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Abstract

Quantum computing is conceived as a promising and powerful next-generation platform for
information processing and it has been shown that it could bring significant accelerations to
certain tasks, compared to its classical counterparts. With recent advances in noisy
intermediate-scale quantum (NISQ) devices, we can process classical data from real-world
problems using hybrid quantum systems. In this work, we investigate the critical problem of
designing a gate-based hybrid quantum neuron under NISQ constraints to enable the construction
of scalable hybrid quantum deep neural networks (HQDNNSs). We explore and characterize diverse
quantum circuits for hybrid quantum neurons and discuss related critical components of
HQDNNSs. We also utilize a new schema to infer multiple predictions from a single hybrid neuron.
We further compose a highly customizable platform for simulating HQDNNS via Qiskit and test
them on diverse classification problems including the iris and the wheat seed datasets. The results
show that even HQDNNs with the simplest neurons could lead to superior performance on these
tasks. Finally, we show that the HQDNNS are robust to certain levels of noise, making them
preferred on NISQ devices. Our work provides a comprehensive investigation of building scalable
near-term gate-based HQDNNs and paves the way for future studies of quantum deep learning via
both simulations on classical computers and experiments on accessible NISQ devices.

1. Introduction

Quantum computing is an emerging field that leverages quantum-mechanical properties to perform
computations. Unlike classical computers, which operate on bits that can only assume binary states, quantum
computers utilize qubits that can be in a superposition of multiple states simultaneously, which may also lead
to bizarrely entangled states with ‘spooky action at a distance’. These unique features allow quantum
computers to solve certain computational problems significantly faster than classical computers [1], with
potential applications in a wide range of areas such as cryptography [2, 3], chemistry [4], and

optimization [5]. Ongoing research in this field aims to further develop quantum algorithms and hardware,
as well as explore new applications that could benefit from quantum computing’s unique capabilities. So far,
noisy intermediate-scale quantum (NISQ) technology is the most promising candidate to bring near-term
quantum impact [6] and has been demonstrated experimentally in vast scale [7-12].

On the other hand, machine learning is a rapidly evolving field within computer science that involves the
development of algorithms and statistical models capable of analyzing data to uncover underlying patterns
and relationships. Through these analyses, machine learning models can learn and make predictions or
decisions about new, previously unseen data. Applications of machine learning are diverse and range from
image recognition and natural language processing to recommender systems and fraud detection [13], which
is supported by a plethora of intricate model architectures including deep neural network (DNN),
convolutions neural network [14—16], transformers [17-19], diffusion models [20-22], etc. Most recently,
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large pre-trained language models like ChatGPT [19] have shown surprising in-context learning ability [23,
24], bringing even more possibilities to the future of artificial intelligence. With the continued growth of
large datasets, model capabilities, and computing resources, machine learning has the potential to
revolutionize many fields in science, industry, and society [25].

Quantum machine learning combines the principles of quantum computing with machine learning
algorithms, which is currently in its initial exploratory stages [26—30]. By leveraging the power from the
micro-world on the scale of a single atom, quantum machine learning could bring advantages like solving
problems that are intractable for classical computers, being able to learn from few data, etc [31-36]. Current
approaches to building a quantum DNN (QDNN) include variational quantum circuits [37-40] and
quantum simulation of classical neurons [41]. Among different proposals, it is common to use the
continuous-variable architecture, which encodes quantum information in continuous degrees of freedom
such as the amplitudes of the electromagnetic field [42]. To better utilize the current NISQ hardware, some
hybrid computing frameworks were studied and showed promising results in different contexts including
hybrid QDNN (HQDNN) and hybrid quantum algorithms [43—47]. However, there lacks a systematic study
of HQDNN and it is unclear how to make the choices, among countless combinations of quantum circuits,
to build a hybrid neuron effectively and efficiently. Not to mention how to characterize them.

In this work, we attempt to address the above critical problems by investigating a class of hybrid neurons
composed of three components including a feature map, a neuron circuit, and a measurement process. Our
goal is to provide comprehensive guidance for designing scalable HQDNN s rather than showcasing the
quantum advantage of specific models on specific tasks. We distinguish the neurons’ hybrid expressibility in
the context of hybrid quantum computing, rather than the full quantum expressibility, and find those hybrid
neurons with simple neuron circuits could have good hybrid expressibility even though their quantum
expressibility is low. This leads to the observation that, unlike QDNNs, HQDNNs with simple and shallow
neuron circuits can also exhibit superior performance. This suggests that HQDNN s are much easier to
engineer and manipulate on NISQ platforms, making it possible to build large-scale DNNs with quantum
features.

To demonstrate this, we further discuss other crucial components of an HQDNN including predictions,
cost functions, forward/backward propagation, and optimizers. While those are inherently similar to their
classical counterparts, we introduce a new schema to make multiple predictions out of a single hybrid neuron
by taking advantage of its quantum characters. We then compose a platform for simulating HQDNNs via
Qiskit [48], where we can easily customize the neuron circuit, network architecture, prediction schema, and
optimizers to conduct experiments. We choose the iris dataset, which is a popular test set for studying
QDNN:Ss given the current limitation of classical simulation of general quantum dynamics, and a slightly
harder wheat seed dataset. We carefully examine different setups on each dataset and the results suggest that
HQDNNSs with simple neuron circuits can achieve competitive performance while requiring much fewer
quantum resources. Finally, we model the NISQ devices with Gaussian noises and show that the proposed
HQDNNSs are indeed robust to a certain level of noise, making them of particular interest in the NISQ era.

