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We reconsider the tensionless limit on bosonic closed string theory, where the 3D Bondi-Metzner-Sachs
(BMS) algebra appears as symmetries on the world sheet, as opposed to two copies of the Virasoro algebra
in the case of the usual tensile theory. This is an ultrarelativistic limit on the world sheet. We consider the
induced representations of the BMS algebra in the oscillator basis and show that the limit takes the tensile
closed string vacuum to the “induced” vacuum, which is identified as a Neumann boundary state. Hence,
rather remarkably, an open string emerges from closed strings in the tensionless limit. We also follow the
perturbative states in the tensile theory in the limit and show that there is a Bose-Einstein-like condensation of
all perturbative states on this induced vacuum. This ties up nicely with the picture of the formation of a long
string from a gas of strings in the Hagedorn temperature, where the effective string tension goes to zero.
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Introduction.—The very recent first visual evidence of
the existence of black holes has reignited interest in the
field of gravity and what lies beyond Einstein’s theory, even
in the nonscientific world. Quantum gravity has been the
holy grail of modern theoretical physics for several decades
now. Of the explored avenues, string theory remains the
most viable framework to construct a quantum theory of
gravity. String theory is endowed with an intrinsic length
scale, the tension of the fundamental string Ty = (1/2zd’).
In the infinite tension limit, string theory reduces to a
quantum field theory and hence loses its stringyness. The
other extreme limit, the tensionless one, hence explores the
ultrastringy nature of string theory, where the quantum
effects of gravity would be the strongest. In this note, this is
the regime we are interested in.

The tensionless regime of string theory has long been the
source of great intrigue. This singular limit is the analog of
the massless limit of the point particle and the strings, as in
the point particle case, become null [1]. In this limit, it has
been long speculated (see e.g., [2]) that the distinction
between closed and open strings become blurred. In this
note, we put forward concrete calculations based on the
underlying world-sheet symmetries of the tensionless
string, to show how, contrary to conventional wisdom
[3], open strings emerge from closed strings in the
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tensionless limit. We also find a surprising condensation
of all perturbative closed string degrees of freedom on the
emergent open string, leading us to speculate that this is the
indication of a phase transition.

Classical tensionless closed strings.—We start with a
quick recap of the important features of the classical
tensionless closed string theory. The Polyakov action for
bosonic tensile string theory is

T

S
2

[ eevmaroxoxn.
The action is invariant under world-sheet diffeomorphisms
and gauge fixing is required. It is convenient to fix the
conformal gauge g,s = e"’naﬁ, but there is still some gauge
symmetry left over. This residual symmetry is given by two
copies of the Virasoro algebra with generators £, L,
following:

Zm(m® = 1)8n0. (2)

[‘Cmv[:n]:(m ]2

—n)Lopyn +
The signature of the tensionless limit is that the world-sheet
metric g% degenerates as we take tension to zero. This can
be explicitly shown by looking at the Hamiltonian formu-
lation when one equates the phase space action to the
Polyakov form [4]. We implement this by replacing
T\/=g99" by VeVP, where V* is a vector density. The
action in the T — 0 limit then becomes [4]

S:/fww%xmww. (3)
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This action is again invariant under world-sheet diffeo-
morphisms, and one needs to fix gauge. In the tensionless
analog of the conformal gauge V* = (1, 0), there is again a
residual symmetry, which in this case turns out to be the 3D
Bondi-Metzner-Sachs algebra (or equivalently the 2D
Galilean conformal algebra) [4-7]:

C
[Lmv Ln] = (m - n)Lm+n + ém(mZ - 1)6m+n,07
[Lthn] = (m - n)MWH—n + %m(mz - 1)6m+n,07
[Mm’ M”] = 0' (4)

This algebra also appears as the asymptotic symmetries of
3D flat spacetimes at null infinity [8] (thus has been used in
studies of holography in flat spacetimes, see, e.g., [9,10])
and also in nonrelativistic conformal systems [11,12]. In (4)
above, c¢;, ¢y, are central charges consistent with Jacobi
identities.

