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1 Introduction

Higher order corrections arising from soft gauge bosons in perturbative gauge theory, be

they real or virtual, have been the subject of many investigations. Such radiation generi-

cally leads to series of perturbative contributions to differential cross-sections of the form

αn logm(ξ)/ξ, where α is the coupling constant of the gauge theory, and ξ is related to the

energy carried away by the soft particles. In the soft limit ξ → 0 (in which the eikonal

approximation may be taken), it becomes necessary to resum these terms to all orders

in perturbation theory, as has been achieved by a variety of methods [1–8].1 Central to

resummation is the exponentiation of eikonalized soft gauge boson corrections and it has

been shown for both abelian and non-abelian gauge theory that this indeed occurs [10–13].

To form an exponential series for a cross-section, both the matrix element and the

phase space must exhibit an appropriate factorized structure. The statement for the matrix

1See also [9].
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Figure 1. Examples of connected diagrams Gc of soft emissions between hard outgoing particle

legs in abelian perturbation theory.

Figure 2. Examples of webs of soft emissions between external lines in non-abelian perturbation

theory.

elements rests upon a thorough analysis of the general structure of higher order diagrams.

The result for an amplitude A in abelian gauge theory is simply expressed in the eikonal

approximation as

A = A0 exp
[

∑

Gc

]

, (1.1)

where A is the amplitude without soft radiation containing a number of hard outgoing

external lines, and the sum in the exponent is over connected subdiagrams Gc between

the external lines, with the Born contribution A0 factored out. By a subdiagram, we

mean that part of the Feynman diagram which remains after the hard lines (including

the off-shell photon) are removed. Examples are shown for the case of hard production

of a particle-antiparticle pair in figure 1. The non-abelian case is complicated by the

nontrivial color structure of the Feynman diagrams at successive orders in perturbation

theory. Nevertheless, in the case of two external lines,2 exponentiation still holds provided

one generalizes eq. (1.1) to

A = A0 exp
[

∑

C̄WW
]

. (1.2)

Here W are so-called webs, and are diagrams which are two-eikonal irreducible. That is,

one cannot partition a web into webs of lower order by cutting both external lines exactly

once [11–13].3 Examples are shown in figure 2. Each web has an associated color factor

C̄W which is not the same as the normal color factor CW associated with the web graph.

The color factors C̄W are given in terms of CW by an iterative relation to all orders in

perturbation theory.

The nature of eq. (1.1) in terms of disconnected diagrams is reminiscent of another

well-known property of quantum field theory, namely the exponentiation of disconnected

2In the case of more than two external lines, the structure is more complicated.
3 See [14] for a pedagogical exposition.
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Feynman diagrams in terms of connected ones. This latter property most naturally emerges

using path integral methods (see appendix A for a brief proof), and thus the suggestion

arises of whether it is possible to relate the exponentiation of soft radiative corrections

to the gauge theory path integral. The aim of this paper is to show that this is indeed

the case, and the result is important for a number of reasons. Firstly, it provides a new

perspective on exponentiation. Secondly, it allows one to straightforwardly explore which

properties of exponentiation survive at next-to-eikonal limit and beyond (i.e. corresponding

to subleading terms in ξ above).4 Although at next-to-eikonal order fermion emissions also

contribute (leading to flavor-changing effects), we restrict ourselves here to gluon emissions.

The essential idea of our approach is as follows. One first relates the field theory path

integral for a particle interacting with a gauge field to a first-quantized path integral with

respect to the particle. That is, the external lines become worldlines of particles in quan-

tum mechanics (rather than quantum field theory). Here we utilize the techniques of [15–

17] which have originally been applied in a different context (that of constructing string

theoretical analogues of fixed order field theory amplitudes [18, 19]). A first-quantized

approach to Sudakov resummation has also appeared in [20]. We will see explicitly that in

this representation the eikonal limit corresponds to the radiating particles moving classi-

cally, and next-to-eikonal terms originate from fluctuations around the classical path. The

soft radiation emission vertices can then be interpreted as interactions of the gauge field

with a source, such that individual emission vertices form disconnected diagrams. Then

exponentiation of eikonal corrections follows naturally from usual combinatoric properties

of the path integral.

In the non-abelian case, exponentiation is complicated by the fact that vertices for the

emissions of gluons do not commute. However, one can rephrase the problem using the

replica trick of statistical physics (see e.g. [21]), such that a subset of diagrams arises which

exponentiate. These are then precisely the webs of [11, 12]. Furthermore, we provide an

explicit closed form solution for the modified color factors, given in terms of normal (rather

than modified) color weights.

Our formalism allows one to straightforwardly consider subleading effects with respect

to the eikonal limit, and we classify the possible next-to-eikonal corrections. This can

be divided into a subset which exponentiate (involving NE generalizations of the webs

discussed above), and a set of remainder terms which do not formally exponentiate, but

have an iterative structure in that each order of the perturbation expansion is sufficient to

generate the next order.

Earlier attempts to include certain sub-eikonal effects were done in practical implemen-

tations of Sudakov resummation, mostly in view of gauging the theoretical uncertainty of

the resummation [22]. Typically, this involved including subleading terms in the collinear

evolution kernel in the resummation, which is particularly appealing for Drell-Yan, Higgs

production and related cross sections [22–27]. More recently a study was performed [28]

based on a proposal in ref. [29].

4We only consider matrix elements in this paper. Exponentiation in differential cross-sections also

depends upon factorization of the multiple particle phase space, and is deferred for further study.
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Figure 3. Anatomy of an external line, considered throughout this paper as emerging from a hard

interaction at 4-position xi at time t = 0, and having momentum pf at final time T . The propagator

for the external line contains the effects of soft radiation.

In the rest of this introduction we review the derivation of the path-integral representa-

tion of propagators in quantum field theory, for both scalar and spinor particles and in the

presence and absence of an abelian gauge field. These results will be used in section 2 to

demonstrate the exponentiation of soft radiative corrections in the presence of an abelian

gauge field. We also consider generalization of the results to beyond the eikonal limit, and

classify the resulting corrections into a subset which exponentiate and a remainder term

which mixes with these at next-to-eikonal order. In section 3 we consider the extension to

non-abelian gauge fields, recovering the properties of webs and again examining corrections

to the eikonal limit. We conclude in section 4, and some technical details are presented in

the appendices.

1.1 Propagators as first quantized path integrals

Throughout this paper we will be concerned with external lines, namely hard external

particles susceptible to soft radiation emission. A given external line is created from a

hard interaction process at time t = 0 at space-time point xi, and and has a momentum

pf at some final time T → ∞ (see figure 3). Soft radiation corrections enter the two-

point function for the emitting particle i.e. the propagator for the external line. In the

following subsections, we review the representation of field theory propagators in terms

of first quantized path integrals [15–17], which will later on be used in the derivation of

matrix element exponentiation at eikonal order and beyond. We begin with the simplest

case, that of a free scalar particle.

1.1.1 Free scalar particle

The propagator for a free scalar particle between 4-positions x and y is the Green’s function

for the Klein-Gordon equation

i(S − iε)∆F (x, y) = δ(d)(x, y), S = (−�x +m2), (1.3)

where S,∆F are Hermitian operators working on the Hilbert space H of square integrable

functions of space-time, and we adopt the standard Feynman iε prescription. Note that

we are using the metric (−,+,+,+). Schematically the propagator may be written as

∆F = [i (S − iε)]−1, (1.4)

– 4 –
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where the inverse operator can be defined via an inverse Fourier transform from momentum

space. The usual representation then reads

∆F (x, y) = −i

∫

ddp

(2π)d
eip·(y−x)

p2 +m2 − iε
. (1.5)

To derive this expression using a first-quantized path integral, let us first write the inverse

Klein-Gordon operator using the Schwinger representation

− i(S − iε)−1 =
1

2

∫ ∞

0
dTe−i 1

2
(S−iε)T (1.6)

where the iε now ensures the convergence of the integral. The integrand contains the

exponential U(T ) = e−i 1

2
ST , which is a unitary operator acting on the Hilbert space H and

satisfying the Schrödinger equation

i
d

dT
U(T ) = ĤU(T ), U(0) = I, Ĥ =

1

2
S. (1.7)

We can therefore interpret Ĥ as the Hamiltonian operator of a quantum system, with

internal time coordinate T . Given we are considering external lines as shown in figure 3,

we must calculate the expectation value of the evolution operator U between a state of

definite position (at time t = 0) and definite momentum (at time t = T ). To do this we

introduce states |x〉 and |p〉 in the Hilbert space H, and write the Hamiltonian as

Ĥ(x̂, p̂) =

∞
∑

n=0

p̂µ1
. . . p̂µn H

µ1...µn
ν1...νn

x̂ν1 . . . x̂νn , (1.8)

where x̂ and p̂ are the position and momentum operators whose continuous eigenstates

are |x〉 and |p〉 respectively. Note we have expressed Ĥ in Weyl ordered form, with all

momentum operators to the left of position operators. One then finds, for small time

separations ∆t

〈p|e−iH∆t|x〉 = e−iH(p,x)∆t+O[(∆t)2]〈p|x〉, (1.9)

where H(p, x) is the c-number obtained by replacing the operators on the right-hand-side

of eq. (1.8) with their corresponding variables. Slicing the time variable into N steps of

duration ∆t and inserting a complete set of both position and momentum states at each

step, eq. (1.9) becomes

∫

dx1 . . . dxN

∫

dp0 . . . dpN−1 exp

[

−i

N−1
∑

k=0

H(pk, xk)∆t

]

N
∏

k=0

〈pk|xk〉

N−1
∏

k=0

〈xk+1|pk〉. (1.10)

Using the normalization of the basis states

〈x|p〉 =
eixp

(2π)d
, (1.11)

where d is the number of space-time dimensions, the continuum limit of eq. (1.10) is

〈pf |U(T )|xi〉 =

∫ p(T )=pf

x(0)=xi

DpDx exp

[

−ip(T )x(T ) + i

∫ T

0
dt(pẋ−H(p, x))

]

. (1.12)
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We have absorbed factors of 2π into the measure, and made the boundary conditions

explicit. This is the well-known path-integral result for the evolution operator sandwiched

between initial and final position states, with an additional term in the exponent involving

p(T )x(T ) arising from considering a final state of given momentum, rather than position.

For the present case of a free massive scalar, the Hamiltonian function is given by

H(p) =
1

2

(

p2 +m2
)

. (1.13)

We can perform the path integrations over p(t) and x(t) by expanding around the classical

solution of the equations of motion, given by

p(t) = pf + p′(t), x(t) = xi + pf t+ x′(t). (1.14)

The boundary conditions imply p′(T ) = 0 and x′(0) = 0, and without confusion we can

drop the primed notation from now on. Substituting eq. (1.14) into eq. (1.12) gives

〈pf |U(T )|xi〉 = e−ipf xi−i 1

2
(p2

f
+m2)T

∫ p(T )=0

x(0)=0
DpDx ei

R T
0

dt(pẋ− 1

2
p2). (1.15)

One can now perform the path integral as the continuum limit of a product of Gaussian

integrals in the intermediate position and momentum variables. The measure is such that

this gives unity, and one therefore finds

〈pf |U(T )|xi〉 = e−ipf xi−
1

2
i(p2

f
+m2)T . (1.16)

The momentum space propagator ∆̃F is found by substituting eq. (1.16) into eq. (1.6), and

one finds

∆̃F (p2
f ) =

1

2

∫ ∞

0
dT

〈pf |U(T )|xi〉

〈pf |xi〉
= −

i

p2
f +m2 − iε

, (1.17)

in agreement with eq. (1.5). Having reviewed the relationship between propagators and

path integrals in a simple case, we now consider the extension to a scalar particle interacting

with a gauge field.

