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J’exprime aussi toute ma gratitude à Jaume CARBONELL, pour avoir accepter de
présider mon jury, et pour toutes nos discussions toujours enrichissantes.
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manquaient jamais de panache.

J’assure de toute ma gratitude Valérie POYETON, Danielle CORET et Isabelle
RICHARD pour leur aide inestimable tout au long de mes récurrentes traversées des
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1. Introduction

Quantum Chromodynamics (QCD) is the theory of strong interaction between quarks
and gluons. The essential features of QCD are, on the one hand, the existence of spin
1/2 quarks coming in color triplets and spin 1 gluons coming in color octets and, on the
other hand, the existence of a coupling of equal strength between the quarks and gluons
and between gluons themselves. Moreover QCD has the property of asymptotic freedom
which means that the coupling decreases logarithmically with the relative momentum of
the interacting particles.

Quarks were first introduced in 1964 [1–3] to explain the rich spectroscopy of mesons
and baryons in terms of quark-antiquark or three-quark bound states. The first evidence
for quarks came in 1968 from the SLAC deep inelastic electron-proton experiments which
could be interpreted as scattering on quasi-free point-like objects. This was confirmed
by the later observation of the jets produced in e+e− annihilation.

The 3 color degrees of freedom were introduced to reconcile spin 1/2 Fermi statistics
with the existence of the ∆++ which is made of three u quarks and therefore would
have a symmetric wave function if one takes only space, spin and flavour into account.
Moreover in e+e− annihilation, the ratio

R =
σ(e+e− → hadrons)

σ(e+e− → µ+µ−)

is predicted by QED and the quark-parton model to be equal to Nc
∑

f Q
2
f where Qf

is the electric charge of the flavour f and the sum runs over all active flavours at the
given energy. Fig. 1.1 shows a collection of experimental results where the charm and
bottom threshold are clearly visible. The inter-threshold plateaus are only compatible
with Nc = 3.

The proof for existence of the gluon as well as its coupling to the quarks was provided
by the 3-jet events interpreted as e+e− → qq̄g observed in 1979 at PETRA. A more
recent example of such a 3-jet event is shown in Fig. 1.2.

An important point is that the angular distribution of one jet with respect to the other
is sensitive to the spin of the gluon. As shown on Fig. 1.3 the data clearly favours the spin
1 case. Further studies, analogous to this one, have also excluded the spin 2 case. While
the 3-jet events reveal the existence of the quark gluon coupling, the genuine non-abelian
character of QCD implies that there also exists a 3- and 4-gluon coupling. The 3-gluon
coupling has been observed in the 4-jet events at LEP with a strength compatible with
the quark gluon coupling but the 4-gluon coupling is more elusive because it can appear
only in the 5-jet events. A more detailed discussion of the phenomenological tests of
QCD can be found in [4].

7
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Figure 1.1.: The ratio R as a function of CM energy. The expectation for Nc = 3 is the
continuous line.

The most spectacular prediction of QCD is that its coupling decreases with the energy
scale at which it is measured. Many experiments have been performed to test this
important property and Fig. 1.4 shows that it is actually satisfied in a wide energy
range.

Since the coupling gets smaller when the energy scale increases, it is possible to use
perturbation theory to make detailed predictions. In particular, one can predict how
the quark distributions in the nucleon evolve when the resolution of the probe improves.
The results are shown in Fig. 1.5 for the structure function F2 which is a combination of
quark distributions. The evolution is very well fitted by the QCD perturbative evolution
in a huge energy range.

In the above rapid presentation of tests of QCD there was no reference to the fact
that neither the quarks nor the gluons have ever been observed. The reason is that the
tests are performed at such high energies that the elementary reaction is not affected by
confinement, another fundamental property of QCD. The idea behind this is that the
amplitude factorises into a part which involves the microscopic constituents, the quarks
and the gluons, and another one which describes how those microscopic constituents are
bound into the observed hadrons. This second factor is completely non-perturbative and
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Run  12637,    EVENT   6353                                                     
 8-JUL-1992 10:14                                                               
Source: Run Data    Pol: L                                                      
Trigger: Energy Hadron                                                          
Beam Crossing    1964415082                                                     

Figure 1.2.: 3-jet event in the SLD SLAC detector

is either fitted to the experimental data or computed using non-perturbative approaches.
In this context, symmetries play a crucial role since their consequences do not rely

on an explicit solution of the non-perturbative problem. Beside the usual space-time
symmetries, QCD satisfies an approximate SU(Nf ) × SU(Nf ) chiral symmetry due to
the small masses of the first Nf flavours of quarks. In practice, if Nf = 2, one assumes
that the up and down quarks are light while Nf = 3 requires that the strange quark is
also light, a more questionable approximation. Chiral symmetry is spontaneously broken
to SU(Nf ) by the QCD vacuum which, according to Goldstone’s theorem, leads to the
existence of N2

f − 1 light pseudo-scalars. For Nf = 2 these are the pions, which mass
(∼ 140 MeV), small compared to a typical hadronic mass (∼ 1 GeV), sets the scale to rate
the zero mass approximation. The consequences of chiral symmetry come in the form
of low-energy theorems which can be derived in the framework of chiral perturbation
theory. This amounts to considering that the low-energy effective theory for QCD has the
light pions as degrees of freedom interacting with point-like heavy particles in a chiral
symmetric fashion [5]. The method is useful only when the pion mass and momenta
considered are small, but it has nonetheless provided many quantitative tests of QCD
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in the non-perturbative domain [6].
For a full access to the non-perturbative regime of QCD, one has to rely on the

numerical simulations of QCD on the lattice and this is the framework of this thesis.
The lattice allows a gauge invariant regularization of the theory with the ultraviolet cut-
off given by the lattice spacing and the infrared one given by the lattice size. One then
has a well formulated many body problem for which one can use Monte-Carlo methods
to compute the relevant Green functions and then the observables. This aspect will be
presented in Chapter 2, along with a brief general review of QCD as a quantum field
theory. In Chapter 3, we present Lüscher’s finite-volume framework to study scattering
states on the lattice, as well as its application to the case of ππ scattering in the ρ
resonant channel. We also give our results for a full calculation of the corresponding
phase-shifts, using several gauge configuration ensembles including one at the physical
pion mass. The ρ resonance parameters are computed using a global analysis procedure
with control on the systematic errors. In Chapter 4, we undertake a full study of the
nucleon electroweak form factors, with a detailed analysis of the electric radius and
axial charge. Our calculation goes down to the physical pion mass with fine control of
excited-state contaminations.
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2. QCD on the lattice

2.1. QCD basics

2.1.1. Quarks, gluons and chromodynamics

The quarks are spin-1
2 massive fermions, coming with six different flavours and 3 different

color charges. We restrict ourselves to the 3 lightest flavours, called up, down and
strange. Each quark is described by a Dirac 4-spinor field

q(f)(x)α
a
, (f) = u,d, s, α = 1, ..., 4, a = 1, ..., 3 (2.1)

where α is the spinor index and a the color one. We shall subsequently denote spinor
indices with Greek letters, and color indices with Latin letters, and hide irrelevant indices
when they are not required.

In the absence of interactions, q(f)(x)α
a

is solution of the free Dirac equation

(iγ · ∂ −m) q = 0 (2.2)

where γ · ∂ ≡ γµ∂µ with γµ, µ = 1, ..., 4 the Dirac matrices satisfying {γµ, γν} = 2gµν ,
and where spinor matrix multiplications are implied. Eq. (2.2) corresponds to the Euler-
Lagrange equation of the Lagrangian density

LDirac = q̄ (iγ · ∂ −m) q

where we have introduced q̄ ≡ q†γ0.
Note that Eq. (2.2) is unchanged if one performs a global SU(3) color gauge transfor-

mation
q(x)a →

∑
b

gab q(x)b ≡ g q(x)

with g ∈ SU(3).
Quantum Chromodynamics is built on the assumption that Eq. (2.2) should also

remain invariant under a local SU(3) gauge transformation

q(x)→ g(x) q(x) (2.3)

which amounts to the assumption that physics is independent of the local color frame.
To turn Eq. (2.2) into a locally gauge-invariant form, we need to generalize the derivative
to

Dµq(x) ≡ lim
ε→0

1

ε
[U(x, x+ εµ̂) q(x+ εµ̂)− q(x)] (2.4)

13
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where the gauge link U(x, y) is a phase going to 1 at zero separation. For small ε,
U(x, x+ εn) can be expanded as

U(x, x+ εn) = 1 + iεnµAµ(x) +O(ε2)

where Aµ(x) – the so-called gauge fields, are hermitian color matrices which act as
connections between infinitesimally separated points.

If we now require that under local gauge transformations,

U(x, y)→ g(x)U(x, y)g(y)−1 (2.5)

or equivalently
Aµ(x)→ g(x) (Aµ(x) + i∂µ) g(x)−1 (2.6)

then the derivative
Dµ ≡ ∂µ − iAµ

transforms as q, and the modified Dirac equation

(iγ ·D −m) q = 0 (2.7)

is invariant under local gauge transformations.
Introducing {Tk, k = 1, ..., 8} a basis of generators of su(3), the Lie algebra of SU(3),

which satisfies
[Ti, Tj ] = ifijkTk

where fijk is the antisymmetric structure constant, we can expand Aµ(x) like any her-
mitian matrix as

Aµ =

8∑
k=1

Aµk Tk

The 8 real Aµk fields are then the gluon fields.
To find the complete Lagrangian of QCD, we need to build the gauge-invariant terms

controlling the dynamics of Aµ. We introduce the field strength tensor

Fµν =
8∑

k=1

Fµνk Tk ≡ ∂µAν − ∂νAµ − i [Aµ, Aν ] (2.8)

Under the gauge transformation (2.6),

Fµν → gFµνg−1

and we can build the Yang-Mills Lagrangian density of QCD from Tr [FµνFµν ]. We get
finally

LQCD = − 1

2g2
Tr [FµνFµν ] + q̄ (iγ ·D −m) q (2.9)

where g is the coupling constant of QCD.
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Expanding the trace, and defining Πµk and Π(q) the conjugate momenta of Aµk and
q respectively

Πµk = ∂L
∂∂0Aµ k

= − 1

g2
Fµ0 k (2.10)

Π(q) = ∂L
∂∂0q

= iq† (2.11)

we obtain after some algebra the Hamiltonian

HQCD =

∫
dx

(
g2

2
Πk ·Πk +

1

2g2
Bk ·Bk + q̄(−iγ · ∇+m)q − q̄γ ·Aq −A0

kGk

)
(2.12)

where B1
k = F 23

k , B2
k = F 31

k , B3
k = F 12

k and

Gk ≡ ∇ ·Πk − fkijΠi ·Aj − q†Tkq

is the Gauss operator.
An important property of the Gauss operator is that it generates the gauge transfor-

mations 2.3 and 2.6, in the sense that if we write

g(x) = eiω(x)kTk

with ω(x) going to 0 as |x| → ∞, then (see [7] for a more comprehensive proof)

ei
∫
dxωkGk q e−i

∫
dxωkGk = g q

ei
∫
dxωkGk A e−i

∫
dxωkGk = g(x) (A + i∇) g(x)−1

This Gauss operator shall play an important role in the definition of the physical
states of the quantized theory.

2.1.2. Quantization

The canonical prescription to quantize a field theory is to promote the canonical vari-
ables to operators, denoted with a ˆ , and impose commutation relations. However, the
situation of gauge theories is made trickier as the symmetries impose relations between
variables, which are therefore no longer independent.

In QCD, the problem involves the definition of the gluon conjugate momentum Π̂µ,
as the antisymmetry of Fµν gives

Π̂0(x, t) = 0, ∀t

If we impose the canonical equal-time commutation relations[
Π̂µk(x, t), Âν l(y, t)

]
= −iδklgµνδ3(x− y) (2.13)
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then Eq. (2.12) gives [
ĤQCD, Π̂0 k(x, t)

]
= −iĜk(x, t)

which gives the Gauss law
Ĝk(x, t) = 0, ∀t (2.14)

Note that [
ĤQCD, Ĝk(x, t)

]
= 0

so that it is sufficient to have Π̂0 = 0 and Ĝk = 0 at t = 0 to ensure that these will be
satisfied for all t.

As mentioned above, Ĝk generates gauge transformations, so the conditions Π̂0 = 0
and Ĝk = 0 at t = 0 impose that possible physical states must be independent of Â0

and gauge invariant.
The basic objects to build such gauge invariant physical states are the Wilson line and

the Wilson loop. The Wilson line corresponds to the generalization of the gauge link
U(x, y) for x and y far apart

UC(x, y) ≡ P exp

[
i

∫
C
dxµAµ(x)

]
(2.15)

where C is a curve going from x to y, and P is the path-ordering operator, which imposes
that in the exponential of (2.15), defined as a series expansion, the matrices are always
ordered such that they “go forward” along C. The Wilson line is not gauge invariant per
se, but becomes so when quarks are attached to its ends.

The Wilson loop is the trace of the Wilson line along a closed curve:

LC ≡ Tr [UC(x, x)] (2.16)

It is the basic building block of “pure gauge” gauge invariant quantities.
Constructing all the gauge invariant states is however unworkable, which makes canon-

ical quantization unsuitable for practical calculations. Instead, we use the Feynman path
integral formalism.

If we consider Ô a canonically quantized operator, with the time-dependence

Ô(x, t) ≡ e−Ht Ô(x, 0) eHt (2.17)

then one can show by diving the [0, t] time interval into small steps and inserting complete
sets of states at each step that the vacuum expectation value 〈Ω| Ô |Ω〉 is equal to the
expectation value

〈O〉 ≡ 1

Z

∫
DAµDqDq̄ O[Aµ, q, q̄] e

−SE [Aµ,q,q̄] (2.18)

of the operator O seen as a functional of Aµ, q and q̄, where Z is the partition function

Z =

∫
DAµDqDq̄ e−SE [Aµ,q,q̄] (2.19)



Chapter 2. QCD on the lattice 17

SE [Aµ, q, q̄] the Euclidean action

SE [Aµ, q, q̄] =

∫
dx

1

4g2
F kµν(x)F kµν(x) +

∫
dx q̄(x) (γ0D0 + iγiDi +m) q(x)

≡ SG[A] + SF [A, q, q̄]

(2.20)

and where the integral runs over all functions Aµ, and Grassmann number valued func-
tions q, q̄.

2.1.3. Renormalization, asymptotic freedom and confinement

The functional integral formulation Eq. (2.18) has no proper meaning in this form, as
the functional measures are not well defined. This can be overcome by discretizing
space-time – the lattice QCD approach, which we describe comprehensively in Sec. 2.2,
thereby introducing a finite lattice spacing a, which we shall eventually take to 0. This
approach naturally introduces a regularization of the theory, in the sense that it imposes
a momentum cut-off at π

a , and makes momentum integrals finite. Eq. (2.18) is then
defined as the limit as a→ 0 of its discrete counterpart.

Consider now some operator O(a, g(a)) written in terms of the bare fields appearing
in the action (2.20). To get its vacuum expectation value using our functional integral
formalism, we must compute (2.18) at non-zero a (i.e. finite momentum cut-off) and
then take the continuum limit a → 0. Following Wilson’s approach [8], we must then
define a renormalized action and a renormalized operator in order to obtain a smooth
limit as a→ 0. These renormalized quantities are defined to smoothly incorporate and
account for contributions coming from momenta higher than π

a . The renormalized action
has the same form as the original one, but with rescaled fields, and parameters which
now depend on a. Assuming that O does not mix with other operators in the presence
of radiative corrections, the renormalized operator OR is related to the bare one by a
multiplicative constant, called the renormalization constant, and should be independent
of a:

OR ≡ Z(a, g)O(a, g)

Z is a dimensionless quantity, so that a new scale µ must be introduced in the definition
of OR to compensate for the dimension of a and form the dimensionless aµ quantity. µ
has therefore the dimension of an energy, and is called the renormalization scale as it is in
practice the scale at which we shall specify renormalization conditions to properly define
the integral. This artificially introduces a dependence of OR on the renormalization scale
µ, i.e.

OR = OR(µ, g(µ))

However, if the theory is to give robust predictions, any physical observable involving
OR(µ, g(µ)) must be independent of the scale µ at which we imposed the conditions
to completely define the Lagrangian. This independence can be expressed through the
so-called Callan-Symanzik equation [9] [10]:

µ
d

dµ
〈O [OR(µ, g(µ))]〉 =

(
µ
∂

∂µ
+ β(g)

∂

∂g

)
〈O [OR(µ, g(µ))]〉 = 0 (2.21)
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where O is the observable, and we have introduced the β function

β(g) ≡ µdg
dµ

(2.22)

which encodes all the dependence of the coupling g on the energy scale.
The running of g(µ) depends on the sign of the β function, which was first computed

perturbatively (i.e. near g = 0) in [11] and [12] with the result

β(g) = − g3

16π2

(
11− 2

3
Nf

)
+O(g5) (2.23)

where Nf is the number of quark flavours considered. Introducing the usual strong
coupling

αs ≡
g2

4π

we can integrate Eq. (2.22) using Eq. (2.23) to obtain the running (at leading order)

αs(µ
2) =

αs(µ
2
0)

1 +
αs(µ2

0)
2π

(
11− 2

3Nf

)
ln
(
µ2

µ2
0

) (2.24)

In practice, Nf = 6, so that
αs(µ

2) −−−→
µ→∞

0 (2.25)

This result is the well-known asymptotic freedom property of QCD.
Note that to obtain this property, we have assumed that there existed an energy scale

for which g was small enough to use perturbation theory. However, this result has also
been confirmed non-perturbatively using lattice QCD calculations of the string tension,
i.e. the “long-distance” force between static quarks. The first calculation for QCD was
done in [13], and showed that the evolution of the string tension as a function of the
coupling follows the perturbative prediction.

This pioneering calculation of the string tension also highlighted that the latter is
non-zero, which is directly related to the confinement property of QCD. This property
implies that coloured particles (such as the quarks) cannot be observed and always clump
into colorless structures called hadrons.

2.1.4. Chiral symmetry

In the massless-quark limit, the action of QCD appearing in Eq. (2.20) is invariant under
global SU(Nf)× SU(Nf)×U(1) transformations [6], where Nf is the number of flavours
considered and the rotations act in flavour space. This is called the chiral symmetry
property of QCD, as the SU(Nf)R × SU(Nf)L transformations act on the right- and
left-handed fermion fields

qR ≡
1 + γ5

2
q and qL ≡

1− γ5

2
q
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respectively. We consider more specifically the case Nf = 3, with 2 light up and down
quarks and 1 heavier strange quark.

The absence of parity doubling in the observed hadron spectrum and the eight rather
“light” π, K and η pseudoscalar mesons suggest that the axial SU(3)R−L symmetry is
spontaneously broken, i.e.

SU(3)R × SU(3)L → SU(3)R+L

The 8 generators of SU(3)R−L do not leave the QCD vacuum invariant and lead to
the existence of 8 massless Goldstone bosons. These are the π±, π0, K±, K0, K̄0 and
η mesons already mentioned. They are not exactly massless as the quark masses are
not zero, so that the spontaneously broken symmetry is only approximate even at the
Lagrangian level.

The up and down quarks however have small masses, so that the use of the spontaneous
breaking of the SU(2)R × SU(2)L subgroup down to SU(2)R+L can be expected to give
accurate predictions. This can be done using chiral effective Lagrangians as proposed by
Weinberg [14,15], and led to the development of the so-called chiral perturbation theory.
We refer the reader to [16,17] and [18,19] for more a comprehensive presentation of the
chiral effective field theory and some of its applications.

2.2. QCD on the lattice

As mentioned above, to give a proper meaning to the functional integral 2.18, we define
it as the continuum limit of an integral in a discrete Euclidean space-time and finite
volume, and introduce the 4-dimensional lattice

Λ = {x ≡ an = a (n, n0) | ni = [0..L), n0 ∈ [0..T )} (2.26)

where a is the lattice spacing, aL is the lattice volume, and aT the lattice time extent.
Note that we shall for convenience use the integer 4-vector n to label lattice sites.

We must now define a discrete action on this lattice which reproduces the continuum
action (2.20) as a→ 0.

2.2.1. QCD lattice action

The fermion spinor fields are now Grassmann variables defined at each lattice site q(n),
q̄(n), and the continuum partial derivative operator is replaced by the symmetric differ-
ence

1

2

(
∂µ + ∂∗µ

)
q(n) ≡ 1

2a
[q(n+ µ̂)− q(n− µ̂)] (2.27)

where µ̂ is the vector with components µ̂ν = δµν and where we have defined the forward
and backward lattice derivatives

∂µq(n) =
1

a
[q(n+ µ̂)− q(n)] (2.28)

∂∗µq(n) =
1

a
[q(n)− q(n− µ̂)] (2.29)



Chapter 2. QCD on the lattice 20

Note that the Grassmann fermion variables still have implied spinor and color indices,
and also come in several flavours. Summation over the flavours shall be understood when
applicable in the following.

On the lattice, the integral over dx turns to the sum a4
∑

n, and the free lattice Dirac
action then writes

SDirac[q, q̄] = a4
∑
n

q̄(n)

[
1

2

∑
µ

γEµ
(
∂µ + ∂∗µ

)
+m

]
q(n) (2.30)

where we have introduced the Euclidean γ matrices

γE0 ≡ γ0, γEi ≡ iγi

which satisfy the relations
γEµ = γEµ = γEµ†{
γEµ , γ

E
ν

}
= 2 δµν1

They naturally lead to the definition of

γE5 ≡ γE1 γE2 γE3 γE0 (2.31)

After Fourier transform, the free Dirac action gives the lattice free quark propagator
in momentum space

D−1
Dirac,free(p) =

m1− i
a

∑
µ γu sin(pµa)

m2 + 1
a2

∑
µ sin2(pµa)

(2.32)

which has the correct naive continuum limit. However, the sin2(pµa) in the denomi-
nator of Eq. (2.32) gives rise to additional unwanted poles, called the doublers. This
phenomenon is a direct consequence of the discretization of first order derivatives with
central differences, and to overcome this issue, Wilson proposed [20] to add an extra
term proportional to a ∂∗µ∂µ, which leads to the Wilson fermion action

SWilson[q, q̄] = SDirac[q, q̄]−
a5

2

∑
n,µ

q̄(n)∂∗µ∂µq(n) (2.33)

and the momentum space free quark propagator

D−1
free(p) =

[
m+ 1

a

∑
µ(1− cos(pµa))

]
1− i

a

∑
µ γu sin(pµa)[

m+ 1
a

∑
µ(1− cos(pµa))

]2
+ 1

a2

∑
µ sin2(pµa)

(2.34)

The Wilson term solves the doubler problem, but explicitly breaks chiral symmetry.
The quark masses must then undergo an additive renormalization proportional to 1

a ,
which comes from the mixing between the axial vector and scalar operators (see [21]
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for additional details). The bare quark mass must then be carefully tuned to its crit-
ical value, where it cancels the additive renormalization, so that one obtains a finite
renormalized continuum mass, and recovers the axial Ward identities.

Note that the general properties of fermionic actions on a lattice are constrained by
the Nielsen-Ninomiya theorem [22–24]. Other lattice actions (such as the overlap or
domain-wall fermion actions, c.f. the review [25]) can then solve the doubler problem
while respecting a lattice form of chiral symmetry (the Ginsparg-Wilson equation) but
this comes at the expense of ultra-locality and requires an order of magnitude more
computing power.

As before, we also impose local gauge invariance of our lattice Lagrangian, and, fol-
lowing Eq. (2.4), we introduce the lattice covariant derivative

∇µ q(n) =
1

a
[Uµ(n)q(n+ µ̂)− q(n)] (2.35)

∇∗µ q(n) =
1

a

[
q(n)− Uµ(n− µ̂)†q(n− µ̂)

]
(2.36)

where the gauge link
Uµ(n) ≡ U(an, an+ aµ̂) (2.37)

is a SU(3) matrix attached to the link between sites n and n+ µ̂.
To build the Lagrangian controlling the dynamics of gauge links, we consider the

plaquette, which is the simplest Wilson loop (2.16):

Pµν(n) ≡ Uµ(n)Uν(n+ µ̂)Uµ(n+ ν̂)†Uν(n)† (2.38)

and define the Wilson gauge action [26]:

SWilson,G[Uµ] =
2

g2

∑
n,µ<ν

Re Tr [1− Pµν(n)] (2.39)

which reproduces the continuum gauge action as a→ 0.
Using covariant derivatives in Eq. (2.33) to couple the quarks to the gluons, we obtain

the lattice QCD action

SWilson[q, q̄, Uµ] =
β

3

∑
n,µ<ν

Re Tr [1− Pµν(n)] + a4
∑
f

∑
n

q̄(n)DW q(n)

≡ SWilson,G[Uµ] + SWilson,F[q, q̄, Uµ]

(2.40)

where DW is the Wilson operator:

DW ≡ DW +m =
1

2

∑
µ

[
γEµ
(
∇µ +∇∗µ

)
− a∇∗µ∇µ

]
+m

i.e.

DW (n,m) =

(
m+

4

a

)
1− 1

2a

∑
µ

[(
1− γEµ

)
Uµ(n)δn+µ̂,m +

(
1 + γEµ

)
Uµ(n− µ̂)†δn−µ̂,m

]
(2.41)
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and we have traditionally defined

β ≡ 6

g2

To fully define the discrete theory, we need to specify boundary conditions for the
lattice variables. We choose periodic boundary conditions for the gauge field, as this
preserves discrete translation invariance of the lattice. The fermion fields are given
periodic boundary conditions in the spatial directions and anti-periodic ones in the
temporal direction, as suggested in [27], to ensure proper reconstruction of a positive
and self-adjoint Hamiltonian operator from the lattice formulation.

2.2.2. Symanzik improvement program

The lattice gauge and fermion actions built above are discretized versions of their contin-
uum counterparts. As such, they give rise to discretization effects, which go like powers
of the lattice spacing a. More specifically, using the expansion of gauge links into gauge
fields

Uµ(n) = 1 + iaAµ(an) +O(a2)

and the definition of the Wilson term, one can show that the discretization effects for
the Wilson action are of O(a2) for the gauge part and of O(a) for the fermion part, i.e.

SWilson,G[Uµ] = SG[A] +O(a2) (2.42)

SWilson,F[q, q̄, Uµ] = SF[q, q̄A] +O(a) (2.43)

Practical calculations are performed at finite a, and taking the continuum limit with
the raw Wilson action often proves to be a costly task as one needs to go to very small
lattice spacings in order to control the extrapolation.

However, the discretization errors can be reduced by adding to the Wilson action irrel-
evant terms which vanish in the continuum and compensate the leading finite a effects.
A way to systematically cancel discretization effects in lattice theories was proposed by
Symanzik [28,29] and is known as the Symanzik improvement program.

The idea is to consider the lattice action as an effective action Slat which matches the
continuum one as a→ 0, i.e.

Slat = S(0) +

∫
dx
(
aL(1)(x) + a2L(2)(x) + ...

)
where S0 is the usual continuum QCD action 2.20, and where L(k), k ≥ 1 are Lagrangian
densities built from the continuum quantities q, q̄ and Aµ. These “finite a” Lagrangians
have the same symmetries as S0, and dimensional analysis shows that L(k) has dimension
[Length]−(k+4).

We also consider lattice operators as effective operators, and write similarly for an
arbitrary operator O:

Olat = O(0) + aO(1) + ...
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Figure 2.1.: Representation of the clover term in the µ̂ − ν̂ plane at site n. The square
loops are plaquettes.

Symanzik’s prescription to reduce discretization effects is then to modify the lattice
action and operator with irrelevant lattice Lagrangians or operators so as to cancel finite
a terms. More formally, we define an improved action and operator as

Slat,improved = Slat + a4
∑
n

∑
i

c
(1)
i L

(1)
i (x) + ... (2.44)

Olat,improved = Olat +
∑
i

d
(1)
i O

(1)
i + ... (2.45)

where the L
(k)
i , O

(k)
i are independent lattice operators chosen to cancel the corresponding

finite a contributions in Slat and Olat.
This method can be used to perform O(a) improvement of the lattice Wilson fermion

action and O(a2) improvement of the Wilson gauge action.
The cancellation of O(a) corrections in the fermion action involves one new dimension-

5 operator 1, often referred to as the Sheikholeslami-Wohlert [30] or clover term. The
improved fermion action then writes

SWilson,F,imp = SWilson,F − i cSW a5
∑
n,µ<ν

q̄(n)
σµν
2

Qµν(n)−Qµν(n)†

8
q(n) (2.46)

where σµν = i
2 [γEµ , γ

E
ν ] and Qµν(n) is the sum of plaquettes Pµν(n) in the µ̂ − ν̂ plane

represented in Fig. 2.1, whose appearance lead to the name. Complete improvement
of the action requires the non-perturbative calculation of the Sheikholeslami-Wohlert
coefficient cSW which depends on the coupling g (see for instance [31]). However, one
often restricts the improvement to on-shell quantities at tree-level, which corresponds to

cSW = 1

1One can actually build 5 such operators, but 2 of them are already present in the Wilson action, so
that including them in the improvement only amounts to a redefinition of the bare parameters m
and g, and the remaining 3 are related by the Dirac equation.
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Figure 2.2.: Rectangle loops used in the Lüscher-Weisz improved gauge action.