In the tensionless limit, the fundamental string grows
long and floppy, and the length of the string becomes
infinite. For the coordinates on the world sheet, this limit is
best viewed as [7]

T — €1, c— o0, with e€—0. (5)
This is an ultrarelativistic or Carrollian limit on the world
sheet [7,13], where the (world-sheet) speed of light goes to
zero. It can also be thought of as an infinite boost that
makes an ordinary string into a null string. In terms of the
generators, this takes the form

Ln = [’n - E—n’ Mn = e(‘cn + E—n)' (6)

We now turn to mode expansions of the bosonic tensionless
string. In the V* = (1,0) gauge, the action can be used to
derive equations of motion and constraints

02X" =0, (0.X)?=0,X-0,X=0. (7

The equations of motion can be solved to yield the mode
expansion [14]

Xt (6,7) = x* + V2c'Byr + \/2C’Zi (Al — intB})e™n°

w0 1t
(8)

Here, we have already put in closed string boundary
conditions X*(o,7) = X*(o + 2z, 7). Defining

Ln = ZA—m : Bm+m Mn = ZB—m ’ Bm+m (9)
m m

the constraint equations in (7) become

Ty = (L, — intM,)e™™ =0, (10a)

n

Ty =Y M,e " =0. (10b)

These combinations are the energy-momentum tensors of a
2D Bondi-Metzner-Sachs (BMS) invariant field theory
and can be derived just from the symmetry algebra. The
classical algebra of the oscillator modes (A, B) is

{A¢1l13AZ} = {BﬁlvBZ} = 07 {A,rlnaBZ} = _Ziméern’//W-

(11)

This is not the algebra of harmonic oscillator modes. This
will be an important point as we go forward. One can obtain
the mode expansion (8) by looking at the tensile mode
expansion and using the limit (5). This relates the tensile
oscillators (a, &) to (A, B)

1

Ve

It can be easily seen that using (9) and the above relation (12),
we get back (6).

BMS representation theory.—We now turn to the rep-
resentation theory of the symmetry that underlines the
theory of tensionless strings, viz. the BMS; algebra.
Relevant work in this direction includes [15-17]. An
important class of representations for the BMS; algebra
is the so-called massive modules [17]. The Hilbert space of
such a module contains a wave function |M, s) satisfying

A =—(dy =),  Bh=\eld+d,). (12)

My|M,s) =M|M,s), Lo|M,s) = s|M,s), (13a)

M,M,s)=0 V n#0. (13b)
This defines a 1D representation of the subalgebra of
BMS; spanned by {L, M, c;,cy}. This can be used to
define an induced BMS module with basis vectors
|¥) =L, L,, ....L, |M,s). (14)
Here, ny > n, > --- > n; are integers that can be both
positive or negative. We wish to now understand how this is
related to the parent 2D CFT representations. In the highest
weight representations of the Virasoro algebra, primary
states |h, h) are given by

Lo|h, h) = h|h, k), Lo h, h),

Wy =T

(15a)

L, n>0.

h,h) =0=L,|h,h), (15b)
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Following the ultrarelativistic limit (6), this translates to

1 _ 1 _

<Ln +M”) |h, ) = <L_n —M_,,) \h.h) =0, n>0.
€ €

(16)

In the limit ¢ — 0, this gives (13), along with the identi-
fication

M = e(h+ h), s=h-—h. (17)
So highest weight representations of 2D CFTs become
induced representations of BMS invariant field theories in
the ultrarelativistic limit. In terms of the oscillator modes,
the induced modules are defined by
B,|M,s) =0 V n#0, B3|M,s) = M|M,s). (18)
Tensionless strings and induced representations.—We
had remarked that the (A, B) oscillators were not in a
harmonic oscillator basis. To rectify this, we define

1
Ch == (AL + Bh),

Ch =
2

1
5 (-AL, +B%,).  (19)
The algebra of the modes now becomes that of two
decoupled harmonic oscillators

[Cﬁza sz] = m5m+n,0’7/w’ [Cﬁtﬂ’ Clr/l] = m5m+n.0nlw'
The tensile and tensionless raising and lowering operators
are related by

Ch(e) = pooh + p_d-,.

