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Resumo: Nos anos recentes, o modelo de Einstein-Maxwell-scalar provou ser

um modelo bastante rico e interessante. Devido à simples adição

de um acoplamento não minimal f(φ) entre o campo escalar φ e o

campo electromagnético, encontramos várias propriedades peculiares

que levaram a resultados interessantes nos campos da relatividade

geral e (pelo menos como um modelo teste) da astrofísica de objetos

compactos. São algumas destas propriedades que vamos discutir nesta

tese.

Após uma pequena introdução dos tópicos que vão ser abordados,

apresentamos vários resultados que obtemos sobre a inexistência de

solitões para certas condições neste modelo. Estes resultados abriram

o caminho para obtermos uma nova solução solitónica para este tipo

de modelo, que também é apresentada aqui. A seguir, discutimos as

simetrias de dualidade do modelo Einstein-Maxwell-scalar e tiramos

partido destas para obter uma técnica de geração de soluções que

depois aplicamos a soluções conhecidas deste modelo. Por �m, abor-

damos o muito discutido conceito de escalarisação espontânea, mas

desta vez em espaços de alta dimensão para um modelo generalizado.

Finalizamos com algumas conclusões e comentários.



Keywords: Scalar �elds, Maxwell �elds, Solitons, Black holes, Uniqueness, No go

theorems, Axions, Duality, Scalarisation.

Abstract: In the recent years, the Einstein-Maxwell-scalar model has proven to

be a very fruitful and interesting model. Due to the simple addition of

a non-minimal coupling f(φ) between the scalar �eld φ and the elec-

tromagnetic �eld terms, we �nd various novel and unusual properties

that have led to interesting results in the �elds of general relativity

(at least as a toy model) in the astrophysics of compact objects. This

thesis will address some of these properties.

After a brief introduction of the topics to be covered, we present

the various results that we obtained regarding the non-existence of

solitons in certain conditions for this model. These results paved the

way for us to obtain a new soliton solution for this kind of model,

which is also presented here. Next, we discuss the duality symmetries

of the Einstein-Maxwell-scalar model and take advantage of them to

create a solution generating technique which we then apply to well-

known solutions of the model. Lastly, we cover the much discussed

concept of spontaneous scalarisation, but this time in higher dimen-

sions for a generalised model. We end with some conclusions and

remarks.
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Chapter 1

Introduction

This chapter is dedicated to introducing the main topics that will be delved into in the

following chapters. Every chapter starts with a brief introduction covering what will be

discussed throughout that chapter and how it is structured. The structure of the thesis is

underlined in section 1.6 of this introductory chapter.

Regarding notation, there are a few things that should be mentioned. We consider

4-dimensional spacetimes unless speci�ed otherwise and use index notation, which implies

that two repeated indices, one covariant (below) and one contravariant (above), constitute

an implied sum ∑

µ

aµb
µ := aµb

µ , (1.0.1)

where a and b stand for 4-dimensional vectors and aµ for each value of µ (from 0 to 3)

represents each of the 4 components of the vector a. The same notation applies to tensor

indices of any rank. Unless stated otherwise, we use the standard Minkowski (t, r, θ, ϕ)

spherical coordinates to describe spacetime. Of note is that ϕ will also be used interchange-

ably with V to denote electric potential but only when speci�ed and in a way that avoids

confusion. In the same way, V will also be used to denote the norm of a stationary killing

vector �eld. We consider both Newton's gravitational constant G and the speed of light c

to be equal to unity G = c = 1.

1.1 The model

The model that will become the main topic of discussion in this thesis is the Einstein-

Maxwell-scalar (EMS) model which has the following action

S =
1

4π

∫
d4x
√−g

(
R

4
− f(φ)

4
FµνF

µν − 1

2
∂µφ∂

µφ− U(φ)

)
. (1.1.2)

The elements of this action are the Ricci tensor R, the Maxwell �eld strength Fµν , the

scalar �eld φ, which may or may not have a potential U(φ), and the non-minimal coupling

1



function f(φ). We consider the theory in 4-dimensional spacetimes, therefore the integra-

tion in the action uses the covariant 4-dimensional volume element
√−g d4x, where g is

the determinant of the spacetime metric tensor gµν . The main novelty of this model is the

coupling function f(φ), which directly couples the scalar and electromagnetic �elds. Phys-

ically, this function can be interpreted as a varying electric permittivity, which is mediated

by the scalar �eld equation of motion. For the sake of recovering the Einstein-Maxwell

model when the scalar �eld vanishes, the following condition

f(0) = 1 (1.1.3)

is imposed.

This kind of model can arise naturally in physics. Most notably are the well-known

Kaluza-Klein models [1�3] where the electromagnetic and scalar terms result from the

geometry of 5-dimensional spacetime. Other well-known contexts include supergravity

and string theory [4]. In these theories, a very common non-minimal coupling function

is the exponential function f(φ) ∼ e−αφ, where α is a constant. This kind of coupling is

usually referred to as dilatonic and the scalar �eld as the dilaton. A well-known example

of a spherically symmetric black hole solution for this model with a dilatonic coupling was

found in [5]. In the context of cosmology, more general classes of couplings were considered

in [6,7] when considering the scalar �eld as the in�aton �eld and its coupling to gauge �elds.

More recently studied in this kind of model is the phenomenon of spontaneous scalar-

isation. The study about scalarisation for this model was kickstarted in [8] where it was

shown that EMS, under the condition df
dφ(0) = 0, accommodates scalarisation of Reissner-

Norström (RN) black holes. This means that there is a class of hairy black hole solutions

which bifurcate from the RN solution. We will discuss this further in section 1.5 and in

chapter 6.

Another topic of interest when studying this model is the search for soliton solutions.

These are everywhere regular, asymptotically �at solutions that describe lumps of energy

that are not dense enough to collapse and create an event horizon, but still manage to be in

equilibrium. There has been a long extensive discussion of solitons in �eld theory starting

with the Korteweg-de-Vries equation [9] and examples in general relativity include boson

stars [10]. We will discuss solitons and theorems regarding their existence or non-existence

more closely in section 1.2 and chapters 2 and 3.

In this thesis we will slowly build up on this model. After chapter 2 we will consider

further generalisations of the action that allow us to recontextualise the model with other

kinds of theories.

2



1.2 Uniqueness, no go theorems and solitons

In the context of general relativity, uniqueness theorems are theorems that, given a set of

conditions, will specify the solution of our model (spacetime metric or �eld con�guration)

and rule out any other solution. This means that the solution is unique for that set of

conditions.

1.2.1 Vacuum general relativity

Take for example vacuum general relativity which is described by the Einstein-Hilbert

action

SEH =
1

16π

∫
d4x
√−gR . (1.2.4)

A plausible question for such a non-linear theory would be if there are solutions that are

in equilibrium, are localised, and have �nite energy. We know that one such class of such

solutions exists: the black hole solutions.

1.2.1.1 Black Holes in GR

A theorem constructed by Carter and Robinson in [11, 12](see also [13�15]) states the

following

Theorem 1 (Carter, Robinson). The most general stationary (in equilibrium) and ax-

isymmetric asymptotically �at vacuum black hole solution regular on and outside the event

horizon, is provided by the two-parameter (mass and angular momentum) family of Kerr

metrics [16].

Note how the solution is already found and speci�ed as the only possible solution for

the conditions given at the start of the theorem.

This is a very general and strong result. In fact, this theorem tells us that any two

black holes that have the same total mass and angular momentum are exactly the same,

not unlike the properties of sub-atomic particles. Any other macroscopic object can have

di�erent density distributions of these same quantities that allow us to distinguish them,

but not black holes! To describe this inability to distinguish black holes with those same

quantities John Wheeler coined the expression that "black holes have no hair" [17], where

"hair" stands as a metaphor for any other information that is not associated with a globally

conserved quantity which has a Gauss law. But as we will see, for speci�c extended theories

this expression's generality needs to be reconsidered as examples of hairy black holes have

been found (see for example [8, 18,19]).

If we impose stronger conditions on the theorem above, we should obtain a family of

solutions that is a subset of the Kerr family. Another very important uniqueness theorem

is the one proven by Israel in [20]:

3



Theorem 2 (Israel). The most general static and asymptotically-�at vacuum black hole

solution regular on and outside the event horizon, is provided by the one-parameter (mass)

family of Schwarzschild metrics [21].

The one-parameter Schwarzschild metric has spherical symmetry and is a subset of

the Kerr family of metrics. However, note that while staticity is a stronger condition

than stationarity1, we also relaxed the axisymmetry condition. This is the remarkable

conclusion of Israel's theorem: spherical symmetry is obtained as a consequence of staticity

and asymptotic �atness. This means that, while adding the axisymmetry condition would

give us the same result, it would have been super�uous as a stronger result (spherical

symmetry) is implied by the other conditions.

1.2.1.2 Solitons in GR

The main problem with black hole solutions is the presence of curvature singularities inside

the event horizon. Moreover, fully regular black holes (i.e. regular also inside the event

horizon) are impossible in vacuum gravity by the uniqueness theorems stated above. So if

we once again consider equilibrium solutions that are localised and have �nite energy, an

interesting thought would be to search for solutions that are also everywhere non-singular.

This kind of solution would be like a lump of energy, a particle-like solution also known as

a self-gravitating soliton. A possible physical interpretation is to imagine such speculative

solutions as a bundle of gravitational waves tied up under their own �weight", without

enough density to collapse.

The problem with this kind of solutions is that they are ruled out by classical results

of general relativity. These are the so-called no go theorems which instead of specifying

a solution, they rule out possible solutions given a set of conditions. Stationary solitonic

solutions with non-zero mass are ruled out by such theorems [22, 23] (see also [24]) even

for non-trivial topologies. Zero mass solutions are then ruled out by the positive mass

theorem [25,26] which states that the only zero mass solution is Minkowski spacetime.

1.2.2 Einstein-Maxwell: Electro-vacuum general relativity

If our search for solitons in vacuum proves futile, a simple step is to add matter to the

equation. The most natural generalisation is the Einstein-Maxwell theory, obtained by

adding the Maxwell �eld Fµν (without sources) to the action, also referred to as electro-

vacuum. This model is described by the action

SEM = SEH −
1

16π

∫
d4x
√−gFµνFµν . (1.2.5)

1Staticity implies not only that the solution is stationary, but also invariant under time reversal t→ −t.
More formal de�nitions are presented in chapter 2.
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1.2.2.1 Black Holes in Einstein-Maxwell

In this theory, the black hole uniqueness theorems [11�15,27,28] stated for vacuum general

relativity now generalise the Kerr and Schwarzschild families of solutions to the Kerr-

Newman [29] and Reissner-Nordström [30�33] families respectively. A new parameter is

added, the charge of the black hole.

There also exists a new class of solutions in electro-vacuum however, the Majumdar-

Papapetrou family [34,35] of multi-black hole solutions, which is also non-singular on and

outside the (disconnected) event horizon [36] and unique [37,38].

However, the BH uniqueness theorems once again rule out fully regular black holes

and the Majumdar-Papapetrou family of solutions is still singular inside each of the black

holes.

1.2.2.2 Solitons in Einstein-Maxwell

We then resort to �nding everywhere regular solitons once again. This kind of particle-like

solutions in Einstein-Maxwell were dubbed as geons (gravitational electromagnetic entities)

by Wheeler in 1955 [39]. However, solitons are ruled out once again by no go theorems as

static [24] or even strictly stationary [40] con�gurations. Thus, we must resort to theories

beyond electro-vacuum to �nd self-gravitating solitons.

1.2.3 Solitons - Beyond electro-vacuum

Historically, two developments may be highlighted. Firstly, Kaup [41] (see also [42])

found a concrete realisation of "geons" but in Einstein-(complex, massive)-Klein-Gordon

or Einstein-complex-scalar theory:

SECKG = SEH −
1

4π

∫
d4x
√−g

[
gµν

2

(
∂µΦ∂νΦ∗ + ∂µΦ∗∂νΦ

)
+ U(|Φ|)

]
, (1.2.6)

which has a complex scalar �eld Φ, with Φ∗ denoting its complex conjugate, subject to

a potential U(|φ|). These solitons are now known as boson stars [10]. Secondly, Bartnik

and McKinnon showed solitons also exist in the Einstein-Yang-Mills theory [43] - see also

the discussions in [44, 45]. In both these cases, the existence of solitons is accompanied

by the existence of �hairy" black holes, i.e. black holes that have macroscopic degrees of

freedom not associated to a Gauss law - see [19, 46] for recent reviews. In the case of

the Einstein-Yang-Mills theory these are known as coloured black holes [47]; in the case

of the Einstein-(complex, massive)-Klein-Gordon model these are called black holes with

synchronised hair [18]. As a rule of thumb, one observes that in models in which both

solitons and the standard Schwarzschild/Kerr black holes exist, so does a (non-linear)

bound state of both, which is a possible interpretation of the corresponding hairy black

holes. But subtleties exist. For instance, in the Klein-Gordon case, the hairy black holes
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require rotation and do not exist in spherical symmetry [48]. Turning around the rule

of thumb, one may wonder if in a model where both �bald" and hairy black holes exist,

solitons should equally be found.

And so we are led to the aforementioned Einstein-Maxwell-scalar (EMS) model (1.1.2).

Hairy black holes were found in this theory in the form of scalarised black holes which

will be discussed further in section 1.5, so it is an interesting question to see if they also

accompany the existence of solitons in this theory. In chapter 2 we will discuss how

some of the no go theorems apply to the Einstein-Maxwell case. We �rst show for the

Einstein-scalar case (a valid truncation of this model with no Maxwell �eld) a no go

theorem regarding the existence of self-gravitating solitons in stationary and axisymmetric

spacetimes. We use a scaling argument inspired by the one introduced by Derrick [49].

This result generalises previous results for the static [13, 50] and strictly stationary [40]

cases, showing that rotation is not enough to support self-gravitating scalar solitons in

this model, at least with real scalar �elds2. We then show how previous no go theorem

results [24,40] can be generalised for static and strictly stationary solitons in the full EMS

model.

1.2.4 Solitons in Einstein-Maxwell-scalar

The no go theorems tell us when we can not �nd a solution, this means that we also get

more information about how we might �nd a soliton solution. In fact, this is what is

discussed in chapter 4.

By dropping one of the assumptions of these no go theorems, we are able to �nd

soliton solutions for the Einstein-Maxwell-scalar model which are in fact possible even for

�at Maxwell-scalar spacetime. It is by then considering the gravitational backreaction that

we are able to perturbatively and numerically obtain the self-gravitating solitons in the

full Einstein-Maxwell-scalar model.

1.3 Axions and duality in generalised electrodynamics

1.3.1 Axions

Recently, a widely discussed type of scalar �eld is the axion �eld. The idea of the axion

�eld originated in Quantum Chromodynamics (QCD). The QCD action admits a term

that violates the combined CP (Charge conjugation and Parity) discrete symmetries. This

kind of violation, however, is not observed experimentally when considering any kind of

experimental process which is controlled only by the strong interaction. This suggests that

2One should note that there exist, however, quasi-stationary (indeed quasi-static) self-gravitating soli-

tons in real scalar models with a mass term or more complicated positive potentials, named oscillatons [51].

Albeit, strictly speaking, non-static, these can be very long-lived [52�54].
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if this CP violating term exists, its magnitude must be very small, leading to a �ne tuning

problem of its coe�cient.

A solution to this problem known as the "strong CP problem" was later proposed by

Peccei and Quinn [55, 56]. Their idea was that the coe�cient of this term was actually

a dynamical �eld which could dynamically be relaxed to zero. The way it was originally

presented, this kind of mechanism would extend the standard model with a complex scalar

�eld. This complex scalar �eld would then have a "Mexican hat" potential and possess a

global U(1) symmetry which could be broken below some high energy scale. This is when

the �eld acquires a non-zero vacuum expectation value (vev) which would translate into

the existence of a particle: the axion a, which parametrises the degeneracy of the potential

vacuum manifold. As a particle emerging from a broken continuous symmetry, it is a

Goldstone boson. If, moreover, at least one of the fermions in the model acquires its mass

via a Yukawa coupling to the complex scalar, the axion acquires a potential under a chiral

anomaly, driving it to a vev that precisely cancels the CP violating term and, moreover,

endows the axion with a small mass [57, 58].

When later studied in a cosmological context, it was suggested that axions are also

interesting dark matter candidates [59�61], see also [62]. Since then, the study of gravita-

tional e�ects of axion-like particles has received considerable attention.

1.3.2 Axions in Einstein-Maxwell-scalar

In this work, we consider a model of axion electrodynamics with the following action [63�65]

SAx = SEH +
1

4π

∫
d4x
√−g

[
− 1

4
FµνF

µν +
κa

4
FµνF̃

µν +
1

2
∇µa∇µa− U(a)

]
, (1.3.7)

where κ is simply a constant and F̃µν is the Hodge dual3 of Fµν . We will use a for the

scalar �eld when we refer speci�cally to the real axion �eld, mainly throughout chapter 3.

The coupling between the axion �eld and the electromagnetic �eld is a linear non-minimal

coupling which does not contribute to the Einstein equations but does contribute to the

matter �eld equations of motion.

An idea developed in chapter 3 is to generalise the Einstein-Maxwell-scalar model with

this axion coupling, obtaining then the Einstein-Maxwell-axion or generalised Einstein-

Maxwell-scalar model:

SA = SEH +
1

4π

∫
d4x
√−g

[
− f(a)

4
FµνF

µν +
g(a)

4
FµνF̃

µν +
1

2
∇µa∇µa−U(a)

]
, (1.3.9)

where we added back the non-minimal coupling f(a) changed the linear coupling κa to

a general g(a) coupling. Some observations regarding symmetry are in order. The axion

3The hodge dual is de�ned as

F̃µν =
1

2
εµναβF

αβ (1.3.8)

where εµναβ is the Levi-Civita tensor.
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�eld a is a pseudoscalar which means that it changes sign under a parity inversion. This

property is necessary for the whole term aFµνF̃
µν to be invariant under a parity inversion

as FµνF̃µν also changes sign under parity inversion. If we want our Lagrangian to stay

invariant under parity inversion, this consistency needs to be considered when we de�ne

the couplings f(a) and g(a). First of all, the scalar �eld in this theory must always be a

pseudoscalar, or else the function g(a) will not invert under a parity inversion unless it also

depends on the coordinates. This means that even if we consider a to be a general scalar

�eld, it must have this property of the axion �eld. Secondly, the function f(a) must be

expanded in even powers of the scalar �eld so that it stays a scalar while g(a) must have

a Taylor expansion in odd powers of the scalar �eld so that it stays a pseudoscalar.

Regarding our search of solitons in this theory, what we do is reconsider the no go

theorems which were considered in chapter 2 for the basic EMS model in the context of

this generalised model. This discussion is mostly done in chapter 3 for both the model

(1.3.7) and then generalised to the model (1.3.9).

1.4 Duality

With the addition of electromagnetism to the model, an interesting question is how elec-

tromagnetic duality works when we consider the non-minimal interaction with the scalar

�eld. But �rst, let's discuss duality in classical electromagnetism.

1.4.1 Classical electromagnetic duality

The parallelism between the laws that rule the electric and magnetic �elds (E,B), in the

absence of sources, is transparent from Maxwell's equations. In vacuum, these equations

are invariant under electromagnetic duality :

E + iB −→ eiβ(E + iB) , (1.4.10)

which amounts to an SO(2) rotation by an angle β. Two real β-independent quantities,

quadratic in the electromagnetic �elds, can be formed, namely:

1

2
(E + iB) · (E + iB)∗ =

1

2
(E2 + B2) ,

1

2i
(E + iB)× (E + iB)∗ = −E×B . (1.4.11)

This shows that, despite the change in the �elds, electromagnetic duality preserves the

electromagnetic energy and momentum densities.

Concrete formulations of electromagnetic duality appeared in the wake of Maxwell's

equations. In 1893, Heaviside observed these equations are invariant under the discrete

transformation (E,B) → (−B,E) [66], which corresponds to (1.4.10) for β = π/2. This

invariance was generalised to the continuous transformation (1.4.10) by Larmor [67]. It

was studied in the context of general relativity by Rainich [68] and revisited by Misner

8



and Wheeler in their attempt to understand classical physics as geometry, wherein the

terminology duality rotation was introduced [69]. In its relativistic formulation, (1.4.10)

can be expressed using di�erential forms as

F −→ cosβF + sinβF̃ , (1.4.12)

where F is the Maxwell 2-form and F̃ denotes its Hodge dual 2-form. This formulation

makes clear that duality rotations remain a symmetry of Maxwell's equations in curved

spacetime: the covariant theory remains self-dual.

Electromagnetic duality rotations are not ordinary rotations in 3-space. They de�ne

an equivalence class of electromagnetic �elds; that is, there are di�erent (E,B) solutions to

Maxwell's equations which have the same energy and momentum density. However, they

are only an invariance of Maxwell's equations in vacuum. For instance, applying (1.4.12)

with β = π/2 to the electric �eld of a static, point electric charge Q, in standard spherical

coordinates in �at spacetime (t, r, θ, ϕ), leads to

F =
Q

r2
dt ∧ dr −→ F̃ = −Q sin θdθ ∧ dϕ , (1.4.13)

which is the �eld of a static, magnetic monopole, with magnetic charge Q. Thus, preserving

the duality in the presence of electric charges requires magnetic monopoles. From a di�erent

reasoning, Dirac noted that the existence of magnetic monopoles could explain electric

charge quantisation [70]. Up to now, however, magnetic monopoles have no observational

support, and thus electromagnetic duality is an unbroken symmetry in vacuum only. This

example illustrates how the β = π/2 rotation, corresponding to the discrete symmetry

observed by Heaviside, exchanges electric and magnetic �elds.

1.4.2 Beyond classical electromagnetism

It is interesting to consider how duality rotations are a�ected if one generalises Maxwell's

theory, modifying its equations of motion. Gibbons and Rasheed considered the case of

relativistic non-linear electrodynamics [71]. They obtained the conditions under which a

theory of non-linear electrodynamics, possibly coupled to gravity, has invariant equations

of motion under duality rotations, and observed this is the case for Born-Infeld theory [72].

This is a rather exceptional theory, see e.g. [73], which naturally appears as the e�ective

�eld theory describing open string excitations in string theory [74]. In this context, a low

energy e�ective �eld theory is an Einstein-Maxwell-dilaton-axion model, where the dilaton

is a scalar �eld and the axion a pseudo-scalar �eld. This is a further generalisation of the

model in (1.3.9) by including another scalar �eld φ (dilaton) non-minimally coupled both

to the electromagnetic �eld and to the other scalar �eld a (axion). The axion will only

be coupled to the EM �eld through the coupling g(a), which is the typical linear coupling

κa, while the dilaton is coupled through the coupling f(φ), which takes the common
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exponential form e−αφ. As f(φ) now depends on a (non-pseudo) scalar, it can be expanded

in any power of φ and this preserves invariance under parity inversion. In [71] it was shown

that this model is still self-dual under electromagnetic duality rotations as long as the

axion and the dilaton transform in an appropriate way under this transformation. Thus,

electromagnetic duality maps solutions of the Einstein-Maxwell-dilaton-axion equations to

di�erent solutions of the same model - see also [75�77].

There is, however, a broader notion of duality. Instead of considering self-dual models,

which are left invariant (at least at the level of the equations of motion), by some transfor-

mation, we can consider dual theories: two di�erent models related by a non-trivial duality

map. Considering dual theories has been particularly rewarding when the mapping is a

strong-weak coupling one. This allows us to relate a model in the weak coupling regime,

wherein perturbative computations are possible, to a technically more challenging strongly

coupled model, potentially extracting non-trivial information from the latter. Famous ex-

amples include the Sine-Gordon � Thirring duality [78], S-duality in string theory [79], and,

of course, AdS-CFT [80]. The duality map, moreover, can be used at the level of speci�c

solutions, as a means to obtain a solution of one of the models from a known solution of

the dual model. In fact, it is often a non-trivial and useful solution generating technique.

1.4.3 Duality in generalised Einstein-Maxwell-scalar models

In chapter 5 we consider generalised Einstein-Maxwell-scalar models with the axion term,

represented by the action (1.3.9) with no scalar potential (with a general scalar �eld denoted

by φ):

S =
1

4π

∫
d4x
√−g

(
R

4
− f(φ)

4
FµνF

µν +
g(φ)

4
FµνF̃

µν − 1

2
∂µφ∂

µφ

)
. (1.4.14)

This is a family of models for which electromagnetic duality provides a simple realisation

of "dual theories". Then, we shall use this mapping as a solution generating technique.

In this work we shall denote a solution of (1.4.14), for a speci�c choice of f(φ), g(φ) as

[g,A, φ; f(φ), g(φ)] , (1.4.15)

where g,A, φ are our �elds. We shall establish an electromagnetic duality transformation

Dβ , de�ned by an angle β, that maps any solution (1.4.15) of a certain EMS model (1.4.14)

to a di�erent solution of a di�erent (dual) model, within the same family,

[g,A, φ; f(φ), g(φ)]
Dβ−→ [g,A′, φ; fβ(φ), gβ(φ)] . (1.4.16)

The rotation angle β parameterises orbits in the space of EMS models, that we shall call

duality orbits. This space is spanned by the functions f, g. The orbits are closed and relate

dual models. On the one hand, the electromagnetic variables and the couplings f, g are
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a�ected by the mapping, transforming from the original A and f(φ), g(φ) to a new A′ and

fβ(φ), gβ(φ), all of which depend on β. On the other hand, the metric and the scalar �eld

shall remain invariant along the whole duality orbit. In particular, we shall consider the

duality orbits passing through some of the EMS models recently studied, including black

hole solutions [8, 81�84] and the solitonic solutions discussed in chapter 4. We will also

discuss how we can generalise this duality transformation to more general variants of the

Einstein-Maxwell-scalar model.

1.5 Scalarisation

In an era where we are now able to probe experimentally into the strong �eld regime of

general relativity through gravitational waves, we are in a position to thoroughly test the

black hole solutions that respect the uniqueness theorems stated in section 1.2. It is then

important to �nd alternative models that can possibly explain any experimental deviation

from these black hole solutions. One such alternative is the class of models that allow for

spontaneous scalarisation.

1.5.1 Extended scalar-tensor-Gauss-Bonnet gravity

A class of models that have been considered in the context of scalarisation is the extended-

scalar-tensor-Gauss-Bonnet (eSTGB) gravity class of models [85�87], which include a scalar

�eld non-minimally coupled to the Gauss Bonnet gravity correction term. The Gauss-

Bonnet term originates from Lovelock's theory of gravity [88]. Lovelock's theory is a

higher dimensional generalisation of the Einstein-Hilbert action and comprises the most

general metric theory of gravity which still has conserved second order equations of motion.

The Lagrangian of Lovelock gravity in D = 2d dimensions is given by the sum of Euler

densities of order p with coupling constants αp:

LL =
√−g

d−1∑

p=0

αpL(p) , (1.5.17)

which can be written as

L(p) ≡
(2p)!

2p
δµ1[ρ1
· · · δµ2pρ2p]R

ρ1ρ2
µ1µ2 · · ·R ρ2p−1ρ2p

µ2p−1µ2p , (1.5.18)

The Einstein-Hilbert action is the �rst term of this sum and the Gauss-Bonnet term is the

second term of this sum

R2
GB = L(2) =

4!

