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Abstract We analyze seven different viable f (R)-gravities towards the Solar
System tests and stochastic gravitational waves background. The aim is to achieve
experimental bounds for the theory at local and cosmological scales in order
to select models capable of addressing the accelerating cosmological expansion
without cosmological constant but evading the weak field constraints. Beside large
scale structure and galactic dynamics, these bounds can be considered complimen-
tary in order to select self-consistent theories of gravity working at the infrared
limit. It is demonstrated that seven viable f (R)-gravities under consideration not
only satisfy the local tests, but additionally, pass the above PPN-and stochastic
gravitational waves bounds for large classes of parameters.

Keywords Alternative gravity theories, Post-Newtonian parameters,
Stochastic background of gravitational waves

1 Introduction

The currently observed accelerated expansion of the Universe suggests that cosmic
flow dynamics is dominated by some unknown form of dark energy characterized
by a large negative pressure. This picture comes out when such a new ingredi-
ent, beside baryonic and dark matter, is considered as a source in the r.h.s. of the
field equations. Essentially, it should be some form of un-clustered, non-zero vac-
uum energy which, together with (clustered) dark matter, should drive the global
cosmic dynamics.
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Among the proposals to explain the experimental situation, the “concordance
model”, addressed as ΛCDM, gives a reliable snapshot of the today observed
Universe according to the CMBR, LSS and SNeIa data, but presents dramatic
shortcomings as the “coincidence and cosmological constant problems” which
point out its inadequacy to fully trace back the cosmological dynamics [1].

On the other hand, alternative theories of gravity, extending in some way Gen-
eral Relativity (GR), allows to pursue a different approach giving rise to suitable
cosmological models where a late-time accelerated expansion can be achieved
in several ways. This viewpoint does not require to find out candidates for dark
energy and dark matter at fundamental level (they have not been detected up to
now), it takes into account only the “observed” ingredients (i.e. gravity, radiation
and baryonic matter), but the l.h.s. of the Einstein equations has to be modified.
Despite of this modification, it could be in agreement with the spirit of GR since
the only request is that the Hilbert–Einstein action should be generalized asking
for a gravitational interaction acting, in principle, in different ways at different
scales [2; 3].

The idea that Einstein gravity should be extended or corrected at large scales
(infrared limit) or at high energies (ultraviolet limit) is suggested by several theo-
retical and observational issues [4; 5]. Quantum field theory in curved spacetimes,
as well as the low-energy limit of String/M theory, both imply semi-classical effec-
tive actions containing higher-order curvature invariants or scalar–tensor terms. In
addition, GR has been definitely tested only at Solar System scales while it may
show several shortcomings if checked at higher energies or larger scales. Besides,
the Solar System experiments are, up to now, not so conclusive to state that the
only viable theory of gravity is GR: for example, the limits on PPN parameters
should be greatly improved to fully remove degeneracies [6].

Of course, modifying the gravitational action asks for several fundamental
challenges. These models can exhibit instabilities [7; 8] or ghost-like behavior [9],
while, on the other hand, they have to be matched with observations and experi-
ments in the appropriate low energy limit.

Despite of all these issues, in the last years, some interesting results have been
achieved in the framework of the so called f (R)-gravity at cosmological, Galactic
and Solar System scales. Here f (R) is a general (analytic) function of the Ricci
scalar R (see [10; 11; 12; 13] for review).

For example, there exist cosmological solutions that give the accelerated expan-
sion of the universe at late times [14; 15; 16; 17; 18; 19; 20; 21; 22; 23; 24]. In
addition, it has been discovered that some stability conditions can lead to avoid
ghost and tachyon solutions. Furthermore there exist viable f (R) models which
satisfy both background cosmological constraints and stability conditions [25; 26;
32; 33; 34; 35; 36; 37] and results have been achieved in order to place constraints
on f (R) cosmological models by CMBR anisotropies and galaxy power spectrum
[38; 39; 40; 41; 42; 43; 44; 45; 46; 47]. Moreover, some of such viable models lead
to the unification of early-time inflation with late-time acceleration [35; 36; 37].

On the other hand, by considering f (R)-gravity in the low energy limit, it
is possible to obtain corrected gravitational potentials capable of explaining the
flat rotation curves of spiral galaxies or the dynamics of galaxy clusters without
considering huge amounts of dark matter [48; 49; 50; 51; 52; 53; 54].
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Furthermore, several authors have dealt with the weak field limit of fourth
order gravity, in particular considering the PPN limit [56; 57; 58; 59; 60; 61; 62;
63; 64; 65; 66; 67; 68; 69; 70; 71; 72; 84] and the spherically symmetric solutions
[73; 74; 75; 76; 77; 78; 79; 80; 82; 83].

This great deal of work needs an essential issue to be pursued: we need to com-
pare experiments and probes at local scales (e.g. Solar System) with experiments
and probes at large scales (Galaxy, extragalactic scales, cosmology) in order to
achieve self-consistent f (R) models. Some work has been done in this direction
(see, e.g. [32]) but the large part of efforts has been devoted to address single data
sets (observations at a given redshift) by a single model which, several time, is not
working at other scales than the one considered. In particular, a given f (R) model,
evading Solar System tests, should be not simply extrapolated at extragalactic
and cosmological scales only requiring accelerated cosmological solutions but it
should be confronted with data and probes coming from cosmological observa-
tions. Reliable models are then those matching data at very different scales (and
redshifts).

In order to constrain further viable f (R)-models, one could take into account
also the stochastic background of gravitational waves (GW) which, together with
cosmic microwave background radiation (CMBR), would carry a huge amount
of information on the early stages of the Universe evolution. In fact, if detected,
such a background could constitute a further probe for these theories at very high
red-shift [103]. On the other hand, a key role for the production and the detection
of the relic gravitational radiation background is played by the adopted theory of
gravity [85; 86]. This means that the effective theory of gravity should be probed
at zero, intermediate and high redshifts to be consistent at all scales and not simply
extrapolated up to the last scattering surface, as in the case of GR.

The aim of this paper is to discuss the PPN Solar-System constraints and
the GW stochastic background considering some recently proposed f (R) grav-
ity models [25; 26; 32; 35; 36; 37] which satisfy both cosmological and stability
conditions mentioned above. Using the definition of PPN-parameters γ and β in
terms of f (R)-models [71; 72] and the definition of scalar GWs [87], we compare
and discuss if it is possible to search for parameter ranges of f (R)-models work-
ing at Solar System and GW stochastic background scale. This phenomenological
approach is complementary to the one proposed, e.g. in [32; 46; 47] where also
galactic and cosmological scales have been considered to constraint the models.

The layout of the paper is the following. In Sect. 2, we review the field equa-
tions of f (R) gravity in the metric approach and their scalar–tensor representation,
useful to compare the theory with observations. In Sect. 3, we review and discuss
some viable f (R) models capable of satisfying both local gravity prescriptions as
well as the observed cosmological behavior. In particular, we discuss their stability
conditions and the field values which have to achieved to fulfill physical bounds.
Section 4 is devoted to derive the values of model parameters in agreement with
the PPN experimental constraints while, in Sect. 5, we deal with the constraints
coming from the stochastic background of GWs. These latter ones have to be con-
fronted with those coming from PPN parameterization. Discussion and conclu-
sions are drawn in Sect. 6. As a general remark, we find out that bounds coming
from the interferometric ground-based (VIRGO, LIGO) and space (LISA) experi-
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ments could constitute a further probe for f (R) gravity if matched with bounds at
other scales.

