)
0.30 —0.1238(20)  —0.0598(20)  —0.0600(20)  —0.1223(20)
0.40  —0.0669(20) 0.0083(20) 0.0081(20)  —0.0652(20)
0.50  0.0181(22) 0.1095(22) 0.1098(22) 0.0202(22)
0.60  0.1653(25) 0.2825(25) 0.2823(25) 0.1670(25)
0.70  0.4287(32) 0.5870(31) 0.5864(31) 0.4300(32)
0.75  0.6529(37) 0.8420(37) 0.8408(37) 0.6544(37)
0.80  1.0086(46) 1.2390(46) 1.2379(46) 1.0101(46)
0.85  1.6821(64) 1.9725(64) 1.9716(64) 1.6842(64)
0.90  3.092(10) 3.472(10) 3.471(10) 3.093(10)
0.95  7.635(21) 8.184(21) 8.183(21) 7.639(21)

” A0 JT0.1 DL JADLL
0.10  0.2311(21) 0.1810(21) 0.1811(21) 0.2332(21)
020  0.2423(13) 0.1886(13) 0.1887(13) 0.2429(13)
0.30  0.2524(11) 0.1932(11) 0.1933(11) 0.2527(11)
0.40  0.2702(10) 0.2030(10) 0.2032(10) 0.2703(10)
0.50  0.2990(10) 0.2205(10) 0.2209(10) 0.2987(10)
0.60  0.3424(11) 0.2487(11) 0.2495(11) 0.3418(10)
0.70  0.4156(12) 0.3020(12) 0.3028(12) 0.4148(12)
0.75  0.4741(13) 0.3488(13) 0.3496(13) 0.4735(13)
0.80  0.5581(15) 0.4196(15) 0.4204(15) 0.5572(15)
0.85  0.6852(17) 0.5323(17) 0.5334(17) 0.6841(17)
0.90  0.9026(22) 0.7362(22) 0.7372(22) 0.9014(22)
0.95  1.4067(34) 1.2349(34) 1.2358(34) 1.4060(34)

Table 7.3: Tensor current matching coefficients for the simple heavy quark action defined
in (5.26). The ASQTad action is used to discretise the light quark.
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Figure 7.2: Matching coefficients for the simple heavy quark action defined in (5.26), vector
current (top) and tensor current (bottom). The ASQTad action is used to discretise the
light quark.
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Table 7.4: Vector current matching coefficients for the full O(1/m? vl) heavy quark

v (V)0 )1 (V)2
0.00 0.04293(52) 0.26970(40) 0.26929(39)

” V0 Ryl W
0.10  0.1945(21)  —0.0553(22) 0.1384(18)
020  0.1965(12)  —0.0500(13) 0.1411(12)
0.30  0.2005(10)  —0.0419(11) 0.1444(10)
040  0.20708(84)  —0.0293(10) 0.15071(88)
0.50  0.21660(77)  —0.01038(88) 0.15972(84)
0.60  0.22620(73) 0.01358(85) 0.16775(85)
0.70  0.24297(71) 0.05349(80) 0.17817(87)
0.75  0.25596(72) 0.08412(80) 0.18243(91)
0.80  0.27674(77) 0.12920(85) 0.1862(10)
0.85  0.3201(13) 0.2078(13) 0.1917(12)
0.90  0.4258(16) 0.3633(17) 0.1981(15)
0.95  0.6340(19) 0.6496(19) 0.2002(23)

v C(_V)O C(_V)H C(_V)J_
0.10 —0.1533(22) 0.3227(22) 0.1301(17)
020 —0.1547(13) 0.3220(13) 0.1274(10)
0.30 —0.1598(10) 0.3183(10) 0.12224(81)
0.40 —0.16838(86) 0.31106(85) 0.11325(72)
0.50 —0.18137(81) 0.29887(80) 0.09967(67)
0.60 —0.19460(80) 0.28291(80) 0.08532(68)
0.70 —0.21033(81) 0.25390(80) 0.06649(69)
0.75 —0.21513(84) 0.23150(83) 0.05808(73)
0.80 —0.21139(91) 0.20128(91) 0.05445(80)
0.85 —0.1934(11) 0.1530(12) 0.0561(10)
0.90 —0.1348(13) 0.0713(14) 0.0774(12)
095  0.0615(23)  —0.0848(23) 0.1354(22)

action. The ASQTad action is used to discretise the light quark.

140



7.2. Matching to lattice mNRQCD

v (1)0,1 (10,2 (1)1,2 o(7)2,3
0.00 0.0762(12) 0.0761(12) 0.0763(12) 0.0761(12)

. ATl Aol (DL (DL
0.10 —0.0507(24)  —0.0159(21)  —0.0157(22)  —0.0463(24)
020 —0.0559(17)  —0.0206(16)  —0.0214(16)  —0.0526(17)
0.30 —0.0675(16)  —0.0325(15)  —0.0321(15)  —0.0652(16)
040 —0.0861(15)  —0.0496(15)  —0.0497(15)  —0.0846(15)
0.50 —0.1148(16)  —0.0748(15)  —0.0750(15)  —0.1136(16)
0.60 —0.1605(17)  —0.1135(16)  —0.1136(16)  —0.1595(17)
0.70 —0.2302(19)  —0.1666(18)  —0.1668(18)  —0.2295(19)
0.75 —02791(21)  —0.1984(21)  —0.1992(21)  —0.2782(21)
0.80 —0.3379(26)  —0.2280(25)  —0.2292(25)  —0.3368(26)
0.85 —0.3997(34)  —0.2381(34)  —0.2385(34)  —0.3995(34)
0.90 —0.4468(53)  —0.1653(53)  —0.1682(53)  —0.4454(53)
0.95 —0.296(14) 0.209(14) 0.209(14) —0.297(14)

” S0 0.1 DI LT
0.10  0.1184(20) 0.0849(18) 0.0871(18) 0.1189(20)
020  0.1147(11) 0.0839(11) 0.0855(11) 0.1149(11)
0.30  0.10781(85) 0.07967(86) 0.08054(86) 0.10774(85)
0.40  0.09607(74) 0.07144(76) 0.07214(77) 0.09583(74)
0.50  0.07857(69) 0.05896(72) 0.05912(72) 0.07848(69)
0.60  0.05889(69) 0.04414(72) 0.04412(72) 0.05860(69)
0.70  0.03355(70) 0.02162(73) 0.02142(73) 0.03332(70)
0.75  0.02163(74) 0.00812(77) 0.00787(76) 0.02131(74)
0.80  0.01460(82)  —0.00494(84)  —0.00522(84) 0.01425(82)
085  0.0143(10)  —0.0198(10)  —0.0199(10) 0.0140(10)
0.90  0.0366(13)  —0.0321(13)  —0.0316(13) 0.0365(13)
0.95  0.0999(22)  —0.0122(22)  —0.0118(22) 0.0999(22)

Table 7.5: Tensor current matching coefficients for the full O(1/m? v)) heavy quark
action. The ASQTad action is used to discretise the light quark.
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matching coefficient

matching coefficient

Figure 7.3: Matching coefficients for the full O(1/m?, vl
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v (V)0 V)1 (V)2
0.00 —0.10157(94)  —0.03847(88)  —0.03876(88)

v CS_V)O CS-V)H CS_V)J_
0.10 —0.1348(27)  —0.1963(27)  —0.1601(23)
020 —0.1337(16)  —0.1930(17)  —0.1573(15)
0.30 —0.1301(13)  —0.1887(14)  —0.1517(13)
040 —0.1243(12)  —0.1824(13)  —0.1422(12)
050 —0.1162(12)  —0.1726(12)  —0.1283(12)
0.60 —0.1103(11)  —0.1623(12)  —0.1123(12)
0.70 —0.1005(11)  —0.1447(12)  —0.0898(12)
075 —0.0925(11)  —0.1301(12)  —0.0765(12)
0.80 —0.0791(11)  —0.1056(12)  —0.0621(13)
0.85 —0.0474(12)  —0.0573(13)  —0.0430(15)
0.90  0.0262(14) 0.0430(14)  —0.0176(17)
0.95  0.1850(22) 0.2445(22) 0.0017(27)

v C(_V)O C(_V)H C(_V)J_
0.10  0.0324(25) 0.1545(25) 0.1211(20)
020  0.0318(14) 0.1542(14) 0.1175(12)
0.30  0.0285(10) 0.1515(10) 0.11148(89)
040  0.02201(90) 0.14535(90) 0.10092(77)
0.50  0.01214(84) 0.13517(83) 0.08499(71)
0.60  0.00259(83) 0.12285(83) 0.06640(70)
0.70  —0.00797(84) 0.09962(83) 0.04179(70)
0.75  —0.01022(87) 0.08223(86) 0.02974(73)
0.80 —0.00477(93) 0.05912(93) 0.02228(81)
0.85  0.0120(11) 0.0203(11) 0.02032(94)
0.90  0.0648(13)  —0.0454(13) 0.0367(12)
0.95  0.2400(23)  —0.1828(23) 0.0936(22)

Table 7.6: Vector current matching coefficients for the full O(1/m? vl,) heavy quark
action. The HISQ action is used to discretise the light quark.
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v AT)0,1 (10,2 (11,2 o(7)2,3
0.00 —0.2296(17)  —0.2305(17)  —0.2325(17)  —0.2315(17)

. ATl [Tt (DL (DL
0.10 —0.3677(64)  —0.3385(58)  —0.3391(59)  —0.3642(65)
020 —0.3662(38)  —0.3432(35)  —0.3416(35)  —0.3640(37)
0.30 —0.3734(30)  —0.3541(28)  —0.3524(28)  —0.3727(30)
040 —0.3892(27)  —0.3712(25)  —0.3709(25)  —0.3885(28)
0.50 —0.4127(26)  —0.4002(23)  —0.4001(23)  —0.4114(26)
0.60 —0.4492(27)  —0.4419(24)  —0.4427(24)  —0.4484(27)
0.70 —0.5045(30)  —0.5065(25)  —0.5059(25)  —0.5059(29)
0.75 —0.5408(32)  —0.5477(27)  —0.5441(27)  —0.5438(32)
0.80 —0.5834(38)  —0.5873(31)  —0.5857(31)  —0.5885(38)
0.85 —0.6306(48)  —0.6155(41)  —0.6112(41)  —0.6308(47)
0.90 —0.6541(68)  —0.5801(59)  —0.5765(60)  —0.6593(68)
0.95 —0.479(16) —0.254(15) —0.242(15) —0.492(16)

. 0] A0, DI LT
0.10  0.1367(65) 0.0982(57) 0.0936(54) 0.1167(63)
020  0.1253(33) 0.0936(31) 0.0920(30) 0.1156(32)
0.30  0.1138(23) 0.0895(22) 0.0891(22) 0.1085(22)
0.40  0.1007(17) 0.0833(18) 0.0831(18) 0.0964(17)
0.50  0.0826(14) 0.0726(16) 0.0726(16) 0.0787(14)
0.60  0.0607(12) 0.0620(15) 0.0608(15) 0.0578(12)
0.70  0.0318(12) 0.0458(14) 0.0433(14) 0.0288(12)
0.75  0.0171(12) 0.0359(14) 0.0339(15) 0.0140(12)
0.80  0.0070(13) 0.0287(16) 0.0245(15) 0.0049(13)
0.85  0.0023(14) 0.0161(17) 0.0148(16)  —0.0005(14)
0.90  0.0154(17) 0.0099(20) 0.0090(19) 0.0144(17)
0.95  0.0760(26) 0.0301(28) 0.0281(28) 0.0752(26)

Table 7.7: Tensor current matching coefficients for the full O(1/m? vl) heavy quark
action. The HISQ action is used to discretise the light quark.
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Figure 7.4: Matching coefficients for the full O(1/m? v})) heavy quark action, vector

current (top) and tensor current (bottom). The HISQ action is used to discretise the light
quark.
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7.2.3 Observations

The magnitude of all matching coefficients is reduced by including mean field
corrections, for the full O(1/m?,v}) mNRQCD action the dependence on the frame
velocity is weak and all matching coefficients are of order one or smaller. Compared to

the simple mNRQCD action the divergence for v — 1 is suppressed.

Vector current

At vanishing frame velocity the matching coefficient for the zero component of the
vector current, ¢(V)0 = 0.04293(52) in Tab. 7.4, is in perfect agreement with the
corresponding value py = 0.043(2) in Tab. III of [92]. For v = 0 I find that the
matching coefficients (V)1 and ¢(V)2 agree within errors as expected from rotational
invariance (or, more precisely, the subgroup of O(3) that corresponds to the interchange
of spatial lattice directions).

