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Quantum Gravity Theory

Claudio Cremaschini

Research Centre for Theoretical Physics and Astrophysics, Institute of Physics, Silesian University in Opava,

Bezručovo nám.13, CZ-74601 Opava, Czech Republic; claudiocremaschini@gmail.com

Abstract: A remarkable feature of manifestly covariant quantum gravity theory (CQG-

theory) is represented by its unconstrained Hamiltonian structure expressed in evolution

form. This permits the identification of the corresponding dynamical evolution parameter

advancing the quantum-wave equation for the 4−scalar quantum wave function defined on

an appropriate Hilbert space. In the framework of CQG-theory, such a temporal parameter

is represented by a 4−scalar proper time s identifying a canonical variable with conjugate

quantum operator. The observable character of the evolution parameter is also established

through its correspondence with the quantum representation of the cosmological constant

originating from non-linear Bohm quantum–vacuum interaction, which is shown to admit

an intrinsic functional dependence on s. These conclusions overcome the conceptual

limitations about the so-called “problem of time” mentioned in alternative approaches to

quantum gravity available in the literature. Hence, the outcome permits one to promote

CQG theory as a viable mathematical setting for the establishment of a theory of quantum

gravity consistent with the logical and physical principles of both general relativity and

canonical quantum mechanics.

Keywords: covariant quantum gravity; Hamiltonian theory; evolution parameter; cosmological

constant

PACS: 04.20.Cv; 04.20.Fy; 04.60.-m; 04.60.Ds; 11.10.Ef; 98.80.Qc

1. Introduction: The Problem of Time

A cornerstone of theoretical physics and field theory consists in the property that

any Hamiltonian theory should admit a representation in evolution form, which will be

achieved in terms of Hamilton equations expressed with respect to a suitable dynamical

parameter. Based on the formalism developed in non-relativistic settings where the latter

variable coincides with the absolute time, the natural identification in case of relativistic

frameworks is usually in terms of the coordinate time t applying for appropriate sets of

reference frames. Historically, this requisite was also implemented for classical general

relativity (GR) itself and led to the establishment of the canonical Hamiltonian formulation

of GR known as Arnowitt–Deser–Misner (ADM) formalism [1,2]. The correct identification

of a physically meaningful evolution parameter in classical and quantum Hamiltonian

theories of gravitational field and its physical interpretation represents challenging sub-

jects of investigation in theoretical physics and cosmology, and formidable philosophical

issues of debate demanding compelling answers [3–6]. This issue, together with the many

attempts to find a solution that have been proposed over the years, provide the reference

setting of the so-called “problem of time” of quantum gravity [7]. The target of this paper
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is to prove how a coherent solution to it can be achieved in the framework of manifestly

covariant classical and quantum gravity theories (respectively denoted as CCG theory

and CQG theory) [8,9]. Notice, however, that this paper is not intended as a review of the

concept of time in quantum gravity. Extensive and exhaustive discussions on the issue can

be found in relevant works in the literature, like in ref. [10]. For this reason, here, the focus

is mainly on some relevant conceptual remarks that are specifically needed in support of

the physical content of the research.

Let us start with a summary about the nature of the problem. The ADM approach

is based on the mathematical formalism developed by Dirac to treat Hamiltonian field

theory; in particular, the identification of canonical momenta in terms of coordinate-

time partial derivative of metric tensor [11,12] and the Dirac theory of constrained

dynamics [13]. Accordingly, the variational metric tensor gµν(r) is assumed to belong to a

constrained functional setting and is represented in terms of the set of non-4−tensor ADM

Lagrangian variables (hab(r), N(r), Na(r)), where hab is the 3 × 3 variational matrix, while

N and Na are, respectively, the “lapse” function defining the coordinate time and the “shift”

3−vector. Herein, the Latin indices a, b run from 1 to 3, while the Greek ones range, as usual,

from 0 to 3. Hence, the use of ADM variables amounts to introducing a foliation of the

4−dimensional space-time into 3−space surface sections Σt ≡ hab(r), each one of a constant

coordinate–time t. Starting with the ADM Lagrangian density and upon introducing a Leg-

endre transform in terms of momenta pab conjugated to hab yields a corresponding Hamilton

variational principle for the set of ADM canonical variables G(r) ≡
{

hab, pab, N, Na

}
. The

Euler–Lagrange equations that follow from it are represented by two Hamilton-like evolu-

tion equations for the conjugate variables (hab, pab), with the additional contribution of a

3−scalar and a 3−vector constraint equations. The latter ones are expressed as vanishing

conditions of the form H⊥ = 0 and Ha = 0, where the “Hamiltonian” functions H⊥ and

Ha are associated, respectively, with the lapse and shift functions N and Na [14].

The ADM Hamiltonian formulation has become a reference theory for the target of

reaching a covariant quantization of GR and has represented a plausible candidate frame-

work for the theoretical investigation and comprehension of quantum gravitational field.

However, it was proved that the same ADM formalism exhibits critical mathematical and

logical aspects of Hamiltonian field theory, also in connection with foundational principles

of the covariant representation of GR. Additional limitations include the problems inherent

to the same definition of Hamiltonian structure for ADM variables and the fact that ADM

formalism belongs to a constrained field theory; see, for example, ref. [15]. Altogether, thus

far, these features of the ADM setting have inhibited any definite progress or successful

attempt toward the complete achievement of a corresponding canonical theory of quantum

gravity. In this respect, a particularly crucial aspect of such an approach is the so-called

“problem of time”, partly inherited from the classical ADM Hamiltonian formulation [10].

In fact, the problem arises from the validity of the Hamiltonian constraint H⊥ = 0 in

the passage to canonical quantization for the prescription of the quantum-gravity wave

equation through the so-called Wheeler–deWitt (WdW) prescription [16]. In detail, this is

achieved by promoting the Hamiltonian H⊥ to be an operator, namely letting H⊥ → Ĥ⊥,

and then requiring Ĥ⊥ to act on the quantum wave function Ψ of the quantum gravitational

field, yielding the WdW equation as

Ĥ⊥Ψ = 0. (1)

The last scalar equation, however, is not cast in 4−scalar form and therefore it does not

represent an invariant relationship. Furthermore, it requires an appropriate regularization

ordering scheme in order to handle the second-order functional derivatives appearing in

the operator Ĥ⊥, whose prescription, however, is not unique within the theory. Overall,
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the form of the constraint WdW equation is purely stationary, without any time-dynamical

content (with respect to the given time parameter) for the evolution of the wave function.

