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1 Introduction

Higher order corrections arising from soft gauge bosons in perturbative gauge theory, be
they real or virtual, have been the subject of many investigations. Such radiation generi-
cally leads to series of perturbative contributions to differential cross-sections of the form
a™log™(€) /€, where « is the coupling constant of the gauge theory, and ¢ is related to the
energy carried away by the soft particles. In the soft limit & — 0 (in which the eikonal
approximation may be taken), it becomes necessary to resum these terms to all orders
in perturbation theory, as has been achieved by a variety of methods [1-8].! Central to
resummation is the exponentiation of eikonalized soft gauge boson corrections and it has
been shown for both abelian and non-abelian gauge theory that this indeed occurs [10-13].

To form an exponential series for a cross-section, both the matrix element and the
phase space must exhibit an appropriate factorized structure. The statement for the matrix

See also [9].
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Figure 1. Examples of connected diagrams G. of soft emissions between hard outgoing particle
legs in abelian perturbation theory.
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Figure 2. Examples of webs of soft emissions between external lines in non-abelian perturbation
theory.

elements rests upon a thorough analysis of the general structure of higher order diagrams.
The result for an amplitude A in abelian gauge theory is simply expressed in the eikonal

approximation as
A= Agexp [Z Gc} , (1.1)

where A is the amplitude without soft radiation containing a number of hard outgoing
external lines, and the sum in the exponent is over connected subdiagrams G. between
the external lines, with the Born contribution A4y factored out. By a subdiagram, we
mean that part of the Feynman diagram which remains after the hard lines (including
the off-shell photon) are removed. Examples are shown for the case of hard production
of a particle-antiparticle pair in figure 1. The non-abelian case is complicated by the
nontrivial color structure of the Feynman diagrams at successive orders in perturbation
theory. Nevertheless, in the case of two external lines,? exponentiation still holds provided

one generalizes eq. (1.1) to
A= Agexp {Z C_’WW] . (1.2)

Here W are so-called webs, and are diagrams which are two-eikonal irreducible. That is,
one cannot partition a web into webs of lower order by cutting both external lines exactly
once [11-13].> Examples are shown in figure 2. Each web has an associated color factor
Cyw which is not the same as the normal color factor Cyy associated with the web graph.
The color factors Cyy are given in terms of Cy by an iterative relation to all orders in
perturbation theory.

The nature of eq. (1.1) in terms of disconnected diagrams is reminiscent of another
well-known property of quantum field theory, namely the exponentiation of disconnected

2In the case of more than two external lines, the structure is more complicated.
% See [14] for a pedagogical exposition.



Feynman diagrams in terms of connected ones. This latter property most naturally emerges
using path integral methods (see appendix A for a brief proof), and thus the suggestion
arises of whether it is possible to relate the exponentiation of soft radiative corrections
to the gauge theory path integral. The aim of this paper is to show that this is indeed
the case, and the result is important for a number of reasons. Firstly, it provides a new
perspective on exponentiation. Secondly, it allows one to straightforwardly explore which
properties of exponentiation survive at next-to-eikonal limit and beyond (i.e. corresponding
to subleading terms in ¢ above).* Although at next-to-eikonal order fermion emissions also
contribute (leading to flavor-changing effects), we restrict ourselves here to gluon emissions.

The essential idea of our approach is as follows. One first relates the field theory path
integral for a particle interacting with a gauge field to a first-quantized path integral with
respect to the particle. That is, the external lines become worldlines of particles in quan-
tum mechanics (rather than quantum field theory). Here we utilize the techniques of [15—
17] which have originally been applied in a different context (that of constructing string
theoretical analogues of fixed order field theory amplitudes [18, 19]). A first-quantized
approach to Sudakov resummation has also appeared in [20]. We will see explicitly that in
this representation the eikonal limit corresponds to the radiating particles moving classi-
cally, and next-to-eikonal terms originate from fluctuations around the classical path. The
soft radiation emission vertices can then be interpreted as interactions of the gauge field
with a source, such that individual emission vertices form disconnected diagrams. Then
exponentiation of eikonal corrections follows naturally from usual combinatoric properties
of the path integral.

In the non-abelian case, exponentiation is complicated by the fact that vertices for the
emissions of gluons do not commute. However, one can rephrase the problem using the
replica trick of statistical physics (see e.g. [21]), such that a subset of diagrams arises which
exponentiate. These are then precisely the webs of [11, 12]. Furthermore, we provide an
explicit closed form solution for the modified color factors, given in terms of normal (rather
than modified) color weights.