2. Hybrid quantum neurons

A neuron is the most critical building block of modern DNNss and thus, the first question to ask here is how
to choose a proper hybrid quantum neuron and if there is useful guidance for us to explore possible
configurations for hybrid neurons. So far, gated-based quantum circuits are the most popular and promising
candidate for universal quantum computing and they have been realized via different types of NISQ devices
[6]. Consequently, in this work, we will use gate-based quantum circuits as the primitive language for hybrid
quantum neurons and HQDNNs. However, we would like to point out that there are also ongoing studies to
design DNNG, being classical, quantum, or hybrid, via specialized computing devices from, e.g. optical and
atomic systems [49-53].

Originated from perceptron, a neuron in modern classical DNNs can be described as a map that takes an
input vector x € R” and maps it into a single real number y € R

y:gu(wa—i—b), (1)

where w is the weight, b is the bias, and g, represents a nonlinear activation function (see also figure 1).

While it is tempting to keep an exact form for QDNNE, it is not very efficient to translate operations like
simple addition/multiplication and nonlinear functions like ReLu and Softmax into a gate-based quantum
circuit [41]. Considering the hybrid nature of the HQDNN studied in this work, we focus on a class of
quantum neurons that can be described by the following expression

y = (¢ (x) |[ULAUN|9 (%)), (2)
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Figure 1. Illustration of hybrid quantum neuron network and examples of neuron circuits. (a) Hybrid and conventional neural
networks share a similar network architecture, which is presented as a multi-layer perceptron in this work. A classical neuron
takes a vector of real numbers as input and passes their linear combination into a nonlinear activation function to get the final
results. A hybrid quantum neuron applies a series of gate operations to initial states and extracts the results via measurement. (b)
Some examples of neuron circuits include (b1) single-layer R,, (b2) Real Amplitude, and (b3) Quantum Circuit Born Machine.
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which is also depicted in figure 1. Here |¢(x)) is the input quantum state with encoded features, Uy
represents the operation of the neuron circuits and A is what we called an evaluation operator. The unitary
operator Uy dictates how we transform the input qubits and A is used to map the output qubits into a single
real number. Note that, although Uy, A and |¢(x)) always have matrix representations in non-interacting
closed quantum systems, the quantum neuron described above is not linear as the representations usually
involve trigonometry functions and the measurement processes inevitably leads to quadratic forms.

2.1. Structure of hybrid neuron

To start with, we describe the three components inside a hybrid quantum neuron. Firstly, the neuron takes
classical input or a vector of real numbers x. To encode this classical information into qubits, we apply a
feature map Uy (x) to transform an initial state of the circuit (usually |0)) into the input state

|p(x)) = Uy (x)|0). It’'s common to encode x as the amplitude of quantum states [54], which can be done via
a simple circuit

U¢ (x) :®iRd(x)7d:x7y' (3)

We will refer to this as SLRd for later convenience. The choice of d is arbitrary, but we use R, in this work
since it only involves real amplitudes and such a circuit has been plotted in figure 1(b1). The reason R, is not
applicable here is that it only introduces phase differences and does not alter the density distribution.

Once having the input state |¢(x)), we apply the neuron circuit Uy(#), which is parameterized by the
learnable parameters 6, to get the output state. This is usually the most important and complicated
component and previous works on either QDNNs or HQDNN:Ss tend to apply well-known variational ansatz
like RealAmplitudes (RA) [46, 55] and quantum circuit Born machines (QCBMs) [37, 56], which are
demonstrated in figures 1(b1) and (b2) respectively. We will carefully examine these choices in the next
subsection.

In the last step, we perform a measurement on the output state, which gives its expectation value on a
given operator A. However, we notice that given a different evaluation operator A’, it is possible to define a
unitary matrix so that A’ = ULA U, and the measurement result on A’ becomes

y(A") = ((x) |Uy (0)" UJAULUN (0) |6 (x)).- (4)

Note that the above equation can also be interpreted as a measurement result of A on the same neuron but
with different parameters Uy (0') ~ U4 Un(0). That is, in the case where the neuron can capture arbitrary
unitary transformations, it makes no difference to choose any evaluation operator since the neuron can
always properly adjust its parameters during backpropagation. In practice, this constraint is less strict since
we do not need to maintain the exact unitary transformation but only the final measurement results. This
suggests that even for simple neurons with limited expressibility, the effects of measurement operators might
not be significant.

We also remark that we should avoid [Uy(x) Un(6),A] = 0 as this would always lead to a trivial
measurement result and the network cannot learn from data. Since we already use operators like R, and R, to
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Table 1. Hybrid expressibility characterized by KL-divergence for different hybrid quantum neurons.