When the full O(1/m?,v})) mNRQCD action is used the splitting between the
different Lorentz components of the matching coefficients is reduced. This reduction is
more pronounced if the HISQ action is used for the light quark. Improving the action
should reduce this splitting as the results are closer to those in the continuum limit
where the theory is Lorentz invariant. However, this reduction is not as pronounced as

in the case of the tensor current (see below).

Tensor current

For the tensor current I find that the splitting between the (0,|) and (0,1) as
well as the (]|,1L) and (L,Ll) matching coefficients is reduced by using the full
O(1/m?,v%,) mNRQCD action and becomes even smaller when the HISQ action is
used to discretise the light quark. The matching coefficients cf)“ ¥ depend on the
continuum renormalisation scale p. For ASQTad light quarks and g = m I find that
these coefficients are very small. Their magnitude is increased by using the HISQ action

to discretise the light quark.

7.3 Nonperturbative calculation of form factors

Nonperturbative form factors have been computed by Stefan Meinel [29] for the decay
of a B meson to pseudoscalar and vector mesons in the final state F' using a simple
mNRQCD action which is correct to O(1/m). These calculations are currently repeated
by Zhaofeng Liu [30] with the full O(1/m?, vi;) mNRQCD action used in this thesis.

In the new calculation O(1/m) corrections to the heavy-light currents will be included.
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 _m B & b = B

B F 7 q
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Figure 7.5: Two- and three-point functions on the lattice

7.3.1 Methods

To extract matrix elements and form factors two- and three point functions (see Fig.

7.5) are measured,

Crra(k@p), kq); o, Y0, 20) = Z<0\‘I’F($)J(lat)r(y)q’j9(z)\0>€_i(pl'm+k@'y_k(”)'z)

Y,z

Crplkpyizo.yo) = Y _(0[@p(2)0L(y)[0)e *w (@=v) (7.49)
xT

Crr(p’izo,10) = Z(O\(I)F(x)@}(y)yo>e—ip’~(w—y)
xT

JUT s the vector- or tensor- current, expanded in terms of mNRQCD operators.
®p(z) and ®p(x) are local interpolating operators with the quantum number of the
initial- and final state meson. To increase the overlap with the ground state smeared

wavefunctions can be used after gauge fixing. The residual momenta k), k() are
defined by

p= k(p) + Zpymv q= k(q) + Zpymv (7.50)

where the external momentum renormalisation is Z, ~ 1 (see section 5.1.7). Setting

t = |zo — yo| and T = |xg — 2p| the correlators are then fitted to sums of exponentials,

K-1L-1

Crra(kig) ki, T) — 3 > A (1) (=)D Fidem BT,
k=0 (=0
L-1
Cpa(kp)t) — ZAgBB 1)(+D) o=t (7.51)
K-1
Crr(p;t) — 16 Z(—l)k(t—’_l)e_E;ct
k=0
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Chapter 7. Matching of heavy-light currents

(the oscillating minus signs arise from the use of the ASQTad light quark action [20]).
As a constrained curve fitting technique [107] is used, a relatively large number of
exponentials can be included and one is not restricted to using data at large ¢t and T'— ¢
only.

By inserting a complete set of states in (7.49) it can be shown that the ground state
fit parameters are related to field renormalisation of the mesons and the decay matrix

element to pseudoscalar (P) or vector mesons (V),

(PVB) _ VZPVZB 5 1 s(lat)V

Ao = g gy PEO IV IBR)),

wvre) _ VZvVZs . r (lat)T

Ao = 9B, 2B, §€J<P=S><V<p7e<p7s>>u IB(p)).  (7.52)

For the two point function one finds
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0 2 2Ep’

s

(7.53)
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Finally, form factors fy, fo and T3, Ty, T3 can be extracted from the matrix elements

in (7.52) by using the parametrisations in (1.6) and (2.27).

7.3.2 Results

The calculations were performed on 400 coarse MILC gauge configurations [134] of size
203 x 64. These configurations include the vacuum polarisation effects of 2 + 1 flavours
of light sea quarks with masses of am, = amg = 0.007 and ams = 0.05. The ASQTad
action is used for discretising the sea quarks and the one loop Symanzik improved
gauge action, which reduces to (3.8) at tree level, for the gluons. The pion mass on
these ensembles is around 300 MeV and the inverse lattice spacing a=! = 1.6 GeV
[93, 134]. The light valence quark masses are chosen to be am, = amg = 0.007,
amg = 0.04. As in the perturbative calculations the heavy quark mass is am = 2.8 and

the stability parameter n = 2.

Extrapolation in g2

In Fig. 7.6 I show results for the vector form factors fy and fy. The solid curve is the

simultaneous fit to the phenomenological ansatz in (2.33).
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7.3. Nonperturbative calculation of form factors

The error bands on the curves are estimated from propagation of the errors as

described in [135]. The optimal fit parameters are
F =0.277, a = 0.569, 5 =1.293 (7.54)

with the covariance matrix

0.0053 —0.0159  0.0158
cov(F,a, ) = 0.0512 —0.0475 | - (7.55)
0.0480

From this I obtain the value at ¢°> = 0 as
(> =0) = fol¢> =0) = 0.277(73). (7.56)

This error is statistical only. There is also an uncertainty associated with the choice of
a specific phenomenological form factor parametrisation. Quantifying this ambiguity is
not a well defined problem as the “correct” analytical dependence of f, and fy on ¢°
is not known. I estimate the parametric uncertainty by making minimal assumptions
about the form factors and comparing different parametrisations. As remarked in
section 2.3.5 f, and fy are analytical functions of ¢? everywhere in the complex plane,

apart from poles and branch cuts. After transforming variable from ¢? to

VI-@/te —/1-to/ty

= 7.57
V1I—@/te +/1—to/ts (7.57)
they can be expanded in a Taylor series in z
FA@P@) = 90(2) = Do al72R fol@®) =g0(z) = D alF (758)
k=0 k=0

I perform two fits to gy and gg, truncating at different orders in the polynomial

expansion:

(0)

e fit;: constant go(z) = (IOO (+) (+)

, linear g4 (2) = ay ' + a4
with largest ¢? for both fy and f.

z. I leave out the data point

o fity: linear go(2) = a(()o) + a§+)z, quadratic g, (z) = aéﬂ + ag—i')z + ag+)z2,

In both cases I impose the constraint f1(0) = fy(0). I choose ty = 0.65¢_ as in [20].
In Fig. 7.7 I show the data in the variable z and the two polynomial fits to g4 (z) and
go(2) in the range [2(g2 .., t0), 2(0,%0)]. Due to the large statistical errors it is not easy
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Chapter 7. Matching of heavy-light currents

form factor
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Figure 7.6: Vector form factors fi(q?), fo(¢?) from [29]. | show both the fit to the
BK parametrisation [62] and two parametrisations of different order in the analytical z

expansion.
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Figure 7.7: Polynomial fit to the vector form factor as a function of z.
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7.3. Nonperturbative calculation of form factors

to constrain the series coefficients and this should be regarded as an exploratory study;
the results will refined once more higher statistics are available. The x?/(d.o.f.) is 0.02
for fit; and 0.05 for fits.

The difference between the two fit results is an estimate for the uncertainty in the

parametrisation, see Fig. 7.6. I find
f+.0(0) =0.447  (fity), f+.0(0) =0.327  (fitg). (7.59)

The result from the higher order fit lies within the statistical error band. The error is

of the same order as the statistical error.

In [18] the vector form factor has been calculated by the MILC collaboration
in nonmoving NRQCD (see this paper for further references to older studies on
unquenched gauge configurations'). Using the Becirevic-Kaidalov ansatz it is given
at ¢> =0

fro0(0) = 0.27(2)(4) (Dalgic et al., [18]). (7.60)

The first error is due to statistics and the chiral extrapolation whereas the second

estimates other systematic uncertainties.

The results in [136] have been obtained on the MILC gauge configurations and the

Fermilab action for the heavy quarks. The value reported there is

f+0(0) = 0.23(2) (Okamoto et al. [136]). (7.61)

Tensor form factor
I perform the same analysis for the tensor form factors 7T} and 75. Here I find

F =0.281, a = 0.641, £ =1.364 (7.62)
with the covariance matrix

0.0183 —0.0628  0.0954
cov(F o, ) = 0.2180 —0.3265 | - (7.63)
0.5030

!Note that the result in [62] where the Becirevic Kaidalov parametrisation was originally introduced
is obtained on quenched configurations. The value of fy 0(0) = 0.38(8) given there does not agree very
well with the recent, unquenched results.
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Chapter 7. Matching of heavy-light currents

From this I obtain the value at ¢> = 0

0.28(13) BK parametrisation
Tia(g* =0) = {0221  fity (7.64)
0.152 fito.

The corresponding plots are shown in Figs. 7.9 and 7.8. The results for the tensor form

factor have to be compared to the results by Becirevic et al., who find
T(¢*=0) = 0.24(3)700] (Becirevic et al. [58]) (7.65)

where the errors are statistical/systematic.
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7.3. Nonperturbative calculation of form factors

form factor

Figure 7.8: Vector form factors T1(q?), To(g?) from [29]. | show both the fit to the
BK parametrisation [62] and two parametrisations of different order in the analytical z
expansion.
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Figure 7.9: Polynomial fit to the tensor form factor as a function of z.
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Chapter 8

Discussion

In this chapter I briefly review the methods used in this work, summarise my results
and discuss systematic uncertainties of the approach. I finally outline possible further

developments.

8.1 Summary of methods and results

In the first chapter I argue that heavy-light decays can be used to constrain the entries
of the CKM matrix. In addition, rare decays of B mesons are loop suppressed in
the Standard Model and offer an excellent opportunity to test new physics models.
The prediction of exclusive decays requires the evaluation of hadronic matrix elements.
After integrating out the physics at the electroweak scale these decays are described by
an effective theory in the continuum. I review the contribution of various operators in
the low energy Hamiltonian to heavy-light matrix elements and analyse their relative
importance. Lattice QCD can be used to calculate matrix elements of local operators
in a model independent way. This calculation is independent of the physics at the TeV
scale which only changes the value of the Wilson coefficients. In the Standard Model
the Wilson coefficients are now known at next-to-next-to-leading-log precision.

On presently available configurations the inverse lattice spacing is of the order of or
smaller than the bottom quark mass. High energy fluctuations of the heavy quark field
at this scale are integrated out to obtain an effective theory which can be discretised
on a lattice. It is important to calculate hadronic form factors in the large recoil
region where most experimental data can be found; for the decay B — K™ only the
point ¢> = 0 is physical. A very successful approach for extending the calculation to
smaller ¢? is to discretise the theory in a moving frame of reference. Over the last
years the m(oving)NRQCD action has been developed and extensively tested by the
HPQCD collaboration. The recent increase in precision of experimental results, which
is expected to improve in the future, justifies work on further reducing systematic errors
in this approach.

The heavy quark action can be systematically improved to reduce both nonpertur-
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bative errors in the heavy quark expansion and discretisation artifacts. Beyond tree
level the effective theory differs from full QCD at momentum scales of the order of the
heavy quark mass where a perturbative treatment of radiative corrections is justified
by the small value of the strong coupling constant. I calculate one loop corrections
to the action and heavy-light lattice operators in perturbation theory. In particular,
the calculation of radiative corrections to the tensor current is a new result which will
help to increase the precision in theoretical predictions of hadronic form factors for the
rare decay B — K*7v. As the operators in the lattice action are very complicated I use
a PYTHON code to automatically generate Feynman rules and perform the integrals
over phase space with the adaptive Monte Carlo integrator VEGAS. Wherever possible
I have verified the correctness of my calculations by comparing to published results
for simpler setups. I also report on results from nonperturbative lattice simulations
obtained by other members of the HPQCD collaboration and discuss how heavy-light
form factors of the vector- and tensor-current can be extrapolated to the large recoil
region.

The results of my perturbative calculations are summarised in the following two

sections:

8.1.1 Heavy quark renormalisation parameters

I calculate the one loop radiative corrections of the leading order coefficients in
the moving NRQCD action. I find that, after including mean field corrections,
all renormalisation parameters are of order one and smaller. In particular the
renormalisation of the external momentum is small for not too large frame velocities, as
is expected from approximate reparametrisation invariance on the lattice. Care has to
be taken when choosing the integration contour to ensure that it can be Wick rotated to
Minkowski space. The heavy quark wavefunction renormalisation is infrared divergent
in Feynman gauge. I use a gluon mass to regulate the logarithmic divergence and
repeat the continuum calculation with this infrared regulator. As the effective theory
and full QCD agree in the infrared regime this artificial dependence on the gluon mass
cancels in the matching coefficients. By comparing to published results for simple
lattice setups I verify that my calculations are correct. I discuss the setting of the
typical scale in loop integrals and compare my results to nonperturbative calculations
of renormalisation parameters. The small mismatch might be explained by higher order
radiative corrections or nonperturbative effects and further work is necessary to resolve
this discrepancy.