In this sense, it is distinguished from a non-stationary Schroedinger-like wave equation in

which the dynamical character of the quantum theory is made manifest through a clear

identification of the evolution parameter.

On the contrary, in ADM formalism, the time coordinate is associated with a constraint

equation yielding (1), so that at quantum level, the WdW constraint operator Ĥ⊥ becomes

the generator of the dynamical evolution in the coordinate–time t of the 3+ 1 ADM foliation

of space–time. Accordingly, in canonical quantum gravity, any operator representing a

physical observable is required to commute with the same Hamiltonian operator Ĥ⊥,

namely to be invariant under evolution with respect to the coordinate–time t [17]. This

condition identifies the so-called Dirac observables and is at the root of the “problem

of time”, so that any physical state corresponding to a Dirac observable is necessarily

coordinate–time-independent in the same ADM reference frame. This apparently generates

a purely stationary quantum state in which the usual notion of time evolution is trivial [18].

More generally, a deeper issue arises as to whether time itself might be considered an

observable in canonical quantum gravity [18]. This would require the time to identify a

canonical variable represented in terms of a self-adjoint operator having conjugate canonical

momentum. However, from the conceptual foundations of quantum mechanics where

there is no operator associated with time, an analogous conclusion can be inferred also for

the coordinate-time of the constrained ADM quantum gravity [7]. In the past literature,

different proposals were suggested with the aim of explaining the nature of the problem

of time and opening new routes to try to find a solution to it. A review of the matter can

be found in ref. [10]. Among them, the following two approaches are relevant for the

connection with the present research:

(1) The first one is based on the idea of “relational evolution” [19,20], which applies

in principle both at classical and quantum ADM frameworks and in the related repre-

sentation referred to as loop quantum gravity. Accordingly, physical observables would

not evolve dynamically with respect to a given temporal parameter, but rather the dy-

namics itself arises as an independent concept from their mutual relational evolution.

A particular example of observables belonging to this group is provided by the “evolving

constants of motion”, which include the quantum Dirac observables and which generate

dynamics through relational evolution among tensor fields described by appropriate field

equations [18].

(2) The second idea proposes to overcome the problem of time generated by the

constraint WdW equation by constructing an unconstrained Hamiltonian [21] and imple-

menting for classical and quantum gravity a formalism originally developed by Fock and

Stueckelberg for relativistic particle dynamics. The goal of this method is to relax the

Hamiltonian constraints and determine an unconstrained dynamical evolution through a

method analogous to the time-dependent Schroedinger equation. The procedure gener-

ally generates a wider class of dynamical equations and solutions, requiring imposition

of the constraints a posteriori. Attempts to implement this technique were proposed in

scenarios of quantum cosmology for simplified models of the Universe. This is also exem-

plified by alternative formulations of GR known as “unimodular gravity” [21], in which

the cosmological constant (CC) Λ is promoted to be a dynamical field subject to initial-

value dynamics [22,23], in analogy to the non-constant relativistic particle rest mass in the

Fock–Stueckelberg original theory. In such a setting, an effective cosmological time can be

identified with the variable conjugate to the non-constant Λ [24].

Given these premises, it is possible to state that the problem of time can be effectively

split into two main branches. The first one consists in the identification of the evolution
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parameter that must arise consistently from the canonical quantization of GR from its

classical Hamiltonian structure. The second one deals with the possibility of assigning

the same dynamical parameter a clear physical interpretation, e.g., possibly in terms of an

observable (classical/quantum) field. However, in order to provide a novel point of view

on the subject, a fundamental preliminary clarification must be obtained. This concerns the

distinction between the concept of time as the non-invariant evolution parameter identified

with the coordinate-time of a particular reference frame, and the dynamical parameter of

temporal evolution to be possibly realized by an invariant field, therefore not coinciding

with the coordinate-time.

The formal and conceptual limitations that arise from the literature concerning the

problem of time rooted on the ADM formalism demand a change of strategy to gain some

hopes of a solution, as progress in this direction remains inhibited in the ADM framework.

In contrast, in the following, we proceed to prove that a possible consistent solution to

the problem of time can be established in the frameworks of manifestly covariant CCG

and CQG theories. The latter realize unconstrained Hamiltonian formulations of classical

GR and its canonical quantum representation, consistent with the principle of manifest

covariance of the deDonder–Weyl variational formalism of field theory [25–34]. A peculiar

feature of CCG and CQG theories lies in their intrinsic evolution–form representations,

which permit the identification of the temporal parameter and allow us to point out its

physical properties, including its mathematical relationship with the cosmological constant.

In turn, the theory also allows one to realize the concepts of unimodular gravity and

relational evolution for CQG theory.

2. Classical Setting: CCG Theory

Let us start from the classical setting. The formalism of CCG-theory is characterized

by the Lagrangian path parametrization of the Hamiltonian state based on the notion of

Lagrangian path (LP) [35]. For this purpose, let us denote by ĝµν the background metric

tensor solution of the Einstein field equations, and by ∇̂α the corresponding covariant

derivative operator defined in terms of Christoffel symbols. Then, we introduce the real

4−tensor tγ(ĝ(r), r) which is tangent to an arbitrary geodetics at 4−position r ≡ {rµ} of

the space-time
(
Q4, ĝ(r)

)
[36], namely

{
tα(ĝ(r), r)∇̂αtγ(ĝ(r), r) = 0,

ĝγδ(r)t
γ(ĝ(r), r)tδ(ĝ(r), r) = 1.

(2)

The LP is identified with the geodetic curve

{rµ(s)} ≡
{

rµ(s)| ∀s ∈ R, rµ(so) = r
µ
o

}
, (3)

which is solution of the initial-value problem

{
drµ(s)

ds = tµ(s),

rµ(so) = r
µ
o .

(4)

Here, the notation is such that tµ(s) ≡ tµ(ĝ(r(s)), r(s)), while s is the 4−scalar

proper time defined along the same curve {rµ(s)} by means of the differential identity

ds2 = ĝµν(r)drµ(s)drν(s), and d
ds ≡ ∂

∂s identifies the ordinary derivative with respect to s.