Our formalism allows one to straightforwardly consider subleading effects with respect
to the eikonal limit, and we classify the possible next-to-eikonal corrections. This can
be divided into a subset which exponentiate (involving NE generalizations of the webs
discussed above), and a set of remainder terms which do not formally exponentiate, but
have an iterative structure in that each order of the perturbation expansion is sufficient to
generate the next order.

Earlier attempts to include certain sub-eikonal effects were done in practical implemen-
tations of Sudakov resummation, mostly in view of gauging the theoretical uncertainty of
the resummation [22]. Typically, this involved including subleading terms in the collinear
evolution kernel in the resummation, which is particularly appealing for Drell-Yan, Higgs
production and related cross sections [22-27]. More recently a study was performed [28]
based on a proposal in ref. [29].

4We only consider matrix elements in this paper. Exponentiation in differential cross-sections also
depends upon factorization of the multiple particle phase space, and is deferred for further study.



Figure 3. Anatomy of an external line, considered throughout this paper as emerging from a hard
interaction at 4-position x; at time ¢ = 0, and having momentum py at final time 7. The propagator
for the external line contains the effects of soft radiation.

In the rest of this introduction we review the derivation of the path-integral representa-
tion of propagators in quantum field theory, for both scalar and spinor particles and in the
presence and absence of an abelian gauge field. These results will be used in section 2 to
demonstrate the exponentiation of soft radiative corrections in the presence of an abelian
gauge field. We also consider generalization of the results to beyond the eikonal limit, and
classify the resulting corrections into a subset which exponentiate and a remainder term
which mixes with these at next-to-eikonal order. In section 3 we consider the extension to
non-abelian gauge fields, recovering the properties of webs and again examining corrections
to the eikonal limit. We conclude in section 4, and some technical details are presented in
the appendices.

1.1 Propagators as first quantized path integrals

Throughout this paper we will be concerned with ezternal lines, namely hard external
particles susceptible to soft radiation emission. A given external line is created from a
hard interaction process at time ¢ = 0 at space-time point z;, and and has a momentum
pr at some final time 7" — oo (see figure 3). Soft radiation corrections enter the two-
point function for the emitting particle i.e. the propagator for the external line. In the
following subsections, we review the representation of field theory propagators in terms
of first quantized path integrals [15-17], which will later on be used in the derivation of
matrix element exponentiation at eikonal order and beyond. We begin with the simplest
case, that of a free scalar particle.

1.1.1 Free scalar particle

The propagator for a free scalar particle between 4-positions x and y is the Green’s function
for the Klein-Gordon equation

i(S —ie)Ap(x,y) = 6D (z,y), S = (=0, 4+ m?), (1.3)

where S, Ar are Hermitian operators working on the Hilbert space H of square integrable
functions of space-time, and we adopt the standard Feynman ie prescription. Note that
we are using the metric (—, 4+, +,+). Schematically the propagator may be written as

Ap =i (S —ie)] 1, (1.4)



where the inverse operator can be defined via an inverse Fourier transform from momentum
space. The usual representation then reads

dip  eir(y—2)
(2m)d p2 + m? —ie

Ap(z,y) = —i/ (1.5)

To derive this expression using a first-quantized path integral, let us first write the inverse

Klein-Gordon operator using the Schwinger representation
. N Y —it(S—ie)T
—i(S—ie) " = 5 dTe 'z (1.6)
0

where the ie now ensures the convergence of the integral. The integrand contains the

exponential U(T') = e=i25 T which is a unitary operator acting on the Hilbert space H and

satisfying the Schrédinger equation

z'diTU(T) = HU(T), U(0)=1I, H=-=8. (1.7)
We can therefore interpret H as the Hamiltonian operator of a quantum system, with
internal time coordinate T'. Given we are considering external lines as shown in figure 3,
we must calculate the expectation value of the evolution operator U between a state of
definite position (at time ¢ = 0) and definite momentum (at time ¢ = 7). To do this we
introduce states |z) and |p) in the Hilbert space H, and write the Hamiltonian as

o
H(&,p) =Y Duy - D HIL &2, (1.8)
n=0
where £ and p are the position and momentum operators whose continuous eigenstates
are |xr) and |p) respectively. Note we have expressed H in Weyl ordered form, with all
momentum operators to the left of position operators. One then finds, for small time
separations At
_iHAt’m> e—iH(p,x)At+O[(At)2]<p’1.>7 (1.9)

(ple

where H(p,x) is the c-number obtained by replacing the operators on the right-hand-side
of eq. (1.8) with their corresponding variables. Slicing the time variable into N steps of
duration At and inserting a complete set of both position and momentum states at each
step, eq. (1.9) becomes