1.2 Scalar particle in an abelian background gauge field

We consider a charged scalar particle in an abelian background gauge field. Such a system

is described by the generating functional

Z[J∗, J ] =

∫

Dφ∗Dφ exp
[

i

∫

ddx
(

φ∗(DµD
µ −m2 + iε)φ+ J∗φ+ φ∗J

)

]

, (1.18)

where J, J∗ are sources for the complex scalar field, and Dµ = ∂µ − iAµ. By completing

the square and defining S = (−DµD
µ +m2) we can write this as

Z[J∗, J ] =

∫

Dφ∗Dφ exp

[

i

∫

ddx
(

−φ∗(S − iε)φ − J∗(S − iε)−1J
)

]

. (1.19)
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The propagator is given by the inverse of operator quadratic in φ, φ∗, which gives eq. (1.4)

as before. Using the fact that pµ = −i∂µ, we can write the operator S in normal form (i.e.

with all momenta operators on the left-hand-side) as

S = (p−A)2 +m2 = p2 − p ·A−A · p+A2 +m2 = p2 − 2p ·A− i(∂ ·A)+A2 +m2. (1.20)

Now defining the Hamiltonian operator H = 1
2S as before, one may carry out the manipu-

lations of the previous section to obtain the first-quantized path integral representation of

the evolution operator sandwiched between the external line position and momentum states

〈pf |U(T )|xi〉 =

∫ p(T )=pf

x(0)=xi

DpDx exp

[

− ip(T )x(T ) + i

∫ T

0
dt

(

pẋ−
1

2
(p2 +m2) + p ·A

+
i

2
∂ ·A−

1

2
A2

)]

. (1.21)

This differs from the free particle case due to the presence of the gauge field in the ex-

ponent. When the strength of the gauge field is weak, the classical path of the emitting

particle is well approximated by the free particle solution of eq. (1.14).5 One then finds

〈pf |U(T )|xi〉 = e−ipfxi−i 1

2
(p2

f
+m2)T f(T ), (1.22)

where

f(T ) =

∫ p(T )=0

x(0)=0
DpDx exp

[

i

∫ T

0
dt

(

pẋ−
1

2
p2 + (pf + p) · A(xi + pf t+ x)

+
i

2
∂ ·A(xi + pf t+ x) −A2(xi + pf t+ x)

)]

. (1.23)

Again the boundary conditions have been made explicit, and we have dropped the primes

on the quantities defined in eq. (1.14).

1.3 Spinor particle

We now consider the case of an emitting fermion in the presence of a background gauge

field. The system is described by the generating functional

Z[η, η̄] =

∫

Dψ̄Dψ exp

[

i

∫

ddx
(

ψ̄ ( /D −m)ψ + η̄ψ + ψ̄η
)

]

, (1.24)

where η̄, η are Grassmann-valued source fields.6 The momentum space propagator is then

given by

∆F =
1

−i( /D −m)
= ( /D +m)

1

i[(−i /D)2 +m2]
. (1.25)

Now we define S = (−i /D)2 +m2, by analogy with the scalar case. Using the standard trick

γµγν =
1

2
{γµ, γν} +

1

2
[γµ, γν ], (1.26)

5We will formalize this statement in section 2.2 when we discuss next-to-eikonal exponentiation.
6Recall we use the metric (−, +, +, +) throughout.
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we can rewrite

(−i /D)2 +m2 = p2 − 2p · A− i∂ ·A+A2 +m2 − σµνFµν , (1.27)

where σµν = − i
4 [γµ, γν ] are the generators of the Lorentz group, and Fµν is the field

strength tensor for the gauge field. Carrying out the path integral manipulations as in the

scalar case yields

〈pf |U(T )|xi〉 =

∫ p(T )=pf

x(0)=xi

DpDxPe−ip(T )x(T )+i
R T

0
dt(pẋ− 1

2
(p2+m2)+p·A+ i

2
∂·A− 1

2
A2)+ 1

2
σµνFµν ,

(1.28)

The representation (1.28) is almost identical to the case of a scalar eikonal line, apart from

the coupling to the field strength tensor. This is not surprising, as it is well known [15, 30]

that one can cast fermion actions into a second-order form that gives rise to scalar-like

vertices supplemented by additional seagull vertices involving couplings to the field strength

(see e.g. [31, 32]). The latter correspond physically to the magnetic moment of the spinning

emitting particle, and thus have no analogue in the scalar case.

In this introduction, we have reviewed the representation of particle propagators, in-

cluding the possible presence of an abelian background gauge field, as first-quantized path

integrals. The phase space variables x and p correspond to the position and momentum

of the emitting particle, and the classical path is interpreted as an eikonal line. In the

following section we formalize these statements, and show how the above representations

can be used to derive the exponentiation of soft radiative corrections.

2 Soft emissions in scattering processes

We now turn to the description of soft radiation from external lines, considering Green’s

functions having the form shown schematically in figure 4, and consisting of a hard in-

teraction H(x1, . . . , xn) with external lines emerging at positions {xi}. This is a sum of

subdiagrams containing gauge boson modes of as yet unspecified momentum. Each ex-

ternal line has a propagator associated with it summing the effect of soft gauge boson

emission, and we call such diagrams eikonally factorized.

This is based upon the general analysis of [33], which characterizes the regions of in-

frared sensitivity in Feynman diagrams in a number of scattering processes. The proof that

soft radiation contributions exponentiate now amounts to showing two things. Firstly, that

for the eikonally factorized diagrams defined above (and shown in figure 4), the contribu-

tions from soft radiation on the outgoing external lines exponentiates. Secondly, that all

leading soft radiation terms originate from diagrams having this factorized structure. In

this paper, we prove the first property and assume that the second indeed holds, as has

been shown to be the case elsewhere at eikonal level. We return to the issue of corrections

to the above factorized form (at NE level) in section 2.4.

To make these statements more direct, we begin by separating the path integral over

the gauge boson field into a product of integrals over hard and soft modes
∫

DAµ ≡

∫

DAµ
sDA

µ
h (2.1)

– 8 –
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H

S

S

S

Figure 4. The factorized form of the Green’s functions of eq. (2.5), where H is a hard interaction

with n outgoing external lines, and S is a propagator for the eikonal particle in the presence of the

background soft gauge field which, after the path integral over Aµ
s , generates connections between

the external lines.

The precise definition of Aµ
s and Aµ

h amounts to specifying a surface in the multi-boson

momentum space that separates it into two distinct regions corresponding to soft and hard

modes. Such a surface is, in general, very complicated [33]. Its precise definition does

not concern us in what follows, where we characterize soft radiation by the fact that one

may neglect the recoil of the eikonal particles.7 However, the fact that such a surface

exists allows us to introduce the factorization of eq. (2.1), given that the path integral is a

product of integrals over gauge fields of definite momentum.

The above separation is not gauge invariant, which can be easily seen as follows.

Consider a given soft gauge field Aµ
s , whose momentum modes live only in the soft region

of momentum space. A general gauge transformation has the form

Aµ
s (x) → Aµ

s (x) + ∂µξ(x), (2.2)

for some function ξ(x). Transforming to momentum space, ξ(x) may well have momentum

modes defined in the hard region of momentum space, and thus the transformed gauge

field will have in general both soft and hard components. Instead, both the soft and hard

gauge fields obey a restricted gauge invariance given by the momentum space analogue of

eq. (2.2)

Aµ
s,h(k) → Aµ

s,h(k) + kµξ′(k). (2.3)

Here ξ′(k) is non-zero only if k is in the soft and hard regions for Aµ
s and Aµ

h respectively.

We now formally define the hard interaction as

H(x1, . . . , xn) =

∫

DAµ
h DφDφ

∗ 1

in
δ

δJ(y1)
. . .

δ

δJ(yn)
〈y1|S − iǫ|x1〉 . . . 〈yn|S − iǫ|xn〉

× exp

[

iS[φ, φ∗, Aµ] + i

∫

ddx
(

J(x)φ∗(x) + J(x)φ∗(x)
)

]

. (2.4)

This is analogous to the expression for a Green’s function, except for the fact that the

path integral over soft gauge field modes Aµ
s has yet to be performed. Also, the factors

7We will consider corrections to this idea when discussing next-to-eikonal exponentiation in section 2.2.
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〈yi|S − iǫ|xi〉 (i.e. inverse propagators for the particle in the background of the soft gauge

field) truncate the external legs of the Green’s function.

We now define the further quantity

G(p1, . . . , pn) =

∫

DAµ
s H(x1, . . . , xn)〈p1|(S − iε)−1|x1〉 . . . 〈pn|(S − iε)−1|xn〉, (2.5)

where a propagator factor has been associated with each external line, and the path inte-

gral over Aµ
s inserted. This latter integral does two things. Firstly, it generates all possible

subgraphs within the hard interaction H (i.e. such that there are n external lines emerg-

ing at 4-positions {xi}), containing both soft and hard gauge boson modes. Secondly,

it produces soft radiation, both real and virtual, from the external lines. This is shown

schematically in figure 4, where real and soft radiation is included in the soft blobs at-

tached to each external line. One thus sees that G is a full Green’s function of the theory,

written in eikonally factorized form. Note that the propagator for the emitting particle

in the presence of the background soft gauge field is removed in eq. (2.4), and replaced in

eq. (2.5) with the propagator sandwiched between states of given initial position and final

momentum.

To obtain the contribution to the scattering amplitude from the function G(p1, . . . , pn),

one must truncate each external propagator. That is, for external leg i one multiplies by

a factor p2
i + m2 to take account of the fact that the line is external and thus has no

(free) propagator attached. In principle one must also divide by the residue of the scalar

propagator, arising from renormalization of the scalar field. However, this residue is unity

due to the absence of self-interactions for the eikonal particle, and also the fact that the

gauge field is treated as a background. As is clear from eq. (2.5), one may treat each

external line separately. Using the representation (1.21), one can rewrite each external line

contribution as

i(p2
f +m2)〈pf | − i(S − iε)−1|xi〉 = i(p2

f +m2)
1

2

∫ ∞

0
dTe−ipfxi−i 1

2
(p2

f
+m2−iε)T f(T )

= −e−ipfxi

∫ ∞

0
dT

(

d

dT
e−i 1

2
(p2

f
+m2)T

)

(

e−
1

2
εT f(T )

)

= −e−ipfxi

(

−f(0) −

∫ ∞

0
dTe−i 1

2
(p2

f
+m2)T

(

d

dT
e−

1

2
εT f(T )

))

= −e−ipfxi

(

−f(0) −

∫ ∞

0
dTe−i 1

2
(p2

f
+m2)T d

dT
f(T )

)

. (2.6)

In the last step we have taken the limit ε → 0. At this point one can let pf approach its

mass shell and obtain the simple result

i(p2
f +m2)〈pf | − i(S − iε)−1|xi〉 = e−ipfxif(∞). (2.7)

The limit T → ∞ of f(T ) in eq. (2.7) allows us to simplify the expression for f in eq. (1.22)

by performing the Gaussian integral over p. After shifting the integration variable p→ p+A

the result is a path integral over x only

f(∞) =

∫

x(0)=0
Dx ei

R

∞

0
dt( 1

2
ẋ2+(pf +ẋ)·A(xi+pf t+x(t))+ i

2
∂·A(xi+pf t+x)). (2.8)
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Thus, the eikonally factorized contribution to the scattering amplitude for a charged scalar

in an abelian background field takes the form

S(p1, . . . , pn) =

∫

DAµ
sH(x1, . . . , xn) e−ip1x1f1(∞) . . . e−ipnxnfn(∞) eiS[As]. (2.9)

with f(∞) given by eq. (2.8), and the label of each f(∞) indicates the particular external

line. Also we have explicitly factored out the action for the soft gauge field, which remains

after the path integrals over the particle and hard gauge fields. This form (2.9) will now

enable us to find all-order expressions for these amplitudes.

