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Abstract

Proton accumulator rings and other circular hadron ac-
celerators are susceptible to intensity- driven parametric in-
stabilities because the zero-current charged particle dynam-
ics are characterized by a single tune. Landau damping can
suppress these instabilities, which requires energy spread
in the beam or introducing nonlinear magnets such as oc-
tupoles. However, this approach reduces dynamic aper-
ture. Nonlinear integrable optics can suppress parametric
instabilities independent of energy spread in the distribu-
tion, while preserving the dynamic aperture. This novel ap-
proach promises to reduce particle losses and enable order-
of-magnitude increases in beam intensity. In this paper we
present results, obtained using the Lie operator formalism,
on how chromaticity and dispersion affect particle orbits in
integrable optics. We conclude that chromaticity in general
breaks the integrability, unless the vertical and horizontal
chromaticities are equal. Because of this, the chromatic-
ity correcting magnets can be weaker and fewer correcting
magnet families are required, thus minimizing the impact
on dynamic aperture.

INTRODUCTION

Nonlinear integrable optics [1] is a concept for miti-
gating collective instabilities in intense beams using spe-
cially designed magnetic elements which introduce large
tune spreads with integrable, bounded motion. The lat-
tices which use nonlinear integrable optics are fundamen-
tally different from conventional uses of strong focusing.
In conventional strong focusing lattices, nonlinearities in-
troduced by, for example, octupoles for Landau damping
are small perturbations on the overall linear dynamics. This
is to minimize their impact on the dynamic aperture. For
lattices using nonlinear integrable optics, the nonlinear el-
liptic potential is a dominant part of the dynamics which
introduces a large tune spread. This requires particular de-
sign considerations to implement properly.

The design of these lattices requires special considera-
tions to ensure that the dynamics remains as close to inte-
grable as possible. In the original treatment of this work,
which considers transverse dynamics in the absence of col-
lective effects and zero energy spread, the lattice required
a drift section with equal vertical and horizontal beta func-
tions. This was the first design consideration for a nonlin-
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ear integrable lattice.

In this proceeding we introduce two additional design
criteria based on a study of off-momentum dynamics. Us-
ing a Lie map [2] formalism, we derive an expression for
the single turn transfer map including the elliptic potential
and chromatic and linear dispersive effects. As a result of
this calculation, we conclude that chromaticity serves to
both modify the invariants and, if not carefully managed,
ruin the integrability. Similarly, dispersion through the el-
liptic element drift breaks the invariant potential. Because
the calculations are too elaborate for this proceeding, we
here simply state the key results. The detailed work may
be found in [3].

BERTRAND-DARBOUX EQUATION

Because the specific conditions of the Bertrand-Darboux
equation [4, 5] are critical for understanding the conclu-
sions of this work, we summarize the results here. This is a
partial differential equation for a two-dimensional potential
V(x,y) which has an invariant of the motion quadratic in
the momenta. That is, the Hamiltonian H = 1/2(p% +p2 ) +
V(z,y) has a second invariant (aside from the Hamiltonian
itself) given by the form

I =p2A(z,y) + p,B(x,y) + papyClz,y) + . ..

(1)
o+ peD(x,y) + oy E(x,y) + F(x,y).

First, and importantly, we note that H is isotropic in the
momenta — the coéfficients of p, and p, are equal. This
is not generally true; a Hamiltonian for a ring with dif-
ferent vertical and horizontal tunes will have differing
coéfficients.

The resulting Bertrand-Darboux differential equation is

given by
(Vv
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Here we note two more features required of the potential:
(1) that the partial differential equation is linear in V" and
therefore the sum of any set of potentials V; which sat-
isfy this will have an associated invariant and (2) that only
specifically 22 + y? satisfies the differential equation, and
not 22 or y? individually. Because of (1), a strong focus-
ing lattice with a nonlinear element can form an integrable
potential of this form. Because of (2), said strong focus-
ing lattice must have equal vertical and horizontal tunes, a
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restriction already imposed by the assumption of isotropic
momenta.

These two requirements will appear as lattice design,
where we must tailor certain properties for the lattice to
have the desired dynamics. How these are controlled
depends on the idea that there are three Tiers of lattice
coéxisting, and each one defines certain properties which
influence the dynamics of the next Tiers.

THREE TIERS OF LATTICES

In carrying out the calculations for the integrable optics
ring, we identify three Tiers of lattice. Each Tier may be
thought to interact with the Tiers below it, but not above
it. Hence, we may think of Tier 2 as being placed on top
of Tier 1, and Tier 3 being placed on top of Tiers 1 and
2. Tier 3 does not affect Tier 1, but Tier 1 directly affects
Tier 3. For example, the beta functions are specified by the
Tier 1 lattice, which in turn affect the nonlinear integrable
elements which make up the Tier 3 lattice.