N-1 N N-1
/dml e d:UN/dpo ...dpN_1exp [—i Z H(pk,xk)At] H<Pk|$k> H (Tp+1|pr). (1.10)
k=0 k=0 k=0
Using the normalization of the basis states
TP
(zp) = i (1.11)

where d is the number of space-time dimensions, the continuum limit of eq. (1.10) is

p(T)=py T
(pf|U(T)|x;) = /(0) | DpDx exp [—ip(T)x(T) —|—z'/0 dt(pt — H(p,z))|.  (1.12)



We have absorbed factors of 27 into the measure, and made the boundary conditions
explicit. This is the well-known path-integral result for the evolution operator sandwiched
between initial and final position states, with an additional term in the exponent involving
p(T)x(T) arising from considering a final state of given momentum, rather than position.
For the present case of a free massive scalar, the Hamiltonian function is given by

H(p) = % (p* +m?). (1.13)

We can perform the path integrations over p(t) and z(t) by expanding around the classical
solution of the equations of motion, given by

p(t) =pr+p'(t), z(t) =z +pst+2'(1). (1.14)

The boundary conditions imply p/(T) = 0 and 2/(0) = 0, and without confusion we can
drop the primed notation from now on. Substituting eq. (1.14) into eq. (1.12) gives

p(T)=0

(ps|U(T) ;) = e Prei=ia@ptm)T / DpDxeilo dpi=3p%) (1.15)

z(0)=0

One can now perform the path integral as the continuum limit of a product of Gaussian
integrals in the intermediate position and momentum variables. The measure is such that
this gives unity, and one therefore finds

(ps|U(T)|a) = e~ Prmi= 2 ®G+mAT (1.16)

The momentum space propagator A is found by substituting eq. (1.16) into eq. (1.6), and
one finds

o l/oodT@fyU(T)\m_ ‘ (1.17)
0

A = — .y
F(pf) 2 (pf|~’5i> p?c—i—mQ — e

in agreement with eq. (1.5). Having reviewed the relationship between propagators and
path integrals in a simple case, we now consider the extension to a scalar particle interacting
with a gauge field.

1.2 Scalar particle in an abelian background gauge field

We consider a charged scalar particle in an abelian background gauge field. Such a system
is described by the generating functional

A= /m*m exp [i/ddm (6" (DuD" — m2 + i) + J* 6 + ¢*.J) } . (118)

where .J, J* are sources for the complex scalar field, and D, = 9, —iA,. By completing
the square and defining S = (—D,D* + m?) we can write this as

Z[J*,J] = /D¢*D¢ exp [i/ddaz (—¢*(S —ie)p — J*(S—ie)lj)] . (1.19)



The propagator is given by the inverse of operator quadratic in ¢, ¢*, which gives eq. (1.4)
as before. Using the fact that p, = —id,, we can write the operator S in normal form (i.e.
with all momenta operators on the left-hand-side) as

S=@p-AP+m?=p*—p- A—A-p+A2+m? =p* —2p- A—i(d- A) + A> +m?. (1.20)

Now defining the Hamiltonian operator H = %S as before, one may carry out the manipu-
lations of the previous section to obtain the first-quantized path integral representation of
the evolution operator sandwiched between the external line position and momentum states
p(T)=ps

T
DpDzx exp [— ip(T)x(T) —|—i/ dt <p:'c _ 1(1?2 + m2) +p-A
0

WU @s) = [ X

z(0)=x;
+log.oa-La (1.21)

5 5 . .
This differs from the free particle case due to the presence of the gauge field in the ex-

ponent. When the strength of the gauge field is weak, the classical path of the emitting
particle is well approximated by the free particle solution of eq. (1.14).° One then finds

(pf|U(T) ;) = e Prmi=iz@+mIT gy, (1.22)

where

p(T)=0 T 1 )
A(T) = / DpDz exp [Z/ dt<p:'v — 50"+ (pr +p) - Alzi + pst + @)
2(0)=0 0 2
i

+§8 Az +ppt+x) — A% (i + st + :c))] . (1.23)
Again the boundary conditions have been made explicit, and we have dropped the primes
on the quantities defined in eq. (1.14).
1.3 Spinor particle

We now consider the case of an emitting fermion in the presence of a background gauge
field. The system is described by the generating functional

Z[n,7) = / DyDyp exp [z / dz (¢ (P —m) + i +dn) | | (1.24)
where 7, 1 are Grassmann-valued source fields.® The momentum space propagator is then
given by

1 1
Ap=————= (D +m)- (1.25)

—i(—m) (=D +m?]

