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Abstract

The quantum theory of gravity has eluded physicists for many decades. The apparent contra-
diction between the physics describing the microscopic and the macroscopic regimes has given
rise to some beautiful theories and mathematics. In this paper, we discuss some aspects of one
of those theories, namely loop quantum gravity (LQG). Specifically, we discuss the discreteness
of spacetime, a feature that distinguishes LQG from some of the other contending theories.
After a general discussion in the introduction, we discuss the dynamics and quantization of the
simplices (tetrahedra) that make up the spacetime. The discrete geometry of these tetrahedral
grains of spacetime has some beautiful physical and mathematical properties. We use semiclas-
sical physics and some classical results in algebraic geometry and topology to investigate many
of these properties.
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Introduction

1.1 Motivation

The physics of the early and mid-twentieth century has been extremely successful in producing
a more complete description of nature in comparison to the classical Newtonian physics. The
theories that were central to this rapid evolution were the quantum theory and general relativity.
Many attempts, even to these days, have been made to find experiments that disprove these
theories in their respective regimes, but most of them further solidified their validity [12}23].
Despite the success of these theories, there remains many open problems in physics that demand
new theories and experiments— the baryon asymmetry problem, singularity of black holes, the
black hole information paradox, early universe cosmology, dark matter, unification of force and
a theory of quantum gravity to name a few. These problems are not necessarily related, but

some of them might not be mutually exclusive. For instance, a theory of quantum gravity can be
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Figure 1.1.1: A plot of Energy vs impact parameter where different theories are applicable.

productive in solving some of the questions about the center of a black hole and early universe
cosmology [24/5/8,/18]. Besides, the apparent philosophical contradiction between quantum field
theory (QFT) and general relativity (GR) beg the question of a unified theory. Consider, for
example, the scattering problem in the quantum realm. In the case of large impact parameter
between two particles, the scattering problem is very precisely solved using QFT H However, this
is only true when the distance is large enough to ignore the gravitational interaction between
the particles. To get a fundamental understanding of the structure of spacetime and matter, we
can not ignore the weak but important gravitational interaction. Since GR treats gravitational
field as a metric in spacetime, we actually need to consider spacetime itself to have a quantum
nature.

For a more convincing argument, suppose we want to measure some field at a point x. Say,
we do this by having a particle at point x with uncertainty Ax. By the uncertainty principle, we
know that the momentum of this particle p is such that p? > (A/Ax)?. Now, in the relativistic
limit, we have p ~ E/c. But in GR, any kind of energy has a gravitational mass m ~ E/c?.

Combining this all together, we have m ~ h/(cAzx). Now if we want to make the measurement

Impact parameter is defined as the perpendicular distance from the center of a potential to the straight line
a particle takes far away from the potential.
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more and more precise (decreasing the uncertainty in z), the gravitational mass is concentrated
in smaller and smaller region. However, this cannot be done arbitrarily, since for Ax ~ Gm/c?,
a black hole of mass m ~ Awxc?/G is formed. Combining this expression for mass with the
previous approximate equality, we can say that the minimum size where we can localize the
particle is Az = L, = \/’:’;? ~ 1073 m. We can think of this as the smallest length scale
possible. We will refer to this as the Planck length. This is the intuitive idea of space itself
having a smallest quanta ﬂ The smooth geometry that we use to do QFT is not complete in
this sense. Quantum theory itself poses a limit on the smoothness of the geometry of space.

In this paper, we will discuss the quantization of the simplest grains of space— a tetrahedron.
An analogous system that will motivate many of the results is the algebra of angular momentum
from elementary quantum mechanics. For the purpose of completeness, we review the key results
here. Let L = L'é;, where i = 1,2, 3, be the angular momentum of some quantum system E[ In
classical mechanics, L acts as the generator of infinitesimal rotation in the sense that it is an
element of the Lie algebra that generate the Lie group of proper rotations, namely SO(3). In the
Poisson bracket formulation of Hamiltonian mechanics, it can also be shown, using the defining
equation of angular momentum (L = r X p), that the components of the angular momentum

vector has the following bracket structure:

(L}, L7} = €9, LF. (1.1.1)

Here, for two arbitrary smooth functions f(q,p,t) and g(q,p,t) depending on the generalized

coordinate (q), generalized momentum (p) and time (t), the Poisson bracket is defined as {f, g} =

%% — %%Z- Following Dirac we obtain the quantum mechanical relations by replacing the

*For a more thorough argument, see [9].

3From here on, the Einstein summation convention is always used unless stated otherwise. Occasionally, we
will write out the entire sum for the sake of clarity.

4See Chapter IV of The Principles of Quantum Mechanics. by P.A.M Dirac
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Poisson bracket relation with the following commutator relation [14].
forh = 1) (1.1.2)
, =l 1.

Using Dirac’s prescription, our gives rise to the algebra of angular momentum in quantum
mechanics:

(L}, L] = iheV , LF (1.1.3)

Notice that in turning to the quantum mechanical world, we replaced the dynamical variables L
with the corresponding quantum mechanical operators L. Tt follows from elementary treatment
of quantum mechanics and SU(2) representation theory that L? = L[} commutes with each
of the components of L, and if the components follow the algebra m then the eigenvalues of

|L| are given by:

1
Li=+/j(j+1)h, where j € {2,1,;,2,...}. (1.1.4)

Note that the eigenvalues of this operator are discrete. This is a key theme in many quantum
mechanical system, and will be important for our case as well. It can be shown that for a compact
phase space, the spectra is always discrete |[31]. This is the reason why we have discrete energy
spectra for infinite square well and simple harmonic oscillator. In the case of angular momenta,
the phase space is just the space of directions, which is certainly compact, and so it gives rise

to a discrete spectrum.
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1.2  Triangulation of Space and Geometry of Tetrahedra

We now switch to a discussion of the simplest grains of space— the object of our main
discussion in this paper. It is intuitively obvious that we can fill out a page of paper or a
torus (or any visualizable 2D manifold EI) with triangular pieces (possibly curved). There is
a general theorem in the study of differentiable manifolds that we can always triangulate a
smooth manifold regardless of its dimension [11},36]. For our three dimensional Euclidean space,
the “triangles” are tetrahedra. According to GR, the geometry of spacetime is the same as
gravitational field. Following this line of logic, quantizing the geometry of spacetime amounts
to quantizing gravity.

In this paper, we will take area as a fundamental variable in discretizing space. There are
several reasons for this choice. Firstly, a closed two dimensional area can partition space, and
so it allows us to concretely talk about what we mean by a discrete grain of space. Besides, the
quantum geometry that we are going to study is relevant only at Planck scale. In the natural
unit system, the unit of area is Z—?, and unlike a length variable, it does not involve an operation
of square root. Hence, area is an interesting variable both from the point of view of geometry and
the from an unit-argument. With areas as a starting point, we state some essential properties
of a tetrahedron, which will be the central object of interest for us, in terms of its face areas
and area vectors.

Consider a tetrahedron with the normal vectors ffi, where i = 1,2,3,4. Following [33], we list
some nice properties of this set of vectors that we will use repeatedly in this paper.

e Take a vertex of the tetrahedron at the origin, and label the three edges emanating from

the vertex as ! for i = 1,2,3. Let M be a 3x3 matrix where the three columns are the

®For a discussion on manifolds, see [25].
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three edge-length vectors. If F' is the matrix with the three face-area vectors adjacent to

the chosen vertex as its columns, then we have

1
FT = 5 (det M)M™L, (1.2.1)

e They satisfy the following closure relation:
> A =o. (1.2.2)

e In fact, if we take any four vectors satisfying the closure condition (1.2.2)), then the ge-
ometry (areas, edge lengths, volume etc.) are determined up to an SO(3) rotation and

translation [30].

e Using some fundamental identities of vector calculus, it can be shown that the squared

volume V2 of the tetrahedron is given by:
2 _ 2 i pd gk _ 2
Ve = §eijkA1A2A =3 det F. (1.2.3)

Here, we have chosen an appropriate right-handed orientation for ffh Ay and As so that

the squared volume is positive.

1.3 Quantizing Geometry

Following Dirac’s prescription for quantizing a system, we can start with the Hamiltonian

dynamics of GR, and promote the Poisson brackets of dynamical variables to commutators
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of operators to arrive at some canonical quantization relations. However, the leap of going
from Poisson bracket to commutators is ultimately a postulate. Here, motivated by (1.1.3)), we

postulate [3] the following fundamental commutation relation.

AL, AL] = b plge AL, (1.3.1)

where lg is proportional to i and has a dimension of squared area. Using dimensional analysis,
it can be shown that I2 = ’y%, where v is a unitless number that fixes the scale of quantization.
One immediate consequence the commutation relation (1.3.1)) is that the areas have discrete

values given by

— .1 3
A=137i(G+1), i=5152 (1.3.2)
Now, suppose we have a tetrahedron with face area eigenvalues labeled by ji,...,754. We

associate to each of the four faces A; of the tetrahedron a unitary representation of SU(2) that
act on a Hilbert space H;,. The total Hilbert space without any restrictions on the area is then
H="H; @H;, ®Hj, ®H,;,. If we take into account the closure relation of the area vectors,
then the space should be invariant under global SU(2) action. Then the quantum states live in

the space

K = Invgy (o) M, @ Hjp, @ Hjy @ Hy,l (1.3.3)

Now, clearly the volume of the tetrahedron given by is invariant under rotation, and hence
we have an eigenvalue problem for the Hermitian operator of the volume. It can be shown that

the spectrum of this volume operator is discrete [1], [32]. In this paper, we will mostly focus
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on the discreteness of a single simplex, namely a tetrahedron. This is not an imposed condition
by us. As stated by Carlo Rovelli in [33], “Geometry is not discrete because we focused on
a tetrahedron: geometry is discrete because area and volume of any tetrahedron (in fact, any
polyhedron) take only quantized values.”

Similar to any quantum mechanical system, the quantum mechanics of a tetrahedron is deter-
mined by a set of commuting observables. In our case the complete set of commuting observables
are the areas of the faces and the volume. Notice that a classical tetrahedron is determined by
the six edge-lengths of the sides. However, in the quantum tetrahedron, we have the typical
quantum “fuzziness.” This is analogous to angular momentum in quantum mechanics, where we
can simultaneously diagonalize only the total angular momentum and a component of it in one
direction [33]. So, we have a fundamental uncertainty in the shape of the tetrahedron. Here,
we will focus on the semiclassics of the tetrahedron in an effort to understand the quantum
behavior motivated from the classical ground. In the next few chapters, we will develop some
of the tools to study the semiclassics, derive the Bohr-Sommerfeld quantization condition and
WKB wavefunctions, and some of the deep relation of these tetrahedra with the study of elliptic

curves.



s

Semiclassical Physics

Quantum theory describes the physics at the atomic and subatomic level, and its algebra
is fundamentally different from that in the classical regime. For instance, unlike the classical
variables, many of the quantum variables (e.g., position and momentum) don’t commute. While
classical and quantum phenomena can seem very disparate from each-other, semiclassical me-
chanics can serve as a bridge between the more intuitive classical world and the bewildering
quantum world. Semiclassical mechanics is an effective theory in many phenomena where the
classical theory can be recovered by taking the limit 2 — 0, while the quantum behavior is
observed for positive finite A D Historically, many of the results of quantum mechanics were
motivated by extending ideas from classical mechanics. For instance, Bohr’s quantization of

angular momentum of electron in an atom was a strange mixture of Newtonian mechanics and

'Even though % is a fundamental constant of nature, we can treat it as a parameter in any problem. Setting
h = 0 amounts to zooming out of the quantum world to the classical world.

