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Abstract

Neutrinoless double-beta decay (0v3[3) is a rare nuclear process that, if observed, will provide
insight into the nature of neutrinos and help explain the matter-antimatter asymmetry in the
Universe. The large enriched germanium experiment for neutrinoless double-beta decay
(LEGEND) will operate in two phases to search for 0v 3. The first (second) stage will employ 200
(1000) kg of High-Purity Germanium (HPGe) enriched in 7®Ge to achieve a half-life sensitivity of
10?7 (10%®) years. In this study, we present a semi-supervised data-driven approach to remove
non-physical events captured by HPGe detectors powered by a novel artificial intelligence model.
We utilize affinity propagation to cluster waveform signals based on their shape and a support
vector machine to classify them into different categories. We train, optimize, and test our model on
data taken from a natural abundance HPGe detector installed in the Full Chain Test experimental
stand at the University of North Carolina at Chapel Hill. We demonstrate that our model yields a
maximum sacrifice of physics events of 0.024 10003 % after data cleaning. Our model is being used
to accelerate data cleaning development for LEGEND-200 and will serve to improve data cleaning
procedures for LEGEND-1000.

1. Introduction

The large enriched germanium experiment for neutrinoless double-beta decay (LEGEND) [1] is a large-scale
international experiment that uses a phased approach to discover neutrinoless double-beta decay (0v50) 2]
using high purity germanium detectors (HPGe). LEGEND combines the best technologies from the previous
germanium-based experiments, namely, the germanium detector array (GERDA) [3] and the MAJORANA
DEMONSTRATOR [4].

Signals captured by HPGe detectors pass through an amplifying electronics chain before being digitized
and saved to memory. The digitized signals are also referred to as waveforms. Since LEGEND operates in a
low-background environment, a considerable fraction of the recorded data corresponds to non-physical
waveforms caused by electronic noise and transient anomalies in the data acquisition (DAQ) system. In order
to analyze the data, these anomalous events must be tagged during digital signal processing. This process is
referred to as data cleaning.

Traditional data cleaning methods rely on procedures in which the scientist must browse through a
comprehensive sample of the data to find all the existing types of anomalous events. The scientist must then
develop parameters that can discriminate anomalous events, and perform cuts based on these parameters to
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tag said anomalous events. These parameters can vary over time and by detector. LEGEND-200 will run for
five years and with four detector types: p-type point-contact detectors made by ORTEC® [5], broad energy
germanium (BEGe) made by Mirion®[6], inverted coaxial point-pontact (ICPC) detectors made by ORTEC
® and Mirion® [7, 8], and semi-coaxial (COAX) detectors refurbished from previous experiments. In some
cases, the different detector geometries require dedicated traditional data cleaning cuts. Different hardware
configurations and run conditions, such as detector characterization systems [9], test stands [10], or
commissioning runs, affect the performance and stability of these parameters. For example, in traditional
data cleaning for LEGEND-200, 12 individual digital signal processing parameters, each with detector-
specific acceptance ranges, are used to construct four event categories. Different run periods of the
experiment require different parameter acceptance ranges, and in some cases, newly-developed parameters.
The traditional data cleaning methods used in previous-generation HPGe-based experiments are detailed in
[11, 12]. Overall, data cleaning with traditional procedures requires a significant amount of time and human
effort.

Consequently, we propose a data cleaning mechanism based on machine learning (ML). In the
experimental searches for Ov33-decay, ML has proven useful to distinguish signal from background events
[13—15], classify events based on spatiotemporal information [16], study inactive regions of detectors [17],
reject pileup events [18], and match simulations to data [19]. Our model is based on two ML algorithms:
affinity propagation (AP) [20] and support vector machine (SVM) [21]. AP is an unsupervised learning
clustering algorithm that groups signals in our datasets based on their pulse shape and assigns them to a
cluster with a corresponding label. AP also provides the ability to automatically identify new event clusters
directly from the data as run conditions change over time, serving as a form of anomaly detection. We
re-group the cluster labels assigned by AP in terms of data cleaning categories. SVM is a supervised learning
classifier which takes in signals and separates them based on the labels provided by the user.

By training our model on a comprehensive subset of the data, we can expand its predictive power to
classify events in larger datasets in a data-driven and autonomous manner. Our model has been applied to a
variety of different run configurations and setups containing HPGe detectors, proving its flexibility. For this
study, we evaluate the performance of our model on data taken from the full chain test (FCT) experimental
stand at the University of North Carolina at Chapel Hill. The FCT, which replicates the full LEGEND-200
HPGe electronics chain in a liquid Argon(LAr) test stand, was assembled to study the performance of the
detectors, electronics, and digitizers prior to initial detector deployment and provide rapid feedback during
operations.