2 f (R) gravity

Let us start from the following action

S = Sg +Sm =
1
k2

∫
d4x

√
−g [R+ f (R)+Lm] , (1)

where we have considered the gravitational and matter contributions and k2 ≡
16πG. The non-linear f (R) term has been put in evidence with respect to the stan-
dard
Hilbert–Einstein term R and Lm is the perfect-fluid matter Lagrangian. The field
equations are

1
2

gµν F(R)−Rµν F ′(R)−gµν�F ′(R)+∇µ ∇ν F ′(R) =−k2

2
T (m)

µν . (2)

Here F(R) = R+ f (R) and T (m)
µν is the matter energy–momentum tensor. By intro-

ducing the auxiliary field A, one can rewrite the gravitational part in the Action (1)
as

Sg =
1
k2

∫
d4x

√
−g
{(

1+ f ′(A)
)
(R−A)+A+ f (A)

}
. (3)

As it is clear from Eq. (3), if F ′(R) = 1+ f ′(R) < 0, the coupling k2
e f f = k2/F ′(A)

becomes negative and the theory enters the anti-gravity regime. Note that it is not
the case for the standard GR.

Action (3) can be recast in a scalar–tensor form. By using the conformal scale
transformation gµν → eσ gµν with σ =− ln(1+ f ′(A)), the action can be written
in the Einstein frame as follows [10; 11]:

SE =
1
k2

∫
d4x

√
−g
(

R− 3
2

gρσ
∂ρ σ∂σ σ −V (σ)

)
, (4)

where

V (σ) = eσ g
(
e−σ

)
− e2σ f

(
g
(
e−σ

))
=

A
F ′(A)

− F(A)
F ′(A)2 . (5)

The form of g(e−σ ) is given by solving σ = − ln(1+ f ′(A)) = lnF ′(A) as
A = g(e−σ ). The transformation gµν → eσ gµν induces a coupling of the scalar
field σ with matter.

In general, an effective mass for σ is defined as [37]

m2
σ ≡

1
2

d2V (σ)
dσ2 =

1
2

[
A

F ′(A)
− 4F(A)

(F ′(A))2 +
1

F ′′(A)

]
, (6)
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which, in the weak field limit, could induce corrections to the Newton law. This
allows, as it is well known, to deal with the extra degrees of freedom of f (R)-
gravity as an effective scalar field which reveals particularly useful in considering
“chameleon” models [27; 28; 29; 30; 31]. This “parameterization” will be partic-
ularly useful to deal with the scalar component of GWs.

3 f (R) viable models

Let us consider now a class of f (R) models which do not contain cosmologi-
cal constant and are explicitly designed to satisfy cosmological and Solar-System
constraints in given limits of the parameter space. In practice, we choose a class of
functional forms of f (R) capable of matching, in principle, observational data (see
[22] for the general approach). Firstly, the cosmological model should reproduce
the CMBR constraints in the high-redshift regime (which agree with the presence
of an effective cosmological constant). Secondly, it should give rise to an accel-
erated expansion, at low redshift, according to the ΛCDM model. Thirdly, there
should be sufficient degrees of freedom in the parameterization to encompass low
redshift phenomena (e.g. the large scale structure) according to the observations
[46; 47]. Finally, small deviations from GR should be consistent with Solar Sys-
tem tests. All these requirements suggest that we can assume the limits

limR→∞ f (R) = constant, (7)
limR→0 f (R) = 0, (8)

which are satisfied by a general class of broken power law models, proposed in
[32], which are

fI(R) =−m2
c1

(
R

m2

)n

c2

(
R

m2

)n
+1

(9)

or otherwise written as

FI(R) = R−λRc

(
R
Rc

)2n

(
R
Rc

)2n
+1

, (10)

where m is a mass scale and c1,2 are dimensionless parameters.
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Fig. 1 Plots of four different F(R) models as function of R
Rc

. Model I in Eq. (9) with n = 1
and λ = 2 (dashed line). Model II in Eq. (11) with p = 2, λ = 0.95 (dashdot line). Model III
in Eq. (12) with s = 0.5 and λ = 1.5 (dotted). Model IV in Eq. (13) with q = 0.5 and λ = 0.5
(solid line). We also plot F(R) = R (solid thick line) to see whether or not the stability condition
F,R > 0 is violated

Besides, another viable class of models was proposed in [25]

FII(R) = R+λRc

[(
1+

R2

R2
c

)−p

−1

]
. (11)

Since F(R = 0) = 0, the cosmological constant has to disappear in a flat space-
time. The parameters {n, p, λ , Rc} are constants which should be determined by
experimental bounds.

Other interesting models with similar features have been studied in [33; 34;
35; 36; 37]. In all these models, a de-Sitter stability point, responsible for the
late-time acceleration, exists for R = R1 (> 0), where R1 is derived by solving
the equation R1 f,R(R1) = 2 f (R1) [81]. For example, in the model (11), we have
R1/Rc = 3.38 for λ = 2 and p = 1. If λ is of the unit order, R1 is of the same
order of Rc. The stability conditions, f,R > 0 and f,RR > 0, are fulfilled for R > R1
[25; 34]. Moreover the models satisfy the conditions for the cosmological viability
that gives rise to the sequence of radiation, matter and accelerated epochs [34].

In the region R� Rc both classes of models (9) and (11) behave as

FIII(R)' R−λRc

[
1− (Rc/R)2s

]
, (12)

where s is a positive constant. The model approaches ΛCDM in the limit R/Rc →
∞. Finally, let also consider the class of models [26; 45; 55]

FIV (R) = R−λRc

(
R
Rc

)q

. (13)

Also in this case λ , q and Rc are positive constants (note that n, p, s and q have to
converge toward the same values to match the observations). We do not consider
the models whit negative q, because they suffer for instability problems associated
with negative F,RR [38; 39; 40; 41; 42; 43; 44; 88]. In Fig. 1, we have plotted some
of the selected models as function of R

Rc
for suitable values of {p,n,q,s,λ}.

Let us now estimate mσ for the models discussed above. For Model I [32],
when the curvature is large, we find

fI(R)∼−m2c1

c2
+

m2+2nc1

c2
2Rn + · · · , (14)

and obtain the following expression:

m2
σ ∼

m2c2
2

2n(n+1)c1

(
R

m2

)n+2

. (15)
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Here the order of the mass-dimensional parameter m2 should be m2 ∼ 10−64 eV2.
Then in Solar System, where R ∼ 10−61 eV2, the mass is given by m2

σ ∼
10−58+3n eV2 while on the Earth atmosphere, where R∼10−50 eV2, it has to be
m2

σ∼10−36+14neV2. The order of the radius of the Earth is 107 m∼
(
10−14 eV

)−1.
Therefore the scalar field σ is enough heavy if n � 1 and the correction to the
Newton law is not observed, being extremely small. In fact, if we choose n = 10,
the order of the Compton length of the scalar field σ becomes that of the Earth
radius. On the other hand, in the Earth atmosphere, if we choose n = 10, for exam-
ple, we find that the mass is extremely large:

mσ ∼ 1043 GeV∼ 1029×MPlanck. (16)

Here MPlanck is the Planck mass. Hence, the Newton law correction should be
extremely small.