4
δµ1[ρ1

δµ2ρ2 δ
µ3
ρ3 δ

µ4
ρ4]R

ρ1ρ2
µ1µ2 R ρ3ρ4

µ3µ4 = R2 − 4RµνRµν +RµναβRµναβ .

(1.5.19)
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Gauss-Bonnet gravity is simply Lovelock gravity up to the second term of the expansion.

However, this second term (and the following terms of the expansion) are all e�ectively

trivial in 4 dimensions4.

A simple way to make this term's contribution to the equations of motion nontrivial in

four dimensions is to non-minimally couple it to a scalar �eld. And with this, we obtain

extended-scalar-tensor-Gauss-Bonnet gravity which is described by the following action

SeSTGB =
1

4π

∫
d4x
√−g

[
R

4
− 1

2
∂µφ∂

µφ− αGBf(φ)R2
GB

]
. (1.5.20)

This model can be considered a natural modi�cation of general relativity. Any scalar free

solution of this model will be a solution of the typical vacuum general relativity model.

The question then is if there are any solutions with a non-trivial scalar �eld. A solu-

tion was indeed found in [85�87] which bifurcates from the Schwarzschild solution. At

low mass (or high curvature) values, the Schwarzschild solution becomes unstable under

scalar perturbations due to the Gauss-Bonnet term. This then causes the Schwarzschild

solution to scalarise. One can imagine such a process as a phase transition where a small

scalar �eld perturbation expands into a scalar cloud that surrounds the black hole. These

scalarised solutions are not only stable under spherical perturbations [90] but also thermo-

dynamically preferred over the vacuum solutions [85]. This phenomenon of spontaneous

scalarisation was originally found for neutron stars in the similar context of scalar-tensor

theories [91], the main di�erence being that the scalarisation was induced by matter in-

stead of strong spacetime curvature. For further discussion, see [92,93] for more on matter

induced scalarisation and [94�98] for more on curvature induced scalarisation.

1.5.2 Charged black hole scalarisation

As we saw in the last section, the presence of the Gauss-Bonnet term created an insta-

bility in the original Schwarzschild solution of vacuum general relativity5, causing the

phenomenon of spontaneous scalarisation. To better understand this phenomenon we just

need to consider the following action

S = SEH + Sφ , (1.5.21)

where Sφ reads as (up to a constant):

Sφ = −
∫
d4x
√−g

(
1

2
∂µφ∂

µφ+ α
f(φ)

4
I
)
, (1.5.22)

4In a somewhat recent paper [89], the authors have found that there is a non-trivial limit where the

Gauss-Bonnet term does not vanish if we take the limit D → 4 from above, as long as the term's coupling

constant αGB has a dimensional dependence of the form αGB = α̃/(D − 4) where α̃ is �xed.
5This instability is also relevant for Kerr spacetime as was shown in [99].
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where I is an arbitrary function to be de�ned, and so the scalar �eld respects the following

equation of motion

�2φ = α
df

dφ
I . (1.5.23)

In this kind of models, scalarisation is possible as long as the following three conditions

are satis�ed:

i) There exists a scalar-free solution with φ = φ0. For I 6= 0 eq. (1.5.23) implies the

coupling function should satisfy the condition

df

dφ

∣∣∣
φ=φ0

= 0 . (1.5.24)

One may set φ0 = 0 via a �eld rede�nition. Thus electrovacuum BHs plus a vanishing

scalar �eld solve the model.

ii) The scalar-free solution su�ers a tachyonic instability triggered by linear scalar per-

turbations. For a small scalar �eld φ = δφ, linearising (1.5.23) yields

(�− µ2
eff)δφ = 0 , where µ2

eff ≡ α
d2f

dφ2

∣∣∣
φ=0
I . (1.5.25)

Let us assume that d2f/dφ2
∣∣∣
φ=0

is strictly positive. Then the tachyonic condition

µ2
eff < 0 implies

αI < 0 , (1.5.26)

which must hold for some region outside the horizon.

iii) A second set of solutions exists, with a nontrivial scalar �eld, the scalarised BHs.

These solutions are continuously connected with the scalar-free set, approaching it

as φ→ 0. In this limit, the scalar �eld becomes a scalar cloud or zero mode. Although

the quantitative properties of these solutions depend on the choice of the coupling

function, qualitative properties are not so sensitive to this choice, as long as the

condition (1.5.24) is satis�ed.

We can see that if I = R2
GB we recover the eSTGB model [85�87] and with I = R we

obtain the original scalarisation mechanism [91]. But, of course, the model we are interested

in this thesis is the EMS model (1.1.2) which is equivalent to having I = FµνF
µν .

Scalarisation in the EMS model was originally presented in [8]. As we know, the EMS

model admits the scalar free solution of Reissner-Nordström (RN), which �ts the criteria

for (i), so it is intuitive to think that there might be a scalarisation process for this solution

just as there is for the Schwarzschild solution. If, for example, we take a purely electric

solution where F 2 < 0, we can �nd the Bekenstein type identity [8, 100] φf,φ > 0 which,
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along with the identities in condition (ii), allows us to narrow down the coupling f(φ). A

simple coupling that is compatible with all these conditions is

f(φ) = eφ
2/2 , (1.5.27)

with α < 0. In the RN background, we obtain µ2
eff = αQ2/r4 < 0, meaning it exhibits

the tachyonic instability. This then leads to the scalarised charged black hole solutions

obtained in [8] which are solutions that bifurcate away from the RN solution and are also

thermodynamically preferred. This scalarisation process tends to occur for su�ciently high

charge. See [81�83,101�105] for further work on these scalarised EMS black holes.

In chapter 6, we discuss the scalarisation process of the RN solution in higher dimen-

sions and explicitly construct these scalarised BHs for d = 5. We also observe how a

conformal transformation between the Jordan and Einstein frames maps a model with a

scalar �eld non-minimally coupled to the Ricci scalar to another model where a new scalar

�eld is non-minimally coupled to the electromagnetic term (EMS model), relating two

di�erent scalarisation processes. Next, the spontaneous scalarisation of the Schwarzschild-

Tangherlini BH in extended-scalar-tensor-Lovelock gravity in even dimensions is consid-

ered. These are models where the scalar �eld is non-minimally coupled to the (d/2)th

Euler density, in d spacetime dimensions. Examples in d = 6, 8 are explicitly constructed,

showing the properties of the four dimensional case are qualitatively generic, but with

quantitative di�erences. These higher d scalarised BHs are then compared to the hairy

BHs in shift-symmetric Horndeski theory, for the same d, which are also constructed.

1.6 Structure

Now we brie�y summarise the structure of this thesis. Chapter 2 is dedicated to the

existence or inexistence of soliton solutions in the EMS model. Uniqueness and no go

theorems are more thoroughly discussed in this context and three no go theorems are

proven. Chapter 3 is dedicated to the same topic of soliton solutions in an extended

EMS model, where the axion is introduced, and the theorems of the preceding chapter are

adapted to this more general model. In Chapter 4 we, taking into account the conditions

imposed by the no go theorems, circumvent the restrictions to the existence of a soliton

solution and �nd a concrete example of a soliton solution in the EMS model. The concepts

covered in sections 1.2 and (1.3) of this introductory chapter introduce the context and

necessary concepts to understand the work covered in these three chapters.

Then we proceed to Chapter 5 where duality of the EMS model, as discussed in section

1.4, is covered. We de�ne the duality orbits of the EMS model after formulating a duality

transformation that can be used as a map between solutions with di�erent non-minimal

couplings.
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Chapter 6 will then discuss the topic of scalarisation, which was introduced in section

1.5, but in higher dimensions. A general model which includes the EMS model is presented

and we do a qualitative and numerical analysis of various constructed scalarised solutions

in higher dimensional spacetime.

Finally, we get to chapter 7 where comments and remarks are made about the work

covered throughout the whole thesis.
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Chapter 2

On the inexistence of solitons in

Einstein-Maxwell-scalar models

In this chapter, we will introduce various concepts regarding the uniqueness of speci�c

solutions in the Einstein-Maxwell-scalar model (1.1.2).

In section 2.1, a vanishing Maxwell �eld is considered and a search is then made for the

most general asymptotically �at, stationary and axisymmetric line element in the Einstein-

scalar theory. Following this we show, using a scaling argument, how this line element is

incompatible with a solitonic solution, proving a no go theorem for solitons.

The Maxwell �eld is once again considered in section 2.2, where we �rst consider static

scalar-electromagnetic solitons. A no go theorem for this kind of solitons is shown by

adapting an argument by Heusler to the Einstein-Maxwell-scalar model which was origi-

nally considered for electro-vacuum [24].

At last, in section 2.3, we apply a modi�ed Lichnerowicz-type argument to generalise

the result of the no go theorem for strictly stationary spacetimes, which allows us to

consider rotating metrics. Some remarks and conclusions are then presented in 2.4.

2.1 Absence of stationary solitons for vanishing Maxwell �eld

The �rst result to be established concerns the absence of asymptotically �at, stationary

and axisymmetric self-gravitating scalar solitons. This means we have no electromagnetic

�eld, thus we consider Fµν = 0. Observe this is a consistent truncation of the model (1.1.2).

That is, taking a vanishing Maxwell tensor in the action is equivalent to taking a vanishing

Maxwell tensor in the �eld equations. Thus, the model under consideration in this section

is the following Einstein-scalar model1

S = SEH +
1

4π

∫
d4x
√−g

[
− 1

2
∇µφ∇µφ− U(φ)

]
. (2.1.1)

1For a complex scalar �eld Φ, every ∇µφ∇νφ term is replaced by 1
2
(∇µΦ∗∇νΦ +∇µΦ∇νΦ∗).
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Our �rst task is to show the most general metric form for the con�gurations we seek to

rule out is

ds2 = − ρ2

X(ρ, z)
dt2 +X(ρ, z) [dϕ− w(ρ, z)dt]2 +A(ρ, z)

[
dρ2 +B(ρ, z)dz2

]
, (2.1.2)

which contains four unknown functions of the �cylindrical" coordinates ρ and z. The second

task is to rule such non-trivial solitonic solutions by applying a scaling argument.

2.1.1 Most general line element

2.1.1.1 Isometries

Firstly, axisymmetry and stationarity implies the existence of two Killing vector �elds

m and k. Without loss of generality, these Killing vectors commute [k,m] = 0 [106],

assuming the spacetime is asymptotically �at. Thus coordinates adapted simultaneously

to both these vectors �elds can be chosen. As k corresponds to the asymptotically timelike

Killing vector �eld and m to the spacelike one, a temporal coordinate t and an angular

coordinate ϕ are introduced along the orbits of the Killing vector �elds as:

k =
∂

∂t
, m =

∂

∂ϕ
. (2.1.3)

Consequently, in coordinates (t, ϕ, x, y), the general line element can be cast in the form:

ds2 = gµν(x, y)dxµdxν . (2.1.4)

2.1.1.2 Circularity

We now want to prove that our metric is circular. That is, the surfaces orthogonal to the

Killing �elds k and m are integrable. By Frobenius' theorem (see [107] App. B.3), the

surfaces orthogonal to the Killing �elds are integrable if the following conditions hold:

dk ∧ k ∧m = 0 = dm ∧m ∧ k . (2.1.5)

Circularity means that the spacetime manifoldM is locally a product of two 2-dimensional

manifoldsM = N1 ×N2 and can be cast in the following form:

ds2 = gµν(x, y)dxµdxν = σab(x, y)dxadxb + γij(x, y)dxidxj , (2.1.6)

where σ corresponds to the metric in the (t, ϕ) manifold and γ corresponds to the metric

in the (x, y) manifold. Establishing circularity requires using the Einstein equations and

hence depends on the energy-momentum of the spacetime. Circularity can actually be

established by �rst establishing Ricci circularity as we now discuss.

For the case under consideration, the energy-momentum tensor obtained from (2.1.1)

is

4πTµν = ∇µφ∇νφ− gµν
(

1

2
∇αφ∇αφ+ U(φ)

)
. (2.1.7)
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It follows that

T (k) ∧ k ∧m = 0 = T (m) ∧m ∧ k , (2.1.8)

where the T (k) and T (m) 1-forms correspond to the contraction of the energy-momentum

tensor with the Killing vectors. To establish this observe that, since the spacetime is

stationary, the Einstein equations imply that £kgµν = 0 ⇒ £kTµν = 0 and this in turn

implies, due to φ being real, that £kφ = kµ∇µφ = 0. Thus,

4πT (k)µ = 4πTµνk
ν = −kµ

(
1

2
∇αφ∇αφ+ U(φ)

)
, (2.1.9)

meaning that T (k) is proportional to k and, as such, T (k) ∧ k = 0. A similar argument

shows that T (m)∧m = 0, proving the equality (2.1.8). Now, using Einstein's equations it

follows that

R(k) ∧ k ∧m = 0 = R(m) ∧m ∧ k , (2.1.10)

where the R(k) and R(m) 1-forms correspond to the contraction of the Ricci tensor with

the Killing vectors. A spacetime which respects (2.1.10) is called Ricci circular. Thus, we

have shown that an asymptotically �at, axisymmetric and stationary spacetime sourced

by a real scalar �eld (with an arbitrary potential) is Ricci circular. But Ricci circularity

and circularity are equivalent for asymptotically �at, stationary and axisymmetric space-

times [13, 108, 109], concluding the proof of circularity.2 It follows we can then write the

line element as

ds2 = −V dt2 + 2Wdtdϕ+Xdϕ2 + γijdx
idxj , (2.1.11)

where V = −〈k|k〉, X = 〈m|m〉 and W = 〈k|m〉. We have now reduced the unknown

metric functions from ten to six.

Two remarks are in order. Firstly, observe that circularity is equivalent to assuming

the spacetime to be invariant under the simultaneous discrete symmetry transformations

(t, ϕ)→ (−t,−ϕ). However, the circularity argument shows that (for our matter content)

this is not an assumption and no generality is lost. Secondly, for a complex scalar �eld

Φ, circularity is actually lost. Indeed, we cannot guarantee the implication £kTµν = 0 ⇒
£kΦ = 0, as the �eld can have a harmonic dependence on both t and φ in the form of a

phase. In spherical coordinates the �eld would be (n ∈ Z and w ∈ R are constants)

Φ(t, r, θ, ϕ) = φ(r, θ)ei(nϕ−ωt) , (2.1.12)

and this dependence does not manifest itself in the energy-momentum tensor, which is

still preserved independently by the two Killing vector �elds. Thus, the form (2.1.11) is

no longer the most general metric form describing an asymptotically �at, axisymmetric,

2This proof can be extended for the full model (2.1.1) including the electromagnetic �eld. Such exten-

sion, however, is not relevant for our discussion so we will omit the details regarding the electromagnetic

�eld part of the action which can be found in [13,108].
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stationary spacetime sourced by a complex scalar �eld.3 Interestingly, this complex scalar

�eld case allows circumventing no-scalar hair theorems for black holes, e.g. Bekenstein's

theorem [100], and yields black holes with scalar hair that are asymptotically �at, sta-

tionary and axisymmetric [18,110]. The known solutions have a geometry invariant under

(t, ϕ) → (−t,−ϕ); the absence of circularity opens up the possibility that more general

hairy black holes may exist in the complex scalar �eld model.

2.1.1.3 The orthogonal manifold

The simpli�cation of the orthogonal (x, y) manifold, with metric γij , can now be addressed.

Due to the gauge freedom, i.e. the ability to rede�ne the (x, y) coordinates, one anticipates

the possibility of reducing further the number of unknown functions from six to four.

Indeed, one �rst introduces a scalar function ρ, de�ned as

ρ ≡
√
−σ =

√
V X +W 2 , (2.1.13)

where σ corresponds to the determinant of the σab metric. Assuming that both ρ and

∇µρ do not vanish (to be further discussed below), we can choose ρ as a coordinate on

the orthogonal manifold. Introducing a second coordinate therein, z, chosen such that

∇µz∇µρ = 0 (by setting z = constant along the integral curves of ∇µρ), we can write the

full metric in the form (2.1.2), where

w ≡ −W
X

. (2.1.14)

There are now four unknown metric components, X,w,A and B of two variables ρ and z.

Considering the way ρ and z were de�ned, this coordinate system is valid for ρ ∈]0,∞[ and

z ∈] −∞,∞[. We have now reached the maximal possible simplicity for the line element

under our assumptions and for the matter content we wish to consider. Nonetheless, it

is instructive to consider a further a simpli�cation, which, however, is non-generic for our

model.

A further simpli�cation can be made if ρ is harmonic on the 2-dimensional orthogonal

manifold, �2
(γ)ρ = 0. In this case, z will be the harmonic conjugate function of ρ and they

will obey the Cauchy-Riemann equations, which give us the following expressions:

γρz = 〈∇(γ)ρ|∇(γ)z〉 = 0 , (2.1.15)

γρρ = 〈∇(γ)ρ|∇(γ)ρ〉 = 〈∇(γ)z|∇(γ)z〉 = γzz . (2.1.16)

We can then set B = 1 in (2.1.2) and, after rede�ning A ≡ e2h/X (for consistency with

the literature), we obtain the Weyl-Lewis-Papapetrou (WLP) metric:

ds2 = − ρ2

X(ρ, z)
dt2 +X(ρ, z) [dϕ− w(ρ, z)dt]2 +

e2h(ρ,z)

X(ρ, z)

[
dρ2 + dz2

]
, (2.1.17)

3We thank E. Ayón-Beato for this observation.
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which has only three unknown functions.

Another important consequence of ρ being harmonic is that, if ρ is not a constant, it

can be shown that it has no critical points in the orthogonal manifold (no points where

the gradient vanishes) [111]. As this choice of coordinates is well behaved except for when

dρ = 0, it means the coordinate system is globally well behaved in the whole manifold,

as long as there are no event horizons. So the metric (2.1.17) can be used to describe the

whole stationary and axisymmetric spacetime.

The key question for this further simpli�cation is: when can it be guaranteed that ρ is

harmonic? It has been proven by Papapetrou and others [13, 112] that ρ is harmonic as

long as the projection of the Ricci tensor R along the (t, ϕ) surfaces is trace free through

the following equation [13]:
1

ρ
�2

(γ)ρ = − 1

X
trσR . (2.1.18)

Using the metric (2.1.11) for simplicity, this translates into the following condition for ρ

to be harmonic:

trσR = σabRab =
1

ρ2

[
−XR(k, k) + 2WR(k,m) + V R(m,m)

]
= 0 . (2.1.19)

So as long as (2.1.19) is respected, ρ is harmonic and the coordinates used in the metric

(2.1.17) are globally well de�ned: the γab metric is globally conformally �at.4 Now all that

is left is to check if our model respects condition (2.1.19). We can write the Ricci tensor

in terms of the energy momentum tensor as follows:

Rµν = 8π

(
Tµν −

1

2
gµνT

)
. (2.1.20)

The Ricci tensor components R(k, k), R(k,m) and R(m,m) for the real scalar �eld energy

momentum tensor (2.1.7) read

R(k, k) = Rµνk
µkν = −2U(φ)V , (2.1.21)

R(m,m) = Rµνm
µmν = 2U(φ)X , (2.1.22)

R(k,m) = Rµνk
µmν = 2U(φ)W , (2.1.23)

yielding

trσR = 4U(φ) . (2.1.24)

This can only be zero in the whole manifold if the potential U(φ) vanishes. So the metric

(2.1.17) is the most general metric for a free real scalar �eld only; for a non-zero potential

we must resort to the form (2.1.2), as we will do in the next subsection.

4Every two-dimensional metric is locally conformally �at due to the existence of isothermal coordinates

(the uniformisation theorem [113,114]). Such choice of coordinates is, however, only locally and not globally

conformally �at. Thus one cannot guarantee their validity throughout the whole orthogonal manifold.

Invoking such conformal �atness would reduce the unknown metric functions from six to four, instead of

the three obtained in the WLP metric, since ρ would not be used as a coordinate any longer.
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2.1.2 Scaling argument

We have established that the most general line element that can describe the solitonic

solutions we seek is given by eq. (2.1.2), where (t, ρ, ϕ, z) are �cylindrical" coordinates and

A,B,w and X are unknown functions of the non-Killing coordinates (ρ, z) of which A, B

and X are all positive. We can now proceed to show that there are no non-trivial solutions

of this form for the model (2.1.1) by a scaling argument. It is useful to observe that the

square root of minus the metric determinant is

√−g = ρA
√
B . (2.1.25)

We start with the Einstein-scalar action for the scalar �eld (2.1.1). The proof follows

by contradiction. We assume that such a stationary, axisymmetric, asymptotically �at

self-gravitating scalar soliton exists. Because the scalar �eld is real, it respects, for this

hypothesised solution the same symmetries as the metric possesses, so it does not change

under the action of the stationary and axisymmetric Killing vectors. The next step is

to consider a scaling of the hypothesised solution by a scale factor λ. This rescales the

coordinates (ρ, z) and de�nes a one-parameter family of con�gurations (not necessarily

solutions) of the coupled geometry-scalar system:

Aλ(z, ρ) = A(λz, λρ) , Bλ(z, ρ) = B(λz, λρ) , wλ(z, ρ) = w(λz, λρ) , (2.1.26)

Xλ(z, ρ) =X(λz, λρ) , φλ(z, ρ) = φ(λz, λρ) . (2.1.27)

Under this scaling transformation, the metric determinant transforms as, using (2.1.25),
∫
d4x
√−g →

∫
d4xλ

√−gλ = λ3

∫
d4x ρAλ

√
Bλ , (2.1.28)

and the kinetic scalar �eld term transforms as

−∇µφ∇µφ = − 1

A

[
(∂ρφ)2 +

1

B
(∂zφ)2

]
→ − 1

λ2Aλ

[
(∂ρφλ)2 +

1

Bλ
(∂zφλ)2

]
. (2.1.29)

The action of the scaled solutions is Sλ = S[φλ, Bλ, Aλ, wλ, Xλ]. Since for λ = 1 we have

the hypothesised solution, the variation of Sλ with respect to λ must have a stationary

point at λ = 1. This condition yields the virial relation:5

1

2

∫ +∞

0
dρ

∫ +∞

−∞
dz ρ

[√
B(∂ρφ)2 +

1√
B

(∂zφ)2

]
= −3

∫ +∞

0
dρ

∫ +∞

−∞
dz ρA

√
B U(φ) . (2.1.30)

As the left side is always non-negative, and the right hand side is always non-positive,

for positive U(φ) we get to a contradiction, which can only be settled if the hypothesised

solution is trivial. Alternatively, a negative potential is mandatory, to have a non-trivial

5Only the matter �eld action enters the argument because the Einstein-Hilbert part of the action is

invariant under a rescaling transformation as it corresponds to a di�eomorphism. In other words, we have

that δSλEH/δλ = 0.
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solitonic solution. Thus, the only asymptotically �at, everywhere regular, stationary and

axisymmetric localised solution for the model (2.1.1) with U(φ) > 0 is Minkowski space-

time. No self-gravitating scalar solitons exist in this model and under these assumptions.

The virial identity (2.1.30) can be written in a more compact form as
∫
d4x
√−g

[
∇µφ∇µφ+ 6U(φ)

]
= 0 . (2.1.31)

One observes the resemblance with the identity that Bekenstein deduced when attempting

to rule out a black hole spacetime with scalar hair in the same model [100]:
∫
d4x
√−g

[
∇µφ∇µφ+ φ

dU(φ)

dφ

]
= 0 . (2.1.32)

To obtain the latter identity for the model (2.1.1) one integrates the Klein-Gordon equation

∇µ∇µφ− U ′(φ) = 0 multiplied by φ over the whole spacetime and then, upon integrating

by parts the �rst term, a surface term at in�nity emerges, which vanishes since φ∇µφ→ 0

at in�nity for an asymptotically �at spacetime. This procedure yields (2.1.32).6

A key di�erence between the Bekenstein identity (2.1.32) and the virial identity (2.1.31)

is that the latter is independent from the equations of motion, while the former is a con-

sequence of the scalar equation of motion. Moreover, they yield di�erent (but comple-

mentary) conclusions. In particular, the Bekenstein identity with a positive potential is

not enough to obtain the no go theorem we have just described. Rather it would rule out

gravitating solitons under the assumption that φU ′(φ) > 0 everywhere (except for some

discrete points where it can vanish), rather than the positivity of the potential.

Another remark concerns the case of a constant, but non-zero, potential U(φ) = Λ,

that can be interpreted as a cosmological constant. Does the virial identity (2.1.30) encode

a no-go theorem for free spinning solitons in de Sitter spacetime (Λ > 0)? Actually

no, since for de Sitter spacetime the metric (2.1.2) is not necessarily the most general

metric. This is because the de Sitter spacetime is not asymptotically �at, a requirement to

guarantee both that the commutativity of the Killing vectors [106] and that the circularity

theorem [13, 108, 109] holds. Moreover, of course, de Sitter is not stationary, and the very

de�nition of an equilibrium self-gravitating soliton has to be reconsidered. In the case of

Anti-de-Sitter, no conclusions can be inferred either, but we remark that a no-go theorem

for self-gravitating, purely gravitational solitons in Anti-de-Sitter was presented in [116].

2.2 Absence of static scalar-electromagnetic solitons

We now turn to the full model (1.1.2) to rule out static, asymptotically �at scalar-electromagnetic

solitons. In this case no spatial symmetry assumption is made. The argument generalises
6Another slight variation consists on multiplying the Klein-Gordon equation by dU/dφ instead of φ [115].

In this case one gets an obstruction under the condition of the convexity of the potential, d2U/dφ2 > 0 -

see also [19].
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an electro-vacuum argument by Heusler [24]. One condition we will set on the non-minimal

coupling f(φ) of the EMS model is that it must never diverge or vanish in the spacetime.

The requirement that f must not vanish is only necessary if we have a magnetic �eld. This

is an important condition to ensure that our theorems are valid.

2.2.1 Heusler's argument for static spacetime

Our focus in this subsection is a static spacetime. We consider an asymptotically �at,

everywhere regular and static spacetime with a strictly stationary Killing �eld k, obeying

V ≡ −kµkµ>0, and shall prove that there are no solitons in the full model theory. The

Einstein-Hilbert action SEH will not play a role in this argument and neither will the

metric as only the electromagnetic �eld equations of motion are used.

De�ne the electric and magnetic �elds as:

Eµ = −Fµνkν , (2.2.33)

Bµ = −1

2
εµαβνF

αβkν , (2.2.34)

where εµαβν is the Levi-Civita tensor. The Maxwell equations for the full model are

∇[µEν] = 0 , (2.2.35)

∇[µ

(
fBν]

)
= 0 , (2.2.36)

∇µ
(
f
Eµ

V

)
= 0 , (2.2.37)

∇µ
(
Bµ

V

)
= 0 . (2.2.38)

Due to the absence of currents, the �rst two Maxwell equations imply that the electric ϕ

and magnetic-like ψ scalar potentials can be introduced, as Eµ = ∂µϕ and fBµ = ∂µψ.