The proper time parametrization in terms of s is then obtained, replacing in all the relevant

tensor fields, r ≡ {rµ} with r(s) ≡ {rµ(s)}.

In such a setting, the problem of obtaining a representation of the manifestly covariant

Hamilton equations in evolution form is met in terms of a reduced-continuum Hamiltonian
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theory for GR. The latter is represented by the classical Hamiltonian system {xR, HR}

formed by a 4−tensor canonical state xR and a 4−scalar Hamiltonian HR(xR, x̂R(r), r, s).

The same Hamiltonian structure must generate continuum Hamilton equations to be cast

in canonical evolution form, namely corresponding to the initial-value problem





Dgµν(s)
Ds = ∂HR(xR ,x̂R(r),r,s)

∂πµν(s)
,

Dπµν(s)
Ds = − ∂HR(xR ,x̂R(r),r,s)

∂gµν(s)
,

(5)

subject to the initial conditions of the type

{
gµν(so) ≡ g

(o)
µν (so),

πµν(so) ≡ π
(o)
µν (so).

(6)

The solution of the initial-value problem (5) and (6) associated with the Hamiltonian

structure {xR, HR} generates the Hamiltonian flow

xR(so) → xR(s). (7)

Here,

xR(s) ≡
{

gµν(r(s)), πµν(r(s))
}

(8)

identifies the reduced-dimensional variational canonical state parametrized in terms of

the proper time s, with gµν(r) and πµν(r) being the corresponding continuum Lagrangian

coordinates and the conjugate momenta, x̂R(s) ≡
{

ĝµν(r(s)), π̂µν(r(s)) ≡ 0
}

being the

corresponding prescribed state and HR(xR, x̂R(r), r, s) the variational 4−scalar Hamiltonian

to be suitably determined. Finally, D
Ds = ∂

∂s + tα(s)∇̂α is the covariant s− derivative, while

tα(s) and ∇̂α are, respectively, the tangent 4−vector to the geodesics r(s) ≡ {rµ(s)} and

the covariant derivative evaluated at the same position in terms of the background metric

tensor ĝµν(r).

In CCG theory, the reduced-dimensional Hamiltonian HR(x, x̂, s) ≡ HR(xR, x̂R(r), r, s)

is represented as

HR(x, x̂, s) ≡
1

2

1

κ
πµνπµν + κh

[
gµνR̂µν − 2Λ

]
, (9)

where κ = c3

16πG . In terms of the reduced Hamiltonian state, it is possible to develop a

reduced Hamiltonian variational principle that yields Equation (5). To this end, the varia-

tional functional is identified with the real 4−scalar

SR(x, x̂) ≡
∫

dΩ̂LR(x, x̂, r, s), (10)

with LR(x, x̂, r, s) being the variational Lagrangian. This is related to the variational Hamil-

tonian HR(x, x̂, r, s) through the Legendre transform

LR(x, x̂, r, s) ≡ πµν
D

Ds
gµν − HR(x, x̂, r, s). (11)

Then, the variational principle that follows from the functional SR(x, x̂) is prescribed by

means of the synchronous unconstrained variational principle

δSR(x, x̂) = 0 (12)

obtained keeping constant both the state x̂ and the 4−scalar volume element dΩ̂, where

δ is the synchronous-variation operator expressed by the Frechet derivative according to
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ref. [8]. This yields the 4−tensor Euler–Lagrange equations that coincide with the Hamilton

Equation (5) and that can be written in the equivalent Poisson-bracket representation as

D

Ds
xR(s) = [xR, HR(s)](xR)

, (13)

with [, ](xR)
denoting the Poisson bracket evaluated with respect to the canonical variables

xR, namely

[xR, HR(s)](xR)
=

∂xR

∂gµν

∂HR(s)

∂πµν
−

∂xR

∂πµν

∂HR(s)

∂gµν . (14)

In particular, invoking the explicit representation of HR(s) given by (9) gives

∂HR(s)

∂gµν(s)
= κh(s)R̂µν − κgµν(s)

1

2

(
gαβ(s)R̂αβ

)
, (15)

where R̂µν ≡ R̂µν(s) denotes the LP-parametrization of the Ricci tensor. The canonical

Equation (5) then reduces to the single equivalent Lagrangian evolution equation for the

variational field gµν(s):

D

Ds

[
D

Ds
gµν(s)

]
+ h(s)R̂µν − gµν(s)

1

2

[
gαβ(s)R̂αβ − 2Λ

]
= 0. (16)

The synchronous unconstrained Hamilton variational principle does not generate a

single extremal field equation, but rather an entire class of solutions that vary depending

on the set of initial values assigned to the canonical state. In this respect, the unconstrained

synchronous variational approach might exhibit conceptual similarities with the relaxation

of constraints approach and the unimodular gravity framework mentioned above, although

it is established as an independent novel theory that keeps warranting the principle of

manifest covariance. In particular, a fundamental requirement at this point of the derivation

concerns the proof of the connection of the canonical Equation (5) with the Einstein theory

of GR. This can be obtained under the assumption that the Hamiltonian does not depend

explicitly on proper time s, i.e., it is actually of the form HR = HR(xR, x̂R(r), r). Then,

upon invoking the identities ĝµν(s)ĝµν(s) = δ
µ
µ and D

Ds ĝµν(s) ≡ 0 holding for ĝµν(s),

it follows that π̂µν(s) ≡ 0, so that the canonical equation for π̂µν(s) (or equivalently

Equation (16)) finally yields for the background fields

R̂µν − ĝµν(s)
1

2
ĝαβ(s)R̂αβ + Λĝµν(s) = 0, (17)

which coincides with the Einstein field equations. Therefore, in this framework, the latter

arises as a stationary (with respect to proper time) solution to the GR-Hamilton Equation (5),

i.e., imposing the initial conditions

{
gµν(so) ≡ ĝµν(so),

πµν(so) ≡ π̂µν(so) = 0,
(18)

together with the requirement that for all s ∈ I

π̂µν(s) = 0. (19)

An interesting development of the Hamiltonian structure underlying CCG theory is

provided by the possibility of also establishing the validity of Hamilton–Jacobi theory [8].
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More precisely, the requirement is that the classical GR Hamilton Equation (13) is effectively

equivalent to a single PDE of the type

dS(g, ĝ, r, s)

ds
+ HR(g, π, ĝ, r, s) = 0, (20)

to be referred to as the GR–Hamilton–Jacobi equation. The latter holds for the 4−scalar

Hamilton principal function S(g, ĝ, r, s) prescribed so that πµν = ∂S(g,ĝ,r,s)
∂gµν

identically.

