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1 Introduction

Integrability plays an exceptional role in modern studies of quantum field theory and string

theory. Whenever there is a breakthrough in understanding of non-perturbative dynamics,

some form of integrability invariably appears to be behind this success. An (incomplete)

list of recent examples includes

• Seiberg-Witten solution of N = 2 theories [1, 2] and the corresponding classical

complex integrable systems [3–6],
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• integrability in N = 4 gauge theory and the AdS/CFT dual string theory, coming

from integrable spin chains and σ-models [7],

• Seiberg dualities in N = 1 gauge theories [8] and the corresponding integrable lattice

models with new solutions to Yang-Baxter equations [9],

• AGT relations [10–12], integrability [13–16] and new family of integrals of motion in

WN -algebras related to the basis of fixed points in the instanton moduli space [17–22],

• topological string calculations and the study of Hurwitz τ -functions [23–25].

In this paper we demonstrate a new integrable structure in refined topological strings on

toric Calabi-Yau threefolds. This structure is related to several points from the list above

and we elaborate on these connections in section 5. Let us now briefly summarize how this

kind of integrability appears.

The central object, on which we will mostly focus in our approach is the R-matrix

of the Ding-Iohara-Miki (DIM) algebra [26, 27]. R-matrices, which can be considered as

emerging in the description of coproducts of group elements ĝ ∈ G ⊗ A(G) [28–31] for

quantum groups [32–36],

(I ⊗ ĝ) · (ĝ ⊗ I) = R · (ĝ ⊗ I) · (I ⊗ ĝ) · R−1, (1.1)

are crucial to all integrable systems. As evident from eq. (1.1), the job of the R-matrix is

to permute the components in the tensor product of representations of the algebra G. This

is the property we will use in refined topological strings. The representations in question

are going to be Fock modules [37–39] and their permutation exchanges the legs of the toric

diagram corresponding to a DIM intertwiner [40, 41].

The permutation of the legs performed by the R-matrix has a simple interpretation

in terms of the corresponding conformal blocks of the q-Virasoro or qWN -algebras. Ratios

of the spectral parameters on the horizontal legs determine the Liouville-like momenta of

the primary states [41]. By exchanging the spectral parameters, the R-matrix inverts the

momenta, and therefore acts exactly as the Liouville reflection matrix introduced in [42].

This connection (first noted in [43], see also [44]) is quite interesting, since, as we will see

in the following, the R-matrix can be evaluated explicitly by solving for the eigenfunctions

of the generalized Macdonald Hamiltonian with known eigenvalues.

Also among other things, let us mention that the R-matrices are used to construct

knot polynomials in Chern-Simons theory [45–48], one of the most challenging subjects

in topology. In particular, the knot superpolynomials of [49–51], constructed with the

help of double-affine Hecke algebras (DAHA) [52], still lack a clear R-matrix realization

within the Reshetikhin-Turaev (RT) formalism, either original [53–55] or modern [56–58].

On the other hand, the DIM algebra is naturally related with DAHA by a kind of Schur

duality (see [59] for a degenerate version of this correspondence). There is another way to

naturally associate these two algebras: the DIM algebra is the limit of spherical DAHA for

large number of strands (see [60–62] for a degenerate version of this correspondence).

The notation in this paper follows our paper [41].
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Figure 1. The lattice of Uq,t(
̂̂
gl1) generators. The algebra is doubly graded, so that each generator

has two integer weights. The standard generators x+n , ψ±n and x−n form the three central rows. ψ+
n

generators (they are framed in blue) form the Cartan subalgebra and x+n , x−n act as the raising and

lowering operators respectively. Blue arrows show the action S of the spectral duality, an SL(2,Z)

rotation of the integer lattice. Notice that S(ψ+
1 ) = x+0 , i.e. the first Cartan generator transforms

into the zero mode of the raising generator.

1.1 DIM algebra, generalized Macdonald polynomials and the R-matrix

We are going to compute the R-matrix of the DIM algebra, also known as quantum toroidal

algebra or Uq,t(
̂̂
gl1) [26, 27]. It is a double quantum deformation of the double loop algebra

of gl1. The double loop algebra can be understood as the algebra of torus mappings into

the group gl1. The two deformation parameters are related to the quantum deformation

parameter of the affine algebra ĝl1 and the quantum deformation of the torus respectively.

The DIM algebra is generated by respectively the “raising” and “lowering” operators

x+
n and x−n with n ∈ Z together with the “Cartan” generators ψ±±n, n ∈ Z>0 and two central

elements C1, C2. The algebra has a double grading coming from the two loops, i.e. a torus

T 2, in the double loop construction. Each element of the algebra with a definite grading

can be, therefore, drawn as an integral point on the plane. The generators, x+
n , ψ±n , x−n

and their commutators form a lattice, which is sketched in figure 1. The exact definition

of the DIM algebra can be found in [41, 63–66] (see also [67–71] for elliptic DIM algebra).

There is a nice representation of the DIM algebra on the Fock space F (1,0)
u , i.e. a

bosonization of the DIM generators, which are expressed through exponentials of the free

bosons (for concrete expressions see [37–40]). The second central charge of this represen-

tation is trivial, C2 = 1, while the first one is given by C1 = (t/q)1/2. We will henceforth

call this representation horizontal, since the first central charge is associated with the hor-

izontal direction. There is also the vertical Fock representation F (0,1)
u , isomorphic to the
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horizontal one, but with a different action of the DIM generators [37–40]. In the basis of

Macdonald symmetric polynomials, M
(q,t)
Y (a−n)|u〉, the generators x+

n add a box to the

Young diagram Y , while x−n delete one box, and ψ±n act diagonally. The central charges

of this representation are (1, (t/q)1/2) (we refer the reader to [37–40] for the complete

construction).

It will be important for us that the DIM algebra has a remarkable group of automor-

phisms SL(2,Z), which are precisely the automorphisms of the integer lattice of genera-

tors [27]. Let us also note that the central charges (C1, C2) transform as a doublet under

this SL(2,Z) symmetry. One of the automorphisms, which we call S is particularly impor-

tant.1 S corresponds to rotation of the integer lattice by π
2 clockwise. The action of this

element on the algebra realizes the spectral duality [72–80] of different representations: in

particular, the central charge vector is rotated; the horizontal representations become the

vertical ones and vice versa. The action of S is illustrated in figure 1.

Let us construct a natural basis in the tensor product of horizontal modules. This

basis is given by generalized Macdonald polynomials [65, 66, 81–86] M̃AB

(
u1
u2

∣∣∣q, t∣∣∣p(1)
n , p

(2)
n

)
,

which are the eigenfunctions

H1 M̃AB = κABM̃AB (1.2)

of the Hamiltonian

H1 =

∮
dz

z
ρu1 ⊗ ρu2

{
∆DIM(x+(z))

}
(1.3)

with eigenvalues

κAB = u1

∑
i≥1

qAit−i + u2

∑
i≥1

qBit−i. (1.4)

In the simplest example, i.e. for the tensor product of two Fock modules Fu1 ⊗ Fu2 , the

generalized Macdonald polynomials depend on a pair of Young diagrams and on ratio of

the spectral parameters u1
u2

.

The Hamiltonian Ĥ1 is the zero mode of the raising generator, x+
0 in the horizon-

tal representation. One can also understand the Hamiltonian (1.3) as the spectral dual

of the first Cartan generator ψ+
1 . As we mentioned above, in the vertical representation

the Cartan generators ψ+
n acts diagonally on the ordinary Macdonald polynomials. The

same is true for tensor products of the vertical representations, i.e. the “diagonal” basis is

given by tensor products of the Macdonald polynomials M
(q,t)
A (a

(1)
−n)|u1〉 ⊗M (q,t)

B (a
(2)
−n)|u2〉

(in order to see this, one should use the DIM coproduct [41] and the fact that, for

the vertical representations, C1 = 1). Thus, the generalized Macdonald polynomials

M̃AB

(
u1
u2

∣∣∣q, t∣∣∣a(1)
−n, a

(2)
−n

)
|u1〉 ⊗ |u2〉, which diagonalize x+

0 = S(ψ+
1 ), can be thought of

as spectral duals of the ordinary Macdonald polynomials. A remarkable feature of DIM,

which greatly simplifies calculations, is that the eigenvalues of the first Hamiltonian H1

are non-degenerate, so it is sufficient to diagonalize only this one operator to define the

entire set of polynomials and all “higher Hamiltonians” (i.e. the other Cartan generators,

Hn = ρu1 ⊗ ρu2S(ψ+
n ) for n ≥ 2) are automatically diagonal, see appendix B.

1S is sometimes called Miki isomorphism in the mathematical literature. In physical terms, it is Type

IIB S-duality exchanging NS5 and D5 branes, hence, our notation.
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Let us make two remarks here. The eigenvalues are non-degenerate only for u1, u2 in

general position. However, the case of resonance between u1 and u2 is more subtle, then

the eigenvalues do become degenerate. We will not consider this case. The eigenvalues

also become degenerate in the 4d/Yangian limit in which the first Hamiltonian should

be expanded up to the first order and a lot of information is thus lost. This is because

the (q, t)-deformation reveals a true exponential nature of the DIM-symmetry generators,

while the ordinary Virasoro and W (and thus the higher Hamiltonians of the Calogero-

Sutherland-Ruijsennars family) arise all together in their series expansions. We will usually

suppress the two sets of time variables pn =
∑

i x
n
i , p̄n =

∑
i x̄

n
i , which the Hamiltonian

acts on and polynomials depend on; when they are needed, we use the notation M{p, p̄}
or M [x, x̄], depending on the choice between the time and Miwa parametrizations.

In the tensor products of more than two Fock modules, there are still eigenstates of

x+
0 , which we call in the same way generalized Macdonald polynomials. In this case, the

number of time sets and Young diagrams is correspondingly increased.

Now we are at the crucial point of our approach to the R-matrix. The Hamiltonian Ĥ1

depends on the choice of the coproduct in the DIM algebra; there are two natural options:

schematically,

∆(x+) = x+ ⊗ 1 + ψ− ⊗ x+ (1.5)

or

∆op(x+) = 1⊗ x+ + x+ ⊗ ψ−. (1.6)

The DIM algebra is a quasitriangular Hopf algebra. Thus, these two coproducts are related

by an R-matrix:

∆op = R∆R−1, Ĥop
1 = RĤR−1 . (1.7)

Hence, their eigenfunctions are also related:2

M̃op
AB

(
u1

u2

∣∣∣q, t∣∣∣p, p̄) =
∑
C,D

RCDAB
(
u1

u2

)
· M̃CD

(
u1

u2

∣∣∣q, t∣∣∣p, p̄) (1.8)

where the sum is actually finite, because the size of Young diagrams is restricted by the

conservation law

|A|+ |B| = |C|+ |D| (1.9)

which makes R block-diagonal with finite-dimensional blocks.

The coproducts ∆ and ∆op differ only by permutation of the two representations on

which the algebra acts. Thus, the “opposite” Macdonald polynomials can be alternatively

obtained by a simple change of variables, exchanging u1 ↔ u2, A↔ B and pn ↔ p̄n:

M̃op
AB

(
u1

u2

∣∣∣q, t∣∣∣p, p̄) = M̃BA

(
u2

u1

∣∣∣q, t∣∣∣p̄, p) . (1.10)

2Notice a slight change in the notation compared to [86]. We are now writing the generalized Macdonald

polynomials as functions of the variable u1
u2

, which we call Q, whereas in [86] we denoted u2
u1

as Q.
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Since the generalized Macdonald polynomials are actually known explicitly in many

cases [65, 66, 84–86], one can just use (1.8) to evaluate the first blocks of the R-matrix, and

then promote these examples to the general formula. This is a much simpler way to get

explicit expressions as compared with deducing them from the universal R-matrix [85, 87],

as was suggested in [88, 89], and this will be the approach we adopt here.

1.2 Refined topological strings and RT T relations

Refined topological string theory is a hypothetical string (or, more probably, M-) theory

generalizing the theory of topological strings. Apart from the string coupling q = e−gs ,

the refined string theory depends on an extra deformation parameter t, which is related

to the non-self-dual Nekrasov Ω-deformation. In order to reduce it to the ordinary topo-

logical string theory, one should put t = q. The amplitudes of refined strings on the

toric Calabi-Yau threefolds have been computed with the help of the refined topological

vertex technique [90–93]. The main idea of this technique [94–97] is to break down the

threefold into C3 patches and find the universal amplitudes, trivalent refined vertices on

those patches. Each vertex depends on boundary conditions on three Lagrangian branes of

topology S1 ×D2 sitting on the legs of the toric diagram. These boundary conditions are

encoded in the Young diagram, which summarizes the winding numbers of string bound-

aries on the branes. The final answer for any amplitude, either closed string, i.e. without

any branes, or open with nonzero boundary conditions, is obtained as a sum of the product

of topological vertices over intermediate Young diagrams with “a propagator” containing

Kähler parameters of the edges.

We employ an algebraic approach to the refined topological vertices developed in [40].

The vertices are treated as intertwiners of the Fock representations of the DIM algebra,

each representation corresponding to the leg connected to the vertex. The slopes of the

legs are encoded in the central charges of the corresponding representations. Finally, the

sum over intermediate Young diagram residing on the leg is interpreted as a sum over

the complete basis of states in the corresponding Fock representation. Thus, to any toric

diagram, one associates an intertwiner between tensor products of Fock representations.