A:O'x®0'x 0'y®0'y 0, & 0,
SLRy 0.060 0.693 0.054
RA 0.006 0.693 0.010
QCBM 0.394 0.018 0.018

encode classical features, it is convenient to choose A = ®iaé since [04,0,] = 2i€ o0, Where €4 is the
Levi—Civita symbol and Einstein summation notation is implied. In this case, the corresponding
measurement result is also known as polarization.

One drawback of the above single measurement schema is the cost of bountiful information inside a
quantum neuron. There are different ways to extract more information from a single neuron to make
HQDNNs more efficient. For example, we can use different measurement operators on individual qubits or
we can conduct multiple measurements on a single neuron. While this topic deserves separate studies, we
will demonstrate a case where one can make multiple inferences for classical predictions via only one single
neuron.

2.2. Expressibility of hybrid neuron

Characterizing the expressibility of a quantum neuron is an interesting yet challenging problem [55]. In the
context of fully quantum information processing, it is defined as the capability of a circuit to generate pure
quantum states that are well representative of the Hilbert space [57]. Formally, it can be expressed as

where the Haar measure corresponds to maximally expressive uniform distribution of state, |t)p) = Un(6)]0)
and HS represents Hilbert—Schmidt norm. However, this definition makes it hard to derive a single
meaningful score and thus, the authors proposed to use the Kullback—Leibler (KL) divergence between the
estimated fidelity distribution and that of the Haar-distributed ensemble to estimate the expressibility of the
circuits [57].

The above characterization is invalid in the context of hybrid quantum neurons since the quantum state
collapses to bounded real numbers after measurements. But following a similar argument, we can compute
the KL divergence between the estimated measurement distribution and that of the Haar-distributed
ensemble, which reduces to a uniform distribution on [—1, 1]. To distinguish this from quantum
expressibility, we refer to this as hybrid expressibility in this work. Intuitively, higher quantum expressibility
usually leads to higher hybrid expressibility. To demonstrate this, we take three different neurons SLRy, RA,
and QCBM, and consider only two qubits for convenience. The three circuits are plotted in figure 1(b) and
the corresponding results are summarized in table 1. We also include three different evaluation operators and
1 million samples are randomly drawn to compute the KL-divergence in each case. Regarding quantum
expressibility, it is clear that RA is much better than both SLRy and QCBM, while SLRy has the lowest
quantum expressibility. Such a trend remains for hybrid expressibility as suggested by the above table.

However, expressibility is not the only metric and we collect some other properties of the neuron circuit
in table 2 (the linear RA is a reduced version RA with only linear numbers of CNOT gates and N is the
number of qubits within a neuron). We can see that while SLRy has relatively lower expressibility, it only
requires linear numbers of gates and has a constant circuit depth, which means it uses way fewer computing
resources and might be more robust to noises. Now, the question comes if we can still build useful HQDNN’s
using SLRy, despite its low expressibility.

The answer is affirmative. To show this, we consider the simplest architecture where we apply SLRy to
both feature map and neuron circuit and use polarization as measurement results. With such a setup, it is
easy to show that the final measurement results of the neuron become y = Hjl-\jzl cos xj, Xj = xj + 0;, which
can be rewritten via Taylor expansion as

pm e S (30 0 ©
j j

j k#j

; (5)

HS

/H () v — [ (o wal)™' a6

where we drop all constant terms including those containing only x;. The very first term reproduces the
classical neuron with g, = tanh when x; and 0; are small. We also notice that there are higher-order terms of
xj, which are explicit feature interactions that can help the model learn better. These observations suggest
that a HQDNN with even the simplest neurons like SLRy can also tackle challenging problems when it is
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Table 2. Comparison of different quantum neurons. N is the number of qubits inside a single neuron.

Quantum Hybrid
# of gates # of parameters Circuit depth expressibility expressibility
SLRz N N 1 None None
SLRx/SLRy N N 1 Low Low
Linear RA 3N 2N O(N) Medium High
Full RA 1 (N*+3N) 2N O(N?) High High
QCBM 5 (N*+3N) 5 (N*+3N) O(N?) High Medium

properly scaled up. So an HQDNN can be regarded as a nonlinear generalization of classical NNs [58—60]
and such a generalization can be highly nontrivial as the number of meaningful polynomials in Taylor
expansion can grow exponentially, which brings quantum-specific behaviors to the network.

While SLRy is already a strong neuron when compared to its classical counterpart, entanglement via
controlled gates can further improve their capability as we already see in previous discussions that RA and
QCBM have higher quantum and hybrid expressibility. For demonstration purposes, we will use a minimal

nontrivial example with only two qubits. For SLRy with two qubits, we have p; = cos* X!, p, = cos* X and

ps= i (24 cos(x1 — x2) cos(x1 + X2)), where p1 = po + p1,p2 = po + p2,p3 = po + p3 and
pj = |(jlUn|#(x))|*. The physical meaning of the three quantities is clear p; = P(qb; = 0), p, = P(qby = 0)
and p; = P(qby = qb,) and gb;,i = 0, 1 represents the qubit inside the neuron circuit. In this case, features
and learnable parameters are linearly combined within some trigonometry functions.

