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Abstract: Sending-or-not sending twin-field quantum key distribution (SNS TF-QKD) has the advan-
tage of tolerating large amounts of misalignment errors, and its key rate can exceed the linear bound
of repeaterless quantum key distribution. However, the weak randomness in a practical QKD system
may lower the secret key rate and limit its achievable communication distance, thus compromising its
performance. In this paper, we analyze the effects of the weak randomness on the SNS TF-QKD. The
numerical simulation shows that SNS TF-QKD can still have an excellent performance under the weak
random condition: the secret key rate can exceed the PLOB boundary and achieve long transmission
distances. Furthermore, our simulation results also show that SNS TF-QKD is more robust to the
weak randomness loopholes than the BB84 protocol and the measurement-device-independent QKD
(MDI-QKD). Our results emphasize that keeping the randomness of the states is significant to the
protection of state preparation devices.

Keywords: twin-field quantum key distribution; weak randomness; asymptotic cases; finite-key

1. Introduction

Quantum key distribution (QKD) has been widely proved to have information-
theoretical security, which is guaranteed by the laws of physics between two authorized
users, Alice and Bob [1,2]. However, it is well known that the imperfections of practical
devices will compensate the security of the generated key. In fact, some quantum attacks
have been discovered and demonstrated by exploiting these imperfections of practical
devices. An eavesdropper (Eve) could take advantage of any imperfections in practi-
cal system to collect secret information without being discovered, with methods such as
wavelength attack [3], the detector control attack [4,5], and the Trojan horse attack [6,7].
Therefore, researchers have to propose corresponding countermeasures to deal with these
security threats.

In order to remove side-channel attacks at detection, Lo et al. proposed [8] the
measurement-device-independent QKD (MDI-QKD) protocol, while the key rate of the
MDI-QKD cannot be better than the linear scale of the channel transmittance. Fortunately,
the twin-field QKD (TF-QKD) [9] and the asynchronous MDI-QKD [10] were proposed
and improved the key rate to the square root of the channel transmittance. The key rate
of them performs R ~ O,/7 (where 7 is the channel transmittance) and it can exceed the
Pirandola-Laurenza-Ottaviani—-Banchi (PLOB) bound [11]. But the later announcement
of the phase information in the original TF-QKD [9] may cause security loopholes [12],
so many variants of TF-QKD have been proposed [12-15] to deal with these loopholes.
Particularly, the sending-or-not-sending (SNS) TF-QKD [12], as an efficient protocol, can
tolerate large misalignment errors even up to 35% in the single-photon interference. In fact,
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the SNS TF-QKD protocol has made significant progress in theory [16-25]. In addition,
several experiments on the SNS protocol have also been performed so far [26-31].

In a practical QKD system, Eve may shift their target to quantum state preparation
devices so that the bit encoding and measurement basis selection are non-randomly mod-
ulated by Alice or Bob [32]. For the quantum state preparation vulnerability of the weak
randomness, Li et al. proposed [33] a weak randomness model in the BB84 protocol. Un-
der the model, the quantum states that Alice has prepared are divided into two parts: the
random part and the non-random part, and the latter may lead to the leakage of information.
Since then, the model has been further promoted and applied in other protocols [34-36].

In this paper, we generalize the weak randomness attack model to the SNS TF-QKD.
In fact, the SNS TF-QKD possesses the property of measurement-device-independent and
can be applied using the coherent source with the decoy-state method [37-39]. Moreover,
the operation of sending or not sending states for Alice and Bob can be regarded as the
bit encoding operation, and the operation of selecting time windows can be regarded as
the basis selection operation [12]. We analyze the effect of weak randomness on the final
security key in the asymptotic and the finite-key size cases. Firstly, we will analytically
derive the secret key rate formula based on the weak randomness model in the asymptotic
case, and we then calculate the lower bound of the counting rate of the single-photon
states and the upper bound of the phase error rate in finite-key cases [16]. In the security
analysis of SNS TF-QKD with the weak randomness, we assume that Eve can interfere the
quantum state preparation operation, and Eve is responsible for all weak randomness
mentioned above. We also assume that the hidden variables ¢ and { from Eve may
determine the quantum states prepared by Alice and Bob, where ¢ determines Alice’s
quantum states and { determines Bob’s quantum states. The probability of non-random
quantum states prepared by Alice is p; and the probability of random quantum states
is 1 — py. The probability of non-random quantum states prepared by Bob is p; and the
probability of random quantum states is 1 — py. If py = 1 or pp = 1, apparently, Eve
can acquire all the information, thatis, R = 0. If p; = p» = 0, Eve may partly acquire
information. If 0 < p; < 1,0 < pp < 1, the weak randomness model could be applied
to quantify the maximal amount of leaked information and explore the security of SNS
TF-QKD with weak randomness. Using the experimental parameters, we demonstrate
that the secret key rate of SNS TF-QKD still can exceed the PLOB bound and achieve long
secure transmission distances under the weak random condition. We then compare the
effect of weak randomness on the BB84 protocol and MDI-QKD protocol, and we deduce
that SNS TF-QKD can tolerate more weak randomness vulnerability.

The rest of paper is organized as follows: we describe a four-intensity decoy-state
SNS TF-QKD protocol in Section 2. In Section 3, we analyze the effects of the weak
randomness on the SNS TF-QKD protocol in the asymptotic and of the finite-key size cases.
The numerical simulations are shown in Section 4 and the conclusion is made in Section 5.

2. Protocol Description

In the practical QKD system, we usually choose the weak coherent state source
instead of the single photon source. Here, we consider the four-intensity decoy-state
SNS protocol [16], and the description of the protocol is presented as follows:

1.  Preparation. At any times window i, Alice (Bob) independently determines whether
it is a decoy window or a signal window with probabilities px and p;. If it is a de-
coy window, Alice (Bob) sends out to Charlie a decoy pulse in a phase-randomized

coherent state | /fz¢4), ‘\/ﬁei‘slf*> or |0) (|\/7ae), ‘\/ﬁei5/3> or |0)) with prob-
abilities of py,, py,, po. We suppose u, < pyp. If it is a signal window, Alice (Bob)
decides to send out to Charlie a signal pulse in phase-randomized coherent states
|\/fiz€”*4) or a vacuum state |0) (| /7z¢"% ) or |0)) with probabilities of p.o and 1 — p.o,
where 64 (p) is random in [0,277). Here, we assume that consecutive photons are
well-separated in the decoy and the signal time windows. Note that a coherent
state of intensity u and global phase J is a linear superposition of photon-number
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) w2
states | /7 e’y = % |k). Whenever Alice or Bob sends a coherent state

of intensity p, it can be equlvalently regarded as a probabilistic mixture of different

photon-number states fo |\ /pe® ) (/e |ds /2 = oo d ]f!” k) (k|.