Such intertwiners by definition commute with the action of the DIM algebra on the repre-

sentations. To get the answer for the amplitude from the intertwiner, one should simply

evaluate the matrix element of the intertwiner between the basis vectors in the Fock mod-

ules corresponding to the external Young diagrams (see details and examples in [41]).

The sum over intermediate Young diagrams in the computation of any amplitude can

also be interpreted as a “network”-type matrix model [41, 98–100]. For certain “balanced”

toric diagrams, the corresponding matrix model can be identified with the Dotsenko-Fateev

(DF) representation for the multipoint conformal blocks of the q-deformed WN algebra [41].

Moreover, one can usually obtain two such descriptions related by the action of the spec-

tral duality: either as a (k + 2)-point WN -block or as an (N + 2)-point Wk-block, the

corresponding toric diagrams being related to each other by π
2 rotation. The existence of

two coinciding conformal blocks of different kinds is related to the AGT duality as shown

in [86].

– 6 –
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The fact that any toric diagram essentially represents a contraction of the intertwiners

commuting with the action of the DIM algebra leads to important implications for matrix

model, to the Ward identities [41, 100]. These identities are very similar to the WN -

algebra Ward identities derived in the DF representations, where the generators of algebra

also commute with the set of screening charges Qa. These identities relate the correlators

involving descendants to those of the primary fields. In fact, one can show that this

construction can be entirely incorporated in the DIM approach to topological strings. The

WN generators are obtained from the DIM generators acting on the tensor product of

M Fock modules, and the screening charges arise from a certain combination of the DIM

intertwiners. In the context of gauge theory, such identities were described in [101] as

following from the regularity of qq-characters. Also, in the Nekrasov-Shatashvili limit

these identities turn out to give the Baxter TQ equations for the Seiberg-Witten integrable

systems related to the gauge theory [13–16].

However, we would like to describe a different form of integrable structure, related

not to infinitesimal transformations (realized as the action of the DIM algebra), but to the

“large” action of an automorphism group. This “large” action is performed by the R-matrix

which we have describe above. Indeed, the R-matrix permutes the representations and

thus acts on the intertwiners, i.e. on the topological vertices. The refined topological string

amplitudes can then be interpreted as matrix elements of the transfer (or Lax) matrices,

which are permuted according to the RT T -relations. More concretely, the simplest T -

operator taking part in the relations is given by the following conifold geometry:

T RPAB (Q, u, z) =

R

Q

P
A

B
t

q

t q

. (1.11)

The action of the R-matrix on the toric diagram T -operator is given by eq. (3.2). The

whole toric diagram now looks like the combination of objects familiar from the theory

of quantum integrable models (e.g. spin chains): the R-matrices and T -operators (see

figure 2). The vertical representations are identified with the quantum spaces (e.g. Hilbert

spaces of the spins), while the horizontal ones are the auxiliary spaces, on which the R-

matrix acts. In terms of quantum group elements, the quantum space is associated with the

algebra of functions, while the auxiliary one with the universal enveloping algebra [28–31].

Geometrically the R-matrix performs a generalized version of the flop transition on the

Calabi-Yau manifold [102–104].

Let us also make a remark on a relation between the spectral duality and the R-matrix.

The spectral duality S rotates the lattice of generators (or the preferred direction on the

toric diagram) in figure 1 by π
2 . It turns out that the R-matrix can be naturally interpreted

using the S automorphism. As we have already seen, the R-matrix looks simple in the

basis of generalized Macdonald polynomials: indeed, it is just the permutation of the spaces

and the spectral parameters denoted by the op label in (1.10). The generalized Macdonald

basis is spectral dual to that of tensor products of the ordinary Macdonald polynomials.

– 7 –
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W

V

T

a)
W

W

R

b)

=

R(12)R(13)R(23) = R(23)R(13)R(12)

c)

1

2

=

2

1

RT (1)T (2) = T (2)T (1)R

d)

1

2

=

2

1

trW T (1) trW T (2) = trW T (2) trW T (1)

e)

Figure 2. Commuting integrals of motion in a quantum integrable system can be constructed using

two essential building blocks: a) the T -operator acting in the tensor product of the quantum space

V (vertical leg) and the auxiliary space W (horizontal leg), b) the R-matrix acting on W ⊗W and

satisfying c), the Yang Baxter equation. d) R and T have to satisfy the RT T relations, providing

commutation relations for the T -operators. e) Taking the trace of the T -operator over the auxiliary

space, one gets commuting operators acting in the quantum space, these are the quantum integrals

of motion.

Thus, to compute the R-matrix in the basis of ordinary polynomials, one should first rotate

to the spectral dual frame using S, then make the permutation of the spaces and finally

rotate back using S−1. We thus obtain the relation of the form

R = S−1σS (1.12)

where σ denotes the permutation of representations or legs of the toric diagram. We will

encounter this relation when performing concrete computations of the R-matrices.

Having transfer matrices, one can take traces of them. Just as in any quantum in-

tegrable system, these traces generate a family of commuting integrals of motion. Those

too have an interpretation in terms of topological string. However, this time one has to

compactify the toric diagram, i.e. to consider not the toric Calabi-Yau threefold, but its

compactified version. The situation here resembles that considered in the classic paper by

V. Bazhanov, S. Lukyanov and A. Zamolodchikov [105, 106], where an infinite family of

integrals of motion in CFT was derived. The intertwiners of DIM play the role of exponen-

tials of free fields and their traces, i.e. compactifications provide the integrals of motion. In

– 8 –
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the language of matrix models, this corresponds to further deforming the measure: depend-

ing on the direction of compactification, it becomes either elliptic or affine. Eventually,

the matrix elements of commuting integrals of our integrable system correspond to certain

correlators in the elliptic or affine matrix models. There are different directions to pursue

from this point. However, we only sketch possible further developments in section 5.

Let us point out an important difference between our approach and several recent

works dealing with the DIM Ward identities and R-matrices [85, 87, 89, 107]. We will

predominantly work with horizontal representations, whereas in [85, 87, 89, 107] it was

essential to consider the vertical representations. It would be very interesting to unify

the two approaches and make the SL(2,Z) invariance and duality between vertical and

horizontal directions manifest.

We understand that similar calculations for DIM R-matrix have also been done by

S. Shakirov [108].

2 R-matrices: from β-deformation to (q, t)-deformation

In this section we implement the algorithm given in section 1.1 to compute the DIM R-

matrix.

To warm up, we start with two simplified examples. The first one (section 2.1) is the

trivial case of unrefined topological string, i.e. t = q. The second one is the “4d limit”

of the DIM algebra, the affine Yangian Y (ĝl1) considered in section 2.2 (see [43, 44, 60–

62, 88, 107, 109–115]). The construction in this case is parallel to the DIM algebra, with

the generalized Macdonald polynomials replaced by the generalized Jack polynomials, and

this makes the formulas a bit less bulky. Finally, in section 2.3 we turn to our real focus,

the DIM R-matrix.

2.1 A trivial example: t = q, Schur polynomials

For the unrefined topological string, i.e. for t = q the generalized Macdonald Hamiltonian

Ĥ1, (1.3) degenerates into the sum of two noninteracting Ruijsenaars Hamiltonians. Thus,

the generalized Macdonald polynomials become just the product of two Schur functions,

and do not essentially depend on the spectral parameters u1,2. This means that eq. (1.8)

defines a trivial R-matrix, which is proportional to the identity matrix:3

RCDAB (u)|t=q ∝ δCAδDB . (2.1)

2.2 Affine Yangian R-matrix from generalized Jack polynomials

Two strands. For the tensor product of two Fock representation, the generalized Jack

polynomials are eigenfunctions of the β-deformed cut-and-join operator Ĥ(β)
1 which belongs

3There are different conventions on numbering the strands entering and exiting from the R-matrix. In

the theory of integrable systems, it is standard to label strands according to their spectral parameters.

However, in knot theory, one usually assigns numbers to the positions of strands in the slice. We use the

first choice, and the second one can be obtained by taking a product of R and the matrix of permutation

of two strands σ12.
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to the Cartan subalgebra of the affine Yangian:

H(β) =
1

2

∞∑
n,m=1

(
β(n+m)pnpm

∂

∂pn+m
+nmpn+m

∂2

∂pn∂pm

)
+

1

2

∞∑
n=1

(
2u+(β−1)(n−1)

)
npn

∂

∂pn

+
1

2

∞∑
n,m=1

(
β(n+m)p̄np̄m

∂

∂p̄n+m
+nmp̄n+m

∂2

∂p̄n∂p̄m

)
+

1

2

∞∑
n=1

(
2ū+(β−1)(n−1)

)
np̄n

∂

∂p̄n

+(1−β)

∞∑
n=1

n2p̄n
∂

∂pn
. (2.2)

It is the last term in the third line which breaks the symmetry between p and p̄ and

makes dual polynomials different. Notice that this term vanishes for β = 1, i.e. in the

trivial case that we have considered in the previous subsection. In general, the eigenvalues

corresponding to the eigenfunctions JAB{p, p̄} are

κ
(β)
AB =

∑
(i,j)∈A

(
u+ (i− 1)− (j − 1)β

)
+
∑

(i,j)∈B

(
ū+ (i− 1)− (j − 1)β

)
. (2.3)

Notice also that the eigenvalues (2.3) are degenerate: e.g. κ
(β)
[1,1],[2] = κ

(β)
[2],[1,1]. Thus, one

still needs higher Hamiltonians Hβn with n ≥ 2 to uniquely specify the polynomials, which

makes the problem a little sophisticated. As we have already mentioned, this is cured at

the DIM level, where the (q, t)-deformation makes the eigenvalues non-degenerate.

One can take the answer for the eigenfunctions from [81–83]. The first level reads:

J[1],∅ = (1− β)p̄1 − (ū− u)p1, J∗[1],∅ = (1 + u− ū− β)p1

J∅,[1] = (u− ū− 1 + β)p̄1, J∗∅,[1] = (u− ū)p̄1 + (1− β)p1. (2.4)

It is now straightforward to obtain the R-matrix from the relation similar to eq. (1.8).

However, first, we emphasize a subtlety which makes the definition of the R-matrix non-

trivial. The point is the simplicity of the definition of the “opposite” polynomials (1.10).

This definition in fact depends on the choice of the particular special normalization of the

polynomials. To put it another way, the R-matrix indeed transforms each generalized Jack

polynomial into the corresponding “opposite” polynomial, however, the coefficient needs

not necessarily to be the identity. Thus, for arbitrary normalization of the generalized

polynomials, one has the following definition of the opposite ones:

NAB(u1 − u2|β)

NBA(u2 − u1|β)
Jop
AB (u1 − u2|β|p, p̄) = JBA (u2 − u1|β|p̄, p) , (2.5)

where NAB(u|β) is the normalization coefficient absent for the special normalization. Then,

the R-matrix is indeed given by

Jop
AB (u1 − u2|β|p, p̄) =

∑
C,D

RCDAB (u1 − u2) · JCD (u1 − u2|β|p, p̄) (2.6)

or, using the Jack scalar product,

RCDAB (u1 − u2) =
1

||Jop
AB(u1 − u2)||2

〈J∗op
AB (u1 − u2|β|p, p̄) |JCD (u1 − u2|β|p, p̄)〉. (2.7)
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The Jack scalar product is defined as

〈f(pn)|g(pn)〉 = f

(
n

β

∂

∂pn

)
g(pn)|pn=0 . (2.8)

Notice the conjugate polynomial J∗op
AB in the bra vector in eq. (2.7).

We now describe the special normalization of Jack polynomials explicitly. To this end,

we expand JAB in the basis of monomial symmetric functions:

JAB(u|β|pn, p̄n) = NAB(u|β)mA(pn)mB(p̄n) +
∑

CD 6=AB
CCDAB (u|β)mC(pn)mD(p̄n) (2.9)

where mA(pn) denote the monomial symmetric polynomials and the normalization factor is

NAB(u|β) = gAB(u|β)
∏

(i,j)∈A

(
Ai − j + β(AT

i − j + 1)
) ∏

(i,j)∈B

(
Bi − j + β(BT

i − j + 1)
)

(2.10)

and

gAB(x) =
∏

(i,j)∈A

(
x+Ai − j + β(BT

j − i+ 1)
) ∏

(i,j)∈B

(
x−Bi + j − 1− β(AT

j − i)
)

(2.11)

is the usual 4d Nekrasov factor. The normalization factor NAB in eq. (2.9) is the same as

in eq. (2.5). Notice that the special normalization is different from another popular choice

of normalization, which we call standard. In the standard normalization, the coefficient in

front of mA(pn)mB(p̄n) in JAB is unit and ||JAB||2 = ||JA||2||JB||2 is independent of u.

The normalization factors satisfy the identity NAB(u|β)NBA(−u|β)||JA||2||JB||2 =

zvec
AB(u|β) where zvec is the vector contribution to the Nekrasov functions [116–118]. In

particular, one has

||JAB||2 = zvec
AB(u|β). (2.12)

The polynomials (2.5) are already written in the special normalization. This normalization

is in fact natural from the cohomological point of view. The generalized Jack polynomials

can be associated to the fixed points in the moduli space of SU(2) instantons (or to the

Hilbert schemes of points on C2) [114]. The action of the first Hamiltonian Ĥ1 is given

by the cup product with the first Chern class in the cohomology, whereas higher Hamilto-

nians are cup products with higher Chern classes. They commute simply because of the

commutativity of the cup product. The specially normalized generalized Jack polynomials

then describe stable envelopes of the corresponding fixed points.