In section 2 we describe the experimental setup of the FCT. Section 3 provides details on our ML data
cleaning model. Section 4 summarizes the training and optimization process of the model. In section 5 we
test the effectiveness of our technique via sacrifice and leakage studies. Section 6 provides concluding
remarks. The code and sample data sets needed to reproduce this work are publicly available at [22] and [23]
respectively.

2. Experimental setup: FCT

The FCT was built at the University of North Carolina at Chapel Hill to study the performance of the
LEGEND-200 production electronics in LAr prior to the initial detector deployment. This test stand allows
1-2 HPGe detectors to be deployed and operated in LAr using the LEGEND-200 detector holders, electronics
and digitizers. It also allows for quick turnaround testing and prompt feedback to hardware and electronics
groups.

Figure 1 presents a schematic of the FCT. The test stand consists of a cryostat filled with LAr, an upper
chamber with flanges for HE crates, which control and monitor the settings of the signal amplification
electronics, and HV crates, which hold HYV filters and interlocks, a HPGe detector mounting apparatus with
an IR shield, a radioactive source insertion tube, and a winch system with an external handle to raise/lower
the detector unit.

Identical to the LEGEND-200 detector unit, the detector rests on 3 plastic insulators attached to a
polyethylene naphthalate (PEN) base plate. The PEN base plate houses receptacles for the front-end
electronics and HV, providing stability to establish electrical contacts on the detector via a wire bond. A trio
of copper rods completes the detector unit and secures it to the IR shield that surrounds a majority of the
detector. A steel band spans the distance between the winch and the IR shield allowing the detector to be
raised and lowered.

An MPOD unit supplies voltage that passes through a HV filter board before entering the cryostat via
connectors on the HV flange. A production HV cable bundle carries the HV signal from the flange to the
detector unit, where a connector slides into one of the receptacles on the PEN base plate. The other side of
the receptacle is wire bonded to the HV contact of the detector.
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Figure 1. Full chain test experimental setup schematic. The stand consists of an upper chamber on top of a liquid Argon (LAr)
cryostat. Inside the LAr is the detector unit holding an inverted coaxial point-contact (ICPC) detector, within an infrared (IR)
shield and connected to a winch system. The low mass front end (LMFE) is wire bonded to the bottom of the detector via a
phosphor-bronze spring and connected to the CC4 charge-sensitive amplifying board on the top plate of the IR shield. The top
plate holds connections to the head electronics (HE) and high voltage (HV) crates..

The signal extraction from the detector begins with a similar wire bond from the readout contact of the
detector to the other receptacle on the PEN base plate. The first stage of signal amplification, the LMFE [24],
slides into this receptacle. Axon’ pico-coaxial cables connect the LMFE to a ‘CC4’ board that is mounted on
the top plate of the IR shield, which provides the second stage of amplification [25]. The CC4 board contains
7 channels; one channel is connected to the ICPC detector and the remaining 6 are connected to ‘dummy’
boards containing capacitive loads. A long Kapton cable band transmits the signals to the HE flange for
extraction from the cryostat by HE cards. These cards also control the voltage settings of the CC4 and LMFE.
An external square wave pulse is injected into the FCT readout electronics to provide test signals for the
ICPC detector and the dummy boards. All the electronics components utilized in the FCT are the same as
those used LEGEND-200 production, including full length cables.

The extracted signals are then digitized by a FlashCam [26] analog-to-digital converter (ADC) card
before being stored on a local Mac mini machine. The data readout and storage from the FCT is managed by
object-oriented real-time control and acquisition (ORCA) [27] software. The sampling frequency of
FlashCam is 62.5 MHz and the individual waveform trace length recorded by ORCA is 8192 samples. The
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Figure 2. Schematic diagram illustrating the process adopted by the ML-powered data cleaning model.

data are then decoded into HDF5 format and signals are processed in Python with the pygama framework
[28-31].

Our setup contains one FlashCam card with 6-channel inputs and outputs. We record data for 5 dummy
boards and the ICPC detector. We use the dummy board data as a proxy for data taken under an
environment with a low rate of physics events. Since the FCT is not shielded, the background rate of physics
events is high. Thus, a radioactive source was not necessary to obtain high-rate data for the ICPC detector.
For this study, we recorded data for all 6 channels for a period of 24 hours. The data collected for each system
is treated separately to demonstrate our model’s performance in different configurations. Thus, we curated
datasets for each system to train two versions of our ML model, which we present in the next section.

3. Model summary

The ML-powered data cleaning mechanism we used consisted of three steps: (1) extract pulse shape
information from waveforms, (2) group similar waveforms with an unsupervised learning model and
re-label them based on user input, (3) extend clustering power to larger datasets with a supervised learning
model. Figure 2 illustrates the process followed by the ML-powered data cleaning mechanism.