In Model II

fII(R) =−λR0

[
1−
(

1+
R2

R2
0

)−p
]

, (17)

if R is large compared with R0, whose order of magnitude is that of the curvature
in the present universe, we find

fII(R) =−λR0 +λ
R2p+1

0
R2p + · · · . (18)

By comparing Eq. (18) with Eq. (14), if the curvature is large enough when
compared with R0 or m2, as in the Solar System or on the Earth, we can set the
following identifications:

λR0 ↔
m2c1

c2
, λR2p+1

0 ↔ m2+2nc1

c2
2

, 2p↔ n. (19)

We have 41m2 ∼ R0. Then, if p is large enough, there is no correction to the
Newton law as in Model I given by Eq. (10).

Let us now discuss the instability of fluid matter proposed in [88], which may
appear if the matter-energy density (or the scalar curvature) is large enough when
compared with the average density the Universe, as it is inside the Earth. Consid-
ering the trace of the above field equations and with a little algebra, one obtains

�R+
F(3)(R)
F(2)(R)

∇ρ R∇
ρ R+

F ′(R)R
3F(2)(R)

− 2F(R)
3F(2)(R)

=
κ2

6F(2)(R)
T. (20)

Here T is the trace of the matter energy–momentum tensor: T ≡ T (m)ρ
ρ . We also

denote the derivative dnF(R)/dRn by F(n)(R). Let us now consider the perturba-
tion of the Einstein gravity solutions. We denote the scalar curvature, given by
the matter density in the Einstein gravity, by Rb ∼ (κ2/2)ρ > 0 and separate the
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scalar curvature R into the sum of Rb (background) and the perturbed part Rp as
R = Rb +Rp

(∣∣Rp
∣∣� |Rb|

)
. Then Eq. (20) leads to the perturbed equation:

0 = �Rb +
F(3)(Rb)
F(2)(Rb)

∇ρ Rb∇
ρ Rb +

F ′(Rb)Rb

3F(2)(Rb)

− 2F(Rb)
3F(2)(Rb)

− Rb

3F(2)(Rb)
+�Rp +2

F(3)(Rb)
F(2)(Rb)

∇ρ Rb∇
ρ Rp +U(Rb)Rp.

(21)

Here the potential U(Rb) is given by

U(Rb) ≡

(
F(4)(Rb)
F(2)(Rb)

− F(3)(Rb)2

F(2)(Rb)2

)
∇ρ Rb∇

ρ Rb +
Rb

3

−F(1)(Rb)F(3)(Rb)Rb

3F(2)(Rb)2
− F(1)(Rb)

3F(2)(Rb)
+

2F(Rb)F(3)(Rb)
3F(2)(Rb)2

−F(3)(Rb)Rb

3F(2)(Rb)2
.

(22)

It is convenient to consider the case where Rb and Rp are uniform and do not
depend on the spatial coordinates. Hence, the d’Alembert operator can be replaced
by the second derivative with respect to the time, that is: �Rp →−∂ 2

t Rp. Equa-
tion (22) assumes the following structure:

0 =−∂
2
t Rp +U(Rb)Rp + const. (23)

If U(Rb) > 0, Rp becomes exponentially large with time, i.e. Rp ∼ e
√

U(Rb)t , and
the system becomes unstable.

In the 1/R-model, considering the background values, we find

U(Rb) = −Rb +
R3

b
6µ4 ∼

R3
0

µ4 ∼
(

10−26sec
)−2

(
ρm

g cm−3

)3

,

Rb ∼
(
103sec

)−2
(

ρm

g cm−3

)
. (24)

Here the mass parameter µ is of the order

µ
−1 ∼ 1018sec∼

(
10−33eV

)−1
. (25)

Equation (24) tells us that the model is unstable and it would decay in 10−26 sec
(considering the Earth size). In Model I, however, U(Rb) is negative:

U(R0)∼−
(n+2)m2c2

2
c1n(n+1)

< 0. (26)

Therefore, there is no matter instability.
For Model (17), as it is clear from the identifications (19), there is no matter

instability too.
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In order to study the stability of the de Sitter solution, let us proceed as follows.
From the field equations (2), we obtain the trace

� f ′(R) =
1
3
[
R− f ′(R)R+2 f (R)+κ

2T
]
. (27)

Here, as above, F(R) is F(R) = R+ f (R) and T ≡ gµν T (m)
µν .

Now we consider the (in)stability around the de Sitter solution, where R = R0,
and therefore f (R0) and f ′(R0), are constants. Then since the l.h.s. in Eq. (27)
vanishes for R = R0, we find

R0− f ′(R0)R0 +2 f (R0)+κ
2T0 = 0. (28)

Let us expand both sides of (28) around R = R0 as

R = R0 +δR. (29)

One obtains

f ′′(R0)�δR =
1
3
(
1− f ′′(R0)R0 + f ′(R0)

)
δR. (30)

Since

�δR =−d2δR
dt2 −3H0

dδR
dt

, (31)

in the de Sitter background, if

C(R0)≡ lim
R→R0

1− f ′′(R)R+ f ′(R)
f ′′(R)

> 0, (32)

the de Sitter background is stable but, if C(R0) < 0, the de Sitter background
is unstable. The expression for C(R0) could be valid even if f ′′(R0) = 0. More
precisely, the solution of (30) is given by

δR = A+eλ+t +A−eλ−t . (33)

Here A± are constants and

λ± =
−3H0±

√
9H2

0 −C(R0)

2
. (34)

Then, if C(R0) < 0, λ+ is always positive and the perturbation grows up. This leads
to the instability. We have also to note that, when C(R0) is positive, if C(R0) >
9H2

0 , δR oscillates and the amplitude becomes exponentially small being:

δR = (Acosω0t +Bsinω0t)e−3H0t/2, ω ≡

√
C(R0)−9H2

0

2
. (35)

Here A and B are constant. On the other hand, if C(R0) < 9H2
0 , there is no oscilla-

tion in δR.
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Fig. 2 Plots of Model V (38) (solid line) and its first derivative (dashed line). Here n = 2 and
α,β ,γ are assumed as in (42) with the value of R0 taken in the Solar System. f ′(R) is negative
for 0 < R < 0.64. f (R) is given in the range 0 < R < 1 where we have adopted suitable units

Let us now consider the case where the matter contribution T can be neglected
in the de Sitter background and assume f ′(R) = 0 in the same background. We can
assume that there are two de Sitter background solutions satisfying f ′(R) = 0, for
R = R1 and R = R2 as it could be the physical case if one asks for an inflationary
and a dark energy epoch. We also assume f ′(R) 6= 0 if R1 < R < R2 or R2 < R < R1.
In the case C(R1) < 0 and C(R2) > 0, the de Sitter solution, corresponding to
R = R1, is unstable but the solution corresponding to R = R2 is stable. Then there
should be a solution where the (nearly) de Sitter solution corresponding to R1
transits to the (nearly) de Sitter solution R2. Since the solution corresponding to
R2 is stable, the universe remains in the de Sitter solution corresponding to R2 and
there is no more transition to any other de Sitter solution.