If we add a CNOT gate after SLRy, we will have

1 . . .
p1= 3 (14 cosx; cosf; — sinx; sinx, sinf, ),
1
pr= 3 (1+ cosx; cosx; cos, —sinx, sinfb,)
1
p3= 3 (1 + sinx; sin#) sinf; + cosx; cosf) cosf, — cosx; cosb sinx, sinb,).

The power of entanglement comes from crossing terms like cosx; cosx;, sinx; sinx,, and cosx; sinx,, which
leads to an infinite order of interactions between different features under Taylor expansion. Those
higher-order interactions among features are very powerful in large-scale classical machine learning

models [61, 62] while they are naturally introduced in hybrid neurons. Note that even though we use a
simple two-qubit case for the sake of analytical results, the conclusions here can be generalized to arbitrary
numbers of qubits within a single neuron.

Although we have shown that entanglement could boost the expressibility and learning capability of
hybrid neurons, SLRy already provides a competitive candidate. In the following, we will conduct
simulations of HQDNNs and show how simple neurons could bring superior performance, which paves the
way for studying large-scale hybrid NNs in the NISQ era.

3. Hybrid quantum neural networks

With only the building blocks or hybrid neurons, we are not yet ready to construct a useful HQDNN and still
need to address several important questions including network architecture and forward/backward
prorogation. For demonstration, we assume a classification task with multiple classes and discuss these topics
based on the hybrid neurons studied in the previous section.

We will mostly consider a hybrid MLP and its structure is largely the same as its classical counterpart,
except we are using a hybrid quantum neuron. The final measurement result of a single neuron is confined to
y € [—1,1] when unitary evaluation operators are assumed. This can be easily mapped to a rotation angle
and serves as the input to neurons in the subsequent layers.

The hybrid MLP also has three parts, namely, the input layer, the hidden layer, and the output layer. We
will first discuss how to make inferences/predictions with hybrid neurons and then give more details about
both forward and backward propagations.
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3.1. Prediction & cost function
Assuming we are tackling a classification problem with m classes and we keep the cost function to be
cross-entropy, which is widely used in classical neuron networks

Ny m—1

1
L=—p 22D _valogP(Blxa), (7)

a=1 =0

where Ny is the number of data points in the training set, x,, (y?) is the feature set (ground-truth label) of
the ath data point. To infer a reasonable result for m-class classification, we require at least m — 1 output for
the cost function to process.

A straightforward way is to follow the scheme in classical neuron networks and use multiple neurons in
the output layer, which is referred to as multi-neuron single-measurement or MNSM in this work. However,
this method does not utilize the power of quantum computing. Here, we propose a different approach to
make multi-class prediction via single-neuron multi-measurement (SNMM). For such a schema, we only
have a single neuron in the output layer, but we can perform a set of measurements on the single neuron. For
the case of qubits, we can use three Pauli matrices to make three measurement results, which works for a
classification problem with up to three classes. In general, we can also extend this to qudit or use different
measurements on different qubits to address problems with arbitrary classes.

We use the softmax function, similar to Boltzmann distribution, to map the measurement results into
probability before we feed it into the cost function

P(Blxa) =)/ /g, (8)

whereg=73"5e™” (a)/T and T is, in general, a tuneable (or learnable) temperature hyperparameter, which
is necessary here as the measurement results are strictly bounded.

Note that since computing the cost function requires the measurement results from the output layer, this
is typically done using the classical computing resource in the hybrid architecture.

3.2. Forward propogation
We only consider MLP with one hidden layer and we can denote it as a function f}, : [0, 7] — [—1,1]" and
the output of the hidden layer reads h" = f;,(x,0), where nyis the number of neurons in previous layer (or
input layer in this case) and  contains all the learnable parameters of the 1, neurons. Then 4’ is linearly
transformed into the interval [0, 7] via h = 7 (h’ 4+ 1), which becomes the features being fed into next layer.
The same step can be repeated so that one can build more complicated HQDNNs with multiple hidden
layers.

So the forward propagation starts from the input layer, which consumes the normalized and transformed
features. Then the results are passed to the hidden layer. Once hitting the output layer, we process the outputs
using the softmax function and compute the cost as discussed in the previous subsection.

3.3. Backpropagation & optimizer
For HQDNN:Ss, we use classical algorithms to optimize the cost function during the backpropagation phase.
Similar to classical DNNs, this can be either gradient-based or gradient-free algorithms.

Regarding gradient-free methods, we consider the so-called particle swarm optimization (PSO) [63]. The
algorithm iterates for a given number of steps or stops automatically when reaching a local minimum and it
is useful in classical optimization problems including optical inverse design of structural color [64]. In our
implementation, we use the Pyswarms package [65] and set the number of particles to twice the number of
qubits in each neuron. We also fix the hyperparameters {c1,c2,w} controlling the swarm dynamics to be
{0.5,0.5,0.5} and the number of iterations to be 50 in each epoch.