For the first step, we utilize a discrete wavelet transform (DWT), which has been previously adopted for
low energy analyses in Germanium-based experiments [32, 33]. The DWT decomposes the waveform into
mutually orthogonal down-sampled sets of time-series coefficients by convolving the input signal with a
given type of wavelet. The DWT can be performed multiple times on the same input signal, resulting in a
multilevel decomposition with a down-sampling factor of 2/, where [ is the level or number of
decompositions to be performed. The DWT outputs approximation coefficients (AC) and detail coefficients
(DC), which capture low and high frequency components of the input signal respectively. Thus, the DWT
serves to de-noise and reduce the dimension of the input waveform. In our model, we use a multilevel DWT
decomposition with a value of I that satisfies:

d= % <256 (1)
where 7 is the number of samples of the input waveform and d is the number of samples of the AC. We take
the AC as a lower-dimensional representation of the input waveform.

In general, HPGe waveform data always includes electronic noise and effects from digitization of the
signal, but important information about the charge drift in the detector is contained in the rising edge and
sharp turnover from the rising edge to the tail. Consequently, we utilize Haar wavelets for the DWT
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decomposition as they preserve this information. Haar wavelets have previously been used for similar tasks in
HPGe detectors, as in [34]. Since our input waveforms contain 8192 samples, we use a value of =5 to
reduce the dimension to 256 samples. We finally normalize the AC by the absolute value of their maximum
or minimum amplitude, whichever one is greater, such that the values of the AC lie in the [—1, 1] range. We
refer to this process as max/min normalization.

Once we have de-noised, down-sampled, and normalized the input waveforms, we proceed to group and
label them using AP. AP is an unsupervised learning algorithm that clusters inputs based on a
message-passing method between data points [20]. The number of clusters is automatically computed by AP,
and each cluster center is labeled as an ‘exemplar. The algorithm is initiated by computing the negative
distances between all waveforms and storing them in the ‘similarities’ matrix S. For our study, the measure of
distance we utilize is the Manhattan distance, also known as L1 norm, as it captures absolute changes in
discrete waveform data making it robust to small shifts. Consequently, S is given by:

X —xk’ (2)

Skk =P 3)
where x** correspond to waveforms i and k, # is the number of samples in each waveform and p is a
hyperparameter known as the ‘preference.’ The value of p controls the number of clusters found by AP, with
larger values of p leading to more clusters. If p > 0 every waveform would choose itself as an exemplar, so p
must be set to a negative value to produce clustering. The value of p is initially set to the median of all
similarities, but this hyperparameter can be tuned to produce a desired number of clusters.

After computing the similarities, the message-passing process between waveforms begins. For this stage,
three additional matrices are defined: the availability A, responsibility R, and criterion C matrices, with all
their elements initialized to 0. Waveform 7 sends its responsibility Ry to a candidate exemplar waveform k,
which reflects how well-suited k is to serve as an exemplar for i. Then, candidate exemplar waveform k replies
with its availability Aj to waveform 7, which reflects how appropriate k is to become an exemplar for i. The
responsibilities are calculated as follows:

Ri[t] =Ru[t—1]- A+ (1=A)- <5iknﬁx(5ij + At — 1])> (4)
J 71

where ) is a damping factor between 0.5 and 0.99 added for algorithmic convergence and ¢ is the iteration
index running from ¢t = 1,..., T, where T is the maximum number of iterations. The availabilities are
computed according to:

Al = An[t—1]- X+ (1= X) -min | 0,Rge[t— 1]+ Y max (0, Ry [t —1]) (5)
i,k
. ]
Al = A [t = 1] A+ (1= X)- > max (0, Ry [t — 1]) (6)

j#k

After every iteration, the criterion matrix is updated by C;x = Aj + Rj;. For waveform i, the value of k that
maximizes the criterion, kp,y, identifies the exemplar. If ky,. = 7, i taken as an exemplar, and if kyax # 1, then
waveform kp,y is the exemplar for i. The message-passing process continues until all values in the criterion
matrix remain unchanged for a specified number of iterations (7), at which point AP has converged. The
algorithm stops at iteration ¢ = T if this convergence condition is not met.

AP automatically computes the number of exemplars and assigns labels to all the waveforms in the
training dataset. We choose AP over other algorithms that automatically identify the number of clusters in
the training data, such as DBSCAN [35], as our data contains clusters of non-uniform densities. AP, however,
is memory-intensive since it must store four N x N matrices until convergence, where N is the number of
waveforms in the training dataset. Thus, we can only train AP for datasets with N < 10000 events. Other
algorithms that can handle large training datasets efficiently, such as balanced iterative reducing and
clustering using hierarchies [36], as they do not automatically compute the number of clusters.

In order to expand the labelling power of AP to datasets with N > 10000 events, we utilize a SVM. The
SVM is a supervised learning algorithm that classifies inputs into distinct categories by drawing hyperplanes
based on ‘support vectors. We choose a SVM over other supervised learning classifiers as it excels at handling
high-dimensional data (unlike k-Nearest Neighbors [37] or Gaussian Processes [38]) while providing a
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directly interpretable and intuitive explanation of how inputs are separated (unlike Random Forests [39] or
Neural Networks [40]).