In addition, I also present results obtained on a finite lattice. Twisted boundary

conditions suppress nonperturbative tunnelling in numerical simulations and serve as an
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8.1. Summary of methods and results

infrared regulator by introducing a lower momentum cutoff. My results are compared
to high-3 simulations on quenched gluon configurations. I find agreement between the
two methods and my one loop results from diagrammatic perturbation theory are used
to constrain the polynomial fit of high-§ data. This reduces the errors on the two loop
coeflicients.

Motivated by nonperturbative studies I also calculate the renormalisation of higher
order kinetic terms for the NRQCD action in a nonmoving frame. Care has to be
taken in the phase space integration as large peaks in the infrared region can spoil
the convergence of the VEGAS integral. I demonstrate the infrared stability of my
results by varying the gluon mass and test my approach by reproducing results for
other heavy quark actions in the literature. The perturbative matching coefficient of
the O(a*) term, which breaks rotational invariance, is of the order one. Although my
results are of the same order of magnitude as those in previous perturbative studies
with similar actions, they are not compatible with the large correction that is found
by nonperturbative tuning of this term. However, these simulations have only been
carried out on relatively coarse lattices and with large momenta. Other ingredients of
the simulation, such as the gluon action, can have large discretisation errors. Further
nonperturbative calculations are needed to reach a definitive conclusion. I find that
including a further O(a%) correction to the lowest order kinetic term reduces the size
of radiative corrections substantially but has only a small impact on the lowest order
renormalisation parameters. Including this term also reduces the size of the matching
coefficient obtained in nonperturbative simulations; however, the reduction is only

about a factor two and the discrepancy persists.

8.1.2 Renormalisation of heavy-light currents

I calculate the perturbative one loop matching coefficients of the leading order heavy-
light vector and tensor currents. The continuum integrals are expanded in powers of
the inverse heavy quark mass. After constructing suitable operators the one particle
irreducible three point functions on the lattice are evaluated numerically with VEGAS.
Infrared subtraction functions are introduced to stabilise the Monte Carlo integration.
An additional ingredient of the matching calculation is the light quark wavefunction
renormalisation. After verifying that I can reproduce published results for the ASQTad
action I calculate the wavefunction renormalisation of massless HISQ quarks at one
loop.

I show results for different heavy quark actions, using both the ASQTad and the
HISQ action to discretise the light quark. If the full O(1/m? v1) mNRQCD action

and ASQTad quarks are used the matching coefficients are around 0.4a; for the vector
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current and even smaller, around 0.2a; for the tensor current at the renormalisation
scale 4 = m and not too large frame velocities. With as = ay(2/a) ~ 2/a 1
conclude that the size of the leading order radiative corrections is around 12% for the
vector current and around 6% for the tensor current. This is the same order as 1/m
nonperturbative corrections but smaller than the naive estimate of O(a;) =~ 30%. In a
nonmoving frame I find agreement with published results for the renormalisation of the
zero component of the vector current. The splitting between the matching coefficients
for different Lorentz indices of the current is reduced by using the full O(1/m? vl))
mNRQCD action in combination with the HISQ light quark action. This reduction is
much more pronounced for the tensor current. I interpret this as partial restoration of

Lorentz invariance by improvement of the action.

8.1.3 Nonperturbative form factor calculation

Finally, I report on the calculation of nonperturbative heavy-light form factors carried
out within the HPQCD collaboration. So far these calculations have been performed
with a simplified mNRQCD action which is correct at O(1/m). Currently the
simulations are repeated for the full O(1/m?,v)) mNRQCD with tree level 1/m
corrections to the currents. Eventually these matrix elements will be combined with
my results for the radiative corrections to the leading order operators. Lattice data at
high momentum transfer ¢? is extrapolated to the large recoil region ¢> ~ 0 using a
phenomenological ansatz for the form factors, systematic uncertainties in this ansatz
are estimated. I compare to results obtained in the literature. The nonperturbative
results presented in this thesis should be seen as preliminary and will be updated with

new data.

8.2 Discussion of uncertainties

As in every theoretical prediction it is important to quantify all uncertainties. In
the lattice calculation discretisation errors are reduced by using improved actions. As
mNRQCD is an effective action this introduces additional uncertainties, both from the
heavy quark expansion and the renormalisation of operators. In the following I estimate

the sources of errors and give a breakdown of all uncertainties in Tab. 8.1.

8.2.1 Finite volume effects

On a periodic lattice hadronic states can interact with their copies in a shifted lattice
volume. The lightest particle in the theory is the pseudoscalar meson with mass mpg.

Over the size of the lattice volume its wavefunction decays as exp[—mpgL] where L is
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the linear size of the lattice, so this exchange process is suppressed by an exponential
factor. Finite volume errors increase as the quark mass becomes more chiral. For the
“coarse” MILC configurations used in the numerical simulation the authors of [134] find
amps ~ 0.19 on the 203 x 64 lattice with amy/am, = 0.007/0.05, so a naive estimate

of finite volume errors would be
exp[-mpgL] ~ et ~ 2%. (8.1)

The authors of [20] calculate the vector form factors fi, fo on MILC lattices with
a Fermilab heavy quark and ASQTad light quarks. They estimate the finite volume
error on the form factors in finite volume heavy meson staggered perturbation theory
(HMSxPT) and conclude that the uncertainty on f, (¢%) does not exceed 0.5%. In the

following I estimate the error from finite volume effects to be of the order of 1%.

8.2.2 Discretisation errors

Gluon action. The simple Wilson gluon action has errors of O(a?). In the Symanzik
improved action these are removed at tree level and one loop [78] and the discretisation

errors in this action are of O(a?, a2a?).

Light quark action. The ASQTad action does not have O(a?) errors at tree level.
O(asa?) errors from highly virtual taste-changing gluon interactions are suppressed by
smearing of link variables. Taste breaking effects are reduced by a further factor of
3 — 4 in the HISQ action; the authors of [85] conclude that the remaining errors from

taste changing interactions are around 1%.

Heavy quark action. For the nonrelativistic heavy quark action discretisation errors
in the different lattice directions have to be discussed separately. Errors in the spatial
directions are reduced by using improved derivatives and chromodynamic fields in the
leading Hamiltonian. The corresponding errors in the temporal direction are reduced
by an improved time evolution, as discussed at the end of section 4.1.1. The remaining
errors are of O(a?) at tree level. In the higher order terms of the action unimproved
derivatives are used, however, as they are multiplied by higher powers of the inverse
quark mass they are O(a?/m?) < O(a*) as am 2 1; on the coarse MILC lattices the
heavy quark mass is am = 2.8.

Radiative corrections will introduce errors of O(asa?). In numerical simulations
a tadpole improved, tree level action has been used. As demonstrated in this work,

tadpole improvement reduces the size of radiative corrections.
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The nonrelativistic heavy quark theory is constructed such that the fluctuations
both in the light and heavy quark within the B meson are of order Aqcp. By discretising
the theory in a moving frame the same is true for the quarks in the final state meson.

I conclude that the leading discretisation errors from the actions are O(as(aAqep)?).
On the coarse lattices with a=! = 1.6 GeV and using ay(2/a) ~ 0.3 and Aqcp ~
500 MeV I estimate the leading discretisation errors to be O(3%). As remarked above,
this is probably a conservative estimate as radiative corretions are reduced by tadpole
improvement and O(asa?) errors from the exchange of high energetic gluon are small
in the ASQTad and HISQ actions. To obtain a more realistic quantitative estimate of
discretisation errors would require simulation at different lattice volumes to measure

the coefficients of al’a™ dependent terms.

Heavy-light operators. As the derivatives in the O(1/m) heavy-light operators are
unimproved this introduces discretisation errors of @(a?/m). On the coarse lattice with
am = 2.8 these errors are O((aAqcp)?/(am)) = O(3.5%) and comparable to those from

the actions.

8.2.3 Heavy quark expansion

At tree level the heavy quark action is correct up to (and including) O(1/m? v2)).
Errors in heavy meson energy splittings are then O((Aqep/m)?,vl,) ~ 1%. Radiative
corrections will renormalise the operators in the action, leading to corrections of
O(as/m,asv?)).  However, some terms in the 1/m action are protected from
renormalisation by reparametrisation invariance and it is found that this symmetry is
only broken by higher order lattice artifacts in the discretised theory. In the mNRQCD
action used in nonperturbative simulations all coefficients in the action were set to their
tree level values. The errors are expected to be O(asAqcp /m,ozsvfel) ~ 3%, where I
assume v?el ~ 0.1.

For the calculation of meson masses and form factors the relevant hadronic scale is
Aqcp. As discussed in section 4.1.2 additional scales enter in heavy-light decays. Here
the energy E’ and momentum p’ of the final state meson have to be small compared
to the heavy quark mass. By including 1/m operators for the calculation of the decay
matrix element these errors are reduced to O(asE’/m, B /m?) ~ 8%. As can be seen

from Fig. 4.2 one has £’ < 0.25 for the smallest ¢? in the form factor calculation.

8.2.4 Higher order radiative corrections

In this work the renormalisation constants of operators in the heavy quark action

and the matching coefficients have been calculated at the one loop order in lattice

160



8.2. Discussion of uncertainties

perturbation theory. Higher order corrections enter at O(a?) ~ 9%. Again, this is a
conservative estimate as radiative corrections are reduced by tadpole improvement of
the action. Further work on renormalising the heavy quark action to two loop order,
using a combination of lattice perturbation theory and high-# simulations is currently
carried out [108, 137].

Mixing down

As the lattice introduces a momentum cutoff, higher order operators can mix down
to lower order operators under renormalisation. This can be seen immediately from
dimensional arguments: An operator Qg-l) with a derivative operator will generate
corrections proportional to ay/(am) to the leading order operator Q). As am > 1
this seems to violate the power counting in 1/m. However, if instead one changes basis

and works with subtracted higher order operators,
Q™ = QY — o, (8.2)

these will not mix down to the leading operator at O(cs). Nonperturbative matrix

elements of le)SUb are suppressed by 1/m as expected from power counting.

8.2.5 Form factor extrapolation

To extrapolate the lattice data for heavy-light form factors requires a phenomenological
ansatz for its functional dependence on the momentum transfer ¢>. The uncertainties
can be estimated by comparing results using different functional forms, see discussion
in section 7.3.2. There I find that, for currently available data, this uncertainty is

comparable to that from statistical/fitting errors.

8.2.6 Chiral extrapolation

The light quark masses used in the simulations are unphysically heavy, the lightest
pseudoscalar particle on the most chiral ensemble of coarse lattices has a mass of
mpg ~ 300 MeV which has to be compared to that of a physical pion, m, ~ 140 MeV.
Chiral perturbation theory, an expansion in the light quark masses and small meson
momenta, is used to extrapolate to the physical point. In [18] the chiral extrapolation
is carried out for the vector form factors. As can be seen from Figs. 10 to 12 in [18] the
difference between the most chiral data point (which corresponds to the quark masses
used in our simulations) and the physical point never exceeds 10%. I take this as a naive
upper limit on corrections from the chiral corrections to our results. To extrapolate to

the chiral limit more calculations with different light quark masses are necessary.
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Source of error estimate
Finite volume effects ~ 1%
Discretisation [actions] O(as(ahqep)?) < 3%
Discretisation [operators] O((aAqep)?/(am)) ~ 3.5%
Heavy quark expansion [action] O(asAgep/m, asv?y) ~ 3%
Heavy quark expansion [operators] O(asE'/m, E'? /m?) ~ 8% (at ¢* ~ 16 GeV?)
Radiative corrections 0(a?) < 9%
Chiral extrapolation < 10%

Table 8.1: Summary of uncertainties

8.2.7 Statistical /fitting errors

Statistical errors are still relatively large and increase with the frame velocity. They
can be reduced by using more elaborate sources. Currently, calculations with random

wall sources are carried out by Zhaofeng Liu [30].