Note that the expression that de�nes the scalar ψ is not well de�ned when f is zero,

which is why we restrict f to always be non-zero if we have a magnetic �eld7. A general

mathematical identity states that for an arbitrary vector α that respects £kα = [k, α] = 0:
∫

∂Σ
αµkνdSµν =

1

2

∫

Σ
∇µαµkνdΣν , (2.2.39)

where Σ is an hypersurface, with volume element dΣν , while ∂Σ corresponds to its bound-

ary, with antisymmetric area element dSµν . This is a version of Stokes' theorem in the

presence of a Killing �eld. Applying this identity with αµ → fEµ/V we obtain, using

Maxwell's equations, ∫

∂Σ
f
Eµkν

V
dSµν = 0 . (2.2.40)

7In the case where f can vanish, we will have non-zero contributions to surface integrals when applying

the Stokes theorem. We will see in chapter 5 that soliton solutions with a magnetic �eld will always have

a vanishing f .
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If Σ is any Cauchy surface, we can take ∂Σ to be the surface at in�nity, in which case:
∫

∂Σ
f
Eµkν

V
dSµν = −4πQef∞ = −4πQe = 0 , (2.2.41)

where Qe corresponds to the electric charge. If we now replace αµ by ϕfEµ/V and once

again use the Maxwell equations, we obtain

1

2

∫

Σ
f
EµEµ
V

kνdΣν =

∫

∂Σ
ϕf

Eµkν

V
dSµν = −4πQeϕ∞ = 0 . (2.2.42)

Since kµEµ = 0 then E is never timelike and, assuming that the coupling f does not

change sign, it follows that this expression only holds if the electric �eld vanishes. The

same argument can be used for B by replacing ϕ by ψ, obtaining
∫

Σ
f
BµBµ
V

kνdΣν = 0 , (2.2.43)

from which we conclude that B must also vanish if f does not change sign, which is implied

by requiring that f must always be non-zero if we have a magnetic �eld. Note that this

is not required for a purely electric solution. Thus, for a constant sign coupling function,

solitons with a non-trivial electromagnetic �eld are ruled out, regardless of the potential

U(φ).

It remains the possibility that there could be self-gravitating solitons with a non-trivial

scalar �eld. However, the scalar �eld must also vanish, as long as it obeys the dominant

energy condition and violates the strong energy condition [13, 50]. The rationale is the

following. If the scalar �eld violates the strong energy condition this implies its Komar

mass M is negative; but if it respects the dominant energy condition, the positive mass

theorem is applicable and its ADM (or Komar) mass is non-negative. This leads us to a

contradiction. So it remains to see what these conditions mean for the model. Consider

the energy-momentum tensor of the full action (1.1.2):

4πTµν = ∇µφ∇νφ− gµν
(

1

2
∇αφ∇αφ+U(φ)

)
+ f(φ)

(
FµαF

α
ν −

1

4
gµνFαβF

αβ

)
. (2.2.44)

The strong energy condition requires Rµν k̃µk̃ν > 0 for any timelike vector �eld k̃µ (for

instance one that obeys k̃µ = kµ/
√
V ). For F = 0, and a static spacetime with a purely

spatial scalar �eld distribution, this yields,

U 6 0 . (2.2.45)

Thus, a scalar �eld with a non-negative potential only obeys the strong energy condition

if the potential is trivial. If, moreover, it obeys the dominant energy condition, then the

aforementioned contradiction applies, except if U = 0. In that case, the Komar mass is

zero, and by the positive energy theorem, the resulting solution is Minkowski spacetime.

Since the result in this section relies on the constancy of the sign of f(φ), one may ask

what is the physical meaning of a change in the sign of the coupling function f(φ). To
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assess this, observe that from the energy-momentum tensor of the full action (2.2.44), the

energy density is given as

ρ = 4πTµνk
µkν = V

(
1

2
∇αφ∇αφ+ U(φ)

)
+ f(φ)

(
EαE

α +
V

4
FαβF

αβ

)
, (2.2.46)

where V = −kµkµ is always positive as the spacetime is strictly stationary. We see that

the energy density contribution of the electromagnetic �eld will, generically, change sign

along with f(φ). Another perspective is that the electric permittivity would also change

sign. Both these observations make such sign change physically questionable, as it would

make the electromagnetic contribution a sort of exotic matter. It is worth noting, however,

that the weak energy condition ρ > 0 needs not be violated even if such sign change in

the coupling occurs, as the scalar �eld contribution could compensate for the opposite sign

contribution of the electromagnetic �eld.

To close this section, let us remark on the dominant energy condition. In the full

model, if the coupling f(φ) changes sign to negative, then the full model may not respect

the dominant energy condition even if, separately, the electromagnetic and scalar parts

(excluding the coupling) abide it. This can be seen as follows: the dominant energy

condition states that

TµνX
µY ν > 0 , (2.2.47)

for any two co-oriented causal vectors Xµ and Y µ. Then, even assuming the scalar and

electromagnetic EM tensors obey it

TSµνX
µY ν > 0 , TEµνX

µY ν > 0 , (2.2.48)

the full model EM tensor is Tµν = TSµν + f(φ)TEµν , which needs not respect the dominant

energy condition due to the sign of f(φ). While a negative f(φ) does not directly imply

that the model does not respect the dominant energy condition, this possibility ties with

the fact that a di�erent sign for f(φ) implies that the electromagnetic �eld behaves like

exotic matter. It seems, thus, that in the most reasonable physical scenarios, f(φ) should

not change sign and the dominant energy condition will hold for the full model as long as

it obeys, separately, for the electromagnetic and scalar sectors.

2.3 Absence of strictly stationary scalar-electromagnetic soli-

tons

A further step beyond the last result in the direction of generality, is to rule out strictly

stationary, but not necessarily static, asymptotically �at scalar-electromagnetic solitons in

our full model (1.1.2). With this goal in mind, we consider a Lichnerowicz-type argument

adapting the one presented in [40] where it was applied to Einstein-Maxwell-scalar models,
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but where the scalar �eld has no direct coupling to the electromagnetic �eld. This argument

consists in �nding a divergence identity from which we may restrict the ADM mass of the

system to vanish. Thus, as long as the dominant energy condition holds, one can conclude,

from the positive mass theorem, that the spacetime is Minkowski.

This argument generalises the one presented in last section in the sense it does not

require staticity. Moreover, with respect to the argument in Section 2.1, it assumes an

everywhere timelike Killing vector �eld (and hence an absence of ergo-regions) which is

not a requirement in Section 2.1; in the latter, on the other hand, axial symmetry is

assumed, unlike the argument here which has no spatial symmetry requirements.

2.3.1 Lichnerowicz argument for strictly stationary spacetimes

We consider an asymptotically �at, everywhere regular and strictly stationary spacetime

with Killing �eld k. We can write the Einstein equations for our full model (1.1.2) as

Rµν
2

= f(φ)

(
F α
µ Fνα −

1

4
gµνF

2

)
+ ∂µφ∂νφ+ gµνU(φ) . (2.3.49)

We de�ne the twist vector ωµ using the timelike Killing vector

ωµ =
1

2
εµναβkν∇αkβ , (2.3.50)

which respects the identity

∇µ
(
ωµ

V 2

)
= 0 , (2.3.51)

where, as in Section 2.1, V ≡ −kµkµ, and here it is assumed to be always positive, corre-

sponding to a strictly stationary spacetime.

The electric and magnetic �elds are de�ned as in (2.2.33) and (2.2.34). The Maxwell

equations take the following form in a strictly stationary spacetime:

∇[µEν] = 0 , (2.3.52)

∇[µ

(
fBν]

)
= 0 , (2.3.53)

∇µ
(
f
Eµ

V

)
=

2

V 2
fωµB

µ , (2.3.54)

∇µ
(
Bµ

V

)
= − 2

V 2
ωµE

µ . (2.3.55)

Observe how dropping the staticity assumption generalises the last two equations, as com-

pared to their counterparts in the static case (2.2.37)-(2.2.38). On the other hand, since

the two �rst equations remain the same, we can, as before, write the �elds in terms of two

potentials Eµ = ∂µϕ and fBµ = ∂µψ.

Using the relation

∇[µων] =
1

2
ε αβ
µν k[αRβ]γk

γ , (2.3.56)
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we can obtain through the Einstein equations (2.3.49) the following expression

∇[µων] = 2fB[µEν] . (2.3.57)

Roughly, the curl of ω is the Poynting vector. Then, from the existence of the potentials

ϕ and ψ, we can obtain two more equations

∇[µ

(
ων] − 2ψEν]

)
= 0 , (2.3.58)

∇[µ

(
ων] + 2fϕBν]

)
= 0 , (2.3.59)

which, in turn, imply the existence of two further scalar potentials

∇µUE = ωµ − 2ψEµ , (2.3.60)

∇µUB = ωµ + 2fϕBµ . (2.3.61)

Using these equations, the Maxwell equations (2.3.52)-(2.3.55) and equation (2.3.51), we

can obtain the following two identities

∇µ
(
UE

ωµ

V 2
− ψ

V
Bµ

)
=
ωµω

µ

V 2
− f BµB

µ

V
, (2.3.62)

∇µ
(
UB

ωµ

V 2
− ϕ

V
fEµ

)
=
ωµω

µ

V 2
− f EµE

µ

V
. (2.3.63)

Another useful identity is the contraction of the Ricci tensor (2.3.49) with the stationary

Killing �eld twice

Rµνk
µkν = f (EµE

µ +BµB
µ)− 2V U(φ) . (2.3.64)

We now consider two di�erent approaches to further the argument.

2.3.1.1 First approach

This approach follows the one in [40] but including now the non-minimal coupling function

f(φ).

Using the following relation for the twist vector (see for example [13])

2

V
Rµνk

µkν = ∇µ
(∇µV

V

)
+ 4

ωµω
µ

V 2
, (2.3.65)

together with equation (2.3.64), we get

∇µ
(∇µV

V

)
+ 4

ωµω
µ

V 2
= 2

f

V
(EµE

µ +BµB
µ)− 4U(φ) . (2.3.66)

This relation together with (2.3.62) and (2.3.63) �nally gives the divergence identity:

∇µ
[∇µV

V
+ 2(UE + UB)

ωµ

V 2
− 2

ψBµ + fϕEµ

V

]
= −4U(φ) . (2.3.67)
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Let us now analyse the consequences of this divergence identity, starting with the

particular case of a free, massless, scalar �eld, so that U(φ) = 0. The left hand side

of (2.3.67) is the divergence of a vector vµ which respects

kµvµ = 0 , (2.3.68)

which follows from the de�nitions (2.2.33), (2.2.34), (2.3.50) and V ≡ −kµkµ. Now we inte-

grate ∇µvµ on a spacetime volume bounded by two (neighbouring) Cauchy hypersurfaces,

Σ1 and Σ2, with exterior normals kµ and −kµ, respectively, and a timelike hypersurface

at spatial in�nity, T , whose spatial sections are round 2-spheres, and hence the normal is

a unit radial vector nµ. Then, applying the covariant divergence theorem:

0 =

∫

V 4

d4x
√−g∇µvµ =

∫

Σ1

d3x
√
gΣkµv

µ −
∫

Σ2

d3x
√
gΣkµv

µ +

∫

T
d3x
√−gT nµvµ .

(2.3.69)

The �rst two integrals in the right hand side vanish by (2.3.68). To simplify the remaining

term we note that, asymptotically, the leading behavior of the asymptotically �at metric

is

ds2 = −V dt2 +
dr2

V
+ r2(dθ2 + sin2 θdϕ2) + ... (2.3.70)

where

V = 1− 2M

r
+O

(
1

r2

)
. (2.3.71)

Then8,

0 =

∫

T
d3x
√−gT nµvµ = lim

r→∞

∫ t1

t2

dt

∫ 2π

0
dϕ

∫ π

0
dθr2 sin θ

√
V nr

∂rV

V
= 8πM∆t .

(2.3.72)

where ∆t = t1 − t2 and t1, t2 are the (arbitrary) time coordinates associated to the two

Cauchy surfaces. This informs that the ADM mass M must vanish. Then, by the positive

mass theorem, assuming the dominant energy condition holds for this model, the spacetime

is Minkowski.

Concerning the scalar potential, unless U(φ) is written as a divergence, as to be included

in the left side of the equation (2.3.67), the reasoning does not apply. This can be done

for a constant negative potential.9 But for the general case we shall follow a di�erent

approach.

2.3.1.2 Second approach

In order to accommodate a non-trivial potential in the no-go theorem, we now take advan-

tage of an argument in [50], already used in Section 2.2, stating that a strictly stationary,

8The electromagnetic terms in the divergence (2.3.67) disappear at in�nity because they all decay

asymptotically faster than r−2. Consequently, only the �rst term inside the divergence contributes to this

integral.
9The process of integration in this case is exactly the same as in [40].
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asymptotically �at spacetime coupled to a matter model satisfying the dominant energy

condition will always be �at spacetime as long as it violates the strong energy condition

for the Killing �eld k at every point, Rµνkµkν 6 0.

We start from the following result in [50] for the Komar mass:

M = − 1

4π

∫

Σ

(
Rµνk

µkν

V
− 2ωµωµ

V 2

)
kαdΣα

=
1

4π

∫

Σ

(
Rµνk

µkν − 2ωµωµ
V

)
dΣ , (2.3.73)

where Σ is a spacelike Cauchy surface.10 Since ωµ is nowhere timelike, ωµωµ > 0 and, if

Rµνk
µkν 6 0, both contributions to the integral will be negative and

M 6 0 . (2.3.74)

Assuming the dominant energy condition, on the other hand, the positive mass theorem

M > 0 holds. Thus, M = 0 and the spacetime is �at.

For our full model, we cannot simply state that the strong energy condition is violated,

due to the presence of the electromagnetic �eld terms in equation (2.3.64). Nonetheless,

we can still show the mass is non-positive, for a non-negative potential. We then proceed

as follows. Using equations (2.3.62), (2.3.63) and (2.3.64) we obtain

∫

Σ
Rµνk

µkνdΣ =

∫

Σ

(
2ωµωµ
V

− 2V U(φ)− V

2
∇µWµ

)
dΣ , (2.3.75)

where we de�ned the vector Wµ as

Wµ ≡ 2(UE + UB)
ωµ

V 2
− 2

ψBµ + fϕEµ

V
. (2.3.76)

Using the full Komar expression (2.3.73), equation (2.3.75) becomes

M = − 1

2π

∫

Σ
V U(φ)dΣ− 1

8π

∫

Σ
V ∇µWµdΣ . (2.3.77)

For a positive potential, the �rst term will be clearly negative so we only have to deal with

the second term which corresponds to the electromagnetic �eld contribution to the Komar

mass. First, note that £kW = 0 so we can use the Stokes theorem identity (2.2.39) for

this vector ∫

Σ
V ∇µWµdΣ = −

∫

Σ
∇µWµkνdΣν = −2

∫

∂Σ
WµkνdSµν . (2.3.78)

The surface ∂Σ is the 2-surface at in�nity and all the terms in Wµ decay, asymptotically,

faster than r−2, so the integral vanishes (see Appendix A). This means that the electro-

magnetic contribution to the Komar mass (2.3.77) given by the vectorWµ is zero and only

the negative potential term is left, giving, again, M 6 0. Thus, again, the positive mass

theorem establishes M = 0.
10This means that kαdΣα = kαkαdΣ = −V dΣ.
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To conclude, in the full model (1.1.2), in an asymptotically �at and strictly stationary

spacetime with positive scalar potential U(φ), there are no non-trivial solitonic solutions,

even in the presence of any positive potential U(φ).11 Observe that this generalises the

argument of [40] even for the case of minimal coupling f(φ) = 1, due to the inclusion of

the potential.

2.4 Remarks

In �at spacetime, solitonic solutions occur in classical �eld theories that are, just like

general relativity, nonlinear. As mentioned, examples date back as far as the Korteweg-de-

Vries equation [9]. Coupling �eld theories to gravity opens up new possibilities: (i) solitonic

solutions could arise even for linear �eld theories, with the required non-linearities being

generated by the gravitational interaction; (ii) there are now also black hole solutions,

which in vacuum are �bald". When both black hole solutions and solitonic solutions are

possible, often so are �hairy" black hole solutions, which can be interpreted as a sort of

non-linear bound state between both of these building blocks.

SEMS = SEH +

Z
d4x

p�g


� f(�)

4
Fµ⌫F

µ⌫ � 1

2
rµ�rµ�� U(�)

�
Einstein � Maxwell � scalar Model

F = 0

axial symmetry

stationarity

No strict stationarity

assumed

No solitons if,

everywhere,

U(�) > 0

strictly stationary strictly stationary
static

No electromagnetic solitons

regardless of U(�)

No spatial isometries

assumed

No spatial isometries

assumed

No solitons if U(�) > 0 and the

dominant energy condition holds

No solitons if U(�) > 0

and the dominant energy

condition holds

0 < f(�) < 1 0 < f(�) < 1

Figure 2.1: Schematic representation summarising the no-go theorems presented herein. In all

cases asymptotically �at spacetimes are assumed. The units used in this image use 8πG = 1.

In this chapter, motivated by the recently found "hairy" black hole solutions in Einstein-

Maxwell-scalar models [8], which can arise dynamically from an instability of the RN black

hole, we have addressed the existence of self-gravitating solitons in this family of models.

11We emphasise that throughout Sections 2.2 and 2.3 we have assumed, in the applications of Stokes'

theorem, the absence of a boundary term at the origin, which, again, is only justi�ed if the coupling is

required to be �nite therein. Singular solutions with divergent coupling have been reported, for instance,

in [117,118].
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We obtained three results for asymptotically �at spacetimes. The �rst is for the absence

of axisymmetric and stationary solitons with a vanishing Maxwell �eld, as long as the

scalar potential is everywhere non-negative and another for the absence of static (without

spatial symmetries assumed) scalar-electromagnetic solitons in the full model. In this

case, no strict stationarity is assumed. The second result applies to strictly stationary and

static spacetimes but without any assumptions on the spatial symmetries. If the coupling

function f(φ) does not change sign, then no electromagnetic solitons exist, regardless of

the scalar potential. Moreover, if one assumes the scalar potential to be non-negative and

the dominant energy condition to hold, no scalar solitons exist either. Finally, the third

result generalises the second by dropping the staticity assumption. A summary of these

results is presented in a schematic way in Figure 2.1.

As a corollary of the results herein, the model studied in [8] illustrates that both

bald and hairy black holes can exist without the existence of solitons. Therefore, even in

models allowing both this sort of black holes, not all hairy black holes can be interpreted

as a superposition of a soliton and a bald black hole.

It is now a natural question to ask if there might be soliton solutions in this model if

either f(φ) changes sign (for a purely electric solution case) or if f(φ) either diverges or

vanishes. While there are still no known solutions for the case where f changes sign (and

it could present an interesting avenue for future work), in chapter 4 we discuss a solution

which is found by circumventing the assumption that f(φ) must not diverge. Soliton

solutions where f(φ) vanishes are also presented in chapter 5.

Regarding generalisations of this model, we discuss the e�ect of the addition of an

axionic term to the model in the next chapter.
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Chapter 3

On the inexistence of self-gravitating

solitons in generalised axion

electrodynamics

After establishing the no go theorems of chapter 2, two possible ways of �nding soliton

solutions are to either consider a more general model than the standard EMS model or to

circumvent the conditions imposed by the no go theorems. The generalisation of the EMS

model is what is considered in this chapter, where we discuss the consequences of adding

an axionic term to the EMS model. An attempt to circumvent the conditions of the no go

theorems is made in chapter 4. We recall that to distinguish the axion �eld from a more

basic scalar �eld we use a to represent the axion �eld.

The model studied in this chapter is the basic axion electrodynamics model (1.3.7),

where the only non-minimal coupling is the typical axion term aFµνF̃
µν (f(a) = 1). In

section 3.1, we start by considering the possibility of static axionic solitons in this model.

The same argument used in the last chapter (section 2.2), inspired by the one in [24], is

adapted to this model. The process involves �nding the new canonical form of the covariant

Maxwell equations obtained from this model. It is shown that no solitons can exist under

these conditions.

In section 3.2 we once again consider the possibility of static solitons but in the model

(1.3.9), which is a generalisation of the typical EMS model. In this case, the non-minimal

coupling f(a) is once again considered and we promote the coupling κa to a general function

g(a). The result of section 3.1 persists even for this generalisation.

Finally, in section 3.3, the argument for strictly stationary spacetimes presented in the

last chapter (section 2.3) is adapted to this generalised model, showing that there can be

no soliton solutions with those conditions even in such a general model. A few remarks

are discussed in section 3.4.
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3.1 Absence of static axionic solitons

In this section we consider an asymptotically �at, static spacetime with no restrictions

on the spatial symmetries. The gravitational part will play no role in the subsequent

argument.

The equations of motion for the model (1.3.7) are

∇µ(Fµν − κaF̃µν) = 0 , (3.1.1)

∇µF̃µν = 0 , (3.1.2)

�a = −κ
4
FµνF̃

µν − dU(a)

da
, (3.1.3)

where � = ∇µ∇µ is the covariant d'Alembertian. Since the spacetime is static and without

horizons, we know that it admits an everywhere timelike Killing vector �eld k which can

be used to de�ne the electric and magnetic �elds as in equations (2.2.33) and (2.2.34).

In Maxwell's theory, one can rewrite the covariant Maxwell equations in terms of E,B

in a certain canonical form - see e.g. eqs.(2.2.35)-(2.2.37) from last chapter. In axion

electrodynamics, a similar canonical form is obtained if we de�ne two new �elds E′ and

B′ which are related to the original �elds as

E′µ ≡ Eµ − κaBµ , (3.1.4)

B′µ ≡ Bµ + κaEµ ; (3.1.5)

now, the axion Maxwell equations (3.1.1)-(3.1.3) are written as

∇[µEν] = 0 , (3.1.6)

∇[µB
′
ν] = 0 , (3.1.7)

∇µ
(
E′µ

V

)
= 0 , (3.1.8)

∇µ
(
Bµ

V

)
= 0 , (3.1.9)

where V ≡ −kµkµ > 0. Due to the absence of currents, the �rst two equations imply that

we can once again introduce an electric ϕ and a magnetic ψ scalar potentials, as

Eµ = ∂µϕ , B′µ = ∂µψ . (3.1.10)

The remainder of the argument uses the method used in section 2.2 which was inspired

by Heusler's argument described in [24]. We again make use of the identity (2.2.39) for an

arbitrary vector α obeying £kα = [k, α] = 0. Specifying this identity for αµ = E′µ/V and

using the axionic Maxwell equations yields
∫

∂Σ

E′µkν

V
dSµν = 0 , (3.1.11)
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where we took ∂Σ to be the surface at spatial in�nity (an r =∞ 2-surface, which can be

used near in�nity due to asymptotic �atness).

Making a second use of the identity (2.2.39) but now with αµ = ϕE′µ/V and once

again using the axionic equations, we obtain

1

2

∫

Σ

EµE′µ
V

kνdΣν =

∫

∂Σ
ϕ
E′µkν

V
dSµν = ϕ∞

∫

∂Σ

E′µkν

V
dSµν = 0 , (3.1.12)

where ϕ∞ is the value of the electric potential at r = ∞ which is constant, and the last

equality used (3.1.11).

The same argument can be used for B and B′ by replacing ϕ by ψ, obtaining
∫

Σ

BµB′µ
V

kνdΣν = 0 . (3.1.13)

We can now expand (E′, B′) in terms of (E,B), via (3.1.4)-(3.1.5) to obtain the identities:
∫

Σ

EµEµ
V

kνdΣν −
∫

Σ
κa
EµBµ
V

kνdΣν = 0 , (3.1.14)
∫

Σ

BµBµ
V

kνdΣν +

∫

Σ
κa
EµBµ
V

kνdΣν = 0 . (3.1.15)

Adding up the last two equations yields∫

Σ

EµEµ +BµBµ
V

kνdΣν = 0 . (3.1.16)

From their de�nitions (2.2.33)-(2.2.34), kµEµ = 0 = kµBµ. Thus, these �elds are never

timelike. It follows that both EµEµ and BµBµ are always non-negative. Consequently,

the only way for eq. (3.1.16) to be veri�ed is if both �elds vanish for every Cauchy surface

Σ and, consequently, for the whole spacetime. This result is independent of the potential

U(a). With vanishing electromagnetic �elds, all we have left is the possibility of self-

gravitating axion (scalar) solitons. However, as was discussed in the last chapter and

in [13, 50], there are no scalar �eld solitons as long as the dominant energy condition is

obeyed and the strong energy condition is violated, which is the case for scalar �elds with

a positive potential. Therefore, the only possible solution for such potentials is Minkowski

spacetime.

As a �nal remark in this section, the main di�erence between the result herein and the

one for Einstein-Maxwell theory is that instead of establishing that the norms of both E

and B vanish, we can only establish that the sum of these norms must vanish. Since both

these norms are positive de�nite, however, the �nal conclusion is that each must vanish,

recovering the result of Einstein-Maxwell theory.

3.2 Generalised axion electrodynamics

The result of section 3.1 can be straightforwardly extended to a model of generalised

axion electrodynamics minimally coupled to Einstein's gravity (1.3.9) which introduces

the arbitrary non-minimal coupling functions f(a) and g(a) of the axion �eld.
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It is assumed, just like in last chapter, that both coupling functions do not diverge at

any point in the spacetime and that f(φ) does not vanish for a non-zero magnetic �eld.

The equations of motion are a simple generalisation of the previous ones (3.1.1)-(3.1.3)

and read

∇µ(fFµν − gF̃µν) = 0 , (3.2.17)

∇µF̃µν = 0 , (3.2.18)

�2a = −1

4

dg

da
FµνF̃

µν +
1

4

df

da
FµνF

µν − dU(a)

da
. (3.2.19)

Although the a equation can be considerably more di�cult due to the arbitrary couplings,

de�ning now the �elds E′ and B′ as

E′ = fE − gB , (3.2.20)

B′ = fB + gE , (3.2.21)

it follows that these new �elds respect the exact same equations as (3.1.6)-(3.1.9). Con-

sequently, we follow the exact same procedure as in the last section to obtain the corre-

sponding relations to (3.1.14)-(3.1.15), which now read
∫

Σ
f
EµEµ
V

kνdΣν −
∫

Σ
g
EµBµ
V

kνdΣν = 0 , (3.2.22)
∫

Σ
f
BµBµ
V

kνdΣν +

∫

Σ
g
EµBµ
V

kνdΣν = 0 . (3.2.23)

Adding these equations now yields
∫

Σ
f
EµEµ +BµBµ

V
kνdΣν = 0 . (3.2.24)

As both EµEµ and BµBµ are non-negative, this identity implies a similar result to the one

obtained in the previous chapter for the theory with no axions (g = 0): the �elds must

vanish and there are no solitonic solutions as long as the coupling f(a) does not change

sign. We can see that the main reason for this result to be similar to the one with g = 0 is

because g, as complicated a function as it might be, does not contribute to the argument

due to its contribution disappearing when we add equations (3.2.22) and (3.2.23).

3.3 Absence of strictly stationary axionic solitons

The method used above allowed us to rule out static solitons without requiring any spatial

isometry. Now, after having considered static spacetimes, it is only natural to extend this

treatment to strictly stationary spacetimes just like in the previous chapter. This accounts

now for possibly rotating axionic solitons, as long as rotation does not create ergo-regions,

since strict stationarity means that there exists an everywhere timelike Killing vector �eld.
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Following a procedure similar to the one in section 2.3 where we use a Lichnerowicz type

argument inspired by the one in [40], we shall also establish a no-go theorem for axionic

solitons. In this case the Einstein equations play an important role in the argument.

The Einstein equations for this model are, just like in section 2.3

Rµν
2

= f(a)

(
F α
µ Fνα −

1

4
gµνF

2

)
+ ∂µa∂νa+ gµνU(a) . (3.3.25)

The axionic term is purely topological so it does not contribute to the Einstein equations.