The SVM consists of labeled input data (x;,y1),. .., (Xn, yn) where the labels y; € {1, —1}. The goal of the
algorithm is to find the hyperplane that maximizes the distance, or the margin, between all y; = 1 inputs and
all y; = —1 inputs. For data that are not linearly separable, it is necessary to employ the kernel trick [41]. The
kernel trick consists of transforming the input data samples x; into another dot product feature space via:

K (x3%) = (6(x).6 () )

where ¢ (x) is the mapping function. In our model we utilize Gaussian radial basis function (RBF) kernel as
it produces smooth decision boundaries, which helps in generalizing better to unseen data. The RBF kernel is
given by:

2
K (x,%) = exp (=[x = x| ") (8)
where v > 0 is a modifiable hyperparameter. The objective of the SVM is to maximize:

N N

N
max > ai- %Zzai%‘%%‘K (xi,%;) (9)
i=1

i=1j=1

subject to the constraint:
N
d iy =0, 0<ai<C, Vi (10)
i=1

where «; are Lagrange multipliers and C is a regularization parameter. Since our data contains « > 2 labels,
we utilize a multiclass SVM [42]. The multiclass formulation trains a binary SVM for each class k. For class
and input sample i, the decision function is given by:

Ny
fi (xi) = Zaz,fe)/mK(Xz,Xi) + by (11)
=1

where b, is the intercept of the separating hyperplane and N, is the number of support vectors for class .
The support vectors are the input samples that lie closest to the separating hyperplane found by each binary
SVM. The multiclass SVM then assigns a label to input sample i via:

ji = argmax (£, (x) (12
where f . (x) is the decision function for class .
4. Model training and optimization

We create two separate models for each system, one for detector data and another for dummy board data.
The systems contain different types of waveforms due to their operational characteristics. The high
background physics event rate of our experimental setup leads to pileup in the waveform traces of the HPGe
detector. This scenario is akin to having a calibration source deployed near the LEGEND-200 detectors. The
dummy boards contain waveforms caused by pulsed signals, discharges and crosstalk. This resembles the
data captured by HPGe detectors in a low background environment without any calibration sources in the
vicinity. Thus, treating each system separately allows us to simulate our model’s performance in a low
background setting during calibrations and Ov 3 data taking.

We train our models on a datasets containing 10 000 waveforms for each system. We first normalize the
waveforms using the max/min method. Then, we compute the pairwise distances between normalized
waveforms and store them in the similarities matrix S. The similarities are then fed into AP. We perform a
grid search to optimize the hyperparameters of AP, namely, the preference p and the damping factor A. For
each model, we search over 100 grid points spanning A € [0.85,0.99] and p € [min(S), —100]. We constrain
the lower limit of A to 0.85 since lower values cause create algorithmic non-convergence of AP in our data.
Every iteration of AP utilizes ~ 12 GB of RAM, which requires the optimization process to run on multiple
CPU cores in parallel. The hyperparameter combination that gives the closest to 100 clusters is then used.
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Figure 3. AP hyperparameter grid. The combination of p and X that gave the closest to 100 exemplars, enclosed in a red box, was
used to train the optimal AP. Empty points in the grid represent combinations of hyperparameters where AP did not converge.
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Figure 4. Data cleaning categories.

Figure 3 shows the hyperparameter grid used to optimize AP. The point enclosed by a red box was the
combination of p and ) that gave the closest to 100 clusters, and was used to train AP.
All waveforms in the training dataset are labeled according to the cluster they chose. The waveform
located at each cluster center is defined as the exemplar for that cluster. AP may find multiple clusters for a
given human-defined data cleaning category. Therefore, the user manually maps the labels provided by AP

for each cluster to a set of standard data cleaning tags. At this stage, a new tag can be added if the user
identifies an AP cluster as representing a distinct class of waveforms. Otherwise, the user re-labels the each
AP exemplar according to a data cleaning tag of the standard set that most closely resembles its shape.
Figure 4 presents a comprehensive set of data cleaning tags with sample waveform plots. The re-labeled
exemplars are presented in figures 5(a) and (b), where each color corresponds to a different data cleaning tag.
The exemplars of figure 5(b) are dominated by the noise trigger category due to the sparse mode
configuration of the DAQ. Every time a single channel triggers, the DAQ records the waveform traces from
all channels. Since the detector channel has a high rate events, most of the recorded waveforms from dummy

channels are empty traces.

Once the waveforms are re-labeled according to the data cleaning tags of figure 4, we train the SVM.
Since each waveform contains 8192 samples, we first pre-process them using a DWT with 5 levels, giving AC
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(a) Detector model exemplars. (b) Dummy model exemplars.