10
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quantum ideas [7]. In this chapter, a summary of semiclassical mechanics is presented, and the

theory is applied to an example to illustrate how it works.

2.1 The Variational Formulation of Mechanics

An understanding of the variational formulation is necessary to connect classical mechanics
with quantum theory. The central object in the variational formulation of mechanics is called
an action functional. A substantial part of classical mechanics can be derived by studying the
stationary points of this object. First, we formally define a functional.

Definition 2.1.1. (Functional) Let F be a function-space over some number field K. A func-

tional F' is a map from the function-space F to the number field K.

F:F > K. (2.1.1)

If f € F, a functional F' taking f as an input is denoted F[f(z)], where z € K, or briefly by

F[f].

Intuitively, a functional is a “function of functions.” In classical mechanics, we are interested
in the action functional S of the form S[q(t)] = ftif L(q(t),q(t),t)dt, where L is a function called
the Lagrangian, and q(t) is a trajectory (with fixed end-points) as a function of time t. More
precisely, the arguments of the Lagrangian function L are g € Q, ¢ € T;Q and ¢t € R, where
Q is the configuration manifold of the system, and 74Q is the tangent space at g. On physical
grounds, we require Q to be a differentiable manifold. EI Formally, we consider (g,q) as an

element of a larger space called the tangent bundle.

2For a brief discussion of differentiable manifolds, see Appendix ?7?.
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Definition 2.1.2. (Tangent Bundle) Let Q be a differentiable manifold. Then the tangent
bundle of Q, denoted as T'Q, is defined as TQ = {(z,y) : * € Q and y € T,Q}, where T,Q is

the tangent space of Q at a point z € Q.

So, formally a Lagrangian is a differentiable function L : TQ x R — R. We assume that this
function is sufficiently differentiable, since we want to discard the pathological situations that
are not physically reasonable. The usefulness of the action functional and the Lagrangian is due
to Hamilton’s principle, which states that the physical trajectories of a set of particles are the
ones that extremize the action functional. In other words, for the physical trajectories q(t), we
have 65 = 0. [

Then it can be shown that the action functional S of the given form is stationary (65 = 0)

when L satisfies the Euler-Lagrange equations (see [21], chapter 3.1.1):

oL d oL

—_— = = 2.1.2
0g¢®  dt 0g~ ’ ( )

where ¢ is a component of g. This is a general result in variational calculus, and holds for any
(sufficiently nice) Lagrangian L. The Lagrangian that gives rise to a physical trajectory for a
set of particles interacting with conservative forces is L =T — V', where T is the kinetic energy,
and V is the potential energy of the system (see [21], chapter 2.2.1). Euler-Lagrange equation
is a system of n second order differential equations on Q, where n is the number of independent
generalized coordinates. Together with the 2n initial conditions, the trajectories of the particles
are completely determined. However, the formal definition of the Lagrangian as a function from
the tangent bundle of a configuration manifold to the real line suggests we look at the problem

in a more elegant way. On T'Q, the Euler-Lagrange equations can be written as a system of 2n

3Intuitively, this is similar to finding the extreme values of a function in calculus. However, since S is a

functional as opposed to a function, the derivative is defined as 22 = limp_,0 w for arbitrary function ¢

oq
in the function space.
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first order differential equations:

dg® . dg” .
— g~ - W t 2.1.3
il o (q,41), (2.1.3)

where W®(q, q,t) can be obtained from the Euler-Lagrange equation. This gives an explicit
expression for the evolution of ¢%, but the evolution of ¢% is more complicated, and is not
directly available from the Fuler-Lagrange equation. This problem is circumvented by using
a different mathematical structure than the tangent bundle. Instead of adjoining the tangent
space TpQ to each point p of Q, we adjoin the cotangent space T;Q to each point. Recall
that the cotangent space T7Q is the dual space of the tangent space T,Q, i.e., the set of linear

functionals from 7;,Q to R. The resulting space is called a cotangent bundle.

Definition 2.1.3. (Cotangent bundle) Let Q be a differentiable manifold. Let 7,;Q denote the
tangent space of Q at a point x € Q, and let T;Q denote the dual space of T,QQ. Then the
cotangent bundle of Q is defined as T*Q = {(z,y) : « € Q and y € T;Q}. In the context of

classical mechanics, the space T*Q is referred to as the phase space.

If we define the canonical momentum corresponding to ¢% as p, = (QTL&, then as discussed in
the Appendix ??, p, is an element of T/Q. From the Euler-Lagrange equation, we then recover
a rather nice form of the evolution of ¢% and p,:

dg® _ o dpo _ OL

This is not quite in the desired form, since we want all our equations to depend on the
generalized coordinates and generalized momenta EL Notice that we can do this by inverting the

relation p, = E‘;TLQ to get ¢“(q, p,t) and substituting it in the right hand side of equations ([2.1.4)).

“In this context, we will use the word “generalized” and “canonical” interchangeably.
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This substitution essentially removes the asymmetry between our treatment of the generalized
coordinates and momenta. Although this is not exactly seen in (2.1.4), it can be explicitly
presented using the Hamiltonian function.

We want to write the right hand side of the equations ([2.1.4)) explicitly as a function of (g, p, t).

QJ
Q

Suppose L(q, q,t) = f)(q, d(q,p,t),t). Then we have gqu = g——i—a—ﬁ = g——i—pg . Taking

all the functions of (g, p,t) on one side, we get:

oL 0 I

Soa = " Bga [P L : 1.
90~ o [Pe9 (@:P:1) — L(g.p,1) (2.1.5)

Similarly, we can take the partial derivative of L with respect to p, and get 3 aL = quﬁ ggz =
pg . Using the fact that 5 (pgqﬂ) =q“ —|—p5 6p , we can write ¢% as
.o 0 .8 =
" =7 [pﬂq (¢,p.t) — L(q, p, t)] : (2.1.6)
Pa

Now, let H(q,p,t) = ppi®(q,p,t) — L(q,p,t). Then the pair of equations (2.1.4) becomes:

OH OH
“=— Do = —=— 2.1.

These are Hamilton’s canonical equations, and the function H(q, p, t) is called the Hamiltonian of
the system. Hamilton’s equations describe the dynamics of the system on the phase space. This

can be cast in a way that is closer to quantum mechanics using the Poisson bracket formulation.

Definition 2.1.4. (Poisson Bracket) Let 7*Q be the cotangent bundle of a differentiable man-

ifold Q. Let f and g be two functions on 7*Q. Then the Poisson bracket of f with ¢ is defined
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ad’]

of 99  9f 9y

{f, g} = 9¢° Ope  Opa Og° (2.1.8)

Using the Poisson bracket, we can rewrite Hamilton’s equations as
¢* ={q*, H} Pa = {pa, H}. (2.1.9)

In general, the time evolution of a dynamical function f (namely, a function on 7%Q) can be

written as

df(g.p,t)  Of dg* | Of dpa

of of
it o dt topea T W HE G (2.1.10)

The last equality is obtained using (2.1.7)) and (2.1.8]). We can also compute the “fundamental
Poisson brackets,” which are the Poisson brackets between the generalized coordinates and

momenta:

{¢*,4°} =0, {Pasps} =0, {q*,ps} = 5. (2.1.11)

It can be proved from the definition that the Poisson bracket satisfies bilinearity, anti-
commutativity and the Jacobi identity. These properties define an algebraic structure called
a Lie algebra. In fact the function space F(T*Q) is a Lie algebra where the Lie bracket is
defined as the Poisson bracket. A reader familiar with quantum mechanics has already seen
another form of Lie bracket, namely the commutator of linear operators in Hilbert space. This is
where the boundary between classical mechanics and quantum mechanics becomes very thin. As

described in |14] by Paul Dirac, in quantum mechanics we simply make the following replacement

In the mathematical literature, a Poisson bracket is more generally defined in terms of anticommutativity,
bilinearity, Leibniz’s rule and the Jacobi identity. This definition is equivalent in the case of canonical coordinates
and momenta in phase space.
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of a classical Poisson bracket with the quantum mechanical commutator:
3= 2l (2112)
, pARNE 1.

Classical mechanics as a limit of quantum theory is more obviously seen in the Hamilton-Jacobi
formulation. First, we present a simple derivation of the Hamilton-Jacobi equation, and then
we relate it to the Schrodinger equation, establishing the connection between the classical and
quantum realm. Consider the action integral S = fti) dtL(q,q,t). Using the definition of Hamil-

tonian, we can rewrite this as:

t q t
S= [ dt(pag® — H) = / padq® — | Hdt. (2.1.13)
to q0=q(to) to

This is a line integral in the g-t plane, and so we haveﬁ

oS

== = pa, 2.1.14
o ! ( )
0s oS

= =_H =—-H|q, -—.t). 2.1.1
5 (¢,p,1) (q, 6q’t> (2.1.15)

Here, and give us a momentum (vector) field and an energy field on the
configuration space. Equation is called the Hamilton-Jacobi equation. It is a first
order partial differential equation, whose solution (with proper initial conditions) determines
the trajectory of the particles. These trajectories are the integral curves of the momentum field.
Equation also gives us a very useful insight about the wave-particle duality. Consider
a single particle in Cartesian coordiantes. Then tells us that the momentum p = VS.

Hence, the momentum of the particle is perpendicular to the surfaces with constant action S.

GHere 9s ._ (BS oS

Er Dql’ "1 Bgm

ik ), where n is the number of degrees of freedom.
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This is very similar to geometric optics, where the momentum of a photon is perpendicular to
the wavefront (surfaces with constant phase). This, of course, is an analogy. However, we shall
see in the next section how this is related to single-particle quantum mechanics.