8.3 Outlook

There are several ways of extending the work presented in this thesis. Using an
improved heavy quark action which includes radiative corrections to the operators
has a wide impact on the precision of predictions both for heavy-heavy and heavy-light
mesons. Recent experimental discoveries, such as that of the 7,(1s) meson [64] justify
further development and improvement of the lattice heavy quark action.

To achieve sufficient precision it is necessary to renormalise other operators in the
action. The chromomagnetic o - B term is of particular interest as it determines the
hyperfine splitting between the Y(1s) state and the 7,(1s) meson. The perturbative
calculation has to be carried out in background field gauge as only in this gauge the one
loop effective potential has the same symmetries as the tree level action. While so far
the radiative corrections have only been calculated for higher order kinetic terms in the
nonmoving NRQCD action, it is straightforward to extend this to the corresponding
operators in the mNRQCD action.

Precise knowledge of the heavy quark mass renormalisation, which is obtained
from radiative corrections to the self-energy, will help to constrain this fundamental
parameter of the Standard Model. High-3 simulations for extracting higher order loop
corrections are carried out on quenched gauge configurations and only include gluonic
contributions to the heavy quark self-energy. To complement these calculations it is

necessary to include the effects of fermionic vacuum polarisation. This can be done in
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diagrammatic perturbation theory, at two loop order only a small number of diagrams
needs to be evaluated. Calculating higher order loop corrections will also help to
understand the current, small discrepancy between perturbative calculations of leading
order renormalisation constants and results from nonperturbative lattice simulations.

Naively, two loop radiative corrections to the leading order (in the 1/m expansion)
heavy light currents are expected to be around 9% and of the same order as 1/m
corrections, so it is necessary to calculate the coefficients at next order in the ag
expansion.

Clearly, the statistics of nonperturbative heavy-light form factor calculations need
to be increased to improve the extrapolation to physical momenta transfers ¢>.

As long as the lattice spacing of available configurations is larger than the Compton
wavelength of the heavy quark it is justified to work with the effective, nonrelativistic
discretisation used in this work. In the future, when sufficiently fine lattices might
become available, it is desirable to use a relativistic quark action instead. For charm
quarks with a mass of around 1.2 GeV first results have been obtained by the HPQCD
collaboration. The HISQ action is used for the valence quarks. The finest ASQTad
configurations generated by the MILC collaboration have a = 0.045 fm [138], so that
am is about one. Note that the cost of a simulation scales with a high power of the
inverse lattice spacing. For analysing experimental results expected within the next
few years it is clearly necessary to use an effective lattice action for heavy quarks to
achieve sufficient accuracy.

It should be stressed that the form factor calculations I present in this thesis only
give the local contribution to the rare decays B — K*v and B — K®)¢¢. As discussed
in detail in 2.3.2 there are other, nonlocal contributions which can not be calculated
in lattice QCD. Although there are indications that these contributions are small in
the Standard Model, the size of these effects is hard to quantify. To make complete
predictions for these processes, the lattice approach has to be combined with other
methods.
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Appendix A

Conventions

In this appendix I summarise some conventions and notation used in this work.

A.1 Euclidean space < Minkowski space

The following conventions are used to relate quantities in Minkowski space (labelled
by (M)) with metric g,, = diag(4+1,—1,—1,—1) to the corresponding expressions in
Euclidean space with metric 6, = diag(+1,+1,+1,+1).

A.1.1 Four-vectors and derivatives

zg =2 = ix?M) = ixéM) rj =1 = w?M) = —w&M) (A1)

o = O = —idfy,) = —ioy" 0 =0 = 0], = o™

A.1.2 Gauge fields

As the covariant derivative D,, = 0, + igA, transforms as 0, the gauge field A, is

defined in Euclidean space as follows:
Ag = A° = A%y = —iA(" A=A =—Al =AM (A.2)
The chromoelectric field E and the chromomagnetic field B are thus
Ey = Ep =iE,  and By = Bi, = By (A.3)

where they are defined by

Ek = _FOk = —(aoAk — akA()) and Bk = ——Eknggm. (A4)

€rem 18 completely antisymmetric with €93 = +1.
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In Euclidean space the chromodynamic fields in the rest frame (E’, B) and lattice
frame (E, B) are related by

E = 7<E—|—iva—1j_ v(v-E)), (A.5)

, 2
B = B E —
’y( + v X r

A.1.3 Dirac matrices

To ensure that the Dirac matrices in Euclidean space satisfy {v,,7,} = 20, define

%0 =7" =% =%", i =7 = —ivlyy = . (A.6)
Thus 5 = Y%717%2% = Yon Y oanYon = ~M) " The definition of 75 in

d # 4 dimension can cause problems. For the continuum calculation a completely
anticommuting 5 is used; this corresponds to the naive dimensional regularisation
(NDR) scheme [40].

I also define in Euclidean space

1

O = 5[7,“ Yl (A.7)

The Pauli-Dirac representation for gamma matrices in Minkowski space is

I 0 , 0 ol wo 0 I
Voury = Ton = . WM = iyPya2yd = (A.8)
0 —I ol 0 I 0

where o7 are the Pauli matrices.

A.2 Lattice derivatives and field strength

I give explicit expressions for the discretised derivatives I use in the lattice action. All
expressions are constructed from the elementary forward-, backward- and symmetric

difference operators

Afe(E) = Uue)le + i)~ b() (49)
Ap(e) = le) — U u(e)ple - f),
Nfpla) = 300l + )~ Uop(@)ble - )]
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For performance reasons, a maximally local discretisation of higher-order operators is

used by balancing the occurrence of these three types. All expressions are symmetrised.

Unimproved derivatives

3
A > o(ararn) (A.10)
j=1
3
@ _ 1 ik (At +
Ay = 5 Z v (ATAL + ATAY
7,k=1
3
AP = % 3w <A+AiA + A7 AiAJF)
7,k 0=1
3
AW = Z Tk (ATALATAL + ATATA; AT

Ajt — Ai_%AJrAiA.— (A.11)

3
AP — A® —%ZAJFA ATAT

3
AP = AD 4 Z VP ATATATAL
]k 1
1 <.
— 5 2 o (AFATATAL + A AT ATAY
k=1

FAFATATAL + ATAFATAY)

Unimproved adjoint derivative

A Epr() = 5 (Ua0) Fro o+ MUL) — U () Fp e = UL, (0))
(A.12)
Improved field strength tensor
- 5 1 -
Fuke) = 3Enle) ~ g (V@ Buta+a)0}(o) (A.13)
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Fu(z) = ;—; () — 2 (2)) (A.14)
Qu(z) = - ZU 2)Us(x+&)U.o(z+6-+B)Ug(z+3)
{(a )} v
with
{(‘%5)}#1/ = {(:ua V)? (V7':u)7 (‘:ua‘V)7 (_th)} for © 7& v (A15)

168



Appendix B

Twisted boundary conditions

In the following I summarise some technical details on twisted boundary conditions
[109, 110] which are used for the high-3 simulations discussed in section 4.2.2.

B.1 Basic formalism

Consider a four dimensional lattice with finite spatial extent L and temporal extent 7.
The latter can be infinite as I will only consider twist in up to three (spatial) directions.

In [109] the formalism is outlined for twist in two directions.

B.1.1 Gauge fields

For a gauge link U, (z) the shifted field at « 4 L is given by

Uz + L) = QU (x)Q,"  with v=12. (B.1)

v

As the order of shifts does not matter the two twist matrices have to satisfy
DDy = 2028 with 2z = e2™/N ¢ Centre{SU(N)}. (B.2)
It is not necessary to know the explicit form of the matrices €2,; they have the following
properties:
e The €, are fixed up to unitary transformations.
e Any matrix which commutes with ; and €5 is a multiple of the unit matrix.
o OV = (—1)N-11d.

In perturbative calculations the gauge potential A, (z) is used which is related to the
links by U,(z) = €924 A (z) is traceless, antihermitian and satisfies the same

periodicity condition as the links,

Ay(z+Lo) = QA,(x)Q" (B.3)

v
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Appendix B. Twisted boundary conditions

Figure B.1: The total lattice momentum £k is split into an untwisted contribution £ which
is a multiple of %’T and a twisted part %n For twist in two directions the integer valued
twist vector is n = (n1,n2,0,0) with 0 < nj,ng < N —1.

In momentum space the gauge potential can be expanded in plane waves
1 ke, Skua §
Aue) = oy ;erl we3hne A, (k), (B4)
and 'y, is a complex N x N matrix which satisfies the condition
Q.0 = eRiny, (B.5)

Using QY = (~1)V~'1d this implies that k, is a multiple of % It is convenient to

split the momentum in a untwisted component ¢, which is a multiple of 2%, and a

L
twisted component %n For twist in two directions the integer valued twist vector is
n = (n1,n2,0,0) with 0 < nj,ng < N — 1, see Fig. B.1. It turns out that I'y only
depends on the twisted part of the momentum, so in the following I write I',, instead.

The solution of (B.5) is unique up to a phase which can be chosen such that
D, = Qpreqpzbeum)min1), (B.6)

Again, it is not necessary to know an explicit representation of the I';, as they will only

appear in traces (for the gluonic action) or between quark spinors (in the fermionic
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B.1. Basic formalism

action). The following properties can be used to evaluate these traces:

Thoo = Id, (B.7)
tr{l',} = 0 unless n =0, (B.8)

i = zztmp_ (B.9)
Tyl = TDppnz2l®m=0/m) (B.10)

Here the symmetric and antisymmetric products are defined as

(n',n) = niny+nhng + (n} +nh)(n1 + na), (B.11)

(n',n) = ning —nhny.

As the vector potential has to be traceless, condition (B.8) implies that A,,(k) = 0 if the
twisted part of k vanishes. For every momentum ¢ there are N2 — 1 degrees of freedom
which are characterised by their twist vector n = (n1,n2,0,0) with 0 < nj,ny < N —1

and (n1,n2) # (0,0). In particular this implies that there is an infrared cutoff as the
2

~r-
has not changed: the sum over colour indices a = 1, ..., N2 — 1 has been replaced by a

momentum can not be smaller than Note that the number of degrees of freedom
sum over twist vectors.
The formalism can be extended to more than two twisted directions. In general the

twist matrices satisfy
Q.0, = 2,09, with 2, = e /N ¢ Center{SU(N)}.  (B.12)

The antisymmetric tensor n,, completely defines the nature of the boundary conditions.
In [102] explicit expressions are given for the QCD gauge group SU(3) and up
to four twisted directions. All relations in the previous section, in particular the
expressions for Clebsch Gordon coefficients, remain unchanged. The only difference
is that the third and fourth component of the twist vector are nonzero. They are
however constrained by (B.5) and one finds n = (n1,n2, —(n1 + n2),0) in three and
n = (ni,n2, —(n1 + na),n1 — ng) in four dimensions [102]. All calculations in section

5.2 were carried out with three twisted directions.

B.1.2 Fermionic variables

Fermionic variables can be introduced by replacing SU(N) quark spinors by N x N

matrices which transform in colour-smell space [139].
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Appendix C

Poles of improved propagators

For certain loop momenta the integration contour in a given one loop diagram has
to be deformed to ensure that it can be Wick rotated back to Minkowski space
without violating causality. For this it is essential to know the position of poles of
all propagators. It is straightforward to find an analytic expression for these poles
for the naive gluon and light fermion actions. However, this is not true any more for
the Symanzik improved gluon action or the improved relativistic light quark actions,
ASQTad and HISQ.

C.1 Symanzik improved gluons

I first analyse the poles of the Symanzik improved gluon propagator discussed in [116].

The gluon two-point function is in Feynman gauge
My, = (Z qﬂpl%/% + )\2> 6/w +(1- qMV)];M];V (C.1)
P

where ¢, =1+ %(l%ﬁ +k2) and k,, = 2sin(k,/2).

To find the poles of the propagator, I first compute the determinant of this matrix
which is a polynomial in 15]2 and w = 1%8 For a given three momentum k; € [—m, 7| the
zeros of this expression in the z = €0 plane can be obtained by solving det M (w) = 0
and then using w = 2 — z — 1/2.! Note that the solutions come in pairs, (z,,z_) with
z4z— = 1 so that one of them lies inside, the other outside the unit circle.

