Universidade de Aveiro
2020

Joao Miguel da Silva  Aspetos de modelos Einstein-Maxwell-scalar:
Oliveira Solitoes, Dualidade e Escalarisacao

Aspects of Einstein-Maxwell-scalar models:
Solitons, Duality and Scalarisation

2020



Universidade de Aveiro
2020

Joao Miguel da Silva  Aspetos de modelos Einstein-Maxwell-scalar:
Oliveira Solitoes, Dualidade e Escalarisacao

Aspects of Einstein-Maxwell-scalar models: Solitons,
Duality and Scalarisation

Tese apresentada a Universidade de Aveiro para cumprimento dos requisitos
necessarios a obtencao do grau de Doutor em Matemética Aplicada, realizada
sob a orientacao cientifica do Doutor Carlos A. R. Herdeiro, Investigador
Coordenador do Departamento de Matematica da Universidade de Aveiro e co-
orientacao do Doutor Filipe C. Mena, Professor Associado do Departamento de
Matemética do Instituto Superior Técnico

Apoio financeiro da FCT e do FSE no ambito do
[l Quadro Comunitario de Apoio

REPUBLICA C g’ )
£# PORTUGUESA FCT it

e a Tecnologia
MARIE CURIE ACTIONS



| dedicate this thesis to my parents and my love, Joana,
for the much needed emotional support during my
academic life.



O jari
Presidente Doutora Anabela Botelho Veloso

Professora Catedratica, Universidade de Aveiro

Vogais Doutor Miguel Rodrigues Zilhdo Nogueira

Investigador Auxiliar, Instituto Superior Técnico - Universidade de Lisboa

Doutora Maria Piedade Machado Ramos

Professora Associada, Universidade do Minho

Doutor Dumitru Astefanesei

Professor Adjunto, Pontificia Universidade Catélica de Valparaiso

Doutor Eugen Radu

Equiparado a Investigador Principal, Universidade de Aveiro

Doutor Carlos Alberto Ruivo Herdeiro

Professor Auxiliar C/ Agregacao, Universidade de Aveiro (orientador)



Acknowledgements

Various people made this work possible. Without their support, I would not be here
and for that [ am thankful.

First of all, I would like to thank my supervisor Prof. Carlos Herdeiro, for all the much
needed scientific guidance given to me during my time as a PhD student. He also allowed
me enough freedom and pushed me to develop my independence as a researcher which will
definitely be crucial in my academic future.

Second, I want to thank my co-supervisor Prof. Filipe Mena, for all the help, moti-
vation, and discussions of various ideas and possibilities. These discussions prevented me
from ever feeling lost or without motivation and allowed me to stay confident towards the
future.

Now I must thank Joana, for all the emotional help, trust, and care during the many
difficult times of this thesis. Because of her, I grew to become a better person, in many
aspects. After all this time I spent with her, and all the help she gave me, I just could not
ever see myself without her.

I want to also thank my parents, for making this academic journey possible. Without
their support and immense effort, I would never have the chance to get to where I am now.
I am very thankful to have them.

For all the friendly discussions about science and various other topics, I must thank both
Alexandre Pombo and Jorge Delgado. They were both good friends and great company
whenever [ was abroad. The friendly competition and feedback between us was a constant
motivation to improve and allowed me to polish many of my skills to levels that I am now
very proud of.

I must also thank Eugen Radu for various interesting and fruitful discussions about
science.

And last but not least I want to thank Cristina Grosso, for being one of the nicest
persons I know and for all the help and patience regarding documentation and plenty of
bureaucracy.

This work received financial support from the Fundacdo para a Ciéncia e Tecnologia
(FCT), with the PhD grant PD/BD/128184/2016.






Palavras-chave:

Resumo:

Campos escalares, Campos de Maxwell, Solitdes, Buracos negros,

Unicidade, Teoremas "no go", AxiGes, Dualidade, Escalarisagio.

Nos anos recentes, o modelo de Einstein-Maxwell-scalar provou ser
um modelo bastante rico e interessante. Devido & simples adigao
de um acoplamento ndo minimal f(¢) entre o campo escalar ¢ e o
campo electromagnético, encontramos varias propriedades peculiares
que levaram a resultados interessantes nos campos da relatividade
geral e (pelo menos como um modelo teste) da astrofisica de objetos
compactos. Sao algumas destas propriedades que vamos discutir nesta
tese.

Apo6s uma pequena introducgao dos topicos que vao ser abordados,
apresentamos varios resultados que obtemos sobre a inexisténcia de
solitoes para certas condicoes neste modelo. Estes resultados abriram
o caminho para obtermos uma nova solugdo soliténica para este tipo
de modelo, que também é apresentada aqui. A seguir, discutimos as
simetrias de dualidade do modelo Einstein-Maxwell-scalar e tiramos
partido destas para obter uma técnica de geracao de solugoes que
depois aplicamos a solucoes conhecidas deste modelo. Por fim, abor-
damos o muito discutido conceito de escalarisacdo espontinea, mas
desta vez em espacos de alta dimensao para um modelo generalizado.

Finalizamos com algumas conclusdes e comentarios.



Keywords:

Abstract:

Scalar fields, Maxwell fields, Solitons, Black holes, Uniqueness, No go

theorems, Axions, Duality, Scalarisation.

In the recent years, the Einstein-Maxwell-scalar model has proven to
be a very fruitful and interesting model. Due to the simple addition of
a non-minimal coupling f(¢) between the scalar field ¢ and the elec-
tromagnetic field terms, we find various novel and unusual properties
that have led to interesting results in the fields of general relativity
(at least as a toy model) in the astrophysics of compact objects. This
thesis will address some of these properties.

After a brief introduction of the topics to be covered, we present
the various results that we obtained regarding the non-existence of
solitons in certain conditions for this model. These results paved the
way for us to obtain a new soliton solution for this kind of model,
which is also presented here. Next, we discuss the duality symmetries
of the Einstein-Maxwell-scalar model and take advantage of them to
create a solution generating technique which we then apply to well-
known solutions of the model. Lastly, we cover the much discussed
concept of spontaneous scalarisation, but this time in higher dimen-
sions for a generalised model. We end with some conclusions and

remarks.
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Chapter 1
Introduction

This chapter is dedicated to introducing the main topics that will be delved into in the
following chapters. Every chapter starts with a brief introduction covering what will be
discussed throughout that chapter and how it is structured. The structure of the thesis is
underlined in section 1.6 of this introductory chapter.

Regarding notation, there are a few things that should be mentioned. We consider
4-dimensional spacetimes unless specified otherwise and use index notation, which implies
that two repeated indices, one covariant (below) and one contravariant (above), constitute

an implied sum

Za“b“ = a,b" (1.0.1)
m

where a and b stand for 4-dimensional vectors and a* for each value of p (from 0 to 3)
represents each of the 4 components of the vector a. The same notation applies to tensor
indices of any rank. Unless stated otherwise, we use the standard Minkowski (¢,7,6,¢)
spherical coordinates to describe spacetime. Of note is that ¢ will also be used interchange-
ably with V' to denote electric potential but only when specified and in a way that avoids
confusion. In the same way, V will also be used to denote the norm of a stationary killing
vector field. We consider both Newton’s gravitational constant G and the speed of light ¢
to be equal to unity G = c=1.

1.1 The model

The model that will become the main topic of discussion in this thesis is the Finstein-

Mazwell-scalar (EMS) model which has the following action

R
s= 1 [aevma(2-LDp, - Loo0o-v). a2

The elements of this action are the Ricci tensor R, the Maxwell field strength F),,, the

scalar field ¢, which may or may not have a potential U(¢), and the non-minimal coupling



function f(¢). We consider the theory in 4-dimensional spacetimes, therefore the integra-
tion in the action uses the covariant 4-dimensional volume element /—gd*z, where g is
the determinant of the spacetime metric tensor g,,. The main novelty of this model is the
coupling function f(¢), which directly couples the scalar and electromagnetic fields. Phys-
ically, this function can be interpreted as a varying electric permittivity, which is mediated
by the scalar field equation of motion. For the sake of recovering the Einstein-Maxwell

model when the scalar field vanishes, the following condition

f(0)=1 (1.1.3)

is imposed.

This kind of model can arise naturally in physics. Most notably are the well-known
Kaluza-Klein models [1-3] where the electromagnetic and scalar terms result from the
geometry of 5-dimensional spacetime. Other well-known contexts include supergravity
and string theory [4]. In these theories, a very common non-minimal coupling function
is the exponential function f(¢) ~ e~®?, where « is a constant. This kind of coupling is
usually referred to as dilatonic and the scalar field as the dilaton. A well-known example
of a spherically symmetric black hole solution for this model with a dilatonic coupling was
found in [5]. In the context of cosmology, more general classes of couplings were considered
in [6,7] when considering the scalar field as the inflaton field and its coupling to gauge fields.

More recently studied in this kind of model is the phenomenon of spontaneous scalar-
isation. The study about scalarisation for this model was kickstarted in [8] where it was
shown that EMS, under the condition %(0) = 0, accommodates scalarisation of Reissner-
Norstrém (RN) black holes. This means that there is a class of hairy black hole solutions
which bifurcate from the RN solution. We will discuss this further in section 1.5 and in
chapter 6.

Another topic of interest when studying this model is the search for soliton solutions.
These are everywhere regular, asymptotically flat solutions that describe lumps of energy
that are not dense enough to collapse and create an event horizon, but still manage to be in
equilibrium. There has been a long extensive discussion of solitons in field theory starting
with the Korteweg-de-Vries equation [9] and examples in general relativity include boson
stars [10]. We will discuss solitons and theorems regarding their existence or non-existence
more closely in section 1.2 and chapters 2 and 3.

In this thesis we will slowly build up on this model. After chapter 2 we will consider
further generalisations of the action that allow us to recontextualise the model with other

kinds of theories.



1.2 Uniqueness, no go theorems and solitons

In the context of general relativity, uniqueness theorems are theorems that, given a set of
conditions, will specify the solution of our model (spacetime metric or field configuration)
and rule out any other solution. This means that the solution is unique for that set of

conditions.

1.2.1 Vacuum general relativity

Take for example vacuum general relativity which is described by the Einstein-Hilbert

action
1
Spg = — /d4$\/ —gR . (1.2.4)
167

A plausible question for such a non-linear theory would be if there are solutions that are
in equilibrium, are localised, and have finite energy. We know that one such class of such

solutions exists: the black hole solutions.

1.2.1.1 Black Holes in GR

A theorem constructed by Carter and Robinson in [11, 12](see also [13-15|) states the

following

Theorem 1 (Carter, Robinson). The most general stationary (in equilibrium) and az-
wsymmetric asymptotically flat vacuum black hole solution regular on and outside the event
horizon, is provided by the two-parameter (mass and angular momentum) family of Kerr

metrics [16].

Note how the solution is already found and specified as the only possible solution for
the conditions given at the start of the theorem.

This is a very general and strong result. In fact, this theorem tells us that any two
black holes that have the same total mass and angular momentum are exactly the same,
not unlike the properties of sub-atomic particles. Any other macroscopic object can have
different density distributions of these same quantities that allow us to distinguish them,
but not black holes! To describe this inability to distinguish black holes with those same
quantities John Wheeler coined the expression that "black holes have no hair" [17], where
"hair" stands as a metaphor for any other information that is not associated with a globally
conserved quantity which has a Gauss law. But as we will see, for specific extended theories
this expression’s generality needs to be reconsidered as examples of hairy black holes have
been found (see for example [8,18,19]).

If we impose stronger conditions on the theorem above, we should obtain a family of
solutions that is a subset of the Kerr family. Another very important uniqueness theorem

is the one proven by Israel in [20]:



Theorem 2 (Israel). The most general static and asymptotically-flat vacuum black hole
solution regular on and outside the event horizon, is provided by the one-parameter (mass)
family of Schwarzschild metrics [21].

The one-parameter Schwarzschild metric has spherical symmetry and is a subset of
the Kerr family of metrics. However, note that while staticity is a stronger condition
than stationarity', we also relaxed the axisymmetry condition. This is the remarkable
conclusion of Israel’s theorem: spherical symmetry is obtained as a consequence of staticity
and asymptotic flatness. This means that, while adding the axisymmetry condition would
give us the same result, it would have been superfluous as a stronger result (spherical

symmetry) is implied by the other conditions.

1.2.1.2 Solitons in GR

The main problem with black hole solutions is the presence of curvature singularities inside
the event horizon. Moreover, fully regular black holes (i.e. regular also inside the event
horizon) are impossible in vacuum gravity by the uniqueness theorems stated above. So if
we once again consider equilibrium solutions that are localised and have finite energy, an
interesting thought would be to search for solutions that are also everywhere non-singular.
This kind of solution would be like a lump of energy, a particle-like solution also known as
a self-gravitating soliton. A possible physical interpretation is to imagine such speculative
solutions as a bundle of gravitational waves tied up under their own “weight", without
enough density to collapse.

The problem with this kind of solutions is that they are ruled out by classical results
of general relativity. These are the so-called no go theorems which instead of specifying
a solution, they rule out possible solutions given a set of conditions. Stationary solitonic
solutions with non-zero mass are ruled out by such theorems [22,23] (see also [24]) even
for non-trivial topologies. Zero mass solutions are then ruled out by the positive mass

theorem [25,26] which states that the only zero mass solution is Minkowski spacetime.

1.2.2 Einstein-Maxwell: Electro-vacuum general relativity

If our search for solitons in vacuum proves futile, a simple step is to add matter to the
equation. The most natural generalisation is the Einstein-Maxwell theory, obtained by
adding the Maxwell field F},, (without sources) to the action, also referred to as electro-

vacuum. This model is described by the action

1
SEM = SEH — K d4.%'\/ —gFM,F’uV . (1.2.5)
™

!Staticity implies not only that the solution is stationary, but also invariant under time reversal ¢t — —t.

More formal definitions are presented in chapter 2.



1.2.2.1 Black Holes in Einstein-Maxwell

In this theory, the black hole uniqueness theorems [11-15,27,28] stated for vacuum general
relativity now generalise the Kerr and Schwarzschild families of solutions to the Kerr-
Newman [29] and Reissner-Nordstrom |30-33| families respectively. A new parameter is
added, the charge of the black hole.

There also exists a new class of solutions in electro-vacuum however, the Majumdar-
Papapetrou family [34,35] of multi-black hole solutions, which is also non-singular on and
outside the (disconnected) event horizon [36] and unique [37,38].

However, the BH uniqueness theorems once again rule out fully regular black holes
and the Majumdar-Papapetrou family of solutions is still singular inside each of the black

holes.

1.2.2.2 Solitons in Einstein-Maxwell

We then resort to finding everywhere regular solitons once again. This kind of particle-like
solutions in Einstein-Maxwell were dubbed as geons (gravitational electromagnetic entities)
by Wheeler in 1955 [39]. However, solitons are ruled out once again by no go theorems as
static [24] or even strictly stationary [40] configurations. Thus, we must resort to theories

beyond electro-vacuum to find self-gravitating solitons.

1.2.3 Solitons - Beyond electro-vacuum

Historically, two developments may be highlighted. Firstly, Kaup [41] (see also [42])
found a concrete realisation of "geons" but in Einstein-(complex, massive)-Klein-Gordon

or FEinstein-complex-scalar theory:
1 4 gl“/ * *
SECKG:SEH_E d x\/—g 7 8M<I>8V<I> +8M(I) 0, +U(|(I>|) , (1.2.6)

which has a complex scalar field ®, with ®* denoting its complex conjugate, subject to
a potential U(|¢|). These solitons are now known as boson stars [10]. Secondly, Bartnik
and McKinnon showed solitons also exist in the Einstein-Yang-Mills theory [43] - see also
the discussions in [44,45]. In both these cases, the existence of solitons is accompanied
by the existence of “hairy" black holes, i.e. black holes that have macroscopic degrees of
freedom not associated to a Gauss law - see [19,46] for recent reviews. In the case of
the Einstein-Yang-Mills theory these are known as coloured black holes [47]; in the case
of the Einstein-(complex, massive)-Klein-Gordon model these are called black holes with
synchronised hair [18]. As a rule of thumb, one observes that in models in which both
solitons and the standard Schwarzschild/Kerr black holes exist, so does a (non-linear)
bound state of both, which is a possible interpretation of the corresponding hairy black

holes. But subtleties exist. For instance, in the Klein-Gordon case, the hairy black holes



require rotation and do not exist in spherical symmetry [48]. Turning around the rule
of thumb, one may wonder if in a model where both “bald" and hairy black holes exist,
solitons should equally be found.

And so we are led to the aforementioned Einstein-Maxwell-scalar (EMS) model (1.1.2).
Hairy black holes were found in this theory in the form of scalarised black holes which
will be discussed further in section 1.5, so it is an interesting question to see if they also
accompany the existence of solitons in this theory. In chapter 2 we will discuss how
some of the no go theorems apply to the Einstein-Maxwell case. We first show for the
Einstein-scalar case (a valid truncation of this model with no Maxwell field) a no go
theorem regarding the existence of self-gravitating solitons in stationary and axisymmetric
spacetimes. We use a scaling argument inspired by the one introduced by Derrick [49].
This result generalises previous results for the static [13,50] and strictly stationary [40]
cases, showing that rotation is not enough to support self-gravitating scalar solitons in
this model, at least with real scalar fields?. We then show how previous no go theorem
results [24,40] can be generalised for static and strictly stationary solitons in the full EMS

model.

1.2.4 Solitons in Einstein-Maxwell-scalar

The no go theorems tell us when we can not find a solution, this means that we also get
more information about how we might find a soliton solution. In fact, this is what is
discussed in chapter 4.

By dropping one of the assumptions of these no go theorems, we are able to find
soliton solutions for the Einstein-Maxwell-scalar model which are in fact possible even for
flat Maxwell-scalar spacetime. It is by then considering the gravitational backreaction that
we are able to perturbatively and numerically obtain the self-gravitating solitons in the

full Einstein-Maxwell-scalar model.

1.3 Axions and duality in generalised electrodynamics

1.3.1 Axions

Recently, a widely discussed type of scalar field is the azion field. The idea of the axion
field originated in Quantum Chromodynamics (QCD). The QCD action admits a term
that violates the combined CP (Charge conjugation and Parity) discrete symmetries. This
kind of violation, however, is not observed experimentally when considering any kind of

experimental process which is controlled only by the strong interaction. This suggests that

20One should note that there exist, however, quasi-stationary (indeed quasi-static) self-gravitating soli-
tons in real scalar models with a mass term or more complicated positive potentials, named oscillatons [51].

Albeit, strictly speaking, non-static, these can be very long-lived [52-54].



if this CP violating term exists, its magnitude must be very small, leading to a fine tuning
problem of its coefficient.

A solution to this problem known as the "strong CP problem" was later proposed by
Peccei and Quinn [55,56]. Their idea was that the coefficient of this term was actually
a dynamical field which could dynamically be relaxed to zero. The way it was originally
presented, this kind of mechanism would extend the standard model with a complex scalar
field. This complex scalar field would then have a "Mexican hat" potential and possess a
global U(1) symmetry which could be broken below some high energy scale. This is when
the field acquires a non-zero vacuum expectation value (vev) which would translate into
the existence of a particle: the azion a, which parametrises the degeneracy of the potential
vacuum manifold. As a particle emerging from a broken continuous symmetry, it is a
Goldstone boson. If, moreover, at least one of the fermions in the model acquires its mass
via a Yukawa coupling to the complex scalar, the axion acquires a potential under a chiral
anomaly, driving it to a vev that precisely cancels the CP violating term and, moreover,
endows the axion with a small mass [57,58].

When later studied in a cosmological context, it was suggested that axions are also
interesting dark matter candidates [59-61], see also [62]. Since then, the study of gravita-

tional effects of axion-like particles has received considerable attention.

1.3.2 Axions in Einstein-Maxwell-scalar

In this work, we consider a model of axion electrodynamics with the following action [63-65]
1 4 1 N ] ~n 1
Saz = Sgx + o d*x\/—g| — ZFWFM + ZFWFM + §V#aV“a —U(a)|, (1.3.7)
T

where k is simply a constant and FW is the Hodge dual? of F,,. We will use a for the
scalar field when we refer specifically to the real axion field, mainly throughout chapter 3.
The coupling between the axion field and the electromagnetic field is a linear non-minimal
coupling which does not contribute to the Einstein equations but does contribute to the
matter field equations of motion.

An idea developed in chapter 3 is to generalise the Einstein-Maxwell-scalar model with
this axion coupling, obtaining then the Einstein-Maxwell-axion or generalised Einstein-

Maxwell-scalar model:

1 - 1
Sy = SEH—’_E /d4:1:\/—g[— ’fSLCL)FMVF“V-l-‘C](Z)FM,,F”V—I-2VMCLV‘“CL—U(CL) , (1.3.9)

where we added back the non-minimal coupling f(a) changed the linear coupling ka to

a general g(a) coupling. Some observations regarding symmetry are in order. The axion

3The hodge dual is defined as

~ 1
Fp,u = §6uuaﬁFQﬂ (138)

where €,,qp is the Levi-Civita tensor.



field a is a pseudoscalar which means that it changes sign under a parity inversion. This
property is necessary for the whole term aF,WF‘“’ to be invariant under a parity inversion
as FWF“” also changes sign under parity inversion. If we want our Lagrangian to stay
invariant under parity inversion, this consistency needs to be considered when we define
the couplings f(a) and g(a). First of all, the scalar field in this theory must always be a
pseudoscalar, or else the function g(a) will not invert under a parity inversion unless it also
depends on the coordinates. This means that even if we consider a to be a general scalar
field, it must have this property of the axion field. Secondly, the function f(a) must be
expanded in even powers of the scalar field so that it stays a scalar while g(a) must have
a Taylor expansion in odd powers of the scalar field so that it stays a pseudoscalar.

Regarding our search of solitons in this theory, what we do is reconsider the no go
theorems which were considered in chapter 2 for the basic EMS model in the context of
this generalised model. This discussion is mostly done in chapter 3 for both the model
(1.3.7) and then generalised to the model (1.3.9).

1.4 Duality

With the addition of electromagnetism to the model, an interesting question is how elec-
tromagnetic duality works when we consider the non-minimal interaction with the scalar

field. But first, let’s discuss duality in classical electromagnetism.

1.4.1 Classical electromagnetic duality

The parallelism between the laws that rule the electric and magnetic fields (E,B), in the
absence of sources, is transparent from Maxwell’s equations. In vacuum, these equations

are invariant under electromagnetic duality:
E+iB — ¢#(E+iB) , (1.4.10)

which amounts to an SO(2) rotation by an angle 8. Two real -independent quantities,

quadratic in the electromagnetic fields, can be formed, namely:
1 1 1
(B +iB) - (B+iB)" = 5(E2 +B?), 5;(E+iB)x (E+iB)" = ~Ex B . (14.11)
i

This shows that, despite the change in the fields, electromagnetic duality preserves the
electromagnetic energy and momentum densities.

Concrete formulations of electromagnetic duality appeared in the wake of Maxwell’s
equations. In 1893, Heaviside observed these equations are invariant under the discrete
transformation (E,B) — (—B, E) [66], which corresponds to (1.4.10) for 8 = «/2. This
invariance was generalised to the continuous transformation (1.4.10) by Larmor [67]. Tt

was studied in the context of general relativity by Rainich [68] and revisited by Misner



and Wheeler in their attempt to understand classical physics as geometry, wherein the
terminology duality rotation was introduced [69]. In its relativistic formulation, (1.4.10)

can be expressed using differential forms as
F — cos SF + sin §F , (1.4.12)

where F is the Maxwell 2-form and F denotes its Hodge dual 2-form. This formulation
makes clear that duality rotations remain a symmetry of Maxwell’s equations in curved
spacetime: the covariant theory remains self-dual.

Electromagnetic duality rotations are not ordinary rotations in 3-space. They define
an equivalence class of electromagnetic fields; that is, there are different (E, B) solutions to
Maxwell’s equations which have the same energy and momentum density. However, they
are only an invariance of Maxwell’s equations in vacuum. For instance, applying (1.4.12)
with 8 = /2 to the electric field of a static, point electric charge @, in standard spherical
coordinates in flat spacetime (¢,7, 6, ¢), leads to

Q

F=_"dtNdr — F=—-Qsinfdi Ndyp, (1.4.13)
T

which is the field of a static, magnetic monopole, with magnetic charge ). Thus, preserving
the duality in the presence of electric charges requires magnetic monopoles. From a different
reasoning, Dirac noted that the existence of magnetic monopoles could explain electric
charge quantisation |[70]. Up to now, however, magnetic monopoles have no observational
support, and thus electromagnetic duality is an unbroken symmetry in vacuum only. This
example illustrates how the 8 = 7/2 rotation, corresponding to the discrete symmetry

observed by Heaviside, exchanges electric and magnetic fields.

