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Abstract

We discuss the relevance of quantum reference frames in the description of
mixed particle states. We show that the notion of a rest frame for mixed
particles, which is classically ill-defined, can be introduced in the context of
quantum frames. We discuss the possible implications, displaying a new form
of frame-dependent entanglement that characterizes reactions involving mixed
particles, and suggest a possible route to extract observables related to such an
entanglement.
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1. Introduction

The principle of relativity is one of the very foundations of physics. The equivalence of
physical laws in all the admissable reference frames is a basic requirement for any sensible
theory. The notion of reference frames, and the classes thereof on which the requirement of
form invariance of the physical laws is to be demanded, have changed radically in time.
Special relativity has updated the notion of inertial frames by the inclusion of clocks, while
general relativity has enlarged the class of equivalent frames by including non-inertial frames
and by the requirement of general covariance. But ultimately a reference frame is an
abstraction for a reference physical system. Since physical systems are believed to be fun-
damentally quantum, a generalized notion of quantum reference frames has to be introduced.
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Historically quantum reference frames have first emerged in quantum information [1-13], but
the related issue of relational observables has been discussed extensively in Quantum Gravity
[14-17], where the notion of quantum reference frame may play an important role. Along the
relational paradigm, advocated for instance in [6, 18], in the last years a foundational and
relational approach to quantum reference frames has been developed [19-28], together with a
notion of quantum transformations between reference frames [19, 20, 22].

In this paper, we wish to discuss the relevance of quantum reference frames in particle
physics, in particular with respect to mixed particles such as neutrinos and neutral mesons.
The fundamental role of the symmetry group of transformations among reference frames was
elucidated by Wigner [29]. Specifically, particles are strictly related to the representations of
the Poincaré group of special relativity. We here show that mixed particle states require
quantum reference frames to be properly interpreted. We show that the ‘rest frame’ of a mixed
particle, indeed, can only arise through a (strictly) quantum transformation of frames. Among
the peculiarities of quantum frames, we discuss the relativity of entanglement, and how the
latter may characterize reactions involving mixed particles. Our analysis hints at the necessity
of generalizing the work of [29] in the sense of quantum frame transformations in order to
account for mixed elementary particles (neutrinos). For what concerns flavor oscillations, the
introduction of quantum reference frames does not affect the transition probabilities. The
paper is structured as follows: in section 2 we introduce the neutrino flavor states and compare
them to the characterization of elementary particles made by Wigner, showing, in particular,
that it is necessary to introduce quantum reference frames in order to define the rest frame of
mixed particles. In section 3 we analyze one of the most important consequences of quantum
reference frames, represented by a relativization of quantum entanglement, and how such
relative entanglement may show up in the decay of mixed particles. In section 4 we provide
elucidations on the possible observable signatures of the frame-related entanglement. Finally,
section 5 is devoted to the conclusions.

2. Flavor neutrino states

The seminal paper by Wigner [29] achieved the complete classification of the projective
representations of the Poincaré group. One particle states of relativistic quantum field theory
belong to any of the representations |m, s) distinguished by mass m and spin s, which are
essentially related to the Casimir operators of the Poincaré group. Tipically one employs the
momentum basis [p”, o), of the simultaneous eigenstates of the translation operators P",
with P¥|p", 0)s=p"|P", 0)ms on which the Poincaré group acts unitarily as [29, 30]
U(A)|pﬂ’ U>m,s = Z(,-’ Défl_(W(A, P))|A5PV, Jl)m,s and U((l) |P”’ a>m,s = eiip“aﬂlp“’ U>m,s-
Here A labels the homogeneous Lorentz transformations, a’ is the translation 4-vector, the
coefficients D, (R) implement the 2s+1-dimensional unitary irreducible representation of the
rotation group (we are assuming m > 0), and W(A, p) is the Wigner rotation. Elementary
particles are then understood as belonging to the unitary irreducible representations of the
Poincaré group with a given mass m and a given spin s.