Using the timelike Killing vector �eld, we again de�ne the twist vector ωµ as (2.3.50) and

obeying the identity (2.3.51). The Maxwell equations (3.1.6)-(3.1.9), with the primed

�elds de�ned by (3.2.20)-(3.2.21) are generalised for a strictly stationary spacetime as:

∇[µEν] = 0 , (3.3.26)

∇[µB
′
ν] = 0 , (3.3.27)

∇µ
(
E′µ

V

)
=

2

V 2
ωµB

′µ , (3.3.28)

∇µ
(
Bµ

V

)
= − 2

V 2
ωµE

µ . (3.3.29)

We can again consider the identity (2.3.56) so that using the Einstein equations (3.3.25)

relates the curl of ω with the Poynting vector:

∇[µων] = 2fB[µEν] . (3.3.30)

One can freely add vanishing terms such as −2gB[µBν] and 2gE[µEν] to rewrite the right

hand side in two di�erent ways

fB[µEν] = B′[µEν] = B[µE
′
ν] . (3.3.31)

We choose the expression with B′ and E as these two �elds are the ones which we can

rewrite as potentials ψ and ϕ respectively, cf. (3.1.10). This means that equation (3.3.30)

implies the following two identities

∇[µ

(
ων] − 2ψEν]

)
= 0 , (3.3.32)

∇[µ

(
ων] + 2ϕB′ν]

)
= 0 , (3.3.33)

which in turn imply the existence of two new potentials UB′ and UE

∇µUE = ωµ − 2ψEµ , (3.3.34)

∇µUB′ = ωµ + 2ϕB′µ . (3.3.35)

Using these potentials and the identity (2.3.51), the following divergence identity is ob-

tained

∇µWµ =
4ωµωµ
V 2

− 2
E′µE

µ +B′µB
µ

V
, (3.3.36)
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where

Wµ = 2(UE + UB′)
ωµ

V 2
− 2

ψBµ + ϕE′µ

V
. (3.3.37)

On the other hand, the contraction of the Einstein equations (3.3.25) with the Killing

�eld yields
2

V
Rµνk

µkν = 2f
EµE

µ +BµB
µ

V
− 4U(a) . (3.3.38)

The �rst term on the right hand side can be slightly reshaped by noting that f(EµE
µ +

BµB
µ) may be written as

f(EµE
µ +BµB

µ) = (fEµ − gBµ)Eµ + (fBµ + gEµ)Bµ = E′µE
µ +B′µB

µ . (3.3.39)

Then adding equations (3.3.36) and (3.3.38) yields

2

V
Rµνk

µkν − 4ωµωµ
V 2

= −∇µWµ − 4U(a) . (3.3.40)

The �nal step of the argument consists on taking the Komar mass integral on a Cauchy

surface Σ [50]:

M = − 1

4π

∫

Σ

(
Rµνk

µkν

V
− 2ωµωµ

V 2

)
kαdΣα , (3.3.41)

which, via (3.3.40), reads

M =
1

4π

∫

Σ

(
1

2
∇µWµ + 2U

)
kαdΣα . (3.3.42)

As £kW = 0, the identity (2.2.39) can be used to write the �rst term in the integral as
∫

Σ
∇µWµkαdΣα = 2

∫

∂Σ
WµkαdSµα . (3.3.43)

The surface ∂Σ is the 2-surface at in�nity and all the terms in Wµ decay, asymptotically,

faster than r−2, so that (3.3.43) vanishes. Thus (3.3.42) becomes

M =
1

2π

∫

Σ
UkαdΣα = − 1

2π

∫

Σ
UV dΣ , (3.3.44)

as dΣα = kαdΣ. Consequently, as long as the potential U(a) is positive, the only contri-

bution to the Komar mass M will be negative. Then, by the the positive mass theorem1,

M = 0 and the only solution is �at spacetime. Therefore, no axionic solitons are possible

in strictly stationary spacetimes, again regardless of the spatial symmetries.

1The energy conditions are unchanged from the Einstein-Maxwell-scalar theory by the axionic term,

so we can take the same conclusions as in section 2.3. The dominant energy condition stays valid and, as

consequence, the positive energy theorem is also valid.
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3.4 Remarks

In this chapter, we have assessed the possible existence of self-gravitating solitons in axion

electrodynamics and generalisations thereof. We established that the presence of axions

and their coupling to the electromagnetic �eld does not change the results of (in)existence

of Einstein-Maxwell solitons in static or strictly stationary spacetime established in chapter

2. This holds even when considering a model with rather generic couplings between the

axion �eld and the electromagnetic invariants and, in particular, allowing an arbitrary

coe�cient function g(a) in the axion term F · F̃ .
A possible generalisation would be to consider a coupling between the electromagnetic

�eld and a di�erent scalar �eld (rather than the axion). However, without any kind of

coupling between these two scalar �elds, the result will likely remain unchanged. One

interesting future work route would be then to generalise this model to allow for two

di�erent scalar �elds, coupled to each other, and to the electromagnetic �eld through the

couplings f and g. An example of a model that corresponds to this type of framework is the

Einstein-Maxwell-Dilaton-Axion model2 [119], where the coupling f(φ) = e−αφ depends

on the dilaton �eld φ (α is a constant) and g(a) = κa has the usual dependence on the

axion �eld a. These two �elds also include a coupling between them, possibly allowing for

the existence of scalar solitons in the model.

2The EMDA model will be considered in the context of duality in chapter 5.
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Chapter 4

A class of solitons in Maxwell-scalar

and Einstein-Maxwell-scalar models

After exploring the various ways in which we can not have soliton solutions in the Einstein-

Maxwell-scalar model, we are tempted to ask: then when can we have solutions? One

possible answer is to �nd a con�guration of the �elds in the discussed model which repre-

sents a soliton solution that does not respect every condition stated by the no go theorems.

Another would be to generalise the model further, adding terms that would make the proof

of the no go theorems impossible, like we tried to do in the previous chapter.

In this chapter we discuss the �rst possibility. An important condition speci�ed by

the no go theorems presented in the last chapters is that the non-minimal coupling f(φ),

which directly couples the electromagnetic and scalar �elds, does not diverge at any point

in the spacetime. So in this chapter we present a solution with a non-minimal coupling

that diverges at a single point, the origin.

In section 4.1 we discuss the �at spacetime Maxwell-scalar models. We start by intro-

ducing some physical motivation to contextualise a diverging coupling f(φ). The idea is

that this diverging coupling can serve as a way to de-singularise the electric �eld of a point

electric charge. We then present an integrable model that admits everywhere regular solu-

tions with �nite energy which represent �at spacetime solitons. The rest of the section is

dedicated to presenting a class of examples and the peculiar case of the dilatonic coupling.

Section 4.2 is where the self-gravitating soliton solutions are constructed. Two proce-

dures for constructing solutions are shown, perturbatively and numerically. A discussion

of these solutions is made in section 4.3.
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4.1 Flat spacetime Maxwell-scalar models

4.1.1 A physical motivation

An awkward feature of classical electromagnetism is that the energy E of the Coulomb

�eld of a point charge Q is divergent:

E ∼
∫ +∞

0

Q2

r2
dr =∞ . (4.1.1)

Quantum considerations naturally introduce an ultraviolet cut-o� to the validity of the

classical Coulomb solution, regularising this integral. Quantum Electrodynamics (QED),

however, is itself incomplete as a quantum �eld theory, due to the Landau pole [120]. But

it yields the important lesson that the coupling constant g, which determines the strength

of the electromagnetic interaction in the Maxwell Lagrangian

L = − 1

4g2
FµνF

µν , (4.1.2)

runs with the energy scale.

Whatever fundamental theory turns out to complete QED, it may admit a covariant

e�ective �eld theory description that captures the dynamics of the coupling. Then, g would

emerge as a spacetime function with some dynamics. In a simple model, g would be a real

scalar �eld with a standard kinetic term. Allowing more general dynamics, one takes g as

being an arbitrary function of the scalar �eld, keeping the latter with a standard kinetic

term. This suggests considering the naive covariant e�ective �eld theory

S =
1

4π

∫
d4x
√−g

(
−f(φ)

4
FµνF

µν − 1

2
∂µφ∂

µφ

)
, (4.1.3)

which corresponds to the �at spacetime limit of the Einstein-Maxwell-scalar model. We see

that the non-minimal coupling function f(φ) speci�es the dynamics of the gauge coupling.

This model ignores higher order corrections in F , so it is certainly incomplete. Nonetheless

one may take the aforementioned reasoning as a motivation to consider this class of simple

models. Can the Coulomb �eld of a point charge be de-singularised in this context?

4.1.2 An integrable model

The naive model (4.1.3), which is the decoupling limit of the EMS model (1.1.2) wherein

back reaction is neglected, is integrable in the spherical sector. Taking the following ansatz

for the �elds in spherical coordinates in Minkowski spacetime (t, r, θ, ϕ):

φ = φ(r) , A = V (r)dt , (4.1.4)

the Maxwell equations yield a �rst integral:

V (r) =

∫
Q

r2f(φ)
dr , (4.1.5)
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where Q is interpreted as the electric charge. Using this �rst integral, the Klein-Gordon

equation reads

r2 d

dr

(
r2dφ

dr

)
− Q2

2

d

dφ

(
1

f(φ)

)
= 0 , (4.1.6)

which, introducing the coordinate x ≡ 1/r, yields another �rst integral
(
dφ

dx

)2

− Q2

f(φ)
= E . (4.1.7)

It is a simple application of the virial theorem, or a Derrick-type scaling theorem [49], to

show that solutions must have E = 0. For instance, this can be seen from the condition [44]
∫
d3xTij = 0 , (4.1.8)

that holds for time-independent, �nite energy �eld con�guration in Minkowski spacetime,

where i, j are spatial indices in Cartesian coordinates. Relation (4.1.8) is a simple conse-

quence of energy-momentum conservation and can be interpreted as the balancing of the

total stresses in an extended object. There are regions where matter is in tension and

regions where it is in compression, for any static balanced soliton. Thus, the problem of

�nding solutions is reduced to solving, from (4.1.7),

x(φ) =
1

Q

∫ √
f(φ)dφ , (4.1.9)

and then inverting x(φ)→ φ(x)→ φ(r). Fixing the coupling function f(φ) one can obtain

φ(r) and, from (4.1.5), the electrostatic potential, both as line integrals. Due to the two

�rst integrals the system is fully integrable.

4.1.3 Everywhere regular solutions

To assess if the solutions have �nite energy one must consider the energy-momentum of

the model,

4πTµν = f(φ)

(
FµαF

α
ν −

1

4
gµνFαβF

αβ

)
+ ∂µφ∂νφ−

1

2
gµν∂αφ∂

αφ . (4.1.10)

This yields the energy density ρ, after using (4.1.7):

ρ = T00 =
Q2

4πr4f(φ)
. (4.1.11)

and the total energy, E, obtained by integrating the energy density on a spacelike slice Σ

E =

∫

Σ
ρ d3x =

∫ +∞

0

Q2

r2f(φ)
dr . (4.1.12)

In order to obtain regular solutions at the origin we assume the scalar �eld admits a

power series expansion near the origin:

φ = φ0 +
∑

p=N

φpr
p , (4.1.13)
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We do not constrain the constant coe�cient φ0, which may or may not vanish. Apart from

φ0, let φN , where N ∈ N > 1 be the �rst non-vanishing coe�cient in this expansion. Then,

from (4.1.7),

(−NrN+1φN + . . . )2 =
Q2

f(φ)
. (4.1.14)

Thus, as r → 0,

f(φ) ∼ Q2

N2φ2
N

1

r2N+2
. (4.1.15)

Regularity of the scalar �eld at the origin then requires the coupling to diverge as ∼
1/r2N+2. From (4.1.11) this implies that the energy density is �nite therein and from (4.1.5),

V (r) = V (0) +
N2φ2

N

(2N + 1)Q
r2N+1 + . . . , (4.1.16)

close to the origin. Thus, all physical quantities are �nite close to the origin, for this class

of behaviours of the coupling.

4.1.4 A class of examples

There is still, of course, some freedom in choosing the coupling function, within the class

with the correct divergent behaviour at the origin. Let us consider examples.

4.1.4.1 A simple coupling yielding regular solutions

As an explicit example, consider

f(φ) =
1

(1− αφ)4
, (4.1.17)

where α is a non-zero constant. Then (4.1.9) immediately yields, taking the integration

constant such that φ→ 0 as r →∞:

φ(r) =
Q

Qα+ r
. (4.1.18)

One observes that φ(r) is regular and smooth as r → 0, φ(r) ' 1/α − r/(Qα2); thus we

expect, from (4.1.15), the coupling to diverge as 1/r4. Asymptotically , on the other hand,

φ(r) ' Q/r. Thus the scalar �charge" coincides with the electric charge. Plugging (4.1.18)

into (4.1.17) yields:

f(r) =

(
1 +

αQ

r

)4

. (4.1.19)

The coupling diverges as 1/r4 at the origin, as anticipated. This divergence precisely

cancels the divergence of the Maxwell �eld at the origin, cf. (4.1.11), making it �nite and

non-zero. In fact, the energy density, from (4.1.11), is

ρ =
Q2

4π(Qα+ r)4
. (4.1.20)
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It follows that the total energy (4.1.12) is

E =
Q

3α
. (4.1.21)

Now, using (4.1.5) we obtain for the electrostatic potential:

V (r) = − rQ

(Qα+ r)2
− α2Q3

3(Qα+ r)3
. (4.1.22)

All the quantities (4.1.20), (4.1.21), (4.1.22) manifestly reduce to the usual Coulombic ones

upon taking α→ 0. In such case (4.1.18) reduces to the pro�le of a scalar charge Q at the

origin. The expressions make manifest how α regularises the solution.

4.1.4.2 A family of couplings yielding regular solutions

As further examples, with slightly di�erent features, we generalise the coupling (4.1.17) as

f(φ) =
1

(1− αφ)n
, (4.1.23)

where n is an integer. Using this coupling, equation (4.1.9) gives

1

r
=

1

Q

∫
(1− αφ)−n/2dφ , (4.1.24)

which has a di�erent inde�nite integral for n 6= 2 and n = 2.

For n 6= 2, imposing φ(r →∞) = 0 to �x the integration constant, one obtains

φ(r) =
1

α
− 1

α

[
1 +

αQ(n− 2)

2r

] 2
2−n

, (4.1.25)

which reduces to (4.1.17) for n = 4. For regular solutions at the origin we require limr→0 φ

to be �nite. This implies n > 2, in which case

lim
r→0

φ(r) =
1

α
− 1

α

(
2r

αQ(n− 2)

) 2
n−2

, (4.1.26)

which is �nite, as required. For n = 3 we see that the second term goes as r2; but for n > 4,

the second term has a non-integer power. In the former case we anticipate, from (4.1.15),

that the coupling diverges as 1/r6. In the latter case, φ is not analytic at the origin. It

will, nonetheless yield a regular solution, when analysing the usual physical quantities.

The coupling f(φ) as a function of r then reads:

f(r) =

[
1 +

αQ

2r
(n− 2)

] 2n
n−2

, (4.1.27)

which diverges as∼ 1/r
2n
n−2 at the origin, for n > 2, but respects the condition limr→∞ f(r) =

1. We con�rm, in particular, the 1/r6 divergence, for n = 3 and a divergence with (gener-

ically) a non-integer inverse power for n > 5. The electric �eld Eµ = −∂µV (r) has only

one non-zero component which reads, from (4.1.5)

Er(r) = − Q

r2f
= −Q

r2

[
1 +

αQ

2r
(n− 2)

]− 2n
n−2

, (4.1.28)
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which behaves as r
4

n−2 near the origin, and it is thus regular for n > 2.

The total energy now reads

E =
2Q

(n+ 2)α
. (4.1.29)

Thus, the family of cases with n > 2 illustrate how regular solutions can be obtained, with

a di�erent analytic behaviour of the scalar �eld near the origin (the cases n = 3 and n = 4)

and non-analytic behaviour (n > 4).

With n = 2, following a similar reasoning one obtains

φ(r) =
1

α

(
1− e−αQ/r

)
, (4.1.30)

which is a regular solution at r = 0 with limr→0 φ(r) = 1/α. The coupling function f(φ)

becomes

f(r) = e2αQ/r , (4.1.31)

which, as before, also diverges at r = 0 but respects limr→∞ f(r) = 1. Observe, however, it

does not diverge as an inverse power of r, which was the conclusion in Section 4.1.3. This

is because, again, φ in this case does not admit a power series expansion near the origin.

This illustrates yet a di�erent example of divergent coupling that yields regular solutions.

The electric �eld is now

Er(r) = − Q

r2f
= −Q

r2
e−2αQ/r , (4.1.32)

and the total energy is

E =
Q

2α
. (4.1.33)

In these considerations αQ was assumed to be positive. Otherwise the total energy (4.1.29)-

(4.1.33) would be negative, which would violate the weak energy condition. Interestingly

enough, despite the seemingly di�erent solution for n = 2, the total energy E is a smooth

function of the power n, as (4.1.33) coincides with setting n = 2 in (4.1.29).

4.1.5 Dilatonic coupling: a spherically symmetric solution

As mentioned in the introduction, a dilatonic coupling

f(φ) = e−αφ , (4.1.34)

where α is a constant, emerges in relevant scenarios. Let us thus brie�y mention the

existence of a spherically symmetric, exact solution for this coupling.

Considering (4.1.34) in (4.1.9), and taking the integration constant so that the scalar

�eld vanishes asymptotically we immediately get

φ = − 2

α
log

[
1 +

αQ

2r

]
. (4.1.35)
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Thus, the coupling, as a function of r is

f(φ) = e−αφ =

[
1 +

αQ

2r

]2

. (4.1.36)

Thus, the coupling diverges at the origin and, if αQ > 0 it is regular elsewhere. Moreover,

using now (4.1.5) we get

V (r) = − 2Q

αQ+ 2r
. (4.1.37)

One �nds the following small-r expansion of the solution

φ(r) =
2

α

(
log r − log

αQ

2

)
+O(r) , V (r) = − 2

α
+

4r

α2Q
+O(r2) ; (4.1.38)

thus, the scalar �eld diverges at the origin. Asymptotically, on the other hand, both �elds

are well behaved

φ(r) = −Q
r

+
α

4

Q2

r2
+O

(
1

r3

)
, V (r) = −Q

r
+
α

2

Q2

r2
+O

(
1

r3

)
. (4.1.39)

The energy density of this solution diverges at the origin:

ρ = −T tt =
Q2

πr2(αQ+ 2r)2
; (4.1.40)

the total mass, however, is �nite

M = 4π

∫ ∞

0
drr2ρ =

2Q

α
. (4.1.41)

This solution is interesting in that it shows a divergent coupling can source a �nite mass

con�guration which, nonetheless, is not fully regular, as the scalar �eld and the energy

density diverge at the origin.

4.2 The gravitating solitons

The above �at spacetime solutions can be made to self-gravitate by coupling (4.1.3) to

Einstein's general relativity. For the case of the regular solutions described in the previous

section, this yields, perhaps, the simplest models of charged soliton.

One now considers the EMS model (1.1.2). In addition to the ansatz (4.1.4) we consider

the metric form

ds2 = −e−2δ(r)N(r)dt2 +
dr2

N(r)
+ r2(dθ2 + sin2 θdϕ2) , where N(r) ≡ 1− 2m(r)

r
,

(4.2.42)

and m(r) is the Misner-Sharp mass; r is thus the areal radius, a geometrically meaningful

coordinate.

The ansatz (4.1.4) and (4.2.42) yield the following e�ective Lagrangian:

Leff = e−δm′ − r2

2
e−δNφ′2 +

r2

2
f(φ)eδV ′2 . (4.2.43)
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As in the �at spacetime case, the equation of the electric potential possesses a �rst integral,

which generalises (4.1.5), and reads

V ′ = e−δ
Q

r2f(φ)
, (4.2.44)

where again the integration constant Q is the electric charge, which we shall assume to be

strictly positive, without any loss of generality. Using this integral, the remaining equations

of motion become1

m′ =
r2

2
Nφ′2 +

Q2

2r2
S(φ) , (4.2.45)

δ′ + rφ′2 = 0 , (4.2.46)

(e−δr2Nφ′)′ − e−δ

2r2

dS(φ)

dφ
Q2 = 0 , (4.2.47)

where we have de�ned

S(φ) ≡ 1

f(φ)
. (4.2.48)

The smooth of a spacetime con�gurations can be assessed by analysing the Ricci scalar

R =
N

r
(3rδ′ − 4) +

2

r2

[
1 +N(r2δ′′ − (1− rδ′)2)

]
−N ′′ , (4.2.49)

and the Kretschmann scalar

K =
4

r4
(1−N)2 +

2

r2

[
N ′2 + (N ′ − 2Nδ′)2

]
+
[
N ′′ − 3δ′N ′ + 2N(δ′2 − δ′′)

]2
. (4.2.50)

4.2.1 Asymptotic expansions

4.2.1.1 Near the origin

A small r analysis of the �eld equations con�rms the conclusion observed in the �at space

analysis: for a scalar �eld admitting a power series expansion near the origin φ = φ0 +

φ1r + . . . and φ1 6= 0, if the coupling diverges as 1/r4, �nite energy, everywhere regular

solutions are possible. To see this, we again start by assuming the existence of a power

series expansion of solutions, with the scalar �eld approaching a �nite nonzero value

φ(r)→ φ0 as r → 0 , (4.2.51)

where φ0 is arbitrary. Then, the equations of motion, together with the assumption of

regularity, impose, for the nth derivative of S(φ) computed at the origin, denoted S(n)(φ0),

S(φ0) = S(1)(φ0) = S(2)(φ0) = S(3)(φ0) = 0 , whereas S(4)(φ0) > 0 . (4.2.52)

This implies the advertised behaviour: the coupling function f(φ) diverges as 1/r4 as

r → 0. This behaviour cancels the divergence associated with the presence of an electric

charge, providing a smooth con�guration as r → 0.
1There is an extra equation, which is a constraint and can be derived from (4.2.45)-(4.2.47).
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The small r expansion of the matter functions reads

φ(r) = φ0 −
2
√

6r

Q
√
S(4)(φ0)

+ φ2r
2 + . . . , V (r) = − 8e−δ0

Q3S(4)(φ0)
r3 + . . . , (4.2.53)

while for the metric functions we �nd

m(r) =
8

Q2

1

S(4)(φ0)
r3 − 2

√
6φ2

Q
√
S(4)(φ0)

r4 + . . . , δ(r) = δ0 −
12r2

Q2S(4)(φ0)
+ . . . ,

(4.2.54)

where φ2 and δ0 are constants that are �xed by the numerics when integrating the �eld

equations from the origin to in�nity and requiring the correct asymptotic behaviour. With

this expansion, both the Kretschmann curvature scalar and Ricci scalar are �nite as r → 0,

taking the form

K ≡ RµναβRµναβ =
3840

Q4[S(4)(φ0)]2
− 2560

√
6φ2

Q3[S(4)(φ0)]3/2
r + . . . , (4.2.55)

and

R =
48

Q2S(4)(φ0)
− 16

√
6φ2

Q(S(4)(φ0))1/2
r + . . . . (4.2.56)

The small r expansion of S(φ) reads

S(φ) =
24

Q4S(4)(φ0)
r4 − 8

√
6φ2

Q3
√
S(4)(φ0)

r5 + . . . , (4.2.57)

which implies the following generic approximate form of the coupling function

S(φ) =
1

f(φ)
∼ (φ− φ0)4 as r → 0 . (4.2.58)

Of course, we could have assumed that in the scalar �eld expansion φ1 = 0 and the power

series starts at a higher order term. This would impact in the way the coupling diverges

at the origin, similarly to the �at spacetime analysis of section 4.1.3. For concreteness,

here we focus on the case with φ1 6= 0. This case corresponds, in the non-back-reacting

case, to having N = 1 in equation (4.1.13). Choosing φ1 = 0 in the latter would imply

a di�erent behaviour for the divergence of f(φ), implied by the equation (4.1.15). In the

back-reacting case this would correspond to having S(4)(φ0) = 0. Non-trivial solutions

with such behaviour should exist, as well.

4.2.1.2 Near in�nity

A large r analysis of the �eld equations, on the other hand, imposing

f(φ)→ 1 as r →∞, (4.2.59)

yields the following approximate solutions:

m(r) = M − Q2 +Q2
s

2r
+ . . . , φ(r) =

Qs
r

+ . . . , (4.2.60)
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V (r) = V∞ −
Q

r
+ . . . , δ(r) =

Q2
s

2r2
+ . . . . (4.2.61)

Here M is the ADM mass and Q is the electric charge; V∞ is the electrostatic potential at

in�nity and Qs is the scalar 'charge' which in general needs not equal the electric charge (it

did in the �at spacetime illustration above). In fact, the equations of motion possess again

two �rst integrals implying that the gravitating solutions satisfy the following relation

M2 +Q2
s = Q2. (4.2.62)

This last equation, in particular, shows manifestly the curved background breaks the equal-

ity between Q and Qs.

Interestingly, one can show that there is a Smarr relation in terms of these asymptotic

quantities, which is not a�ected by the scalar �eld,

M = V∞Q . (4.2.63)

Moreover, a �rst law of thermodynamics can be obtained in the form

dM = V∞dQ . (4.2.64)

We emphasise the absence of a scalar �eld contribution in these relations.

4.2.2 The full solutions

The gravitating version of the exact solution in Minkowski spacetime described in sub-

section 4.1.4.1, with coupling (4.1.17), and whose asymptotic limits have been described

in subsection 4.2.1, can be constructed numerically. The set of four ordinary di�eren-

tial equations obtained from the above setup was solved numerically by using a standard

Runge-Kutta ordinary di�erential equation solver and appropriate boundary conditions.

Fixing α, gravitating solitons exist for arbitrary large values of Q. The pro�le of a typical

solution is shown in Fig. 1. As one can see, the pro�les of the various functions, and in

particular that of the Kretschmann scalar K, are smooth as r → 0. In Fig. 4.2 we show

the ADM mass vs. electric charge diagram for families of solutions with di�erent values

of α. One can see that for all families, the solutions trivialise as α → 0. Moreover, a

smaller α implies that the same value of the electric charge can support a more massive

soliton. Obviously, the solutions also trivialise as Q → 0. The electric charge supports

the soliton. This is also manifest from the following virial identity that can be derived for

these solutions:
∫ ∞

0
dr e−δφ′2 =

∫ ∞

0
dr

e−δ

r2

Q2

f(φ)
. (4.2.65)

For Q = 0 the right hand side vanishes, and so must the left hand side, which implies

φ′ = 0 and hence no non-trivial scalar pro�le exists.

Self-gravitating solitons with the coupling (4.1.23) and n = 3 were also obtained. They

follow the same pattern as the n = 3 case, which is therefore illustrative.
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Figure 4.1: Pro�les of an illustrative gravitating soliton with the coupling (4.1.17).
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Figure 4.2: ADM vs. electric charge for families of gravitating solitons with di�erent values of

α. The straight lines are obtained from the perturbative solutions, whereas the dots represent the

numerical solutions.

4.2.3 Perturbative solutions

The existence of a �at spacetime solution, whose total mass-energy is proportional to 1/α,

suggests that the self-gravitating solitons may be expressed as a perturbative series in

1/α. Let us indeed show that the numerical solutions of the previous subsection can be

approximated by such perturbative solutions. This approximation, as we will show and as

one may anticipate, is accurate for su�ciently large α.