Ch(e) = p_ay + poa. (20)
where
1 1
po=y(ves ). 21)

It is clear that since there is a mixing of tensile raising and
lowering operators in C, C, the C vacuum |0), defined by

|0).:Chl0), =0 =Ch|0), V¥V n>0 (22)

is different from tensile vacuum |0),, which in turn is

defined by

a’

0),:0410), =0 =a:0), V n>0. (23)

Let us now turn our attention to the vacuum in the induced
representation, which we denote by |I). We have

BYI)=0 V n. (24)

Since there is no ordering ambiguity in M, when acting
on this vacuum, the mass of the induced vacuum has
to be zero. In terms of C oscillators, the induced vacuum
conditions are

(C+ O =0 V¥ n (25)

This is the condition of a Neumann boundary state, and the
solution is given by

= Nﬁexp (—%c_n ). 9

where N is a normalization constant.
From closed to open strings.—The relation between the
C oscillators and the a oscillators is a Bogoliubov trans-
formation on the world sheet
oy = e'9C,e~'% = cosh Cly —sinh 6 C*,,,
&y = e'9C e = —sinh @ C%, 4 coshO Ch, (27)

where

o0 i i ~1
G=i> 6[C.,.C,-C.Cl. tanh@:;—l. (28)

n=I
We can use this to relate the two vacua:

10)e = exp[iG][0).

1 Il 29 tanh @ -
= (C()M) Hexp[ p c_nc_n] 0).  (29)

Using the regularization: 1 +1+ 1400 = {(0) = -1
we finally get

= tanh 6 ~
0), = Veosh 6 [ [ exp {an c.,- c_n] 0),.  (30)
n
n=1

From the point of view of |0),., |0), is a squeezed state.

Now let us elucidate how an open string emerges from a
closed string as we take tension to zero. When ¢ = 1,
tanh @ = 0, and we have |0), = |0),. This is the closed
string vacuum. As € changes from 1, from the point of view
of the C observer, the vacuum evolves. It becomes a
squeezed state as shown in (30). In the limit where
€ — 0, we have tanh § = —1. The relation is thus

[ 1 .
00, =N TTewp |5 oo Cor 00 6D

This is exactly the induced vacuum |) that we introduced
in (24)—(26). As we mentioned there, this is a Neumann
boundary state. This is thus an open string free to move in
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String grows long
and floppy as
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Decreasing String Tension

Emergent open string in the tensionless limit

FIG. 1. Formation of open strings from closed strings.

all dimensions [18]. We have thus obtained an open string
by taking a tensionless limit on a closed string theory.
Physically, how this is happening can be visualized as
in Fig. 1.

An open string with Neumann boundary conditions in
all directions can also be interpreted as a space-filling
D25-brane. An intuitive picture of how a closed string
becomes a space-filling brane is shown below in Fig. 2.

Computing the central charges of the residual symmetry
algebra in this induced vacuum |I), we are led to conclude
that ¢; = ¢y = 0. For ¢); = 0, we can use an analysis of
null vectors in the BMS; algebra to show that there is a
truncation of the algebra to its Virasoro subalgebra [12].
Thus, in this case, when we dial ¢ away from 1, the
symmetry algebra stays two copies of the Virasoro algebra,
until it reaches € = 0, where it becomes BMS;, which in
turn reduces to a single copy of the Virasoro algebra due
to the absence of the central term c,;. So even from this
perspective, there is a clear hint of an open string appearing
from the closed string world sheet as the tension is dialed
down to zero.

Bose-Einstein condensation on the world sheet.—We
now describe a novel process by which this emergent open
string is formed from the states of the tensile closed string
theory. Consider any perturbative state in the original
tensile theory |¥) = &,,a",a",|0), where £, is a polari-
zation tensor. Let us attempt to understand the evolution of
the state as ¢ — 0. Close to ¢ = 0, the @ vacuum can be
approximated as follows

10)g = 1) +elly) + €|I) +---.

Tensne_ String grows longer and fills out spacetime as tension decreases Space-filling
closed string D-brane

c o BN

tension = L tension =0

Decreasing string tension

FIG. 2. Formation of space-filling D-brane from closed strings.

In this limit, the conditions on the @ vacuum (a,|0), =
@,|0), = 0,n > 0) translate to

B,I)=0 V n#0,

An|1>+Bn|11>:Ov A—n|I>_B—n|Il>:O’ n>0.

(32)

One can now take this limit on the state |¥) = a_,a_,|0),
(where now we have suppressed the spacetime indices),
which is now rewritten as

LBy + AL (B, — A (1) +el}) + ).