1.4.2 Beyond classical electromagnetism

It is interesting to consider how duality rotations are affected if one generalises Maxwell’s
theory, modifying its equations of motion. Gibbons and Rasheed considered the case of
relativistic non-linear electrodynamics [71]. They obtained the conditions under which a
theory of non-linear electrodynamics, possibly coupled to gravity, has invariant equations
of motion under duality rotations, and observed this is the case for Born-Infeld theory [72].
This is a rather exceptional theory, see e.g. [73|, which naturally appears as the effective
field theory describing open string excitations in string theory [74]. In this context, a low
energy effective field theory is an Einstein-Maxwell-dilaton-axion model, where the dilaton
is a scalar field and the axion a pseudo-scalar field. This is a further generalisation of the
model in (1.3.9) by including another scalar field ¢ (dilaton) non-minimally coupled both
to the electromagnetic field and to the other scalar field a (axion). The axion will only
be coupled to the EM field through the coupling g(a), which is the typical linear coupling
ka, while the dilaton is coupled through the coupling f(¢), which takes the common



exponential form e~*?. As f(¢) now depends on a (non-pseudo) scalar, it can be expanded
in any power of ¢ and this preserves invariance under parity inversion. In [71] it was shown
that this model is still self-dual under electromagnetic duality rotations as long as the
axion and the dilaton transform in an appropriate way under this transformation. Thus,
electromagnetic duality maps solutions of the Einstein-Maxwell-dilaton-axion equations to
different solutions of the same model - see also [75-77].

There is, however, a broader notion of duality. Instead of considering self-dual models,
which are left invariant (at least at the level of the equations of motion), by some transfor-
mation, we can consider dual theories: two different models related by a non-trivial duality
map. Considering dual theories has been particularly rewarding when the mapping is a
strong-weak coupling one. This allows us to relate a model in the weak coupling regime,
wherein perturbative computations are possible, to a technically more challenging strongly
coupled model, potentially extracting non-trivial information from the latter. Famous ex-
amples include the Sine-Gordon — Thirring duality 78], S-duality in string theory [79], and,
of course, AdS-CFT [80]. The duality map, moreover, can be used at the level of specific
solutions, as a means to obtain a solution of one of the models from a known solution of

the dual model. In fact, it is often a non-trivial and useful solution generating technique.

1.4.3 Duality in generalised Einstein-Maxwell-scalar models

In chapter 5 we consider generalised Einstein-Maxwell-scalar models with the axion term,

represented by the action (1.3.9) with no scalar potential (with a general scalar field denoted

by ¢):
R -
s~ [ #ova(§ - TP SR - Ja000) . (1

This is a family of models for which electromagnetic duality provides a simple realisation
of "dual theories". Then, we shall use this mapping as a solution generating technique.

In this work we shall denote a solution of (1.4.14), for a specific choice of f(¢), g(¢) as

[, A, ¢; f(¢),9()] , (1.4.15)

where g, A, ¢ are our fields. We shall establish an electromagnetic duality transformation
Dg, defined by an angle 3, that maps any solution (1.4.15) of a certain EMS model (1.4.14)

to a different solution of a different (dual) model, within the same family,

8, A, & F(6), 9(0)] —2 [, A", 6 £3(6), 95(0)] - (1.4.16)

The rotation angle 8 parameterises orbits in the space of EMS models, that we shall call
duality orbits. This space is spanned by the functions f, g. The orbits are closed and relate

dual models. On the one hand, the electromagnetic variables and the couplings f, g are
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affected by the mapping, transforming from the original A and f(¢), g(¢) to a new A’ and
f8(®),95(#), all of which depend on 5. On the other hand, the metric and the scalar field
shall remain invariant along the whole duality orbit. In particular, we shall consider the
duality orbits passing through some of the EMS models recently studied, including black
hole solutions [8,81-84| and the solitonic solutions discussed in chapter 4. We will also
discuss how we can generalise this duality transformation to more general variants of the

Einstein-Maxwell-scalar model.

1.5 Scalarisation

In an era where we are now able to probe experimentally into the strong field regime of
general relativity through gravitational waves, we are in a position to thoroughly test the
black hole solutions that respect the uniqueness theorems stated in section 1.2. It is then
important to find alternative models that can possibly explain any experimental deviation
from these black hole solutions. One such alternative is the class of models that allow for

spontaneous scalarisation.

1.5.1 Extended scalar-tensor-Gauss-Bonnet gravity

A class of models that have been considered in the context of scalarisation is the extended-
scalar-tensor-Gauss-Bonnet (eSTGB) gravity class of models [85-87|, which include a scalar
field non-minimally coupled to the Gauss Bonnet gravity correction term. The Gauss-
Bonnet term originates from Lovelock’s theory of gravity [88]. Lovelock’s theory is a
higher dimensional generalisation of the Einstein-Hilbert action and comprises the most
general metric theory of gravity which still has conserved second order equations of motion.
The Lagrangian of Lovelock gravity in D = 2d dimensions is given by the sum of Euler

densities of order p with coupling constants o,:

ﬁL = —gZapﬁ(p) y (1.5.17)

which can be written as

_ (2p)! _
Ly = ETH 5{;11 : ~5Z22§] MR I e (1.5.18)

The Einstein-Hilbert action is the first term of this sum and the Gauss-Bonnet term is the

second term of this sum

4!
2 : : 2 v 17
RGB = £(2) - Z(Sfoll 5;;225/";:?5,5:]th1uzp1p2Ru3u4p3p4 = R” —4R" RHV + RY aﬁRMVOéﬁ :
(1.5.19)
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Gauss-Bonnet gravity is simply Lovelock gravity up to the second term of the expansion.
However, this second term (and the following terms of the expansion) are all effectively
trivial in 4 dimensions®*.

A simple way to make this term’s contribution to the equations of motion nontrivial in
four dimensions is to non-minimally couple it to a scalar field. And with this, we obtain

extended-scalar-tensor-Gauss-Bonnet gravity which is described by the following action

R

Sesran =1 [ d'rv=g [4 - 19,606 — a6n F(6/R2s) (1.5.20)

This model can be considered a natural modification of general relativity. Any scalar free
solution of this model will be a solution of the typical vacuum general relativity model.
The question then is if there are any solutions with a non-trivial scalar field. A solu-
tion was indeed found in [85-87| which bifurcates from the Schwarzschild solution. At
low mass (or high curvature) values, the Schwarzschild solution becomes unstable under
scalar perturbations due to the Gauss-Bonnet term. This then causes the Schwarzschild
solution to scalarise. One can imagine such a process as a phase transition where a small
scalar field perturbation expands into a scalar cloud that surrounds the black hole. These
scalarised solutions are not only stable under spherical perturbations [90] but also thermo-
dynamically preferred over the vacuum solutions [85]. This phenomenon of spontaneous
scalarisation was originally found for neutron stars in the similar context of scalar-tensor
theories [91], the main difference being that the scalarisation was induced by matter in-
stead of strong spacetime curvature. For further discussion, see [92,93] for more on matter

induced scalarisation and [94-98] for more on curvature induced scalarisation.

1.5.2 Charged black hole scalarisation

As we saw in the last section, the presence of the Gauss-Bonnet term created an insta-
bility in the original Schwarzschild solution of vacuum general relativity®, causing the
phenomenon of spontaneous scalarisation. To better understand this phenomenon we just

need to consider the following action
SZSEH+S¢ , (1.5.21)

where Sy reads as (up to a constant):

Sy = —/d4x\/fg<;au¢a#¢+a@1> , (1.5.22)

*In a somewhat recent paper [89], the authors have found that there is a non-trivial limit where the
Gauss-Bonnet term does not vanish if we take the limit D — 4 from above, as long as the term’s coupling

constant agp has a dimensional dependence of the form agp = &/(D — 4) where & is fixed.
®This instability is also relevant for Kerr spacetime as was shown in [99].
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where 7 is an arbitrary function to be defined, and so the scalar field respects the following
equation of motion
daf
?¢p=a—T . 1.5.23
6=of (15.23)
In this kind of models, scalarisation is possible as long as the following three conditions

are satisfied:

i) There exists a scalar-free solution with ¢ = ¢g. For Z # 0 eq. (1.5.23) implies the

coupling function should satisfy the condition

df _
de le=¢o

One may set ¢g = 0 via a field redefinition. Thus electrovacuum BHs plus a vanishing

(1.5.24)

scalar field solve the model.

ii) The scalar-free solution suffers a tachyonic instability triggered by linear scalar per-
turbations. For a small scalar field ¢ = ¢, linearising (1.5.23) yields
(O — p24)66 =0 where 1l = ad2—f z (1.5.25)
eff ) off = d¢2 $=0 . ..
Let us assume that d?f/d¢? o is strictly positive. Then the tachyonic condition

12 < 0 implies
ol <0, (1.5.26)

which must hold for some region outside the horizon.

iii) A second set of solutions exists, with a nontrivial scalar field, the scalarised BHs.
These solutions are continuously connected with the scalar-free set, approaching it
as ¢ — 0. In this limit, the scalar field becomes a scalar cloud or zero mode. Although
the quantitative properties of these solutions depend on the choice of the coupling
function, qualitative properties are not so sensitive to this choice, as long as the
condition (1.5.24) is satisfied.

We can see that if Z = R% 5 we recover the eSTGB model [85-87] and with Z = R we
obtain the original scalarisation mechanism [91]. But, of course, the model we are interested
in this thesis is the EMS model (1.1.2) which is equivalent to having 7 = F,, F'*".

Scalarisation in the EMS model was originally presented in [8]. As we know, the EMS
model admits the scalar free solution of Reissner-Nordstrom (RN), which fits the criteria
for (i), so it is intuitive to think that there might be a scalarisation process for this solution
just as there is for the Schwarzschild solution. If, for example, we take a purely electric

solution where F2 < 0, we can find the Bekenstein type identity [8,100] ¢f > 0 which,
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along with the identities in condition (ii), allows us to narrow down the coupling f(¢). A

simple coupling that is compatible with all these conditions is
flg) =2, (1.5.27)

with o < 0. In the RN background, we obtain szf = aQ?/r* < 0, meaning it exhibits
the tachyonic instability. This then leads to the scalarised charged black hole solutions
obtained in [8] which are solutions that bifurcate away from the RN solution and are also
thermodynamically preferred. This scalarisation process tends to occur for sufficiently high
charge. See [81-83,101-105| for further work on these scalarised EMS black holes.

In chapter 6, we discuss the scalarisation process of the RN solution in higher dimen-
sions and explicitly construct these scalarised BHs for d = 5. We also observe how a
conformal transformation between the Jordan and Einstein frames maps a model with a
scalar field non-minimally coupled to the Ricci scalar to another model where a new scalar
field is non-minimally coupled to the electromagnetic term (EMS model), relating two
different scalarisation processes. Next, the spontaneous scalarisation of the Schwarzschild-
Tangherlini BH in extended-scalar-tensor-Lovelock gravity in even dimensions is consid-
ered. These are models where the scalar field is non-minimally coupled to the (d/2)™
Euler density, in d spacetime dimensions. Examples in d = 6,8 are explicitly constructed,
showing the properties of the four dimensional case are qualitatively generic, but with
quantitative differences. These higher d scalarised BHs are then compared to the hairy

BHs in shift-symmetric Horndeski theory, for the same d, which are also constructed.

1.6 Structure

Now we briefly summarise the structure of this thesis. Chapter 2 is dedicated to the
existence or inexistence of soliton solutions in the EMS model. Uniqueness and no go
theorems are more thoroughly discussed in this context and three no go theorems are
proven. Chapter 3 is dedicated to the same topic of soliton solutions in an extended
EMS model, where the axion is introduced, and the theorems of the preceding chapter are
adapted to this more general model. In Chapter 4 we, taking into account the conditions
imposed by the no go theorems, circumvent the restrictions to the existence of a soliton
solution and find a concrete example of a soliton solution in the EMS model. The concepts
covered in sections 1.2 and (1.3) of this introductory chapter introduce the context and
necessary concepts to understand the work covered in these three chapters.

Then we proceed to Chapter 5 where duality of the EMS model, as discussed in section
1.4, is covered. We define the duality orbits of the EMS model after formulating a duality
transformation that can be used as a map between solutions with different non-minimal

couplings.
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Chapter 6 will then discuss the topic of scalarisation, which was introduced in section
1.5, but in higher dimensions. A general model which includes the EMS model is presented
and we do a qualitative and numerical analysis of various constructed scalarised solutions

in higher dimensional spacetime.

Finally, we get to chapter 7 where comments and remarks are made about the work

covered throughout the whole thesis.
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Chapter 2

On the 1mmexistence of solitons in

Einstein-Maxwell-scalar models

In this chapter, we will introduce various concepts regarding the uniqueness of specific
solutions in the Einstein-Maxwell-scalar model (1.1.2).

In section 2.1, a vanishing Maxwell field is considered and a search is then made for the
most general asymptotically flat, stationary and axisymmetric line element in the Einstein-
scalar theory. Following this we show, using a scaling argument, how this line element is
incompatible with a solitonic solution, proving a no go theorem for solitons.

The Maxwell field is once again considered in section 2.2, where we first consider static
scalar-electromagnetic solitons. A no go theorem for this kind of solitons is shown by
adapting an argument by Heusler to the Einstein-Maxwell-scalar model which was origi-
nally considered for electro-vacuum [24].

At last, in section 2.3, we apply a modified Lichnerowicz-type argument to generalise
the result of the no go theorem for strictly stationary spacetimes, which allows us to

consider rotating metrics. Some remarks and conclusions are then presented in 2.4.

2.1 Absence of stationary solitons for vanishing Maxwell field

The first result to be established concerns the absence of asymptotically flat, stationary
and axisymmetric self-gravitating scalar solitons. This means we have no electromagnetic
field, thus we consider F),,, = 0. Observe this is a consistent truncation of the model (1.1.2).
That is, taking a vanishing Maxwell tensor in the action is equivalent to taking a vanishing
Maxwell tensor in the field equations. Thus, the model under consideration in this section

is the following Einstein-scalar model!

S =Sgg + 4171_/6141‘\/—79[ — %V“qﬁv,@ —U(o)]. (2.1.1)

'For a complex scalar field @, every V,¢V,¢ term is replaced by % (V,®*V,® + V,0V,®*).
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Our first task is to show the most general metric form for the configurations we seek to

rule out is

. dt? + X (p, ) [dp — w(p, 2)dt]* + A(p, 2) [dp* + B(p,z)d=*] , (2.1.2)

which contains four unknown functions of the “cylindrical" coordinates p and z. The second

task is to rule such non-trivial solitonic solutions by applying a scaling argument.

2.1.1 Most general line element
2.1.1.1 Isometries

Firstly, axisymmetry and stationarity implies the existence of two Killing vector fields
m and k. Without loss of generality, these Killing vectors commute [k, m] = 0 [106],
assuming the spacetime is asymptotically flat. Thus coordinates adapted simultaneously
to both these vectors fields can be chosen. As k corresponds to the asymptotically timelike
Killing vector field and m to the spacelike one, a temporal coordinate ¢ and an angular
coordinate ¢ are introduced along the orbits of the Killing vector fields as:

0 0

k:a, m:%

(2.1.3)

Consequently, in coordinates (t, ¢, x,y), the general line element can be cast in the form:

ds? = g (2, y)daxtda” . (2.1.4)

2.1.1.2 Circularity

We now want to prove that our metric is circular. That is, the surfaces orthogonal to the
Killing fields k and m are integrable. By Frobenius’ theorem (see [107] App. B.3), the
surfaces orthogonal to the Killing fields are integrable if the following conditions hold:

dkNkAmMm=0=dn AmANEk. (2.1.5)

Circularity means that the spacetime manifold M is locally a product of two 2-dimensional

manifolds M = A; x A5 and can be cast in the following form:
ds® = g (z,y)datde” = oop(x, y)deda® + i (x, y)dr'da? | (2.1.6)

where o corresponds to the metric in the (¢, ¢) manifold and 4 corresponds to the metric
in the (z,y) manifold. Establishing circularity requires using the Einstein equations and
hence depends on the energy-momentum of the spacetime. Circularity can actually be
established by first establishing Ricci circularity as we now discuss.

For the case under consideration, the energy-momentum tensor obtained from (2.1.1)
is

1
47TT;W = V/J,¢VV¢ — Guv <2VQ¢VO‘¢> + U(¢)> . (217)
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It follows that
TkYNkEAMm=0=T(m)AmAk, (2.1.8)

where the T'(k) and T'(m) 1-forms correspond to the contraction of the energy-momentum
tensor with the Killing vectors. To establish this observe that, since the spacetime is
stationary, the Einstein equations imply that £1g,, = 0 = £3T),, = 0 and this in turn
implies, due to ¢ being real, that £,¢ = k#*V, ¢ = 0. Thus,

4nT(k), = 4n Tk’ = —k, @vaw% + U(¢)) , (2.1.9)

meaning that T'(k) is proportional to k& and, as such, T'(k) A k = 0. A similar argument
shows that T'(m) Am = 0, proving the equality (2.1.8). Now, using Einstein’s equations it
follows that

Rk)yNkAm=0=R(m)AmAk, (2.1.10)

where the R(k) and R(m) 1-forms correspond to the contraction of the Ricci tensor with
the Killing vectors. A spacetime which respects (2.1.10) is called Ricci circular. Thus, we
have shown that an asymptotically flat, axisymmetric and stationary spacetime sourced
by a real scalar field (with an arbitrary potential) is Ricci circular. But Ricei circularity
and circularity are equivalent for asymptotically flat, stationary and axisymmetric space-
times [13,108,109], concluding the proof of circularity.? Tt follows we can then write the
line element as

ds? = —Vdt* + 2Wdtdp + Xdp* + vijda'da? | (2.1.11)

where V. = —(klk), X = (m|m) and W = (k|m). We have now reduced the unknown
metric functions from ten to six.

Two remarks are in order. Firstly, observe that circularity is equivalent to assuming
the spacetime to be invariant under the simultaneous discrete symmetry transformations
(t,) = (—t, —¢). However, the circularity argument shows that (for our matter content)
this is not an assumption and no generality is lost. Secondly, for a complex scalar field
®, circularity is actually lost. Indeed, we cannot guarantee the implication £37), =0 =
£1® = 0, as the field can have a harmonic dependence on both ¢ and ¢ in the form of a

phase. In spherical coordinates the field would be (n € Z and w € R are constants)
O(t,7,0,0) = ¢(r,0)e' ") (2.1.12)

and this dependence does not manifest itself in the energy-momentum tensor, which is
still preserved independently by the two Killing vector fields. Thus, the form (2.1.11) is

no longer the most general metric form describing an asymptotically flat, axisymmetric,

2This proof can be extended for the full model (2.1.1) including the electromagnetic field. Such exten-
sion, however, is not relevant for our discussion so we will omit the details regarding the electromagnetic
field part of the action which can be found in [13,108].
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stationary spacetime sourced by a complex scalar field.? Interestingly, this complex scalar
field case allows circumventing no-scalar hair theorems for black holes, e.g. Bekenstein’s
theorem [100], and yields black holes with scalar hair that are asymptotically flat, sta-
tionary and axisymmetric [18,110]. The known solutions have a geometry invariant under
(t, ) — (—t,—¢p); the absence of circularity opens up the possibility that more general

hairy black holes may exist in the complex scalar field model.

2.1.1.3 The orthogonal manifold

The simplification of the orthogonal (z,y) manifold, with metric 75, can now be addressed.
Due to the gauge freedom, i.e. the ability to redefine the (z,y) coordinates, one anticipates
the possibility of reducing further the number of unknown functions from six to four.

Indeed, one first introduces a scalar function p, defined as

p=vV—0=VVX+W?2, (2.1.13)

where o corresponds to the determinant of the o, metric. Assuming that both p and
V,p do not vanish (to be further discussed below), we can choose p as a coordinate on
the orthogonal manifold. Introducing a second coordinate therein, z, chosen such that
V,z2VFp =0 (by setting z = constant along the integral curves of V#p), we can write the

full metric in the form (2.1.2), where
= (2.1.14)

There are now four unknown metric components, X, w, A and B of two variables p and z.
Considering the way p and z were defined, this coordinate system is valid for p €]0, co[ and
z €] — 00, 00[. We have now reached the maximal possible simplicity for the line element
under our assumptions and for the matter content we wish to consider. Nonetheless, it
is instructive to consider a further a simplification, which, however, is non-generic for our
model.

A further simplification can be made if p is harmonic on the 2-dimensional orthogonal
manifold, D%V)p = 0. In this case, z will be the harmonic conjugate function of p and they

will obey the Cauchy-Riemann equations, which give us the following expressions:

Yo = (V()pIV(p2) =0, (2.1.15)

Yop = (Vi pIVinp) = V)2V (3)2) = 72 - (2.1.16)

We can then set B = 1 in (2.1.2) and, after redefining A = €?"/X (for consistency with
the literature), we obtain the Weyl-Lewis-Papapetrou (WLP) metric:

42 1 X(p,2) [dp — w(p, )t + ol
7+ , 2 —w(p, z)dt|]” +
X(p,2) e X(p, 2)

*We thank E. Ayon-Beato for this observation.

ds* = — [dp* +d=*] | (2.1.17)
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which has only three unknown functions.

Another important consequence of p being harmonic is that, if p is not a constant, it
can be shown that it has no critical points in the orthogonal manifold (no points where
the gradient vanishes) [111]. As this choice of coordinates is well behaved except for when
dp = 0, it means the coordinate system is globally well behaved in the whole manifold,
as long as there are no event horizons. So the metric (2.1.17) can be used to describe the
whole stationary and axisymmetric spacetime.

The key question for this further simplification is: when can it be guaranteed that p is
harmonic? It has been proven by Papapetrou and others [13,112] that p is harmonic as
long as the projection of the Ricci tensor R along the (¢, ) surfaces is trace free through
the following equation [13]:

;D%,y)p = —%trgR . (2.1.18)
Using the metric (2.1.11) for simplicity, this translates into the following condition for p

to be harmonic:
1
troR=0"R, = 2 [ — XR(k, k) + 2WR(k,m) + VR(m,m)| =0 . (2.1.19)

So as long as (2.1.19) is respected, p is harmonic and the coordinates used in the metric
(2.1.17) are globally well defined: the 7, metric is globally conformally flat.* Now all that
is left is to check if our model respects condition (2.1.19). We can write the Ricci tensor
in terms of the energy momentum tensor as follows:

1
Ry, = 8 <T,W - 2gWT> : (2.1.20)

The Ricci tensor components R(k, k), R(k, m) and R(m,m) for the real scalar field energy

momentum tensor (2.1.7) read

R(k, k) = R, E'EY = =2U(¢)V | (2.1.21)
R(m,m) = R,,m'm” =2U(¢)X , (2.1.22)
R(k,m) = Ry kim” = 2U(¢)W (2.1.23)
yielding
tro R =4U(¢) . (2.1.24)

This can only be zero in the whole manifold if the potential U(¢) vanishes. So the metric
(2.1.17) is the most general metric for a free real scalar field only; for a non-zero potential

we must resort to the form (2.1.2), as we will do in the next subsection.

‘Every two-dimensional metric is locally conformally flat due to the existence of isothermal coordinates
(the uniformisation theorem [113,114]). Such choice of coordinates is, however, only locally and not globally
conformally flat. Thus one cannot guarantee their validity throughout the whole orthogonal manifold.
Invoking such conformal flatness would reduce the unknown metric functions from six to four, instead of

the three obtained in the WLP metric, since p would not be used as a coordinate any longer.
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2.1.2 Scaling argument

We have established that the most general line element that can describe the solitonic
solutions we seek is given by eq. (2.1.2), where (¢, p, , z) are “cylindrical" coordinates and
A, B,w and X are unknown functions of the non-Killing coordinates (p, z) of which A, B
and X are all positive. We can now proceed to show that there are no non-trivial solutions
of this form for the model (2.1.1) by a scaling argument. It is useful to observe that the

square root of minus the metric determinant is
V=g = pAVB . (2.1.25)

We start with the Einstein-scalar action for the scalar field (2.1.1). The proof follows
by contradiction. We assume that such a stationary, axisymmetric, asymptotically flat
self-gravitating scalar soliton exists. Because the scalar field is real, it respects, for this
hypothesised solution the same symmetries as the metric possesses, so it does not change
under the action of the stationary and axisymmetric Killing vectors. The next step is
to consider a scaling of the hypothesised solution by a scale factor A. This rescales the
coordinates (p, z) and defines a one-parameter family of configurations (not necessarily

solutions) of the coupled geometry-scalar system:
A)\(Zv p) = A(AZ7 >\p> > B)\(Z, p) = B()\Z, Ap) ) Q,U)\(Z,p) = ?,U()\Z, )\P) ) (2126)
Xa(z,p) =X (A2, Ap) ,  da(z,p) = ¢(A2, Ap) . (2.1.27)

Under this scaling transformation, the metric determinant transforms as, using (2.1.25),

/d4x\/—g—> /d4xm/—g,\ = Ag/d4mpA,\\/B)\, (2.1.28)

and the kinetic scalar field term transforms as
VIOV = | (0,0 + = (0.0 > g | (Bp0n)? + (02| . (21.29)
" AP B\* N2A, [\PTA T g TEEA -

The action of the scaled solutions is S* = S[¢y, By, Ax, wy, X»]. Since for A = 1 we have
the hypothesised solution, the variation of S* with respect to A must have a stationary

point at A = 1. This condition yields the virial relation:>

s [ [ VB @07+ 07| <=3 [d [CGpavBU). 2130

As the left side is always non-negative, and the right hand side is always non-positive,
for positive U(¢) we get to a contradiction, which can only be settled if the hypothesised

solution is trivial. Alternatively, a negative potential is mandatory, to have a non-trivial

®Only the matter field action enters the argument because the Einstein-Hilbert part of the action is
invariant under a rescaling transformation as it corresponds to a diffeormorphism. In other words, we have
that 6Spz/6A = 0.
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solitonic solution. Thus, the only asymptotically flat, everywhere regular, stationary and
axisymmetric localised solution for the model (2.1.1) with U(¢) > 0 is Minkowski space-
time. No self-gravitating scalar solitons exist in this model and under these assumptions.