There is one notable exception to this scheme. On the one hand, flavor neutrinos [31-36]
are considered elementary particles, on the other hand, they do not belong, strictly speaking,
to a unitary irreducible representation of the Poincaré group. Taking the Pontecorvo states
literally, the electron neutrino state is given by the superposition
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|P, e> = COS elplﬂ>ml + sin 0|p2“>m27 @))]

where we ignore spin and consider only two flavors for simplicity. The momenta are specified
as pjﬂ = (p, w;) with the on-shell energies w; = \/p> + m 1.2. Clearly, the states of equation (1)
are eigenstates of the 3-momentum P|p, e) =p|p, e), but not eigenstates of the energy P°. A
similar expression holds for the muon neutrino state. In each case, flavor neutrinos involve
two distinct mass hyperboloids and two distinct irreducible representations m; and m,. While
the notion of elementary particle is more a matter of nomenclature, the peculiar superposition
of equation (1) has a concrete impact e.g. on the weak interaction processes. Consider for
instance the 3 decay n — p + ¢~ + v,. The total 4-momentum conservation for such a process
cannot be enforced unless at least one of the other particles n, p, e carries a 4-momentum
uncertainty (specifically an energy uncertainty, for the state of equation (1)) which is able to
compensate for the lack of definiteness in the 4-momentum of v,. This kind of ‘essential’
uncertainty is instead not required for all those processes which involve only on-shell
asymptotic states (e.g. ¢~ + e’ — 27).

The rest frame of flavor neutrinos—for particles with well-defined 4-momentum |p*),,
there is a natural notion of ‘rest frame’, which describes the physics as ‘sitting on the particle’.
In its rest frame, the particle has the state | p(g Y = |(0, m)),, corresponding to vanishing
3-momentum. There is a unique Lorentz transformation A, up to spatial rotations, that takes
the particle from the frame in which it has momentum p* to its rest frame, where it has
momentum p(g), namely

p) = A)p”. Q)

Assume, without loss of generality, that in a given frame the particle has 4-momentum
pt = (wlp2 +m?%,0,0, p) (@f this is not the case, just perform a rotation to bring the
momentum along the z-axis). Then the transformation to the rest frame is performed by the
boost

00
0 10 0
Ay = 3
v 0 01 0 )
2 g A

m
Notice that the transformation is controlled by the c¢-number parameter

1) = cosh’! (7”71:'"2

state of equation (1)? We want the neutrino state to have a vanishing 3-momentum in its own
rest frame, namely

). What is the equivalent notion of rest frame for a flavor neutrino with

|0, e) = cos8|(0, my), e),, + sinb|(0, my), e),, )

where we have written out explicitly the momentum components. It is easy to recognize that
there is no classical Lorentz transformation (equation (3)), regulated by a c-number boost
parameter, which is able to transform the state of equation (1) into the state of equation (4).
To see this, let us, for instance, try to annihilate the 3-momentum p of the m; component
|(p, p* + mlz))ml. Assuming, without loss of generality, the 3-momentum along the z-axis,
we perform a Lorentz boost A; of the form equation (3), with boost parameter

2 mz
1P, = cosh’! (Lh) We then have
m
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UADIp, e) = cos 6|0, m)),, + sinb|(p, E)), )
0.0 p(p? +ml2 —p? +n122)) and E~ _ J(p? +m|2)(p2 +mzz) -

m

)2 .
" Evidently the state of

with p = (
equation (5) is not the rest state that we sought (equation (4)). More generally, a classical
Lorentz transformation should have a boost parameter 1 such that \/p> + m/ sinhe) +

pcoshyp =0 = /p> + m22 sinh 1) + p cosh) in order to transform the state of equation (1)

into the state of equation (4). This is impossible, since \/ P>+ ml = \/pz + mj3 . Albeit no
classical Lorentz transformation can bring the state of equation (1) to the state of equation (4),
a quantum Lorentz transformation can do the trick. By this, we mean that an appropriate
superposition of Lorentz boosts can indeed perform the transformation to the ‘rest frame’ of
the neutrino. Consider the Hilbert spaces H,, spanned by the one particle states of mass m;

and the projectors P; = f d'p 0(p°) 6(p'p, — M) p" Y, (p"|», acting naturally on the full
one particle sector H = @,,~0H,,. On the subpace Hn, the projector P; is simply the
identity, while P; annihilates all the states with masses m = m;. The transformation to the ‘rest
frame’ of the neutrino can then be realized by the operator