Measurement. Alice and Bob send the chosen states to Charlie. Charlie then performs
interferometric measurements on the incoming quantum signals after taking phase
compensation and announces the measurement results of which detector clicks to
Alice and Bob. An effective event is defined as follows: (1) if only one detector clicks
corresponding to a time window i when both Alice and Bob have determined the
signal window, it is defined as an effective event. (2) If only one detector clicks
corresponding to a time window i when both Alice and Bob have determined a decoy
window and sent the coherent states with the same intensity, and in that time window,
the pre-chosen values 64 and dp satisfy post-selection criterion, which is:

1—|cos(64 — 0 —Pag)| < |A|, 1)

where §4 and Jp are the random phases of coherent states prepared by Alice and
Bob, respectively. 45 could take an arbitrary value and it is set properly to acquire
a satisfactory key rate, which will be different from time to time due to phase drift.
The value of A is determined by the size of the phase slice A, which is chosen by Alice
and Bob. In fact, Equation (1) is equivalent to:

2

N>

04 — GB—IIJAB|<*|9A 0 — Yap — 7| <

where |x| represents the minor angle enclosed by two rays, which enclose the
rotational angle.

Sifting. Alice and Bob announce decoy windows and signal windows of each other.
If both Alice and Bob choose the decoy window, it is defined to be an X window.
If both Alice and Bob choose the signal window, it is defined to be a Z window. In an
X window, it is an X; window, which is a subset of X windows, when they choose the
same intensity j, ;). Additionally, it is an Xo window when Alice (Bob) determines a
signal window, while Bob (Alice) determines a decoy window, or when both Alice
and Bob determine the decoy window, but choose different intensities. According
to the effective events criterion introduced above, Alice and Bob decide whether
one-detector clicks event is an effective event. We define three kinds of sets: Z, X; and
Xo, which include all effective events in Z, X; and Xy windows.

Parameter estimation. For the events in the set Z of the Z window, if Alice decides to
send out a phased-randomized weak coherent state, she (he) denotes a bit 1 and if she
(he) decides to send a vacuum state, she (he) denotes a bit 0. If Bob decides to send
out a phased-randomized weak coherent state, she (he) denotes a bit 0 and if she (he)
decides not to send a vacuum state, she (he) denotes a bit 0. We notice that it is the
decision that determines the bit value rather than what they send. Then, Alice and
Bob could obtain the n; bit strings, and they will get an error bit if an effective event
happens when both Alice and Bob decide to send or not send. Finally, adopting the
decoy-state method, Alice and Bob could estimate the number of the single-photon

states 771 and phase-flip error rate ef " according to the events in Z windows. They

could estimate the lower bound of n; and upper bound of ef " according to the events
in X7 and Xy windows.

Error correction. Alice and Bob perform an error correction scheme to correct bit
strings obtained in the last step. To achieve this goal, it consumes at most leakgc
bits of error correction data. Then, Alice and Bob exploit a random two-universal
hash function to carry out an error verification operation, which Alice sends a hash of
length log, (1/&cr) to make sure that the key bits of Alice are the same as Bob.
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6.  Private amplification. In order to reduce Eve’s information of final keys, Alice and
Bob exploit the random two-universal hash function to extract two shorter strings of
length I. Finally, Alice and Bob obtain the secret key strings S4 and Sp.

3. Security Analysis

In this section, we may analyze the effects of the weak randomness on the decoy-
state SNS TF-QKD in the asymptotic and the finite-key size cases. We may derive concise
formulas for estimating the lower bound of the single-photon yield and the upper bound
of the phase-flip error rate.

3.1. Parameter Estimation in the Asymptotic Case

As discussed above, the effective events that Alice decides to send and Bob decides
not to send, or Alice decides not to send and Bob decides to send, in Z windows could
generate the secret key. As a matter of fact, the selection of signal windows and decoy
windows can be considered as the basis selection. In the decoy windows or the signal
windows, sending or not sending a phase-randomized coherent state can be considered as
the bit encoding. This assumption is reasonable by considering two cases. The first one is
that the random numbers may be leaked to Eve because of the imperfection of the random
number generator devices. The other one is that the imperfect state modulation may be
prepared by different laser diodes from Alice and Bob, and they can be partly distinguished
through observing the properties of the spectrum and timing sequence. Therefore, the weak
randomness attack model which is used in the BB84 protocol and the MDI-QKD protocol
is still appropriate to the SNS TF-QKD protocol. Under the weak randomness model, we
suppose that the quantum states prepared by Alice and Bob can be considered as the set
S and T, and |S| and |T| represent the number of elements of the set S and T. For the
set of quantum states prepared by Alice (Bob), S1(17) is the random part and Sy(13) is

the non-random part. At this time, the probability of a non-random parameter at Alice
— 5]

could be defined as p; = S and the probability of non-random parameter at Bob could
be defined as p; = % Under the practical QKD system, although we can assume the

quantum devices at Alice and Bob are identical, the attack capabilities of Eve against Alice
and Bob cannot be guaranteed same. That is, p; = p; is not necessary. In the model, we
can re-describe the quantum states prepared by Alice and Bob in the practical system:

O Alice = % Y 1a)(a| arice @ |a) (a] gy + (1 = P1)0atice @ 12) (2| prer ®3)
a=0,1

plBob = % 2 |b> <b|Bob ® |b> <b‘Eve + (1 - P2>pBob ® |2> <2|wa' (4)
b=0,1

where the quantum states prepared by Alice and Bob can be divided into two parts: the
first part is prepared by a non-random set, and the second part is prepared by a random set.
In the case in which the quantum states are in the first part, the assistant quantum states of
Eve are related to Alice’s (Bob’s) system. More precisely, if the auxiliary quantum state of
Eveis |a)(a|g,,, Eve can obtain the secret key a of Alice; if the auxiliary quantum state of Eve
is |b) (b| ., Eve can obtain the secret key b of Bob. In the case in which the quantum state
is prepared in the second part, if the auxiliary quantum state of Eve is |2) (2|r,,, it indicates
that Alice and Bob prepared the phase-randomized coherent states, which is equivalent

© ik
to a probabilistic mixture of different photon-number states paice = Y. ° #k!” L |k) (k| and

x®  —u k
PBob = L & ]f,”b |k) (k| and Eve can not distinguish encoding states. Therefore, Eve can
, ®

distinguish the random part and non-random part states of Alice and Bob by observing
auxiliary quantum states. The practical QKD systems require perfect random numbers for
preparing quantum states. Unfortunately, the weak randomness of state preparation in
practical QKD systems is universal because of the imperfections of quantum devices.
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Under the weak randomness model, Eve wants to get more information, so she (he)
may perform the attenuation operation on the quantum states from a random part by a
certain probability, but cannot perform that on the quantum states from a non-random part.
The attacker’s attenuation operation increases the non-randomness of the quantum states
reaching Charlie, which leads to the increasing of the amount of information controlled
by Eve. Because of the attenuation operation, we can assume that the bit error rate only
happens in the random part, while the non-random part does not produce bit errors.
As long as Eve controls the attenuation to make the final error rate less than a reasonable
value, Alice and Bob cannot detect the presence of Eve, so Eve implements a weak-random
attack. In this case, the non-random probability on Charlie’s side can be amplified by
considering the signal loss so that the maximal transmission distance may be seriously
decreased and the single photon counting rate in Z windows s¥, which is used to generate
the secret key, decreases, and the bit error rate in X windows ei( increases. Then, we
estimate the parameters within the effects of weak randomness on SNS TF-QKD in the
asymptotic case.