The O(a2) improvement of the gauge action involves the “rectangular” Wilson loops
shown in Fig. 2.2 and is derived in [32]. It gives the improved gauge action

SWilson,G,imp = c0 SWilson,G + c1
β

3

∑
n,rect R

Re Tr [1−R(n)] (2.47)

where the rectangles R are of the three kinds shown in Fig. 2.2, and the coefficients for
tree-level improvement of on-shell quantities are

c0 =
5

3
and c1 = − 1

12

2.2.3. Gauge-link smearing

The study of hadronic correlation functions physically involves the long-range behaviour
of QCD, but violent UV fluctuations can hinder our calculations, and give rise to strong
discretization effects. As mentioned above, the Symanzik improvement program provides
a well-defined approach to control these finite a contaminations, but the determination
of the improvement coefficients is difficult, and the iteration of the procedure to higher
orders in a turns out to be unworkable. Therefore, we use the low order tree-level
improvement described in Sec. 2.2.2, and combine it with a smearing of the gauge links
coupled to the fermions 2. The smearing consists in some kind of averaging of the links
over some neighbourhood, and helps smoothing strong local fluctuations of the gauge
configuration. This is equivalent to a redefinition of the coupling between quarks and
gluons with a different discretization of the action.

Several smearing procedures have been devised, the most popular being studied in
[33]. These are covariant procedures, which do not require fixing the gauge, but need
projection of the resulting averaged fat link onto the gauge group SU(3) as it is not
stable under matrix addition. The smearing methods can be iterated, but keeping in
mind that every iteration increases the averaging range and hence affects longer-range
behaviours.

We use two steps of HEX smearing in the fermion Wilson clover-improved action. This
procedure combines the exponential (EXP) smearing [34] with the hypercubic (HYP)

2The gauge part of the action has indeed naturally O(a2) discretization errors, and we are interested
in hadronic observables, mainly sensitive to the quarks-gluons coupling.
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approach [35] to build fat links, which we denote Vµ(n). The explicit procedure can be
found in [36].

The action then reads

Simp,2HEX = SWilson,G,imp[Uµ] + SWilson,F,imp[Vµ, q, q̄]

2.3. Computing vacuum expectation values

2.3.1. Path integrals on the lattice

The lattice discretization of QCD was introduced to give proper meaning to the Feynman
path integral introduced in Sec. 2.1.2. In this approach, we define the expectation value
of any operator O as the continuum limit of the lattice functional integral

〈O〉lat =
1

Z

∫
DUµDqDq̄ O[Uµ, q, q̄] e

−S[Uµ,q,q̄] (2.48)

where S = Simp,2HEX, and

Z =

∫
DUµDqDq̄ e−S[Uµ,q,q̄] (2.49)

The functional measures are now well-defined as

DUµ ≡
∏
n

∏
µ

dUµ(n)

Dq ≡
∏
n

∏
f,α,a

dq(f)(n)α
a

Dq̄ ≡
∏
n

∏
f,α,a

dq̄(f)(n)α
a

(2.50)

where we have explicitly recalled all the indices for definiteness. dq(f)(n)α
a

and dq̄(f)(n)α
a

are the usual integration measures for Grassmann numbers, and dUµ(n) is the SU(3)
Haar measure [37]. We shall from now on drop the ‘lat’ subscript where it is not explicitly
needed, and assume that vacuum expectation values refer to the ones computed on the
lattice.

As we can see from Eqs. (2.40) and (2.46), the fermion action is quadratic in the
quark fields, so that integration over q and q̄ can be performed explicitly using Wick’s
theorem [38], which gives in this case

〈O〉 =
1

Z

∫
DUµ 〈O〉F det (D) e−SG[Uµ] (2.51)

where D = DW,imp[Vµ] is the clover-improved Wilson fermion operator with smeared
gauge links, SG = SWilson,G,imp, and 〈O〉F denotes the Wick contractions obtained by
associating all q, q̄ pairs in O into quark propagators D−1. 〈O〉F is in general a sum of
products of propagators, with appropriate permutation coefficients.
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Note that a product over the quark flavours is implied in the determinant expression
det (D). We are interested in the “2 + 1” flavours case – that is 2 light mass-degenerate
flavours (the up and down quarks) and 1 heavier flavour (the strange quark). The
fermion determinant then reads explicitly

det (D) =
∣∣det

(
Du/d

)∣∣2 det (Ds)

To perform integration over the gauge group, one then notices that

dP (U) ≡ 1

Z
det (D) e−SG DUµ (2.52)

can be interpreted as a probability measure, as long as the determinant is positive. As
mentioned in [39], the relatively heavy physical mass of the strange quark supports the
assumption that det (Ds) remains positive in the regions which mostly contributes to
the integral, so that det (D) > 0 and (2.52) is a well-defined probability measure. In
a regularization that respects chiral symmetry, det (D) is always positive. However for
Wilson fermions, which require an additive mass renormalization, det (D) for a single
flavour may be negative at finite lattice spacing on a given configuration. This is less
often the case for large quark mass and smearing further reduces the probability of it
happening.

This therefore allows us to use Monte-Carlo methods to estimate the integral (2.51)
over gauge fields. These methods are indeed very efficient for high-dimensional integrals
and allow the use of importance sampling, which consists in sampling the space of gauge
configurations U = {Uµ(n)} according to the weight dP . Eq. (2.51) can then be evaluated
as the sum

〈O〉 =
1

N

N∑
i=1

〈O〉F [U (i)] +O

(
1√
N

)
(2.53)

where {U (i), i = 1, ..., N} is a set of N independent random gauge configurations dis-
tributed according to the density dP .

2.3.2. Hybrid Monte-Carlo method

The hybrid Monte-Carlo (HMC) algorithm was introduced in [40] to generate indepen-
dent gauge configurations following the distribution law dP . The major challenge in
drawing these configurations lies in the non-locality of the fermion determinant. Effi-
cient sampling of the configuration space thus requires global updates in the generation
of new candidates from existing ones. One then has to deal with the violent fluctuations
of the Boltzmann weight e−SG , which prohibits random draws. The HMC algorithm pro-
vides a solution through the combined use of Markov chain Monte-Carlo and Molecular
Dynamics evolution.

Markov chains

A Markov chain is a random process which generates a sequence of “states” (gauge
configurations U (1), U (2), ..., U (N) in our case) distributed with some probability P . Any
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state U (i) in the chain depends on U (i−1) only, and the process is characterized by the
transition probability T (U → U ′) to get U ′ starting from U .

To obtain a correct and stable equilibrium probability distribution of the U ’s, we
request that P is a fixed point of the update process, i.e.∑

U

P (U)T (U → U ′) = P (U ′) (2.54)

and that the process is ergodic, for which the condition

T (U → U ′) > 0, ∀U,U ′ (2.55)

is sufficient.
Note that, although not strictly required, the detailed balance condition is often used

to impose that the probability P is a fixed point of the algorithm. This strong sufficient
condition, which can be stated as

P (U)T (U → U ′) = P (U ′)T (U ′ → U) (2.56)

requests reversibility of the Markov process, and implies 2.54.
In the HMC algorithm, the transition probability is then given by a molecular dynam-

ics symplectic evolution followed by an accept-reject step.

Molecular dynamics

Molecular dynamics evolution provides an efficient way to find a new and reasonable
candidate to incorporate in our Markov chain from the current gauge configuration.
The idea, to circumvent the large fluctuations of the action when updating many gauge
links to draw the new configuration, is to use some kind of Hamiltonian evolution in the
configuration space.

Using the pseudo-fermion representation introduced in [41], the fermion determinant
appearing in the probability P 2.52 can be written as

det (D) = constant×
∫

Dφ e−Spf,u/d[U,φ]−Spf,s[U,φ]

where the pseudo-fermions φ(n) are complex (not Grassmann) variables with color and
Dirac indices coming in several flavours, and the integration measure is

Dφ =
∏

n,f,α,a

dReφf (n)α
a
d Imφf (n)α

a

More details about the pseudo-fermion actions can be found in [39]. We only state that
they assume the general form

Spf = φ†∆−1φ

with ∆ a positive definite matrix related to the fermion operator D.
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We also introduce an su(3)-valued field

πµ(n) =
8∑

k=1

πµk(n)Tk

distributed with a Gaussian law

e−
1
2

(π,π) with (π, π) =
∑
n,µ,k

πµk(n)πµk(n)

and notice that the vacuum expectation value 2.51 can be rewritten

〈O〉 =
1

ZZπ

∫
DUµ Dπµ Dφ 〈O〉F e−SG[Uµ]−Spf [U,φ]− 1

2
(π,π)

with Zπ =
∫

Dπµ e
− 1

2
(π,π).

The latter integral can be regarded as representing a microcanonical system, whose
evolution in a fictitious time τ is controlled by the Hamiltonian

H[π, U ] =
1

2
(π, π) + SG + Spf

This classical Hamiltonian evolution only involves the U and π conjugate fields; the
pseudofermion field plays a spectator role at this point and shall be accounted for later
in the accept-reject step.

The equations of motion

dπµ
dτ

= −Fµ (2.57)

dUµ
dτ

= πµUµ (2.58)

with the force

Fµ ≡
∂S[U ]

∂Uµ
(2.59)

can be numerically integrated, taking some configuration (π, U) to the next (π′, U ′) one.
Evolution with Sections 2.3.2 and 2.3.2 formally follows trajectories of constant energy,

and therefore satisfies the detailed balance condition (2.56) (see again [39] or [42] for
additional details).

Acceptance-rejection

In practice, the equations of motion are integrated numerically using a symplectic inte-
grator, such as the leapfrog scheme 3, in order to preserve reversibility of the trajectory.
The numerical integration errors can then break the Markov chain requirements, so that

3in our work, we use the Omelyan integrator [43], which performs about twice as well as the leapfrog
integrator [44].
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we add an accept-reject correction step at the end of our molecular dynamics evolution.
The gauge configuration U ′ obtained after integration of Hamilton’s equation from the
configuration (π, U) at τ = 0 to some time τ is accepted with probability

Paccept(π
′, U ′) = min

{
1, e−(H[π′,U ′]−H[π,U ])

}
(2.60)

If rejected, U ′ is set to U .
The integration steps are usually tuned so as to obtain acceptance rates of about

75%, and the Markov time τ is empirically adjusted to reduce autocorrelation of the
configurations sequence while preserving stability of the algorithm.

To summarize, the HMC Metropolis step to generate the new configuration U ′ from
the current one U is given by:

1. Generate random momentum π and pseudo-fermion φ fields with probability den-
sity e−

1
2

(π,π)−Spf [U,φ]

2. Numerically integrate the molecular dynamics equations from τ = 0 to some time
τ to obtain the new candidate U ′ (and the momentum π′)

3. Accept U ′ as the new state if some random number r ∈ [0, 1) is smaller than
Paccept(π

′, U ′). Otherwise, set U ′ to U .

The most challenging part in the algorithm is the Hamiltonian evolution, and more
precisely the computation of the force (2.59). The meaning of derivation with respect
to a group element can be found in [42], and proper accounting of the gauge smearing
introduced in Sec. 2.2.3 can be found in [36].

The bulk of the computation lies in the inversion of fermion operator systems of the
from Dψ = η required to get the fermion force. This system is usually solved with
preconditioned Krylov subspace methods (see [39] and [45] for additional details).

2.4. Hadron spectrum and scale setting

2.4.1. Gauge configuration ensembles

In our work, we use gauge configuration ensembles generated with the HMC algorithm in
the Budapest-Marseille-Wuppertal collaboration setup. Thorough review of the practical
implementation of the simulation as well as the complete set of configuration parameters
are given in [36] (c.f. Table 1). These ensembles are simulated with “2+1” flavours (i.e.
isospin-degenerate up and down quarks and a heavier strange quark) using the Wilson
action with tree-level “clover” improvement of the fermion action, tree-level “Lüscher-
Weisz” improvement of the gauge action, and 2 steps of HEX smearing, as presented in
Sections 2.2.2 and 2.2.3. The volumes are as large as L3 × T ∼ 63 × 8 fm4. 5 different
coupling values are used to allow accurate continuum extrapolation, and the pion masses
range from about 675 MeV down to 120 MeV.
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β ambare
ud ambare

s volume # conf. amπ mπL

3.31

-0.07000 -0.0400 163 × 32 164 0.3517(13) 5.63
-0.08500 -0.0400 163 × 32 1238 0.2519(07) 4.03
-0.09300 -0.0400 163 × 48 935 0.1802(13) 2.88
-0.09530 -0.0400 163 × 48 974 0.1577(10) 2.52
-0.09300 -0.0400 243 × 48 429 0.1769(06) 4.25
-0.09530 -0.0400 243 × 48 245 0.1500(14) 3.60
-0.09300 -0.0400 323 × 48 455 0.1769(05) 5.66
-0.09756 -0.0400 323 × 48 221 0.1202(11) 3.85
-0.09530 -0.0400 323 × 48 419 0.1498(06) 4.81
-0.09900 -0.0400 483 × 48 569 0.0887(06) 4.26
-0.09933 -0.0400 483 × 48 656 0.0804(13) 3.86
-0.09756 -0.0400 243 × 64 253 0.1110(12) 2.66
-0.09000 -0.0440 243 × 64 209 0.2015(08) 4.84
-0.09300 -0.0440 323 × 64 205 0.1716(06) 5.49
-0.09530 -0.0440 323 × 64 235 0.1450(06) 4.66
-0.09756 -0.0440 323 × 64 203 0.1087(09) 4.66

3.5

-0.02500 -0.0023 163 × 32 133 0.2920(16) 4.67
-0.02500 -0.0060 163 × 32 1461 0.2890(05) 4.62
-0.03100 -0.0060 243 × 48 297 0.2535(04) 6.08
-0.04900 -0.0060 323 × 64 108 0.1206(07) 3.86
-0.05294 -0.0060 643 × 64 364 0.0609(04) 3.92
-0.05150 -0.0120 483 × 64 1200 0.0841(04) 4.01

3.61

-0.02000 0.0045 323 × 48 207 0.1986(04) 6.36
-0.02800 0.0045 323 × 48 387 0.1479(03) 4.73
-0.03000 0.0045 323 × 48 194 0.1325(05) 4.24
-0.03300 0.0045 483 × 48 210 0.1026(04) 4.92
-0.03121 0.0045 483 × 48 218 0.1207(03) 5.79
-0.03440 0.0045 483 × 48 188 0.0864(04) 4.15
-0.02000 -0.0042 323 × 48 171 0.1962(04) 6.28
-0.03000 -0.0042 323 × 48 142 0.1285(06) 4.11
-0.0365 -0.003 643 × 72 360 0.0459(03) 2.94

3.7

-0.01500 0.0500 323 × 64 313 0.1707(03) 5.46
-0.02080 0.0010 323 × 64 229 0.1253(04) 4.01
-0.02080 0.0000 323 × 64 206 0.1241(04) 3.97
-0.02540 0.0000 483 × 64 118 0.0806(03) 3.87
-0.02700 0.0000 643 × 64 207 0.0602(02) 3.86
-0.02080 -0.0050 323 × 64 207 0.1245(04) 3.98
-0.02540 -0.0050 483 × 64 264 0.0807(02) 3.87

3.8

-0.01400 0.0030 323 × 64 510 0.1238(03) 3.96
-0.01900 0.0030 483 × 64 206 0.0832(03) 3.99
-0.01400 0.0000 323 × 64 424 0.1226(03) 3.92
-0.01900 0.0000 483 × 64 176 0.0819(04) 3.93

Table 2.1.: Overview of our Nf = 2+1 ensembles. We give the ensembles characteristics,
the number of configurations used for the analysis, the pion mass in lattice
units amπ and the corresponding mπL value.
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2.4.2. Hadron spectrum

One of the most simple quantities to compute on the lattice is the mass of hadronic
particles. This can be obtained through analysis of the time-dependence of plain two-
point correlation functions.

We consider some fermion functional Oh(n) = Oh[q(n)], chosen with the quantum
numbers of the hadron h that we want to study. We define the corresponding zero-
momentum functional as

Oh(p = 0, t) ≡ Õh(t) =
∑
n

Oh(n, t)

As mentioned in Sec. 2.1.2, one can show that the expectation value
〈
Õh(t) Ōh(0)

〉
is, in the limit T → ∞, equal to the time-ordered vacuum expectation value of the
corresponding operators〈

Õh(t) Ōh(0)
〉

= 〈Ω| T
{

ˆ̃Oh(t) Ô†h(0)
}
|Ω〉 (2.61)

where T is the time-ordering operator. For t > 0,

T
{

ˆ̃Oh(t) Ô†h(0)
}

= ˆ̃Oh(t) Ô†h(0)

= e−Ht ˆ̃Oh(0) eHt Ô†h(0)

(2.62)

Assuming eigenvectors of the QCD Hamiltonian span the physical Hilbert space, we
can write a closure relation

1 =
∑

states k

|k〉 〈k|
2Ek

(2.63)

and insert it in the left-hand side of Eq. (2.61) to obtain the spectral representation of
the expectation value:〈

Õh(t) Ōh(0)
〉

=
∑
k

〈Ω| Õh(0) |k〉 〈k|O†h(0) |Ω〉
2Ek

e−tEk (2.64)

where we have dropped the operator superscript ˆ and explicitly recalled the lattice
spacing a.

Note that all states k with non-vanishing overlap withOh (i.e. such that 〈k|O†h(0) |Ω〉 6=
0) contribute to the sum 2.64, but only the lowest energy state (the ground state) sur-
vives at large t, because of the exponentially-suppressed time-dependence. This also
shows that many different interpolating operators can be used to extract the spectrum
of some given hadron, as one only requests selective overlap of the operator with the
particle of interest. The interpolating operators for some of the light hadrons used in
this thesis are listed in Table 2.2. These hadrons are stable under strong interaction.

They involve the spatially extended smeared quark fields qS defined as:

qS(n, t) ≡
∑
n′

S(n′ − n) q(n′, t) (2.65)
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h I J Oh

π 1 0 q̄Sd γ
E
5 q
S
u

K 1
2 0 q̄Ss γ

E
5 q
S
u

N 1
2

1
2 εabc q

S
u αa

(
qS Tu b Cγ

E
5 qSd c

)
Σ 1 1

2 εabc q
S
u αa

(
qS T

sS b
CγE5 qSu c

)
Ξ 1

2
1
2 εabc q

S
s αa

(
qS Tu b Cγ

E
5 qSs c

)
Ω 0 3

2 εabc q
S
s αa

(
qS Ts b CγE5 qSs c

)
Table 2.2.: Examples of light-hadron interpolating operators used in this work. I is the

total isospin and J the total spin. The subscript of the quark field q denotes
its flavour and the superscript S indicates that these are smeared quarks
(2.65). C = γE2 γ

E
0 is the charge conjugation matrix. Summation over color

indices a, b, c is implied. Note that we work in the isospin limit, in which
hadronic isospin multiplets become degenerate.

where S is the quark smearing function. In this work, we choose to evaluate correlation
functions in the fixed Coulomb gauge, so that S need not be gauge invariant. To obtain
good overlap of the operators built out of smeared quarks with the hadron ground state,
we take S Gaussian with a radius of about 0.3 fm.

In practice,
〈
Õh(t) Ōh(0)

〉
is evaluated using Wick’s theorem as

〈
Õh(t) Ōh(0)

〉
=

1

N

N∑
i=1

〈
Õh(t) Ōh(0)

〉
F

[U (i)] (2.66)

where {U (i), i = 1, ..., N} are the gauge configurations generated with the HMC al-

gorithm fixed to the Coulomb gauge4, and
〈
Õh(t) Ōh(0)

〉
F

are the 2pt-function Wick

contractions, which depend on the quark propagators

D−1
(f)(m,n)α

a

for a given gauge configuration. Coulomb-gauge configurations are obtained through the
minimization of the functional

F [U ] = −
∑
n

∑
µ6=0

Re Tr [Uµ(n)] (2.67)

See [46] and references therein for additional details.

4Note that the HMC procedure is processed without gauge fixing. Coulomb-gauge fixing is only done
afterwards, when computing hadronic observables.
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To reduce statistical errors in the evaluation of Eq. (2.66), we actually use the translation-
invariance property of the 2-pt correlator to compute it at different time-slices, i.e.〈

Õh(t) Ōh(0)
〉

=
1

Nti

〈
Õh(t+ ti) Ōh(0, ti)

〉
(2.68)

where the number of sources Nti ranges from T
4 up to T , depending on the ensemble.

To extract the hadron mass mh, we then build the effective mass, which is given by

mh eff(t) ≡ ln


〈
Õh(t) Ōh(0)

〉
〈
Õh(t+ 1) Ōh(0)

〉
 (2.69)

if h is a baryon, or which is solution of the equation

cosh
[
mh eff(t− T

2 )
]

cosh
[
mh eff(t+ 1− T

2 )
] =

〈
Õh(t) Ōh(0)

〉
〈
Õh(t+ 1) Ōh(0)

〉 (2.70)

if h is a meson, the latter expression accounting for the backward contribution coming
from the boundary conditions (see Appendix B for additional details).

For t large, mh eff(t) exhibits a plateau whose value provides us with the ground
state mass of the hadron, in units of a. We then fit this plateau with a constant in
some given time range by minimizing a standard correlated χ2. The covariance matrix
required in the χ2 function is estimated through a bootstrap resampling analysis [47]
(see Appendix A for a short presentation) with 2000 samples. Fig. 2.3 shows a plot of
the nucleon effective mass mN eff versus t with the fitted plateau for an ensemble with
L = 48, T = 48, β = 3.31, mud = −0.09933 and ms = −0.04, which corresponds to the
physical pion mass.

2.4.3. Scale setting

As mentioned above, physical energies extracted from lattice QCD calculations are
dimensionless numbers expressed in units of the lattice spacing a. As mentioned in
Sec. 2.1.3, a is not a external parameter of the theory, but is related to the coupling β
through renormalization. Hence we need to get its value – and set the physical scale of
our simulation – by imposing some relation between a lattice-computed quantity and its
experimental value.

In our work, we follow [48] and [49] and use the Ω baryon mass, as it is expected to be
weakly sensitive to the light quarks mass. More precisely, we interpolate the Ω plateaus
to the physical mass point, characterized by the physical values of the ratios mπ

MΩ
and
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Figure 2.3.: Example of a nucleon effective mass, along with the fitted plateau for an en-
semble at the physical pion mass. The χ2 per degrees of freedom obtained
at the minimum is 0.99 and the orange band gives the 95% confidence in-
terval computed with the bootstrap method. The mass central value is
aMN = 0.560.
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Figure 2.4.: Example of Ω effective mass for an ensemble at the physical pion mass.
The χ2 per degrees of freedom obtained at the minimum is 1.06 and the
orange band gives the 95% confidence interval computed with the bootstrap
method. The mass central value is aMΩ = 0.943.
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β a (fm) a−1 (GeV)

3.31 0.1138(4) 1.735(6)

3.5 0.0891(6) 2.217(16)

3.61 0.0771(5) 2.562(16)

3.7 0.0631(6) 3.129(28)

3.8 0.0532(6) 3.706(42)

Table 2.3.: Typical values of the lattice spacing a for each β. The errors are only statis-
tical.

mK
MΩ

. For this purpose, we use the functional form

aMΩ(β, amπ, aMss̄) = a(β)Mphy
Ω

1 + cs

(aMss̄

aMΩ

)2

−

(
Mphy
ss̄

Mphy
Ω

)2


+ cud

( amπ

aMΩ

)2

−

(
mphy
π

Mphy
Ω

)2


(2.71)

where M2
ss̄ = M2

K −
m2
π

2 , and fix the scales for our 5 values of β simultaneously. Note
that the fit coefficients cs and cud are taken β-independent, as suggested by our data.

We show an example of Ω effective mass plateau in Fig. 2.4 obtained for the afore-
mentioned physical pion mass ensemble.

Indicative results for the lattice spacings are given in Table 2.3. In practice, the scale
setting analysis is performed in a combined statistical and systematic errors analysis
with the quantity of interest.

Using the values of Table 2.3, we can compute the lattice nucleon masses for our
ensembles. These “raw” results are shown in Fig. 2.5 with statistical errors only. We
can then parametrize the nucleon plateaus obtained from our lattice calculations as [48]:

MN (mπ,mK , a) = M + caa
2 + c(2)

π m2
π + c(3)

π m3
π + c

(2)
ss̄ M

2
ss̄ (2.72)

where M , ca, c
(1,2)
π and css̄ are free parameters, and fit this functional form to our data.

We then use this parametrization to extrapolate our results to the continuum and to
interpolate to the physical values of mπ and Mss̄. Considering only simulations with
mπ ≤ 400 MeV, this gives us the results shown in Fig. 2.6, and the physical point value

MN = 943± 11 MeV (2.73)

in excellent agreement with experimental data.
Note that no systematic error estimation was undertaken in this analysis, which is

shown here only for illustrative purposes.
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Figure 2.5.: Nucleon mass in physical units for our lattice ensembles plotted with respect
to m2

π. The green dot shows the experimental nucleon mass.
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Figure 2.6.: Nucleon masses of our ensembles obtained with the parametrization 2.72
plotted versus m2

π after subtraction of the fitted m3
π term. The red line

shows the fit, along with the 95% confidence interval bands in orange.



3. ππ scattering: the ρ resonance

3.1. Introduction

Most lattice QCD calculations performed today – including those of the stable hadron
spectrum – include dynamical sea quarks effects, and thereby take into account one of the
most striking features of quantum field theories – and therefore of QCD: the possibility
for myriad of particles to spontaneously flit in and out of existence. In particular, the
creation and annihilation of quark-antiquark pairs from the vacuum directly opens the
way to the decay of hadrons which are unstable under the strong interaction, also known
as resonances.

The ρ meson is an emblematic example of such a resonant hadron state, which decays
nearly exclusively into two pions. It is therefore an ideal case to study this very important
aspect of the strong interaction on the lattice. The first lattice studies of the ρ decay
were made in quenched QCD [50, 51], where no actual decay occurs. There has been
for the past few years several calculations of the ρ decay width [52–59], some of them
with quark masses light enough to allow infinite-volume decay of the ρ. However, none
could really see the decay, as the ρ was still stable in the finite-volume because of the
quantization of momenta.

We propose to perform a fully controlled calculation of the ρ width at low and even
physical pion mass, which allows us to actually observe the decay of the ρ on the lattice.
We use Lüscher’s method to extract infinite-volume quantities from the finite-volume
ππ spectrum, computed with a multi-channel variational analysis.

3.2. ππ scattering in finite volume

At first glance, the study of scattering states on the lattice could seem strongly limited
by the need to define asymptotic ’in’ and ’out ’ states in a finite volume, as these states
contain particles which are so far apart they do not interact. However, M. Lüscher
developed a finite size method [60,61] which allows us to extract physical infinite-volume
scattering quantities through the volume effects in the two-particle spectrum. We use
this method to study ππ scattering in the ρ channel.

3.2.1. Lüscher’s method

When particles are put in a finite-volume box with periodic boundary conditions - as is
done when computing QCD quantities on the lattice, one naturally expects the energies
of the system to be quantized. The interaction modifies the free particle energy levels,
and the information about these level shifts can be related to scattering observables.

37
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The finiteness of the space-time volume we consider for our studies results in errors in
the evaluation of physical quantities. When the system we consider consists of at most
one hadron, the finite-volume effects decrease exponentially with the size L of the space-
time box (cf. [62]). Physically, these finite-volume effects are generated by the vacuum
polarization phenomenon: a stable point-like particle – as described by quantum field
theories – is surrounded by a cloud of virtual particles. Intuitively, each particle species
generate a cloud which size is of order of its Compton wavelength λ = h/mc, so that the
system is affected by the finite-volume effects as soon as L u λ0 the Compton length of
the lightest particle in the theory, i.e. when the cloud starts to be squeezed by the box1.

However, when two or more hadrons are present, the finite-volume errors are no longer
exponentially suppressed as one extends the size of the space-time box. In fact, real
scattering processes must now to be taken into account. The interactions between the
hadrons – through the exchange of massive particles – enter the game, with an effect
which is expected to be proportional to L−3, the probability for particles to meet. Since
these power-law finite-volume effects are closely linked to scattering processes between
external hadron states, it seems natural that they can be related to infinite-volume –
physical – scattering quantities. The Lüscher equation [63] – and its generalization
for particles in moving frames, also called the Rummukainen-Gottlieb equation [64] –
describes this phenomenon and relates the two-particle eigenstate energies to the infinite
volume scattering phase-shifts.

We consider two pions of equal masses mπ with total momentum P in a cubic box of
size L with periodic boundary conditions, and we assume the center-of-mass energy E∗ to
sit below the 4-pion inelastic threshold. We denote by 2q∗ the magnitude of the relative
momentum so that E∗2 = (2q∗)2 + (2mπ)2. In the case of non-degenerate hadrons, the
results are easily generalized with standard modifications to the kinematic relations. The
generalized Lüscher equation can then be written as the formal quantization condition

det

(
1− iMLFV

2

)∣∣∣∣
l1, l2≤lmax

= 0 (3.1)

with a possible angular momentum cut-off lmax in the partial wave basis and

Ml1,m1;l2,m2 = δl1,l2δm1,m2

16πE∗

q∗
e2iδl1 − 1

2i
(3.2)

LFVl1,m1;l2,m2
= − q∗

8πE∗
(
δl1,l2δm1,m2 + iLFVl1,m1;l2,m2

)
(3.3)

LFVl1,m1;l2,m2
=

(4π)2

q∗γL3

∑
l,m

1

q∗l

(
2π

L

)l−2

ZPlm(1; q̃∗2)

∫
dΩ∗Y ∗l1,m1

Y ∗l,mYl2,m2 (3.4)

and where γ is the Lorentz factor γ = E/
√
E2 −P2 and ZPlm(s; a2) is the generalized

1Actually, the single hadron state is a bound state of quarks . These quarks are confined so that
their wave functions go to zero exponentially. Hence the quarks self-interactions “around the world”
because of periodic boundary conditions can be neglected and the main contribution to the single
hadron state finite-volume errors comes from the virtual pion cloud squeezing.