Now we define S = (—ip)% +m?, by analogy with the scalar case. Using the standard trick

v 1 2z 1 v
Yy = 5{7",7 b+ 5[7“,7 s (1.26)

5We will formalize this statement in section 2.2 when we discuss next-to-eikonal exponentiation.
SRecall we use the metric (—, +, +, +) throughout.



we can rewrite
(—iD)?+mP=p>—2p-A—id- A+ A>+m?— 0" F,, (1.27)

where o = —%[7“,7"] are the generators of the Lorentz group, and F), is the field
strength tensor for the gauge field. Carrying out the path integral manipulations as in the
scalar case yields

)

(T)= )

wsU @) = [ D Pe-pT(T) 41 [ dpi = 6Pm2) A4 50 A~ § 42) 4 L o
z(0)=x;

(1.28)

The representation (1.28) is almost identical to the case of a scalar eikonal line, apart from
the coupling to the field strength tensor. This is not surprising, as it is well known [15, 30]
that one can cast fermion actions into a second-order form that gives rise to scalar-like
vertices supplemented by additional seagull vertices involving couplings to the field strength
(see e.g. [31, 32]). The latter correspond physically to the magnetic moment of the spinning
emitting particle, and thus have no analogue in the scalar case.

In this introduction, we have reviewed the representation of particle propagators, in-
cluding the possible presence of an abelian background gauge field, as first-quantized path
integrals. The phase space variables x and p correspond to the position and momentum
of the emitting particle, and the classical path is interpreted as an eikonal line. In the
following section we formalize these statements, and show how the above representations

can be used to derive the exponentiation of soft radiative corrections.

2 Soft emissions in scattering processes

We now turn to the description of soft radiation from external lines, considering Green’s
functions having the form shown schematically in figure 4, and consisting of a hard in-
teraction H(x1,...,z,) with external lines emerging at positions {z;}. This is a sum of
subdiagrams containing gauge boson modes of as yet unspecified momentum. Each ex-
ternal line has a propagator associated with it summing the effect of soft gauge boson
emission, and we call such diagrams eikonally factorized.

This is based upon the general analysis of [33], which characterizes the regions of in-
frared sensitivity in Feynman diagrams in a number of scattering processes. The proof that
soft radiation contributions exponentiate now amounts to showing two things. Firstly, that
for the eikonally factorized diagrams defined above (and shown in figure 4), the contribu-
tions from soft radiation on the outgoing external lines exponentiates. Secondly, that all
leading soft radiation terms originate from diagrams having this factorized structure. In
this paper, we prove the first property and assume that the second indeed holds, as has
been shown to be the case elsewhere at eikonal level. We return to the issue of corrections
to the above factorized form (at NE level) in section 2.4.

To make these statements more direct, we begin by separating the path integral over
the gauge boson field into a product of integrals over hard and soft modes

/ DAH = / DAFDAL (2.1)



Figure 4. The factorized form of the Green’s functions of eq. (2.5), where H is a hard interaction
with n outgoing external lines, and S is a propagator for the eikonal particle in the presence of the
background soft gauge field which, after the path integral over A%, generates connections between
the external lines.

The precise definition of A% and A} amounts to specifying a surface in the multi-boson
momentum space that separates it into two distinct regions corresponding to soft and hard
modes. Such a surface is, in general, very complicated [33]. Its precise definition does
not concern us in what follows, where we characterize soft radiation by the fact that one
may neglect the recoil of the eikonal particles.” However, the fact that such a surface
exists allows us to introduce the factorization of eq. (2.1), given that the path integral is a
product of integrals over gauge fields of definite momentum.

The above separation is not gauge invariant, which can be easily seen as follows.
Consider a given soft gauge field A%, whose momentum modes live only in the soft region
of momentum space. A general gauge transformation has the form

Ab(x) — A (z) 4+ 0"&(x), (2.2)

for some function £(x). Transforming to momentum space, £(x) may well have momentum
modes defined in the hard region of momentum space, and thus the transformed gauge
field will have in general both soft and hard components. Instead, both the soft and hard
gauge fields obey a restricted gauge invariance given by the momentum space analogue of
eq. (2.2)

A (k) — A" (k) + ko (k). (2.3)

Here ¢/(k) is non-zero only if k is in the soft and hard regions for A% and A} respectively.
We now formally define the hard interaction as

Hiz, ... 20) = /DA;; D¢D¢*iin6jfyl) 6J(6yn)<y1|s ieler) ... (ynS — ie|n)
X exp [iS[(ﬁ, o, AF] 4+ i/ddx(J(x)¢*(x) + J(2)p*(2)) |- (2.4)

This is analogous to the expression for a Green’s function, except for the fact that the
path integral over soft gauge field modes A% has yet to be performed. Also, the factors

"We will consider corrections to this idea when discussing next-to-eikonal exponentiation in section 2.2.