Having understood the subtle point of normalization, we get the R-matrix in the basis

of generalized Jack polynomials:

R(β) =

 1− η η
η+1

η − η2 η2+1
η+1

 (2.13)

with

η =
1− β
u− ū

. (2.14)
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This R-matrix, though simple, is still nontrivial. It should be supplemented with the

identity block arising from the generalized Jack polynomials at the zeroth level:

J∅,∅(u|β|p, p̄) = J∗∅,∅(u|β|p, p̄) = 1 . (2.15)

The resulting 3× 3 matrix 
1 0 0

0 1− η η
η+1

0 η − η2 η2+1
η+1

 (2.16)

should satisfy some form of the Yang-Baxter relation. However, it does not look like the

3× 3 block of the standard rational R-matrix
1 0 0

0 1
1+η

η
1+η

0 η
1+η

1
1+η

 (2.17)

which is the only 3× 3 rational solution to the Yang-Baxter equation. This discrepancy is

resolved if we recall that the basis of generalized Jack polynomials in the tensor product

of two Fock representations of the affine Yangian, are not factorised into vectors in each

representation. To get more familiar expression for the R-matrix, we should consider its

matrix elements in a basis, where the vectors are factorized into tensor products, e.g. the

products of the Jack polynomials J
(β)
A (pn)J

(β)
B (p̄n). The basis is changed with the help of

the generalized Kostka matrices:

KCD
AB (u|β) = 〈J∗AB(u|β)|(|J (β)

C 〉 ⊗ |J
(β)
D 〉), K∗CDAB (u|β) = (〈J (β)

A | ⊗ 〈J
(β)
B |)|JCD(u|β)〉 .

(2.18)

At the first level, we have

K(u|β) =

(
1 0

η 1

)
, K∗(u|β) =

(
1 0

−η 1

)
. (2.19)

The R-matrix in the factorized basis of the ordinary Jack polynomials is given by

R(β)
ord Jack = K∗

1

||J ||2
R(β) 1

||J ||2
K =

1

η + 1

(
1 η

η 1

)
, (2.20)

where ||J ||2 denotes the diagonal matrix containing the norms of generalized Jack poly-

nomials. Eq. (2.20) gives the standard rational R-matrix (2.17). Formula (2.20) can be

understood as a decomposition of the R-matrix into the upper and lower triangular parts,

since

K∗
1

||J ||2
R(β) =

 1− η η
η+1

0 1
η+1

 and K =

 1 0

η 1

 . (2.21)
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Moreover, one can refine this decomposition even further: one can identify the upper and

lower triangular parts with identities on the diagonal and the diagonal part sandwiched

between them. To obtain this decomposition, one should explicitly write down the nor-

malization coefficients NAB(u|β) of generalized Jack polynomials in the formulas for the

R-matrix. The diagonal part then comes from the term NAB(u1−u2|β)
NBA(u2−u1|β) in eq. (2.5) and the

whole expression becomes

R(β)
ord Jack =

{
K∗

1

||J ||2
R(β)N−1

}
· N ·K (2.22)

where NCD
AB = NAB(u1−u2|β)

NBA(u2−u1|β)δ
C
Aδ

D
B =

(
1−η 0

0 −(1+η)−1

)
. In eq. (2.22) the term in the curly

brackets is upper triangular with identities on the diagonal, the matrix N is diagonal and

K is lower triangular.

Decomposition of the R-matrix into the upper and lower triangular parts also has

an interpretation in the cohomology of the instanton moduli space [88, 89]. Parts of

the R-matrix decomposition correspond to stable envelopes of the fixed points, i.e. to the

cohomology classes of the attracting domains of the fixed points under a certain C×-action.

The R-matrix in this approach is given by the infinite product of the “wall R-matrices”

labelled by rational slopes (determined by the integer pairs corresponding to the double

gradings of DIM or affine Yangian generators, as depicted in figure 1) within the interval

of angles: [0, π]. The lower triangular part corresponds to the product over [0, π2 ], the

diagonal one represents the wall with infinite slope, and the lower triangular matrix is the

product over [π2 , π]:

R(β) = R(β)

[π2 ,π]
R(β)
∞ R

(β)

[0,π2 ]
. (2.23)

Such a decomposition is just a reflection of the identity R = SσS which we have

mentioned in the Introduction. Each wallR-matrix corresponds to a change of the preferred

direction from one “chamber” in (C×)2 to another, the border between them being the line

of rational slope. The product of wall R-matrices over angles [0, π2 ] is nothing but the

automorphism S. Also, in [119] it was shown that the generalized Kostka matrices are in

fact the matrix elements of S in the basis of eigenfunctions of the DIM Cartan subalgebra

(the story for the affine Yangian, which we study in this section, is parallel). Depending

on whether the preferred direction (or the representation in question) is horizontal or

vertical, the eigenfunctions of the Cartan subalgebra can be either ordinary or generalized

polynomials. S performs a linear transformation between the two basis sets, and is thus

nothing but the Kostka matrix K as clearly seen from the definition (2.18). Eventually, the

decomposition (2.22) is a reflection of the decomposition (1.12), where σ is accompanied

by multiplication with the diagonal matrix N .

Yet another meaning of the R-matrix that we have just obtained can be seen by

noticing that the affine Yangian acting on the tensor product of two Fock modules contains

the Virasoro subalgebra generated by the dressed current t(z) = α(z)x+(z)β(z). A pair

of Heisenberg algebras provides a bosonization of this Virasoro algebra. However, it is

well-known that there are two such bosonizations related to each other by the Liouville

reflection matrix [42]. The job of the reflection matrix is similar to that of the R-matrix: it
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exchanges the two types of bosons. Indeed, one can see that the two objects are in fact one

and the same. For example, as we have discussed in the previous subsection, the R-matrix

is trivial for t = q or equivalently β = 1, and the Liouville reflection matrix is also trivial,

since c = 1+6(
√
β−1/

√
β)2 = 1 in this case. In fact, the tensor product of two Heisenberg

algebras acting on two Fock modules contains in addition to the Virasoro also the diagonal

Heisenberg subalgebra, which is usually called the “U(1) part” in the AGT context [120].

This part is of course left invariant by the reflection matrix. One can see that the R-matrix

also leaves this subspace invariant. Thus, the R-matrix of the affine Yangian is nothing

but the reflection matrix of the Liouville theory.

More strands. For more than two strands, the generalized Jack polynomials can still

be described as eigenfunctions of a certain Hamiltonian H(β)
1 sitting inside the affine Yan-

gian, [81–83]. The polynomials J ~A{~pn} in this case depend on r sets of time-variables

p
(k)
n , k = 1, . . . , r, on r Young diagrams ~A = {A1, . . . , Ar} and on r spectral parameters

~u = {u1, . . . , ur}. The Hamiltonian is now a linear combination

H(β)
1 =

r∑
k=1

H(β)
(k) + (1− β)

∑
k1<k2

H(β)
(k1,k2) (2.24)

with

H(β)

(k) =
1

2

∞∑
n,m=1

(
β(n+m)p(k)

n p(k)
m

∂

∂p
(k)
n+m

+ nmp
(k)
n+m

∂2

∂p
(k)
n ∂p

(k)
m

)
+

1

2

∞∑
n=1

(
2uk+(β−1)(n−1)

)
np(k)

n
∂

∂p
(k)
n

(2.25)

and

H(β)
(k1,k2) =

∞∑
n=1

n2p(k1)
n

∂

∂p
(k2)
n

. (2.26)

The construction of the R-matrix is similar to the case of two strands. The important

difference is that there are now r − 1 R-matrices, which permute the factors in the tensor

product of Fock modules. They form a representation of the r-strand braid group Br.
In the basis of generalized Jack polynomials, the resulting R-matrices look rather

ugly (see appendices A.1.2 and especially A.2.2). However, in the basis of ordinary Jack

polynomials, the expressions simplify. In this basis, the R-matrix acting on each pair of

strands becomes a copy of the two-strand R-matrix:

R(β)
ij =

∑
A,B,C,D

R(β)
ord Jack

CD
AB (ui−uj) id⊗· · ·⊗ id⊗|JC〉i〈JA|i⊗· · ·⊗|JC〉j〈JA|j⊗ id⊗· · ·⊗ id .

(2.27)

Thus, all the familiar results from integrable systems hold, e.g. the fusion of R-matrices. For

three strands, one can also check the Yang-Baxter equation and it works as expected. The

relation with the spectral duality (1.12) for several strands is modified in an obvious way:

R(β)
i,j = S−1σi,jS, (2.28)

where σi,j permutes the i-th and j-th strands.

– 14 –



J
H
E
P
1
0
(
2
0
1
6
)
0
4
7

2.3 DIM R-matrix from generalized Macdonald polynomials

In this section, we compute the DIM R-matrix from the generalized Macdonald polynomi-

als. This turns out to be simpler and more natural than the affine Yangian R-matrix in

the previous subsection.

Two strands. As we described in the Introduction, the generalized Macdonald polyno-

mials are eigenfunctions of the element x+
0 of the DIM algebra acting in the tensor product

of Fock representations:

H1M̃AB = κABM̃AB (2.29)

where

κAB = u1

∑
i≥1

qAit−i + u2

∑
i≥1

qBit−i (2.30)

and

H1 = ρu1⊗ρu2∆(x+(z))

=

∮
dz

z
[u1Λ1(z)+u2Λ2(z)]

=

∮
dz

z

u1exp

∑
n≥1

1−t−n

n
p(1)n z−n

exp

∑
n≥1

1−qn

n
zn

∂

∂p
(1)
n


+u2exp

∑
n≥1

1−t−n

n

(
(1−tn/qn)p(1)n +p(2)n (q/t)−n/2

)
z−n

exp

∑
n≥1

1−qn

n
zn(q/t)n/2

∂

∂p
(2)
n


(2.31)

where ∆ is the DIM coproduct and ρu denotes the horizontal Fock representation [41, 63,

64]. Note that the eigenvalues (2.30) are non-degenerate and, though there are higher

Hamiltonians Hn (see appendix B), they are not needed to determine the spectrum. One

can ask how does the degeneration appear in the Yangian limit q → 1. The Hamiltonian H1

in this limit is expanded in series of operators in (q−1), and the first term is the Hamiltonian

H(β)
1 (2.2) which we considered in the previous subsection. Since this is just the first term

in the expansion, some eigenvalues degenerate and one needs higher Hamiltonians H(β)
n .

However, all these Hamiltonians are contained in the expansion of H1.

We slightly changed our notations compared to the previous subsection: the order

of Young diagrams A, B is reversed as compared to section 2.2. This is done mostly to

conform with the existing literature on the subject, where the discrepancy seems to be

already entrenched.

The generalized Macdonald polynomials at the first level are given by4

M̃[1],[] = (1−t)
(

1− t
q
Q

)
p1, M̃∗[1],[] = (1−q)(1−Q)p1−(1−q)

(
1− t

q

)
p̄1

M̃[],[1] = (1−t)(1−Q)p̄1+(1−t)
(

1− t
q

)
p1, M̃∗[],[1] = (1−q)

(
1− t

q
Q

)
p̄1.

4We again remind the reader of the change of convention Q→ Q−1 as compared to [86].
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As in the previous subsection, these polynomials are written in the special normalization

such that the definition of opposite polynomials is given by eq. (1.10). In [86] a different

normalization was used such that MAB = 1 · mA(pn)mB(p̄n) + . . . We conform with the

previous notation and denote the specially normalized polynomials by M̃AB as in [86],

eq. (19). Let us write down the normalization coefficient, which we take from [86]:

NAB(u|q, t) = GBA(u−1|q, t)CA(q, t)CB(q, t) (2.32)

where

Cλ(q, t) =
∏

(i,j)∈λ

(
1− qλi−jtλ

T
j −i+1

)
, (2.33)

GAB(u|q, t) =
∏

(i,j)∈A

(
1− uqAi−jtB

T
j −i+1

) ∏
(i,j)∈B

(
1− uq−Bi+j−1t−A

T
j +i
)

(2.34)

=
∏

(i,j)∈B

(
1− uqAi−jtB

T
j −i+1

) ∏
(i,j)∈A

(
1− uq−Bi+j−1t−A

T
j +i
)
.