It turns out that for a given three momentum there are 14 solutions. In Fig. C.1
these are plotted in the complex z-plane for 1,000 randomly chosen k;. For the gluon
mass a value of A2 = 1076 was chosen. To compare the poles in the improved propagator

to the naive poles, their absolute value is computed and it is compared to that of the

Tt turns out, that the determinant can be factored as det M (w) = (w + Zle ];Jz + \?) det M (w) so
that one solution coincides with the root of the naive propagator. Numerically, for small A% one of the

solutions of det M(w) = 0 is very close to the naive solution.
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2l=1 —
10 | -
N
> 00
_10 L g i
.
H
0 10 20
Re {z}

Figure C.1: Poles of the Symanzik improved gluon propagator in the complex plane

naive poles given by

naive
 (naive)

+

_ %<2+I%2+>\2ﬂ:\/(12:2+A2)(12:2+A2+4)>

(C.2)
with & = 4322 sin?(k;/2).

In Fig. C.2 these absolute values are plotted for the same random three momenta.

As can be seen from this plot the absolute value of an improved pole is either larger
than zfawe) or smaller than 2"

but it never lies between these values.

I performed a similar analysis for the propagator in Coulomb gauge and find that

also in this case the poles of the Symanzik improved propagator always lie outside the
band defined by Lmaive) 2| < ZinalVO).

C.2 Improved relativistic fermions

The same analysis can be performed for the poles of the ASQ/HISQ propagator. The
denominator for massless quarks

D = Zy:sinz(k‘,,) <1+ésin2(k¢u)>2

(C.3)
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100 T T T

2|

0.01 ' ' '

Figure C.2: Absolute value of poles in the naive and Symanzik improved gluon propagator
as a function of |k| = 2\/2;)?:1 sin?(k;/2).

can be written as a function of w = sin?(kg). For a given three momentum kj € [—m, 7]

the cubic equation D(w) = 0 can be solved by writing it in standard form

02
P —12y+36k —16 = 0  with y=w+4 (C.4)

02
where I use the notation k = Z?:l sin?(k;). Defining

02
g=18k —8, D = ¢* — 64, P =2sgngq (C.5)

this cubic equation with real coefficients has either three real or one real and a pair of

complex solutions depending on the sign of the discriminant D [131].

02
e D<0 &k <8/9:

1
y1 = —2Pcos 3, wy23=2Pcos (6 + g) with (= 3 arccos % (C.6)
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Im {z}
(A
1/

-5 0 5
Re {z}

Figure C.3: Poles of the massless ASQ/HISQ fermion propagator in the complex plane

02
e D>0&k >38/9:

1
y1 = —2Pcosh 8, y23 = P(coshf+ iv/3sinh 3) with (= 3 arccosh %

(C.7)

For each w = 5 — 4 one obtains four solutions for z = ¢’ as

Zay = :I:\/1—2w:|:2\/w2—w. (C.8)

Fig. C.3 shows the distribution of the poles in the complex plane. The light quark
mass was chosen to be zero. As above, for a given k; the absolute value of the poles
in the massless ASQ/HISQ propagator is compared to that of the poles in the naive

propagator which are given as

. 02 02 02
Ao = p\[142k £2\/k (1+k ). (C.9)

Fig. C.4 shows the absolute values of the massless naive and ASQ/HISQ poles as a
02

function of k . For each k; € [—m, 7] the poles in the improved propagator lie outside
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10 .

N 1 .
0.1 :
0 1 2
(o}
|k
Figure C.4: Absolute value of poles in the massless naive and ASQ/HISQ fermion propagator
as a function of alk| = 25’.:1 sin?(k;).

the region defined by |z£_flj_ive)| < |z| < |z£_flfive)|.
I study how the poles move in the complex plane as a function of the three
momentum. To take care of causality the e prescription is employed by subtracting

7€ from the denominator which becomes

D = Zy: sin?(k,) (1 + %sinz(k‘y)>2 — i€. (C.10)
I analyse the behaviour of the poles outside the unit circle with positive real part, see
Fig. C.5. All other poles can be obtained from these by replacing z — 1/z,—z,—1/z.
For 12: = 0 the physical pole lies on the unit circle and has a small negative imaginary
part. There are two additional spurious poles at larger Re{z} one with a small negative
and one with a small positive part. As ]l?:] increases the physical pole moves outwards

whereas one of the spurious poles moves outwards just below the real axis and the other
2
o

inwards just above the real axis. For k = 8/9 the physical pole touches one of the
spurious poles and both, now being complex conjugates of each other, start to move

away from the real axis.

177



Appendix C. Poles of improved propagators

Im{z}

\ lzI=1

Figure C.5: Movement of three of the twelve poles in the ASQ/HISQ propagator in the

o
complex plane. The arrows indicate increasing |k|.

C.3 Poles of three point functions

In this section I discuss the poles of one particle irreducible three point integrals that
arise in the calculation of the renormalisation of the vector- and tensor current in
chapter 7.

As for the self-energy calculations in chapter 5 care has to be taken when choosing
the integration contour in the kg plane. For certain values of the loop momentum the
heavy quark pole can lie outside the unit circle and the integration contour has to be
deformed to ensure that it can be Wick-rotated back to Minkowski space.

Let the position of the heavy quark pole in the z plane be denoted by z; and the
poles of the naive gluon propagator by z_ and z;. The poles of the naive light quark

action are z(_é) and zf) whereas the six poles of the improved light quark action are

located at zg)_, zg)_, zg)_ and zgl, zéﬁ, Z:’Sﬁ (and the corresponding positions with
opposite sign). Analytical expressions are given in section C.2. Note that only one of
the poles is physical.

From the calculation of heavy quark renormalisation parameters it is known that
|zn| < z4+ and as the poles of the Symanzik improved gluon action lie outside the band
defined by z_ < |z] < z4 the same holds for improved gluons. It is thus only necessary
to study the relative position of the heavy quark poles and the poles of the improved

light quark propagator.

C.3.1 Simple heavy quark action.

For the unimproved heavy quark action defined in (5.26) at mass m = 2.8 and
stability parameter n = 2 I generated a large number of gluon momenta k and verified
that for each k one has |z| < min{zﬂ_,zéﬁ,zgl}. I performed this check for two

frame velocities, v = 0.3 and v = 0.95. In the integration code I first test whether
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N
+3

X
v

N

+

!
25, 2!

+3

e

Figure C.6: Integration contour for the unimproved action. The ASQTAD light quark poles
are denoted by x, the poles in the naive light quark propagator by X, the naive gluon poles
by o and the heavy quark pole by [J.

10
Naive gluons
ASQTAD ——
N 1 mNRQCD [full] ——
mNRQCD [simple] :
0.1

Figure C.7: Absolute values of poles as a function of = with k = (z,0,0). The frame
velocity is v = 0.95, the heavy quark mass m = 2.8 and the stability parameter n = 2.

lzn] < {]zf)], |z4|} as the naive light quark positions can be calculated very easily
and |zf)| < |zf?j|. If this is the case I shift the contour halfway between |zj,| and

min{|zf)|, |24}, see Fig. C.6. If |zp,| > |z5_£)| I use the smallest |z£f?j| instead of |zf)|.

C.3.2 Full heavy quark action.

For the full O(1/m? v})) heavy quark action the situation is more complicated. It
turns out that at high frame velocities and for certain configurations in momentum
space the heavy quark pole can cross poles of the light propagator outside the unit
circle. To illustrate this I plot the following quantities in Fig. C.7 for k = (z,0,0) and

—nm<r <
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Figure C.8: Integration contour for momentum space configurations with pole crossing.
The light quark poles are denoted by X, the naive gluon poles by o and the heavy quark
pole by [.

e |zp|: Absolute value of the heavy quark poles (green) both for the full mNRQCD
action and the simple action with Hy only. The mass of the heavy quark is
chosen to be m = 2.8 in both cases, the stability parameter is n = 2 and the

frame velocity v = 0.95.
e z1: Naive gluon poles (red)

° \zf?j\: Absolute value of the light quark poles (blue), see appendix C.2.
¢ ¢ ¢ ¢ ¢ ¢
We have |25] < |25] < |20 < 1 < 20 < 2§0] < |24

From the plot it can be seen that for certain negative values of x one has |ZS-£,)1| < |zn| <
]25?2\. For the full action the dispersion relation is closer to the one in the continuum
which bends |z, | up for momenta antiparallel to the frame velocity. On the other hand
the dispersion relation of the light quark action has doublers at the edge of the Brillouin
zone.

To be able to Wick-rotate back to Minkowski space in these cases it is necessary to
deform the contour such that it encloses the heavy quark pole but not the light quark
poles outside the unit circle, see Fig. C.8.

For each spatial momentum k generated by the VEGAS integration code I first check
if a pole shift using the naive poles is possible. If not I compute the exact positions of
the ASQ poles (see appendix C.2 and in particular Fig. C.5 which shows the movement

of the light quark poles in the complex planes) and distinguish the following cases:
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C.3. Poles of three point functions

1. |z < |z(_z,)1| or |zp| < z_. Shifting the contour is not necessary.
2. z_,]z(_z’)j\ <zl < z+,]zgf?1\. I shift the contour halfway between |zj,| and
min{zy, zgf?l }.

3. \zf)j] < |zn| < \zf?j 41l 24 Tt is necessary to integrate along three contours: (a)
counterclockwise without shift, (b) clockwise with shifting the contour between

\zf)j] and |zp| and (c) counterclockwise with the contour between |z| and
. 4
min{e ], 24}

Note that pole crossing only occurs for large momenta. I conclude that this is a lattice

artifact which would disappear in the continuum limit.
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Appendix D

Quark field renormalisation parameters

in continuum QCD

In this chapter I discuss the one-loop renormalisation of the mass and wavefunction
of relativistic quarks in the continuum. I work in 4 — e dimensions to regulate UV
divergences and use a gluon mass term to render the integrals IR finite. I give explicit

expressions for renormalisation parameters in the on-shell- and the M .S-scheme.

D.1 Renormalisation of quark fields in QCD

Bare (denoted by superscript (?)) and renormalised quantities are related via
PO = Zyh =1+ asdZy+ ... 00, m =Z,m=(0+asZ,+...)m. (D.1)
The quadratic part of the QCD Lagrangian is

L = iZybP b — ZyZmthma (D.2)
= Y@ —m)Y + asp(6Zyid — (0Zy + 6 Zm)m)p + ...

At O(ay) the correction to the heavy quark self energy is given by the sum of the

Figure D.1: O(ay) correction to the quark self-energy in continuum QCD
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rainbow diagram and the counterterm in Fig. D.1

d i +¢ +m) . —i
@r)d Wkt p)? —m2 ) k2 N2

LiSp) = (4 (igPTT / (D.3)

+ z’as(épri — ((5Z¢ + (5Zm)m)

100

= 3. D(e/2)(4m)? (1*)* (A(p* )¢ — B(p*)m)
+ z’as(épri — ((5Z¢ + (5Zm)m)

with
1 e
Ap?) = (2-¢) /0 dz (1 —z) [z(z — 1)p® + am® + (1 —2)A*]° (D.4)

B(p*) = (4—e) /01 dz [z(z — 1)p® +azm? + (1 — 2)\?] /2

D.1.1 On-shell scheme

In the on-shell scheme where the renormalised propagator is i/(p —m) the counterterms

are fixed by the two conditions

ax
L =m) =0, W(f/f =m) =0. (D.5)
Massless quarks. For m =0 one has A(0) =1 — £ — Slog A? and obtains
0s s 2 1 . 2 2
ozséZ( ) = & —Z 4 — +log N/ p? with - = - — g + log4nr.
¥ 3T € 2 € €
(D.6)
Massive quarks. The mass counterterm is IR finite and given by
0BG = SE(e/2)(Am) 2 (uA) T (A(m?) - B(m?) (D.7)
« 2
= (=32 1 2/t —4).
37r< 3E+3ogm /1 >

The wavefunction renormalisation has IR divergent contributions, it can be written

002" = _g‘—;r(e/z)(47r)6/2(#2)6/2 (A(M)mﬁ%(m?)). (D.8)
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The IR divergence is contained in the following Feynman-parameter integral

2d(A—B) B m?) r(x? —1)
D.
m* A / da 22+ (1 —x2)\2/m?’ (D-9)

Neglecting terms of O(\/m) one can replace x> + (1 — 2)A?/m? — 22 + A2 /m? and

evaluation of the remaining integral is straightforward

/ e xzfA?/Zz = SO+l m? N 1) (DA0)

— _%(1 +log A*/m?) + O(A/m).

I find for the wavefunction counterterm

os S 2
aséZl(p ) = ?Cj_w <—€ +logm?/u® — 4 — 2log )\2/m2> . (D.11)

D.1.2 M S-scheme

In this scheme only the UV divergences are absorbed in the counterterms,

s 2 MS s2
a6 29 = —g—wg, 07 M5) — —%g. (D.12)

This implies that the mass in the M S scheme depends on the renormalisation scale .