Firstly, we may analyze the state preparation step under the weak randomness con-
dition. In the case where both Alice and Bob choose a signal window, Alice then sends
quantum states and Bob does not send quantum states, or Bob sends quantum states and
Alice does not send quantum states, and the probability of the states prepared by Alice
or Bob with randomness is 2p.o(1 — p,o)pze #(1 — p1)(1 — p2), and the probability with
non-randomness is 2p,0(1 — pz0)pze *2(1 — (1 — p1)(1 — p2)) = 2p20(1 — p2o)pze "= (p1 +
p2 — p1p2)- Here, the probability of quantum states with non-randomness prepared by
Alice is py, and the probability of quantum states with non-randomness prepared by Bob is
p2. In the practical QKD system, Eve can control the attenuation of the quantum states in
the channel, and only attenuates the quantum states of the random part to ensure that the
non-random part of the quantum states reach Charlie without attenuation. At the Charlie’s
side, the proportion of non-random quantum states from the non-random part increases,
and the proportion of quantum states from the random part decreases. In order to acquire
more information, Eve may make the non-random scale of Charlie as large as possible.
To ensure that she (he) may not be detected by both communicators, Eve must control the
probability of attenuation or the attack will fail. Here, we calculate the probability of signal
loss of the coherent states from the random set:

s¥ — (p1+p2 — p1p2)
= 2p,0(1 — ~Hl ,
Ploss1 PZO( on)ﬂze — (pl +p2— PlpZ)

©)

From the Equation (5), we can conclude the proportion of quantum states reaching Charlie

with non-randomness:
p1tp2—pip2 ©)

Z 7
51

Pnon—randl =

The proportion of quantum states reaching Charlie with randomness is:

st — +p2—
Dot = 1 (1 : e pip2) @)
1

Since the quantum states of the random part are attenuated, the effective counting rate s¢ in
the Z window and the bit error rate e in the X window will change. In fact, the quantum
states of the non-random set cannot generate the security key, and only the quantum states
of the random set may generate the security key. The counting rate from the non-random
set in Z windows that cannot generate the secret key is:

5t = 2p20(1— pao)pze = (p1+ p2 — p1p2), ®)
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The counting rate from the random set in Z windows that can generate the secret
key satisfies:

sh = st — 5% )
Under the weak randomness condition, in order to obtain more information, Eve attenuates
the random part of the quantum states to ensure that the final error code only comes
from the quantum states of the random part. The bit error rate in X windows after the
attenuation operation is calculated:

N ef'st 10
PR , (10)
Prand1 ST — (Pl +p2 — p1p2)

Alice and Bob use the announced data from X; windows to calculate the counting rate slZ ,
which is also the value for Z windows. The number of bits generated in Z windows could
be calculated from this value. Moreover, the error rate of bits in X; windows of intensity u
and Eff, the counting rate of intensity # and S, and the counting rate of vacuum sy can be
observed, so we can calculate the upper bound value of the flipping rate [12]:

SyEif —e sy /2
“ougZ
2pe2Hs]

e{( < ef’u = (11)

In the asymptotical condition, the phase-flip rate satisfies ef "= eX. Similarly, under the

weak randomness model, the phase-flip rate satisfies e’f k= e}. Finally, we can distill the
final key with an asymptotic key rate formula with weak randomness:

R =2p.0(1 — poo)pze s} [1 = H(e[")| — £S2H(Ez). (12)

where H(x) = —xlog,(x) — (1 — x)log,(1 — x) is the binary entropy function, Sz is the
observed counting rate of Z windows, Ez is the corresponding bit-flip error rate and f is
the efficiency of error correction.

3.2. Parameter Estimation with the Finite-Key Size

In a practical QKD system, the number of photons sent is finite and the intensities
cannot be infinite in Z windows or X windows. In this section, we consider the effects of
the weak randomness on SNS TF-QKD with the finite-key size based on the universally
composable framework [40]. To close the gap between the expected values and observed
values, we exploit the Improved-Chernoff bound [41-43] to estimate the counting rate of
single-photon states 1 and the phase-flip error rate ef "

Firstly, we make an introduction of the universally composable framework [40]:

Definition 1. If the final key strings S o and Sp of Alice and Bob satisfy the following conditions,
the protocol is defined to be e-secure:

e Correctness. A protocol is cop-correct if S o and Sp of Alice and Bob are not identical with the
maximal probability of €cor:
Pr(SA 7£ SB) < &cors

e Secrecy. The final key strings S (S o or Sp) are said to be esec-secret with respect to the Eve
holding a quantum system E if:

1
Epabort”ps —ou® PE” < €sec,

where p o+ denotes the probability of protocol failure aborted, ps denotes the classical-quantum
states of the system for Alice (Bob) and system E, and py; denotes the fully mixed states on S 5
or Sg.
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The security against general attacks based on the entropic uncertainty relation for the
smooth min-extropy in the SNS TF-QKD has been proven. According to the finite-key
analysis based on the universally composable framework, the length of secret keys can be
presented as follows [16,44]:

{= nq [1 - H(efh)} — leakEc - logzsi ! (13)
co

—2log, —.
r & V2epat

According to the composable framework, the security coefficient of the whole protocol is
€101 = E€cor + Esec, Where €goc = 28 + 4E + €py + €41. €cor is the failure probability of error
correction; € and epy are the failure probability for the estimation of the phase-flip error rate
and privacy amplification; €, is the failure probability for estimation of the lower bound
of the counting rate of single-photon states. leakg, = fn;h(E;), where n; is final length of
the secret key string, E, is the corresponding error rate.

In X windows, Alice and Bob do not announce any phase information. The coherent
states sent out can be regarded as a classical mixture of different photon numbers. We
denote po, pa and pp. Let Nyg be the number of the events which Alice sends p, and Bob
sends pg, where (a,B) € {(v,v),(v,a),(a,v),(v,b),(b,v)}. Here, we suppose that Alice
and Bob repeat the Preparation and Measurement step N times, so N,p can be expressed as
follows [16]:

Nyp = [(1 — Pua — P;m)2(1 - P2)2+2(1 — Pua — Pyb)(l - PZ)PZon} N, (14)
Nyg = Nao = [(1 — Pua — pﬂb)(l - PZ)Zpyu“‘(l - PZ)PZPzOPW} N, (15)
va = Nbv = [(1 - pz)z(l — Pua — Pﬂb)pllb+(1 - Pz)Pszopyb] N. (16)

let n,5 be the number of effective events of one-detector heralded corresponding to the Ng.
For (a,B) € {(v,v),(v,a),(a,0),(v,b), (b,0)}, nup can be expressed as:

Nyy = 2Pd(1 - pd)NZ)U/ (17)
Mg = Ngp = 2 [(1 - pd)eiwm/z - (1 - Pd)Zeﬂwa} Noa, (18)
Moy = My = 2[(1 = pa)e /2 — (1 - Pd)ZfW”} Nop- (19)

