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Abstract

Proton accumulator rings and other circular hadron ac-

celerators are susceptible to intensity- driven parametric in-

stabilities because the zero-current charged particle dynam-

ics are characterized by a single tune. Landau damping can

suppress these instabilities, which requires energy spread

in the beam or introducing nonlinear magnets such as oc-

tupoles. However, this approach reduces dynamic aper-

ture. Nonlinear integrable optics can suppress parametric

instabilities independent of energy spread in the distribu-

tion, while preserving the dynamic aperture. This novel ap-

proach promises to reduce particle losses and enable order-

of-magnitude increases in beam intensity. In this paper we

present results, obtained using the Lie operator formalism,

on how chromaticity and dispersion affect particle orbits in

integrable optics. We conclude that chromaticity in general

breaks the integrability, unless the vertical and horizontal

chromaticities are equal. Because of this, the chromatic-

ity correcting magnets can be weaker and fewer correcting

magnet families are required, thus minimizing the impact

on dynamic aperture.

INTRODUCTION

Nonlinear integrable optics [1] is a concept for miti-

gating collective instabilities in intense beams using spe-

cially designed magnetic elements which introduce large

tune spreads with integrable, bounded motion. The lat-

tices which use nonlinear integrable optics are fundamen-

tally different from conventional uses of strong focusing.

In conventional strong focusing lattices, nonlinearities in-

troduced by, for example, octupoles for Landau damping

are small perturbations on the overall linear dynamics. This

is to minimize their impact on the dynamic aperture. For

lattices using nonlinear integrable optics, the nonlinear el-

liptic potential is a dominant part of the dynamics which

introduces a large tune spread. This requires particular de-

sign considerations to implement properly.

The design of these lattices requires special considera-

tions to ensure that the dynamics remains as close to inte-

grable as possible. In the original treatment of this work,

which considers transverse dynamics in the absence of col-

lective effects and zero energy spread, the lattice required

a drift section with equal vertical and horizontal beta func-

tions. This was the first design consideration for a nonlin-
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ear integrable lattice.

In this proceeding we introduce two additional design

criteria based on a study of off-momentum dynamics. Us-

ing a Lie map [2] formalism, we derive an expression for

the single turn transfer map including the elliptic potential

and chromatic and linear dispersive effects. As a result of

this calculation, we conclude that chromaticity serves to

both modify the invariants and, if not carefully managed,

ruin the integrability. Similarly, dispersion through the el-

liptic element drift breaks the invariant potential. Because

the calculations are too elaborate for this proceeding, we

here simply state the key results. The detailed work may

be found in [3].

BERTRAND-DARBOUX EQUATION

Because the specific conditions of the Bertrand-Darboux

equation [4, 5] are critical for understanding the conclu-

sions of this work, we summarize the results here. This is a

partial differential equation for a two-dimensional potential

V (x, y) which has an invariant of the motion quadratic in

the momenta. That is, the Hamiltonian H = 1/2(p2x+p2y)+
V (x, y) has a second invariant (aside from the Hamiltonian

itself) given by the form

I = p2xA(x, y) + p2yB(x, y) + pxpyC(x, y) + . . .

· · ·+ pxD(x, y) + pyE(x, y) + F (x, y).
(1)

First, and importantly, we note that H is isotropic in the

momenta – the coëfficients of px and py are equal. This

is not generally true; a Hamiltonian for a ring with dif-

ferent vertical and horizontal tunes will have differing

coëfficients.

The resulting Bertrand-Darboux differential equation is

given by

xy

(

∂2V

∂x2
−

∂2V

∂y2

)

+ . . .

· · ·+ (y2 − x2 + c2)
∂2V

∂x∂y
+ 3y

∂V

∂x
− 3x

∂V

∂y
= 0.

(2)

Here we note two more features required of the potential:

(1) that the partial differential equation is linear in V and

therefore the sum of any set of potentials Vi which sat-

isfy this will have an associated invariant and (2) that only

specifically x2 + y2 satisfies the differential equation, and

not x2 or y2 individually. Because of (1), a strong focus-

ing lattice with a nonlinear element can form an integrable

potential of this form. Because of (2), said strong focus-

ing lattice must have equal vertical and horizontal tunes, a
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restriction already imposed by the assumption of isotropic

momenta.

These two requirements will appear as lattice design,

where we must tailor certain properties for the lattice to

have the desired dynamics. How these are controlled

depends on the idea that there are three Tiers of lattice

coëxisting, and each one defines certain properties which

influence the dynamics of the next Tiers.

THREE TIERS OF LATTICES

In carrying out the calculations for the integrable optics

ring, we identify three Tiers of lattice. Each Tier may be

thought to interact with the Tiers below it, but not above

it. Hence, we may think of Tier 2 as being placed on top

of Tier 1, and Tier 3 being placed on top of Tiers 1 and

2. Tier 3 does not affect Tier 1, but Tier 1 directly affects

Tier 3. For example, the beta functions are specified by the

Tier 1 lattice, which in turn affect the nonlinear integrable

elements which make up the Tier 3 lattice.