Also, we test the gradient-based optimization algorithms offered by Qiskit, such as the vanilla gradient
descent (GD) and ADAM [66, 67]. The parameters of both algorithms used here are default except the
iteration is 10 and the learning rate is 0.1 in each epoch. The vanilla GD is an iterative scheme to find the
minimum of a function f with an initial point 0o, by updating the parameters in the direction of the negative
gradient of f for a small learning rate n, > 0:

Opi1 =0, — Unﬁf(eﬁa : 9)

The ADAM [66] algorithm only requires first-order gradients with little memory requirement and is
invariant to the diagonal rescaling of the gradients. Moreover, it can cope with non-stationary objective
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functions and noisy and/or sparse gradients. AMSGRAD [67] (a variant of ADAM) uses a ‘long-term
memory of past gradients and, thereby, improves convergence properties.

To confine the learnable parameters to a proper range, we set a bound for each learnable parameter in
PSO. For gradient-based algorithms like GD and ADAM, we add a modular operation after each training
epoch.

We also remark that the current schema for backward propagation is hard to implement on quantum
computing devices so this part must be done on classical computers. In a hybrid computing architecture,
after the optimization is done, the update parameters will be passed into the quantum devices to perform the
next round of forward propagation.

4, Numerical simulations

As we focus on classification tasks in this work, we use the popular iris and wheat seed data sets from the UCI
machine learning repository [68] to test out hybrid neural networks. Currently, we only simulate our models
on a gated-based universal quantum computer using Qiskit and left for future work training and testing on
state-of-the-art quantum devices. Because simulations of quantum computers on classical computing
platforms require exponential resources, we consider an HQDNN containing only one hidden layer with two
hybrid neurons.

For each dataset, five trials of quantum simulation are performed and each simulation contains 15
epochs. Then we take the average value of five simulation as the result, and use standard error(SE) to
calculate errorbar, which is SE = o /1/n. We use SLRy feature mapping and networks are initialized using a
normal distribution with unit deviation and scaled to [, 7]. We explore a set of neurons including SLRy,
RA, and QCBM with varying prediction layers and optimizers. Overall, we observe superior performance
compared to previous work and the results are consistent with our discussions so far.

4.1. Iris dataset

The iris dataset consists of 150 samples, which can be classified into three classes. For each iris sample, it has
four real-valued features, namely, sepal length, sepal width, pedal length, and petal width. The three classes of
setosa, versicolor, and virginica are labeled by integers from 0-2. In each experiment, eighty percent of the
data points are randomly selected for training and the remaining are for testing.

4.1.1. Tests of optimizers

We first test the performance of HQDNNS using different optimization algorithms, including PSO, GD, and
ADAM, as discussed in the previous section. For other network setups, we use SLRy neurons with
polarization measurement, MNSM prediction, and 7 = 10. In figure 2, we plot the training process with cost
and accuracy evaluated on training and test datasets respectively. The results suggest that the cost function
can be optimized with all algorithms and achieve accuracy better than 80%. The two gradient methods
achieve similar cost and accuracy at the end of the training process while ADAM is slighter better than GD
with faster convergence. The PSO algorithm converges faster than GD at the beginning but it settles down on
a worse local minimum. It’s convenient to have classical optimizers work on HQDNNSs as we do not need to
develop new quantum algorithms for this so that they can be readily implemented with NISQ devices. In the
following, we will see that those algorithms also work when we have more complicated and entangled
neurons.

Accuracy alone is not enough to fully characterize the performance of a classifier, thus, we also compute
other critical metrics including precision, recall, F1-score, and AUC (here use micro averaging). Specifically,
we use the classification_report() API from scikit-learn to compute all relevant metrics and the results are
organized in table 3. The actual occurrence of each class, or support, is 10, 8, and 12 for classes 0, 1, and 2
respectively.

Overall, we have found consistent results from the various metrics presented above, compared to figure 2.
ADAM is better in terms of all three metrics while PSO has slightly lower readings than the others. The
reported performance here is comparable to SOTA quantum machine learning models studied in the
literature (see appendix A for more details).

In conclusion, the proposed HQDNN shows promising results with different optimizers and ADAM is in
general preferred as it converges faster while achieving better results on average. This observation is
consistent with classical neural networks and provides the possibility to scale up HQDNN:Ss easily under
accessible hardware platforms.
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optimizers. From the results, we see that ADAM achieves the fastest convergence and generally better performance.

Table 3. Average performance on each class with PSO, GD, and ADAM optimizer.

Precision Recall F1-score AUC Optimizer
Class 0 0.94 0.88 0.91
Class 1 0.75 0.90 0.81 0.95 PSO
Class 2 0.88 0.80 0.84
Class 0 1.00 0.92 0.96
Class 1 0.72 0.98 0.83 0.97 GD
Class 2 0.96 0.80 0.87
Class 0 1.00 0.98 0.99
Class 1 0.78 0.98 0.87 0.98 ADAM
Class 2 0.98 0.83 0.90
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Figure 3. Average cost of training data and accuracy of test data achieved by X, Y, and Z observable. The X or Z observable can
achieve outstanding performance while the Y observable cannot due to vanishing gradients.