The virial identity (2.1.30) can be written in a more compact form as

/d4x\/jg[vﬂ¢vu(b + 6U(q§)} =0. (2.1.31)

One observes the resemblance with the identity that Bekenstein deduced when attempting

to rule out a black hole spacetime with scalar hair in the same model [100]:

/d%\/fg[vﬂgbvm + gbd[(]iff)} =0. (2.1.32)
To obtain the latter identity for the model (2.1.1) one integrates the Klein-Gordon equation
VIV ¢ — U'(¢) = 0 multiplied by ¢ over the whole spacetime and then, upon integrating
by parts the first term, a surface term at infinity emerges, which vanishes since ¢V, ¢ — 0
at infinity for an asymptotically flat spacetime. This procedure yields (2.1.32).

A key difference between the Bekenstein identity (2.1.32) and the virial identity (2.1.31)
is that the latter is independent from the equations of motion, while the former is a con-
sequence of the scalar equation of motion. Moreover, they yield different (but comple-
mentary) conclusions. In particular, the Bekenstein identity with a positive potential is
not enough to obtain the no go theorem we have just described. Rather it would rule out
gravitating solitons under the assumption that ¢U’(¢) > 0 everywhere (except for some
discrete points where it can vanish), rather than the positivity of the potential.

Another remark concerns the case of a constant, but non-zero, potential U(¢) = A,
that can be interpreted as a cosmological constant. Does the virial identity (2.1.30) encode
a no-go theorem for free spinning solitons in de Sitter spacetime (A > 0)7 Actually
no, since for de Sitter spacetime the metric (2.1.2) is not necessarily the most general
metric. This is because the de Sitter spacetime is not asymptotically flat, a requirement to
guarantee both that the commutativity of the Killing vectors [106] and that the circularity
theorem [13,108,109] holds. Moreover, of course, de Sitter is not stationary, and the very
definition of an equilibrium self-gravitating soliton has to be reconsidered. In the case of
Anti-de-Sitter, no conclusions can be inferred either, but we remark that a no-go theorem

for self-gravitating, purely gravitational solitons in Anti-de-Sitter was presented in [116].

2.2 Absence of static scalar-electromagnetic solitons

We now turn to the full model (1.1.2) to rule out static, asymptotically flat scalar-electromagnetic

solitons. In this case no spatial symmetry assumption is made. The argument generalises

6 Another slight variation consists on multiplying the Klein-Gordon equation by dU/d¢ instead of ¢ [115].
In this case one gets an obstruction under the condition of the convexity of the potential, d*U/d¢? > 0 -

see also [19].
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an electro-vacuum argument by Heusler [24]. One condition we will set on the non-minimal
coupling f(¢) of the EMS model is that it must never diverge or vanish in the spacetime.
The requirement that f must not vanish is only necessary if we have a magnetic field. This

is an important condition to ensure that our theorems are valid.

2.2.1 Heusler’s argument for static spacetime

Our focus in this subsection is a static spacetime. We consider an asymptotically flat,
everywhere regular and static spacetime with a strictly stationary Killing field k, obeying

= —k*k,>0, and shall prove that there are no solitons in the full model theory. The
Einstein-Hilbert action Sy will not play a role in this argument and neither will the
metric as only the electromagnetic field equations of motion are used.

Define the electric and magnetic fields as:

E,=—F, k", (2.2.33)
1
B, = _§guaﬁuFaﬁk” , (2.2.34)

where €,,,4, is the Levi-Civita tensor. The Maxwell equations for the full model are

VipE,=0, (2.2.35)

Vi(fBy) =0, (2.2.36)
EH

V. (fv> =0, (2.2.37)

B
Vul—=—1]=0. 2.2.38
(%) 2239
Due to the absence of currents, the first two Maxwell equations imply that the electric ¢
and magnetic-like v scalar potentials can be introduced, as E, = 0, and fB,, = 0,).
Note that the expression that defines the scalar 1 is not well defined when f is zero,
which is why we restrict f to always be non-zero if we have a magnetic field”. A general

mathematical identity states that for an arbitrary vector a that respects £y = [k, o] = 0:

1
/ Mk dS,, = - / V0l K dS, (2.2.39)
o% 2 Jx

where X is an hypersurface, with volume element d¥,,, while 9% corresponds to its bound-
ary, with antisymmetric area element dS,,. This is a version of Stokes’ theorem in the
presence of a Killing field. Applying this identity with o* — fEH*/V we obtain, using

Maxwell’s equations,
EHEY

f
ox V

dS,, =0 . (2.2.40)

"In the case where f can vanish, we will have non-zero contributions to surface integrals when applying
the Stokes theorem. We will see in chapter 5 that soliton solutions with a magnetic field will always have

a vanishing f.
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If 3 is any Cauchy surface, we can take 9% to be the surface at infinity, in which case:

ErEY

f——dSu = —471Qcfoo = —41Q. =0, (2.2.41)
oz V

where Q. corresponds to the electric charge. If we now replace o by ¢ fE*/V and once

again use the Maxwell equations, we obtain
1 EHrE ErEY
2LfVMW&;ZAEWIV(%W:_MQMMZO' (2.2.42)

Since k#E, = 0 then E is never timelike and, assuming that the coupling f does not
change sign, it follows that this expression only holds if the electric field vanishes. The

same argument can be used for B by replacing ¢ by %, obtaining
B*B,
/f’W&L:O, (2.2.43)
> v

from which we conclude that B must also vanish if f does not change sign, which is implied
by requiring that f must always be non-zero if we have a magnetic field. Note that this
is not required for a purely electric solution. Thus, for a constant sign coupling function,
solitons with a non-trivial electromagnetic field are ruled out, regardless of the potential
U().

It remains the possibility that there could be self-gravitating solitons with a non-trivial
scalar field. However, the scalar field must also vanish, as long as it obeys the dominant
energy condition and violates the strong energy condition [13,50]. The rationale is the
following. If the scalar field violates the strong energy condition this implies its Komar
mass M is negative; but if it respects the dominant energy condition, the positive mass
theorem is applicable and its ADM (or Komar) mass is non-negative. This leads us to a
contradiction. So it remains to see what these conditions mean for the model. Consider

the energy-momentum tensor of the full action (1.1.2):
1 1
47T = VoV 0 — guw (ZVaqbVa@ + U(qb)) + f(9) (F#QFE — 4gWFa/3FO‘”B> . (2.2.44)

The strong energy condition requires Ruyl;‘“l%” > 0 for any timelike vector field k# (for
instance one that obeys kH = k:“/\/V) For FF = 0, and a static spacetime with a purely
spatial scalar field distribution, this yields,

U<0. (2.2.45)

Thus, a scalar field with a non-negative potential only obeys the strong energy condition
if the potential is trivial. If, moreover, it obeys the dominant energy condition, then the
aforementioned contradiction applies, except if U = 0. In that case, the Komar mass is
zero, and by the positive energy theorem, the resulting solution is Minkowski spacetime.
Since the result in this section relies on the constancy of the sign of f(¢), one may ask

what is the physical meaning of a change in the sign of the coupling function f(¢). To
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assess this, observe that from the energy-momentum tensor of the full action (2.2.44), the

energy density is given as
A R% 1 « « 14 af
p= 4Tk =V VadV0+U(6) ) + [(0) EaE*+ L FapF™ ), (2:246)

where V' = —kFE, is always positive as the spacetime is strictly stationary. We see that
the energy density contribution of the electromagnetic field will, generically, change sign
along with f(¢). Another perspective is that the electric permittivity would also change
sign. Both these observations make such sign change physically questionable, as it would
make the electromagnetic contribution a sort of exotic matter. It is worth noting, however,
that the weak energy condition p > 0 needs not be violated even if such sign change in
the coupling occurs, as the scalar field contribution could compensate for the opposite sign
contribution of the electromagnetic field.

To close this section, let us remark on the dominant energy condition. In the full
model, if the coupling f(¢) changes sign to negative, then the full model may not respect
the dominant energy condition even if, separately, the electromagnetic and scalar parts
(excluding the coupling) abide it. This can be seen as follows: the dominant energy
condition states that

T, X'YY 20, (2.2.47)

for any two co-oriented causal vectors X# and Y#. Then, even assuming the scalar and

electromagnetic EM tensors obey it
S E
T,X"Y" >0, T,X"Y" >0, (2.2.48)

the full model EM tensor is 7}, = T/f,/ + f(qﬁ)T/fj, which needs not respect the dominant
energy condition due to the sign of f(¢). While a negative f(¢) does not directly imply
that the model does not respect the dominant energy condition, this possibility ties with
the fact that a different sign for f(¢) implies that the electromagnetic field behaves like
exotic matter. It seems, thus, that in the most reasonable physical scenarios, f(¢) should
not change sign and the dominant energy condition will hold for the full model as long as

it obeys, separately, for the electromagnetic and scalar sectors.

2.3 Absence of strictly stationary scalar-electromagnetic soli-
tons

A further step beyond the last result in the direction of generality, is to rule out strictly

stationary, but not necessarily static, asymptotically flat scalar-electromagnetic solitons in

our full model (1.1.2). With this goal in mind, we consider a Lichnerowicz-type argument

adapting the one presented in [40] where it was applied to Einstein-Maxwell-scalar models,
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but where the scalar field has no direct coupling to the electromagnetic field. This argument
consists in finding a divergence identity from which we may restrict the ADM mass of the
system to vanish. Thus, as long as the dominant energy condition holds, one can conclude,
from the positive mass theorem, that the spacetime is Minkowski.

This argument generalises the one presented in last section in the sense it does not
require staticity. Moreover, with respect to the argument in Section 2.1, it assumes an
everywhere timelike Killing vector field (and hence an absence of ergo-regions) which is
not a requirement in Section 2.1; in the latter, on the other hand, axial symmetry is

assumed, unlike the argument here which has no spatial symmetry requirements.

2.3.1 Lichnerowicz argument for strictly stationary spacetimes

We consider an asymptotically flat, everywhere regular and strictly stationary spacetime
with Killing field k. We can write the Einstein equations for our full model (1.1.2) as

Ry,

5 = /(@) <FM‘*Fm - 1g,wF2> + 0,00y b + g U(0) . (2.3.49)

4

We define the twist vector w# using the timelike Killing vector

1
wh = ngﬁkuvakﬁ , (2.3.50)
which respects the identity
W
v”<V2> =0, (2.3.51)
where, as in Section 2.1, V = —k*k,, and here it is assumed to be always positive, corre-

sponding to a strictly stationary spacetime.
The electric and magnetic fields are defined as in (2.2.33) and (2.2.34). The Maxwell

equations take the following form in a strictly stationary spacetime:

ViuE,; =0, (2.3.52)

Viu(fBy) =0, (2.3.53)
E# 2

V,L <fv> = wa‘uBM s (2354)
B 2

Y, (V) = —awuE" . (2.3.55)

Observe how dropping the staticity assumption generalises the last two equations, as com-
pared to their counterparts in the static case (2.2.37)-(2.2.38). On the other hand, since
the two first equations remain the same, we can, as before, write the fields in terms of two
potentials F,, = d,¢ and fB, = 0,%.
Using the relation
Viuwy) = %gwaﬁk[aRﬁhm : (2.3.56)
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we can obtain through the Einstein equations (2.3.49) the following expression
V[Mwy] = QfB[“El,] . (2.3.57)

Roughly, the curl of w is the Poynting vector. Then, from the existence of the potentials

© and 1, we can obtain two more equations

V[# (wl,] - 21/}EV]) =0 s (2358)
Viu (wy +2feB,) =0, (2.3.59)
which, in turn, imply the existence of two further scalar potentials
V.Ug =w, —29E, , (2.3.60)
VuUp = w,+2f¢B, . (2.3.61)

Using these equations, the Maxwell equations (2.3.52)-(2.3.55) and equation (2.3.51), we

can obtain the following two identities

wHt Y wywH B, B*
Ug— — —B! | = 1t — f—L 2.3.62
V,u( EV2 Vv ) V2 f % ) ( )
wtp wywh E E#
_Tfpr) = 2R TR 2.3.
Vi <UB 2 Vf ) 2 f v (2.3.63)

Another useful identity is the contraction of the Ricci tensor (2.3.49) with the stationary
Killing field twice
R K'E = f(E,E" + B,B") = 2VU(¢) . (2.3.64)

We now consider two different approaches to further the argument.

2.3.1.1 First approach

This approach follows the one in [40] but including now the non-minimal coupling function

f(9).

Using the following relation for the twist vector (see for example [13])

2 y VYV wywh
VR,Wk#k; =V, < 7 ) +4 "‘/2 , (2.3.65)
together with equation (2.3.64), we get
VvV wywt f '
Y, <V> AT = 25 (BB + BBY) —4U(6) . (2.3.66)

This relation together with (2.3.62) and (2.3.63) finally gives the divergence identity:

\Za% wh BF + foE*
A [V +2(Ur + Up)y5 ~ 2% = —4U(¢) . (2.3.67)
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Let us now analyse the consequences of this divergence identity, starting with the
particular case of a free, massless, scalar field, so that U(¢) = 0. The left hand side

of (2.3.67) is the divergence of a vector v* which respects
kv, =0 (2.3.68)

which follows from the definitions (2.2.33), (2.2.34), (2.3.50) and V' = —k*k,. Now we inte-
grate V,v* on a spacetime volume bounded by two (neighbouring) Cauchy hypersurfaces,
¥1 and X9, with exterior normals k* and —k*, respectively, and a timelike hypersurface
at spatial infinity, T, whose spatial sections are round 2-spheres, and hence the normal is

a unit radial vector n*. Then, applying the covariant divergence theorem:

0= \ d*z\/—gV ot = / Bxy/gsk " — / dx\/gsk,v" —I—/ dx/—grnot .
' B - 7 (2.3.69)
The first two integrals in the right hand side vanish by (2.3.68). To simplify the remaining
term we note that, asymptotically, the leading behavior of the asymptotically flat metric

is

d 2
ds® = —Vdi® + % +12(d6? + sin? 0dy?) + ... (2.3.70)
where
2M 1
V=1-""4+0 <2> . (2.3.71)
r r
Then®,
t1 27 iy 8TV
0:/ dga:\/—gfnuv“ = lim / dt/ dgo/ dor? sin 6v/Vn, = 8T MAL .
T r—00 [y 0 0 V
(2.3.72)

where At = t; — to and t1,ty are the (arbitrary) time coordinates associated to the two
Cauchy surfaces. This informs that the ADM mass M must vanish. Then, by the positive
mass theorem, assuming the dominant energy condition holds for this model, the spacetime
is Minkowski.

Concerning the scalar potential, unless U(¢) is written as a divergence, as to be included
in the left side of the equation (2.3.67), the reasoning does not apply. This can be done
for a constant negative potential.” But for the general case we shall follow a different

approach.

2.3.1.2 Second approach

In order to accommodate a non-trivial potential in the no-go theorem, we now take advan-

tage of an argument in [50], already used in Section 2.2, stating that a strictly stationary,

8The electromagnetic terms in the divergence (2.3.67) disappear at infinity because they all decay
asymptotically faster than 7~2. Consequently, only the first term inside the divergence contributes to this

integral.
®The process of integration in this case is exactly the same as in [40].
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asymptotically flat spacetime coupled to a matter model satisfying the dominant energy
condition will always be flat spacetime as long as it violates the strong energy condition
for the Killing field k£ at every point, R, k*k” < 0.

We start from the following result in [50] for the Komar mass:

1 R, EFEY  2wHtw
M=—-— et — ) k*ds,
47T » < V V2 >
1 2wHw
= — R, KMk — ——E ) dx 2.3.73
= ( \ . ) , (23.73)

where ¥ is a spacelike Cauchy surface.'® Since w” is nowhere timelike, whw, > 0 and, if

R, k#EY < 0, both contributions to the integral will be negative and
M<O0. (2.3.74)

Assuming the dominant energy condition, on the other hand, the positive mass theorem
M > 0 holds. Thus, M = 0 and the spacetime is flat.

For our full model, we cannot simply state that the strong energy condition is violated,
due to the presence of the electromagnetic field terms in equation (2.3.64). Nonetheless,
we can still show the mass is non-positive, for a non-negative potential. We then proceed
as follows. Using equations (2.3.62), (2.3.63) and (2.3.64) we obtain

20t
/R;wk“k:”dZ:/ oy U(e) — Y, Wt )ds (2.3.75)

where we defined the vector W# as

wH @Z)BM + stE“

WH=2 — —2 2.3.
Uk +Us)17 v (2.3.76)
Using the full Komar expression (2.3.73), equation (2.3.75) becomes
1 1
M=—— [ VU(¢)dE — / VvV, WHIE . (2.3.77)
2 ) 8 »

For a positive potential, the first term will be clearly negative so we only have to deal with
the second term which corresponds to the electromagnetic field contribution to the Komar
mass. First, note that £, = 0 so we can use the Stokes theorem identity (2.2.39) for
this vector

/ VvV, WY = —/ V. WHEE dY, = =2 WHEYdS,, . (2.3.78)
b b %

The surface 9% is the 2-surface at infinity and all the terms in W* decay, asymptotically,

2 so the integral vanishes (see Appendix A). This means that the electro-

faster than r—
magnetic contribution to the Komar mass (2.3.77) given by the vector W* is zero and only
the negative potential term is left, giving, again, M < 0. Thus, again, the positive mass
theorem establishes M = 0.

10This means that k%dYXa = k%qdE = —VdX.
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To conclude, in the full model (1.1.2), in an asymptotically flat and strictly stationary
spacetime with positive scalar potential U(¢), there are no non-trivial solitonic solutions,
even in the presence of any positive potential U(¢).!! Observe that this generalises the
argument of [40] even for the case of minimal coupling f(¢) = 1, due to the inclusion of

the potential.

2.4 Remarks

In flat spacetime, solitonic solutions occur in classical field theories that are, just like
general relativity, nonlinear. As mentioned, examples date back as far as the Korteweg-de-
Vries equation [9]. Coupling field theories to gravity opens up new possibilities: (i) solitonic
solutions could arise even for linear field theories, with the required non-linearities being
generated by the gravitational interaction; (ii) there are now also black hole solutions,
which in vacuum are “bald". When both black hole solutions and solitonic solutions are
possible, often so are “hairy" black hole solutions, which can be interpreted as a sort of

non-linear bound state between both of these building blocks.

Einstein — Maxwell — scalar Model

[ 1
Sems = Spn + /d4w\/—y[— %F;,,,F““ = 5V“<I>Vu<1> - U((I))}

F=0 0< f(P) < 0< f(®) <
stationarity strictly stationary strictly stationary
static

axial symmetry

No electromagnetic solitons
No solitons if, regardless of U(®) No solitons if U(®) > 0

everywhere, No solitons if U(®) > 0 and the and the dominant energy

> condition holds
U(@) >0 dominant energy condition holds

No strict stationarity No spatial isometries No spatial isometries

assumed assumed assumed

Figure 2.1: Schematic representation summarising the no-go theorems presented herein. In all

cases asymptotically flat spacetimes are assumed. The units used in this image use 87G = 1.

In this chapter, motivated by the recently found "hairy" black hole solutions in Einstein-
Maxwell-scalar models [8], which can arise dynamically from an instability of the RN black

hole, we have addressed the existence of self-gravitating solitons in this family of models.

1We emphasise that throughout Sections 2.2 and 2.3 we have assumed, in the applications of Stokes’
theorem, the absence of a boundary term at the origin, which, again, is only justified if the coupling is
required to be finite therein. Singular solutions with divergent coupling have been reported, for instance,
in [117,118].
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We obtained three results for asymptotically flat spacetimes. The first is for the absence
of axisymmetric and stationary solitons with a vanishing Maxwell field, as long as the
scalar potential is everywhere non-negative and another for the absence of static (without
spatial symmetries assumed) scalar-electromagnetic solitons in the full model. In this
case, no strict stationarity is assumed. The second result applies to strictly stationary and
static spacetimes but without any assumptions on the spatial symmetries. If the coupling
function f(¢) does not change sign, then no electromagnetic solitons exist, regardless of
the scalar potential. Moreover, if one assumes the scalar potential to be non-negative and
the dominant energy condition to hold, no scalar solitons exist either. Finally, the third
result generalises the second by dropping the staticity assumption. A summary of these
results is presented in a schematic way in Figure 2.1.

As a corollary of the results herein, the model studied in [8] illustrates that both
bald and hairy black holes can exist without the existence of solitons. Therefore, even in
models allowing both this sort of black holes, not all hairy black holes can be interpreted
as a superposition of a soliton and a bald black hole.

It is now a natural question to ask if there might be soliton solutions in this model if
either f(¢) changes sign (for a purely electric solution case) or if f(¢) either diverges or
vanishes. While there are still no known solutions for the case where f changes sign (and
it could present an interesting avenue for future work), in chapter 4 we discuss a solution
which is found by circumventing the assumption that f(¢) must not diverge. Soliton
solutions where f(¢) vanishes are also presented in chapter 5.

Regarding generalisations of this model, we discuss the effect of the addition of an

axionic term to the model in the next chapter.
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Chapter 3

On the inexistence of self-gravitating
solitons in generalised axion

electrodynamics

After establishing the no go theorems of chapter 2, two possible ways of finding soliton
solutions are to either consider a more general model than the standard EMS model or to
circumvent the conditions imposed by the no go theorems. The generalisation of the EMS
model is what is considered in this chapter, where we discuss the consequences of adding
an axionic term to the EMS model. An attempt to circumvent the conditions of the no go
theorems is made in chapter 4. We recall that to distinguish the axion field from a more
basic scalar field we use a to represent the axion field.

The model studied in this chapter is the basic axion electrodynamics model (1.3.7),
where the only non-minimal coupling is the typical axion term aFWFW (f(a) =1). In
section 3.1, we start by considering the possibility of static axionic solitons in this model.
The same argument used in the last chapter (section 2.2), inspired by the one in [24], is
adapted to this model. The process involves finding the new canonical form of the covariant
Maxwell equations obtained from this model. It is shown that no solitons can exist under
these conditions.

In section 3.2 we once again consider the possibility of static solitons but in the model
(1.3.9), which is a generalisation of the typical EMS model. In this case, the non-minimal
coupling f(a) is once again considered and we promote the coupling xa to a general function
g(a). The result of section 3.1 persists even for this generalisation.

Finally, in section 3.3, the argument for strictly stationary spacetimes presented in the
last chapter (section 2.3) is adapted to this generalised model, showing that there can be
no soliton solutions with those conditions even in such a general model. A few remarks

are discussed in section 3.4.
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3.1 Absence of static axionic solitons

In this section we consider an asymptotically flat, static spacetime with no restrictions
on the spatial symmetries. The gravitational part will play no role in the subsequent
argument.

The equations of motion for the model (1.3.7) are

V. (F" — kaF") =0, (3.1.1)

V. F' =0, (3.1.2)
_ _fp g dU(0)

Oa = - FuF - (3.1.3)

where [J = V,V# is the covariant d’Alembertian. Since the spacetime is static and without
horizons, we know that it admits an everywhere timelike Killing vector field & which can
be used to define the electric and magnetic fields as in equations (2.2.33) and (2.2.34).

In Maxwell’s theory, one can rewrite the covariant Maxwell equations in terms of £, B
in a certain canonical form - see e.g. eqs.(2.2.35)-(2.2.37) from last chapter. In axion
electrodynamics, a similar canonical form is obtained if we define two new fields £’ and

B’ which are related to the original fields as

E, = E, — kaB, , (3.1.4)
B, = B, + kaE}, ; (3.1.5)

now, the axion Maxwell equations (3.1.1)-(3.1.3) are written as

ViuE, =0, (3.1.6)
VB, =0, (3.1.7)
B
—__ | = 1.
v, ( 4 ) 0, (3.18)
BH
P <v> =0, (3.1.9)

where V' = —k#k, > 0. Due to the absence of currents, the first two equations imply that

we can once again introduce an electric ¢ and a magnetic ¢ scalar potentials, as
E,=0.p, B[,L =0 . (3.1.10)

The remainder of the argument uses the method used in section 2.2 which was inspired
by Heusler’s argument described in [24]. We again make use of the identity (2.2.39) for an
arbitrary vector « obeying £ra = [k, a] = 0. Specifying this identity for o = E’*/V and

using the axionic Maxwell equations yields

E/Mkl/
/8Z S =0, (3.1.11)
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where we took 0¥ to be the surface at spatial infinity (an r = oo 2-surface, which can be
used near infinity due to asymptotic flatness).
Making a second use of the identity (2.2.39) but now with o = @E*/V and once
again using the axionic equations, we obtain
/ / v / v
e, [ s [ P gm0, @i
where (. is the value of the electric potential at » = co which is constant, and the last

equality used (3.1.11).