For the polynomials MAB (without tilde), the definition of opposite polynomial is

NAB(u1/u2|q, t)
NBA(u2/u1|q, t)

Mop
AB (u1/u2|q, t|p, p̄) = MBA (u2/u1|q, t|p̄, p) . (2.35)

After the generalized polynomials are found, the R-matrix is determined in the same

way as for the affine Yangian. We simply write down the main formulas, since the discussion

is very similar to the previous section. The R-matrix in the basis of generalized Macdonald

polynomials is

RCDAB
(
u1

u2

)
=

1∥∥∥M̃op
AB

(
u1
u2

)∥∥∥2

〈
M̃∗op

AB

(
u1

u2

∣∣∣q, t∣∣∣p, p̄) ∣∣∣M̃CD

(
u1

u2

∣∣∣q, t∣∣∣p, p̄)〉 . (2.36)

It is given by

R =

−u1(u2
1q

2+u2
2q

2−u1u2q2−2tu1u2q+t2u1u2)
q(u1−u2)u2(qu1−tu2)

(q−t)u1(qu2−tu1)
q2(u1−u2)2

− (q−t)u2
1

u2(qu1−tu2)
u1(qu2−tu1)
q(u1−u2)u2

 . (2.37)

Transformation to the basis of ordinary Macdonalds is performed using the q-deformed

versions of generalized Kostka matrices:

K =

(
1 (q−t)u2

q(u1−u2)

0 1

)
, K∗ =

(
1 − (q−t)u2

q(u1−u2)

0 1

)
, (2.38)

and

Rord Mac = K∗
1

||M̃ ||2
R 1

||M̃ ||2
K . (2.39)
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The resulting 2× 2 block is the same as the block appearing in the standard trigonometric

R-matrix:

Rord Mac =

 qu1(u1−u2)
u2(qu1−tu2)

(q−t)u1

qu1−tu2

(q−t)u2
1

u2(qu1−tu2)
tu1(u1−u2)
u2(qu1−tu2)

 . (2.40)

Again the digression on the triangular decomposition is relevant here. The only difference

is that the geometric interpretation now lies in equivariant K-theory of the instanton

moduli space. Otherwise, the comparison with the “wall R-matrices” as in eq. (2.23) is

still valid and the resulting decomposition also gives the relation with the spectral duality

transformation S as in eq. (1.12). Also, the DIM R-matrix provides the reflection matrix

for the q-deformed Virasoro algebra.

More strands. Again the discussion here is exactly parallel to the previous section, only

the formulas are somewhat larger. The generalized Macdonald Hamiltonian for N strands

is given by

H1 = ρu1⊗···⊗ρuN∆(x+(z))

=

∮
dz

z

N∑
i=1

uiΛi(z)

=

∮
dz

z

u1exp

∑
n≥1

1−t−n

n
p(1)
n z−n

exp

∑
n≥1

1−qn

n
zn

∂

∂p
(1)
n


+u2exp

∑
n≥1

1−t−n

n

(
(1−tn/qn)p(1)

n +p(2)
n (q/t)−n/2

)
z−n


· exp

∑
n≥1

1−qn

n
zn(q/t)n/2

∂

∂p
(2)
n


+u3exp

∑
n≥1

1−t−n

n

(
(1−tn/qn)

(
p(1)
n +(q/t)−1/2p(2)

n

)
+p(3)

n (q/t)−n
)
z−n


· exp

∑
n≥1

1−qn

n
zn(q/t)n

∂

∂p
(3)
n


...+uNexp

∑
n≥1

1−t−n

n

(
(1−tn/qn)

(
p(1)
n +(q/t)−1/2p(2)

n +...+(q/t)(2−N)n/2p(M−1)
n

)

+ p(N)
n (q/t)(1−N)/2

)
z−n

×exp

∑
n≥1

1−qn

n
zn(q/t)(1−N)/2 ∂

∂p
(3)
n

 (2.41)
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and the generalized Macdonald polynomials are defined as its eigenfunctions:

H1M̃A1...AN = κA1...AN M̃A1...AN (2.42)

κA1...AN =
N∑
a=1

ua
∑
i≥1

qAa,it−i . (2.43)

An explicit computation of the R-matrix for three strands is performed in appen-

dices A.1.1 (first level) and A.2.1 (second level). In the basis of ordinary Macdonald

polynomials, the R matrices Rij act only on the i-th and j-th representations in the tensor

product, just as for any standard integrable system. The Yang-Baxter equation is also

satisfied, as shown in appendix A.1.1.

Thus, in this R matrix section, we demonstrated that both the DIM R-matrix and

its affine Yangian limit can be easily computed for the horizontal Fock representations

using the generalized Jack or Macdonald polynomials. The resulting R-matrices have usual

properties and resemble the standard rational and trigonometric R-matrices. They are also

related to the (q-)Virasoro reflection matrices and can be understood as the intersection of

stable envelopes in the cohomology or K-theory of the instanton moduli spaces.

In the next section, we show that the transfer matrices or the Lax operators permuted

by the DIM R matrix, can be understood as refined topological string amplitudes on

resolved conifold.

3 RT T relations in the toric diagram

In this section, we prove that the R-matrix permutes the basic building blocks of the

balanced toric web. These basic building blocks are resolved conifolds with Young diagrams

placed on each external line:

T RPAB (Q,u,z)=

R

Q

P
A

B
t

q

t q

=
(
〈sA,Qu|⊗〈M |R|

)
T (Q|z)

(
|sB ,u〉⊗|M |P 〉

)
=〈sA,Qu|ΨP (Qz)Ψ∗R(z)|sB ,u〉,

(3.1)

where Ψ and Ψ∗ are the intertwiners of DIM algebra [40, 41], |sA, u〉 denote the basis of

Schur functions in the horizontal Fock space, |M |R〉 denote the basis of ordinary Macdonald

polynomials in the vertical Fock space (hence, the sign |) and ΨP denotes the matrix

element of Ψ for the Macdonald polynomial MP on the vertical leg. Such building blocks

allow us to construct an arbitrary balanced networks as shown in [41]. We assume that all

correlators are normalized in such a way that, for the empty diagrams, the averages are

identities.
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3.1 Trivial diagrams on vertical legs

Before considering the most general RT T relation, let us give the proof in the simplified

case, where some of the external diagrams are empty. The main ideas of the proof are

similar to the general case, which requires one additional observation.

The RT T relations for the conifold building blocks look very similar to the RT T
relations in any integrable system and can be drawn as follows:

R
(

u1

u2

)
u2

u1

u1

u2

Y1

Y2

v2

v1

W2

W1λ

z

=
u1

u2

Y1

Y2

v1

v2

W1

W2

v2

v1

W2

W1λ

z

R
(

v1
v2

) .

(3.2)

Here R, drawn as a box acts on the tensor product of the horizontal Fock modules corre-

sponding to the horizontal legs. The preferred direction is vertical. Two horizontal modules

are intertwined with one vertical by the combination of topological vertices. Equivalently,

in the algebraic form, we have:

R
(
u1

u2

)∑
λ

||Mλ||−2
Ψ∅

(
zu1u2
v1v2

)
Ψ∗λ

(
zu2
v2

)
⊗

Ψλ

(
zu2
v2

)
Ψ∗∅(z)

=
∑
λ

||Mλ||−2
Ψ∅

(
zu1u2
v1v2

)
Ψ∗λ

(
zu1
v1

)
⊗

Ψλ

(
zu1
v1

)
Ψ∗∅(z)

R
(
v1

v2

)
. (3.3)

Notice that the Young diagrams on the vertical external legs are chosen empty. This is the

simplification that we use in this subsection and lift in the next one.

We will use the following trick, which renders the RT T relations almost trivial. We

rotate the preferred direction in the diagram from vertical to horizontal with the help of

the automorphism S. This corresponds to the change of basis in the tensor product of

horizontal representations from that of Schur functions |sY1 , u1〉|sY2 , u2〉 to the generalized

Macdonald polynomials |MY1Y2(u1, u2|q, t)〉 (without tilde, i.e. not specially normalized).

In this new basis, the R matrix acts simply by permuting the strands (though, as we

learned in the previous section, depending on the normalization of the basis vectors an

additional constant might arise). Thus, in this basis, one gets the following relation (we

moved two R-matrices to the r.h.s. of eq. (3.3)):

u2

u1

Y2

Y1

v2

v1

W2

W1λ

z

=
u1

u2

u2

u1

Y2

Y1

v1

v2

v2

v1

W2

W1λ

z

R−1
(

u1

u2

)
R

(
v1
v2

)

(3.4)
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or, algebraically,〈
MY1Y2

(
u1

u2

) ∣∣∣∣∣∑
λ

||Mλ||−2
Ψ∅

(
zu1u2
v1v2

)
Ψ∗λ

(
zu2
v2

)
⊗

Ψλ

(
zu2
v2

)
Ψ∗∅(z)

∣∣∣∣∣MW1W2

(
v1

v2

)〉

=

〈
MY1Y2

(
u1

u2

) ∣∣∣∣∣R
(
u1

u2

)−1∑
λ

||Mλ||−2
Ψ∅

(
zu1u2
v1v2

)
Ψ∗λ

(
zu1
v1

)
⊗

Ψλ

(
zu1
v1

)
Ψ∗∅(z)

R
(
v1

v2

) ∣∣∣∣∣MW1W2

(
v1

v2

)〉
.

(3.5)

Strictly speaking, we should have also changed the basis in the vertical legs from the basis

of Macdonald polynomials to that of Schur functions. However, the change of the basis in

the vertical legs does not make any difference, since the external diagrams are empty, and

the internal ones are summed over. Let us now use our definition of the R matrix (1.8)

and the definition of the opposite generalized Macdonald polynomials (2.35) to transform

the r.h.s. eq. (3.5):〈
MY1Y2

(
u1

u2

)∣∣∣∣∣R
(
u1

u2

)−1∑
λ

||Mλ||−2
Ψ∅

(
zu1u2
v1v2

)
Ψ∗λ

(
zu1
v1

)
⊗

Ψλ

(
zu1
v1

)
Ψ∗∅(z)

R
(
v1

v2

)∣∣∣∣∣MW1W2

(
v1

v2

)〉

=
NY2Y1

(
u2
u1

)
NY1Y2

(
u1
u2

)〈MY2Y1

(
u2

u1

)∣∣∣∣∣∑
λ

||Mλ||−2
Ψλ

(
zu1
v1

)
Ψ∗∅(z)

⊗
Ψ∅

(
zu1u2
v1v2

)
Ψ∗λ

(
zu1
v1

)
∣∣∣∣∣MW2W1

(
v2

v1

)〉NW2W1

(
v2
v1

)
NW1W2

(
v1
v2

) .
(3.6)

Notice the change in ordering of the tensor product due to the exchange of pn and p̄n in

Mop. It remains to prove the identity between l.h.s. of eq. (3.5) and r.h.s. of eq. (3.6). Both

expressions are matrix elements of the T -operators in the basis of generalized Macdonald

polynomials.

We employ a very nice property of the generalized Macdonald basis. In this basis, the

matrix elements of the product of two T -matrices are explicitly computable and given by

the Nekrasov functions. As shown in [119], the corresponding matrix model averages fac-

torize and the answer can be schematically written as follows (we again omit the prefactors,

which cancel in the both sides of the RT T relations):

〈
MY1Y2

(
u1

u2

)∣∣∣∣∣∑
λ

||Mλ||−2
Ψ∅

(
zu1u2
v1v2

)
Ψ∗
λ

(
zu2
v2

)
⊗

Ψλ

(
zu2
v2

)
Ψ∗

∅(z)

∣∣∣∣∣MW1W2

(
v1

v2

)〉
∼
z

(q,t)
bifund

(
[Y1,Y2],[W1,W2],u1

u2
, v1
v2
,u1u2
v1v2

)
GY1,Y2

(
u1
u2

∣∣∣q,t)GW1,W2

(
v1
v2

∣∣∣q,t) .

(3.7)

The G factors on the both sides of the RT T relations in the denominator cancel with the

normalization factors NY1Y2 and (3.5) reduces to the elementary identity for the bifunda-

mental Nekrasov functions [116–118]:

z
(q,t)
bifund([Y1, Y2], [W1,W2], Qu, Qv,M) = z

(q,t)
bifund([Y2, Y1], [W2,W1], Q−1

u , Q−1
v ,M) . (3.8)

Thus, we proved the RT T relation (3.3) for the empty diagrams on the vertical legs.
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3.2 Arbitrary diagrams on vertical legs

We now generalize our proof of the RT T relations to the case of arbitrary states in the

vertical representations. To this end, we use explicit expressions for the DIM intertwin-

ers acting in the horizontal Fock module with the spectral parameter z (see [40, 41] for

details):

Ψλ(v) = (−vz)|λ| q
n(λT)

Cλ(q,t)
exp

∑
n≥1

1

n

1− tn

1− qn
∑
i≥1

qnλi t−invna−n

exp

−∑
n≥1

1

n

∑
i≥1

q−nλi tin
(q
t

)n
v−nan

,
(3.9)

Ψ∗µ(u) =

(
−uz
q

)−|µ|
qn(µT)

fµCµ(q,t)
exp

−∑
n≥1

1

n

1− tn

1− qn
∑
i≥1

qnµi t−ni
(
t

q

)n
2

una−n


× exp

∑
n≥1

1

n

1− tn

1− qn
∑
i≥1

q−nµi tni
(q
t

)n
2
u−nan

 (3.10)

where

fλ =
∏

(i,j)∈λ

(−qj−1/2t1/2−i), n(λT ) =
∑

(i,j)∈λ

(j − 1) . (3.11)

The combination of intertwiners entering eq. (3.1) is then given by:

〈M |λ|T |M
|
µ〉 = Ψλ(v)Ψ∗µ(u)

= Wλµ(z, u, v) exp

∑
n≥1

1

n

1− tn

1− qn
∑
i≥1

(
qnλit−invn − qnµit−ni

(
t

q

)n
2

un

)
a−n


× exp

∑
n≥1

1

n

1− tn

1− qn
∑
i≥1

(
−q−nλitin

(q
t

)n
+ q−nµitni

(q
t

)n
2
u−n

)
an


(3.12)

where Wλ,µ(z, u, v) ∼ z|λ|−|µ|∆(q,t)(uqλtρ, vqµtρ)−1 is the scalar prefactor including the

prefactors of Ψ and Ψ∗ and the terms from the normal ordering of Ψ and Ψ∗. We will

henceforth omit this prefactor in our calculations, since it does not affect the RT T relations,

which are homogeneous in T .