Tier 1 is the simple linear lattice with linear disper-
sion. These are the quadrupoles, dipoles, and drifts. This
lattice specifies the beta functions, dispersion function,
and the tunes that influence our further design. All of
the codrdinate normalization occurs using the normaliz-
ing transformations for the Tier 1 lattice (i.e. the Courant-
Snyder parameterization).

Nonlinear effects such as chromaticity and the sex-
tupoles, octupoles, etc. used to adjust the chromaticity are
found in Tier 2. These nonlinearities affect the tunes of
the Tier 1 lattice, but we assume that they do not affect
the choice of normalizing variables. We thus consistently
use the normalizing variables derived from the Tier 1 sin-
gle turn transfer map. Throughout, we include the effects
of the nonlinear elements on the chromaticity, but neglect
the nonlinearities at higher order in = and y.

This all sets up the relevant parameters for the Tier 3
lattice, which adds the nonlinear elements for the elliptic
potential. The parameters for the Tier 1 and Tier 2 lattice
must be such that adding the nonlinear elements sets up an
integrable potential. Those requirements were summarized
above in the discussion of the Bertrand-Darboux equation.

CHROMATICITY & DISPERSION IN THE
NONLINEAR INTEGRABLE LATTICE

First of all, our understanding of chromaticity and how to
adjust it remains unchanged. Chromatic effects and other
nonlinearities for correcting them are found in the Tier 2
lattice. By placing sextupoles 7 phase advance apart, we
can adjust the linear chromaticity while being optically
transparent to on-momentum orbits. This pushes the in-
troduction of integrability-breaking nonlinearities to higher
order in the transverse coodrdinates. We can retain this set
of tools for nonlinear lattice design. However, the effects
of these correction schemes on the dynamic aperture have
not been studied in detail, and this will require additional
work in the future.
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In [3] we detail how the individual lattices can be sepa-
rated formally using a transfer map approach. This allows
us to factor the transfer map cleanly into the Tier 1, Tier
2, and Tier 3 lattices. The combination of these lattices
yields the transfer map for the entire lattice and with it the
Hamiltonian for the single-turn map. This Hamiltonian is
the one described in [1]. It is this Hamiltonian which we
must make integrable.

After carrying out the calculations detailed in [3], we
obtain the key result that the Hamiltonian for a single turn
through the nonlinear integrable ring, including chromatic-
ity and linear dispersion, has for its Hamiltonian

H = %(1—@(5)) P +7) +..
B a—c@) @)+

2
¢ / t — 77(3/)5 — 1 2
— —acd”.
+/0 ds B(S,)u (:c ﬂ(s’)7y> + —ac

where here p is the phase advance of the entire ring, C' is
the dispersion to all orders in ¢, and the integral is over the
length of the elliptic magnet, with 3 the equal beta func-
tions through the drift and 7 the dispersion.

This Hamiltonian clearly violates the assumptions for
the Bertrand-Darboux equation. First, the dispersion
breaks the analytical form of the elliptic potential. Sec-
ond, the vertical and horizontal chromaticities violate the
isotropic requirement on the momentum and the linear po-
tential. This leads us to two important design considera-
tions to leading order in the Hamiltonian:

1. The vertical and horizontal tunes and chromaticities
must be equal.

2. The elliptic element must be located in a dispersion-
free drift to maintain the properties of the elliptic po-
tential

If these considerations are satisfied, we get the simpli-
fied, integrable Hamiltonian:

1 olt)
H(l“o()> P+ +Do+7) +...
2 14

) )
o+ tUT,Y) + 50@52.

Here, 1 is the phase advance for the entire ring, while
1y is the phase advance across the drift where the nonlin-
ear element will be located. For the typical lattice designs,
o = 2N + vg which allows us to remove the first 27 NV
phase advance for the on-momentum oscillations since this
is simply the identity.

CONCLUSION

Nonlinear integrable optics is a promising step towards
high intensity beams for a variety of research and indus-
trial applications. Because they are fundamentally different
from our conventional linear strong focusing lattices, they
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require specific designs to satisfy the integrability condi-
tions. These design conditions, analogous to rules such as
not operating a linear lattice near low order rational tunes,
must be developed to design a functional integrable lattice.

We have established that chromaticity and its correction
schemes are the same as for conventional strong focusing
lattices. Our understanding and tools for dealing with these
things are unchanged by introducing the elliptic element in
the Tier 3 lattice. However, their effects on dynamic aper-
ture remain unknown and should be the subject of future
work.

We have presented two new such conditions, related
to the off-momentum dynamics. To preserve the x — y
isotropy of the linear parts of the lattice, we must have not
only equal tunes but equal chromaticities. To keep to the
form of the elliptic potential, the nonlinear element must
be placed in a drift with no dispersion. These are the first
results for the nonlinear integrable optics which consider
the longitudinal single-particle dynamics.
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