As a simple one-dimensional path integral, it can be further manipulated using simple

classical methods. The strictest approximation is to neglect the fluctuations x(t) and

p(t). This is equivalent to the eikonal approximation in Feynman diagrams, and one sets

x = 0, ẋ = 0, p = 0 and as well as neglecting the ∂ · A and A2 terms in eq. (1.21). One

then finds an Aharanov-Bohm-like phase factor for the straight line trajectory

f(∞) ∝ ei
R

dx·A(x). (2.10)

Inserting this result into the path integral (2.9) where we integrate over soft gauge field

fluctuations the Wilson lines, being linear in the soft gauge field Aµ
s , act as a collection of

classical source terms for the soft A-field, distributed along the classical trajectory.

2.1 Eikonal exponentiation

Now that we have established that in the eikonal approximation the soft radiation is de-

scribed by a Wilson line we can analyze what happens in perturbation theory. Let us

consider, without loss of generality, an external line created at xi = 0 and in direction

nµ ≡ pµ
f . Then eq. (2.10) becomes

exp

[

i

∫ ∞

0
dtnµAµ(nt)

]

. (2.11)

This can be written, after a Fourier transform to momentum space, as

i

∫ ∞

0
dt nµAµ(nt) = −

∫

ddk

(2π)d
nµÃµ(k)

n · k
. (2.12)

Note that this is invariant under rescalings of the eikonal momentum nµ. As seen above, this

acts as a source term for the soft gauge field when the path integral over Aµ
s is performed.

It can be represented as a 1-photon vertex with the momentum space Feynman rule

p

k

−
nµ

n · k
, (2.13)

where momentum k flows into the vertex. The path integral over the soft gauge field

generates all possible diagrams connecting numbers of source vertices. By the usual rules

of quantum field theory, one finds connected and disconnected diagrams, which in this case
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Figure 5. Example of a disconnected subdiagram between two outgoing external lines, to be

compared with the connected subdiagrams of figure 1.

connect the external lines given that the source vertices lie along the latter. The collection

of all diagrams exponentiates in terms of connected diagrams.

To illustrate this further, consider the case of a hard interaction with two outgoing

eikonal lines, an example of which is shown in figure 1. There one sees a number of

connected subdiagrams connecting the external lines. One also finds disconnected subdia-

grams, such as that shown in figure 5. However, given the usual property of exponentiation

of disconnected diagrams in quantum field theory, one has:

∑

G = exp
[

∑

Gc

]

. (2.14)

The sum on the left is over all subdiagrams G, while the sum on the right is over all

connected subdiagrams Gc.

We have thus succeeded in showing that the exponentiation of soft radiative corrections

in the eikonal limit can be related to the exponentiation of disconnected diagrams. We

now consider what happens when next-to-eikonal corrections are considered.

2.2 Next-to-eikonal exponentiation

The analysis of the previous section relied on the fact that the factors f(∞) describing

soft radiation from the external lines are written as path integrals in x. This allowed

the straightforward interpretation of the eikonal limit as the limit in which the emitting

particle follows a classical free path. However, this identification also allows one to go easily

beyond the eikonal approximation. If the emitted radiation is soft but with non-negligible

momentum, the classical path is still a good approximation to the equations of motion

for the eikonal particle, and one can examine deviations from the straight-line path in a

systematic expansion. Given that this does not affect the interpretation of gauge boson

emission vertices in terms of disconnected subdiagrams, one still expects such corrections

to exponentiate.

To formalize this argument, we reconsider the external line given by eq. (1.14), where

again we take xi = 0 without loss of generality. Given that the external eikonal particles

have light-like momenta, one may write pj = λnj, where n2
j = 0. Then eq. (2.8) becomes

f(∞) =

∫

x(0)=0
Dx exp

[

i

∫ ∞

0
dt

(

1

2
ẋ2 + (λn + ẋ) · A(λnt + x) +

i

2
∂ · A(λnt + x)

)]

.

(2.15)

– 12 –



J
H
E
P
0
3
(
2
0
0
9
)
0
5
4

One now clearly sees that in the limit λ → ∞, one may neglect all terms involving x, ẋ

and ∂ · A, leaving precisely the eikonal approximation discussed in the previous section.

That is, fluctuations about the classical free path are suppressed by inverse powers of λ.

By expanding in λ, one keeps the first subleading corrections to the eikonal approximation,

i.e. corresponding to the next-to-eikonal (NE) limit.

For subsequent purposes it is more convenient to rescale the time variable t→ t/λ, so

that eq. (2.15) becomes

f(∞) =

∫

x(0)=0
Dx exp

[

i

∫ ∞

0
dt

(

λ

2
ẋ2 +(n+ ẋ) ·A(nt+x)+

i

2λ
∂ ·A(nt+x)

)]

. (2.16)

The first term in the exponent is now ∼ O(λ), but gives rise to a propagator for x(t) which

is O(λ−1) by virtue of being the inverse of the quadratic operator in x(t). The remaining

terms generate effective vertices for soft gauge boson emission in the NE limit, which one

can again interpret as source terms for the soft gauge field. Thus, following the reasoning in

the previous section, one finds that these NE corrections exponentiate as before, i.e. one has:

f(∞) = exp
[

∑

Gx
c

]

, (2.17)

where Gx
c are connected (through x propagators) diagrams along external lines, and lo-

cated on the latter by vertices derived by a systematic expansion of eq. (2.16) in λ−1. At

LO, one recovers the eikonal approximation of the previous section. To obtain the NE

approximation one must gather all terms ∼ O(λ−1), which can be described as follows.

Firstly, NE graphs must have at most one propagator for the emitting particle x(t),

due to its being O(λ−1) as remarked above. There is also a NE vertex originating from

the term in ∂ · A, and a given NE graph containing such a vertex must then contain

no propagator factors for x(t). We examine in detail the NE Feynman rules that result

from eq. (2.16) in appendix B, and show that they agree with the results one obtains in

standard perturbation theory after expanding to NE order. The advantage of the above

representation, however, is that exponentiation of these corrections is manifest.

2.3 Exponentiation for spinor particles

We have so far only considered the case of a scalar eikonal particle. For emitting fermions

(with a similar expression for combinations of fermions and antifermions etc.), we write

the definition of the hard interaction as

H(x1, . . . , xn) =

∫

DAµ
h DψDψ̄

1

in
δ

δη̄(y1)
. . .

δ

δη̄(yn)
〈y1|S0 − iǫ|x1〉 . . . 〈yn|S0 − iǫ|xn〉

× exp
[

iS[ψ, ψ̄,Aµ] + i

∫

ddx
(

η̄(x)ψ(x) + ψ̄η(x)
)

]

, (2.18)

where S0 − iǫ is the free fermion inverse propagator. The eikonally factorized Green’s

function has the same form as before (eq. (2.5)), where the propagator in the presence of

the background gauge field is given by eqs. (1.28). Truncating the external lines of the full
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Green’s function,8 one finds that the eikonally factorized scattering amplitudes are given

by the same expression eq. (2.9), but where the external line factor is now:

f(∞) =

∫

x(0)=0
Dx exp

[

i

∫ ∞

0
dt

(

λ

2
ẋ2 + (n+ ẋ) ·A(nt+ x)

+
i

2λ
∂ · A(nt+ x) +

1

2λ
σµνFµν

)]

, (2.19)

and we have rescaled the time variable t → t/λ as before. The proof of exponentiation

up to NE order proceeds directly as in the scalar case, except for the additional magnetic

moment vertex which, although absent in the scalar case, does nothing to invalidate the

proof. Note that, due to suppression by λ, the additional vertex is indeed of NE order, as

expected given that in the strict eikonal limit, radiation is insensitive to the spin of the

emitting particle.

One may worry about ordering of Dirac matrices when the exponential of eq. (2.19) is

expanded. However, this is not an issue due to the fact that the magnetic moment vertex

is NE and thus occurs in each diagram only once at this order.

The preceding analysis has shown that in eikonally factorized Green’s functions, soft

gauge boson corrections exponentiate up to NE order. This is not yet a proof that such

corrections exponentiate in matrix elements themselves, which include Green’s functions

not having an eikonally factorized structure. At strictly eikonal level (as is well known),

one may in fact ignore contributions from diagrams which are not eikonally factorized. At

NE order, however, contributions arise from diagrams in which a soft emission connects an

external line with the hard interaction. This is the subject of the following section.

2.4 Low’s theorem

In the previous section we have demonstrated exponentiation for next-to-eikonal photon

emissions from external lines. That is, the exponentiation holds for scattering amplitudes

having the eikonally factorized form of figure 4. However, at NE order there are also cor-

rections to the exponentiation arising from soft gluon emissions which land on an external

line, having originated from inside the hard interaction. A given matrix element then has

the schematic form (up to next-to-eikonal level):

M = exp
[

ME + MNE
]

(1 + Mr). (2.20)

Here ME,NE collect the eikonal and next-to-eikonal diagrams from eikonally factorized

Green’s functions respectively, and Mr is a remainder term which does not exponentiate,

and contains NE contributions from diagrams such as that shown in figure 6. In what

follows, we refer to emissions from within the hard interaction as internal emissions, and

those originating from external lines as external. Diagrams with internal emissions have

been studied before in the literature. It has been shown for a fixed number of scalar external

8In the spinor case we defined the evolution operator U(T ) as involving only the denominator of eq. (1.25).

The leftover factor in the numerator indeed combines correctly with the inverse free propagator to give a

factor p2
f + m2 as in the scalar case of eq. (2.6).
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H

S

S

S

Figure 6. An example of a diagram which contributes to the remainder factor Mr of eq. (2.20).

Such contributions are formed by taking an eikonally factorized Green’s function, and adding a soft

gluon emission which lands on an external line, but originates from inside the hard interaction.

lines that, up to NE order, the sum of diagrams containing a soft emission (internal or

external) can be related to the scattering amplitude with no emissions [34]. This result is

known as Low’s theorem, and was generalized to the case of spinor external lines in [35],

an extension known as the Low-Burnett-Kroll theorem. Generalization to higher orders

was considered in [36]. The fact that graphs with an extra emission can be related simply

to those without an emission means that, although the remainder term does not have a

formal exponential structure, it has an iterative form to all orders in perturbation theory.

In this section we discuss these properties in the path integral formalism adopted in this

paper, in order to complete our discussion of NE exponentiation. This also allows for a

generalization of the ideas presented in [34–36].

Our starting point is the expression for the n-particle scattering amplitude (see also

eq. (2.9))

S(p1, . . . , pn) =

∫

DAsH(x1, . . . , xn;As)e
−ip1x1f(x1, p1;As) . . . e

−ipnxnf(x1, p1;As)e
iS[As] ,

(2.21)

where we have explicitly indicated the dependence of the external leg factors (eq. (2.16))

on the soft gauge field. We also now consider the fact that the external lines are produced

at 4-positions xi 6= 0 i.e.

f(xi, pf , As) =

∫ p(∞)=pf

x(0)=xi

Dx exp

[

i

∫ ∞

0
dt

(

λ

2
ẋ2 + qi (n+ ẋ) · A(xi + nt+ x)

+
i

2λ
qi ∂ · A(xi + pt+ x)

)]

. (2.22)

We have also indicated the dependence of the hard part on the soft photon field As and

rescaled this field so as to explicitly display the dependence on the eikonal particle’s electric

charge qi. Furthermore, we drop the subscript s on the gauge field in what follows, and

leave implicit the path integrals over the external line 4-positions xi.

Both H and the f ’s depend on the soft gauge field A. As discussed in section 2, the

separation between soft and hard gauge modes leaves a residual gauge invariance, given
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by the usual form of eq. (2.2), but where the function Λ(x) has only soft modes when

transformed to momentum space. It is implicitly assumed that this in the case in the

following. Under such a transformation, the external line factors transform as

f(xi, pf ;A) → f(xi, pf ;A+ ∂Λ) = e−iqΛ(xi)f(xi, pf ;A), (2.23)

which follows from the definition of eq. (2.7).