The perturbative solutions are obtained by performing a power series expansion for all
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relevant functions

m(r) =
∑

k>1

(
1

α

)k
mk(r) , δ(r) =

∑

k>1

(
1

α

)k
δk(r) , (4.2.66)

φ(r) =
∑

k>1

(
1

α

)k
φk(r) , V (r) =

∑

k>1

(
1

α

)k
Vk(r) . (4.2.67)

As for the numerical solutions of the previous subsection, we focus on the quartic

coupling function (4.1.17). Solving iteratively the �eld equations order by order in 1/α,

we arrive at the following expressions2

m1(r) = 0 = m3(r) , m2(r) =
qr3

3(q + r)3
, m4(r) = −qr

4(10q2 + qr + r2)

90(q + r)6
,

δ1(r) = 0 = δ3(r) , δ2(r) =
q2(q + 3r)

6(q + r)3
,

δ4(r) =
q2(q4 + 6q3r + 15q2r2 + 100qr3 − 30r4)

540(q + r)6
, (4.2.68)

φ1(r) =
q

q + r
, φ2 = 0 , φ3(r) =

q(2q − r)r2

18(q + r)4
,

V1(r) =
r3

3(q + r)3
, V2(r) = 0 , V3(r) = −r

3(5q3 + 25q2r + 6qr2 + r3)

90(q + r)6
,

where q is a free parameter, whose physical signi�cance becomes transparent by computing

the far �eld asymptotics of the electric potential. One �nds it is related to the electric

charge measured at in�nity Q, as

Q =
q

α
. (4.2.69)

The perturbative solution yields the following ADM mass and scalar charge, valid to

fourth order in perturbation theory:

M =
Q

3α

(
1− 1

30α2
+

1

1080α4

)
, Qs =

(
1− 1

18α2
+

7

3240α4

)
Q . (4.2.70)

Observe that the �rst terms in (4.2.70) reproduce the �at spacetime limit, eq. (4.1.21) and

the fact that the electric and scalar charge coincide in that limit.

In Fig. 4.2 the perturbative solutions (4.2.70) are compared with the numerical solu-

tions. One can observe that the former provide a good approximation for large values of

α; for instance, for α = 10 the relative di�erence between the numerical result for M(Q)

and the theory one is around 10−4. However, the di�erences start to increase for smaller

α. This is illustrated by the results for α = 0.2 in Fig. 4.2.

Finally let us mention that a similar solution has been derived for the self-gravitating

solitons with the coupling (4.1.23) and n = 3. In this case one �nds, e.g.

M =
2Q

5α

(
1− 2

45α2
+

22

14625α4

)
+ . . . . (4.2.71)

2We have computed the solution up to eighth order and no obvious pattern could be found. Here we

display only the �rst few terms for each function.
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4.3 Discussion

A set of no go theorems were shown in chapters 2 and 3 establishing that the model (1.1.2)

does not allow self-gravitating solitons. One of the observations therein is that if the

coupling would diverge, the theorems could, potentially, be circumvented. The purpose of

this chapter was to provide the mechanism of how this can happen by providing a simple

construction of �at spacetime and gravitating solitons.

Preliminary analysis shows the solitons we have described herein are stable against

spherical perturbations. If this is the case for generic perturbations, these solitons can be

used for dynamical studies in many setups, as, for instance, boson stars [121]. Moreover,

this construction reveals how to de-singularise the Coulomb �eld in a classical �eld theory,

without resorting to non-linear electrodynamics, as in the Born-Infeld model [72], or invok-

ing a manifestly extended object, such as in the Dirac model of the electron as a spherical

membrane [122].

Finally, let us remark that there is a well-known similarity between the EMS model

and the extended scalar-tensor-Gauss-Bonnet model, where black hole scalarisation was

�rst pointed out in [85�87]. Very recently, a family of particle-like solutions in the latter

model was discussed [123]. These particle-like solutions are also supported by a divergent

coupling making them the counterparts of the solutions described herein. But in the cases

reported in [123], the scalar �eld also diverges at the origin, in contrast with our fully

regular solutions.
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Chapter 5

Electromagnetic dual

Einstein-Maxwell-scalar models

In this chapter we will discuss a speci�c solution generating technique, based on duality

transformations. Here we construct the formalism of the duality orbits presented in the

introduction (section 1.4) where we use a duality transformation as a map between solutions

of similar Einstein-Maxwell-scalar models with di�erent couplings f(φ) and g(φ). This

contrasts with the usual self-dual models, like the pure Maxwell theory, where a duality

transformation is simply a transformation between solutions of the exact same model.

In section 5.1 the formalism is presented for the electromagnetic duality in the EMS

model, where we establish the map between di�erent solutions in models with di�erent

coupling functions. These transformations preserve the metric and the scalar �eld and

de�ne the duality orbits.

Section 5.2 is where we apply this duality to various examples, which are explicitly

known solutions of illustrative EMS models, in order to obtain duality orbits.

In section 5.3, we generalise this duality for further generalisations of Einstein-Maxwell-

scalar, including possible multiple scalar and gauge �elds. This allows us to consider

this duality applied to, for example, the aforementioned Einstein-Maxwell-Dilaton-Axion

model [71]. Some remarks are presented in section 5.4.

5.1 Electromagnetic duality in the EMS model

5.1.1 Fields and equations of motion

Consider the EMS family of models described by the action (1.4.14) which, for ease of

reference, we present here again

S =
1

4π

∫
d4x
√−g

(
R

4
− f(φ)

4
FµνF

µν +
g(φ)

4
FµνF̃

µν − 1

2
∂µφ∂

µφ

)
. (5.1.1)
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We shall be interested in stationary asymptotically �at spacetimes, with associated asymp-

totically timelike Killing vector �eld kµ. The scalar �eld will be regarded here as endowing

spacetime with a medium, making the electric permittivity and the magnetic permeability

spacetime dependent. Then, one uses the standard formalism for electrodynamics in a

medium, de�nining the electric intensity, magnetic induction, electric induction and mag-

netic intensity 4-covectors as, respectively:1

Eµ = kνFµν , (5.1.2)

Bµ =
1

2
εµαβνF

αβkν = kνF̃µν , (5.1.3)

Dµ = kνGµν(φ) , (5.1.4)

Hµ =
1

2
εµαβνG

αβ(φ)kν = kνG̃µν , (5.1.5)

where

Gµν(φ) ≡ −2
∂L
∂Fµν

= f(φ)Fµν − g(φ)F̃µν , (5.1.6)

and L is the Lagrangian density. The matter equations of motion obtained from (5.1.1)

read:

∇[µEν] = 0, (5.1.7)

∇[µHν] = 0, (5.1.8)

∇µ
(
Dµ

V

)
= 0, (5.1.9)

∇µ
(
Bµ

V

)
= 0, (5.1.10)

�2φ =
1

4

df(φ)

dφ
FµνF

µν − 1

4

dg(φ)

dφ
F̃µνF

µν , (5.1.11)

where V = −kµkµ is the norm of the Killing vector �eld.

5.1.2 Constitutive relations

For electrodynamics in a medium, the constitutive relations specify how the electric and

magnetic inductions relate to the electric and magnetic intensities. From relations (5.1.4)

and (5.1.5), the �elds Eµ and Hµ are related to Dµ and Bµ �elds through the following

constitutive relations2:
(
E

H

)
=

1

f

(
1 g

g f2 + g2

)(
D

B

)
= M

(
D

B

)
. (5.1.12)

1The �elds D and H here correspond to the �elds E′ and B′ in chapter 3.
2These relations can be interpreted as a generalisation of the relations in the Einstein-Maxwell-Dilaton-

Axion model of [71] as can be seen if we replace f = e−φ and g = a. The sign di�erences are simply a

consequence of the �eld de�nitions.
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M shall be called the constitutive matrix. For f = 1 and g = 0, M becomes the identity

matrix, and we recover standard vacuum electrodynamics, with E = D and H = B (recall

we use units with c = 1). In general, however, E,H depend on both D,B. This is

typically the case in non-linear materials and non-linear optics. Thus, one may envisage

the non-minimally coupled scalar �eld as endowing spacetime with a non-linear material

environment.

5.1.3 Duality map

We are interested in �nding a duality transformation Dβ that keeps equations (5.1.7)-

(5.1.11) invariant in an appropriate sense. We consider duality SO(2) rotations, by an

angle β, acting on both the intensities and the inductions in the same way, namely [71]3

(
E

H

)
Dβ−→

(
E′

H ′

)
= S

(
E

H

)
, (5.1.13)

(
D

B

)
Dβ−→

(
D′

B′

)
= S

(
D

B

)
, (5.1.14)

where

S =

(
cosβ sinβ

− sinβ cosβ

)
, (5.1.15)

or, equivalently,

Fµν
Dβ−→ F ′µν = cosβ Fµν + sinβ G̃µν , (5.1.16)

Gµν
Dβ−→ G′µν = cosβ Gµν + sinβ F̃µν . (5.1.17)

Comparing (5.1.16) with (1.4.12) one observes this is the standard duality rotation of

Maxwell's theory. From (5.1.12), it follows that the constitutive matrix becomes

M
Dβ−→M ′ = SMS−1 , (5.1.18)

which reads, explicitly

M ′ =
1

f

(
f2 sin2 β + (g sinβ + cosβ)2 g cos(2β) + (f2 + g2 − 1) sin(2β)/2

g cos(2β) + (f2 + g2 − 1) sin(2β)/2 f2 cos2 β + (g cosβ − sinβ)2

)
.

(5.1.19)

Thus, the duality rotation with an arbitrary angle β yields this new constitutive matrix.

The duality orbit of models is de�ned as the continuous sequence of EMS models (5.1.1)

where the coupling functions are

(f(φ), g(φ))
Dβ−→ (fβ(φ), gβ(φ)) , (5.1.20)

3In a medium, the �eld E is dual to H while D is dual to B. This is because the dual �elds share

the same equation of motion, so a linear combination of them will still respect the same equation. For

example, ∇[µE
′
ν] = cosβ∇[µEν] + sinβ∇[µHν] = 0.
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such that

M ′ =
1

fβ

(
1 gβ

gβ f2
β + g2

β

)
. (5.1.21)

That is, the constitutive relations have the same functional form in terms of the coupling

functions, along the whole duality orbit. Comparing (5.1.19) with (5.1.21) yields

fβ =
f

f2 sin2 β + (g sinβ + cosβ)2
, (5.1.22)

gβ =
1

2

2g cos(2β) + (f2 + g2 − 1) sin(2β)

f2 sin2 β + (g sinβ + cosβ)2
. (5.1.23)

The orbit of dual theories is therefore the 1-parameter family of actions

Sβ =
1

4π

∫
d4x
√−g

(
R

4
− 1

4
fβ(φ)F ′µνF

′µν +
1

4
gβ(φ)F ′µνF̃

′µν − 1

2
∂µφ∂

µφ

)
, (5.1.24)

where S0 equals the original action (5.1.1) and (g,A′, φ), where F′ = dA′, are taken as

the independent �elds in a variational principle. The tensor G′µν is found, as before, by

the variation of the Lagrangian density in (5.1.24), Lβ , with respect to F′:

G′µν(φ) ≡ −2
∂Lβ
∂F ′µν

= fβ(φ)F ′µν − 1

4
gβ(φ)F̃ ′µν . (5.1.25)

From the discussion above, it follows that if

[g,A, φ; f(φ), g(φ)] , (5.1.26)

is a solution of (5.1.1), then

[g,A′, φ; fβ(φ), gβ(φ)] (5.1.27)

is a solution of the Maxwell equations obtained from (5.1.24). It remains to check the

scalar and Einstein equations are also obeyed for the model (5.1.24).

The scalar equation of motion derived from (5.1.24) is

�2φ =
1

4

dfβ
dφ

F ′µνF
′µν − 1

4

dgβ
dφ

F̃ ′µνF
′µν . (5.1.28)

Using the identities F ′µνF
′µν = 2(B′2 − E′2)/V and F̃ ′µνF

′µν = −4E′ · B′/V and then

reverting back to the original �elds, it follows (5.1.28) reduces to the original equation of

motion (5.1.11) for the scalar �eld, which is obeyed, since (5.1.26) is a solution of (5.1.1)

by assumption.

It is also straightforward to check that the Einstein equations of (5.1.1) and (5.1.24)

are the same. The energy-momentum tensor of the model (5.1.24), T ′µν is obtained from

the action by di�erentiating with respect to the metric, which is unchanged by the duality

rotation. Then, the functional form of the energy-momentum tensor is the same as that
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of the model (5.1.1), Tµν , and they are mapped simply replacing (A, f, g) → (A′, fβ, gβ).

One can then show that

T ′µν = fβ

(
F ′µαF

′α
ν −

1

4
gµνF

′
στF

′στ
)

+ ∂µφ∂νφ−
1

2
gµν∂αφ∂

αφ

= f

(
FµαF

α
ν −

1

4
gµνFστF

στ

)
+ ∂µφ∂νφ−

1

2
gµν∂αφ∂

αφ

+
f2 sinβ(g sinβ + cosβ)

f2 sin2 β + (g sinβ + cosβ)2

(
FµαF̃

α
ν + FναF̃

α
µ −

1

2
gµνFστ F̃

στ

)
, (5.1.29)

by a straightforward application of the transformations. The last term of this equation

vanishes because for any 2-form in four dimensions we have that FµαF̃ α
ν = 1

4gµνFαβF̃
αβ .

Then, as expected,

T ′µν = f

(
FµαF

α
ν −

1

4
gµνFστF

στ

)
+ ∂µφ∂νφ−

1

2
gµν∂αφ∂

αφ = Tµν . (5.1.30)

We have thus established the duality orbit of solutions (1.4.16), under (5.1.16) and (5.1.20),

the latter explicitly given by (5.1.22)-(5.1.23).

A represention of the duality orbits is obtained as follows. Consider a two dimensional

space parameterised by (x, y) = (fβ, gβ) as an illustration of the space of EMS models. It

is simple to check that the duality orbits de�ned by (5.1.22)-(5.1.23) obey:

(fβ −A)2 + g2
β = A2 − 1 , where A ≡ 1 + f2 + g2

2f
. (5.1.31)

Thus, they are circles, passing through the �ducial EMS model (f0, g0) = (f, g). The

radius of the circles vanishes at the self-dual model (f0, g0) = (1, 0), that is, Maxwell's

theory. This is illustrated in Fig. 5.1.

5.2 Examples of duality orbits

5.2.1 Closed form solution for a scalarised electric charge in �at space-

time

Our �rst example is a scalarised electric charge solution found in [8], for the model (5.1.1)

in �at spacetime and with coupling functions

f(φ) =
1

1− φ2
, g(φ) = 0 . (5.2.32)

The scalar �eld and electric potential are radial functions

φ(r) = ζ sin

(
Q

r

)
, V (r) =

Q

r
+ ζ2

[
1

4
sin

(
2Q

r

)
− Q

2r

]
, (5.2.33)

from which the electric intensity and induction have only the radial component:

Er =
Q

r2

[
1− ζ2 sin2

(
Q

r

)]
, Dr = f(φ)Er =

Q

r2
, (5.2.34)
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Figure 5.1: Duality orbits in the space of EMS models, for di�erent values of the �ducial EMS

model (f, g). The self-dual model, Maxwell's theory, is the black dot at (1, 0).

whereas the magnetic induction and intensity vanish

B = 0 = H . (5.2.35)

Observe that whereas the electric intensity is sensitive to the scalar �eld, the electric

induction has the standard Coulombian form, and it is the same as when ζ = 0.

The duality orbit that goes through the model (5.2.32) has:

fβ =
1− φ2

1− 2 cos2 βφ2 + cos2 βφ4
, gβ =

φ2(2− φ2) sinβ cosβ

1− 2 cos2 βφ2 + cos2 βφ4
. (5.2.36)

Along this sequence of dual models, the seed (5.2.33)-(5.2.35) is mapped, generically, to

dyonic solutions. For an arbitrary β, the �elds along this orbit are:

E′r =
Q

r2

[
1− ζ2 sin2

(
Q

r

)]
cosβ , D′r =

Q

r2
cosβ , (5.2.37)

B′r = −Q
r2

sinβ , H ′r = −Q
r2

[
1− ζ2 sin2

(
Q

r

)]
sinβ . (5.2.38)

Again, one observes the Coulombic form of the electric and magnetic induction �elds, with

electric and magnetic charges, respectively, Qβ ≡ Q cosβ and Pβ ≡ Q sinβ, such that

Q2
β + P 2

β ≡ Q2 = constant , (5.2.39)

along the whole duality orbit.

Within this orbit there is, however, a pure magnetic solution at β = π/2, wherein the

coupling functions are

fπ/2(φ) =
1

f(φ)
= 1− φ2 , gπ/2(φ) = 0 , (5.2.40)
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the electric intensity and induction vanish

E′ = 0 = D′ , (5.2.41)

and the magnetic induction and intensity are only radial functions:

B′r = −Q
r2

, H ′r = fπ/2(φ)Br = −Q
r2

[
1− ζ2 sin2

(
Q

r

)]
. (5.2.42)

We thus found a pure magnetic solution for the model with couplings (5.2.40). The original

electric charge Q becomes the magnetic charge just as in the Maxwell theory example

(1.4.13). For β = π we would get the original purely electric solution but with opposite

charge sign while for β = 3π/2 we get the pure magnetic solution once again with opposite

charge sign. For any β value between these, we get a dyon whose magnetic and electric

charges relative contributions depend on how close β is to the values mentioned above.

There is a full orbit of solutions that can be obtained from the original solution.

Let us close this example with two observations. First, this formalism unveils the fact

that although the original solution has a non-Coulombian electric intensity, the electric

induction is Coulombian. The same holds along the whole duality orbit. Second, at

β = π/2 the f(φ) coupling function is mapped into its inverse, whereas g(φ) remains

zero. This is a generic feature starting with arbitrary f(φ) and vanishing g(φ), as can be

appreciated from (5.1.22)-(5.1.23):

fβ
β=π/2

=
f

f2 + g2

g=0
=

1

f
, (5.2.43)

gβ
β=π/2

= − g

f2 + g2

g=0
= 0 . (5.2.44)

Since f(φ) de�nes the coupling strength of the Maxwell �eld, this particular value of the

map is an example of a strong ↔ weak coupling duality, with an electric ↔ magnetic

mapping, reminscent of the Montonen-Olive duality [124].

5.2.2 Closed form Maxwell-scalar solitons in �at spacetime

Our second example uses the seed con�guration found in chapter 4, section 4.1. It describes

a purely electric, static, spherically symmetric soliton solution of (5.1.1) in �at spacetime,

with

f(φ) =
1

(1− αφ)4
, g(φ) = 0 . (5.2.45)

The scalar �eld reads

φ =
Q

αQ+ r
, (5.2.46)

the electric intensity and induction have again only a radial component

Er =
Qr2

(r + αQ)4
, Dr = f(φ)Er =

Q

r2
, (5.2.47)
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whereas the magnetic induction and intensity again vanish

B = 0 = H . (5.2.48)

The f(φ) coupling (5.2.45) diverges at the origin r = 0; but all physical quantities are

regular, such as the energy density and the electric intensity. Indeed, this solution was

interpreted in the last chapter as a de-singularisation of the Coulomb solution of Maxwell's

theory. Nonetheless, the electric induction D is again Coulombian and diverges at the

origin.

The duality orbit that goes through the model (5.2.45), has:

fβ =
(1− αφ)4

sin2 β + cos2 β(1− αφ)8
, gβ =

[1− (1− αφ)8] sinβ cosβ

sin2 β + cos2 β(1− αφ)8
. (5.2.49)

Once more, the duality map will generate dyonic solutions from the seed (5.2.46)-(5.2.48).

The �elds for this orbit are:

E′r =
Qr2

(r + αQ)4
cosβ , D′r =

Q

r2
cosβ , (5.2.50)

B′r = −Q
r2

sinβ , H ′r = − Qr2

(r + αQ)4
sinβ . (5.2.51)

A pure magnetic solution is obtained β = π/2. The dual model at this β value has couplings

fπ/2(φ) =
1

f(φ)
= (1− αφ)4 , gπ/2(φ) = 0 , (5.2.52)

and the dual con�guration has vanishing electric intensity and induction

E′ = 0 = D′ , (5.2.53)

and a spherical magnetic induction and intensity

B′r = −Q
r2

, H ′r = fπ/2(φ)B′r = − Qr2

(r + αQ)4
. (5.2.54)

The magnetic induction of the dual solution B′r is Coulombic and diverges at r = 0 while

H′ is regular. All physical quantities are regular, including the energy density, making this

a regular magnetic soliton.

Note how the solutions for the duality orbits (5.2.36) and (5.2.49) always have a vanish-

ing fβ at the origin except for when β = 0 or β = π, in which case it diverges and we have

purely electric solutions. This is because the presence of a magnetic �eld with a vanishing

f is enough to circumvent the no go theorems of the previous chapters, which rely on the

de�nition of a magnetic-like scalar potential ψ that respects ∂µψ = fB. And, as expected,

when we have no magnetic �eld, the only way to circumvent the no go theorems is to have

a diverging coupling f .
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5.2.3 Closed form dilatonic solution in �at spacetime

As yet another example, consider the spherically symmetric solution discussed in chapter

4, section 4.1 for a dilatonic coupling, f = e−αφ, in �at spacetime. The scalar �eld and

electric potential read

φ = − 2

α
ln

(
1 +

αQ

2r

)
, V (r) = − 2Q

αQ+ 2r
. (5.2.55)

whereas the electric intensity and induction �elds are

Er =
4Q

(αQ+ 2r)2
, Dr = f(φ)Er =

Q

r2
. (5.2.56)

The magnetic induction and intensity are trivial

B = 0 = H . (5.2.57)

In this case, the duality orbit that goes through this model, has:

fβ =
1

eαφ cos2 β + e−αφ sin2 β
, gβ = − sin 2β sinhαφ

eαφ cos2 β + e−αφ sin2 β
. (5.2.58)

The �elds obtained from the seed solution are, along the duality orbit,

E′r =
4Q

(αQ+ 2r)2
cosβ , D′r =

Q

r2
cosβ , (5.2.59)

B′r = −Q
r2

sinβ , H ′r = − 4Q

(αQ+ 2r)2
sinβ . (5.2.60)

The reasoning is the same and we can see there is, once again, a magnetic solution for

β = π/2 with trivial electric intensity and induction.

5.2.4 The GMGHS black hole

We now consider a curved spacetime generalisation of the example in the last subsection.

This is the well known dilatonic electrically charged, spherically symmetric black hole (in

four spacetime dimensions), obtained in the model (5.1.1) with

f(φ) = e−2φ , g(φ) = 0 , (5.2.61)

It was �rst discussed by Gibbons and Maeda in [5] and later by Gar�nkle, Horowitz and

Strominger [125]. We shall call it the GMGHS black hole. The metric reads

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2

(
1− r−

r

)
(dθ2 + sin2 θdϕ2) , (5.2.62)

where M is the black hole mass, Q is the electric charge, r− = e2φ∞Q2/M and φ∞ is the

asymptotic value of the scalar �eld. The scalar �eld and the gauge potential read

e2φ = e2φ∞

(
1− r−

r

)
, A = −Q

r
e2φ∞dt , (5.2.63)
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whereas the electric intensity and induction are

Er =
Q

r2
e2φ∞ , Dr = f(φ)Er =

Q

r(r − r−)
, (5.2.64)

and the magnetic induction and intensity vanish:

B = 0 = H . (5.2.65)

We remark that D does not have a Coulombic form, unlike the above cases. This is

because the radial coordinate in (5.2.62) is not the areal radius. Using the areal radius

r∗ = r
√

1− r−/r, the Coulombic form Dr = Q/r∗2 is recovered.

The duality orbit that goes through this model, has the form (5.2.58) with α = 2. The

�elds obtained along the duality orbit, seeded by the GMGHS solution are

E′r =
Q

r2
e2φ∞ cosβ , D′r =

Q

r(r − r−)
cosβ , (5.2.66)

B′r = − Q

r(r − r−)
sinβ , H ′r = −Q

r2
e2φ∞ sinβ . (5.2.67)

Once again for β = π/2 we obtain a purely magnetic con�guration in the dual model with

fπ/2(φ) =
1

f(φ)
= e2φ , g(φ) = 0 . (5.2.68)

The magnetic induction and intensity are now non-trivial:

B′r = − Q

r(r − r−)
, H ′r = fπ/2(φ)B′r = −Q

r2
e2φ∞ , (5.2.69)

whereas the electric intensity and induction are trivial

E′ = 0 = D′ . (5.2.70)

This magnetic dilatonic black hole con�guration was �rst obtained by Gar�nkle, Horowitz

and Strominger in [125], wherein the electric con�guration was actually obtained by this

duality rotation. The electromagnetic duality transformation of the EMS model reduces,

for this speci�c choice of β, to this simple example of S-duality in low energy string theory,

amounting to the change φ→ −φ, which in this context is the dilaton �eld.

We can just as easily �nd a dyon black hole for any other angle β, but in this case g(φ)

becomes generically non-vanishing. As a concrete example take β = π/4. Then, the model

along the duality orbit has fβ = 1/ cosh 2φ, gβ = − tanh 2φ and its action is, explictly:

Sπ
4

=
1

4π

∫
d4x
√−g

(
R

4
− 1

4 cosh 2φ
F ′µνF

′µν − tanh 2φ

4
F ′µνF̃

′µν − 1

2
∂µφ∂

µφ

)
. (5.2.71)

This model admits a dyonic black hole solution with the GMGHS geometry and scalar

�eld, (5.2.62) and (5.2.63), and the electromagnetic �eld (5.2.66)-(5.2.67) with β = π/4,

which in covariant form reads:

F = −Q
′

r2
e2φ∞dt ∧ dr +Q′ sin θdθ ∧ dϕ ⇔ A = −Q

′

r
e2φ∞dt−Q′ cos θdϕ , (5.2.72)
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where Q′ = Q/
√

2. Comparing with (1.4.13) one can con�rm this describes an electric plus

magnetic charge, a dyon. As far as we are aware, such closed form solution within model

(5.2.71) has not been discussed previously in the literature. Moreover, one can compute

other exact, closed form solutions of this model, e.g. rotating charged black holes.

5.2.5 Other models with scalarised and axionic black holes

Having understood the duality orbits, let us mention a set of other EMS models (5.1.1)

wherein numerical black hole solutions have been constructed in the literature and whose

duality orbits can be constructed. Examples include the following coupling functions:

1. Exponential coupling: fαE(φ) = e−αφ
2

, g(φ) = 0 ;

2. Power-law coupling: fαP (φ) = 1− αφ2 , g(φ) = 0 ;

3. Fractional coupling fαF (φ) = 1
1+αφ2

, g(φ) = 0 ;

4. Higher power-law coupling fαHP (φ) = 1− αφ4 , g(φ) = 0 ;

5. Axionic coupling f(φ) = 1 , gαA = αφ .

6. Axionic-type coupling f(φ) = 1 , gαAT = αφ2 .

In all cases α is a coupling constant. Couplings 1-3 were discussed in [8, 81, 82] in the

context of EMS models allowing spontaneous scalarisation of charged black holes (see also,

e.g. [98,101�105,126�134]); all these coupling functions have the same behaviour for small

values of αφ2. Coupling 4 was discussed in [84]; it does not allow spontaneous scalarisations

but it exhibits an interesting two-branch space of solutions with scalar hair, co-existing

with the standard Reissner-Nordström black hole, in a trinity of non-uniqueness. Black

holes with coupling 5 were �rst discussed in [135] and revisited recently in [83], wherein

coupling 6 was also discussed, again in the context of spontaneous scalarisation of charged

black holes. Various solutions for �at spacetime with coupling 5 were also found and

discussed in [136] and [137]. See also, e.g., [138] for other forms of the scalar coupling

f(φ), in the context of holography.