The identity we would like to prove can be represented pictorially as

R
(

u1

u2

)
u2

u1

u1

u2

Y1

Y2

v2

v1

W2

W1λ

z β

zu1u2

v1v2
α

=
u1

u2

Y1

Y2

v1

v2

W1

W2

v2

v1

W2

W1λ

z β

zu1u2

v1v2
α

R
(

v1
v2

)

(3.13)
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or, algebraically,

R
(
u1

u2

)∑
λ

||Mλ||−2
Ψα

(
zu1u2
v1v2

)
Ψ∗λ

(
zu2
v2

)
⊗

Ψλ

(
zu2
v2

)
Ψ∗β(z)

=
∑
λ

||Mλ||−2
Ψα

(
zu1u2
v1v2

)
Ψ∗λ

(
zu1
v1

)
⊗

Ψλ

(
zu1
v1

)
Ψ∗β(z)

R
(
v1

v2

)
(3.14)

for arbitrary α and β. We use the same trick as in the previous subsection and rotate the

preferred direction of the diagram from vertical to horizontal. This makes the R-matrix

diagonal as in eq. (3.6). However, now we compute the resulting amplitude in a different

way: we also rotate the whole picture by π
2 and write down the operator expression for the

matrix elements in the rotated frame. Explicitly, we have〈
sβ , z

∣∣∣∣∣Ψ∗W2
(v2)ΨY2(u2)Ψ∗W1

(v1)ΨY1(u1)

∣∣∣∣∣sα, zu1u2

v1v2

〉

=
NY2Y1

(
u2
u1

)
NY1Y2

(
u1
u2

)NW2W1

(
v2
v1

)
NW1W2

(
v1
v2

) 〈sβ , z
∣∣∣∣∣Ψ∗W1

(v1)ΨY1(u1)Ψ∗W2
(v2)ΨY2(u2)

∣∣∣∣∣sα, zu1u2

v1v2

〉
(3.15)

which should be valid for any α and β, so that these external states can be dropped.

We have thus reduced the RT T relation to the commutation relation for the T -operators

composed of the DIM intertwiners Ψ and Ψ∗. We normalize the product of T -operators

using the explicit expressions (3.12). We obtain

Ψ∗W2
(v2)ΨY2(u2)Ψ∗W1

(v1)ΨY1(u1)∼
z

(q,t)
bifund

(
[Y1,Y2],[W1,W2],u1

u2
, v1
v2
,u1u2
v1v2

)
GY1,Y2

(
u1
u2

∣∣∣q,t)GW1,W2

(
v1
v2

∣∣∣q,t) :Ψ∗W2
(v2)ΨY2(u2)Ψ∗W1

(v1)ΨY1(u1):

(3.16)

where we have dropped inessential prefactors. This result certainly reduces to eq. (3.7) for

α = β = ∅, since the normally ordered operators act trivially on the vacuum. One can

now obtain the commutation relation for the T -operators by normal ordering of the both

sides of (3.15) and using the identity (3.8) for the Nekrasov bifundamental factor.

Let us recapitulate our main point in this section. We proved the RT T relations for

the DIM R-matrix and T -operators constructed from refined topological string amplitudes

on resolved conifold. In the next section, we use these relations to obtain commuting

integrals of motion for our system.

4 Integrals of motion and compactification

Just as in any integrable system, the RT T relations (3.2) allow one to construct a com-

mutative family of operators, integrals of motion on the Hilbert space of the theory. Those

are usually taken to be traces of T -operators in various representations. In our case, there

are several different ways to write down the integrals of motion. The first possibility is to

take the vacuum matrix element of a product of T -operators. This gives the closed string

amplitude on the toric Calabi-Yau threefold consisting of the resolved conifolds. The other
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Y1
Q1

Q2QB

W1

=

Y1
Q2

Q1QB
Q1

Q2

W1

Figure 3. Commutativity of the integrals of motion implies relations between amplitudes with

different Kähler parameters on the toric strip geometry.

way is to compactify the toric diagram, which gives traces of products T -operators. The re-

sulting amplitude is given by the matrix model average with the affine or elliptic measures

depending on the direction of compactification.

A geometric meaning of the commutativity is in the both cases a generalization of the

flop transition on the Calabi-Yau threefold. The most basic example of this transition is

resolved conifold. The resolution can be taken in two different ways: either in one direction,

or in the other one. The topological string amplitudes on two resolutions are related to

each other by an analytic continuation in the Kähler parameter Q of the resolution. To

switch from one threefold to the other, one has to replace Q by Q−1. In the RT T relation,

a similar exchange happens and, since the spectral parameters of two legs are exchanged,

their ratio, i.e. the corresponding Kähler parameter is reversed. However, the situation is

here slightly different, since the toric diagram looks the same after the application of the

R-matrix.

Let us consider the two ways to construct the integrals of motion.

Vacuum matrix elements. The simplest example of this form is given by the toric

strip geometry shown in figure 3. This geometry corresponds to a single chain of inter-

twiners with the empty diagrams on all vertical legs. From the explicit expressions for the

intertwiners [41], one can deduce that the T operators indeed commute.

The next step is to glue several strips together. This gives what was called in [41]

balanced network. The amplitude corresponding to a balanced network can be interpreted

as the partition function of a 5d linear quiver gauge theory with zero β-function. Then,

depending on the duality frame (or preferred direction), the commutativity of integrals

is either related to the action of the Weyl group of the gauge group or to the spectral

dual Weyl group. This dual Weyl group corresponds to the Dynkin diagram of the quiver

and permutes the gauge coupling constants. This dual Weyl group has an interesting

interpretation in terms of the AGT dual conformal block: it exchanges the points and

therefore represents some kind of a braiding matrix.

Compactification. The compactified toric diagram corresponds to elliptically fibered

Calabi-Yau threefolds. Within the geometric engineering approach, such manifolds are re-

lated to gauge theories with adjoint matter, or necklace quivers. Again, the commutativity

of integrals of motion is equivalent to the invariance under the Weyl group of the corre-
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sponding necklace quiver, and thus permutes the coupling constants of the gauge theory.

The spectral dual interpretation of the resulting amplitude is the partition function of a 6d

linear quiver gauge theory compactified on a two-dimensional torus. The AGT relations

in this case [121–134] give the conformal block of the q-deformed W -algebras on torus, or

the spherical conformal block of the affine W -algebra [98, 99].

5 Conclusion

• DIM algebras of higher rank. It would be interesting to consider similar construc-

tion of the R-matrix for the quantum toroidal algebras of higher rank, i.e. Uq,t(
̂̂
glr).

However, the generalized Macdonald polynomials in this case remain to be computed.

One of possible difficulties on this way is that bosonization involves less trivial free

fields a la [135–137].

• Triple-deformed R-matrix. If one compactifies the toric diagram in the vertical

direction, there would emerge an “affinized” version of the DIM R-matrix. It is

plausible that this is the R-matrix for the Pagoda algebra [41], with the additional

parameter being the compactification radius.

To evaluate this R-matrix, one needs to understand the corresponding “affine”

generalized Macdonald polynomials. Let us notice that they exist already for a single

horizontal leg, i.e. the simplest example is given by the polynomial labelled by a

single Young diagram and depending on three parameters M
(q,t,t̃)
A (pn). For t̃→ 0 one

should recover the ordinary Macdonald polynomials.

• Application to knots. As we already noticed, the DIM algebra can be obtained as

a limit of the spherical DAHA algebra for infinite number of strands. It is also known

that the toric knot superpolynomials can be obtained from the action of spherical

DAHA, or the corresponding DIM (the SL(2,Z) automorphisms play a crucial role

in these computations). It is natural to assume that the R-matrix of DIM should be

related to computation of superpolynomials. Presumably this R-matrix might give

the Reshetikhin-Turaev formalism behind the Khovanov-Rozansky cohomologies.

• Building representations. Another important direction is to consider more so-

phisticated representations of the DIM algebra. Those can be obtained out of Fock

modules by taking tensor products, e.g. Fu1 ⊗ · · · ⊗ Fuk . For ui in general position,

these representations turn out to be irreducible. The R-matrix for these representa-

tions is given by the fusion construction, which is similar to the known technique for

affine quantum algebras. The R-matrix for these discrete choices of parameters also

satisfies the Hecke algebra relations.

However, as in the case of affine quantum algebras, (see, e.g., [138]) for certain

discrete choice of parameters ua in resonance, i.e. for

u1 = qi1t−j1u2, u2 = qi2t−j2u3, . . . (5.1)

with ia, ja ∈ Z≥0, one gets invariant subspaces inside the tensor product arising

from degenerate vectors. After factoring out these subspaces, one gets an irreducible
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I

J

K

Figure 4. A plane partition (3d Young diagram) with asymptotics given by ordinary Young

diagrams I, J and K.

representation space spanned by a subset of k-tuples of Young diagrams obeying

additional Burge conditions [139–141]. These conditions can be interpreted as the

requirement that the k-tuple of Young diagrams combine into a plane partition (3d

Young diagram, melting crystal) of width k. In general, one can consider 3d Young

diagrams with infinite “legs”, i.e. nontrivial asymptotics along the coordinate axes,

see figure 4. In the case of the tensor product, the “vertical” leg is nontrivial and is

determined by the collection of numbers {ia, ja} in the resonance condition (5.1). To

get a second nontrivial leg, one should consider an infinite tensor limk→∞
⊗k

i=1Fui .
In this case, the second asymptotic of the 3d Young diagram is determined by the

asymptotic shape of the last Young diagram limk→∞ Yk. The resulting representation

is called the MacMahon module and has many nice properties, e.g. the S3 symmetry

exchanging the coordinate axes. Since the MacMahon module is a subrepresentation

of the tensor product, it is, in principle, possible to obtain the R-matrix for it by

the fusion method. The R-matrix in this case should be related to the one studied

in [85, 87]. It would be interesting to see if this calculation can be made explicitly.

A Explicit expressions for DIM R-matrix

In this appendix, we provide explicit expressions for the DIM R-matrix at the first two

levels of Fock representations for two and three strands. We then demand that the three

R-matrices acting on the three strands, R12, R23 and R13 act on its own pair of spaces

each. This means that R12 acts exclusively on the first two polynomials in the basis

MA(p(1))MB(p(2))MC(p(3)). This allows us to find the special normalization constants,

which we denote here by kijl . They are related to the normalization constants NAB(u|q, t)
featuring in the main text, e.g.

k12
2 =

NA1A2

(
u1
u2

∣∣∣q, t)
NA2A1

(
u2
u1

∣∣∣q, t) . (A.1)
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We also compute the affine Yangian limit of our R-matrix and verify that it is, indeed, of

the form (2.20).

Throughout this appendix, we use the following notation:

1. ∆ — coproduct of DIM algebra,

2. ∆op — opposite coproduct,

3. ρu — horizontal level one Fock representation of DIM,

4. ρ
(N)
u1,...,uN = (ρu1 ⊗ · · · ⊗ ρuN ) ◦ (∆⊗ id⊗ · · · ⊗ id) ◦ · · · ◦ (∆⊗ id) ◦∆,

5. MA(1),...,A(N)

(
u1, . . . , uN

∣∣∣q, t∣∣∣p(1), . . . , p(N)
)

— generalized Macdonald polynomial,

i.e. eigenfunctions of ρ
(N)
u1,...,uN (x+

0 ). Note that they satisfy the following filtration

property MAB∅

(
u1, u2, u3

∣∣∣q, t∣∣∣p(1), p(2), p(3)
)

= MAB

(
u1, u2

∣∣∣q, t∣∣∣p(1), p(2)
)

.

A.1 R-Matrix at level 1

A.1.1 (q, t)-deformed version

In this appendix, we formally write the R-matrix as R =
∑

i ai ⊗ bi and set R12 =∑
i ai ⊗ bi ⊗ 1, R23 =

∑
i 1 ⊗ ai ⊗ bi, R13 =

∑
i ai ⊗ 1 ⊗ bi. In order to obtain the

representation matrix of Rij , we need the generalized Macdonald polynomials MABC in

N = 3 case. The following are examples of MABC at level 1:M∅,∅,[1]

M∅,[1],∅
M[1],∅,∅

 = A(u1, u2, u3)

 p∅,∅,[1]

p∅,[1],∅
p[1],∅,∅

 (A.2)

A(u1, u2, u3) :=


1 − (q−t)u3√

q
t
t(u2−u3)

− (q−t)u3(qu3−tu2)
qt(u1−u3)(u3−u2)

0 1 − (q−t)
√

q
t
u2

q(u1−u2)

0 0 1

 . (A.3)

By definition of the R-matrix, one has

(∆op ⊗ id) ◦∆(x+
0 ) = R12(∆⊗ id) ◦∆(x+

0 )R−1
12 . (A.4)

Thus, ρu1u2u3(R12)MABC is proportional to an eigenfunction of ρu1u2u3((∆op⊗id)◦∆(x+
0 )),

where ρu1u2u3 = ρu1 ⊗ ρu2 ⊗ ρu3 . Its eigenfunctions M
(12)
DEF are obtained by replacing p(1)

with p(2) and u1 with u2, i.e.,

ρu1u2u3

(
(∆op ⊗ id) ◦∆(x+

0 )
)
M

(12)
ABC = eABCM

(12)
ABC , (A.5)

M
(12)
ABC := MBAC(u2, u1, u3|q, t|p(2), p(1), p(3)). (A.6)

Then, the eigenvalues eABC are the same as those for MABC . Therefore, if we set the

matrix

B(12) :=

 k
(12)
1 0 0

0 k
(12)
2 0

0 0 k
(12)
3


 1 0 0

0 0 1

0 1 0

A(u2, u1, u3)

 1 0 0

0 0 1

0 1 0

A−1(u1, u2, u3), (A.7)
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then the representation matrix of ρu1u2u3(R12) in the basis of generalized Macdonald poly-

nomials is the transposed matrix of B(12):

ρu1u2u3(R12)
(
M∅,∅,[1] M∅,[1],∅ M[1]∅,∅

)
=
(
M∅,∅,[1] M∅,[1],∅ M[1]∅,∅

)
tB(12), (A.8)

where k
(12)
i are the proportionality constants between M

(12)
ABC and ρ(R12)(MABC).