Before relating the classical and quantum picture, we point out a subtlety in the definition
of action in classical mechanics. There are usually two different definitions of action— one is
the integral of the Lagrangian (S = j;if Ldt), which is referred to as the action, and the other
is the integral of momentum (Sy = f;_f p - dq), which is referred to as the abbreviated action.
In the action integral, the fixed quantities are the initial and final times and the end points
of a trajectory. On the other hand, in the abbreviated action integral, we fix the endpoints
and the total energy of the systemE] Despite the difference, the variational principles arising
from extremizing S and Sy coincide for a conservative system. In our study of semiclassical
mechanics, we will always use the abbreviated action Sp since we are interested in conservative

systems. We will follow the convention of referring to the abbreviated action as the action.

2.2  From Schrodinger to Hamilton-Jacobi

In this section, we establish a precise connection between the Hamilton-Jacobi equation and
Schrodinger equation. We will assume the case of only one particle moving in three-dimensions.
Generalization to multi-particle (non-interacting) systems is not difficult. Even in their usual

appearance, the two equations look very similar:

Hamilton-Jacobi: %j =-H (q, %{j,t) (2.2.1)
s L OV -
Schrodinger: zha = H(§,p,t)¥. (2.2.2)

"See Chapter 8.6 of [17] for details.
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We assume that the Hamiltonian is of the form H(q,p) = % + V(q). Then, using (2.1.14)), the

Hamilton-Jacobi equation (2.2.1) becomes:

as _ |Ivs|P
ot 2m

Viq) (2.2.3)

For the Schrodinger’s equation, a natural ansatz for the solution is ¥(q,t) = A(g, t)eiﬁg"(q’t).

Plugging this into (2.2.2) and cancelling the exponentials, we get:

dp L O0A (1 i ) i R,
5t +ih 5 = <2m(AV<p Vgo)JrVA) h<2mAV <p+mVA Vgo) 2mv A. (2.2.4)

At this point, we treat i as a parameter in the problem, and hence we can equate the coefficients

of the different powers of A from the left and right side. After some simplification, we get:

: dp 1 2
Z h P == — 2.2.
eroth Order in & 5t QmHVgoH V, (2.2.5)
. . 0A 1 9
First Order in A: Bt + 2—(2Vgp -VA+ AVép) =0 (2.2.6)
m

The zeroth order term in the Schrodinger equation is a Hamilton-Jacobi equation of the
form . To make it clear, we make the identification ¢ <> S. With this identification, the
Hamilton-Jacobi equation comes directly from the Schrodinger equation as a first approximation.
The first order approximation in £ is called the amplitude transport equation. Since A in our
ansatz is of the form of an (real) amplitude of a wave function, it is natural to interpret p(q,t) =
A(gq,t)? as the probability density of the particle at a location ¢ and time t. Also,

motivates us to define a velocity field v = %VS . With these two definitions, the first order
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amplitude transport equation becomes

op V- =0. 2.2.
t+ (pv) =0 (2.2.7)

This is a continuity equation that is analogous to the conservation of probability in quantum
mechanics. Hence, the ansatz that we started with is a very sensible one, and produces some of

the essential features of the quantum theory. This ansatz, namely,
W(g.t) = A(g,t)erS@) (2.2.8)

is called the WKB wavefunctionﬁ The WKB method is a general technique to find the asymp-
totic solutions of certain differential equations. In this particular instance, we applied it to the
Schrodinger equation. A properly normalized WKB wavefunction requires three ingredients—
the action in the exponent, the amplitude factor and a correction factor due to certain singular-
ities. As discussed in the previous section, the action as a function of the generalized coordinate

q with energy E as a parameter is given byﬂ

S(¢,E) = /qp(q’,E)dq’, (2.2.9)

where ¢g is some conventional point on the constant energy manifold. This is, however, not
the most general form of the action integral that appears in the WKB wavefunction. For the
purpose of applying the theory to compute the wavefunctions of a tetrahedral grain of space,

we need a small generalization of (2.2.9). An action integral for a WKB eigenfunction requires

8This is named after Gregor Wentzel, Hendrik Anthony Kramers, Léon Brillouin and Harold Jeffreys. In fact
this is a special case of the asymptotic series in the exponent of the form exp[%(So + (h/i)S1 + (h/i)*S2 +...)].
Here, we have Sp = S and S; = In A. In what follows, we will often use this notation.

9We will only consider time independent Schrodinger equation, so time as an argument of the action and other
functions will often be dropped.
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both an integral along a constant E-manifold as well as along a constant g-manifold. Suppose

J

Py

Figure 2.2.1: Contours of action integral in one-dimension.

Mg and M, are respectively manifolds with fixed energy and fixed generalized coordinate on
the phase space. Let Pr and P, be two conventional initial points of integration on the two
manifolds respectively. Also, suppose that the two manifolds Mg and M, intersect at points
{C1,Cs,...,C,} for n € N. Denote the path from the conventional point Pg to C; as I'g; and

the path from the conventional point F; to C; as I';;. Then the exponential part of the WKB

formula (2.2.8) for each ¢ € {1,2,,...,n} is given by [19]:
. v
exp [z (SE,i —Sgi — ui—)] , (2.2.10)
where p; is a Maslov index (see next section), and

SE,Z-:/ p(¢,E)dq and qui:/ p(q, E)dq'. (2.2.11)
Ie;

q,t
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Since we are interested in the energy eigenfunctions of the Schrédinger equation, following

[27], the amplitude factor is given by

1
2

1

d %8
(2ri)i7z| 4

Alq) = 940F

, (2.2.12)

where FE is the energy of the system. As an example, suppose that we have a single particle in
a potential well V(gq). The classical Hamiltonian for this problem is H = % + V(q), where p is

the momentum of the particle. We know that 2—2 = p, and on a constant energy curve (specified

by H = FE) in the phase space, p = ++/2m(E — V(q)). So,

amplitude for the WKB wavefunction (2.2.8)) is given by

Alq) = \/E ~ \/Z- (2.2.13)

The final ingredient for the WKB wavefunction is the Maslov index, which is necessary when

3PS | _|Op| _m
W’ = }ﬁ = ; Therefore, the

we have branching points on our manifold of constant energy. This is our topic of the next
section. Before that, we will briefly examine the regime of validity of the WKB approximation.
We consider the stationary (time-independent) part of ¢ =S = Sy and S; = In A in equation
(2.2.4). Notice that for a time-independent Schrédinger equation, the left hand side of
vanishes. Then the right hand side implies that the coefficient in each order of i vanishes. For

the first order term, this means (using the fact that V.Sy = p) that

Iv2Soll _ 11val]
VSl ~ Tl

[[VS1]| = (2.2.14)

It is also necessary that a first order term is much smaller compared to the zeroth order term.

For a rough necessary estimate, we will compare the term AV2S in the first order with the
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term o= A||VS||? in the zeroth order. It is necessary that 5-[|VSo|[> > L|[(VA/A) - VSo|| =

%HVIHA - VSp||. We then have, using (2.2.14]), that

Vv
Ioll > #vsil| = allZ2 (22.15)

Using the relation p? = 2m(E — V), we can deduce that ||[VV|| = L||p|| - ||Vp||. Multiplying by

the local De Broglie wavelength \ ~ IEl and using (2.2.15)), we get

lpll>

AIVV]| < o

(2.2.16)

This is a necessary condition for the WKB approximation to be valid. Physically, this means
that the potential energy can not vary too rapidly over the distance of the particle’s De Broglie
wavelength compared to the kinetic energy. This condition is certainly violated at the classical
turning points of the potential, where ||p|| = 0. Hence, the WKB method can be valid at the
classically allowed and forbidden regions away from the classical turning points. However, we
need a connection formula to join the two separate pieces of the solution together.

This fact along with the form of the momenta and energy (Hamiltonian) fields being related
to each other by the derivatives of the action as in and leads us to look at the
problem from a more general mathematical point of view. In the next section, we will introduce
Lagrangian manifolds and singular points on them, which will be productive in understanding

the peculiar behavior of WKB wavefunctions near classical turning pointsm

'°This next section is motivated by Robert Littlejohn’s unpublished lectures on classical dynamics.
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2.3 Lagrangian Manifolds and Caustics

The momentum in the Hamilton-Jacobi theory is not arbitrary, but rather of a very special
form. It is the gradient of a function (as in (2.1.14)). Hence, the momentum field is irrotational.
In a 2n dimensional phase space, where n € N, the condition poses n independent
constraints. So, we generally get an n dimensional surface in the 2n dimensional phase space.
A mathematical treatment of such momentum fields requires a small generalization of this idea.

For this purpose, we define a Lagrangian manifold on the phase space.

Definition 2.3.1. (Lagrangian Manifold) Consider a classical system described by n generalized
coordinates (¢',¢?, ...,q"), where n € N. Then the phase space M?" of the system is 2n
dimensional. A Lagrangian manifold £" is an n-dimensional submanifold of M?" such that if

dz1 = (dg, dp) and dzs = (dq’,dp’) are tangent vectors to L™ , then we havd]

w(dz1,dzo) :==dp-dq’ — dq-dp’ = 0. (2.3.1)

Here the dot products in ([2.3.1) are the standard Euclidean dot products.

One special (and obvious) case is that all smooth curves in a two dimensional phase space
are Lagrangian manifolds. This is so because at any point of the curve, the tangent vectors are
linearly dependent.

Now, suppose that our generalized coordinates and momenta live on some Lagrangian manifold

in the phase space. Also, assume that the momenta can be expressed as a function of the

generalized coordinates, that is p; = p;(¢’). Then we have dp; = gf]’; dg’ and dp, = %dq’j )

' The d refers to infinitesimal displacement vector, not a differential form.
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Then using ([2.3.1)), we have

Opi + 5 i O i (0P Opi\ i
dp-dq’ —dp’ -dq = ——d¢’dq" — ——=dq"dq" = - — —2 ) dq'd¢” = 0. 2.3.2
p-dq —dp-dq =5 sda’dd” = o5dq’dg <an og ) 1% (2.3.2)
opi _ Opj

As dq* and dq” are arbitrary, we have This relation guarantees that the canonical

0¢7 — 0q'"

05
dq*

momentum can be expressed as a gradient. In other words, p; = for some function S. Here,

S is indeed the action integral as can be seen by comparing this with (2.1.13)). In a 2-dimensional
phase space, this relation is trivially satisfied, and so every smooth curve in 2D is a Lagrangian

manifold [

Since a Lagrangian manifolds £" is an n dimensional hypersurface in a 2n dimensional phase

space, we can locally parameterize £" using n coordinates. Let uw = (u',u?,...,u") be local

coordinates on the Lagrangian manifold £™. Then the generalized coordinates and canonical

momenta can be expressed (locally) as a function of u = (u',u?,...,u") i.e. q = q(u) and

p = p(u). Now, if the Jacobian matrix g—z is not singular, then we can invert ¢ = q(u), and get
u = u(q). In that case, we can write the momentum as a function of the coordinates, that is

p = p(q(u)). Using the multivariable chain rule, we can write

op;  Op; Ou”
507 = 5k a7 (2.3.3)

Notice that when the Jacobian matrix g—z is singular, (2.3.3) is not well-defined. The set of
points where this Jacobian matrix is singular are called the singular points of L™, and the
projections of these points on the configuration space are called caustics@ A simple visu-

alizable instance of the occurrence of caustics of a Lagrangian manifold happens in one di-

12Notice that, this derivation is very much dependent on the fact that we can write p as a function of g.
13We will often conflate the two terms, but this doesn’t cause any confusion.
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mension. Consider the Lagrangian manifold given in Figure 2.3.1] At the indicated brown

points on the manifold, it is clear that Z—Z diverges, and hence those are singular points.

