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Abstract
In this work an approximate analytic expression for the quantum partition function of
the quartic oscillator described by the potential V (x) = 1

2ω
2x2 + gx4 is presented.

Using a path integral formalism, the exact partition function is approximated by the
partition function of a harmonic oscillator with an effective frequency depending both
on the temperature and coupling constant g. By invoking a Principle of Minimal
Sensitivity (PMS) of the path integral to the effective frequency, we derive a mathe-
matically well-defined analytic formula for the partition function. Quite remarkably,
the formula reproduces qualitatively and quantitatively the key features of the exact
partition function. The free energy is accurate to a few percent over the entire range
of temperatures and coupling strengths g. Both the harmonic (g → 0) and classical
(high-temperature) limits are exactly recovered. The divergence of the power series
of the ground-state energy at weak coupling, characterized by a factorial growth of
the perturbational energies, is reproduced as well as the functional form of the strong-
coupling expansion along with accurate coefficients. Explicit accurate expressions for
the ground- and first-excited state energies, E0(g) and E1(g) are also presented.

Keywords Quartic oscillator · Path integral · Partition function

1 Introduction

In this work we consider the familiar one-dimensional anharmonic quartic oscillator
described by the Hamiltonian

H = −1

2

d2

dx2
+ ω2

2
x2 + gx4, (1)

where ω2 and g ≥ 0 denote the harmonic force and coupling constants, respec-
tively. The quartic oscillator is one of the simplest yet non-trivial system of quantum
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mechanics. It is widely used as a theoretical model in many fields including quan-
tum chemistry (anharmonic vibrational effects in molecular spectroscopy), solid-sate
physics, laser theory, nuclear physics, and quantum field theory. The quartic oscil-
lator has led to a vast literature from a mathematical, numerical, and physical point
of view. A particularly interesting feature of this elementary model is the divergence
of the Rayleigh–Schrödinger perturbation series of the ground-state energy for all
g > 0. Understanding the origin of this divergence and establishing efficient resum-
mation techniques for this paradigmatic divergent series is at the heart of most studies.
Among these, probably the most influential one is that of Bender and Wu [1, 2] who
made a detailed mathematical/numerical analysis of the model. The authors were able
to answer a number of important questions and, in particular, to shed some light on the
origin of the divergence by investigating the location of the singularities of the energy
in the complex g-plane. Many others works have followed, as referenced below. With
respect to the divergence issue, virtually all known resummation methods have been
applied to this series. The two predominant approaches are the use of Padé approxi-
mants [3–5] and Borel’s integral summation method [6]. However, various alternative
approaches have been developed, including the use of hypergeometric functions ([7]
and references therein), nonlinear sequence of transformations [8, 9], Borel transfor-
mation with a conformal mapping [10] or an order-dependent mapping [11], as well
as sequences of analytic approximations [12], among others.

In this study, we are interested in evaluating the partition function (PF) of the quartic
oscillator defined as

Z = Tre−βH =
+∞∑

n=0

e−βEn (2)

where En are the discretized energies of the system and β the inverse temperature.
A straightforward and direct method for evaluating the partition function consists in
adding up the exponential components (Boltzmann weights) of Eq. (2), see e.g. [13,
14]. However, the exact energies being not known, approximate numerical energies are
required, for example by diagonalizing the Hamiltonian matrix within a sufficiently
large basis set ofGaussian functions [15]. In view of the simplicity of themodel, highly
accurate energies can be obtained, enabling the computation of an “exact” numerical
PF, at least for not too small values ofβ. In the following, we shall employ these precise
numerical values as our “exact” reference. Among the analytic methods for evaluating
the PF, the oldest one is certainly theWigner–Kirkwood perturbation expansion of the
PF in powers of � (or inverse temperature β), a method that systematically evaluates
the quantum corrections to the classical partition function [16–18]. This approach
has been improved and extended in different ways, e.g. [19, 20]. Another approach
is the thermodynamic variation perturbation method [21, 22] based on a Schwinger-
type expansion of the partition function [23]. Furthermore, exact upper and lower
bounds for the PF have been obtained [24–26]. A natural framework to work out
approximations for the PF is the path integral formalism as used in the present work.
The most prominent approach following this route was pioneered by Feynman [27]
and then refined by Feynman and Kleinert [28] (also, independently, by Giachetti
and Tognetti [29]). Over the years, the method of Feynamn and Kleinert has been
systematically improved and extended by Kleinert and collaborators [30–33].
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The main result of this work is to derive a closed-form expression for the partition
function using a path integral formalism. Although approximate, it captures some
of the key features of the exact partition function for all temperatures and coupling
constants (from the weak- to the strong-coupling regimes). From the partition function
we also derive explicit expressions for the ground- and first-excited state energies
E0(g) and E1(g), respectively. From a general point of view, our simple partition
function reproducing the essential features of the exact partition function provides an
interesting model to investigate the properties of the quartic oscillator.

This paper is organized as follows. In Sect. 2 we first derive an exact path integral
expression for the PF. Then, it is shown that at zero coupling the partition function of
the harmonic oscillator is recovered. In Sect. 3 a Gaussian approximation for the prob-
ability density appearing in the path integral is introduced. In practice, this amounts
to approximating the exact partition function by that of a harmonic oscillator with
an effective frequency depending both on the temperature and coupling constant g.
Then, we propose in Sect. 4 to invoke a Principle of Minimal Sensitivity (PMS) of
the PF to the effective frequency. Remarkably, this principle leads to a mathematical
constraint allowing to define a mathematically well-founded partition function, which
is our final expression. Section5 is devoted to the derivation of explicit expressions for
E0(g) and E1(g), and to the calculation of the coefficients of the weak- and strong-
coupling expansions of the ground-state energy. In Sect. 6 we present a comparative
study between our formula and the partition functions of Feynman and Kleinert [28]
and of Büttner and Flytzanis [34]. Finally, in Sect. 7, a summary of our main results
and a few perspectives are presented.