In order for the path integral to remain invariant under the family of gauge transfor-

mations given by eq. (2.2), the hard function H must transform as

H(x1, . . . , xn;A) → H(x1, . . . , xn;A+ ∂Λ) = H(x1, . . . , xn;A)eiq1Λ(x1)+...+iqnΛ(xn). (2.24)

We can now use the gauge invariance to relate diagrams with soft emissions from inside the

hard interaction to similar diagrams with no emission, as follows. First, one may expand

both sides of eq. (2.24) to first order in A and in Λ, which gives

H(x1, . . . , xn) +

∫

ddxHµ(x1, . . . , xn;x)(Aµ(x) + ∂µΛ(x)) =

H(x1, . . . , xn) +

∫

ddxHµ(x1, . . . , xn;x)Aµ(x)

+ i

∫

ddx
(

H(x1, . . . , xn)

n
∑

j

qjδ(x − xj)
)

Λ(x). (2.25)

When the path integral over the soft gauge field is performed, Hµ(x1, . . . , xn;x) generates

hard interactions which a single soft photon emission (with Lorentz index µ). Because Λ(x)

is arbitrary we infer

− ∂µH
µ(x1, . . . , xn;x) = iH(x1, . . . , xn)

n
∑

j

qjδ(x− xj), (2.26)

where we have integrated by parts on the left hand side of eq. (2.25). In momentum space

this becomes

− kµH
µ(p1, . . . , pn; k) =

n
∑

j

qjH(p1, . . . , pj + k, . . . , pn). (2.27)

One can expand this up to first order in k to obtain

− kµH
µ(p1, . . . , pn; k) =

n
∑

j

qjkµ
∂

∂pjµ

H(p1, . . . , pn) , (2.28)

where the zeroth order term on the right hand side vanishes due to charge conservation
∑

j qj = 0. Now, because kµ is an arbitrary soft momentum, one may write

Hµ(p1, . . . , pn; k) = −

n
∑

j

qj
∂

∂pjµ

H(p1, . . . , pn) . (2.29)
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This simply relates internal emission from the hard interaction with the same hard interac-

tion but with no emission. For a simple example of how this works using more traditional

methods, we refer the reader to appendix C.

In section 2 we ignored the fact that the external lines emerge at positions xi which

are integrated over and thus in general non-zero. Taking this into account also leads to

corrections of NE order (and beyond), which enter the above remainder term Mr. To see

this, we write the eikonal one-photon source term as:

− q

∫

ddk

(2π)d
n ·A(k)

n · k
eix·k. (2.30)

This can be expanded as

− q

∫

ddk

(2π)d
(1 + ix · k)

n · A(k)

n · k
, (2.31)

where the first bracketed term corresponds to the eikonal approximation, and the second

term (involving the factor x · k) is suppressed by one power of momentum and is thus a

NE correction. We now combine these terms with the factors of eq. (2.29), and up to NE

order the scattering amplitude is given by a sum over all such corrections, where each NE

factor occurs at most once. One then finds a NE contribution

S(p1, . . . , pn) =

∫

DA

[(

−

n
∑

j

qj
∂

∂pjµ

H(p1, . . . , pn)

)
∫

ddk

(2π)d
Aµ(k)+

∫

dxd
1 . . . dx

d
nH(x1, . . . , xn)

(

∑

j

qj

∫

ddk

(2π)d
(−ixj · k)

n · A(k)

n · k

)

e−ix1·p1−...−ixn·pn

]

f(0, p1;A) . . . f(0, pn;A) , (2.32)

where we have explicitly instated the integrals over the initial positions of the external lines

{xi}. Performing these integrals, the scattering amplitude is given by

S(p1, . . . , pn) =

∫

DA

[
∫

ddk

(2π)d

n
∑

j

qj

(

nµ
j

nj · k
kν

∂

∂pjν

−
∂

∂pjµ

)

H(p1, . . . , pn)Aµ(k)

]

× f(0, p1;A) . . . f(0, pn;A) . (2.33)

Some comments are in order regarding the form and interpretation of this result. The

external line factors f(0, pi;A) contain exponentiated eikonal and NE terms, as discussed

previously. Corrections to the NE exponentiation then arise due to the bracketed prefactor

in eq. (2.33), which contains a sum over different possible NE corrections. Such corrections

contribute to the remainder term Mr in eq. (2.20), and do not exponentiate. However,

eq. (2.33) shows that they can be obtained as derivatives of the hard interaction with

no soft emissions. Thus, the remainder term has an iterative structure to all orders in

perturbation theory.

For scattering amplitudes, one may summarize this as follows. Leading eikonal loga-

rithms arising from soft gluon emission exponentiate. NE logarithms do not exponentiate,
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but can be separated into the sum of a series which does exponentiate, and a remainder

sum which does not exponentiate, but is obtainable in principle to all orders in the coupling

constant.

To further clarify the above formulae, it is instructive to consider the case where the

hard interaction H is a scalar. Then it can only depend on Lorentz invariant products of

momenta. The derivatives with respect to the 4-momenta in eq. (2.33) can be reexpressed

in terms of derivatives with respect to products of 4-vectors (corresponding to Mandelstam

invariants in the hard scattering process). One may verify that derivatives w.r.t. p2
i vanish,

and in the case of two external lines (n = 2) there is only one scalar p1 · p2. eq. (2.33) then

becomes

S(p1, . . . , pn) =

∫

DA

[

∫

ddk

(2π)d

(

nµ
1 (k · n2 − k · n1)

n1 · k
+
nµ

2 (k · n1 − k · n2)

n2 · k

)

×
∂

∂(p1 · p2)
H(p1, . . . , pn)Aµ(k)

]

f(0, p1;A) . . . f(0, pn;A) . (2.34)

This is precisely the form one expects based on a conventional Feynman diagram treatment

(see appendix C), and one may interpret the bracketed factor in eq. (2.34) as an extra vertex

describing soft emission from within the hard interaction.

3 Non-abelian gauge theory

So far we have considered an abelian background gauge field. In the case where the gauge

field is non-abelian, the derivation of the scattering amplitude for eikonally factorized dia-

grams proceeds similarly to section 2. Here we consider the simple case of a hard interaction

with two outgoing external lines. That is, the analogue of eq. (2.9) can be written

S(p1, p2) =

∫

DAµ
s H

i1i2(x1, x2)e
−ip1x1f i1j1

1 (∞)e−ip2x2f i2j2
2 (∞)eiS[As]. (3.1)

Here {ik} and {jk} are indices in the fundamental representation of the gauge group, such

that the outgoing particles have indices {jk} and summation over repeated color indices is

implied. The external line factors f ikjk(∞) have the form

f i1j1(∞) =

[

∫

x(0)=xi

DxPei
R

∞

0
dt( 1

2
ẋ2+(pf +ẋ)·A(xi+pf t+x(t))+ i

2
∂·A(xi+pf t+x))

]i1j1

, (3.2)

i.e. similar to before, but matrix-valued in color space due to the exponent being linear

in the non-abelian gauge field Aµ = Aµ
At

A, where tA is a generator of the gauge group.

Furthermore, there is a path ordering of the color matrices along the external line. As

before, the external line factors act as source terms for the soft gauge field when the path

integral over Aµ
s is performed. However, it is no longer immediately clear that the soft

corrections exponentiate. In the abelian case, the exponentiation of soft gauge boson cor-

rections was identified with the exponentiation of disconnected diagrams between sources.

Crucial to the combinatorics of this result is the fact that in the abelian case, the source
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terms commute with each other. This is no longer true in the non-abelian case, due to the

matrix valued nature of the source terms, and also the path ordering of the exponential

in eq. (3.2). We will see, however, that it is still possible to address exponentiation in the

non-abelian case, by rephrasing the problem using the replica trick of statistical physics

(see appendix A for another application i.e. the proof of the exponentiation of disconnected

diagrams in field theory). One can then write the scattering amplitude in a form such that

extra structure emerges in the exponent, whereby the contraction of soft gluon emissions

between eikonal lines gives rise to a exponentiating subset of diagrams. These can then be

identified with the webs of [11, 12].

To simplify the discussion, we first restrict ourselves to the strict eikonal limit. Fur-

thermore, we consider the case of a hard interaction with the color singlet structure

H i1i2(x1, x2) = H(x1, x2) δ
i1i2 , (3.3)

where δi1i2 is the Kronecker symbol. Such a structure arises in interactions where e.g. an

incoming color singlet particle gives rise to the pair production of two hard final charged

scalars (the scalar analogue of e+e− pair production by a virtual photon), as shown in

figure 2. Given that, up to the NE corrections discussed in section 2.4, one may consider

the external lines as being created at x = 0, one may take the hard interaction outside the

path integral over As in eq. (3.1) to obtain (in this case)

S(p1, p2) = H(p1, p2)

∫

DAµ
s f

ij1
1 (∞) f ij2

2 (∞) eiS[As]. (3.4)

Here S[As] is the action for the soft gauge field which is independent of the emitting

particles. The product of external line factors, suppressing momentarily the color indices,

is given by

f1(∞)f2(∞) =
[

Pei
R

dx1·A(x1)
] [

Pei
R

dx2·A(x2)
]

. (3.5)

The first factor is a Wilson line parametrized by x1(s), where s = −t increases along

the direction of the charge flow, with −∞ < s < 0. The second factor is a Wilson line

parametrized by x2(s), with s = t and 0 < s < ∞. One may combine these into a single

curve given by

x(s) =

{

x1(s), −∞ < s < 0;

x2(s), 0 ≤ s <∞.
(3.6)

Due to the path ordering in the definition of the Wilson line, one has the property
[

Pei
R

dx1·A(x1)
] [

Pei
R

dx2·A(x2)
]

= Pei
R

dx·A(x), (3.7)

so that, for the simple interaction considered here, one may combine the two external line

factors into the single factor

f(∞) = f1(∞)f2(∞) = Pei
R

dx·A(x). (3.8)

The scattering amplitude of eq. (3.4) is now given by:

S(p1, p2) = H(p1, p2)F , (3.9)
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where

F =

∫

DAµ
s f(∞)eiS[As]. (3.10)

We now consider the quantity

FN =

[
∫

DAµ
1f

(1)(∞)eiS[A1]

]

. . .

[
∫

DAµ
Nf

(N)(∞)eiS[AN ]

]

. (3.11)

Here {Aµ
i } are N replicas of the soft gauge field (we have dropped the subscript s for

brevity), and S[Ai] the action for the ith replica. One has a different external line factor

f (i) for each replica field. Combining the path integrals using DAµ ≡
∏

i DA
µ
i , one can

rewrite eq. (3.11) as

FN =

∫

DAµf (1)(∞) . . . f (N)(∞)eiS[A1]+...+iS[AN ]. (3.12)

The physical interpretation of this quantity is as follows. The external line factors, as in

the abelian case, contain sources for the gauge field. In this case, they generate diagrams

containing any mixture of the N replica gauge fields, which span the external lines of the

hard interaction (which in this case have become a single external line). Each of the vertices

for the emission of a gauge field replica has a non-trivial color structure, such that neither

the external factors f (i) nor the vertices they give rise to commute. However, by definition

one has:

FN = 1 +N log(F) + O(N2). (3.13)

It follows that, if one can extract a term in eq. (3.12) that is linear in the number N of

replica fields, one has

F = exp
[

∑

W
]

, (3.14)

where the sum is over all diagrams W that contribute at O(N). Crucially, we will find

that not all diagrams in the theory have terms of O(N), so one recovers the property of

exponentiation of soft radiative corrections in terms of a subset of diagrams with certain

properties. The diagrams in this case will still contain replica fields. However, given that

the gauge group of the replicated theory is the same as that in the standard theory, it must

be true that the color structures of the subdiagrams which exponentiate are the same in

the two theories.