Chapter 3. ππ scattering: the ρ resonance 39

zeta function, defined as the meromorphic analytic continuation of the series∑
n∈Z3

1

(r2
n − a2)s

rln Ylm(r̂n)

in the whole complex plane, with

r2
n =

1

γ2

(
n‖ −

(
L

2π

)
P

2

)2

+ n2
⊥

n‖ and n⊥ being the components of n respectively parallel and perpendicular to P. We
have defined q∗ = (2π/L) q̃∗ and Ylm(r̂) are the spherical harmonics of the direction r̂.

A comprehensive proof of the generalized Lüscher equation based on [65] can be found
in Appendix C.

3.2.2. Symmetry considerations

On the lattice, Lorentz invariance is broken, and rotation symmetry is replaced by the
cubic group symmetry Oh. However, this still provides us with simplifications of the
quantization condition Eq. (3.1) thanks to the symmetry transformation properties of
the spherical harmonics – and therefore of ZPlm(1; a2). For computing time reasons,
we will restrict our lattice calculations to the case P = 0 – the center-of-mass (COM)
frame, which we consider in this section. We shall therefore drop the ∗ superscripts for
the remainder of this chapter, and assume that kinematical quantities are in the COM
frame. A more detailed analysis of the use of symmetries to simplify the quantization
condition in other frames can be found in Appendix D.

In the COM frame, we have

ZCOM
lm (s; a2) =

∑
n∈Z3

1

(n2 − a2)s
nl Ylm(n̂) (3.5)

and therefore

ZCOM
lm =

∑
n∈Z3

1

(n2 − a2)s
nl Ylm(Rn̂) ∀R ∈ Oh (3.6)

Choosing R to be the inversion, we can show that the even and odd l sectors decouple
while the rotations in Oh give us the simplifications

ZCOM
lm = 0 if m 6≡ 0 (mod 4)

ZCOM
20 = 0

(3.7)

As a consequence of the symmetry, the determinant in Eq. (3.1) involves either the
l = 0, 2, 4, ... or the l = 1, 3, 5, ... phase shifts. Since the ρ resonnance takes place in the
l = 1 partial wave, we need to cut the equation at l < 3 to obtain a practical equation
for the relevant phase shift δ1.
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The typical contribution of a partial wave to the scattering state goes like jl(q
∗r) with

r the range of the interaction which is of the order of 0.5 fm. Using the value of the
momentum at the ρ resonance for a physical pion one finds

j3(q∗r)

j1(q∗r)
' 0.03

which is reasonnably small and justifies our neglect of the partial waves other than l = 1
On the lattice the COM-frame operators transform in representations of Oh and we shall
work in the T−1 irreducible representation because it is the only one which appears in
the decomposition of the l = 1 representation of the rotation group.

We shall also, for the sake of readability, drop the ∗ superscript for COM-frame quan-
tities in the remainder of this chapter, as we only work in the COM frame.

3.2.3. Finite volume formula

The T−1 irreducible representation is 3-dimensional, so that we can choose the vectors
{|m = −1〉 , |m = 0〉 , |m = +1〉} as basis vectors, and after some algebra, the determi-
nant in Eq. (3.1) simplifies to

det

(
1− 4πE∗

q∗
(e2iδ1 − 1) LFV1,m1;1,m2

)∣∣∣∣
l1, l2≤2

=

(
1 +

e2iδ1 − 1

2
(1 + iLFV1,0;1,0)

)3

= 0

(3.8)

which provides us with the finite-volume formula we use to extract the phase-shifts from
the eigenstate energies:

cot δ1(q) =
1

q̃π3/2
ZCOM00 (1; q̃2) (3.9)

recalling that q̃ is the lattice reduced momentum

q̃ =
L

2π

√
E2

4
−m2

π

. We numerically evaluate ZCOM00 (1; q̃2) using the integral representation of [66]:

ZCOM00 (1; q̃2) = −π +
1√
4π

∑
n∈Z3

e−(n−q̃2)

n− q̃2
+
π

2

∫ 1

0

dt

t3/2
(etq̃

2 − 1)

+
π

2

∑
n 6=0

∫ 1

0

dt

t3/2
etq̃

2−π
2n
t (3.10)

Lüscher’s formula Eq. (3.9) is strictly valid as long as one stays below the 4π inelastic
threshold, which is not the case of the ρ resonance for small pion masses. However,
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the 4π channel can be neglected up to 1 GeV [67], the reason being that the very small
ρ → 4π partial width implies a small coupling in this channel. We can therefore safely
carry out the phase-shifts analysis with Lüscher’s formula at low – and even physical –
pion masses.

0

co
t(

δ)

300 400 500 600 700 800
E

box level
(MeV)

mπ=140MeV

Figure 3.1.: Plot of cot δ(E) computed with Lüscher’s formula for mπ = 140 MeV, L =
48 and a ∼ 0.114 fm. The red spot shows the physical ρ resonance region.
The singularities of cot δ(E) correspond to non-interacting 2π states. The
lowest energy considered is the minimal energy of two back-to-back pions
with J = 1 in the box: Emin = 2

√
(2π/L)2 +m2

π.

Fig. 3.1 shows a plot of cot δ1 with respect to E computed from Lüscher’s formula
Eq. (3.9) at a pion mass close to the physical value. It highlights the expected singu-
larities of cot δ1 associated with the non-interacting 2π states. The filled blob shows the
expected position of the resonance and energy levels in this region are obviously excited
2π states. For such a configuration we will have to extract excited states energy from
our lattice calculations.

3.3. Methodology

3.3.1. Extraction of the energies: the generalized eigenvalue method

As mentioned above, we can obtain the ππ scattering phase-shifts in the I = J = 1
channel at the “box” discrete energies with Lüscher’s equation, and thereby probe the ρ
meson resonance. For that purpose, we need to extract one or several spectrum energies
from our lattice simulations, sometimes even focusing on excited states. As in usual



Chapter 3. ππ scattering: the ρ resonance 42

lattice calculations, the energy spectrum is retrieved from the asymptotic time behaviour
of euclidean correlators, but since we are interested not only in the lowest level, we use
the variational method of [68] – also known as the generalized eigenvalue method. This
consists in using a cross correlator matrix Cij(t) instead of the usual single correlator:

Cij(t) = 〈Oi(t) Ōj(0)〉 (3.11)

with {Oi} a set of N independent appropriate interpolators with good overlap with the
ρ or ππ eigenstates.
Cij(t) has the usual spectral decomposition

Cij(t) =
∑
n

〈0| Oi(0) |n〉 〈n| O†j(0) |0〉 e−Ent (3.12)

which can be written in matrix form

C(t) = V D(t)V † (3.13)

with Vi n = 〈0| Oi(0) |n〉 and D(t) = diag(e−Ent).
Now, the main idea behind the variational method is that, at large time, one can

neglect the contributions coming from high-energy states because of the exponential
suppression. In that case V and D are finite matrices and one has:

C(t)C−1(t0) = V D(t)V †(V D(t0)V †)−1 = V D(t− t0)V −1 (3.14)

so that the eigenvalues of C(t)C−1(t0) – solutions of the generalized eigenvalue problem
C(t)u = λ(t, t0)C(t0)u – provide the requested energies through:

λn(t, t0) = e−En(t−t0) (3.15)

In practice, we diagonalize C(t)C−1(t0) for each t and fixed t0 to obtain the generalized
eigenvalues and then extract the energies from the plateaus of the effective mass

meff =
log λn(t, t0)

t0 − t
(3.16)

at large t. Thanks to this method, we can obtain the N lowest eigenstates energies.
Moreover, it has been shown in [69] that if we consider the situation t0 ≥ t/2, then

the contamination of En as given by Eq. (3.15) by higher excited states is of order
O(e−(EN+1−En)t) and low energy states are “protected” from excited states contamina-
tion by the GEV states above them.

Note that in practice, computation times limit the number of independent interpo-
lators that we can use, but it is often interesting to use at least one more interpolator
than the number of energies that we want to extract.
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3.3.2. Kinematics and interpolating operators

Following [70] and [56], we choose to focus on the ρ0, which is a p-wave (J = 1) ππ
scattering resonance with I = 1, I3 = 0. As such, in the COM frame, the 2 pions must
have opposite non-zero momenta. In our variational method, we use up to 5 independent
interpolators with the quantum numbers of the ρ. In order to ensure good overlap with
the ρ, we include a 2-quark operator, with zero momentum

Oρ i(t) =
1

2

∑
x

ū(x) γi u(x)− d̄(x) γi d(x) (3.17)

with γi (i = 1, 2, 3) a Dirac matrix, and i is the polarization of the ρ.
The other independent operators are built from non-local I = 1, I3 = 0 combinations

of charged π interpolators with different lattice momenta:

Oππ(t,p) = π+(p)π−(−p)− π−(p)π+(−p) (3.18)

with p = 2π
L n and

π±(p) =
∑
x

q̄(x)γ5q
′(x)eip·x , q, q′ = u or d

Note that the COM frame I = 1 combination is odd under parity transformation so
that it can only couple to odd l states 2. Henceforth, it can be used to compute phase-
shifts in the ρ channel without interference from the l = 0 phase-shift.3 As already
noted, the l ≥ 3 contribution can be neglected.

In practice, knowing that the ρ resonance can be rather accurately described by the
effective Lagrangian:

Leff = gρππ εabc ρ
a
µπ

b∂µπc (3.19)

we see that in order to have the best possible overlap between the Oππ(p) and Oρ i
operators, we need to choose p such that p − (−p) = 2p is not orthogonal to the
polarization i of the ρ. The chosen momenta are given in Table 3.1.

We then compute the cross-correlators

Ci(t) =


〈Oρ i(t)Oρ i(0)〉 〈Oρ i(t)O(1)

ππ i(0) · · · 〈Oρ i(t)O(N−1)
ππ i (0)

〈O(1)
ππ i(t)Oρ i(0)〉 〈O(1)

ππ i(t)O
(1)
ππ i(0)〉 · · · 〈O(1)

ππ i(t)O
(N−1)
ππ i (0)〉

...
...

. . .
...

〈O(N−1)
ππ i (t)Oρ i(0)〉 〈O(N−1)

ππ i (t)O(1)
ππ i(0)〉 · · · 〈O(N−1)

ππ i (t)O(N−1)
ππ i (0)〉


(3.20)

for i = 1, 2, 3, where O(k)
ππ i ≡ Oππ(t,p

(k)
i ) and average on the polarizations i to get the

final cross-correlation matrix that we use in the variational method.

2Recalling that a system of 2 pseudoscalars has parity (−1)l.
3In moving frames, this is no more true, and the interpolators need to be projected onto irreducible

representations the corresponding groups belonging to D(1).
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p(1) p(2) p(3) p(4)

i = 1 (1, 0, 0) (1, 1, 0) (1, 1, 1) (2, 0, 0)

i = 2 (0, 1, 0) (0, 1, 1) (1, 1, 1) (0, 2, 0)

i = 3 (0, 0, 1) (1, 0, 1) (1, 1, 1) (0, 0, 2)

Table 3.1.: Table of the COM frame momenta used in the 4-quark operators Oππ i to
build the cross-correlator matrix for each polarization of the 2-quark operator
Oρ i.

3.3.3. Parametrization of the resonance

Lüscher’s formula Eq. (3.9) provides us with some values of the p-wave phase-shift at
the energies extracted with the variational method. To interpret these phase-shifts, and
obtain a good description of the ρ resonance, we need to use an analytic parametrization
of the energy dependence of δ1. Hence, we assume that in this channel, ππ scattering is
dominated by the narrow ρ resonance, and following [67] and [61], we describe it with an
Effective Range formula, which is known to parametrize experimental data rather well:

cot δ =
E

Γρ

(
qρ
q

)3 M2
ρ − E2

M2
ρ

(3.21)

with qρ =
√
M2
ρ/4−m2

π.

Due to the phase space factor the width has a strong kinematical dependance on
the pion mass. Therefore it is convenient to define an effective coupling constant gρππ
through the point-like interaction

Leff = gρππ εabc ρ
a
µ π

b∂µπc (3.22)

which gives at tree level

Γρ =
g2
ρππ

6π

q3
ρ

M2
ρ

(3.23)

The effective coupling is expected to have a mild dependance on the pion mass and
therefore is a more convenient parametrisation than the width itself.

Inserted into Lüscher’s formula, this leads to:

M2
ρ = E2 + g2

ρππ

4
√
π

3

q̃2Z00(1; q̃2)

EL3
(3.24)

where Mρ and gρππ are the unknowns that we want to determine from measurements of
at least two E’s, and we recall q =

√
E2/4−m2

π = 2π
L q̃. Since we always have at least

two energy levels from the variational method, this formula can be used either directly
in a system of equations involving two levels, or in a fit with all the levels. For the latter,
we actually compute and fit sin2 δ(E) using the equivalent formula:

sin2 δ(E) =

(
1 +
Z2

00(1; q2)

q̃2π3

)−1

=

(
1 +

[
6π

g2
ρππ

E

q3
(M2

ρ − E2)

]2
)−1

(3.25)



Chapter 3. ππ scattering: the ρ resonance 45

Results for the fits of the phase-shifts with Eq. (3.25) for the suitable ensembles are
shown in Sec. 3.5.1

3.3.4. Pion mass dependence of the resonance

At physical pion mass, experimental data inserted in Eq. (3.23) give for the ρππ coupling

gρππ ' 6 (3.26)

We shall use a simple low order Pade parametrization to model the mild pion mass
dependence of the coupling.

The variation of the mass – or pole position – of the resonance with mπ is more
problematic. As for any hadron the pion mass dependance is not negligible and its
evaluation is beyond chiral perturbation theory because the pions emitted in the decay
are not soft. Moreover there may be threshold effects at the point Mρ(mπ) which, a
priori, could induce a non-polynomial behaviour.

To investigate this problem, we use the model of [71] in which we have retained the
contributions which dominate the result in our domain. The ρ mass is the solution of
the equation

M2
ρ =

(
α0 + α2m

2
π

)2
+ Σπω + Σππ(Mρ) (3.27)

where the self-energies corresponding respectively to πω and ππ intermediate states are
given by

Σππ = −
f2
ρππ

6π2
P
∫ ∞

0

k4u2
ππ(k)dk

ω(k)
(
ω2(k)−M2

ρ/4
) (3.28)

Σπω = −
f2
ρπω

3π2f2
π

∫ ∞
0

k4u2
πω(k)dk

ω2(k)
(3.29)

with ω(k) =
√
k2 +m2

π. When mπ < Mρ/2 the mass is complex in infinite volume and
Eq. (3.27) refers to the real part. The form factors used to regulate the integrals are
chosen as

uπω(k) = u(k), uππ(k) =
u(k)

u
(√

µ2
ρ/4− µ2

π

) , u(k) =
Λ4

(k2 + Λ2)2 (3.30)

with µπ = 0.14 GeV, µρ = 0.78 GeV, Λ = 0.63 GeV and the couplings are fρππ =
6.028, fρπω = 0.74

√
µρ, fπ = 0.0924 GeV. The parameters α0, α2 have been adjusted on

lattice data with large pion masses leading to α0 = 0.83 GeV, α2 = 0.494 GeV−1.
The dotted curve in Fig. 3.2 shows the solution of Eq. (3.27) when the ρ mass in

the ππ self energy 3.28 is fixed at its physical value Mphys
ρ . One observes the expected

kink at mπ = Mphys
ρ /2. However this is a direct consequence of keeping Mρ constant in

the self energy. If one solves Eq. (3.27) self consistently, one gets the full curve which
exhibits a smooth behaviour compatible with a low order polynomial. Though based on
a specific model, we think that our qualitative conclusion has a general character.
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Figure 3.2.: Mρ as a function of m2
π computed with Eq. (3.27). The plain line shows

the fully self-consistent solution, while the dotted line corresponds to the
solution of the equation with fixed pole mass in the self-energies.

We use the same model to anticipate the stability or instability of the ρ on the lattice.
In fact, the stability of a level E is characterized by the lattice quantity

q̃2 =

(
L

2π

)2(E2

4
−m2

π

)
(3.31)

Applied with E = Mρ, we can compute the values of q̃2
ρ =

(
L
2π

)2 (M2
ρ

4 −m
2
π

)
for all our

ensembles, shown in Fig. 3.3. These values can be used to tune our strategy, in particular
to choose the number of operators (and therefore of available eigenstates energies) we
use for each ensemble.

• If q̃2
ρ < 0, the rho is below the 2π threshold and is therefore stable on the lattice

and in infinite volume. The variational method is not needed, and we can use only
the Oρ i interpolator.

• If 0 ≤ q̃2
ρ < 1, the rho is above the infinite volume threshold, but momentum

quantization on the lattice prevents its decay because of the P-wave coupling. The
lowest state on the lattice is a ρ-like state, but the strong coupling with the first
ππ state strongly pushes toward the use of a 2-level cross-correlator for ensembles
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Figure 3.3.: Landscape of the q̃2
ρ values for our ensembles. Note that the figure shows

the values of q̃2
ρ for all our ensembles, even if we have only used a subset of

them for our analysis, in particular for the ensembles with q̃2
ρ > 1, for which

only one has been used for computing time reasons.

with q̃2
ρ <∼ 1. If q̃2

ρ < 0.9, we can safely neglect the ρ width (i.e. the interaction
with ππ states), and use only a 2-quark operator.

• If 1 ≤ q̃2
ρ, the rho is unstable even on the lattice, and has strong coupling with

excited ππ states. We then need to use the GEV method with more than 2 oper-
ators.

3.4. Lattice calculation details

3.4.1. Ensembles

We use the ensembles presented in Sec. 2.4.1. The pion masses range from mπ = 480 MeV
to 120 MeV, and the lattice spacings from 0.053 to 0.11 fm. Among these, 5 ensembles
are analysed with the multi-channel GEV variational method mentioned above (we refer
to these ensembles as the “GEVP” ones), while 29 others (referred to as the “single”
ones) are analysed with a local 2-quark Oρ interpolator. The parameters relevant for
the “GEVP” and “single” ensembles are given in Table 3.2 and Table 3.3 respectively.
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β ambare
ud ambare

s volume # conf. amπ mπL q̃2
ρ N

3.31
-0.09300 -0.0400 323 × 48 450 0.1771(05) 5.67 0.64 2
-0.09756 -0.0400 323 × 48 221 0.1202(11) 3.85 0.97 5
-0.09933 -0.0400 483 × 48 656 0.0804(13) 3.86 2.54 5

3.61
-0.03300 0.0045 483 × 48 210 0.1026(4) 4.92 0.79 2
-0.03440 0.0045 483 × 48 188 0.0864(4) 4.15 0.93 5

Table 3.2.: Ensembles used to study ππ scattering in the ρ channel, with the GEV
method (the “GEVP” set). We give the ensembles characteristics, the num-
ber of configurations used for the analysis, the pion mass in lattice units amπ,
the q̃2

ρ computed with Eq. (3.27) and the size of the cross-correlator that we
use (or equivalently the number of eigenstates energies extracted).

3.4.2. Contractions and stochastic propagators

To compute the correlation functions needed in the cross-correlator Eq. (3.20), we fol-
low [53] and [72] and use U(1) time-diluted stochastic and stochastic generalized propa-
gators. This is required since we want to fix the momenta of each initial and final pion
independently, but cannot afford to compute the L3 all-to-all propagators. Note that we
work in the isospin limit mu = md so that quark-disconnected contractions cancel.

We introduce NQ three-dimensional U(1) noises {ξj(x)}, j = 1, ..., NQ, distributed
uniformly so that they have the property

NQ∑
j=1

ξ∗j (x)ξj(y) −−−−−→
NQ→∞

δ(3)(x− y) (3.32)

We then use these noises as sources in the inversion of the Wilson Dirac operator Dq

(q = u, d, s), and obtain the stochastic quark propagators Qq(x, t; p, ti, ξj)
ab
αβ defined as

the solution of the equation∑
x,t,b,β

Dq(y, t
′; x, t)abαβ Qq(x, t; p, ti, ξj)

bc
βγ = eip·yξj(y) δ(t′ − ti)δacδαγ (3.33)

where color indices are written with Latin letters, and spinor indices with Greek letters.
These indices are only explicitly written when needed.

Eq. (3.32) then ensures that, when contracted and for large NQ , the Q propagators
reproduce all-to-all propagators

D−1
q (x, t; xi, ti) =

NQ∑
j=1

Qq(x, t; 0, ti, ξj)ξ
∗
j (xi) (3.34)

For bilinears, it leads to

NQ∑
j=1

Qq(x, t; p, ti, ξj) ΓQ†q(y, t
′; q, ti, ξj) =

∑
z

ei(p−q)·zD−1
q (x, t; z, ti) ΓD−1

q (y, t′; z, ti)

(3.35)
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β ambare
ud ambare

s volume # conf. amπ mπL q̃2
ρ

3.31

-0.07000 -0.0400 163 × 32 164 0.3517(13) 5.63 -0.30
-0.08500 -0.0400 163 × 32 1238 0.2519(07) 4.03 0.00
-0.09300 -0.0400 163 × 48 935 0.1802(13) 2.88 0.15
-0.09530 -0.0400 163 × 48 974 0.1577(10) 2.52 0.19
-0.09300 -0.0400 243 × 48 429 0.1769(06) 4.25 0.36
-0.09530 -0.0400 243 × 48 245 0.1500(14) 3.60 0.46
-0.09756 -0.0400 243 × 64 253 0.1110(12) 2.66 0.57
-0.09000 -0.0440 243 × 64 209 0.2015(08) 4.84 0.26
-0.09300 -0.0440 323 × 64 205 0.1716(06) 5.49 0.68

3.5

-0.02500 -0.0023 163 × 32 133 0.2920(16) 4.67 -0.24
-0.02500 -0.0060 163 × 32 1461 0.2890(05) 4.62 -0.23
-0.03100 -0.0060 243 × 48 297 0.2535(04) 6.08 -0.30
-0.04900 -0.0060 323 × 64 108 0.1206(07) 3.86 0.45

3.61

-0.02000 0.0045 323 × 48 207 0.1986(04) 6.36 -0.23
-0.02800 0.0045 323 × 48 387 0.1479(03) 4.73 0.12
-0.03000 0.0045 323 × 48 194 0.1325(05) 4.24 0.21
-0.03121 0.0045 483 × 48 218 0.1207(03) 5.79 0.60
-0.02000 -0.0042 323 × 48 171 0.1962(04) 6.28 -0.21
-0.03000 -0.0042 323 × 48 142 0.1285(06) 4.11 0.23

3.7

-0.01500 0.0500 323 × 64 313 0.1707(03) 5.46 -0.15
-0.02080 0.0010 323 × 64 229 0.1253(04) 4.01 0.12
-0.02080 0.0000 323 × 64 206 0.1241(04) 3.97 0.12
-0.02540 0.0000 483 × 64 118 0.0806(03) 3.87 0.67
-0.02080 -0.0050 323 × 64 207 0.1245(04) 3.98 0.12
-0.02540 -0.0050 483 × 64 264 0.0807(02) 3.87 0.67

3.8

-0.01400 0.0030 323 × 64 510 0.1238(03) 3.96 -0.02
-0.01900 0.0030 483 × 64 206 0.0832(03) 3.99 0.32
-0.01400 0.0000 323 × 64 424 0.1226(03) 3.92 -0.02
-0.01900 0.0000 483 × 64 176 0.0819(04) 3.93 0.33

Table 3.3.: Ensembles used to study ππ scattering in the ρ channel, with the 2-quark
interpolator only (the “single” set). We give the ensembles characteristics,
the number of configurations used for the analysis, the pion mass in lattice
units amπ and the q̃2

ρ computed with Eq. (3.27)

with Γ an arbitrary spin-color matrix. The last property shows that a straightforward
replacement of point-source – “usual” – propagators by stochastic propagators leads to
the required contractions for hadron 2-point correlators.

To compute 3-point and 4-point functions (for example the 〈O(1)
ππ i(t) Oρ i(0)〉 and

〈O(1)
ππ i(t) O

(1)
ππ i(0)〉 correlators), we introduce a sequential stochastic quark propagator
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Wq(x, t; k, t1; p, ti, ξj)
ab
αβ solution of the equation∑

x,t,b,β

Dq(y, t
′; x, t)abαβ Wq(x, t; k, t1; p, ti, ξj)

bc
βγ = eik·y δ(t′ − t1) Qq(y, t1; p, ti, ξj)

ab
αβ

(3.36)
and another set of NQ three-dimensional U(1) noises {ηj(x)} with property (3.32).

We can then use the Q and W propagators to compute the contractions which appear
in the cross-correlator, shown schematically in Fig. 3.4 and given in the general case by
the following equations 4

Gρi→ρi =

NQ∑
j=1

∑
x

e−iP·x
〈
Q(x, t; P, ti, ξj)γiγ5Q

†(x, t; 0, ti, ξj)γ5γi

〉
,

G[1st]
ρi→ππ = −

NQ∑
j=1

∑
x

e−ip·x
〈
W †(x, t; q, t; 0, ti, ξj)Q(x, t; p, ti, ξj)γ5γi

〉
,

G[2nd]
ρi→ππ = −

NQ∑
j=1

∑
x

e−ip·x
〈
Q†(x, t; p, ti, ξj)W (x, t; q, t; 0, ti, ξj)γ5γi

〉
.

G[1st]
ππ→ρi =

NQ∑
j=1

∑
x

e−iP·x
〈
Q(x, t; 0, ti, ξj)W

†(x, t;−p, t;−q, ti, ξj)γ5γi

〉
,

G[2nd]
ππ→ρi =

NQ∑
j=1

∑
x

e−iP·x
〈
W (x, t; p, t; q, ti, ξj)Q

†(x, t; 0, ti, ξj)γ5γi

〉
,

G[1st]
ππ→ππ =

NQ∑
j=1

∑
x,y

e−i(p·x+q·y)
〈
Q†(x, t; 0, ti, ξj)Q(x, t; p, ti, ξj)

〉〈
Q†(y, t; 0, ti, ηj)Q(y, t; q, ti, ηj)

〉
,

G[2nd]
ππ→ππ =

NQ∑
j=1

∑
x,y

e−i(q·x+p·y)
〈
Q†(x, t; 0, ti, ξj)Q(x, t; p, ti, ξj)

〉〈
Q†(y, t; 0, ti, ηj)Q(y, t; q, ti, ηj)

〉
,

G[3rd]
ππ→ππ =

NQ∑
j=1

∑
x

e−ip·x
〈
W †(x, t;−q, t;−p, ti, ξj)W (x, t;−q, t; 0, ti, ξj)

〉
,

G[4th]
ππ→ππ =

NQ∑
j=1

∑
x

e−ip·x
〈
W (x, t; q, t; p, ti, ξj)W

†(x, t; q, t; 0, ti, ξj)
〉
,

G[5th]
ππ→ππ =

NQ∑
j=1

∑
x

e−ip·x
〈
W (x, t; p, t; 0, ti, ξj)W

†(x, t; q, t;−q, ti, ξj)
〉
,

G[6th]
ππ→ππ =

NQ∑
j=1

∑
x

e−ip·x
〈
W †(x, t;−p, t; 0, ti, ξj)W (x, t;−q, t; q, ti, ξj)

〉
. (3.37)

4Recall that we work in the isospin limit, so that Du(y, t′; x, t)abαβ = Dd(y, t
′; x, t)abαβ , and Qu = Qd = Q,

Wu = Wd = W .
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with P the total momentum, p and q the respective momenta of the pions, and where
the bracket 〈·〉 denotes a trace on color and spinor indices. In our case – in the COM
frame, P = 0 and q = −p.

Most of the cost of the lattice computation comes from the sequential stochastic
propagators W , as we require them with equal intermediate and final times t, for all
t. This is because we chose to use time-diluted (three-dimensional) stochastic sources,
which save us only of a factor L3 out of the L4 all-to-all inversions. However, using four-
dimensional stochastic sources would have been more noisy, since it would have polluted
the spectral time dependence (of the form e−E(t−ti)) with possible propagations on much
smaller time extents.

In practice, and after some tests, we chose to useNQ = 10 stochastic sources. This does
not seem like much, but these sources are generated independently for each configuration,
so that we have a few thousand noises after gauge average.

We also use time-translation invariance of the correlators to improve our signal on the
cross-correlator by averaging it over multiple time-shifted sources: if C(t, ti) denotes the
cross-correlator with initial time ti made explicit, we actually compute

C(t) =
1

Nti

∑
ti

C(t+ ti, ti) (3.38)

Although we may have correlation from one time-slice to the next, it appears that time-
slices separated by a few steps decorrelate and do enhance the signal. We chose to use
4 time-slice sources evenly spread within the lattice time extent.

Note that the 2-point correlator 〈Oρ i(t)Oρ i(0)〉 can also be computed with the usual
point-source or gaussian-source propagators:

〈Oρ i(t)Oρ i(0)〉 = −
∑
x

〈
γiγ5D

−S†(x, t; 0, ti)γ5γiD
−S(x, t; 0, ti)

〉
(3.39)

where S denotes the smearing (point or gauss) of the source. We use the latter expression
to compute the ρ correlator for ensembles of the “single” set. Since it only requires
one inversion per configuration, it is much less expensive than stochastic propagators
method. Hence, we could again benefit from time-translation invariance and improve
our statistics using up to T time-slice sources.

3.5. Results

3.5.1. GEVP energies

In Figs. 3.5–3.9, we show the effective mass as a function of time obtained either with the
GEV method and Eq. (3.16) or with the 2-quark interpolator only, for the 5 ensembles of
Table 3.2. We indicate the GEV reference times t0 used for each figure in the captions.

