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1 Introduction

Integrability plays an exceptional role in modern studies of quantum field theory and string
theory. Whenever there is a breakthrough in understanding of non-perturbative dynamics,
some form of integrability invariably appears to be behind this success. An (incomplete)
list of recent examples includes

e Seiberg-Witten solution of N/ = 2 theories [1, 2] and the corresponding classical
complex integrable systems [3—6],



e integrability in /' = 4 gauge theory and the AdS/CFT dual string theory, coming
from integrable spin chains and o-models [7],

e Seiberg dualities in N' = 1 gauge theories [8] and the corresponding integrable lattice
models with new solutions to Yang-Baxter equations [9],

o AGT relations [10-12], integrability [13-16] and new family of integrals of motion in
Wy-algebras related to the basis of fixed points in the instanton moduli space [17-22],

e topological string calculations and the study of Hurwitz 7-functions [23-25].

In this paper we demonstrate a new integrable structure in refined topological strings on
toric Calabi-Yau threefolds. This structure is related to several points from the list above
and we elaborate on these connections in section 5. Let us now briefly summarize how this
kind of integrability appears.

The central object, on which we will mostly focus in our approach is the R-matrix
of the Ding-Iohara-Miki (DIM) algebra [26, 27]. R-matrices, which can be considered as
emerging in the description of coproducts of group elements § € G ® A(G) [28-31] for
quantum groups [32-36],

I®y-Geo)=R-GoI)-Ieg) R, (1.1)

are crucial to all integrable systems. As evident from eq. (1.1), the job of the R-matrix is
to permute the components in the tensor product of representations of the algebra G. This
is the property we will use in refined topological strings. The representations in question
are going to be Fock modules [37-39] and their permutation exchanges the legs of the toric
diagram corresponding to a DIM intertwiner [40, 41].

The permutation of the legs performed by the R-matrix has a simple interpretation
in terms of the corresponding conformal blocks of the ¢-Virasoro or W -algebras. Ratios
of the spectral parameters on the horizontal legs determine the Liouville-like momenta of
the primary states [41]. By exchanging the spectral parameters, the R-matrix inverts the
momenta, and therefore acts exactly as the Liouville reflection matrix introduced in [42].
This connection (first noted in [43], see also [44]) is quite interesting, since, as we will see
in the following, the R-matrix can be evaluated explicitly by solving for the eigenfunctions
of the generalized Macdonald Hamiltonian with known eigenvalues.

Also among other things, let us mention that the R-matrices are used to construct
knot polynomials in Chern-Simons theory [45—48], one of the most challenging subjects
in topology. In particular, the knot superpolynomials of [49-51], constructed with the
help of double-affine Hecke algebras (DAHA) [52], still lack a clear R-matrix realization
within the Reshetikhin-Turaev (RT) formalism, either original [53-55] or modern [56-58].
On the other hand, the DIM algebra is naturally related with DAHA by a kind of Schur
duality (see [59] for a degenerate version of this correspondence). There is another way to
naturally associate these two algebras: the DIM algebra is the limit of spherical DAHA for
large number of strands (see [60-62] for a degenerate version of this correspondence).

The notation in this paper follows our paper [41].
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Figure 1. The lattice of U, ;(gl;) generators. The algebra is doubly graded, so that each generator
has two integer weights. The standard generators z:7, 9T and x;, form the three central rows. ;"
generators (they are framed in blue) form the Cartan subalgebra and z;', x; act as the raising and
lowering operators respectively. Blue arrows show the action S of the spectral duality, an SL(2,Z)
rotation of the integer lattice. Notice that S(1}") = z, i.e. the first Cartan generator transforms
into the zero mode of the raising generator.

1.1 DIM algebra, generalized Macdonald polynomials and the R-matrix

We are going to compute the R-matrix of the DIM algebra, also known as quantum toroidal

algebra or Uqﬂg(gA[l) [26, 27]. Tt is a double quantum deformation of the double loop algebra
of gl;. The double loop algebra can be understood as the algebra of torus mappings into
the group gl;. The two deformation parameters are related to the quantum deformation
parameter of the affine algebra 5[1 and the quantum deformation of the torus respectively.

The DIM algebra is generated by respectively the “raising” and “lowering” operators
x,} and z,; with n € Z together with the “Cartan” generators zpi:n, n € Z~o and two central
elements C'1, Cy. The algebra has a double grading coming from the two loops, i.e. a torus
T2, in the double loop construction. Each element of the algebra with a definite grading
can be, therefore, drawn as an integral point on the plane. The generators, z;", ¥, =
and their commutators form a lattice, which is sketched in figure 1. The exact definition
of the DIM algebra can be found in [41, 63-66] (see also [67-71] for elliptic DIM algebra).

There is a nice representation of the DIM algebra on the Fock space .7-"751’0), ie. a
bosonization of the DIM generators, which are expressed through exponentials of the free
bosons (for concrete expressions see [37-40]). The second central charge of this represen-
tation is trivial, Cy = 1, while the first one is given by C; = (t/¢)'/2. We will henceforth
call this representation horizontal, since the first central charge is associated with the hor-

izontal direction. There is also the wvertical Fock representation .7-"150’1), isomorphic to the



horizontal one, but with a different action of the DIM generators [37-40]. In the basis of
Macdonald symmetric polynomials, ]\/[l(f’t)(a_n)|u>7 the generators x;}7 add a box to the
Young diagram Y, while z,; delete one box, and ¢ act diagonally. The central charges
of this representation are (1,(t/q)'/?) (we refer the reader to [37-40] for the complete
construction).

It will be important for us that the DIM algebra has a remarkable group of automor-
phisms SL(2,7Z), which are precisely the automorphisms of the integer lattice of genera-
tors [27]. Let us also note that the central charges (C1, Cq) transform as a doublet under
this SL(2,Z) symmetry. One of the automorphisms, which we call S is particularly impor-
tant.! S corresponds to rotation of the integer lattice by 5 clockwise. The action of this
element on the algebra realizes the spectral duality [72-80] of different representations: in
particular, the central charge vector is rotated; the horizontal representations become the
vertical ones and vice versa. The action of S is illustrated in figure 1.

Let us construct a natural basis in the tensor product of horizontal modules. This

basis is given by generalized Macdonald polynomials [65, 66, 81-86] MAB (Z—; q,t p%l),pg)),
which are the eigenfunctions
Hi Mag = kapMap (1.2)
of the Hamiltonian
Hi = 7{ % Pur @ puy {Apiv(z™(2))} (1.3)
with eigenvalues
KAB = U1 Z ¢t g Z ¢Bit. (1.4)

i>1 i>1

In the simplest example, i.e. for the tensor product of two Fock modules F,, ® F,,, the
generalized Macdonald polynomials depend on a pair of Young diagrams and on ratio of
the spectral parameters Z—;

The Hamiltonian H; is the zero mode of the raising generator, xg' in the horizon-
tal representation. One can also understand the Hamiltonian (1.3) as the spectral dual
of the first Cartan generator wf. As we mentioned above, in the vertical representation
the Cartan generators v acts diagonally on the ordinary Macdonald polynomials. The
same is true for tensor products of the vertical representations, i.e. the “diagonal” basis is
given by tensor products of the Macdonald polynomials Miq’t)(a(_lzﬂuﬁ ® M g]’t) (a(_2,)L)|u2>
(in order to see this, one should use the DIM coproduct [41] and the fact that, for

the vertical representations, C; = 1). Thus, the generalized Macdonald polynomials
Mg - q,t‘a(_lr)”a(f%) lu1) @ |ug), which diagonalize z{ = S(17), can be thought of

as spectral duals of the ordinary Macdonald polynomials. A remarkable feature of DIM,
which greatly simplifies calculations, is that the eigenvalues of the first Hamiltonian H;
are non-degenerate, so it is sufficient to diagonalize only this one operator to define the
entire set of polynomials and all “higher Hamiltonians” (i.e. the other Cartan generators,
Hp = puy @ pu,S(;F) for n > 2) are automatically diagonal, see appendix B.

1S is sometimes called Miki isomorphism in the mathematical literature. In physical terms, it is Type
IIB S-duality exchanging NS5 and D5 branes, hence, our notation.



Let us make two remarks here. The eigenvalues are non-degenerate only for uy, us in
general position. However, the case of resonance between u; and us is more subtle, then
the eigenvalues do become degenerate. We will not consider this case. The eigenvalues
also become degenerate in the 4d/Yangian limit in which the first Hamiltonian should
be expanded up to the first order and a lot of information is thus lost. This is because
the (g, t)-deformation reveals a true exponential nature of the DIM-symmetry generators,
while the ordinary Virasoro and W (and thus the higher Hamiltonians of the Calogero-
Sutherland-Ruijsennars family) arise all together in their series expansions. We will usually
suppress the two sets of time variables p, = >, ', p, = >, Z}', which the Hamiltonian
acts on and polynomials depend on; when they are needed, we use the notation M{p,p}
or M|z, Z], depending on the choice between the time and Miwa parametrizations.

In the tensor products of more than two Fock modules, there are still eigenstates of
x[{, which we call in the same way generalized Macdonald polynomials. In this case, the
number of time sets and Young diagrams is correspondingly increased.

Now we are at the crucial point of our approach to the R-matrix. The Hamiltonian e
depends on the choice of the coproduct in the DIM algebra; there are two natural options:
schematically,

Al =2t @1+y @2t (1.5)

or
AP =1@at+aT @y, (1.6)

The DIM algebra is a quasitriangular Hopf algebra. Thus, these two coproducts are related
by an R-matrix:
AP =RARY,  HP=RHR'. (1.7)

Hence, their eigenfunctions are also related:?
_ cp [ U1 = Ui
PJ?) =Y R4p () - Mcp (
C.D "2 "2

where the sum is actually finite, because the size of Young diagrams is restricted by the

q,t p7p> (1.8)

M —’ ,t
AB <u2 q

conservation law
|Al +|B| = |C| + |D| (1.9)

which makes R block-diagonal with finite-dimensional blocks.

The coproducts A and A°P differ only by permutation of the two representations on
which the algebra acts. Thus, the “opposite” Macdonald polynomials can be alternatively
obtained by a simple change of variables, exchanging u; <+ us, A <+ B and p, < Py:

~o (U1 N\~ (u
M3 <u p,p> = Mpa (‘q,t
2 (%5}

2Notice a slight change in the notation compared to [86]. We are now writing the generalized Macdonald

q,t

ﬁ,p) : (1.10)

polynomials as functions of the variable Z—;, which we call @, whereas in [86] we denoted Z—f as Q.



Since the generalized Macdonald polynomials are actually known explicitly in many
cases [65, 66, 84-86], one can just use (1.8) to evaluate the first blocks of the R-matrix, and
then promote these examples to the general formula. This is a much simpler way to get
explicit expressions as compared with deducing them from the universal R-matrix [85, 87],
as was suggested in [88, 89], and this will be the approach we adopt here.

1.2 Refined topological strings and R7T T relations

Refined topological string theory is a hypothetical string (or, more probably, M-) theory
generalizing the theory of topological strings. Apart from the string coupling ¢ = e™9,
the refined string theory depends on an extra deformation parameter ¢, which is related
to the non-self-dual Nekrasov 2-deformation. In order to reduce it to the ordinary topo-
logical string theory, one should put ¢ = gq. The amplitudes of refined strings on the
toric Calabi-Yau threefolds have been computed with the help of the refined topological
vertex technique [90-93]. The main idea of this technique [94-97] is to break down the
threefold into C? patches and find the universal amplitudes, trivalent refined vertices on
those patches. Each vertex depends on boundary conditions on three Lagrangian branes of
topology S' x D? sitting on the legs of the toric diagram. These boundary conditions are
encoded in the Young diagram, which summarizes the winding numbers of string bound-
aries on the branes. The final answer for any amplitude, either closed string, i.e. without
any branes, or open with nonzero boundary conditions, is obtained as a sum of the product
of topological vertices over intermediate Young diagrams with “a propagator” containing
Kahler parameters of the edges.