We now describe how to isolate the term linear in N in eq. (3.12). The product of

external line factors has the form:

f (1)(∞) . . . f (N)(∞) = P exp

[
∫

dx · A1(x)

]

. . .P exp

[
∫

dx ·AN (x)

]

. (3.15)

Ideally we want to write this as a single path-ordered exponential, so that one can identify

the usual rules of perturbation theory. This can be achieved by writing eq. (3.15) in the

following form:

N
∏

i=1

P exp

[
∫

dx · Ai(x)

]

= RP exp

[

N
∑

i=1

∫

dx · Ai(x)

]

, (3.16)
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t0 t1 t2t ’0 t ’1

Figure 7. Example of radiative corrections generated by the source terms of eq. (3.17), where two

gauge boson replicas are shown. Each set of replica emissions is time ordered, such that (in this

case) t2 > t1 > t0 and t′
1
> t′

0
.

where we have introduced the replica ordering operator R, defined such that

R[Ai(x)Aj(y)] =

{

Ai(x)Aj(y), i ≤ j

Aj(y)Ai(x), i > j
, (3.17)

with obvious generalization to higher numbers of operators. That is, R orders any product

of matrix-valued fields into a sequence of increasing replica number. Note that the resulting

product is no longer strictly time ordered, although the matrix fields of any given replica

number remain time ordered.

As before (and by analogy with conventional Feynman perturbation theory for non-

Abelian gauge fields), the single exponent in eq. (3.16) acts as a collection of sources for

the soft gauge field. The path integration over the soft gauge field generates diagrams

containing multiple replica emissions along the eikonal line, where the replica numbers are

not necessarily ordered along the line (see figure 7). However, the expression for a given

diagram, as dictated by the source terms arising from eq. (3.16), involves replica ordered

products of operators, each of which involves a color matrix. Thus, the color structure

associated with each diagram is not the same as that which would result from conventional

perturbation theory, but rather that associated with the given replica-ordered product of

matrix-valued fields. The subset of diagrams which exponentiates then has a modified

color structure, as is known to be the case for webs [11–13]. To see which diagrams W

actually contribute in eq. (3.14), one must consider contracting gluons emitted from two

or more vertices. Given that the gauge field replicas do not interact with each other (i.e.

are only tangled through color structure), one can clearly only contract gluons which have

the same replica number i and adjoint color index A. Here we consider this up to O(A4
µ)

in the scattering amplitude (i.e. up to two gluon lines). Firstly, we need only consider

contributions from vertices on different segments of the combined Wilson line x(t), as those

on the same segment ultimately give contributions proportional to (at least in covariant

gauges) p2
1 = 0 or p2

2 = 0. Also, each diagram has a multitude of similar diagrams obtained

by permuting the replica labels. The operator R for each diagram orders the color matrices

in the form

[tA1

1 . . . t
An1

1 ] . . . [tB1

N . . . t
BnN

N ] (3.18)

i.e. a product of strings of color matrices, with one string for each replica (if present), and

ni matrices for replica i. Given that the replicas do not interact with each other, the color
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i, A

x2

x1

x2

x1

x2

x1

(a) (b) (c)

j, Bi, A

i, A j, B

Figure 8. Diagrams that potentially contribute to the exponentiated contribution to the scattering

amplitude in the case of two external lines connected by a color singlet structure, for one and two

gluon emissions. In fact, only (a) and (c) contribute as discussed in the text.

indices of each string in eq. (3.18) are contracted independently of the other strings. That

is, the color factor for each diagram has the form

N
∏

i=1

K
A1...Ani

i [tA1

1 . . . t
Ani
1 ], (3.19)

where K
A1...Ani

i is a combination of factors involving fABC and δAB which implements the

color contractions for replica i in the diagram being considered. Each of the strings of color

matrices corresponding to a given replica number in eq. (3.19) has two color indices in the

fundamental representation, thus by Schur’s Lemma must be proportional to the identity.

Hence, the color factor of a complete diagram in the replica ordered perturbation theory

is the product of the individual color factors associated with the subdiagrams formed

from each replica separately. Furthermore, the ordering of the factors in eq. (3.18) is

unimportant, so that the color factors associated with the set of diagrams obtained from

a given diagram merely by permuting replica numbers are the same. There are NPm =

N !/(N −m)! such permutations, where m is the number of different replica species present

in the diagram.

For one gluon emission, there is only one possible diagram, shown in figure 8(a). There

is a sum over the replica number of the exchanged gluon, so that this diagram is clearly

proportional to N , denoting a color structure that exponentiates. The color factor of this

diagram is

tAtA = CF , (3.20)

where tA is a generator in the fundamental representation of the gauge group, and CF the

relevant Casimir invariant. Note that this is the same as the color factor in conventional

perturbation theory, although things become more complicated when more than one gluon

is involved.

For two gluon emission, one has the two diagrams shown in figure 8(b,c). For each of

these, one must consider separately the cases where i = j and i 6= j, because of the fact

that the replica ordering operator R acts differently in the two cases.

For figure 8(b), in the case where i = j one has a color factor

tBj t
A
i t

A
i t

B
j = C2

F , (3.21)
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i, A

i, B i, C

(a)

x2

x1

(b)

x2

x1

i, B

i, A

i, C

Figure 9. Diagrams contributing to the exponentiated scattering amplitude at O(α4

S), and involv-

ing the 3-gluon vertex.

where we have explicitly indicated which color matrix is associated with each replica. When

i 6= j, the color matrices in eq. (3.22) get reordered by the R operator i.e. one has

tAi t
A
i t

B
j t

B
j = C2

F (3.22)

for i < j, with a similar expression for i > j (but where i and j are interchanged). The

color factors of these diagrams are the same, and thus one may combine the results for

i = j and i 6= j. Then one sees that the contribution from figure (8)(b) is O(N2).

For figure 8(c), the i = j case has the color factor

tAi t
B
j t

A
i t

B
j = C2

F −
CFCA

2
. (3.23)

When i 6= j one has

tAi t
A
i t

B
j t

B
j = C2

F . (3.24)

Note that the color factors for i = j and i 6= j are now different, such that the two cases do

not combine to give a term O(N2). There areN diagrams where i = j, andNP2 = N(N−1)

diagrams where i 6= j. Thus the term linear in N has a color factor:

N

(

C2
F −

CFCA

2

)

+ (−N)C2
F = N

(

−
CFCA

2

)

. (3.25)

The above discussion can be summarized as follows. Up to two gluon emissions, a

subset of diagrams exponentiates. Namely, the one gluon emission diagram of figure 8(a),

and the crossed gluon diagram of figure 8(c). Figure 8(b) does not contribute due to

being O(N2), and figure 8(c) has a color factor which differs from that of conventional

perturbation theory, and indeed is precisely the modified color factor associated with the

known webs of [11–13].

Note at this order in αS one also has diagrams containing gluon self-interactions, of

which there are two possibilities, shown in figure 9. There areN such diagrams in each case,

so that they also exponentiate (i.e. are webs) with a color factor equal to the ordinary one.

We now consider the generalization of the above remarks to higher orders in pertur-

bation theory. The subdiagrams which exponentiate can be characterized by the fact that

they are two-eikonal irreducible. That is, one cannot disconnect each diagram by cutting

eikonal lines in two places. This property is well-known [11, 12], but we prove it in the

following using the methods outlined above.
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G H

Figure 10. A two-eikonal reducible diagram, in the simplest case of two disconnected components

with respect to the external lines.

Consider the general two-eikonal reducible diagram shown in figure 10 (where each of

the subdiagrams could itself be reducible). We focus on a given gauge boson replica i in

subdiagram H in figure 10, and consider first the case where subdiagram G contains no

gauge bosons with replica number i. According to the Feynman rules of the replica-ordered

perturbation theory described above, the diagram of figure 10 then gives a color factor

KA1...An B1...Bm

i

[

tA1

H . . . tAn

H

] [

tBm

H . . . tB1

H

]

×
∏

j 6=i

C(j), (3.26)

where C(j) is the color factor associated with replica j, and KA1...An B1...Bm

i is the color

contraction factor for replica i introduced above. That is,
∏

C(j) contains the results of all

contractions in G as well as those of H that do not involve replica number i. The indices

{Ak} and {Bk} denote emissions from the lower and upper eikonal lines respectively. Now

consider the case where G as well as H contains emissions with replica number i. Then

(due to the reducible structure) one can write Ki as a product of factors SGi
, SHi

for each

subdiagram, so that the color factor associated with figure 10 is

K
AnH+1...An BmH+1...Bm

Gi
S

A1...AnH
B1...BmH

Hi

[

tA1

H . . . t
AnH

H

]

×
[

t
AnH+1

G . . . tAn

G

] [

tAm

G . . . t
AmH+1

G

] [

t
BmH

H . . . tB1

H

]

×
∏

j 6=i

C(j). (3.27)

We may use the fact that

K
AnH+1...An BmH+1...Bm

Gi

[

t
AnH+1

G . . . tAn

G

] [

tAm

G . . . t
AmH+1

G

]

∝ I, (3.28)

where I is the identity in color space. This follows given that the contribution in color space

from a given replica in a disconnected subdiagram G has two indices in the fundamental

representation. By Schur’s Lemma, this must be proportional to the identity i.e. the only

possible two-index invariant tensor. We may then rewrite eq. (3.27) as

K
AnH+1...An BmH+1...Bm

Gi
K

A1...AnH
B1...BmH

Hi

[

tA1

H . . . t
AnH

H

]

×
[

t
BmH

H . . . tB1

H

] [

t
AnH+1

G . . . tAn

G

] [

tAm

G . . . t
AmH+1

G

]

×
∏

j 6=i

C(j). (3.29)
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This has the same color structure as would arise if one were considering a different replica

number in G than has been considered in H. i.e. one can absorb all G-dependent factors

into the product
∏

C(j), such that eq. (3.29) is then the same as eq. (3.26). The color

structures of the subdiagrams are thus independent, and it follows that the number of ways

of forming the total diagram in figure 10 is the product of the number of ways of forming

the individual subdiagrams. For each subdiagram this is at least ∝ N , such that the

contribution from diagrams which are two-eikonal reducible is at least ∝ N2 (in general,

∝ NM , where M is the number of two-eikonal irreducible subdiagrams). Thus, two-eikonal

reducible diagrams do not exponentiate.

In fact, one can proceed further and obtain a general solution for the color factors of

the diagrams to all orders. Consider a given diagram consisting of nc connected pieces (i.e.

gluons connected by self interactions or fermion bubbles). For each such diagram, we then

consider the set {P} of partitions. These are sets containing a number n(P ) of subgraphs g,

each of which contains only one replica (see figure 11). Permuting the replica numbers (but

keeping the subgraphs g intact) corresponds to the same partition (see figure 12), such that

there areNPn(P ) distinct diagrams in each partition, each of which has the same color factor

∏

g∈P

C(g), (3.30)

where C(g) is the color factor associated with subgraph g. The total color factor of the

complete diagram is now given by

∑

P

NPn(P )

∏

g∈P

C(g) (3.31)

i.e. one sums over all possible partitions, each of which has a color factor given by eq. (3.30),

and weighted by the number of diagrams represented by each partition. The only depen-

dence on the replica number resides in the factor NPn(P ), which has the form

NPn(P ) = (−1)n(P )−1(n(P ) − 1)!N + O(N2). (3.32)

The contribution from a given complete diagram G which is linear in N is thus given by

C̄(G) =
∑

P

(−1)n(P )−1(n(P ) − 1)!
∏

g∈P

C(g). (3.33)

The bar on the left hand side denotes the fact that this is the modified color factor asso-

ciated with G, rather than the color factor one would obtain in conventional perturbation

theory (i.e. without the R operator). The color factors on the right hand side, C(g), are

the ordinary color factors associated with each replica subgraph g. Eq. (3.33) is a closed

form solution for the modified color factor associated with any given diagram, in that

modified color factors only appear on the left-hand side. It has the property, as it must

do from the above considerations, of being zero if G is not a web. As a simple example

(already encountered above), consider the diagram of figure 8(c). There are two possible

partitions. Either the two gluons have the same replica number, i.e. one subgraph with
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(a) (b)

Figure 11. Examples of (a) a diagram containing 3 connected pieces; (b) three possible partitions

generated by this diagram, where colors represent distinct replica numbers. Permuting colors gives

the same partition.