The statistical errors are evaluated throughout this section with the bootstrap method
presented in Appendix A with 2000 bootstrap samples and the robust statistical estima-
tors mentioned in the same appendix. The need for robustness in this analysis is driven
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Figure 3.4.: The contractions of ππ → ππ (top), ππ → ρ (bottom-left) and ρ → ππ
(bottom-right), the ρ → ρ being trivial. Time flows upward from 0 to t.
Black dots represent an explicit summation whereas shaded dots represent a
noise-noise contact. Between those dots we can have stochastic (one-line seg-
ments) or sequential stochastic (two-line segments) propagators. Reprinted
from [57].

by the singular nature of Lüscher’s equation Eq. (3.9), in which the zeta function shows
poles for integer values of q̃2. These singularities favour the appearance of outliers in the
bootstrap samples as the finite-volume calculation is carried out, and the usual mean
and standard deviation estimators fail to give accurate representations of the distribu-
tion. For consistency, we use the robust estimators even for quantities not affected by
the singularities of zeta.

The q̃2
ρ indicated are the ones obtained with Eq. (3.27); though model-dependent, they

can be used to interpret the effective masses.
For the ensemble of Fig. 3.5, we have q̃2

ρ much smaller than 1, so that we expect a
predominantly ρ-like lowest eigenstate. In fact, we can see that the 2-quark interpolator
succeeds in providing us with the lowest eigenstate plateau, but at larger times than
the GEV method does. Indeed, the latter disentangles the eigenstates and therefore
removes the ππ(1)-like state 5 contamination, leading to an improved convergence to the
plateaus. The GEV method also improves the signal for the lowest eigenstate, as it takes
information coming from the whole cross-correlator.

In Fig. 3.9 and Fig. 3.8, the observations are similar, but as q̃2
ρ is closer to 1, we see that

the 2-quark interpolator barely manages to give lowest eigenstate energy. Indeed, this
eigenstate is now a strongly coupled ρ − ππ(1)-like state with a relatively small overlap
with the 2-quark operator.

The ensemble of Fig. 3.6 has q̃2
ρ ≈ 1, and we can see that the 2-quark interpolator has

no overlap with the lowest eigenstate given by the GEV method. The latter seems to be

5ππ(k)-like means state which main content consists of two pions with momenta p(k) and −p(k) (c.f.
Table 3.1).
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Figure 3.5.: GEV and 2-quark interpolator effective masses for the ensemble β = 3.31,
ambare

ud = −0.093, ambare
s = −0.04, Λ = 323×48. The pion mass is provided

for guidance, and does not take full error analysis into account. The GEV
reference time is t0 = 7.
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Figure 3.6.: GEV and 2-quark interpolator effective masses for the ensemble β = 3.31,
ambare

ud = −0.09756, ambare
s = −0.04, Λ = 323 × 48. The pion mass is

provided for guidance, and does not take full error analysis into account.
The GEV reference time is t0 = 7.
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Figure 3.7.: GEV and 2-quark interpolator effective masses for the ensemble β = 3.31,
ambare

ud = −0.09933, ambare
s = −0.04, Λ = 483 × 48. The pion mass is

provided for guidance, and does not take full error analysis into account.
The GEV reference time is t0 = 8.
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Figure 3.8.: GEV and 2-quark interpolator effective masses for the ensemble β = 3.61,
ambare

ud = −0.033, ambare
s = 0.0045, Λ = 483×48. The pion mass is provided

for guidance, and does not take full error analysis into account. The GEV
reference time is t0 = 10.
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Figure 3.9.: GEV and 2-quark interpolator effective masses for the ensemble β = 3.61,
ambare

ud = −0.0344, ambare
s = 0.0045, Λ = 483 × 48. The pion mass is

provided for guidance, and does not take full error analysis into account.
The GEV reference time is t0 = 8.

a ππ(1)-like state, while the second and third states seem to be coupled ρ− ππ(2) states.
Fig. 3.7 is the most spectacular, as we can observe the decay of the ρ on the lattice,

for a physical pion mass. q̃2
ρ > 1 (and even > 2), so that the ρ is expected to be unstable

even on the lattice, which is confirmed by the fact that the 2-quark interpolator fails
to give a plateau. The lowest eigenstates are ππ-like states, and the third and fourth
eigenstates are expected to hold most of the information on the ρ width.

The last two cases illustrate the fact that, as mentioned above, we can expect strong
coupling between the ρ and excited ππ(k) (i.e. with k > 1) states. The GEV method
with more than 2 operators is then essential to extract the eigenstates sensitive to the
ρππ coupling.

We use the GEV effective masses to extract the eigenstates energies required for the
Lüscher analysis through a constant fit of the plateau between tmin and tmax. The fit
ranges are adjusted on the GEV reference times t0 (c.f. Eq. (3.16)) and are given in
Table 3.4 for each ensemble. We can then vary t0 to assess our control of the systematics.
The full systematic errors analysis is spelled out in Sec. 3.5.3.

The results for the energy-level fits are given in Table 3.4, together with the χ2/dof.
They correspond to the particular reference times t0 given in the captions of the figures.
The plateau fits are fully correlated, and lead to satisfactory χ2/dof.

We can now compute the values of the phase-shift δ1 at these energies with Eq. (3.9).
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Ensemble
t0 tmin tmax aEn χ2/dof

(β, ambare
ud , ambare

s , L, T )

3.31, -.093, -.04, 32, 48 7 t0 + 1 = 8 t0 + 1
0.497(8) 0.65
0.555(12) 0.68

3.31, -.09756, -.04, 32, 48 7 t0 + 1 = 8 t0 + 1

0.435(12) 0.35
0.522(31) 0.48
0.601(21) 0.95
0.702(37) 0.84
0.951(89) 0.83

3.31, -.09933, -.04, 48, 48 8 t0 + 3 = 11 t0 + 3

0.277(20) 0.33
0.302(22) 0.32
0.389(12) 0.31
0.489(19) 0.37
0.542(21) 0.56

3.61, -.033, -.0045, 48, 48 10 t0 + 1 = 11 t0 + 1
0.309(5) 0.27
0.349(12) 0.15

3.61, -.0344, .0045, 48, 48 8 t0 + 2 = 10 t0 + 2

0.288(5) 1.28
0.337(22) 0.53
0.411(8) 0.87
0.479(11) 0.75
0.541(21) 0.54

Table 3.4.: Numerical results for the energy levels of the “GEVP” ensembles, with the
corresponding χ2/dof .

3.5.2. Results for the “GEVP” ensembles

We show the results for the phase-shifts of the ensembles with N = 5 in Figs. 3.10–3.12.
They correspond to the pion masses 140, 209 and 222 GeV. Notwithstanding the large
errors, one clearly observes the expected resonant behaviour of the phase shift. To our
knowledge it is the first time that this behaviour is observed at the physical pion mass,
for which the ρ is unstable even on the finite lattice.

To get the values of Mρ and gρππ we either fit the phase-shifts as functions of the
energy Eq. (3.25) when we have more than 2 energy levels available, or solve the system
provided by Eq. (3.24) satisfied by the two energies. The fits are plotted along with the
values of δ1 in Figs. 3.10–3.12, and the results for the ρ resonance parameters from the
“GEVP” ensembles are given in Table 3.5, and shown in Figs. 3.13–3.14.

These results confirm the weak dependence of gρππ on the pion mass, and appear
compatible with experimental data.

3.5.3. Global fit and systematic error analysis

To enhance the statistical precision on the ρ resonance parameters and to estimate the
systematics we combine the results coming from the multi-channel GEV Lüscher analysis
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Figure 3.10.: δ1 phase shift values obtained through a Lüscher analysis of the GEVP
energies for the ensemble β = 3.31, ambare

ud = −0.09933, ambare
s = −0.04,

Λ = 483 × 48.

with the data coming from the “single” ensembles set. More precisely we want to get
the values of Mρ and gρππ at the physical point using data from both the “GEVP” and
“single” ensembles. The latter are listed in Table 3.3. They all have q̃2

ρ < 0.8 so we
expect that the lowest energy state is actually a ρ-like state with good overlap with
the local 2-quark Oρ interpolator. Therefore, for these ensembles, we only compute
the correlators 〈Oρ(t) Oρ(0)〉 and extract the lowest eigenstate energy with a fit of the
effective mass plateau. Fig. 3.15 shows an example of such a plateau.

This plateau corresponds to the finite volume energy E of a stable ρ meson in a box.
It depends on the ensemble parameters, or equivalently on the pion mass mπ, the kaon
mass mK , the lattice spacing a and the lattice volume L. As discussed above, the lattice

volume effect depends on the value of q̃ = L
2π

√
E2

4 −m2
π. If 0 ≤ q̃2 < 1, the leading

volume effects are of order O(1/L3), and are given by Eq. (3.24) where Mρ corresponds
to the infinite-volume mass of the ρ 6, while if q̃2 < 0, they are exponentially suppressed
at least as e−mπL, as shown in [62].

We combine these “single” ρ plateaus with the “GEVP” values of Mρ and gρππ to fit
simultaneously the physical ρ mass and the ρ → ππ coupling. It is worth noting that
while the “GEVP” plateaus may still have leading O(1/L3) volume effects, these have
already been removed by Lüscher’s analysis from the “GEVP” Mρ, which is by definition

6This ρ mass however still has dependencies on mπ, mK , and a.
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Figure 3.11.: δ1 phase shift values obtained through a Lüscher analysis of the GEVP
energies for the ensemble β = 3.31, ambare

ud = −0.09756, ambare
s = −0.04,

Λ = 323 × 48.

the mass of the ρ in infinite volume for given mπ, mK and a:

Mρ = Mρ (mπ,mK , a) (3.40)

If q̃2 < 0, we simply have
E = Mρ (mπ,mK , a) (3.41)

i.e. the ρ plateau and mass are equal, since we neglect the exponentially suppressed
finite-volume effects.

If 0 ≤ q̃2 < 1, Mρ and E are related through the finite-volume formula

M2
ρ (mπ,mK , a) = E2 +

4
√
π

3
g2
ρππ

q̃2Z00(1; q̃2)

L3E
≡ L(E,mπ, g, L) (3.42)

where the quantities are now in physical units.
Available data for the global fit therefore consists in M2

ρ and gρππ for ”GEVP” data,
M2
ρ only for ”single” data with q̃2 < 0 and E2 (Eq. (3.9)) for ”single” data with 0 ≤

q̃2 < 1. As seen in Sec. 3.3.4, the pion mass dependence of M2
ρ is well described by

a low-order polynomial in m2
π. As for the coupling constant, the data only come from

the 5 “GEVP” ensembles, and indirectly from the finite-volume effects in the “single”
ρ plateaus. We neglect its dependences on mK or a, and assume a possible dependence
on mπ, parametrized by a low-order Pade function.
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Figure 3.12.: δ1 phase shift values obtained through a Lüscher analysis of the GEVP
energies for the ensemble β = 3.61, ambare

ud = −0.0344, ambare
s = 0.0045,

Λ = 483 × 48.

Thus we model the dependencies as

M2
ρ (mπ,mK , a) = M2 +

dπ∑
i=2

Ai m
i
π +

dK∑
j=2

Bj m
j
K +

da∑
k=1

Ck a
2k (3.43)

E = L−1(M2
ρ (mπ,mK , a) , g, L) (3.44)

g = g0

[
1 + (mphy

π /Λ)2

1 + (mπ/Λ)2

]dg
(3.45)

where M2, {Ai}, {Bj}, {Ck}, g0, and Λ are the fit parameters, denoted P , and dπ, dK ,
da and dg are integers defining the model. Note that the leading discretization errors are
theoretically of order αs(a)a and a2, the former coming from the fact that improvement
of the action is only performed at tree-level. However, for the considered quantity, these
errors are small, and the O(αs(a)a) and O(a2) cannot be discriminated, so that we only
include the O(a2) one.

We write

Fsingle(mπ,mK , a, L;P ) ≡ E(mπ,mK , a, L;P )

FGEVP(mπ,mK , a, L;P ) ≡ {M2
ρ (mπ,mK , a;P ), g(mπ;P )}

(3.46)
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Figure 3.13.: Values of the ρππ coupling obtained for the GEVP ensembles plotted
against m2

π.
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Figure 3.14.: Values of Mρ obtained for the GEVP ensembles plotted against m2
π.
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Ensemble
t0

mπ aMρ
Mρ gρππ

Γρ
(β, ambare

ud , ambare
s , V , T ) (MeV) (MeV) (MeV)

3.31, -.093, -.04, 32, 48 7 308 0.52(2) 905(43) 5.52(1.12) 71(36)

3.31, -.09756, -.04, 32, 48 7 209 0.50(3) 871(52) 5.26(1.81) 97(59)

3.31, -.09933, -.04, 48, 48 8 139 0.45(4) 784(70) 6.25(2.01) 164(101)

3.61, -.033, -.0045, 48, 48 10 264 0.32(2) 829(52) 5.51(119) 76(44)

3.61, -.0344, .0045, 48, 48 8 221 0.31(1) 803(26) 5.50(1.09) 90(44)

Table 3.5.: Resonance parameters results for the “GEVP” ensembles. We indicate the
pion mass in physical units, the computed ρ mass Mρ in lattice and physical,
the gρππ coupling and the corresponding width Γρ as given by Eq. (3.23) in
physical units.

and the fit is performed through the minimization of the χ2 function:

χ2 (YGEVP, Ysingle; X; P )

= (Ysingle − Fsingle(Xsingle;P ))T C−1
single (Ysingle − Fsingle(Xsingle;P ))

+ (YGEVP − FGEVP(XGEVP;P ))T C−1
GEVP (YGEVP − FGEVP(XGEVP;P ))

(3.47)

where YGEVP ≡ {Mρ, g}GEVP, Ysingle ≡ {E}single, X ≡ {mπ, mK , a, L}GEVP+single and
CGEVP, single are the respective correlation matrices, estimated with the bootstrap sam-
ples. Note that the different ensembles are uncorrelated with each other, so that only
the quantities within one ensemble are correlated.

To estimate our systematic errors, we then vary the different sources of systematics in
our analysis independently and measure the spread of the results. The varied parameters
are

• Scale-setting plateaus time fit ranges 7

→ 2 ranges (aggressive or conservative, see Table 3.6)

• Scale setting mπ cut (in the chiral fit of MΩ)
→ 2 cuts (mπ ≤ 380MeV or mπ ≤ 480MeV)

• “Single” ensemble plateaus time fit ranges for mπ, mK and Mρ

→ 2 ranges for each plateau (23 variations)

• Single data q̃2 cut (we restrict ourselves to q̃2 ≤ 0.9 to avoid ensembles where
the central value of q̃2 is less than 1, but where the error bar goes across 1, see
Fig. 3.16)
→ 3 q2-cuts (q2 ≤ 0.7, q2 ≤ 0.8 or q2 ≤ 0.9)

• GEV analysis t0
→ 2 t0, which give 2 GEV plateau fit ranges (see Table 3.7)

7Recall that the scale is set with the Ω mass as explained in Sec. 2.4.3. The procedure involves the fits
of the pion, kaon and omega plateaus, which ranges are varied simultaneously.
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Figure 3.15.: Effective mass obtained with the 2-quark local Oρ interpolator for the en-
semble β = 3.7, ambare

ud = −0.0254, ambare
s = −0.005, Λ = 483 × 64.

• Functional forms for Mρ extra/interpolation to the physical point
→ dπ = 2 or 3, dK = 2, da = 1 (to prevent overfitting), i.e. 2 variations

• Functional forms for g

→ dg = 0 or 1, i.e. g = g0 or g0
1+(mphyπ /Λ)2

1+(mπ/Λ)2 (2 variations)

This gives a total of 768 different methods to evaluate Mphy
ρ and gphyρππ.

Following [73], each method s is given an Akaike Information Criterion weight

ws = e−
1
2

(AICs−AICmin) (3.48)

where

AICs = χ2 dof
s, scale setting + χ2 dof

s, Mρ/g fit + 2 (# parameters of method s)

χ2 dof denoting the χ2 per degrees of freedom at the fitted minimum. We obtain the
central value as the weighted average:

X̄ =
1∑
sws

∑
s

ws Xs
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Figure 3.16.: q̃2 landscape computed with extracted plateaus

and the systematic error as the square root of the (unbiased) mean square weighted
deviation:

S2
X =

∑
sws

(
∑

sws)
2 −

∑
sw

2
s

∑
s

ws (Xs − X̄)2

We recall that the statistical errors are estimated through the bootstrap resampling
method with 2000 bootstraps as before.

3.5.4. Resonance parameters

We show in Fig. 3.17 a global fit example of Mρ extrapolated to the continuum and to
the physical strange quark mass, as a function of m2

π. This fit was done with aggressive
ranges, a q̃2 cut at 0.9 and a scale setting cut at mπ ≤ 480 MeV. The dependences are
M2
ρ (mπ,mK , a) = M2 +A2 m

2
π +B2 m

2
K + C1 a

2 and g (mπ,mK , a) = g0. We were not
able to detect any dependence of the coupling gρππ on the pion mass with our statistical
precision, and when fitted, the parameter Λ in the Pade parametrization of g(mπ) is
mostly undetermined.

The full systematics analysis gives:

Mphy
ρ = 787 MeV ± 8.4 MeV (stat) ± 18 MeV (syst) (3.49)
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Figure 3.17.: Example of a global fit for Mρ included in our systematic errors analysis.
It corresponds to the method with aggressive ranges, q̃2 cut at 0.9, mπ ≤
480 MeV in the scale setting Ω fit, dπ = 2 and g = g0. The blue dots are
the values of Mρ after extrapolation to the continuum and to the physical
kaon mass with the fit represented with the dashed line. The red dot is the
experimental value as given by the PDG [74]. The resulting χ2 dof is 1.3.
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β ti aggressive ti conservative

3.31 9 10

3.5 10 11

3.61 12 14

3.7 13 15

3.8 14 16

Table 3.6.: Table of the initial times ti used to fit plateaus. The final time is given by
tf = min(2 ti, T/2). Note that if the plateau corresponds to an interpolator

with strange content, the initial time is delayed to t
(s)
i = 1.15s ti with s the

strangeness absolute value.

Ensemble t0 aggressive t0 conservative ti
3.31, -.093, -.04, 32, 48 7 8 t0 + 1

3.31, -.09756, -.04, 32, 48 7 8 t0 + 1

3.31, -.09933, -.04, 48, 48 8 9 t0 + 3

3.61, -.033, -.0045, 48, 48 10 11 t0 + 1

3.61, -.0344, .0045, 48, 48 8 9 t0 + 2

Table 3.7.: Table of the t0’s used in the GEVP analysis, as well as the corresponding
plateau initial fit times.

gphy
ρππ = 5.35± 0.87 (stat) ± 0.36 (syst) (3.50)

The weighted histograms for theses quantities are shown in Figs. 3.18–3.19.
The physical ρ width is then:

Γphy
ρ = 123 MeV ± 31 MeV (stat) ± 29 MeV (syst) (3.51)

Both the mass and width agree with experimental data as reported by the Particle
Data Group [74], and the determination of the physical ρ mass is rather accurate, with
a total uncertainty of only 2.5%. The physical point result for the width is less accurate
(total uncertainty of 35%) which is due to the reduced precision on the coupling at low
pion masses.

3.5.5. Conclusion

We conclude this first application of lattice QCD by a few comments and remarks. First
we emphasize that this is the first calculation of the ππ phase shifts in the ρ channel with
pion masses down to the physical value. The immediate consequence of this small pion
mass is that the ρ actually decays even on the finite lattice. Up to now all calculations
were done with such pion masses that the ρ was unstable in infinite volume but stable in
the simulations. The crux of the matter when a particle is unstable on the finite lattice
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Figure 3.18.: Weighted histogram of the ρππ coupling obtained from the full systematics
analysis.
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Figure 3.19.: Weighted histogram of the ρ mass obtained from the full systematics anal-
ysis.
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is that it can only be an excited state with respect to its decay channel. Therefore its
measurement necessarily involves some kind of deconvolution of the time dependence
of the relevant correlators. Here we have deployed the Generalized EigenValue method
which proved to be rather efficient but at the price of a heavy CPU cost. Our results
are very satisfactory even though the precision is still modest due to CPU limitations.
To improve the accuracy we have combined the GEV data with the ones at higher pion
masses which are relatively cheap but nevertheless contain some information about the
ρππ system. The combined fit based on general and well accepted hypotheses about the
variation of the ρ mass versus the parameters (lattice spacing, kaon mass, pion mass)
leads to a reliable determination of the effective ρππ coupling and of the ρ mass at
the physical point. One limitation of our calculation is that the phase shift has been
sampled at a few discrete energy values. The only way to improve this point, apart
from generating new gauge configurations with larger volumes, would be to perform the
calculation in moving frames, as in [58]. This is just a matter of work and CPU. Finally
we note that the choice of the GEV basis is a delicate problem. As we have explained,
if the state which is sensitive to the ρππ interaction, that is, which produces a good
phase-shift, is at energy E then it is compulsory that the GEV basis includes all the 2
pions states below that energy. It is also necessary to include some 2 pion states above in
order to protect the good state from the contamination by excited states. The trouble is
that E is known only at the end of the calculation. This explains why some of our points
miss the resonance region. To anticipate this problem we have used a model estimation
of the ρ mass and compared it to the 2 pion levels. This lead us to the choice of GEV
basis explained in Section 3.3.4. However a model is not QCD and moreover, a later
recalibration of the lattice spacing has shown that the relative positions of the resonant
state with respect to the 2 pion states was not always as expected. This is why in some
cases our GEV basis includes more states than was actualy necessary. Given the high
CPU cost it is certainly desirable to optimize this point.



4. Nucleon form factors

4.1. Form factors

4.1.1. Electromagnetic form factors

Since the measurement of the proton’s magnetic moment in 1933 [75], which showed a
much larger value than expected from a spin half point-like Dirac particle, investigations
of the electromagnetic structure of the nucleon have been led thoroughly from both the
experimental and theoretical points of view. Form factors were introduced by Rosenbluth
[76] and defined by Clementel and Villi [77] to account for the deviation of the electric
and magnetic charge distributions of the proton from the point-like case.

In elastic scattering processes – like scattering of an electron on a proton – information
about the electromagnetic structure of the nucleon lies in the matrix element of the
electromagnetic hadronic current between nucleon states:〈

N,p′, s′
∣∣V (f)

µ (0) |N,p, s〉 (4.1)

where p, p′ are the nucleon initial and final momenta, s, s′ the initial and final spins,
and (f) = (u) or (d) is the flavour of the vector current. In QCD, the current is given
by

V (f)
µ = q̄f γµ qf (4.2)

where qf = qu, qd or qs is the up, down or strange quark field and γµ is a Dirac matrix.
When not necessary, the (f) superscript will be omitted.

Note that we can also define the proton and neutron electromagnetic currents, denoted

V
(p)
µ and V

(n)
µ respectively:

V (p)
µ =

2

3
V (u)
µ − 1

3
V (d)
µ (4.3)

V (n)
µ =

2

3
V (d)
µ − 1

3
V (u)
µ (4.4)

as well as the isovector combination, denoted V
(p−n)
µ :

V (p−n)
µ = V (u)

µ − V (d)
µ (4.5)

Vµ is the Noether current associated with the invariance of the continuum QCD action
under U(1) phase rotation of the fermion fields. As such, it is a conserved current, i.e.
∂µVµ = 0, and the corresponding charge – the electric charge Q =

∫
d3x V0 – is a

constant of the motion.

68
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Using Lorentz invariance, conservation of the current and the Dirac equation, one can
show (see for example [78]) that the matrix element Eq. (4.1) has the general form:

〈
N,p′, s′

∣∣Vµ(0) |N,p, s〉 = ū(p′, s′)

[
γµF1(k2) +

iσµν(p′ − p)ν

2MN
F2(k2)

]
u(p, s) (4.6)

where u denotes the usual spin-1
2 Dirac spinor, M is the mass of the nucleon, σµν =

i
2 [γµ, γν ], and we have defined k ≡ p′ − p. The functions F1(k2) and F2(k2) are the
so-called Dirac and Pauli electromagnetic form factors respectively.

In the Breit frame – the initial and final nucleons center-of-mass frame – the matrix
elements can be written as〈

N,−p, s′
∣∣V0(0) |N,p, s〉 = 2MN

[
F1(k2) +

k2

4M2
N

F2(k2)

]
δs′s (4.7)

〈
N,−p, s′

∣∣V(0) |N,p, s〉 = i
[
F1(k2) + F2(k2)

]
χ†s′ (σ × k) χs (4.8)

where σ are the Pauli matrices, and χs are the usual 2-component Pauli spinors χ 1
2

=

(1 0)T , χ− 1
2

= (0 1)T .

It is therefore natural to introduce the Sachs form factors

GE(k2) ≡ F1(k2) +
k2

4M2
N

F2(k2) (4.9)

GM (k2) ≡ F1(k2) + F2(k2) (4.10)

The hermiticity of V
(q)
µ implies that the form factors are real.

Note that we are interested in the space-like form-factors, accessible through electron-
proton scattering experiments. It is then conventional to define Q2 ≡ −k2, as Q2 ≥ 0 in
the space-like region.

In the static limit (|k| � M), they can be regarded as the Fourier transforms of
respectively the charge and magnetization densities of the nucleon in the Breit frame.
The slope at Q2 = 0 then gives the mean-square nucleon charge or magnetic radius

〈
r2
E,M

〉
= −6

1

GE,M (0)

dGE,M (Q2)

dQ2

∣∣∣∣
Q2=0

(4.11)

Note that, using the Dirac equation, Eq. (4.6) can also be rewritten as

〈
N,p′, s′

∣∣Vµ(0) |N,p, s〉 = ū(p′, s′)

[
γµGM (k2)− (p′ + p)µ

2MN
F2(k2)

]
u(p, s) (4.12)

which gives a really convenient parametrization.
With the relativistic normalization of states

〈N,p′, s′|N,p, s〉 = 2Ep(2π)3δ3(p′ − p)δs′s
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one can show (see for example [79]) that at zero momentum transfer, the Sachs form
factors hold the static values of the charge and magnetic moments of the considered
nucleon, i.e.

G
(p)
E (0) = 1 and G

(p)
M (0) = µp ≈ 2.793 (4.13)

for the proton and

G
(n)
E (0) = 0 and G

(n)
M (0) = µn ≈ −1.913 (4.14)

for the neutron, where the charge is in units of |e| and the magnetic moment in units of
the nucleon Bohr magneton µN = e

2MN
.

The first experimental measurements of the nucleon form factors were made with
the Rosenbluth separation method, which uses the dependence of the elastic electron-
proton cross-section on the electron scattering angle. They date back to the 1950s at
the High Energy Physics Laboratory (Stanford), and led to a proton charge radius of
0.77 fm [80]. Since these early works [81], analyses based on the Rosenbluth separation
method were refined, and new techniques emerged with the recent construction of highly
polarized electron beam accelerators, like the recoil polarization method, which allows
precise extraction of the ratio GE

GM
[82]. A comprehensive review of the electromagnetic

structure of the nucleon from the electron-proton scattering point of view can be found
in [83].

Independently, the proton radius has been obtained from accurate measurements
of the Lamb shift transition frequencies of muonic hydrogen [84]. It gives the value
0.84087(39) fm, with an order of magnitude more precision than the value obtained from
electron scattering and hydrogen and deuteron spectroscopy experiments – the CODATA
value [85], 0.8775(51) fm. The discrepancy between the two values led to the so-called
proton radius puzzle and motivated the computation of the electromagnetic form factors
and hence of the proton radius from lattice QCD.

As shown in [83], for Q2 . 1 GeV2, the proton electric and magnetic form factors are
well described by a dipole GE = GM

µ = GD with

GD(Q2) =
1(

1 + Q2

Λ2

)2 (4.15)

with Λ2 = 0.71 GeV2. This form is compatible with the vector meson dominance model,
which assumes that the photon-nucleon coupling is is dominated by the virtual conversion
of the photon into a vector meson such as the ρ(770), the ω(782) or the φ(1020), which
then interacts with the nucleon.

For Q2 > 1 GeV2, experimental data show a significant deviation from the dipolar
form, as shown in Figs. 4.1 and 4.2.

We use as experimental reference the results of [86]. For the proton, form factors are
parametrized with a functional form proposed by Kelly [87]:

G
(p)
E (Q2),

G
(p)
M (Q2)

µp
=

1 + aE,Mp,1 τ

1 + bE,Mp,1 τ + bE,Mp,2 τ2 + bE,Mp,3 τ3
(4.16)
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Figure 4.1.: Proton form factors experimental data from [83] and references therein.

Figure 4.2.: Neutron form factors experimental data from [83] and references therein.
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where τ ≡ Q2

4M2
p

, fitted on Rosenbluth cross-sections and recoil polarization data. The

fitted parameters are

aEp,1 = −0.19± 0.06, bEp,1 = 11.12± 0.15, bEp,2 = 15.16± 1.03, bEp,3 = 21.25± 3.27

aMp,1 = 1.09± 0.01, bMp,1 = 12.31± 0.07, bMp,2 = 25.57± 0.22, bMp,3 = 30.61± 0.27
(4.17)

For the neutron, G
(n)
E (Q2) is parametrized with a BLAST-like [88] functional form

G
(n)
E (Q2) =

aEn(
1 + bEn,1Q

2
)2 −

aEn(
1 + bEn,2Q

2
)2 (4.18)

with

aEn = −0.10± 0.02, bEn,1 = 2.83± 0.37, bEn,2 = 0.43± 0.11 (4.19)

and G
(n)
M (Q2) with Kelly’s parametrization

G
(n)
M (Q2)

µn
=

1 + aMn,1τ

1 + bMn,1τ + bMn,2τ
2 + bMn,3τ

3
(4.20)

with

aMn,1 = 8.28± 3.89, bMn,1 = 21.30± 4.56, bMn,2 = 77± 31, bMn,3 = 238± 105 (4.21)

Note that the precision of Lattice QCD results does not allow the use of such refined
functional parametrizations. We shall therefore restrain our analysis to the low Q2

sector (the typical accessible Q2 range on the lattice lies between 0 and 1.6 GeV2), and
use simple dipole functional forms to parametrize the Q2 dependence of the form factors.