€

%)
Using the commutation relations and (32), we can show

|¥) - K|I) ase—0, (33)
where K is a level dependent constant: K =2nn*“¢,,.
Thus, all perturbative closed string states condense on the
open string induced vacuum. This condensation is like a
Bose-Einstein condensation on the world sheet and is
indicative of a phase transition. We depict this in Fig. 3.
A point to note here is that this is independent of the level of
the state, and hence very high energy perturbative states
also condense to this vacuum.

Connections with Hagedorn physics.—Let us remind the
reader that the framework of tensionless strings is useful for
addressing questions of string theory near the Hagedorn
temperature 7 . The Hagedorn temperature is the point
where the partition function of the single particle states in
string theory blows up, and it has been long speculated that
this is indicative of a phase transition to a new phase where
very different degrees of freedom arise [20]. When looking
at the theory of free strings, the Hagedorn phase transition
can be understood as follows. This is the regime where
it become thermodynamically favorable to form a long
string as opposed to heating up a gas of strings [21,22].
Strings near the Hagedorn temperature become effectively
tensionless [23,24]

Teff — TO 1 - —5. (34)

Usual tensile

string spectrum o
Bose-Einstein

condensate in
the tensionless
limit

Spacing decreases with tension, but no qualitative change

Decreasing String Tension

(Smaller lines indicate states at different levels)

FIG. 3. Bose-Einstein condensation on the world sheet.
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Here, T is the effective tension, Ty = 1/2zd’ is the usual
tension of the string, and 7 is the temperature of the system.
We propose that the induced vacuum |7) is the emergent long
string from the point of view of the world sheet.

The Bose-Einstein condensation on the world sheet
described above is also the world-sheet manifestation of
the Hagedorn phase transition. This seems to be at odds
with the observation that the Bose-Einstein condensation
is something that happens at absolute zero, while the
Hagedorn phase transition is a very high-energy phenome-
non. To clarify this, we remind the reader that the Hagedorn
temperature is related to the string tension 7y, =

(1/22v/2a'). So the tensionless limit, which is @ — oo,
from the point of view of the world sheet, drives the
Hagedorn temperature to zero, and hence relates to the
above described Bose-Einstein condensation.

Summary and future directions.—We have shown the
rather remarkable emergence of an open string from closed
strings in the tensionless limit in the context of bosonic string
theory, and also shown that there is a condensation of all
perturbative closed string modes to form this open string. It
would be of interest to take this beyond bosonic string theory
and generalize to the case of superstrings. From the point of
view of the world sheet, there are two different classical
manifestations of the tensionless superstring, which arise
from two different contractions of the fermionic generators,
which have been dubbed the homogeneous [25,26] and the
inhomogeneous tensionless superstring [27]. We wish to
examine both these limits and study the analog of the
induced representations of the underlying super BMS
algebras and see what emerges in the quantum regime.

The classical aspects of the tensionless strings, we
believe, are now well understood, and the central feature
is the emergence of the BMS algebra on the null world
sheet. The Riemannian structure of the tensile world sheet
is replaced by an emergent Carrollian structure. This is
similar to what happens for other null surfaces, like the null
boundary of flat space [28—30] and also black hole horizons
[31]. But the quantum mechanical structure is much more
intricate. We have, in this Letter, shed light on one of the
possible vacua, the induced vacuum. Depending on the
choice of vacuum structure, the resulting quantum theory
would be very different. A detailed exposition of this would
be presented in a companion article [32]. There, we would
also elaborate on other aspects of the induced vacuum.

We have just skimmed the surface of the representation
theoretic aspects of the underlying BMS algebra for the
tensionless string. There has been a recent resurgence of flat
space physics relating asymptotic symmetries with soft
theorems and memory effects (see e.g., [33] for a review).
The story in three space-time dimensions has not yet been
properly fleshed out [34], and this is in part because of the
lack of physical degrees of freedom of gravity in bulk
dimensions d = 3. The interplay between BMS symmetries
and soft theorems in d = 3 would have very interesting

consequences for the study of tensionless strings. The
analogs of soft theorems on the world sheet may tie in with
the infinite number of relations between string amplitudes
in the very high energy or equivalently the tensionless limit
of strings [36—38]. These remain active lines of inquiry, and
we hope to shed light on these aspects in the future.