We employ an algebraic approach to the refined topological vertices developed in [40].
The vertices are treated as intertwiners of the Fock representations of the DIM algebra,
each representation corresponding to the leg connected to the vertex. The slopes of the
legs are encoded in the central charges of the corresponding representations. Finally, the
sum over intermediate Young diagram residing on the leg is interpreted as a sum over
the complete basis of states in the corresponding Fock representation. Thus, to any toric
diagram, one associates an intertwiner between tensor products of Fock representations.
Such intertwiners by definition commute with the action of the DIM algebra on the repre-
sentations. To get the answer for the amplitude from the intertwiner, one should simply
evaluate the matrix element of the intertwiner between the basis vectors in the Fock mod-
ules corresponding to the external Young diagrams (see details and examples in [41]).

The sum over intermediate Young diagrams in the computation of any amplitude can
also be interpreted as a “network”-type matrix model [41, 98-100]. For certain “balanced”
toric diagrams, the corresponding matrix model can be identified with the Dotsenko-Fateev
(DF) representation for the multipoint conformal blocks of the g-deformed Wy algebra [41].
Moreover, one can usually obtain two such descriptions related by the action of the spec-
tral duality: either as a (k + 2)-point Wx-block or as an (N + 2)-point Wj-block, the
corresponding toric diagrams being related to each other by 7 rotation. The existence of
two coinciding conformal blocks of different kinds is related to the AGT duality as shown
in [86].



The fact that any toric diagram essentially represents a contraction of the intertwiners
commuting with the action of the DIM algebra leads to important implications for matrix
model, to the Ward identities [41, 100]. These identities are very similar to the Wpy-
algebra Ward identities derived in the DF representations, where the generators of algebra
also commute with the set of screening charges Q.. These identities relate the correlators
involving descendants to those of the primary fields. In fact, one can show that this
construction can be entirely incorporated in the DIM approach to topological strings. The
Wy generators are obtained from the DIM generators acting on the tensor product of
M Fock modules, and the screening charges arise from a certain combination of the DIM
intertwiners. In the context of gauge theory, such identities were described in [101] as
following from the regularity of gg-characters. Also, in the Nekrasov-Shatashvili limit
these identities turn out to give the Baxter TQ equations for the Seiberg-Witten integrable
systems related to the gauge theory [13-16].

However, we would like to describe a different form of integrable structure, related
not to infinitesimal transformations (realized as the action of the DIM algebra), but to the
“large” action of an automorphism group. This “large” action is performed by the R-matrix
which we have describe above. Indeed, the R-matrix permutes the representations and
thus acts on the intertwiners, i.e. on the topological vertices. The refined topological string
amplitudes can then be interpreted as matrix elements of the transfer (or Lax) matrices,
which are permuted according to the R7T T-relations. More concretely, the simplest 7T -
operator taking part in the relations is given by the following conifold geometry:

(1.11)

The action of the R-matrix on the toric diagram 7 -operator is given by eq. (3.2). The
whole toric diagram now looks like the combination of objects familiar from the theory
of quantum integrable models (e.g. spin chains): the R-matrices and T-operators (see
figure 2). The vertical representations are identified with the quantum spaces (e.g. Hilbert
spaces of the spins), while the horizontal ones are the auziliary spaces, on which the R-
matrix acts. In terms of quantum group elements, the quantum space is associated with the
algebra of functions, while the auxiliary one with the universal enveloping algebra [28-31].
Geometrically the R-matrix performs a generalized version of the flop transition on the
Calabi-Yau manifold [102-104].

Let us also make a remark on a relation between the spectral duality and the R-matrix.
The spectral duality S rotates the lattice of generators (or the preferred direction on the
toric diagram) in figure 1 by 7. It turns out that the R-matrix can be naturally interpreted
using the & automorphism. As we have already seen, the R-matrix looks simple in the
basis of generalized Macdonald polynomials: indeed, it is just the permutation of the spaces
and the spectral parameters denoted by the op label in (1.10). The generalized Macdonald
basis is spectral dual to that of tensor products of the ordinary Macdonald polynomials.
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Figure 2. Commuting integrals of motion in a quantum integrable system can be constructed using
two essential building blocks: a) the T-operator acting in the tensor product of the quantum space
V' (vertical leg) and the auxiliary space W (horizontal leg), b) the R-matrix acting on W ® W and
satisfying c), the Yang Baxter equation. d) R and 7 have to satisfy the R7 T relations, providing
commutation relations for the 7-operators. e) Taking the trace of the T-operator over the auxiliary
space, one gets commuting operators acting in the quantum space, these are the quantum integrals
of motion.

Thus, to compute the R-matrix in the basis of ordinary polynomials, one should first rotate
to the spectral dual frame using S, then make the permutation of the spaces and finally
rotate back using S~!. We thus obtain the relation of the form

R=8"'0S (1.12)

where o denotes the permutation of representations or legs of the toric diagram. We will
encounter this relation when performing concrete computations of the R-matrices.
Having transfer matrices, one can take traces of them. Just as in any quantum in-
tegrable system, these traces generate a family of commuting integrals of motion. Those
too have an interpretation in terms of topological string. However, this time one has to
compactify the toric diagram, i.e. to consider not the toric Calabi-Yau threefold, but its
compactified version. The situation here resembles that considered in the classic paper by
V. Bazhanov, S. Lukyanov and A. Zamolodchikov [105, 106], where an infinite family of
integrals of motion in CFT was derived. The intertwiners of DIM play the role of exponen-
tials of free fields and their traces, i.e. compactifications provide the integrals of motion. In



the language of matrix models, this corresponds to further deforming the measure: depend-
ing on the direction of compactification, it becomes either elliptic or affine. Eventually,
the matrix elements of commuting integrals of our integrable system correspond to certain
correlators in the elliptic or affine matrix models. There are different directions to pursue
from this point. However, we only sketch possible further developments in section 5.

Let us point out an important difference between our approach and several recent
works dealing with the DIM Ward identities and R-matrices [85, 87, 89, 107]. We will
predominantly work with horizontal representations, whereas in [85, 87, 89, 107] it was
essential to consider the wvertical representations. It would be very interesting to unify
the two approaches and make the SL(2,7Z) invariance and duality between vertical and
horizontal directions manifest.

We understand that similar calculations for DIM R-matrix have also been done by
S. Shakirov [108].

2 7R-matrices: from B-deformation to (g, t)-deformation

In this section we implement the algorithm given in section 1.1 to compute the DIM R-
matrix.

To warm up, we start with two simplified examples. The first one (section 2.1) is the
trivial case of unrefined topological string, i.e. ¢ = ¢q. The second one is the “4d limit”
of the DIM algebra, the affine Yangian Y (gl;) considered in section 2.2 (see [43, 44, 60—
62, 88, 107, 109-115]). The construction in this case is parallel to the DIM algebra, with
the generalized Macdonald polynomials replaced by the generalized Jack polynomials, and
this makes the formulas a bit less bulky. Finally, in section 2.3 we turn to our real focus,
the DIM R-matrix.

2.1 A trivial example: ¢t = g, Schur polynomials

For the unrefined topological string, i.e. for t = ¢ the generalized Macdonald Hamiltonian
Hi, (1.3) degenerates into the sum of two noninteracting Ruijsenaars Hamiltonians. Thus,
the generalized Macdonald polynomials become just the product of two Schur functions,
and do not essentially depend on the spectral parameters u; 2. This means that eq. (1.8)
defines a trivial R-matrix, which is proportional to the identity matrix:3

RGB (1) =g < 3507 (2.1)

2.2 Affine Yangian R-matrix from generalized Jack polynomials

Two strands. For the tensor product of two Fock representation, the generalized Jack

)

polynomials are eigenfunctions of the S-deformed cut-and-join operator ﬂgﬁ which belongs

3There are different conventions on numbering the strands entering and eziting from the R-matrix. In
the theory of integrable systems, it is standard to label strands according to their spectral parameters.
However, in knot theory, one usually assigns numbers to the positions of strands in the slice. We use the
first choice, and the second one can be obtained by taking a product of R and the matrix of permutation
of two strands o12.



to the Cartan subalgebra of the affine Yangian:

qe L i <ﬁ(n+m)pnpm8+nmpn+m82)+1§:(2u+(3_1)(n_1)>npn8
2 n,m=1 apn+7n 8pn8pm 2 ot apn
2 PrPm g p = - |15 2a —1)(n—1))np, —
+2n;1(ﬁ(n+m)p”p " Orm +"mp”+maﬁnapm>+2;( A~ ))”pna-n
[e's) . 9
+(1_ﬂ)zn pnﬁ. (22)
n=1 n

It is the last term in the third line which breaks the symmetry between p and p and
makes dual polynomials different. Notice that this term vanishes for 8 = 1, i.e. in the
trivial case that we have considered in the previous subsection. In general, the eigenvalues
corresponding to the eigenfunctions Jap{p, p} are

Rp= > (vr@-1-G-108)+ > (a+G-1)-(-18). (2.3)

(i,7)EA (i,7)€B

Notice also that the eigenvalues (2.3) are degenerate: e.g. KEF )1] o = Hg)[l 1 Thus, one

still needs higher Hamiltonians H?L with n > 2 to uniquely specify the polynomials, which
makes the problem a little sophisticated. As we have already mentioned, this is cured at
the DIM level, where the (g, t)-deformation makes the eigenvalues non-degenerate.

One can take the answer for the eigenfunctions from [81-83]. The first level reads:

Jo=0=-8)p1—(@—uwp, Jyp=0+u—u—pB)p
J@7[1] =(u—u—1+p8)p1, Jék’m = (u—u)py + (1 — B)p1. (2.4)

It is now straightforward to obtain the R-matrix from the relation similar to eq. (1.8).
However, first, we emphasize a subtlety which makes the definition of the R-matrix non-
trivial. The point is the simplicity of the definition of the “opposite” polynomials (1.10).
This definition in fact depends on the choice of the particular special normalization of the
polynomials. To put it another way, the R-matrix indeed transforms each generalized Jack
polynomial into the corresponding “opposite” polynomial, however, the coefficient needs
not necessarily to be the identity. Thus, for arbitrary normalization of the generalized
polynomials, one has the following definition of the opposite ones:

Nap(ui — uz|p)
Npa(uz —ui|f)

where N4p(u|f) is the normalization coefficient absent for the special normalization. Then,

J0s (ur — u2|Blp, p) = Jpa (uz — w1|B|p, p) (2.5)

the R-matrix is indeed given by
Jig (w1 — ua|Blp,p) = YRGB (w1 —ua) - Jop (w1 — ua| Blp, p) (2.6)
C,D
or, using the Jack scalar product,

1
T (= e

RGE (u1 — up) e (J*Py (ur — us|Blp, p) | Jep (w1 — ua|Blp,p)).  (2.7)

~10 -



The Jack scalar product is defined as

n 9
B Opn

*Op

Notice the conjugate polynomial J*j; in the bra vector in eq. (2.7).

on)lg(pn)) = ( )g<pn>|pno. (2.8)

We now describe the special normalization of Jack polynomials explicitly. To this end,
we expand J4p in the basis of monomial symmetric functions:

JaB(ulB|pn, Pn) = Nap(ulByma(pn)mp(pa) + Y CIE (ulB)mo(pn)mp(pn)  (2.9)
CD#AB

where m 4(py,) denote the monomial symmetric polynomials and the normalization factor is

Nap(ulB) = gap(ulB) II (Ai —j+BAT —j+1)) II (Bi—j+BBf —j+1))
(i,5)EA (4,7)€B
(2.10)
and

gap@) = [[ (@+A4i—j+BB] —i+1)) (z— Bi+j—1-B(A] —i) (2.11)
(i,7)EA (i,7)EB

is the usual 4d Nekrasov factor. The normalization factor Nap in eq. (2.9) is the same as
in eq. (2.5). Notice that the special normalization is different from another popular choice
of normalization, which we call standard. In the standard normalization, the coefficient in
front of ma(pn)mp(pn) in Jap is unit and ||Jap||> = ||Jal|?||JB||? is independent of w.
The normalization factors satisfy the identity Nap(u|8)Npa(—u|B8)||Jal?||JBl|* =
vec

235 (u|B) where 2¥*¢ is the vector contribution to the Nekrasov functions [116-118]. In
particular, one has

1aB||* = 245 (ulB). (2.12)

The polynomials (2.5) are already written in the special normalization. This normalization
is in fact natural from the cohomological point of view. The generalized Jack polynomials
can be associated to the fixed points in the moduli space of SU(2) instantons (or to the
Hilbert schemes of points on C2?) [114]. The action of the first Hamiltonian #; is given
by the cup product with the first Chern class in the cohomology, whereas higher Hamilto-
nians are cup products with higher Chern classes. They commute simply because of the
commutativity of the cup product. The specially normalized generalized Jack polynomials
then describe stable envelopes of the corresponding fixed points.