The same argument can be used for B and B’ by replacing ¢ by 1, obtaining

B'B!
/ —HErdy, =0. (3.1.13)
s V
We can now expand (E’, B') in terms of (E, B), via (3.1.4)-(3.1.5) to obtain the identities:
E*E E*B
/ —EEvdy, —/ ka—LEVdYE, =0, (3.1.14)
s V s V
B"B E*B
/ Ekvay, +/ ka——Lk"dY, =0 . (3.1.15)
s V > 14

Adding up the last two equations yields

E'E, + BB
/ Mk”dzy =0. (3.1.16)
> %

From their definitions (2.2.33)-(2.2.34), k*E,, = 0 = k*B,,. Thus, these fields are never
timelike. It follows that both E¥E, and BB, are always non-negative. Consequently,
the only way for eq. (3.1.16) to be verified is if both fields vanish for every Cauchy surface
Y and, consequently, for the whole spacetime. This result is independent of the potential
U(a). With vanishing electromagnetic fields, all we have left is the possibility of self-
gravitating axion (scalar) solitons. However, as was discussed in the last chapter and
in [13,50], there are no scalar field solitons as long as the dominant energy condition is
obeyed and the strong energy condition is violated, which is the case for scalar fields with
a positive potential. Therefore, the only possible solution for such potentials is Minkowski
spacetime.

As a final remark in this section, the main difference between the result herein and the
one for Einstein-Maxwell theory is that instead of establishing that the norms of both E
and B vanish, we can only establish that the sum of these norms must vanish. Since both
these norms are positive definite, however, the final conclusion is that each must vanish,

recovering the result of Einstein-Maxwell theory.

3.2 Generalised axion electrodynamics

The result of section 3.1 can be straightforwardly extended to a model of generalised
axion electrodynamics minimally coupled to Einstein’s gravity (1.3.9) which introduces

the arbitrary non-minimal coupling functions f(a) and g(a) of the axion field.
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It is assumed, just like in last chapter, that both coupling functions do not diverge at
any point in the spacetime and that f(¢) does not vanish for a non-zero magnetic field.

The equations of motion are a simple generalisation of the previous ones (3.1.1)-(3.1.3)

and read
V. (fF™ —gF*) =0, (3.2.17)
V. F' =0, (3.2.18)
1dg ~ 1df dU (a)
D2 = —*7FLVFMV -—F VFHV - . 21
“ dda ! + dda " da (3.2.19)

Although the a equation can be considerably more difficult due to the arbitrary couplings,
defining now the fields E' and B’ as

E' = fE—gB, (3.2.20)
B = fB+gE , (3.2.21)
it follows that these new fields respect the exact same equations as (3.1.6)-(3.1.9). Con-

sequently, we follow the exact same procedure as in the last section to obtain the corre-

sponding relations to (3.1.14)-(3.1.15), which now read

E'E E'B
/fv“k”le, —/g % Ekvde, =0, (3.2.22)
% %

B"B E'B
/f % “k”dE,,+/ I Ekvds, =0. (3.2.23)
> %

Adding these equations now yields

EFE B*B
/ ¥ #‘t R Evay, =0 . (3.2.24)
b

As both E*E,, and B*B,, are non-negative, this identity implies a similar result to the one
obtained in the previous chapter for the theory with no axions (g = 0): the fields must
vanish and there are no solitonic solutions as long as the coupling f(a) does not change
sign. We can see that the main reason for this result to be similar to the one with g = 0 is
because g, as complicated a function as it might be, does not contribute to the argument

due to its contribution disappearing when we add equations (3.2.22) and (3.2.23).

3.3 Absence of strictly stationary axionic solitons

The method used above allowed us to rule out static solitons without requiring any spatial
isometry. Now, after having considered static spacetimes, it is only natural to extend this
treatment to strictly stationary spacetimes just like in the previous chapter. This accounts
now for possibly rotating axionic solitons, as long as rotation does not create ergo-regions,

since strict stationarity means that there exists an everywhere timelike Killing vector field.
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Following a procedure similar to the one in section 2.3 where we use a Lichnerowicz type
argument inspired by the one in [40], we shall also establish a no-go theorem for axionic
solitons. In this case the Einstein equations play an important role in the argument.

The Einstein equations for this model are, just like in section 2.3

R,
2

= f(a) (F;Fm — 1gWF2> + dyadya + g, U(a) . (3.3.25)

4

The axionic term is purely topological so it does not contribute to the Einstein equations.
Using the timelike Killing vector field, we again define the twist vector w* as (2.3.50) and
obeying the identity (2.3.51). The Maxwell equations (3.1.6)-(3.1.9), with the primed
fields defined by (3.2.20)-(3.2.21) are generalised for a strictly stationary spacetime as:

Vi =0, (3.3.26)

VBl =0, (3.3.27)
EH 2

VM <V> = WWMB/'LL y (3328)
B* 2

We can again consider the identity (2.3.56) so that using the Einstein equations (3.3.25)

relates the curl of w with the Poynting vector:
Viwy =2fB,Ey) - (3.3.30)

One can freely add vanishing terms such as —2¢B[, B, and 2gE|,E,) to rewrite the right

hand side in two different ways
fBE,) = BfMEV] = B[ME;] . (3.3.31)

We choose the expression with B’ and E as these two fields are the ones which we can
rewrite as potentials 1 and ¢ respectively, ¢f. (3.1.10). This means that equation (3.3.30)

implies the following two identities

Viu (wy —20E,) =0, (3.3.32)
Vi (wy] + 208 ) —0, (3.3.33)

V]

which in turn imply the existence of two new potentials Ugs and Ug

V.U = w, — 20E, (3.3.34)
V. Up = w, + 2pB), . (3.3.35)

Using these potentials and the identity (2.3.51), the following divergence identity is ob-

tained ) .
dwtw, B 2E#E + B, B

2 5 , (3.3.36)

VW =
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where
wh 21/13“ + pE*

V2 Vv
On the other hand, the contraction of the Einstein equations (3.3.25) with the Killing
field yields

WH =2(Ug + Ug) (3.3.37)

E.E" + B,B"
%4
The first term on the right hand side can be slightly reshaped by noting that f(E,E* +

2
R kR = 2f 4U(a) . (3.3.38)

B, B") may be written as
F(ELE" + B,B") = (fE, — gB,)E" + (fB, + gE,)B" = ELEF + B,B" . (3.3.39)

Then adding equations (3.3.36) and (3.3.38) yields

2 L, Awtw
VRWW - E=_V,WHt—-4U(a) . (3.3.40)

The final step of the argument consists on taking the Komar mass integral on a Cauchy
surface ¥ [50]:

1 R, EFEY  2wHtw
M=—-— e — B keas 3.3.41
471' b)) ( V V2 > @ ( )
which, via (3.3.40), reads
= i 1V WH 42U | k*dX (3.3.42)
47 n \ 2 H @ R

As £, W = 0, the identity (2.2.39) can be used to write the first term in the integral as
/ VWS =2 [ WHFEdS, . (3.3.43)
by o%

The surface 9% is the 2-surface at infinity and all the terms in W* decay, asymptotically,
faster than 72, so that (3.3.43) vanishes. Thus (3.3.42) becomes

M= 1/ Uk*dS, — —1/ Uvds (3.3.44)
5 27 Jx

2T T

as d¥, = kqodX. Consequently, as long as the potential U(a) is positive, the only contri-
bution to the Komar mass M will be negative. Then, by the the positive mass theorem',
M = 0 and the only solution is flat spacetime. Therefore, no axionic solitons are possible

in strictly stationary spacetimes, again regardless of the spatial symmetries.

!The energy conditions are unchanged from the Einstein-Maxwell-scalar theory by the axionic term,
so we can take the same conclusions as in section 2.3. The dominant energy condition stays valid and, as

consequence, the positive energy theorem is also valid.
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3.4 Remarks

In this chapter, we have assessed the possible existence of self-gravitating solitons in axion
electrodynamics and generalisations thereof. We established that the presence of axions
and their coupling to the electromagnetic field does not change the results of (in)existence
of Einstein-Maxwell solitons in static or strictly stationary spacetime established in chapter
2. This holds even when considering a model with rather generic couplings between the
axion field and the electromagnetic invariants and, in particular, allowing an arbitrary
coefficient function g(a) in the axion term F - F.

A possible generalisation would be to consider a coupling between the electromagnetic
field and a different scalar field (rather than the axion). However, without any kind of
coupling between these two scalar fields, the result will likely remain unchanged. One
interesting future work route would be then to generalise this model to allow for two
different scalar fields, coupled to each other, and to the electromagnetic field through the
couplings f and g. An example of a model that corresponds to this type of framework is the
Einstein-Maxwell-Dilaton-Axion model? [119], where the coupling f(¢) = e~*? depends
on the dilaton field ¢ (« is a constant) and g(a) = ka has the usual dependence on the
axion field a. These two fields also include a coupling between them, possibly allowing for

the existence of scalar solitons in the model.

2The EMDA model will be considered in the context of duality in chapter 5.
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Chapter 4

A class of solitons 1in Maxwell-scalar

and Einstein-Maxwell-scalar models

After exploring the various ways in which we can not have soliton solutions in the Einstein-
Maxwell-scalar model, we are tempted to ask: then when can we have solutions? One
possible answer is to find a configuration of the fields in the discussed model which repre-
sents a soliton solution that does not respect every condition stated by the no go theorems.
Another would be to generalise the model further, adding terms that would make the proof
of the no go theorems impossible, like we tried to do in the previous chapter.

In this chapter we discuss the first possibility. An important condition specified by
the no go theorems presented in the last chapters is that the non-minimal coupling f(¢),
which directly couples the electromagnetic and scalar fields, does not diverge at any point
in the spacetime. So in this chapter we present a solution with a non-minimal coupling
that diverges at a single point, the origin.

In section 4.1 we discuss the flat spacetime Maxwell-scalar models. We start by intro-
ducing some physical motivation to contextualise a diverging coupling f(¢). The idea is
that this diverging coupling can serve as a way to de-singularise the electric field of a point
electric charge. We then present an integrable model that admits everywhere regular solu-
tions with finite energy which represent flat spacetime solitons. The rest of the section is
dedicated to presenting a class of examples and the peculiar case of the dilatonic coupling.

Section 4.2 is where the self-gravitating soliton solutions are constructed. Two proce-
dures for constructing solutions are shown, perturbatively and numerically. A discussion

of these solutions is made in section 4.3.
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4.1 Flat spacetime Maxwell-scalar models

4.1.1 A physical motivation

An awkward feature of classical electromagnetism is that the energy F of the Coulomb
field of a point charge @ is divergent:
o0 ()2

E~ ; T—er:oo . (4.1.1)
Quantum considerations naturally introduce an ultraviolet cut-off to the validity of the
classical Coulomb solution, regularising this integral. Quantum Electrodynamics (QED),
however, is itself incomplete as a quantum field theory, due to the Landau pole [120]. But
it yields the important lesson that the coupling constant g, which determines the strength
of the electromagnetic interaction in the Maxwell Lagrangian

L= —4;2FWFW , (4.1.2)

runs with the energy scale.

Whatever fundamental theory turns out to complete QED, it may admit a covariant
effective field theory description that captures the dynamics of the coupling. Then, g would
emerge as a spacetime function with some dynamics. In a simple model, g would be a real
scalar field with a standard kinetic term. Allowing more general dynamics, one takes g as
being an arbitrary function of the scalar field, keeping the latter with a standard kinetic
term. This suggests considering the naive covariant effective field theory

1 1
= [aev <—f(4‘f’>FWFW - Qauqba%) , (4.13)

which corresponds to the flat spacetime limit of the Einstein-Maxwell-scalar model. We see
that the non-minimal coupling function f(¢) specifies the dynamics of the gauge coupling.
This model ignores higher order corrections in F', so it is certainly incomplete. Nonetheless
one may take the aforementioned reasoning as a motivation to consider this class of simple

models. Can the Coulomb field of a point charge be de-singularised in this context?

4.1.2 An integrable model

The naive model (4.1.3), which is the decoupling limit of the EMS model (1.1.2) wherein
back reaction is neglected, is integrable in the spherical sector. Taking the following ansatz

for the fields in spherical coordinates in Minkowski spacetime (¢, 7,6, ¢):
¢ =ao(r), A=V (r)dt, (4.1.4)

the Maxwell equations yield a first integral:

_ Q .
V(T)—/TQf(¢)d , (4.1.5)
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where () is interpreted as the electric charge. Using this first integral, the Klein-Gordon

equation reads

d do Q? d 1
2 2
et Iy _ox = =0 4.1.6
Tdr<rdr> 2d¢(fwo> | 410
which, introducing the coordinate x = 1/r, yields another first integral

d%Q @’

— ) ——===£. 4.1.7

() - 76 4D

It is a simple application of the virial theorem, or a Derrick-type scaling theorem [49], to

show that solutions must have £ = 0. For instance, this can be seen from the condition [44]

/d3xT,»j =0, (4.1.8)

that holds for time-independent, finite energy field configuration in Minkowski spacetime,
where i, j are spatial indices in Cartesian coordinates. Relation (4.1.8) is a simple conse-
quence of energy-momentum conservation and can be interpreted as the balancing of the
total stresses in an extended object. There are regions where matter is in tension and
regions where it is in compression, for any static balanced soliton. Thus, the problem of

finding solutions is reduced to solving, from (4.1.7),

1
ﬂwzQ/Vﬂww, (4.1.9)

and then inverting x(¢) — ¢(x) — ¢(r). Fixing the coupling function f(¢) one can obtain
¢(r) and, from (4.1.5), the electrostatic potential, both as line integrals. Due to the two
first integrals the system is fully integrable.

4.1.3 Everywhere regular solutions

To assess if the solutions have finite energy one must consider the energy-momentum of

the model,

1 1

AT = f(9) (FWFVCY — 4gWFOé@F°“B> + 0,00, 0 — 59“1,(9&42560‘@1) . (4.1.10)
This yields the energy density p, after using (4.1.7):
Q2
p=Too=——— (4.1.11)
Arrt f(9)
and the total energy, E, obtained by integrating the energy density on a spacelike slice X
3 +oo Q2

E:/pdazz/ ————dr . 4.1.12
% o rf(9) ( )

In order to obtain regular solutions at the origin we assume the scalar field admits a

power series expansion near the origin:

¢=do+ Y b’ (4.1.13)

p=N
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We do not constrain the constant coefficient ¢g, which may or may not vanish. Apart from
oo, let ¢, where N € N > 1 be the first non-vanishing coefficient in this expansion. Then,

from (4.1.7),
_ @

—NpVHL )2 .
(NN )" = 5

(4.1.14)

Thus, as r — 0,
Q* 1

f(¢) ~ N2, 7N (4.1.15)

Regularity of the scalar field at the origin then requires the coupling to diverge as ~

1/r?N+2_ From (4.1.11) this implies that the energy density is finite therein and from (4.1.5),

2 12
V(r)=V(0)+ (2]]\\;% PN (4.1.16)

close to the origin. Thus, all physical quantities are finite close to the origin, for this class
of behaviours of the coupling.

4.1.4 A class of examples

There is still, of course, some freedom in choosing the coupling function, within the class
with the correct divergent behaviour at the origin. Let us consider examples.

4.1.4.1 A simple coupling yielding regular solutions

As an explicit example, consider

1
(1-ag)t’

where « is a non-zero constant. Then (4.1.9) immediately yields, taking the integration

f(¢) = (4.1.17)

constant such that ¢ — 0 as r — oc:

Q

o(r) = Qa+r

(4.1.18)

One observes that ¢(r) is regular and smooth as r — 0, ¢(r) ~ 1/a — r/(Qa?); thus we
expect, from (4.1.15), the coupling to diverge as 1/r*. Asymptotically , on the other hand,
¢(r) ~ Q/r. Thus the scalar “charge" coincides with the electric charge. Plugging (4.1.18)
into (4.1.17) yields:

fr) = (1 + 0‘Q>4 : (4.1.19)

-
The coupling diverges as 1/r% at the origin, as anticipated. This divergence precisely
cancels the divergence of the Maxwell field at the origin, ¢f. (4.1.11), making it finite and
non-zero. In fact, the energy density, from (4.1.11), is

Q2

P = Imaa (4.1.20)
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It follows that the total energy (4.1.12) is

Q
E=—. 4.1.21
3 ( )
Now, using (4.1.5) we obtain for the electrostatic potential:
rQ a?Q?

Vir)=-—

(Qa+71)?  3(Qa+r1)" (4.1.22)

All the quantities (4.1.20), (4.1.21), (4.1.22) manifestly reduce to the usual Coulombic ones
upon taking o — 0. In such case (4.1.18) reduces to the profile of a scalar charge Q) at the

origin. The expressions make manifest how o regularises the solution.

4.1.4.2 A family of couplings yielding regular solutions

As further examples, with slightly different features, we generalise the coupling (4.1.17) as

1
f(¢)=———, 4.1.23
@) = a7 (4129
where n is an integer. Using this coupling, equation (4.1.9) gives
1 1
S=— [(1—ap) 4.1.24
=g [a-a0 s, (1120

which has a different indefinite integral for n # 2 and n = 2.
For n # 2, imposing ¢(r — oo) = 0 to fix the integration constant, one obtains
2
1 1 a@Q(n —2)|2—
¢(7“):—[1—|—Q(2r)} ;

4.1.25
Y ( )
which reduces to (4.1.17) for n = 4. For regular solutions at the origin we require lim,_,g ¢

to be finite. This implies n > 2, in which case

2

lim (r) = ~ — (27”) e (4.1.26)

r—0 a  a\aQn—2)
which is finite, as required. For n = 3 we see that the second term goes as r2; but for n > 4,
the second term has a non-integer power. In the former case we anticipate, from (4.1.15),
that the coupling diverges as 1/7%. In the latter case, ¢ is not analytic at the origin. It
will, nonetheless yield a regular solution, when analysing the usual physical quantities.

The coupling f(¢) as a function of r then reads:

) = [1 N g(” _ 2)] " (4.1.27)

2n
which diverges as ~ 1/r7»=2 at the origin, for n > 2, but respects the condition lim, _,, f(r) =
1. We confirm, in particular, the 1/7% divergence, for n = 3 and a divergence with (gener-
ically) a non-integer inverse power for n > 5. The electric field E,, = —0,V(r) has only

one non-zero component which reads, from (4.1.5)

Ey(r)=——% = < [1 4290, 2)] A (4.1.28)
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4
which behaves as r»=2 near the origin, and it is thus regular for n > 2.
The total energy now reads

2
= (n—i—QZ)a . (4.1.29)
Thus, the family of cases with n > 2 illustrate how regular solutions can be obtained, with
a different analytic behaviour of the scalar field near the origin (the cases n = 3 and n = 4)
and non-analytic behaviour (n > 4).

With n = 2, following a similar reasoning one obtains
¢(r) = —(1—e 9"y, (4.1.30)

which is a regular solution at r = 0 with lim,_,o ¢(r) = 1/a. The coupling function f(¢)
becomes
flr) =e*er, (4.1.31)

which, as before, also diverges at 7 = 0 but respects lim, o, f(r) = 1. Observe, however, it

does not diverge as an inverse power of r, which was the conclusion in Section 4.1.3. This

is because, again, ¢ in this case does not admit a power series expansion near the origin.

This illustrates yet a different example of divergent coupling that yields regular solutions.
The electric field is now

Q _ _Q 20/

E,.(r) = —F T : (4.1.32)

and the total energy is
g

=5 (4.1.33)
In these considerations a@) was assumed to be positive. Otherwise the total energy (4.1.29)-
(4.1.33) would be negative, which would violate the weak energy condition. Interestingly
enough, despite the seemingly different solution for n = 2, the total energy F is a smooth

function of the power n, as (4.1.33) coincides with setting n = 2 in (4.1.29).

4.1.5 Dilatonic coupling: a spherically symmetric solution

As mentioned in the introduction, a dilatonic coupling

f(p)=e%, (4.1.34)

where « is a constant, emerges in relevant scenarios. Let us thus briefly mention the
existence of a spherically symmetric, exact solution for this coupling.

Considering (4.1.34) in (4.1.9), and taking the integration constant so that the scalar
field vanishes asymptotically we immediately get
o

(4.1.35)

2
¢ =——1log [14—
« 2r
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Thus, the coupling, as a function of r is

f(g) =€ = [1 + O;?] B (4.1.36)

Thus, the coupling diverges at the origin and, if a@Q > 0 it is regular elsewhere. Moreover,

using now (4.1.5) we get

2Q
Vir)= - —~ | 4.1.37
(r) a@ +2r ( )
One finds the following small-r expansion of the solution
2 a@) 2 4dr 2\
o(r) = o <logr log T > +O(r), Vir) = " + 20 +0(r?);  (4.1.38)

thus, the scalar field diverges at the origin. Asymptotically, on the other hand, both fields

are well behaved

2 1 2 1
¢(r)=—?+2%+0(r3), V(r)z—?#;%w(ﬁ)- (4.1.39)

The energy density of this solution diverges at the origin:

Q2

= _Jt—____* . 4.1.40
P t 2(aQ + 2r)2 ( )
the total mass, however, is finite
o
2
M = 47r/ drr2p = 29 (4.1.41)
0 (6

This solution is interesting in that it shows a divergent coupling can source a finite mass
configuration which, nonetheless, is not fully regular, as the scalar field and the energy

density diverge at the origin.

4.2 The gravitating solitons

The above flat spacetime solutions can be made to self-gravitate by coupling (4.1.3) to
Einstein’s general relativity. For the case of the regular solutions described in the previous
section, this yields, perhaps, the simplest models of charged soliton.

One now considers the EMS model (1.1.2). In addition to the ansatz (4.1.4) we consider

the metric form

d 2 2
dsz _ —6_26(T)N(T')dt2 + NZT) + 7«2<d92 + sin2 0d¢2) , where N(T’) =1- Ti(r) s
(4.2.42)

and m(r) is the Misner-Sharp mass; 7 is thus the areal radius, a geometrically meaningful
coordinate.
The ansatz (4.1.4) and (4.2.42) yield the following effective Lagrangian:

2 2
Lo = e om' — %6_6N¢/2 + 7éf((b)e‘sV’z ) (4.2.43)
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Asin the flat spacetime case, the equation of the electric potential possesses a first integral,

which generalises (4.1.5), and reads

Q

r2f(¢)

where again the integration constant () is the electric charge, which we shall assume to be

V' =e? (4.2.44)

strictly positive, without any loss of generality. Using this integral, the remaining equations

of motion become!

m' = ﬁN¢’2 + Q—QS(qb) (4.2.45)
2 2r2 ’
§+r¢?=0, (4.2.46)
-6
—0,.2 N/ € dS((b) 2
N¢) — ——2Q° = 4.2.4
NGy - S5 R =0, (42.47)
where we have defined
1
S(p) = —— . 4.2.48
=70 4:245)
The smooth of a spacetime configurations can be assessed by analysing the Ricci scalar
N 2
R==—03rd—4)+ S 1+ N(@*" — (1—-r8")*)] - N", (4.2.49)
r r

and the Kretschmann scalar

4

2 2
K= (- N)* + 3 [N 4+ (N' —2N§')?] 4+ [N" — 36'N' + 2N (6" — §")]" . (4.2.50)

4.2.1 Asymptotic expansions
4.2.1.1 Near the origin

A small r analysis of the field equations confirms the conclusion observed in the flat space
analysis: for a scalar field admitting a power series expansion near the origin ¢ = ¢g +
¢17 + ... and ¢ # 0, if the coupling diverges as 1/r?, finite energy, everywhere regular
solutions are possible. To see this, we again start by assuming the existence of a power

series expansion of solutions, with the scalar field approaching a finite nonzero value
d(r) = ¢o as 7 —=0, (4.2.51)

where ¢g is arbitrary. Then, the equations of motion, together with the assumption of

regularity, impose, for the n'" derivative of S(¢) computed at the origin, denoted S™ (¢y),
S(¢o) = 5M(¢o) = 5@ (o) = 5@ (g0) =0,  whereas S (gg) > 0. (4.2.52)

This implies the advertised behaviour: the coupling function f(¢) diverges as 1/r? as
r — 0. This behaviour cancels the divergence associated with the presence of an electric

charge, providing a smooth configuration as r — 0.