Geometrically, it is clear that the points of singu- M
P

larity occur when a tangent vector on the manifold

projects down to a point in one of the coordinates

of the configuration space. This can also be seen

analytically.

A4

Consider a small tangent vector dz = (dq,dp)

. . . . Fi 2.3.1: The b int the sin-
on a Lagrangian manifold. Using the chain rule, eure ¢ DIOWH poInts ate The sin

o 5 gularities on the 1-D Lagrangian manifold de-
we get dqg = Gldu and dp = FEdu. If the matrix

picted here on a 2-D phase space.

g—z is singular, then there is some non-zero du for

which dq is constantly zero. Hence, we get the projection of a tangent vector of the manifold to
be a point on some coordinate in the configuration space. This is also a classical turning point
in the configuration space.

The locations of caustics very much depend on the coordinatization of the Lagrangian man-
ifold. Hence, we can change representations at certain regions on the manifold to avoid the
caustics. In one dimension, we can certainly see that the caustics never occur at the same place
in position and momentum representation. It was shown by Maslov that there is always some
patch-work of position and momentum representation such that we can avoid the caustics [29].

In general, we will need to consider both position and momentum representations of the action
integral to calculate the action in the WKB ansatz properly. We now focus on the Hamilton-
Jacobi equation , since this is the equation we need to solve to find the action. If our

Lagrangian manifold doesn’t have a caustic, we consider the action S(g,p) as the generator
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X

Figure 2.3.2: Here is a cover of a one-dimensional Lagrangian manifold where we avoid the
caustics by changing representations. We work in the position basis over the whole manifold
except the red region, where we switch to the momentum basis.

of the manifold. In the case of manifolds with caustics, we need to consider a patch-work of
generating functions.

Consider a one-dimensional Lagrangian manifold £’ in a two-dimensional phase space at ¢t = 0.
Then £’ has some some generating function S(¢,t’). It turns out that under time evolution,
the final manifold £” is also Lagrangian[' Hence, £ also has some generating function. This
generating function should satisfy the Hamilton-Jacobi equation and the initial condition. As

shown in [28], the generating function S(¢”,t"”) for the manifold £” is given by
S(q”,t”) — S(q/,t,> _|_ R(q”,t”;q/,t/)7 (234)

where R(q”,t";¢',t') is Hamilton’s principal function, which is the line integral of pdq — Hdt

from (¢',¢') to (¢”,t") along a physical orbit. By applying the chain rule, we have % ="

and % = —H(q”,p”,t”) If we let ¢ — ¢’ and t” — t/, then we also recover the initial

conditions, since the Hamilton’s principal function vanishes. Hence S(¢”,t") indeed satisfy the

Hamilton-Jacobi equation along with the required initial condition.

141t is not very hard to prove this using the Liouville’s theorem from classical mechanics.
5Notice that t',¢” and ¢” are the independent parameters/variables here. Once we know these three, we can
write ¢’ = ¢'(¢",t',t").
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At the level of amplitude transport equation (2.2.7)), we know that the probability density
of particles is the square of the WKB amplitude. In other words, p = A%. By conservation of

probability, we know that p(q’,¢)dq = p(¢”,t")dq". Generalizing this in higher dimensions, we

get
aq/ 1/2
"N !4/
A(q",t") = A(q',t")| det 9q" (2.3.5)
Then, using (2.3.4)) and (2.3.5)), we get the solution of the initial value problem to be
"o 1oyl 8ql 1/2 i ’ogl "o, gl
Y(g",t") = A(q',t')| det 94" exp 3[5(q,t) + R(q", 7 ¢, t)]. (2.3.6)

We can see that the wavefunction diverges when q” is a caustic. As discussed previously,
we switch to a momentum representation near these points. For now, consider a one dimen-
sional case. The momentum wavefunction has a similar WKB approximation, which is given
by ¢(p) ~ T®) where T(p) = — J? qdp’ is the action in the momentum space. Here, ¢ = ¢(p)
determined by T'(p), is a position field in the momentum space. Now, given the momentum
space wavefunction ¢(p), we want to perform an inverse Fourier transform on it to analyze how
it changes around the caustic (¢ in Figure [2.3.3)).

Note that the derivatives of the momentum space action integrals are

T'(p) = —qr(p), T"(p) = <g}q)> (2.3.7)

B
Here, the fact that the derivative is taken on the Lagrangian manifold is emphasized by the

subscript. We will take the inverse Fourier transform of the WKB wavefunction in the momen-

tum space at point 1 and 2 in Figure to understand how the position wavefunction change
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>

q

Figure 2.3.3: A Lagrangian manifold in the phase space. The two branches about the caustic
are labeled by 1 and 2. Near the caustic ¢, we switch to a momentum representation.

across the caustic. It turns out that the amplitude is continuous across the caustic, so we will

only calculate the phase contribution:

P(q) ~ /ei(qurT(p))dp. (2.3.8)

We will use stationary phase approximation to evaluate the integral. Note that the exponent is

stationary when ¢ + T'(p) = 0, or ¢ = gq. Then we have

i /4 if T// >0
, e i ,

p(q) ~ / e PrtTe)) gy o / e2 TPl g ~ (2.3.9)
e—im/4 if 7" < 0.

Here, we have used the symbol ~ to denote that the rest of the integral is the same for both
branches. The two cases in Equation give rise to the Maslov index. It is clear from
Figure that T7”(p.) = 0, where p. is the momentum coordinate of the caustic. Depending
on whether T” goes from positive to negative or negative to positive, we have different changes

in Maslov index (Apu). Since sgn(7") = —sgn(dp/dq) away from the caustic, and the change in
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phase in (2.3.9) is 5, we have the following rule for the change in Maslov index:

d
goes — > + = Ap=+1, and d—p goes + > — = Au=-—1. (2.3.10)
q

dp

dgq
With the conceptual understanding of the origin of Maslov index in one dimension, we now
focus on its calculation. As before, we will only consider a one-dimensional Lagrangian manifold
on phase space given by a fixed energy H = E, where H is the Hamiltonian. Since we are
switching representations from a position basis to a momentum basis near the caustic, this is

obtained by the canonical transformation ¢ — p and p — —qm Hence, working on a basis (say,

q) involves a change in sign near the caustic. Let v be a shorthand for 7" = (%) . Suppose
t is the flow parameter along constant energyE Then we have
0 0 ot ] H
= (q) — <q) <> _d_le ) (2.3.11)
) | ot)|g\op)|g p {p,H}

The change of sign at the caustic in Equation ([2.3.9) is characterized by the flow of 4. Taking

the t-derivative of 7, we get

(2.3.12)

We know that the caustic is a turning point in our classical phase space. So ¢ = 0. Also, at
the caustic, we have V(, ) H QH This is clear geometrically from Figure but can also
be seen as a vanishing of symplectic form at the caustic (See [19], Chapter 2). Hence, we have

dE. = edq., where e is a proportionality constant. The subscript c is used to emphasize that we

16 A canonical transformation is defined as a transformation that leaves the form of Hamilton’s equation invari-
ant. For details, see [17].

1"Tn this case, ¢ is time. However, for a general Hamiltonian system, it could be some other parameter.

8Here, the gradient is just ‘ia% —|—ﬁa%.
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are evaluating everything at the caustic. So at the caustic, we have

OH
y={p,H} = — =e. 2.3.13
b= {pHy =5 =c (23.13)
Then ¥ = —Ap at the caustic is given by:
oG 1
o= = —{{q. H}, H}. (2.3.14)
Pe €

The calculation of the Maslov index completes our general discussion of semiclassical mechanics.

Now, we will apply the WKB method to a quantum harmonic oscillator to illustrate an example.

2.4 WKB Wavefunctions of a Simple Harmonic Oscillator

The application of semiclassics to a quantum tetrahedron in the next chapter is rife with
subtleties and long calculations. To get a clear understanding of the methods, having a simple
example in our mind is very helpful. Here, we illustrate the applications of the methods discussed
in the previous sections to a harmonic oscillator. This example is simple, but captures the
essential subtlties of the theory. One can refer back to this example when a confusion arises in
a more complicated problem. Consider a one-dimensional simple harmonic oscillator with mass

m = 1 and angular frequency w = 1. Then, the Hamiltonian of this system is given by:

1

H(g,p) = 5(¢" + ") (2.4.1)

We know from quantum mechanics that the exact eigenfunctions of this oscillator are obtained

by solving the time-independent Schrodinger equation. Set A = 1. Then the n-th eigenfunction
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is given by:

nl) = ———e %

H, 2.4.2
CTY e (z), ( )

where H (x) is the n-th Hermite polynomial. As described in the previous sections, to calculate
the WKB eigenfunctions for this problem, we need three ingredients—the action, the amplitude

and the maslov indices at the caustics. First, we calculate the action integral starting from the

A
p
['p
B
A b >
q
I'e
C
q fixed

Figure 2.4.1: Orbit of a harmonic oscillator in the phase space. The point A is a conventional initial
point for the action integral. The vertical line corresponds to a fixed but arbitrary q. Due to the two
branches, we have to consider the integral from A to both the intersection points B and C. The point D
is a caustic on our Lagrangian manifold that the orbit crosses.

conventional point A to a point with fixed but arbitrary ¢ along the orbit in the phase space.
Let E be the energy of the oscillator. Then, the coordinate of the point A is (—\/ 2F, O). There
are two branches as shown in the Figure Denote the two paths as I'g and I'¢ respectively.