We would like to thank Shankhadeep Chakrabortty for a
wonderful ongoing collaboration on aspects of tensionless
strings and discussions in this particular project as well.
Discussions with R. Basu, A. Campoleoni, R. Gopakumar,
J. Hartong, N. Igbal, and J. Simon are also gratefully
acknowledged. A.B. thanks Durham University and
Imperial College London for hosting him during the
course of this work. This work was presented at the ESI
workshop “Higher Spins and Holography” in Vienna, at the
University of Amsterdam and the University of Geneva.
A.B. thanks the respective groups for discussions and
warm hospitality. P. P. thanks the Institute for Theoretical
Physics, TU Wien for their hospitality. A. B. was supported
by the Durham Institute of Advanced Study as a CO-FUND
Fellow, and by a Mathematical Research Impact Centric
Support Grant No. MTR/2017/000740 from SERB, India.
AriB is supported in part by the Chinese Academy of
Sciences (CAS) Hundred-Talent Program, by the Key
Research Program of Frontier Sciences, CAS, and by
Project No. 11647601, supported by NSFC. P.P. is sup-
ported by a Junior Research Fellowship from ESI Vienna.

“abagchi @iitk.ac.in
Taritra@itp.ac.cn
*pulastya@iitk.ac.in

[1] A. Schild, Phys. Rev. D 16, 1722 (1977).

[2] D. Francia, J. Mourad, and A. Sagnotti, Nucl. Phys. B773,
203 (2007).

[3] Here, we are just alluding to the fact that closed string
emerge from loop diagrams in open strings, but in pertur-
bative noninteracting string theory, there is no conventional
emergence of open strings from closed strings.

[4] J. Isberg, U. Lindstrom, B. Sundborg, and G. Theodoridis,
Nucl. Phys. B411, 122 (1994).

[5] F. Lizzi, B. Rai, G. Sparano, and A. Srivastava, Phys. Lett. B
182, 326 (19806).

[6] J. Gamboa, C. Ramirez, and M. Ruiz-Altaba, Nucl. Phys.
B338, 143 (1990).

[7] A. Bagchi, J. High Energy Phys. 05 (2013) 141.

[8] G. Barnich and G. Compere, Classical Quantum Gravity 24,
F15 (2007).

[9] A. Bagchi, Phys. Rev. Lett. 105, 171601 (2010).

[10] A. Bagchi, S. Detournay, R. Fareghbal, and J. Sim6n, Phys.
Rev. Lett. 110, 141302 (2013).

[11] A. Bagchi and R. Gopakumar, J. High Energy Phys. 07
(2009) 037.

[12] A. Bagchi, R. Gopakumar, I. Mandal, and A. Miwa, J. High
Energy Phys. 08 (2010) 004.

[13] C. Duval, G. W. Gibbons, and P. A. Horvathy, J. Phys. A 47,
335204 (2014).

111601-5


https://doi.org/10.1103/PhysRevD.16.1722
https://doi.org/10.1016/j.nuclphysb.2007.03.021
https://doi.org/10.1016/j.nuclphysb.2007.03.021
https://doi.org/10.1016/0550-3213(94)90056-6
https://doi.org/10.1016/0370-2693(86)90101-2
https://doi.org/10.1016/0370-2693(86)90101-2
https://doi.org/10.1016/0550-3213(90)90627-P
https://doi.org/10.1016/0550-3213(90)90627-P
https://doi.org/10.1007/JHEP05(2013)141
https://doi.org/10.1088/0264-9381/24/5/F01
https://doi.org/10.1088/0264-9381/24/5/F01
https://doi.org/10.1103/PhysRevLett.105.171601
https://doi.org/10.1103/PhysRevLett.110.141302
https://doi.org/10.1103/PhysRevLett.110.141302
https://doi.org/10.1088/1126-6708/2009/07/037
https://doi.org/10.1088/1126-6708/2009/07/037
https://doi.org/10.1007/JHEP08(2010)004
https://doi.org/10.1007/JHEP08(2010)004
https://doi.org/10.1088/1751-8113/47/33/335204
https://doi.org/10.1088/1751-8113/47/33/335204

PHYSICAL REVIEW LETTERS 123, 111601 (2019)

[14] A. Bagchi, S. Chakrabortty, and P. Parekh, J. High Energy
Phys. 01 (2016) 158.