2 Partition function as a path integral

In the position representation the partition function writes

Z =
∫

dx〈x |e−βH |x〉. (3)

To obtain its path integral representation, we follow the standard route (see e.g., [35]):
The exponential operator is broken into a product ofn exponential operators as e−βH =∏n

i=1 e
−τH with τ = β

n , and the spectral resolution of the identity operator, 1 =∫
dxi |xi 〉〈xi |, is introduced between each operator giving

Z =
∫

dx1...
∫

dxn

n∏

i=1

〈xi |e−τH |xi+1〉 (4)

where the initial and final points are identified to x , x1 = xn+1 = x . To pro-
ceed, we introduce a high-temperature (or small τ ) approximation of the quantity
〈xi |e−τH |xi+1〉 (known as the propagator or Green’s function). At the lowest order in
τ , we have

〈xi |e−τH |xi+1〉 = 1√
2πτ

e− (xi+1−xi )
2

2τ −τV (xi ) + O(τ 2) (5)
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where V (x) is the potential, here V (x) = ω2

2 x2 + gx4. By taking the large-n limit
the contribution of the quadratic error vanishes, leading to the following exact path
integral expression of the partition function

Z = lim
n→∞ Zn (6)

where the discretized partition function Zn writes

Zn =
(

1√
2πτ

)n ∫
dx1...

∫
dxn (7)

e− 1
τ

∑n
i, j=1 xi Ai j x j−τ

∑n
i=1 V (xi ). (8)

Here, the matrix A is given by

Ai j = δi j − 1

2

(
δi i+1 + δi−1i

)
(9)

with the boundary conditions A1n = An1 = − 1
2 . In the following, for the sake

of convenience, the n-dimensional integrals will be denoted as
∫
dx, where x =

(x1, ..., xn).
The matrix A can be diagonalized by using a Fourier transform, we get

Zn =
(

1√
2πτ

)n ∫
dxe− 1

τ

∑n
i=1 λi x̃2i e−τ

∑n
i=1 V (xi ) (10)

where λi are the eigenvalues of A. For n > 2 the λi ’s are given by

λi = 1 − cos
2π

n
(i − 1) i = 1 to n. (11)

The eigenvectors will be denoted by x̃i and decomposed as

x̃i =
n∑

j=1

Oi j x j (12)

where Oi j is the orthogonal matrix diagonalizing A. The orthogonality condition
writes

n∑

k=1

OikO jk = δi j . (13)

Let us now introduce the probability density function defined as

π(x) = e−τV (x)

Iv
(14)
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where Iv is the normalization factor

Iv =
∫

dxe−τV (x). (15)

The discretized partition function can be written as

Zn =
(

Iv√
2πτ

)n ∫
dx

n∏

i=1

π(xi )e
− λi

τ
x̃2i (x). (16)

At this point, no approximation has been made. As n → ∞, Zn converges to the
exact partition function. Unfortunately, for an arbitrary density π(x) [equivalently,
an arbitrary potential V (x)], the multi-dimensional integrals cannot be performed
analytically and approximations are to be introduced. This will be the subject of the
two following sections.

Before doing this, let us first verify that the harmonic partition function, denoted
here as Z (0), is recovered at zero coupling. Z (0) is given by

Z (0) =
+∞∑

k=0

e−β(k+ 1
2 )ω = 1

e
βω
2 − e− βω

2

. (17)

Besides checking the validity of the expression for Zn in a particular case, the derivation
of Z (0) to follow will also be of interest for the next section.

At g = 0 the probability density π(x), Eq. (14), is Gaussian and writes

π(x) = e−τ 1
2ω2x2

√
2π
τω2

(18)

Using the orthogonality of the matrix O , Eq. (13), leading to
∑n

i=1 x̃
2
i = ∑n

i=1 x
2
i ,

Zn can be written as a product of one-dimensional Gaussian integrals. Performing the
Gaussian x-integration we get

Z (0)
n =

(
ω

√
τ I 0v√
2π

)n( 1

ωτ

) [
n∏

k=2

1√
2λk

]
n∏

i=2

1√
1 + ω2β2

2λi n2

. (19)

Here, I (0)
v is equal to

√
2π
τω2 , leading the first factor of the RHS of the equation to

be one. The quantity given in brackets is equal to 1
n , a result which follows from the

relation (see its derivation in Appendix A)

n−1∏

k=1

sin
kπ

n
= n

2n−1 (20)
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which leads to
n∏

k=2

1√
2λk

=
n−1∏

k=1

1

2 sin kπ
n

= 1

n
. (21)

Now, let us introduce the function Pn(x) defined as

Pn(x) =
n∏

i=2

1√
1 + x2

2λi n2

. (22)

Using Pn and the preceding results, the partition function can be written as

Z (0)
n = Pn(βω)

βω
. (23)

Evaluating Pn(x) as n → ∞ is not straightforward and requires some algebra. In
Appendix B we show that

lim
n→∞ Pn(x) = x

e
x
2 − e− x

2
. (24)

Finally,

Z (0) = lim
n→∞ Z (0)

n = 1

e
βω
2 − e− βω

2

, (25)

in agreement with Eq. (17). Note that the derivation of the partition function of
the harmonic oscillator and, more generally, of the Green’s function K (x, x ′, β) =
〈x |e−βH |x ′〉, has been done in the literature in many different ways, see for example
[35–41]. The present derivation is related to that of Cohen [38].