(yi|S — i€|z;) (i.e. inverse propagators for the particle in the background of the soft gauge
field) truncate the external legs of the Green’s function.
We now define the further quantity

Glpr, . pn) :/DAgH(xl,...,xn)<ply(s_ig)1\x1>...<pn\(s—¢g)1\xn>, (2.5)

where a propagator factor has been associated with each external line, and the path inte-
gral over A% inserted. This latter integral does two things. Firstly, it generates all possible
subgraphs within the hard interaction H (i.e. such that there are n external lines emerg-
ing at 4-positions {x;}), containing both soft and hard gauge boson modes. Secondly,
it produces soft radiation, both real and virtual, from the external lines. This is shown
schematically in figure 4, where real and soft radiation is included in the soft blobs at-
tached to each external line. One thus sees that G is a full Green’s function of the theory,
written in eikonally factorized form. Note that the propagator for the emitting particle
in the presence of the background soft gauge field is removed in eq. (2.4), and replaced in
eq. (2.5) with the propagator sandwiched between states of given initial position and final
momentum.

To obtain the contribution to the scattering amplitude from the function G(p1, ..., pn),
one must truncate each external propagator. That is, for external leg ¢ one multiplies by
a factor p? + m? to take account of the fact that the line is external and thus has no
(free) propagator attached. In principle one must also divide by the residue of the scalar
propagator, arising from renormalization of the scalar field. However, this residue is unity
due to the absence of self-interactions for the eikonal particle, and also the fact that the
gauge field is treated as a background. As is clear from eq. (2.5), one may treat each
external line separately. Using the representation (1.21), one can rewrite each external line
contribution as

L[ ipmi—il (R m?—i
i(pF +m*)pg| — i(S —ie) i) = i(p} +m)3 /0 dTe” Pre BT ()

) o0 d 1,22 1
= —e_’pf’”/ dTr <—ez2(pf+m )T> e 2T f(T
v (1)
_ _e—ipfa:i —f(O) o /OO dTefi%(p?erQ)T ie—%an(T)
0 T

I <‘f(0) - /0 dTe—i%(p%mQ)T%f(T)) : (2.6)

In the last step we have taken the limit ¢ — 0. At this point one can let p; approach its
mass shell and obtain the simple result

i(pF +m?)(py| = i(S — ie)"Haz) = e PI% f(o0). (2.7)

The limit 7" — oo of f(T') in eq. (2.7) allows us to simplify the expression for f in eq. (1.22)
by performing the Gaussian integral over p. After shifting the integration variable p — p+A
the result is a path integral over x only

F(o0) = /(0)0 D ezfo“’ dt(%m'2+(pf+:i:)-A(mi+pft+I(t))+%a-A(mthftJr:v))_ (2.8)

,10,



Thus, the eikonally factorized contribution to the scattering amplitude for a charged scalar
in an abelian background field takes the form

S(p1,...,pn) = / DAFH (21, .., xn) e P21 (00) ... e PnPn f, (00) ¢S4l (2.9)

with f(oco) given by eq. (2.8), and the label of each f(oo) indicates the particular external
line. Also we have explicitly factored out the action for the soft gauge field, which remains
after the path integrals over the particle and hard gauge fields. This form (2.9) will now
enable us to find all-order expressions for these amplitudes.

As a simple one-dimensional path integral, it can be further manipulated using simple
classical methods. The strictest approximation is to neglect the fluctuations x(t) and
p(t). This is equivalent to the eikonal approximation in Feynman diagrams, and one sets
r =0, # =0, p=0 and as well as neglecting the - A and A? terms in eq. (1.21). One
then finds an Aharanov-Bohm-like phase factor for the straight line trajectory

F(o0) o et dwA@), (2.10)

Inserting this result into the path integral (2.9) where we integrate over soft gauge field
fluctuations the Wilson lines, being linear in the soft gauge field A%, act as a collection of
classical source terms for the soft A-field, distributed along the classical trajectory.

