

THE $\gamma^* \gamma^* \rightarrow \eta_c(1S, 2S)$ TRANSITION FORM FACTOR FROM QUARKONIUM WAVE FUNCTIONS

Izabela Babiarz¹

¹ *The Henryk Niewodniczański Institute of Nuclear Physics Polish Academy of Sciences*

Victor P. Goncalves², Roman Pasechnik³, Wolfgang Schäfer¹, Antoni Szczurek¹

² *Instituto de Física e Matemática – Universidade Federal de Pelotas (UFPel),*

³ *Department of Astronomy and Theoretical Physics, Lund University*

Abstract

We discuss $\gamma^* \gamma^* \rightarrow \eta_c(1S), \eta_c(2S)$ transition form factor for both virtual photons. The general formula is given. We use different models for the $c\bar{c}$ wave function obtained from the solution of the Schrödinger equation for different $c\bar{c}$ potentials: harmonic oscillator, Cornell, logarithmic, power-law, Coulomb and Buchmüller–Tye. We showed some examples of wave functions in the Light Front representation as well as in the rest frame of $c\bar{c}$. We compare our results to the BaBar experimental data for $\eta_c(1S)$, with one real and one virtual photon, and to the values collected by the Particle Data Group for the form factor $F(0, 0)$, decay width $\Gamma_{\gamma\gamma}$ and decay constant f_{η_c} . We also consider the non-relativistic limit for $F(0, 0)$ with the wave function evaluated at the origin $R(0)$.

1 Introduction

In the last few years, the pseudoscalar charmonium states $\eta_c(1S)$ and its radial excitation $\eta_c(2S)$ have been paid a lot of attention from both theoretical ^{1, 2)} and experimental ^{3, 4, 5)} sides. So far the collaboration CLEO, BABAR, Belle, L3 Collaboration have extracted the transition form factor for light mesons (π^0, η, η') from events, where only one of the leptons in the final state could be measured. Similar researches were done for $\eta_c(1S)$ by the BABAR collaboration. The study of transition form factor for both-off shell photons is motivated by the possibility of accurate measurement of the double-tag mode, considering the high luminosity for Belle2.

The matrix element for the $\gamma^* \gamma^* \rightarrow \eta_c$ fusion can be written with the help of the form factor $F(Q_1^2, Q_2^2)$:

$$\mathcal{M}_{\mu\nu}(\gamma^*(q_1)\gamma^*(q_2) \rightarrow \eta_c) = 4\pi\alpha_{\text{em}}(-i)\varepsilon_{\mu\nu\alpha\beta}q_1^\alpha q_2^\beta F(Q_1^2, Q_2^2), \quad (1)$$

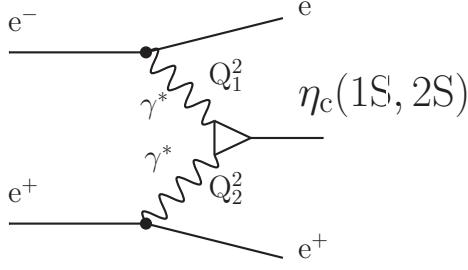


Figure 1: Feynman diagram for the process $e^+e^- \rightarrow e^+e^-\eta_c(1S, 2S)$.

where $Q_i^2 = -q_i^2 > 0, i = 1, 2$ are space like virtualities of the photon. To describe the $\gamma^*\gamma^*$ transition we used Light-Front Wave Function $\psi(z, k_\perp)$ and $F(Q_1^2, Q_2^2)$ takes the form ⁶⁾:

$$F(Q_1^2, Q_2^2) = e_c^2 \sqrt{N_c} 4m_c \cdot \int \frac{dz d^2\mathbf{k}}{z(1-z) 16\pi^3} \psi(z, \mathbf{k}) \left\{ \frac{1-z}{(\mathbf{k} - (1-z)\mathbf{q}_2)^2 + z(1-z)\mathbf{q}_1^2 + m_c^2} \right. \\ \left. + \frac{z}{(\mathbf{k} + z\mathbf{q}_2)^2 + z(1-z)\mathbf{q}_1^2 + m_c^2} \right\}. \quad (2)$$

Here (z, \mathbf{k}) are light-front variables, z and $1-z$ is fraction of longitudinal momentum of η_c and \mathbf{k} is the relative momentum of the quark and antiquark in the center-of-mass of the $c\bar{c}$ system. In Fig. 2 we present the dependence of the transition form factor on the photon virtualities Q_1^2 and Q_2^2 .