4.1.2. Axial form factors

Similarly to Eq. (4.1), the axial structure of the nucleon is described by matrix elements
of the QCD axial current 〈

N,p′, s′
∣∣Aaµ(0) |N,p, s〉 (4.22)

with
Aaµ = q̄γµγ5T

aq (4.23)

where q denotes the vector of flavour quark fields, and T a are generators of SU(Nf),
which depend on the number of quark flavours considered.1

1For SU(2) (2 flavours), q =

(
qu
qd

)
, and T a = τa

2
are the conventional Pauli isospin matrices. For SU(3)

(3 flavours), q =

quqd
qs

, and T a = λa

2
are the Gell-Mann matrices.
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In the massless quarks limit, Aaµ is also a Noether current of the continuum QCD
action, associated with the chiral rotations of fermion fields

q → eiαγ5Taq, q̄ → q̄ eiαγ5Ta (4.24)

However, the quark mass term in the QCD action breaks the chiral symmetry, leading
to the Partially Conserved Axial Current (PCAC) equation:

∂µAaµ = iq̄γ5 {T a,M} q (4.25)

where M is the mass matrix.
As before, Lorentz invariance, together with the charge conjugation, parity and time-

reversal symmetries, and the absence of second-class current [89] allows us to write
Eq. (4.22) in terms of two real form factors

〈
N,p′, s′

∣∣Aaµ(0) |N,p, s〉 = ū(p′, s′)

[
γµGA(Q2) +

(p′ − p)µ
2MN

GP (Q2)

]
γ5
τa

2
u(p, s)

(4.26)
where GA is the axial form factor, GP the induced pseudoscalar form factor, and we
have again defined Q2 ≡ −(p′ − p)2.

More specifically, we consider the SU(2) isovector axial current, and write

A(p−n)
µ ≡ A(u)

µ −A(d)
µ (4.27)

where we have defined A
(f)
µ ≡ q̄f γµγ5 qf . In the isospin limit, it has the decomposition

〈
N,p′, s′

∣∣A(p−n)
µ (0) |N,p, s〉 = ū(p′, s′)

[
γµGA(Q2) +

(p′ − p)µ
2MN

GP (Q2)

]
γ5u(p, s)

(4.28)
We can also define the nucleon axial charge radius

〈
r2
A

〉
= −6

1

GA(0)

dGA(Q2)

dQ2

∣∣∣∣
Q2=0

(4.29)

The axial coupling constant GA(0) is measured in neutron beta decay rather accurately
[74]:

GA(0) = 1.2701± 0.0025 (4.30)

and the axial form factor is determined experimentally through neutrino scattering off
protons and through charged pion electroproduction.

Experimental measurements suggest that for Q2 . 1 GeV2, the axial form factor can
be described with a dipole functional form

GA(Q2) =
GA(0)(

1 + Q2

M2
A

)2 (4.31)
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Figure 4.3.: Experimental data for GA(Q2)
GA(0) as obtained from pion electroproduction mea-

surements. The dashed line shows a dipole with axial mass MA = 1.1 GeV.
Reprinted from [90].

where MA is the so-called axial mass. [90] gives MA = (1.026± 0.021) GeV for neutrino-
proton scattering data and MA = (1.069 ± 0.016) GeV for pion electroproduction data.
We show a compilation of GA(Q2) data in Fig. 4.3. More details can be found in [90]
and [91].

The induced pseudoscalar form factor GP (Q2) is experimentally not accurately mea-
sured. The data come from muon capture on the proton or from low momentum transfer
pion electroproduction. GP (Q2) can be theoretically related to GA(Q2) using the PCAC
relation Eq. (4.25) and the pion pole dominance hypothesis, giving the approximate re-
lation

GP (Q2) ' 4M2

Q2 +m2
π

GA(Q2) (4.32)

The “world data” are shown in Fig. 4.4, together with theoretical – pion-pole and chiral
perturbation theory – predictions.

4.2. Methodology

4.2.1. Lattice currents, renormalization and Ward identities

To evaluate the matrix elements of the vector and axial current between nucleon states
with lattice QCD, we need to choose discrete versions of the continuum currents to use
in our calculations. The simplest realizations are the local currents, analogue to their
continuum counterparts:

Ṽ (f) loc
µ (n) = q̄f (n) γµ qf (n) (4.33)
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Figure 4.4.: Experimental data for GP (Q2). The filled circle are pion electroproduction
measurements while the diamond is the muon capture point. The dashed line
shows the pion-pole prediction and the solid line the next-to-leading order
chiral perturbation theory. Reprinted from [90]. See references therein.

Ã(f) loc
µ (n) = q̄f (n) γµγ5 qf (n) (4.34)

where n denotes a lattice site, and the ˜ indicates that these are lattice operators.
Computations on the lattice are inherently done with a finite lattice spacing a, which

imposes a momentum cut-off of 1
a . To relate the correlation functions computed on

the lattice to their correct continuum values, the former need to be renormalized. This
amounts to a multiplicative renormalization of the operator O involved with a renor-
malization constant ZO which depends on the lattice spacing a, and on the continuum
renormalization scale µ:

O(µ) = ZO(µ, a)O(a) (4.35)

In our case, the current operators are finite operators, i.e. they have finite values as
the the regularization parameter a → 0. Therefore, their renormalization constants do
not depend on any renormalization scale and Eq. (4.35) becomes:

V (f)
µ = ZV (a) Ṽ (f)

µ (4.36)

A(f)
µ = ZA(a) Ã(f)

µ (4.37)

where ZV (a) and ZA(a) are the vector and axial current renormalization constants re-
spectively.

These constants can be determined non-perturbatively with lattice calculations in the
so-called Regularization Independent – or RI/MOM – scheme [92], which consists in
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imposing as a renormalization condition for operator O that the correlation functions of
O between external off-shell quark states in a fixed gauge coincide with their tree level
value.

Conserved vector current

The need for renormalization of the vector current Vµ can be lifted if one uses the current
conserved by the lattice action (2.40). Indeed, the U(1) Noether current of the Wilson

action can also be used as a realization of V
(f)
µ on the lattice.

We consider a infinitesimal U(1) local rotation of the fermion fields

q(n)→ [1 + iα(n)] q(n), q̄(n)→ q̄(n) [1− iα(n)] (4.38)

The variation of the fermionic action Eq. (2.40) at first order in α can be written after
some straightforward algebra

δSF = −i
∑
n,µ

α(n) ∆µṼ
(f) cons
µ (n) (4.39)

with

∆µṼ
(f) cons
µ (n) ≡ 1

a

[
Ṽ (f) cons
µ (n)− Ṽ (f) cons

µ (n− µ)
]

and

Ṽ (f) cons
µ (n) =

1

2

[
q̄(n+ µ) (1 + γµ) U †µ(n) q(n)− q̄(n) (1− γµ) Uµ(n) q(n+ µ)

]
(4.40)

where Uµ(n) are the lattice gauge links and γµ are the Dirac matrices appearing in the
lattice action – i.e. the Euclidean Dirac matrices, defined in Sec. 2.2.1.

Since the lattice action is invariant under such local U(1) rotations, Ṽ
(f) cons
µ is a

lattice conserved current, i.e.
∑

µ ∆µṼ
(f) cons
µ = 0, and hence need not be renormalized

– ZV cons = 1, since the values of its associated charge are algebraically known.
Then, if we consider the lattice expectation value〈

Nαf (nf )
∑
µ

∆µṼ
(f) cons
µ (n) N̄αi(ni)

〉
U

for a given gauge configuration (i.e. with integration on the quark fields only in the
functional integral), it satisfies the Ward-Takahashi identity〈

Nαf (nf )
∑
µ

∆µṼ
(f) cons
µ (n) N̄αi(ni)

〉
U

=

Q(f)
〈
Nαf (nf ) N̄αi(ni)

〉
U

[
δ4(n, ni)− δ4(nf , n)

] (4.41)
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where Q(f) is the “charge” of the N operator 2, i.e.[
Ṽ

(f) cons
0 (n, t), Nα(n′, t)

]
= −Q(f)Nα(n′, t) δ3(n− n′) (4.42)

For the usual proton interpolator Nα(n) = εabc qu α(n)a
(
qu(n)Tb Cγ5 qd(n)c

)
, Q(u) = 2

and Q(d) = 1.
In the case of zero momentum transfer on a nucleon at rest pf = pi = 0, Eq. (4.41)

gives ∑
nf

∑
n

〈
Nαf (nf ) ∆0Ṽ

(f) cons
0 (n, t) N̄αi(ni)

〉
U

=

Q(f)
∑
nf

〈
Nαf (nf ) N̄αi(ni)

〉
U

[δ(t, ti)− δ(tf , t)]
(4.43)

which highlights the conservation of the charge operator
∑

n Ṽ
(f) cons

0 (n, t).
Stated differently, it gives in momentum space the 3-pt function relations〈
Nαf (0, tf ) Ṽ

(f) cons
0 (0, t) N̄αi(ni)

〉
U

=
〈
Nαf (0, tf ) Ṽ

(f) cons
0 (0, t′) N̄αi(ni)

〉
U

(4.44)

for t, t′ ∈ ]ti, tf [, and〈
Nαf (0, tf ) Ṽ

(f) cons
0 (0, t) N̄αi(ni)

〉
U
−
〈
Nαf (0, tf ) Ṽ

(f) cons
0 (0, t′) N̄αi(ni)

〉
U

= Q(f)
〈
Nαf (0, tf ) N̄αi(ni)

〉
U

(4.45)

for t ∈ ]ti, tf [ and t′ ∈ ]tf , T [.
We insist on the fact that these relations are valid configuration per configuration,

and are numerically exact at the precision of the Dirac operator inversions used to
compute the contractions (i.e. usually about 10−7 or smaller). As such, they provide
an invaluable tool to test our computations. Note that similar relations for non-zero
momentum transfer can be derived.

We also note that after averaging on gauge configurations, the 3-pt functions give
time-ordered vacuum expectation values of the corresponding operators, so that, in the
limit

t� 1

∆
, tf − t�

1

∆
, 2(T − t′)� 1

∆

with ∆ the mass splitting between the nucleon and its first allowed excited-state, the
second term of the left-hand side of Eq. (4.45) goes statistically to 0, and〈

Nαf (0, tf ) Ṽ
(f) cons

0 (0, t) N̄αi(ni)
〉

〈
Nαf (0, tf ) N̄αi(ni)

〉 → Q(f) =

{
2 for f = u

1 for f = d
(4.46)

2note that Q(f) is a number, the eigenvalue of the charge operator
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Axial current

The chiral rotation symmetry does not hold for the lattice QCD Wilson action even with
massless quarks, as the Wilson term in Eq. (2.33)

a5

2

∑
n,µ

q̄(n)∂∗µ∂µq(n)

strongly violates chiral symmetry (it is of order 1
a). It is therefore not possible to define

a partially conserved axial current on the lattice with Wilson action.

We choose to use the local axial current Ã
(f) loc
µ (n) = q̄f (n) γµγ5 qf (n), with the

renormalization constants ZA(a) determined as in [49].
Illustrative results for ZA for the different values of β are given in Table 4.1. The

provided errors are only statistical, and obtained through the bootstrap resampling
method. The provided values are averages over the different procedures used to compute
ZA. Note that our values for ZA are rather close to 1, which is related to the presence
of improvement and smearing in our lattice action [33].

The systematic uncertainty that they carry can therefore be combined in a fully self-
consistent approach with the observable of interest (in our case GA(0))by repeating the
calculation for the value of ZA given by each procedure.

β ZA
3.31 0.9206(15)

3.5 0.9468(5)

3.61 0.9632(4)

3.7 0.9707(3)

3.8 0.9756(1)

Table 4.1.: Results for the axial renormalization constant ZA determined on the lattice
in the RI/MOM scheme for each of our values of β.

4.2.2. Spectral decomposition

To extract physical quantities form the correlation functions computed on the lattice, we
assume that the latter approximate continuum and infinite volume vacuum expectation
values of the form

C ≡ 〈Ω| T
{
Nαf (pf , tf ) O(t) N̄αi(xi, ti)

}
|Ω〉

where T is the time-ordering operator, O is a lattice operator, and the momentum-
projected operators are defined as

N(p, t) =

∫
dx e−ip·x N(x, t) (4.47)
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As in Sec. 2.4.2, we use the closure relation to obtain the spectral representation of
C. Recalling the normalization of momentum states

〈p′, s′|p, s〉 = N (p) δ3(p′ − p) δ(s′, s)

where N (p) = 2Ep (2π)3, the closure is∑
s=± 1

2

∫
dp

N (p)
|p, s〉 〈p, s| = 1 (4.48)

For tf > t > ti, C = 〈Ω|Nαf (pf , tf ) O(t) N̄αi(ni, ti) |Ω〉, so that assuming that both
(tf−t) and (t−ti) are so large that the intermediate states are dominated by the nucleon
(ground) state, we can write

C =
∑
s,s′

∫
dp′

N (p′)

dp

N (p)
T (tf , t, ti)

〈Ω|Nαf (pf , 0)
∣∣N,p′, s′〉 〈N,p′, s′∣∣O |N,p, s〉 〈N,p, s| N̄αi(xi, 0) |Ω〉

(4.49)

where the time factor is

T (tf , t, ti) = exp
[
−Ep′(tf − t)− Ep(t− ti)

]
(4.50)

The overlap matrix elements can be written

〈N,p, s| N̄αi(xi, 0) |Ω〉 = z(p) e−ip·xi ū(p, s)

〈Ω|Nαf (xf , 0)
∣∣N,p′, s′〉 = z(p′)∗ eip

′·xf u(p′, s′)
(4.51)

where u is a nucleon Dirac spinor.
We insist on the fact that u is solution of the free Dirac equation consistent with the

action. Here, we use the Euclidean QCD action, so that the Dirac equation writes[
−γE0

√
p2 +M2

N + iγE · p +MN

]
u(p, s) = 0

ū(p, s)

[
−γE0

√
p2 +M2

N + iγE · p +MN

]
= 0

(4.52)

where the Dirac matrices γEµ = γEµ = γEµ† are the Euclidian Dirac matrices used in the

action and which satisfy
{
γEµ , γ

E
ν

}
= 2 δµν1.

For convenience we define the phase factor

ηµ =

{
0 µ = 0

1 µ = 1, 2, 3
, ηµ =

{
0 µ = 0

−1 µ = 1, 2, 3
(4.53)

which allows us to define Euclidean 4-vectors according to3

aµE = (−i)ηµaµ, aµE = (−i)ηµaµ (4.54)

3Beware that the phase factor is on the Minkowski side of the equation because it is on that side that
the distinction between covariant and contravariant components makes sense.
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and analogously for a tensor of higher rank. Obviously aµE = aEµ and the metric is
gµνE = δµν . Note that aE · bE ≡ a · b. The Dirac equation (4.52) becomes[

γE · pE −MN

]
u(p, s) = 0

ū(p, s)
[
γE · pE −MN

]
= 0

(4.55)

with pE =
{
Ep =

√
p2 +M2

N ,−ip
}

. We choose the normalization ū(p, s)u(p, s′) =

2MN δss′ so that we have the sum rule∑
s

u(p, s) ū(p, s) = γE · pE +MN . (4.56)

The matrix element of the operator O can be parametrized as〈
N,p′, s′

∣∣O |N,p, s〉 = ū(p′, s′)W (p′, p) u(p, s) (4.57)

where the matrix W (p′, p) depends on the way the operator is actually implemented in
the lattice simulation. Finally the correlator (4.49) writes

C =

∫
dp′

N (p′)

dp

N (p)
T (tf , t, ti) z(p)

∗z(p′) (2π)3 δ3(p′ − pf )(
γE · p′E +MN

)
W (p′, p)

(
γE · pE +MN

)
e−ip·xi

(4.58)

This is the master formula that will be used in the following.

2-pt function

If we choose O(t) = 1, we get the 2-point correlator as a special case. We have〈
N,p′, s′

∣∣1 |N,p, s〉 = N (p) δ3(p′−p) δ(s′, s) =
ū(p, s′)u(p, s)

2MN
N (p) δ3(p′−p) (4.59)

so

W (p′, p) =
N (p) δ3(p′ − p)

2MN
(4.60)

and we get

C2(pf , tf ; xi, ti) = 〈Ω| T
{
Nαf (pf , tf ) N̄αi(xi, ti)

}
|Ω〉

=
(2π)3

N (pf )
|z(pf )|2

(
γE · pEf +MN

)
e−ipf ·xi e−Epf

(tf−ti) (4.61)

In the following we shall set xi = 0 and define the traced quantity

C̄2(pf , tf ; 0, ti) =
1

4
Tr


(
γE · pEf +MN

)
2MN

C2(pf , tf ; 0, ti)


=
MN (2π)3 |z(pf )|2

N (pf )
e−Epf

(tf−ti)

=
MN

2Epf

|z(pf )|2 e−Epf
(tf−ti)

(4.62)
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3-pt function

The operator which we insert in the 3-point correlator is

O(t) =

∫
dx e−ik·x J(x, t) (4.63)

where J is the vector or axial current, denoted for simplicity Jµ and Jµ5 respectively in
the following.

Recalling the parametrizations of the current matrix elements in term of the corre-
sponding form factors (Eqs. 4.12 and 4.28), we have

〈
N,p′, s′

∣∣ Jµ(0) |N,p, s〉 = ū(p′, s′)

[
γEµGM (k2)− (p′E + pE)µ

2MN
F2(k2)

]
u(p, s)

〈
N,p′, s′

∣∣ Jµ5 (0) |N,p, s〉 = ū(p′, s′)

[
γEµGA(k2) +

(p′E − pE)µ

2MN
GP (k2)

]
γE5 u(p, s)

with Jµ = V µ and Jµ5 = Aµ (p−n) and where the u spinors are now Euclidean Dirac
spinors. The W matrices are then:

Wµ(p′, p) = (2π)3δ3(p′ − p− k) Γµ(p′, p),

with Γµ(p′, p) = γEµGM (k2)− (p′E + pE)µ

2MN
F2(k2)

(4.64)

for the vector current and

Wµ
5 (p′, p) = (2π)3δ3(p′ − p− k) Γµ5(p′, p),

with Γµ5 (p′, p) =

[
γEµGA(k2) +

(p′E − pE)µ

2MN
GP (k2)

]
γE5

(4.65)

for the axial current.
Inserted into Eq. (4.58), they give the spectral decompositions of the 3-pt correlators

Cµ3 (pf , tf ; t; pi = pf − k, ti) =
z(pf )∗ z(pi)

4EiEf
T (tf , t, ti) (4.66)(

γE · pEf +MN

)
Γµ(pf , pi)

(
γE · pEi +MN

)
Cµ3,5 (pf , tf ; t; pi = pf − k, ti) =

z(pf )∗z(pi)

4EiEf
T (tf , t, ti) (4.67)(

γE .pEf +MN

)
Γµ,5(pf , pi)

(
γE .pEi +MN

)
where Ei,f ≡ Epi,f and

T (tf , t, ti) = exp[−Ef (tf − t)− Ei (t− ti)].
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4.2.3. Form factor extraction

To remove the time dependence and the overlap z factors of the 3-pt function, we consider

R(p, t) ≡
C̄2(p, tf − t+ ti; 0, ti)

C̄2(p, t+ ti; 0, ti)C̄2(p, tf + ti; 0, ti)
=

2Ep

MN |z(p)|2
e2Ept

and

Cµ3,(5) (pf , tf + ti; t+ ti; pi, ti)

C̄2(pf , tf + ti; 0, ti)
=

z(pi)

2z(pf )MNEi
e−(Ei−Ef )t

(
γE · pEf +MN

)
Γµ(5)(pf , pi)

(
γE · pEi +MN

)
so that if we define the ratio

Gµ(5)(pf ,pi) ≡
P(pf )Cµ3,(5) (pf , tf + ti; t+ ti; pi, ti) P(pi)

C̄2(pf , tf + ti; 0, ti)

√
R(pi, t)

R(pf , t)
(4.68)

where P(p) is the projector

P(p) =

(
γE · pE +MN

)
2MN

(4.69)

we have

Gµ(5)(pf ,pi) =
|z(pf )| z(pi)
|z(pi)| z(pf )

1

2MN

√
EiEf

(
γE · pEf +MN

)
Γµ(5)(pf , pi)

(
γE · pEi +MN

)
.

The phases of z(pi), z(pf ) are equal so that our working expression is

Gµ(5)(pf ,pi) =
1

2MN

√
EiEf

(
γE · pEf +MN

)
Γµ(5)(pf , pi)

(
γE · pEi +MN

)
. (4.70)

Note that explicit projection onto the nucleon positive energy states with P(p) in Eqs.
4.62 and 4.68 is used to reduce the contamination by negative parity excited states.
Gµ(5) is time-independent when only the nucleon ground state contributes. In prac-

tice, contaminations from excited states are exponentially suppressed as the lattice time
increases, so that when plotted as a function of t, Gµ(5) exhibits a plateau for ts with

(T − tf ), (tf − t) and (t− ti) large enough.
To extract the required form factors, we then take appropriate covariant traces and

get the equations:

1

4
Tr [Gµ(pf ,pi)]P

Eµ =
P 2

2
√
EiEf

GE (4.71)

1

4
Tr
[
γE5 γ

EνGµ(pf ,pi)
]
ενµρσpEρf pEσi = i

k2 P 2

4MN

√
EiEf

GM (4.72)
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for the electromagnetic form factors, and

1

4
Tr
[
γEνGµ5 (pf ,pi)

]
ενµρσpEρf pEσi = i

k2 P 2

4MN

√
EiEf

GA (4.73)

1

4
Tr
[
γE5 γ

EµGµ5 (pf ,pi)
]

=
3MN√
EiEf

(
GA +

k2

12M2
N

(GP − 2GA)

)
(4.74)

for the axial ones, where summation over the repeated Greek indices is implied and
P = pf + pi and k = pf − pi (k2 < 0). We stress the fact that the Levi-Civita tensor is
the Euclidean one, defined with Eq. (4.54).

Note that working with fully covariant traced equations requires the computation of
the whole Dirac Gµ(5) matrix (i.e. we need the 16 αf , αi combinations), and is therefore
more expensive than the usual “component-per-component” equations. However, in
addition to the improved statistics, this is expected to restore Lorentz invariance more
efficiently.

4.2.4. Excited states

As mentioned above, the information extracted from Gµ(5) is dominated by the nucleon

to nucleon matrix element term as long as (T − tf ), (tf − t) and (t− ti) are sufficiently
large. However, the need to annihilate the nucleon a time tf where the signal still
dominates the noise imposes restriction on the time extents that we can use. Because of
the relatively limited time extents involved in practice, the signal can be contaminated
by excited states contributions which may lead to a systematic bias in the extraction of
form factors from the “plateau” fit of Gµ(5).

To account for these excited states contributions, several methods such as the summed
operator insertion method [93] or Generalized Eigenvalue Problem-based (GEVP) meth-
ods [94–96] have for example been introduced.

We choose to assess excited states contaminations in our analysis by directly taking
into account the first excited state contribution in the fit of the time-dependence of Gµ(5).

As we can see in Fig.4.5, which shows the corresponding effective mass for the lowest
Q2 of our physical pion mass ensemble, the C̄2 ratio√

R(pi, t)

R(pf , t)

does not seem strongly contaminated by excited states, and its spectral decomposition
appears dominated by the e(Epi−Epf

)t term. We can therefore safely neglect the excited
states contributions coming from this term and only consider the ones introduced by
Cµ3,(5). This is not surprising, as for pi = pf , the ratio gives exactly 1, so that excited

states can only enter as corrective recoil effects, of order p2/M2
N .

Excited state contributions therefore arise from terms beyond the nucleon ground
state one in the spectral decomposition of Cµ3,(5). We recall that Gµ(5) is constructed with
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plotted against the lattice time for the

lowest Q2 of our physical pion mass ensemble.
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Cµ3,(5) projected at the source and sink onto the positive energy states with P(pi) and

P(pf ) respectively.
At zero momentum, this projector also selects the positive parity states, and removes

the negative parity ones. We have also checked that in practice, it also eliminates
negative parity states for non-zero momenta, which is theoretically expected as long as
the momenta are small compared to the masses of the ground and negative parity state
masses.

Therefore, we include in the 3-pt function spectral decomposition contributions coming
from the first positive parity state, and write, taking ti = 0,

Gµ(5)(pf ,pi; t) = A(pf ,pi) +B(pf ,pi) e
−∆(pi)t + C(pf ,pi) e

−∆(pf )(tf−t)

+D(pf ,pi) e
−∆(pf )(tf−t)−∆(pi)t

(4.75)

where A, B, C, and D are time-independent, and

∆(p) ≡ E∗p − Ep

with E∗p the energy of the lowest positive parity excited state of the nucleon with mo-
mentum p.

Up to effects of order p2/M2 with p = pi,pf and M = MN ,M
∗
N , the last “D” term

in Eq. (4.75) is also a constant, exponentially suppressed with e−∆(pf )tf , so that it can
be safely neglected and we are left with the three first terms.

The time-dependence ofGµ(5) directly propagates to the effective form factors as defined
in Eqs.4.71, 4.72, 4.73 and 4.74, which we can therefore fit with a function of the form:

A(pf ,pi) +B(pf ,pi) e
−∆(pi)t + C(pf ,pi) e

−∆(pf )(tf−t) (4.76)

and then extract the relevant nucleon ground state form factor from the constant part
A(pf ,pi).

In practice, fitting the time-dependence with ∆(p) as a free parameter is difficult be-
cause of the small available lattice time extents and the sometimes important statistical
errors which make non-linear fits challenging. Consequently, we determine the energy
splitting ∆(p) from the time-dependence of the 2-pt correlation function C̄2, using the
variable projection algorithm [97, 98] presented in Appendix E, which allows us to ex-
tract the first (positive parity) nucleon excited state mass in addition to the ground one
from the time-dependence of the C̄2 correlator.

Using this input for the splitting ∆(p), we can then proceed to the linear fit of the
effective from factors with 4.76 in the whole available lattice time range, just taking care
to avoid contact terms at t = 0(, 1) and t = tf (, tf − 1) where the additional times in
brackets pertain to the non-local current case.

4.3. Lattice calculation details

4.3.1. Ensembles, kinematics and parameters

We perform our calculation using gauge configuration ensembles introduced in Sec. 2.4.1.
The pion masses range from about 500 MeV down to 138 MeV, with lattice spacings going



Chapter 4. Nucleon form factors 86

from about 0.12 fm down to 0.05 fm.
Computation of the nucleon 3-pt functions is done in the rest frame – pf = 0 – to save

CPU (as the momentum of the “generalized propagator” defined in Sec. 4.3.2 is fixed to
0) and to allow for reasonably small squared momentum transfers.

The use of the Breit frame – pf = −pi was considered, since the kinematics in
this frame greatly simplifies the extraction of the form factors from the 3-pt function.
However, in addition to the high CPU cost needed to compute the correlators for each
pf , this has the drawback that the discretization of momenta allowed on the lattice
imposes momentum transfers twice as big as the for the rest frame case, which is strongly
disabling if one wants to extract the electric or axial radii.

The nucleon sink time tf has to be chosen as large as possible to ensure appearance
of a clear plateau in the 3-pt correlation function, with small contamination from ex-
cited states. However, to obtain satisfactory errors on the results, we need to make
compromises between the removal of these unwanted excited state contaminations and
the quickly exploding noise which shows up in baryon correlation functions as the lattice
time increases. Thus, we choose a sink time of about 1.15 fm in physical units.