In the same way, from the formula

(id⊗∆op) ◦∆(x+
0 ) = R23(∆⊗ id) ◦∆(x+

0 )R−1
23 , (A.9)

the representation matrix of ρu1u2u3(R23) is

ρu1u2u3(R23)
(
M∅,∅,[1] M∅,[1],∅ M[1]∅,∅

)
=
(
M∅,∅,[1] M∅,[1],∅ M[1]∅,∅

)
tB(23), (A.10)

where

B(23) :=

 k
(23)
1 0 0

0 k
(23)
2 0

0 0 k
(23)
3


 0 1 0

1 0 0

0 0 1

A(u1, u3, u2)

 0 1 0

1 0 0

0 0 1

A−1(u1, u2, u3). (A.11)

The constants k
(ij)
l are determined as follows. At first, since the scalar multiples of

R-matrices are also R-matrices, we can normalize k
(12)
1 = k

(23)
3 = 1. This means that

R(1⊗ 1) = 1⊗ 1. Now we consider the basis change from MABC to power sum symmetric

functions:

B̃(ij) := tA(u1, u2, u3) tB(ij) tA−1(u1, u2, u3). (A.12)

Then B̃(ij) have the following form

B̃(12) =


1 0 0

b
(12)
2 ∗ ∗

b
(12)
3 ∗ ∗

 , B̃(23) =


∗ ∗ 0

∗ ∗ 0

b
(23)
1 b

(23)
2 1

 , (A.13)

where b
(ij)
n are functions of k

(ij)
l . Since when R12 acts to p

(3)
1 , the variables p

(1)
1 and p

(2)
1

must not appear, one gets the equations b
(12)
2 = b

(12)
3 = 0. Similarly, b

(23)
1 = b

(23)
2 = 0. By

solving these equations, one can see that

k
(12)
1 = 1, k

(12)
2 = −

√
q
t (qu2 − tu1)

q(u1 − u2)
, k

(12)
3 =

t(u1 − u2)
√

q
t

qu1 − tu2
, (A.14)

k
(23)
1 =

√
q
t (tu2 − qu3)

q(u2 − u3)
, k

(23)
2 =

t(u2 − u3)
√

q
t

qu2 − tu3
, k

(23)
3 = 1. (A.15)

In this way, one obtains an explicit expression of the R-Matrix at level 1

B̃(12) =


1 0 0

0

√
q
t
t(u1−u2)

qu1−tu2

(q−t)u1

qu1−tu2

0 (q−t)u2

qu1−tu2

√
q
t
t(u1−u2)

qu1−tu2

 , B̃(23) =


√

q
t
t(u2−u3)

qu2−tu3

(q−t)u2

qu2−tu3
0

(q−t)u3

qu2−tu3

√
q
t
t(u2−u3)

qu2−tu3
0

0 0 1

 .

(A.16)
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Thus, using the symmetry w.r.t. p(i) at different i, one also gets the representation matrix

of ρu1u2u3(R13)

B̃(13) =


√

q
t
t(u1−u3)

qu1−tu3
0 (q−t)u1

qu1−tu3

0 1 0

(q−t)u3

qu1−tu3
0

√
q
t
t(u1−u3)

qu1−tu3

 . (A.17)

Indeed, one can check that they satisfy the Yang-Baxter equation

B̃(12)B̃(13)B̃(23) = B̃(23)B̃(13)B̃(12). (A.18)

– 28 –



J
H
E
P
1
0
(
2
0
1
6
)
0
4
7

Of course, the same equations for B(ij) also follow. Incidentally,

tB(12) =


1 0 0

u3(q−t)(−tu1

√
q
t
+qu3

√
q
t
+qu1−qu3)

qt(u1−u3)(u2−u3)
√

q
t

−
√

q
t
(qu2−tu1)

q(u1−u2)
u1(q−t)
qu1−tu2

x −u2(q−t)(qu2−tu1)
qt(u1−u2)2

√
q
t (q

2u1u2+qtu2
1+qtu2

2−4qtu1u2+t2u1u2)
q(u1−u2)(qu1−tu2)

 (A.19)

x =
u3(q − t)

(
q2u2u3 − t2u2

2

√
q
t + t2u2u3

√
q
t + qtu2

2 + qtu1u2

√
q
t − 2qtu1u2 − qtu1u3

√
q
t + qtu1u3 − 2qtu2u3 + t2u1u2

)
qt2(u1 − u2)(u1 − u3)(u2 − u3)

√
q
t

(A.20)

tB(23) =



√
q
t
(tu2−qu3)

q(u2−u3)
u2(q−t)
qu2−tu3

0

u3(q−t)(tu2−qu3)
qt(u2−u3)2

√
q
t (q

2u2u3+qtu2
2+qtu2

3−4qtu2u3+t2u2u3)
q(u2−u3)(qu2−tu3) 0

−u3(q−t)
√

q
t (tu1

√
q
t
−tu2

√
q
t
−qu1+tu2)(tu2−qu3)

q2t(u1−u2)(u1−u3)(u2−u3)
y 1

 (A.21)

y =
u2(q − t)

(
q2u1u3 − t2u2

3

√
q
t + t2u1u3

√
q
t + qtu2

3 − qtu1u2

√
q
t + qtu1u2 − 2qtu1u3 + qtu2u3

√
q
t − 2qtu2u3 + t2u2u3

)
qt(u1 − u2)(u1 − u3)(qu2 − tu3)

.

(A.22)
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We do not write down the matrix B(13), since it is too complicated. The representation

matrix of (ρu1 ⊗ ρu2)(R) is the 2× 2 matrix block at the lower right corner of tB(12)

(ρu1 ⊗ ρu2)(R) =

 −
√

q
t
(qu2−tu1)

q(u1−u2)
(q−t)u1

qu1−tu2

− (q−t)u2(qu2−tu1)
qt(u1−u2)2

√
q
t (u1u2q2+tu2

1q+tu
2
2q−4tu1u2q+t2u1u2)

q(u1−u2)(qu1−tu2)

 . (A.23)

A.1.2 β-deformed version

The generalized Macdonald polynomials are reduced to the generalized Jack polynomials

in the limit q → 1 (t = qβ , ui = qu
′
i) (hereafter in this paragraph we substitute u′i by ui).

Hence, the β-deformed version of R-matrix R(β) is immediately obtained from the results

of the last paragraph. For example, for the representation ρu1 ⊗ ρu2 and in the basis of

generalized Jack polynomials,

R(β) =

(
k2 k3η

k2η k3(1 + η2)

)
. (A.24)

Here

k2 = lim
q→1

k
(12)
2 =

u1 − u2 − 1 + β

u1 − u2
, k3 = lim

q→1
k

(12)
3 =

u1 − u2

u1 − u2 + 1− β
, η =

1− β
u2 − u1

,

(A.25)

and the generalized Jack polynomials are

J∅,[1] = p
(2)
1 − ηp

(1)
1 , J[1],∅ = p

(1)
1 . (A.26)

Then,

R(β)
12 =


1 0 0

− (β−1)2

(u1−u3)(u3−u2)
β+u1−u2−1

u1−u2

β−1
β−u1+u2−1

− (β−1)2(β+u1−u2−1)
(u1−u2)(u1−u3)(u2−u3) −

(β−1)(β+u1−u2−1)
(u1−u2)2

β2−2β+u2
1+u2

2−2u1u2+1
(u1−u2)(−β+u1−u2+1)

 , (A.27)

R(β)
23 =


β+u2−u3−1

u2−u3

β−1
β−u2+u3−1 0

− (β−1)(β+u2−u3−1)
(u2−u3)2

β2−2β+u2
2+u2

3−2u2u3+1
(u2−u3)(−β+u2−u3+1) 0

(β−1)2(β+u2−u3−1)
(u1−u2)(u1−u3)(u2−u3)

(β−1)2(β+u2−u3−1)
(u1−u2)(u1−u3)(β−u2+u3−1) 1

 . (A.28)

In the basis of power sum symmetric functions,

R(β) =

 u2−u1
β−u1+u2−1

β−1
β−u1+u2−1

β−1
β−u1+u2−1

u2−u1
β−u1+u2−1

 . (A.29)
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A.2 R-Matrix at level 2

A.2.1 (q, t)-deformed version

The generalized Macdonald polynomials at level 2 in the N = 3 case are expressed as

t
(
M∅,∅,[2] M∅,∅,[1,1] M∅,[1],[1] M[1],∅,[1] M∅,[2],∅ M∅,[1,1],∅ M[1],[1],∅ M[2],∅,∅ M[1,1],∅,∅

)
= A t

(
M ′∅,∅,[2] M

′
∅,∅,[1,1] M

′
∅,[1],[1] M

′
[1],∅,[1] M

′
∅,[2],∅ M

′
∅,[1,1],∅ M

′
[1],[1],∅ M

′
[2],∅,∅ M

′
[1,1],∅,∅

)
,

(A.30)

where M ′ABC denotes the product of ordinary Macdonald polynomials MA(p(1))MB(p(2))

·MC(p(3)), and the matrix A is given below. In the same manner, one can get the repre-

sentation matrix of R. First of all, we choose B(12) at level 2 to be of the form

B̃(12) =



1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

b31 b32 ∗ ∗ 0 0 0 0 0

b41 b42 ∗ ∗ 0 0 0 0 0

b51 b52 b53 b54 ∗ ∗ ∗ ∗ ∗
b61 b62 b63 b64 ∗ ∗ ∗ ∗ ∗
b71 b72 b73 b74 ∗ ∗ ∗ ∗ ∗
b81 b82 b83 b84 ∗ ∗ ∗ ∗ ∗
b91 b92 b93 b94 ∗ ∗ ∗ ∗ ∗


. (A.31)

Then, one finds the proportionality constant such that all bij are zero just by solving the

equations bi1 = 0 (i = 3, 4, . . . , 9). We also checked that the representation matrix B̃ij

obtained in this way satisfies the Yang-Baxter equation.
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Examples of the generalized Macdonald polynomials.

A =



1 0 − q(q+1)(q−t)(t−1)u3√
q
t t(qt−1)(u2−qu3)

(q+1)(t−1)(t−q)u3(tu2−q2u3)
t(qt−1)(qu3−u1)(qu3−u2)

− (q−t)u3(tu3q
3−tu2q

2+tu3q
2−u3q

2−t2u3q+tu2)
qt(qt−1)(u2−u3)(qu3−u2)

− (q−1)(q+1)(q−t)(t−1)(t+1)u3

(qt−1)2(qu3−u2)

0 1 − (q−t)u3√
q
t t(tu2−u3)

(q−t)u3(qu3−t2u2)
qt(tu1−u3)(tu2−u3)

(q−t)u3

q(tu2−u3)

(q−t)u3(−qu2t
3+u3t

2+qu2t+q
2u3t−qu3t−qu3)

qt(qt−1)(u2−u3)(tu2−u3)

0 0 1 − (q−t)
√

q
t u2

q(u1−u2)
− (q−t)u3√

q
t t(qu2−u3)

− (q−1)(q−t)(t+1)u3√
q
t (qt−1)(u2−tu3)

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

− (q+1)(q−t)2(t−1)u2
3(q

2u3−tu2)√
q
t t

2(qt−1)(u2−u3)(u1−qu3)(u2−qu3)
− (q−t)u3(qu3−tu2)(q2u3−tu2)(tu3q

3−tu1q
2+tu3q

2−u3q
2−t2u3q+tu1)

q2t2(qt−1)(u1−u3)(u3−u2)(qu3−u1)(qu3−u2)

(q−1)(q+1)(q−t)(t−1)(t+1)u3(qu3−tu2)(q2u3−tu2)
qt(qt−1)2(u2−u3)(qu3−u1)(qu3−u2)

− (q−t)2
√

q
t u

2
3(qu3−t2u2)

q2t(tu1−u3)(u2−u3)(tu2−u3)
− (q−t)u3(qu3−tu2)(qu3−t2u2)
q2t(tu1−u3)(tu2−u3)(u3−u2)

− (q−t)u3(qu3−tu2)(qu3−t2u2)(−qu1t
3+u3t

2+qu1t+q
2u3t−qu3t−qu3)

q2t2(qt−1)(u1−u3)(tu1−u3)(tu2−u3)(u3−u2)

a37 a38 a39

− (q−t)u3√
q
t t(u2−u3)

− (q−t)u3(qu3−tu2)
qt(qu1−u3)(u3−u2)

− (q−1)(q−t)(t+1)u3(qu3−tu2)
q(qt−1)(u2−u3)(tu3−u1)

− q(q+1)(q−t)(t−1)u2√
q
t t(qt−1)(u1−qu2)