Figure 12. Examples of diagrams in the same partition, where colors represent distinct replica

numbers.

color factor C( ), or they have different color factors i.e. two subgraphs with total color

factor C( )C( ). Then eq. (3.33) gives a total modified color factor

C̄( ) = C( ) − C( )C( ), (3.34)

which gives −1
2CFCA as required.

To further clarify the discussion, we consider here a pair of three loop examples.

We consider first the diagram represented in the above shorthand notation by . From

eq. (3.33), one has schematically

C̄( ) = C( ) − 2C( )C( ) − C( )C( ) + 2C( )3

= C( ) − 2C̄( )C̄( ) − C̄( )3, (3.35)

where in the second line we have used the fact that C̄( ) = C( ) and C̄( ) = C( )−C( )2.

The second line then agrees with the modified color factor given in [11, 12].

Our second example is , for which one has

C̄( ) = C( ) − C( )C( ). (3.36)

Reducibility implies C( ) = C( )C( ), and thus C̄( ) = 0, as expected for a non-web.

To summarize, the above replica trick has allowed us to determine the subset of dia-

grams which exponentiate in non-abelian theory i.e. the diagrams which exponentiate are

those which have a term linear in the number of replicas N . This is related to the original

gauge theory (with no replicas) as follows. Firstly, the replica gluons all have the same

self-interactions and scalar-gluon interactions, but do not interact with each other. Thus
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in any diagram one can replace replica gluons with original gluons to yield the same kine-

matic result. Then the color weights of the exponentiating diagrams are precisely those

found above i.e. modified with respect to the original theory. The structure of two-eikonal

irreducible diagrams with modified color factors is precisely that of web exponentiation,

described in [12, 14].

The above discussion proceeds similarly in the case of fermionic emitting particles,

given that the gauge boson emission vertices which distinguish scalar from fermion emitters

only appear at NE order. We discuss subleading corrections in the next section.

3.1 Non-abelian exponentiation at NE order

The significance of the above derivation of web exponentiation in terms of the path integral

method is that one may then easily extend the analysis to NE order, using the λ-scaling

technique discussed in section 2.2. We have already shown that a subset of NE corrections

exponentiate in the abelian case, and that eikonal corrections in the non-abelian case ex-

ponentiate. Thus, it is not surprising that a subset of non-abelian NE terms exponentiates.

In this section we again consider the simple case of two external lines emerging from

a hard interaction which has a color singlet structure. Then the scattering amplitude

factorizes as in eq. (3.10), but where the external line factor is given by

f(∞) =

∫

x(0)=0
DxP exp

[

i

∫ ∞

0
dt

(

λ

2
ẋ2 + (n+ ẋ) · A(nt+ x)

+
i

2λ
∂ · A(nt+ x) −

1

2λ
σµνFµν

)]

, (3.37)

One next performs the path integral in x (as detailed for the abelian case in appendix B),

which gives

f(∞) =P exp

[

i

∫ ∞

0
dt n ·A(nt) −

1

2λ

∫ ∞

0
dt ∂ ·A(nt)

+
1

2

∫ ∞

0
dt

∫ ∞

0
dt′〈̇xµ(t)ẋν(t′)〉Aµ(nt)Aν(nt′)

−

∫ ∞

0
dt

∫ ∞

0
dt′ 〈ẋµ(t)xα(t′)〉nνAµ(nt)∂αAν(nt′)

−
1

2

∫ ∞

0
dt

∫ ∞

0
dt′ 〈xα(t)xβ(t′)〉nµnν∂αAµ(nt)∂βAν(nt′)

+
i

2

∫ ∞

0
dt nµ〈xν(t)xα(t)〉∂ν∂αAµ(nt)

]

. (3.38)

For reasons that will become clear, we have stayed in position space in the exponent.
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x2
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Figure 13. Webs involving local vertices occurring at NE order, where • represents a vertex of NE

order. Additional diagrams arise by reflecting each diagram shown about the horizontal axis.

Inserting the correlators of the x fields (see eqs. (B.18)), eq. (3.38) becomes:

f(∞) =P exp

[

i

∫ ∞

0
dt n ·AA(nt) tA −

1

2λ

∫ ∞

0
dt ∂ ·AA(nt)tA

+
1

λ

∫ ∞

0
dt ηµνAA

µ (nt)AB
ν (nt)

1

2
{tA, tB} +

i

2λ

∫ ∞

0
dt nµ∂ν∂νA

A
µ (nt) tA

−
1

λ

∫ ∞

0
dt

∫ t

0
dt′ ηµαnνAA

µ (nt)∂αA
B
ν (nt′) tA tB

−
1

λ

∫ ∞

0
dt

∫ t

0
dt′ t′nµnν∂αA

A
µ (nt) ∂β A

B
ν (nt′) tA tB

]

. (3.39)

Here we have explicitly factored out color matrices from the non-abelian gauge fields. Note

that path ordering (i.e. time ordering in this case) has appeared in some of the terms in

the exponent, due to the Θ function occurring in the correlators of eq. (B.18). There are

two types of vertex occurring in eq. (3.39) — those that depend on a single time (in the

first two lines), and those that depend on two different times (in the third and fourth

lines). Of the former type, there are one gluon vertices and a two gluon vertex. For these

vertices, the arguments of the previous section (involving the replica trick) carry forward

with minimal modification, and one has eikonal exponentiation up to NE webs, where each

NE vertex must occur only once per diagram. The additional webs that appear at two gluon

order are shown in figure 13. At higher orders, the NE webs again have the property of

being two-external-line irreducible. The time ordered vertices in the third line of eq. (3.39)

generate diagrams such as those shown in figure 14, which involve correlated emissions from

different positions on the external line, but where additional eikonal emissions may occur
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Figure 14. Example of a web involving the NE vertex (denoted here by �), which correlates gluons

emitted from different positions on the external line. As shown here, further eikonal emissions may

occur between the correlated NE emissions.

in between. One must then sum over all possible correlations (pairs of gluons). There are

two types of such diagrams. Firstly, diagrams whose structure is such that they form a web

at eikonal level (i.e. are two-eikonal irreducible in that case). The time ordered vertices

then implement correlations between pairs of gluons in the same web. Secondly, one has

diagrams that would be two-eikonal reducible at eikonal level (i.e. are a product of webs),

but which become irreducible at NE level due to correlations between gluons in separate

webs (e.g. figure 14). The sum over all such diagrams then enters the exponent of eq. (3.14).

To summarize, the set of NE corrections resulting from non-abelian gauge boson emission

outside of the hard interaction exponentiate. The exponent involves a subset of diagrams,

NE webs, some of which are more complicated in structure than their eikonal equivalents.

However, they still share the property of being two-external-line irreducible.

In the case of a spinor emitting particle, the additional vertex

i

2λ

∫ ∞

0
σµνFµν (3.40)

appears in the exponent of eq. (3.37) i.e. the non-abelian analogue of eq. (B.30). This gives

rise to both a one- and a two-gluon vertex, derived from the position space expressions

i

λ

∫ ∞

0
∂µA

A
ν (t)σµν tA; (3.41)

1

2

∫ ∞

0
σµνAA

µ (t)Ab
ν [tA, tB ](t). (3.42)

Both of these vertices depend on a single time, and thus are handled similarly to those

occurring in eq. (3.39). Note that the two-gluon vertex eq. (3.42) has no abelian ana-

logue, which can be seen from the fact that the commutator [tA, tB ] vanishes for an abelian

gauge field.

Some comments are in order regarding the color factors associated with the NE webs.

We note that the derivation of the formula for modified color factors in the eikonal case

(eq. (3.33)) is independent of the eikonal approximation. Thus, it also applies in the NE

case, where the color factors C(j) associated with each subgraph involving replica number

j are the normal color factors one obtains using the NE Feynman rules.
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The above discussion shows that, for the simple hard interaction considered above, a

subset of corrections exponentiates up to NE order i.e. those associated with soft gauge

boson emission outside the hard interaction. As in the abelian case, one still has to worry

about corrections due to eikonal emissions from within the hard interaction (which give

rise to the remainder term in eq. (2.20)). This is the subject of the next section.

3.2 Internal emissions of non-abelian gauge fields

In the abelian case, we identified a subset of NE corrections which exponentiate (i.e. those

arising from soft gauge boson emissions outside of the hard interaction). There were then

remainder terms, which did not have an exponential structure but could be obtained it-

eratively to all orders in the perturbation expansion. Here we briefly discuss how this

structure can be generalized to the case of a non-abelian gauge field. As in the previous

section, we consider the case where the matrix element for the hard interaction with no

internal emissions has a color singlet structure, with two outgoing eikonal lines.

We begin with the non-abelian analogue of the abelian gauge transformation law of

eq. (2.24), which is

f(xi, pf ;Aµ) → f(xi, pf , UAµU
−1 − iU∂µU

−1) = U(xi)f(xi, pf ;Aµ) (3.43)

for an external particle, and

f(xi, pf ;Aµ) → f(xi, pf , UAµU
−1 − iU∂µU

−1) = f(xi, pf ;Aµ)U−1(xi) (3.44)

for an external antiparticle, where U(x) = exp(iθA(x)tA), and the coupling constant g of

the non-abelian gauge field has been absorbed in A. The hard interaction (in the two

eikonal line, color singlet case considered in the previous sections) then transforms as

H(x1, x2, A) → H(x1, x2, UAµU
−1 − iU∂µU

−1) = U(x2)H(x1, x2)U
−1(x1). (3.45)

Expanding this to first order in A and θa(x), and using the fact that the latter is arbitrary

gives the analogue of eq. (2.26)

− ∂µH
µ(x1, x2;x)t

A = iH(x1, x2)
∑

j

gjδ(x− xj)t
A, (3.46)

where gj = +1 for an eikonal particle, and −1 for an antiparticle. This has the same

interpretation as in the abelian case i.e. the amplitude for an internal emission is related to

the amplitude with no such emission. In the non-abelian case, the amplitude for internal

emission is proportional to the color matrix tA, as indeed it must be from group theory

considerations (the quantity Hµ has one adjoint index and two fundamental indices).

As in the abelian case, eq. (3.46) can be interpreted as an extra vertex for soft gluon

emission. This vertex is located on the Wilson line at t = 0 i.e. where the eikonal segments

x1 and x2 meet. There are terms (also by analogy with the abelian case of section 2.4)

which correct for the fact that the external lines do not originate from x = 0. However,

these also take the form of an additional vertex localized at t = 0. The diagrams containing
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these additional vertices do not necessarily exponentiate (as before), and form a remainder

term analogously to that of eq. (2.20).

Thus, the all-order structure of matrix elements up to NE order is conceptually equiv-

alent to the abelian case. One has a subset of NE corrections which exponentiate (i.e. NE

webs), and a set of corrections which form a remainder term which mixes with the exponen-

tiated NE corrections. The remainder term does not necessarily have a simple structure,

but at least has an iterative structure due to the fact that diagrams with no internal

emission are sufficient to generate higher order diagrams involving an internal emission.

4 Discussion

In this paper, we have considered the issue of soft gauge boson corrections for matrix ele-

ments in abelian and non-abelian gauge theories from a path integral point of view. This

involves considering factorized diagrams involving hard interactions with a given number of

external lines, each of which emits further soft radiation. The propagator for each external

line can then be cast into a first quantized path integral representation, where the integral

is a sum over paths for the emitting particle. This path integral can be performed by

expanding about the classical straight line path for the emitter, which corresponds to sys-

tematic corrections to the eikonal approximation. The scattering amplitude then factorizes

into a hard interaction plus factors for each external line which act as source terms for the

soft gauge field Aµ
s , where the sources are placed along the external lines. In the abelian

case, exponentiation of eikonal corrections then follows from the usual exponentiation of

disconnected diagrams in quantum field theory. Furthermore, a subset of next-to-eikonal

corrections can also be shown to exponentiate, and a set of effective Feynman rules for

radiation in the NE limit is obtained.