3 Gaussian approximation

The first approximation introduced here for evaluating Zn , Eq. (16), consists in

approximating the general density π(x) = e−τV (x)∫
dxe−τV (x) by a Gaussian density, πG ,

corresponding to an effective harmonic oscillator of frequency ωg(τ )

π(x) ∼ πG(x) = e−τ 1
2ω2

g(τ )x2

∫
dxe−τ 1

2ω2
g(τ )x2

(26)

Note that when the coupling constant g goes to zero, the effective frequency reduces to
ω. Different criteria can be chosen to define the optimal effective frequencyminimizing
the error in the approximation. Here, we propose to impose the variance of πG to be
equal to the exact one, that is

σ 2(τ ) = 〈x2〉πG = 〈x2〉π . (27)
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After some manipulations, this equality leads to

ωg(τ ) = ω

√

B

(
4g

τω4

)
(28)

where the parameter-free function B(x) is defined as

B(x) = 1

2

∫
dy e−y2−xy4

∫
dy y2e−y2−xy4

, (29)

a function which can be expressed as

B(x) =
4xK 1

4

( 1
8x

)

K− 3
4

( 1
8x

) + K 5
4

( 1
8x

) − 2(1 + 2x)K 1
4

( 1
8x

) (30)

where Kν(x) is the modified Bessel function of the second kind. The function B(x) is
positive andmonotonically increasing. It starts at x = 0 with B(0) = 1, then increases
linearly at small x’s and, finally, behaves as ∼ √

x at large x .
The Gaussian approximation being made, Zn becomes the partition function of a

harmonic oscillator

Zn =
(

Iv√
2πτ

)n ∫
dx

n∏

j=1

e− τω2g (τ )x2j
2

∫
dx j e− τω2g (τ )x2j

2

(31)

which can be evaluated as done in the previous section for the usual harmonic oscillator.
After the x Gaussian integration, Zn takes the form of Eq. (19), with the replacements

I 0v → Iv and ω → ωg(τ ). (32)

The partition function is then given by

Zn =
(

ωg(τ )
√

τ Iv√
2π

)n 1

βωg(τ )
Pn

[
βωg(τ )

]
. (33)

Finally, by performing the limit n → ∞ for Pn
[
βωg(τ )

]
only, we are led to the

following expression for Zn

Zn =
(

ωg(τ )
√

τ Iv√
2π

)n 1

e
βωg (τ )

2 − e− βωg (τ )

2

. (34)

Note that, since Pn has been replaced by P∞, this formula is now only valid in the

large-n limit. In the harmonic case, the quantity C(τ ) ≡ ωg(τ )
√

τ Iv√
2π

is equal to one
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and ωg(τ ) = ω. Zn thus becomes independent of n and the infinite-n limit becomes
trivial. At non-zero coupling, this is no longer the case. In the large-n limit, we have

ωg(τ ) ∼ τ− 1
4 and Iv ∼ τ− 1

4 . As a consequence, in the small-τ limit C(τ ) converges

to a finite constant independent of ω and g, given by C(0) = 2
√

2
π



3
2 ( 54 )



1
2 ( 34 )

= 1.24397...

This constant being greater than 1, the partition function diverges geometrically as

Zn ∼ C(0)ne−α n
1
4 with α > 0

Zn → +∞ as n → +∞. (35)

In the next section we propose to overcome this problem by introducing an additional
constraint to Zn .

4 Principle of minimal sensitivity

In the preceding section, the exact partition function has been approximated by the
partition function of a harmonic oscillator with an effective frequencyωg(τ ). Now, the
exact partition function being independent of ωg(τ ) it is natural to impose a minimal
sensitivity of Zn to the choice of this frequency. Mathematically, this condition writes

∂Zn

∂ωg(τ )
= 0. (36)

Using the expression of Zn given by Eq. (34), the stationarity condition leads to the
following implicit equation for the variable n

n =
βωg

(
β
n

)

2
coth

βωg

(
β
n

)

2
. (37)

As shown below, this equation actually admits a unique solution denoted, here, as
n = nc(β) (in general, not an integer). We thus see that imposing to the Gaussian
approximation of the exact Zn both aminimal error in the approximation and aminimal
sensitivity to the choice of the effective frequency turns out to be possible only for a
single value of n = nc(β). We thus propose to define Z as

Z = Znc(β). (38)

The unicity of the solution is shown as follows. Let us rewrite Eq. (37) as f (n) = g(n)

where f (n) = n and g(n) = βωg

(
β
n

)

2 coth
βωg

(
β
n

)

2 . Both functions are monotoni-
cally increasing functions of n. In the case of the function g(n) this is true because
ωg(τ ) is an increasing function of n. At large n, f (n) increases linearly, while g(n)

increases slower as ∼ n
1
4 . Now, the function f starting with a smaller value than g,
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f (0) = 0 < g(0), and increasing more rapidly, the two functions necessarily cross at
a unique value of n.

To summarize, our final formula for the partition function of the quartic oscillator
is given as follows. Introducing the convenient β-dependent effective τ denoted as
τc(β) and defined as

τc(β) = β

nc(β)
, (39)

the partition function writes

Z =
(

ωg [τc(β)]
√

τc(β)Iv [τc(β)]√
2π

)nc(β) 1

e
βωg [τc(β)]

2 − e− βωg [τc(β)]
2

(40)

with

Iv [τc(β)] =
∫

dxe−τc(β)V (x). (41)

The quantities nc(β) and τc(β) = β
nc(β)

are obtained by solving (for example,
iteratively) the pair of equations

nc(β) = βωg [τc(β)]

2
coth

βωg [τc(β)]

2
(42)

and

ωg [τc(β)] = ω

√

B

[
4g

τc(β)ω4

]
. (43)

Note that, besides reducing to the partition function of the harmonic oscillator at zero
coupling, our expression also reduces to the classical partition function in the high-
temperature limit, β → 0. Indeed, in this limit we have nc(β) → 1, τc(β) → ∼ β,

and ωg(β) → ∼ β− 1
4 leading to the exact classical partition function

Z → 1√
2πβ

∫
dxe−βV (x). (44)

Introducing the principle of minimal sensitivity being a critical step of this work,
it is worth presenting some numerical calculations illustrating this principle. In Fig.
1 the partition function Zn given by Eq. (34), that is, before the principle of minimal
sensitivity has been introduced, is shown as a function of n for three different values of
the inverse temperature, β = 5, 7.5, and 10 and for ω = g = 1. For each β and n, Zn

is evaluated for thirteen different values of the effective frequency ωg . For each n, the
ωg’s have been chosen to be uniformly distributed around ωg(τ ), the optimal effective
frequency leading to a minimal error in the Gaussian approximation, as given by Eq.
(28). Figure1 illustrates the fact that Zn diverges at large n, Eq. (35). We also see that,
for each n, Zn is strongly sensitive to the value of ωg used, except at a unique value
of n [=nc(β)] where the stationarity condition, ∂Zn

∂ωg(τ )
= 0 holds. The values of nc

observed on the figure coincide with those obtained by solving the pair of equations,
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Fig. 1 Zn , Eq. (34), as a function of n for ω = 1, g = 1, and β = 5, 7.5, and 10. For each n, Zn is evaluated
for thirteen different values of ωg’s uniformly distributed around ωg(τ ) as given by Eq. (28)

Eqs. (42) and (43), as it should. These various results, discussed here only for g = 1
and three different β’s, have been found to be valid for any value of β and g (data not
shown here).