Having understood the subtle point of normalization, we get the R-matrix in the basis
of generalized Jack polynomials:

_ _n_
RO = b= g (2.13)
2 n?+1
=1 53
with )
n= -5 (2.14)
uUu—u
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This R-matrix, though simple, is still nontrivial. It should be supplemented with the
identity block arising from the generalized Jack polynomials at the zeroth level:

Jo,o(ulBlp,p) = J o0 (ulBlp,p) = 1. (2.15)

The resulting 3 x 3 matrix

1 0 0

01-n L (2.16)
2 n%+1

0n—n" "1

should satisfy some form of the Yang-Baxter relation. However, it does not look like the
3 x 3 block of the standard rational R-matrix

10 0

1

0 L (2.17)
1

05 4

which is the only 3 x 3 rational solution to the Yang-Baxter equation. This discrepancy is
resolved if we recall that the basis of generalized Jack polynomials in the tensor product
of two Fock representations of the affine Yangian, are not factorised into vectors in each
representation. To get more familiar expression for the R-matrix, we should consider its
matrix elements in a basis, where the vectors are factorized into tensor products, e.g. the
products of the Jack polynomials Jj(f ) (pn)J](Bﬁ ) (Pn). The basis is changed with the help of

the generalized Kostka matrices:

KSB|B) = (J* aplB)(JD)y @ 17D, K*SBw|B) = (TP @ (JP ) Jen(ulB)) .
(2.18)
At the first level, we have

K (ulf) = (1 0), K*(um:( ! O>. (2.19)

nl -n1

The R-matrix in the factorized basis of the ordinary Jack polynomials is given by

8) I e 1 1n
R =K R K= 2.20
o Jack = B TR IEY T et ) (220)

where ||J||?> denotes the diagonal matrix containing the norms of generalized Jack poly-
nomials. Eq. (2.20) gives the standard rational R-matrix (2.17). Formula (2.20) can be
understood as a decomposition of the R-matrix into the upper and lower triangular parts,

since
1 1—n L 10
K* HJ”QR(B) = "T and K = (2.21)
0 7 1
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Moreover, one can refine this decomposition even further: one can identify the upper and
lower triangular parts with identities on the diagonal and the diagonal part sandwiched
between them. To obtain this decomposition, one should explicitly write down the nor-
malization coefficients N4p(u|5) of generalized Jack polynomials in the formulas for the
R-matrix. The diagonal part then comes from the term ~AB(1=u2l8) 4 o (2.5) and the

Npa(uz—u1]p)
whole expression becomes

Rf)f()i Jack — {K* HleQR(B)N_I} ‘N - K (2.22)

where N{5 = %525? = (1677 _(1_377)71). In eq. (2.22) the term in the curly
brackets is upper triangular with identities on the diagonal, the matrix A is diagonal and
K is lower triangular.

Decomposition of the R-matrix into the upper and lower triangular parts also has
an interpretation in the cohomology of the instanton moduli space [88, 89]. Parts of
the R-matrix decomposition correspond to stable envelopes of the fixed points, i.e. to the
cohomology classes of the attracting domains of the fixed points under a certain C*-action.

“wall R-matrices”

The R-matrix in this approach is given by the infinite product of the
labelled by rational slopes (determined by the integer pairs corresponding to the double
gradings of DIM or affine Yangian generators, as depicted in figure 1) within the interval
of angles: [0,7]. The lower triangular part corresponds to the product over [0, 5], the
diagonal one represents the wall with infinite slope, and the lower triangular matrix is the
|

product over [F,

B) _ ) (BB
RO =R RORL . (2.23)

Such a decomposition is just a reflection of the identity R = SoS which we have
mentioned in the Introduction. Each wall R-matrix corresponds to a change of the preferred
direction from one “chamber” in (C*)? to another, the border between them being the line
of rational slope. The product of wall R-matrices over angles [0, 5] is nothing but the
automorphism S. Also, in [119] it was shown that the generalized Kostka matrices are in
fact the matrix elements of S in the basis of eigenfunctions of the DIM Cartan subalgebra
(the story for the affine Yangian, which we study in this section, is parallel). Depending
on whether the preferred direction (or the representation in question) is horizontal or
vertical, the eigenfunctions of the Cartan subalgebra can be either ordinary or generalized
polynomials. S performs a linear transformation between the two basis sets, and is thus
nothing but the Kostka matrix K as clearly seen from the definition (2.18). Eventually, the
decomposition (2.22) is a reflection of the decomposition (1.12), where o is accompanied
by multiplication with the diagonal matrix .

Yet another meaning of the R-matrix that we have just obtained can be seen by
noticing that the affine Yangian acting on the tensor product of two Fock modules contains
the Virasoro subalgebra generated by the dressed current t(z) = a(z)z"(2)3(z). A pair
of Heisenberg algebras provides a bosonization of this Virasoro algebra. However, it is
well-known that there are two such bosonizations related to each other by the Liouville
reflection matrix [42]. The job of the reflection matrix is similar to that of the R-matrix: it
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exchanges the two types of bosons. Indeed, one can see that the two objects are in fact one
and the same. For example, as we have discussed in the previous subsection, the R-matrix
is trivial for ¢ = g or equivalently 8 = 1, and the Liouville reflection matrix is also trivial,
since ¢ = 14+6(v/B—1/y/B)? = 1 in this case. In fact, the tensor product of two Heisenberg
algebras acting on two Fock modules contains in addition to the Virasoro also the diagonal
Heisenberg subalgebra, which is usually called the “U(1) part” in the AGT context [120].
This part is of course left invariant by the reflection matrix. One can see that the R-matrix
also leaves this subspace invariant. Thus, the R-matrix of the affine Yangian is nothing
but the reflection matrix of the Liouville theory.

More strands. For more than two strands, the generalized Jack polynomials can still

(8)

be described as eigenfunctions of a certain Hamiltonian H;"’ sitting inside the affine Yan-

gian, [81-83]. The polynomials J¢{py,} in this case depend on r sets of time-variables

pﬁf), k=1,...,r, on r Young diagrams A = {A41,..., A} and on r spectral parameters
@ = {u1,...,ur}. The Hamiltonian is now a linear combination
B) _ (8)
My ZH o =8> HE (2.24)
k=1 k1<ko
with
)1 ¢ 0 1 — )
n,m=1 n+m n=1 Pn
(2.25)
and
2 (k
(k1,k2) = Z" ) op! (2.26)
TL

The construction of the R-matrix is similar to the case of two strands. The important
difference is that there are now r — 1 R-matrices, which permute the factors in the tensor
product of Fock modules. They form a representation of the r-strand braid group B,.

In the basis of generalized Jack polynomials, the resulting R-matrices look rather
ugly (see appendices A.1.2 and especially A.2.2). However, in the basis of ordinary Jack
polynomials, the expressions simplify. In this basis, the R-matrix acting on each pair of
strands becomes a copy of the two-strand R-matrix:

> RO LGP (ui—uy) 1d®- - 0id®|Jo)i (Jai®- - ®|Jo)(Jal;©id®- - ®id.
A,B,C,D
(2.27)

Thus, all the familiar results from integrable systems hold, e.g. the fusion of R-matrices. For
three strands, one can also check the Yang-Baxter equation and it works as expected. The
relation with the spectral duality (1.12) for several strands is modified in an obvious way:

R = 87108, (2.28)

where o0; ; permutes the i-th and j-th strands.
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2.3 DIM R-matrix from generalized Macdonald polynomials

In this section, we compute the DIM R-matrix from the generalized Macdonald polynomi-
als. This turns out to be simpler and more natural than the affine Yangian R-matrix in
the previous subsection.

Two strands. As we described in the Introduction, the generalized Macdonald polyno-
mials are eigenfunctions of the element xar of the DIM algebra acting in the tensor product
of Fock representations:

H1Map = kapMag (2.29)
where
KAB = ulquit_i +U22qBit_i (2.30)
i>1 i>1
and

H1 = pu, ®pu, A2 (2))

= %% [U1A1(2)+u2A2<Z)]

dz 1—t—™ 1—¢" 0
_ W= v (1),—n n
= 7{ . [ulexp(g Pz )exp(g p— apsll))

n>1 n>1

1-t" -n —-n 1—q™ n n 5
+ ugexp Z ((17tn/qn)p%1)+p%2) (Q/t) /2)2 exp Z q e <Q/t) /2W
" n>1 n 8pn

n>1

(2.31)

where A is the DIM coproduct and p,, denotes the horizontal Fock representation [41, 63,
64]. Note that the eigenvalues (2.30) are non-degenerate and, though there are higher
Hamiltonians H,, (see appendix B), they are not needed to determine the spectrum. One
can ask how does the degeneration appear in the Yangian limit ¢ — 1. The Hamiltonian H;
in this limit is expanded in series of operators in (¢—1), and the first term is the Hamiltonian
Hgﬁ ) (2.2) which we considered in the previous subsection. Since this is just the first term
in the expansion, some eigenvalues degenerate and one needs higher Hamiltonians ’H?(f ),
However, all these Hamiltonians are contained in the expansion of H;.

We slightly changed our notations compared to the previous subsection: the order
of Young diagrams A, B is reversed as compared to section 2.2. This is done mostly to
conform with the existing literature on the subject, where the discrepancy seems to be
already entrenched.