The mathematical proof of the equivalence between the GR-Hamilton equations and the

GR–Hamilton–Jacobi equation, as well as the proof of consistency for the definition of

the canonical momentum πµν in terms of S(g, ĝ, r, s) with the Hamiltonian structure of

GR cast in evolution form, can be found in Theorem 1 of ref. [8]. This result represents a

peculiar feature of the unconstrained manifestly covariant CCG functional setting with

respect to constrained and non-manifestly covariant approach. Again, we notice that also

in Equation (20) the dynamical parameter evolving the principal function S(g, ĝ, r, s) is the

invariant proper time s, while both the 4−scalar functions S(g, ĝ, r, s) and HR(g, π, ĝ, r, s)

can depend explicitly and implicitly on it, through the LP parametrization.

3. Quantum Setting: CQG Theory

Based on these results, CQG theory can then be obtained either by canonical quan-

tization of the Hamiltonian structure or by adopting the quantization approach based

on the equivalent Hamilton–Jacobi g−quantization starting from the classical Hamilton–

Jacobi theory. Contrary to LQG/WdW theory based on ADM representation, the CQG

state is identified with a single 4−scalar and complex function ψ(s) (CQG wave-function)

of the form

ψ(s) ≡ ψ(g, ĝ(r), r(s), s). (21)

This corresponds to a spin-2 quantum particle with invariant rest mass mo > 0. In fact,

according to the present approach, ψ(s) can be identified with the 4−scalar arising from the

tensor product of the form ψ(s) = ĝµνψµν. Regarding the functional setting of ψ(s), it is as-

sumed that it depends smoothly on the tensor field g ≡
{

gµν

}
spanning the configurations

space Ug, on the background field ĝ(r(s)) ≡
{

ĝµν(r(s))
}

, on the s−parametrized geodetics

r(s) ≡ {rµ(s)} and explicitly also on the proper time s associated with the same geodetics.

The function ψ defined by Equation (21) spans a Hilbert space Γψ, i.e., a finite-dimensional

linear vector space endowed with the scalar product

⟨ψa|ψb⟩ ≡
∫

Ug

d(g)ψ∗
a (g, ĝ(r), r(s), s)ψb(g, ĝ(r), r(s), s), (22)

with d(g) ≡ ∏
µ,ν=1,4

dgµν denoting the canonical measure on Ug and ψa,b(s) ≡ ψa,b(g, ĝ(r),

r(s), s) being arbitrary elements of the Hilbert space Γψ, where as usual, ψ∗
a denotes the

complex conjugate of ψa. Then, the real function ρ(s) ≡ ρ(g, ĝ(r), r(s), s) prescribed as

ρ(s) ≡ |ψ(s)|2 (23)

identifies on the configuration space Ug the quantum probability density function (CQG-

PDF) of g ≡
{

gµν

}
in the volume element d(g) belonging to the configuration space Ug,

namely associated with the CQG-state.

The quantum Hamiltonian operator is prescribed in terms of the classical Hamiltonian

function of evolution representation HR. In order to warrant that the canonical momenta
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have the dimension of an action, it is necessary to introduce a dimensional normalization

of the Hamiltonian structure, letting

{xR, HR} →
{

xR, HR

}
, (24)

where the classical dimensionally normalized Hamiltonian structure
{

xR, HR

}
is defined

in terms of the canonical state xR ≡
{

gµν, πµν

}
and the Hamiltonian HR. More precisely,

gµν ≡ gµν and πµν = αL
k πµν is the normalized conjugate momentum, L is a 4−scalar scale

length, and α is a suitable dimensional 4− scalar, both defined in ref. [9]. Instead, HR is

defined as the real 4− scalar field

HR(xR, ĝ, r, s) = TR(g, ĝ, r, s) + V(g, ĝ, r, s), (25)

with TR(g, ĝ, r, s) ≡
πµνπµν

2αL and V(g, ĝ, r, s) ≡ hαL
[

gµνR̂µν − 2Λ
]

being the normalized

effective kinetic and potential terms. Then, given the classical GR–Hamiltonian structure{
xR, HR

}
, the canonical quantization rules in the context of CQG theory are based on the

following CQG correspondence principle realized by the map

gµν → g
(q)
µν ≡ gµν, (26)

πµν ≡
∂S(g, ĝ, r, s; P)

∂gµν → π
(q)
µν ≡ −ih̄

∂

∂gµν , (27)

p ≡ −
∂S(g, ĝ, r, s; P)

∂s
→ p(q) ≡ −ih̄

∂

∂s
, (28)

HR

(
g,

∂S(g, ĝ, r, s; P)

∂g
, ĝ(s), r, s

)
→ H

(q)
R , (29)

where x(q) ≡
{

g
(q)
µν , π

(q)
µν

}
is the quantum canonical state and π

(q)
µν is the quantum momen-

tum operator. An analogous map then applies for the dimensionally reduced functions πµν

and H
(q)
R , while by construction gµν ≡ gµν. In particular, one finds that

HR → H
(q)
R = T

(q)
R (π) + V, (30)

where H
(q)
R is the CQG–Hamiltonian Hermitian operator with T

(q)
R (π) being the “kinetic

density” quantum operator

T
(q)
R (π) =

π(q)µνπ
(q)
µν

2αL
. (31)

The mapping realized by Equations (26)–(29) implies the simultaneous validity of the two

fundamental commutator relations

[
g
(q)
µν , π(q)αβ

]
= iℏδα

µδ
β
ν , (32)

[
p(q), s

]
= −iℏ, (33)

together with [
gαβ, gµν

]
=
[
π(q)αβ, π

(q)
µν

]
= 0. (34)

The quantization rules (26)–(29) follow as a straightforward prescription within the canonical

setting of deDonder–Weyl formalism of CQG theory, representing the tensorial generalization

of the standard quantization method developed in non-relativistic quantum mechanics.
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We can now proceed with prescribing the quantum-gravity wave equation that ad-

vances, in proper time, the quantum state ψ of CQG theory. We promote the Poisson

brackets to quantum commutator; this is provided by the CQG-quantum wave equation

iℏ
∂

∂s
ψ(s) +

[
ψ(s), H

(q)
R

]
= 0, (35)

where [A, B] ≡ AB − BA denotes the quantum commutator, i.e.,

[
ψ(s), H

(q)
R

]
≡ −H

(q)
R ψ(s). (36)

The CQG wave Equation (35) prescribes the evolution of the quantum state ψ(s) along the

geodetics of the background metric tensor ĝµν(r). Equation (35) is a first-order partial dif-

ferential equation that must be supplemented by prescribing for all r(so) = ro ∈
(
Q4, ĝ(r)

)

the initial condition ψ(so) = ψo(g, ĝ(ro), ro), as well as boundary conditions at infinity on

the improper boundary of configuration space Ug, namely limg→∞ ψ(g, ĝ(r), r(s), s) = 0.