Then the two action integrals are:

q TFE . q q
SAB:/ quQZ/ mdqu-l-Earcsm () +*\/m, 243
. (q) i 5 VoE) 2 (243)

V2E q
Sac = / p(q)dg = V2E — ¢*dg + / —V2E — ¢*dg
To —V3E V3E

3rE q
= —— — Farcsin | — | — =+/2F — ¢2. 2.4.4
' ( TE) NG (2.4.4)
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The amplitudes for both of the branches are the same due to symmetry, and it is obtained using

(2.2.13]) and ignoring the overall phase factor:

1
A(q) = s A (2.4.5)

Also notice that at the caustic D, the slope of p(q) changes from negative to positive. Hence,
we have an extra phase of +3 on the second branch by (2.3.10)). Putting this all together, we

get the following wavefunction:

'(/1(-%) _ \/T(QEI 2)1/4 <ei<7r2E+Earcsin (ﬁ)-ﬁ-%\/ﬂ) + ei(#—Earcsin (\/ZiE)_g\/ﬂ'i_g)) .
T —q

(2.4.6)

Factoring the common phase ¢/ from the exponentials (and ignoring it), and using the fact
that the energy of the n-th eigenstate of the harmonic oscillator is FE,, = (n + %), we get the

n-th WKB eigenfunction for |q| < v2E:

2 1 nmw
n(y) = cos| |n+ = (arcsin +y(1—y? 1/2> — >, 2.4.7
where y = \/zgﬁ‘ This is only valid in the classically allowed region away from the caustic. We

can extend this formula to the classically forbidden region by an analytic continuation using the

following expression for the arcsin function in the complex plane:

arcsin (z) = —iln (iz +1]1— Z2|1/26% arg(1_22)>. (2.4.8)
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This gives us the WKB wavefunctions in the classically forbidden region |q| > v2E:

(y + (y2 _ 1)1/2)(n+1/2) 1 .
Un(y) = [(2n + 1)(y2 — 1))]/4 exp (‘ (TH' 2> y(y* — 1)1/2>» y>1,

(_y + (y2 _ 1)1/2)(n+l/2) 1 '
Un(y) = [(2n+ 1)(y2 — 1))/ exp <<n + 2) yly® - 1)1/2)a y<-—-1,

q

where y = NoTESE and the condition |q| > v2F is equivalent to the two cases above.

33

(2.4.9)

(2.4.10)

As we can see in Figure the exact and the WKB wavefunctions agree to an excellent

degree away from the caustic. The general method of calculating the action, the amplitude and

the Maslov indices works in other semiclassical systems as well. In the next chapter, we will

study such a system where the Hamiltonian does not take the form of the sum of a potential

and kinetic energy. We will see that the semiclassical techniques discussed in this chapter work

equally nicely in a completely different problem.
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Figure 2.4.2: Comparison of the exact and the WKB eigenfunctions of a simple harmonic oscillator for
energy eigenstates n = 2,3,7,9. The WKB wavefunctions diverge at the caustics.
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Semiclassics of Quantum Tetrahedra

In this chapter, we will apply the ideas discussed in the previous chapter to the case of the
quantum tetrahedron described in the introduction. It was shown by Kapovich and Milson
in a different context that the space of a polyhedron with fixed face areas has a symplectic
structure.[22] Hence, we can study the dynamics of polyhedra in a systematic way using the
Hamiltonian formalism. Here, we will do exactly that and consider some quantum properties.
This will give rise to a semiclassical model of a tetrahedral grain of space. In particular, we will
study the classical Hamiltonian of this problem, and calculate the Bohr-Sommerfeld quantization

and the WKB wavefunctions of the shapes of tetrahedra.

35
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3.1 Setup of the Problem

As described in the first chapter, the Hilbert space for our tetrahedron is the global SU(2)
invariant subspace of the tensor product of the Hilbert space associated with each face of the
tetrahedron (see equation [1.3.3)). This generalizes to the Hilbert space of any arbitrary convex

polyhedron with n faces:

n

K = Invgy ) () Hj,- (3.1.1)

i=1

This subspace is called the space of intertwiners. As described in [19], a finite dimensional
intertwiner space is related to the quantization of a classical phase space. We start by developing

the classical phase space here. The starting point is a theorem due to Minkowski [30].

Theorem 3.1.1 (Minkowski’s Theorem). Given n vectors Ay, A, ..., A, € R3, where n € N,
such that A1 +---+ A, =0, there is a unique n-faced polyhedron (up to rotation and translation)

with A1, As, ..., A, as its normal area vectors.

Following [22], we can associate a classical phase space to the space of these polyhedra. We

can interpret the partial sum

k+1

>4

i=1

[ = : (i=1,...,n—3) (3.1.2)

as the generator of rotation about the p = Zfill A; axis once we choose a suitable Poisson
bracket structure. As suggested by Schwinger, we can associate the following Poisson bracket

structure to this space [35]. Suppose f and g are functions of the area vectors. Then we define
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the Poisson bracket:

- 9 )
{f,9}=>_ A; <8Af- X aj»)’ (3.1.3)
i—1 1 )

where the notation g—i is a shorthand for the vector 66:% T+ 887@_13—% ngf 2. Conjugate to py, the

generator of rotations about the pj axis, we have some kind of generalized coordinate. Since
our uy is interpreted as an angular momentum, it turns out that the conjugate coordinate is an

angle. Let ¢ be the angle between

k k+1
Vi = <Z Az) X Ak+1 and Wi = <Z Al> X Ak+2. (3.1.4)
j i=1

It can be shown that under the Poisson bracket relation (3.1.3)), we have:

{ur, &1} = O (3.1.5)

The space of {4}7=7 and {#;}]~ is a classical phase space where the fundamental Poisson
brackets are given by . As we saw in the previous chapter, dynamical problems on a phase
space is most naturally solved by the Hamiltonian formulation. For our quantum tetrahedron,
an interesting Hamiltonian operator is given by the volume operator in loop quantum gravity,
which is the quantum analogue of the volume expression in ordinary Riemannian space. Due to
what is known as a regularization scheme, there are different volume operators in loop quantum
gravity, for example, the Rovelli-Smolin operator [32] and the Ashtekar-Lewandowski operator

[1]. However, in the case of a tetrahedron, these volume operators coincide. The Hilbert space
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in this case is
Ky = InVSU(2) [Hjl Q@ Hj, ® Hjy ® HJ'4]' (3.1.6)

The dimension d of this Hilbert space is obtained by the symmetric coupling of three angular

momenta as described by Lévy-Leblond and Lévy-Nahas in [26]:
d= k’max - k’min + 17 (317)

where ki, is the maximum of the difference of two j;’s and kpax is the minimum of the sum of two
ji’s. This is due to the triangle inequality of the coupling of angular momenta. Suppose, we sort
the j;’s in ascending order. Then ki, = max{|j1 — jo|, |73 — ja|} and kmax = min{j1 +jo, js+ja}-
The matrix elements of the squared volume operator, due to Lévy-Leblond and Lévy-Nahas in

[26], is given by

k
A 2 Ak, Ay Ag)A(k, As, Ay)
Q=@m)? > 2 11

k:kmin+1

(k) (k= 1] = [k = 1){k]) , (3.1.8)

where [, is the Planck length, |k) is a basis element in K4 using H;, ® H;, as intermediate

coupling space, A; = j; + %, and

1
A(a,b,c) = z\/(a +b+c)(—a+b+c)la—b+c)la+b—c) (3.1.9)
is the area of a triangle with sides a,b and c¢. The operator itself is given by Barbieri [3]:

L2
Q= §A1 - (A2 x A3). (3.1.10)
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We will study the spectrum and eigenfunctions of this operator. In our semiclassical study of
the quantum tetrahedron, () will be the classical Hamiltonian, where Aq, Ay and A3 are three

area vectors of the tetrahedron[l

3.2 Phase Space and Classical Hamiltonian of Quantum Tetra-

hedra

The study of Hamiltonian dynamics in the Kapovich-Milson phase space simplifies immensely
in the case of a tetrahedron. In this case, Minkowski’s Theorem gives us a unique
tetrahedron (up to rotation and translation) with face area vectors Aj, Ag, Az and Ay if we
have 2?21 A; = 0. Denote the magnitude of the area vector A; as A; for all i € {1,2,3,4}.

Notice that if we fix the magnitudes of the four area vectors, we still have two degrees of
freedom that determine the shape of the tetrahedron. A tetrahedron is determined completely
by its six edge-lengths. Thus, if the four area vectors are fixed, the shape can still be varied in
a two dimensional space. We will denote this space as Py.

Using the Kapovich-Milson phase space construction from the previous section, we find that
our canonical momentum is A = |A; + Ay, and the conjugate coordinate of A is p— the angle
between v = A1 X Ay and w = A x Ag, where A = A; + Ay. The specialization of Poisson

bracket relation (3.1.5) in this case is

(A, ¢} =1. (3.2.1)

Tt is a simple exercise in vector algebra to show that the squared volume is actually given by (3.1.10).
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This can be interpreted as A generating a rotation by angle ¢ about the A axis, and is analogous
to the angular momentum operator J. generating rotation about the z-axis.

The topology of the phase space with A and ¢
as conjugate variables is unlike the one in intro-

ductory classical mechanics. This is because there

.« . . B . AJ, A3 Amax
are limitations in the allowed values of A in our ’
problem due to the geometry of the tetrahedronﬂ Y Ao

Ami!l : ' 1
To see this, suppose, without loss of generality, A

that we label the areas of the faces with ascend-
Figure 3.2.1: The minimum and maximum ab-

ing order in magnitude. In other words, we have solute value of A for Euclidean tetrahedron.
Ay < Ay < Az < Ay, where A; is the magnitude
of A; for all i € {1,2,3,4}. Notice that due to the triangle inequality, A is restricted between
Apmin = max{As — Ay, Ay — A3} and Apax = min{A; + Ay, A3+ As}. These are the magnitudes
of A when two of the area vectors become colinear. For each A such that Anm < A < Amax,
the angle ¢ goes from 0 to 2w. For A = Anin and A = Apnax, the conjugate angle ¢ becomes
degenerate, and we only get a single point for each. This is topologically the same as a 2-sphere.
Following Figure we can embed this sphere of radius r = (Amax — Amin)/2 in R? with its
center at (Amin + Amax)/2-

A nice way to see this is due to the closure relation in the Minkowski’s theorem. Since the
area vectors add up to zero, we can associate with a tetrahedron an abstract area-tetrahedron,
where four adjacent “edges” are formed by the area vectors. Then the angle ¢ is simply the

dihedral angle between the two triangles formed by vectors Ay and As, and Az and A4. This

lines up with (3.1.4) using the closure relation of the area vectors. As suggested before, we will

2We will only consider Euclidean tetrahedron in flat space here.