The case of a non-abelian gauge field is more complicated, but can be analyzed using

the replica trick, in which one considers an ensemble of N gauge fields. Diagrams which

have a term linear in N then exponentiate, and crucially only a subset of diagrams in

the theory have such a property. We considered the simple case of two external lines,

connected by a hard interaction with color singlet structure. Then the diagrams which

exponentiate contain sources arising from the replica ordered perturbation theory arising

from eq. (3.16). Those which contribute at O(N) have the property of being two-external

line irreducible, and also have (in general) color factors which differ from those of the

corresponding diagrams in the original theory. These diagrams are then precisely the webs

of [12, 14]. As in the abelian case, a subset of NE corrections also exponentiates, and the

exponent contains a sum of webs up to NE level.

In both the abelian and non-abelian cases, there are NE corrections which do not

exponentiate, and which form a remainder term such that the total matrix element (up

to NE order) has the form shown in eq. (2.20). These terms are associated with Low’s

theorem, and the relevant diagrams involve contractions between eikonal photons or gluons

on the external lines, and a NE vertex localized at the cusp at which the outgoing eikonal

lines meet. Furthermore, these terms have an iterative structure in perturbation theory, in
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that the extra vertices that contribute can be related to diagrams at a lower order in the

perturbation expansion.

A comment is in order regarding the nature of NE exponentiation. Up to NE order,

eq. (2.20) can be expanded to give

M = exp
[

ME
] (

1 + Mr + MNE
)

(4.1)

i.e. one may either consider the NE terms arising from eikonally factorized diagrams as

being in the exponent, or kept to linear order. This masks the fact that the terms in MNE

genuinely do exponentiate, whereas the remainder terms in Mr do not. However, it is

true that the exponentiated NE terms lead to NNE, NNNE etc. contributions which would

then mix with higher order (in the eikonal expansion) remainder terms. The exponentiated

form of eq. (4.1) is particularly useful if the contribution from MNE (when exponentiated)

gives the dominant contribution to higher order terms in the eikonal expansion. Whether

or not this is the case is presumably process dependent.

The proof of exponentiation in the abelian case, as presented here, clearly generalizes

to higher numbers of eikonal lines. However, in the non-abelian case we considered only the

simplest possible hard interaction, namely that with two external lines with a color singlet

structure. This could be easily related to a single Wilson line with a cusp. The general

case of higher numbers of external lines is more complicated due to the color structures

involved. Nevertheless, the methods introduced in this paper may provide a useful starting

point in addressing NE corrections in these situations.

We have only considered matrix elements in this paper. Thus, any exponentiation of

NE corrections pertains only before any integration over the phase space of the final state

gauge bosons has been performed. In the strict eikonal approximation, the phase space

factorizes into a product of single particle phase spaces (i.e. conservation of energy is a

subleading effect), thus exponentiation in the matrix element implies exponentiation of soft

logarithms in differential (but partially integrated) cross-sections. This is not necessarily

the case beyond the eikonal approximation, where one expects NE corrections resulting

from the eikonal matrix element with integration over the full phase space. Näıvely, one

expects a given differential cross-section (e.g. in some variable ξ related to the total energy

fraction carried by soft gluons) to have the form

dσ

dξ
=

∫

dPS(E) |M(E)|2 +

[
∫

dPS(E) |M(NE)|2 +

∫

dPS(NE) |M(E)|2
]

+ O(NNE). (4.2)

Here M(E, NE) denote the eikonal and next-to-eikonal matrix elements respectively, and

dPS(E) the eikonal phase space, consisting of a factorized product of one-particle phase

spaces. The first term in eq. (4.2) is then of eikonal order, and the bracketed term is NE,

where dPS(NE) represents that part of the multi-gluon phase space which implements next-

to-eikonal corrections (i.e. subleading terms in ξ). The precise nature of this latter term is

unclear, and an investigation of its effect is deferred to a future publication. Nevertheless,

all of the ingredients for the first bracketed term in eq. (4.2) are contained in this paper.

To conclude, the path integral methods used in this paper provide a new viewpoint

for the exponentiation of soft radiative corrections to matrix elements, in both abelian and
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non-abelian gauge theories. In particular, the discussion of webs is rephrased such that a

closed form solution for the modified color factors can be given. Furthermore, the approach

naturally encompasses the exponentiation of classes of next-to-eikonal corrections. This

approach should prove fruitful in the further investigation of soft radiative corrections to

all orders in perturbation theory.
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A Exponentiation of disconnected diagrams

Here we briefly prove the exponentiation of disconnected diagrams in quantum field theory,

using the replica trick of statistical physics. Although we consider a single self-interacting

scalar field φ, the proof generalizes easily to other systems.

The Green’s functions of a given quantum field theory are described by the generat-

ing functional

Z[J ] =

∫

DφeiS[φ]+i
R

Jφ, (A.1)

where J is a source for the field φ, and S is the classical action. Now consider defining N

replicas of the theory, involving fields φi (i ∈ {1, . . . , n}). This has generating functional

ZN [J ] =

∫

Dφ1 . . .DφNe
iS[φ1]+i

R

Jφ1 . . . eiS[φN ]+i
R

JφN , (A.2)

which clearly satisfies

ZN [J ] = (Z[J ])N . (A.3)

The Feynman rules for each field are similar, and there are no interactions between the

fields. Thus, there can be no more than one field in each connected Feynman diagram,

and connected diagrams therefore have N copies. By the same reasoning, disconnected

diagrams containing n ≥ 2 constituent parts have Nn copies. It follows that

∑

Gc ∝ N, (A.4)

where Gc denotes a connected diagram. Furthermore, no disconnected diagrams contribute

terms proportional to N . From eq. (A.3) one has

ZN [J ] = 1 +N log(Z[J ]) + O(N2), (A.5)

and comparing eqs. (A.4), (A.5) gives

∑

Gc = log(Z[J ]). (A.6)
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Finally, one writes this as:

Z[J ] = exp
[

∑

Gc

]

(A.7)

and setsN = 1. This is the statement that disconnected diagrams exponentiate, as required.

The above proof shortcuts the nontrivial combinatoric fact that the symmetry factor

associated with a disconnected Feynman graph is the product of the symmetry factors

of each of the constituent connected graphs. The results of this paper demonstrate that

the same combinatoric reasoning applies to the exponentiation of soft radiative corrections

from fast-moving external particles.

B Next-to-eikonal Feynman rules

In this appendix, we show how to derive effective Feynman rules for the eikonal and next-

to-eikonal approximations in the path integral approach discussed in section 2.2, and show

explicitly that these agree with the rules one obtains by starting from exact perturbation

theory before taking the NE limit.

We begin with the conventional perturbative approach, and consider the case of a

charged scalar interacting with a background gauge field. The theory and its Green func-

tions are defined via the generating functional

Z[J, J∗] =

∫

DφDφ∗ exp

[

i

∫

ddx
[

−(Dµφ)∗Dµφ−m2φ∗φ+ Jφ∗ + J∗φ
]

]

. (B.1)

where Dµ = ∂µ − iAµ. From this functional one derives the Feynman rules

p
1

i(p2 +m2 − iε)
,

p
1 p2 i(p1 + p2)

µ,

p
1 p2 − i 2ηµν .

(B.2)

Note the symmetry factor in the seagull vertex. With these rules one can describe emissions

from a charged scalar line, and from them we can derive Feynman rules for the eikonal

and NE approximation. To do so, we shall take m = 0 and use λ-scaling as discussed in

section 2. That is, we consider an external particle of 4-momentum p = λn, and consider

the limit λ→ ∞. As discussed in section 2, this corresponds to the eikonal approximation,

with the first subleading corrections in λ representing the NE approximation.

We first consider the propagator-vertex combination for one-photon emission. The

diagram and corresponding expression is

p−k p

k

1

i(p− k)2
i(2p − k)µ , (B.3)
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where we have taken this diagram to represent the combined vertex and propagator factors

(to the left of the vertex). Setting p = λn and expanding eq. (B.3) to O(1/λ) yields

−
nµ

n · k
+

1

λ

(

kµ

2n · k
− k2 nµ

2(n · k)2

)

. (B.4)

We recognize the first term as the eikonal approximation, and the remainder as the NE

contribution. Each term in eq. (B.4) is to be contracted with a background gauge field, so

that we can treat each as a one-photon source. We represent these sources graphically as

p

k

(1) −
pµ

p · k
,

p

k

(2a)
kµ

2p · k
,

p

k

(2b) − k2 pµ

2(p · k)2
.

(B.5)

Note that here and in following graphs, we replace n → p/λ so that the Feynman rules

are given in terms of the physical momenta. We now consider possible two-photon sources.

Starting with the seagull term, we take the following propagator-vertex combination:

p−k−l p

lk

1

i(p − k − l)2
(−i2ηµν). (B.6)

Scaling p and gathering terms up to O(1/λ) yields

1

λ

ηµν

n · (k + l)
. (B.7)

Evidently, at the eikonal level the seagull term is absent. One expects this given that there

is no such seagull vertex in the exact Feynman rules for a fermionic emitting particle, and,

as is well known, in the eikonal approximation the emitted radiation is insensitive to the

particle’s spin.

We next examine the contribution of two individual photon emissions, as shown in

figure 15. At eikonal level these diagrams give a contribution
(

−
nν

n · (k + l)

) (

−
nµ

n · k

)

+

(

−
nν

n · (k + l)

)(

−
nµ

n · (l)

)

, (B.8)

which one may rearrange to give:
(

−
nν

p · k

)(

−
nµ

p · l

)

. (B.9)
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p−k−l p

kl

p−k
p−k−l p

p−k

l k

Figure 15. Diagrams contributing to two photon emission. At NE level, one must sum over all

possible insertions of a NE one-photon emission vertex, as given in eq. (B.5).

The contribution from the soft emissions explicitly factorizes into a product of uncorrelated

emissions, as is well-known.

At O(1/λ), corresponding to the NE limit, one must sum over all possible insertions

of a NE one-photon emission vertex in figure (15). There are possible vertices, as given in

eq. (B.5). The vertex (2a) yields an expression

(

−
nν

n · (k + l)

)(

kµ

2n · k

)

+

(

(2k + l)ν

2n · (k + l)

)(

−
nµ

n · k

)

+

(

−
nµ

n · (k + l)

)(

lν

2n · l

)

+

(

(k + 2l)µ

2n · (k + l)

)(

−
nν

n · l

)

. (B.10)

which can be rearranged to give

(

−
nν

n · l

)(

kµ

2n · k

)

+

(

−
nµ

n · k

)(

lν

2n · l

)

−
lµnνn · k + kνnµn · l

n · (k + l)n · kn · l
. (B.11)

Notice that the first two terms correspond to two uncorrelated NE emissions, while the

last term represents a correlated two-photon emission (i.e. is non-factorizable into terms

dependent on a single photon momentum). The NE vertex (2b) gives a contribution

(

−
nν

n · (k + l)

)(

−k2 nµ

2(n · k)2

)

+

(

−(k + l)2
nν

2(n · (k + l))2

)(

−
nµ

n · k

)

+

(

−
nµ

n · (k + l)

)(

−l2
nν

2(n · l)2

)

+

(

−(k + l)2
nµ

2(n · (k + l))2

)(

−
nν

n · l

)

, (B.12)

which can be rewritten as

(

−
nν

n · l

)(

−k2 nµ

2(n · k)2

)

+

(

−
nµ

n · k

)(

−l2
nν

2(n · l)2

)

+
nµnνk · l

n · (k + l)n · kn · l
. (B.13)

Again this is the sum of an uncorrelated part, and a term implementing correlated photon

emission. The various correlated contributions given in eqs. (B.7), (B.11) and (B.13) can
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be represented as new two-photon vertices, and are given respectively by

p

lk

(3) +
ηµν

p · (k + l)
,

p

lk

(4a) −
lµpνp · k + kνpµp · l

p · (k + l)p · kp · l
,

p

lk

(4b) +
pµpνk · l

p · (k + l)p · kp · l
.