The CQG-wave Equation (35) can be represented in terms of an equivalent set of quantum

hydrodynamic equations [9]. This requires the adoption of the Madelung representation

ψ(g, ĝ, r, s) =
√

ρ(g, ĝ, r, s) exp

{
i

ℏ
S (q)(g, ĝ, r, s)

}
, (37)

where the quantum fluid fields
{

ρ, S(q)
}

≡
{

ρ(g, ĝ, r, s),S (q)(g, ĝ, r, s)
}

identify, respec-

tively, the 4−scalar quantum PDF and quantum phase function. Elementary algebra then

shows that based on Equation (35) the same quantum fluid fields must satisfy the set of

GR–quantum hydrodynamic equations (CQG-QHE) realized, respectively, by continuity

and quantum Hamilton-Jacobi equations given by

dρ

ds
+

∂

∂gµν

(
ρVµν

)
= 0, (38)

dS (q)

ds
+ H(q) = 0, (39)

where in both equations d
ds ≡ Ds [9]. Furthermore, Vµν ≡ Vµν(g, s) and H(q) ≡ H(q)(g, s)

denote, respectively, the quantum 4−tensor velocity field identified with

Vµν =
1

αL

∂S (q)

∂gµν , (40)

and the effective quantum Hamiltonian

H(q) =
1

2αL

∂S (q)

∂gµν

∂S (q)

∂gµν
+ VQM + V, (41)

with V ≡ V(g, s) being the effective potential defined above and VQM ≡ VQM(g, s) being

the Bohm effective quantum potential [37–39] given by

VQM ≡
ℏ2

8αL

∂ ln ρ

∂gµν

∂ ln ρ

∂gµν
−

ℏ2

4αL

∂2ρ

ρ∂gµν∂gµν . (42)

For completeness, it is worth noting that a precise relationship between the quantum and

classical Hamilton–Jacobi Equations (39) and (20) as well as the one existing between

quantum and classical tensor fields Vµν and πµν can be established in terms of so-called

semi-classical limit, whereby the Bohm quantum potential vanishes (see proof in ref. [9]).
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We notice that the quantum gravity theory obtained here preserves the character of s

to be the dynamical temporal parameter in CQG-theory. In addition, a remarkable feature

is that s has the conjugate quantum operator p(q) ≡ −ih̄ ∂
∂s , a feature that is missing in the

ADM formulation of the problem. This conclusion suggests that in such a framework, s

must correspond to a physical observable, as will be proved below.

4. The Dynamical Evolution Parameter

Let us comment in more detail some remarks on the meaning of proper time in

CQG theory. As shown above, the proper time s is associated with non-null subluminal

geodetic curves of massive gravitons predicted by CQG theory on the space–time
{

Q4, ĝ
}

.

The adoption of the proper time parametrization of classical and quantum Hamiltonian

states permits us to recover the standard formalism of quantum mechanics for CQG-theory,

which is related to the Hamiltonian structure of the theory and the physical interpretation

of the quantum wave function. We notice that the choice of the 4−scalar proper time,

contrary to the coordinate time, is consistent with the manifest covariance principle, while

it preserves the role of temporal dynamical variable in terms of which dynamical evolution

of quantum systems is parametrized. It follows that the notion of proper time becomes

necessary for the representation of the fundamental equations of CQG theory and its

physical interpretation. The invariant proper time is the dynamical parameter of CQG

theory, to be distinguished from the coordinate time adopted, for example, in loop quantum

gravity (for a discussion of this issue, see refs. [40,41]).

In fact, in the framework of background CQG theory, the metric tensor ĝµν determines

the differential Riemann distance ds on the space–time
{

Q4, ĝ
}

and, consequently, also the

line element (arc length) of proper time s by means of the 4−scalar equation

ds2 = ĝµνdrµdrν, (43)

where the 4−tensor displacement drµ around a 4−position r ≡ {rµ} belongs to the subset

of
{

Q4, ĝ
}

where ĝµνdrµdrν ≥ 0. By integration, it follows that

s − s1 =

r∫

r1

√
ĝµνdrµdrν, (44)

where, here, r ≡ r(s) and r1 ≡ r(s1) denote two 4−positions of the observer (i.e., the mas-

sive graviton) along an arbitrary curve r(s) joining them, while s and s1 are the correspond-

ing proper times. Such a worldline can be one of the (infinite possible) curves that cross

the same 4−position rµ, i.e., an arbitrary observer’s geodetics r(s) ≡ {rµ(s)} prescribed in

such a way that at proper time s > 0 it coincides with the observer’s position according to

the initial (crossing) condition

rµ = rµ(s). (45)

However, after imposing (45), the precise value of s still depends both on the choice

of the space–time curve on which it is measured and that of the reference 4−position

r1 = r(s1) on the same curve. In fact, these geodetics are intrinsically non-unique, since

for an arbitrary observer with 4−position r ≡ {rµ}, there are infinite geodesic curves

r(s) ≡ {rµ(s)} fulfilling the crossing condition (45). However, the notion of (observer)

proper time (s) makes sense only if s is an observable, which demands a suitable way

to prescribe it. In this respect, two choices are possible. In the first case, proper time is

an observer proper time, i.e., a local observable which may nevertheless have different

realizations for each observer (i.e., GR frames which are mutually connected via the local-

point transformation group). Accordingly, the proper time s is, by construction, the same
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one for all geodesic trajectories which simultaneously cross the observer 4−position (see

Equation (45)). The second possible realization is provided instead by the notion of global

proper time, i.e., a global observable which is the same one for a family of observers which

are properly “synchronized” with each other in such a way that the observer proper time s

indeed coincides for all of them.