Figure 5. Exemplars re-labeled according to the data cleaning categories of figure 4.

of 256 samples according to equation (1). This downsampling allows the SVM to both be trained and
perform predictions more quickly without compromising its accuracy. The AC are max/min normalized
before being passed to the SVM. We optimize the hyperparameters of the SVM, C and +, with a random grid
search over a broad range of values spanning several orders of magnitude: [10~2, 10'°] for C and [10~?, 10°]
for «y to ensure proper coverage of the hyperparameter space. We employ 5-fold cross validation for the
optimization process, splitting the dataset into a training and validation set with an 80:20 ratio respectively.
We use the cross-validated accuracy as the figure-of-merit for the optimization process given by:

CcV Ny
YN
Accuracy = E E |1] 1]| (13)
cv- NV 71U 1]|

where CV is the number of cross-validation splits, Ny is the number of AC in the validation set, Y; ; is the set
of true labels as given by AP for the ith cross-validation split and the jth input AC, and ?l] is the set of
predicted SVM labels for the ith cross-validation split and the jth input AC. Furthermore, the values of C
were scaled inversely with the number of observations for each category according to equation

C. = Cx (14)

where C,; is the scaled value of C for category x, N is the number of AC in the training set, m is the number
of categories, and N is the number of AC pertaining to category . Since the noise trigger and Normal
category dominate the dummy and detector training data respectively, we add this inverse weight scaling to
avoid biasing the SVM. Hyperparameter values are randomly sampled from a log-uniform distribution to
compose 500 combinations of C and 7. The combination that gives the accuracy closest to 1 is then used to
train the optimal SVM. Figure 6 shows the hyperparameter grid used to optimize the SVM. The point
enclosed by a red box was the combination of C and +y that gave the cross-validated accuracy closest to 1, and
was used to train the SVM.

To visualize the decision boundaries of the trained SVM, we must perform dimensionality reduction
since the models are trained using 256-dimensional data. For this, we use a ¢-distributed stochastic neighbor
embedding [43] algorithm to reduce both the AC and the SVM decision boundaries into 3D space. The 3D
representations of the AC and the SVM decision boundaries are shown in figures 7(a) and (b). With the
trained SVM, we can predict labels for larger datasets (N > 10000).

We run the training and optimization of our model at the Longleaf computing cluster [44] of the
University of North Carolina at Chapel Hill using scikit-learn [45, 46]. For AP, we allocate 12 GB of
RAM on 6 CPU cores to run each grid point iteration of the hyperparameter search. We run the search
iterations in parallel for wall time efficiency. For the SVM, we utilize the RandomizedSearchCV class to
conduct the hyperparameter search, allocating 64 GB of RAM over 32 CPU cores running in parallel. The
training and optimization of the model consumes 18 CPU hours in total.
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Figure 7. 3D representations of the training datasets with their SVM decision boundaries.

5. Model performance and efficiency

To understand the performance of our model, we apply ML data cleaning cuts to the full detector and
dummy datasets. Waveforms from the Normal (0) category encompass events caused by energy depositions
in HPGe detectors from alpha, beta, and gamma particles. Waveforms from the Saturation (9) category are
caused by highly energetic atmospheric muons that deposit energies in the HPGe detector larger than the

8 MeV dynamic range of the DAQ system. Muon events are tagged at later stages in the analysis chain via a
muon veto system [47], which is not implemented in the FCT. Since we aim to keep only events caused by
non-pileup physics interactions, we define the ML data cleaning cut according to equation (15).

MLDataCleaningCut = SVMPrediction € {0, 9} (15)

Waveforms pertaining to the all other categories of figure 4 are thus rejected my the ML data cleaning cut of
equation (15).

Figures 8 and 9 show the energy spectra of the detector and dummy datasets, respectively. The detector
dataset contains N = 4644 992 events, while the dummy dataset contains N = 23224967 events. Filled brown
spectra correspond to all events before cuts, green spectra correspond to events accepted by the ML data
cleaning cut, and magenta spectra correspond to events rejected by the ML data cleaning cut.

The main purpose of our model is to remove all anomalous events while keeping all physical events in
our datasets. Thus, we want to evaluate how effective our model in terms of physical events that are
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Figure 8. Detector energy spectra before and after applying ML data cleaning cuts. The spectrum before cuts, shown in gray, is
characterized by gamma peaks from the 2*U and #*Th chains and energies below 0 keV corresponding to negative-going
waveforms caused by discharges. The broad peak centered around 6.5 MeV corresponds to muon events that saturate the dynamic

range of the DAQ system. The spectra of accepted and rejected events by the ML data cleaning cut of equation (15) are shown in
green and magenta, respectively.
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Figure 9. Dummy energy spectra before and after ML data cleaning cuts. The spectrum before cuts, shown in gray, is
characterized by 5 peaks above 400 keV corresponding to injected test pulses for each dummy board. The peak at 0 keV
corresponds to noise triggers recorded by the global trigger settings of the DAQ system. The events below 0 keV correspond to
discharges and negative polarity crosstalk waveforms from the injected test pulses. The events in between 0 and 50 keV
correspond to positive polarity crosstalk waveforms from muon events in the detector channel, and upwards sloping waveforms
caused by recovery to baseline from previous discharges. The spectra of accepted and rejected events by the ML data cleaning cut
of equation (15) are shown in green and magenta, respectively.

incorrectly tagged as non-physical, defined as the model sacrifice, and anomalous events that are accepted,

defined as the model leakage. A high leakage of anomalous events is preferred to a high sacrifice of physics

events. Anomalous events that leak into our datasets are typically eliminated by pulse shape discrimination
cuts at later stages of the analysis chain [48, 49].