− (q−t)u2(tu2q
3−tu1q

2+tu2q
2−u2q

2−t2u2q+tu1)
qt(qt−1)(u1−u2)(qu2−u1)

− (q−1)(q+1)(q−t)(t−1)(t+1)u2

(qt−1)2(qu2−u1)

− (q−t)u2√
q
t t(tu1−u2)

(q−t)u2

q(tu1−u2)

(q−t)u2(−qu1t
3+u2t

2+qu1t+q
2u2t−qu2t−qu2)

qt(qt−1)(u1−u2)(tu1−u2)

1 − (q−t)
√

q
t u2

q(qu1−u2)
− (q−1)(q−t)

√
q
t t(t+1)u2

q(qt−1)(u1−tu2)

0 1 0

0 0 1


(A.32)
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a37 =
u3(q − t)

(
q2u2((t+ 1)u2u3 − u1(u2 + u3)) + q

(
t2(−u1)u2u3 + t

(
u1
(
2u22 + 2u3u2 + u23

)
− u2

(
u22 + 2u3u2 + 2u23

))
+ u22u3

)
+ tu2u3(t(u2 + u3)− (t+ 1)u1)

)
qt(u1 − u2)(u1 − u3)(qu2 − u3)(tu3 − u2)

(A.33)

a38 = −
(q − t)2u2u3

(
u2u3t

2 − qu22t− qu23t+ qu1u2t− u1u2t+ qu1u3t− u1u3t− qu2u3t+ u2u3t+ qu2u3
)

q
√

q
t t

2(u1 − u2)(u1 − u3)(qu2 − u3)(u2 − tu3)
(A.34)

a39 = −
(q − 1)(q − t)2(t+ 1)u2u3

(
u2u3q

2 − u22q − u23q − tu1u2q + u1u2q − tu1u3q + u1u3q + tu2u3q − u2u3q + tu2u3
)

q
√

q
t t(qt− 1)(u1 − u2)(u1 − u3)(qu2 − u3)(u2 − tu3)

. (A.35)

The representation matrix of R in the basis of generalized Macdonald polynomials

− (q−Qt)(q2−Qt)
q(q−Q)(Q−1)t 0

Q(q−t)
√

q
t (Qt−1)

q(qQ−1)(Q−t)

0
(q−Qt)(q−Qt2)
q(Q−1)t(Qt−1) − (q−1)(q−Q)Q(q−t)

√
q
t t(t+1)

q(qQ−1)(Q−t)(qt−1)

(q+1)(q−t)(t−1)(q−Qt)(q2−Qt)
(q−Q)2(Q−1)

√
q
t t

2(qt−1)
(q−t)(q−Qt)(q−Qt2)
q(Q−1)

√
q
t t

2(Qt−1)2
v33

− (q−t)(q−Qt)(q2−Qt)(Qtq3−q2−t2q−Qtq+tq+t)
q2(q−Q)(Q−1)2(qQ−1)t2(qt−1) − (q−t)(q−Qt)(q−Qt2)

q(Q−1)(qQ−1)t2(Qt−1) v43

− (q−1)(q+1)(q−t)(t−1)(t+1)(q−Qt)(q2−Qt)
q(q−Q)(Q−1)t(t−Q)(qt−1)2 − (q−t)(q−Qt)(q−Qt2)(−qt3−qt2+qQt2+t2+q2t−qQ)

q2(Q−1)2t2(t−Q)(qt−1)(Qt−1) v53

Q(q−t)(Qtq3−Qq2+Qtq2−tq2−Qt2q+t)
(qQ−t)(q2Q−t)(qt−1) − (Q−1)Q(q−t)t

(qQ−t)(qQ−t2)

− (q−1)q(q+1)(Q−1)Q(q−t)(t−1)t(t+1)
(qQ−t)(q2Q−t)(qt−1)2

Q(q−t)(−qt3+Qt2+qt+q2Qt−qQt−qQ)
(qQ−t)(qt−1)(qQ−t2)

v34 v35

v44 −Q(q−t)2(Qq2+Qtq2−t2q−Qtq+tq−t2)
q(qQ−1)(qQ−t)t(qQ−t2)

− (q−1)(q+1)Q(q−t)2(t−1)(t+1)(Qq2+Qq−Qtq+tq−t2−t)
(Q−t)(qQ−t)(q2Q−t)(qt−1)2 v55


(A.36)

v33 =
Qq4+Qtq4+Q2t3q3+Q3t2q3−4Qt2q3+Qq3−Q3tq3−4Q2tq3−3Qtq3+tq3−4Q3t3q2+Qt3q2+3Q3t2q2

q(q−Q)(qQ−1)t(t−Q)(Qt−1)
(A.37)

+
12Q2t2q2+3Qt2q2+Q3tq2−4Qtq2+Q3t4q+Q4t3q−3Q3t3q−4Q2t3q−Qt3q−4Q3t2q+Qt2q+Q2tq+Q3t4+Q3t3

q(q−Q)(qQ−1)t(t−Q)(Qt−1)
(A.38)

v43 =
(q−t)

√
q
t

(
−Qq3+Q3tq3+Q2tq3−Qtq3−Q3t2q2−2Q2t2q2+2Qt2q2−Q3tq2+3Qtq2−tq2+2Q3t2q−2Q2t2q−Qt2q−Q2tq+2Qtq+Q2t3−Qt2

)
q2(Q−1)(qQ−1)2(Q−t)t

(A.39)
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v53 = −
(q−1)(t+1)(q−t)

√
q
t

(
q3Q+q2

(
Q3(t−1)+Q2

(
t2−1

)
+Q
(
−2t2−3t+1

)
+t
)
+qQt

(
Q2(1−2t)+2Q(t+1)+t2+t−2

)
−Q2t3

)
q2(Q−1)(qQ−1)(qt−1)(Q−t)2

(A.40)

v44 =
q7Q3t−q6Q2

(
2Qt2−Qt+t+1

)
+q5Qt

(
Q3t2−Q2

(
t2+t+2

)
+Q
(
t2−3t+5

)
+2t−1

)
−q4Qt

(
Q3t+Q2

(
3t2−7t+2

)
+Q
(
−13t2+11t−5

))
q(Q−1)t(qQ−1)(qt−1)(qQ−t)(q2Q−t)

(A.41)

+
−q4Qt(6t2−4t+1)+q3t2

(
Q3
(
t2−4t+6

)
+Q2

(
−5t2+11t−13

)
+Q
(
2t2−7t+3

)
+t
)
+qQt3

(
Qt2+(Q−1)t+2

)
−Qt4+q2t2

(
Q3(t−2)t+Q2

(
−5t2+3t−1

)
+Q
(
2t2+t+1

)
−1
)

q(Q−1)t(qQ−1)(qt−1)(qQ−t)(q2Q−t)
(A.42)

v34 = −
q(q+1)Q(q−t)(t−1)

(
−Qq3+Q2tq3−2Q2t2q2+Qt2q2+Q2tq2+2Qtq2−2tq2+Q3t2q−3Q2t2q+t2q−2Q2tq+2Qtq+tq+Q2t3+Q2t2−Qt2−t2

)
(q−Q)(qQ−t)(q2Q−t)

√
q
t t(qt−1)(Qt−1)

(A.43)

v35 =
Q(q−t)

(
Qq3−Q2q2+2Q2t2q2−2Qt2q2−t2q2−Q2tq2−2Qtq2+2tq2−Q2t3q+Qt3q+t3q−Q3t2q+3Q2t2q−t2q+2Q2tq−Qtq−Q2t3

)
(q−Q)(qQ−t)

√
q
t t(Qt−1)(qQ−t2)

(A.44)

v55 =
q5Q2t+q4Q

(
Q2
(
2t3+2t2−t−1

)
+Q
(
−5t3−5t2+t

)
+t2(t+1)

)
+q3t

(
Q4t2+Q3

(
−6t3−7t2+t+2

)
+Q2t

(
t3+13t2+11t+3

)
−Qt

(
t3+3t2+4t+2

)
+t4

)
q(Q−1)t(qt−1)(Q−t)(qQ−t)(qQ−t2)

(A.45)

+
−q2t2

(
Q4−Q3

(
2t3+4t2+3t+1

)
+Q2

(
3t3+11t2+13t+1

)
+Qt

(
2t3+t2−7t−6

)
+t2

)
−qQt4

(
Q2(t+1)+Q

(
t2−5t−5

)
−t3−t2+2t+2

)
−Q2t6

q(Q−1)t(qt−1)(Q−t)(qQ−t)(qQ−t2)
. (A.46)

The representation matrix of R in the basis of power sum symmetric functions,



r11 − (q−1)q(Q−1)Q(q−t)t(t+1)
2(qQ−t)(q2Q−t)(qQ−t2)

(q−1)(Q−1)Q(q−t)
√

q
t t

2(t+1)

2(qQ−t)(q2Q−t)(qQ−t2) r14 − (q−1)(Q−1)Q(q−t)t2(t+1)
2(qQ−t)(q2Q−t)(qQ−t2)

− q(q+1)(Q−1)Q(q−t)(t−1)t
2(qQ−t)(q2Q−t)(qQ−t2) r22

(Q−1)Q(q−t)
√

q
t t(2Qq

2−t2q+tq−t2−t)
2(qQ−t)(q2Q−t)(qQ−t2)

(q+1)(Q−1)Q(q−t)(t−1)t2
2(qQ−t)(q2Q−t)(qQ−t2) r25

q2(q+1)(Q−1)Q(q−t)(t−1)
(qQ−t)(q2Q−t)

√
q
t (qQ−t2)

q(Q−1)(q−t)(Qq2+Qtq2+Qq−Qtq−2t2)
(qQ−t)(q2Q−t)

√
q
t (qQ−t2)

r33 − q(q+1)(Q−1)Q(q−t)(t−1)t
(qQ−t)(q2Q−t)

√
q
t (qQ−t2)

q(Q−1)Q(q−t)(2Qq2−t2q+tq−t2−t)
(qQ−t)(q2Q−t)

√
q
t (qQ−t2)

r41
(q−1)q2(Q−1)Q(q−t)(t+1)
2(qQ−t)(q2Q−t)(qQ−t2) − (q−1)q(Q−1)Q(q−t)

√
q
t t(t+1)

2(qQ−t)(q2Q−t)(qQ−t2) r44
(q−1)q(Q−1)Q(q−t)t(t+1)
2(qQ−t)(q2Q−t)(qQ−t2)

− q
2(q+1)(Q−1)Q(q−t)(t−1)
2(qQ−t)(q2Q−t)(qQ−t2) r52

(Q−1)(q−t)
√

q
t t(Qq

2+Qtq2+Qq−Qtq−2t2)
2(qQ−t)(q2Q−t)(qQ−t2)

q(q+1)(Q−1)Q(q−t)(t−1)t
2(qQ−t)(q2Q−t)(qQ−t2) r55


(A.47)

r11 = −
q(Q− 1)t

(
−2Q2q2 −Qq2 +Qtq2 +Qt2q +Qq + 2Qtq −Qt2 − 2t2 +Qt

)
2(qQ− t) (q2Q− t) (qQ− t2)

, (A.48)

r41 =
(q − t)

(
Q2q3 +Qq3 +Q2tq3 −Qtq3 +Q2q2 − 2Qt2q2 −Qq2 +Q2tq2 −Qtq2 − 2Qt2q + 2t2q − 2Qtq + 2t3

)
2(qQ− t) (q2Q− t) (qQ− t2)

(A.49)
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r22 = −
q(Q− 1)t

(
−2Q2q2 +Qq2 +Qtq2 +Qt2q +Qq − 2Qtq +Qt2 − 2t2 +Qt

)
2(qQ− t) (q2Q− t) (qQ− t2)

(A.50)

r52 = −
(q − t)

(
−Q2q3 −Qq3 +Q2tq3 −Qtq3 +Q2q2 + 2Qt2q2 −Qq2 −Q2tq2 +Qtq2 − 2Qt2q + 2t2q + 2Qtq − 2t3

)
2(qQ− t) (q2Q− t) (qQ− t2)

(A.51)

r33 =
Q2q4 −Q2t2q3 +Q3tq3 − 3Q2tq3 +Qtq3 +Qt3q2 + 2Q2t2q2 − 2Qt2q2 −Q2tq2 −Q2t3q + 3Qt3q − t3q +Qt2q −Qt4

(qQ− t) (q2Q− t) (qQ− t2)
(A.52)

r14 =
Q(q − t)

(
2Q2q3 − 2Qt2q2 + 2Q2tq2 − 2Qtq2 −Qt3q + t3q −Qt2q + t2q − 2Qtq +Qt3 + t3 −Qt2 + t2

)
2(qQ− t) (q2Q− t) (qQ− t2)

(A.53)

r44 = −
q(Q− 1)t

(
−2Q2q2 −Qq2 +Qtq2 +Qt2q +Qq + 2Qtq −Qt2 − 2t2 +Qt

)
2(qQ− t) (q2Q− t) (qQ− t2)

(A.54)

r25 =
Q(q − t)

(
2Q2q3 − 2Qt2q2 − 2Q2tq2 + 2Qtq2 +Qt3q − t3q −Qt2q + t2q − 2Qtq +Qt3 + t3 +Qt2 − t2

)
2(qQ− t) (q2Q− t) (qQ− t2)

(A.55)

r55 = −
q(Q− 1)t

(
−2Q2q2 +Qq2 +Qtq2 +Qt2q +Qq − 2Qtq +Qt2 − 2t2 +Qt

)
2(qQ− t) (q2Q− t) (qQ− t2)