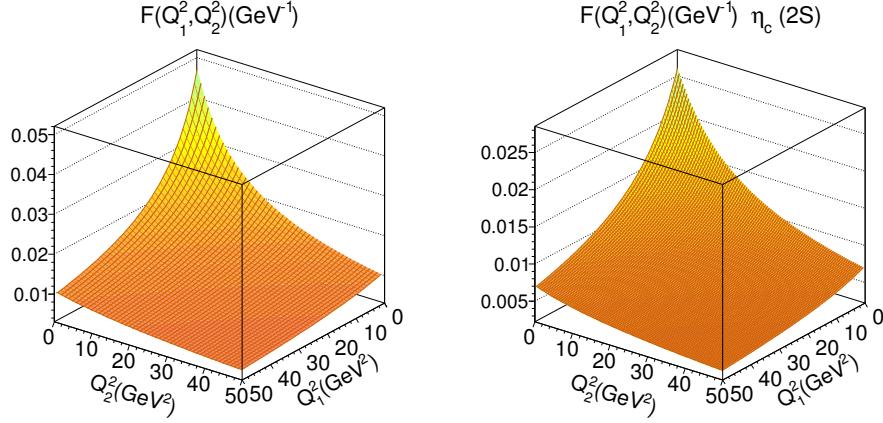


Figure 2: Transition form factor for $\eta_c(1S)$ and $\eta_c(2S)$ for Buchmuller-Tye potential.

2 Radial momentum-space wave function and Terentev prescription

The radial wave function in the rest frame of the quark-antiquark system is obtained from the Schrödinger equation:

$$\frac{\partial^2 u(r)}{\partial r^2} = (V_{\text{eff}}(r) - \epsilon)u(r), \quad (3)$$

where $u(r) = \sqrt{4\pi} r \psi(r)$, and $V_{\text{eff}}(r)$ is the effective potential, as described in Ref [7].

Then we transform $u(r)$ into the momentum space wave function

$$\int_0^\infty |u(r)|^2 dr = 1 \Rightarrow \int_0^\infty |u(p)|^2 dp = 1. \quad (4)$$

One can notice in Fig. 3 that each wave function $u(p)$ has slightly different behaviour, dependent on the applied effective potential and related to the model c quark mass. For further calculation we used the

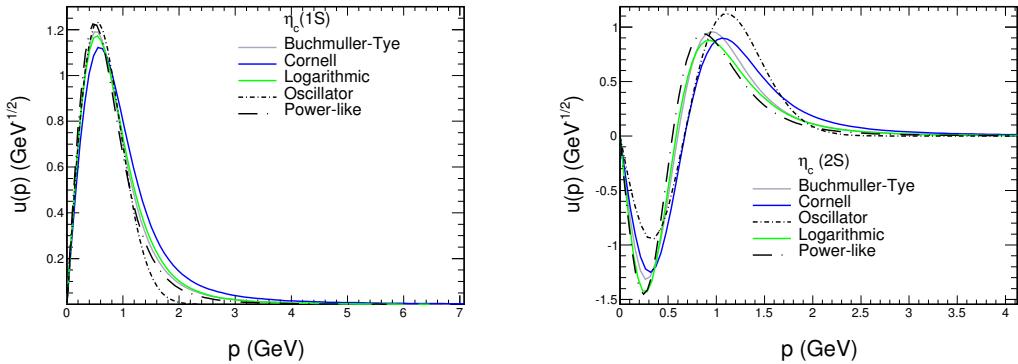


Figure 3: Radial momentum-space wave function for different potentials. On the left-hand side the $\eta_c(1S)$ is presented, on the right-hand side the $\eta_c(2S)$.

Terentev prescription, in order to obtain the Light-Front wave function:

$$\psi(z, k_\perp) = \frac{\pi}{\sqrt{2M_{c\bar{c}}}} \frac{u(p)}{p}, \quad (5)$$

using

$$p_\perp = k_\perp, \quad p_z = \left(z - \frac{1}{2}\right) M_{c\bar{c}}, \quad M_{c\bar{c}}^2 = \frac{k_\perp^2 + m_c^2}{z(1-z)}. \quad (6)$$

Eq. (5) includes also the Jacobian factor of changing the variables of the integration. An example of the light cone wave function is shown in Fig. 4, for the Buchmüller-Tye potential model. One can observe that the wave function is strongly peaked around z equal to 1/2.