(B.14)

We have shown that these vertices apply when two photons are emitted next to the on-shell

eikonal line. From our analysis in this appendix, it does not necessarily follow that these

vertices apply to emissions anywhere on the external line, at all orders of perturbation

theory. That this is indeed the case is clear when one rederives these vertices using the

path integral methods described in this paper, and we defer a full proof within conventional

perturbation theory to a forthcoming paper [37]. Here we will only demonstrate that these

terms are precisely reproduced in our path-integral formalism. The path integral represen-

tation of a charged scalar coupled to a background gauge field is given by eq. (2.16) as

f(∞) =

∫

x(0)=0
Dx exp

[

i

∫ ∞

0
dt

(

λ

2
ẋ2 + (n+ ẋ) ·A(xi + nt+ x)

+
i

2λ
∂ ·A(xi + pf t+ x)

)]

. (B.15)

Our task is to derive the photon source terms from this expression. To this end we need

to determine the propagator and vertices for the x field, and their scaling with λ.

The x kinetic term is given by

−

∫ ∞

0
dt

1

2
x(t)

(

iλ
∂2

∂t2

)

x(t) , (B.16)

The propagator for x is given by the inverse of the quadratic operator in eq. (B.16), which

is found to be

G(t, t′) =
i

λ
min(t, t′) . (B.17)

Note that it is symmetric, proportional to 1/λ (thus is of NE order), and satisfies the

condition G(0, t′) = 0. Other two-point correlators of x and ẋ, which we need below, are

〈x(t)x(t′)〉 = G(t, t′) =
i

λ
min(t, t′),

〈ẋ(t)x(t′)〉 =
∂G(t, t′)

∂t
=
i

λ
θ(t′ − t),

〈ẋ(t)ẋ(t′)〉 =
∂2G(t, t′)

∂t∂t′
=
i

λ
δ(t′ − t) .

(B.18)
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We will also need the properties of the equal time correlator 〈 ˙x(t)x(t)〉. Using the dis-

cretization of space-time adopted throughout this paper, the derivative ẋ(t) is given by

lim
ǫ↓0

ǫ
x(t+ ǫ) − x(t)

ǫ
(B.19)

and thus one has

〈 ˙x(t)x(t)〉 =
i

λ
lim
ǫ↓0

min(t+ ǫ, t) − min(t, t)

ǫ
= 0. (B.20)

The vertices involving the x field can be obtained by Taylor expansion of the other terms

in eq. (B.15). Due to the subleading nature of the x propagator in the eikonal limit, we

shall need them to second order in x or ẋ only for a NE analysis. The terms without a

power of x are

i

∫ ∞

0
dtn ·A(nt) = −

∫

ddk

(2π)d
nµ

n · k
Ãµ(k),

−
1

2λ

∫ ∞

0
dt∂ ·A(nt) =

1

2λ

∫

ddk

(2π)d
kµ

n · k
Ãµ(k),

(B.21)

where we have also represented the terms in momentum space. Note that these A source

terms correspond to the vertex in eq. (B.5) (2a). Terms with one power of x are

i

∫ ∞

0
dtẋµAµ(nt) =

∫

ddk

(2π)d
Ãµ(k)

∫ ∞

0
dt iẋµ(t)ei(n·k)t ♣

i

∫ ∞

0
dtnµ∂νAµ(nt)xν(t) = −

∫

ddk

(2π)d
nµÃµ(k)kν

∫ ∞

0
dt xν(t)ei(n·k)t ♦

(B.22)

To distinguish the vertices in our discussion below, we have labeled them with symbols.

Terms with two powers of x are

i

∫ ∞

0
dtẋµ∂νAµ(nt)xν = −

∫

ddk

(2π)d
Ãµ(k)kν

∫ ∞

0
dtẋµ(t)xν(t)ei(n·k)t ♥

i

2

∫ ∞

0
dtnµ∂ν∂κAµ(nt)xν(t)xκ(t) = −

i

2

∫

ddk

(2π)d
nµÃµ(k)kνkκ

∫ ∞

0
dtxν(t)xκ(t)ei(n·k)t . ♠

(B.23)

The term ♠ is quadratic in x, and thus the factor of 1/2 does not appear in the result-

ing vertex.

The next step is to carry out the x path-integral. This amounts to using the Feynman

rules in eqs. (B.17), (B.23), keeping terms to O(1/λ)

∫

x(0)=0
Dx exp

[

i

∫ ∞

0
dt

(

λ

2
ẋ2 + (n + ẋ) ·A(xi + nt+ x) +

i

2λ
∂ ·A(xi + pf t+ x)

) ]

=

exp

[

−

∫

ddk

(2π)d
nµ

n · k
Ãµ(k) +

1

2λ

∫

ddk

(2π)d
kµ

n · k
Ãµ(k) +

∑

+
∑

]

. (B.24)
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We have written the result as the exponent of connected diagrams, where terms beyond

O(1/λ) are neglected. The first two terms (B.21) are the vertices (1) and (2a) of (B.5).

The third and fourth terms represent tree and loop graphs, with a sum over all possible

insertions of the vertices denoted above by ♣, ♦, ♥ and ♠. In the tree graph, there are

three different combinations of one-x vertices from (B.22). The ♣−♣ combination together

with a two-x correlator gives

1

2

∫

ddk

(2π)d
ddk

(2π)d
Ãµ(k)Ãν(l)

∫ ∞

0
dt dt′

−i

λ
δ(t− t′)ηµνei(n·kt+n·lt′) =

1

2

∫

ddk

(2π)d
ddk

(2π)d
Ãµ(k)Ãν(l)

ηµν

λn · (k + l)
. (B.25)

This precisely reproduces source term (3) of eq. (B.14). The ♣−♦ combination gives

∫

ddk

(2π)d
ddk

(2π)d
Ãµ(k)Ãν(l)nν(−kκ)

∫ ∞

0
dt dt′ i

(

i

λ
δ(t− t′)

)

ηµκ e
i(n·kt+n·lt′)

−in · l
=

∫

ddk

(2π)d
ddk

(2π)d
Ãµ(k)Ãµ(l)

−nνlµ

λn · ln · (k + l)
, (B.26)

which can be rewritten as

1

2

∫

ddk

(2π)d
ddk

(2π)d
Ãµ(k)Ãν(l)

(

−
nν lµn · k + nµkνn · l

λn · ln · kn · (k + l)

)

. (B.27)

This is source term (4a) of (B.14). The ♦−♦ combination gives

1

2

∫

ddk

(2π)d
ddk

(2π)d
Ãµ(k)Ãν(l)nµ nν kρ lσ

∫ ∞

0
dt dt′

(

i

λ
δ(t− t′)

)

ηρσ ei(n·kt+n·lt′)

(−in · k)(−in · l)
=

1

2

∫

ddk

(2π)d
ddk

(2π)d
Ãµ(k)Ãµ(l)nµnν k · l

λn · ln · kn · (k + l)
. (B.28)

which produces term (4b) of (B.14).

The loop graph in eq. (B.24) has in principle two possible choices of vertex from (B.14).

However, the ♥ vertex does not actually contribute, as it involves the equal time correlator

〈ẋ(t)x(t)〉, which was shown above to be zero. The ♠ vertex, however, does contribute

and gives

−
1

2
i

∫

ddk

(2π)d
ddk

(2π)d
Ãµ(k)kρkσ

∫

dt
i

λ
t ein·kt = −

1

2

ddk

(2π)d
Ãµ(k)

k2

(n · k)2
. (B.29)

This finally yields source term (2b) of (B.5).

We conclude that, to next-to-eikonal order, the one- and two-photon source terms

found by approximations in standard perturbation theory are precisely reproduced in our

first-quantized path-integral approach. The considerations of section 2 then show that NE

corrections from eikonally factorized diagrams exponentiate to all orders.
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Figure 16. Amplitude Γµ corresponding to all possible soft emissions from a graph containing

a given hard interaction, in the simple case of two outgoing scalar particles. The Lorentz index

corresponds to the emitted photon.

We have considered the case of scalar emitting particles in the above discussion. How-

ever, things proceed similarly for the spinor case, with the only modification arising due

to the presence of an additional term in the exponent of eq. (B.15)

i

2λ

∫ ∞

0
σµνFµν = −

1

λ

∫

ddk

(2π)d
kν [γν , γµ] Ãµ(k), (B.30)

where the right-hand-side corresponds to the momentum space vertex

p

k

− kν [γν , γµ]. (B.31)

This is O(1/λ), as expected from the fact that a magnetic moment vertex only contributes

for particles having non-zero spin, and radiation in the strictly eikonal limit is insensitive

to the spin of the emitting particle.

The above discussion assumes an abelian gauge field. The non-abelian generalization

is discussed in section 3.

C Matrix elements with internal emissions

In section 2.4, we show from our path integral representation of the scattering amplitude

how NE corrections arising from soft photon emissions from within the hard interaction

can be related to the hard interaction with no emissions, which is part of the content of

the Low-Burnett-Kroll theorem [34, 35] (see also [36]). To clarify this discussion, we here

present how one would obtain a similar result using traditional Feynman diagram methods,

in the case of two scalar lines. Our presentation follows that of e.g. [38].

We consider the momentum-space amplitude Γµ shown pictorially in figure 16, and

corresponding to a single gluon emission emitted from a graph containing a given hard

interaction with two external scalar particles. We first define Γ ≡ Γ(p2
1, p

2
2, p1 · p2) to be

the hard interaction amplitude with no photon emission. Then using the normal Feynman

rules for scalar electrodynamics, one may write Γµ as

Γµ =
(2p1 − k)µ

−2p1 · k
Γ[(p1 − k)

2, p2
2, (p1 − k) · p2]+

(2p2 + k)µ

2p2 · k
Γ[p2

1, (p2 + k)2, p1 · (p2 + k)]+Γµ
int,

(C.1)
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where we have assumed light-like external particles, and Γµ
int is the amplitude for emission

from within the hard interaction, as represented by the second diagram on the right-hand-

side in figure 16. Also, we have neglected coupling constants for brevity. In the limit where

k is soft, one may Taylor expand eq. (C.1) to next-to-leading order in k (corresponding to

the NE approximation) to obtain

Γµ =
2pµ

1

−2p1 · k

[

Γ − 2p1 · k
∂Γ

∂p2
1

− p2 · k
∂Γ

∂p1 · p2

]

+ kµ

(

1

2p1 · k
+

1

2p2 · k

)

+
2pµ

2

2p2 · k

[

Γ + 2p2 · k
∂Γ

∂p2
2

+ p1 · k
∂Γ

∂p1 · p2

]

+ Γµ
int. (C.2)

The gauge invariance condition kµΓµ = 0 implies

kµΓµ
int = −2p2 · k

∂Γ

∂p2
2

− 2p1 · k
∂Γ

∂p2
1

− k · (p1 + p2)
∂Γ

∂p1 · p2
. (C.3)

This must be true for arbitrary k, so that one may remove factors of kµ in eq. (C.3). Then

one may substitute the resulting form of Γµ back into eq. (16) to obtain

Γµ =

[

(2p1 − k)µ

−2p1 · k
+

(2p2 + k)µ

2p2 · k

]

Γ +

[

pµ
1 (k · p2 − k · p1)

p1 · k
+
pµ
2 (k · p1 − k · p2)

p2 · k

]

∂Γ

∂p1 · p2
.

(C.4)

Identifying pi = ni in the notation of section 2.4, one sees that the first term of eq. (C.4)

is the contribution one expects from the effective Feynman rules for soft emission up to

NE order. Also, the second term in eq. (C.4) is precisely the contribution contained in

eq. (2.34). Furthermore, when p2
1 = p2

2 = 0, one may simplify eq. (C.3) so that one obtains

Γµ
int = −pµ

1

∂Γ

∂p1 · p2
− pµ

2

∂Γ

∂p1 · p2
. (C.5)

Rewriting

pµ
i

∂

∂pi · pj
=

∂

∂pµ
i

, (C.6)

one finds

Γµ
int = −

∑

i

∂Γ

∂pµ
i

, (C.7)

which is indeed a special case of eq. (2.29).
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