In Fig. 2 we compare the partition function Z as a function of β and the exact
one obtained by explicit summation of the exponential components of Z using highly
accurate numerical energies (solid line in the figure). As seen, at the scale of the
figure, both sets of data are nearly indistinguishable. To increase the resolution, the
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Fig. 2 Comparison between Z(β) and the exact numerical partition function Zex(β). The inset shows the
error. Here, ω = 1 and g = 1

inset presents the difference Z(β) − Zex(β). The maximum error is about 0.01. As
expected, the error vanishes in the high-temperature limit, β → 0.

5 Energy

In this section the formulas for the ground- and first-excited energies, E0(g) and E1(g)
are derived. Next, the coefficients of the weak- and strong-coupling expansions of the
ground-state energy are evaluated and compared to the exact ones.

5.1 Ground- and first-excited energies

The ground-state energy is obtained from the zero-temperature limit of the free energy
as follows

E0(g) = lim
β→∞ − 1

β
ln Z . (45)

At large β, the (unique) solution of Eqs. (42) and (43) is found to be proportional to β

nc(β) = ω̄g

2
β, (46)

where ω̄g denotes the solution of the implicit equation given by

ω̄g = ω

√

B

(
2gω̄g

ω4

)
. (47)
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Note that the proportionality of nc(β) with β is consistent with the data presented in
Fig. 1. Using the zero-temperature limit of the free energy and the expression for the
partition function, we get

E0(g) = ω̄g

2

[
1 − ln

(√
ω̄g

π
Ī (g)

)]
(48)

where

Ī (g) =
∫

dxe
− 2

ω̄g
V (x)

. (49)

To get the first-excited energy E1(g), the first subleading contribution to Z(β) at large
β has to be evaluated. For that, we first rewrite the equation obeyed by ωg(β) under
the form

ωg(β) = ω

√

B

[
2g

ω4ωg(β) coth
βωg(β)

2

]
. (50)

Introducing the variable y defined as

y = e−βωg (51)

the hyperbolic cotangent can be expanded for all values of y < 1 as

coth
βωg(β)

2
= 1 + 2

∞∑

n=1

yn . (52)

As a consequence of Eq. (50) and of the fact that the function B(x) is infinitely
differentiable, the effective frequency can also be expanded in powers of y. In addition,
at the lowest order y ∼ e−βω̄g up to an exponentially small correction. By performing
the Taylor expansion of B(x) at the value 2g

ω4 ω̄g we get at the lowest order

ωg(β) = ω̄g + c̄ge
−βω̄g + O

[
e−2βω̄g

]
(53)

with

c̄g = 2ug
1 − ug

ω̄g

(54)

and

ug = g

ω2 B
′
(
2g

ω4 ω̄g

)
. (55)

Incorporating the first-order expression for ωg(β) into the expression of the partition
function, it is also possible to expand the PF with respect to y. After some algebra the
two first leading contributions to the PF write

Z(β) = e−βE0 + e−β
(
E0+ω̄g

) [
1 − β


(
g
)] + O

[
e−β

(
E0+2ω̄g

)]
(56)

123



Journal of Mathematical Chemistry (2025) 63:353–382 365

Fig. 3 E0 and E1 as a function of g. Exact results given by the solid lines. ω = 1

with


(g) =
(
1 + c̄g

2ω̄g

)[
1 − 4V̄ (g)

ω̄g Ī (g)
− 2 ln

(√
ω̄g

π
Ī (g)

)]
(57)

and

V̄ (g) =
∫

dxV (x)e
− 2

ω̄g
V (x)

. (58)

Due to the presence of the linear term [1 − β
(g)] in Z(β), our approximate partition
function cannot be expressed as an infinite sum of Boltzman factors as it should be
for the exact one. As a consequence, in order to define what is meant by excited-state
energies in our model, we need to introduce some prescription. Here, we propose
to exponentiate the linear contribution [1 − β
(g)] to give e−β
(g). By doing this,
the first subleading contribution to Z(β) becomes a pure exponential and the first
excited-state energy is defined as

E1(g) = E0(g) + ω̄g + 
(g). (59)

Note that, in practice, the exponentiation has a marginal quantitative impact since the
product β
(g) remains small for typical values of β. Preliminary investigations show
that a generalization of such a strategy for evaluating higher excited-state energies is
possible. However, the general structure is not so simple. This study is left for future
research.

In Fig. 3 the variation of E0 and E1 as a function of g forω = 1 is shown. The exact
curves are represented by solid lines. At the scale of the figure, E0(g) is in excellent
agreement with the exact energy over the full range of g. The first excited-energy
is slightly less accurate and has also the correct overall behavior. Note that both E0
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and E1 are systematically smaller than the exact ones for all values of the coupling
constant.

5.2 Weak coupling expansion

For small values of g (weak-coupling) the Rayleigh–Schrödinger perturbation theory
expresses the ground-state energy as a power series

E0(g) =
+∞∑

n=0

E (n)gn . (60)

The nth order perturbational energies E (n) are known to be rational numbers. For
ω = 1 they are given by 1

2 ,
3
4 ,− 21

8 , 333
16 ,− 30885

128 , .... In the large-n regime they have
the following asymptotic behavior [1]

E (n) ∼n→∞ −
√
6

π

(−3

4

)n (2n)!
n! . (61)

Because of the factorial increase of the coefficients the series has a zero radius of
convergence. In practice, by summing a finite number of components of this divergent
series the ground-state energy can be accurately obtained only for (very) small values
of g. For larger values, it is necessary to use one of the methods to sum up divergent
series, see references in the introduction.