!There is an extra equation, which is a constraint and can be derived from (4.2.45)-(4.2.47).
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The small r expansion of the matter functions reads

_ _ 2/67 9 _ 8e % 3
é(r) = ¢o m + Pore 4+ ..., Vir)= QSS (¢0) + ,  (4.2.53)
while for the metric functions we find
8 1 N 2V6¢s 4 S(r) = & 1272
") = Qs T ovEmEy T T Gasagy T
(4.2.54)

where ¢9 and dg are constants that are fixed by the numerics when integrating the field
equations from the origin to infinity and requiring the correct asymptotic behaviour. With
this expansion, both the Kretschmann curvature scalar and Ricci scalar are finite as » — 0,

taking the form

3840 2560v/6¢2
K = R,,qs R = — e 4.2.55
et QS (g~ PO 25
and VB
-1’8 16v6e (4.2.56)
Q25 (o) Q(S™(gh))!/2
The small r expansion of S(¢) reads
24 8V6ps 5

S(o) = rt— ro 4., 4.2.57
)= 515 (0) Q3/S@ () (4257

which implies the following generic approximate form of the coupling function

1

S(¢) = ——~(dp—dg)* as r—0. 4.2.58

Of course, we could have assumed that in the scalar field expansion ¢ = 0 and the power
series starts at a higher order term. This would impact in the way the coupling diverges
at the origin, similarly to the flat spacetime analysis of section 4.1.3. For concreteness,
here we focus on the case with ¢; # 0. This case corresponds, in the non-back-reacting
case, to having N = 1 in equation (4.1.13). Choosing ¢; = 0 in the latter would imply
a different behaviour for the divergence of f(¢), implied by the equation (4.1.15). In the
back-reacting case this would correspond to having S (¢g) = 0. Non-trivial solutions

with such behaviour should exist, as well.

4.2.1.2 Near infinity
A large r analysis of the field equations, on the other hand, imposing
f(@) =1 as r — oo, (4.2.59)

yields the following approximate solutions:

2 2
Qa5 b(r) = 25 4 (4.2.60)

=M —
m(r) 2 ’ r
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Q

2
O @

22
Here M is the ADM mass and @ is the electric charge; V. is the electrostatic potential at

TR (4.2.61)

infinity and @ is the scalar ’charge’ which in general needs not equal the electric charge (it
did in the flat spacetime illustration above). In fact, the equations of motion possess again

two first integrals implying that the gravitating solutions satisfy the following relation
M?*+ Q2 = Q> (4.2.62)

This last equation, in particular, shows manifestly the curved background breaks the equal-
ity between @ and Q.
Interestingly, one can show that there is a Smarr relation in terms of these asymptotic

quantities, which is not affected by the scalar field,
M =V,0Q . (4.2.63)
Moreover, a first law of thermodynamics can be obtained in the form
dM = VydQ . (4.2.64)

We emphasise the absence of a scalar field contribution in these relations.

4.2.2 The full solutions

The gravitating version of the exact solution in Minkowski spacetime described in sub-
section 4.1.4.1, with coupling (4.1.17), and whose asymptotic limits have been described
in subsection 4.2.1, can be constructed numerically. The set of four ordinary differen-
tial equations obtained from the above setup was solved numerically by using a standard
Runge-Kutta ordinary differential equation solver and appropriate boundary conditions.
Fixing «, gravitating solitons exist for arbitrary large values of (). The profile of a typical
solution is shown in Fig. 1. As one can see, the profiles of the various functions, and in
particular that of the Kretschmann scalar K, are smooth as r — 0. In Fig. 4.2 we show
the ADM mass vs. electric charge diagram for families of solutions with different values
of a. One can see that for all families, the solutions trivialise as a — 0. Moreover, a
smaller o implies that the same value of the electric charge can support a more massive
soliton. Obviously, the solutions also trivialise as ¢ — 0. The electric charge supports

the soliton. This is also manifest from the following virial identity that can be derived for

%) [e%S) -4 2
/0 dr e=%¢"? :/0 dr 12]%)) . (4.2.65)

For @@ = 0 the right hand side vanishes, and so must the left hand side, which implies

these solutions:

¢’ = 0 and hence no non-trivial scalar profile exists.
Self-gravitating solitons with the coupling (4.1.23) and n = 3 were also obtained. They

follow the same pattern as the n = 3 case, which is therefore illustrative.
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Figure 4.1: Profiles of an illustrative gravitating soliton with the coupling (4.1.17).

Figure 4.2: ADM ws. electric charge for families of gravitating solitons with different values of
a. The straight lines are obtained from the perturbative solutions, whereas the dots represent the

numerical solutions.

4.2.3 Perturbative solutions

The existence of a flat spacetime solution, whose total mass-energy is proportional to 1/«
suggests that the self-gravitating solitons may be expressed as a perturbative series in
1/c. Let us indeed show that the numerical solutions of the previous subsection can be
approximated by such perturbative solutions. This approximation, as we will show and as
one may anticipate, is accurate for sufficiently large a.

The perturbative solutions are obtained by performing a power series expansion for all

o1



relevant functions

m(r) = kz;l (;)kmk(r) o) = kz;l (i)k 5e(r) | (4.2.66)
o) =3 (;)k o), V=% (;)k Vi(r) (4.2.67)

k>1 k>1

As for the numerical solutions of the previous subsection, we focus on the quartic
coupling function (4.1.17). Solving iteratively the field equations order by order in 1/«

we arrive at the following expressions?

Bi(r) =0 =05(r) ,  a(r) = m

04(r) = ¢*(¢" + 6¢°r 22?;:2_ ;(ﬁlOqu3 — 30r%) 7 (4.2.68)
WT):qiw 92=0, ¢3(r>:w,

Vi(r) = ?)(q::)g ;o Va(m) =0,  W(r) = _r3(5¢° +92§(q::t)66qr2 +79) ’

where ¢ is a free parameter, whose physical significance becomes transparent by computing
the far field asymptotics of the electric potential. One finds it is related to the electric

charge measured at infinity @, as

o=12. (4.2.69)
@
The perturbative solution yields the following ADM mass and scalar charge, valid to
fourth order in perturbation theory:
M= % (1 a 301042 * 10810a4) ’ @s = (1 a 1810[2 * 32470044) @ (4270)
Observe that the first terms in (4.2.70) reproduce the flat spacetime limit, eq. (4.1.21) and

the fact that the electric and scalar charge coincide in that limit.

In Fig. 4.2 the perturbative solutions (4.2.70) are compared with the numerical solu-
tions. One can observe that the former provide a good approximation for large values of
«a; for instance, for « = 10 the relative difference between the numerical result for M(Q)
and the theory one is around 10™%. However, the differences start to increase for smaller
«. This is illustrated by the results for a = 0.2 in Fig. 4.2.

Finally let us mention that a similar solution has been derived for the self-gravitating
solitons with the coupling (4.1.23) and n = 3. In this case one finds, e.g.

20 2 22
M===(1- 4.2.71
5o < BaZ 14625a4> + ( )

2We have computed the solution up to eighth order and no obvious pattern could be found. Here we

display only the first few terms for each function.
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4.3 Discussion

A set of no go theorems were shown in chapters 2 and 3 establishing that the model (1.1.2)
does not allow self-gravitating solitons. One of the observations therein is that if the
coupling would diverge, the theorems could, potentially, be circumvented. The purpose of
this chapter was to provide the mechanism of how this can happen by providing a simple
construction of flat spacetime and gravitating solitons.

Preliminary analysis shows the solitons we have described herein are stable against
spherical perturbations. If this is the case for generic perturbations, these solitons can be
used for dynamical studies in many setups, as, for instance, boson stars [121]. Moreover,
this construction reveals how to de-singularise the Coulomb field in a classical field theory,
without resorting to non-linear electrodynamics, as in the Born-Infeld model [72], or invok-
ing a manifestly extended object, such as in the Dirac model of the electron as a spherical
membrane [122].

Finally, let us remark that there is a well-known similarity between the EMS model
and the extended scalar-tensor-Gauss-Bonnet model, where black hole scalarisation was
first pointed out in [85-87|. Very recently, a family of particle-like solutions in the latter
model was discussed [123]. These particle-like solutions are also supported by a divergent
coupling making them the counterparts of the solutions described herein. But in the cases
reported in [123|, the scalar field also diverges at the origin, in contrast with our fully

regular solutions.
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Chapter 5

Electromagnetic dual

Einstein-Maxwell-scalar models

In this chapter we will discuss a specific solution generating technique, based on duality
transformations. Here we construct the formalism of the duality orbits presented in the
introduction (section 1.4) where we use a duality transformation as a map between solutions
of similar Einstein-Maxwell-scalar models with different couplings f(¢) and g(¢). This
contrasts with the usual self-dual models, like the pure Maxwell theory, where a duality
transformation is simply a transformation between solutions of the exact same model.

In section 5.1 the formalism is presented for the electromagnetic duality in the EMS
model, where we establish the map between different solutions in models with different
coupling functions. These transformations preserve the metric and the scalar field and
define the duality orbits.

Section 5.2 is where we apply this duality to various examples, which are explicitly
known solutions of illustrative EMS models, in order to obtain duality orbits.

In section 5.3, we generalise this duality for further generalisations of Einstein-Maxwell-
scalar, including possible multiple scalar and gauge fields. This allows us to consider
this duality applied to, for example, the aforementioned Einstein-Maxwell-Dilaton-Axion

model |71]. Some remarks are presented in section 5.4.

5.1 Electromagnetic duality in the EMS model

5.1.1 Fields and equations of motion

Consider the EMS family of models described by the action (1.4.14) which, for ease of

reference, we present here again

1 R ~ 1
s=L / d4x\/jg<4 O e X g e Qa,tqba%) SNERRY
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We shall be interested in stationary asymptotically flat spacetimes, with associated asymp-
totically timelike Killing vector field k#. The scalar field will be regarded here as endowing
spacetime with a medium, making the electric permittivity and the magnetic permeability
spacetime dependent. Then, one uses the standard formalism for electrodynamics in a
medium, definining the electric intensity, magnetic induction, electric induction and mag-

netic intensity 4-covectors as, respectively:'

E,=k'F,, , (5.1.2)
1 af 1.v VI
By = Sepap Pr¥ = k" F,, (5.1.3)
D, =k'G.(9) , (5.1.4)
1 « v VA
Hy = SeuapG Bk = k"G (5.1.5)
where
"7 — oL uv 0
G"(¢) = -2 = f(@)F" —g(¢) ™™, (5.1.6)
0F
and £ is the Lagrangian density. The matter equations of motion obtained from (5.1.1)
read:
V[MEV] =0, (5.1.7)
Vi Hy =0, (5.1.8)
D+

P (B”) =0, (5.1.10)

Vv
L) pyu _ Ldg(9)

20 _
D¢‘4 dp M 4 do

F Fr, (5.1.11)

where V' = —kHk, is the norm of the Killing vector field.

5.1.2 Constitutive relations

For electrodynamics in a medium, the constitutive relations specify how the electric and
magnetic inductions relate to the electric and magnetic intensities. From relations (5.1.4)

and (5.1.5), the fields E,, and H,, are related to D, and B, fields through the following
2,

n)=7 0 et () () 3112

!The fields D and H here correspond to the fields E’ and B’ in chapter 3.
2These relations can be interpreted as a generalisation of the relations in the Einstein-Maxwell-Dilaton-

constitutive relations

Axion model of [71] as can be seen if we replace f = e~® and g = a. The sign differences are simply a

consequence of the field definitions.
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M shall be called the constitutive matriz. For f =1 and g = 0, M becomes the identity
matrix, and we recover standard vacuum electrodynamics, with F = D and H = B (recall
we use units with ¢ = 1). In general, however, F, H depend on both D,B. This is
typically the case in non-linear materials and non-linear optics. Thus, one may envisage
the non-minimally coupled scalar field as endowing spacetime with a non-linear material

environment.

5.1.3 Duality map

We are interested in finding a duality transformation Dgs that keeps equations (5.1.7)-
(5.1.11) invariant in an appropriate sense. We consider duality SO(2) rotations, by an

angle 3, acting on both the intensities and the inductions in the same way, namely [71]?

(E) Ds, (El> e <E> , (5.1.13)

H H H

<D> Ds, <D/> - <D> , (5.1.14)
B B B

S = ( cos Sinﬁ) , (5.1.15)

—sinf cosf

where

or, equivalently,

Fuy —> F,, = cos B Fu, +sin B Gy (5.1.16)
D ~
Gy —> Gy, = cos BGy +sin B Fy . (5.1.17)

Comparing (5.1.16) with (1.4.12) one observes this is the standard duality rotation of

Maxwell’s theory. From (5.1.12), it follows that the constitutive matrix becomes
D a -1
M— M =SMS ", (5.1.18)
which reads, explicitly

M — 1 f?sin? B + (gsin 3 + cos B)2 gcos(2B) + (f% + g> — 1)sin(2B)/2
gcos(28) + (f2 +g* — 1)sin(28)/2 f?cos? B+ (gcos B — sin B)? .

f
(5.1.19)

Thus, the duality rotation with an arbitrary angle 5 yields this new constitutive matrix.
The duality orbit of models is defined as the continuous sequence of EMS models (5.1.1)

where the coupling functions are

(£(6):9(8)) = (f5(9), 95(8)) , (5.1.20)

%In a medium, the field E is dual to H while D is dual to B. This is because the dual fields share
the same equation of motion, so a linear combination of them will still respect the same equation. For
example, V(,E/; = cos 8V, E,) +sin 8V, H,) = 0.
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such that

’r 1 1 ap
M = f— ) e (5.1.21)
8 \9s [f5+93

That is, the constitutive relations have the same functional form in terms of the coupling
functions, along the whole duality orbit. Comparing (5.1.19) with (5.1.21) yields

B /
© f2sin® B+ (gsin B+ cos B)2

_ 12gcos(28) + (f* + ¢ — 1) sin(25)
2 f2sin® B+ (gsin B 4 cos ()2

The orbit of dual theories is therefore the 1-parameter family of actions

I8

(5.1.22)

(5.1.23)

1 R 1 1 ~ 1
Si=1e [ d'av=g (4 — T8OV FLL P 4 < ga(0)Fy M — 26@6'%) . (G129)

where Sy equals the original action (5.1.1) and (g, A’, ¢), where F/ = dA’, are taken as
the independent fields in a variational principle. The tensor G;W is found, as before, by
the variation of the Lagrangian density in (5.1.24), Lg, with respect to F’:

0L
OF),

— fa( @) P — Lga() (5.1.25)

G (g) = —2 ;

From the discussion above, it follows that if

8, A, ¢ f(¢),9(8)] (5.1.26)

is a solution of (5.1.1), then
8. A, ¢: f3(9), 95(9)] (5.1.27)

is a solution of the Maxwell equations obtained from (5.1.24). It remains to check the
scalar and Einstein equations are also obeyed for the model (5.1.24).

The scalar equation of motion derived from (5.1.24) is

%¢ = igqu;“,F’W - zllciifﬁleW . (5.1.28)

Using the identities F), F'* = 2(B”> — E”®)/V and F, F'" = —4E'-B'/V and then

reverting back to the original fields, it follows (5.1.28) reduces to the original equation of

motion (5.1.11) for the scalar field, which is obeyed, since (5.1.26) is a solution of (5.1.1)
by assumption.

It is also straightforward to check that the Einstein equations of (5.1.1) and (5.1.24)

are the same. The energy-momentum tensor of the model (5.1.24), T}, is obtained from

the action by differentiating with respect to the metric, which is unchanged by the duality

rotation. Then, the functional form of the energy-momentum tensor is the same as that
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of the model (5.1.1), T},,, and they are mapped simply replacing (A, f,g) — (A, 3, 93)-

One can then show that

1 1
T;/w = f3 (FI’MF;O‘ — 4gW,F;TF’UT> + 0,90, ¢ — igw,@ad)&o‘(b

1 1
= f<F,uaFya - 49MVFUTFUT> + au¢8u¢ - §g,uz/aoz¢aa¢

f?sin B(gsin B + cos 3)
f2sin? B + (gsin B + cos )

by a straightforward application of the transformations. The last term of this equation

- - 1 -
- <FWFV°‘ + FyoF% — ng,FWF"T> o (5.1.29)

vanishes because for any 2-form in four dimensions we have that FWFVO‘ = i gWFagF B

Then, as expected,
1 1
T;/w = f<FWFVO‘ — 4gWFC,TF‘”> + 0,90, ¢ — ggwﬁagb@ad) =T . (5.1.30)

We have thus established the duality orbit of solutions (1.4.16), under (5.1.16) and (5.1.20),
the latter explicitly given by (5.1.22)-(5.1.23).

A represention of the duality orbits is obtained as follows. Consider a two dimensional
space parameterised by (z,y) = (f3,93) as an illustration of the space of EMS models. It
is simple to check that the duality orbits defined by (5.1.22)-(5.1.23) obey:
1+ /2 +¢°

2f '
Thus, they are circles, passing through the fiducial EMS model (fo,90) = (f,g). The

(fs—AP+gz=A>—-1,  where A= (5.1.31)

radius of the circles vanishes at the self-dual model (fo,g0) = (1,0), that is, Maxwell’s
theory. This is illustrated in Fig. 5.1.

5.2 Examples of duality orbits

5.2.1 Closed form solution for a scalarised electric charge in flat space-

time

Our first example is a scalarised electric charge solution found in [8], for the model (5.1.1)

in flat spacetime and with coupling functions

1
f(¢) = T2 g(¢) =0 (5.2.32)
The scalar field and electric potential are radial functions
1 2
¢(r) = (sin <?) , o V()= % +¢2 {4 sin (?) — ;ﬂ : (5.2.33)

from which the electric intensity and induction have only the radial component:
E, = 92 [1 — ¢%sin? (Qﬂ ., D= f(®)E, = QQ , (5.2.34)
r r r
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Figure 5.1: Duality orbits in the space of EMS models, for different values of the fiducial EMS
model (f, g). The self-dual model, Maxwell’s theory, is the black dot at (1,0).

whereas the magnetic induction and intensity vanish
B=0=H. (5.2.35)

Observe that whereas the electric intensity is sensitive to the scalar field, the electric
induction has the standard Coulombian form, and it is the same as when ¢ = 0.
The duality orbit that goes through the model (5.2.32) has:
1 — ¢? »*(2 — ¢?) sin B cos
~1_2cos? Bp2 + cos? Bt 98 =1 "2 cos? B2 + cos? Bt -
Along this sequence of dual models, the seed (5.2.33)-(5.2.35) is mapped, generically, to

f3 (5.2.36)

dyonic solutions. For an arbitrary (3, the fields along this orbit are:

E. = % [1 — (?sin? <Q )} cos 3, D, = % cos 3, (5.2.37)
r r T

B = _% sing, H. = —% {1 — (%sin? <Q>] sin 3 . (5.2.38)
T T T

Again, one observes the Coulombic form of the electric and magnetic induction fields, with

electric and magnetic charges, respectively, Qg = () cos 8 and Pg = ) sin 3, such that
Q% + PBQ = Q% = constant , (5.2.39)

along the whole duality orbit.
Within this orbit there is, however, a pure magnetic solution at 5 = 7/2, wherein the

coupling functions are
1

f7r/2(¢) = m =1- ¢2 ) g7r/2(¢) =0 ) (5240)
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the electric intensity and induction vanish
E=0=D", (5.2.41)

and the magnetic induction and intensity are only radial functions:

Bl = —% . H = frp(¢)B, = —7% [1 — (*sin® (?)} : (5.2.42)
We thus found a pure magnetic solution for the model with couplings (5.2.40). The original
electric charge () becomes the magnetic charge just as in the Maxwell theory example
(1.4.13). For 8 = m we would get the original purely electric solution but with opposite
charge sign while for § = 37/2 we get the pure magnetic solution once again with opposite
charge sign. For any [ value between these, we get a dyon whose magnetic and electric
charges relative contributions depend on how close § is to the values mentioned above.
There is a full orbit of solutions that can be obtained from the original solution.

Let us close this example with two observations. First, this formalism unveils the fact
that although the original solution has a non-Coulombian electric intensity, the electric
induction is Coulombian. The same holds along the whole duality orbit. Second, at
B = 7/2 the f(¢) coupling function is mapped into its inverse, whereas g(¢) remains
zero. This is a generic feature starting with arbitrary f(¢) and vanishing g(¢), as can be
appreciated from (5.1.22)-(5.1.23):

5:71’/2 f g:O 1

i = 5.2.43

fﬁ f2 —|—92 ¥ ( )
B=n/2 g =0

o " gl = (5.2.44)

Since f(¢) defines the coupling strength of the Maxwell field, this particular value of the
map is an example of a strong <> weak coupling duality, with an electric <> magnetic

mapping, reminscent of the Montonen-Olive duality [124].

5.2.2 Closed form Maxwell-scalar solitons in flat spacetime

Our second example uses the seed configuration found in chapter 4, section 4.1. It describes
a purely electric, static, spherically symmetric soliton solution of (5.1.1) in flat spacetime,

with
1

- =0. 24
FO)= qoagn s 9@ =0 (52.45)
The scalar field reads 0
= 5.2.46
the electric intensity and induction have again only a radial component
Qr* Q
E,=—, D, = E,=— 5.2.47
(r+ aQ)" OB =52 (5247
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whereas the magnetic induction and intensity again vanish
B=0=H. (5.2.48)

The f(¢) coupling (5.2.45) diverges at the origin » = 0; but all physical quantities are
regular, such as the energy density and the electric intensity. Indeed, this solution was
interpreted in the last chapter as a de-singularisation of the Coulomb solution of Maxwell’s

theory. Nonetheless, the electric induction D is again Coulombian and diverges at the

origin.
The duality orbit that goes through the model (5.2.45), has:
1—agp)? 1 — (1 — p)®sinBcosp
fs= == ( 3 ) s, 9= [, 2( 3 . T (5.2.49)
sin® 5 + cos? 5(1 — o) sin” B + cos? 5(1 — ag)

Once more, the duality map will generate dyonic solutions from the seed (5.2.46)-(5.2.48).
The fields for this orbit are:

E = (74_?2;)46036 , D] = %cosﬁ , (5.2.50)
2
Bl = —7% sin 3 , H = _O’fthyl sin 3 . (5.2.51)

A pure magnetic solution is obtained 8 = 7 /2. The dual model at this 8 value has couplings

b
f(¢)

and the dual configuration has vanishing electric intensity and induction

frp2(9) = =(1-ad)',  grp(¢) =0, (5.2.52)

E=0=D, (5.2.53)

and a spherical magnetic induction and intensity

! Q / r Q?"Q
BT - _ﬁ ) H’I‘ - f7r/2(¢)3r = _m . (5254)

The magnetic induction of the dual solution By is Coulombic and diverges at r = 0 while
H' is regular. All physical quantities are regular, including the energy density, making this
a regular magnetic soliton.

Note how the solutions for the duality orbits (5.2.36) and (5.2.49) always have a vanish-
ing fs at the origin except for when 8 = 0 or 3 = , in which case it diverges and we have
purely electric solutions. This is because the presence of a magnetic field with a vanishing
f is enough to circumvent the no go theorems of the previous chapters, which rely on the
definition of a magnetic-like scalar potential ¢ that respects 9,1 = fB. And, as expected,
when we have no magnetic field, the only way to circumvent the no go theorems is to have

a diverging coupling f.
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5.2.3 Closed form dilatonic solution in flat spacetime

As yet another example, consider the spherically symmetric solution discussed in chapter
4, section 4.1 for a dilatonic coupling, f = e~®?, in flat spacetime. The scalar field and

electric potential read

a@ 20Q)

2
=—In(1+— Vir)y=—-——. 5.2.55
¢ an< +27“>’ (r) a@ + 2r ( )
whereas the electric intensity and induction fields are
4Q Q
E=—0 D, = E.=—. 5.2.56
s (OCQ + 2T)2 ) r f(¢) r r2 ( )
The magnetic induction and intensity are trivial
B=0=H. (5.2.57)
In this case, the duality orbit that goes through this model, has:
1 sin 28 sinh ag
= , =— . 5.2.58
Ts e®® cos? B 4 e~9 sin? I8 e2® cos? B + e~ sin? 3 ( )
The fields obtained from the seed solution are, along the duality orbit,
4Q Q
I . I
ET = W COb/B y DT = 7"72 COSB 5 (5259)
p Q. , 4Q :
BT = _7"72 SIHB 5 H’I” = —W SIHIB . (5260)

The reasoning is the same and we can see there is, once again, a magnetic solution for

B = m/2 with trivial electric intensity and induction.

5.2.4 The GMGHS black hole

We now consider a curved spacetime generalisation of the example in the last subsection.
This is the well known dilatonic electrically charged, spherically symmetric black hole (in

four spacetime dimensions), obtained in the model (5.1.1) with

flo)=e2,  g(¢)=0, (5.2.61)

It was first discussed by Gibbons and Maeda in [5] and later by Garfinkle, Horowitz and
Strominger [125]. We shall call it the GMGHS black hole. The metric reads

2M 2M\ -
ds* = — <1 - 71>dtz + <1 - r> dr? + 2 <1 - 7;) (d6* + sin” Bdp?) | (5.2.62)

where M is the black hole mass, @ is the electric charge, r_ = e??~Q?/M and ¢ is the
asymptotic value of the scalar field. The scalar field and the gauge potential read

e = 2o <1 - r‘) A=Yy (5.2.63)
r T
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whereas the electric intensity and induction are

Q o Q
E, = =% D, = E,=—— 5.2.64
T 7’26 ) s f(¢) T 7“(7'—7’_) ) ( )
and the magnetic induction and intensity vanish:
B=0=H. (5.2.65)

We remark that D does not have a Coulombic form, unlike the above cases. This is
because the radial coordinate in (5.2.62) is not the areal radius. Using the areal radius
r* =ry/1 —r_/r, the Coulombic form D, = Q/r*? is recovered.