We shall not analyse the duality orbits for all these models in detail, but let us make

some comments at the rotation point β = π/2. One can see the duality relates di�er-

ent couplings through the relations (5.2.43)-(5.2.44). For instance, we get the following

identities:

fαEπ/2 = f−αE , (5.2.73)

fαPπ/2 = f−αF , (5.2.74)

fαFπ/2 = f−αP . (5.2.75)
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Thus, the exponential squared coupling enjoys a type of S-duality symmetry analogous

to that of the dilatonic model of section 5.2.4, via (5.2.73), whereas the power law and

fractional couplings are along the same duality orbit, and can be mapped into each other

by also changing the sign of the coupling constant α. At β = π/2, moreover, the purely

electric solutions of models 1-4, as before, become purely magnetic, with:

E′ = H = 0 , (5.2.76)

B′ = −D = −fE (5.2.77)

These results are in agreement with the Bekenstein type identities found in [82], where both

f,φφ and φf,φ must have the opposite sign of FµνFµν for solutions with a scalar pro�le to

exist. For purely electric (F 2 < 0) or magnetic (F 2 > 0) solutions, these conditions imply

a di�erent sign for the coupling constant α for the couplings mentioned above.

5.3 Duality in generalisations of Einstein-Maxwell-scalar

In here we consider various other possible generalisations of the Einstein-Maxwell-scalar

model to which we can still apply some adaptation of the duality formalism presented in

this chapter.

5.3.1 Dual scalar �eld generalisation

Consider once again an asymptotically �at stationary spacetime with an asymptotically

timelike Killing �eld kµ and following action

S = SEH +
1

4π

∫
d4x
√−g

[
− f(φ, a)

4
FµνF

µν +
g(φ, a)

4
F̃µνF

µν

− 1

2
∂µφ∂

µφ− h(φ)

2
∂µa∂

µa− V (φ, a)

]
, (5.3.78)

where φ and a are both scalar �elds. The functions f(φ, a), g(φ, a) and h(φ) are arbitrary

non-minimal couplings between the �elds and V (φ, a) is a potential term depending on the

scalar �elds. We then have the following equations of motion:

�2φ =
1

4

∂f

∂φ
FµνF

µν − 1

4

∂g

∂φ
F̃µνF

µν +
1

2

∂h

∂φ
∂µa∂

µa+
∂V

∂φ
, (5.3.79)

�2a =
1

4h(φ)

∂f

∂a
FµνF

µν − 1

4h(φ)

∂g

∂a
F̃µνF

µν +
∂V

∂a
(5.3.80)

∇[µEν] = 0, (5.3.81)

∇[µHν] = 0, (5.3.82)

∇µ
(
Dµ

V

)
= 0, (5.3.83)

∇µ
(
Bµ

V

)
= 0, (5.3.84)
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where the electromagnetic �elds are de�ned analogously to (5.1.2)-(5.1.5) as

Eµ = kνFµν , (5.3.85)

Bµ =
1

2
εµαβνF

αβkν = kνF̃µν , (5.3.86)

Dµ = kνGµν(φ, a) , (5.3.87)

Hµ =
1

2
εµαβνG

αβ(φ, a)kν = kνG̃µν , (5.3.88)

with V = −kµkµ and

Gµν(φ, a) = −2
∂L
∂Fµν

= f(φ, a)Fµν − g(φ, a)F̃µν . (5.3.89)

The constitutive matrix for this model is still the same as the one above (5.1.12).

It is worth noting that this model includes an Einstein-Maxwell-scalar model with a

complex scalar �eld. To see this we can just de�ne the complex scalar �eld as ψ = φ+ ia

and have h = 1. This results in the following action

S = SEH+
1

4π

∫
d4x
√−g

[
− f(ψ,ψ∗)

4
FµνF

µν+
g(ψ,ψ∗)

4
F̃µνF

µν− 1

2
∂µψ∂

µψ∗−V (ψ,ψ∗)

]
.

(5.3.90)

5.3.2 General duality map

We now want to construct, in the same way as above, a general duality transformation Dβ
that also keeps the Maxwell equations (5.3.81) -(5.3.84) invariant. This duality transfor-

mation is parametrised by an angle β and can be represented as the duality in expressions

(5.1.13) to (5.1.17) but with the new �eld de�nitions. The rest of the process is similar to

the less general case.

The duality orbit of models is now de�ned as the continuous sequence of EMS mod-

els (5.3.78) where the coupling functions that couple the scalar and electromagnetic �elds

are

(f(φ, a), g(φ, a))
Dβ−→ (fβ(φ, a), gβ(φ, a)) , (5.3.91)

and can be analogously obtained as in (5.1.22) and (5.1.23) but now dependent on two

scalar �elds. The orbit of dual theories is therefore the 1-parameter family of actions

Sβ = SEH +
1

4π

∫
d4x
√−g

(
− fβ(φ, a)

4
F ′µνF

′µν +
gβ(φ, a)

4
F ′µνF̃

′µν

− 1

2
∂µφ∂

µφ− h(φ)

2
∂µa∂

µa− V (φ, a)

)
, (5.3.92)

where S0 this time equals the original action (5.3.78) and (g,A′, φ, a), are taken as the

independent �elds in a variational principle. The tensor G′µν is now

G′µν(φ, a) ≡ −2
∂Lβ
∂F ′µν

= fβ(φ, a)F ′µν − gβ(φ, a)F̃ ′µν . (5.3.93)
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In the same way as before, it follows that if

[g,A, φ, a; f(φ, a), g(φ, a), h(φ)] , (5.3.94)

is a solution of (5.3.78), then

[g,A′, φ, a; fβ(φ, a), gβ(φ, a), h(φ)] (5.3.95)

is a solution of the Maxwell equations obtained from (5.3.92). It remains to check the

scalar, axion and Einstein equations are also obeyed for the model (5.3.92). The Einstein

equations are shown to be invariant by the same argument used above for the EMS case,

where the invariance of the energy momentum tensor was shown under this duality rotation.

The scalar equation was also shown to be invariant by showing that

∂fβ
∂φ

F ′µνF
′µν − ∂gβ

∂φ
F̃ ′µνF

′µν =
∂f

∂φ
FµνF

µν − ∂g

∂φ
F̃µνF

µν . (5.3.96)

Now we need to show the same but also with the derivatives with respect to a. In fact this

is easily veri�ed because what really is invariant under these transformations is

dfFµνF
µν − dgF̃µνFµν , (5.3.97)

meaning that the same is valid for any derivative we take of the functions f and g, be it

with respect to φ or a. This means that, because the duality transformation does not act

on φ and a, equations (5.3.79) and (5.3.80) are invariant under duality.

5.3.3 Examples of models

In here we specify examples of models where we can apply these duality transformations.

5.3.3.1 Einstein-Maxwell-Dilaton-Axion

Here we �nd the duality orbit of a model which is included in the Einstein-Maxwell-Dilaton-

Axion class of models and whose duality properties were studied in [71] where a self-duality

was formulated. The model, with f(φ, a) = e−φ, g(φ, a) = a, h(φ) = e2φ and V (φ, a) = 0,

has the following action in four dimensions

S = SEH+
1

4π

∫
d4x
√−g

[
− e
−φ

4
FµνF

µν+
a

4
F̃µνF

µν− 1

2
∂µφ∂

µφ− e
2φ

2
∂µa∂

µa

]
. (5.3.98)

We can use relations (5.1.22) and (5.1.23) to �nd the duality orbits which are

fβ =
1

e−φ + eφ(a sinβ + cosβ)2
gβ =

1

2

2a cos(2β) + (e−2φ + a2 − 1) sin(2β)

e−2φ + (a sinβ + cosβ)2
(5.3.99)

A few solutions were found for this model on which this transformation can be applied.

Examples are the wide range of stationary and axisymmetric solutions found in [139] and

the rotating soliton solution in [140] (see also [141]).
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5.3.3.2 Potentials in Einstein-Maxwell-scalar

The inclusion of a scalar potential in this generalisation allows us to apply this treatment to

plenty of di�erent models. The scalar potential is invariant under these transformations,

meaning that the duality orbits will have di�erent couplings with scalar �elds that will

have the exact same self interaction.

An example we can �nd is a fairly studied model which is the Einstein-Maxwell-Dilaton

model with an exponential or Liouville potential [142]. This kind of potential arises as a

cosmological constant in speci�c contexts of string theory or in non-trivial curved AdS

spacetimes (see for example [143] and [144]). This kind of model has f = eαφ, g = 0, h = 0

and V = 2Λe−δφ, so the action is4

S = SEH +
1

4π

∫
d4x
√−g

[
− eαφ

4
FµνF

µν − 1

2
∂µφ∂

µφ− 2Λe−δφ
]
. (5.3.100)

We can see that for δ = 0, we recover a basic Einstein-Maxwell-Dilaton model with a �xed

cosmological constant Λ. The duality orbits of this kind of model were already calculated

in section 5.2 for the dilatonic coupling without a potential and are represented by the

couplings (5.2.58).

Still in the Einstein-Maxwell-Dilaton model, in [145] an exact solution was obtained

for the following potential

V (φ) = 2γ(2φ+ φ coshφ− 3 sinhφ) , (5.3.101)

with dilaton coupling constant α = 1. The coupling function and scalar �eld for this

solution can be obtained from

f(φ) = eφ = 1 +
Q2
s

2r2
+
Q2
s

2r2

√
1 +

4r2

Q2
s

, (5.3.102)

where Qs is a scalar charge. The metric of this solution has the following form

ds2 = −N(r)σ2(r)dt2 +
dr2

N(r)
+r2(dθ2 +sin2 θdϕ2), with N(r) = 1− 2m(r)

r
(5.3.103)

where

m(r) =
r2

2σ2(r)

[
Q2
e

r2

(√
1− 4r2

Q2
s

− 1

)
− α

(
Q2
s

2

√
1− 4r2

Q2
s

− r2φ(r)

)]
− Q2

s

8r
, (5.3.104)

σ(r) =

(
1 +

Q2
s

4r2

)−1/2

. (5.3.105)

The electric intensity and induction are

Er =
Qe

f(φ)σ(r)r2
, Dr =

Qe
σ(r)r2

. (5.3.106)

4As the a �eld does not contribute we can also consider h = 1 and a = 0, it makes no di�erence.
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Applying the duality transformation we get

E′r =
Qe

f(φ)σ(r)r2
cosβ , D′r =

Qe
σ(r)r2

cosβ , (5.3.107)

B′r = − Qe
σ(r)r2

sinβ , H ′r = − Qe
f(φ)σ(r)r2

sinβ . (5.3.108)

So any solution in this duality orbit is compatible with the scalar �eld and metric which

are obtained from (5.3.102) and (5.3.103) respectively. Note that we get a purely magnetic

solution at β = π/2. In the same paper a solution with

V (φ) = γ

[
sinh(

√
3φ) + 9 sinh

(
φ√
3

)
− 4
√

3 cosh

(
φ√
3

)]
, (5.3.109)

was also found for α =
√

3, for which this same process is also applicable.

Another kind of potential that we can consider is a basic self-interaction one. A dyon

solution was found in [146] for the Einstein-Maxwell-Axion model where the axion �eld

has a self-interaction. This model has f = 1, g = αa, h = 1 and V = −1
2m

2a2, so its

action is

S = SEH +
1

4π

∫
d4x
√−g

[
− 1

4
FµνF

µν +
αa

4
F̃µνF

µν − 1

2
∂µa∂

µa+
1

2
m2a2

]
. (5.3.110)

The duality orbits are found in a straightforward fashion to be

fβ =
1

1 + αa sinβ(αa sinβ + cosβ)
gβ =

αa cos(2β) + (αa)2 sin(2β)/2

1 + αa sinβ(αa sinβ + cosβ)
(5.3.111)

5.3.3.3 Complex axion �eld model

Axion boson stars were found in [147], where boson stars were found using a complex scalar

�eld ψ = |ψ|eiωt that respected the following QCD axion potential

V (|ψ|) = 2k0 − 2k0

√
1− 4k1 sin2

(
k2|ψ|

)
(5.3.112)

where k0, k1 and k2 are constants. As mentioned earlier, our model can include complex

scalar �elds so we can consider a more general version of this complex axion �eld morel

where we also include its coupling to the electromagnetic �eld. With ψ = φ + ia, f = 1,

g = α|ψ| = α
√
φ2 + a2 and h = 1, we get the following model

S = SEH +
1

4π

∫
d4x
√−g

[
−1

4
FµνF

µν +
α|ψ|

4
F̃µνF

µν

−1

2
∂µψ∂

µψ∗ − 2k0 − 2k0

√
1− 4k1 sin2

(
k2|ψ|

) ]
. (5.3.113)

which is equivalent to having two axion �elds interacting in the same way with the electric

�eld, but also interacting with each other through the scalar potential. The dual orbits of

this model are also naturally represented by (5.3.111) by replacing a with |ψ|.
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5.3.4 Further Generalisations

In here we discuss possible further generalisations of this model.

5.3.4.1 Multiple scalar �elds

As the duality transformation does not a�ect the scalar �elds directly we can easily gen-

eralise this procedure to a model with multiple scalar �elds. Consider the following action

with n scalar �elds

S = SEH +
1

4π

∫
d4x
√−g

[
−f(φ1, ..., φn)

4
FµνF

µν +
g(φ1, ..., φn)

4
F̃µνF

µν

−K(φ1, ..., φn)− V (φ1, ..., φn)

]
, (5.3.114)

where

K(φ1, ..., φn) =

n∑

k=1

hk(φ1, ..., φn)

2
∂µφk∂

µφk . (5.3.115)

As you can see we can allow for any possible couplings hk between the �elds themselves.

The only actual elements that will be altered by a duality transformation in this model are

the electromagnetic �elds and the couplings f and g, once again transformed according to

the duality transformations (5.1.13), (5.1.14) and the relations (5.1.22) and (5.1.23).

5.3.4.2 Multiple Gauge �elds

We can also consider various gauge �elds, all with their own duality transformation. Con-

sider the following action

S = SEH +
1

4π

∫
d4x
√−g

[
−
f(1)(φ, a)

4
F(1)µνF

µν
(1) +

g(1)(φ, a)

4
F̃(1)µνF

µν
(1) + (...)

−
f(n)(φ, a)

4
F(n)µνF

µν
(n) +

g(n)(φ, a)

4
F̃(n)µνF

µν
(n) + Ls(φ, a)

]
,

(5.3.116)

where

Ls(φ, a) = −1

2
∂µφ∂

µφ− h(φ)

2
∂µa∂

µa− V (φ, a) . (5.3.117)

We can consider dualities for each group of gauge �elds coupled to the scalar �elds. This

duality transforms the �elds as

(
E(n)

H(n)

)
D(n)
β−→
(
E′(n)

H ′(n)

)
= S

(
E(n)

H(n)

)
, (5.3.118)

(
D(n)

B(n)

)
D(n)
β−→
(
D′(n)

B′(n)

)
= S

(
D(n)

B(n)

)
, (5.3.119)
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where the �elds are de�ned just as in equations (5.3.85)-(5.3.88) just by replacing the

corresponding gauge tensor F . Each duality transformation D(n)
β acts on the functions as

follows.

(f(n)(φ, a), g(n)(φ, a))
D(n)
β−→ (f(n)β(φ, a), g(n)β(φ, a)) . (5.3.120)

So each set of coupling functions (f(n), g(n)) will transform along with the gauge �elds F(n)

they are coupled to.

Now we ask if we can include terms like F(1)µνF
µν
(2) that couple two di�erent gauge

�elds. Considering the following action

S = SEH +
1

4π

∫
d4x
√−g

[
−
f(1)(φ, a)

4
F(1)µνF

µν
(1) +

g(1)(φ, a)

4
F̃(1)µνF

µν
(1)

−
f(2)(φ, a)

4
F(2)µνF

µν
(2) +

g(2)(φ, a)

4
F̃(2)µνF

µν
(2) −

c(φ, a)

2
F(1)µνF

µν
(2) + Ls(φ, a)

]
,

(5.3.121)

where we have two gauge �elds and coupling term c(φ, a)F(1)µνF
µν
(2) between the two which

is also non-minimally coupled to the scalar �elds. The Maxwell equations will be

∇[µE(1)ν] = 0, (5.3.122)

∇[µ(H(1)ν] + cB(2)ν]) = 0, (5.3.123)

∇µ
(Dµ

(1) + cEµ(2)

V

)
= 0, (5.3.124)

∇µ
(Bµ

(1)

V

)
= 0, (5.3.125)

∇[µE(2)ν] = 0, (5.3.126)

∇[µ(H(2)ν] + cB(1)ν]) = 0, (5.3.127)

∇µ
(Dµ

(2) + cEµ(1)

V

)
= 0, (5.3.128)

∇µ
(Bµ

(2)

V

)
= 0. (5.3.129)

We now observe that we can rede�ne the medium �elds H and D as

D̄µ
(1) = Dµ

(1) + cEµ(2) , H̄µ
(1) = Hµ

(1) + cBµ
(2) , (5.3.130)

D̄µ
(2) = Dµ

(2) + cEµ(1) , H̄µ
(2) = Hµ

(2) + cBµ
(1) , (5.3.131)

to recover the original Maxwell equations. This means we can de�ne a new tensor that we

can use to de�ne these �elds:

Ḡ(1)µν = G(1)µν + c(φ, a)F(2)µν , (5.3.132)

Ḡ(2)µν = G(2)µν + c(φ, a)F(1)µν . (5.3.133)
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Note that this allows us to write the action (5.3.121) as

S = SEH +
1

4π

∫
d4x
√−g

[
− 1

4
Ḡ(1)µνF

µν
(1) −

1

4
Ḡ(2)µνF

µν
(2) + Ls(φ, a)

]
. (5.3.134)

We can do this process to include any term c(φ, a)F(n)µνF
µν
(m). Then we can de�ne the

following duality transformations

(
E(n)

H̄(n)

)
D(n)
β−→
(
E′(n)

H̄ ′(n)

)
= S

(
E(n)

H̄(n)

)
, (5.3.135)

(
D̄(n)

B(n)

)
D(n)
β−→
(
D̄′(n)

B′(n)

)
= S

(
D̄(n)

B(n)

)
, (5.3.136)

where D̄(n) and H̄(n) will always have a new terms cE(m) and cB(m) respectively in their

de�nitions for each new coupling cF(n)µνF
µν
(m) for any m. Note that the duality transforma-

tions for the n and m terms do not need to be done simultaneously as Maxwell equations

are still consistent by considering only one of them.

If we instead add terms involving the Hodge dual like − c(φ,a)
2 F(n)µνF̃

µν
(m), we just need

to make use of the identity F(n)µνF̃
µν
(m) = F̃(n)µνF

µν
(m) and the new �elds are rede�ned as

D̄µ
(1) = Dµ

(1) + cBµ
(2) , H̄µ

(1) = Hµ
(1) − cE

µ
(2) , (5.3.137)

D̄µ
(2) = Dµ

(2) + cBµ
(1) , H̄µ

(2) = Hµ
(2) − cE

µ
(1) , (5.3.138)

where the additions of the �elds E and B are simply replaced by B and −E. The duality
transformations can then be applied with these �elds.

5.3.4.3 Other considered generalisations

It might be intuitive to think that we could consider this model in dimensions higher than

4, however in that case we can not guarantee that the energy-momentum is the same. This

is because to prove that T ′µν = Tµν we require the formula FµαF̃ α
ν = 1

4gµνFαβF̃
αβ to be

valid, something which is not guaranteed in d > 4 dimensions as F̃ will not have the same

tensor rank as F .

For models with speci�c couplings there is also the possibility of �nding an extra duality

between the scalar �elds, that then allows us to construct a self duality of the full model.

An example of this duality is shown in [71] for the Einstein-Maxwell-Dilaton-Axion model

where it was shown that the scalar �elds can be transformed into other scalar �elds that

are combinations the original �elds to accomodate the duality transformation, leaving the

model invariant. However, the need of specifying the coupling functions makes it so it is

not possible to generalise this process for any general coupling.
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5.4 Remarks

Understanding the symmetries of any physical theory is always of great importance. Elec-

tromagnetic duality is a symmetry of the vacuum Maxwell equations which has led to

important insights and generalisations in classical and quantum �eld theory, as well as

in relativistic gravity. In this chapter we have considered EMS models described by the

action (5.1.1) for which, in general, electromagnetic duality rotations are not a symmetry

of a speci�c model, but de�ne an orbit in the space of EMS models, which encompasses all

possible choices for the coupling functions f(φ) and g(φ). This orbit is a one parameter

closed orbit. There can be �xed points of the duality action, which are self-dual theories.

In our analysis, the only such point corresponds to Maxwell's theory, which, in our setup

has f = 1 and g = 0. For this self-dual theory, the orbit shrinks down to a point.

For self-dual theories, electromagnetic duality relates di�erent solutions of the same

theory. For non-self dual theories, electromagnetic duality relates di�erent solutions of

di�erent theories. In either case, electromagnetic duality is a useful solution generating

technique. In the case considered herein, the duality map generically relates models with

di�erent coupling functions and electromagnetic �elds, leaving the scalar �eld and back-

ground geometry unchanged.

To illustrate how the duality orbits can be used as a solution generating technique

we have considered some simple electrically charged solitonic and black hole solutions,

obtaining the corresponding dyons along the duality orbit and, in particular, pure magnetic

con�gurations that emerge at the particular rotation corresponding to β = π/2. In these

examples, the models had a vanishing coupling g(φ); but since F̃µνFµν = 0 for these purely

electric, spherically symmetric solutions, these are also solutions for any g(φ) coupling one

may choose. A di�erent orbit of solutions exists for each possible g(φ). We have also

obtained a new dyonic black hole solution of the model (5.2.71), which illustrates the

usefulness of this technique.

In the last section we discussed the possible avenues where this work can be applied

to even more general models. The possibilities of having various �elds (gauge vector �elds

and scalar �elds) and couplings between these �elds are discussed, creating a formalism

that covers a wide range of models.
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Chapter 6

Higher dimensional black hole

scalarisation

We now come back to the topic of scalarisation that was presented in section 1.5. As

we know, the EMS model admits scalarisation of black holes. What we consider here is

the scalarisation of various models, including EMS and various closely related models, in

higher dimensions.

Section 6.1 is where we introduce a new action and discuss how the various models which

admit scalarisation, described in section 1.5, are included in this more general model.

In section 6.2 we address the scalarised electrovacuum BHs in scalar-tensor d > 4

models, constructing the zero modes for general d and the scalarised BHs for the simplest

coupling function allowing scalarisation in d = 5, exhibiting some of their properties. We

also address the mapping into the Einstein frame and the relation with Einstein-Maxwell-

scalar models.

In section 6.3 we consider higher d extended scalar-tensor theories, where the scalar

�eld non-minimally couples to the appropriate Lovelock density. Again we construct the

scalarised BHs for d = 6, 8 (besides d = 4) and discuss some of their properties. We also

compare them with the hairy BHs in shift-symmetric Horndeski models for the same d

emphasizing some of the di�erences between the two models. We conclude with a summary

and discussion in section 6.4.

6.1 Model and Recontextualisation

As discussed in chapter 1 (section 1.5), spontaneous scalarisation triggered by strong grav-

ity e�ects emerges in some classes of scalar-tensor models. This phenomenon could provide

a smoking gun for scalar-tensor theories and may be interpreted as a strong gravity phase

transition. Here, for concreteness, we shall be considering models described by the generic
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d-dimensional action

S = − 1

16π

∫
ddx
√−g

{
[1− αstfst(φ)]R− 1

2
∂µφ∂

µφ

+ αLfL(φ)L(p) − αemgfemg(φ)FµνF
µν − Lmat

}
, (6.1.1)

where Lmat is an unspeci�ed matter Lagrangian and L(p) is the p
th Euler density as de�ned

in (1.5.18).

The functions fst(φ), fL(φ) and femg(φ) are three unspeci�ed non-minimal coupling

functions1 that, when appropriately chosen, lead to spontaneous scalarisation, in each case

triggered by a di�erent source; the strength of each of the e�ects is controlled by the

coupling constants, αst, αL, αemg. In geometrised units, αst and αemg are dimensionless,

whereas αL has dimensions of length squared.

Now we recontextualise the introduction of scalarisation presented in section 1.5 with

regards to this model. The original scalarisation mechanism [91], which was proposed in

d = 4 scalar-tensor theories, has

αst 6= 0 , αL = 0 = αemg . (6.1.2)

Scalar-free objects that may become scalarised must have R 6= 0. This is the case, e.g.

of neutron stars, but not of the electrovacuum black holes (BHs), which are immune to

scalarisation in this framework.

More recently, scalarisation of vacuum BHs in d = 4 extended scalar-tensor theory was

observed [85�87] with

αL 6= 0 , αst = 0 = αemg . (6.1.3)

Scalarisation now requires a non-vanishing Gauss-Bonnet (GB) invariant, which holds

for vacuum BHs, whose Kretschmann scalar is non-vanishing, despite being Ricci �at2.

Scalarised solutions have been constructed in these models, but a dynamical study of the

full scalarisation process, from the initial trigger around a vacuum BH until the settling

into a scalarised BH is still lacking.

As we know, it was observed [8] that scalarisation of d = 4 electrovacuum BHs occurs

for the EMS model with

αemg 6= 0 , αst = 0 = αL . (6.1.4)

In this guise of spontaneous scalarisation, the trigger is a non-vanishing Maxwell invariant

FµνF
µν and thus the phenomenon needs no gravity; moreover, in this case it was possible

1Note that femg(φ) is the coupling function that was the main subject of study in chapters 2 through

5.
2Scalarisation should occur also in Einstein-Chern-Simons models with a suitable coupling between the

scalar �eld and the Pontryagin density. No static scalarised solutions, however, have yet been studied, the

only case investigated so far being the NUT generalisation of the Schwarzschild BH [148].
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to establish dynamically that the scalarisation of electrically charged electrovacuum BHs

indeed occurs, when these BHs have su�ciently high charge, and that the evolution set-

tles into the scalarised solutions that can be constructed as stationary states of the �eld

equations [8, 81].

These three guises of spontaneous scalarisation have been considered in d = 4. Con-

sidering d 6= 4 raises interesting questions, which also address the universality of the

phenomenon. Firstly, for the d > 4 electrovacuum BHs, i.e. the higher dimensional gener-

alisations of the Reissner-Nordström (RN) solution (see e.g. [149]), R = 0 ceases to hold,

since classical electromagnetism is only conformally invariant in d = 4. Thus, higher di-

mensional charged BHs can be scalarised in the original scalar-tensor models (6.1.2), with

Lmat = FµνF
µν . Here, we shall show this indeed occurs and construct explicit scalarised

RN BHs in these models.3

Secondly, one may inquire if there is anything special about the scalarisation in d = 4

extended scalar-tensor models (6.1.3), or if similar scalarised BHs occur in d 6= 4. We

shall show that, indeed, the phenomenon is universal, and the properties of the higher

dimensional scalarised BHs, using the appropriate Euler density, are similar to the ones of

the four dimensional model with the GB term.