As an example, we consider Model I. For large curvature values, we find

fI(R) =−Λ +
α

R2n+1 . (36)

Here Λ and α are positive constants and n is a positive integer. Then we find

C(R)∼ 1
f ′′(R)

∼ R2n+2

2n(2n+1)α
> 0. (37)

This means that the de Sitter solution in Model I can be stable. We have also to
note that C(R0) ∼ H4n+4

0 /m4n+2. Here m2 is the mass scale introduced in [32]
and m2 � H2

0 : this means that C(R0) � 9H2
0 and therefore there could be no

oscillation.
We may also consider the model proposed in [35](here Model V):

fV (R) =
αR2n−βRn

1+ γRn . (38)

Here α , β , and γ are positive constants and n is a positive integer. In Fig. 2, we
show the behavior of Model V and of its first derivative. When the curvature is
large (R→ ∞), f (R) behaves as a power law. Since the derivative of f (R) is given
by

f ′V (R) =
nRn−1

(
αγR2n−2αRn−β

)
(1+ γRn)2 , (39)

we find that the curvature R0 in the present universe, which satisfies the condition
f ′(R0) = 0, is given by

R0 =

[
1
γ

(
1+

√
1+

βγ

α

)]1/n

, (40)
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and

f (R0)∼−2R̃0 =
α

γ2

(
1+

(1−βγ/α)
√

1+βγ/α

2+
√

1+βγ/α

)
. (41)

As shown in [35], the magnitudes of the parameters is given by

α ∼ 2R̃0R−2n
0 , β ∼ 4R̃2

0R−2n
0 Rn−1

I , γ ∼ 2R̃0R−2n
0 Rn−1

I . (42)

Here RI is the curvature in the inflationary epoch and we have assumed f (RI) ∼
(α/γ)Rn

I ∼ RI .
C(R0) in (32) is given by

C(R0)∼
1

f ′′(R0)
=

1+ γRn
0

2n2αR2n−2
0

(
γRn

0−1
) . (43)

By using the relations (42), we find

C(R0)∼
R2

0

4n2R̃0
, (44)

which is positive and therefore the de Sitter solution is stable. We notice that
C(R0) < 9H2

0 and therefore, there could occur oscillations as in (35).
Furthermore, we can take into account the following model [36] (Model VI):

fVI(R) = −α

[
tanh

(
b(R−R0)

2

)
+ tanh

(
bR0

2

)]
= −α

[
eb(R−R0)−1
eb(R−R0) +1

+
ebR0 −1
ebR0 +1

]
, (45)

where α and b are positive constants. When R→ 0, we find that

fVI(R)→− αbR

2cosh2
(

bR0
2

) , (46)

and thus f (0) = 0. On the other hand, when R→+∞,

fVI(R)→−2Λeff ≡−α

[
1+ tanh

(
bR0

2

)]
. (47)

If R� R0, in the present universe, Λeff plays the role of the effective cosmological
constant. We also obtain

f ′VI(R) =− αb

2cosh2
(

b(R−R0)
2

) , (48)

which has a minimum when R = R0, that is:

f ′VI(R0) =−αb
2

. (49)



12 S. Capozziello et al.

Then in order to avoid anti-gravity, we find

0 < 1+ f ′VI(R0) = 1− αb
2

. (50)

Beside the above model, we can consider a model which is able to describe, in
principle, both the early inflation and the late acceleration epochs. The following
two-step model [36] (Model VII):

fVII(R) = −α0

[
tanh

(
b0 (R−R0)

2

)
+ tanh

(
b0R0

2

)]
−αI

[
tanh

(
bI (R−RI)

2

)
+ tanh

(
bIRI

2

)]
, (51)

could be useful to this goal. Let us assume

RI � R0, αI � α0, bI � b0, (52)

and

bIRI � 1. (53)

When R→ 0 or R� R0 � RI , fVII(R) behaves as

fVII(R)→−

 α0b0

2cosh2
(

b0R0
2

) +
αIbI

2cosh2
(

bIRI
2

)
R, (54)

and we find again fVII(0) = 0. When R� RI , we find

f (R)VII →−2ΛI ≡ −α0

[
1+ tanh

(
b0R0

2

)]
−αI

[
1+ tanh

(
bIRI

2

)]
∼ −αI

[
1+ tanh

(
bIRI

2

)]
. (55)

On the other hand, when R0 � R� RI , we find

fVII(R) → −α0

[
1+ tanh

(
b0R0

2

)]
− αIbIR

2cosh2
(

bIRI
2

) ∼−2Λ0

≡ −α0

[
1+ tanh

(
b0R0

2

)]
. (56)

Here, we have assumed the condition (53). We also find

f ′VII(R) =− α0b0

2cosh2
(

b0(R−R0)
2

) − αIbI

2cosh2
(

bI(R−RI)
2

) , (57)

which has two minima for R∼ R0 and R∼ RI . When R = R0, we obtain

f ′VII(R0) =−α0b0−
αIbI

2cosh2
(

bI(R0−RI)
2

) >−αIbI −α0b0. (58)
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On the other hand, when R = RI , we get

f ′VII(RI) =−αIbI −
α0b0

2cosh2
(

b0(R0−RI)
2

) >−αIbI −α0b0. (59)

Then, in order to avoid the anti-gravity behavior, we find

αIbI +α0b0 < 1. (60)

Let us now investigate the correction to the Newton potential and the matter
instability issue related to Models VI and VII. In the Solar System domain, on or
inside the Earth, where R� R0, f (R) in Eq. (45) can be approximated by

fVI(R)∼−2Λeff +2αe−b(R−R0). (61)

On the other hand, since R0 � R� RI , by assuming Eq. (53), f (R) in (51) can be
also approximated by

fVII(R)∼−2Λ0 +2αe−b0(R−R0), (62)

which has the same expression, after having identified Λ0 = Λeff and b0 = b. Then,
we may check the case of (61) only. In this case, the effective mass has the fol-
lowing form

m2
σ ∼

eb(R−R0)

4αb2 , (63)

which could be again very large. In fact, in the Solar System, we find R∼ 10−61 eV2.
Even if we choose α ∼ 1/b ∼ R0 ∼

(
10−33 eV

)2, we find that m2
σ ∼ 101,000 eV2,

which is, ultimately, extremely heavy. Then, there will be no appreciable correc-
tion to the Newton law. In the Earth atmosphere, R ∼ 10−50 eV2, and even if we
choose α ∼ 1/b∼ R0 ∼

(
10−33 eV

)2 again, we find that m2
σ ∼ 1010,000,000,000 eV2.