Let us now evaluate the weak-coupling expansion of our approximate ground-state
energy E0(g), Eqs. (48) and (49). At zero coupling, ω̄g = ω, and the zeroth order of
the expansion reduces to the ground-state energy of the harmonic oscillator,

E (0) = ω

2
. (62)

The ground-state energy depending only on ω̄g , let us expand it in powers of g

ω̄g =
+∞∑

n=0

ung
n with u0 = ω. (63)

Using the implicit equation determining ω̄g , Eq. (47), the coefficients un can be
expressed in terms of the coefficients Bn of the polynomial expansion of B(x), Eq.
(29). Now, let us define the function J (g) as

J (g) =
√

ω̄g

π
Ī (g) = 1√

π

ω̄g

ω

∫
dxe−x2e

− 2gω̄g
ω4

x4 (64)
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Table 1 Coefficients of the power series of E0(g) up to n = 5

n E(n)
ex E(n)

0 1/2= 0.5 1/2= 0.5

1 3/4= 0.75 3/4= 0.75

2 −21/8= −2.625 −15/4= −3.75

3 333/16= 20.8125 54

4 −30,885/128= −241.289.. −20,817/16= −1301.0625

5 916,731/256= 3580.98.. 216,243/5= 43248.6

The first column reports the exact coefficients. The second column the coefficients obtained in the present
work

and expand it in power series of g

J (g) =
+∞∑

n=0

Jng
n with J0 = 1. (65)

The coefficients are given by

Jn = 1√
π

ω̄n+1
g

ω4n+1

(−2)n[4n]
n! (66)

where the symbol [4n] is defined as

[4n] =
∫

dxe−x2x4n = (4n − 1)!!
22n

√
π. (67)

Using the expansion of ω̄g the coefficients Jn can be expressed in terms of the
coefficients u = (u1, u2, ...). We then have for the energy

E0(g) = 1

2

( +∞∑

n=0

ung
n
)[

1 − ln

(
1 +

+∞∑

n=1

Jn [u] gn
)]

. (68)

As seen, the power expansion of the energy can be expressed only in terms of the
coefficients u. The evaluation of these coefficients is rather tedious but can be easily
performed using a symbolic computation program such as Mathematica [42]. In Table
1 we report the exact and approximate coefficients of the power series up to n = 5.
Quite interestingly, the approximate coefficients are found to be rational numbers like
in the exact case, the two first coefficients being identical. Finally, we note that the two
series display a similar mathematical pattern. Indeed, the magnitude of the coefficients
increases dramatically with the perturbational order in both cases (factorially, for the
exact series) with an even more rapid rate for the approximate series and, furthermore,
the sign pattern of the coefficients is identical.
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5.3 Strong coupling expansion

In the strong-coupling regime (large g) it has been shown that the expansion in terms
of 1

g takes the form [43]

E0(g) = g
1
3

+∞∑

n=0

αn

(
1

g

) 2n
3

. (69)

Accurate values for the coefficients αn have been reported [43].
Here, to build the strong-coupling expansion of E0(g) we first need to evaluate the

large-x expansion of B(x). From the definition of B(x), Eq. (29), we easily show that
(see Appendix C)

B(x) = √
x

+∞∑

n=0

Bn

(
1√
x

)n

. (70)

The three first values of Bn are given in Appendix C. Now, by using the implicit
equation for ω̄g , Eq. (47), we find by simple inspection that

ω̄g(g) = g
1
3

+∞∑

n=0

ωn

(
1

g

) 2n
3

. (71)

The leading coefficient ω0 is given by

ω0 =
(√

2B0

) 2
3

g
1
3 (72)

with

B0 = 2



( 5
4

)



( 3
4

) . (73)

The coefficients ω1 and ω2 are reported in Appendix C. Now, the strong coupling
expansion of the energy may be obtained from the expansion of ω̄g(g) and the
expression of E0(g), Eq. (48). We get

E0(g) = g
1
3

+∞∑

n=0

αn

(
1

g

) 2n
3

. (74)

Remarkably, the functional form of the exact energy, Eq. (69), is recovered by our
model. The explicit expression of the first three coefficients αn are given in Appendix
C. Their numerical values are reported in Table 2 and compared to the exact ones
calculated in [43]. The relative error on the leading coefficient α0 is only about 4%,
a remarkable result in view of the simplicity of the model. The accuracy of the next
coefficients decreases as a function of n but the values are still reasonable.
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Table 2 Strong-coupling
coefficients αn compared to the
exact values of [43]. Here,
ω = 1

n αn αexn

0 0.6393.. 0.6679..

1 0.1576.. 0.1436..

2 −0.0152.. −0.0086..

6 Comparison with the Feynman–Kleinert and Büttner–Flytzanis
approximate partition functions

Two simple yet accurate partition functions for the anharmonic oscillator proposed in
the literature are those of Feynman andKleinert [28] and of Büttner and Flytzanis [34].
In this section, the respective quality of the three approximate formulas is evaluated.

6.1 Feynman–Kleinert (FK) approach

In the same way as in the present work, the authors make use of the path integral
formalism. However, the route followed is very different. In short (for details, see
[28]) the starting idea is to rewrite Z as a classical partition function involving an
effective classical potential Veff(x),

Z = 1√
2πβ

∫
dx0e

−βVeff (x0). (75)

This representation is exact and particularly well-suited to the high-temperature limit
where the formula reduces to the classical partition function, Eq. (44). In this limit
the only path contributing to the partition function is the constant path connecting the
initial and final points, that is, x(0) = x(β) = x0. At small β, it is useful to introduce
the collective (centroïd) variable, x̄ = ∫ β

0 dsx(s), since the paths contributing the
most to the path integral are those for which x(s) does not fluctuate too much around
x̄ . The deviations from x̄ are then locally approximated in a harmonic way, thus
generating an approximation for the effective classical potential that can be explicitly
obtained by solving a pair of coupled equations. In Appendix D the working formulae
giving the effective potential are reported. From the partition function, the approximate
ground-state energy can be obtained (see the derivation in Appendix D). We have

