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Bayesian treatment of prospective LISA parameter
estimation for massive black hole mergers

John G Baker! and Sylvain Marsat?
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2 Albert Einstein Institut, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany

Abstract. A full understanding of LISA’s science capability will require accurate models
of incident waveform signals and the instrumental response. While Fisher matrix analysis is
useful for some estimates, a full Bayesian treatment is needed for important cases at the limit
of LISA’s capability. We will apply fast analysis algorithms enabling accurate treatment with
EOB waveforms and the full-featured LISA response to study the significance of higher spherical
harmonics and mergers in LISA analysis.

1. Introduction
A LISA-like space-based gravitational-wave instrument is currently planned as part of the
European Space Agency’s Cosmic Vision Programme with NASA planning to participate as
a minority partner. Programmatically labeled L3, the mission follows two other missions in the
large mission category with launch expected in the mid 2030s

A key target of a LISA-like mission will be the direct observation of signals from merging
MBHs. Previous studies have shown that despite cosmological distances, 2 < z < 10
typically, LISA-like mission variants could precisely measure the component MBHs, measuring
masses to typically better than 1% and spins within a few %. Distance and sky position
measurements are more challenging and more sensitive to design choices and subtle features,
thus motivating Bayesian analysis. Among the challenges of this analysis, although details of
the waveform response encode important information, studies to date have all left out some
features. Computationally the signals cover a large dynamic range with frequencies up to 1 Hz
for signals lasting sometimes longer than a year. Bayesian analysis requires millions of likelihood
samples demanding very fast codes.

2. Fast and accurate likelihoods
To bring computation times down to milliseconds per likelihood we need fast methods for
waveform computation, for the LISA response and for the innerproducts to compare signals.
Our implementation begins with a computationally fast Fourier domain reduced order treatment
in amplitude/phase form for each of several EOB spherical harmonic modes.

The LISA response includes both modulations F'(t) representing the change of orientation of
the constellation and delays d(t) representing the motion of the detectors in the wavefront itself,
for a signal of the form s(t) = F(t)h(t + d(t)). In the Fourier domain this becomes

5 = [ dR(s = 116U S,
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To improve speed we take advantage of the binary MBH waveform property allowing it to be
written as sum of a few components Ay, (f) = A(f)exp(—i¥(f)), each with gently varying
amplitude and phase. Then drawing on local properties of A and ¥ we can factor the signal as
5(f) = T(f)h(f) where T(f) provides an excellent approxmation of the convolved result, but
can be computed quickly. At leading order, this resembles a stationary phase approximation
treatment but the approach is applicable more generally and additional correction terms are
also available.

The last component of our fast-likelihood computation is to analytically integrate the signal
overlaps as piecewise polynomials between relatively few evaluation points.

3. LISA performance

We apply these methods to study the capability of a 5-year classic LISA instrument to measure
nonspinning mergers. Fig. 1 shows the SNR for these mergers. We apply the Multinest/BAMBI
nested-sampling code or our own MCMC code to generate posterior distributions for simulated
observations with no added noise; see example in Fig. 2. On a set of 10 broadly selected example
cases we achieve typical speeds of about 15 — 20 ms per likelihood in practice in runs with order
10 million samples each.
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