Then, a correction to the Newton law is never observed in such models. In this
case, we find that the effective potential U(Rb) has the form

U(Re) =− 1
2αb

(
2Λ +

1
b

)
e−b(Re−R0), (64)

which could be negative, what would suppress any instability.
In order that a de Sitter solution exists in f (R)-gravity, the following condition

has to be satisfied:

R = R f ′(R)−2 f (R). (65)

For the model (45), the r.h.s of (65) has the following form:

R =− bαR

2cosh2
(

b(R−R0)
2

) +2α

[
tanh

(
b(R−R0)

2

)
+ tanh

(
bR0

2

)]
. (66)
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For large R, the r.h.s. behaves as

− bαR

2cosh2
(

b(R−R0)
2

) +2α

[
tanh

(
b(R−R0)

2

)
+ tanh

(
bR0

2

)]
→ 2α, (67)

although the l.h.s. goes to infinity. On the other hand, when R is small, the r.h.s.
behaves as

− bαR

2cosh2
(

b(R−R0)
2

) +2α

[
tanh

(
b(R−R0)

2

)
+ tanh

(
bR0

2

)]
→ bαR

2cosh2
(

bR0
2

) .

(68)

Then if

bα

2cosh2
(

bR0
2

) > 1, (69)

there is a de Sitter solution. Combining Eq. (69) with Eq. (50), we find

2 > αb >
1

2cosh2
(

bR0
2

) . (70)

The stability, as above, is given by C(RdS), where RdS is the solution of (66). The
expression is given by

C(RdS) =−RdS +
2cosh3

(
b(RdS−R0)

2

)
αb2 sinh

(
b(RdS−R0)

2

) − 1

b tanh
(

b(RdS−R0)
2

) . (71)

Let us now rewrite Eq. (66) as follows,

RdS = 2α

[
tanh

(
b(RdS−R0)

2

)
+ tanh

(
bR0

2

)]1+
αb

2cosh2
(

b(RdS−R0)
2

)
−1

.

(72)

Then by using (72), we may rewrite (71) in the following form:

C(RdS) =
−α2b2

(
1− x2

)[
(x− x0)

2 +1− x2
0

]
+4

αb2x(1− x2) [2+αb(1− x2)]
, (73)

where

x = tanh
(

b(RdS−R0)
2

)
, x0 =− tanh

(
bR0

2

)
, (74)

and therefore we have

−1 < x0 ≤ x < 1, x0 < 0. (75)
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Fig. 3 Plots of Model VI (45) (solid line) and Model VII (51) (dashed line). Here b = 2 and
bI = 0.5 with α = 1.5 and αI = 2. The value of RI is taken in the Solar System while R0
corresponds to the present cosmological value

Let us now consider (66) in order to find a de Sitter solution. Since Eq. (66) is
difficult to solve in general, we assume 0 < RdS � R0. Then we find

RdS =
ε

bx0
, ε ≡ 1−

2cosh2
(

bR0
2

)
αb

= 1− 2
αb
(
1− x2

0

) . (76)

Equation (69) tells that the parameter ε is positive and, by assumption, very small:
0 < ε � 1. Since ε is small, by using Eq. (74), we find

x = x0 +

(
1− x2

0
)

2x0
ε +O

(
ε

2) . (77)

Then by using the expression (73) for C(RdS), we find

C(RdS)∼
−α2b2

(
1− x2

0
)2 +4

αb2x0
(
1− x2

0

)[
2+αb

(
1− x2

0

)] . (78)

From the definition of ε in (76), we find

αb
(
1− x2

0
)

= 2+2ε +O
(
ε

2) , (79)

and then, from Eq. (79), Eq. (78) can be written as follows;

C(RdS)∼−
ε

bx0
. (80)

Since x0 < 0 in the condition (75), we find C(RdS) > 0 and therefore the de Sitter
solution is stable.

In Fig. 3, we have plotted the two models (45) and (51) written in the form
F(R)= R+ f (R). We have used the inequalities (52) assuming, RI ∼ ρg∼ 10−24 g/cm3

for the Galactic density in the Solar vicinity and R0 ∼ ρg ∼ 10−29 g/cm3 for the
present cosmological density.

Our task is now to find reliable experimental bounds for such models work-
ing at small and large scales. To this goal, we shall take into account constraints
coming from Solar System experiments (which, at present, are capable of giving
upper limits on the PPN parameters) and constraints coming from interferome-
ters, in particular those giving limits on the (eventual) scalar components of GWs.
If constraints (and in particular the ranges of model parameters given by them)
are comparable, this could constitute, besides other experimental and observa-
tional probes, a good hint to achieve a self-consistent f (R) theory at very different
scales.
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Table 1 Solar System experimental constraints on the PPN parameters

Mercury perihelion shift |2γ−β −1|< 3×10−3

Lunar laser ranging 4β − γ−3 = (0.7±1)×10−3

Very long baseline |γ−1|< 4×10−4

interferometer
Cassini spacecraft γ−1 = (2.1±2.3)×10−5

4 Constraining f (R)-models by PPN parameters

The above models can be constrained at Solar System level by considering the
PPN formalism. This approach is extremely important in order to test gravitational
theories and to compare them with GR. As it is shown in [57; 58; 59; 71; 72],
one can derive the PPN-parameters γ and β in terms of a generic analytic function
F(R) and its
derivative

γ−1 = − F ′′(R)2

F ′(R)+2F ′′(R)2 , (81)

β −1 =
1
4

[
F ′(R) ·F ′′(R)

2F ′(R)+3F ′′(R)2

]
dγ

dR
. (82)

These quantities have to fulfill the constraints coming from the Solar System
experimental tests summarized in Table 1. They are the perihelion shift of Mercury
[89], the Lunar Laser Ranging [90], the upper limits coming from the Very Long
Baseline Interferometry (VLBI) [91] and the results obtained from the Cassini
spacecraft mission in the delay of the radio waves transmission near the Solar
conjunction [92].

Let us take into account before the f (R)-models (10)–(13). Specifically, we
want to investigate the values or the ranges of parameters in which they match the
Solar-System experimental constraints in Table 1. In other words, we use these
models to search under what circumstances it is possible to significantly address
cosmological observations by f (R)-gravity and, simultaneously, evade the local
tests of gravity.

By integrating Eqs. (81)–(82), one obtains f (R) solutions depending on β

and γ which has to be confronted with βexp and γexp [71; 72]. If we plug into
such equations the models (10)–(13) and the experimental values of PPN param-
eters, we will obtain algebraic constraints for the phenomenological parameters
{n, p,q,λ ,s}. This is the issue which we want to take into account in this section.