To close the gap between the expected values and observed values, we apply Improved-
Chernoff bound [41-43] to obtain the upper and lower bound of the expected value of 1,5
considering independent event conditions:

u\ _ _Mp L\ _ Map
<n“ﬁ> a 1—5u'<n”"5> 1446 (20)
where we can obtain the values of 6;; and 41, by solving the following equations:
o 71X/ (1=dy) .
(1—ay) % A (21)
1X/(1+01)
e’ €
ETAC B )

where ¢ is the failure probability, (x) is the expected value of x. From Equations (20)-(22),
we can obtain the upper and lower bound of n,g, <nau/5> and <n§ﬁ>. Then, we denote the
counting rate of state p, and state pg as S,p, which can be expressed as:
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(%)= (3

n
Sup = N”;Z ) (23)

Obviously, from Equations (20) and (23), we can easily obtain the upper and lower bound
of the expected value of S,4:

(si5) = <ngﬁ>/ (Sts) = ) 1)

Nag Nagp

Similarly, in the case of the finite-key size, the probability of signal loss of the coherent
states from the random set can be calculated as:

1y —2p20(1 — pzo)pze = (p1 + p2 — p1p2) N 25)

Ploss2 = N — (pl T, P1P2)N ’

from the Equation (25), we can conclude the proportion of quantum states reaching Charlie
with non-randomness:

2p20(1 - e (p1 + p2 — prp2)N
Dronsangy = 2P L= Pe0bz nl(m p2—p1r2)N (26)

the proportion of quantum states reaching Charlie with randomness is:

n1 —2pz0(1 — pzo)pze” " (p1 + p2 — p1p2)N 27)
n

Prand2 =

Due to the quantum states in the random part being attenuated, the number of the

effective counting rate 11 and the phase-flip error rate efh in the Z window may change.
The quantum states in the non-random set cannot generate the security key, and only
the quantum states in the random set may generate the security key. The number of the
effective events caused by single-photon states from the non-random set in Z windows
that cannot generate the secret key is:

iy = 2p,0(1 — pzo)yze*?’zs]ZN, (28)

The number of the effective events caused by single-photon states from the random set that
can generate the secret key is:

ni =ny —fiy = 2py0(1 — pyo) pze™ = (slZ — §Z)N. (29)

where the lower bound of the effective counting rate s? of the finite-key size satisfies [16,17]:

> = 2yayb(1) {]’lbzeyﬂ(<sz%a> + <Sffv>) - Vﬂzeﬂb(<szl;lb> + <S%;lv>) —2(p* — #a2)<5§lv>]- (30)

Ho — Ha

Moreover, in order to estimate the upper bound of ef h, we need to define two new subsets
CX and C, of X; windows when |04 — dp| < % and |64 — 0 — 7| < %, where we have
supposed that (45 = 0. The number of instances in C; and C, is:

A 2.2
Np+ = Np- = EG_PZ) Pu.N, (31)

Here, we denote the number of effective events of right detector from C, and the number
of effective events of left detector from C, as n§+ and ni,:

nR, = (Wa(1—eg) + Caeq) NS, (32)
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nk_ = (Wa(1—eg) + Caeq) Ny (33)

where W, and C, is the average probability of correct counting and wrong counting,
respectively, which can be given as:

A/2

e / " (1= pa)er2mean - (1 - e, (34)
A A/Z
A/2

Ca / " (1 pa)er g — (1 pye 2, (35)
A A/Z

Considering independent event conditions, we apply the Improved-Chernoff bound [41-43]
to obtain the upper and lower bound of the expected value of nﬁi. For the finite sample
sizes, the number of effective events of the right and left detector from C; and C, satisfies:

R R
RU\ _ "+ RL\ _ _"a+
<”A+ > 1 —5'u'<”A+> I (36)
L L
Lu M- LL Mp-
<”A*> 1-oy '<”*> 1+0 (37)
With the failure probability ¢, we can obtain the values of §';; and ¢’; by solving the
following equations:
Yy X/(1-d"y)
et _£ 38)
(1 . §,u)175/u - 2/ (

e

‘5/L X/(lths,L)
(1 + 5/L)1+5’L ]

€
== (39)

We have the upper bound of the expected value of counting error rate from C}{ and C,:
RU RU

)=y -3 (D),

Eve may attenuate the random part of the quantum states to ensure that the final error code
only comes from the quantum states in the random part. The value of the counting error
rate after the attenuation operation is calculated:

u Uu\.z
= T80 (Ta)s (a1)
prand2 51 — (Pl +p2— plpZ)

The upper bound of the expected value of the phase-flip error rate satisfies [16,17]:

<e§7h> < <e§7h U> TA, — %672}4“<55U> (42)

2pge~2Ha <slz'L> ,

Furthermore, we are supposed to simulate the information leakage in the protocol.
According to the events in Z windows, Alice and Bob can obtain a secret string of 1 bits.
They do not care about which detector clicks as long as only one detector clicks. The length
of the secret key string is ¢ = ngjgyq1 + Merror- The number of right bits ;4,5 and wrong
bits #1¢yror can be given:

Reignat = 4Np2pao(1 = pao) [ (1= pa)e /2], (43)
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Rerror = 2NP2(1 = p20)2 | (1 = pa)e™ /2l (ppz) = (1 = pa) e~ + 2Np2p2o(1 = pa)- (44)

where Iy(x) is the zero-order hyperbolic Bassel function of the first kind. The error rate of
the final key string is E, = ”%;“’

Finally, combining the Equations (29), (42)—(44), we can calculate the length of final
security key in the SNS TF-QKD protocol with the weak randomness:

' =nj {1 — H(efh)} — leakpc — logzi — 2log,

. 45
Ecor \/ESPA?, 45)

4. Numerical Simulations

Here, we simulate the performance of effects of weak randomness on SNS TF-QKD in
the asymptotic case and with the finite-key size. We use the linear model to numerically
simulate the performance of the protocol. Firstly, we set the experimental parameters
that we may exploit. Then, we set the results of the final secret key rate and the analysis
of results.

We define 7 = 10~*L/10 a5 the fiber transmittance, where & = 0.2 (dB/km) is the fiber
loss coefficient and L is the length of fiber between Charlie and Alice (Bob). 1; = 80% is
the detection efficiency of the relay Charlie, and p; = 10710 is the dark count of Charlie’s
detectors. The failure probability of statistical fluctuations analysis is fixed to ¢ = 1071,
and f = 1.11is the efficiency of error correction. R = ¢ /N is the final secret key rate, where N
is the total number of transmitting signals sent by Alice and Bob. The numerical parameters
are listed in Table 1. Here, we set e¢oy = & = €py = €, & = 3¢, and ¢, = 4e.

Table 1. List of experimental parameters applied in the numerical simulation in the following table:
« is the the fiber loss coefficient (dB/km), f is the efficiency of error correction, 7, is the efficiency of
the detectors, e, is the probability of the optical misalignment error, p,; is the dark count rate, and ¢ is
the failure probability of statistical fluctuation analysis.