E0(g) = �0(g)

4
+ ω2

4�0(g)
+ 3g

4�2
0(g)

(76)

with

�0(g) = ω2

3
1
3 
(g)

1
3

+ 
(g)
1
3

3
2
3

(77)

and


(g) = 27g + √
3
√
243g2 − ω6. (78)
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Fig. 4 Comparison between the temperature-dependent energy gaps as a function of β. The energy gap,

E = E1(g) − E0(g), is obtained as β → ∞. The solid line gives the exact values. ω = 1 and g = 1

To obtain the first excited-state energy, E1(g), reported in Fig. 4, the subleading
component of the FK partition function, ZFK , is extracted as follows

E1(g) = lim
β→∞ − 1

β
log

(
ZFK − e−βE0(g)

)
. (79)

6.2 Büttner–Flytzanis (BF) approach

The Büttner–Flytzanis approach is based on a variational approach for the free energy,
F = − 1

β
ln Z . As noted by Feynman [27], an approximation of the free energy is the

following upper limit for F
F̃ = F0 + 〈H − H0〉0 (80)

where F0 is the free energy of some reference Hamiltonian H0 and the average is taken
with respect to H0. Using as reference Hamiltonian a harmonic oscillator of frequency
ω̃ with its center displaced by a quantity b we have

F̃ = F0 + 〈V (x) − 1

2
ω̃2(x − b)2〉0. (81)

F̃ can be evaluated analytically and its minimization with respect to the variational
parameters ω̃ and b leads to b = 0 and to a third-order polynomial equation giving the
optimal value for ω̃. For completeness, the equations are presented in the Appendix
E.
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Table 3 Comparison between
the free energies obtained with
the three models (BF, FK, and
the present approach)

β ε(BF) (%) ε(FK) (%) ε(Thiswork) (%)

g = 0.01

10 0.006 0.004 −0.02

5 0.007 0.002 −0.02

2 0.03 0.0002 −0.03

1 0.9 0.0002 −0.3

0.1 0.5 0.01 −0.002

g = 1

10 1 1 −2

5 1 0.8 −2

2 1 0.2 −2

1 3 0.04 −3

0.1 3 0.000001 −0.08

g = 10

10 2 2 −4

5 2 2 −4

2 2 1 −4

1 2.2 0.4 −4

0.1 5 0.00006 −0.4

Relative errors ε (in %) are reported for different values of β in the
small- (g = 0.01), intermediate- (g = 1), and strong-coupling (g =
10) regimes. ω = 1

6.3 Compararison betweenmodels

In Table 3 a comparison between the free energies obtained with the three models (BF,
FK, and our model) is presented. Results are given at some selected values of β and
coupling constants g. For each approach, the relative errors ε (in%) are reported.Afirst
remark is that the BF and FK free energies have positive errors, a result expected due to
the variational character of both theories. In contrast, as already noted above, our free
energies are found to be systematically smaller than the exact ones, a property which is
a priori not expected. Unfortunately, we have not been able to showwhether or not this
property is true, in particular when other types of potentials V (x) are considered. Now,
taking this property for granted, it is tempting to maximize the energy with respect to
the effective frequency, ω̄g , considered as a variational parameter [note that E0(g) and
E1(g) depends only on ω̄g]. Quite surprisingly, no improvement has been observed at
all couplings, a result which would indicate that our parameter-free partition function
is already optimal if the property is true. A second remark is that, as already noted by
Srivastava and Vishwamittar [44], the quality of the FK free energies is superior to
that of the BF approach. This is particularly true in the high-temperature limit where
the BF approach fails to converge to the classical limit. The present method, which
has both the exact harmonic and classical limits, like in the FK approach, leads also
to small errors over the full range of temperatures and couplings (here, maximum
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error of about 4%). However, the FK approach remains superior (maximum error of
about 2%), particularly at high temperatures where the convergence of the FK partition
function to the classical limit is particularly rapid.

An important issue regarding approximate partition functions is their ability to
reproduce the gap in energy, 
E = E1(g) − E0(g), a critical quantity for the low-
energy properties of the model. In Fig. 4 we present the temperature-dependent energy
gap defined as follows


E(β) = E1(β) − E0(β) (82)

with

E0(β) = − 1

β
log Z(β) (83)

and

E1(β) = − 1

β
log

[
Z(β) − e−βE0(β→∞)

]
. (84)

At β → ∞, 
E(β) is expected to converge to the energy gap. In Fig. 4 the gap in
energy as a function of β is presented for g = 1 (intermediate coupling). As seen,
because of its very construction, the FK approach is not at all suited for reproducing
the energy gap. In contrast, this is not the case for the two other methods. In the case of
our model, the partition function has beenmodified by adding to it the small correction
δZ = e−β(E0+ω̄g)

[
e−β
 − (1 − β
)

]
in order to stabilize its zero-temperature limit

(see the discussion above about the excited-state energies). Both approaches converge
to accurate values with an error of about 3.4% for the BF approach and a significantly
smaller error of about 0.9% for the present approach.

Finally, it is important to emphasize that, in this section, we have only compared
simple formulas for the partition function. For the FK and BF methods the simple
formulae used here correspond only to the lowest order of approximation in their
formalism. In the case of FK, systematic corrections to the calculation of the effective
classical potential can be performed [30], thus leading to systematically better energies
and gaps. It is also true in the variational framework for free energies, see for example
[45]. However, in both cases, the formalism and formulas needed to evaluate the
systematic corrections to the simple formulas become much more involved and the
advantage of having a simple model is lost.