The relation between the masses in the two different schemes is given by

m(0 = ZM8),(MS)  — = 7(05)  (05) (D.13)

and at one loop one obtains

mM () = (14 2= (3logm?/p* = 4) ) m*). (D.14)
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Appendix E

Mean field corrections

In the following I give explicit expressions for the mean field corrections to €; for
the simple action defined in (5.26) and the full O(1/m?,v*,) mNRQCD action and

rel

“complete” cancellation of adjacent links, U,U, jl — 1.

For the simple action I find for the mean field corrections with stability parameter

n=2

Q(tadpole) _ _Q(tadpole) _ u(2) (1 _ U_2 n 3 — 2 B 3 — 22 + U4>
0 1 0 8 ym 8’727’)’12 ’
2 2 2 4
A A -9+ 3v 3—2v° +w
Q(tadpole) — ()(tadpole) (2) ( _9 v >
2 v 1o MR~ 1672m2 /)’

whereas for the full O(1/m?,vl)) action I obtain

A (tadpole A (tadpole 2 U2 19'U4 Uﬁ
s ué)<1_§_ﬁ_1024
2688 — 85202 + 11v* — 1308
768vm
3456 — 492002 4 24970 — 2640 + 1508
a 307272m?2
516 — 126402 + 1058v* + 27505 — 1508
a 768v3m3
—591 4 146002 — 1358v* + 44805 + 508
B 256~4m!
81 — 21602 + 246v* — 1280 + 2508
; 64~y5m> >’
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A (tadpole 2 5) 7’02 132}4 U6
Qe = “(())<_§ 32 512 2048
—10880 + 4480v% — 215v* + 350°
* 3072ym
—12480+10288v2 +4321v* — 36005 + 1508
* 6144+2m?2
2412 — 486402 + 3974v* + 31105 — 1508
* 1536~3m3
—879 4 2100v% — 1982v* + 64005 + 508
- 512y4m4
81 — 21602 + 246v* — 128v° + 2508
- 128~5mb >’
. 9 5 1102 290* v
Q) = uf )<_ 37718 T 136 T 2048
—5440 + 1860v% — 51v* + 160°
* 1536ym
12480 4 71202 — 3521v* 4+ 32005 — 1508
a 6144~2m?2
N 2412 — 301602 + 2306v* + 29905 — 1508
1536y3m3
—879 + 181202 — 1614v* + 54405 + 508
" 512y4m4
81 — 21602 + 246v* — 128v° + 2508
- 128~5mb >

Q(tadpole) and Q(tadpole)
J J

Numerical values for with a heavy quark mass of m = 2.8 and

stability parameter n = 2 are presented in Tabs. 5.4 and 5.5.
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Appendix F

Perturbative results for a simple action

In this appendix I show results for the renormalisation parameters and matching
coefficients of another simple mNRQCD action. The action has improved kinetic terms
and time evolution equation. Hy is the same as in (4.34) whereas 6 H = contains the
correction term 0 H,. and the chromomagnetic interaction term o - B. I use a heavy
quark mass m = 2.8, stability parameter n = 2 and the Symanzik improved gluon

action.

coefficient of ag

0 0.2 0.4 0.6 0.8 1
frame velocity v

Figure F.1: Renormalisation parameters for a simple mNRQCD with improved derivatives
and time evolution equation. The action is complete to O(1/m) and contains the
chromomagnetic interaction term o - B in d H. Mean field corrections for partial cancellation
of UMU;E are included in the results.
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Table F.1: Renormalisation parameters for a simple mNRQCD with improved derivatives
The action is complete to O(1/m) and contains the
chromomagnetic interaction term o - B in ) H. Mean field corrections for partial cancellation
of UMU,]; are included in the results.

and time evolution equation.

190

v Ey 67, 57
0.00 —0.7421(19)  —0.31472(49) 0.2421(11)
0.01 —0.7394(19)  —0.31488(49) 0.2419(11)
0.10 —0.7322(19)  —0.31304(49) 0.2434(11)
020 —0.7235(19)  —0.30767(49) 0.2464(11)
0.30 —0.7078(19)  —0.29832(49) 0.2529(12)
040 —0.6763(18)  —0.28628(51) 0.2536(12)
050 —0.6264(17)  —0.27122(52) 0.2550(13)
0.60 —0.5648(16)  —0.25447(55) 0.2535(15)
0.70 —0.4795(14)  —0.23405(59) 0.2353(18)
0.75 —0.4247(14)  —0.22159(64) 0.2167(22)
080 —0.3607(13)  —0.20573(71) 0.1985(27)
085 —0.2834(12)  —0.17797(86) 0.1815(35)
0.90 —0.1863(11)  —0.1119(12) 0.1760(58)
0.95 —0.0721(11) 0.1757(24) 0.331(15)

v 57, 57, 5C,
0.00 — — —0.0230(13)
0.01 —0.239(20) —0.020(20) —0.0222(13)
0.10 —0.2156(25) 0.0141(24)  —0.0190(13)
0.20 —0.2098(16) 0.0270(15)  —0.0155(13)
0.30 —0.1871(13) 0.0444(12)  —0.0068(13)
0.40 —0.1588(11) 0.0646(11) 0.0020(14)
0.50 —0.1231(10) 0.0896(10) 0.0203(15)
0.60 —0.0846(10) 0.1180(10) 0.0445(17)
0.70  —0.0457(10) 0.1451(11) 0.0691(21)
0.75  —0.02686(95) 0.1554(11) 0.0819(25)
0.80 —0.0138(10) 0.1622(12) 0.0967(32)
0.85  —0.0056(10) 0.1596(12) 0.1135(44)
0.90 —0.0061(11) 0.1448(14) 0.1211(75)
0.95 —0.0265(15) 0.0939(16) 0.078(20)




v (V)0 )1 (V)2
0.00  0.04393(58) 0.25368(43) 0.25304(43)

v CS_V)O CS_V)H CS_V)J_
0.10  0.1700(25)  —0.0685(26) 0.1351(22)
020  0.1712(14)  —0.0639(15) 0.1340(14)
0.30  0.1778(11)  —0.0547(12) 0.1398(11)
040  0.18664(92)  —0.0402(11) 0.1476(10)
0.50  0.19902(84)  —0.0188(10) 0.15572(95)
0.60  0.21389(80) 0.01056(94) 0.16457(95)
0.70  0.23520(78) 0.05634(90) 0.1725(10)
0.75  0.25351(80) 0.09238(92) 0.1763(11)
0.80  0.28028(86) 0.1437(10) 0.1779(12)
085  0.3327(12) 0.2313(12) 0.1813(13)
0.90  0.4487(14) 0.3921(15) 0.1881(17)
0.95  0.6611(22) 0.6779(22) 0.1842(28)

v C(_V)O C(_V)H C(_V)J_
0.10 —0.1282(25) 0.3209(25) 0.1210(20)
020 —0.1293(14) 0.3207(14) 0.1192(12)
0.30 —0.1404(11) 0.3128(11) 0.11005(89)
0.40 —0.15354(95) 0.30199(93) 0.09906(77)
0.50 —0.17123(88) 0.28581(87) 0.08459(71)
0.60 —0.19018(883) 0.26354(86) 0.06858(70)
0.70 —0.20794(91) 0.22948(89) 0.05292(73)
0.75 —0.2144(10) 0.20375(93) 0.04530(78)
0.80 —0.2112(10) 0.1709(10) 0.04299(88)
0.85 —0.1940(12) 0.1200(12) 0.0482(10)
0.90 —0.1419(15) 0.0340(15) 0.0674(13)
0.95  0.0496(26)  —0.1211(26) 0.1208(25)

Table F.2: Vector current matching coefficients for a simple mNRQCD with improved
derivatives and time evolution equation. The action is complete to O(1/m) and contains
the chromomagnetic interaction term o - B in 0H.
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v AT)0,1 (10,2 (11,2 o(7)2,3
0.00 0.0712(12) 0.0713(12) 0.0713(12) 0.0713(12)

. ATl S0t (DL 4L
0.10 —0.0326(27)  —0.0268(24)  —0.0242(24)  —0.0327(27)
020 —0.0314(17)  —0.0218(16)  —0.0231(16)  —0.0283(17)
0.30 —0.0186(16)  —0.0087(15)  —0.0087(15)  —0.0161(16)
0.40 —0.0107(15) 0.0016(15) 0.0015(15)  —0.0089(15)
0.50 —0.0003(16) 0.0172(16) 0.0163(16)  —0.0006(16)
0.60  0.0048(18) 0.0324(17) 0.0329(17) 0.0047(18)
0.70 —0.0101(21) 0.0403(20) 0.0411(20)  —0.0104(21)
0.75 —0.0290(24) 0.0432(23) 0.0439(23)  —0.0286(24)
0.80 —0.0497(29) 0.0578(28) 0.0582(28)  —0.0502(29)
0.85 —0.0693(38) 0.1009(37) 0.1009(38)  —0.0698(38)
0.90 —0.0790(60) 0.2151(59) 0.2162(59)  —0.0780(60)
0.95  0.068(15) 0.591(15) 0.593(15) 0.067(15)

” A0 AT0.1 DL JADLL
0.10  0.1005(25) 0.0975(21) 0.0968(21) 0.1056(24)
020  0.1014(12) 0.0955(11) 0.0969(11) 0.1010(12)
0.30  0.09086(87) 0.08654(87) 0.08758(88) 0.09069(87)
040  0.07726(75) 0.07456(76) 0.07508(77) 0.07714(75)
0.50  0.05815(76) 0.05822(76) 0.05820(77) 0.05914(76)
0.60  0.03780(74) 0.03781(76) 0.03768(76) 0.03890(74)
0.70  0.01702(76) 0.01168(78) 0.01203(78) 0.01752(76)
0.75  0.00725(80)  —0.00443(83)  —0.00404(83) 0.00753(80)
0.80  0.00272(90)  —0.01952(93)  —0.01922(93) 0.00318(90)
085  0.0068(11)  —0.0367(11)  —0.0371(11) 0.0068(11)
0.90  0.0273(14)  —0.0529(14)  —0.0528(14) 0.0270(14)
0.95  0.0867(25)  —0.0353(25)  —0.0357(25) 0.0863(25)

Table F.3: Tensor current matching coefficients for a simple mNRQCD with improved
derivatives and time evolution equation. The action is complete to O(1/m) and contains
the chromomagnetic interaction term o - B in 0H.
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Figure F.2: Matching coefficients for a simple mNRQCD with improved derivatives and
time evolution equation, vector current (top) and tensor current (bottom). The action is
complete to O(1/m) and contains the chromomagnetic interaction term o - B in 0H.
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Appendix G

Finite volume renormalisation

parameters

In this appendix I show results for the heavy quark renormalisation parameters on a
finite lattice with twisted boundary conditions.

As in the nonperturbative calculations in [108] I use two different heavy quark
actions: The simple action in (5.26) with m = 2.0 and n = 2, and the full O(1/m? o))
action with the same stability parameter and m = 2.8. In both cases I use a Symanzik
improved gluon action. I include mean field corrections for “partial” cancellation of

Uy ,I as described in section 5.1.3. All three spatial directions are twisted.