The generalized Macdonald polynomials at the first level are given by*

*

My = (1—75)(1—2@)1)17 Mpy = (1=¢)(1-Q)p1—(1—q) (1—2>;51

My = (1—75)(1—62)}314-(1—75)<1—2>p1, My = (1—61)<1—2Q>151-

4We again remind the reader of the change of convention @ — Q™' as compared to [86].
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As in the previous subsection, these polynomials are written in the special normalization
such that the definition of opposite polynomials is given by eq. (1.10). In [86] a different
normalization was used such that Map = 1-ma(pn)mp(pn) + ... We conform with the
previous notation and denote the specially normalized polynomials by Mg as in [86],
eq. (19). Let us write down the normalization coefficient, which we take from [86]:

Nap(ulg,t) = Gpa(u~'|g,t)Ca(q,t)Cp(g,t) (2.32)
where
i AT _;
Caet)= ] (1 A “), (2.33)
(3,7)EXN
Gaplulg,t) = [] (1 - qui—th?"'“) I1 (1 - uq_BiJrj_lt_AJTH) (2.34)
(i,j)€A (1,j)€EB
_ H (1 _ quﬁthjT_iH) H <1 _ uquiJrjflt—A;f—l-i) _
(4,7)€B (i,7)EA

For the polynomials Map (without tilde), the definition of opposite polynomial is

Nap(ui/uz|g,t)
Npa(ua/ui|g,t)

M3, (u1/uslq, tlp, p) = Mpa (uz/u1lg, t|p,p) . (2.35)

After the generalized polynomials are found, the R-matrix is determined in the same
way as for the affine Yangian. We simply write down the main formulas, since the discussion
is very similar to the previous section. The R-matrix in the basis of generalized Macdonald

q,t‘p, p)> . (2:36)

polynomials is

Ul 1 ~— U1
Rgg (> = <M s (‘q,t
u2 op Ul ug
[ (22)]

u2

\ |7 Uy
pm) )MCD (
U2

It is given by

up (u%q2 +u§q2 —uiu2q®—2tu; u2q+t2ulu2) (g—t)u1(qua—tuy)

R - a1z (i —a) Fm—u? | (2.37)
__(g=tjui w1 (qua—tuy)
uz(qui —tuz) q(ur—u2)uz

Transformation to the basis of ordinary Macdonalds is performed using the g-deformed
versions of generalized Kostka matrices:

1 (g—t)uz 1 — (g—t)us
K = q(ur—uz) | K* = q(ur—uz) | (2.38)
0 1 0 1
and ] 1
Rord Mac — e R—— (239)
[|M[[2 [[M]?
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The resulting 2 x 2 block is the same as the block appearing in the standard trigonometric

R-matrix:
qu(l(ul—uz)) (g—=t)us
R _ u2(qui —tuz qui—tus ) 2 40
ord Mac (qft)u% b (11 —u2) ( )

uz(qui—tuz) u2(qui—tus)

Again the digression on the triangular decomposition is relevant here. The only difference
is that the geometric interpretation now lies in equivariant K-theory of the instanton
moduli space. Otherwise, the comparison with the “wall R-matrices” as in eq. (2.23) is
still valid and the resulting decomposition also gives the relation with the spectral duality
transformation S as in eq. (1.12). Also, the DIM R-matrix provides the reflection matrix
for the g-deformed Virasoro algebra.

More strands. Again the discussion here is exactly parallel to the previous section, only
the formulas are somewhat larger. The generalized Macdonald Hamiltonian for N strands
is given by

Hi = Puq ®"'®puNA(l‘+(Z))

dz &
_ 7{ Z;ui/\i(z)

g dz 1—t=™ 1—¢" 0
— —_— (1) -n q n__ -
> Uu1exp E n pn z exXp E n z )

n>1 n>1 0 g“bl)

- nj/.mn -n —-n
Fuzexp | Y- ——— (1=t /g +p P (a/t) )2

n>1
1—¢" 5 0
- exp ——2"(q/t)"
; n ops?)

vusexp | ST () (o0 a0 2 ) 1P 0 t) )2

n>1

1—¢" 0
cexp (> 2(q/1)" —q
n>1 " ap7(13)

1—tn _ N _
...Funexp Z - ((1—t"/q”)(p7(11)+(q/t) V2p@) 4 (q/t) @ Nn/2pM 1))

n>1
(N) (g /4)1-N)/2) ,—n 1=¢" . N2 9
+ i (a/t) )2 | xexp [ Yo" (a/t) ~e (2.41)
n>1 Pn
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and the generalized Macdonald polynomials are defined as its eigenfunctions:

H1]\7A1...AN = HAl...ANMAI...AN (2.42)
N .
KA. Ay = Z Uq Z gt (2.43)
a=1 >l

An explicit computation of the R-matrix for three strands is performed in appen-
dices A.1.1 (first level) and A.2.1 (second level). In the basis of ordinary Macdonald
polynomials, the R matrices R;; act only on the i-th and j-th representations in the tensor
product, just as for any standard integrable system. The Yang-Baxter equation is also
satisfied, as shown in appendix A.1.1.

Thus, in this R matrix section, we demonstrated that both the DIM R-matrix and
its affine Yangian limit can be easily computed for the horizontal Fock representations
using the generalized Jack or Macdonald polynomials. The resulting R-matrices have usual
properties and resemble the standard rational and trigonometric R-matrices. They are also
related to the (g-)Virasoro reflection matrices and can be understood as the intersection of
stable envelopes in the cohomology or K-theory of the instanton moduli spaces.

In the next section, we show that the transfer matrices or the Lax operators permuted
by the DIM R matrix, can be understood as refined topological string amplitudes on
resolved conifold.

3 RTT relations in the toric diagram

In this section, we prove that the R-matrix permutes the basic building blocks of the
balanced toric web. These basic building blocks are resolved conifolds with Young diagrams
placed on each external line:

THE (Qu.2)= 5 =((52.QuIe (ML) T(QI2) (|s5.)@1M}p) ) =(s4,QuI¥ P (Q)¥r(2)]s.u),

(3.1)

where ¥ and U* are the intertwiners of DIM algebra [40, 41], |s4,u) denote the basis of
Schur functions in the horizontal Fock space, | M 1|%> denote the basis of ordinary Macdonald
polynomials in the vertical Fock space (hence, the sign |) and ¥p denotes the matrix
element of ¥ for the Macdonald polynomial Mp on the vertical leg. Such building blocks
allow us to construct an arbitrary balanced networks as shown in [41]. We assume that all
correlators are normalized in such a way that, for the empty diagrams, the averages are
identities.
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3.1 Trivial diagrams on vertical legs

Before considering the most general RT T relation, let us give the proof in the simplified
case, where some of the external diagrams are empty. The main ideas of the proof are
similar to the general case, which requires one additional observation.

The RTT relations for the conifold building blocks look very similar to the RT T
relations in any integrable system and can be drawn as follows:

Uz Uy Uz
—_—
Y, Y,
01 V2 U1
R (3) — A
. 1y 441 1y W, Wi
U Usg T U T
— = —_— | R (”—1>
Y1 Y1 2
%) U1 Vg
— ]
Wy Wy Wy
z z
(3.2)

Here R, drawn as a box acts on the tensor product of the horizontal Fock modules corre-
sponding to the horizontal legs. The preferred direction is vertical. Two horizontal modules
are intertwined with one vertical by the combination of topological vertices. Equivalently,
in the algebraic form, we have:

Uy ((ZH1u2 ) g ((Zu2 W, ((Z41u2 ) g ((Zu1
R (1) S I AP o et ) *<”>R(“>. (33)
u2 ) wa(22)w5(2) X NEILHE) v2

Notice that the Young diagrams on the vertical external legs are chosen empty. This is the
simplification that we use in this subsection and lift in the next one.

We will use the following trick, which renders the RTT relations almost trivial. We
rotate the preferred direction in the diagram from vertical to horizontal with the help of
the automorphism S. This corresponds to the change of basis in the tensor product of
horizontal representations from that of Schur functions |sy;, u1)|sy,, u2) to the generalized
Macdonald polynomials |My,y, (u1,u2|g,t)) (without tilde, i.e. not specially normalized).
In this new basis, the R matrix acts simply by permuting the strands (though, as we
learned in the previous section, depending on the normalization of the basis vectors an
additional constant might arise). Thus, in this basis, one gets the following relation (we
moved two R-matrices to the r.h.s. of eq. (3.3)):

Uy _HUL Uz
Yy Y
U1 1 U2 U1
——fe—— R (%) 4 e
A\ Wi 2 A\ Wi
U2 N Uz Uy R (111 )
— e = —fe—] 4 o
Y, Y, v
V2 U1 _’UH%_
W2 W2
z z
(3.4)
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or, algebraically,
o zZuiug o Zu9
ZHM}\H*Q 2(1;11)2(82 )\(1)2 >

u v
MY1Y2 <1) MW1W2 <1>
2/ vy (22)wy(2) v2
- o (2o (32)
u u _ vlv v v v
= ( Myiv, <u1> R <1) Z [ M| ? ' 2® ' R <1> Mw,w, <1) :
2 42 X NEILHO) v2 v2

v1

Strictly speaking, we should have also changed the basis in the vertical legs from the basis
of Macdonald polynomials to that of Schur functions. However, the change of the basis in
the vertical legs does not make any difference, since the external diagrams are empty, and
the internal ones are summed over. Let us now use our definition of the R matrix (1.8)
and the definition of the opposite generalized Macdonald polynomials (2.35) to transform
the r.h.s. eq. (3.5):

U1 (75} -1 (Z:11:22) v3 <Zu1 ) V1
My, (M) [R() Sl R (%) atwr, ()
U9 U9 X < > 5 (2) V9 V9
NY2Y1 (%) U qj}\(z:ll)\p*z(z)
=— 2 ( My,y, () ® M,
Nyiva (2) w ve ()i (32)
Notice the change in ordering of the tensor product due to the exchange of p, and p, in

M®P. It remains to prove the identity between Lh.s. of eq. (3.5) and r.h.s. of eq. (3.6). Both
expressions are matrix elements of the 7-operators in the basis of generalized Macdonald

polynomials.

We employ a very nice property of the generalized Macdonald basis. In this basis, the
matrix elements of the product of two 7-matrices are explicitly computable and given by
the Nekrasov functions. As shown in [119], the corresponding matrix model averages fac-
torize and the answer can be schematically written as follows (we again omit the prefactors,
which cancel in the both sides of the R7TT relations):

€ )> Al (VY] W, W] 2, 1 )
Wi Wa

<MY1Y2 ( ) v Gvy v, (% q,t)GWl,Wz (1,2 qat)
(3.7

The G factors on the both sides of the R7 T relations in the denominator cancel with the
normalization factors Ny,y, and (3.5) reduces to the elementary identity for the bifunda-

(ZUI“Z)\I,* (zuz)
vy v A\ vy
®

INE e

My||~?

mental Nekrasov functions [116-118]:

AT (Y1, Yal, (W, Wal, Qu, Qu, M) = 290 (1Ya, Vi, [Wa, W1],Q50, Q1 , M) . (3.8)

Thus, we proved the R7 T relation (3.3) for the empty diagrams on the vertical legs.
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3.2 Arbitrary diagrams on vertical legs

We now generalize our proof of the RT T relations to the case of arbitrary states in the
vertical representations. To this end, we use explicit expressions for the DIM intertwin-
ers acting in the horizontal Fock module with the spectral parameter z (see [40, 41] for
details):

By qn(AT) 11-¢" n\; —in_ n 1 —nXi,in (4\" —n
Uy (v) = (—v2) mexp ,>lﬁl—q”2q t™""v"a_, |exp —ZEZQ t (;) v an |,

i>1 n>1 " i>1

w=(-%) " . L= 05 g (£)
U (u) = [ =22 exp| —)» — q" "'t_m<7) ua—n
g q fuCulart) Snl et q

where

b= TI 2725, "= 3 (G-1). (3.11)

(3,7)EN (3,7)EN

The combination of intertwiners entering eq. (3.1) is then given by:

(MY|T|M)) = 0 (0) W (u)

11— n\;—in, n np; 4 —ni t z n
= Wiu(z,u,v) exp g Z g T — ¢t -] W a_,
n>1 ni=q i>1 q

11— Congin (AN i (42—
o (S E (e () e () )
n>1 i>1

(3.12)

where W) ,(z,u,v) ~ 2= A (ygrtP vghtP)~1 is the scalar prefactor including the
prefactors of ¥ and U* and the terms from the normal ordering of ¥ and ¥*. We will
henceforth omit this prefactor in our calculations, since it does not affect the R7 T relations,
which are homogeneous in 7T .