Let us analyze the conceptual basis for the prescriptions of the functional settings of

the two choices separately. In the first case, a non-trivial definition of the observer proper

time consistent with its identification with a graviton’s virtual worldline requires that

(1) For each observer, the corresponding geodesic curves (observer geodetics) are

non-vanishing and have proper orientation.

(2) Since classical geodetics of particles with finite mass cannot cross event horizons,

curves originating near them must have an origin point r(so) = ro. This includes, in partic-

ular, the cosmological event horizon originated from the Big Bang event. It is understood

that the indicated origin point r(so) = ro corresponds to a creation point of a graviton’s

virtual worldline, which can lead to the assumption that all the observer’s geodesic curves

have proper origin points and hence are semi-infinite. In addition, the origin points of all

observer geodesic curves cannot belong to event horizons but can only be arbitrarily close

to them, in the sense of mathematical limit.

(3) For all semi-infinite geodesic curves, it makes sense to require that the initial proper

time so is positive or null. For the uniqueness of s for a given observer, there must exist

maximal geodetics, namely a geodesic curve with origin point rµ(so) coinciding (or being

suitably close) to the Big Bang event, having the maximal arc length s − so and subject to

the condition

so = 0, (46)

with so = 0 to be referred to as Big Bang proper time. A cosmological interpretation arises.

Accordingly, such curves should have originated suitably near the universe horizon created

during Big Bang, which is characterized by the lowest initial proper time. Thus, the root (46)

identifies the proper-time of a (possibly virtual) graviton generated after the Big Bang event.

The remaining trajectories which are associated with a given observer identify instead

(again possibly virtual) massive gravitons which are generated at later proper times.

Instead, for the identification of the proper time s also as a global observable it is

necessary to require, in addition, that

(4) For all observers which can be mutually connected by null geodetics (i.e., neces-

sarily belong to the same light cone) and for all semi-infinite geodesic curves which are

associated with them, the corresponding initial proper-times so are all positive or null.

(5) Among them, for all observers, there is again for each one a “maximal length” possibly

non-unique geodetic with the origin point rµ(so), such that the condition (46) holds.

Two interpretations of proper time can be proposed at this point. The first one concerns

the customary interpretation occurring in the context of general relativity [40,42], i.e., in

terms of the Riemann distance on the space–time. This yields the so-called geometric

interpretation, which is based on Equations (43) and (44). However, this does not provide,

by itself, a unique prescription for s. In fact, once the reference 4−position r = r(s) (see

Equation (45)) is prescribed, the precise value of s depends both on the choice of the space–

time curve on which it is measured and that of the reference 4−position r1 = r(s1) on the

same curve. As shown above, these indeterminacies can be resolved if, for all observers

belonging to the same light cone, proper time is the arc length measured along arbitrary

observer geodetics with origin point r(so) and in particular along an observer’s maximal

geodetics with the origin point r(so = 0). The second possibility yields instead a dynamic

interpretation. Thus, under the assumption of existence of massive gravitons, proper time

can also acquire the further interpretation according to which, for all observers belonging
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to the same light-cone, it is the arc length of the worldline of a graviton measured between

its origin point r(so = 0) and the observer position r(s) = r.

It is interesting to comment at this point about the crucial aspect of both CCG and

CQG theories concerning the treatment of gravitons, i.e., the quanta of the gravitational

field and in particular the related prescription of the notion of proper time (s). In fact,

it must be stressed that both in CCG and CQG theories the background space–time ĝµν

prescribing the coordinate and the geometric properties of the reference system is not

directly quantized as a single field. The quantization pertains the fluctuations with respect

to ĝµν of the quantum gravitational field described by gµν, from which ĝµν emerges as

ensemble statistical average. The meaning of CQG theory is that of providing a spectrum

of quantum gµν which altogether contribute to the emergence of the background tensor ĝµν.

The quantum dynamics of gµν determines quantum effects to the solution of ĝµν through

quantum-modified Einstein field equations [9]. Accordingly, classical space–time solutions

can inherit in this way the underlying quantum-gravity effects. Their inclusion in the

Einstein equations however does not affect the basic conceptual structure of GR and the

geometric interpretation of GR metric tensor. The implication is that, the dynamics of each

quantum field gµν is governed by quantum-gravity wave equation when referred to the

g− configuration space associated with the Hamiltonian structure
{

xR, HR

}
. However,

when referred to the physical background space–time associated with ĝµν which defines

the coordinate system, namely the generally non-inertial reference frame, gravitons still

need to be treated as classical particles, i.e., as point-like neutral, spin-2 collisionless

particles following classical geodesic curves on ĝµν. In fact, in order to quantize them, one

should actually perform a full quantization of the metric tensor defining the space–time,

and therefore the physical coordinates identified with position and velocity; however,

this is not the target of CQG-theory. In addition, in view of the invariant discrete energy

spectrum discovered in ref. [9] gravitons must carry a non-vanishing mass. Therefore, in the

background metric tensor ĝ they are endowed with a geodesic motion and their admissible

worldlines must be identified with (deterministic) non-null subluminal geodetics. This is

the reason why the same proper time evolution parameter s appears in both classical and

quantum Hamiltonian theories of GR in such a framework.

The same kind of reasoning then applies to the concept of horizons invoked above to

provide an interpretation of proper time. In fact, event horizons must be treated as classical

surfaces when referred to the physical configuration space described by the background

metric tensor ĝµν. This means that the same horizon surfaces arise from the solutions of the

Einstein field equations. However, this approach does not exclude the possibility of having

event horizons whose solution contains quantum-gravity effects. This can be reached by

first determining quantum-gravity corrections or source terms to the classical Einstein field

equations, yielding quantum-modified Einstein field equations, and then by solving them

for the metric tensor. A solution method of this type has been carried out elsewhere in the

framework of CQG theory for the treatment of both cosmological deSitter and black-hole

event horizons [9].

5. Dynamical Parameter and Quantum Cosmological Constant

In terms of the previous results, the mathematical connection between the evolution

parameter s and observable fields of classical and/or quantum gravity can be established.