2.1 Eikonal exponentiation

Now that we have established that in the eikonal approximation the soft radiation is de-
scribed by a Wilson line we can analyze what happens in perturbation theory. Let us
consider, without loss of generality, an external line created at x; = 0 and in direction
n# = pl;. Then eq. (2.10) becomes

exp [z /0 h dtn“AM(nt)} . (2.11)

This can be written, after a Fourier transform to momentum space, as

[ B dék ntA, (k)
2/0 dtn*A,(nt) = —/ (ZW)dT-Mk:' (2.12)

Note that this is invariant under rescalings of the eikonal momentum n*. As seen above, this
acts as a source term for the soft gauge field when the path integral over A% is performed.
It can be represented as a 1-photon vertex with the momentum space Feynman rule

k
P - — 2.1
n-k’ (2.13)

where momentum k flows into the vertex. The path integral over the soft gauge field
generates all possible diagrams connecting numbers of source vertices. By the usual rules
of quantum field theory, one finds connected and disconnected diagrams, which in this case

— 11 —



Figure 5. Example of a disconnected subdiagram between two outgoing external lines, to be
compared with the connected subdiagrams of figure 1.

connect the external lines given that the source vertices lie along the latter. The collection
of all diagrams exponentiates in terms of connected diagrams.

To illustrate this further, consider the case of a hard interaction with two outgoing
eikonal lines, an example of which is shown in figure 1. There one sees a number of
connected subdiagrams connecting the external lines. One also finds disconnected subdia-
grams, such as that shown in figure 5. However, given the usual property of exponentiation
of disconnected diagrams in quantum field theory, one has:

ZG = exp {Z GC] . (2.14)

The sum on the left is over all subdiagrams G, while the sum on the right is over all
connected subdiagrams G..

We have thus succeeded in showing that the exponentiation of soft radiative corrections
in the eikonal limit can be related to the exponentiation of disconnected diagrams. We

now consider what happens when next-to-eikonal corrections are considered.

2.2 Next-to-eikonal exponentiation

The analysis of the previous section relied on the fact that the factors f(oco) describing
soft radiation from the external lines are written as path integrals in x. This allowed
the straightforward interpretation of the eikonal limit as the limit in which the emitting
particle follows a classical free path. However, this identification also allows one to go easily
beyond the eikonal approximation. If the emitted radiation is soft but with non-negligible
momentum, the classical path is still a good approximation to the equations of motion
for the eikonal particle, and one can examine deviations from the straight-line path in a
systematic expansion. Given that this does not affect the interpretation of gauge boson
emission vertices in terms of disconnected subdiagrams, one still expects such corrections
to exponentiate.

To formalize this argument, we reconsider the external line given by eq. (1.14), where
again we take x; = 0 without loss of generality. Given that the external eikonal particles
have light-like momenta, one may write p; = An;, where n? = 0. Then eq. (2.8) becomes

foo) = /(0)0 Dx exp [z /OOO dt(%a’cZ + (M + ) A(Mnt + z) + %3 - A(Ant + 1‘))]
o (2.15)
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One now clearly sees that in the limit A — oo, one may neglect all terms involving z, &
and 0 - A, leaving precisely the eikonal approximation discussed in the previous section.
That is, fluctuations about the classical free path are suppressed by inverse powers of .
By expanding in A, one keeps the first subleading corrections to the eikonal approximation,
i.e. corresponding to the next-to-eikonal (NE) limit.

For subsequent purposes it is more convenient to rescale the time variable ¢t — ¢/, so
that eq. (2.15) becomes

f(oo):/x(O)OD:c exp [i/ooodt<%j:2+(n+x')-A(nt+x)+%8-A(nt+x))]. (2.16)

The first term in the exponent is now ~ O(\), but gives rise to a propagator for x(¢) which
is O(A™1) by virtue of being the inverse of the quadratic operator in x(¢). The remaining
terms generate effective vertices for soft gauge boson emission in the NE limit, which one
can again interpret as source terms for the soft gauge field. Thus, following the reasoning in
the previous section, one finds that these NE corrections exponentiate as before, i.e. one has:

f(o) =exp |Gt (2.17)

where G? are connected (through x propagators) diagrams along external lines, and lo-
cated on the latter by vertices derived by a systematic expansion of eq. (2.16) in A™!. At
LO, one recovers the eikonal approximation of the previous section. To obtain the NE
approximation one must gather all terms ~ O(A™!), which can be described as follows.
Firstly, NE graphs must have at most one propagator for the emitting particle z(t),
due to its being O(A~!) as remarked above. There is also a NE vertex originating from
the term in 0 - A, and a given NE graph containing such a vertex must then contain
no propagator factors for x(t). We examine in detail the NE Feynman rules that result
from eq. (2.16) in appendix B, and show that they agree with the results one obtains in
standard perturbation theory after expanding to NE order. The advantage of the above
representation, however, is that exponentiation of these corrections is manifest.