U=UNMN)P + UA)P,. 6)

The Lorentz boosts A; have the form of equation (3) for the mass m;. More simply we can
promote the classical Lorentz boost of equation (3) to an operator. Here it is the boost
parameter itself ¢, which is turned into an operator fp = costr ! (H (P ‘}AL)*%), with A = 130,
and the hats were used to remark that these quantities are operators on H. The quantum
Lorentz boost has then the form

HAHP'B)y> 0 0 —B(P"B)>

A = 0 10 0 '

v 0 0 1 0 @
~P(P"By2 0 0 HE'E)

The corresponding unitary representation U (A) transforms the neutrino state of equation (1)
into its rest form (equation (4)). The action of U (A) clearly reduces to that associated to an
ordinary Lorentz boost when acting on states with definite 4-momentum:

URN)p ) = UNP) P = IAP)P” I 8)

with AY(p) provided by equation (3). Equation (7) also defines the action of U (A) on a
generic element of H by linearity.

The quantum nature of the transformation reveals that the ‘rest frame’ of a flavor neutrino
cannot be understood as a classical reference frame, but only as a quantum reference frame.
Transformations like that of equation (7), in which the parameter of the transformation itself is
an operator, do indeed represent the kind of generalized transformations that occur in
transforming between quantum reference frames [20, 22]. This suggests that quantum
reference frames are needed to properly interpret the one particle state corresponding to a
flavor neutrino. Notice that the need for a quantum transformation of the neutrino state also
characterizes other frames. For instance, moving to a frame where the neutrino has a definite
3-momentum p’, from a frame where it has momentum p, while also preserving the equal
3-momentum superposition of equation (1), requires that one employs a quantum Lorentz
boost with parameter ¢) = sinh ! (P* 'B)y""(p'H — \[p'* + P"B,P)). Here we have assumed,

4
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without loss of generality, that both p and p’ lie along the z-axis. The transformation to the
rest frame is just the special case p’ = 0.

It can be rightfully argued that a quantum Lorentz transformation is needed to define the
‘rest frame’ of a generic particle with an indefinite 4-momentum, such as a wave packet
|p) = Jd*p 6(p°) 8(p"p,. — m*)p(p)|p"),- This is indeed the case, and quantum transforma-
tions are required whenever momentum superpositions occur, as shown, for instance, in [20].
Yet the neutrino flavor states are different from the usual wave packets in that quantum
transformations are fundamentally involved in defining the related rest frame. To begin with,
while wave packets are usually constructed superposing states that belong to the same mass
hyperboloid, flavor states require at least two distinct masses to be defined. Secondly, there is
no fundamental reason for which an elementary particle cannot be in a sharp 4-momentum
eigenstate. On the contrary, flavor states are necessarily in a superposition of 4-momenta and
thus carry an essential uncertainty.

3. Relativity of entanglement

One of the striking features of quantum reference frames is that entanglement becomes a
relative concept: it may be present in some frames while absent in others. Consider for
simplicity three quantum particles A, B, C on the line and assume that the state of B and C,
relative to A, is w%% = |x3)5§é‘) |xc)(CA). Here the notation is borrowed from [20, 23], where the
lower index is used to denote the quantum system and the upper index labels the quantum
reference frame. The state of A relative to A, |x4 = 0), is usually omitted [20, 23] since only
relational information is retained. In order to shift to the point of view of C, one simply
translates by the position —xc of C. The state of A and B relative to C reads
w(ACB) =T (—xc)(Jxa = O)ulxg)p) = |—xc)(AC) |xg — xc)(BC). Here T(a) is the unitary operator
that performs the translation by a on the states. Suppose now that the state of B and C relative
to A has the form z/J(,?é = |xg)g) (|xé)(CA) + |xC2)(CA)). To shift to the point of view of C, we again
translate by the position of C. But in this case, the position of C is not sharply defined, and,
respecting linearity, we obtain the state of A and B relative to C as

© — (T (—x) + T(—x2) (K = Oalxs)s)