[15] G. Barnich and B. Oblak, J. High Energy Phys. 06 (2014)
129.

[16] G. Barnich and B. Oblak, J. High Energy Phys. 03 (2015)
033.

[17] A. Campoleoni, H. A. Gonzalez, B. Oblak, and M. Riegler,
Int. J. Mod. Phys. A 31, 1650068 (2016).

[18] See e.g., [19] for a discussion of boundary states in CFT in
the context of string theory.

[19] R. Blumenhagen and E. Plauschinn, Lect. Notes Phys. 779,
1 (2009).

[20] J.J. Atick and E. Witten, Nucl. Phys. B310, 291 (1988).

[21] S.B. Giddings, Phys. Lett. B 226, 55 (1989).

[22] D.A. Lowe and L. Thorlacius, Phys. Rev. D 51, 665
(1995).

[23] R.D. Pisarski and O. Alvarez, Phys. Rev. D 26, 3735
(1982).

[24] P. Olesen, Phys. Lett. 160B, 408 (1985).

[25] U. Lindstrom, B. Sundborg, and G. Theodoridis, Phys. Lett.
B 258, 331 (1991).

[26] A. Bagchi, S. Chakrabortty, and P. Parekh, J. High Energy
Phys. 10 (2016) 113.

[27] A. Bagchi, A. Banerjee, S. Chakrabortty, and P. Parekh, J.
High Energy Phys. 02 (2018) 065.

[28] J. Hartong, J. High Energy Phys. 08 (2015) 069.

[29] J. Hartong, J. High Energy Phys. 10 (2016) 104.

[30] A.Bagchi, A. Mehra, and P. Nandi, J. High Energy Phys. 05
(2019) 108.

[31] L. Donnay and C. Marteau, arXiv:1903.09654.

[32] A. Bagchi, A. Banerjee, S. Chakrabortty, S. Dutta, and P.
Parekh (to be published).

[33] A. Strominger, arXiv:1703.05448.

[34] See however, [35] for an initiation of work in this direction.

[35] E. Hijano, arXiv:1905.02729.

[36] D.J. Gross and P. F. Mende, Phys. Lett. B 197, 129 (1987).

[37] D.J. Gross and P. F. Mende, Nucl. Phys. B303, 407 (1988).

[38] D.J. Gross, Phys. Rev. Lett. 60, 1229 (1988).

111601-6


https://doi.org/10.1007/JHEP01(2016)158
https://doi.org/10.1007/JHEP01(2016)158
https://doi.org/10.1007/JHEP06(2014)129
https://doi.org/10.1007/JHEP06(2014)129
https://doi.org/10.1007/JHEP03(2015)033
https://doi.org/10.1007/JHEP03(2015)033
https://doi.org/10.1142/S0217751X16500688
https://doi.org/10.1007/978-3-642-00450-6
https://doi.org/10.1007/978-3-642-00450-6
https://doi.org/10.1016/0550-3213(88)90151-4
https://doi.org/10.1016/0370-2693(89)90288-8
https://doi.org/10.1103/PhysRevD.51.665
https://doi.org/10.1103/PhysRevD.51.665
https://doi.org/10.1103/PhysRevD.26.3735
https://doi.org/10.1103/PhysRevD.26.3735
https://doi.org/10.1016/0370-2693(85)90010-3
https://doi.org/10.1016/0370-2693(91)91094-C
https://doi.org/10.1016/0370-2693(91)91094-C
https://doi.org/10.1007/JHEP10(2016)113
https://doi.org/10.1007/JHEP10(2016)113
https://doi.org/10.1007/JHEP02(2018)065
https://doi.org/10.1007/JHEP02(2018)065
https://doi.org/10.1007/JHEP08(2015)069
https://doi.org/10.1007/JHEP10(2016)104
https://doi.org/10.1007/JHEP05(2019)108
https://doi.org/10.1007/JHEP05(2019)108
http://arXiv.org/abs/1903.09654
http://arXiv.org/abs/1703.05448
http://arXiv.org/abs/1905.02729
https://doi.org/10.1016/0370-2693(87)90355-8
https://doi.org/10.1016/0550-3213(88)90390-2
https://doi.org/10.1103/PhysRevLett.60.1229