To evaluate the sacrifice and leakage of the model, we construct datasets that only contain waveforms of a
given type using traditional data cleaning methods. Traditional data cleaning methods rely on digital signal
processing parameters that are calculated directly from waveforms. Table 1 summarizes the traditional data
cleaning parameters used to isolate different categories of waveforms for sacrifice and leakage studies.

5.1. Sacrifice

To perform sacrifice studies, we construct datasets of physics events. We pre-apply data cleaning cuts based
on traditional parameters to ensure the sacrifice datasets contain only waveforms caused by physics
interactions in the HPGe detector. To get an estimate of the physics event sacrifice of our models, all
waveforms of the datasets are assigned data cleaning labels using the trained SVMs. We then apply the ML

10
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Table 1. Traditional data cleaning parameters.

Parameter name

Description

Waveform slope

Baseline mean

Baseline slope

Baseline St. Dev.

Tail St. Dev.

Trapezoidal max (Min)

Time point X

High (Low) saturation time point
Inverted time point X

Inverted trapezoidal max (Min)

Baseline pileup max (Min)

Tail pileup max (Min)

Trapezoidal fixed-time pickoff

Effective drift time

Energy

Slope of the full waveform.

Average of the first 45 ps of the waveform.

Slope of the first 45 ps of the waveform.

Standard deviation of the first 45 us of the waveform.
Standard deviation of the last 20 us of the waveform
following pole-zero correction.

Maximum (minimum) amplitude of the
trapezoidal-filtered waveform.

Time point corresponding to X percentage of the
waveform’s maximum amplitude.

Time point corresponding to the first instance of the
waveform reaching the high (low) ADC saturation value.
Time point corresponding to X percentage of the inverted
waveform’s maximum amplitude.

Maximum (minimum) amplitude of a trapezoidal filter on
the inverted waveform.

Maximum (minimum) amplitude of the first 45 us of the
trapezoidal-filtered waveform using a short integration
time.

Maximum (minimum) amplitude of the last 65 us of the
trapezoidal-filtered waveform using a short integration
time.

Value of the trapezoidal-filtered waveform at 17.6 us after
the start of the waveform rise.

Time taken for the waveform to reach its maximum
amplitude corrected for charge-trapping and multi-site
event effects.

Estimate of the event’s energy from a trapezoidal filter with
optimized parameters after ADC to keV calibration.

Table 2. Physics event sacrifice of ML data cleaning cuts. Estimates are included only for categories found by AP during training.

Detector model

Dummy model

5 (%) N 5 (%)

Category N
Normal 541952
Saturation 23659

0.024 10003 14603 0.00010-030
0.013
O-OOOJ—rvooo - -

data cleaning cut defined in equation (15). The physics event sacrifice s for a given dataset is defined as the
ratio of rejected events N, to total events N as per equation (16). The uncertainties on the event sacrifice are
statistical and calculated using 90% Clopper—Pearson confidence intervals [50].

s=— (16)

N

Table 2 presents the sacrifice estimates for the physics event categories per model. The detector model

+0.004

presents a sacrifice of 0.0247 15 % on the Normal category. The energies of all rejected events lie below

150 keV as shown in figure 10. In this energy region the signal-to-noise ratio is reduced, and it becomes more
difficult for the model to disentangle physics signals from anomalous populations. Figure 11 depicts sample
rejected waveforms by the detector model in the Normal category sacrifice dataset. These low energy
waveforms are characterized by a slow charge collection component at the top of the rising edge and on the
tail. Dedicated studies have shown that this slow charge collection is associated with interactions occurring
near the detector surface, a source of backgrounds for 0v 3 searches [51, 52]. Such events are targeted for
removal by subsequent stages of the analysis, so they represent a sacrifice for the data cleaning stage. The
dummy model yields a 0% sacrifice in the Normal category, which is expected as all the waveforms are
generated from a test pulse injector at energies over 400 keV.