The duality orbit that goes through this model, has the form (5.2.58) with a = 2. The
fields obtained along the duality orbit, seeded by the GMGHS solution are

Q

E. = 9€2¢°° cos 3, D, = cos 3, (5.2.66)
r2 r(r—r_)
Bl = 9 sinf, H.= @ e sin 3 . (5.2.67)
r(r—r_-) 72
Once again for 8 = m/2 we obtain a purely magnetic configuration in the dual model with
1
fw/2(¢) = W = e ) g(¢)=0. (5.2.68)
The magnetic induction and intensity are now non-trivial:
Q / !/ Q 2
Bl=——" H, = Bl = — = 20 2.
r r(r _ T‘,) ’ r fﬁ/2(¢) r 7”26 ) (5 69)

whereas the electric intensity and induction are trivial
E=0=D". (5.2.70)

This magnetic dilatonic black hole configuration was first obtained by Garfinkle, Horowitz
and Strominger in [125], wherein the electric configuration was actually obtained by this
duality rotation. The electromagnetic duality transformation of the EMS model reduces,
for this specific choice of 3, to this simple example of S-duality in low energy string theory,
amounting to the change ¢ — —¢, which in this context is the dilaton field.

We can just as easily find a dyon black hole for any other angle 3, but in this case g(¢)
becomes generically non-vanishing. As a concrete example take 5 = 7/4. Then, the model

along the duality orbit has fg = 1/cosh2¢, g3 = — tanh 2¢ and its action is, explictly:

1 ;g tanh 2¢

L (R 1 ;a1 }
5% = 47T/d $N(4 4 cosh2¢p M 4 FuF 28,@8 ¢ . (5.271)

This model admits a dyonic black hole solution with the GMGHS geometry and scalar
field, (5.2.62) and (5.2.63), and the electromagnetic field (5.2.66)-(5.2.67) with 8 = 7/4,
which in covariant form reads:

Q/

r2

/
F = e2odt Ndr + Q'sinfdd Ndyp = A= —%e%“’dt — Q' cosOdy , (5.2.72)
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where Q' = Q/+/2. Comparing with (1.4.13) one can confirm this describes an electric plus
magnetic charge, a dyon. As far as we are aware, such closed form solution within model
(5.2.71) has not been discussed previously in the literature. Moreover, one can compute

other exact, closed form solutions of this model, e.g. rotating charged black holes.

5.2.5 Other models with scalarised and axionic black holes

Having understood the duality orbits, let us mention a set of other EMS models (5.1.1)
wherein numerical black hole solutions have been constructed in the literature and whose

duality orbits can be constructed. Examples include the following coupling functions:
1. Exponential coupling: fz(¢) = e , 9(¢)=0;
2. Power-law coupling: f&(¢) =1—a¢? , g(¢) =0;
3. Fractional coupling f(¢) = ﬁ , 9(¢)=0;
4. Higher power-law coupling f&,(¢) =1 —a¢* , g(¢) =0 ;
5. Axionic coupling f(¢) =1 , g% =a¢ .
6. Axionic-type coupling f(¢) =1 , g%p = ag?

In all cases « is a coupling constant. Couplings 1-3 were discussed in [8,81,82] in the
context of EMS models allowing spontaneous scalarisation of charged black holes (see also,
e.g. [98,101-105,126-134]); all these coupling functions have the same behaviour for small
values of a¢?. Coupling 4 was discussed in [84]; it does not allow spontaneous scalarisations
but it exhibits an interesting two-branch space of solutions with scalar hair, co-existing
with the standard Reissner-Nordstrom black hole, in a trinity of non-uniqueness. Black
holes with coupling 5 were first discussed in [135] and revisited recently in [83], wherein
coupling 6 was also discussed, again in the context of spontaneous scalarisation of charged
black holes. Various solutions for flat spacetime with coupling 5 were also found and
discussed in [136] and [137]. See also, e.g., [138] for other forms of the scalar coupling
f(#), in the context of holography.

We shall not analyse the duality orbits for all these models in detail, but let us make
some comments at the rotation point 8 = 7/2. One can see the duality relates differ-

ent couplings through the relations (5.2.43)-(5.2.44). For instance, we get the following

identities:
fEnp2=FfE" (5.2.73)
Jprpp=1Tr" (5.2.74)
Sorpp=1p" (5.2.75)

65



Thus, the exponential squared coupling enjoys a type of S-duality symmetry analogous
to that of the dilatonic model of section 5.2.4, via (5.2.73), whereas the power law and
fractional couplings are along the same duality orbit, and can be mapped into each other
by also changing the sign of the coupling constant o. At § = /2, moreover, the purely

electric solutions of models 1-4, as before, become purely magnetic, with:
E=H=0, (5.2.76)
B'=-D=-fE (5.2.77)

These results are in agreement with the Bekenstein type identities found in [82], where both
f .o and ¢ f 4 must have the opposite sign of F,, F'*¥ for solutions with a scalar profile to
exist. For purely electric (F? < 0) or magnetic (F? > 0) solutions, these conditions imply

a different sign for the coupling constant « for the couplings mentioned above.

5.3 Duality in generalisations of Einstein-Maxwell-scalar

In here we consider various other possible generalisations of the Einstein-Maxwell-scalar
model to which we can still apply some adaptation of the duality formalism presented in

this chapter.

5.3.1 Dual scalar field generalisation

Consider once again an asymptotically flat stationary spacetime with an asymptotically

timelike Killing field k,, and following action

S:SEH+1/d4$\/jg|: f(d)7 )F F;LV ((b? )F Fuy
4m

_ fa GO — (¢)a e —V(p,a)| | (5.3.78)

where ¢ and a are both scalar fields. The functions f(¢,a), g(¢,a) and h(¢) are arbitrary
non-minimal couplings between the fields and V (¢, a) is a potential term depending on the

scalar fields. We then have the following equations of motion:
10f 10g ~ 10h ov

0%¢ = Z%FMVFW 1 ad)FWF“” + 5%6 ,adta + 9 (5.3.79)
24 — Mt)giFM”FW — Mtwgzﬁ P4 %—Z (5.3.80)
VE, =0, (5.3.81)

ViH, =0, (5.3.82)

\ (?;) =0, (5.3.83)

Vi (i”) =0, (5.3.84)



where the electromagnetic fields are defined analogously to (5.1.2)-(5.1.5) as

E,=k'F,, , (5.3.85)
B, = %EMVF&%V =k'F , (5.3.86)
D, =k'G(¢,a), (5.3.87)
H, = %EWVG&B(@ )k’ = k"G (5.3.88)
with V = —k,k* and
Gunl6,0) = ~25 1 = (6, 00w — 9(6, ) . (5.3.89)

The constitutive matrix for this model is still the same as the one above (5.1.12).
It is worth noting that this model includes an Einstein-Maxwell-scalar model with a
complex scalar field. To see this we can just define the complex scalar field as ¢ = ¢ + ia

and have h = 1. This results in the following action

S :SE'H+417T/d4$\/jg|:_ f(d:lﬂ} )F,ul/FuV_}_g(d);Lw )FWFW—;@ﬂ/}aﬂqﬁ*—v(%ﬂ)*)] .
(5.3.90)

5.3.2 General duality map

We now want to construct, in the same way as above, a general duality transformation Dg
that also keeps the Maxwell equations (5.3.81) -(5.3.84) invariant. This duality transfor-
mation is parametrised by an angle 8 and can be represented as the duality in expressions
(5.1.13) to (5.1.17) but with the new field definitions. The rest of the process is similar to
the less general case.

The duality orbit of models is now defined as the continuous sequence of EMS mod-
els (5.3.78) where the coupling functions that couple the scalar and electromagnetic fields

(F(6,a), 9(6,0) —5 (f3(0, a), ga(6, a)) , (5.3.91)

and can be analogously obtained as in (5.1.22) and (5.1.23) but now dependent on two

scalar fields. The orbit of dual theories is therefore the 1-parameter family of actions

Ss=Spn + ﬁ / d'zy/—g ( _Is (j’a) Fl e 4 9200 (Z’ @) F F
- %(%qba”qb - h(;b)@ﬂaa”a - V(o, a)> , (5.3.92)

where Sy this time equals the original action (5.3.78) and (g, A’, ¢,a), are taken as the
independent fields in a variational principle. The tensor G;W is now

0L

Iy = _
G (¢7 a‘) - 28F,'U“V

= fa(¢,a)F"™ — ga(¢,a) F'"™ . (5.3.93)

67



In the same way as before, it follows that if

[g>A7¢>a;f(¢v a),g((b, a)vh(¢)] ) (5'3'94)

is a solution of (5.3.78), then

8, A", 6, a; f3(¢, ), g5(¢, @), h(9)] (5.3.95)

is a solution of the Maxwell equations obtained from (5.3.92). It remains to check the
scalar, axion and Einstein equations are also obeyed for the model (5.3.92). The Einstein
equations are shown to be invariant by the same argument used above for the EMS case,
where the invariance of the energy momentum tensor was shown under this duality rotation.

The scalar equation was also shown to be invariant by showing that

0J5 g o _ 095 o s _ 8—fF,wF’v‘” % . (5.3.96)

96" 9 " 09 B
Now we need to show the same but also with the derivatives with respect to a. In fact this

is easily verified because what really is invariant under these transformations is
df Fu F* — dgF,, F*, (5.3.97)

meaning that the same is valid for any derivative we take of the functions f and g, be it
with respect to ¢ or a. This means that, because the duality transformation does not act

on ¢ and a, equations (5.3.79) and (5.3.80) are invariant under duality.

5.3.3 Examples of models

In here we specify examples of models where we can apply these duality transformations.

5.3.3.1 Einstein-Maxwell-Dilaton-Axion

Here we find the duality orbit of a model which is included in the Einstein-Maxwell-Dilaton-
Axion class of models and whose duality properties were studied in [71] where a self-duality
was formulated. The model, with f(¢,a) = e™?, g(¢,a) = a, h(¢) = €*? and V(¢,a) = 0,
has the following action in four dimensions

S =Spu+ i / d*z/—g [— TFWF’“’%— ZFWF’“’ - %Qﬂﬁ@“(b— e;d)@uaﬁ“a . (5.3.98)

We can use relations (5.1.22) and (5.1.23) to find the duality orbits which are

B 1 _ 12acos(28) + (e72? +a? — 1)sin(23)
e 9 4 e?(asin B + cos 3)2 9873 €29 + (asin 8 + cos 3)?2

I3 (5.3.99)

A few solutions were found for this model on which this transformation can be applied.
Examples are the wide range of stationary and axisymmetric solutions found in [139] and

the rotating soliton solution in [140] (see also [141]).

68



5.3.3.2 Potentials in Einstein-Maxwell-scalar

The inclusion of a scalar potential in this generalisation allows us to apply this treatment to
plenty of different models. The scalar potential is invariant under these transformations,
meaning that the duality orbits will have different couplings with scalar fields that will
have the exact same self interaction.

An example we can find is a fairly studied model which is the Einstein-Maxwell-Dilaton
model with an exponential or Liouville potential [142]. This kind of potential arises as a
cosmological constant in specific contexts of string theory or in non-trivial curved AdS
spacetimes (see for example [143] and [144]). This kind of model has f = e*?, g =0, h =0
and V = 2Ae™%¢, so the action is?

L[ e’ v Lo o 56
S =Spu+ 1= | d'ov=g| = T FuF" = 50,00"6 =207 | . (5.3.100)
T

We can see that for § = 0, we recover a basic Einstein-Maxwell-Dilaton model with a fixed
cosmological constant A. The duality orbits of this kind of model were already calculated
in section 5.2 for the dilatonic coupling without a potential and are represented by the
couplings (5.2.58).

Still in the Einstein-Maxwell-Dilaton model, in [145] an exact solution was obtained

for the following potential
V(¢) =27(2¢ + ¢ cosh ¢ — 3sinh ¢) , (5.3.101)

with dilaton coupling constant o = 1. The coupling function and scalar field for this

solution can be obtained from

2 2 4r2
f(@)=e? =1+ 2%'2 + i‘;m (5.3.102)

where @5 is a scalar charge. The metric of this solution has the following form

2
2
d52:—N(r)02(r)dt2+]\C§?g )+r2(d02+sin29d<p2), with N(r) = 1- 20) (5.5 103)
r r
where
r2 2 472 Q? 4r? Q?
= Zel i 1——= —1) —a| =41 - — —r? — ks .3.104
)= gy e (1 - g =) (G- g )| - e
2\ —1/2
o(r)= (1 + 47’82> . (5.3.105)
The electric intensity and induction are
Qe Qe
E,. = D, = 5 - (5.3.106)

f(@)a(r)r?’

4As the a field does not contribute we can also consider h = 1 and a = 0, it makes no difference.
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Applying the duality transformation we get

i Qe , Qe
E, = F(@)o ()2 cos 3, D, = ()2 cos 3, (5.3.107)

!/ Qe . ;L L ]
B, = T o(r)r? sin 3, H, = L sin 3 . (5.3.108)

So any solution in this duality orbit is compatible with the scalar field and metric which
are obtained from (5.3.102) and (5.3.103) respectively. Note that we get a purely magnetic

solution at 8 = /2. In the same paper a solution with
V(¢) = v| sinh(v/3¢) + 9sinh <¢> — 4+/3 cosh <¢>] , (5.3.109)
V3 V3

was also found for o = /3, for which this same process is also applicable.

Another kind of potential that we can consider is a basic self-interaction one. A dyon
solution was found in [146] for the Einstein-Maxwell-Axion model where the axion field
has a self-interaction. This model has f =1, g = aa, h =1 and V = 2m2a2 so its

action is
1 1
S =38gy + /d4m\/ [— —F, F* + —FWF By — 5 ,adta + Zm 2a?| . (5.3.110)

The duality orbits are found in a straightforward fashion to be

1 aacos(28) + (aa)?sin(26)/2

Js = 1 + aasin B(aasin 8 + cos 3) 96 = 1+ aasin f(aasin § + cos )

(5.3.111)

5.3.3.3 Complex axion field model

Axion boson stars were found in [147], where boson stars were found using a complex scalar

field 1 = |[|e™" that respected the following QCD axion potential

V([1p]) = 2ko — QkO\/l — 4k sin? <k2’¢’> (5.3.112)

where kg, k1 and ko are constants. As mentioned earlier, our model can include complex
scalar fields so we can consider a more general version of this complex axion field morel
where we also include its coupling to the electromagnetic field. With ¥ = ¢ + ia, f =1,
g=aly| = a\/m and h =1, we get the following model

al@bl

/wF e

1 1
S=Spy+ o / dha/ =g |~ F P 4
4 4

1
—5(%1#0“@0* — 2ko — 2k0\/1 — 4k sin? <k:2|¢|> } . (5.3.113)

which is equivalent to having two axion fields interacting in the same way with the electric
field, but also interacting with each other through the scalar potential. The dual orbits of
this model are also naturally represented by (5.3.111) by replacing a with [4)].
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5.3.4 Further Generalisations

In here we discuss possible further generalisations of this model.

5.3.4.1 Multiple scalar fields

As the duality transformation does not affect the scalar fields directly we can easily gen-
eralise this procedure to a model with multiple scalar fields. Consider the following action

with n scalar fields

S =S8gy + ﬁ /d4$\/jg[—MF#,,F”” + MF#VF’MV

4 4
— K1,y n) — V(1) | (5.3.114)
where
" h ey O
K($1, oy bn) = W@mkaﬂgbk . (5.3.115)
k=1

As you can see we can allow for any possible couplings hy between the fields themselves.
The only actual elements that will be altered by a duality transformation in this model are
the electromagnetic fields and the couplings f and g, once again transformed according to
the duality transformations (5.1.13), (5.1.14) and the relations (5.1.22) and (5.1.23).

5.3.4.2 Multiple Gauge fields

We can also consider various gauge fields, all with their own duality transformation. Con-

sider the following action

1 f(l) (¢a CL) v 901) (¢7 (1) - "
S = SEH + 47T/d4(I,'\/ —g|:— fF(l)NVF(q) + TF(UMVF(ID + ()
f(n) (¢7 a) v 9n) ((ba a) = v
- TF(TL)MVF&) + TF(n)uuF(l:@) + ['S((bv a) )
(5.3.116)
where "
1
Ls(p,a) = —3 PO P — (j)auaéwa —V(p,a) . (5.3.117)

We can consider dualities for each group of gauge fields coupled to the scalar fields. This

duality transforms the fields as

E o™ [ FE! E

( (n)) i>< (,”)> :5< W) : (5.3.118)
Hp) Hiy Hp)

D o™ (D! D

( (n)) g( f”)> :5< W) : (5.3.119)
B B, Bn)
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where the fields are defined just as in equations (5.3.85)-(5.3.88) just by replacing the

(n)

corresponding gauge tensor F. Each duality transformation Dy acts on the functions as

follows.
D(”)

(i) (9, 0), 9y (6, @) == (fimy(h, @), Gmy5(9, @) - (5.3.120)

So each set of coupling functions (f(,), g(n)) Will transform along with the gauge fields Fi,)
they are coupled to.

Now we ask if we can include terms like F{y),, F (”2'; that couple two different gauge

fields. Considering the following action

1 fy(¢,a) v, 9 (<Z> a) -
SZSEH+M/d41:\/9|: (1)4 Fayu F(’i)ﬂL @ Fiyuw ()
f2(¢>a) v 92(¢ ) C¢,(1 v
- ( )4 F(Q)MVFé) < F(Q)[LV (2 ) - ( 2 )F(l)ul/F(l;) + £8(¢7 (1)

(5.3.121)

where we have two gauge fields and coupling term (¢, a)F(l) ,UVF(M;)/ between the two which

is also non-minimally coupled to the scalar fields. The Maxwell equations will be

ViEq@yw =0, (5.3.122)
Viu(Hy) + ¢Bay) =0, (5.3.123)
+ cE"
\ <<1>V<2>> =0, (5.3.124)
)
Vu( % ) 0, (5.3.125)
ViuE@) =0, (5.3.126)
Viu(Hey + cBay)) =0, (5.3.127)
DY + cE!
\ ((2>V<1>> =0, (5.3.128)
B/l
)
) =0 3.12
(%) o

We now observe that we can redefine the medium fields H and D as

L .
Dy = (1) + CE(2) ’ Hyy = (1) + CB(Q) ) (5.3.130)
Al _ ke " w M

Diy) = Diyy +cEfyy ,  Hiy = Hiy +cB, , (5.3.131)

to recover the original Maxwell equations. This means we can define a new tensor that we

can use to define these fields:

G( Dpv = G(l v + C(d)a )F(Z)uu ) (53132)

Goyw = Gy + (¢, 0) Fayu - (5.3.133)
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Note that this allows us to write the action (5.3.121) as

1~ v
S= SEH+/d4xwﬁ[ G(l " ()—EG(Q)WF{;) +£s(¢>,a)] : (5.3.134)

We can do this process to include any term c(¢, a)F(n)WF(’:Z). Then we can define the

following duality transformations

E o™ [ E! E

((n)) N <</n)> - S<<n>> , (5.3.135)
Hiy Hi) Hm
D o™ (D! D

( (n)) L( f)) :5< (”>> : (5.3.136)
By B, B

where D(n) and H(n) will always have a new terms cE(,,) and c¢B(,,) respectively in their
definitions for each new coupling cFi, WF(‘;': ) for any m. Note that the duality transforma-
tions for the n and m terms do not need to be done simultaneously as Maxwell equations

are still consistent by considering only one of them.

If we instead add terms involving the Hodge dual like —C(q;’a) Fln) Wﬁ’(’:z > We just need
to make use of the identity F(,) WF (m) = Elnyuw JF (“nl: ) and the new fields are redefined as
DH Pk I Th i gl
D(1) = D(l) + cB(Q) , H(l) = H(l) cE(Q) ) (5.3.137)
DH - Pk I Th i gl
D(z) = D(Q) + cB(l) , H(z) = H(Q) CE(l) ) (5.3.138)

where the additions of the fields £ and B are simply replaced by B and —F. The duality

transformations can then be applied with these fields.

5.3.4.3 Other considered generalisations

It might be intuitive to think that we could consider this model in dimensions higher than
4, however in that case we can not guarantee that the energy-momentum is the same. This
is because to prove that T!’W = T, we require the formula FWFI,C“ = %gWFagﬁaﬂ to be
valid, something which is not guaranteed in d > 4 dimensions as F' will not have the same
tensor rank as F.

For models with specific couplings there is also the possibility of finding an extra duality
between the scalar fields, that then allows us to construct a self duality of the full model.
An example of this duality is shown in |71] for the Einstein-Maxwell-Dilaton-Axion model
where it was shown that the scalar fields can be transformed into other scalar fields that
are combinations the original fields to accomodate the duality transformation, leaving the
model invariant. However, the need of specifying the coupling functions makes it so it is

not possible to generalise this process for any general coupling.
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5.4 Remarks

Understanding the symmetries of any physical theory is always of great importance. Elec-
tromagnetic duality is a symmetry of the vacuum Maxwell equations which has led to
important insights and generalisations in classical and quantum field theory, as well as
in relativistic gravity. In this chapter we have considered EMS models described by the
action (5.1.1) for which, in general, electromagnetic duality rotations are not a symmetry
of a specific model, but define an orbit in the space of EMS models, which encompasses all
possible choices for the coupling functions f(¢) and g(¢). This orbit is a one parameter
closed orbit. There can be fixed points of the duality action, which are self-dual theories.
In our analysis, the only such point corresponds to Maxwell’s theory, which, in our setup
has f =1 and g = 0. For this self-dual theory, the orbit shrinks down to a point.

For self-dual theories, electromagnetic duality relates different solutions of the same
theory. For non-self dual theories, electromagnetic duality relates different solutions of
different theories. In either case, electromagnetic duality is a useful solution generating
technique. In the case considered herein, the duality map generically relates models with
different coupling functions and electromagnetic fields, leaving the scalar field and back-
ground geometry unchanged.

To illustrate how the duality orbits can be used as a solution generating technique
we have considered some simple electrically charged solitonic and black hole solutions,
obtaining the corresponding dyons along the duality orbit and, in particular, pure magnetic
configurations that emerge at the particular rotation corresponding to S = 7/2. In these
examples, the models had a vanishing coupling g(¢); but since F, Y = 0 for these purely
electric, spherically symmetric solutions, these are also solutions for any g(¢) coupling one
may choose. A different orbit of solutions exists for each possible g(¢). We have also
obtained a new dyonic black hole solution of the model (5.2.71), which illustrates the
usefulness of this technique.

In the last section we discussed the possible avenues where this work can be applied
to even more general models. The possibilities of having various fields (gauge vector fields
and scalar fields) and couplings between these fields are discussed, creating a formalism

that covers a wide range of models.
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Chapter 6

Higher dimensional black hole

scalarisation

We now come back to the topic of scalarisation that was presented in section 1.5. As
we know, the EMS model admits scalarisation of black holes. What we consider here is
the scalarisation of various models, including EMS and various closely related models, in
higher dimensions.

Section 6.1 is where we introduce a new action and discuss how the various models which
admit scalarisation, described in section 1.5, are included in this more general model.

In section 6.2 we address the scalarised electrovacuum BHs in scalar-tensor d > 4
models, constructing the zero modes for general d and the scalarised BHs for the simplest
coupling function allowing scalarisation in d = 5, exhibiting some of their properties. We
also address the mapping into the Einstein frame and the relation with Einstein-Maxwell-
scalar models.

In section 6.3 we consider higher d extended scalar-tensor theories, where the scalar
field non-minimally couples to the appropriate Lovelock density. Again we construct the
scalarised BHs for d = 6,8 (besides d = 4) and discuss some of their properties. We also
compare them with the hairy BHs in shift-symmetric Horndeski models for the same d
emphasizing some of the differences between the two models. We conclude with a summary

and discussion in section 6.4.

6.1 Model and Recontextualisation

As discussed in chapter 1 (section 1.5), spontaneous scalarisation triggered by strong grav-
ity effects emerges in some classes of scalar-tensor models. This phenomenon could provide
a smoking gun for scalar-tensor theories and may be interpreted as a strong gravity phase

transition. Here, for concreteness, we shall be considering models described by the generic
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d-dimensional action
1 1
s=-g | ddx\ﬁ—g{[l (@R — L0,00m
s 2
+ aLfL(d))’C(p) - aemgfemg(qb)FuyF'uV - »Cmat} ) (611)

where Lyt is an unspecified matter Lagrangian and L) is the p Euler density as defined
in (1.5.18).

The functions fs(¢), fL(¢) and femg(¢) are three unspecified non-minimal coupling

)

functions! that, when appropriately chosen, lead to spontaneous scalarisation, in each case
triggered by a different source; the strength of each of the effects is controlled by the
coupling constants, ost, 1, Gemg- In geometrised units, ag; and qemg are dimensionless,
whereas «f, has dimensions of length squared.