« f 14 eq Pa £
0.2 1.1 80% 0.15 1.0 x 1071 1.0 x 10710

Firstly, we analyze the results of weak randomness existing in only one party (Alice or
Bob) in the asymptotic and the finite-key size cases in Figure 1. Here, p; # 0, p» = 0 means
that Eve just masters the randomness information of Alice, and p; = 0,10"*(x = 6,5,4,3)
means that Eve has different abilities for controlling the randomness information. We then
analyze the results of weak randomness existing in both parties in the asymptotic case
and the finite-key size cases in Figure 2, where Eve masters the randomness information
of both Alice and Bob. As illustrated in Figures 1 and 2, the dashed lines from right to
left are acquired for different weak randomness parameters p; = 0, 107°,105,10%,103
with the infinite number of total pulses, and the solid lines from right to left are acquired
for different weak randomness parameters p; = 0,10~ (x = 6,5, 4, 3) with the fixed finite
number of total pulses N = 10'°. In the Figure 1, compared with the perfect randomness
p1 = p2 = 0, we can calculate that the achievable transmission distance declines 11.96%,
26.91%, 43.52%, 60.46% in asymptotic cases and declines 14.39%, 30.93%, 48.56%, 66.19%
with the finite-key size when p; = 107°,107°,107#,1073. In the Figure 2, compared with
the perfect randomness p; = p» = 0, the achievable transmission distance declines 14.39%,
30.93%, 48.56%, 66.19% in asymptotic cases and declines 15.95%, 31.89%, 48.50%, 65.12%
with the finite-key size when p; =0, 107°,107>,10~%,103. Nevertheless, we find that the
secret key rate can exceed the PLOB bound [11] when p;(p2) > 10 with the finite-key
size N = 10'%, and it can still exceed the PLOB bound [11] when p;(p;) > 1072 in the
asymptotic case. From the above calculation data, we can deduce that the fluctuation
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of the finite-key size is greater than asymptotic cases for the fixed weak randomness
parameters. Moreover, comparing with two simulation results, we can find that although
the randomness information mastered by Eve of the Figure 2 is twice as much as the
randomness information mastered by Eve of the Figure 1, it does not decrease exponentially,
which means that once Eve obtains part of the information, it can seriously affect the
practical system security.

10°

N=10° p1=0,p2=0

— — = N=Infinity,p1=0,p2=0
of N=10%%,p1=1075,p2=0 ]
10 N=Infinity,p1=10"% p2=0

N N=101° p1=10"° p2=0
— — = N=Infinity,p1=10"° p2=0
N=10"° p1=10"%p2=0 |§
N=Infinity,p1=10"* p2=0
N=101° p1=10"3 p2=0
— — = N=Infinity,p1=10"3 p2=0 |
~+.w-- PLOB bound

Secret key rate (per pulse)

=
o
|
o
T

I I I A

10712 : :
0 100 200 300 400 500 600

Standard fiber link (km)

Figure 1. (Color online) The optimal key rate (bits per pulse) in logarithmic scale versus transmission
distance between Alice and Bob when the weak randomness exists for only one party (Alice or Bob)
p1 = 107" (x = 6,5,4,3),p» = 0 (curves from right to left). The dashed lines are results of the
asymptotic case, and the solid lines are the results of the finite-key size N = 10'°. The gray dotted
line is the PLOB bound.

10°

N=10%% p1=p2=0

— — = N=Infinity,p1=p2=0

. N=10'° p1=p2=10~°

1072 ini B
N=Infinity,p1=p2=10

- N=101° p1=p2=10~°

— — = N=Infinity,p1=p2=10"°

N=10%% p1=p2=10"* |3

N=Infinity,pl=p2=10"*

N=10%5 p1=p2=10~3

— — = N=Infinity,pl=p2=10"2

<+ PLOB bound

Secret key rate (per pulse)

10—10 L

10—12 I 1 1 | | r
0 100 200 300 400 500 600

Standard fiber link (km)

Figure 2. (Color online)The optimal key rate (bits per pulse) in logarithmic scale versus transmission
distance between Alice and Bob when the weak randomness exists for two parties p; = p, =
10~*(x = 6,5, 4, 3)(curves from right to left). The dashed lines are results of asymptotic cases and the
solid lines are the results of the finite-key size N = 10'°. The gray dotted line is the PLOB bound.
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In order to perform a detailed simulation, we then research the results of the weak
randomness for the different total numbers of transmitting signals N = 10* (x = 12,13, 15).
Corresponding simulation results are illustrated in Figure 3, the dashed lines from left to
right are acquired for N = 10* (x = 12,13, 15) with the fixed p; = p, = 10~° and the solid
lines from left to right are acquired for N = 10* (x = 12,13,15) with the fixed p; = p, = 0.
We can notice that the generation of the security key rate will be significantly affected, even
though the weak randomness parameter is small as 10, which means that Eve will obtain
amounts of information even with small proportions of weak randomness. As shown in
Figure 3, the achievable transmission distance declines 104 km when N = 10'%, 60 km
when N = 103, and 10 km when N = 102, so we deduce that the greater the number of
total pulses, the more the secure transmission distance decreases. We find that the secret
key rate cannot exceed the PLOB bound [11] when N < 10'® with the fixed p; = p, = 107°.
The number of total pulse increases, so does the number of quantum states which may be
attenuated. Eve may obtain more information due to the relation between the expected
values and the observed values for the case with different modulated states in the practical
QKD system. In this case, the number of modulated states distinguished by Eve may
increase which leads to more leakage of the security key information so we are supposed to
control the number of total pulses within a rational range rather than arbitrarily choosing.

100 w
' N=10%5 p1=p2=0
— — = N=10% p1=p2=10~°
1072 ¢ N=10%2 p1=p2=0 3
= N=10'3 p1=p2=10~°
k%) N=10%2 p1=p2=0
3 1074k — — —N=10"2p1=p2=10"% | ]
. ‘i PLOB bound
©
&
[
T 1076F 1
©
>
)
X
-
o 1078¢ 1
(8]
o}
(99}
10-10F ]
10—12 I I I I I v
0 100 200 300 400 500 600

Standard fiber link (km)

Figure 3. (Color online)The optimal key rate (bits per pulse) in logarithmic scale versus transmis-
sion distance between Alice and Bob with weak randomness p; = p, = 10~° and without weak
randomness p; = pp = 0 for different N = 10*(x = 12,13,15) (curves from left to right), the dashed
lines are results of weak randomness for different N, and the solid lines are the results of non-weak
randomness for different N. The gray dotted line is the PLOB bound.

To further study the impacts of the weak randomness for different total numbers
of transmitting signals, we then research the secret key rate for N = 10'3, 10'° with
p1 = p2 =0, 107" (x = 6,5,4,3) in Figure 4. As illustrated in Figure 4, the dashed
lines from right to left are acquired for different weak randomness parameters p; = pp =
0, 107* (x = 6,5,4,3) with the fixed N = 10'® and the solid lines from right to left are
acquired for different weak randomness parameters p; = p, = 0, 107* (x = 6,5,4,3)
with the fixed N = 10'°. We can find that the impact of the weak randomness on final
security key rate is greater than the finite total numbers of transmitting signals when
p1 = p2 > 10~ and the security key rate lines of two different N are approximately
asymptotic. The impacts of the weak randomness on final security key rate is weaker than
the finite total numbers of transmitting signals when p; = p, < 107> and the security key
rate lines of two different N are not asymptotic. Moreover, the secret key rate cannot exceed
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the PLOB bound [11] when p;(p2) > 10~° with the finite-key size. In fact, temporal modes
of photons become stretched due to the chromatic dispersion in the fiber. This phenomenon
will impact the detection time windows. That is, the longer the fiber, the wider the time
window should be. The duration of the secret key generation depends on the transmission
distance as well as on the number of photons per pulse.