The identity we would like to prove can be represented pictorially as

2Uu1U2 Zujug

V1V2 « v1v2 Q@
U9 (751 U
—
Ys Ys
(s : At
=L ————— ——
. ESY Wl £\ W2 Wl
U U T Uq T R <m>
—_— = —_—— -
Yy Y1 v
Vo U1 U2
W2 Wl W2
zlp z1p
(3.13)
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or, algebraically,

N ECEAR Y N ECEAR Y ED
R (1) I G (E) g gy () 1>R<“1) (3.14)
w2/ 5 n(E)ve R n(3)ne o\

for arbitrary o and 5. We use the same trick as in the previous subsection and rotate the
preferred direction of the diagram from vertical to horizontal. This makes the R-matrix
diagonal as in eq. (3.6). However, now we compute the resulting amplitude in a different
way: we also rotate the whole picture by 5 and write down the operator expression for the
matrix elements in the rotated frame. Explicitly, we have

zZUuiug
B, % Sy ———
V1V2

Noavi () N (32)
= 58, 2| Wiy, (v1) Wy, (u1) Wiy, (v2) Py, (u2)
Novvs () M ()

Wiy, (v2) Wy, (u2) Wiy, (v1) Wy, (u1)

ZU1U2>

Say 7 —

V1V2
(3.15)

which should be valid for any « and (, so that these external states can be dropped.
We have thus reduced the R7T T relation to the commutation relation for the T -operators
composed of the DIM intertwiners ¥ and ¥*. We normalize the product of T-operators
using the explicit expressions (3.12). We obtain

i (12, 9, W] 2, 21

Tug vy ) vivy
G CaN
Y1,Ys us

q,t) Gw,,w, (Ll qnf) 5.16)

U2
where we have dropped inessential prefactors. This result certainly reduces to eq. (3.7) for

Uiy, (v2) Wy, (u2) Wiy, (v1) Wy, (1)~

) Wiy, (v2) Wy, (u2) Wiy, (v1) Wy, (ur):

a = = &, since the normally ordered operators act trivially on the vacuum. One can
now obtain the commutation relation for the T -operators by normal ordering of the both
sides of (3.15) and using the identity (3.8) for the Nekrasov bifundamental factor.

Let us recapitulate our main point in this section. We proved the R7T 7T relations for
the DIM R-matrix and 7T -operators constructed from refined topological string amplitudes
on resolved conifold. In the next section, we use these relations to obtain commuting
integrals of motion for our system.

4 Integrals of motion and compactification

Just as in any integrable system, the R7 T relations (3.2) allow one to construct a com-
mutative family of operators, integrals of motion on the Hilbert space of the theory. Those
are usually taken to be traces of T-operators in various representations. In our case, there
are several different ways to write down the integrals of motion. The first possibility is to
take the vacuum matrix element of a product of T-operators. This gives the closed string
amplitude on the toric Calabi-Yau threefold consisting of the resolved conifolds. The other
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Figure 3. Commutativity of the integrals of motion implies relations between amplitudes with
different Kéhler parameters on the toric strip geometry.

way is to compactify the toric diagram, which gives traces of products T -operators. The re-
sulting amplitude is given by the matrix model average with the affine or elliptic measures
depending on the direction of compactification.

A geometric meaning of the commutativity is in the both cases a generalization of the
flop transition on the Calabi-Yau threefold. The most basic example of this transition is
resolved conifold. The resolution can be taken in two different ways: either in one direction,
or in the other one. The topological string amplitudes on two resolutions are related to
each other by an analytic continuation in the Ké&hler parameter () of the resolution. To
switch from one threefold to the other, one has to replace Q by Q. In the RTT relation,
a similar exchange happens and, since the spectral parameters of two legs are exchanged,
their ratio, i.e. the corresponding Kéhler parameter is reversed. However, the situation is
here slightly different, since the toric diagram looks the same after the application of the
R-matrix.

Let us consider the two ways to construct the integrals of motion.

Vacuum matrix elements. The simplest example of this form is given by the toric
strip geometry shown in figure 3. This geometry corresponds to a single chain of inter-
twiners with the empty diagrams on all vertical legs. From the explicit expressions for the
intertwiners [41], one can deduce that the 7 operators indeed commute.

The next step is to glue several strips together. This gives what was called in [41]
balanced network. The amplitude corresponding to a balanced network can be interpreted
as the partition function of a 5d linear quiver gauge theory with zero S-function. Then,
depending on the duality frame (or preferred direction), the commutativity of integrals
is either related to the action of the Weyl group of the gauge group or to the spectral
dual Weyl group. This dual Weyl group corresponds to the Dynkin diagram of the quiver
and permutes the gauge coupling constants. This dual Weyl group has an interesting
interpretation in terms of the AGT dual conformal block: it exchanges the points and
therefore represents some kind of a braiding matriz.

Compactification. The compactified toric diagram corresponds to elliptically fibered
Calabi-Yau threefolds. Within the geometric engineering approach, such manifolds are re-
lated to gauge theories with adjoint matter, or necklace quivers. Again, the commutativity
of integrals of motion is equivalent to the invariance under the Weyl group of the corre-
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sponding necklace quiver, and thus permutes the coupling constants of the gauge theory.
The spectral dual interpretation of the resulting amplitude is the partition function of a 6d
linear quiver gauge theory compactified on a two-dimensional torus. The AGT relations
in this case [121-134] give the conformal block of the g-deformed W-algebras on torus, or
the spherical conformal block of the affine W-algebra [98, 99].

5 Conclusion

e DIM algebras of higher rank. It would be interesting to consider similar construc-

tion of the R-matrix for the quantum toroidal algebras of higher rank, i.e. qut(gA[T).
However, the generalized Macdonald polynomials in this case remain to be computed.
One of possible difficulties on this way is that bosonization involves less trivial free
fields a la [135-137].

e Triple-deformed R-matrix. If one compactifies the toric diagram in the vertical
direction, there would emerge an “affinized” version of the DIM R-matrix. It is
plausible that this is the R-matrix for the Pagoda algebra [41], with the additional
parameter being the compactification radius.

To evaluate this R-matrix, one needs to understand the corresponding “affine”
generalized Macdonald polynomials. Let us notice that they exist already for a single
horizontal leg, i.e. the simplest example is given by the polynomial labelled by a
single Young diagram and depending on three parameters Mlgq’t’t) (pn). For t — 0 one
should recover the ordinary Macdonald polynomials.

e Application to knots. As we already noticed, the DIM algebra can be obtained as
a limit of the spherical DAHA algebra for infinite number of strands. It is also known
that the toric knot superpolynomials can be obtained from the action of spherical
DAHA, or the corresponding DIM (the SL(2,Z) automorphisms play a crucial role
in these computations). It is natural to assume that the R-matrix of DIM should be
related to computation of superpolynomials. Presumably this R-matrix might give
the Reshetikhin-Turaev formalism behind the Khovanov-Rozansky cohomologies.

e Building representations. Another important direction is to consider more so-
phisticated representations of the DIM algebra. Those can be obtained out of Fock
modules by taking tensor products, e.g. Fy, ® --- ® F, . For u; in general position,
these representations turn out to be irreducible. The R-matrix for these representa-
tions is given by the fusion construction, which is similar to the known technique for
affine quantum algebras. The R-matrix for these discrete choices of parameters also
satisfies the Hecke algebra relations.

However, as in the case of affine quantum algebras, (see, e.g., [138]) for certain

discrete choice of parameters u, in resonance, i.e. for
i14—7 in4—j
uy = ¢"'t Mg, ug = ¢t 2ug, (5.1)

with i4,jq € Z>0, one gets invariant subspaces inside the tensor product arising
from degenerate vectors. After factoring out these subspaces, one gets an irreducible
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ERIEINE

Figure 4. A plane partition (3d Young diagram) with asymptotics given by ordinary Young
diagrams I, J and K.

representation space spanned by a subset of k-tuples of Young diagrams obeying
additional Burge conditions [139-141]. These conditions can be interpreted as the
requirement that the k-tuple of Young diagrams combine into a plane partition (3d
Young diagram, melting crystal) of width k. In general, one can consider 3d Young
diagrams with infinite “legs”, i.e. nontrivial asymptotics along the coordinate axes,
see figure 4. In the case of the tensor product, the “vertical” leg is nontrivial and is
determined by the collection of numbers {i4, j,} in the resonance condition (5.1). To
get a second nontrivial leg, one should consider an infinite tensor limg_, ®f:1 Fu;-
In this case, the second asymptotic of the 3d Young diagram is determined by the
asymptotic shape of the last Young diagram limy_,., Y. The resulting representation
is called the MacMahon module and has many nice properties, e.g. the &3 symmetry
exchanging the coordinate axes. Since the MacMahon module is a subrepresentation
of the tensor product, it is, in principle, possible to obtain the R-matrix for it by
the fusion method. The R-matrix in this case should be related to the one studied
in [85, 87]. It would be interesting to see if this calculation can be made explicitly.

A Explicit expressions for DIM R-matrix

In this appendix, we provide explicit expressions for the DIM R-matrix at the first two
levels of Fock representations for two and three strands. We then demand that the three
R-matrices acting on the three strands, Ri2, Roz and Ri13 act on its own pair of spaces
each. This means that Rio acts exclusively on the first two polynomials in the basis
Mao(pYMp(p®)Mc(p®). This allows us to find the special normalization constants,
which we denote here by k:lij . They are related to the normalization constants Napg(u|q,t)
featuring in the main text, e.g.

uy
pl2 N q,t>
2° = . (A.1)
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We also compute the affine Yangian limit of our R-matrix and verify that it is, indeed, of
the form (2.20).
Throughout this appendix, we use the following notation:

1. A — coproduct of DIM algebra,
2. A°P — opposite coproduct,
3. py, — horizontal level one Fock representation of DIM,

4. pq(fP__7uN:(pul®---®puN)o(A®id®~-®id)o~-o(A®id)oA,

5. MA<1>,_._,A<N> (ul,...,uN q,t’p(l),...,p(m) — generalized Macdonald polynomial,
i.e. eigenfunctions of pSL]Y)UN (xaL ). Note that they satisfy the following filtration

property M 4pg (m,uQ,us‘q,t’p(l),p(Q),p(?’)) = Myp <U17 uQ‘q,t p(l)jp@)).