I\(C 1I\(C 2\(C 2\(C
=|—x&) g — x4 =58 g — 1A, 9

The state 1) of equation (9) is clearly entangled, whereas the original state 1. was
factorizable. The translation appearing in equation (9) is a quantum transformation in which
the translation parameter, the position x¢ of C, is effectively turned into an operator Xc. The
situation is similar for relativistic particles, except that we consider the 4-momenta as the
relevant degrees of freedom and the elements of the Poincaré group, instead of the translations
on the line, as those performing the shift between classical reference frames. Suppose that
there are three particles A, B, v and that the state of B and v, relative to A, is given by

G = 1pp)3" (cos Blp{" )y, + sinlp))s) ), (10)

Bv m,v my,v

that is, the state of the neutrino v relative to A is that of equation (1). Of course, A is in its rest
frame, so that its state reads | pﬁo)ﬂf) =10, mA))ff). We assume, without loss of generality,
that the spatial momentum p of v is along the z-axis. Shifting to the point of view of v is
tantamount to transform to the neutrino rest frame via the quantum transformation defined by
equations (7) and (8). The state of A and B becomes

5
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Yy = (cos§ U(A) + sind UM (Ip} o )alph )s)
= cos f|A}’ VpA 0)(”) |Af Py )(”)
+sin |A% VpAO)(”)|A2 Py ). (11)

Here it is understood that the operators U(A) act on the states of A and B, and that A; are
the (classical) Lorentz boosts of equation (3) corresponding to masses m; and m,. Notice the
similarity between equation (11) and equation (9). In both cases the operator performing the
quantum reference frame transformation maps the Hilbert space of B and C (v) to the Hilbert
space of A and B, S: H%) @ HY) Con = HEY @ HEY), where S is the translation operator T
in equation (9) and the boost operator U in equation (11). These operators can be more
explicitly written as T (—X¢c) = Tac(—Xc) ® Tg(—%c) and U (A,,) = UA,,(A,,) ® UB(A,,)
They take as input the state of C(v) via the operators ¢ and A, and map the states of B and
C(v) relative to A to the states of A and B relative to C(v) accordingly. The effect of the
‘parity-swap operator’ as defined in the [20-22], is encoded in T4 ¢ (respectively U,,). As was
the case in equation (9), the transformation to the neutrino frame brings about entanglement,
which is easily seen in equation (11).

4. A gedankenexperiment

The previous considerations apply to all those particles which do not have a definite mass,
and in particular to the neutral meson pairs K° — K9 D® — D° B® — B°. The strangeness
eigenstates are linear combinations of the mass eigenstates, that is, neglecting CP-violation
|K© / K% = %(lKL) + |Ks)). Only the latter carry a definite 4-momentum, just like the

neutrino mass states | pl.“ )m;- To show how the frame-related entanglement may have phe-
nomenological significance, consider the decay of a charged meson into three particles, such
as [371 DT — K%+ et + 1, or Bt — DO + [T + v, for [=e, p, 7. Consider first that the
neutral meson has a definite 3-momentum k and that the state of the decay products, in the
laboratory frame, is

|DP>LAB = T(l(k WL) m, |(k wS))mS K)lplj >LAB|p . (12)

Here we are neglecting the oscillating nature of v, for simplicity. Consider now the same
reaction, characterized by the same kinematical (Mandelstam) invariants s, u, ¢, but this time
assume that the neutral meson momentum is very close to O in the laboratory frame. Assume
then that it is effectively possible to identify the rest frame of the neutral kaon with the
laboratory frame. The state of the decay products in this frame is therefore obtained by a
quantum reference frame transformation to the neutral meson rest frame, namely

IDPYK) = T(W; DB p
A OE IS by ), (13)
where we have omitted the (possibly dummy) state of the original laboratory |[LAB));. The
Lorentz boosts A;, Ag, assuming k along the third axis, have the form of equation (3) as
specified by the 4-momenta of K; and Ks. We can see from equation (13) that the state of the

leptons, previously a product state, becomes entangled in the new frame. This additional form
of entanglement is exclusively related to the quantum reference frame transformation, and

6
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may or may not characterize the decay products of a reaction depending on the frame
considered.