4.1.2. Effects of evaluation operator

In the previous section, we have shown that the evaluation operator makes no difference to the HQDNN's
when the neuron can learn arbitrary unitary transformations and argued that this might still be true even if
the neuron has slightly weak expressibility. While it is challenging to prove it analytically, we use numerical
results to support this.

We keep the same setting as in previous experiments and fix the ADAM optimizer. We then test the

HQDNNSs with different evaluation operators from the generators of SU(2) group and the results are
summarized in figure 3 and table 4.

It’s clear that the cost function remains a constant and all the metrics fluctuate around 0.5, which
corresponds to the baseline of a random classifier when A = ®;0,. This suggests that the network barely
learns from the data when A = ®,‘O'Ji, and the neuron has a SLRy structure due to vanishing gradients. On the

other hand, when A = ®,0". or A = ®;07, we have seen comparable results as they converge in the same peace
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Table 4. Average performance of HQDNNS with different evaluation operators o .

Precision Recall F1-score AUC A
Class 0 1.00 0.94 0.97
Class 1 0.79 0.95 0.86 0.96 Qiok
Class 2 0.91 0.83 0.87
Class 0 0.47 0.60 0.52
Class 1 0.43 0.48 0.44 0.62 ®ioy
Class 2 0.57 0.37 0.45
Class 0 1.00 0.98 0.99
Class 1 0.78 0.98 0.87 0.98 R0t
Class 2 0.98 0.83 0.90
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Figure 4. Average cost of training data and accuracy of test data achieved by SLRy, RA, and QCBM. We find that SLRy and RA
achieve the same level of performance while full RA is slightly better since it has more learnable parameters and higher

expressibility. However, QCBM shows lower performance despite its high expressibility, which is caused by the mismatch between
the feature map and the neuron circuit.

and arrive at final accuracy that is close to 0.9. Their performance is also similar in terms of precision, recall,
and F1 score. Those results suggest that even the most simple hybrid neuron can adjust itself to different

evaluation operators to make useful inferences from the data. Overall, the numerical simulations are highly
consistent with our previous claims.

4.1.3. Experiments on neuron circuits

So far, we have tested the HQDNNSs on different optimizers and evaluation operators and observed superior
performance on classical classification tasks. However, we have focused on the special case of SLRy, which
contains only product states and does not fully utilize quantum features like entanglement. In the following,
we will study HQDNN s with ‘real” quantum circuits that cannot be efficiently simulated on any classical
computing devices. More specifically, we tested RA (with both linear and full CNOT gates) and QCBM and
the results are presented in figure 4 and table 5. The setup of the network is the same as previous experiments
and a SNMM prediction layer is applied.

From the results, we can see that RA is slightly better than SLRy. Its training cost drops faster at the
beginning and then hits a plateau higher than SLRy, but eventually converges at better local minimums. All
metrics of RA in each class are also better than SLRy. This is reasonable since RA has more parameters and
higher expressibility. However, for this simple task, we only see marginal gains of a much more complicated
and entangled quantum neuron. There are several assumptions here. First of all, our setup does not fully
utilize the quantum features, and the dense information carried by a single strong neuron gets lost during
measurement. On top of that, the task might be too easy to make a significant distinction between different
neurons. This also leads to a trade-off between the capability of a single neuron and the complexity of the
overall network structure.

On the other hand, QCBM seems to have a relatively lower performance. Although it is better than a
random classifier, it has a hard time converging and the performance metrics show large gaps compared to
even simple SLRy neurons. This is a result of a mismatch between the feature map and the neuron circuit as
the density information encoded with R, is hard to extract by subsequent operations like R, and/or R,.
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Table 5. Average performance on each class with SLRy, RA, and QCBM.

Precision Recall F1-score AUC Ansatz
Class 0 1.00 0.92 0.96
Class 1 0.77 0.98 0.86 0.97 SLRy
Class 2 0.95 0.83 0.89
Class 0 0.79 0.64 0.70
Class 1 0.66 0.85 0.67 0.78 QCBM
Class 2 0.71 0.57 0.60
Class 0 1.00 1.00 1.00
Class 1 0.84 0.98 0.90 0.99 RA_full
Class 2 0.98 0.87 0.92
Class 0 1.00 1.00 1.00
Class 1 0.79 0.95 0.86 0.99 RA_linear
Class 2 0.96 0.83 0.89
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Figure 5. Average cost of training data and accuracy of test data achieved by MNSM and SNMM structure. The better
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Table 6. Average performance on each class with MNSM and SNMM structure.

Precision

Recall

Fl-score AUC structure
Class 0 0.93 0.90 0.90
Class 1 0.89 0.97 0.92 0.98 MNSM
Class 2 1.00 0.95 0.97
Class 0 0.94 0.81 0.87
Class 1 0.79 0.95 0.86 0.98 SNMM
Class 2 0.99 0.96 0.97

4.2. Wheat seed dataset

As we observe the superior performance of different HQDNNSs on the iris dataset, we would like to conduct
some experiments on a more complex problem. Here, we turn to look at the wheat seed dataset, which has
been less tested on quantum machine learning models so far.
The wheat seed dataset has three classes, Kama, Rosa, and Canadian (labeled as class 0,1,2), with each
class containing 70 samples. It also has 7 real-valued features, making it much more complex than the iris
dataset. Here we use this dataset to show that our model is capable of handling more complex scenarios and

study how noisy gates affect the performance of the HQDNN:S. Similarly, eighty percent of all data is chosen
randomly for training and the remaining for testing.