G.1 Numerical results

I work on four different lattices of size 12 x 43, 18 x 63, 24 x 8 and 30 x 10% and for five
frame velocities, v = 0.0, 0.2, 0.4, 0.6 and 0.8. The results for the one loop correction to
the zero point energy Ej, the renormalisation of the heavy quark mass, frame velocity
and the external momentum as well as the energy shift between QCD and the effective
heavy quark theory are listed in Tabs. G.1 to G.5 for the simple action defined in (5.26)
and for the full O(1/m?,v2)) action in Tabs. G.6 to G.10. In Figs. G.1 to G.5 I also

plot the renormalisation parameters as a function of the frame velocity.

v =0.0 v =02 v =04 v =0.6 v=0.8

43 %12 —0.64249  —0.63066 ~ —0.59233  —0.51905  —0.39751

6 x 18 —0.71563 ~ —0.70176 ~ —0.65711  —0.57233  —0.43158

8 x24 —0.75045  —0.73559  —0.68786  —0.59748  —0.44736

103 x 30 —0.77082  —0.75538  —0.70581  —0.61207  —0.45635
0o —0.8260(19) —0.8116(19) —0.7538(18) —0.6507(16) —0.4714(14)

Table G.1: Zero point energy shift Ej for the simple action defined in (5.26).
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v=20.0 v=0.2 v=04 v=20.6 v=0.8
43 % 12 0.35046 0.36356 0.408 0.51532 0.90748
63 x 18 0.40063 0.417 0.47235 0.604 1.06894
83 x 24 0.42635 0.4445 0.50585 0.65066 1.15245
103 x 30 0.44227 0.46159 0.52682 0.68007 1.20427
00 0.5074(12) 0.5312(12) 0.6138(13) 0.8045(17) 1.4252(33)

Table G.2: Mass renormalisation §Z,, for the simple action defined in (5.26).

v =10.0 v =102 v=04 v=10.6 v =08

43 % 12 — —~0.36011  —0.34443  —0.32862  —0.33484

63 x 18 — —0.40693  —0.38917  —0.37146  —0.3806

8% x 24 — —0.43032  —0.41149  —0.39274  —0.40306

103x30  — —0.44452  —0.42503  —0.40558  —0.41639
S —0.4966(17) —0.4748(12) —0.4497(11) —0.4606(12)

Table G.3: Velocity renormalisation §Z, for the simple action defined in (5.26).

v=20.0 v=0.2 v=04 v=20.6 v=0.8
43 % 12 — —0.01155 —0.00204 0.00185 —0.02264
63 x 18 — —0.00689 0.00906 0.0236 0.01171
83 x 24 — —0.00374 0.01599 0.03701 0.03285
103 x 30 — —0.00146 0.02084 0.04636 0.04763
00 — 0.0168(17) 0.0516(12) 0.1038(10) 0.14240(91)

Table G.4: Renormalisation §Z,, of the external momentum for the simple action defined
in (5.26).

v =10.0 v =102 v =04 v =106 v =08

42 x12  0.02922 0.0396 0.07095 0.12285 0.19295

6> x 18 0.04282 0.05625 0.0971 0.16613 0.26284

8 x24  0.05112 0.0662 0.11225 0.19076 0.3017

103 x 30 0.05686 0.07301 0.12243 0.20711 0.32712
0 0.0944(32)  0.1129(32)  0.1780(31)  0.2913(31)  0.4650(45)

Table G.5: Energy shift 6C,, for the simple action defined in (5.26).
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v =0.0 v =02 v =104 v =106 v =08
43 %12 —0.56835  —0.55623  —0.51892  —0.4481 —0.31137
6 x 18 —0.6382 —0.6241 —0.58061  —0.49832  —0.34035
8 x24 —0.67193  —0.65685  —0.61026  —0.52217  —0.35341
103 x 30 —0.6918 —0.67612  —0.62766  —0.53608  —0.3608
0 —0.76647(40) —0.74812(39) —0.69206(37) —0.58682(33) —0.38616(28)

Table G.6: Zero point energy shift Ey for the full O(1/m?,v)) action.

v =0.0 v =02 v =04 v=10.6 v =08

43 %12 0.11692 0.10126 0.04553  —0.08422  —0.40454

6> x 18  0.15507 0.14068 0.08988  —0.02584  —0.2959

8 %24  0.17505 0.1614 0.11341 0.00518  —0.23633

103 x 30 0.18739 0.17422 0.12799 0.02426  —0.19923
0 0.2313(12)  0.2194(12)  0.1789(13)  0.0910(15) —0.0901(24)

Table G.7: Mass renormalisation 67, for the full O(1/m? vi,).

rel

v =0.0 v =02 v =104 v =106 v =038
43 x 12 —0.11476  —0.0867 —0.03848 0.02601
6% x 18 —0.14889  —0.11681  —0.06344 0.00187
8% x 24 —0.16637  —0.1323 ~0.07603  —0.01063
103 x 30 —0.17698  —0.14169  —0.08355  —0.01825
00 —0.2074(15) —0.1696(11) —0.1037(10) —0.02967(90)

Table G.8: Velocity renormalisation 67, for the full O(1/m? v)) action.

v =0.0 v =02 v =104 v =106 v =038

43 x 12 —0.01828  —0.05769  —0.14434  —0.3323

6% x 18 —0.01441  —0.04918  —0.12496  —0.2907

8% x 24 —0.0119 —0.04409  —0.11362  —0.26586

103 x 30 —0.01014  —0.04069  —0.10628  —0.24993
0 0.0025(12) —0.02131(89) —0.06974(87) —0.1746(11)

Table G.9: Renormalisation 67, of the external momentum for the full O(1/m?, v )) action.
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v=20.0 v=0.2 v=04 v=20.6 v=0.8
43 %12 —0.08607 —0.09816 —0.14084 —0.2339 —0.42503
63 x 18  —0.07286 —0.08391 —0.12242 —0.2039 —0.3655
8 x 24 —0.06492 —0.07538 —0.11155 —0.18678 —0.33096
103 x 30 —0.05968 —0.06975 —0.10445 —0.1759 —0.309
00 —0.0425(15) —0.0510(15) —0.0799(15) —0.1350(18) —0.2256(30)

Table G.10: Energy shift 5C, for the full O(1/m?,v* ) action.

rel
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Figure G.1: Zero point energy shift E for the simple action defined in (5.26) (blue, open
symbols) and the full O(1/m? v%;) mMNRQCD action (red, filled symbols).
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Figure G.2: Mass renormalisation for the simple action defined in (5.26) (blue, open
symbols) and the full O(1/m? v,) mMNRQCD action (red, filled symbols).
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Figure G.3: Velocity renormalisation for the simple action defined in (5.26) (blue, open
symbols) and the full O(1/m? v;) mMNRQCD action (red, filled symbols).
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Figure G.4: External momentum renormalisation for the simple action defined in (5.26)
(blue, open symbols) and the full O(1/m?,v#,) mNRQCD action (red, filled symbols).
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Figure G.5: Renormalisation of the energy shift C,, between QCD and mNRQCD for the
simple action defined in (5.26) (blue, open symbols) and the full O(1/m? v1,) mNRQCD
action (red, filled symbols).
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Appendix H

Infrared stability

In this appendix I study the infrared structure of the integrals for higher order kinetic
terms in the NRQCD action discussed in section 6. A thorough investigation of this
region of phase space was motivated by instabilities which arose when using numerical
approximations to higher order derivatives in the rainbow diagram. In the following
I study the lattice integral both for numerical and analytical mixed derivatives and

demonstrate that it is essential to use analytical derivatives for small gluon masses.

As the Feynman rules are very simple for the continuum NRQCD subtraction
function and the instabilities arise in the infrared region of the integrand I work with
the integrals I§Sub) and Iésub) defined in (6.21) and (6.22). This is legitimate as the

integrals have the same infrared structure as the integrals on the lattice.

H.1 Structure of the integrand

I evaluate the subtraction function for fixed spatial momentum k and a range of
temporal kg. This is done using both numerical and analytical derivatives as defined

in section 6.3; in both cases the gluon mass is fixed to A\? = 1076,

For the spatial momentum k = (0,0, 0) I expect both the W; and the W5 subtraction
functions to vanish for all kg (I checked this in MATHEMATICA by coding up the
functions explicitly). As can be seen from Figs. H.1 and H.2 this is only true if I use
analytical derivatives. Otherwise there is a narrow but sizable peak in the integrand

which has large contributions to the integral.

To demonstrate that it is legitimate to use numerical derivatives for noninfrared
momenta I also compare the corresponding quantities for k = (0.2,0.2,0.2) in Figs.
H.3 and H.4. Here, even though the integrand is very large in some regions of phase

space, the agreement between the two curves is very good.
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H.1. Structure of the integrand
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A2 numerical analytical
1071 —1.556(4)  —1.560(5)
1072 —1.63(1) —1.63(1)
1073 —1.63(3) —1.63(2)
1074 —1.5(1) —1.68(3)
1075 —1.2(3) —1.69(3)
1076 —1.9(9) —1.70(4)
1077 — —1.65(5)
1078 — —1.60(6)
107° 8.5(35.8) —1.64(7)
10710 — —1.52(9)
10~ — —1.57(10)

10712 —9500(1300) —1.54(11)

Table H.1: Integration results for W for various gluon masses \? both with numerical finite
differences and analytical derivatives. The results in the second column for A < 107 are
clearly dominated by statistical errors.

H.2 Integral for small gluon masses

Having identified a potential infrared instability I now integrate the subtraction function
for Wy for a range of gluon masses. In Tab. H.1 and Fig. H.5 I present my results (10
iterations, 20,000 function evaluations) both for numerical and analytical derivatives.

For A2 > 1073 the final value for I}SUb) is within statistical errors independent of
whether I use finite differences or analytical derivatives. For smaller gluon masses,
however, the results obtained with numerical derivatives are no longer stable. The
errors on the results from analytical derivatives show a slight increase as the gluon
mass is reduced to below 1079 but become essentially independent of A\?. I conclude

that it is legitimate to use A2 = 1076,

H.3 Subtracted lattice integrals

To verify that the integrals in section 6.4.1 which are constructed from lattice Feynman
rules are indeed independent of the gluon mass I evaluate the different contributions
to Wy and Wy for various values of A\. This also confirms that no instabilities are
introduced by using a numerical approximation for higher order derivatives in the
tadpole diagram. I carry out the calculation for the simpler action setup with a Wilson

gluon action described in [122].
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Figure H.5: W, for various gluon masses \°.

I calculate W; and Wy by evaluating the integrals in (6.21) and (6.22). Due to
the different action definition in [122] the derivative operators in (6.19) are modified
slightly, D1 is replaced according to

Dif — Dif

0 0?
) gt~ gRels)

<1+%>Re{f}—2<l+ !

0? 0°
, 0
+ m apgapgRe{f}'

(H.1)
As only the derivatives generate large peaks in the integrand I use a modified version
if Dy acts on the subtraction function.

D§Sub) f (Sub)

Dy fBU) — (1 + %) Re{fu)}, (H.2)
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N Do Dispee L0 W
1073 5.375(4) 0.9325(9) —5.587(4) 0.721(6)
1075 5.439(4) 0.9325(9) —5.663(1) 0.709(4)
1079 5.442(4) 0.9326(9) —5.665(2) 0.710(5)
10712 5.442(4) 0.9338(9) —5.665(3) 0.711(5)

Table H.2: The integrals llat=sub) = y(lat) and I}SUb) and their sum Wy for different

1,rainbow ' ~1,tadpole
2 p(lat) . . S
squared gluon masses \“. ILtadelC was evaluated using numerical finite differences whereas

analytical derivatives were used for the other integrals.

I finally find

W, = I(lat—sub) +I(1at) +I£sub) (H3)

1,rainbow 1,tadpole

d4k ~ lat ~(sub su d4k ~ lat
= / (27.‘-)4 [ler(ain])oow - Dg )f( b)] +/ let(adrzolc

(2m)*
d'k 7 (sub) £(sub)
+ /(271_)4131 f .

For Wy I use the expression in (6.22).
For the action in [122] with m = 2.0, n = 2 as above I evaluate the three integrals

in (6.21) for a range of gluon masses \2.

e Lattice rainbow. I ran 10 iterations, 200,000 function evaluations (both for

I (lat —sub) On 64 cores this

thermalisation and measurement) of the integral I} ... .

takes not more than two hours.

e Lattice tadpole. With the same number of iterations and function evaluations I

calculate I (lat)

1 tadpole” As I use numerical finite differences the integration can be

carried out in half an hour on 64 cores. I use 6p = 1076 in the finite differences.

I§Sub) is much

e Subtraction integral. Evaluation of the subtraction integral
cheaper. On 64 cores 20,000,000 function evaluations and 10 iterations take

around 30 minutes.

The results are summarised in Tab. H.2 and Fig. H.6.

As can be seen from Fig. H.6 the results are independent of the gluon mass for
A2 < 1075 within statistical errors. To obtain a final result I take the weighted average
of the results for A2 < 1076, This gives.

W, = 0.710(2) (H.4)
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Figure H.6: The integrals I}l?;i_rﬁ)}ig + I£SUb), ‘[}l?gipole and and their sum W for different
squared gluon masses \2. I{{?;?ipole has been evaluated using numerical finite differences

whereas analytical derivatives were used for the other integrals. The top panels show the
contributions from the different integrals separately.

207



Appendix H. Infrared stability

N Do Dtapee W
1073 0.00025(7) 0.02215(2)  0.02240(7)
1076 0.00020(7) 0.02215(2) 0.02235(7)
1072 0.00026(7) 0.02214(2)  0.02240(7)
10712 0.00027(7) 0.02215(2)  0.02242(7)

Table H.3: The integrals Iélfimilgzg Ig?;?ipolo and their sum Wy for different squared gluon
I(lat)

2 . . .. . .
masses A°. 2 tadpole WaS evaluated using numerical finite differences whereas analytical
derivatives were used for the subtracted rainbow integral.