2.3 Exponentiation for spinor particles

We have so far only considered the case of a scalar eikonal particle. For emitting fermions
(with a similar expression for combinations of fermions and antifermions etc.), we write
the definition of the hard interaction as

1 9 0
" on(y1) " 0n(yn
<oxp [iS[6, 5. 4"+ [ dla(a()o() + on(w)]. (2.18)

H(xy,...,z,) = /DAZ Dy Dy )<y1|50 —d€|lzy) ... (Yn|So — i€|xy)

where Sy — i€ is the free fermion inverse propagator. The eikonally factorized Green’s
function has the same form as before (eq. (2.5)), where the propagator in the presence of
the background gauge field is given by eqs. (1.28). Truncating the external lines of the full
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Green’s function,® one finds that the eikonally factorized scattering amplitudes are given
by the same expression eq. (2.9), but where the external line factor is now:

= T exp |17 - ij:Q n+x)-Aln T
f(oo)—/x(o):OD p[/o dt<2 +(n+a)- At +2)

1 1
— 9. — g
—|—2)\6 A(nt+x)+2)\0 FW>], (2.19)

and we have rescaled the time variable ¢ — ¢/\ as before. The proof of exponentiation
up to NE order proceeds directly as in the scalar case, except for the additional magnetic
moment vertex which, although absent in the scalar case, does nothing to invalidate the
proof. Note that, due to suppression by A, the additional vertex is indeed of NE order, as
expected given that in the strict eikonal limit, radiation is insensitive to the spin of the
emitting particle.

One may worry about ordering of Dirac matrices when the exponential of eq. (2.19) is
expanded. However, this is not an issue due to the fact that the magnetic moment vertex
is NE and thus occurs in each diagram only once at this order.

The preceding analysis has shown that in eikonally factorized Green’s functions, soft
gauge boson corrections exponentiate up to NE order. This is not yet a proof that such
corrections exponentiate in matrix elements themselves, which include Green’s functions
not having an eikonally factorized structure. At strictly eikonal level (as is well known),
one may in fact ignore contributions from diagrams which are not eikonally factorized. At
NE order, however, contributions arise from diagrams in which a soft emission connects an
external line with the hard interaction. This is the subject of the following section.

2.4 Low’s theorem

In the previous section we have demonstrated exponentiation for next-to-eikonal photon
emissions from external lines. That is, the exponentiation holds for scattering amplitudes
having the eikonally factorized form of figure 4. However, at NE order there are also cor-
rections to the exponentiation arising from soft gluon emissions which land on an external
line, having originated from inside the hard interaction. A given matrix element then has
the schematic form (up to next-to-eikonal level):

M = exp [MF + MNF] (1 + M,). (2.20)

Here MENE collect the eikonal and next-to-eikonal diagrams from eikonally factorized
Green’s functions respectively, and M, is a remainder term which does not exponentiate,
and contains NE contributions from diagrams such as that shown in figure 6. In what
follows, we refer to emissions from within the hard interaction as internal emissions, and
those originating from external lines as external. Diagrams with internal emissions have
been studied before in the literature. It has been shown for a fixed number of scalar external

8In the spinor case we defined the evolution operator U(T') as involving only the denominator of eq. (1.25).
The leftover factor in the numerator indeed combines correctly with the inverse free propagator to give a
factor p7 + m?* as in the scalar case of eq. (2.6).
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Figure 6. An example of a diagram which contributes to the remainder factor M,. of eq. (2.20).
Such contributions are formed by taking an eikonally factorized Green’s function, and adding a soft
gluon emission which lands on an external line, but originates from inside the hard interaction.

lines that, up to NE order, the sum of diagrams containing a soft emission (internal or
external) can be related to the scattering amplitude with no emissions [34]. This result is
known as Low’s theorem, and was generalized to the case of spinor external lines in [35],
an extension known as the Low-Burnett-Kroll theorem. Generalization to higher orders
was considered in [36]. The fact that graphs with an extra emission can be related simply
to those without an emission means that, although the remainder term does not have a
formal exponential structure, it has an iterative form to all orders in perturbation theory.
In this section we discuss these properties in the path integral formalism adopted in this
paper, in order to complete our discussion of NE exponentiation. This also allows for a
generalization of the ideas presented in [34-36].

Our starting point is the expression for the n-particle scattering amplitude (see also
eq. (2.9))

S(p17 o 7pn) — /DASH(xla ey I As)e_iplxlf(xlapl; AS) o e—ipnl’nf(xl’pl; As)eiS[AS} 3

(2.21)
where we have explicitly indicated the dependence of the external leg factors (eq. (2.16))
on the soft gauge field. We also now consider the fact that the external lines are produced
at 4-positions z; # 0 i.e.

p(c0)=ps

faipp A = |

Dz exp [2/ dt(%i‘2 +qi(n+ ) - Alx; + nt + x)
z(0)=x; 0

7

T

qi 0 A(x; + pt + x)>] . (2.22)
We have also indicated the dependence of the hard part on the soft photon field Ay and
rescaled this field so as to explicitly display the dependence on the eikonal particle’s electric
charge ¢;. Furthermore, we drop the subscript s on the gauge field in what follows, and
leave implicit the path integrals over the external line 4-positions x;.