(A.56)

where Q = u1
u2

.
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A.2.2 β-deformed version

The representation matrix of R(β) in the basis of generalized Jack polynomials

R(β) =



(a+β−2)(a+β−1)
(a−1)a 0 − (β−1)(a+β)

(a+1)(a−β)

0 (a+β−1)(a+2β−1)
a(a+β) − 2(a−1)(β−1)

(a+1)(a−β)(β+1)

−2(β−1)β(a+β−2)(a+β−1)
(a−1)2a(β+1)

− (β−1)(a+β−1)(a+2β−1)
a(a+β)2 s33

− (β−1)(a+β−2)(a+β−1)(−β2+β+2a+2)
(a−1)a2(a+1)(β+1)

(β−1)(a+β−1)(a+2β−1)
a(a+1)(a+β) − (β−1)(a3+βa2−a2+β2a−6βa+4a+β3−3β2+2β)

a(a+1)2(a−β)

4(β−1)β(a+β−2)(a+β−1)
(a−1)a(a−β)(β+1)2 − (β−1)(a+β−1)(a+2β−1)(−2β2+2aβ−β+1)

a2(a−β)(β+1)(a+β)
−2(β−1)(a3+βa2−a2+4β2a−6βa+a−2β2+3β−1)

a(a+1)(a−β)2(β+1)

(β−1)(β2−β−2a−2)
(β+1)(−a+β−2)(−a+β−1)

a(β−1)
(a−2β+1)(a−β+1)

4a(β−1)β
(a−β+1)(a−β+2)(β+1)2

(β−1)(2β2−2aβ+β−1)
(β+1)(−a+β−1)(−a+2β−1)

−2(β−1)β(a3+βa2−a2+β2a−6βa+4a+β3−3β2+2β)
(a−1)(a−β+1)(a−β+2)(β+1)(a+β) − (β−1)(a3+βa2−a2+4β2a−6βa+a−2β2+3β−1)

(a−1)(a−2β+1)(a−β+1)(a+β)

s44 − (a−3β+3)(β−1)2

(a+1)(a−2β+1)(a−β+1)

− 4(β−1)2β(−a+3β−3)
(β+1)2(−a+β−2)(−a+β−1)(β−a)

4β5−8aβ4−8β4+5a2β3+20aβ3+β3−2a3β2−5a2β2−16aβ2+7β2+a4β−2a3β+4aβ−5β+a4+2a2+1
a(a−2β+1)(a−β)(a−β+1)(β+1)


(A.57)

s33 =
a4 + 2βa3 − 2a3 + 3β2a2 − 8βa2 + 3a2 + 4β3a− 14β2a+ 14βa− 4a+ 2β4 − 6β3 + 9β2 − 6β + 2

(a− 1)(a+ 1)(a− β)(a+ β)
(A.58)

s44 =
β5 − 5β4 + 2a2β3 − 4aβ3 + 7β3 + 16aβ2 + β2 + a4β + 2a3β − 5a2β − 20aβ − 8β + a4 + 2a3 + 5a2 + 8a+ 4

a(a+ 1)(a− β + 1)(a− β + 2)(β + 1)
. (A.59)
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The representation matrix of R(β) in the basis of power sum symmetric functions

a(a2−2βa+2a+β2−3β+1)
(a−2β+1)(a−β+1)(a−β+2)

a(β−1)
(a−2β+1)(a−β+1)(a−β+2) − a(β−1)

(a−2β+1)(a−β+1)(a−β+2)

(β−1)(2a2−4βa+4a+2β2−5β+2)
(−a+β−2)(−a+β−1)(−a+2β−1)

a(β−1)
(a−2β+1)(a−β+1)(a−β+2)

a(β−1)β
(a−2β+1)(a−β+1)(a−β+2)

a(a2−2βa+2a−β)
(a−2β+1)(a−β+1)(a−β+2) − a(a−2β+2)(β−1)

(a−2β+1)(a−β+1)(a−β+2) − a(β−1)β
(a−2β+1)(a−β+1)(a−β+2)

(β−1)(2β2−aβ−5β+a+2)
(−a+β−2)(−a+β−1)(−a+2β−1)

− 2a(β−1)β
(a−2β+1)(a−β+1)(a−β+2) − 2a(a−2β+2)(β−1)

(a−2β+1)(a−β+1)(a−β+2)
a3−2βa2+2a2+β2a−3βa+a−2β3+7β2−7β+2

(a−2β+1)(a−β+1)(a−β+2)
2a(β−1)β

(a−2β+1)(a−β+1)(a−β+2) − 2a(a−2β+2)(β−1)
(a−2β+1)(a−β+1)(a−β+2)

(β−1)(2a2−4βa+4a+2β2−5β+2)
(−a+β−2)(−a+β−1)(−a+2β−1) − a(β−1)

(a−2β+1)(a−β+1)(a−β+2)
a(β−1)

(a−2β+1)(a−β+1)(a−β+2)

a(a2−2βa+2a+β2−3β+1)
(a−2β+1)(a−β+1)(a−β+2) − a(β−1)

(a−2β+1)(a−β+1)(a−β+2)

a(β−1)β
(a−2β+1)(a−β+1)(a−β+2)

(β−1)(2β2−aβ−5β+a+2)
(−a+β−2)(−a+β−1)(−a+2β−1) − a(a−2β+2)(β−1)

(a−2β+1)(a−β+1)(a−β+2) − a(β−1)β
(a−2β+1)(a−β+1)(a−β+2)

a(a2−2βa+2a−β)
(a−2β+1)(a−β+1)(a−β+2)


(A.60)

where a = u1 − u2.
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B Realization of rank N representation by generalized Macdonald poly-

nomials

One can consider a representation of the DIM algebra which is called rank N representation

and can be realized in terms of a basis |~u,~λ〉 called AFLT basis, [142]. This representation

is given by the N -fold tensor product of the level (0,1) representations (i.e. the vertical

representations in terms of our paper, which are spectral dual to the level (1,0) (horizontal)

representations) which are realized by free bosons for the refined topological vertex. In

this appendix, which is based on the spectral duality, we present conjectures for explicit

expressions of the action of x+
±1 on the generalized Macdonald polynomials, which are

defined to be eigenfunctions of the Hamiltonian X
(1)
0 . We also conjecture the eigenvalues

of higher Hamiltonians acting on the generalized Macdonald polynomials from those of

the spectral dual generators provided in [142]. Our conjectures mean that the generalized

Macdonald polynomials explicitly realize the spectral dual basis to |~u,~λ〉 in [142].

B.1 Action of x+
±1 on generalized Macdonald polynomials

We use the notation

X(1)(z) =
∑
n∈Z

X(1)
n z−n = ρ(N)

u1,...,uN
(x+(z)). (B.1)

For an N -tuple of Young diagrams ~λ = (λ(1), . . . λ(N)), the generalized Macdonald polyno-

mials M~λ
are defined to be eigenfunctions of X

(1)
0 with the eigenvalues

e
(1)
~λ

=

N∑
k=1

uk

1 + (t− 1)

`(λ(k))∑
i=1

(qλ
(k)
i − 1)t−i

 . (B.2)

M~λ
is renormalized as M~λ

= m~λ
+ · · · , in terms of the product of the monomial symmetric

functions m~λ
= mλ(1) ⊗ · · · ⊗mλ(N) . Their integral forms M̃~λ

are defined by

M̃~λ
= M~λ

×
∏

1≤i<j≤N
Gλ(j),λ(i)(uj/ui|q, t)

N∏
k=1

∏
(i,j)∈λ(k)

(1− qλ
(k)
i −jtλ

(k)T
j −i+1), (B.3)

where λT is the transposed of Young diagram λ and we use the Nekrasov factor (2.34). It is

expected that the basis M̃~λ
corresponds to the AFLT basis5 in [142] and realizes the rank

N representation through the spectral duality S. That is to say, for any generator a in the

DIM algebra, that the action of ρ
(N)
u1,...,uN ◦ S(a) on the integral forms M̃~λ

are the same as

the action of ρrankN (a) on the basis |~u,~λ〉 [142]. Indeed, one can check that the action of

x+
±1 on the generalized Macdonald polynomials is given by the following conjecture. Let

us denote adding a box to or removing it from the Young diagram ~λ through A(~λ) and

R(~λ) respectively. We also use the notation χ(`,i,j) = u`t
−i+1qj−1 for the triple x = (`, i, j),

where (i, j) ∈ λ(`) are the coordinates of the box of the Young diagram λ(`).

5Originally, the AFLT basis is defined by the property that the inner products and matrix elements of

vertex operators reproduce the Nekrasov factor. In [65, 66], the integral forms M̃~λ were already conjectured

for the AFLT basis in this original sense.
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Conjecture B.1.

X
(1)
1 M̃~λ

?
=

∑
|~µ|=|~λ|−1
~λ⊃~µ

c̃
(+)
~λ,~µ
M̃~µ, X

(1)
−1M̃~λ

?
=

∑
|~µ|=|~λ|+1
~λ⊂~µ

c̃
(−)
~λ,~µ
M̃~µ, (B.4)

where

c̃
(+)
~λ,~µ

= ξ(+)
x

∏
y∈A(~λ)

(1− χxχ−1
y (q/t))∏

y∈R(~λ)
y 6=x

(1− χxχ−1
y )

, x ∈ ~λ \ ~µ, (B.5)

c̃
(−)
~λ,~µ

= ξ(−)
x

∏
y∈R(~λ)

(1− χyχ−1
x (q/t))∏

y∈A(~λ)
y 6=x

(1− χyχ−1
x )

, x ∈ ~µ \ ~λ, (B.6)

and for the triple (`, i, j), we put

ξ
(+)
(`,i,j) = (−1)N+`p−

`+1
2 t(N−`)iq(`−N+1)j

∏N−`
k=1 u`+k

uN−`−1`

, ξ
(−)
(`,i,j) = (−1)`p

`−1
2 t(`−2)iq(1−`)j

∏`−1
k=1 uk

u`−2`

.

(B.7)

The actions of X
(1)
±1 in this conjecture come from the corresponding actions of the

generators f1 and e1 in [142] respectively, i.e., those of x−1 and x+
1 in our notation, which

are the spectral duals of x+
1 and x+

−1. Incidentally, introducing the coefficients c
(±)
~λ,~µ

=

c
(±)
~λ,~µ

(q, t|u1, . . . , uN ) by

c
(±)
~λ,~µ

=
∏

1≤i<j≤N

Gµ(j),µ(i)(uj/ui|q, t)
Gλ(j),λ(i)(uj/ui|q, t)

N∏
k=1

∏
(i,j)∈µ(k)(1− qµ

(k)
i −jtµ

(k)T
j −i+1)∏

(i,j)∈λ(k)(1− qλ
(k)
i −jtλ

(k)T
j −i+1)

× c̃(±)
~λ,~µ
, (B.8)

i.e. X
(1)
±1M~λ

=
∑

~µ c
(±)
~λ,~µ
M~µ, we can further conjecture that

c
(+)
~λ,~µ

(q, t|u1, . . . , uN )
?
= −c(−)

(µ(N)T,...,µ(1)T),(λ(N)T,...,λ(1)T)
(t−1, q−1|p(N−1)/2uN , . . . , p

(N−1)/2u1).

(B.9)

We have checked conjecture B.1 with respect to X
(1)
1 and formula (B.9) with the computer

for |~λ| ≤ 5 for N = 1, for |~λ| ≤ 3 for N = 2, 3 and for |~λ| ≤ 2 for N = 4. This conjecture B.1

with respect to X
(1)
−1 has been also checked for the same sizes of ~µ.

B.2 Higher Hamiltonians

For each integer k ≥ 1, the spectral dual of ψ+
k is Hk defined by H1 = X

(1)
0 and

Hk = [X
(1)
−1 , [X

(1)
0 , · · · , [X(1)

0︸ ︷︷ ︸
k−2

, X
(1)
1 ] · · · ]], k ≥ 2. (B.10)

According to [27], Hk are spectral dual to ψ+
k and consequently mutually commuting:

[Hk, Hl] = 0. Thus, the generalized Macdonald polynomials M~λ
are automatically eigen-

functions of all Hk, i.e. HkM~λ
= e

(k)
~λ
M~λ

. and Hk can be regarded as higher Hamiltoni-

ans for the generalized Macdonalds polynomials. Since Hk are the spectral duals to ψ+
k ,

Hk = S(ψ+
k ), their eigenvalues are expected to be

– 39 –
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Conjecture B.2.

e
(k)
~λ

?
=

(1− q)k−1(1− t−1)k−1

1− p−1

∮
dz

2π
√
−1z

N∏
i=1

B+
λ(i)(uiz)z−k, (B.11)

where for the partition λ we define

B+
λ (z) =

1− qλ1−1tz

1− qλ1z

∞∏
i=1

(1− qλit−iz)(1− qλi+1−1t−i+1z)

(1− qλi+1t−iz)(1− qλi−1t−i+1z)
. (B.12)

The eigenvalues e
(k)
~λ

correspond to those of the rank N representation of the generators

ψ+
k in [142]. In the k = 1 case, the conjecture (B.11) can be proven. We have checked it

for |~λ| ≤ 5 for N = 1, for |~λ| ≤ 3 for N = 2, for |~λ| ≤ 2 for N = 3 and for |~λ| ≤ 1 for

N = 4 in the k ≤ 5 case.
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