The extremely low sacrifice, particularly at energies over 150 keV, make the AP-SVM model highly
suitable for experiments searching for 033, which would occur in a narrow Region-of-Interest around the
®Ge /33 decay Q-value of 2039 keV. Past 033 experiments using HPGe detectors have achieved data
cleaning sacrifice levels below 0.1% [3, 4], which the AP-SVM method is able to match or improve upon. The
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Figure 10. Energy dependence of the sacrifice in the Normal category detector dataset. Variable quantile binning is used. For
events with energies above 150 keV, the sacrifice is minimal at 0 %, thus only upper boundaries on the statistical uncertainty are

shown.
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Figure 11. Sample rejected waveforms from the Normal category detector sacrifice dataset. Rejected waveforms are characterized
by low-frequency noise and slow charge collection in the rising edge and tail.

resulting data-cleaning signal efficiency is combined with other analysis cut efficiencies to determine the
overall signal acceptance of an experiment; the future LEGEND-1000 experiment is targeting an overall
analysis cut efficiency of at least 90%. The sacrifice level demonstrated for AP-SVM makes it an appropriate
method for this future experiment.

5.2. Leakage

To perform leakage studies, we construct datasets of anomalous events. We pre-apply data cleaning cuts
based on traditional parameters to ensure the leakage datasets contain only waveforms caused by
non-physical interactions. To get an estimate of the anomalous event leakage of our models, all waveforms of
the datasets are assigned data cleaning labels using the trained SVMs. We then apply the ML data cleaning
cut defined in equation (15).The anomalous event leakage I for a given dataset is defined as the ratio of
accepted events N, to total events N as per equation (17). Again, the uncertainties on the event leakage are
statistical and calculated using 90% Clopper—Pearson intervals.

]= ¢ 17
N (17)
Table 3 presents the leakage estimates for the anomalous event categories per model. The Upwards

Sloping and Crosstalk categories are caused by recoveries from discharges to baseline and induced signals

from neighboring channels, respectively. These are absent from the detector model due to the high rate of
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Table 3. Anomalous event leakage of ML data cleaning cuts. Estimates are included only for categories found by AP during training.

Detector model Dummy model
Category N 1 (%) N 1 (%)
Negative going 319 0.000" 0 000 907 0.0001)-230
Upwards sloping — — 2637 0.000+0 114
Downwards sloping 1151 O.OOOJ_FS:(Z)gg — _
Crosstalk — — 5410 0.00010:000
Slow rise — — 3247 0.00070 005
Soft pileup 24531 13.212703% — —
Hard pileup 69684  15.034792%  — _
Noise trigger 203 09851385 14370779 0.000+9:9%
20000
15000
125001 \ 150001
g g
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(a) Sample accepted waveforms from the Soft (b) Sample accepted waveforms from the Hard
Pileup category detector leakage dataset. Pileup category detector leakage dataset.

Figure 12. Sample accepted waveforms from the Soft and Hard Pileup category detector leakage datasets.

physics events, which dominate the triggering scheme of the DAQ system. The Downwards Sloping category
is caused by recoveries to baseline after saturation of the DAQ system, which are not present in the dummy
model since no muon events are captured by the dummy boards. Anomalous event leakage is seen in the
detector model for the Soft Pileup, Hard Pileup, and noise trigger categories. The considerable leakage of
13% and 15% on the Soft and Hard Pileup categories can be attributed to the resemblance of the waveforms
to those in the Normal category. The downwards sloping baseline of Soft Pileup waveforms is caused by the
decaying tail of a previous waveform, as shown in figure 12(a). The very slight negative slope on the baseline
is below the tagging threshold defined by the SVM, causing it to classify these waveforms as Normal. The
accepted Hard Pileup waveforms are characterized by a considerably lower energy event riding on top of the
decaying tail of the first event in the same waveform trace, as shown in figure 12(b). The small magnitude of
the second event compared to the first causes the SVM to classify these waveforms as Normal. In general, it is
not possible to define a clear separation boundary between Normal and Soft/Hard Pileup waveforms in this
data, given the presence of low frequency noise and multi-site events. All data cleaning methods must choose
an acceptable level of leakage for these categories. In building the AP-SVM model, we prefer to keep the
physics event sacrifice low while incurring a moderate leakage of pileup waveforms, leading to more
conservative data cleaning.

In the context of 0v33 searches, this conservative approach is appropriate, as the HPGe detectors operate
in an extremely low-rate environment, with typical per-detector physics event rates well below 0.01 Hz
during low-background data-taking. Therefore, true Pileup events are extremely rare. Pileup tags are
implemented in data cleaning to facilitate energy and pulse-shape parameter calibration using higher-rate
radioactive source calibration data, but providing pristine data sets for these purposes is of lower priority
than maintaining high Ov 3 signal efficiency. When AP-SVM is applied to LEGEND-200 data, it is paired
with a traditional data cleaning tag to address Soft Pileup events, which can be set more liberally or
conservatively depending on the analysis being conducted. The small fraction of surviving hard Pileup events
typically does not bias parameter calibrations, and these events are allowed to remain untagged.