10°

N=10%% p1=p2=0

— — = N=10%3 p1=p2=0

N=10%5 p1=p2=10~°
N=1013 p1=p2=10~° |3
N=10%% p1=p2=10~°
— — —N=10"3 p1=p2=10~°
N=10'° p1=p2=10"* |3
N=10%3 p1=p2=10~*
N=101° p1=p2=10~2
— — —N=10%8 p1=p2=102 []
————— PLOB bound

1072

1074

1076

1078 F

Secret key rate (per pulse)

10—10 L

10—12 I 1 1 I |
0 100 200 300 400 500 600

Standard fiber link (km)

Figure 4. (Color online) The optimal key rate (bits per pulse) in logarithmic scale versus transmission
distance between Alice and Bob with weak randomness p; = p» = 0,107 (x = 6,5,4,3) (curves
from right to left) for different N = 10'3, N = 105, the dashed lines are results N = 10'% with
different weak randomness parameters, and the solid lines are the results of N = 1015 with different
weak randomness parameters. The gray dotted line is the PLOB bound.

Finally, we compare and analyze the effects of weak randomness on different QKD
protocols, BB84, MDI-QKD and SNS TF-QKD. We simulate the largest weak randomness
vulnerability that different protocols can tolerate. As shown in Figure 5, the blue lines are
results of MDI-QKD: the solid line is the result of both Alice and Bob existing the weak
randomness and the dashed line is the result of one party existing the weak randomness.
The black line is the result of the BB84 protocol. The red lines are results of SNS TF-QKD:
the solid line is the result of both Alice and Bob existing the weak randomness and the
dashed line is the result of one party existing the weak randomness. We find that the largest
weak randomness vulnerability that SNS TF-QKD can tolerate is 10~2 which is greater
than the BB84 and MDI-QKD 10~3. Moreover, the achievable transmission distance is also
longer than the BB84 protocol and the MDI-QKD protocol.

Actually, the probability that the states prepared by Alice (Bob) in the BB84 and
the MDI-QKD reach the detector is 7. For the SNS TF-QKD, it is /7. Under the weak
randomness model, in order to make sure not to be discovered, Eve may attenuate the
quantum states from non-random part with a certain probability, which is related to the
fiber transmittance 77. The channel-loss dependence of the key rate in SNS TF-QKD is
square root of channel transmittance R ~ O,/ while it is linear in the BB84 and the
MDI-QKD R ~ O(7) , and that is why SNS TF-QKD can tolerate more weak randomness
vulnerability than the BB84 protocol and the MDI-QKD. Compared with the BB84 protocol,
the MDI-QKD is more sensitive to weak randomness which is rational since both Alice
and Bob prepare quantum states. Compared with the MDI-QKD, the SNS TF-QKD is more
robust to the weak randomness since just one party sends states and perform single photon
interference in the quantum channel.
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From the above simulation results, we can infer that SNS TF-QKD can still have the
outstanding performance under the weak random condition. The secret key rate with
the finite-key size is more sensitive to the weak randomness, and it performs differently
for the different finite numbers of total pulses. Furthermore, SNS TF-QKD has an ad-
vantage of tolerance to the weak randomness compared to the BB84 protocol and the
MDI-QKD protocol.

3

— — —BB84, p=10"
MDI p1=10"3, p2=0
~ = = =MDI p1l=p2=10~2

SNS p1=10"2%, p2=0| 1
— — —SNS pl=p2=10"°

Secret key rate (per pulse)

=
9
(o2}

o

10 20 30 40 50 60 70 80 90 100

Standard fiber link (km)

Figure 5. (Color online)The optimal key rate (bits per pulse) in logarithmic scale versus transmission
distance between Alice and Bob with weak randomness in the BB84 protocol, the MDI-QKD and the
SNS TE-QKD. The blue lines are results weak randomness parameters, and the solid lines are the
results of N = 10'° with different weak randomness parameters.

5. Conclusions

In this paper, we study the influence of weak randomness on the security of SNS
TF-QKD in the asymptotic and the finite-key size case. Our simulation results indicate
that in both cases, SNS TF-QKD can still have the prominent performance under the weak
random condition: the secret key rate can exceed the PLOB bound and achieve long secure
transmission distances. Moreover, the fluctuation of the final key rate with the finite-key
size is greater than that in asymptotic cases, and because of Eve’s attenuation operation,
the greater the number of total pulses, the more reduced the secure transmission distance.
Additionally, the impact of the weak randomness on the final security key rate is greater
than that with the finite total numbers of transmitting signals when p; = p, > 1074,
and weaker when p; = p, < 107°. Under the weak randomness condition, SNS TF-QKD
and MDI-QKD perform differently. The secret key rate of SNS TF-QKD still can surpass
the PLOB bound when p;(p>) < 107 with the finite-key size, and it cannot surpass the
PLOB bound when p;(pz) > 107° in the asymptotic case. MDI-QKD cannot generate a
secure key when p1(p2) > 1073, while SNS TF-QKD has an advantage of tolerating the
weak randomness (up to 10~2).

We conclude that to avoid such an attack in the actual QKD systems, two aspects
can be taken into account: (1) to make sure that the random numbers we use to encode,
select bases, select time windows, and send or not send quantum states are as perfect as
possible. We are supposed to use a better random number generator or random number
generation algorithm, and (2) at the source side, we should ensure the reduction of the risk
of the side channels, so as to avoid the distinguishability of the quantum states preparation
in all degrees of freedom, such as the distinguishability between signal states and decoy
states, and the distinguishability between perfect random states and weak random states.
We can use two independent laser sources so that Alice and Bob have no incidental light,
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and hence there is no need to monitor the incident light as the implementations directly use
seed light from Charlie. The imperfect IM will also produce the states distinguishability
in the frequency domain. We can use more than one IM in the actual QKD systems.
Furthermore, the narrow spectral filter and wavelength filter can also be used to the reduce
states distinguishability and the threat of side channels.

Author Contributions: Conceptualization, X.-L.J.; methodology, X.-L.J. and Y.W.; software, X.-L.J.
and Y.W.; validation, X.-L.J.; formal analysis, X.-L.]., YW. and Y.-EL.; investigation, X.-L.J.; writing—
original draft preparation, X.-L.J. and Y.W.; writing—review and editing, C.Z., ].-J.L. and W.-S.B.;
supervision, W.-S.B.; project administration, W.-5.B.; funding acquisition, W.-S.B. and Y.W. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (Grant No.
62101597), the National Key Research and Development Program of China (Grant No. 2020YFA0309702),
the China Postdoctoral Science Foundation (Grant No. 2021M691536), the Natural Science Foundation
of Henan (Grant No. 202300410534) and the Anhui Initiative in Quantum Information Technologies.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bennett, C.H.; Brassard, G. Quantum Cryptography: Public Key Distribution and Coin Tossing. In Proceedings of the IEEE
International Conference on Computers, Systems, and Signal Processing, Bangalore, India, 9-12 December 1984; pp. 175-179.