7 Summary and perspectives

Let us first briefly summarize the derivation of our model partition function. The first
step is to express the partition function as a path integral, Eq. (16). Next, a Gaussian
approximation for the quartic contribution is introduced, Eq. (26). This approximation
amounts to reformulating Z as the partition function of a harmonic oscillator with an
effective frequency depending both on the temperature and coupling constant g, Eq.
(28). However, because of the Gaussian approximation the limit n → ∞ for Zn is no
longer defined, Eq. (35). To address this problem, we introduce a Principle of Minimal
Sensitivity of the PF to the effective frequency, Eq. (36). Thanks to this principle, we
are able to propose our model partition function, Eqs. (40) with (41, 42, 43).
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Despite its apparent simplicity, this partition function encapsulates a number of
important properties which can be summarized as follows.

(i) Both the harmonic (g → 0) and classical (β → 0) limits are recovered.
(ii) The free energy is accurate to a few percent over the entire range of temperatures

and coupling strengths.
(iii) The ground-state and first-excited energies are accurately reproduced for all

coupling strengths, the energy gap having a typical error of about one percent.
(iv) The divergence of the weak-coupling expansion with a factorial-like growth of

the coefficients is recovered. In addition, the coefficients are found to be rational
numbers as the exact ones.

(v) The functional form of the strong-coupling expansion is reproduced. The leading
coefficient is obtained with an error of a few percent.

The quartic oscillator being one of the simplest paradigmatic examples of non-trivial
quantum system, it has been and still will be the subject of numerous studies in quan-
tum, statistical, and quantum field theory domains to test new ideas and algorithms.
Then, we believe that to have at our disposal a simple analytic model for the partition
function reproducing the key features of the exact partition function can be of interest
to the community. Note that the approach presented here can be generalized without
difficulty to one-dimensional oscillators with an arbitrary anharmonicity (for exam-
ple, x p with p even). Finally, it will be interesting to explore the applicability of the
approach to multi-dimensional systems.

Appendix A: Derivation of
∏n−1

k=1 sin
�k
n = n

2n−1

The derivation of this equality can be found at several places in the literature. However,
for completeness, we provide the following derivation.

For 1 ≤ k ≤ n − 1 we have

|1 − ei2π
k
n | = 2 sin

πk

n
. (A1)

The product of sine can thus be written as

n−1∏

k=1

sin
πk

n
= 1

2n−1

n−1∏

k=1

|1 − e2π i
k
n | = 1

2n−1

∣∣∣∣∣

n−1∏

k=1

(1 − e2π i
k
n )

∣∣∣∣∣ . (A2)

Let us introduce the roots of the unity, wk = ei
2πk
n , solutions of xn − 1 = 0. We have

xn − 1 =
n−1∏

k=0

(x − wk). (A3)
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Defining Q(x) as

Q(x) =
n−1∏

k=1

(x − wk) (A4)

and writing
xn − 1 = (x − 1)(1 + x + ... + xn−1) (A5)

we then get
Q(x) = 1 + x + ... + xn−1 (A6)

and ∣∣∣∣∣

n−1∏

k=1

(1 − e2π i
k
n )

∣∣∣∣∣ = |Q(1)| = n. (A7)

Finally,
n−1∏

k=1

sin
πk

n
= n

2n−1 . (A8)

Appendix B: Derivation of limn→∞ Pn(x)

Pn(x) is defined as

Pn(x) =
n∏

k=2

1√
1 + x2

2λkn2

(B1)

where

λk = 1 − cos
2π

n
(k − 1) k = 1, n. (B2)

Introducing the logarithm of Pn

ln Pn = −1

2

n∑

k=2

ln

(
1 + x2

2λkn2

)
(B3)

and the Taylor expansion of ln (1 + x)

ln (1 + x) =
+∞∑

l=1

(−1)l−1

l
xl (B4)

we get

ln Pn = 1

2

+∞∑

l=1

(−1)l

l

(
x2

2n2

)l

Sln (B5)

where

Sln =
n∑

k=2

(
1

λk

)l

=
n∑

k=2

(
1

1 − cos
(
2π k−1

n

)
)l

. (B6)
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Sln can be rewritten as

Sln = 1

2l

n−1∑

k=1

1

sin2l
(
π k

n

) . (B7)

As shown by Gardner and Fisher [46], the large-n behavior of Sln can be related to the
Riemann zeta function as follows

lim
n→∞ n−2l

n−1∑

k=1

1

sin2l
(
π k

n

) = 2
ζ(2l)

π2l . (B8)

Now, using the well-known equality

ζ(2l) = (−1)l+1 B2l(2π)2l

2(2l)! (B9)

we get the asymptotic behavior at large n of Sln

Sln ∼n→∞
|B2l |2l
(2l)! n2l (B10)

where B2l are the Bernoulli numbers. From now on, all following expressions must
be understood as valid only in the large-n regime. Using Eqs. (B5) and (B10) we get

ln Pn = 1

2

+∞∑

l=1

(−1)l x2l
|B2l |
l(2l)! . (B11)

Let us define

u(x) = 1

2

+∞∑

l=1

(−1)l x2l
|B2l |
l(2l)! (B12)

so that
Pn = eu(x). (B13)

For l ≥ 1 we have
|B2l | = (−1)l−1B2l . (B14)

Then, u(x) can be written as

u(x) = −1

2

+∞∑

l=1

x2l
B2l

l(2l)! . (B15)

Now, taking the derivative of u(x)

u′(x) = −1

x

+∞∑

l=1

x2l
B2l

(2l)! (B16)
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and using the fact that

coth x =
+∞∑

n=0

22n B2n

(2n)! x2n−1 = 1

x

+∞∑

n=0

B2n

(2n)! (2x)
2n (B17)

the derivative of u(x) is found to be

u′(x) = −1

2
coth

x

2
+ 1

x
. (B18)

Using Eq. (B13) and Pn(0) = 1, we can write

Pn(x) = e
∫ x
0 dyu′(y). (B19)

Finally, after integrating we get

Pn(x) = x

e
x
2 − e− x

2
. (B20)

Appendix C: Strong coupling

The function B(x) is defined as

B(x) = 1

2

∫
dy e−y2−xy4

∫
dy y2e−y2−xy4

for x ≥ 0. (C1)

After a change of variable, it can be rewritten as

B(x) =
√
x

2

∫
dz e

− 1√
x
z2−z4

∫
dz z2e

− 1√
x
z2−z4

. (C2)