3.2. PHASE SPACE AND CLASSICAL HAMILTONIAN OF QUANTUM TETRAHEDRA41

Figure 3.2.2: Abstract tetrahedron formed by the area vectors of an Euclidean tetrahedron.

study the spectrum of the squared volume operator, whose classical analogue is given by:
2
Q = §A1 . (A2 X Ag) (322)

Due to the rotational invariance of ), we can reduce it to a function of A and ¢. To see this,
notice that by the argument given in the previous paragraph, ¢ is the angle between vectors

v=A1 X Ay and w = A3z x Ay. Taking the cross product, we get

’UX’LU:(A1XA2)><(A3XA4)
— Jol w|siné = (Ay - (Ag x As)) As — (A, - (Ay x Az)) A,
— 4AA singf) = (Al . (A2 X A3))(—A3 — A4)

—> 4AAsing = gQA

8AA

- Q=9

sin ¢. (3.2.3)

Notice that here we have used the fact that |v| and |w| are twice the areas of the triangle

formed by A; and Ay (call it A) and the triangle formed by A3 and A4 (call it A). Here, we
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can calculate the areas A and A using Heron’s formula:

A= %\/[(A1 T A0)? — A2[A% — (A — Ay, (3.2.4)
A= %\/[(A?, AL = A%[AZ = (A5 — A7, (3.2.5)

Hence, we have found the form of a classical Hamiltonian () as a function of canonical momen-
tum A and coordinate ¢. The form of this Hamiltonian is quite different from the kinetic-plus-
potential form of a Hamiltonian in classical mechanics. This makes the calculations of the action
integral tedious even though the machinery to compute the WKB wavefunctions is similar to
the kinetic-plus-potential Hamiltonian. However, as we will see, Now, we will focus on a closed
action integral along an arbitrary orbit of constant volume in the phase space, which will give

us a quantization condition similar to the Bohr-Sommerfeld quantization of energy levels.

3.3 Bohr-Sommerfeld Quantization of a Tetrahedron

The spectra of the volume operatorrﬂ is approximated accurately using the Bohr-
Sommerfeld quantization rule. Roughly speaking, this quantization rule restricts the allowed
values of the symplectic area enclosed by an orbit in the phase space. For a classical Hamiltonian
of the form H = % + V(q), the Bohr-Sommerfeld quantization rule requires the action I(E) =
$ p(g, E)dq to be an integer multiple of the Planck’s constant, where E is the energy level of the
orbit. The allowed energy levels are then obtained by inverting this relation.

By an analogy to this condition, we define our action integral in the phase space as

I(q) = § A(¢,q)d¢, where ¢ is a level value of the Hamiltonian @). Then, the Bohr-Sommerfeld

3We will refer to Q as the volume operator for brevity even though it is the squared volume operator.
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quantization condition for our problem is:

I(q) = %Adgb = 27, (3.3.1)

where we have set i = 1. To evaluate this integral directly, we need A as a function of ¢.

However, it is not easy to invert the relation (3.2.3)) to obtain A(¢). We circumvent this problem

&

Figure 3.3.1: Contour of integration I" of constant volume in the phase space sphere. As a convention, we
take P as our initial point. The closed action integral along the curve I' gives rise to the Bohr-Sommerfeld
quantization condition for our problem.

by converting the ¢-integral (3.3.1)) to a M-integral § A%d)\, where A is the variable conjugate
to QE| This is most conveniently done using a Poisson bracket. Since @ is the Hamiltonian of
this problem, we get % by the Possion bracket of ¢ with Q:

d¢ _ _000Q _090Q _ 09Q
a—{@Q}— 0Adp OpOA DA

(3.3.2)
Using the expression of Q(A, ¢) in (3.2.3]), we get

QA
16A2

dd Q QA

d\ A 16A? [(As + Ag)? + (A5 — Ag)? — 247,

[(Ap + A2)? + (A — Ag)? — 247 —

(3.3.3)

4This is analogous to parameterizing x as a function of time ¢ and changing the integration as Jdz— [ ‘fi—fdt.
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Then, after the change of variable, the closed action integral (3.3.1]) becomes:

4

A2
I= Q% (1 e F) dX, (3.3.4)

where 7; € {(A1 — AQ)Z, (A1 + AQ)Z, (A4 — A3)2, (Ag + A4)2} and M < 79 < r3 < ry. We have

taken @ out of the integral since it is fixed along an orbit. To complete the integral, we need to

compute A?()\). We again use a Poisson bracket:

dA?

L = (42,0} =24{4,Q} = é\/ (40)2(44)? — 324Q2 A2. (3.3.5)

The expression under the square-root is a quartic, and we write it as:
Py(A?,Q%) = Py(A?) — (24)%(9Q)>. (3.3.6)

Notice that Py(A?) = (4A)?(4A)? is a quartic polynomial in z = A% with roots 7; introduced
in (3.3.4). Let r1,7r2,79 and r4 be the roots of the quartic polynomial Py(x). Then we can solve
for A(x) by integrating (3.3.5):

v dz

ro \/(.f' — 7"1)(.% — Tg)(—i' + Tg)(—.f + 7“4) )

Mz) =9 (3.3.7)

Here, we have assumed that the roots of the quartic in the denominator are distinct and we
order them as 71 < ro < r3 < ryq. This is an elliptic integral. We will express it in terms of the

standard Jacobi form of elliptic functions. Using [10], we get the following expression for A(z):

Az) = 9gsn~! <\/(T3 —r)(@=r) m) , (3.3.8)

(rs —r2)(z —7r1)’



3.3. BOHR-SOMMERFELD QUANTIZATION OF A TETRAHEDRON 45

T ®
Tie
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321Q°x

T3

!

TN T | Ts\/ﬁ

Figure 3.3.2: A quartic polynomial Py(z) with a linear perturbation term 324Q%z. In the figure, 7; are
the roots of Py(x), and 7y are the roots of P,(x). In our problem, the classically allowed region is the
region between 79 and r3.

where

2 and m = (rs = r2)(rs =) (3.3.9)

7 V(ra —r9)(rs — 1) (ra —ra)(r3 —r1)’

The quantity m is the square of the elliptic modulus parameter. The relation (3.3.8) can be

inverted to get x(\):

z(\) = A2(\) = (3.3.10)

7‘2(7‘3 - 7”1) - 7“1(7“3 - 7“2)5112 (%,m)
A
9¢g°

(rg —r1) — (r3 — ro)sn? ( m)

This is the volume evolution of the intermediate coupling A%2. With this, we have all the necessary

pieces to calculate the integrals of the five terms in (3.3.4)). The first integral is:

QfdA = 9g x 2K (m), (3.3.11)

where K is the complete elliptic integral of the first kind. The closed integral is 2K (m) instead

of 4K (m)ﬂ since the Jacobi sn function appear as a square in the expression (|3.3.10)), and so the

®The period of an elliptic integral is 4K (m).
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period is halved. The other four integrals in (3.3.4)) are of the form

A

(r3 —71) — r1(rs — r2)sn?(g, m
7{ ——d\ = 7{ ’ _1) 1(rs - ) )A dA (3.3.12)
A% — 1 (rga —r1)(re —75) — (r1 — 7)) (rs — r2)8n2(%,m)

for i € {1,2,3,4}. This integral can be reduced to the form ¢ adu+ § %7;2() where a,b and

«; are constants, and we have introduced u = #:. The integral ¢ adu is similar to (3.3.11)), and

the integral § %

gives rise to a complete elliptic integral of the third kind, and is denoted
by H(a%, m). Collecting all these terms together, we get the following expression for the closed

action integral:

4
1(Q) = (aK(m) + Zbiﬂ(a?,m)> , (3.3.13)

where

4 _
_ r1 _ 18gQri(rg — 1)
= 18¢Q <1 — gz - ) and b; T — (3.3.14)

Although the closed action integral has been written in a concise way, notice that each of
the roots of Py(z) implicitly depends on @. To find the allowed volume levels, we need to
perform a numerical inversion. This was done for different sets of values in [6], and the allowed
volumes were compared with the ones that we get from the eigenvalues of the exact volume
operator . Now that we have derived the Bohr-Sommerfeld quantization of a quantum

tetrahedron, we will shift our focus to its WKB eigenfunctions.



3.4. WKB EIGENFUNCTIONS OF A TETRAHEDRON 47

11 .'i;(}

Figure 3.3.3: A comparison between the Bohr-Sommerfeld spectrum and the spectrum of the volume
operator (3.1.8) in loop quantum gravity for spins (4, 4,4,7 + 1). Remember that the area A, and the
corresponding spin j, are related by A, = j, + % This figure is collected from [6].

3.4 WKB Eigenfunctions of a Tetrahedron

As described in the previous chapter, the calculation of the WKB eigenfunctions requires three
necessary pieces: the amplitude, the action integral starting from conventional initial points to
a set of points on the orbit and the Maslov indices at the caustics. We will write down the
wavefunctions in the A-basis.

Using a formula analogous to (2.2.12)), the amplitude of the wavefunction isﬁ

1 1 1 1 VA

" VR AT gk [ e VIR (006 (154G

(3.4.1)

for all allowed intermediate coupling A. The calculation of the action integral is similar to
the closed action integral in the previous section. The only difference is that for the WKB
wavefunctions, we calculate the action integral not on a closed loop of constant (), but from

some conventional initial point to the intersection points of the constant A-manifold M4 and

5This is a generalization of ([2.2.12). The factor /27 is replaced by the square root of our period 1/I8gK. For
a complete discussion, see |19].
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the constant -manifold Mg. In our problem, there are two intersection points C and Cy (see
Figure . Suppose that the conventional initial points of integrations are P4 and P for
M4 and Mg respectively. Let I' 4 1 and I' 4 » be the contours from P4 to C7 and Cs respectively
along the manifold M4, and let I'g ; and I'g 2 be the contours from FPg to C7 and C5 respectively
along the manifold MQD Notice that due to symmetry about the ¢ = 7 circle on the sphere,
the amplitudes for both of the branches of the WKB approximation are the same. Suppose

that the action integrals along the contours I'g1,I'g2,I'41 and I'y2 are Sgq,,S@,,S4, and

Sa, respectively. Since the amplitude factor is the same for both of the branches, the WKB

Figure 3.4.1: The points P4 and Pg are our conventional initial points of integrations on the constant
A manifold M, and constant ) manifold M¢ respectively. The two manifolds intersect at points Cy
and Cy. The contours I'y; and I'4 2 are integration paths from P4 to C7 and C9 respectively along
the manifold M 4. Similarly, the contours I'g; and I'g 2 are integration paths from Py to C7 and Cs
respectively along the manifold M.

wavefunction is proportional to the sum of the exponential factors (2.2.10)) in the WKB formula:

™

P(A) x (exp [z (SQ2 — Sa, — 12 2)} + exp [z (5’@1 -S4 — ,ulgﬂ) . (3.4.2)

"We fix some convenient orientation on the manifolds as shown in Figure m The wavefunctions due to
different choices of orientations differ by a common phase factor as long as we are consistent with the orientation.
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We can factor out exp (% ((Sg, +Sg,) — (Sa, + Sa,) — (11 + p2)%)) from the sum, and ignore
it as an overall phase. Then the wavefunction is proportional to the cosine of the difference of

the different action integrals along the contours:

P(A) xexp [; ((SQ2 = 8q,) = (Sa, = Sa,) — (p2 — ’ul);r)]
+ exp [;Z ((SQ2 —80,) — (Sa, = Say) — (p2 — Ml)g)}