2. Xu, F; Ma, X,; Zhang, Q.; Lo, HK_; Pan, J.W. Secure quantum key distribution with realistic devices. Rev. Mod. Phys. 2020,
92, 025002. [CrossRef]

3. Li, HW.; Wang, S.; Huang, ].Z.; Chen, W,; Yin, Z.Q.; Li, EY.; Zhou, Z,; Liu, D.; Zhang, Y.; Guo, G.C.; et al. Attacking a practical
quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources. Phys. Rev. A 2011,
84, 062308. [CrossRef]

4. Lydersen, L.; Wiechers, C.; Wittmann, C.; Elser, D.; Skaar, J.; Makarov, V. Hacking commercial quantum cryptography systems by
tailored bright illumination. Nat. Photonics 2010, 4, 686—-689. [CrossRef]

5. Qian, YJ.; He, D.Y,; Wang, S.; Chen, W.; Yin, Z.Q.; Guo, G.C.; Han, Z.F. Robust countermeasure against detector control attack in a
practical quantum key distribution system. Optica 2019, 6, 1178-1184. [CrossRef]

6. Jain, N.; Anisimova, E.; Khan, I.; Makarov, V.; Marquardt, C.; Leuchs, G. Trojan-horse attacks threaten the security of practical
quantum cryptography. New J. Phys. 2014, 16, 123030. [CrossRef]

7. Lucamarini, M.; Choi, I.; Ward, M.B.; Dynes, ].F,; Yuan, Z.; Shields, A.]J. Practical security bounds against the trojan-horse attack
in quantum key distribution. Phys. Rev. X 2015, 5, 031030. [CrossRef]

8. Lo, HK,; Curty, M,; Qi, B. Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 2012, 108, 130503.
[CrossRef]

9.  Lucamarini, M,; Yuan, Z.L.; Dynes, ].E; Shields, A.]. Overcoming the rate—distance limit of quantum key distribution without
quantum repeaters. Nature 2018, 557, 400—403. [CrossRef]

10. Xie, YM.; Lu, Y.S;; Weng, C.X.; Cao, X.Y,; Jia, Z.Y.; Bao, Y.; Wang, Y.; Fu, Y.; Yin, H.L.; Chen, Z.B. Breaking the rate-loss bound of
quantum key distribution with asynchronous two-photon interference. PRX Quantum 2022, 3, 020315. [CrossRef]

11. Pirandola, S.; Laurenza, R.; Ottaviani, C.; Banchi, L. Fundamental limits of repeaterless quantum communications. Nat. Commun.
2017, 8, 1-15. [CrossRef]

12.  Wang, X.B.; Yu, ZW.; Hu, X.L. Twin-field quantum key distribution with large misalignment error. Phys. Rev. A 2018, 98, 062323.
[CrossRef]

13. Ma, X,; Zeng, P.; Zhou, H. Phase-matching quantum key distribution. Phys. Rev. X 2018, 8, 031043. [CrossRef]

14. Cui, C;; Yin, Z.Q.; Wang, R.; Chen, W.; Wang, S.; Guo, G.C.; Han, Z.F. Twin-field quantum key distribution without phase
postselection. Phys. Rev. Appl. 2019, 11, 034053. [CrossRef]

15. Curty, M.; Azuma, K.; Lo, H.K. Simple security proof of twin-field type quantum key distribution protocol. npj Quantum Inf.
2019, 5, 1-6. [CrossRef]

16. Jiang, C.; Yu, Z.W.; Hu, X.L.; Wang, X.B. Unconditional security of sending or not sending twin-field quantum key distribution
with finite pulses. Phys. Rev. Appl. 2019, 12, 024061. [CrossRef]

17. Yu, ZW.; Hu, X.L,; Jiang, C.; Xu, H.; Wang, X.B. Sending-or-not-sending twin-field quantum key distribution in practice. Sci. Rep.

2019, 9, 1-8. [CrossRef]


http://doi.org/10.1103/RevModPhys.92.025002
http://dx.doi.org/10.1103/PhysRevA.84.062308
http://dx.doi.org/10.1038/nphoton.2010.214
http://dx.doi.org/10.1364/OPTICA.6.001178
http://dx.doi.org/10.1088/1367-2630/16/12/123030
http://dx.doi.org/10.1103/PhysRevX.5.031030
http://dx.doi.org/10.1103/PhysRevLett.108.130503
http://dx.doi.org/10.1038/s41586-018-0066-6
http://dx.doi.org/10.1103/PRXQuantum.3.020315
http://dx.doi.org/10.1038/ncomms15043
http://dx.doi.org/10.1103/PhysRevA.98.062323
http://dx.doi.org/10.1103/PhysRevX.8.031043
http://dx.doi.org/10.1103/PhysRevApplied.11.034053
http://dx.doi.org/10.1038/s41534-019-0175-6
http://dx.doi.org/10.1103/PhysRevApplied.12.024061
http://dx.doi.org/10.1038/s41598-019-39225-y

Entropy 2022, 24, 1339 16 of 16

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

Zhou, X.Y.; Zhang, C.H.; Zhang, C.M.; Wang, Q. Asymmetric sending or not sending twin-field quantum key distribution in
practice. Phys. Rev. A 2019, 99, 062316. [CrossRef]

Hu, X.L.; Jiang, C.; Yu, Z.W.; Wang, X.B. Sending-or-not-sending twin-field protocol for quantum key distribution with asymmetric
source parameters. Phys. Rev. A 2019, 100, 062337. [CrossRef]

Xu, H.; Yu, ZW,; Jiang, C.; Hu, X.L.; Wang, X.B. Sending-or-not-sending twin-field quantum key distribution: Breaking the direct
transmission key rate. Phys. Rev. A 2020, 101, 042330. [CrossRef]

Lu, Y.E; Wang, Y,; Jiang, M.S.; Zhang, X.X; Liu, F; Li, HW.; Zhou, C; Tang, S.B.; Wang, ].Y.; Bao, W.S. Sending or Not-Sending
Twin-Field Quantum Key Distribution with Flawed and Leaky Sources. Entropy 2021, 23, 1103. [CrossRef]

Lu, Y.E; Wang, Y,; Jiang, M.S,; Liu, F; Zhang, X.X.; Bao, W.S. Finite-key analysis of sending-or-not-sending twin-field quantum
key distribution with intensity fluctuations. Quantum Inf. Process. 2021, 20, 1-15. [CrossRef]

Jiang, C.; Yu, Z.W.; Hu, X.L.; Wang, X.B. Robust twin-field quantum key distribution through sending-or-not-sending. Natl. Sci.
Rev. 2022. [CrossRef]

Jiang, C.; Hu, X.L.; Yu, Z.W.; Wang, X.B. Composable security for practical quantum key distribution with two way classical
communication. New J. Phys. 2021, 23, 063038. [CrossRef]

Jiang, C.; Hu, X.L.; Xu, H.; Yu, ZW.; Wang, X.B. Zigzag approach to higher key rate of sending-or-not-sending twin field quantum
key distribution with finite-key effects. New J. Phys. 2020, 22, 053048. [CrossRef]