4.3.2. Contractions and smearing

Contractions

To build the ratio Gµ(5), we need to compute the 2-pt and 3-pt correlation functions

C̃2(pf , tf ; xi, ti) ≡
〈
Nαf (pf , tf ) N̄αi(ni, ti)

〉
(4.77)

C̃
(f)
3 (pf , tf ; t; pi, ti) ≡

〈
Nαf (pf , tf ) J (f)(m,n) N̄αi(ni, ti)

〉
(4.78)

on the lattice, where Nα(p, t) now denotes the lattice proton interpolator

Nα(p, t) =
∑
n

e−ip·n Nα(n, t), p ∈ 2π

L
Z3

with Nα(n, t) ≡ εabc qau α(n)
(
qb Tu (n)Cγ5 q

c
d(n)

)
with C = iγ2γ0 the charge conjugation matrix, and where J (f)(m,n) is a possibly non-
local lattice current of the form

J (f)(m,n) = q̄f (m) Γ(m,n) qf (n)

where Γ is a general “spinor matrix”, i.e. Γαα′ .
We evaluate these correlators on the lattice as sums of products of quark propagators,

using Wick’s theorem [38].
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The Wick contraction formula gives for the 2-pt function

C̃2(pf , tf ; xi, ti) =
∑
nf

e−ip·nf εabc εa′b′c′ (Cγ5)αβ (Cγ5)α′β′ D
−1
d (nf , ni)ββ′

bb′{
D−1

u (nf , ni)αα′
aa′

D−1
u (nf , ni)αfαi

cc′
+D−1

u (nf , ni)αfα′
aa′

D−1
u (nf , ni)ααi

cc′

}
(4.79)

where D−1
(f) is the lattice flavour f quark propagator, the Greek letters are spinor indices,

the Latin letters are color indices and summation over repeated indices is implied.
The Wick contractions for the 3-pt function depend on the flavour of the inserted

current. Moreover, they contain quark-disconnected contributions, of the form〈
Nαf (nf , tf ) J (f)(m,n) N̄αi(ni, ti)

〉
disc

= Tr[D−1
(f)(n,m) Γ(m,n)]

〈
Nαf (nf , tf ) N̄αi(ni, ti)

〉
(4.80)

We only compute the connected parts, and therefore drop contributions like the one
above. This introduces a systematic bias in our calculation, except if we consider the

isovector combinations J = V
(p−n)
µ or A

(p−n)
µ , for which the disconnected contractions

cancel out, since we work in the isospin limit mu = md.
The connected contributions are written

C̃
(u)
3 (pf , tf ; t; pi, ti) =

∑
nf

e−ipf ·nf εabc εa′b′c′ D
−1
u (nf ,m)αγ

cd

[
Γ(m,n)D−1

u (n, ni)
]
γρ
dc′{

δαfαTr
[
D−1

u (nf , ni)aa′ ∆
T
d (nf , ni)bb′

]
δραi

+ δαfα
[
∆T

d (nf , ni)bb′ D
−1
u (nf , ni)aa′

]
ραi

+
[
D−1

u (nf , ni)aa′ ∆
T
d (nf , ni)bb′

]
αfα

δραi

+ D−1
u (nf , ni)αfαi

aa′
∆T

d (nf , ni)ρα
bb′

}
(4.81)

for J (f) = J (u), and

C̃
(d)
3 (pf , tf ; t; pi, ti) =

∑
nf

e−ipf ·nf εabc εa′b′c′ D
−1
d (nf ,m)αγ

cd

[
Γ(m,n)D−1

d (n, ni)
]
γρ
dc′{[

D−1
u (nf , ni)aa′ (Cγ5)

]
αfρ

[
(Cγ5)T D−1

u (nf , ni)bb′
]
ααi

+ D−1
u (nf , ni)αfαi

aa′
∆T

u (nf , ni)ρα
bb′

}
(4.82)

for J (f) = J (d), where we have defined ∆(f)(nf , ni)αβ
ab
≡
[
(Cγ5)D−1

(f)(nf , ni)ab (Cγ5)T
]
αβ

,

and where traces, products [·] and transpositions run on spinor indices.
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We see, as expected, that the contractions for the 3-pt functions involve propagation
of a quark from every m to nf , which naively requires all-to-all propagators. However,
to circumvent the prohibitive cost of computation full all-to-all propagators, we use
the technique of so-called “generalized propagators” introduced in [99]. Indeed, in our
application, we do not request the 3-pt function for all pf , tf . Fixing pf and tf , the
idea is to compute directly the propagation of a diquark from ni and a quark from m,
both going to pf .

Formally, we define the generalized propagators PG(f)(pf , tf , αf ; m; ni, αi)ργ
c′d

for (f) =

u,d as

PGu(pf , tf , αf ; m; ni, αi)ργ
c′d
≡
∑
nf

e−ipf ·nf εabc εa′b′c′ D
−1
u (nf ,m)αγ

cd{
δαfαTr

[
D−1

u (nf , ni)aa′ ∆
T
d (nf , ni)bb′

]
δραi

+ δαfα
[
∆T

d (nf , ni)bb′ D
−1
u (nf , ni)aa′

]
ραi

+
[
D−1

u (nf , ni)aa′ ∆
T
d (nf , ni)bb′

]
αfα

δραi

+ D−1
u (nf , ni)αfαi

aa′
∆T

d (nf , ni)ρα
bb′

} (4.83)

PGd(pf , tf , αf ; m; ni, αi)ργ
c′d
≡
∑
nf

e−ipf ·nf εabc εa′b′c′ D
−1
d (nf ,m)αγ

cd{[
D−1

u (nf , ni)aa′ (Cγ5)
]
αfρ

[
(Cγ5)T D−1

u (nf , ni)bb′
]
ααi

+ D−1
u (nf , ni)αfαi

aa′
∆T

u (nf , ni)ρα
bb′

}
(4.84)

so that

C̃
(f)
3 (pf , tf ; t; pi, ti) = PG(f)(pf , tf , αf ; m; ni, αi)ργ

c′d

[
Γ(m,n)D−1

(f)(n, ni)
]
γρ
dc′

(4.85)

We write

PG(f)(pf , tf , αf ; m; ni, αi)ργ
c′d
≡
∑
nf

e−ipf ·nf B(f)(nf , αf ;ni, αi)ρα
c′c
D−1

(f)(nf ,m)αγ
cd

and using the Dirac operator γ5-hermiticity:

D−1
(f)(nf ,m)αγ

cd
= γ5αα′ D

−1
(f)(m,nf )∗γ′α′

dc

γ5 γ′γ

we get

PG(f)(pf , tf , αf ; m; ni, αi)ργ
c′d

= C(f)(pf , tf , αf ; m; ni, αi)
∗
γ′ρ
dc′

γ5 γ′γ (4.86)
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with

C(f)(pf , tf , αf ; m; ni, αi)γ′ρ
dc′

=
∑
nf

eipf ·nf D−1
(f)(m,nf )γ′α′

dc

[
B(f)(nf , αf ;ni, αi)

∗
c′c
γ5

]
ρα′

It is then straightforward to show that C(f)(nf , αf ; m; ni, αi)γ′ρ
dc′

is solution of the

Dirac equation

D(f)(m
′,m)βγ′

bd

C(f)(nf , αf ; m; ni, αi)γ′ρ
dc′

=
∑
nf

eipf ·nf δm′ nf
[
B(f)(nf , αf ;ni, αi)

∗
c′b
γ5

]
ρβ

(4.87)
so that to compute the generalized propagators, we first compute the generalized sources∑

nf

eipf ·nf δm′ nf
[
B(f)(nf , αf ;ni, αi)

∗
c′b
γ5

]
ρβ

(4.88)

and then invert the Dirac operator with these source terms and build the propagators
with the solutions according to Eq. (4.86).

These generalized propagators are then contracted with the usual quark propagators
and the current matrices to get the 3-pt function (see Eq. (4.85)).

Smearing

As mentioned in Sec. 2.4.2, to improve the signal in our correlation functions, we can use
spatially extended nucleon interpolators, as long as they keep the right quantum num-
bers. Smearing the nucleon operators then helps improving the overlap between them
and the true nucleon states, therefore enhancing the ground state signal. The smear-
ing of interpolators is usually taken as a factorizable function, such that the smearing
procedure amounts to a replacement of the local fermion spinors in Nαf and N̄αi with
smeared fermions

qS(f)(n, t) ≡
∑
n′

S(n′; n, t) q(f)(n
′, t) (4.89)

Since we work in fixed Coulomb gauge, we can use a non-covariant smearing function.
We choose a Gaussian spatial distribution at the source and sink,

S(n′; n, t) = e−
(n′−n)2

s2 (4.90)

where s is the spatial extension of the Gaussian, chosen of order 0.3 fm.
The smearing of the interpolators is in practice obtained with a replacement of the

usual local quark propagators by their smeared counterparts, computed by inverting the
Dirac equation on an extended source, and then convoluting with the smearing function
at the sink.

Note that the smearing of the generalized propagators used to compute the 3-pt func-
tion is done similarly by replacing the local propagators with the smeared ones, and by
using smeared generalized sources (Eq. (4.88)) in the inversion of Eq. (4.87).

We insist on the fact that the source and sink smearings used within the 2-pt and 3-pt
functions must be the same, so that the overlap factors cancel out in the ratio 4.68.
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β tmin tmax

3.31 2 5

3.5 2 6

3.61 2 6

3.7 4 8

Table 4.2.: Lattice time ranges used to fit the effective form factors plateaus for each β.

4.4. Results

4.4.1. Form factors

In this section, we report our results for the nucleon isovector electromagnetic and ax-
ial form factors. The form factor values are extracted with the equations derived in
Sec. 4.2.3. More precisely, for each Q2, we compute the considered form factor at each
lattice time t, using the ratio Gµ(5)(t).

This effective form factor should exhibits a plateau for (tf−t) and (t−ti) large enough.
However, as mentioned in Sec. 4.2.4, excited-state contributions can still contaminate
the signal for our time extents. We then perform a correlated fit of the effective form
factor either with a constant within some range, which depends on the value of β for
the studied ensemble, or with the functional form (4.76) in the whole range (without the
sides). The time fit ranges for the effective form factors plateau are given in Table 4.2.
The procedure for the excited state deconvolution fit is described in Sec. 4.2.4; we just
recall here that the required energy splitting between the ground state and the first
positive parity excited state is extracted from the 2-pt correlator.

The results for both fitting procedures are given in the figures.
The reported – statistical only – errors are obtained with a full bootstrap analysis.

When applicable (i.e. for G
(p−n)
E (Q2), G

(p−n)
M (Q2) and GA(Q2)), we plot along our

lattice results the experimental parametrizations introduced in Sec. 4.1.1, and the fit of
the data with a dipole functional form

A(
1 + Q2

M2

)2 (4.91)

in the range 0 GeV2 ≤ Q2 ≤ 1 GeV2.
Note that to improve our statistics, we have used several norm-degenerate momenta

to obtain the Q2-dependence of the form factors. These degenerate momenta values
are all taken into account in the fits, but are averaged over in the plots for the sake of
readability.

We also insist on the fact that the presented form factors are raw lattice results,
with finite volume and lattice spacing. The study of the finite volume effects and the
continuum extrapolation shall only be performed for the nucleon electric radius and for
the axial charge in a later section, as these are the two main quantities of interest of this
thesis.
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Electric form factor

We show the results for the isovector electric nucleon form factor G
(p−n)
E (Q2) for each

ensemble in Figs. 4.7 and 4.8. Fig. 4.6 shows an example of plateaus exhibited by our
data at the physical point for several Q2.
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Figure 4.6.: Examples of plateaus for G
(p−n)
E (Q2) for the physical pion mass ensemble

β = 3.31, ambare
ud = −0.09933, ambare

s = −0.04, Λ = 483 × 48. The dotted
lines show the fits of the plateaus with the functional form Eq. (4.76), which
accounts for excited-state contributions.

We also show in Fig. 4.6 the fits of the corresponding plateaus with the functional
form of Eq. (4.76), which takes excited-state contributions into account. This form fits
the data very well, and is in good agreement with the constant fit of the plateaus.

The dipole fits are in really good agreement with the data, and are independent of
the Q2 fit range, as the higher momentum transfer values have larger error bars. As
mentioned in Sec. 4.2.1, the Ward identities do indeed ensure that our lattice conserved

current need not be renormalized, and the electric charge G
(p−n)
E (0) is found equal to 1,

as expected. To prevent introduction of any bias in our analysis, we have however kept
the dipole fit parameter A free, just checking afterwards that it was fitted to 1, which is
the case since the errors on the electric charge are orders of magnitude smaller than for
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other Q2.
As the pion mass goes to its physical value, our results appear in rather good agreement

with experimental data.
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Figure 4.7.: Results for the nucleon isovector electric form factor G
(p−n)
E (Q2), plotted as a

function of Q2. The red dotted lines show the experimental parametrization
and the blue ones our dipole fits.
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Figure 4.8.: Results for the nucleon isovector electric form factor G
(p−n)
E (Q2), plotted as a

function of Q2. The red dotted lines show the experimental parametrization
and the blue ones our dipole fits.
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Magnetic form factor

The results for the nucleon isovector magnetic form factor G
(p−n)
M (Q2) are shown in

Figs. 4.10 and 4.11, and examples of plateaus obtained at the physical pion mass are
given in Fig. 4.9.
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Figure 4.9.: Examples of plateaus for G
(p−n)
M (Q2) for the physical pion mass ensemble

β = 3.31, ambare
ud = −0.09933, ambare

s = −0.04, Λ = 483 × 48. The dotted
lines show the fits of the plateaus with the functional form Eq. (4.76), which
accounts for excited states contributions.
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Figure 4.10.: Results for the nucleon isovector magnetic form factor G
(p−n)
M (Q2), plot-

ted as a function of Q2. The red dotted lines show the experimental
parametrization and the blue ones our dipole fits.
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Figure 4.11.: Results for the nucleon isovector magnetic form factor G
(p−n)
M (Q2), plot-

ted as a function of Q2. The red dotted lines show the experimental
parametrization and the blue ones our dipole fits.
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Axial form factor

The results for the nucleon isovector axial form factor GA(Q2) are shown in Figs. 4.13
and 4.14, and examples of plateaus obtained at the physical pion mass are given in
Fig. 4.12.

They are in agreement with the previous recent results from [100] and [101].
Note that the shown form factors do not include renormalization with ZA.
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Figure 4.12.: Examples of plateaus for GA for the physical pion mass ensemble β = 3.31,
ambare

ud = −0.09933, ambare
s = −0.04, Λ = 483 × 48. The dotted lines show

the fits of the plateaus with the functional form Eq. (4.76), which accounts
for excited-state contributions.
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Figure 4.13.: Results for the nucleon isovector axial form factor GA(Q2), plotted as a
function ofQ2. The red dotted lines show the experimental parametrization
and the blue ones our dipole fits.
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Figure 4.14.: Results for the nucleon isovector axial form factor GA(Q2), plotted as a
function ofQ2. The red dotted lines show the experimental parametrization
and the blue ones our dipole fits.
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Pseudo-scalar form factor

For completeness, we show the results for the isovector pseudo-scalar nucleon form factor
GP (Q2) for each ensemble in Figs. 4.15 and 4.16.

We can observe the rapid increase of GP at low Q2, which can be associated with
pion pole. However, we do not attempt any further comparison with experiment, as
experimental data are rather inaccurate and turn out not to overlap our Q2 range.
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Figure 4.15.: Results for the nucleon pseudo-scalar form factor GP (Q2), plotted as a
function of Q2.
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Figure 4.16.: Results for the nucleon pseudo-scalar form factor GP (Q2), plotted as a
function of Q2.
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4.4.2. Electric charge radius

The isovector nucleon electric charge mean squared radius is obtained from the fits of
the electric form factors with a dipole functional form 4.91 as :

〈
r2
E

〉
≡ −6

1

G
(p−n)
E (0)

dG
(p−n)
E (Q2)

dQ2

∣∣∣∣∣
Q2=0

=
12

M2
E

(4.92)

The lattice “raw” results computed from the fitted electric dipole masses are shown in
Fig. 4.18, plotted versusm2

π. Again, the reported errors are only statistical and estimated
with the bootstrap method, each bootstrap sample being fitted independently.

Being a spatial density, the squared radius is directly sensitive to long-range be-
haviours, and can be therefore strongly affected by finite volume effects.

Finite volume effects

To estimate the finite-volume corrections, we assume that they are due to the pion
contribution to the form factors, which allows us to use chiral perturbation theory. In
this approach the form factors are given by a point like nucleon surrounded by a pion
cloud. Since the point source form factor has no finite volume correction we only need
to consider diagrams where the current is carried by the pion. This is shown on Fig.4.17
where the thin (resp. fat) lines represent the nucleon (resp. delta) and the dotted line
is the pion.

a b c

Figure 4.17.: Pion contribution to the current

According to [102] the pion contribution to the proton and neutron electric form factor
is

G
(p)
E,π(Q2) = −G(n)

E,π(Q2) =
g2
A

16π3f2
π

(
IN −

16

25
I∆ +

1

g2
A

Itp

)
where the loop integrals are given by the following expressions:

IN =

∫
dk

u(k)u(k− q) k · (k− q)

ω(k)ω(k− q) [ω(k) + ω(k− q)]

I∆ =

∫
dk

u(k)u(k− q) k · (k− q)

[ω(k) + ∆] [ω(k− q) + ∆] [ω(k) + ω(k− q)]

Itp =

∫
dk

u(k)2

[ω(k + q/2) + ω(k− q/2)]
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mπ(GeV) L(fm) δ
〈
r2
E

〉
(fm2)

0.138 5.46 0.071

0.187 4.3 0.058

0.188 4.0 0.068

0.220 3.7 0.055

0.252 3.0 0.065

0.308 3.6 0.019

0.380 2.5 0.033

0.509 2.5 0.011

Table 4.3.: The volume corrections to the isovector electric mean squared radius.

with ω(k) =
√
k2 +m2

π and u(k) a form factor which regulates the integral in the ultra
violet. We choose it to be a dipole

u(k) =
1

(1 + k2/Λ2)2

but we stress that the exact shape of the regulator is irrelevant for the volume correction.
We use the physical values of the constants that is gA = 1.27, fπ = 93 MeV.

For a quantity GFV computed in the finite volume V we define the correction

δG = G∞ −GFV

and we estimate this difference by replacing the loops integral IN,∆,tp by discrete sums
according to the replacement:

1

(2π)3

∫
dk→ 1

L3

∑
kxkykz

, kx,y,z =
2π

L
nx,y,z.

In Table 4.3 we give the finite volume corrections δ(
〈
r2
E

〉
) to the isovector mean squared

radius for the parameters used in our calculation. The cut-off parameter Λ has been set
to Λ = 2 GeV and we have checked that the difference between the loop integrals and
their discrete sum version was actually saturated with this value. This amounts to saying
that the cut-off has been removed.

Chiral behaviour

As the pion mass approaches its physical value, we observe a rapid increase of
〈
r2
E

〉
, as

predicted by Chiral Perturbation Theory. This behaviour is a really interesting output
of our calculation, as it appears to take place at low pion masses, and could not be
unambiguously detected without data at the physical pion mass. Our values are in
agreement with the experimental data, although less accurate.

The effects of excited-state contributions are rather small, unlike in Ref. [103] and
[104], and we have not observed any strong deviation between the excited states plateau
fit method and the usual constant plateau fit one.
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Figure 4.18.: Pion mass dependence of the isovector electric charge squared radius. The
turquoise dots with dotted error riser lines are the raw lattice results

obtained from the dipole fits of G
(p−n)
E (Q2), extracted with the two-fit

method. The violet dots are the results after correction of the finite vol-
ume effects computed as in Sec. 4.4.2.

Although [104] also used a method similar to our excited-state plateau fit, they did not
project the 3-pt correlator with P(pi) at the source, and used a mass splitting ∆ equal
to mπ or 2mπ, which gives strong excited-state effects. However, the mass splitting we
have fitted from C̄2 appears closer to the mass splitting between the nucleon and its first
positive parity P11(1710) radial excitation.

As for the strong excited-state contributions reported in [103], a few tests conducted
with our data suggest that they could be related to the absence of projection at the
source, which allows for strong contamination by the relatively low lying negative parity
excitation of the nucleon.

Following [102], we parametrize the dependence of the squared radius on the pion
mass as 〈

r2
E

〉
= A+Bm2

π −
10 g2

A + 2

16π2f2
π

log
mπ

µ

where A and B are free parameters, µ is a mass scale (which can be arbitrarily absorbed
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in A, and is therefore chosen to be 1 GeV) and where we take the physical values of
the chiral parameters gA = 1.267 and fπ = 92.4 MeV. As we can see in [105], the
discretization effects can be safely accounted for with some O(a2) functional; and we
choose to add an m2

K term to extrapolate to the physical strange quark mass.
So that our functional parametrization of the electric charge squared radius eventually

writes: 〈
r2
E

〉
= A+Bm2

π −
10 g2

A + 2

16π2f2
π

log
mπ

µ
+ Cm2

K +Da2 (4.93)

where A, B C and D are the fit parameters.
In Fig. 4.19, we show our results extrapolated to the continuum and at the physical

strange quark mass together with the corresponding chiral fit.
The physical point value we obtain is:〈

r2
E

〉phy
= 0.79 fm2 ± 0.05 fm2 (stat) (4.94)

which is in agreement with the experimental value.
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Figure 4.19.: Results for the electric charge squared radius extrapolated to the contin-
uum, infinite-volume and physical strange quark mass. The dotted line
shows the corresponding fit performed with the functional form (4.93).
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4.4.3. Magnetic moment

For completeness, we present here the results for the isovector magnetic moment GM (0).
These are shown in Fig. 4.20, plotted against m2

π.
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Figure 4.20.: Pion mass dependence of the isovector magnetic moment. The turquoise

dots are the raw lattice results obtained from the dipole fits of G
(p−n)
M (Q2),

extracted with the two-fit method.

At the physical pion mass, the fitted raw magnetic moment obtained is

GM (0)mπ ,phys = 3.90 (27) (4.95)

Again, we stress that this value is only given by one ensemble, at finite volume and
lattice spacing, with statistical errors only.

The magnetic form factor is not very accurate, as it is computed on the lattice as the
difference between two large numbers, which is then divided by Q2, which is relatively

small. Moreover, its value at Q2 = 0 can only be extrapolated, as G
(p−n)
M (Q2) enters

the nucleon current matrix element multiplied by Qµ. This extrapolation brings another
large source of uncertainty for the magnetic charge.

The values obtained from our lattice calculations seem to slightly underestimate the
magnetic moment experimental value, as was already observed in [105]. However, a
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more detailed study of finite-volume effects and an extension of the calculation with
other ensembles presented in Sec. 2.4.1 along with a continuum and infinite-volume
extrapolation need to be performed in order to get a more robust lattice value.

4.4.4. Axial charge

We present here our results for the axial charge gA = GA(0). The reported values in this
section take the renormalization with ZA into account.

Our result at the physical pion mass is compatible with the experimental value within
2σ, and mainly agrees with the previous calculations of Refs. [106] and [107]. We also
note the sharp increase of gA which takes place in a small mπ range of about 100 MeV
when approaching the physical mass.

Note that, like [108]), we do not observe the violent excited-state effect of [103], which
seems to be associated with the summation method employed.
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Figure 4.21.: Pion mass dependence of the nucleon axial charge. The turquoise dots with
dotted error riser lines are the raw lattice results. The violet dots are the
results after renormalization with ZA.

Note that the volume corrections to gA have been estimated in ref. [106]. For our
combinations of pion masses and volumes, they are negligible.
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4.5. Conclusion

To conclude this chapter about the lattice QCD computation of the nucleon form factors,
we emphasize that the results obtained go down to the physical pion mass, and appear in
rather good agreement with experimental data. Under the assumptions made regarding
the functional form of the form factors and the size of finite-volume corrections, the
lattice

〈
r2
E

〉
and gA puzzles seem to be under control and well understood., though a

thorough continuum and infinite-volume extrapolation has yet to be performed.
We remind the reader that only the isovector parts have been computed in this work,

in order to avoid the computation of disconnected contractions.
To complete this study, the extrapolations mentioned above and a thorough analysis

of systematic errors (including those associated with the choice of form factor functional
form) within a global fit combining all our ensembles are ongoing and their presentation
is postponed to a future paper.



5. Conclusion and outlooks

In this thesis, we have used the framework of Lattice QCD with gauge configurations
from the BMW collaboration to perform a detailed study of two issues in hadronic
physics.

With impressive results for hadron spectroscopy and the recent understanding of mat-
ter stability as the consequence of strong competing isospin breaking and electromag-
netic effects [73], Lattice QCD provides an invaluable formalism to perform ab-initio
non-perturbative calculations of strong interaction related processes. As such, this work
meshes with recently growing attempts to study the structure of hadrons and hadronic
interactions from first principles.

In a first study, we have analysed ππ scattering in the ρ channel, using Lüscher’s
formalism. Our results encompass the first calculation of the ππ scattering phase-shifts
and the ρ resonance parameters at the physical pion mass, and as such provide an
important step as the first direct evidence of a particle decaying on the lattice. After
continuum extrapolation, the ρ mass and width are in excellent agreement with the
experimental values.

The outcome of our calculation relied intensively on the use of the Generalized Eigen-
value Problem variational method, which proved to be a powerful tool to extract excited-
state energies in addition to the ground state one. This however requires huge computing
time, as well as the construction of several independent interpolating operators, which,
in the case of particle scattering, correspond to multi-hadronic interpolators.

The second part of this work was dedicated to the study of the electroweak nucleon
form factors, computed down to the physical pion mass. We restricted the calculation
to the isovector case to avoid the computation of disconnected contractions.

The extraction of form factors from the three-point correlation functions computed on
the lattice was performed using a novel fully covariant formalism, combined with a full
projection onto the nucleon state at the source and sink. In addition to providing an
extraction method which does not favour any particular polarisation, this also proved
useful to strongly reduce excited-state contributions in our signal.

The study of excited-state contaminations was achieved using a two-state fitting pro-
cedure of the effective form factors in addition to the usual plateau method. The mass
splitting needed in the two-state fit method was obtained through multi-exponential fits
of the two-point correlation functions performed with the variable projection algorithm.
The effect of excited-state contributions was found to be small, and within error bars.

At the physical pion mass, our results are in good agreement with experimental values.
The investigations of the electric nucleon squared radius

〈
r2
E

〉
and of the axial charge gA

included their behaviour as functions of the pion mass. We have observed their sharp
variation related to the non-analytic term going like log(mπ) near the physical pion mass,
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predicted by chiral perturbation theory. The sudden increase induced by this term takes
place for rather low pion masses and is therefore difficult to correctly assess without data
at the physical mass.

The statistical precision of our lattice results still needs improvement in order to
compete with experimental data, for example to solve the proton radius puzzle, which
would require a total precision of about 3%. We insist on the fact that calculations
at the physical pion mass is compulsory for the nucleon structure quantities, as chiral
parametrizations can lead to untrustworthy results when not constrained at low pion
masses.



... n’abolira le hasard.

S. Mallarmé



A. Statistics

As mentioned in Sec. 2.3, the computation of vacuum expectation values of observables
in lattice QCD is done with a Monte-Carlo importance sampling of the space of gauge
configurations. Typically, we use a few hundreds configurations to estimate the involved
integral, which provides a rather good precision on the central value of the expectation
value (considered her as a random variable). However, this number of configurations is
usually too small to estimate accurately the variance of the computed quantity. More-
over, the expectation values are often used in some physical post-analysis, involving
arithmetical and statistical manipulations, such as fits. It may then become difficult to
propagate errors reliably throughout the procedure. To overcome both limitations, we
use a resampling method introduced in [47], called the bootstrap method.

Bootstrap resampling method

The idea of bootstrap resampling is, starting from a set of N realizations {x1, ..., xN} of
some random variable X, to consider new bootstrap sample sets {x∗1, ..., x∗N} of realiza-
tions, where the samples x∗i are randomly drawn (with replacement) from the original
set {xi, i = 1...N}.

If we now consider the result of this drawing procedure as the realizations of a new
bootstrap random variable X∗, then the sampling distribution of any observable O(X)
depending on X can be shown to be well approximated by the bootstrap distribution of
O∗ ≡ O(X∗).

In practice, we therefore need to build several (say M) bootstrap samples {x∗i }m,
m = 1, ...,M , and perform our analysis on each bootstrap sample, to obtain M bootstrap
realizations O∗m of the observable. Typically, in our case, M = 2000.

At the end of our analysis process, we can then get the central value and error of the
considered quantity using standard (unbiased) statistical estimators for the mean and
standard deviation:

Ō =
1

M

M∑
m=1

O∗m (A.1)

σ2
O =

1

M − 1

∑
m

(
O∗m − Ō

)2
(A.2)

However, more robust estimators can also naturally be used, for example to limit the
impact of outliers which can appear in the course of some analysis including non-linear
manipulations.
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Robust statistics

In the analysis process of our lattice data within the bootstrap resampling framework,
it can happen that some highly non-linear procedure favours the occurrence of outlying
bootstrap realizations. Then, as thoroughly studied in [109], a way to avoid the strong
contamination of the mean and standard deviation estimators by the few outliers is to
use robust estimators for the expectation value and the variance square root. The two
robust estimators we shall use to this end are the median, and the normalized median
absolute deviation MAD, defined as

MAD{O} =
med {|O∗m −med{O∗m}|}

Φ−1
(

3
4

) (A.3)

where normalization by the inverse gaussian cumulative distribution function evaluated
at 3

4

Φ−1

(
3

4

)
≈ 0.6745

is to ensure that for a normal distribution MAD{O} = σO.



B. Two-point functions

Generalities

Hadron masses can be extracted from the Euclidean-time dependence of two-point cor-
relation functions

C(t) = 〈Ω| T {O2(t)O1(0)} |Ω〉 (B.1)

where |Ω〉 is the vacuum state, and O1 and O2 are timeslice hadron operators Oi(t) =∑
x e
−ix·pOi(x, t) with definite spatial momentum p 1 and the same quantum numbers

as the hadron we are interested in, called interpolators. Time-ordering in Eq. (B.1)
implies

C(t) =

{
〈Ω|O2(t)O1(0) |Ω〉 : t ≥ 0

±〈Ω|O1(0)O2(t) |Ω〉 : t < 0
(B.2)

where the ”±” sign accounts for the bosonic or fermionic nature of the operators.
The correlation functions then have the Hamiltonian representation

C(t) = lim
T→∞

Tr
[
e−TĤ

]−1

Tr
[
e−(T−t)Ĥ O2(0) e−tĤ O1(0)

]
: t ≥ 0

±Tr
[
e−TĤ O1(0) etĤ O2(0) e−tĤ

]
: t < 0

(B.3)

where Ĥ is the Hamiltonian of QCD.
Expanding the trace, and inserting a complete set of eigenstates in Eq. (B.3), we

obtain 2

C(t) = lim
T→∞

Tr
[
e−TĤ

]−1


∑

m,n e
−(T−t)Em 〈m|O2 |n〉 e−tEn 〈n|O1 |m〉 : t ≥ 0

±
∑

m,n e
−(T+t)Em 〈m|O1 |n〉 etEn 〈n|O2 |m〉 : t < 0

=

{∑
n 〈Ω|O2 |n〉 〈n|O1 |Ω〉 e−t En

±
∑

n 〈Ω|O1 |n〉 〈n|O2 |Ω〉 et En
(B.4)

In the special case O2 = O†1 = O, 〈Ω|O |n〉 = 〈n|O |Ω〉† and Eq. (B.4) becomes

C(t) =

{
| 〈Ω|O |N〉 |2 e−t EN : t ≥ 0

±|
〈
N̄
∣∣O |Ω〉 |2 et EN̄ : t < 0

(B.5)

1In practice, only O2 is momentum-projected, and momentum conservation selects the right fourier
component in O1.