More precisely, the last part of the present research is devoted to pointing out the rela-

tionship that exists between the proper-time s and the cosmological constant Λ. This is

achieved in the framework of CQG theory, whereby the quantum-generated cosmological

constant is a 4−scalar that is found to vary on proper time s and to arise from the non-linear
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vacuum Bohm interaction among massive gravitons. This target permits to reach a number

of notable results, namely:

(1) To elucidate the physical interpretation of the evolution proper time in terms of the

observable cosmological constant.

(2) To assign the same parameter s the connotation of a cosmological proper time,

namely a cosmological evolution parameter of the Hamiltonian theory.

(3) To link the quantum origin of the cosmological constant to the evolution parameter

s introduced in the classical theory.

(4) To prove that from the physical point of view, the dynamical evolution of classical

and quantum Hamiltonian systems is rooted on the quantum-gravity theory which predicts

a proper time-varying cosmological constant. On the other hand, the same 4−scalar

parameter also finds a mathematical definition in the setting of CCG-theory, proving its

transversal role for both classical and quantum settings.

(5) To establish conceptual connections between fundamentals of CQG theory and

other settings found in the literature, in particular concerning the so-called unimodular

gravity theories and the relational concept underlying the theory of evolving constants

of motion.

To introduce this discussion, we preliminarily recall the result achieved in ref. [43]

concerning the classical variational theory of the cosmological constant and its consistency

with quantum prescription. In the same work, in fact, it was proved that the manifestly

covariant Hamiltonian structure of classical general relativity can be shown to be associated

with a path-integral (rather than a configuration-space integral) synchronous Hamilton

variational principle yielding the Einstein field equations. A realization of the same

variational principle in both unconstrained and constrained forms can be established.

The first case is based on the introduction of the Hamilton functional

J(xR) =
∫ s1

so

ds

(
πµν(s)

dgµν(s)

ds
− HR(xR(s), s)

)
, (47)

and the synchronous variational principle

δJ(xR) = 0, (48)

with

LR

(
g(s),

dg(s)

ds
, s

)
= πµν(s)

dgµν(s)

ds
− HR(xR(s), s) (49)

denoting the Legendre-conjugate Lagrangian. The same variational principle delivers Euler–

Lagrange equations in Hamiltonian form which coincide with the canonical Equation (5).

In fact, the functional derivatives of J(xR) yield explicitly

{
δJ(xR)
δπµν =

dgµν

ds − ∂HR
∂πµν = 0,

δJ(xR)
δgµν

= − dπµν

ds − ∂HR
∂gµν

= 0,
(50)

with the solutions being subject to the boundary conditions

xR(si) =
(

gµν(si), πµν(si)
)
, (51)

in which, for i = 0, 1, the boundary tensor fields gµν(so) and πµν(so) remain, in principle,

arbitrary. As in classical analytical mechanics, this shows that Hamilton equations for

the SF-GR can be equivalently determined in terms of a Hamilton variational principle

in which the variational functional is a path-integral of the form (47). This identifies a
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unique feature of the manifestly covariant synchronous approach, which allows to cast the

variational functional as a line integral.

Nevertheless, a second equivalent possibility exists, in terms of a constrained Hamilton

variational principle, to be realized by a path-integral functional performed again along a

generic finite-length field geodetic r(s). We adopt, for this purpose, the standard method of

Lagrange multipliers, thus introducing the functional

JL(xR) = J(xR) + J1(xR) + J2(xR), (52)

where, respectively, J(xR) is defined by Equation (47), while

J1(xR) = −
1

2

∫ s1

so

dsλ1

(
gµνgµν − 4

)
, (53)

J2(xR) = −
1

2

∫ s1

so

dsλ2πµνπµν. (54)

Then, let us consider the constrained synchronous variational principle δJL(xR) = 0 per-

formed in terms of independent variations of the Lagrangian coordinates, the conjugate

momenta and of the two Lagrange multipliers λ1 and λ2, while letting again δds = 0

and δĝ = 0. The corresponding Euler–Lagrange equations are given, respectively, by

the equations





δJL(xR)
δπµν =

dgµν

ds − ∂HR
∂πµν − λ2πµν = 0,

δJL(xR)
δgµν

= − dπµν

ds − ∂HR
∂gµν

− λ1gµν = 0,
δJL(xR)

δλ1
= gµνgµν − 4 = 0,

δJL(xR)
δλ2

= πµνπµν = 0,

(55)

where the Lagrange multiplier λ1 remains arbitrary.

Then, let us impose the identity gµν ≡ ĝµν holding for extremal curves. Thanks

to the constraint equation associated with the undetermined Lagrange multiplier λ2

(i.e., the fourth equation in the previous system), the condition of vanishing derivative
dĝµν

ds = 0 provided by the first equation remains identically satisfied for all s. Furthermore,

the second equation in particular delivers that a modified Einstein field equation actually

holds, in which the contribution of the CC Λ is associated with the multiplier λ1, namely

upon letting

Λ ≡ λ1. (56)

We notice that in the present context, λ1 can be regarded as a classical parameter, which in

general can be considered an arbitrary function of the form λ1 = λ1(ĝ, r(s), s), consistent

with the synchronous principle. Notice, however, that possible dependences of CC on r(s)

can be ruled out based on the symmetry property of the Einstein field equations. Similarly,

possible dependences on ĝ occurring through 4−scalar saturations of the Ricci or Riemann

tensors remain excluded as they are not part of the standard Einstein field equations.

The same Lagrange multiplier therefore must identify a 4−scalar gauge function generally

dependent on the invariant proper time parameter s only, i.e., λ1 = λ1(s) ultimately.

The conclusion is that within the same context, at most, the CC is of the form

Λ ≡ Λ(s). (57)

As a consequence, the simultaneous validity of both unconstrained and constrained path-

integral principles supports the interpretation of the cosmological constant in terms of a

Lagrange multiplier associated with the normalization constraint for the extremal metric
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tensor ĝ ≡
{

ĝµν

}
which is realized by the requirement ĝµν ĝµν = 4. This result realizes, for

CCG theory, the conceptual idea of a varying CC underlying unimodular gravity models

proposed in previous studies. In the present setting, however, the formalism is undubious

and acquires an immediate physical interpretation.

The result expressed by Equation (57) obtained in the classical framework of CCG

theory is found to be consistent also with the expression of CC predicted by CQG theory.