Now we recontextualise the introduction of scalarisation presented in section 1.5 with
regards to this model. The original scalarisation mechanism [91], which was proposed in

d = 4 scalar-tensor theories, has
ast # 0, ar, =0 = demg - (6.1.2)

Scalar-free objects that may become scalarised must have R # 0. This is the case, e.g.
of neutron stars, but not of the electrovacuum black holes (BHs), which are immune to
scalarisation in this framework.
More recently, scalarisation of vacuum BHs in d = 4 extended scalar-tensor theory was
observed [85-87] with
ap, #0, agy = 0 = Qlemg - (6.1.3)

Scalarisation now requires a non-vanishing Gauss-Bonnet (GB) invariant, which holds
for vacuum BHs, whose Kretschmann scalar is non-vanishing, despite being Ricci flat?.
Scalarised solutions have been constructed in these models, but a dynamical study of the
full scalarisation process, from the initial trigger around a vacuum BH until the settling
into a scalarised BH is still lacking.
As we know, it was observed [8] that scalarisation of d = 4 electrovacuum BHs occurs
for the EMS model with
Qemg 7 0, ast =0=qr, . (6.1.4)

In this guise of spontaneous scalarisation, the trigger is a non-vanishing Maxwell invariant

F,, F*” and thus the phenomenon needs no gravity; moreover, in this case it was possible

!Note that fomg(¢) is the coupling function that was the main subject of study in chapters 2 through

5.
2Scalarisation should occur also in Einstein-Chern-Simons models with a suitable coupling between the

scalar field and the Pontryagin density. No static scalarised solutions, however, have yet been studied, the

only case investigated so far being the NUT generalisation of the Schwarzschild BH [148].
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to establish dynamically that the scalarisation of electrically charged electrovacuum BHs
indeed occurs, when these BHs have sufficiently high charge, and that the evolution set-
tles into the scalarised solutions that can be constructed as stationary states of the field

equations [8,81].

These three guises of spontaneous scalarisation have been considered in d = 4. Con-
sidering d # 4 raises interesting questions, which also address the universality of the
phenomenon. Firstly, for the d > 4 electrovacuum BHs, i.e. the higher dimensional gener-
alisations of the Reissner-Nordstrém (RN) solution (see e.g. [149]), R = 0 ceases to hold,
since classical electromagnetism is only conformally invariant in d = 4. Thus, higher di-
mensional charged BHs can be scalarised in the original scalar-tensor models (6.1.2), with
Lat = Fl, F*Y. Here, we shall show this indeed occurs and construct explicit scalarised
RN BHs in these models.?

Secondly, one may inquire if there is anything special about the scalarisation in d = 4
extended scalar-tensor models (6.1.3), or if similar scalarised BHs occur in d # 4. We
shall show that, indeed, the phenomenon is universal, and the properties of the higher
dimensional scalarised BHs, using the appropriate Euler density, are similar to the ones of
the four dimensional model with the GB term.

Finally, the simultaneous consideration of these three different guises of spontaneous
scalarisation raises the following question: models (6.1.2) and (6.1.4) can be mapped into
one another (for particular couplings) via a conformal transformation; how does this map-
ping allow relating scalarised solutions of both models in d > 47 Here, we shall provide

the explicit mapping and exemplify how information can be extracted from it.

6.2 Scalarised electrovacuum BHs in d > 4 scalar-tensor mod-

els

6.2.1 The framework

For our first analysis we consider a scalar-tensor model, with the matter Lagrangian de-
scribing classical electromagnetism. Thus, we take (6.1.1) with (6.1.2) and Liar = Fj FH.

Moreover, we take the simplest coupling function allowing for spontaneous scalarisation:

fa(9) = 9%, (6.2.5)

and for ease of notation we drop the subscript label in the coupling constant: ag; — «. As

such, the action of the model reads

1 1
S = _1677'( ddejg{(l - Oz¢2)R - 58M¢8M¢ - F,uVF!W} ; (626)

3Taking into account quantum corrections, electrovacuum BHs can also become scalarised in the original

scalar-tensor model [126].
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observe that the scalar and electromagetic fields interact only indirectly, via the backreac-
tion on the spacetime metric.

Restricting to spherically symmetric configurations, we consider a metric ansatz in
Schwarzschild-like coordinates, together with a scalar field and electric potential which
depend on the radial coordinate only,

2

dr
N(r)

ds? = —N(r)o?(r)dt® + +r23dQ% ., o=¢(r), A=V(r)dt. (62.7)

The coordinates (r,t) possess the usual meaning and CZQ?F2 is the line element on the unit
(d — 2)-sphere. This ansatz results in the following equations (where the “prime" denotes

radial derivatives):

@-2 — (-2 -3 g 2V

+4a {rN¢<z5” +rN¢? + %W [rN' +2(d — 2)N] + %qﬁ NG - S N)] } _ 0.
(6.2.8)

o= 2€§fé) e - %) {90[(d —2) +2r¢] — 2ra (¢ + ¢¢")} =0, (6.2.9)

(r*2Nog¢') + 2a¢{rd3[0(rN” + (d —2)N")

+0'(3rN" +2(d — 2)N) + 2rNo"] — EE} =0, (6.2.10)

(d-2) o

r g

V" + [ } Vi=0. (6.2.11)

These equations can also be derived from the effective Lagrangian

Lo =Ly + Lo+ Ly + LR, (6.2.12)
where
L= (d—2)r" 4 {rN’ +(d—=3)(N+1)+ 2N7~‘:} . Le= —%de—%/? ,(6.2.13)
and
Ly = 2’”d;2vl2 . Lr=—ad [¢LE + 2724/ (6N 4+ 2N o)

The equation for the electric potential possesses the first integral, which, for convenience

we write as

d —3)Qyo

(
V= s R (6.2.14)

where Qg is an integration constant fixing the electric charge.
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We are interested in BH solutions, with an horizon at r = r; > 0. Restricting to
non-extremal configurations, the solutions possess a near horizon expansion with the first

terms being

N(T):Nl(T—Th)+... s J(T):UO+01(T—Th)+.., , (6215)
¢(T):¢O+¢1(T—Th)—|—..., V(T):Ul(r_""h)-f-...,
which contains two essential parameters ¢o and og (the remaining ones are determined in

terms of these).

The approximate form of the solutions in the far field reads

N@»:l_;2§+“.,¢v%=;%3+”.,
d—3 —4a(2d - 5)]Q?
Vr)= Voo_% +...,0(r)=1- [ id _C;)(T2(d—3))]Qs (6.2.16)

Apart from m and Qq, the essential parameters here are V,, (the electrostatic potential
at infinity) and Qs (the scalar ‘charge’). Thus, the data at infinity is specified by the
ADM mass M, electric charge @, electrostatic potential Vo, and scalar 'charge’ @05, which
are read off from the far field asymptotics (6.2.16), where the physical M, @ relate to the
parameters m, Qo as
=2, o - g, (6:2.17)
and V{4_9) is the area of a (d — 2)-sphere.
The horizon data, on the other hand, is the Hawking temperature Ty and the event

horizon area A, which are given by

d—3 d — 3)Qo? -
T = w <1 a [((d)?»)O]> . Ag = Vi ?, (6.2.18)

B 2
T
together with the value at r = ry, of the scalar field ¢ = ¢y.

We also define the reduced electric charge, horizon area and temperature as

Q d—2 Ag 1
S iy = "o,  tw=TuMasc, 6.2.19
=M\ 2d-3 M= H=2HAT (6.2.19)
where
L d—2
Vi3 (d—2)as PR =
=D L = - (6.2.20)
(16m)%= (d=3)(d-2) Vi,

The scalar-free solution of the model* is the RN BH, which is specified by (6.2.7) with
¢ =0 and

m 2d-3) Q
rd=3 " (d—2) y2d-3)

N(r)=1- o(r)=1,  V(r)= Vs (6.2.21)

“Here we follow the conventions used for this solution in [149].
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The RN BH possess an (outer) horizon at r = ry, where 7, is the largest (positive)

solution of the equation N(r,) = 0. Working in a gauge with V(r;,) = 0, the constant V

corresponds to the electrostatic potential at infinity, Vi, = 52,03. We also remark that for

Th

d > 4, the RN BH possesses a nonvanishing Ricci scalar:

o =3 (6.2.22)

6.2.2 The zero mode for general d

Let us start by treating the scalar field as a small perturbation around the d-dimensional
RN background. This will allow us to compute the zero modes: linear scalar field bound
states that are supported by a discrete set of RN backgrounds. Zero modes define the onset
of the scalarisation instability and the bifurcation towards the new family of scalarised BHs.
Restricting to a spherically symmetric scalar field, the equation for ¢ reads

da(d — 3)%(d — 4) Q3
d—2 rd—2

(ri2Ng¢') + =0. (6.2.23)

One can see that ¢-coefficient in the above equation acts as an r-dependent effective mass
for the perturbations, with the condition @ > 0 being necessary for a tachyonic mass.
We are interested in solutions of the above equation which are regular for » > rj, and

vanish at infinity. Remarkably, one finds the following exact solution

_ 2 rh\ 43 . ! 8a(d — 4)
o(r) =P, lw{1<r) } , with u_2<1+ 1(d—3)>7

(6.2.24)

P, being the Legendre function. One can show that, in general, the function ¢(r) ap-

proaches a constant non-zero value as r — oo,

d(r) —oF ;<1— 1_W> ,;<1+ 1—%),1;1_7“%

2(d—3)Q3
(d—2)

Lo (1> ' (6.2.25)

r

Thus finding the spherically symmetric zero mode of the RN BH within the model (6.2.6),
corresponding to a scalar field that vanishes asymptotically, reduces to a study of the zeros
of the hypergeometric function o F7.

The existence line, i.e. the RN backgrounds that support scalar clouds, correspond to

the set of values of ¢ ~ Q/M, as a function of «, for which ¢(r) — 0 asymptotically. Such
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existence lines are illustrated in Fig. 6.1 for d = 5,6,7. For any d > 4, the solutions exist
as long as the coupling constant is sufficiently large, i.e. for
d—3
— < a< ) 6.2.26
=1 a < 400 ( )

the minimal value corresponding to the Ty — 0 limit of the RN background.

1

0.75

0.25

0 100 200 300 400 500

Figure 6.1: Existence lines for the d = 5,6,7 RN BH in a « vs. ¢ diagram. The inset zooms

around the minimal value of «.

6.2.3 An explicit construction: scalarised d =5 RN BHs

The scalarised BH solutions obeying the asymptotic behaviours (6.2.15) and (6.2.16) are
found numerically, by using a standard ordinary differential equations (ODE) solver. Here
we shall report the d = 5 case that we have studied more systematically. We have also
verified, however, the existence of scalarised solutions for d = 6 and we conjecture the
existence of such configurations for any d > 5. Moreover, the properties of the five dimen-
sional solutions appear to be generic. Also, only nodeless solutions (in the scalar field) were
studied so far, corresponding to the fundamental states; but solutions with nodes should
also exist, corresponding to excited states.

The basic properties of the d = 5 scalarised RN BHs can be summarised as follows.
Given a value of the coupling constant «, the spherically symmetric BHs bifurcate from
the RN solution supporting the corresponding scalar cloud, as discussed in the previous
subsection. Keeping constant the parameter «, this branch has a finite extent, ending
in a critical configuration. This limiting solution appears to be singular, as found when
evaluating the Kretschmann scalar at the horizon, although its horizon area and global

charges remain finite. This is illustrated® in Fig. 6.2, wherein the reduced charge vs.

®We emphasize that all numerical results in this work were found by solving a time independent problem.
As such, the sequences of solutions in Fig. 6.2 should not be interpreted as dynamical evolutionary

sequences.
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d=5
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I %.95 0.§75 !]

Figure 6.2: Sequences of scalarised d = 5 RN BHs, with several values of «, in a charge vs. horizon
area (left panel) and a charge vs. Hawking temperature (right panel) diagram. The quantities are

the reduced ones, i.e. given in units of mass.

horizon area (left panel) and vs. Hawking temperature (right panel) diagrams are exhibited,
normalized w.r.t. the mass, for several values of the coupling constant «. As these constant
a sequences of scalarised BHs emerge from RN BHs, the ratio ¢ ~ /M increases and
becomes slightly larger than one, in a region close to the critical configuration where the
sequence ends. In this sense, the scalarised BHs can be overcharged, that is, they can
support more charge to mass ratio than RN BHs. To summarize, in an (a, ¢)-diagram, the
domain of existence of the scalarised solutions is delimited by two curves: i) the existence
line (RN BHs) and ii) the critical line, which is the set of all critical solutions discussed

above.

6.2.4 Einstein frame picture and the relation to Einstein-Maxwell scalar

models

The model (6.2.6) is formulated in the so called Jordan frame, wherein the scalar field is
non-minimally coupled to the Ricci scalar. But it possesses an equivalent formulation in the
Einstein frame, with a minimally coupled scalar field to the Ricci scalar but non-minimally

coupled to the Maxwell invariant. That is, performing the conformal transformation
_ Qﬁ 02 =1 — ad?
Juv = Iuv = ag” (6227)

together with a redefinition of the scalar field

\/1 —al d 1)]¢2
dip = — a¢2 dé | (6.2.28)

transforms (6.2.6) into the Einstein frame action (see Appendix B)

§= 1o / /=G [R—gﬂ”auwayw F@)g" 5% FuaFys)| (6.2.29)
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with the coupling function

'

_ 2(d—4) d—

fW)=Q 2 () = (1 —ag’(y)) =2 . (6.2.30)

The new, Einstein frame, variables are the metric g,,, and the scalar field 1. The transfor-
mation given by egs. (6.2.27) and (6.2.28) therefore maps a solution of the field equations
(6.2.8)-(6.2.11), to a solution that extremizes (6.2.29). The transformation is independent
of any assumption of symmetry, and in this sense is covariant; one can easily infer that the
transformation is one-to-one in general.

This transformation leads to an interesting twist: in the Einstein frame, the sponta-
neous scalarisation of electrovacuum BHs results from the nonstandard coupling of the new
scalar field ¢ to the Maxwell term (notice the analogy with the case in the recent work [8]).
That is, the scalarised solutions of the scalar-tensor model can be interpreted as scalarised
solutions of an Einstein-Maxwell-scalar model.

One can use this mapping to extract information about scalarisation (or lack thereof)
of the corresponding FEinstein-Maxwell-scalar model. The Einstein-frame scalar field, as

resulting from (6.2.28) reads
Y=- \/8(d — Ve - ao) arcsinh (\/8(d —Dofa —ac) ¢) (6.2.31)

(d—2)a d—2
PENEICER I ( 2,/2(d — 1)ag ) |
(d—2) Vd—2+8(d—1)(a — ac)ad?
with
1d-2

«. is a special value of a corresponding to a d-dimensional conformally coupled scalar field
in the Jordan frame. Choosing o = ., the coupling function to the Maxwell invariant in

the Einstein frame can be computed in closed form, yielding

F() = cosh 2 (; (i_j2)¢> . (6.2.33)

Unfortunately, it is simple to verify that the value o = «a. of the coupling constant does
not obey (6.2.26). Thus, a conformally coupled scalar will not allow the scalarisation of
the RN BH in the scalar-tensor model.

However, the scalarisation becomes possible for large enough values of a. In fact, as
long as 22 > 0 all solutions of the initial model (6.2.6) are mapped to BHs of the Einstein
frame model (6.2.29). The corresponding expression of the coupling function results by
inverting (6.2.31) and replacing in (6.2.30). Although f(v) cannot be found in closed form

(unless @ = a), its expression for a small enough scalar field reads

f) =1+ Y2+ 0w, where (= ozfjd_—;) . (6.2.34)
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One remarks that d = 4 scalarised RN BHs with the above form of the coupling function

have been studied in [81,105], and they capture the basic properties of the generic case.

6.3 Scalarised vacuum BHs in d > 4 extended scalar-tensor

models

6.3.1 The framework

For our second sub-class of models we consider an eztended scalar-tensor model. Thus, we
take (6.1.1) with (6.1.3) and Lyt = 0. The explicit expressions of the first terms in the
hierarchy of L, are

Loy=1, Loy=R, L9y = R* — 4R R™ + Ryype R** . (6.3.35)
Lz = R —12RR,, R + 16R,, R* )R + 24R,, Rpo R'*"7 + 3RRyuyp0 R*7°
— 24Ry R 1 R 4+ 4Ry pg R R - — 8 R0 RV (R . (6.3.36)

In constructing higher dimensional generalisations of the scalarised BHs in [85-87], we
use the observation that, in even dimensions, the contribution to the action of the d/2-
th order L, becomes a topological invariant, and alone does not contribute to the field
equations. This ceases to be the case when a nontrivial coupling function, f(¢) is present:
the term L(4/9) becomes dynamical. As an example, for d = 4 one takes p = 2 (i.e. the
GB term) and the geometrical scalarisation model in [85-87| is recovered.

In what follows, we investigate solutions of the model (6.1.1) with (6.1.3), Lmat = 0

and
d=2p, where p=2, (6.3.37)

and show that the properties of the four dimensional solutions are generic. As in the
previous section, for ease of notation we drop the subscript label in the coupling constant:

ap, — «a. Thus, the considered action reads

1

) {R — 50006 + 0 f(¢)£(p)} . (6.3.38)

6.3.2 The equations of motion and general results

In obtaing the equations of motion it is useful to observe that, for general p, the variation

of the Euler density term is (see Appendix C)

5(f(9) L)

T”(p) = 2P VP f(9) (6.3.39)
where the Pg)a 5 tensor is naturally defined in 2p dimensions using the Levi-Civita tensor
in that dimension:

1
pPpraf _ _%Euvum---up—wpa6@5&151---%—1513—1Rmmalﬁl_“Rup_lyp_l%_lﬁp_l . (6.3.40)

84



We remark that this tensor shares some of the symmetries and properties of the Riemann

tensor:

» _ » _ (p) ® _ p » _
Pulfaﬂ - _Pvuaﬁ o _Pm/ﬁa ’ P;wcxﬁ - Paﬁuu ) VMP;waB =0. (6.3.41)

Taking the same ansatz as before for the metric and scalar field (6.2.7), a straight-
forward (but cumbersome) computation leads to the following equations for the metric

functions and the scalar field®

20 d—4

(I-=N) r o d—4
(d—2)N' — (d—2)(d — 3) — + 5Ngb’ + Td—_g(l —N) = (6.3.42)
1
< [0= N p0) - - DN - o) =0,
(d=2)0' = 506" + 5 (1= N)'2' [(1=N)of"(6) +{(d = DN = 1}0'f(¢)] =0,
(6.3.43)
(Nord=2¢') — adj;(f) {(1 — N)z(@-2) (oN"+2No') }/ =0. (6.3.44)
These equations can also be derived from the effective Lagrangian’
Leg=Lg+ Ls+ Oé[:(p) , (6.3.45)
with £ and L given by (6.2.13) and
dT,
Loy=—2,  Tyy=—(1-N)3"? (0N +2N0') . (6.3.46)

As in the last section, we are interested in BH solutions, with a horizon at r = rp > 0.
Restricting to non-extremal configurations, the near horizon expansion of the solutions

reads

N(r)=Ni(r—rp)+..., ory=op+o1(r—r)+...,
o(r) =dn+o1(r—rp) +... . (6.3.47)

All coefficient are determined by the essential parameters r,, ¢(rp) and o(rp,); for example,

one finds
(d—2)(d-3)
Ny = . 6.3.48
' rld = 2061 (6n)] (6349
The coefficient ¢'(ry,) satisfies a second order algebraic equation of the form
¢t +pp1+q=0, (6.3.49)

5There is yet another second order equation, which, however, can be expressed as a linear combination

of Egs. (6.3.42), (6.3.43) and their first derivatives, together with (6.3.44).
"Here, as well as in the equations (6.3.42)-(6.3.44), to simplify the relation, we have absorbed in o a

factor of (d —2)!.
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where (p,q) are non-trivial functions of 7p,¢,. Consequently, a real solution for ¢

of (6.3.49) exists only if A = p? —4q > 0, a condition which translates into the following

inequality
2 2 2 2
o \ 4d=1)d-3) () o\ dd—4) (d(e)
1=\ = 1| 4= >0,
o d—2 do |y, o 4(d — 2) do |y,

(6.3.50)
which implies the existence of a minimal horizon size, denoted as r}(Lmin), determined by «
and the value of the scalar field at the horizon.

The far field expansion of the solutions reads
N(r)—l—m—l—..., U(T)_1_4(d—2)r2(d—3)+“" qﬁ(r)—rd_3+...,
(6.3.51)

in terms of two constants: the scalar ’charge’, Qs, and m, which fixes the ADM mass M
as in (6.2.17).

The horizon data, corresponding to the Hawking temperature and horizon area are
still given by (6.2.18) (with vanishing electric charge). In terms of all these quantities, the
solutions satisfy the Smarr-like relation:

(d—2)
(d—3)

TS + M(¢) , (6.3.52)
where S is the BH entropy as computed from Wald’s formula [152]
1 1
S = Sguy + S(p) , SEH = ZAH , S(p) = Zan_Qf(¢(Th)) , (6.3.53)

and M(¢) is the mass stored in the scalar field

d-2 1 dd_lx\/ngng, (6.3.54)

Mo == =316x Js 7@

where the integral is taken over a spacelike surface ¥ and f =df /d¢.
We define the reduced horizon area and Hawking temperature as in (6.2.19) by nor-
malising the corresponding quantities w.r.t. the total mass of solutions. Analogously, the

reduced entropy is defined as:
§= ——¢Cq , (6.3.55)

where ¢, is given by (6.2.20)
The scalar-free solution in this model is the Schwarzschild-Tangherlini BH [150], which
has a vanishing scalar field, m = rg_?’, o = 1, while its reduced quantities are simply

aH:s:tH:L
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Figure 6.3: Reduced area (top left panel), reduced entropy (top right panel), reduced temperature
(bottom left panel) and the scalar field at the horizon (bottom right panel) vs. the coupling
(normalized by the mass) for scalarised BHs in the extended scalar-tensor model in d = 4,6,8

dimensions.

6.3.3 The scalarised BHs in d = 4,6,8 with a quadratic coupling

As in the previous section we shall illustrate the BHs in the d-dimensional extended scalar-

tensor models by considering the simplest function which satisfies the condition (1.5.24):

fu(e) =¢*, (6.3.56)

which was initially considered for d = 4 solutions in [86]. The numerical construction
of the solutions in d = 4,6, 8 follows a strategy similar to one used in the last section.
Some properties of the solutions are shown in Fig. 6.3 and can be summarised as follows.
Firstly, the qualitative features of the d = 4 solutions still hold in higher d, namely:
(i) the branching off from the Schwarzschild-Tangherlini BH wherein the latter supports
a scalar cloud; (ii) the limited range wherein solutions exist; (iii) and the trends of the
different quantities when « is varied. Quantitatively, however, one can see a smaller domain
of existence in terms of « in higher dimensions, likely due to the faster fall-off of the
gravitational interaction. Secondly, the model possesses a (presumably infinite) tower of
scalarised spherically symmetric solutions which are indexed by the number of nodes n of
the scalar field. As in the previous study of the scalar-tensor model, here we are focusing

on the fundamental n = 0 solutions. Thirdly, all solutions can be obtained continuously
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in the parameter space: they form a line, starting from the smooth GR limit (¢ — 0), and
ending at some limiting solution. Once the limiting configuration is reached, the solutions
cease to exist in the parameter space. The existence of these ’critical’ configurations can be
understood from the condition (6.3.50), with the determinant A vanishing at that point.
It would be interesting to study the linear stability of these scalarised BHs. Since the
d = 4 solutions are radially unstable [90,97], it is possible that their higher dimensional

generalisations are also unstable.

6.3.4 A linear coupling detour: the shift-symmetric model in d-dimensions

If instead of the choice (6.3.56) one chooses the coupling function

fu(d)=¢, (6.3.57)

the scalarisation condition (1.5.24) is not obeyed. This case corresponds to a linear cou-
pling or a ’shift symmetric’ model, which is interesting for different reasons and has been
extensively studied for d = 4 - see e.g. [1563—-156]. Although scalarisation is absent, the
model possesses a variety of interesting properties. Here, we shall use it to contrast with
the picture found for the quadratic coupling in the previous subsection.

Since the condition (1.5.24) is not satisfied in the linear model (6.3.57) for o # 0, the
Schwarzschild-Tangerlini BH is not a solution. Also, the equations of motion are invariant

under the transformation

b= o+ o, (6.3.58)

with ¢o an arbitrary constant, which results from the fact that the L,y term alone is a
total divergence. This implies the existence of a current, whose conservation leads to the

following interesting relation between the ’scalar charge’ and the Hawking temperature

dra
Qs = mTH ) (6.3.59)

which is a unique property of this class of models (see also the discussion in [157] for d = 4
and [158] for the issue of BH temperature in Horndeski models).