A R
:2(:03( C 2A “2>, (3.4.3)

where dp1 = (p2 — p1) is the difference in Maslov indices on the two branches, §S¢ is the action
integral from C7 to Cy along Mg, and 654 is the action integral from C; to Co along My.
Notice that due to the exponential expression of cosine, we have to include a factor of 2 with
the amplitude. The calculation of §S¢ is similar to the calculation of the closed action integral

I in the previous section, and is given by the following expression:

550 =Q [99u - Z ( 991 4 0gT1(a2, am(u, m), m) ( T ))] . (3.4.4)

A ro—Ty 1T
1=

where u = %. This is a function of A using (3.3.8). The calculation of 654 is simple since A is

294

7 A). The lower and upper limits of the integral for §.54

constant along I'4. Let ¢y = arcsin (
are ¢p and ™ — ¢g. So we have

58 / T gdp—a [ do— a ( 2 (9QA )) (3.4.5)
4= = = m — 2arcsin [ —— . 4.5
%0 $o 8AA

The last piece of our WKB wavefunction is the difference in Maslov indices du. The Maslov
indices only appear in the wavefunction when an integration contour passes through a caustic of

the Lagrangian manifold on which it lives in. More specifically, this occurs when ({3.4.1)) diverges;
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along our paths of integration, there is one caustic at ¢ = 5. Therefore, we have a Maslov index
for the second branch of integration. Following the calculation procedure discussed in Section

2.3, we need to assemble a few pieces first. We calculate the parameter 4 defined by:

i =-{{4,0),@), (34.6)

where e is defined by the equation: dQ|. = e - dA|. (the subscript ¢ denotes the evaluation of
the differential at the caustic). If the parameter 4 is negative, then the change in the Maslov
index oy is +1 and if it is positive, then oy is —1.

Our first step is to compute e. For this purpose, we take the differential of @ in at the

caustic:

AA
Since dsin ¢ = cos ¢d¢, and cos ¢ is zero at the caustic ¢ = 7, this becomes:
1 & 4
dQl. =Qlc |—— —— || dA. 3.4.8
Q=0 |5+ m || (3458)
So, our e is given by:
4
1 A
=Ql. |—— — . 3.4.9
=03+ ‘ (3.4.9)
The other piece to compute the Maslov index is the following Poisson bracket:
{{4,Q},Q} =@ —1+Z4:A (3.4.10)
’ ’ - c A ra A2 — C. A
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Then, (3.4.6) becomes

Y= Qe (3.4.11)

For a Euclidean tetrahedron, Q. is always positive, so we have du = —1. Therefore, the wave-

function for a tetrahedral grain of space in the classically allowed region ro < A% < r3 is:

P(A) =

2 VA 550 — 654 — cmg) (3.412)

VoK (16A8)7 = (18AQ)/F ( 2
where §5g is given by and 0S54 is given by . The wavefunction in the classically
forbidden region can be obtained similarly. The only difference in that case is that we perform
the action integrals in the region where A2 is between r; and 75 or between 73 and r4 in Figure
Aside from that, we have an exponentially growing or an exponentially decaying factor
from the exponential piece of the WKB wavefunction. This is in contrast to the oscillatory
behavior of the wavefunction that we get in the classically allowed region.

Similar to the calculation of the wavefunctions of the simple harmonic oscillator in the clas-
sically forbidden regions, here we also need to perform an analytic continuation of the arcsin

function. We do that using (2.4.8)), and the wavefunction we get for A? between 73 and ry is:

1 VA
VK (16AA)% — (184Q)2)1/4

W(A) = exp (6Sqs — 6S45), (3.4.13)

where K’ = K (1 —m) is the complement of the complete elliptic integral of the first kind K (m)

that appears in (3.4.12)), and

I \T2 Ty ryg—Tp T2 —T;
1=

4
5SQfZQ[99u—Z< 997"2_u+9gn(a3f,am(u,mf),mf)< B >>] (3.4.14)
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(ra=rs)(ra—ms)
(ra—r2)(r3—73)"

_ (ra—r3)(ro—r1)

where m; = -—— — Similarly, the wavefunction for A? such that
(ra—r2)(r3—r1)

and aff =

r1 < A% < ry is given by

1 VA

YA = oR (1684 — (184Q)) /3

exp (5SQ —354), (3.4.15)

where K’ = K(1 —m), and

0Sor = Q [9gu - Z ( 9g7"3_ u + 99T (a2, am(u, mp), mp) < T >)] , (3.4.16)

Y \T3 T ro—T; T3 —T;
1=

(ro=r1)(r3—7%)
(r3—r1)(r2—73)"

(ra=rs)(ra—r1)

— - This completes the discussion of
(ra—re)(r3—r1)

where mp = my = and a?F =
the calculation of the WKB eigenfunctions of a tetrahedral grain of space. To demonstrate the
accuracy of the WKB method applied to this problem, we include some plots in the end of this
chapter for comparison with the exact wavefunctions found by diagonalizing .

Notice that the moduli of the complete elliptic integrals in and are the same.
This is not a coincidence, and it is because if we consider closed action integrals in the two

classically forbidden regions, they turn out to be the same. The closed action integral in the

intervals [rg, 73], [r3,74] and [r1, o] are given respectively by:

i=1 1 i=1 27T
L= 899 (1 _ 24: "2 K(my) - B2 e, my) (3.4.18)
? i 2T ! T3 — T Ty — T W

4
n= 2 (s g -
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where a?f, o?; and my are the same as in (3.4.15) and (3.4.16]). Noticing the fact that a?fa?F =

my, and using the identity

II(a?, m) = K(m) — II(m/a? m), (3.4.20)

we can show that I, = I3. So, we actually have two independent closed cycles on the phase

space. This aspect of the problem will be discussed in the next chapter.

Abs y?
- L) Exact Wavefunction
e \WKE Wavefunction
s Caustic
015
- 010+
005
| L L L L | L L 1 " A
10 20 50 60

Figure 3.4.2: First squared eigenfunction for A; = 30, As = 31, A3 = 32 and A4 = 35.



3.4. WKB EIGENFUNCTIONS OF A TETRAHEDRON

Abs g
] Exact Wavefunction
= \WKB Wavefuncticn
015+ = Caustic
010
0.05+-
L L L A

Figure 3.4.3: Second squared eigenfunction for A; = 30, As = 31, A3 = 32 and A4 = 35.
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Figure 3.4.4: Ninth squared eigenfunction for A; = 30, As = 31, A3 = 32 and A4 = 35.
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a9
Quantum Geometry and Picard-Fuchs

Equation

In the previous chapter, we noticed that the closed action integrals on both of the classically
forbidden regions of a quantum tetrahedron are the same. This is not a coincidence, and the
root of this interesting fact lies in the topological structure of the phase space and the algebraic
geometry of the problem. In this chapter, we will briefly discuss these mathematical aspects
that are well-studied in the mathematical literature, but have only recently been applied to

semiclassics and quantum geometry.
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4.1 Complexification of Phase Space

To have a better understanding of the underlying structure, we revert our focus to a standard
kinetic-plus-potential Hamiltonian in classical mechanics: H(q,p) = % + V(q). Let E be a
level value of the Hamiltonian H (g, p). Then the closed action integral along an orbit is given by
$ p(q, E)dg. Since the expression for p(q, E) involves taking a square root, we have two different
choices of signs in the integration. This sign ambiguity is most efficiently understood in terms
of a complex configuration space.

Suppose that q; and ¢o are two classical turning points on the real line of the complexified
g-space. By definition, p(q, E') vanishes at these points, and so these are the branch points on
the complex configuration space. Suppose that we choose our branch cut along the real line
from g1 to ga. Then the closed action integral Sio(F) = fcm p(q, F)dq enclosing ¢; and g2 on
the complex plane is nonzero. Other action integrals enclosing two other branch points are also
calculated similarly. However, there are only finitely many independent closed action integrals
on the complexified configuration space. This is determined by the topological properties of the
Riemann surface defined by the momentum p(q, E'). Since p(g, E) is a double valued function
on the complex plane, the Riemann surface defined by it is constructed from two copies of the
complex plane. The number of branch cuts on the complex plane is determined by the number of
roots of 2m(E—V (q)). If there are n roots of 2m(E —V(q)), then the number of branch cuts is §
if n is even, and it is ”TH if n is odd. Gluing the extended complex plane along the branch cuts,
we get a Riemann surface of genus g, where g € N and is one less than the number of branch
cuts. On a genus g surface, there are 2¢ independent integration cycles. Aside from that, p(q, F)

can have additional poles, which give rise to punctures on the Riemann surface. Integrations

around the poles are non-trivial, and if there are s poles on the complex plane from p(q, E),
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A 1
0 T o @B @ @ @ g O
(b)

(a)

(c)

Figure 4.1.1: Construction of a genus g=1 Riemann surface from a complexified configuration space.
In (a), we have two copies of a complex plane, where each copy has two branch cuts. The two copies of
complex plane are equivalent to two Riemann surfaces with two cuts in each as shown in (b). We glue
the two Riemann surfaces along the two branch cuts to obtain a genus g = 1 surface in (c).

then there are 2s punctures on the Riemann surface (since it is constructed from two copies of a
complex plane). However, a cycle around a puncture can be deformed into a sum of other cycles
on the Riemann surface. So, in total there are 2g+2s—1 independent cycles on the surface when
there is a singularity. In the absence of singularities, there are 2¢ independent cyclesE Itis a
well-known fact in the study of complex manifolds that on a one-dimensional complex manifold,
the number of independent cycles is equal to the number of linearly independent one-forms.
Take the one-form A(E) = p(q, E)dq on our Riemann surface. The derivatives of A(E) give us
new one forms on the manifold. Suppose that after N derivatives of A(E) with respect to E,
where N € N, we get a linearly dependent one-form. The linear dependence in the context of
one-forms is slightly different from the one discussed in the context of vectors. If a number of

one-forms are linearly dependent, then there is a linear combination of them which is a total

!This argument is inspired by [24].
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differential of some function on the manifold. Then we have

O'NE
D a (E) _ df, (4.1.1)
0
where N € N and f is a smooth function. Upon integrating around a closed cycle, we obtain

N .
a's
o = 412

where S is an action integral. This is a Picard-Fuchs equation. Here we have expressed the
equgation in terms of the action functionE] The solutions of the Picard-Fuchs equation are the

different classical actions on the independent cycles.

4.2  Picard-Fuchs Equation of Quantum Tetrahedron

The starting point for computing the Picard-Fuchs equation for a classical Hamiltonian is the
expression of momentum as a function of coordinate g and energy E. Depending on the potential
function V(q) in a classical Hamiltonian, we get different forms of Picard-Fuchs equation (see
[4], [24] for example). Our problem of quantum tetrahedron is not derived from a classical
Hamiltonian. Nonetheless, the quartic expression gives us a direct route to study a

Picard-Fuchs equation for our problem.