Liu, Y;; Yu, ZW,; Zhang, W.; Guan, ].Y; Chen, ]J.P,; Zhang, C.; Hu, X.L.; Li, H.; Jiang, C.; Lin, ].; et al. Experimental twin-field
quantum key distribution through sending or not sending. Phys. Rev. Lett. 2019, 123, 100505. [CrossRef] [PubMed]

Qiao, Y.; Chen, Z.; Zhang, Y.; Xu, B.; Guo, H. Sending-or-not-sending twin-field quantum key distribution with light source
monitoring. Entropy 2019, 22, 36. [CrossRef] [PubMed]

Chen, ].P; Zhang, C.; Liu, Y,; Jiang, C.; Zhang, W.; Hu, X.L.; Guan, J.Y;; Yu, Z.W.; Xu, H,; Lin, J.; et al. Sending-or-not-sending
with independent lasers: Secure twin-field quantum key distribution over 509 km. Phys. Rev. Lett. 2020, 124, 070501. [CrossRef]
[PubMed]

Pittaluga, M.; Minder, M.; Lucamarini, M.; Sanzaro, M.; Woodward, R.I.; Li, M.].; Yuan, Z.; Shields, A.J. 600-km repeater-like
quantum communications with dual-band stabilization. Nat. Photonics 2021, 15, 530-535. [CrossRef]

Liu, H; Jiang, C.; Zhu, H.T.; Zou, M,; Yu, ZW.; Hu, X.L.; Xu, H.; Ma, S.; Han, Z.; Chen, ].P; et al. Field test of twin-field quantum
key distribution through sending-or-not-sending over 428 km. Phys. Rev. Lett. 2021, 126, 250502. [CrossRef]

Chen, ].P; Zhang, C.; Liu, Y,; Jiang, C.; Zhang, W.J.; Han, Z.Y.; Ma, S.Z.; Hu, X.L.; Li, YH.; Liu, H.; et al. Twin-field quantum key
distribution over a 511 km optical fibre linking two distant metropolitan areas. Nat. Photonics 2021, 15, 570-575. [CrossRef]

Li, HW,; Yin, Z.Q.; Wang, S.; Qian, Y.J.; Chen, W.; Guo, G.C.; Han, Z.F. Randomness determines practical security of BB84
quantum key distribution. Sci. Rep. 2015, 5, 1-8. [CrossRef]

Li, HW.,; Xu, Z.M.; Cai, Q.Y. Small imperfect randomness restricts security of quantum key distribution. Phys. Rev. A 2018,
98, 062325. [CrossRef]

Sun, S.H.; Tian, Z.Y.; Zhao, M.S.; Ma, Y. Security evaluation of quantum key distribution with weak basis-choice flaws. Sci. Rep.
2020, 10, 1-8. [CrossRef] [PubMed]

Zhang, C.M.; Wang, W.B.; Li, H.W.; Wang, Q. Weak randomness impacts the security of reference-frame-independent quantum
key distribution. Opt. Lett. 2019, 44, 1226-1229. [CrossRef] [PubMed]

Jiang, X.L.; Deng, X.Q.; Wang, Y.; Lu, Y.F; Li, ].].; Zhou, C.; Bao, W.S. Weak Randomness Analysis of Measurement-Device-
Independent Quantum Key Distribution with Finite Resources. Photonics 2022, 9, 356. [CrossRef]

Hwang, W.Y. Quantum key distribution with high loss: Toward global secure communication. Phys. Rev. Lett. 2003, 91, 057901.
[CrossRef]

Wang, X.B. Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 2005, 94, 230503.
[CrossRef]

Lo, HK.; Ma, X.; Chen, K. Decoy state quantum key distribution. Phys. Rev. Lett. 2005, 94, 230504. [CrossRef]

Miiller-Quade, J.; Renner, R. Composability in quantum cryptography. New . Phys. 2009, 11, 085006. [CrossRef]

Chernoff, H. A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. Ann. Math. Stat.
1952, 23, 493-507. [CrossRef]

Curty, M.; Xu, E; Cui, W,; Lim, C.C.W,; Tamaki, K.; Lo, HK. Finite-key analysis for measurement-device-independent quantum
key distribution. Nat. Commun. 2014, 5, 1-7. [CrossRef] [PubMed]

Zhang, Z.; Zhao, Q.; Razavi, M.; Ma, X. Improved key-rate bounds for practical decoy-state quantum-key-distribution systems.
Phys. Rev. A 2017, 95, 012333. [CrossRef]

Tomamichel, M.; Lim, C.C.W,; Gisin, N.; Renner, R. Tight finite-key analysis for quantum cryptography. Nat. Commun. 2012,
3, 1-6. [CrossRef] [PubMed]


http://dx.doi.org/10.1103/PhysRevA.99.062316
http://dx.doi.org/10.1103/PhysRevA.100.062337
http://dx.doi.org/10.1103/PhysRevA.101.042330
http://dx.doi.org/10.3390/e23091103
http://dx.doi.org/10.1007/s11128-021-03070-8
http://dx.doi.org/10.1093/nsr/nwac186
http://dx.doi.org/10.1088/1367-2630/ac0285
http://dx.doi.org/10.1088/1367-2630/ab81b7
http://dx.doi.org/10.1103/PhysRevLett.123.100505
http://www.ncbi.nlm.nih.gov/pubmed/31573314
http://dx.doi.org/10.3390/e22010036
http://www.ncbi.nlm.nih.gov/pubmed/33285811
http://dx.doi.org/10.1103/PhysRevLett.124.070501
http://www.ncbi.nlm.nih.gov/pubmed/32142314
http://dx.doi.org/10.1038/s41566-021-00811-0
http://dx.doi.org/10.1103/PhysRevLett.126.250502
http://dx.doi.org/10.1038/s41566-021-00828-5
http://dx.doi.org/10.1038/srep16200
http://dx.doi.org/10.1103/PhysRevA.98.062325
http://dx.doi.org/10.1038/s41598-020-75159-6
http://www.ncbi.nlm.nih.gov/pubmed/33097761
http://dx.doi.org/10.1364/OL.44.001226
http://www.ncbi.nlm.nih.gov/pubmed/30821754
http://dx.doi.org/10.3390/photonics9050356
http://dx.doi.org/10.1103/PhysRevLett.91.057901
http://dx.doi.org/10.1103/PhysRevLett.94.230503
http://dx.doi.org/10.1103/PhysRevLett.94.230504
http://dx.doi.org/10.1088/1367-2630/11/8/085006
http://dx.doi.org/10.1214/aoms/1177729330
http://dx.doi.org/10.1038/ncomms4732
http://www.ncbi.nlm.nih.gov/pubmed/24776959
http://dx.doi.org/10.1103/PhysRevA.95.012333
http://dx.doi.org/10.1038/ncomms1631
http://www.ncbi.nlm.nih.gov/pubmed/22252558

	Introduction
	Protocol Description
	Security Analysis
	Parameter Estimation in the Asymptotic Case
	Parameter Estimation with the Finite-Key Size

	Numerical Simulations
	Conclusions
	References