From Eq. (81), assuming F ′(R)+ 2F ′′(R)2 6= 0 and defining A =
∣∣∣ 1−γ

2γ−1

∣∣∣, we
obtain [

F ′′(R)
]2−AF ′(R) = 0. (83)

The general solution of such an equation is a polynomial function [71; 72].
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Considering Model II given by (11), we obtain1−
2pR

(
R2

R2
c
+1
)−p−1

λ

Rc

∣∣∣∣ γ−1
2γ−1

∣∣∣∣
−

4p2
(

R2

R2
c
+1
)−2p

R2
c
(
R2

c − (2p+1)R2
)2

λ 2

(R2 +R2
c)

4 = 0. (84)

Our issue is now to find the values of λ , p, and R/Rc for which the Solar
System experimental constraints are satisfied. Some preliminary considerations
are in order at this point. Considering the de Sitter solution achieved from (11),
we have R = const = R1 = x1Rc, and x1 > 0. It is straightforward to obtain

λ =
x1
(
1+ x2

1
)p+1

2
[(

1+ x2
1

)p+1−1− (p+1)x2
1

] . (85)

On the other hand, the stability conditions F,R > 0 and F,RR > 0 give the inequality(
1+ x2

1
)p+2

> 1+(p+2)x2
1 +(p+1)(2p+1)x4

1, (86)

which has to be satisfied. In particular, for p = 1, it is x1 >
√

3 and then λ > 8
3
√

3
=

1.5396. In addition, the value of x1 satisfying the relation (86) is also the point
where λ (x1), in Eq. (85), reaches its minimum.

To determine values of R compatible with PPN constraints, let us consider the
trace of the field equations (2) and explicit solutions, given the density profile ρ(r),
in the Solar vicinity. One can set the boundary condition considering F,R∞

= FRg

F,Rg = F,R(R = k2
ρg), (87)

where ρg ∼ 10−24 g/cm3 is the observed Galactic density in the Solar neighbor-
hoods. At this point, we can see when the relation (84) satisfies the constraints
for very Long Baseline Interferometer (γ−1 = 4×10−4) and Cassini Spacecraft
(γ−1 = 2.1×10−5). This allows to find out suitable values for p.

An important remark is in order at this point. These constraint equations work
if stability conditions hold. In the range

0 <
R
Rc

<
1√

2p+1
(88)

F,RR is negative for the model (11) and then stability conditions are violated. To
avoid this range, we need, at least, R

Rc
> 1. For example, we can choose R

Rc
= 3.38,

corresponding to de Sitter behavior. Then we have p = 1 and λ = 2. On the other
hand, for 0.944 < λ < 0.966, we have p = 2 and R

Rc
=
√

3; finally, for R >> Rc,
we have λ = 2 and p = 1.5. For these values of parameters, the Solar System tests
are evaded (Fig. 4).
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Fig. 4 Plots of the first derivatives of four different models as function of x = R
Rc

. Model I
(dashed) is drawn for n = 1 and λ = 2. Model II (dashdot), for p = 2, λ = 0.95. Model III
(dotted), for s = 0.5 and λ = 1.5. Model IV (solid) is for q = 0.5 and λ = 0.5. The labeled
values of x indicate where the derivative changes its sign

Fig. 5 As above for the second derivatives of the models

Let us consider now Model I, given by (9). Inserting it into the relation (83),
we get

R3
[(

R
Rc

)2n
+1
]4
[
R
((

R
Rc

)2n
+1
)2

−2n
(

R
Rc

)2n
Rcλ

]∣∣∣ γ−1
2γ−1

∣∣∣−4n2
[
(2n+1)

(
R
Rc

)2n
−2n+1

]2(
R
Rc

)4n
R2

cλ 2

R4

[(
R
Rc

)2n
+1
]6

= 0. (89)

Using the same procedure as above, λ is related to the de Sitter behavior. This
means

λ =

(
1+ x2n

1
)2

x2n−1
1

(
2+2x2n

1 −2n
) , (90)

while, from the stability conditions, we get

2x4
1− (2n−1)(2n+4)x2n

1 +(2n−1)(2n−2)≥ 0. (91)

For n = 1, one obtains x1 >
√

3, λ > 8
3
√

3
. In this model, F,RR is negative for

0 <
R
Rc

<

(
2n−1
2n+1

) 1
2n

. (92)

The VLBI constraint is satisfied for n = 1 and λ = 2, while, for n = 1 and λ = 1.5,
Cassini constraint holds.

By inserting Model III, given by Eq. (12), into the relation (83), we obtain

R3
[
R−2sRc

(Rc
R

)2s
λ

]∣∣∣ γ−1
2γ−1

∣∣∣−4
(
2s2 + s

)2 R2
c
(Rc

r

)4s
λ 2

R4 = 0. (93)

The de-Sitter point corresponds to

λ =
x2s+1

1

2(x2s
1 − s−1)

(94)

while the stability condition is x2s
1 > 2s2 + 3s + 1. VLBI and Cassini constraints

are satisfied by the sets of values: s = 1, λ = 1.53, for R
Rc
∼ 1; s = 2, λ = 0.95, for

R
Rc

=
√

3; s = 1, λ = 2, for R
Rc

= 3.38 (Fig. 5).
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Fig. 6 Plots represent the first derivatives of functions (50) (solid line) and (51) (dashed line).
Here, b = 2, bI = 0.5, α = 1.5 and αI = 2 with RI with the Solar System value and R0 the today
cosmological value. It is F,R > 0 for R > 0

Fig. 7 Second derivatives of Model VI (solid line) and VII (dashed line). Here F,RR is negative
in the range 0 < R < 4 for Model VI and in the range 0 < R < 2.35 for Model VII. As above, we
have used b = 2, bI = 0.5, α = 1.5 and αI = 2 with the value of RI taken in the Solar System
and R0 for the today cosmological value

Finally let us consider Model VI, given by Eq. (45), and Model VII, given by
Eq. (51). Using Eq. (83) for (45), we get

−1
4

bαsech2
(

1
2

b(R−R0)
)[

b3
αsech2

(
1
2

b(R−R0)
)

× tanh2
(

1
2

b(R−R0)
)
−2
∣∣∣∣ γ−1
2γ−1

∣∣∣∣]= 0. (95)

As above, considering the stability conditions and the de Sitter behavior, we get
the parameter ranges 0 < b < 2 and 0 < α ≤ 2 which satisfy both VLBI and
Cassini constraints. Inserting now Model VII in (83), we have

1
2

∣∣∣∣ γ−1
2γ−1

∣∣∣∣[bαsech2
(

1
2

b(R−R0)
)
−bIαIsech2

(
1
2

bI(R−RI)
)

+2
]

− 1
4

[
b2

αsech2
(

1
2

b(R−R0)
)

tanh
(

1
2

b(R−R0)
)

−b2
I αIsech2

(
1
2

bI(R−RI)
)

tanh
(

1
2

bI(R−RI)
)]2

= 0. (96)

From the stability condition, we have that F,R > 0 for R > 0 (see Fig. 6) and
F,RR < 0 for 0 < R < 2.35 in suitable units (see Fig. 7). Observational constraints
from VLBI and Cassini experiments are fulfilled for

RI � R0, αI � α, bI � b. (97)

Plots for b = 2, bI = 0.5, α = 1.5 and αI = 2, verifying the constraints, are reported
in Figs. 6 and 7.