In particular, this concerns the functional dependence of Λ(s), which is precisely of the type

predicted by CQG theory as it follows from the canonical quantization of the gravitational

field based of the classical Hamiltonian structure {xR, HR} [8,9]. More precisely, as shown

in ref. [44] the quantum solution to the CC is found to be represented by a generally

non-stationary function of proper time s of the form

ΛCQG(s) =
h̄2

(αL)2

1

r4
th

f (s), (58)

with ΛCQG(s) to be denoted as CQG cosmological constant. Here, h̄2 is the reduced Planck

constant and r4
th is a suitable dimensionless 4−scalar parameter estimated in ref. [9], which

enters the prescription of the quantum probability density associated with the quantum

state. In addition, f (s) is a strictly positive 4−scalar function of proper time determined by

the equation

f (s) ≡ p3(s), (59)

where in turn p(s) is a non-local 4−scalar function expressed by

p(s) =
1

(
1 + 2

αL

s∫
so

ds′a(s′)

)1/2
. (60)

The analytical expression for the 4−scalar function a(s) can be found in ref. [44] and it

follows from the solution of the quantum hydrodynamic equation for the phase-function

associated with the quantum probability density through the Madelung decomposition.

The prescription of the proper time functions f (s) and p(s) requires, therefore, the evalu-

ation of the 4−scalar function a(s) [44]. However, qualitative properties can be inferred.

In fact, in view of the prescription of the function p(s) it follows that its initial value

occurring at s = so = 0 is p(so) = 1, so that

ΛCQG(so) =
h̄2

(αL)2

1

r4
th

. (61)

This implies that the relationship between ΛCQG(s) and ΛCQG(so) is

ΛCQG(s) = ΛCQG(so)p3(s). (62)

Similarly, one can verify that in the limit s → +∞ the CC tends to a non-vanishing

positive constant.

According to ref. [44], from the physical standpoint, ΛCQG(s) arises from space–time

quantum-gravity contributions to the classical Einstein equations predicted by CQG theory

when a trajectory-based representation of the related quantum wave equation is adopted

in terms of the Generalized Lagrangian path formalism. The quantum solution for the

CC was shown to be ascribed to the non-linear Bohm quantum vacuum interaction of the

gravitational field with itself, namely produced by the self-interaction of massive gravitons,

and to also generally depend on the realization of the quantum probability density for
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the quantum gravitational field tensor. This feature explains the dependence of ΛCQG(s)

in Equation (58) in terms of the squared reduced Planck constant h̄2, which is the same

type of dependence carried by the Bohm potential and ultimately due to the structure of

the quantum-wave equation. The appearance of h̄2 therefore characterizes the solution

for ΛCQG(s) as an intrinsically quantum term of the second order in h̄, which retains the

information of the non-linear quantum self-interaction of massive gravitons in a vacuum.

The emerging physical picture predicts a generally non-stationary quantum cosmological

constant ΛCQG(s) for which the explicit s-dependence arises because of the gradients

(i.e., fluctuations) of the vacuum quantum gravitational energy density.

This outcome provides an alternative point of view for the physical interpretation of

the evolution parameter s of the Hamiltonian structure underlying both CCG and CQG

theories. Instead of identifying s only as the proper time defined along suitably synchro-

nized classical geodesic curves associated with massive gravitons, here, a cosmological

interpretation is given. The latter, in fact, can be associated with the intrinsic non-stationary

character of the quantum-gravity generated cosmological constant ΛCQG with respect to its

functional dependence on the same proper time s. The relationship is established through

the bijections (57) and (58) which relate the 4−scalars s and ΛCQG. The result realizes, for

CCG and CQG theories, the project proposed in the literature for alternative quantum-

gravity theories that underlies the concepts of relational evolution and evolving constants

of motion. Accordingly, the dynamical evolution of the Hamiltonian dynamics in CCG and

CQG theories can be measured not merely by the dynamical parameter s, but equivalently

by the intrinsic change of the non-stationary quantum field ΛCQG that arises consistently

from the quantum-gravity wave equation.

6. Conclusions

The theories of manifestly covariant classical and quantum gravity (CCG and CQG

theories, respectively) are characterized by a unique Hamiltonian structure. Remarkably,

the Hamilton equations provided by CCG theory admit a representation in evolution form

in terms of a 4−scalar dynamical parameter s. This property is then inherited by CQG

theory, whereby the same evolution form yields a non-stationary quantum-gravity wave

equation. It must be stressed, however, that the dynamical evolution parameter identified

by CCG and CQG theories is not related to a particular time coordinate stemming from

some choice of reference frame or coordinate system implied by space–time slicing, as oc-

curs, for example, in the well-known case of ADM formalism. From the physical point of

view, the dynamical parameter s is associated with the arc length of suitably synchronized

geodesic curves of massive gravitons in a background space–time. The evolution param-

eter identifies an observable quantum variable of CQG theory with associated conjugate

momentum operator. As a notable feature, in fact, the same parameter can be associated

with a non-stationary observable quantum cosmological constant predicted by CQG theory.

This provides an alternative point of view for the interpretation of the naturally

evolving character of quantum gravity theory, to be equivalently set in terms of intrinsic

change of the 4−scalar quantum cosmological constant. Notice, however, that such a

dynamical behavior is not parametrized with respect to a particular coordinate-time in some

coordinate reference frame. Instead, consistent with the principle of manifest covariance,

it relies on the invariant proper time parameter s measured along appropriate geodesic

curves that reach the cosmological horizon. This feature suggests a possible intriguing

relationship between the quantum cosmological constant predicted by CQG theory and

recently proposed models of cosmic evolution rooted on the idea of a varying dark energy,

including a non-stationary cosmological constant supported by recent observations [45].

The dependence upon the parameter s might provide a novel route for the solution of



Entropy 2025, 27, 604 17 of 18

the cosmological constant problem and the tension existing among different cosmological

scenarios, a subject that is certainly worthy of further consideration in future studies.

These outcomes represent, for CCG and CQG theories, a possible solution to the

so-called “problem of time” that affects physical and philosophical interpretations of alter-

native literature approaches to quantum gravity. The proof provided in the present research

yields, in fact, an independent realization of the concepts of relational dynamics, evolving

constants of motion and unimodular gravity that were proposed in previous studies as

logical attempts or motivational explanations for alternative quantum-gravity theories.

As such, the same result also represents a property of self-consistency of the theoretical

setup underlying CCG and CQG theories, supporting their candidacy as promising frame-

works for the establishment of canonical and manifestly covariant quantum gravity theory.
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