The two noise trigger waveforms that are classified as Normal, shown in figure 13, can be attributed to
the low statistics of noise trigger samples in the detector training dataset and the large amplitude of low
frequency noise in this waveforms. The dummy training dataset is dominated by noise trigger samples,
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Figure 13. Accepted waveforms from the noise trigger category detector leakage dataset.

leading to a leakage of 0% in this category with several orders of magnitude of more samples in the leakage
dataset. In fact, the dummy model demonstrates 0% leakage in all categories. This indicates that our model
presents a very accurate separation between anomalous categories in our proxy for low background data.

6. Conclusions

In this study, we have presented a ML -powered data cleaning mechanism for the LEGEND experiment. Qur
model is based on a clustering AP plus human supervision and classification SVM scheme to distinguish
between signals produced in HPGe detectors. Utilizing data from the FCT test stand at UNC-CH, we have
demonstrated that our mechanism efficiently separates signals caused by physics events from signals created
by transient anomalies.

Our model presents a maximum physics event sacrifice of 0.024 10003 % of physics signals in high rate
data, where all rejected events lie below 150 keV and likely originate from the HPGe detector’s surface, and
0.000™9951% in low rate data. Similarly, the model yields a maximum anomalous event leakage of
15.03470223% in high rate data caused primarily by pileup events, and 0.0007( 200 in low rate data. This
performance matches or exceeds that of traditional data cleaning methods used in past HPGe-based 0v 33
experiments [3, 4].

In addition to the FCT data presented in this study, we have applied our model to data from several
experimental setups with different configurations. We have successfully demonstrated this data cleaning
mechanism in an initial test deployment for LEGEND-200 prior to infrastructure upgrades (the
post-GERDA test), the initial commissioning deployment with 60 kg of HPGe detectors, the 2023-2024
deployment with 142 kg of HPGe detectors, and in vacuum cryostat HPGe characterization stands at Oak
Ridge National Laboratory and the University of North Carolina at Chapel Hill. These data sets differed in
overall noise levels. The primary effect on the AP-SVM technique of this variation is that a larger variety of
transient noise sources leads to more noise trigger category clusters being identified at the AP training stage.
Since these categories are merged by the user for the SVM stage, this does not affect the overall AP-SVM
model performance.

The AP-SVM technique can also be used, with minimal adaptation, for other sources of time-series data.
We have tested the model performance, with success, on signals obtained from silicon photo multiplier
(SiPM) detectors in LEGEND-200 [53]. The different data-acquisition mode used for LEGEND SiPM
detectors, and the different waveform shape of these signals, requires a differing event pre-processing
approach. Since the LEGEND-200 DAQ system is set to trigger on HPGe signals, with SiPM waveforms
captured in coincidence, photoelectron signals are not centered in the digitization window, and several
signals may appear within a single windowed trace. Instead of down-sampling these waveforms using a
DWT, we use an offline trigger to window each possible signal, then perform min/max normalization. These
windowed signals replace the normalized approximate coefficients in the network training and application
workflow shown in figure 2. This approach is showing promise, particularly in identifying cross-talk events
that other data cleaning approaches fail to tag efficiently. A future publication is planned demonstrating this
application.
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Another potential application is in monitoring of environmental controls such as temperatures, detector
leakage currents, vacuum pressures, and the like, where the model can be used to categorize behaviors and
identify unusual excursions. The versatility of our model allows it to be utilized in experiments with
time-series waveform data, quasi-agnostic to the underlying detector system, as we have demonstrated in this
analysis.

With regard to data cleaning for LEGEND-1000, the AP-SVM model presents a scalable solution.
Although the size of the training dataset is limited to N < 10000 waveforms due to the memory demands of
AP, evaluating the trained SVM on out-of-sample data scales only with the number of features in each
waveform. The number of features, given by the dimension of the AC as per equation (1), remains constant.
Thus, applying the SVM to larger datasets does not present a challenge for scalability of the model.
Nevertheless, to ensure that the training dataset is representative of all possible categories, a uniform
sampling of events throughout the entire energy spectrum and across detectors will have to be performed.
Thus, AP-SVM can be incorporated in LEGEND-1000 solely by modifying the waveform selection process
for training with no changes to the model itself.

Performing data cleaning procedures with traditional parameters requires significant time and human
effort for even a single detector and can require frequent modification, particularly as run conditions change.
AP-SVM allows for significant labor savings compared to the traditional method. Additionally, it is being
used to supplement and improve upon traditional data cleaning procedures in LEGEND. For example,
AP-SVM has been used to identify new anomalous populations and to study event leakage in the traditional
method. The model is also being used as the main data cleaning method in LEGEND’s Julia-based secondary
software stack: Juleana [54]. The AP-SVM model can thus be utilized for data cleaning on its own, to
cross-validate traditional methods, or in conjunction with traditional procedures to provide a robust data
cleaning method for LEGEND.
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