A.1 ‘R-Matrix at level 1
A.1.1 (q,t)-deformed version

In this appendix, we formally write the R-matrix as R = Zl a; ® b; and set R1y =
.06 ®1, Ros = >, 1®a; @b, Riz = > ,;a; ®1®b;. In order to obtain the
representation matrix of R;;, we need the generalized Macdonald polynomials M4pc in
N = 3 case. The following are examples of M4pc at level 1:

My g,y Po.o,[1]
My | = Alur,uz,u3) | pog (A.2)
M0 P(1),0,0
__(g=tyus _ (g—t)us(qus—tus)
ﬂt(uz—ug) qt(ul_u?:)(u3_u2)
A(ur,uz,uz) == | 1 _ e/ . (A.3)
q(u1—u2)
0 0 1
By definition of the R-matrix, one has
(AP ®id) o A(zd) = Ri2(A ®id) o Az )Ry (A.4)

Thus, puyugus (R12)Mape is proportional to an eigenfunction of py,uyus ((A°P®id)oA(z)),
where Py uous = Pu; @ Puy @ pus. Its eigenfunctions M g ;)F are obtained by replacing p(")
with p@ and u; with us, i.e.,

Puiugus ((AOP ® id) o A(%g_)) Mf(llé)c = 6ABcM£11;)C,, (A5)
MYt == Mpac(us, ur,uslg, tlp®, p®,p®).  (A.6)

Then, the eigenvalues espc are the same as those for Mapc. Therefore, if we set the

matrix
K200 100 100
B .= o i o 001 | A(ug,ur,us) | 001 | A Nuy, uz,us), (A7)
0 o0 K/ \010 010
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then the representation matrix of py,uyus (R12) in the basis of generalized Macdonald poly-
nomials is the transposed matrix of B12):

Pususus(Ri2) (M@,w,m My 110 Mm@,w> = (M@,@,m My 110 Mm@,@) i), (A.8)
(12)
In the same way, from the formula

(id ® A%) o A(z) = Ras(A ® id) 0 A(zd )Ry, (A.9)

where k are the proportionality constants between Mglé)c and p(Ri12)(Mapc).

the representation matrix of py,uqus (Ra3) 18

Puruzus (R23) (M@,w,m My 11,0 M[qw) = (M@,@,m My 11,0 Mm@,@) ‘B, (A.10)

where

K000 010 010
B® .= o ¥ o 100 | A(ur,ug,uz) | 100 | A7 ug, ug,us).  (A.11)
0o 0 Kk 001 001

The constants k‘l(ij ) are determined as follows. At first, since the scalar multiples of
R-matrices are also R-matrices, we can normalize k£12) = k§23) = 1. This means that
R(1®1) =1®1. Now we consider the basis change from M4pc to power sum symmetric
functions:

B .=t A(uy, ug, ug) LB LA (uy, g, us). (A.12)

Then B() have the following form

1 00 * * 0
B2 = bgu) * k|, B3 — x o« 0|, (A.13)
b1 4 B2 323 ¢
where b%j ) are functions of k:l(ij ). Since when Ris acts to pgg), the variables pgl) and pgz)

must not appear, one gets the equations bgn) = b§12) = (. Similarly, bg%) = b§23) =0. By
solving these equations, one can see that

q _ _ q
L2 _ B2 — \/;(qu2 tiul) E{12) _ —t(m A (A.14)
1 ’ 2 — ) 3 — 5 .
q(ur — ua) qui — tug
q _ _ q
123 _ V/ Houz — qus) 123 _ tus — us)y/f L2 _ AL
1= — ) 2 | = — ) 3 =L (A.15)
q(ug — u3) quo — tus

In this way, one obtains an explicit expression of the R-Matrix at level 1

Lo 0 Vi) e o
§(12) _ 0 \/gt(mtfw) (qft)tul , §(23) _ (qft)tu?) \/?t(wtfus,) 0
qui—tug qui—tuz qua—tus qu2—tug
(g-1) V/Ft(u1 —u2)
0 qg1—tq;22 qtul—tw 0 0 1

(A.16)
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Thus, using the symmetry w.r.t. p*) at different 7, one also gets the representation matrix

of puyugus (R13)
VI —u) o (gt

. qui—tus qui—tus

B3 — 0 1 0 : (A.17)
(g=thus V/Ft(u1—us)
qui—tus qui—tug

Indeed, one can check that they satisfy the Yang-Baxter equation

B(12) g(13) g(23) _ [F(23) g(13) g(12) (A.18)
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Of course, the same equations for B(#) also follow. Incidentally,

1 0 0
tp(12) _ ug(q—t) (—tur/T+qua/I+qui—qus) _ \/?(QUQ—tul) u1(g—1) (A.19)
qt(ulfus)(wfw)\/g q(u1—uz) qui—tus
ua(g—t) (qua—tuy) V/E(Purustqtul+qtud—dqtuiuo+t2uruz)
x 2
qt(u1—u2) q(ur—uz)(qu1—tuz)
us(q — 1) <q2u2U3 _ tgu%\/% n t2uQu3\/% +qtud + th,lUQ\/% — 2qtuiug — qtulu;:,\/% + qturus — 2qtusus + t2u1U2>
- (A.20)
qt?(u1 — ug)(u1 — u3)(ug — u?»)\/%
/T (tu2—quz) u2(g—1) 0
q(uz—u3) qua—tus
‘B _ us(g—0)(tur—qus) V(e uauatati g —dgtugurt o) (A.21)
iz —us)? aluz—us)(quz ~tuis)
3(a=t)y/§ (tur y/F—tus T —quittus) (tua—qus) 1
q?t(u1—u2)(u1—us3)(uz—us) Y

uz(q —t) (q2u1U3 — t2u§\/§ + t2U1U3\/% + qtu3 — qtuluQ\/% + qtuius — 2qtuius + qtuzu;»,\/% — 2qtusus + t2uQU3>

qt(ur — u2)(ur — u3)(qua — tug)

Yy =
(A.22)



(13)

We do not write down the matrix B'*°/, since it is too complicated. The representation

matrix of (pu; ® pu,)(R) is the 2 x 2 matrix block at the lower right corner of ¢ B(12)

_M (g=tur
R) = q(u1—uz2) qui—tus . A93
(Pur ® puy)(R) (g—tyua(qua—tur) /I(v1uaa®+tudqtudg—ttususg+t2urus) ( )
o qt(“l_u2)2 q(u1 —uz)(qul—tug)

A.1.2 B-deformed version

The generalized Macdonald polynomials are reduced to the generalized Jack polynomials
in the limit ¢ — 1 (t = ¢%,u; = ¢") (hereafter in this paragraph we substitute u, by ;).
Hence, the -deformed version of R-matrix R(?) is immediately obtained from the results
of the last paragraph. For example, for the representation p,, ® p,, and in the basis of
generalized Jack polynomials,

RO — ( ko kan 2)). (A.24)

kon k3(1+n
Here
) —uy—14+p . 12) up — U2 1-p
ky = lim k(1P = 2L 22 ks = lim k{'? = =
? 0%2 Ul — U ’ 3 ql—%g up —ug +1—p4’ " Uy — Uy
(A.25)
and the generalized Jack polynomials are
2 1 1
Jon) = pg ) - "719(1 ), Jnje = pg ), (A.26)
Then,
1 0 0
(B) — (B-1) Bty —uz—1 5-1
Ris ~ ur—us)(us—uz) le_:j; [T - , (A.27)
(5—1)2(ﬂ+u1—u2—1) _(ﬂ—l)(ﬂ-l—’uq—ug—l) 62—2B+u%+u§—2u1u2+1
(u1—u2)(u1—u3)(uz2—us3) (u1—u2)? (u1—u2)(—B+u1—uz+1)
Btuz—u3z—1 ps—1 0
uU2—u3 B—uo+usz—1
B) _ (8—1)(B+uz—uz—1) B2 —2B+ud+u —2usuz+1
Rz B (“2*“23)2 ; (UQ—US)(Q—B-EUQ—ug-i-l) 0f- (A.28)
(B=1)*(B+ua—uz—1) (B—1)%(B+uz—u3—1)
(u1—u2)(u1—u3)(us—uz) (u1—u2)(ur—us)(B—uz+usz—1)
In the basis of power sum symmetric functions,
U —Ul B—1
RB) — | Prurtuz—1 fruitux—1 | (A.29)
B-1 Uz —ul

B—uituz—1 B—uituz—1
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A.2 7R-Matrix at level 2

A.2.1 (q,t)-deformed version

The generalized Macdonald polynomials at level 2 in the N = 3 case are expressed as

! (M(Zl,@,[z] My, Mo,a),11) My, Moj210 Moia.0 Mpyne Mizee Mu,u,@,@)

= A’ (Mém[z] Mé,@,[l,l} M(Z/),[l],[l] M[,l]ﬂ),[l} Ma/),[z],@ MQ/),[LH,@ M[Il],[l],w M[IQ},IZ),Q) M[/1,1],®,(2)> ’

(A.30)

where M/, g denotes the product of ordinary Macdonald polynomials M4 (p™"))Mp(p)

- Mce (p(?’)), and the matrix A is given below. In the same manner, one can get the repre-

sentation matrix of R. First of all, we choose B2 at level 2 to be of the form

B2 —

1
0
b31
by
bs1
be1
br1
bs1
bo1

1
b32
bao

* % O O

bs2 bs3 bsq *
be2 b3 bea *
br2 b7 brg *
bga bg3 bga *
bg2 bo3 boyg *

0
0
*

*

00000
00000
00000
00000

*

EE R

*

*
*
*
*

*

EOEE R
EE S

*

(A.31)

Then, one finds the proportionality constant such that all b;; are zero just by solving the

equations bj; = 0 (i = 3,4,...,9). We also checked that the representation matrix Bii

obtained in this way satisfies the Yang-Baxter equation.
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Examples of the generalized Macdonald polynomials.

10 —alar)(g=t)(t=1)us (g+D) (=) (t—q)us (tuz—g*us)

(g—t)us (tu3q3 —tusq®+tusq? —usq® —t3us q+tu2)

VEt(gt—1)(uz—qus)  t@t=1)(qua—u1)(qus—u2) N qt(qt—1)(uz—usz)(qus—uz)
01 - Jathus (a—t)us (qus—t*ua) (a=t)us
V/ Lt(tuz—us) qt(tur—usz)(tuz—us) q(tuz—u3)
001 -y e T
00 0 1 0
A=100 0 0 !
00 0 0 0
00 0 0 0
00 0 0 0
00 0 0 0

(a+1) (=) (t=1)u3 (Pus —tus)

(g—t)usz(qus—tusz) (q2u3 ftuz) (tus ¢ —turg® +tusg® —usq® 7t2u3q+tu1)

_ (a=D(g+D)(g=t)(t=1)(t+Dus
(qt—1)2(quz—wuz2)

(a—t)us (—quat®+ust® +quat+q’ust—qust—qus)

V2 (qt—1) (us—ua) (u1—qus) (uz —qua)

(=) \/Tul (qua—t2us)

T t(tur —us)(uz —us) (tuz —ugz)

asr

__ (g=tjus
\/?t(u2—u3)
_ q(g+1)(g=t)(t=D)us
V/Et(qt—1) (u1 —qus)
_ (g=t)ug

o \/gt(tulqu)
1

0

q2t2(qt—1)(u1—u3)(uz—uz2)(qus—u1)(qus—uz)

(q—t)us(qus—tuz) (qus—t us)
T Pt(tur —ugz) (bug —ugz) (us —uz)

ass

_ (a=t)us(qus—tuz)
qt(qui—u3)(uz—u2)
(q—t)uz (tuzq® —tu1 ® +turq® —u2q® —t7usq+tu )
qt(gt—1)(u1—u2)(qua—u1)

(g=t)uz
q(tur—uz)

o (q—t)\/giw

q(qui—u2)

1

0

qt(gt—1)(uz—us)(tus—usz)

(g=1)(g=t)(t+1)us
\/g(qt—l)(uz—tuB)

0

0

(4= 1)(a+1)(a=B)(t— 1)+ 1 us (qus —tuz) (¢>us —tusz)

qt(qt—1)2(uz—u3)(qus—u1)(quz —uz)

(g—t)us(qus—tusz) (qu3 —t3us ) (—qmt3+u3t2+qu1t+q2u3t—qu3t—qu3)

22 (qt—1)(u1 —u3) (tu; —usz) (tus —u3z) (uz —uz)

a39

(g—=1)(g—t)(t+1)us(qus—tus)
q(qt—1)(uz—u3)(tuz—u1)