Using

) 1 1\ *!

I finally obtain with m = 2.0 and n = 2

= —0.946(3). (H.6)
This is in perfect agreement with the value of ng) in Fig. 2 of [122].
I repeat the same analysis for W5. The results are listed in Tab. H.3 and plotted
in Fig. H.7. Again average the results for A2 < 1076 to I find

W, = 0.02239(4). (H.7)
Using

&= 2uamw, (H.8)
I finally obtain

AP = 1.075(2). (H.9)

This is in perfect agreement with the value of ng) in Fig. 2 of [122].

I summarise that the dependence on the gluon mass is very weak and it is not

necessary to extrapolate in \.
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gluon masses A\2. Numerical finite differences are used for I.

evaluated with analytical derivatives.
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and their sum W5 for different squared

all other integrals are
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Appendix I

Radiative corrections to currents in the

continuum

In this appendix I evaluate one-loop corrections to the vector and tensor operators with

Dirac structure v* and mo*” in the continuum to O(1/m). In QCD they are given by

I

jn%

d i N m

X e + (wavefunction counterterms) (I.1)

S [ 8 4B it 5070 + 07y

(—igTu’?),

Ak e o et ) i P+ m)
/(2ﬂ)d(—ng N /2)7;) (k + p2) mo’ (k+p)2 —m?2

—i )
+ (wavefunction-, mass- and operator counterterms)

X2 e

Qs

3 ) 1TH AP I B+ m), (1.2)

+ B((SZQ +0Zy) + 02y, — 5ZT] mot”

where I write three-point integrals as

d
[ty = remgeye [ X e )

i@2m)? ((k+p)? —=m?)(k +p')2 (k> — A?)
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Appendix I. Radiative corrections to currents in the continuum

.1 Basis integrals

I solve integrals for up to two loop momenta in the numerator, [, {1,k* k*k"}.

Introducing Feynman parameters I find

1 1 dk ALK RPRY Yok (1—y)p—y(1—a)p!)
LR R = 327T2/ dl‘/ d / y VT y)p—y(l—x)p
Ik } o WY iy (2 = )

(L4)

with A(s) = (1 — y)?m? + y(1 — y)(1 — z)s + yzA%. Expanding in s = 2p - p these can
(

be reduced to nine scalar basis integrals anm), 5(15:”)

1
/Al = JO(s) = =alP + ..., (1.5)
1 1
/Ak:“ = Jl(l)(s)p“ + Jél)(s)p'“ = <Hag ) —5(1(1)) '+ Wagl)p/“ +...,

/ EFEY = J1(2)(8)g“” + J2(2)(s)p“p" + Jéz)(s)(p“p”' + p*p¥) + Jf)(s)p/“p"’ +...
A
_ (@5 @) L @, 8 @ v
= (al + Wdal >g“ + <Wa2 + W&Lz )p“p
1
+ Wai(f) (p,up/u + p/upu) 4.

As an instructive example consider the evaluation of 5a§1). In this case the numerator
in (I4) is given by T(k— (1—y)p—y(1—2)p') = k* — (1 —y)p" — y(1 — 2)p* and to pick
up agl) and 5&&1) I only keep the term proportional to p*. I expand the denominator

in s and keep the coefficient of the linear term which is

o 1
0s [k — A(s)

_ 3y —y)(1 —x)
o AT (L6)

(1)

After the momentum integration I can express da;’ as a Feynman parameter integral

M _ ag2a [ [ N )
da;’ = 327°m /0 dx/o dyy/i(zﬂ)diiy(l y)(1—x) (I.7)

[k2 — A(0)]*
(1—z)y*(1 —y)?
- / d$/ dy y)2m?2 + 3:3)\2]
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1.2. Matrix elements

1 1 1—y)?
sl = —%- /dyl— /dm( +“’2— > with w = L= Y)
(z+w)? z+4w yA?
. 1. 1 y\2
= -\ —A2—/ dy(1 —y)?log |1+ ——| | .
(2 0 ( ) (1-y)?
I use the abbreviation A = A/m. The remaining integral is evaluated using
MATHEMATICA and I obtain, after expanding in 5\,
2 T 1 . .
sl = — (242 4 Zlog A2 ). I.
a 3+3/\+20g +0\) (1.8)

Ignoring terms of (9(5\) and higher the remaining integrals are solved similarly, I find:

a® = — <1 + % + % log 5\2> , (1.9)
M= _Z (1 +10g/\2) : daft) = — <§ + = logV)

agl) = g + 2—7; + %log)\Q,

a§2) = i (— log m?/u? + 3> , 5ag ) = (log)\2 > ;
@ :_%, 5 §2)——%(5+2log)\2)

Note that only agz) is ultraviolet divergent with 2/€ = 2/e — vg + log 4.

1.2 Matrix elements

Expanding the matrix elements I find after some Dirac algebra

v v)p* 1% vy s p!
My = b0 s bl >m + b >—2— O(1/m?)
(5M(T) = bgT)ma“”—FbgT)%(’y“p'”—’y” 'Y +b(T)T; mot + O(1/m?).
(L10)

Using on-shell counterterms for the massless and heavy quark as given in (D.6), (D.7)

and (D.11) and absorbing the UV divergence in the non-conserved tensor current in
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Appendix I. Radiative corrections to currents in the continuum

the M S scheme by choosing 6Z7 = —4a,/(37)2 T obtain for the vector current

€

b§V) = ;—; <4(1 - e)a§2) + 2a§2) + 2ag1)> + %(52@ +6Z,) (I.11)
(1)

) = S = 2

) = 2?—;(2&&2) + 608 +al? + a® + 6alV + alV +alV)

biv) = ;-;(—4)@%2) + agl)) = ?—; <log A2 4 %)

bév) = g—;(—él)&agz) = ?—; <g + log 5\2>

and for the tensor current

1) _ %y, 1 s Qs (2T 3, 4o 2/ 2
by = 37T2a1 + 2((5ZQ +624) + 02y, — 027 = 3 < 13 log A* 4+ 4logm*/pu
(1) _ %/ oy (1) _ s 52

by ' = 37T( 2)a; . (1 + log A )

() _ Qs (0) (1) (1) MY _ % _§ _ 4T B <o

by _37r2 (a +ay’ +d0ay’ +ay > 3 < 373 2log A (L.12)

1.3 Comparison to the literature

In [140]!, eqn. (4), the expansion coefficients of the time component of the axial

vector current are given as aq,...,as. Due to chiral symmetry of the light quark they
can be compared to bgv),...,bév) in (I.11). As s = 2p-p' I expect a3 = 1+ bgv),
ag = bgv), as = 2b§v), ay = bflv) and as = 2bév). I find perfect agreement for all

(V)

IR divergent terms, there is, however, a mismatch for the IR finite term in a3 < by ’.
This discrepancy is not relevant for the results presented in this thesis as I only consider

radiative corrections to the leading order currents.

T would like to thank Junko Shigemitsu for providing me with further details of the calculation.
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1.3. Comparison to the literature

Anomalous dimension of the tensor operator

The anomalous dimension of the tensor operator is given by

1 dZ
™ = 2T 1.13
7 Zr dlog u (L.13)
If the counterterm Zp is expanded in inverse powers of ¢,
L
Zr =1 —7Z I.14
T + kE::l kT ( )

and the p dependence of the coupling dg(u)/dlog i = —eg/2+ [(g) is used this implies
that

con dZ(l) 8a8
7(T ) = —g? d;z =3 (I.15)

This agrees with what is found in [45].
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Appendix J

Infrared subtraction functions

In this chapter I discuss infrared subtraction functions which are added to the lattice
integrand to improve the convergence of infrared divergent VEGAS integrals. I solve

the subtraction integral analytically.

J.1 Wavefunction renormalisation

A subtraction function for the rainbow diagram in Fig. 5.1 needed in the calculation

of the heavy quark wavefunction renormalisation can be constructed as follows:
At lowest order in the heavy quark expansion the continuum integrand (in Euclidean

space) is given by

1

aX = /%(—QT“UM)Déo) (Wb +p)(—9T"0) 155 (J.1)
where vg = i and the heavy quark propagator is in the static limit
D%, k) = kg_‘ﬁ (J.2)
Furthermore the derivative with respect to pg at p = 0 is
8D20)(Uap+k‘) _ _i< —i >2_ (1.3)
Opo p=0 ko —iv - k

Inserting this into the integral for 2; one will obtain both a logarithmic infrared and a
logarithmic ultraviolet divergence. To render the integral UV finite without changing

the infrared behaviour I replace

—1 2ym
_— —
ko —iv -k (k +mu)? +m?

(J.4)
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Appendix J. Infrared subtraction functions

and find

angsum = Im{/

d*k , 2ym 2 .
(2W)4(—gT“vu)(—z) ((k—i—ml)? +m2> (=gT ”“)m}'

Evaluating integral (J.5) and neglecting all terms which vanish in the limit \/m — 0

I obtain the analytical expression

su 2
Qi) = —5 - log X*/m? + O(\/m). (J.6)

J.2 Higher order kinetic terms

The integrand I use as a subtraction function for the evaluation of higher order kinetic
terms in the NRQCD action in section 6.4.1 is the continuum version of the rainbow

diagram,

r 1 !
3R RN i(po + ko) + (k;rﬁz:)Q — (kp)2)? "

8m3

f(sub) - _

For p = 0 the poles are at iw4 £ € and iwy, + € with

k2 k2 2
wi:j:\/ k2+)\2, Wh = ( ) (JS)

T 2m 8md

To be able to Wick rotate back to Minkowski space the integration contour has to
separate the positive energy poles wy, wy from the negative energy gluon pole w_. It
is easy to show that wy,w, > w_ for k| < 2m (but w, < w_ for |[k|] — o0), so I
impose a hard spherical cutoff A = 2m on the modulus of the spatial momentum. This
is legitimate as it only changes the ultraviolet behaviour. I always shift the contour

midway between the two closest poles to improve convergence.

Note that the integral over Dof("?) (with Dy defined in (6.19)) vanishes due to
rotational invariance, even after imposing a hard cutoff |k| < 2m. The integral over
Dy f6"P) is evaluated numerically which can be done with very high statistics due to

the simplicity of the integrand.
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J.3. One particle irreducible corrections to heavy-light operators

J.3 One particle irreducible corrections to heavy-light opera-

tors

I construct a subtraction function for the one particle irreducible diagrams discussed

in section 7.2.1. In Euclidean space one has

'k e i a L
M; = /W[ﬂs(p')(—zﬂ ’Yp)k—fijSjU D} (k) (=97 e
= of; ﬂs(p')E§SUb)U (J.9)

where I'S; with I' = {y#, 0/} and S; = Id, Sy = — - ¥ is the Dirac structure of the
operator. Again I render the integral UV finite by replacing

(0) - —1 2ym
Dy (k) = ko —iv-k (k 4+ mu)? +m? (J.10)
As in (7.43) T write ﬂs(p’)Eg-SUb)U as follows
su d'k i
fae)s = B [ S sy o
29m 1

X TR EmE e

= X A m TS

k=1,2

I evaluate the subtraction integral analytically in Minkowski space. The matrix element

is given in (J.9)

dik )
iMj = /Wﬂs(p’)(—igT“V”)y iieiijSjU (J.12)

2myi . —1
—iaT)
G- mzra 9 e

167, [ d'k 2m us(p')ih ¥ TS;U
30 / (2m)% (k2 +ie)((k + p)2 — m? + i€) (k2 — A2 + de)

= asifj[jﬂs (p/)P/;VU.
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Appendix J. Infrared subtraction functions

The integral which needs to be solved is

d*k k
/ (2m)* (k> +ie)((k + p)* — T i€) (k2 — A2 + ic) (J.13)

5 167 (1 +1log A*/m?) + O(N/m).
From this follows
o % 12
L = -2 (1+10gX?)  and
(sub) _ 95k 2
g = -2 (1 +log A ) (J.14)

Note that due to heavy quark symmetry this result is independent of the Dirac structure

I" of the operator.

J.4 Light quark wavefunction renormalisation

The subtraction integrand for massless light quark wavefunction renormalisation in

section 7.2.1 is

321 k2 — 2k}

PO = g

exp [—k*/A?]. (J.15)

A is an arbitrary UV cutoff, and the integral is readily solved to give

Jlsub) d'k £ (k) (J.16)
) (et '
_ 1 _ 202y , L 212
= 3. (’yE logaA)+37Tloga)\ .
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