Finally, the simultaneous consideration of these three di�erent guises of spontaneous

scalarisation raises the following question: models (6.1.2) and (6.1.4) can be mapped into

one another (for particular couplings) via a conformal transformation; how does this map-

ping allow relating scalarised solutions of both models in d > 4? Here, we shall provide

the explicit mapping and exemplify how information can be extracted from it.

6.2 Scalarised electrovacuum BHs in d > 4 scalar-tensor mod-

els

6.2.1 The framework

For our �rst analysis we consider a scalar-tensor model, with the matter Lagrangian de-

scribing classical electromagnetism. Thus, we take (6.1.1) with (6.1.2) and Lmat = FµνF
µν .

Moreover, we take the simplest coupling function allowing for spontaneous scalarisation:

fst(φ) = φ2 , (6.2.5)

and for ease of notation we drop the subscript label in the coupling constant: αst → α. As

such, the action of the model reads

S = − 1

16π

∫
ddx
√−g

{
(1− αφ2)R− 1

2
∂µφ∂

µφ− FµνFµν
}

; (6.2.6)

3Taking into account quantum corrections, electrovacuum BHs can also become scalarised in the original

scalar-tensor model [126].
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observe that the scalar and electromagetic �elds interact only indirectly, via the backreac-

tion on the spacetime metric.

Restricting to spherically symmetric con�gurations, we consider a metric ansatz in

Schwarzschild-like coordinates, together with a scalar �eld and electric potential which

depend on the radial coordinate only,

ds2 = −N(r)σ2(r)dt2 +
dr2

N(r)
+ r2dΩ2

d−2 , φ ≡ φ(r) , A = V (r)dt . (6.2.7)

The coordinates (r, t) possess the usual meaning and dΩ2
d−2 is the line element on the unit

(d− 2)-sphere. This ansatz results in the following equations (where the �prime" denotes

radial derivatives):

(d− 2)N ′ − (d− 2)(d− 3)
(1−N)

r
+

1

2
rNφ′2 +

2rV ′2

σ2

+ 4α

{
rNφφ′′ + rNφ′2 +

1

2
φφ′

[
rN ′ + 2(d− 2)N

]
+
d− 2

4
φ2

[
N ′ − d− 3

r
(1−N)

]}
= 0 ,

(6.2.8)

σ′ − rσφ′2

2(d− 2)
− α

(d− 2)

{
φσ′[(d− 2)φ+ 2rφ′]− 2rσ(φ′2 + φφ′′)

}
= 0 , (6.2.9)

(rd−2Nσφ′)′ + 2αφ

{
rd−3[σ(rN ′′ + (d− 2)N ′)

+ σ′(3rN ′ + 2(d− 2)N) + 2rNσ′′]− LE
}

= 0 , (6.2.10)

V ′′ +

[
(d− 2)

r
− σ′

σ

]
V ′ = 0 . (6.2.11)

These equations can also be derived from the e�ective Lagrangian

Leff = LE + Ls + LM + LR , (6.2.12)

where

LE = (d− 2)rd−4σ

{
rN ′ + (d− 3)(N + 1) + 2Nr

σ′

σ

}
, Ls = −1

2
Nσrd−2φ′2 , (6.2.13)

and

LM =
2rd−2V ′2

σ
, LR = −αφ

[
φLE + 2rd−2φ′(σN ′ + 2Nσ′)

]
.

The equation for the electric potential possesses the �rst integral, which, for convenience

we write as

V ′ =
(d− 3)Q0σ

rd−2
, (6.2.14)

where Q0 is an integration constant �xing the electric charge.
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We are interested in BH solutions, with an horizon at r = rh > 0. Restricting to

non-extremal con�gurations, the solutions possess a near horizon expansion with the �rst

terms being

N(r) = N1(r − rh) + . . . , σ(r) = σ0 + σ1(r − rh) + . . . , (6.2.15)

φ(r) = φ0 + φ1(r − rh) + . . . , V (r) = v1(r − rh) + . . . ,

which contains two essential parameters φ0 and σ0 (the remaining ones are determined in

terms of these).

The approximate form of the solutions in the far �eld reads

N(r) = 1− m

rd−3
+ . . . , φ(r) =

Qs
rd−3

+ . . . ,

V (r) = V∞−
Q0

rd−3
+ . . . , σ(r) = 1− [d− 3− 4α(2d− 5)]Q2

s

4(d− 2)r2(d−3)
+ . . . . (6.2.16)

Apart from m and Q0, the essential parameters here are V∞ (the electrostatic potential

at in�nity) and Qs (the scalar `charge'). Thus, the data at in�nity is speci�ed by the

ADM mass M , electric charge Q, electrostatic potential V∞ and scalar 'charge' Qs, which

are read o� from the far �eld asymptotics (6.2.16), where the physical M,Q relate to the

parameters m,Q0 as

M =
(d− 2)V(d−2)

16π
m , Q =

√
2(d− 2)(d− 3)

V(d−2)

8π
Q0 , (6.2.17)

and V(d−2) is the area of a (d− 2)-sphere.

The horizon data, on the other hand, is the Hawking temperature TH and the event

horizon area AH , which are given by

TH =
(d− 3)

4πrh

(
1− [(d− 3)Q0]2

r
2(d−3)
h

)
, AH = V(d−2)r

d−2
h , (6.2.18)

together with the value at r = rh of the scalar �eld φ = φ0.

We also de�ne the reduced electric charge, horizon area and temperature as

q ≡ Q

M

√
d− 2

2(d− 3)
, aH ≡

AH

M
d−2
d−3

ca , tH ≡ THM
1
d−3 ct , (6.2.19)

where

ca =
V

1
d−3

(d−2)(d− 2)
d−2
d−3

(16π)
d−2
d−3

, ct =
2

2(d−1)
d−3 π

d−2
d−3

(d− 3)(d− 2)
1
d−3V

1
d−3

(d−2)

. (6.2.20)

The scalar-free solution of the model4 is the RN BH, which is speci�ed by (6.2.7) with

φ = 0 and

N(r) = 1− m

rd−3
+

2(d− 3)

(d− 2)

Q2
0

r2(d−3)
, σ(r) = 1 , V (r) = V∞ −

Q0

rd−3
. (6.2.21)

4Here we follow the conventions used for this solution in [149].
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The RN BH possess an (outer) horizon at r = rh, where rh is the largest (positive)

solution of the equation N(rh) = 0. Working in a gauge with V (rh) = 0, the constant V∞

corresponds to the electrostatic potential at in�nity, V∞ = Q0

rd−3
h

. We also remark that for

d > 4, the RN BH possesses a nonvanishing Ricci scalar:

R =
d− 4

d− 2
F 2 = −2(d− 3)2(d− 4)Q2

0

(d− 2)r2(d−2)
. (6.2.22)

6.2.2 The zero mode for general d

Let us start by treating the scalar �eld as a small perturbation around the d-dimensional

RN background. This will allow us to compute the zero modes: linear scalar �eld bound

states that are supported by a discrete set of RN backgrounds. Zero modes de�ne the onset

of the scalarisation instability and the bifurcation towards the new family of scalarised BHs.

Restricting to a spherically symmetric scalar �eld, the equation for φ reads

(rd−2Nφ′)′ +
4α(d− 3)2(d− 4)

d− 2

Q2
0

rd−2
φ = 0 . (6.2.23)

One can see that φ-coe�cient in the above equation acts as an r-dependent e�ective mass

for the perturbations, with the condition α > 0 being necessary for a tachyonic mass.

We are interested in solutions of the above equation which are regular for r > rh and

vanish at in�nity. Remarkably, one �nds the following exact solution

φ(r) = Pu


1− 2

1− r
2(d−3)
h

2(d−3)Q2
0

d−2

{
1−

(rh
r

)d−3
}

 , with u ≡ 1

2

(
−1 +

√
1− 8α(d− 4)

(d− 3)

)
,

(6.2.24)

Pu being the Legendre function. One can show that, in general, the function φ(r) ap-

proaches a constant non-zero value as r →∞,

φ(r)→2F1




1

2

(
1−

√
1− 8α(d− 4)

(d− 3)

)
,
1

2

(
1 +

√
1− 8α(d− 4)

(d− 3)

)
, 1;

1

1− r
2(d−3)
h

2(d−3)Q2
0

(d−2)




+O
(

1

r

)
. (6.2.25)

Thus �nding the spherically symmetric zero mode of the RN BH within the model (6.2.6),

corresponding to a scalar �eld that vanishes asymptotically, reduces to a study of the zeros

of the hypergeometric function 2F1.

The existence line, i.e. the RN backgrounds that support scalar clouds, correspond to

the set of values of q ∼ Q/M , as a function of α, for which φ(r)→ 0 asymptotically. Such

80



existence lines are illustrated in Fig. 6.1 for d = 5, 6, 7. For any d > 4, the solutions exist

as long as the coupling constant is su�ciently large, i.e. for

d− 3

8(d− 4)
< α < +∞ , (6.2.26)

the minimal value corresponding to the TH → 0 limit of the RN background.
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Figure 6.1: Existence lines for the d = 5, 6, 7 RN BH in a α vs. q diagram. The inset zooms

around the minimal value of α.

6.2.3 An explicit construction: scalarised d = 5 RN BHs

The scalarised BH solutions obeying the asymptotic behaviours (6.2.15) and (6.2.16) are

found numerically, by using a standard ordinary di�erential equations (ODE) solver. Here

we shall report the d = 5 case that we have studied more systematically. We have also

veri�ed, however, the existence of scalarised solutions for d = 6 and we conjecture the

existence of such con�gurations for any d > 5. Moreover, the properties of the �ve dimen-

sional solutions appear to be generic. Also, only nodeless solutions (in the scalar �eld) were

studied so far, corresponding to the fundamental states; but solutions with nodes should

also exist, corresponding to excited states.

The basic properties of the d = 5 scalarised RN BHs can be summarised as follows.

Given a value of the coupling constant α, the spherically symmetric BHs bifurcate from

the RN solution supporting the corresponding scalar cloud, as discussed in the previous

subsection. Keeping constant the parameter α, this branch has a �nite extent, ending

in a critical con�guration. This limiting solution appears to be singular, as found when

evaluating the Kretschmann scalar at the horizon, although its horizon area and global

charges remain �nite. This is illustrated5 in Fig. 6.2, wherein the reduced charge vs.
5We emphasize that all numerical results in this work were found by solving a time independent problem.

As such, the sequences of solutions in Fig. 6.2 should not be interpreted as dynamical evolutionary

sequences.
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Figure 6.2: Sequences of scalarised d = 5 RN BHs, with several values of α, in a charge vs. horizon

area (left panel) and a charge vs. Hawking temperature (right panel) diagram. The quantities are

the reduced ones, i.e. given in units of mass.

horizon area (left panel) and vs. Hawking temperature (right panel) diagrams are exhibited,

normalized w.r.t. the mass, for several values of the coupling constant α. As these constant

α sequences of scalarised BHs emerge from RN BHs, the ratio q ∼ Q/M increases and

becomes slightly larger than one, in a region close to the critical con�guration where the

sequence ends. In this sense, the scalarised BHs can be overcharged, that is, they can

support more charge to mass ratio than RN BHs. To summarize, in an (α, q)-diagram, the

domain of existence of the scalarised solutions is delimited by two curves: i) the existence

line (RN BHs) and ii) the critical line, which is the set of all critical solutions discussed

above.

6.2.4 Einstein frame picture and the relation to Einstein-Maxwell scalar

models

The model (6.2.6) is formulated in the so called Jordan frame, wherein the scalar �eld is

non-minimally coupled to the Ricci scalar. But it possesses an equivalent formulation in the

Einstein frame, with a minimally coupled scalar �eld to the Ricci scalar but non-minimally

coupled to the Maxwell invariant. That is, performing the conformal transformation

ḡµν = Ω
4
d−2 gµν , Ω2 = 1− αφ2 , (6.2.27)

together with a rede�nition of the scalar �eld

dψ =

√
1− α[1− 8α(d−1)

d−2 ]φ2

1− αφ2
dφ , (6.2.28)

transforms (6.2.6) into the Einstein frame action (see Appendix B)

S =
1

16π

∫
ddx
√−ḡ

[
R̄− 1

2
ḡµν∂µψ∂νψ − f(ψ)ḡµν ḡαβFµαFνβ

]
, (6.2.29)
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with the coupling function

f(ψ) = Ω−
2(d−4)
d−2 (ψ) =

(
1− αφ2(ψ)

)− d−4
d−2 . (6.2.30)

The new, Einstein frame, variables are the metric ḡµν and the scalar �eld ψ. The transfor-

mation given by eqs. (6.2.27) and (6.2.28) therefore maps a solution of the �eld equations

(6.2.8)-(6.2.11), to a solution that extremizes (6.2.29). The transformation is independent

of any assumption of symmetry, and in this sense is covariant; one can easily infer that the

transformation is one-to-one in general.

This transformation leads to an interesting twist: in the Einstein frame, the sponta-

neous scalarisation of electrovacuum BHs results from the nonstandard coupling of the new

scalar �eld ψ to the Maxwell term (notice the analogy with the case in the recent work [8]).

That is, the scalarised solutions of the scalar-tensor model can be interpreted as scalarised

solutions of an Einstein-Maxwell-scalar model.

One can use this mapping to extract information about scalarisation (or lack thereof)

of the corresponding Einstein-Maxwell-scalar model. The Einstein-frame scalar �eld, as

resulting from (6.2.28) reads

ψ = −
√

8(d− 1)(α− αc)√
(d− 2)α

arcsinh

(√
8(d− 1)α(α− αc)

d− 2
φ

)
(6.2.31)

+
2
√

2(d− 1)√
(d− 2)

arctanh

(
2
√

2(d− 1)αφ√
d− 2 + 8(d− 1)(α− αc)αφ2

)
,

with

αc ≡
1

8

d− 2

d− 1
. (6.2.32)

αc is a special value of α corresponding to a d-dimensional conformally coupled scalar �eld

in the Jordan frame. Choosing α = αc, the coupling function to the Maxwell invariant in

the Einstein frame can be computed in closed form, yielding

f(ψ) = cosh
2(d−4)
d−2

(
1

2

√
d− 2

2(d− 1)
ψ

)
. (6.2.33)

Unfortunately, it is simple to verify that the value α = αc of the coupling constant does

not obey (6.2.26). Thus, a conformally coupled scalar will not allow the scalarisation of

the RN BH in the scalar-tensor model.

However, the scalarisation becomes possible for large enough values of α. In fact, as

long as Ω2 > 0 all solutions of the initial model (6.2.6) are mapped to BHs of the Einstein

frame model (6.2.29). The corresponding expression of the coupling function results by

inverting (6.2.31) and replacing in (6.2.30). Although f(ψ) cannot be found in closed form

(unless α = αc), its expression for a small enough scalar �eld reads

f(ψ) ' 1 + βψ2 +O(ψ4) , where β ≡ α(d− 4)

d− 2
. (6.2.34)
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One remarks that d = 4 scalarised RN BHs with the above form of the coupling function

have been studied in [81,105], and they capture the basic properties of the generic case.

6.3 Scalarised vacuum BHs in d > 4 extended scalar-tensor

models

6.3.1 The framework

For our second sub-class of models we consider an extended scalar-tensor model. Thus, we

take (6.1.1) with (6.1.3) and Lmat = 0. The explicit expressions of the �rst terms in the

hierarchy of L(p) are

L(0) = 1 , L(1) = R , L(2) = R2 − 4RµνR
µν +RµνρσR

µνρσ , (6.3.35)

L(3) = R3 − 12RRµνR
µν + 16RµνR

µ
ρR

νρ + 24RµνRρσR
µρνσ + 3RRµνρσR

µνρσ

− 24RµνR
µ
ρσκR

νρσκ + 4RµνρσR
µνηζRρσηζ − 8RµρνσR

µ ν
η ζR

ρησζ . (6.3.36)

In constructing higher dimensional generalisations of the scalarised BHs in [85�87], we

use the observation that, in even dimensions, the contribution to the action of the d/2-

th order L(p) becomes a topological invariant, and alone does not contribute to the �eld

equations. This ceases to be the case when a nontrivial coupling function, f(φ) is present:

the term L(d/2) becomes dynamical. As an example, for d = 4 one takes p = 2 (i.e. the

GB term) and the geometrical scalarisation model in [85�87] is recovered.

In what follows, we investigate solutions of the model (6.1.1) with (6.1.3), Lmat = 0

and

d = 2p , where p > 2 , (6.3.37)

and show that the properties of the four dimensional solutions are generic. As in the

previous section, for ease of notation we drop the subscript label in the coupling constant:

αL → α. Thus, the considered action reads

S = − 1

16π

∫
d2px
√−g

{
R− 1

2
∂µφ∂

µφ+ αf(φ)L(p)

}
. (6.3.38)

6.3.2 The equations of motion and general results

In obtaing the equations of motion it is useful to observe that, for general p, the variation

of the Euler density term is (see Appendix C)

δ(f(φ)L(p))

δgµν
= −2pP

(p)
µρνβ∇ρ∇βf(φ) , (6.3.39)

where the P (p)
µναβ tensor is naturally de�ned in 2p dimensions using the Levi-Civita tensor

in that dimension:

P (p)µναβ = − 1

2p
εµνµ1ν1...µp−1νp−1εαβα1β1...αp−1βp−1Rµ1ν1α1β1 ...Rµp−1νp−1αp−1βp−1 . (6.3.40)
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We remark that this tensor shares some of the symmetries and properties of the Riemann

tensor:

P
(p)
µναβ = −P (p)

νµαβ = −P (p)
µνβα , P

(p)
µναβ = P

(p)
αβµν , ∇µP (p)

µναβ = 0 . (6.3.41)

Taking the same ansatz as before for the metric and scalar �eld (6.2.7), a straight-

forward (but cumbersome) computation leads to the following equations for the metric

functions and the scalar �eld6

(d− 2)N ′ − (d− 2)(d− 3)
(1−N)

r
+
r

2
Nφ′2 +

2α

rd−3
(1−N)

d−4
2 (6.3.42)

×
[
(1−N)Nf ′′(φ)− 1

2
{(d− 1)N − 1}N ′f ′(φ)

]
= 0 ,

(d− 2)σ′ − r

2
σφ′2 +

α

rd−3
(1−N)

d−4
2
[
(1−N)σf ′′(φ) + {(d− 1)N − 1}σ′f ′(φ)

]
= 0 ,

(6.3.43)

(Nσrd−2φ′)′ − αdf(φ)

dφ

{
(1−N)

1
2

(d−2)
(
σN ′ + 2Nσ′

)}′
= 0 . (6.3.44)

These equations can also be derived from the e�ective Lagrangian7

Leff = LE + Ls + αL(p) , (6.3.45)

with LE and Ls given by (6.2.13) and

L(p) =
dT(p)

dr
, T(p) ≡ −(1−N)

1
2

(d−2)
(
σN ′ + 2Nσ′

)
. (6.3.46)

As in the last section, we are interested in BH solutions, with a horizon at r = rh > 0.

Restricting to non-extremal con�gurations, the near horizon expansion of the solutions

reads

N(r) = N1(r − rh) + . . . , σ(r) = σh + σ1(r − rh) + . . . ,

φ(r) = φh + φ1(r − rh) + . . . . (6.3.47)

All coe�cient are determined by the essential parameters rh, φ(rh) and σ(rh); for example,

one �nds

N1 =
(d− 2)(d− 3)

rh[d− 2αφ1f ′(φh)]
. (6.3.48)

The coe�cient φ′(rh) satis�es a second order algebraic equation of the form

φ2
1 + pφ1 + q = 0 , (6.3.49)

6There is yet another second order equation, which, however, can be expressed as a linear combination

of Eqs. (6.3.42), (6.3.43) and their �rst derivatives, together with (6.3.44).
7Here, as well as in the equations (6.3.42)-(6.3.44), to simplify the relation, we have absorbed in α a

factor of 1
2
(d− 2)! .
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where (p, q) are non-trivial functions of rh, φh. Consequently, a real solution for φ1

of (6.3.49) exists only if ∆ = p2 − 4q > 0, a condition which translates into the following

inequality

1−
(

α

rd−2
h

)2
4(d− 1)(d− 3)

d− 2

(
df(φ)

dφ

∣∣∣∣
φh

)2


1−

(
α

rd−2
h

)2
d(d− 4)

4(d− 2)

(
df(φ)

dφ

∣∣∣∣
φh

)2


 > 0 ,

(6.3.50)

which implies the existence of a minimal horizon size, denoted as r(min)
h , determined by α

and the value of the scalar �eld at the horizon.

The far �eld expansion of the solutions reads

N(r) = 1− m

rd−3
+ . . . , σ(r) = 1− (d− 3)

4(d− 2)

Q2
s

r2(d−3)
+ . . . , φ(r) =

Qs
rd−3

+ . . . ,

(6.3.51)

in terms of two constants: the scalar 'charge', Qs, and m, which �xes the ADM mass M

as in (6.2.17).

The horizon data, corresponding to the Hawking temperature and horizon area are

still given by (6.2.18) (with vanishing electric charge). In terms of all these quantities, the

solutions satisfy the Smarr-like relation:

M =
(d− 2)

(d− 3)
THS +M(φ) , (6.3.52)

where S is the BH entropy as computed from Wald's formula [152]

S = SEH + S(p) , SEH =
1

4
AH , S(p) =

1

4
αVd−2f(φ(rh)) , (6.3.53)

and M(φ) is the mass stored in the scalar �eld

M(φ) = −d− 2

d− 3

1

16π

∫

Σ
dd−1x

√−g f(φ)

ḟ(φ)
�φ , (6.3.54)

where the integral is taken over a spacelike surface Σ and ḟ ≡ df/dφ.
We de�ne the reduced horizon area and Hawking temperature as in (6.2.19) by nor-

malising the corresponding quantities w.r.t. the total mass of solutions. Analogously, the

reduced entropy is de�ned as:

s ≡ 4S

M
d−2
d−3

ca , (6.3.55)

where ca is given by (6.2.20)

The scalar-free solution in this model is the Schwarzschild-Tangherlini BH [150], which

has a vanishing scalar �eld, m = rd−3
h , σ = 1, while its reduced quantities are simply

aH = s = tH = 1.
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Figure 6.3: Reduced area (top left panel), reduced entropy (top right panel), reduced temperature

(bottom left panel) and the scalar �eld at the horizon (bottom right panel) vs. the coupling

(normalized by the mass) for scalarised BHs in the extended scalar-tensor model in d = 4, 6, 8

dimensions.

6.3.3 The scalarised BHs in d = 4, 6, 8 with a quadratic coupling

As in the previous section we shall illustrate the BHs in the d-dimensional extended scalar-

tensor models by considering the simplest function which satis�es the condition (1.5.24):

fL(φ) = φ2 , (6.3.56)

which was initially considered for d = 4 solutions in [86]. The numerical construction

of the solutions in d = 4, 6, 8 follows a strategy similar to one used in the last section.

Some properties of the solutions are shown in Fig. 6.3 and can be summarised as follows.

Firstly, the qualitative features of the d = 4 solutions still hold in higher d, namely:

(i) the branching o� from the Schwarzschild-Tangherlini BH wherein the latter supports

a scalar cloud; (ii) the limited range wherein solutions exist; (iii) and the trends of the

di�erent quantities when α is varied. Quantitatively, however, one can see a smaller domain

of existence in terms of α in higher dimensions, likely due to the faster fall-o� of the

gravitational interaction. Secondly, the model possesses a (presumably in�nite) tower of

scalarised spherically symmetric solutions which are indexed by the number of nodes n of

the scalar �eld. As in the previous study of the scalar-tensor model, here we are focusing

on the fundamental n = 0 solutions. Thirdly, all solutions can be obtained continuously
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in the parameter space: they form a line, starting from the smooth GR limit (φ→ 0), and

ending at some limiting solution. Once the limiting con�guration is reached, the solutions

cease to exist in the parameter space. The existence of these 'critical' con�gurations can be

understood from the condition (6.3.50), with the determinant ∆ vanishing at that point.

It would be interesting to study the linear stability of these scalarised BHs. Since the

d = 4 solutions are radially unstable [90, 97], it is possible that their higher dimensional

generalisations are also unstable.

6.3.4 A linear coupling detour: the shift-symmetric model in d-dimensions

If instead of the choice (6.3.56) one chooses the coupling function

fL(φ) = φ , (6.3.57)

the scalarisation condition (1.5.24) is not obeyed. This case corresponds to a linear cou-

pling or a 'shift symmetric' model, which is interesting for di�erent reasons and has been

extensively studied for d = 4 - see e.g. [153�156]. Although scalarisation is absent, the

model possesses a variety of interesting properties. Here, we shall use it to contrast with

the picture found for the quadratic coupling in the previous subsection.

Since the condition (1.5.24) is not satis�ed in the linear model (6.3.57) for α 6= 0, the

Schwarzschild-Tangerlini BH is not a solution. Also, the equations of motion are invariant

under the transformation

φ→ φ+ φ0 , (6.3.58)

with φ0 an arbitrary constant, which results from the fact that the L(p) term alone is a

total divergence. This implies the existence of a current, whose conservation leads to the

following interesting relation between the 'scalar charge' and the Hawking temperature

Qs =
4πα

(d− 3)
TH , (6.3.59)

which is a unique property of this class of models (see also the discussion in [157] for d = 4

and [158] for the issue of BH temperature in Horndeski models).

In the probe limit, that is considering the scalar �eld equation of the model on the

Schwarzschild-Tangherlini background, we �nd the following general exact solution8 valid

for all range of r:

φ(r) =
α

rd−2
h

{
B

[(rh
r

)d−3
;
d2 − d− 4

2(d− 3)
, 0

]
+ log

(
1−

[rh
r

]d−3
)}

, (6.3.60)

8Note that a constant of integration has been �xed in the expression by imposing φ(r)→ 0 as r →∞
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where B[x; a, b] is the incomplete β-function. Simple expressions exist for d = 4, 6 only

(with x ≡ rh/r):

d = 4 : φ(r) =
α

r2
h

(
x+

x2

2
+
x3

3

)
, (6.3.61)

d = 6 : φ(r) =
3α

r4
h

[
x+

x4

4
+
x7

7
+
x10

10
− 1

2
log(1 + x+ x2)− 1√

3
arctan

( √
3x

2 + x

)]
.

(6.3.62)

In principle, this solution can be used to construct a closed form perturbative solution as

a power series in the parameter α/rd−3
h , see e.g. the d = 4 results in [156]. As discussed

therein, this analytical solution provides a good approximation to the numerical results.

A feature which, however, cannot be captured within a perturbative approach is the

existence of a minimal horizon size. The condition (6.3.50) on the near horizon data takes

a simple form for the choice (6.3.57) of the coupling function, with

α

rd−2
h

<

[
2(d− 1)(d− 3)

(d− 2)
+
√

3(d− 1)(d− 3)

]−1/2

. (6.3.63)

This requirement translates into a coordinate independent condition imposing a minimal

size for the horizon size in terms of the coupling constant α only,

AH > c0α , where c0 ≡ V(d−2)

√
2(d− 1)(d− 3)

(d− 2)
+
√

3(d− 1)(d− 3) . (6.3.64)

Some results of the numerical integration for non-perturbative solutions are shown in

Fig. 6.4. Again, the solutions stop existing at the point where the condition (6.3.63) fails

to be satis�ed.