Considering now the relation for β given by Eq. (82), one can easily verify
that it is

dγ

dR
=− d

dR

[
F ′′(R)2

F ′(R)+2F ′′(R)2

]
= 0, (98)

and this result implies

4(β −1) = 0. (99)

This means the complete compatibility of the f (R) solutions between the PPN-
parameters β and γ .

Now we want to see if the parameter values, obtained for these models, are
compatible with bounds coming from the stochastic background of GWs achieved
by interferometric experiments.
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5 Stochastic backgrounds of gravitational waves to constrain f (R)-gravity

As we said before, also the stochastic background of GWs can be taken into
account in order to constrain models. This approach could reveal very interest-
ing because production of primordial GWs could be a robust prediction for any
model attempting to describe the cosmological evolution at primordial epochs.
However, bursts of gravitational radiation emitted from a large number of unre-
solved and uncorrelated astrophysical sources generate a stochastic background at
more recent epochs, immediately following the onset of galaxy formation. Thus,
astrophysical backgrounds might overwhelm the primordial one and their investi-
gation provides important constraints on the signal detectability coming from the
very early Universe, up to the bounds of the Planck epoch and the initial singular-
ity [85; 94; 95; 96; 98].

It is worth stressing the unavoidable and fundamental character of such a
mechanism. It directly derives from the inflationary scenario [99; 100], which
well fits the WMAP data with particular good agreement with almost exponential
inflation and spectral index ≈ 1, [101; 102].

The main characteristics of the gravitational backgrounds produced by cosmo-
logical sources depend both on the emission properties of each single source and
on the source rate evolution with redshift. It is therefore interesting to compare and
contrast the probing power of these classes of f (R)-models at hight, intermediate
and zero redshift [103].

To this purpose, let us take into account the primordial physical process which
gave rise to a characteristic spectrum Ωsgw for the early stochastic background
of relic scalar GWs by which we can recast the further degrees of freedom com-
ing from fourth-order gravity. This approach can greatly contribute to constrain
viable cosmological models. The physical process related to the production has
been analyzed, for example, in [94; 95; 96; 97] but only for the first two tensorial
components due to standard GR. Actually the process can be improved consid-
ering also the third scalar–tensor component strictly related to the further f (R)
degrees of freedom [87].

Before starting with the analysis, it has to be emphasized that the stochastic
background of scalar GWs can be described in terms of a scalar field Φ and char-
acterized by a dimensionless spectrum (see the analogous definitions for tensorial
waves in [85; 94; 95; 96; 98]). We can write the energy density of scalar GWs in
terms of the closure energy density of GWs per logarithmic frequency interval as

Ωsgw( f ) =
1
ρc

dρsgw

d ln f
, (100)

where

ρc ≡
3H2

0
8πG

(101)

is the critical energy density of the Universe, H0 the today observed Hubble expan-
sion rate, and dρsgw is the energy density of the gravitational radiation scalar part
contained in the frequency range from f to f +d f . We are considering now stan-
dard units.
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Fig. 8 The spectrum of relic scalar GWs in inflationary models is flat over a wide range of
frequencies. The horizontal axis is log10 of frequency, in Hz. The vertical axis is log10 Ωgsw.
The inflationary spectrum rises quickly at low frequencies (wave which re-entered in the Hub-
ble sphere after the Universe became matter dominated) and falls off above the (appropriately
redshifted) frequency scale fmax associated with the fastest characteristic time of the phase tran-
sition at the end of inflation. The amplitude of the flat region depends only on the energy density
during the inflationary stage; we have chosen the largest amplitude consistent with the WMAP
constrains on scalar perturbations. This means that, at LIGO and LISA frequencies, we have
Ωsgw < 2.3∗10−12

The calculation for a simple inflationary model can be performed assuming
that the early Universe is described by an inflationary de Sitter phase emerging in
the radiation dominated era [94; 95; 96; 98]. The conformal metric element is

ds2 = a2(η)[−dη
2 +d−→x 2 +hµν(η ,−→x )dxµ dxν ], (102)

and a GW with tensor and scalar modes in the z+ direction is given by [87]

h̃µν(t− z) = A+(t− z)e(+)
µν +A×(t− z)e(×)

µν +Φ(t− z)e(s)
µν . (103)

The pure scalar component is then

hµν = Φe(s)
µν , (104)

where e(s)
µν is the polarization tensor.

It is possible to write an expression for the energy density of the stochastic
relic scalar gravitons in the frequency interval (ω,ω +dω) as

dρsgw = 2h̄ω

(
ω2dω

2π2c3

)
Nω =

h̄H2
dsH

2
0

4π2c3
dω

ω
=

h̄H2
dsH

2
0

4π2c3
d f
f

, (105)

where f , as above, is the frequency in the standard comoving time. Equation (105)
can be written in terms of the today and de Sitter values of energy density being

H0 =
8πGρc

3c2 , Hds =
8πGρds

3c2 . (106)

Introducing the Planck density ρPlanck = c7

h̄G2 , the spectrum is given by

Ωsgw( f ) =
1
ρc

dρsgw

d ln f
=

f
ρc

dρsgw

d f
=

16
9

ρds

ρPlanck
. (107)

At this point, some comments are in order. First of all, such a calculation works
for a simplified model which does not include the matter dominated era. If such an
era is also included, the redshift at equivalence epoch has to be considered. Taking
into account also results in [97], we get

Ωsgw( f ) =
16
9

ρds

ρPlanck
(1+ zeq)−1, (108)

for the waves which, at the epoch in which the Universe becomes matter dom-
inated, have a frequency higher than Heq, the Hubble parameter at equivalence.
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This situation corresponds to frequencies f > (1+ zeq)1/2H0. The redshift correc-
tion in Eq. (108) is needed since the today observed Hubble parameter H0 would
result different without a matter dominated contribution. At lower frequencies, the
spectrum is given by [94; 95; 96]

Ωsgw( f ) ∝ f−2. (109)

Nevertheless, since the spectrum falls off ∝ f−2 at low frequencies, this means
that today, at LIGO-VIRGO and LISA frequencies (indicated in Fig. 8), one gets

Ωsgw( f )h2
100 < 2.3×10−12. (110)

It is interesting to calculate the corresponding strain at ≈ 100Hz, where interfer-
ometers like VIRGO and LIGO reach a maximum in sensitivity (see, e.g. [104;
105]). The well known equation for the characteristic amplitude [94; 95; 96],
adapted to the scalar component of GWs, can be used. It is

Φc( f )' 1.26×10−18
(

1Hz
f

)√
h2

100Ωsgw( f ), (111)

and then we obtain the values in Table 2.
In summary, the above results point out that a further scalar component of

GWs, coming, e.g. from f (R)-gravity, should be seriously considered in the signal
detection of interferometers. As discussed in [103], this fact could constitute either
an independent test for alternative theories of gravity or a further probe of GR
capable of ruling out other theories.

At this point, using the above LIGO, VIRGO and LISA upper bounds, cal-
culated for the characteristic amplitude of GW scalar component, let us test the
f (R)-gravity models, considered in the previous sections, to see whether they are
compatible both with the Solar System and GW stochastic background.