In the probe limit, that is considering the scalar field equation of the model on the
Schwarzschild-Tangherlini background, we find the following general exact solution® valid

for all range of r:

o= o la 2 St 2}

®Note that a constant of integration has been fixed in the expression by imposing ¢(r) — 0 as r — oo
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where Bl[z;a,b] is the incomplete S-function. Simple expressions exist for d = 4,6 only

(with z = ry/7):

« 2 28
d=4 = — —+ — .3.61
o(r) T%L<x+2+3>, (6.3.61)
3o 2t 2T g0 1 1 V3z
o(r) o R T 2og( +x + %) \/garcan T x
(6.3.62)

In principle, this solution can be used to construct a closed form perturbative solution as
a power series in the parameter a/rg_?’, see e.g. the d = 4 results in [156]. As discussed
therein, this analytical solution provides a good approximation to the numerical results.
A feature which, however, cannot be captured within a perturbative approach is the
existence of a minimal horizon size. The condition (6.3.50) on the near horizon data takes

a simple form for the choice (6.3.57) of the coupling function, with

« 2(d—1)(d—3) —1/2
TZ—Q I: (d — 2) + 3(d - 1)(d - 3) . (6.3.63)

This requirement translates into a coordinate independent condition imposing a minimal

size for the horizon size in terms of the coupling constant « only,

Ag > ¢, where co = Via-2) \/W +3(d—1)(d—3) . (6.3.64)

Some results of the numerical integration for non-perturbative solutions are shown in
Fig. 6.4. Again, the solutions stop existing at the point where the condition (6.3.63) fails
to be satisfied.

6.4 Summary and overview

The main purpose of this chapter was to discuss higher dimensional generalisations of
d = 4 spontaneous scalarisations models, in its various guises, via the existence of the
corresponding scalarised BH solutions. As the broader take-home message, the study
herein shows the phenomenon of ’spontaneous scalarisation’ is not peculiar to d = 4, but
qualitative and quantitative differences occur in higher d.°

Concerning the case of the scalar-tensor model studied in section 6.2, we have estab-
lished that, since the conformal invariance of the Maxwell action is lost in d > 4, the higher
dimensional electrovacuum BHs possess scalarised generalisations in these models. This is

a qualitative difference with respect to the d = 4 case. Moreover, by a conformal mapping,

In various aspects d = 4 BH physics has unique properties; recent research has revealed that as d
increases, the BH’s phase structure becomes increasingly intricate and diverse [151]. This further motivates

the analysis herein.
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Figure 6.4: Reduced area (top left panel), reduced entropy (top right panel), reduced temperature
(bottom left panel) and the scalar field at the horizon (bottom right panel) for BHs in the shift

symmetric model in d = 4,6, 8 spacetime dimensions.

these solutions can be interpreted as Einstein-Maxwell-scalar solutions, bridging between
these two guises of scalarisation.

Concerning the case of the extended scalar-tensor model studied in section 6.3, our
construction generalised the ’geometric scalarisation’ in [85-87] to any even dimension. In
d = 4, Einstein’s gravity can be deduced by assuming general coordinate covariance and
the absence of higher derivative terms larger than the second order in the Lagrangian.
In d > 4, the same assumptions lead to Lovelock gravity [88]. All Euler densities, L),
starting with the Ricci scalar and the Gauss-Bonnet curvature squared combination, can
be written as the divergences of genuine vector densities in the critical dimensions d = 2p,
with p = 1,2,... (while they vanish for d < 2p). However, such a density can be made
dynamical by coupling it to a scalar field, which results in the term ar, fL(¢)L(,) in the
action (6.1.1). Thus, there is a hierarchy of models, with the d = 4 (p = 2) case in [85-87]
being a special case. Here, we have found that the properties of the solutions of the
latter are generic, being shared by the higher dimensional d = 2p counterparts, but with
quantitative differences.

As to provide a comparative benchmark, we have also generalised the d = 4 ‘shift
symmetric’ Horndeski model in [153-155] to any d = 2p > 4 even dimension. Again, the

properties of the d = 4 solutions are generic. Although these configurations do not qualify
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for scalarised BHs (in particular the condition (1.5.24) is not satisfied), they possess a
variety of interesting properties (e.g. the existence of a conserved current, which implies
that the Hawking temperature is fixed by the scalar charge; also an exact solution is found
in the probe limit).

All configurations in this work are spherically symmetric and asymptotically flat, be-
ing regular on and outside the horizon (which possesses a spherical topology). Rotating
generalisations should exist, following the d = 4 studies in, e.g. [99, 156, 159].

Let us close this chapter with some remarks concerning the status of the extended
scalar-tensor model for the (lower) dimension d = 2. Einstein gravity alone is trivial in
two dimensions; however, as in the generic d = 2p case, L(1) = R can contribute to the
equations of motion by coupling it with a scalar field. This suggests us to consider the

following d = 2 version of the generic model (6.1.1):

1

S—__
167

oy {af (@R - 0,006+ U0} | (6.4.65)

with U(¢) a scalar potential. Interestingly, this corresponds to the generic form of the
Jackiw-Teitelboim gravity [160,161]. This model has received considerable interest recently
in connection with BH dynamics (see, e.g. [162-165]). Near extremal BHs/branes have
a near horizon ‘throat region’ corresponding to an AdSy spacetime [166] and so, upon
compactification, the action (6.4.65) appears naturally, with the scalar field representing
the modulus associated to the transverse directions (the volume of the transverse sphere).
Moreover, it was shown [165] that the Jackiw-Teitelboim model is a good approximation
for the low-temperature dynamics and thermodynamics of a large class of spinning/charged
BHs, including the near extremal Kerr BH. It would be interesting to study solutions of
the model (6.4.65) for various choices of the coupling function, in particular for a f(¢)

allowing for scalarisation.
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Chapter 7

Conclusions

In this thesis we have studied various properties of the Einstein-Maxwell-scalar model
(1.1.2). The distinguishing property of this model is the non-minimal coupling f(¢) be-
tween the electromagnetic and scalar terms of the action that directly couples these two
fields. The main topics of interest in this model that were studied in this thesis include
solitonic solutions, duality symmetries and scalarisation. These topics were introduced in
chapter 1 and then thoroughly discussed in the following chapters.

Chapter 2 was dedicated to the study of no go theorems in the EMS model. The
Einstein-scalar model was studied as a valid truncation of the full EMS model and a no go
theorem was shown for asymptotically flat stationary and axisymmetric solitons. A similar
result was then shown for asymptotically flat static and strictly stationary solitons in the
full EMS model. This last result was discussed once again in chapter 3, where the axion
term was added to the EMS model. It was shown in that chapter that the axion term does
not change the results considered in chapter 2. These no go theorems can be viewed as
important directions of what conditions to avoid if we want to find solitonic solutions in
this model.

Following this line of thought, we reach chapter 4 where a solitonic solution to the
EMS model is found by circumventing a condition imposed by the theorems of the previous
two chapters. The condition circumvented is the finiteness of the non-minimal coupling
function f(¢), meaning that our soliton solution has a diverging coupling, even though
every physical field and energy density is regular. The solution is a soliton composed of a
pure electric field and a scalar field which is constructed perturbatively and numerically.

In chapter 5, we discuss the duality properties of a generalised EMS model with two non-
minimal couplings: f(¢) coupling the scalar field to the Maxwell term and g(¢) coupling
to the axionic term (discussed in chapter (3)). We then show that we can establish what
we denote as "duality orbits": a map between solutions of a model with specific coupling
functions f(¢) and g(¢) to another model with different coupling functions. These duality

transformations preserve the scalar field but change the electric and magnetic fields. Vari-
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ous examples of solutions obtained through this map were presented, including a magnetic
variant of the purely electric soliton solution found in the preceding chapter 4. Chapter 5
ends with various examples of possible avenues of generalisation of this procedure.

Lastly, in chapter 6, we discuss the topic of scalarisation. The basic idea of scalari-
sation was introduced in chapter 1 (section 1.5) and in chapter 6 we present the idea of
scalarisation in higher dimensions. Scalarisation of higher dimensional Reissner-Nordstrém
BHs in scalar-tensor models was considered and solutions were explicitly constructed for
the d = 5 case. A conformal transformation that maps between two different models, (one
with a scalar field non-minimally coupled to the Ricci scalar and another with a scalar field
non-minimally coupled to the Maxwell term) which have different scalarisation methods
is also discussed, relating these two different scalarisation methods. Finally, we consider
the non-minimal coupling in even 2p dimensions of the scalar field with the pt* Euler den-
sity. These are extended-scalar-tensor-Lovelock gravity models that present scalarisation
of the Schwarzschild-Tangherlini BHs. Examples are constructed for the 6-dimensional
and 8-dimensional cases which show that they possess the same qualitative properties of
the original 4-dimensional case, albeit with quantitative differences. A comparison is also
made with the hairy BHs in shift-symmetric Horndeski theory which are also constructed.

The Einstein-Maxwell-scalar is clearly a very rich model and hopefully the subjects
of study in this thesis can help pave the way for more interesting work in this kind of
model. Further advances in the theory behind soliton solutions, duality symmetry, or even
scalarisation in this model can likely be considered based on the concepts introduced in

this thesis.
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Appendix A

Asymptotic behavior of the vector
W H

In this appendix, we want to find the behavior of the vector W*#, as it was defined in
equation (2.3.76).

The integral (2.3.78) assumes that W# decays fast enough (with a leading term of r~",
n > 2) for it to vanish at the 2-surface 0¥ at infinity. To show this, we start with the fact
that the surface 0% has two normal vectors: the timelike unit vector and the radial unit
vector. As W' = 0, the only component that matters is W”. To obtain the asymptotical

behavior of this component first note that, at infinity we have

1 1 1
Vv g,uuk“ky gt ( )

b ¢ — —1 as the cross

because the metric will be approximately Minkowski so g,
terms of the metric will decay to zero. This means that we only need to care about
the asymptotic behaviour of the functions Ug,Up, E™, B", ¢,1 and w”. As most of these
functions are related by their definitions, we just really need to know the behaviors of w”
and two other functions (one related to the electric field and the other to the magnetic

field).
A.1 The twist vector limit
The twist vector w* was defined in (2.3.50) as
1
wh = ~eM P, kg . (A.1.2)

2

where! etveB = | /—geteB and Vaokg = Oukp as it is antisymmetrized. We only need the

radial component w” and we assume that the only rotation cross term is gy, so w" can be

'Note the distinction between the Levi-Civita tensor ¢***? and the Levi-Civita symbol """,
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obtained as

1 1vap
W= ——=e""k,Vokg (A.1.3)
2y/—yg
1 1
= 2\/_7961023,143062]{33 + ﬁelgm)kgagko (A.1.4)
1 1
= ———=kiOpk, + ——==k,Opk; . (A.1.5)

V=9 29
We have that k; = g and k, = gg¢ in the asymptotic limit. As gz — —1 we have that

T

o (A.1.6)

L gt + ——g.10
2r\/jg 09t QT\/jggcpt 09tt

We know that \/—g grows as r? at infinity. Now we want to know the leading terms of 9ot
and Opgy. As gyt vanishes at infinity, then we can at least assume that it has a leading

term ! and the same thing for g; + 1. So we can expand them as:

Gt — O‘Sng) +0(r ?) (A.1.7)
g +1— /Bie) +0(r?) (A.1.8)

where a, 3,9 are functions of § whose form is not important in this context. If the leading
term has a power of r lower than —1, it will just make the leading term of w” decay even
faster, so if we can prove that W" decays fast enough for this kind of behaviour, then we
do not need to know which are the leading terms of these metric components. We can

consider the example of the Kerr metric in Boyer-Lindquist coordinates:

2Mrasin? 6
—_ e 7 A19
et r2 + a2 cos? 0 ( )
oM
g =1+ - (A.1.10)

r2 + a? cos?
which as we see can be expanded asymptotically just like in equations (A.1.7) and (A.1.8).

So this means that

!
Oogpt — < 7(;9) +O(r?) (A.1.11)

ogrt — 5/7@ +0O(r %) (A.1.12)

As /=g — v(0)r?, we get for w"

o/ (6)
29(0)r?

w' =

+O(r7?), (A.1.13)

where we can see that the leading term has a 7=3 decay.
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A.2 The W" term

The behaviour of the rest of the fields that compose W# can be deduced by considering

that the leading term of the vector potential A* is a r~! term. From this we can obtain

0 — %rw) +0(r %) P — wor(@ +0(r7?) (A.2.14)
E" — E‘Zg@ +0(r?) B — Bf;:g@) +0(r?) (A.2.15)
Up — U%g‘” +0(r3) Up — U%ée) +0(r %) (A.2.16)
so we finally have
W' =2Ug + UB)“’—T BT JelT WG (0) + 0™ (A.2.17)

V2 14 r3
As W decays faster than =2, we have that the integral (2.3.78) does vanish at the surface
0.
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Appendix B

Einstein frame formulation of

non-minimally coupled gravity

B.1 The Model

We consider the action described in (6.2.6) in d dimensions

1

T

1
d*z\/=g[Q* ()R — 5 Ou00"6 — FuwFu] (B.1.1)
where Q2(¢) = 1 — a¢?. We want to make the following conformal transformation
guu = Qngum (BlQ)

where n is a constant. With this transformation, after redefining the scalar field to ¥ (¢),

we want to obtain the following Einstein-Maxwell-scalar action

5=- 16% d'ev/=g [R - %9“”(%1/18% = [(W)g" g FuaF"| . (B.1.3)

B.1.1 The n constant

We know we can write the Ricci scalar R of the metric g with respect to the Ricci scalar

R of the metric g as follows
R=Q"R+Q"A(p,d¢,0%9) , (B.1.4)

where A can be written as

2
A:n(d—1)5%9—%(d—1)(d—2)(vlnﬂ)2, (B.L.5)
where (02 = V? = @M?“ = g““?,ﬁu. The determinant of the metric g can be calculated

as
g=Q"g. (B.1.6)



This means that
V=g R =GO TR ... (B.1.7)
Now, to have this term coincide with the new Ricci scalar term in (B.1.3), we need the

exponent of € in the above expression to vanish. This allows us to obtain the n constant

n—= —— (B.l.S)
which results in the conformal transformation g, = Qﬁgwj,. Note that n = 2 for d = 4.

B.1.2 The A function

Using n = 4/(d — 2) we can write (B.1.5) as

— 1= _
A:4% ?InQ — (VInQ)?| . (B.1.9)

AsInQ = $In(1 — a¢?) we can calculate the derivatives as follows

apVe

Vin@=—-7—775 (B.1.10)

—o o al(Vo)2+9P9)]  202¢*(V)?

0°InQ = — 1 — ag? o (1_a¢2>2

_ 1 2 ]2
- —a(V¢)2(1 j;;éy _ a1¢_ 0422 . (B.1.11)
Inserting these results in (B.1.9), we get
—da d—1| = 1+ 2002 _

= 1_7;;52@ [( )2(;:5;;;) +agPe| . (B.1.12)

Now we can isolate the ¢[1%¢ term multiplied by \/—g and rewrite it in terms of (V¢)? in
the following way!

_ —2d 4 [ —4a? d—1 -
V_deQQ2Qd2< ngm D2¢>

a o2 B B 0d?
_Fw< —4 ¢2Z 2¢W¢>>+f ¢QZ ;((V¢)2+12_2¢2(V¢)2>
2
=V D +F( )QZ 2(1+04¢2)(V¢>) (B.1.13)

The divergence term will not contribute to the action integral, so we can just ignore it.
We now write A as

4a(Vp)? d—1
(1 — ag?)? d 2

202 _ ~
—4(1 ib ;Zj;l Z_ R (B.1.14)

!Note that the Q terms all cancel out.

A=—

(142a¢® — 1 —ag?) + V*(..),
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B.1.3 The scalar kinetic term

The scalar field ¢ kinetic term with respect to the new metric g can be written as

07 04/ (d—2) zuv
vV —4g g /L¢8V¢ \V Q 2d/(d~ 2)%au¢au¢
=0 o — (V)
=V=9— (V(;S) =/ 972(1—0@2) . (B.1.15)
With this, we can now rewrite the gravitational and scalar part of the action as
1
/ d*z/=g[Q*($)R — 50u00" 9]
o — 7_4a2¢2(?¢)2d—1 1 (Ve)? =
- [ davEilR- G i 2u—a&>+v“”“
_ i, —=|p_ 1 (Vo)? 2 2,00 —
—/da:\/ g{R 31— ad?? 1—a¢ +8ad>d 2 (B.1.16)
Now we use the following redefinition of the scalar field
 V1—all—8a@[d—1)/[d— 2P
dy = I —ad? do , (B.1.17)
to get
/ddx«/—g {R— ;(W)Q} : (B.1.18)

which is the expected form of the action presented in (B.1.3).

B.1.4 The Maxwell term

Now we consider the Maxwell term. We easily see that
V=g F F'" = /=g g"*¢"PF F"P = /=g 24/[d=2q8/(d-Dgmgebp  pvé - (B.1.19)
This is the exact same Maxwell term as in (B.1.3) with
4—d

F() = QT3 () = [1 — ad* (V)] T2 . (B.1.20)

Adding this term inside the integral of (B.1.18), we recover (B.1.3) as expected.
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Appendix C

Variation of the Euler density term

for general dimension

C.1 The Model

In here we want to calculate the contribution of the general Euler density to the equations
of motion when non-minimally coupled to a scalar field. We will first calculate the results
for dimensions 4 and 6 before generalising.

Consider the action

1

S47T

[ atov=a| R - 50,00 + 0124 (L)

where L) is the p* Euler density contribution which can be defined for dimension 2p as
in (1.5.18). This term is non-minimally coupled to the scalar field through the function
f(#). The variation of these terms would usually vanish in 4 dimensions or less, but due to
the non-minimal coupling, we will get another contribution to the equations of motion. We
will now calculate the variation of f(¢)L) and f(¢)L(3) terms separately as the process

used for the 4-dimensional term can be mostly replicated to the 6-dimensional term.

C.1.1 The L3 term

We can easily see that after some reordering of the indices, considering that the variation

is with respect to the metric, we can write the second Euler density as
1 vV o _«
O(fLw) = FoLe) = Je e PNGR:, (R 5y + R s0RY ) f - (C.1.2)

Now we can simplify this expression by redefining (u, v, af8) < (v,0,0,A) in the second

term. With this we can sum the terms and get

1
5(fL)) = 56;7%&55%70&53“%5 f. (C.1.3)
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The variation of the Riemann tensor is
OR’, 05 = Va(0T,) = V5(0T'G,) , (C.1.4)

We can now pass the derivatives to the other Riemann tensor and the function f(¢) as

follows

1
3(fLiz) = Val) - ie;weawargy(va}zw& f+ RyosaVaf)

1
—Va(..) + Ee;'wea“*argy(vﬁ}z,ym f+ RyonVgf) . (C.1.5)

The V(...) terms will be total divergences which will not contribute to the equations of
motion and we will ignore their contribution. We can also see that the terms with VR, 55
and VgR,,s5» will vanish. This is because both a and 3 are antisymmetrised with the
indices (0, A), which results in the term vanishing due to the Bianchi identity. Lastly, we
can redefine o <+ 8 in one of the terms to sum them.

So we now have

5(fL2)) = € 7€ PNTH Ry 52V 3 f - (C.1.6)

The variation of the Levi-Civita connection is

1
oTH = §gup(vaég,,p + Viui0gap — Vpogua) , (C.1.7)

so we can use the same reasoning as before to obtain the following three terms'

1
O(IL@) = 5677 Rooir g (=090, VaV 3 = 090pVu Vs +091aV,Vf) - (C.18)

Antisymmetry between « and 5 implies that the first term will vanish so we get

1
5(fL)) = ieu"wea’%)‘ng,\(5gyaV“Vg f—=9""690,VuV5sf) . (C.1.9)

Knowing that dgag = —gaugs, 09" we can finally take the variation with respect to Sgh'V':

§(fL) 1 ,n 4
5gﬂ/(1’/) = 56“ %€ 56AR706)\(_gvu’gau’vuvﬁf + gupga,u’gpy’vuvﬁf)
1 a vyo
= 5]%,w(;)\(elﬂ7 GV[,%/\VMng +e,)) elﬁd)‘VVVMc) : (C.1.10)

By redefining some of the indices and dropping the primes, we finally get

o(fL
W — R,YU(;)\GMP’YUEVBJ)\VpVBf — _4P”pVBVPVﬁf , (Clll)
where
1
Pupvp = —fumamm%m . (C.1.12)

'Once again we discard total divergences and the derivatives of the Riemann tensor which vanish due

to the Bianchi identities.
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C.1.2 The L3 term

We now calculate the extra term that comes from when we consider a 6-dimensional space-

time. We have that

]' vy V2 V3 & « « 3
OfLi) = e i iy B BG(RE 5 B, 05, B g, (C.1.13)

via1fB1” " veasfe” vzasBs

We can now look at the method for L3 to get to the result. The reasoning used for

equation (C.1.3) gives us now a factor of 3:

(5(f£(3)) — geuuluumuzwzz60415104252&3,33Ruguzo&ﬁzRM3V3043535RHJIQIBIf _ (C.1.14)

For the sake of simplification, we define a new P, tensor right away

1
P(gzylalﬁl = 7§6M111#2V2H3V36a161a262a363th2V2a252R/t3V3a3ﬂ3 ) (C.1.15)
So we can write
S(fLz) = =3P PsR:,  f . (C.1.16)

However we should always take into account the symmetries associated with the tensor
PMW’B to apply the same methods we applied for the L) term. For more details see
section C.1.3.

We now write the variation of the Riemann tensor in terms of the variations of the
Levi-Civita connections and the reasoning applied to equations (C.1.5) and (C.1.6) give
us total divergences and derivatives of the Riemann tensors which we can again discard.

Antisymmetry again gives us a factor of 2 when we sum the two connection terms:
(L) = —6PBsTE Vgf (C.1.17)

Now we write the variation of the connection with respect to the variations of the metric

and apply the methods used in equations (C.1.8) and (C.1.9), obtaining two terms
5(fL3) = —3PO" B (59, VIV f — g"090, VoV af) - (C.1.18)

Once again taking the variation with respect to dg"” we finally get

0(fL) _ _6p®

Sgh Wﬁvpvﬁ f, (C.1.19)

which is a similar result to equation (C.1.11) but now with a factor of 6 and a different

definition for P,,,z3.

C.1.3 The P tensor and the L, density

Now we try to generalise this procedure for the Euler density of any dimension. We first

note that we could have done the exact same procedure by defining the P tensor right away
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as we did in the last section, but without having to resort to the L9) section by taking a
look at its symmetries first.

We can easily see that
Rwaﬁ = _Puuocﬂ = _P/ﬂ/,é’a ) (0120)

Hwozﬁ = Paﬁ;w . (0121)

These symmetries are also respected by the Riemann tensor. The other symmetry we need

to take into account is the Bianchi identity that simply translates to
VEPag =0, (C.1.22)

or, in other words, any divergence of P, qp vanishes.
Taking into account the definitions above for the P tensor, we can define P, for 2p

dimensions:

p(p);waﬁ — _ieﬂyﬂll/ln-ﬂpfll’pfleaﬁallgl-napflﬁpflR’u

2p 11/101161"'Rup,lupflap,lﬂpfl s (0123)

and after reproducing the steps in the last section, the equivalent of equation (C.1.16) for

2p dimensions, by applying the Leibniz rule for p Riemann tensors, is
8(fLgy) = —pPD"PSRY, L f . (C.1.24)

As all the other steps are the same we get the final result for the variation of the Euler

density for 2p dimensions:

I(fLp) _ _2pp(p)

Sg VIV f (C.1.25)
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Appendix D

List of Publications

This thesis is based on a number of publications by the author. These publications are:

e On the inexistence of solitons in Finstein- Mazwell-scalar models
Carlos Herdeiro, Jodo Oliveira
Class. Quant. Grav. 36 (2019) no.10, 105015, [arXiv:1902.07721 [gr-qc]],
doi:10.1088/1361-6382 /ab1859.

e On the inexistence of self-gravitating solitons in generalised azion electrodynamics
Carlos Herdeiro, Jodao Oliveira
Phys. Lett. B 800 (2020), 135076, [arXiv:1909.08915 [gr-qc]],
d0i:10.1016/j.physletb.2019.135076.

o A class of solitons in Mazwell-scalar and Einstein-Mazwell-scalar models
Carlos Herdeiro, Jodo Oliveira, Fugen Radu
Eur. Phys. J. C 80 (2020) no.1, 23, [arXiv:1910.11021 [gr-qc]],
do0i:10.1140/epjc/s10052-019-7583-9.

o FElectromagnetic dual FEinstein-Mazwell-scalar models
Carlos Herdeiro, Jodo Oliveira
JHEP 07 (2020), 130, [arXiv:2005.05354 [gr-qc]],
doi:10.1007/JHEP07(2020)130.

o Higher dimensional black hole scalarization
Dumitru Astefanesei, Carlos Herdeiro, Jodao Oliveira, Eugen Radu
JHEP 09 (2020), 186, [arXiv:2007.04153 [gr-qc]],
doi:10.1007/JHEP09(2020)186.
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