5. Possible observable signatures

We now wish to spend some more words about the possible observable signatures of the
frame-related entanglement. While entanglement measures (for instance linear or Renyi
entropies) themselves depend on the frame, it can be shown that the Bell inequalities can be
maximally violated also in the context of quantum reference frames, as extensively discussed
in [25]. The purpose of this section is not to provide a definite observable signature, but
merely to suggest a way of verifying the frame-related entanglement, not necessarily in the
quantum frame where such an entanglement is apparent, which could be prohibitive from the
experimental point of view.

It is important to stress that despite the fact that entanglement itself depends on the
quantum reference frame, entanglement-related observables are simply transformed into
distinct observables by quantum reference frame transformations. To understand this point, let
us consider the states of equations (10) and (11) and let S: H%” ® HW — HY @ HY be the
(unitary) quantum boost that connects the Hilbert spaces with respect to A and with respect to
v. By the general theory of quantum reference frames [20], we know that any observable 0/%)
defined in the rest frame of v is transformed into the A frame operator

oY) = stol)s. (14)

We also know that, being the transformation unitary, the following expectation values shall
agree

WOV = W0, (15)

or, which is equivalent [20], TrAB(pX’;OXQ) = TrB,,(pg‘V) 01(9?,)), in terms of the density matrices

p% and pg‘g. In other words, the quantum frames (A) and (v), despite assigning the same
numerical values, will disagree on the meaning of the observable, and, in particular, disagree
on the physical system to which it is related (Bv or AB). In order to quantify the entanglement
involved in the state ¢/} in the neutrino frame let us consider an entanglement witness, i.e. an
observable which vanishes in absence of entanglement and signals its presence. Let us denote,
for simplicit){ Py =M.y ﬁX,z = A‘Z”fo"”o, P = A pg. B, = Ay ,py, so that the
state of equation (11) may be written as

Uy = cosOIpy Y 15y )5 + sinblpy )% 15E )% - (16)

Consider now an operator which causes transitions between the momentum states of particles
A, B, of the kind H{}) = H, ® Hp, with matrix elements

IR = € a7
for a = A, B and some complex constants ¢,. The operator H{; may be related to some
interaction Hamiltonian that drives transitions in both A and B. Let us also assume, for
simplicity, that all the other matrix elements of H, vanish. The character of H{,) as an
entanglement witness is clear in that on product states one has

7
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(Y B JHSR1BE 1P ) =0 (18)

for all j, k=1, 2. On the other hand, a simple computation shows that

(¢5§;|Hf‘?|¢g’l)}) = 2cos#sinf Re(e,e€p). (19)

This can be compared with standard entanglement measures such as the linear entropy
E =1-— Tr(pi), where py, is the reduced density matrix with respect to A or B. In our case
Tr(py) = cos* 0 + sin* 6, so that £, = 2cos?§ sin® 6. It is immediate to check that the linear
entropy can be written as

W) 1,#) )2
(VpIHAR 1V 45)

2Re? (e4€p)
so that the former vanishes whenever the witness does. According to equation (15), the

presence of entanglement, as measured by the witness (19) in the neutrino rest frame, appears
as the observable

E, = (20)

(WP105) 14y = 2 cos fsinf Re (e4¢p) Q1)

in the rest frame of particle A, with 0% = STH{})S. This yields, at least in principle, an A-
frame observable which is directly related to the frame transformation entanglement. The
same quantity may be obtained by either measuring the observable OfY on the state |¢/%)) in
the (A) frame or measuring Hf,”B) on the state |1/)(/§’§ in the (v) frame. The difference is of course
in the physical interpretation that the two frames give of such observables: O is defined on
the B — v system and is not associated to any entanglement between the states of B and v with
respect to A, whereas ng,? is directly related to the entanglement between A and B as probed
by the (v) frame.

6. Conclusions

We have discussed the role of quantum reference frames for mixed particles, showing the
necessity of quantum frame transformations to define the corresponding rest frame. We have
pointed out how the frame-dependent entanglement may arise in physical processes involving
mixed particles. In view of the fundamental role that the symmetry group of frame trans-
formations plays in the classification of one particle states, and in the definition of elementary
particles, the introduction of quantum frames may have a significant impact on quantum field
theory. Our analysis reveals that a generalization in the sense of quantum frames is needed to
properly describe mixed particles. These considerations may pave the way for a new quantum
field theory in which the symmetry group itself has quantum properties.
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