3 $F(0,0)$ transition for both on-shell photons

In order to write the formula for both on-shell photons, we can simplify Eq. (2):

$$F(0,0) = e_c^2 \sqrt{N_c} 4m_c \cdot \int \frac{dz d^2 k_\perp}{z(1-z) 16\pi^3} \frac{\psi(z, k_\perp)}{k_\perp^2 + m_c^2}, \quad (7)$$

and then the relation between the two-photon decay width and $F(0,0)$ can be expressed by:

$$\Gamma(\eta_c \rightarrow \gamma\gamma) = \frac{\pi}{4} \alpha_{\text{em}}^2 M_{\eta_c}^3 |F(0,0)|^2. \quad (8)$$

The so-called decay constant f_{η_c} can be extracted numerically by integrating over variable z in the equation:

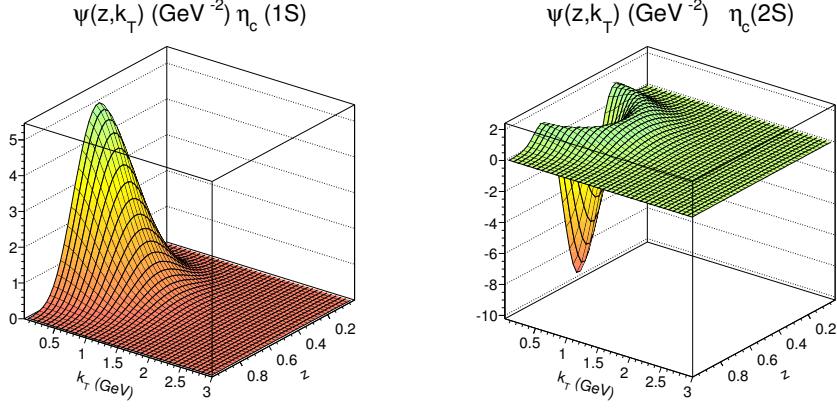


Figure 4: Radial light-front wave function for the Buchmüller–Tye potential.

$$f_{\eta_c} \varphi(z, \mu_0^2) = \frac{1}{z(1-z)} \frac{\sqrt{N_c} 4m_c}{16\pi^3} \int d^2 k_\perp \theta(\mu_0^2 - k_\perp^2) \psi(z, k_\perp), \quad (9)$$

with the following normalization of the distribution amplitude: $\int_0^1 dz \varphi(z, \mu_0^2) = 1$.

$F(0,0)$ can be rewritten in terms of the radial momentum-space wave function $u(p)$:

$$F(0,0) = e_c^2 \sqrt{2N_c} \frac{2m_c}{\pi} \int_0^\infty \frac{dp p u(p)}{\sqrt{M_{c\bar{c}}^3(p^2 + m_c^2)}} \frac{1}{2\beta} \log \left(\frac{1+\beta}{1-\beta} \right), \quad (10)$$

In the non-relativistic (NR) limit, where $p^2/m_c^2 \ll 1$, $\beta \ll 1$, and $2m_c = M_{c\bar{c}}$ or $2m_c = M_{\eta_c}$, we obtain

$$F(0,0) = e_c^2 \sqrt{N_c} \sqrt{2} \frac{4}{\pi \sqrt{M_{\eta_c}^5}} \int_0^\infty dp p u(p) = e_c^2 \sqrt{N_c} \frac{4 R(0)}{\sqrt{\pi M_{\eta_c}^5}}, \quad (11)$$

where $\beta = p/\sqrt{p^2 + m_c^2}$ and $R(0)$ is the radial wave function at the origin. The values of the transition form factor with both photons on-shell, decay constant as well as decay width $\Gamma_{\gamma\gamma}$ are collected in Table 1 for $\eta_c(1S)$ and in Table 2 for $\eta_c(2S)$.

Table 1: *Transition form factor $|F(0,0)|$ for $\eta_c(1S)$ at $Q_1^2 = Q_2^2 = 0$.*

potential type	m_c [GeV]	$ F(0,0) $ [GeV $^{-1}$]	$\Gamma_{\gamma\gamma}$ [keV]	f_{η_c} [GeV]
harmonic oscillator	1.4	0.051	2.89	0.2757
logarithmic	1.5	0.052	2.95	0.3373
power-like	1.334	0.059	3.87	0.3074
Cornell	1.84	0.039	1.69	0.3726
Buchmüller–Tye	1.48	0.052	2.95	0.3276
experiment	-	0.067 ± 0.003 ⁸⁾	5.1 ± 0.4 ⁸⁾	0.335 ± 0.075 ⁹⁾