6.4 Summary and overview

The main purpose of this chapter was to discuss higher dimensional generalisations of

d = 4 spontaneous scalarisations models, in its various guises, via the existence of the

corresponding scalarised BH solutions. As the broader take-home message, the study

herein shows the phenomenon of 'spontaneous scalarisation' is not peculiar to d = 4, but

qualitative and quantitative di�erences occur in higher d.9

Concerning the case of the scalar-tensor model studied in section 6.2, we have estab-

lished that, since the conformal invariance of the Maxwell action is lost in d > 4, the higher

dimensional electrovacuum BHs possess scalarised generalisations in these models. This is

a qualitative di�erence with respect to the d = 4 case. Moreover, by a conformal mapping,

9In various aspects d = 4 BH physics has unique properties; recent research has revealed that as d

increases, the BH's phase structure becomes increasingly intricate and diverse [151]. This further motivates

the analysis herein.
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Figure 6.4: Reduced area (top left panel), reduced entropy (top right panel), reduced temperature

(bottom left panel) and the scalar �eld at the horizon (bottom right panel) for BHs in the shift

symmetric model in d = 4, 6, 8 spacetime dimensions.

these solutions can be interpreted as Einstein-Maxwell-scalar solutions, bridging between

these two guises of scalarisation.

Concerning the case of the extended scalar-tensor model studied in section 6.3, our

construction generalised the 'geometric scalarisation' in [85�87] to any even dimension. In

d = 4, Einstein's gravity can be deduced by assuming general coordinate covariance and

the absence of higher derivative terms larger than the second order in the Lagrangian.

In d > 4, the same assumptions lead to Lovelock gravity [88]. All Euler densities, L(p),

starting with the Ricci scalar and the Gauss-Bonnet curvature squared combination, can

be written as the divergences of genuine vector densities in the critical dimensions d = 2p,

with p = 1, 2, . . . (while they vanish for d < 2p). However, such a density can be made

dynamical by coupling it to a scalar �eld, which results in the term αLfL(φ)L(p) in the

action (6.1.1). Thus, there is a hierarchy of models, with the d = 4 (p = 2) case in [85�87]

being a special case. Here, we have found that the properties of the solutions of the

latter are generic, being shared by the higher dimensional d = 2p counterparts, but with

quantitative di�erences.

As to provide a comparative benchmark, we have also generalised the d = 4 `shift

symmetric' Horndeski model in [153�155] to any d = 2p > 4 even dimension. Again, the

properties of the d = 4 solutions are generic. Although these con�gurations do not qualify
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for scalarised BHs (in particular the condition (1.5.24) is not satis�ed), they possess a

variety of interesting properties (e.g. the existence of a conserved current, which implies

that the Hawking temperature is �xed by the scalar charge; also an exact solution is found

in the probe limit).

All con�gurations in this work are spherically symmetric and asymptotically �at, be-

ing regular on and outside the horizon (which possesses a spherical topology). Rotating

generalisations should exist, following the d = 4 studies in, e.g. [99, 156,159].

Let us close this chapter with some remarks concerning the status of the extended

scalar-tensor model for the (lower) dimension d = 2. Einstein gravity alone is trivial in

two dimensions; however, as in the generic d = 2p case, L(1) = R can contribute to the

equations of motion by coupling it with a scalar �eld. This suggests us to consider the

following d = 2 version of the generic model (6.1.1):

S = − 1

16π

∫
d2x
√−g

{
αf(φ)R− 1

2
∂µφ∂

µφ+ U(φ)

}
, (6.4.65)

with U(φ) a scalar potential. Interestingly, this corresponds to the generic form of the

Jackiw-Teitelboim gravity [160,161]. This model has received considerable interest recently

in connection with BH dynamics (see, e.g. [162�165]). Near extremal BHs/branes have

a near horizon `throat region' corresponding to an AdS2 spacetime [166] and so, upon

compacti�cation, the action (6.4.65) appears naturally, with the scalar �eld representing

the modulus associated to the transverse directions (the volume of the transverse sphere).

Moreover, it was shown [165] that the Jackiw-Teitelboim model is a good approximation

for the low-temperature dynamics and thermodynamics of a large class of spinning/charged

BHs, including the near extremal Kerr BH. It would be interesting to study solutions of

the model (6.4.65) for various choices of the coupling function, in particular for a f(φ)

allowing for scalarisation.
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Chapter 7

Conclusions

In this thesis we have studied various properties of the Einstein-Maxwell-scalar model

(1.1.2). The distinguishing property of this model is the non-minimal coupling f(φ) be-

tween the electromagnetic and scalar terms of the action that directly couples these two

�elds. The main topics of interest in this model that were studied in this thesis include

solitonic solutions, duality symmetries and scalarisation. These topics were introduced in

chapter 1 and then thoroughly discussed in the following chapters.

Chapter 2 was dedicated to the study of no go theorems in the EMS model. The

Einstein-scalar model was studied as a valid truncation of the full EMS model and a no go

theorem was shown for asymptotically �at stationary and axisymmetric solitons. A similar

result was then shown for asymptotically �at static and strictly stationary solitons in the

full EMS model. This last result was discussed once again in chapter 3, where the axion

term was added to the EMS model. It was shown in that chapter that the axion term does

not change the results considered in chapter 2. These no go theorems can be viewed as

important directions of what conditions to avoid if we want to �nd solitonic solutions in

this model.

Following this line of thought, we reach chapter 4 where a solitonic solution to the

EMS model is found by circumventing a condition imposed by the theorems of the previous

two chapters. The condition circumvented is the �niteness of the non-minimal coupling

function f(φ), meaning that our soliton solution has a diverging coupling, even though

every physical �eld and energy density is regular. The solution is a soliton composed of a

pure electric �eld and a scalar �eld which is constructed perturbatively and numerically.

In chapter 5, we discuss the duality properties of a generalised EMS model with two non-

minimal couplings: f(φ) coupling the scalar �eld to the Maxwell term and g(φ) coupling

to the axionic term (discussed in chapter (3)). We then show that we can establish what

we denote as "duality orbits": a map between solutions of a model with speci�c coupling

functions f(φ) and g(φ) to another model with di�erent coupling functions. These duality

transformations preserve the scalar �eld but change the electric and magnetic �elds. Vari-
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ous examples of solutions obtained through this map were presented, including a magnetic

variant of the purely electric soliton solution found in the preceding chapter 4. Chapter 5

ends with various examples of possible avenues of generalisation of this procedure.

Lastly, in chapter 6, we discuss the topic of scalarisation. The basic idea of scalari-

sation was introduced in chapter 1 (section 1.5) and in chapter 6 we present the idea of

scalarisation in higher dimensions. Scalarisation of higher dimensional Reissner-Nordström

BHs in scalar-tensor models was considered and solutions were explicitly constructed for

the d = 5 case. A conformal transformation that maps between two di�erent models, (one

with a scalar �eld non-minimally coupled to the Ricci scalar and another with a scalar �eld

non-minimally coupled to the Maxwell term) which have di�erent scalarisation methods

is also discussed, relating these two di�erent scalarisation methods. Finally, we consider

the non-minimal coupling in even 2p dimensions of the scalar �eld with the pth Euler den-

sity. These are extended-scalar-tensor-Lovelock gravity models that present scalarisation

of the Schwarzschild-Tangherlini BHs. Examples are constructed for the 6-dimensional

and 8-dimensional cases which show that they possess the same qualitative properties of

the original 4-dimensional case, albeit with quantitative di�erences. A comparison is also

made with the hairy BHs in shift-symmetric Horndeski theory which are also constructed.

The Einstein-Maxwell-scalar is clearly a very rich model and hopefully the subjects

of study in this thesis can help pave the way for more interesting work in this kind of

model. Further advances in the theory behind soliton solutions, duality symmetry, or even

scalarisation in this model can likely be considered based on the concepts introduced in

this thesis.
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Appendix A

Asymptotic behavior of the vector

Wµ

In this appendix, we want to �nd the behavior of the vector Wµ, as it was de�ned in

equation (2.3.76).

The integral (2.3.78) assumes that Wµ decays fast enough (with a leading term of r−n,

n > 2) for it to vanish at the 2-surface ∂Σ at in�nity. To show this, we start with the fact

that the surface ∂Σ has two normal vectors: the timelike unit vector and the radial unit

vector. As W t = 0, the only component that matters is W r. To obtain the asymptotical

behavior of this component �rst note that, at in�nity we have

1

V
= − 1

gµνkµkν
= − 1

gtt
→ 1 (A.0.1)

because the metric will be approximately Minkowski so g−1
tt → gtt → −1 as the cross

terms of the metric will decay to zero. This means that we only need to care about

the asymptotic behaviour of the functions UE , UB, Er, Br, ϕ, ψ and ωr. As most of these

functions are related by their de�nitions, we just really need to know the behaviors of ωr

and two other functions (one related to the electric �eld and the other to the magnetic

�eld).

A.1 The twist vector limit

The twist vector ωµ was de�ned in (2.3.50) as

ωµ =
1

2
εµναβkν∇αkβ . (A.1.2)

where1 εµναβ =
√−gεµναβ and ∇αkβ = ∂αkβ as it is antisymmetrized. We only need the

radial component ωr and we assume that the only rotation cross term is gtϕ, so ωr can be

1Note the distinction between the Levi-Civita tensor εµναβ and the Levi-Civita symbol εµναβ .
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obtained as

ωr =
1

2
√−g ε

1ναβkν∇αkβ (A.1.3)

=
1

2
√−g ε

1023k0∂2k3 +
1

2
√−g ε

1320k3∂2k0 (A.1.4)

= − 1

2
√−gkt∂θkϕ +

1

2
√−gkϕ∂θkt . (A.1.5)

We have that kt = gtt and kϕ = gϕt in the asymptotic limit. As gtt → −1 we have that

ωr → − 1

2r
√−g∂θgϕt +

1

2r
√−g gϕt∂θgtt (A.1.6)

We know that
√−g grows as r2 at in�nity. Now we want to know the leading terms of gϕt

and ∂θgtt. As gϕt vanishes at in�nity, then we can at least assume that it has a leading

term r−1 and the same thing for gtt + 1. So we can expand them as:

gϕt →
α(θ)

r
+O(r−2) (A.1.7)

gtt + 1→ β(θ)

r
+O(r−2) (A.1.8)

where α, β, δ are functions of θ whose form is not important in this context. If the leading

term has a power of r lower than −1, it will just make the leading term of ωr decay even

faster, so if we can prove that W r decays fast enough for this kind of behaviour, then we

do not need to know which are the leading terms of these metric components. We can

consider the example of the Kerr metric in Boyer-Lindquist coordinates:

gϕt = − 2Mra sin2 θ

r2 + a2 cos2 θ
(A.1.9)

gtt = −1 +
2Mr

r2 + a2 cos2 θ
(A.1.10)

which as we see can be expanded asymptotically just like in equations (A.1.7) and (A.1.8).

So this means that

∂θgϕt →
α′(θ)

r
+O(r−2) (A.1.11)

∂θgtt →
β′(θ)

r
+O(r−2) (A.1.12)

As
√−g → γ(θ)r2, we get for ωr

ωr → α′(θ)

2γ(θ)r3
+O(r−2), (A.1.13)

where we can see that the leading term has a r−3 decay.
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A.2 The W r term

The behaviour of the rest of the �elds that compose Wµ can be deduced by considering

that the leading term of the vector potential Aµ is a r−1 term. From this we can obtain

ϕ→ ϕ0(θ)

r
+O(r−2) ψ → ψ0(θ)

r
+O(r−2) (A.2.14)

Er → Er0(θ)

r2
+O(r−3) Br → Br

0(θ)

r2
+O(r−3) (A.2.15)

UE →
U0
E(θ)

r2
+O(r−3) UB →

U0
B(θ)

r2
+O(r−3) (A.2.16)

so we �nally have

W r = 2(UE + UB)
ωr

V 2
− 2

ψBr + fϕEr

V
→ W r

0 (θ)

r3
+O(r−4) (A.2.17)

AsW r decays faster than r−2, we have that the integral (2.3.78) does vanish at the surface

∂Σ.
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Appendix B

Einstein frame formulation of

non-minimally coupled gravity

B.1 The Model

We consider the action described in (6.2.6) in d dimensions

S = − 1

16π

∫
ddx
√−g

[
Ω2(φ)R− 1

2
∂µφ∂

µφ− FµνFµν
]
, (B.1.1)

where Ω2(φ) = 1− αφ2. We want to make the following conformal transformation

ḡµν = Ωngµν , (B.1.2)

where n is a constant. With this transformation, after rede�ning the scalar �eld to ψ(φ),

we want to obtain the following Einstein-Maxwell-scalar action

S = − 1

16π

∫
ddx
√−ḡ

[
R̄− 1

2
ḡµν∂µψ∂

µψ − f(ψ)ḡµν ḡαβFµαF
νβ

]
. (B.1.3)

B.1.1 The n constant

We know we can write the Ricci scalar R of the metric g with respect to the Ricci scalar

R̄ of the metric ḡ as follows

R = ΩnR̄+ ΩnA(φ, ∂φ, ∂2φ) , (B.1.4)

where A can be written as

A = n(d− 1)�̄2 ln Ω− n2

4
(d− 1)(d− 2)(∇̄ ln Ω)2 , (B.1.5)

where �̄2 = ∇̄2 = ∇̄µ∇̄µ = ḡµν∇̄µ∇̄ν . The determinant of the metric ḡ can be calculated

as

g = Ω−dnḡ . (B.1.6)
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This means that
√−gΩ2R =

√−ḡΩ2− dn
2

+nR̄+ ... . (B.1.7)

Now, to have this term coincide with the new Ricci scalar term in (B.1.3), we need the

exponent of Ω in the above expression to vanish. This allows us to obtain the n constant

n =
4

d− 2
, (B.1.8)

which results in the conformal transformation ḡµν = Ω
4
d−2 gµν ,. Note that n = 2 for d = 4.

B.1.2 The A function

Using n = 4/(d− 2) we can write (B.1.5) as

A = 4
d− 1

d− 2

[
�̄2 ln Ω− (∇̄ ln Ω)2

]
. (B.1.9)

As ln Ω = 1
2 ln(1− αφ2) we can calculate the derivatives as follows

∇ ln Ω = − αφ∇φ
1− αφ2

, (B.1.10)

�̄2 ln Ω = −α[(∇̄φ)2 + φ�̄2φ)]

1− αφ2
− 2α2φ2(∇̄φ)2

(1− αφ2)2

= −α(∇̄φ)2 1 + αφ2

(1− αφ2)2
− α φ�̄2φ

1− αφ2
. (B.1.11)

Inserting these results in (B.1.9), we get

A =
−4α

1− αφ2

d− 1

d− 2

[
(∇̄φ)2 1 + 2αφ2

(1− αφ2)
+ αφ�̄2φ

]
. (B.1.12)

Now we can isolate the φ�̄2φ term multiplied by
√−g and rewrite it in terms of (∇̄φ)2 in

the following way1

√−ḡΩ
−2d
d−2 Ω2Ω

4
d−2

( −4α2

1− αφ2

d− 1

d− 2
φ�̄2φ

)

=
√−ḡ ∇̄µ

( −4α2

1− αφ2

d− 1

d− 2
φ∇̄µφ

)
+
√−ḡ 4α2

1− αφ2

d− 1

d− 2

(
(∇̄φ)2 +

2αφ2

1− αφ2
(∇̄φ)2

)

=∇̄µ(...)µ +
√−ḡ 4α2

(1− αφ2)2

d− 1

d− 2
(1 + αφ2)(∇̄φ)2 . (B.1.13)

The divergence term will not contribute to the action integral, so we can just ignore it.

We now write A as

A = − 4α(∇̄φ)2

(1− αφ2)2

d− 1

d− 2

(
1 + 2αφ2 − 1− αφ2

)
+ ∇̄µ(...)µ

= −4α2φ2(∇̄φ)2

(1− αφ2)2

d− 1

d− 2
+ ∇̄µ(...)µ . (B.1.14)

1Note that the Ω terms all cancel out.
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B.1.3 The scalar kinetic term

The scalar �eld φ kinetic term with respect to the new metric ḡ can be written as

√−g g
µν

2
∂µφ∂νφ =

√−ḡΩ−2d/(d−2) Ω4/(d−2)ḡµν

2
∂µφ∂νφ

=
√−ḡ Ω−2

2
(∇̄φ)2 =

√−ḡ (∇̄φ)2

2(1− αφ2)
. (B.1.15)

With this, we can now rewrite the gravitational and scalar part of the action as
∫
ddx
√−g

[
Ω2(φ)R− 1

2
∂µφ∂

µφ
]

=

∫
ddx
√−ḡ

[
R̄− 4α2φ2(∇̄φ)2

(1− αφ2)2

d− 1

d− 2
− 1

2

(∇̄φ)2

(1− αφ2)
+ ∇̄µ(...)µ

]

=

∫
ddx
√−ḡ

[
R̄− 1

2

(∇̄φ)2

(1− αφ2)2

(
1− αφ2 + 8α2φ2d− 1

d− 2

)]
. (B.1.16)

Now we use the following rede�nition of the scalar �eld

dψ =

√
1− α[1− 8αφ2(d− 1)/(d− 2)]φ2

1− αφ2
dφ , (B.1.17)

to get ∫
ddx
√−ḡ

[
R̄− 1

2
(∇̄ψ)2

]
, (B.1.18)

which is the expected form of the action presented in (B.1.3).

B.1.4 The Maxwell term

Now we consider the Maxwell term. We easily see that

√−g FµνFµν =
√−g gµαgνβFµαF νβ =

√−ḡΩ−2d/(d−2)Ω8/(d−2)ḡµν ḡαβFµαF
νβ . (B.1.19)

This is the exact same Maxwell term as in (B.1.3) with

f(ψ) = Ω
8−2d
d−2 (ψ) = [1− αφ2(ψ)]

4−d
d−2 . (B.1.20)

Adding this term inside the integral of (B.1.18), we recover (B.1.3) as expected.
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Appendix C

Variation of the Euler density term

for general dimension

C.1 The Model

In here we want to calculate the contribution of the general Euler density to the equations

of motion when non-minimally coupled to a scalar �eld. We will �rst calculate the results

for dimensions 4 and 6 before generalising.

Consider the action

S =
1

4π

∫
d4x
√−g

[
R− 1

2
∂µφ∂

µφ+ f(φ)L(p)

]
, (C.1.1)

where L(p) is the p
th Euler density contribution which can be de�ned for dimension 2p as

in (1.5.18). This term is non-minimally coupled to the scalar �eld through the function

f(φ). The variation of these terms would usually vanish in 4 dimensions or less, but due to

the non-minimal coupling, we will get another contribution to the equations of motion. We

will now calculate the variation of f(φ)L(2) and f(φ)L(3) terms separately as the process

used for the 4-dimensional term can be mostly replicated to the 6-dimensional term.

C.1.1 The L(2) term

We can easily see that after some reordering of the indices, considering that the variation

is with respect to the metric, we can write the second Euler density as

δ(fL(2)) = fδL(2) =
1

4
ε ν σµ γ ε

αβδλ(δRµναβR
γ
σδλ +RµναβδR

γ
σδλ)f . (C.1.2)

Now we can simplify this expression by rede�ning (µ, ν, αβ) ↔ (γ, σ, δ, λ) in the second

term. With this we can sum the terms and get

δ(fL(2)) =
1

2
ε νγσµ εαβδλRγσδλδR

µ
ναβf . (C.1.3)
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The variation of the Riemann tensor is

δRµναβ = ∇α(δΓµβν)−∇β(δΓµαν) , (C.1.4)

We can now pass the derivatives to the other Riemann tensor and the function f(φ) as

follows

δ(fL(2)) = ∇α(...)− 1

2
ε νγσµ εαβδλδΓµβν(∇αRγσδλf +Rγσδλ∇αf)

−∇β(...) +
1

2
ε νγσµ εαβδλδΓµαν(∇βRγσδλf +Rγσδλ∇βf) . (C.1.5)

The ∇(...) terms will be total divergences which will not contribute to the equations of

motion and we will ignore their contribution. We can also see that the terms with ∇αRγσδλ
and ∇βRγσδλ will vanish. This is because both α and β are antisymmetrised with the

indices (δ, λ), which results in the term vanishing due to the Bianchi identity. Lastly, we

can rede�ne α↔ β in one of the terms to sum them.

So we now have

δ(fL(2)) = ε νγσµ εαβδλδΓµανRγσδλ∇βf . (C.1.6)

The variation of the Levi-Civita connection is

δΓµαν =
1

2
gµρ(∇αδgνρ +∇νδgαρ −∇ρδgνα) , (C.1.7)

so we can use the same reasoning as before to obtain the following three terms1

δ(fL(2)) =
1

2
ε νγσµ εαβδλRγσδλg

µρ(−δgνρ∇α∇βf − δgαρ∇ν∇βf + δgνα∇ρ∇βf) . (C.1.8)

Antisymmetry between α and β implies that the �rst term will vanish so we get

δ(fL(2)) =
1

2
ε νγσµ εαβδλRγσδλ(δgνα∇µ∇βf − gµρδgαρ∇ν∇βf) . (C.1.9)

Knowing that δgαβ = −gαµgβνδgµν we can �nally take the variation with respect to δgµ
′ν′ :

δ(fL(2))

δgµ′ν′
=

1

2
ε νγσµ εαβδλRγσδλ(−gνµ′gαν′∇µ∇βf + gµρgαµ′gρν′∇ν∇βf)

=
1

2
Rγσδλ(ε µγσµ′ ε βδλν′ ∇µ∇βf + ε νγσν′ ε βδλµ′ ∇ν∇βf) . (C.1.10)

By rede�ning some of the indices and dropping the primes, we �nally get

δ(fL(2))

δgµν
= Rγσδλε

ργσ
µ ε βδλν ∇ρ∇βf = −4Pµρνβ∇ρ∇βf , (C.1.11)

where

Pµρνβ = −1

4
εµργσR

γσδλενβδλ . (C.1.12)

1Once again we discard total divergences and the derivatives of the Riemann tensor which vanish due

to the Bianchi identities.
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C.1.2 The L(3) term

We now calculate the extra term that comes from when we consider a 6-dimensional space-

time. We have that

δ(fL(3)) =
1

8
ε ν1 ν2 ν3
µ1 µ2 µ3 ε

α1β1α2β2α3β3δ(Rµ1ν1α1β1
Rµ2ν2α2β2

Rµ3ν3α3β3
)f . (C.1.13)

We can now look at the method for L(2) to get to the result. The reasoning used for

equation (C.1.3) gives us now a factor of 3:

δ(fL(3)) =
3

8
ε ν1µ2ν2µ3ν3µ1 εα1β1α2β2α3β3Rµ2ν2α2β2Rµ3ν3α3β3δRµ1ν1α1β1

f . (C.1.14)

For the sake of simpli�cation, we de�ne a new Pµρνβ tensor right away

P (6)ν1α1β1
µ1 = −1

8
ε ν1µ2ν2µ3ν3µ1 εα1β1α2β2α3β3Rµ2ν2α2β2Rµ3ν3α3β3 , (C.1.15)

So we can write

δ(fL(3)) = −3P (6)ναβ
µ δRµναβf . (C.1.16)

However we should always take into account the symmetries associated with the tensor

P ναβ
µ to apply the same methods we applied for the L(2) term. For more details see

section C.1.3.

We now write the variation of the Riemann tensor in terms of the variations of the

Levi-Civita connections and the reasoning applied to equations (C.1.5) and (C.1.6) give

us total divergences and derivatives of the Riemann tensors which we can again discard.

Antisymmetry again gives us a factor of 2 when we sum the two connection terms:

δ(fL(3)) = −6P (6)ναβ
µ δΓµαν∇βf . (C.1.17)

Now we write the variation of the connection with respect to the variations of the metric

and apply the methods used in equations (C.1.8) and (C.1.9), obtaining two terms

δ(fL(3)) = −3P (6)ναβ
µ (δgνα∇µ∇βf − gµρδgαρ∇ν∇βf) . (C.1.18)

Once again taking the variation with respect to δgµν we �nally get

δ(fL(3))

δgµν
= −6P

(6)
µρνβ∇ρ∇βf , (C.1.19)

which is a similar result to equation (C.1.11) but now with a factor of 6 and a di�erent

de�nition for Pµρνβ .

C.1.3 The P tensor and the L(p) density

Now we try to generalise this procedure for the Euler density of any dimension. We �rst

note that we could have done the exact same procedure by de�ning the P tensor right away
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as we did in the last section, but without having to resort to the L(2) section by taking a

look at its symmetries �rst.

We can easily see that

Pµναβ = −Pνµαβ = −Pµνβα , (C.1.20)

Pµναβ = Pαβµν . (C.1.21)

These symmetries are also respected by the Riemann tensor. The other symmetry we need

to take into account is the Bianchi identity that simply translates to

∇µPµναβ = 0 , (C.1.22)

or, in other words, any divergence of Pµναβ vanishes.

Taking into account the de�nitions above for the P tensor, we can de�ne Pµναβ for 2p

dimensions:

P (p)µναβ = − 1

2p
εµνµ1ν1...µp−1νp−1εαβα1β1...αp−1βp−1Rµ1ν1α1β1 ...Rµp−1νp−1αp−1βp−1 , (C.1.23)

and after reproducing the steps in the last section, the equivalent of equation (C.1.16) for

2p dimensions, by applying the Leibniz rule for p Riemann tensors, is

δ(fL(p)) = −pP (p)ναβ
µ δRµναβf . (C.1.24)

As all the other steps are the same we get the �nal result for the variation of the Euler

density for 2p dimensions:

δ(fL(p))

δgµν
= −2pP

(p)
µρνβ∇ρ∇βf . (C.1.25)
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Appendix D

List of Publications

This thesis is based on a number of publications by the author. These publications are:

� On the inexistence of solitons in Einstein-Maxwell-scalar models

Carlos Herdeiro, João Oliveira

Class. Quant. Grav. 36 (2019) no.10, 105015, [arXiv:1902.07721 [gr-qc]],

doi:10.1088/1361-6382/ab1859.

� On the inexistence of self-gravitating solitons in generalised axion electrodynamics

Carlos Herdeiro, João Oliveira

Phys. Lett. B 800 (2020), 135076, [arXiv:1909.08915 [gr-qc]],

doi:10.1016/j.physletb.2019.135076.

� A class of solitons in Maxwell-scalar and Einstein-Maxwell-scalar models

Carlos Herdeiro, João Oliveira, Eugen Radu

Eur. Phys. J. C 80 (2020) no.1, 23, [arXiv:1910.11021 [gr-qc]],

doi:10.1140/epjc/s10052-019-7583-9.

� Electromagnetic dual Einstein-Maxwell-scalar models

Carlos Herdeiro, João Oliveira

JHEP 07 (2020), 130, [arXiv:2005.05354 [gr-qc]],

doi:10.1007/JHEP07(2020)130.

� Higher dimensional black hole scalarization

Dumitru Astefanesei, Carlos Herdeiro, João Oliveira, Eugen Radu

JHEP 09 (2020), 186, [arXiv:2007.04153 [gr-qc]],

doi:10.1007/JHEP09(2020)186.
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