4.2.1. Effects of prediction schemes
We keep the network architecture as before and use SLRy as the neuron circuit. We then tested two different
prediction schemes MNSM and SNMM with ADAM optimizer. The results are summarized in figure 5 and
table 6. The actual occurrence of each class is 15, 12, and 15 for each class respectively.
Both schemes achieve fairly good performance on the dataset, indicating the potential of the HQDNNs to
handle complex real-world problems. Overall, we observe a comparable performance of the two schemas
given a similar AUC of 0.98. However, MNSM shows marginally better performance than SNMM if we look

T
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Figure 6. Average cost of training data under different noise levels. The HQDNN still learns under relatively small noises and
there is a large performance gap when the noise level crosses 0.2.
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Figure 7. Average cost, accuracy, and AUC under different noise levels. The performance degrades linearly when the noise level is
between 0.1 and 0.4. Even when the noise level comes to 0.4, the accuracy is still better than random guesses with a baseline
accuracy of 0.33.

at micro-averaged metrics including precision, recall, and F1-score for both class 0 and class 1. Moreover,
MNSM converges slightly faster than SNMM. There could be multiple reasons for this. First, the MNSM
schema uses more neurons in the output layer and thus has more learnable parameters than SNMM, leading
to higher overall model capability. On top of that, we use a simple SLRy neuron, and the prediction capability
is limited. Introducing complicated neurons with entanglement could be very helpful to the SNMM schema.

4.2.2. Effects of gate noises

An important characteristic of NISQ devices is they exhibit some kind of noise in their gate operations and
measurements. Here, we also investigate how the proposed HQDNN behaves under noises and show that it
could perform reasonably using SOTA NISQ devices.

For simplicity, we assume there are only noises in the gate operations within the neuron circuit, which
follow a standard Gaussian distribution, and its amplitude is controlled by an extra parameter, the noise
level. We then simulate the HQDNN and plot its learning curves against different noise levels in figure 6. The
structure of the network is similar to the previous subsection and we use SNMM prediction with PSO
optimizer. Our numerical results suggest that gradient-based optimizers are more likely to be affected by
noises since they are sensitive to small local changes. All data points are computed from 10 independent runs
to reduce the effects of outliers.

Given relatively small noise levels like 0.1 and 0.2, the model can still learn from the data and the cost can
be optimized to a certain value, which is usually much larger than the ideal case. When the noise level comes
to 0.3 and 0.4, the network cannot effectively minimize the cost and has a harder time converging from runs
to runs as we observe large errors in the final cost after even 15 epochs in different runs. Although a
continued downward trend of the cost is seen when the noise level is 0.3, the cost settles quickly after just a
few epochs if we increase it to 0.4, indicating that the learning process has been hindered by the strong noises.
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To further quantify the effects of the noises, we plot different metrics with respect to varying noise levels
in figure 7. It’s obvious that the performance of the model shows an approximately linear degradation when
the noise level goes beyond 0.1. This is related to the simple architecture of our neuron circuits, otherwise, we
would observe much fast decay of AUC and accuracy (see appendix B for more details). Also, when the noise
level hits 0.4, the accuracy drops close to 0.4, but it is still much better than a random guess, which
corresponds to an accuracy of 0.33. Thus, even under such a strong noise, the model is still capable of
extracting some meaningful information from the data.

Another interesting observation from the result is that the performance of the network actually goes up
when the noise level is around 0.02. This is similar to what has been studied in a class of quantum-inspired
algorithms including the Hopfield recurrent neural network for quadratic unconstrained binary
optimization, where a certain level of noise could boost the performance [69]. Current SOTA NISQ devices
like IBM Prague can achieve very high fidelity and low noise for most common gates [70]. Taking quantum
computer ‘ibm_wasington’ with the newest Eagle quantum processor for an example, the median error for
0,15 3.01 x 10-% while CNOT is 1.75 x 10(=2) [71]. This actually suggests that the QDNNs might show
better performance on current NISQ devices than noise-free clean simulations. It would also be interesting to
study how the effects of noise scale with the network size, but we will leave it to future studies.

5. Conclusion and outlook

In this work, we investigate a class of HQDNNs with a focus on gate-based hybrid neurons. We propose to
characterize the neuron via hybrid expressibility, as a generalization to quantum expressibility and show that
even the simplest hybrid neuron can bring advantages to classical neurons as they contain higher-order
feature interactions, which can be further enhanced by entanglement. We also discuss related components of
HQDNNs including network structure, inference, cost functions, and optimizers. Most importantly, we
show it is possible to make multiple predictions through a single hybrid neuron. We then develop a highly
customizable platform to simulate the proposed HQDNNSs via Qiskit and show that they can achieve
superior performance on different classification problems. Last but not least, we show that HQDNNs with
simple neuron circuits are more robust to noises, making it possible to build useful large-scale neural
networks with quantum features in the NISQ era.