2We choose EΩ = 0
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where | 〈Ω|O |N〉 |2 also includes any spin sum that might appear with |N〉 and 〈N | if
these are fermion states. We have kept only the lowest contributing state, as the other
ones decay faster as t increases. Note the appearance for t < 0 of a ground state N̄ ,
which can in general be different from N . It is however often related to N through
invariance of the action under some discrete symmetries.

On the lattice, one works with large but finite T , along with time-direction boundary
conditions. In the case of (anti)periodic boundary conditions, the computed two-point
function on the lattice is (anti)periodic by construction and given by:

Clat(t) =
+∞∑

m=−∞
(±)m C(t+mT ) (B.6)

where now 0 < t < T , and the +(−) sign stands for periodic (antiperiodic) boundary
conditions. Splitting the sum and using Eq. (B.5), we get

C(t) =
∑
m≥0

(±)m C(t+mT ) +
∑
m<0

(±)m C(t+mT )

= | 〈Ω|O |N〉 |2
∑
m≥0

(±)m e−(t+mT )EN ± |
〈
N̄
∣∣O |Ω〉 |2 ∑

m<0

(±)m e(t+mT )EN̄

=
| 〈Ω|O |N〉 |2

1− (±)b.c.e−T EN
e−t EN ±

|
〈
N̄
∣∣O |Ω〉 |2

1− (±)b.c.e−T EN̄
e−(T−t)EN̄

(B.7)
where in the last line we have summed the geometric series. For T large enough, the
denominators go to 1 and we find the usual lattice spectral decomposition

C(t) = | 〈Ω|O |N〉 |2 e−t EN ± |
〈
N̄
∣∣O |Ω〉 |2 e−(T−t)EN̄ (B.8)

with + (resp. −) for a bosonic (resp. fermionic) operator O.
We now turn to a more detailed study of usual meson and baryon correlators.

Meson correlators

Mesons are bosons made out of a valence quark-antiquark pair. Hence the simplest
interpolator one can use has the form

OM = ψ̄(1)Γψ(2) (B.9)

where Γ is a monomial of Dirac gamma matrices. Note that in the continuum – with
full SO(3) symmetry – OM has definite spin, parity and baryonic charge.

Using charge conjugation invariance of the action, we get

〈Ω|OM |N〉 = 〈Ω|OcM |N c〉 = ±〈Ω|O†M |N
c〉 (B.10)

so that if N is the lowest state contributing to Eq. (B.8) for t ≥ 0, then the lowest
contributing state for t < 0 is N c; the energies and prefactors are therefore the same
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and Eq. (B.8) becomes

CM (t) = | 〈Ω|O |N〉 |2(e−t EN + e−(T−t)EN )

= 2 | 〈Ω|O |N〉 |2e−
T
2
EN cosh

[
EN

(
t− T

2

)]
(B.11)

To extract the mass of the meson ground state, we then just need to set p = 0 in the
momentum projection of the interpolator, and consider the effective mass meff defined
by the implicit equation

CM (t)

CM (t+ 1)
=

cosh
[
meff

(
t− T

2

)]
cosh

[
meff

(
t+ 1− T

2

)] (B.12)

which we solve for each t. For t large enough, meff is constant and shows a plateau which
provides the ground state mass.

Baryon correlators

Baryons are fermions made out of three valence quarks with well-defined spin, isospin
and parity. We consider the simplest general three-quark interpolator with definite spin
and isospin

OB = εabc ΓA ψ(1)
a

(
ψ

(2) T
b ΓB ψ(3)

c

)
(B.13)

where ΓA and ΓB are monomials of Dirac gamma matrices chosen so that OB has the
wanted spin and isospin.

However, OB has no definite parity, and hence couples to states with positive or
negative parity, denoted |N+〉 and |N−〉 respectively. Note that these states are fermions,
so that | 〈Ω|O |N±〉 |2 involves a spin sum π±(p) =

∑
σ |N±(p;σ)〉 〈N±(p;σ)| where the

helicity dependence has been made explicit.
By definition, the fermion free state |N±〉 has half-integer spin j = n+ 1

2 where n is an
integer. We choose |N±〉 to transform in the

[
(n2 ,

n
2 )
]⊗[

(1
2 , 0)

⊕
(0, 1

2)
]

representation3

of the Lorentz group. We can then write

〈Ω|O
∣∣N±(p;σ)

〉µ1, ..., µn = tµ1, ..., µn
σ− 1

2

(p) u±1
2

(p) + tµ1, ..., µn
σ+ 1

2

(p) u±− 1
2

(p) (B.14)

where u+
± 1

2

(p), u−± 1
2

(p) are Dirac spinors transforming in (1
2 , 0), (0, 1

2) respectively, and

tµ1, ..., µn
σ± 1

2

(p) are traceless symmetric rank-n tensors normalized according to

tµ1, ..., µn
σ (p) t∗σ′; µ1, ..., µn(p) = δσσ′ (B.15)

3where
[
(n

2
, n

2
)
]

denotes the traceless symmetric rank-n tensor representation
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Then

π±(p)µ1, ..., µn
ν1, ..., νn =

n+1/2∑
σ=−(n+1/2)

[
tµ1, ..., µn
σ− 1

2

(p) u±1
2

(p) ū±1
2

(p) t∗
σ− 1

2
; ν1, ..., νn

+ tµ1, ..., µn
σ− 1

2

(p) u±1
2

(p) ū±− 1
2

(p) t∗
σ+ 1

2
; ν1, ..., νn

+ tµ1, ..., µn
σ+ 1

2

(p) u±− 1
2

(p) ū±1
2

(p) t∗
σ− 1

2
; ν1, ..., νn

+ tµ1, ..., µn
σ− 1

2

(p) u±1
2

(p) ū±− 1
2

(p) t∗
σ+ 1

2
; ν1, ..., νn

]
(B.16)

π±(p)µ1, ..., µn, ν1, ..., νn is a rank-2n tensor, and can therefore be written as

π±(p)µ1, ..., µn, ν1, ..., νn = S±(p) Pµ1, ..., µn, ν1, ..., νn(p)

with S(p) a Lorentz scalar. Using the normalization Eq. (B.15) in Eq. (B.16), we obtain

S±(p) ∝
∑
λ

u±λ (p) ū±λ (p) = γ · p±m

so that absorbing constants, we have

π±(p)µ1, ..., µn, ν1, ..., νn = (γ · p±m) Pµ1, ..., µn, ν1, ..., νn(p) (B.17)

Recalling that OB couples to both |N+〉 and |N−〉, and using Eq. (B.17), Eq. (B.5)
now states

C(t) =

{
c+ (γ · p+mN+) e−t EN+ + c− (γ · p−mN−) e−t EN− : t ≥ 0

c̄+ (γ · p+mN̄+) et EN̄+ + c̄− (γ · p−mN̄−) et EN̄− : t < 0
(B.18)

Note that when p = 0, γ · p±m = ±m(1± γ4).
Keeping in mind that charge conjugation changes the parity of fermions – because

CγµC−1 = −γµT where C is the usual charge conjugation matrix acting on spinors, we
can now proceed through the same steps as with meson correlators to prove c+ = c̄−,
c− = c̄+, N̄− = (N+)c, N̄+ = (N−)c and we eventually get for the lattice-computed
correlator with p = 0 :

CB(t) = (1 + γ4)
(
cN+ e−tmN+ + cN− e

−(T−t)mN−
)

+ (1− γ4)
(
cN− e

−tmN− + cN+ e−(T−t)mN+

) (B.19)



C. Lüscher equation

In this appendix, we discuss Lüscher’s equation for two-particle states, and present a
proof of the generalized Lüscher’s equation for particles in non-rest frames – also called
the Rummukainen-Gottlieb equation – valid in quantum field theories and based on [65].

We consider two hadrons of equal mass m with total momentum P in a cubic box
of size L with periodic boundary conditions, and we assume the center-of-mass (COM)
energy E∗ to sit below the 4π inelastic threshold. We note 2q∗ the magnitude of the
relative momentum so that E∗2 = (2q∗)2+(2m)2. In the case of non-degenerate hadrons,
the results are easily generalized with standard modifications to the kinematic relations.
In general in this appendix, starred quantities correspond to their COM versions.

C.1. Some useful results

In this section, we present and derive some key ingredients for the following quantization
condition.

Summation Formula

In finite volume with given boundary condition – which we take as periodic for the re-
mainder of the section –, available momenta are discrete, so that usual QFT integrals
turn to sums. The summation formula we present here relates the generic sums one
encounters in finite-volume QFT computations to their infinite volume integral counter-
parts.

The building block is the Poisson summation formula, which states in our case:

Theorem C.1. Let g : R3 → C be a Schwartz (i.e. a rapidly decreasing) function, and
ĝ its Fourier transform. Then ∑

n∈Z3

g(k ) =
∑
l∈Z3

ĝ(l )

.

Proof. We consider

G(x) ≡
∑
n∈Z3

g(x + n)

G is 1-periodic, so that it can be expanded in a Fourier series

G(x) =
∑
l∈Z3

Ĝl e
2iπ l·x

118
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with Fourier coefficient

Ĝl =

∫ 1

0
d3x G(x) e−2iπ l·x

=

∫ 1

0
d3x

∑
n∈Z3

g(x + n) e−2iπ l·x

=
∑
n∈Z3

∫ 1

0
d3x g(x + n) e−2iπ l·x (uniform convergence)

=
∑
n∈Z3

∫ n+1

n
d3x g(x) e−2iπ l·x

=

∫
R
d3x g(x) e−2iπ l·x

= ĝ(l )

Then G(x) =
∑

l∈Z3 ĝ(l ) e2iπ l·x and evaluating at x = 0 gives the result.

Now, we consider functions f such that f̂(r) = o
|r|→∞

(e−|r|). Then

Corollary C.2.
1

L3

∑
k∈ 2π

L
Z3

f(k) =

∫
d3k

(2π)3
f(k) + o

L→∞
(e−L)

Proof. The proof immediately follows from the Fourier scaling property

F [f(ax)](k) =
1

|a|
f̂(
k

a
)

and the Poisson summation formula, considering terms l = 0 and l 6= 0 in the sum
separately.

As we shall see below, the evaluation of finite-volume effects in two-hadron correlators
with an energy below the inelastic threshold require formulae for sums of the form

S(q∗) ≡ 1

L3

∑
k

ω∗k
ωk

f(k∗)

q∗2 − k∗2
(C.1)

where the summation is over the moving frame momenta k = (2π/L)n, n ∈ Z3, ωk =√
k2 +m2, ω∗k =

√
k∗2 +m2 and ∗ labels the center-of-mass quantities. The series is

well defined for q /∈ (2π/L)Z3 since f(k) = o
k→∞

(e−k). Note that since d3k
ωk

is a Lorentz

invariant, we have d3k
ωk

= d3k∗

ω∗k
i.e. d3k

ω∗k
ωk

= d3k∗.
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The singularities at k2 = q2 forbid a direct use of the corollary (C.2). Therefore,
we define the spherical coordinates k∗ = (k∗, θ∗, φ∗) and expand f(k∗) in spherical
harmonics:

f(k∗) =

∞∑
l=0

l∑
m=−l

flm(k∗) k∗l
√

4π Ylm(θ∗, φ∗) (C.2)

We insert in (C.1):

S(q∗) =
∑
l,m

Slm(q∗) (C.3)

Slm(q∗) =
1

L3

∑
k

ω∗k
ωk

flm(k∗)

q∗2 − k∗2
k∗l
√

4π Ylm(θ∗, φ∗) (C.4)

and write

Slm(q∗) =
1

L3

∑
k

ω∗k
ωk

flm(k∗)− flm(q∗) eα(q∗2−k∗2)

q∗2 − k∗2
k∗l
√

4π Ylm(θ∗, φ∗)

+
1

L3

∑
k

ω∗k
ωk

flm(q∗) eα(q∗2−k∗2)

q∗2 − k∗2
k∗l
√

4π Ylm(θ∗, φ∗)

(C.5)

for α > 0, to cancel the poles at k2 = q2 and ensure convergence of the series. Note that
the eα(q∗2−k∗2) term was introduced to prevent ultraviolet divergence in the subtracted
part, but the result is independent of α.

The use of corollary (C.2) on the first part of the right-hand side of equation (C.5)
gives (neglecting the exponentially suppressed corrections)

1

L3

∑
k

ω∗k
ωk

flm(k∗)− flm(q∗) eα(q∗2−k∗2)

q∗2 − k∗2
k∗l
√

4π Ylm(θ∗, φ∗) (C.6)

=

∫
d3k

(2π)3

ω∗k
ωk

flm(k∗)− flm(q∗) eα(q∗2−k∗2)

q∗2 − k∗2
k∗l
√

4π Ylm(θ∗, φ∗) (C.7)

=

∫
d3k∗

(2π)3

flm(k∗)− flm(q∗) eα(q∗2−k∗2)

q∗2 − k∗2
k∗l
√

4π Ylm(θ∗, φ∗) (C.8)

= δl0

∫
d3k∗

(2π)3

f00(k∗)− f00(q∗) eα(q∗2−k∗2)

q∗2 − k∗2
(C.9)

where in the last step, we use the rotation invariance of the integrand1. Since there is
no pole in (C.6), we can regulate the integral (C.9) with the principal value prescription,
denoted P. Hence, one gets

Slm(q∗) = δl0 P
∫

d3k∗

(2π)3

f00(k∗)

q∗2 − k∗2
− δl0 f00(q∗) P

∫
d3k∗

(2π)3

eα(q∗2−k∗2)

q∗2 − k∗2

+ flm(q∗)
1

L3

∑
k

ω∗k
ωk

eα(q∗2−k∗2)

q∗2 − k∗2
k∗l
√

4π Ylm(θ∗, φ∗)

(C.10)

1A rotation-invariant quantity is proportional to Y00 =
√

4π, and the spherical harmonics are orthogonal
with each other.
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Rotation-invariance of the first integral and re-summation over l,m lead finally to the
result

1

L3

∑
k

ω∗k
ωk

f(k∗)

q∗2 − k∗2
= P

∫
d3k∗

(2π)3

f(k∗)

q∗2 − k∗2
+

∞∑
l=0

l∑
m=−l

flm(q∗) cMV
lm (q∗2) (C.11)

with

cMV
lm (q∗2) =

1

L3

∑
k

ω∗k
ωk

eα(q∗2−k∗2)

q∗2 − k∗2
k∗l
√

4π Ylm(θ∗, φ∗)

− δl0 P
∫

d3k∗

(2π)3

eα(q∗2−k∗2)

q∗2 − k∗2

(C.12)

The last step is to relate the cMV
lm (q∗2) to the zeta functions

ZMV
lm (s; a2) =

∑
n∈Z3

1

(r2
n − a2)s

rln Ylm(r̂n) (C.13)

rn =
1

γ

(
n‖ −

(
L

2π

)
P

2

)
+ n⊥ (C.14)

n‖ =
(n ·P) P

P 2
and n⊥ = n− n‖ (C.15)

analytically continued to the whole (s-)complex plane. However, since we chose to use an
”exponential” regularization of the sums involved – instead of the analytic ”zeta-funtion
regularization” –, one can only expect the relation between cMV

lm (q∗2) and ZMV
lm to be

up to terms exponentially suppressed with L, as highlighted in [65].

The key idea is to re-express the factor
ω∗k
ωk

1
q∗2−k∗2 in terms of r, using relations given

by the Lorentz transforms recalling the definitions

E∗ =
E

γ
(C.16)

β =
P

E
(C.17)

ω∗k =
√
k∗2 +m2 (C.18)

ωk = γ(ω∗k + βk∗‖) (C.19)

k‖ = γ(k∗‖ + βω∗k) (C.20)

k⊥ = k∗⊥ (C.21)



Appendix C. Lüscher equation 122

Then we have

k∗2 − r2
k = k∗2‖ + k∗2⊥ − r2

k‖ − r
2
k⊥ (C.22)

= k∗2‖ − r
2
k‖ (C.23)

= k∗2‖ −
1

γ2

(
k2
‖ − k‖ P +

P 2

4

)
(C.24)

= 2βk∗‖

(
E∗

2
− ω∗k

)
− β2

(
E∗

2
− ω∗k

)2

(C.25)

after some basic manipulations, and

E∗

2
− ω∗k =

(E∗/2)2 − ω∗2k
2ω∗k

+O

(
E∗

2
− ω∗k

)2

(C.26)

=
q∗2 − k∗2

2ω∗k
+O

(
E∗

2
− ω∗k

)2

(C.27)

together with (C.19) leads to

q∗2 − r2
k =

ωk
γω∗k

(q∗2 − k∗2) +O
(
q∗2 − k∗2

)2
(C.28)

When inserted in the expression (C.12) for cMV
lm , the O

(
q∗2 − k∗2

)2
terms give rise

to non-singular functions of k which only contribute through exponentially suppressed
terms when applying the Poisson formula (C.2). After some manipulations2, we can
therefore show that up to terms exponentially suppressed with L,

cMV
lm (q∗2) = −

√
4π

γL3

(
2π

L

)l−2

ZMV
lm (1; q̃∗2) (C.29)

where we have introduced the lattice-unit momentum

q̃∗ =
L

2π
q∗ (C.30)

Equation (C.11) now reads

1

L3

∑
k

ω∗k
ωk

f(k∗)

q∗2 − k∗2
= P

∫
d3k∗

(2π)3

f(k∗)

q∗2 − k∗2

−
√

4π

γL3

∞∑
l=0

l∑
m=−l

flm(q∗)

(
2π

L

)l−2

ZMV
lm (1; q̃∗2)

(C.31)

2Which can be found in details in [65]
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Bethe-Salpeter kernels

The spectrum of two-particle states in finite-volume can be extracted from the exponen-
tial dependence of correlation functions of composite – interpolating – operators σ of
the form

〈σ̃P(t)σ†(0,0)〉 (C.32)

with implicit time-ordering of the operators. Then, the energy eigenvalues correspond
to poles of the correlation function in energy space3

C̃P(E) ≡
∫
dt e−iEt 〈σ̃P(t)σ†(0,0)〉 (C.33)

In order to study the finite-volume effects on such correlators, we follow [63] and consider
the expansion of C̃P(E) in terms of Bethe-Salpeter kernels, which we define below.

LetG(4)(p1, p2, p3, p4) be the full connected 4-point function for some theory. We define
the Bethe-Salpeter kernel K as the 2-particle irreducible amputated 4-point function,
related to G with the Schwinger-Dyson integral equation

G = K +
1

2
K

G(2)

G

G(2)

(C.34)

which we can formally write

G(4) = K +
1

2
K G2 G

(4)

with G2 ≡ G(2)
(
P
2 + k

)
G(2)

(
P
2 − k

)
, G(2) being the ”dressed” correlator – or two-point

function, P the total momentum flowing through K, and k the ”loop” momentum. We
can iterate this equation to obtain a series expression for G, which reads

G(4) = K +
1

2
K G2 K +

1

22
K G2 K G2 K + ... (C.35)

These expressions can be straightforwardly transposed in finite-volume with a 4-point
function GL expanded in terms of the finite-volume Bethe-Salpeter kernel KL and G2L,
all integrals over space components of the loop momenta being replaced by sums over
the lattice momenta.

The interest of the expressions of G and GL in terms of K or KL comes from the
analytic properties of the kernel when the total energy E = P0 is below the 4-particle
threshold and the relative energies of both the two incoming and outgoing particles are

3Since
∫
dt e−iEt e−Entθ(t) = −i

E−iEn
where θ(t) is the Heaviside function.
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below the 1-particle threshold, as discussed in [63]: in this case, K is an analytic non-
singular function of the momenta flowing through it, and one can prove that KL − K
decays exponentially as L → ∞. The same is also true for the single particles dressed
propagators, so that these expansions allow us to identify the power-law volume effects
as coming only from the two-particle loops.

If we consider the correlation function

C̃P(E) =

∫
dt e−iEt 〈σ̃P(t)σ†(0,0)〉

in the case where σ is a two-particle interpolating operator – for example a pion-pion
interpolating field as we shall discuss in greater details later –, we know that in pertur-
bation theory, C̃P(E) can be expressed as the integral equation

C̃P(E) =
G2

(2π)
+

1

2

1

(2π)2
G2G

(4)G2 (C.36)

where the symmetry factors are not explicitly written and the 1
(2π) factors account for

the loops over p0’s. Inserting (C.35), we have the expansion of C̃P(E) in terms of the
kernel K as

σ σ + σ σK + σ σK K + ...

(C.37)
Note that this expansion can be directly used for the finite-volume correlator, with all

quantities replaced by their finite-volume counterparts.
We are now ready to use the tools presented above to evaluate the finite-volume effects,

expressed under the form of the aforementioned quantization condition.

C.2. Quantization Condition

In finite volume, the usual infinite-volume branch cut of the S matrix in the s-plane4

which corresponds to two-particle – ”on shell” – states turns into a series of poles,
associated with the quantized energy values. In this section, we study the influence of
the size of the ”box” on the position of these poles quantitatively and relate this influence
to the infinite-volume phase shifts.

As mentioned above, we start from the correlation function C̃P(E) and focus on the
finite-volume corrections, defining

C̃FVP (E) ≡ C̃P(E)− C̃∞P (E) (C.38)

4s = E2 − P 2 is the Mandelstam variable.
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which only contains the poles we are looking for.
We use the expansion (C.37) for both C̃P(E) and C̃∞P (E) and diagrammatically evalu-

ate the difference. Note that this procedure is therefore valid in perturbation field theory
to all orders, and seems to be also valid non-perturbatively as discussed in [62].

The expansion (C.37) is particularly useful here since as mentioned above, the finite-
volume meson self-energy and the Bethe-Salpeter kernel differ from their infinite volume
counterparts only through exponentially L-dependent terms in the energy region we
consider, so that up to exponentially suppressed terms, G2L = G2 andK = KL. The only
finite-volume correction comes from the two-particle loops, which we write symbolically
L.

Then, we can formally write – leaving the symmetry factors out –

C̃FVP (E) = (LFV + L∞) + (LFV + L∞)K(LFV + L∞) + ...

− L∞ − L∞KL∞ − ...
= LFV + LFVKLFV + LFVKL∞ + L∞KLFV + ...

= (1 + L∞K + L∞KL∞K + ...)︸ ︷︷ ︸
A’

LFV

(1 +KL∞ +KL∞KL∞ + ...)︸ ︷︷ ︸
A

+A′ LFV (K +KL∞K +KL∞KL∞K + ...)︸ ︷︷ ︸
iM/2

LFV A

+A′ LFV
(
iM

2

)
LFV

(
iM

2

)
LFV A+ ...

= A′ LFV
1

1− iMLFV

2

A

(C.39)

where we haven’t written the 1
2π factors for clarity. For the moment, we just note that

A and A’ are matrix elements which couple the external operators to the on-shell two-
particle states and turn to an evaluation of the quantities involved in this expression,
before considering the main result of the section.

Generic Loop Summation

In this subsection, we evaluate the needed LFV contribution appearing in the expansion
(C.39) for C̃FVP (E). Following the notation of [65], we call I the generic loop integration
appearing in (C.37) and define

IFV = I − I∞ (C.40)

Then I is of the form

I ≡ 1

L3

∑
k

∫
dk0

2π

i2f(k0,k)

(k2 −m2 + iε)((P − k)2 −m2 + iε)
(C.41)
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where f is a smooth function which accounts for the energy-momentum dependence
related to the dressing of the propagators and the kernels – or the σ matrix element –
on the ”sides” of the loop. Since we focus on the sector 0 < E2 − P 2 < (4m)2, f has no
singularity for real k, and its Fourier transform f̂(r) has a finite range.

The integrand is singular, with poles shifted with Feynman’s prescription, and closing
the contour, we perform the k0 integration and use the theorem of residues to obtain

I = i
1

L3

∑
k

{
f(ωk,k)

2ωk((E − ωk)2 − ω2
P−k)

+
f(ωP−k,k)

2ωP−k((E + ωP−k)2 − ω2
k)

}
(C.42)

with
ωk =

√
k2 +m2 and ωP−k =

√
(P− k)2 +m2 (C.43)

Note that the limit ε = 0 has been taken. This is possible as long as the poles in the
summand do not coincide with allowed values of k in the sum, which is generally the
case since the energies are shifted from the ”free” values by the interaction.

In the energy range we consider (0 < E2 − P 2 < (4m)2), the only singularity in the
summand is a pole at E = ωk +ωP−k in the first term inside the sum in (C.42). We can
then directly apply the Poisson Summation Formula corollary (C.2) to the other term
and write

I = I1 + I2 (C.44)

with

I1 = i
1

L3

∑
k

f(ωk,k)

2ωk((E − ωk)2 − ω2
P−k)

(C.45)

I2 = i

∫
d3k

(2π)3

f(ωP−k,k)

2ωP−k((E + ωP−k)2 − ω2
k)

(C.46)

i.e. IFV2 = 0 – up to exponentially suppressed terms. We now focus on I1 to determine
IFV . We first express it in the center-of-mass frame using equations (C.16)-(C.21) and
rearrange to get

I1 = i
1

L3

1

2E∗

∑
k

ω∗k
ωk

f∗(k∗)

(q∗2 − k∗2)

E∗ + 2ω∗k
4ω∗k

(C.47)

where the poles q∗2 = k∗2 have been exhibited. In this form, we can directly use
Eq. (C.31) to write

I1 = i
1

2E∗
P
∫

d3k

(2π)3

f∗(k∗)

(q∗2 − k∗2)

E∗ + 2ω∗k
4ω∗k

− i

2E∗

√
4π

γL3

∞∑
l=0

l∑
m=−l

flm(q∗)

(
2π

L

)l−2

ZMV
lm (1; ñ∗2)

(C.48)

Finally, to pick out the infinite-volume contribution, we replace the principal value
integral by the corresponding Feynman iε prescription integral, which introduces an
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extra – residual – term proportional to f00(q∗) (because of rotation-invariance) and I1

now reads

I1 = i
1

2E∗
P
∫

d3k

(2π)3

f∗(k∗)

(q∗2 − k∗2 + iε)

E∗ + 2ω∗k
4ω∗k

− q∗f00(q∗)

8πE∗

− i

2E∗

√
4π

γL3

∞∑
l=0

l∑
m=−l

flm(q∗)

(
2π

L

)l−2

ZMV
lm (1; ñ∗2)

(C.49)

We then arrive at the result

IFV = −q
∗f00(q∗)

8πE∗
− i

2E∗

√
4π

γL3

∞∑
l=0

l∑
m=−l

flm(q∗)

(
2π

L

)l−2

ZMV
lm (1; ñ∗2) (C.50)

Recalling the definition of flm and using the spherical harmonics orthogonality and
completeness, we can isolate the loop part and project it in the partial wave basis to
obtain

LFVl1,m1;l2,m2
= − q∗

8πE∗
(
δl1,l2δm1,m2 + iLFVl1,m1;l2,m2

)
(C.51)

LFVl1,m1;l2,m2
=

(4π)2

q∗γL3

∑
l,m

1

q∗l

(
2π

L

)l−2

ZMV
lm (1; ñ∗2)

∫
dΩ∗Y ∗l1,m1

Y ∗l,mYl2,m2 (C.52)

where the integral can be expressed in terms of Wigner 3j-symbols5 as∫
dΩ∗Y ∗l1,m1

Y ∗l,mYl2,m2 =(−1)m1+m

√
(2l1 + 1)(2l + 1)(2l2 + 1)

4π(
l1 l l2
0 0 0

)(
l1 l l2
−m1 −m m2

) (C.53)

The ”M” matrix

In this section, we look closely at the M matrix defined in (C.39) with

iM

2
=

1

(2π)
(K +

1

2
KL∞K +

1

22
KL∞KL∞K + ...) (C.54)

recalling the 1
2π factor which was skipped for clarity purposes.

We recognize in (C.54) the expression for the renormalized amputated four-point func-

tion G
(4)
amp, i.e., reintroducing the symmetry factors,

iM

2
=

1

(2π)
Gr(4)
amp (C.55)

5The spherical harmonics form a basis for different irreducible representations of the rotation group,
see [110].
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Working in the center-of-mass, we can use the reduction formula to relate S-matrix
elements to Green functions, to write iM

2 in terms of the on-shell transition matrix
defined above. The LSZ reduction formula, with states normalized as 〈p|p′〉 = δ(p−p′)
reads6

Gr(4)
amp(p1,p2,k1,k2) = −(2π)6E∗2 〈p1,p2|S |k1,k2〉 (C.56)

If we drop the trivial part of the S matrix, and project onto the energy shell, we obtain
– in the center-of-mass frame –

Gr(4)
amp(p1,p2,k1,k2) = −(2π)6E∗2

dE∗/dq∗

(2π)4 q∗2
〈p1,p2|S − 1 |k1,k2〉on−shell

= −(2π)2 2E∗

q∗
〈p1,p2|S − 1 |k1,k2〉on−shell

(C.57)

where we have used E∗ = 2
√
q∗2 +m2 and

dE∗

dq∗
=
d(2
√
q∗2 +m2)

dq∗
=

2q∗

E∗

In the partial wave basis, the on-shell S matrix is diagonal, with eigenvalues Sl = e2iδl ,
which implies

Ml1,m1;l2,m2 = δl1,l2δm1,m2

16πE∗

q∗
e2iδl1 − 1

2i
(C.58)

The condition

In this section, we finally put all the results together to write the quantization condition
imposed by the finite volume of the ”box”.