’In the mathematical literature, the Picard-Fuchs equation is often studied in terms of period rather than
action. The period along a cycle is the first derivative of the action on that cycle. From a physical point of view,
action is a more interesting variable since it determines the first order quantization.
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The evolution of A% along an orbit of fixed Q is given by (3.3.5)), which we rewrite here for its

relevance:

Y TR [ [ oo o oz (4.2.1)

where we have introduced the short hand z for A2, Let us Py(z) = Py(x) — 324Q%z denote
the quartic under the square root in ([.2.1)), where Py(z) = (z — r1)(z — 72)(z — 73)(z — 71)
is independent of Q. Let 71,7r9,73 and 74 be the roots of Py(x). For a generic quartic, the
roots r1,79,73 and 74 are all distinct. We will assume this throughout our discussionﬂ Then,
following the discussion of the previous section, we have two copies of a complex z-plane with
two branch cuts on each copy. Hence, the Riemann surface is topologically equivalent to a torus
(g =1). It can be shown from that there are four poles on our complex plane, and the
integrals around the poles are independent of () and are all equalﬁ Therefore, we only have two
independent non-trivial cycles. This aligns with our discussion following that we only
have two independent non-trivial action integrals on our phase space manifold.

Therefore, it is apparent that we have a Picard-Fuchs equation that is second order in period
or third order in action. Now, we focus on the computation of the Picard-Fuchs equation. The
form of our quartic curve in is very convenient in this regard. The quartic Py(z) can be

written in terms of the elementary symmetric polynomials in rq, 79,73, 74:

Py(z) = 2t + 4bsa® + 6boa® + 4byz + by, (4.2.2)

3Although the coalescence of roots has interesting properties in algebraic geometry. See [15] for example.
4This can be done using the residue theorem.
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where

bo = r1rar3ry,

(rirors + -+« + 1ror3ry)

by = — 1 ,
by — (rirg +rirs+ -+ +1r3r4)
6 )
(ri+ro+mrs+r4)
by = — 1 .

60

(4.2.3)

Notice that the coefficients in (4.2.2)) depend on @ through their dependencies on r;. They also

have the magnitudes of the area vectors Aj, As, A3 and A4 as moduli parameters.

quartic polynomial Py(z) can be converted to the Weierstrass form

Py(z) = 42° — g2(Q)z — g3(Q)

using the uniformization process of a quartic described in [4], where

92(Q) = bybg — 4b3by + 303

93(Q) = bababg + 2b3baby — bybi — b3by — b3,

We also introduce the discriminant A and the J-invariant of an elliptic curve:

A = g3 — 2743,
Jo_ 9
95 — 2793

Now the

(4.2.4)

(4.2.5)

(4.2.6)

(4.2.7)

(4.2.8)

After converting our quartic polynomial to the Weierstrass normal form, we can use the Griffiths-

Dwork technique discussed in [13] to compute the Picard-Fuchs equation of a quantum tetra-
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hedron. It is convenient to write down the Picard-Fuchs equation using W = 324Q? as our

deformation parameter:

&3S 28 ds
L BW)ES LB 4.2.9
aws B g B = 0. (4.29)
where

g;lg gé Jl J//
g % g% J I 4.2.10
R (4210

(J/)2 A/ A// 13A/

By = Bi+o - . 4211
T -1 Ta\M' T A T 1A (4.2.11)

Here the prime symbol denotes a derivative with respect to W. We computed these coefficients

using |20], and these are presented in Appendix

4.3 An Application of Picard-Fuchs Equation

It was discovered by Dunham in 1932 that from a Schrédinger equation, we can find an

asymptotic series for action in the WKB ansatz to get an all order WKB approximation [16]:

R (V') h 49(V")
o) = f (VE-V - R N
a 26(E—-V)5/2 213 (E—V)11/2 — %

(4.3.1)

where the subscript « of the integral denotes that we are integrating over one of the cycles on
a complexified configuration space. For a genus-1 system, there is also another cycle 8 on the
complex torus. It turns out that the functional forms of all the higher order terms in the action

integral along the f cycle are the same as they are in the a-cycle in (4.3.1) [4]. Denote the
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asymptotic expansion of the action integral on the two cycles as:
o0 oo
a(E,h) = h*"a,(E), and a’(E,h) =) h*"al(E), (4.3.2)
n=0 n=0

where a(FE, h) is the action on the a-cycle and a” (E, k) is the action on the S-cycle (also known as
the dual action). The relation between these two actions is that they are two of the independent
solutions of a third order Picard-Fuchs equation. For a genus-1 system, the other independent
solution of the third order Picard-Fuchs equation is a constantﬂ Furthermore, all the terms in
this expansion can be reduced to integrals involving the elliptic integrals of the first, second and
third kind for a genus-1 system. In this case, as described in [4], a higher order term a,(F) in
the expansion of a(E,h) in can be written as a differential operator D% acting on ay,

and similarly for a{’:

an(E) = Dhao(E) (4.3.3)

aP(E) = D%l (E) (4.3.4)

n

for all n € N. Notice that the differential operator D% is the same for both the action and
the dual action. Moreover, due to the fact that ag(E) and af (E) satisfy the same third order

Picard-Fuchs equation, we can reduce the differential operator D% to a second order differential

operator. After the reduction, (4.3.3) and (4.3.4])) can be written as:

an(B) = FOB)ao(B) + 10 () 0 o 52 () Lo0LE) (435)
_ dal (E) d*af (E)
on(B) = 1O (B)af (B) + 1 (£) L) 4 21y O (4.36)

SFor a discussion on higher genus systems, see [24].
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We emphasize that the coefficients f,(lo), fT(Ll) and f7(12) are the same for and . This
makes Picard-Fuchs equation a very powerful tool for studying the higher order behavior of
quantization and the WKB wavefunctions. This is so because the perturbative data of a quantum
mechanical problem is encoded in the action a(E, k), while the non-perturbative data is encoded
in the dual action a”(E, ), and both of them are related by the Wronskian of a Picard-Fuchs
differential equation. Understanding the relation between this two difference action can provide
an easy route to the higher order corrections of the WKB wavefunctions [4],]24].

The relevance of the Picard Fuchs equation in our problem is due to our interest in the higher
order behavior of the WKB wavefunctions and the Bohr-Sommerfeld quantization presented in
the previous chapter. The way Dunham derived the asymptotic expansion in [16] was by using
the Schrodinger equation to get a recursion relation among different powers of h. However, for
our problem, we don’t have a Schrodinger-like differential equation to start with. Using the

exact volume operator derived by Lévy-Leblond and Lévy-Nahas in [26], which is given by

k
A o~ Ak, A1 A2)A(k, As, Ay)
Q= (87wl12))3 E 2i 214

k=kmin+1

(k) (k= 1] = |k = 1){k]) (4.3.7)

can shed some light in the recursion relation required for higher order action correction. Some
work has been done in this side by Schulten and Gordon in [34], although it has not been applied
in the context of our problem. For future work related to this project, deriving a Schrodinger-like
differential equation can be a productive staring point, which will give us better approximation

than what we derived using first order WKB wavefunctions and Bohr-Sommerfeld quantization.
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Appendix A

Picard-Fuchs Coefficients

We present the coefficients (4.2.10)) and (4.2.11)) for our Picard-Fuchs equation (4.2.9)). In the
Bl =

following expressions for By and By, we have introduced sg = by, s1 =

b1

b b3.
Tr82 = ¢ and s3 =

(12288 s0® - 16 s0° (320 s22 +96s1s3-32s52532-2753%-096s3 W) +
s0” (256 s2* - 2048 52° 537 - 864 517 (852 -53?) +5453°W (-553°+ 16 W) + 12527 (8753 - 83253 W) +

651 (1664 52”53 - 64052 53” + 45 53° + 2304 521 - 288 53 W) - 352 (45 53° - 128053’ W+ 2304 W)) -
(s1-W)? (-1652° +16251°53 + 852*s3% +452% (1753 - 81 W) W+ 653 (2537 -27 W) W +

s2s3% W (-853% + 27 W) - 527 (s3% + 144 53 W) -3 51% (10852° - 95253° - 453* + 16253 W) +

251 (725253 + 353 W (-453% +81W) +s2” (-3453%+324W) + 52 (453°-2753%0))) +
250 (194451% + 3252° - 16 52° 3% - 16 52° W (5537 + 12W) +952° s3%W (s3° + 116 W) +

352s3W (-15553’ +864 W) - 651 (4325253 -11353° + 1296 W) + 252° (3% + 88 53 W) -
351” (6452 - 348527 53” + 1555253 - 18 53° - 2592 5253 W + 678 53’ W - 3888 ") +
61 (953°-11353°W+324W) -
s1 (17652° 53 -16 527 (553” + 24 W) +9 52 (53° + 232537 W) + 18 W (653°- 11353’ W+ 432 W) +
s2 (-930s3*W+7776 s3W)))) /
(256507 + s0° (-128 52° + 1445253° - 353 (6451+953°-64 1)) -

((-351°s3+50 (4851 -325253+953>-48W) + W (-452” +5253°-3s3U) +s1 (452 -5253” +653MU))

(s1-W)? (2751 + 452> - 52* 53 + 185253 W+ W (-453° +27W) - 251 (95253-253>+27W)) +
250 (852" - 2527537 +51% (7252-353%) + 402" s3W-952 (s3°-8W) W-3s3"W +
s1 (-40s2°s3+95s2 (s3°-16 W) + 653°U))))
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B@ =
(3 (1024 s0~3s3 - 8s0~2s3 (64 5272-32525372+35s3 (8s1+s3°3-8W)) +
(s1-W)~2 (24517253 +525s3 (-4s2+5372)~2+ (8052”2 -24525322+53%4) W+24s3H 2-
sl (80s272-245s25372 +s374+48s3W)) +
SO (968 s1°3 +4 527253 (-452+5342) 72+ 53%2 (~452+5s3°2) (-100s2 + 215342) W -
33653 (-452+532) W 2+ 960W 3 +48s1~2 (285253 -753°3+60M) -
sl (400 s2°2 5342 - 184 52 s3°4 + 21 s3°6+ 2688 s2s3 1l - 672 s3~3 [ + 2880 1~2))) ) /
(4 (sO (48 s1-32s253+9s323-48W) + (s1-W) (4s222-525372+35s3 (-s1+W)))
(2565073 + s8~2 (-128 52”2+ 14452 5372 -3 s3 (64s1+9s373-64W)) -
(sL-Wy*2 (275172 +4s273-5272 5322 +18s2s3W+W (-45343+27W) -25s1 (9s2s3-25323+27W)) +
250 (85274-252"353%2+ 512 (7252-35372) +4052°253 W-353"2W"2+952W (-s3°3+8W) +
sl (-40s272s3+95s2 (s343-16W) +6s3~2W))))
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