Tier 1 is the simple linear lattice with linear disper-

sion. These are the quadrupoles, dipoles, and drifts. This

lattice specifies the beta functions, dispersion function,

and the tunes that influence our further design. All of

the coördinate normalization occurs using the normaliz-

ing transformations for the Tier 1 lattice (i.e. the Courant-

Snyder parameterization).

Nonlinear effects such as chromaticity and the sex-

tupoles, octupoles, etc. used to adjust the chromaticity are

found in Tier 2. These nonlinearities affect the tunes of

the Tier 1 lattice, but we assume that they do not affect

the choice of normalizing variables. We thus consistently

use the normalizing variables derived from the Tier 1 sin-

gle turn transfer map. Throughout, we include the effects

of the nonlinear elements on the chromaticity, but neglect

the nonlinearities at higher order in x and y.

This all sets up the relevant parameters for the Tier 3

lattice, which adds the nonlinear elements for the elliptic

potential. The parameters for the Tier 1 and Tier 2 lattice

must be such that adding the nonlinear elements sets up an

integrable potential. Those requirements were summarized

above in the discussion of the Bertrand-Darboux equation.

CHROMATICITY & DISPERSION IN THE

NONLINEAR INTEGRABLE LATTICE

First of all, our understanding of chromaticity and how to

adjust it remains unchanged. Chromatic effects and other

nonlinearities for correcting them are found in the Tier 2

lattice. By placing sextupoles π phase advance apart, we

can adjust the linear chromaticity while being optically

transparent to on-momentum orbits. This pushes the in-

troduction of integrability-breaking nonlinearities to higher

order in the transverse coördinates. We can retain this set

of tools for nonlinear lattice design. However, the effects

of these correction schemes on the dynamic aperture have

not been studied in detail, and this will require additional

work in the future.

In [3] we detail how the individual lattices can be sepa-

rated formally using a transfer map approach. This allows

us to factor the transfer map cleanly into the Tier 1, Tier

2, and Tier 3 lattices. The combination of these lattices

yields the transfer map for the entire lattice and with it the

Hamiltonian for the single-turn map. This Hamiltonian is

the one described in [1]. It is this Hamiltonian which we

must make integrable.

After carrying out the calculations detailed in [3], we

obtain the key result that the Hamiltonian for a single turn

through the nonlinear integrable ring, including chromatic-

ity and linear dispersion, has for its Hamiltonian

H =
µx

2
(1− Cx(δ))

(

p2x + x2
)

+ . . .

· · ·+
µy

2
(1− Cy(δ))

(

p2y + y2
)

+ . . .

· · ·+

∫ ℓ

0

ds′
t

β(s′)
U

(

x−
η(s′)δ
√

β(s′)
, y

)

+
1

2
αCδ

2.

(3)

where here µ is the phase advance of the entire ring, C is

the dispersion to all orders in δ, and the integral is over the

length of the elliptic magnet, with β the equal beta func-

tions through the drift and η the dispersion.

This Hamiltonian clearly violates the assumptions for

the Bertrand-Darboux equation. First, the dispersion

breaks the analytical form of the elliptic potential. Sec-

ond, the vertical and horizontal chromaticities violate the

isotropic requirement on the momentum and the linear po-

tential. This leads us to two important design considera-

tions to leading order in the Hamiltonian:

1. The vertical and horizontal tunes and chromaticities

must be equal.

2. The elliptic element must be located in a dispersion-

free drift to maintain the properties of the elliptic po-

tential

If these considerations are satisfied, we get the simpli-

fied, integrable Hamiltonian:

H =
1

2

(

1−
µ0C(δ)

ν0

)

(

p2x + x2 + p2y + y2
)

+ . . .

· · ·+ tU(x, y) +
1

2
αCδ

2.

(4)

Here, µ0 is the phase advance for the entire ring, while

ν0 is the phase advance across the drift where the nonlin-

ear element will be located. For the typical lattice designs,

µ0 = 2πN + ν0 which allows us to remove the first 2πN
phase advance for the on-momentum oscillations since this

is simply the identity.

CONCLUSION

Nonlinear integrable optics is a promising step towards

high intensity beams for a variety of research and indus-

trial applications. Because they are fundamentally different

from our conventional linear strong focusing lattices, they
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require specific designs to satisfy the integrability condi-

tions. These design conditions, analogous to rules such as

not operating a linear lattice near low order rational tunes,

must be developed to design a functional integrable lattice.

We have established that chromaticity and its correction

schemes are the same as for conventional strong focusing

lattices. Our understanding and tools for dealing with these

things are unchanged by introducing the elliptic element in

the Tier 3 lattice. However, their effects on dynamic aper-

ture remain unknown and should be the subject of future

work.

We have presented two new such conditions, related

to the off-momentum dynamics. To preserve the x − y
isotropy of the linear parts of the lattice, we must have not

only equal tunes but equal chromaticities. To keep to the

form of the elliptic potential, the nonlinear element must

be placed in a drift with no dispersion. These are the first

results for the nonlinear integrable optics which consider

the longitudinal single-particle dynamics.
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