Before starting with the analysis, taking into account the discussion in Sect. 2,
we have that the GW scalar component is derived considering

Φ =−δσ

σ0
, σ =− ln(1+ f ′(A)) = lnF ′(A), δσ =

f ′′(A)
1+ f ′(A)

δA. (112)

As standard, we are assuming small perturbations in the conformal frame [87]).
This means

gµν = ηµν +hµν , σ = σ0 +δσ . (113)

These assumptions allow to derive the “linearized” curvature invariants R̃µνρσ ,
R̃µν and R̃ and then the linearized field equations [93]

R̃µν −
R̃
2

ηµν =−∂µ ∂ν Φ +ηµν�Φ ,

�Φ = m2
Φ .

(114)
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Table 2 Upper limits on the expected amplitude for the GW scalar component

Φc(100Hz) < 2×10−26 LIGO
Φc(100Hz) < 2×10−25 VIRGO
Φc(100Hz) < 2×10−21 LISA

As above, for the considered models, we have to determine the values of the
characteristic parameters which are compatible with both Solar System and GW
stochastic background.

Let us start, for example, with the model (12). Starting from the definitions (112),
it is straightforward to derive the scalar component amplitude

ΦIII =
s(2s+1)

(Rc
R

)2s+1
λ[

sRc
(Rc

R

)2s
λ −R

]
log
[
2−2s

(Rc
R

)2s+1
λ

] . (115)

Such an equation satisfies the constraints in Table. 2 for the values s = 0.5, R
Rc
∼ 1,

λ = 1.53 and s = 1, R
Rc
∼ 1, λ = 0.95 (LIGO); s = 2, R

Rc
=
√

3, λ = 2 (VIRGO);
s = 1, λ = 2 and R

Rc
= 3.38 (LISA).

It is important to stress the nice agreement with the figures achieved from the
PPN constraints. In this case, we have assumed Rc ∼ ρc ∼ 10−29 g/cm3, where ρc
is the present day cosmological density.

Considering the model (9), we obtain

ΦI =−
n
[
(2n+1)

(
R
Rc

)2n
−2n+1

](
R
Rc

)2n−1
λ[(

R
Rc

)2n
+1
]{

R
[(

R
Rc

)2n
+1
]2

−n
(

R
Rc

)2n
Rcλ

}
log

(
1− 2n( R

Rc)
2n−1

λ(
( R

Rc )
2n

+1
)2

) .

(116)

The expected constraints for GW scalar amplitude are fulfilled for n = 1 and λ = 2
and for n = 1 and λ = 1.5 when 0.3 < R

Rc
< 1.

Furthermore, considering the model (11), one gets

ΦI =−
2p
(

1+ R2

R2
c

)−p
Rc
(
(1+2p)R2−R2

c
)

λ

(R2−R2
c)

2

2−
2p
(

1+ R2

R2c

)−1−p
λ

Rc

 ln

2−
2pR

(
1+ R2

R2c

)−1−p
λ

Rc


.

(117)

The LIGO upper bound is fulfilled for p = 1, R
Rc

>
√

3, λ > 8
3
√

3
; the VIRGO

one for p = 1, R
Rc

= 3.38, λ = 2; finally, for LISA, we have p = 2, R
Rc

=
√

3 and
0.944 < λ < 0.966. Besides, considering LISA in the regime R >> Rc, we have
λ = 2 and p = 1.5.
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Finally, let us consider Models VI and VII. We have

ΦVI =
b2α tanh

[ 1
2 b(R−R0)

]
[bα + cosh(b(R−R0))+1] ln

[
bα

cosh(b(R−R0))+1

] , (118)

and

ΦVII = log
[
0.5
(
bαsech2(0.5b(R−R0))−bIαIsech2(0.5bI(R−RI))+2

)]
×
[
bαsech2(0.5b(R−R0))−bIαIsech2(0.5bI(R−RI))+4

]
×
[
b2

αsech2(0.5b(R−R0)) tanh(0.5b(R−R0))

−b2
I αIsech2(0.5bI(R−RI)) tanh(0.5bI(R−RI))

]
. (119)

These equations satisfy the constraints for VIRGO, LIGO and LISA for b = 2,
bI = 0.5, α = 1.5 and αI = 2 with RI valued at Solar System scale and R0 at
cosmological scale.

6 Conclusions

In this paper, we have investigated the possibility that some viable f (R) mod-
els could be constrained considering both Solar System experiments and upper
bounds on the stochastic background of gravitational radiation. Such bounds come
from interferometric ground-based (VIRGO and LIGO) and space (LISA) exper-
iments. The underlying philosophy is to show that the f (R) approach, in order
to describe consistently the observed universe, should be tested at very different
scales, that is at very different redshifts. In other words, such a proposal could
partially contribute to remove the unpleasant degeneracy affecting the wide class
of dark energy models, today on the ground.

Beside the request to evade the Solar System tests, new methods have been
recently proposed to investigate the evolution and the power spectrum of cos-
mological perturbations in f (R) models [46; 47]. The investigation of stochastic
background, in particular of the scalar component of GWs coming from the f (R)
additional degrees of freedom, could acquire, if revealed by the running and forth-
coming experiments, a fundamental importance to discriminate among the various
gravity theories [103]. These data (today only upper bounds coming from simula-
tions) if combined with Solar System tests, CMBR anisotropies, LSS, etc. could
greatly help to achieve a self-consistent cosmology bypassing the shortcomings of
ΛCDM model.

Specifically, we have taken into account some broken power law f (R) mod-
els fulfilling the main cosmological requirements which are to match the today
observed accelerated expansion and the correct behavior in early epochs. In prin-
ciple, the adopted parameterization allows to fit data at extragalactic and cosmo-
logical scales [32]. Furthermore, such models are constructed to evade the Solar
System experimental tests. Beside these broken power laws, we have considered
also two models capable of reproducing the effective cosmological constant, the
early inflation and the late acceleration epochs [36]. These f (R)-functions are
combinations of hyperbolic tangents.
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We have discussed the behavior of all the considered models. In particular,
the problem of stability has been addressed determining suitable and physically
consistent ranges of parameters. Then we have taken into account the results of
the main Solar System current experiments. Such results give upper limits on the
PPN parameters which any self-consistent theory of gravity should satisfy at local
scales. Starting from these, we have selected the f (R) parameters fulfilling the
tests. As a general remark, all the functional forms chosen for f (R) present sets
of parameters capable of matching the two main PPN quantities, that is γexp and
βexp. This means that, in principle, extensions of GR are not a priori excluded
as reasonable candidates for gravity theories. To construct such extensions, the
reconstruction method developed in [106] may be applied.

The interesting feature, and the main result of this paper, is that such sets of
parameters are not in conflict with bounds coming from the cosmological stochas-
tic background of GWs. In particular, some sets of parameters reproduce quite
well both the PPN upper limits and the constraints on the scalar component ampli-
tude of GWs.

Far to be definitive, these preliminary results indicate that self-consistent mod-
els could be achieved comparing experimental data at very different scales without
extrapolating results obtained only at a given scale.
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