We recall

C̃FVP (E) = A′ LFV
1

1− iMLFV

2

A

Written in the partial wave basis, A and A′ simply turn to unknown vectors Alm and
A′lm, irrelevant for our discussion. In fact, as already mentioned, we want to find the
poles since these correspond to the finite-volume energy eigenvalues. These poles in
C̃FVP (E) are determined by the singularities of

LFV
1

1− iMLFV

2

In absence of interaction (i.e. M = 0), they are given by the poles of LFV , which
come from ZMV

lm . But when the interaction is turned on, these poles are shifted7 to the

6Usually, this formula is written in terms of states with the relativistic normalization 〈p|p′〉 =
(2π)3(2Ep)δ(p − p′). This difference in the normalization of states introduces the factor
(2π)6(2Ep)

2 = (2π)6E∗2.
7In fact, if a is a pole of LFV (projected in the partial wave basis for example), then LFV (z) = H(z)

(z−a)n

with H some holomorphic matrix and n a positive integer. So that defining m ≡ iM(z)/2, we have

LFV 1

1−iMLFV

2

= H(z)
(z−a)n

1

1−m H(z)
(z−a)n

= H(z)
(z−a)n−mH(z)

and we see that the pole is indeed shifted to the

solution of 1− iMLFV

2
= 0.
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solutions of (
1− iMLFV

2

)
v = 0

which implies the formal quantization condition

det

(
1− iMLFV

2

)
= 0 (C.59)

with

Ml1,m1;l2,m2 = δl1,l2δm1,m2

16πE∗

q∗
e2iδl1 − 1

2i
(C.60)

LFVl1,m1;l2,m2
= − q∗

8πE∗
(
δl1,l2δm1,m2 + iLFVl1,m1;l2,m2

)
(C.61)

LFVl1,m1;l2,m2
=

(4π)2

q∗γL3

∑
l,m

1

q∗l

(
2π

L

)l−2

ZMV
lm (1; ñ∗2)

∫
dΩ∗Y ∗l1,m1

Y ∗l,mYl2,m2 (C.62)

This equation is the main result of the section. It provides the relation between the
infinite-volume phase-shifts – hold in Ml1,m1;l2,m2 – and kinematical finite-volume effects
– the matrix LFVl1,m1;l2,m2

in the form of an infinite secular equation. However, to be of
practical use, this formula needs to be truncated with some angular momentum cut-off
and projected out to some symmetry sector. We shall discuss the latter in Appendix D
and focus on the former in the next section.

C.3. Angular momentum cut-off

When working at sufficiently low energy, only the lowest partial wave phase-shifts con-
tribute to the cross-section, and therefore to the scattering amplitude M . Indeed, the
restriction to a finite number of contributing partial waves is necessary to make the
condition (C.59) a practical tool for computations. Here we discuss the truncation of
the determinant through the application of an angular momentum cut-off lmax, and
consequently assume that δl = 0 for l > lmax, which implies

Ml1,m1;l2,m2 = 0 , ∀ l1, l2 > lmax

and we prove that in this case, the quantization condition is equivalent to its restriction
to the block l1, l2 ≤ lmax, i.e.

det

(
1− iMLFV

2

)∣∣∣∣
l1, l2≤lmax

= 0 (C.63)

This result is not a straightforward restriction of (C.59) since LFV connects for ex-
ample sectors with l1 ≤ lmax to sectors with l2 > lmax. To obtain it, we need to return
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to the expansion (C.39) and apply the cut-off. If we denote Π the projection operator
onto the subspace l ≤ lmax, then we have by assumption M = MΠ ≡ ΠMΠ, so that

C̃FVP (E) = A′ LFVA+A′ LFV
(
iM

2

)
LFV A

+A′ LFV
(
iM

2

)
LFV

(
iM

2

)
LFV A+ ...

= A′ LFVA+A′ LFV Π

(
iM

2

)
Π LFV A

+A′ LFV Π

(
iM

2

)
Π LFV Π

(
iM

2

)
Π LFV A+ ...

= A′ LFVA+A′ LFV Π

(
iM

2

)(
1 + LFVΠ

(
iM

2

)
+ ...

)
Π LFV A

= A′

(
LFV + LFV Π

(
iM

2

)
1

1− LFVΠ

(
iM
2

) Π LFV

)
A

= A′ LFV Π

(
iM

2

) [
1

1− LFVΠ

(
iM
2

)] A

(C.64)

where the matrix inverse denotes a matrix with the inverse of the block in the ”Π”
subspace and zeros everywhere else. Then we see that the pole of LFV is again shifted
by the interaction, and the new poles are to be found solving det(1 − LFVΠ m) = 0, i.e.
multiplying right and left by the determinant of m and m−1 in the subspace

det

(
1− iMLFV

2

)∣∣∣∣
l1, l2≤lmax

= 0 (C.65)

which gives the result.



D. Lüscher equation and symmetries

D.1. Introduction

We now want to use the quantization condition discussed in Appendix C to extract the
physical resonance parameters of the ρ, the unstable neutral meson identified in π+π−

scattering processes in the isospin I = 1 channel. On the lattice, one way to deal with
such a dynamical effect is to use the formalism we set up before to compute π+π−

scattering phase-shifts. Recalling the expression of the scattering cross-section in terms
of partial-wave phase-shifts

σ =
4π

p2

∞∑
l=0

(2l + 1) sin2 δl

we see that the mass and width of the ρ can be identified as the position where the
leading P-wave contributing phase shift passes π

2 and π
4 respectively.

We shall therefore in this section briefly present the different physical frames and
the corresponding interpolating operators to be used for Lattice QCD calculations and
analyse the symmetries of the system to derive “practical use” formulas expressing the
quantization condition.

D.2. Kinematics

We consider a system of two π mesons in a cubic box of volume L3. For the moment, we
assume that the pions are not interacting, and we study the energy levels of the system
as functions of L the size of the box.

In the laboratory frame – i.e. the box rest frame –, the total energy is given by

EL =
√

p2
1 +m2

π +
√

p2
2 +m2

π (D.1)

where p1 and p2 are the 3-momenta of the pions.
If we now impose periodic boundary conditions on our box, the momenta are quantized

to values

pi =
2π

L
ni, n ∈ Z3 (D.2)

and the total momentum P = p1 + p2 is similarly quantized.
If P = 0, then the laboratory frame corresponds to the center-of-mass (COM) frame,

and p1 = −p2 which implies

EP=0
COM = 2

√(
2π

L
n

)2

+m2
π (D.3)

131
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and if P = 2π
L e3 for example – one of the lowest non-zero values for P –, we have

p1 = 2π
L (n+e3) and p2 = −2π

L n, so that using the relativistic relation E2
COM = E2

L−P2

we obtain

EPCOM =

√(√
p2

1 +m2
π +

√
p2

2 +m2
π

)2

−
(

2π

L

)2

(D.4)

Fig. D.1 gives a schematic plot of the energy levels of non-interacting particles in the
box for several values of n.

10 20 30 40
L

2mπ

mρ

E

n=(0,0,0)

n=(1,0,0)

n=(1,1,0)
n=(0,0,1)

Figure D.1.: Center-of-mass energy levels of the two-“free”-pion state in the box as func-
tions of the size L of the box. E and L are in lattice units (i.e. E = Ea
and L = L/a). The solid lines correspond to P = 0 and the dashed ones to
P = 2π

L .

If we now introduce the pion-pion interaction into the game – through a small 3-point
ππρ term for example –, the energy eigenstates become mixtures of ρ and ππ states and
avoided level crossing phenomena occur at the intersections of the ρ and ππ levels. Now,
if we consider a simple treatment of the interaction in perturbation theory in quantum
mechanics, we know that at second order, the shift in energies (for a non-degenerate
level) is given by

∆Ei = 〈Ei|V |Ei〉+
∑
Ej 6=Ei

| 〈Ei|V |Ej〉 |2

Ei − Ej

So that we expect the ρ resonance to be dominant near the avoided crossings and there-
fore need to choose the size of the box to probe regions near the intersections of the
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levels.
Hence, using P 6= 0 frames can prove really useful: in fact, looking at Fig. D.1, one

can see that the first avoided crossing for the sector P = 0 occurs around L = 35a
whereas for P = 2π

L , it occurs near L = 15a. So that the avoided level crossings can be
numerically probed in much smaller boxes.

We shall therefore consider three different frames, as suggested in [70] and [111],
identified by their total momenta:

COM: P = 0

MF1: P = 2π
L e3

MF2: P = 2π
L (e1 + e2)

and derive a “quantization” formula for each of these three cases.

D.3. Symmetry considerations

D.3.1. Symmetries and group theory

In the continuum, we know that the symmetry group related to angular momentum
conservation is the 3 dimensional rotation group O(3), which is a subgroup of the total
Lorentz group O(3, 1). However, in Lattice QCD, the finite volume of the box breaks
Lorentz symmetry into the so-called hypercubic symmetry and the rotation symmetry is
replaced by the cubic group symmetry Oh

1.
Oh contains 48 elements and is the direct product of the cubic pure-rotation group O

and the inversion group Ci which contains the identity E and the inversion I. Therefore,
it consists of 10 conjugate classes – twice the number of classes of O – and using Cn to
denote the n-fold rotation class, Sn = Cn σh the n-fold rotation-reflection – where σh is
the ”perpendicular” reflection –, and σv, σd the ”vertical” and ”diagonal” reflections, we
can compute the character table for Oh using standard group representation procedures
– which can be found in [110] for example. Table D.1 gives this character table.

Moreover, the presence of a total momentum in the moving frames induces further
breakdown of the cubic symmetry into smaller subgroups. In fact, if P 6= 0 the pure-
rotation cubic group O is no longer a symmetry of the system, and is replaced by the
subgroup leaving P invariant.

For MF1, P = 2π
L e3 so that the 4-fold rotation around e3 is not broken, but the other

C2 and C3 rotations are broken, and only a system of two classes of 2-fold rotations
subsists. Hence, the symmetry group is now the dihedral group D4h, which contains 16
elements in 10 classes.

1Here and for the remainder of the section, we use the Schoenflies notation for point groups, and the
Mulliken symbols for the irreducible representations. Note that the subscripts g and u stand for
“gerade” and “ungerade” respectively and describe the behaviour of the basis functions belonging to
some irreducible representation upon inversion.
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Oh E C3(8) C2
4 (3) C2(6) C4(6) I S4(6) S6(8) σh(3) σd(6)

A1g 1 1 1 1 1 1 1 1 1 1
A2g 1 1 1 -1 -1 1 -1 1 1 -1
Eg 2 -1 2 0 0 2 0 -1 2 0
T1g 3 0 -1 -1 1 3 1 0 -1 -1
T2g 3 0 -1 1 -1 3 -1 0 -1 1
A1u 1 1 1 1 1 -1 -1 -1 -1 -1
A2u 1 1 1 -1 -1 -1 1 -1 -1 1
Eu 2 -1 2 0 0 -2 0 1 -2 0
T1u 3 0 -1 -1 1 -3 -1 0 1 1
T2u 3 0 -1 1 -1 -3 1 0 1 -1

Table D.1.: Character table for the cubic group Oh

D4h E C4(2) C2
4 (1) C2(2) C ′2(2) I S4(2) σh(1) σv(2) σd(2)

A1g 1 1 1 1 1 1 1 1 1 1
A2g 1 1 1 -1 -1 1 1 1 -1 -1
B1g 1 -1 1 1 -1 1 -1 1 1 -1
B2g 1 -1 1 -1 1 1 -1 1 -1 1
Eg 2 0 -2 0 0 2 0 -2 0 0
A1u 1 1 1 1 1 -1 -1 -1 -1 -1
A2u 1 1 1 -1 -1 -1 -1 -1 1 1
B1u 1 -1 1 1 -1 -1 1 -1 -1 1
B2u 1 -1 1 -1 1 -1 1 -1 1 -1
Eu 2 0 -2 0 0 -2 0 2 0 0

Table D.2.: Character table for the cubic group D4h

For MF2, P = 2π
L (e1 + e2) and only three orthogonal C2 rotations subsists. The

symmetry group then becomes D2h, which has 8 elements in 8 classes.
The character tables forD4h andD2h are given in Table D.2 and Table D.3 respectively.
These different 3-dimensional symmetry groups need to be taken into account in the

construction of the ππ interpolating operator, in order to exhibit the best possible cou-
pling to the ρ. We can also use the remaining symmetries to simplify the quantization
condition (3.1) and bring it into a practical form for our computations.

We know from experiments that the ρ meson has spin 1. Hence, it transforms in the
l = 1 irreducible representation of the rotation group O(3), which we denote D(1). To
study ππ scattering in the ρ channel, we then have to build a ππ interpolating operator
belonging to the same representation. However, since the lattice operators actually
belong to representations of Oh (for the COM) or its subgroups (for MF1 and MF2),
we need to consider the expansion of D(1) in terms of irreducible representations of Oh,
D4h and D2h.
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D2h E C2(1,z) C2(1,y) C2(1,x) I σ(1,xy) σ(1,xz) σ(1,yz)

Ag 1 1 1 1 1 1 1 1
B1g 1 1 -1 -1 1 1 -1 -1
B2g 1 -1 1 -1 1 -1 1 -1
B3g 1 -1 -1 1 1 -1 -1 1
Au 1 1 1 1 -1 -1 -1 -1
B1u 1 1 -1 -1 -1 -1 1 1
B2u 1 -1 1 -1 -1 1 -1 1
B3u 1 -1 -1 1 -1 1 1 -1

Table D.3.: Character table for the cubic group D2h

Oh E C3(8) C2
4 (3) C2(6) C4(6) I S4(6) S6(8) σh(3) σd(6)

D(1) 3 0 -1 -1 1 -3 -1 0 1 1

D4h E C4(2) C2
4 (1) C2(2) C ′2(2) I S4(2) σh(1) σv(2) σd(2)

D(1) 3 1 -1 -1 -1 -3 -1 1 1 1

D2h E C2(z) C1(y) C2(x) I σ(xy) σ(xz) σ(yz)

D(1) 3 -1 -1 -1 -3 1 1 1

Table D.4.: Characters of the classes of Oh, D4h and D2h in the D(1) irreducible repre-
sentation of O(3).

To proceed, we first compute the characters of the conjugate classes of Oh, D4h and
D2h in the D(1) representation of O(3) using the fact that D(1) is isomorphic to the
fundamental representation, in which a rotation of angle Φ around any axis can be
expressed in some basis as the matrixcos Φ − sin Φ 0

sin Φ cos Φ 0
0 0 1


so that the character χ(1) of a rotation of angle 2π

n in D(1) is

χ(1)

(
2π

n

)
= 1 + 2 cos

(
2π

n

)
(D.5)

The results are given in Table D.4.
Then we use the relation between the expansion coefficients and the characters, i.e. if

D(1) =
∑

µ aµD
(µ), then (c.f. for example [110])

aµ =
1

g

∑
i

gi χ
(µ)
i χi (D.6)
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where g is the order of the group considered (i.e. 48, 16 and 8 respectively), i labels

the classes of the group, gi is the number of elements in class i and χ
(µ)
i , χi are the

characters of class i in the µth irreducible representation and in D(1) respectively. Using
the character tables provided, we can then compute the different coefficients aµ and
finally obtain the decompositions:

D(1) = T1u for COM

D(1) = A2u + Eu for MF1

D(1) = B1u +B2u +B3u for MF2

(D.7)

These decompositions are of great importance, since they will allow us to project the
ππ interpolating operators on sectors belonging to the spin 1 infinite-volume representa-
tion, as is necessary in order to recover the right partial wave sector when extrapolating
our finite-volume to infinite volume.

Note however that the mixing of partial waves cannot be avoided. The point groups
irreducible representations are indeed contained in several different D(l) representations
(for example, in the COM, T1u is also contained in D(3), D(5), ...), and we shall assume
that the interaction only involves low energy processes, so that the phase shifts δl can
be neglected for l ≥ 3.

D.3.2. Symmetries and interpolating operators

Given the group theory results obtained above, we now turn to the discussion of the in-
terpolating operators to be used in our ππ scattering Lattice QCD calculation. For the
case that we consider – ππ scattering in the ρ channel, two symmetries are to be taken
into account, in relation to two conserved quantum numbers: the isospin I and the angu-
lar momentum l. From experiment, we know that the ρ meson is an isospin triplet, and
therefore belong to the I = 1 representation. Moreover, as aforementioned, it belongs to
the l = 1 representation of the rotation group – in infinite volume. Then, to “observe”
the ρ resonance on the lattice in ππ scattering – actually, it is more accurate to speak in
terms of coupling between the fields representing 2π and ρ states; so the word “observe”
means to have a good coupling between the operator fields – we need to construct a ππ
interpolating operator transforming in the I = 1 and l = 1 representations.

On the lattice, the isospin symmetry is not broken so that the operator can be directly
built so as to belong to the I = 1 representation. To do so, we recall that the π meson
form an isospin triplet (I = 1). Labelling the isospin representation with |I, I3〉, we have
the π states

|1,+1〉 =
∣∣π+

〉
|1, 0〉 =

∣∣π0
〉

|1,−1〉 =
∣∣π−〉 (D.8)

Then, using the well-known results for the product of irreducible representations of the
rotation group, we have

|π〉 ⊗ |π〉 = |I = 0〉 ⊕ |I = 1〉 ⊕ |I = 2〉 (D.9)
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and computing the Clebsch-Gordan coefficients, we obtain for the I = 1 sector the three
decompositions:

I = 1

I3 = +1 1√
2

(
π+(p1, t)π

0(p2, t)− π0(p1, t)π
+(p2, t)

)
I3 = 0 1√

2
(π+(p1, t)π

−(p2, t)− π−(p1, t)π
+(p2, t))

I3 = −1 1√
2

(
π0(p1, t)π

−(p2, t)− π−(p1, t)π
0(p2, t)

)
Then, to obtain the right l = 1 operator, we use the finite group projection operator

(see again [110] for a derivation of this projection operator)

P (µ) ≡ nµ
g

∑
R∈G

χ(µ)∗(R)OR (D.10)

where µ labels the different irreducible representations, nµ is the dimension of the cor-
responding representation, g is the order of the group, χ denotes the characters and the
sum runs over the elements of the group. OR is the linear operator acting on functions
ψ(x) associated with the transformation R of x, i.e.

OR ψ(x) = ψ(R−1x)

Following [70] and [56], we choose to study the ρ0 (I3 = 0) resonance properties and
choose according to the decompositions (D.7) the irreducible representation T1u for the
COM, A2u for MF1 and B3u for MF2. And the projection operator acting on an operator
(ππ)(p1,p2; t) chosen such that p1 + p2 = P gives for these representations (see tables
D.1, D.2 and D.3):

COM: (ππ)T1u
(t) =

1

2

[
(ππ)

(
2π

L
e3,−

2π

L
e3; t

)
− (ππ)

(
−2π

L
e3,

2π

L
e3; t

)]
MF1: (ππ)A2u

(t) =
1

2

[
(ππ)

(
2π

L
e3,0; t

)
− (ππ)

(
−2π

L
e3,0; t

)]
MF2: (ππ)B3u

(t) =
1

2

[
(ππ)

(
2π

L
(e1 + e2),0; t

)
− (ππ)

(
−2π

L
(e1 + e2),0; t

)]
If we substitute the I = 1, I3 = 0 operator in these expressions, we finally obtain the

interpolating operators we will use in our Lattice QCD computations:
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COM:

(ππ)T1u
(t) =

1√
2

[
π+

(
2π

L
e3, t

)
π−
(
−2π

L
e3, t

)
− π−

(
2π

L
e3, t

)
π+

(
−2π

L
e3, t

)]
(D.11)

MF1:

(ππ)A2u
(t) =

1√
2

[
π+

(
2π

L
e3, t

)
π− (0, t)− π−

(
2π

L
e3, t

)
π+ (0, t)

]
(D.12)

MF2:

(ππ)B3u
(t) =

1√
2

[
π+

(
2π

L
(e1 + e2), t

)
π− (0, t)− π−

(
2π

L
(e1 + e2), t

)
π+ (0, t)

]
(D.13)

D.4. Finite-size formulae

As mentioned in Sec. C.3, the “infinite determinant” quantization condition (3.1) can
be truncated through an angular momentum cut-off, which is compulsory in order to
use it in real computations. But the determinant can be further simplified thanks to the
symmetries of the systems considered for our Lattice QCD evaluation of the ρ resonance
parameters. In this section, we shall therefore analyse the generic truncated condition
(C.65) for the three aforementioned setups COM, MF1 and MF2 and derive finite-size
formulae relating the ρ phase-shift to the finite-volume spectrum in each case.

We are interested in extracting ππ scattering physical quantities in the l = 1 channel.
Hence we need to evaluate the phase-shift δ1, and consequently choose a momentum
cut-off lmax = 2. As proved in Sec. C.3, we only need to consider the restriction of the
quantization condition in the l1, l2 ≤ 2 subspace:

det

(
1− i

2
Ml1,m1;l′,m′ L

FV
l′,m′;l2,m2

)∣∣∣∣
l1, l′, l2≤2

= 0 (D.14)

Recalling the definition of LFV (C.51), we see that the computation of the determinant
can be reduced thanks to the symmetries of ZMV

lm and of the Wigner 3j-symbols. The
symmetries of the zeta function ZMV

lm are direct consequences of its definition in terms
of spherical harmonics (see C.13). In fact, the spherical harmonics for a given l form the
basis of the irreducible representation D(l) of the rotation group O(3), so that under the
action of rotations, they transform as

Ylm(Rr̂) =

l∑
m′=−l

D
(l)
mm′(R)Ylm′

and since

ZMV
lm =

∑
r∈LP

1

(r2 − a2)s
rl Ylm(r̂)
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with

LP =

{
r ∈ R3 | ∃n ∈ Z3, r =

1

γ

(
n‖ −

(
L

2π

)
P

2

)
+ n⊥

}
we have

ZMV
lm =

∑
r∈LP

1

(r2 − a2)s
rl Ylm(Rr̂) ∀R in the subgroup of symmetry of LP (D.15)

which provides constraints on the values of ZMV
lm .

In particular, choosing R to be the inversion I (which belongs to all the considered
subgroups: Oh, D4h and D2h) this relation imply for ZMV

lm (see [112] for the values of

D
(l)
mm′(R)):

ZMV
lm (s; a2) = 0 if l is odd (D.16)

The symmetry properties of the 3j-symbols can be found in [113], and with D.16 imply

LFVl,m;l′,m′ = 0 if l 6≡ l′ (mod 2) for COM, MF1 and MF2 (D.17)

The even and odd l sectors therefore decouple in all the considered frames – the matrix
inside the determinant in D.14 is block diagonal in the basis (l = 0, l = 1, l = 2). So that
we can restrict our analysis to the l = 1 sector, which provides the finite-size formula
for δ1. Table D.5 gives the different values we computed for LFV1,m;1,m′ .

-1 0 1

-1 1

γn̄∗π3/2

(
ZMV

00 − 1

n̄∗2√5
ZMV

20

)
− 1

γn̄∗3π3/2

√
3
5
ZMV

21 − 1

γn̄∗3π3/2

√
6
5
ZMV

22

0 1

γn̄∗3π3/2

√
3
5
ZMV

2−1
1

γn̄∗π3/2

(
ZMV

00 + 2

n̄∗2√5
ZMV

20

)
1

γn̄∗3π3/2

√
3
5
ZMV

21

1 − 1

γn̄∗3π3/2

√
6
5
ZMV

2−2 − 1

γn̄∗3π3/2

√
3
5
ZMV

2−1
1

γn̄∗π3/2

(
ZMV

00 − 1

n̄∗2√5
ZMV

20

)

Table D.5.: Computed values for LFV1,m;1,m′ . Note n̄∗ = L
2π q
∗.

Moreover, as we have seen before, since the O(3) symmetry is broken in our box, the
l = 1 (D(1)) representation is not irreducible and breaks into irreducible representations
depending on the studied frame as given by D.7. In order to obtain the finite-size
formulae corresponding to the considered representations (T1u for the COM, A2u for
MF1 and B3u for MF2), we therefore also need to write the matrix in the determinant
in the basis of these irreducible representations.

We shall now study the three cases separately.

COM

We consider the 3-dimensional irreducible representation T1u of the Oh cubic group.
This group contains in particular C4(e3), a rotation of angle π

2 around the 3-axis, and
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C3 rotations around “long-diagonal” axis (i.e. of the form e1 + e2 + e3). These two
types of rotations inserted in D.15 give after some algebra

ZCOMlm (s; a2) = 0 if m 6≡ 0 (mod 4)

ZCOM20 = 0
(D.18)

and hence, using also table D.5,

LFV1,m;1,m′ = 0 if m 6= m′ (D.19)

LFV1,−1;1,−1 = LFV1,0;1,0 = LFV1,1;1,1 = 1 + iLFV1,0;1,0 (D.20)

The determinant equation is therefore ”diagonal” and reduces to a single formula
in this sector. If we insert the expression of Ml1,m1;l′,m′ in terms of the phase-shifts
Eq. (C.58) into Eq. (D.14), we get

det

(
1− 4πE∗

q∗
(e2iδ1 − 1) LFV1,m1;1,m2

)∣∣∣∣
l1, l2≤2

=

(
1 +

e2iδ1 − 1

2
(1 + iLFV1,0;1,0)

)3

= 0

(D.21)

and after some algebra, we get the finite-size formula

cot(δ1) =
1

n̄∗π3/2
ZCOM00 (1; n̄∗2) (D.22)

MF1

Here the symmetry group is the D4h subgroup, and we consider the 1-dimensional irre-
ducible representation A2u. This group still contains the C4(e3) rotation, but not the
C3 rotations. Hence the determinant is still diagonal, but

LFV1,−1;1,−1 = LFV1,1;1,1 6= LFV1,0;1,0 (D.23)

and since we work in A2u, the finite-size formula is now

cot(δ1) =
1

γn̄∗π3/2

(
ZMF1

00 +
2

n̄∗2
√

5
ZMF1

20

)
(D.24)

MF2

Eventually, the cubic group is broken to D2h, and we consider the B3u irreducible repre-
sentation. To get the right finite-size formula, we need to build the symmetry adapted
vector basis. Note however that since P = e1+e2

2 in this frame, the 3 C2 axes are
”aligned” with e1 + e2 (i.e. one axis is given by e1 + e2 and the others are at right
angles to it). So that when expressing the symmetry adapted vector basis in terms of
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the {|m〉} basis for D(1), we need to rotate the {|m〉} vectors by −π
4 around the 3-axis

in order to express them in terms of the lattice {|m〉} basis. This only involves mul-
tiplication by the phase e−im(π/4) for each |m〉. Using the table from [114], we then
obtain

|B1u〉 = |m = 0〉

|B2u〉 = −1 + i

2
|m = 1〉+

1− i
2
|m = −1〉

|B3u〉 = −1− i
2
|m = 1〉+

1 + i

2
|m = −1〉

and the action of the C2(e1 + e2) in D.15 gives

LFV1,−1;1,1 + LFV1,1;1,−1 = 0

so that D.14 can be rewritten in the {|B1u〉 , |B2u〉 , |B3u〉} basis as∣∣∣∣∣
cot(δ1)−LFV1,0;1,0 0 0

0 cot(δ1)−LFV1,1;1,1−
i
2

(LFV1,1;1,−1−LFV1,−1;1,1) 0

0 0 cot(δ1)−LFV1,1;1,1+ i
2

(LFV1,1;1,−1−LFV1,−1;1,1)

∣∣∣∣∣ = 0

(D.25)
so that the finite-size formula for B3u reads

cot(δ1) =
1

γn̄∗π3/2

(
ZMF2

00 − 1

n̄∗2
√

5
ZMF2

20 − i
√

3

n̄∗2
√

10
(ZMF2

22 −ZMF2
2−2 )

)
(D.26)



E. Variable projection method

In this appendix, we briefly describe the variable projection method, and its use to fit
the time dependence of 2-pt correlation functions. More detailed accounts can be found
in [97,98] and [115].

As shown in Sec. 2.4.2, the time dependence of hadronic 2-pt correlation functions is
given by the spectral decomposition (in the region 0 < t < T/2, where the contribution
of backward propagating states is negligible)

C2h(t) ≡
〈
Õh(t) Ōh(0)

〉
=

N∑
k=0

〈Ω| Õh(0) |k〉 〈k|O†h(0) |Ω〉 e−tEk (E.1)

where t is the discrete time in lattice units and N is the number of states considered.
We define

αk ≡ 〈Ω| Õh(0) |k〉 〈k|O†h(0) |Ω〉

and
yi ≡ C2h(i)

for i = 1, ..., nt, nt < T/2.
Our goal is then to determine the parameters {αk} and {aEk}, k = 1, ..., N from a set

of nt values {yi}, which corresponds to solving a system of non-linear equations of the
form

yi =
N∑
k=0

αk [exp(−aEk)]i =
N∑
k=0

Φikαk = (Φα)i (E.2)

where we have defined Φik = [exp(−aEk)]i.
The solution is found by minimizing the Least-Square functional

χ2 = ‖y − (Φa)‖22 =
∑
i

|yi − (Φa)i|2 (E.3)

with respect to both the non-linear parameters aEk (entering χ2 through Φ) and the
linear ones αk.

Now, the variable projection method idea is to notice that if we introduce Φ+, the
Moore-Penrose generalized inverse of Φ, then if we knew the values of the aEk, we would
have directly

α = Φ+y (E.4)

Inserting this expression into the χ2 functional, we see that the quantity to minimize
becomes

χ2 = ‖y − (ΦΦ+y)‖22 (E.5)

142
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The minimization now only involves the {aEk} parameters, and the amplitudes {αk}
can be found afterwards using Eq. (E.4). This two-step process can be proved to be
equivalent to minimizing with respect to both {αk} and {aEk} directly, and is much
more stable, as the minimization only involves half the parameters.

Note that the matrix I − ΦΦ+ appearing in the variable projection Least-Square
functional is the projection onto the kernel of Φ, which justifies the name of the method,
and motivates its efficiency.
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