The strong coupling expansion of B(x) at large x has thus the following form

B(x) = √
x

+∞∑

n=0

Bn

(
1√
x

)n

. (C3)

The three first coefficients are given by

B0 = 2



( 5
4

)



( 3
4

) (C4)

B1 = 4
2
( 5
4

) − 
2
( 3
4

)

2
2
( 3
4

) (C5)

123



Journal of Mathematical Chemistry (2025) 63:353–382 377

and

B2 = −



( 5
4

) [

2

( 3
4

) − 8
2
( 5
4

) + 4

( 3
4

)



( 7
4

)]

4
3
( 3
4

) . (C6)

As shown in the text, the expansion of ω̄g(g) writes

ω̄g(g) = (2g)
1
3

+∞∑

n=0

ωn y
n (C7)

where the variable y is defined as

y = g− 2
3 . (C8)

The coefficients ωn are expressed in terms of the coefficients Bp’s (p ≤ n) as follows

ω0 = B0
2
3 (C9)

ω1 = 2
2
3 ωB1

3B0
2
3

(C10)

ω2 = ω2

2
2
3

(
2B0B2 − (B1)

2

3(B0)
2

)
etc. (C11)

The expression of the ground-state energy as a function of ω̄g writes

E0(g) = ω̄g

2

[
1 − ln

(√
ω̄g

π
Ī (g)

)]
(C12)

where

Ī (g) =
∫

dxe
− 2

ω̄g

(
1
2ω2x2+gx4

)
. (C13)

Defining J (g) as

J (g) =
√

ω̄g

π
Ī (g) =

+∞∑

n=0

Jn y
n (C14)

the three first coefficients Jn are found to be

J0 = ω
3
4
0 
( 14 )

2
√

π
(C15)

J1 = 2
1
3 ω2√ω0


( − 1
4

) + 6ω1
( 14 )

16
√

πω0
1
4

(C16)
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and

J2 =
2

1
3
√

ω0ω1ω
2


( − 1
4

) +
(
2

2
3 ω4ω0 − 3ω2

1 + 24ω0ω2

)

( 14 )

64
√

πω0
5
4

. (C17)

Writing E0(g) under the form

E0(g) = (2g)
1
3

2

( +∞∑

n=0

ωn y
n
) [

1 − ln

( +∞∑

n=0

Jn y
n
)]

(C18)

we have

E0(y) = g
1
3

+∞∑

n=0

αn y
n . (C19)

The first coefficients are given by

α0 = ω0(1 − ln J0) (C20)

α1 = − J1ω0

J0
+ ω1(1 − ln J0) (C21)

and

α2 = (J 21 − 2J0 J2)ω0

2J 20
− J1ω1

J0
+ ω2(1 − ln J0). (C22)

Appendix D: Feynman–Kleinert variational approach

Using the notations of [28] (in particular, t ≡ β), the basic equations of the Feynman–
Kleinert variational approach are

Z = 1√
2π t

∫
dx0e

−tW1(x0) (D1)

where W1 is an effective classical potential obtained as

W1(x0) = min
a2,�

W̃1(x0, a
2,�) (D2)

and W̃1 is given by

W̃1(x0, a
2,�) = 1

t
ln

sinh �t
2

�t
2

− �2

2
a2 + Va2(x0). (D3)
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Here, the potential Va2 is defined by

Va2(x0) =
∫

dx ′
√
2πa2

e
− 1

2a2
(x0−x ′)2

V (x ′). (D4)

After minimization of W̃1 a pair of optimal parameters depending on x0,
(a2(x0),�(x0)) is obtained. The minimization of W̃1 with respect to � gives the
equation

a2 = 1

�2t

(
�t

2
coth

�t

2
− 1

)
(D5)

and the minimization with respect to a2 gives

�2 = ∂2Va2(x0)

∂x20
. (D6)

Let us explicit these equations in the case of the quartic oscillor, V (x) = 1
2ω

2x2+gx4.
We get

Va2(x) = 1

2
a2ω2 + 3a4g + 1

2

(
12a2g + ω2)x2 + gx4 (D7)

and
�2(x) = 12a2g + ω2 + 12gx2. (D8)

Now, to get the ground-state energy, the large-time limit has to be considered. As
t → ∞ we have

1

t
ln

sinh �(x0)t
2

�(x0)t
2

→ �(x0)

2
(D9)

and then

a2(x0) = 1

2�(x0)
. (D10)

The equation determining �(x0) is

�3(x0) − �(x0)
(
ω2 + 12gx20

) − 6g = 0 (D11)

and the partition function writes

Z = 1√
2π t

∫
dx0e

−t f (x0) (D12)

with

f (x0) = �(x0)

4
+ Va2(x0)(x0). (D13)

Now, in the large-time limit only the constant part of f (x) will give a contribution to
− 1

t ln Z , we then have
E0(g) = f (0). (D14)
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The real solution of the third-order polynomial equation, Eq. (D11), with x0 = 0 is

�0(g) = ω2

(
3
(g)

) 1
3

+ 

1
3 (g)

3
2
3

(D15)

where


(g) = 27g + √
3
√
243g2 − ω6. (D16)

Finally, the ground-state energy of the Feynman–Kleinert model writes

E0(g) = �0(g)

4
+ ω2

4�0(g)
+ 3g

4�2
0(g)

. (D17)

Appendix E: Büttner–Flytzanis variational approach

In the Büttner–Flytzanis variational approach [34], the free energy is written as

F(β) = F0(β) + ω2 − ω̃2

4

[
coth ω̃β

2

ω̃

]
+ 3g

4

[
coth ω̃β

2

ω̃

]2

(E1)

where the frequency ω̃ is the variational parameter and F0(β) the free energy of the
harmonic oscillator with frequency ω̃

F0(β) = β−1 ln

[
2 sinh

( ω̃β

2

)]
. (E2)

Minimizing Eq. (E1) with respect to ω̃ gives the equation determining ω̃

ω̃3 − ω2ω̃ − 6g coth

(
ω̃β

2

)
= 0. (E3)
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