There are still many fundamental questions to be answered about HQDNNSs. For example, we use SLRy
as the feature map, which significantly limits the capability of the hybrid neuron. It would be interesting to
search for a better feature map to encode denser classical information into a hybrid neuron so different types
of feature interactions are more involved. Moreover, as we reveal the important role of entanglement in the
feature interaction, is it possible to make qubits entangled across neurons or even layers to enable more
effective and efficient learning?

From a pure machine learning perspective, we have not utilized any modern deep learning techniques
like dropout [72], layer/batch normalization [73, 74], residual connections [75], etc. It would also be
fascinating to understand how those tricks could help HQDNNs perform better on different problems
including classifications, regressions, and even generative tasks.

Finally, when it comes to experimental realizations. We can try to accelerate the training/prediction
process via fewer measurements, which is not covered in this work. We may also build hardware-specific
neurons, instead of gate-based ones, to better fit the hybrid schema.

In conclusion, our work provides a comprehensive study of a class of gate-based quantum hybrid
neurons and HQDNNs built upon it. Through both analyses and numerical simulations, we show that
HQDNNS are able to resolve challenging real-world problems and can be scaled up in the NISQ era. Our
work provides necessary guidance for future studies of hybrid machine-learning algorithms and may help
reveal more quantum advantages in the long run.
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Appendix A. Comparing with previous works

This appendix seeks to evaluate the performance of our HQDNNs in comparison to other QNNs using the
iris dataset. The dataset consists of three classes: the setosa class, denoted as class 0 in our paper, is linearly
separable from the other two classes. The remaining two classes (versicolor, labeled as class 1, and virginica,
labeled as class 2) are not linearly separable from each other.

In previous work, a novel machine learning technique called the deep quantum-inspired neural network
(DQINN) was introduced by integrating classical deep belief networks (DBNs) and quantum-inspired neural
networks (QINNSs) [76]. The DQINN is designed by combining the linear superposition of multiple DBNs
with quantum intervals in the last hidden layer. In the study, the performance of the DQINN was evaluated
on the iris dataset for multi-classification tasks, and a mean accuracy of approximately 97.3% was achieved.

In a recent study, Li and Wang [77] present a novel quantum neuron network composed of neurons that
utilize swap test technology and phase estimation method to complete the mapping of input qubits to output
qubits. The proposed QNN was then simulated on the iris dataset for multi-classification tasks, yielding
recognition rates of 93.33% and 96.67% for the training and testing sets, respectively.

In paper [78], the authors introduce a variational quantum tensor network (QTN) that utilizes truncated
outputs which are subsequently fed into a classical neural network. The design of shallow quantum circuits is
enabled by leveraging kernel encoding, circuit models, multiple readouts, and stochastic GD algorithms. The
accuracy of the proposed QTN is evaluated on the iris dataset for binary classification tasks with a 100%
accuracy achieved for class 1 or 2, class 1 or 3, and class 2 or 3.

In another study, Dong et al [79] propose a novel variational QNN model that incorporates a quantum
activation circuit and employs quantum particle swarm optimization to optimize the cost function. The
proposed model is then applied to any two categories of the iris dataset for binary classification tasks,
culminating in an accuracy of approximately 93%.

In a recent development, Yu et al [80] introduce a novel QNN architecture based on
parallel-entanglement models, involving the establishment of connections between qubits through quantum
entanglement. The proposed approach is shown to be highly effective in solving practical problems,
exemplified by achieving an average accuracy exceeding 99% in classification tasks for the iris dataset.

Appendix B. Noisy RA ansatz on wheat seed dataset

In this appendix, we investigate the performance of hybrid neurons with full RA (figure B1 left) and linear
RA (figure B1 right) when tested on the wheat seed dataset under varying levels of noise.

The prediction schema utilized here is SNMM and the optimizer is PSO, similar to the setup in the main
text. We assume there’s no noise in the CNOT gate. Five independent runs were conducted to mitigate the
impact of outliers on the results. Our findings indicate that even when the noise level reaches 0.05 or 0.1, a
satisfactory optimal cost can still be attained by linear RA. While for full RA, there’s a jump in the final cost
when the noise level increases from 0.05 to 0.1.

In a noise-free setup, it is clear that both full RA and linear RA can achieve a lower final cost than SLRy
under the assumption of equivalent network architecture. However, when the noise level comes to 0.1, SLRy
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Figure B1. Average cost of Full RA ansatz (left) and Linear RA (right) with noise level. The network with Full and Linear RA
ansatz can also achieve certain cost with 0.05 or 0.1 noise level while SLRy ansatz can achieve similar cost with a higher noise level
of 0.1 or 0.2 and this lead to the observation that the simpler ansatz is more robust to the noise.

13



10P Publishing

New J. Phys. 26 (2024) 093037 CLuetal

already shows much better results than RA. This indicates that in the NISQ era, it would be beneficial to
utilize simple neurons so that the model is more robust to noises and we can scale it up to resolve meaningful
real-world problems.
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