We calculated the normalized transition form factor: $F(Q^2, 0)/F(0,0)$ with the aim of comparing our results with the experimental data obtained by the BABAR collaboration ¹⁰⁾, see Fig. 5. The

Table 2: *Transition form factor $|F(0,0)|$ for $\eta_c(2S)$ at $Q_1^2 = Q_2^2 = 0$.*

potential type	m_c [GeV]	$ F(0,0) $ [GeV $^{-1}$]	$\Gamma_{\gamma\gamma}$ [keV]	f_{η_c} [GeV]
harmonic oscillator	1.4	0.03492	2.454	0.2530
logarithmic	1.5	0.02403	1.162	0.1970
power-like	1.334	0.02775	1.549	0.1851
Cornell	1.84	0.02159	0.938	0.2490
Buchmüller-Tye	1.48	0.02687	1.453	0.2149
experiment [8)	-	0.03266 ± 0.01209	2.147 ± 1.589	-

right panel of Fig. 5 presents the prediction for the normalized transition form factor for $\eta_c(2S)$. Rather different results are obtained with each potential model. We noticed that the best description of the data is given by the model with $m_c = 1.334$ GeV. Moreover, we observed a strong dependence on the quark mass.

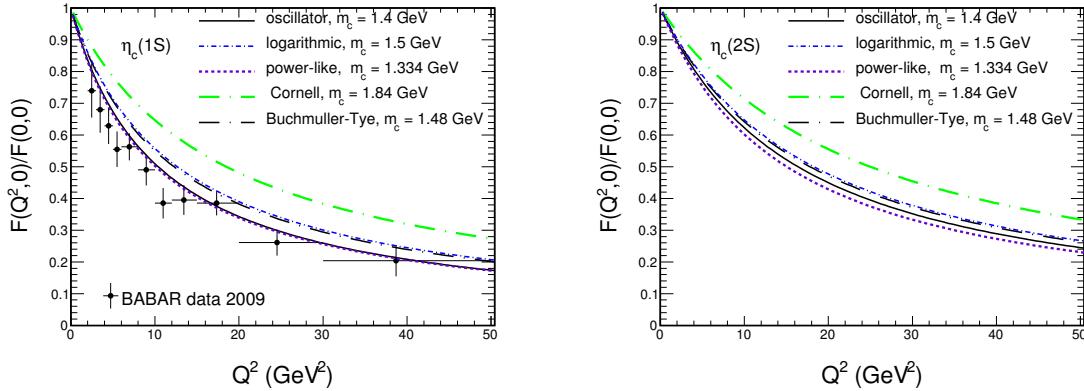


Figure 5: *Normalized transition form factor: $F(Q^2,0)/F(0,0)$ as a function of photon virtuality Q^2 . The BABAR data are shown for comparison [10]*

4 Conclusion

The transition form factors for different wave functions, obtained as a solution of the Schrödinger equation for the $c\bar{c}$ system for different phenomenological $c\bar{c}$ potentials from the literature, were calculated in Ref [6], where more details and results can be found. We have studied the transition form factors for $\gamma^*\gamma^* \rightarrow \eta_c(1S, 2S)$ for two space-like virtual photons, which can be accessed experimentally in future measurements of the cross section for the $e^+e^- \rightarrow e^+e^-\eta_c$ process in the double-tag mode. The transition form factor for only one off-shell photon as a function of its virtuality has been studied and compared to the BaBar data for the $\eta_c(1S)$ case. The dependence of the transition form factor on the virtuality has been studied as well.

References

1. V. L. Chernyak *et al.*, Prog. Part. Nucl. Phys. **80**, 1 (2014).

2. H. Y. Ryu *et al.* Phys. Rev. D **98**, no. 3, 034018 (2018).
3. R. Aaij *et al.* [LHCb Collaboration], Phys. Lett. B **769**, 305 (2017).
4. Y. Hu [BESIII Collaboration], arXiv:1906.08998 [hep-ex].
5. Z. Metreveli, eConf C **070805**, 16 (2007).
6. I. Babiarz *et al.*, Phys. Rev. D **100**, no. 5, 054018 (2019).
7. J. Cepila *et al.*, Eur. Phys. J. C **79**, no. 6, 495 (2019).
8. M. Tanabashi *et al.* [Particle Data Group], Phys. Rev. D **98**, no.3, 030001 (2018).
9. K. W. Edwards *et al.* [CLEO Collaboration], Phys. Rev. Lett. **86**, 30 (2001).
10. J. P. Lees *et al.* [BaBar Collaboration], Phys. Rev. D **81**, 052010 (2010).