(g—=1)(g+1)(g—t) (t=1) (t+1)us
(qt—1)2(quz—u1)

(=t ua(—quat® +ust®+quit+q ust—quat—qusz)
qt(qt—1)(u1—u2)(tur —u2)

 (a=1)(a—t)y/Ft(t+1)uz
q(qt—1)(u1 —tusz)

0

(A.32)



uz(q—1t) (qzug((t + Dugug — uy(uz +us3)) + ¢ (t2(—u1)u2u3 4+t (u1 (2u§ 4 2usug + u%) — Ug (u% + 2usug + 2u§)) + ’LL%Ug) + tugus(t(ug + uz) — (t + 1)u1))

fer = gt(uy — ua) (uy — uz)(quz — us)(tuz — ua)

(q — t)2u2U3 (u2U3t2 — qu%t — qu%t + quiugt — ujuslt + quiust — uyust — quaust + ugust + unUg,)

agg = —
q\/?tQ(ul —ug)(u1 — ug)(qua — ug)(ug — tug)
" (g —1)(q —t)%(t + Vugus (uQqu2 —udq — u3q — turuzq + uruaq — tujuzq + urusq + tugusq — ugusq + tugu;g)
39 = — .
q/Tt(gt — 1) (u1 — ug)(u1 — us)(qua — us)(ug — tus)

The representation matrix of R in the basis of generalized Macdonald polynomials

_(a—en(a°—Qt) 0 Qla—t)y/1(Qt-1)
q(¢—Q)(Q-1)t q(gQ-1)(Q-1)
0 (—Q1) (¢—Qt*) _ (a=1)(a—Q)Q(a—t)y/Ft(t+1)
q(Q-1)t(Qt-1) q(gQ—-1)(Q—t)(qt—1)
(g+1)(¢—) (t—1)(¢— Q1) (>~ Q1) (g—1)(g—Qt)(¢—Qt?) e
(- Q)2(@-1)y/Te2(gt—1) 9(Q—1)y/T12(Q1—1)2 5
_ (a=)(a—-Q1)(¢° = Q1) (Qte® —¢° —t*q—Qtq-+tq+t) (=)= Q1)(¢-Q¢%)
P~ QQ—1)2(qQ— 1) (qi—1) (@ D@ DEQI-1) Va3
(=D (D)@ (=D (+1)(q-Q1)(¢*~Qt) (a-1)(4—Q1)(a—Qt*) (—qt® —qt*+qQt* +1° +4°t—¢Q) v
a(a=Q)(Q-1)t(I—Q)(qt—1) Q=122 (t-Q)(qt—1)(Qt—1) 53
Q(q-1)(Qte®— Q> +Qtq” —tq> —Qt>q+t) _ (Q=1)Q(g—t)t
(@Q—t)(¢*Q—1)(qt—1) (4Q—t)(¢Q—t?)
_ (a=1)a(g+1)(Q—=1)Q(g—t) (t—1)t(t+1) Qg—1)(—gt*+Qt*+qt+4° Qt—qQt—qQ)
(gQ—1)(¢2Q—1t)(gt—1)2 (qQ—t)(qt—1)(qQ—1?)
V34 U35

" _ Qa—1)*(Qd*+Qte® —t?q—Qtq+tq—t?)
44 a(4Q=D)(aQ=11(4Q~1%)

(g—1)(g+1)Q(qg—1)*(t—1)(t+1)(Qa*+Qq—Qtq+tg—t>—t)
(Q-t)(aQ—1)(¢2Q—1)(qt—1)2

vy — Qq4+th4+Q2t3q3+Q3t2q3_4Qt2q3+Qq3_Qth3_4Q2tq3_3th3+tq3_4Q3t3q2+Qt3q2+3Q3t2q2
q(q—Q)(¢Q—-1)t(t—-Q)(Qt—1)
N 12Q**¢*+3Q1°¢* +Q%tq* —4Qt* +Q°t ¢+ Q" t°¢—3Q°1* ¢—4Q*t?— Qt’—4Q** ¢+ Qt* ¢+ Q*tq+Q°t* +Q*¢°
q(a—Q)(¢Q@—-1)t(t—-Q)(Qt—1)
(=) /T (-QPP+Q3 1>+ Q%> - Qtq® — Q1 ¢* —2Q* 1 P +2Q1° ¢* — Q31 * +3Qt * —t > +2Q* 12— 2Q* 1> ¢— Qt* — Q*tq+2Qtq+ Q1> — Qt?)
*(Q-1)(qQ—-1)2(Q—t)t

Us5

V43

(A.33)

(A.34)

(A.35)

(A.36)

(A.37)
(A.38)

(A.39)



(=141 (=) /I (P QR+ (Q* (t—1)+Q* (2 —1)+Q(—2t> =3t +1) +1) +qQt (Q*(1—2t)+2Q(t+1)+ 12+t —2) —Q*¢?)

T 2@ Q1)@ 1) (4.40)
oy = TP Q0P -QUHH) +¢° QR —QP (P ++2) +Q(1P—3145) +21—1) ' QUQH+Q? (3 ~Tt+2) +Q (13 +111-5)) (A1)
a(Q@-1)t(qQ-1)(qt—1)(¢Q—t)(¢*Q—1)
+—q4Qt(6t2—4t+1)+q3t2 (Q3 (£ —4t+6)+Q? (—5t°+111—13)+Q (26°— Tt43) +t ) +qQt? (Qt*+(Q—1)t+2) —Qt* +¢*t* (Q* (t—2)t+Q? (-5t +3t—1) +Q (2t°+t+1) —1)
2(Q—1)t(qQ—1)(qt—1)(qQ—1)(¢°Q—t)
(A.42)
vos — q(g+1)Q(g—t) (1) (- Qe*+Q%t¢° —2Q* ¢+ Qt*¢* + Q1> +2Qtq” —2t4* + Q1 q—3Q° g +1* ¢ —2Q°tq +2Qt g +q+Q* 13+ Q** — Qt* —1?) (A.43)

(—Q)(aQ—1)(?Q—1t)\/Lt(qt—1)(Qt—1)

oo — Qa=1)(Q4°-Q*¢*+2Q%¢* ~201?¢* ~17¢* ~Q*1¢* ~2Q1q +21¢° ~ Q"¢+ Qg+ 74— Q*1?q+3Q*1q—17q+2Q%1q—Qlq 1 Q) (A.44)
. (4-Q)(4Q—1)/TH(Qt-1)(4Q~1?)
por P Q% +q"Q(Q% (267420 —t—1) +Q (=513 =5t +1) +4> (t+1)) +¢* (Q**+Q® (—61° ~Tt* +-14-2) + Q% (1*+ 131> +-1114-3) —Qt (13 431> +41+2) +1*) (A.45)
a(Q-1)t(qt—1)(Q—t)(aQ—1)(¢Q—1?)

—? 2 (Q*—Q3 (263 +412+31+1) +Q? (B +11¢2 4+ 13t+1) +Qt (23 +2 —Tt—6) +12) —qQt* (Q? (t+1)+Q (2 —5t—5) — 13—t +:2t4-2) —Q*¢F

+ A .46
(@ Dat- Q4G (a@—2) (4.46)
The representation matrix of R in the basis of power sum symmetric functions,
_ (4=1)a(Q=DQ(g—1)t(t+1) (= D(Q-1)Qg—1)/Tt3(t+1) . _ (=1)(Q-1)Q(g—1)2(t+1)
1 2(aQ—D)(2Q—)(aQ—*?) 2(qQ-0)(a*Q—1)(aQ@—1%) 14 2(aQ—1)(?Q—1)(¢Q—#?)
_ 2l D)(Q-DQ(g=t)(t=1)t (Q-DQUa—1)TH(2Qe*~t*atta—t"~t)  (¢+1)(Q=1)Qg=)(t=1)¢ ros5
20Q—0)(2Q-1)(4Q— ) 22 20Q—0)(?Q-)(aQ— ) 2(0Q—0)(*Q-)(aQ—2) %
A1) (Q-DQ(g—t)(¢t—1)  a(Q@-1)(a—1)(Q4°+Qt4°+Qq—Qtq—2t%) , C alg+)(Q-1)Qg—t)(t—1)t  9(Q—=1)Q(a—1)(2Qq* ~t>q+tq—t>—t)
(@Q—1)(4>Q—1)\/L(q@—t?) (@Q—1)(>Q—1)\/L(q@—t?) 33 (@Q—1)(4>Q—1)\/L(q@—t?) (@Q—1)(4>Q—1)/L(q@—t?)
r (¢—=1)d*(Q-1)Q(g—t)(t+1) _ (4-1)a(Q—=1)Q(g—1)\/Ft(t+1) ” (¢—1)q(Q—1)Q(g—1t)t(t+1)
41 2(qQ—t)(?Q—t)(¢Q—1t%) 2(¢R—1)(?Q—1)(¢Q—1?) 44 2(¢R-1)(?Q—t)(¢Q—1?)
_ @ (@+D)(Q-1)Q(g—t)(t—1) - (Q-1)(g—1)/2t(Qa*+Qta*+Qq—Qtq—2t>)  4(q+1)(Q—1)Q(q—1t)(t—1)t ,
2(qQ-1)(a*°Q—1)(aQ—1?) 52 2(qQ-0)(a*°Q—1)(a@—1%) 2(aQ-0(a*Q-1)(aQ—1?) 55
(A.47)
oo 9@-1t (—2Q%¢% — Q¢* + Qtq* + Qt*q + Qq + 2Qtq — Q1> — 2t* + Qt) (A.48)
11 = — , .
2(¢Q — 1) (¢*Q — 1) (¢Q — ?)
(0 —1) (@ + Q¢® + Q%t¢® — Qtg® + Q*¢* — 2Qt*¢* — Q¢* + Q*tq® — Qtq® — 2Qt%q + 2tq — 2Qtq + 2t°) (A.49)
T41 = .

2(¢Q —t) (¢*Q — t) (¢Q — t2)



o 4@ -1t (-2Q%" + Q¢® + Qtq® + Qt*q + Qq — 2Qtq + QF* — 2t + Q)
= 2(0Q — 1) (¢°Q — 1) (4Q — 12)

(a—1) (—Q%¢ — Q¢® + Q*tq® — Qtg® + Q%¢* + 2Qt*¢* — Q¢® — Q*t¢® + Qtq* — 2Qt%q + 2t%q + 2Qtq — 2t%)

T 26Q -6 (@®Q — ) (4@ — )
pyy = L= QPC + Qg —3Q%¢° + Qtg’ + QP¢” +20°P¢” — 201" — Q*tq” — Q¢ +30t% — t° + Qt*q — Q!
(aQ — 1) (¢*Q — 1) (qQ — t?)
= Qb (2Q°¢° — 2Q1*¢* + 2Q%q” — 2Qtq® — Qg + t°q — Qt*q + 1’ — 2Qtq + QF° +t° — Qt* + 1)
2(qQ — 1) (¢*Q — 1) (¢Q — t?)
poy — 2@t (—2Q%¢ — Q¢® + Qt¢* + Q¢ + Qq + 2Qtq — Qt* — 2t* + Q1)
2(qQ — 1) (¢®°Q — ) (¢Q — t?)

Qg —1) (2Q%¢° — 2Q1%¢* — 2Q%tq* + 2Qtq® + Qt*q — t°q — Qt*q + 12q — 2Qtq + Q> + 3 4+ Qt* — t?)
206Q — 1) (@®Q — ) (4@ — )
pos — 9@ -1t (72Q°%" + Q0 + Qlg” + Qg + Qg — 2Qtq + QF — 21 + Q1)

2(qQ — ) (*°Q — 1) (¢Q — ?)

(A.50)
(A.51)
(A.52)
(A.53)
(A.54)
(A.55)

(A.56)



A.2.2 [B-deformed version

The representation matrix of R(®) in the basis of generalized Jack polynomials

(a+B-2)(a+p—1) 0 _ (B=1)(a+B)
(a—1)a (a+1)(a—B)
0 (a+B-1)(a+268-1) _ 2(a—1)(B-1)
a(a+p) (a+1)(a—p)(B+1)
B) — 2(8-1)B(a+B-2)(a+5-1) (B=1)(a+B-1)(a+28-1)
R B (a=1)%a(B+1) - a(a+p)2 533
_ (B=1)(a+B-2)(a+B-1)(—B*+B+2a+2) (B—1)(a+B—1)(a+28—-1) _ (B=1)(a®+Ba*—a?+B%a—6Ba+4a+ B ~352+28)
(a—1)a*(a+1)(B+1) a(a+1)(a+B) a(a+1)?(a=p)
4(8—1)B(a+B—2)(atB—1) _(ﬂfl)(a+671)(a+2571)(7252+2a675+1) _2(671)(a3+,6’a2fa2+4,82a76,6’a+a7262+3,871)
(a—1)a(a—B)(8+1)? a?(a—p)(B+1)(a+p) a(a+1)(a—B)2(B+1)
(8-1)(8*—B—2a-2) a(B—1)
B+ (—a+p—2)(—a+p-1) (a—2B+1)(a—p+1)
4a(B-1)B (8-1)(282—2a8+p-1)
(a—=B+1)(a—p+2)(B+1)? (B+1)(—a+B—1)(—a+26-1)
2(8—1)8(a’+Ba—a’+B%a—6Ba+4a+p3°—35%+28) (8—1)(a®+Ba2—a?+48%a—6Ba+a—2582+35—1) (A.57)
B (a—1)(a—B+1)(a—B+2)(B+1)(a+B) N (a—1)(a—26+1)(a—B+1)(a+h) )
(a—38+3)(6-1)°
S44 - (a+1)(a—2B4+1)(a—B+1)
_ 4(B—1)?B(—a+35-3) 485 —8aB*—8B8%+5a253+20a8%+ 53 —2a3 B2 —5a2 52 —16a8%+ 762 +a* B—2a3 f+4aS—58+a*+2a2+1
(B+1)*(—a+B-2)(—a+B-1)(B—a) a(a—26+1)(a—pB)(a—B+1)(B+1)
a* +28a® — 2a3 + 3p%a® — 8Ba® + 3a® + 44%a — 143%a + 148a — 4a + 23* — 6833 + 952 — 63 + 2
S33 = (A58)
(a—1)(a+1)(a—B)(a+p)
) 35 — 584 +2a%3% — 4aB3 + 7% + 16aB% + B2 + a*B + 2a3B — 5a%B — 20a3 — 83 + a* + 24> + 5a% + 8a + 4 (4.59)
44 = . .

ala+1)(a—pF+1)(a—-pB+2)(F+1)



The representation matrix of R in the basis of power sum symmetric functions

a(a?—2Ba+2a+B2—3B+1) a(B—1) _ a(B—1) (B8—1)(2a%—4Ba+4a+2p%—55+2) a(B—1)
(a—2B8+1)(a—p+1)(a—p+2) (a—28+1)(a—B+1)(a—B+2) (a—28+1)(a—B+1)(a—B+2) (—a+B-2)(—a+B—-1)(—a+25-1) (a—2B8+1)(a—p+1)(a—p+2)
a(B—1)p a(a?—2Ba+2a—p) B a(a—28+2)(8—1) B a(B—1)8 (B—1)(282—ap—58+a+2)
(a—2B8+1)(a—p+1)(a—p+2) (a—2B8+1)(a—B+1)(a—B+2) (a—2B8+1)(a—B+1)(a—B+2) (a—2B8+1)(a—B+1)(a—B+2) (—a+B—-2)(—a+B—-1)(—a+28-1)
_ 2a(8-1)8 _ 2a(a—26+2)(8-1) a®—28a?+24?4 f%a—3Ba+a—283+782 7542 2a(8-1)8 _ 2a(a—2B+2)(8—1)
(a—2B+1)(a—pB+1)(a—p+2) (a—28+1)(a—pB+1)(a—pB+2) (a—2B+1)(a—B+1)(a—pB+2) (a—28+1)(a—p+1)(a—B+2) (a—28+1)(a—p+1)(a—p+2)
(8—1)(2a%—4Ba+4a+2p%—-55+2) B a(f—1) a(f—1) a(a?—2Ba+2a+B2+3B+1) B a(B—1)
(—a+B-2)(—a+B-1)(-a+23-1) (a—2B+1)(a—p+1)(a—pB+2) (a—2B+1)(a—p+1)(a—pB+2) (a—2B+1)(a—B+1)(ar-B+2) (a—2B+1)(a—p+1)(a—p+2)
a(B-1)8 (8-1)(26%—aB—55+a+2) ___a(a=28+2)(8-1) _ a(8-1)8 a(a®—2pa+2a—p)
(@—2B8+D)(a—B+1)(a—B+2) (—a+B—2)(—a+tB—1)(—a+t2B—1) (a—2B+1)(a—pB+1)(a—pB+2) (a—2B+1)(a—pB+1)(a—B+2) (a—2B-+1)(a—pB+1)(a—pB+2)

where a = u1 — us.

(A.60)



B Realization of rank N representation by generalized Macdonald poly-
nomials

One can consider a representation of the DIM algebra which is called rank N representation
and can be realized in terms of a basis |@, A) called AFLT basis, [142]. This representation
is given by the N-fold tensor product of the level (0,1) representations (i.e. the vertical
representations in terms of our paper, which are spectral dual to the level (1,0) (horizontal)
representations) which are realized by free bosons for the refined topological vertex. In
this appendix, which is based on the spectral duality, we present conjectures for explicit
expressions of the action of xil on the generalized Macdonald polynomials, which are
defined to be eigenfunctions of the Hamiltonian X(()l). We also conjecture the eigenvalues
of higher Hamiltonians acting on the generalized Macdonald polynomials from those of
the spectral dual generators provided in [142]. Our conjectures mean that the generalized
Macdonald polynomials explicitly realize the spectral dual basis to |, X) in [142].

B.1 Action of :1:11 on generalized Macdonald polynomials

We use the notation

X0 (z) = S x W= o) (@t (). (B.1)

ULy  UN
neL

For an N-tuple of Young diagrams X = ()\(1), AW )), the generalized Macdonald polyno-
mials M5 are defined to be eigenfunctions of XO1 with the eigenvalues

N ey
1 Al —i
=N wd 1+ (t-1) Y (¢t -1 (B.2)
k=1 i=1
My, is renormalized as My = my +-- -, in terms of the product of the monomial symmetric
functions my = mya) ® - - - @ myuv). Their integral forms M; are defined by

N
— (k) _; AT _,
My=M;x [] Grosoi/ulet) [T I @-o% 7t =, (B.3)
1<i<j<N k=1 (i,j)eMk)

where AT is the transposed of Young diagram \ and we use the Nekrasov factor (2.34). It is
expected that the basis M. 5 corresponds to the AFLT basis® in [142] and realizes the rank
N representation through the spectral duality S. That is to say, for any generator a in the
DIM algebra, that the action of pSfl\’)uN o S(a) on the integral forms M. 5 are the same as
the action of p®N (q) on the basis |@, X) [142]. Indeed, one can check that the action of
xil on the generalized Macdonald polynomials is given by the following conjecture. Let

us denote adding a box to or removing it from the Young diagram X through A(X) and
—it+1

-

R(\) respectively. We also use the notation x(g; jy = ust ¢~ for the triple x = (¢, 1, j),

where (7,7) € A9 are the coordinates of the box of the Young diagram (0.

®Originally, the AFLT basis is defined by the property that the inner products and matrix elements of
vertex operators reproduce the Nekrasov factor. In [65, 66], the integral forms M5 were already conjectured
for the AFLT basis in this original sense.
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Conjecture B.1.

W77 2 ~(H) 77 W7 2 ()77
XMy = Z o5 Ma, XMy = Z cxﬁM~, (B.4)
|l =IX|-1 |l =IX1+
ADiL ACH
where
[T, cac (T = xaxy ' (g/1)) .
&) = g el L we X\ (B.5)
& HyeR(X)(l — Xz Xy )
yF
_ T, e (1= xyxz'(a/t)) .
R B e AP (B.6)
i+ HyeA(X)(l — XyXz )
y#x

and for the triple (¢,1,7), we put

N—¢
€00 o (L) N (N0 (e-N+1)j ey Utk ¢ _
(, Z]) - p q N1 (i) =

{—1
et e-2yi (-0 Hle=r
(—1)fp = ¢t=2i 0 Z)J%.
14

"(B.7)

The actions of Xj([ll) in this conjecture come from the corresponding actions of the

generators fi and e; in [142] respectively, i.e., those of ] and z; in our notation, which

are the spectral duals of :1:1+ and xfl. Incidentally, introducing the coefficients cgiz =

s
+
C(X,ﬂ)(q,t\uh--.,w) by

k) _ . BT 1y
G o (w; Juilg, N ( 1— q“z T i+
c&i) _ H w@), M() ]/ q,1) H zg ep®) ( ) y E(:I:) (B.8)

A RO WT_, N
o cizien Gaoao (ui/uilg,t) [ gpeaw (1= gt =g~ 2
ie. Xj(d)Ma = Z~ g_:ﬁ) i, we can further conjecture that
! —1),(N—1)/2 N-1)/2
g\’ﬁ)(Q7 t’u17 N) = _CEM()N . (1)T)7(/\(N)T,_..7/\(1)T)(t ,q |p / UN, - - - ’p( )/ Ul)-
(B.9)

We have checked conjecture B.1 with respect to X§1) and formula (B.9) with the computer
for |X| < 5for N = 1, for |X| < 3for N = 2,3 and for |X| < 2 for N = 4. This conjecture B.1
with respect to X (_11) has been also checked for the same sizes of [i.
B.2 Higher Hamiltonians
For each integer k£ > 1, the spectral dual of w,': is Hy, defined by H1 = X(gl) and

Hy= X9, x§ o xg) x{), k> (B.10)

k—2

According to [27], Hj are spectral dual to @ZJ,J{ and consequently mutually commuting:
[Hy, Hy] = 0. Thus, the generalized Macdonald polynomials My are automatically eigen-
functions of all Hy, i.e. HypM; = e(Xk)MX. and Hj can be regarded as higher Hamiltoni-
ans for the generalized Macdonalds polynomials. Since Hj are the spectral duals to 1/1,';,
H, =8 (1/),';), their eigenvalues are expected to be
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Conjecture B.2.

N
w2 - —tH! dz Tk
N 1—p! o1z };[1 By (uiz)2 ™, (B.11)

where for the partition A we define

B+( ) 1— q>\1_1t2 o0 (1 o q)\lt_ZZ)(]_ _ q>\i+1_1t_i+12)
Z) = - - .
A 1— q)‘lz (1 _ q)\iJrlt*’Lz)(l _ q)\ifltferlz)

(B.12)
i=1

(k)

The eigenvalues ey correspond to those of the rank IV representation of the generators
¢ in [142]. In the k = 1 case, the conjecture (B.11) can be proven. We have checked it
for |A| <5 for N =1, for |A| < 3 for N = 2, for |\| < 2 for N = 3 and for |\| < 1 for
N =4 in the k < 5 case.
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