Both H and the f’s depend on the soft gauge field A. As discussed in section 2, the
separation between soft and hard gauge modes leaves a residual gauge invariance, given
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by the usual form of eq. (2.2), but where the function A(z) has only soft modes when
transformed to momentum space. It is implicitly assumed that this in the case in the
following. Under such a transformation, the external line factors transform as

f@ippi A) — fzipp; A+ OA) = e 9@ f 2y, pps A), (2.23)

which follows from the definition of eq. (2.7).
In order for the path integral to remain invariant under the family of gauge transfor-
mations given by eq. (2.2), the hard function H must transform as

H(zy, ..., xp; A) — H(zy,. .. 20 A+ ON) = H(zy, ..., 2y; A0 A@)+Fia@n) = (9 9g)

We can now use the gauge invariance to relate diagrams with soft emissions from inside the
hard interaction to similar diagrams with no emission, as follows. First, one may expand
both sides of eq. (2.24) to first order in A and in A, which gives

H(xy,...,zy) + /dd:cH“(:Ul, oo ;) (Ay(z) + 0 () =

H(xl,...,xn)—i—/ddxH“(xl,...,xn;x)AM(x)
+z’/ddaz <H(m1, . ,xn)qu5(x - :Cj))A(:C). (2.25)

When the path integral over the soft gauge field is performed, H*(z1,...,z,; ) generates
hard interactions which a single soft photon emission (with Lorentz index p). Because A(x)
is arbitrary we infer

— O HM (1, i w) = iH (2, 20) Y qi6(z — ), (2.26)
J

where we have integrated by parts on the left hand side of eq. (2.25). In momentum space
this becomes

n
J
One can expand this up to first order in & to obtain
- 0
- kuHﬂ(pla co oy Pns k) - Z %kuﬁH(ph o 7pn) 3 (228)
j Tn

where the zeroth order term on the right hand side vanishes due to charge conservation
> ;4 =0. Now, because k* is an arbitrary soft momentum, one may write

- 0
H“(p1,---7pn;k)=—Zq]‘a]TH(p17---,pn)- (2.29)
j Iu
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This simply relates internal emission from the hard interaction with the same hard interac-
tion but with no emission. For a simple example of how this works using more traditional
methods, we refer the reader to appendix C.

In section 2 we ignored the fact that the external lines emerge at positions x; which
are integrated over and thus in general non-zero. Taking this into account also leads to
corrections of NE order (and beyond), which enter the above remainder term M,. To see
this, we write the eikonal one-photon source term as:

A’k n-A(k) ok
— —— LV, 2.
q/(27r)d nk C (2:30)
This can be expanded as
dk n- A(k)
— — 14z k) —= 2.31
q/(zmd( i k) e (231)

where the first bracketed term corresponds to the eikonal approximation, and the second
term (involving the factor x - k) is suppressed by one power of momentum and is thus a
NE correction. We now combine these terms with the factors of eq. (2.29), and up to NE
order the scattering amplitude is given by a sum over all such corrections, where each NE
factor occurs at most once. One then finds a NE contribution

St = [ PA[(= w01, 00 [ 5 A

d'k ; nAk) —iT1pL—...— T
/dx‘li...dmgH(ml,...,xn)<;qj/W(_ij.k)ﬁ>e 1P1—-.. npn:|

f(oapl; A) s f(O,pn; A) ) (232)

where we have explicitly instated the integrals over the initial positions of the external lines
{z;}. Performing these integrals, the scattering amplitude is given by

Ak & nf d 0
— [pA| | =2 —k, . H(py,....pn)A
S(p17 7p7l) / |:/ (27T)d ; qj(n]kk apjy ap]ﬂ) (p17 » D ) M(k):|

X J(0,p1; A)... f(0,pus A). (2.33)

Some comments are in order regarding the form and interpretation of this result. The
external line factors f(0,p;; A) contain exponentiated eikonal and NE terms, as discussed
previously. Corrections to the NE exponentiation then arise due to the bracketed prefactor
in eq. (2.33), which contains a sum over different possible NE corrections. Such corrections
contribute to the remainder term M, in eq. (2.20), and do not exponentiate. However,
eq. (2.33) shows that they can be obtained as derivatives of the hard interaction with
no soft emissions. Thus, the remainder term has an iterative structure to all orders in
perturbation theory.

For scattering amplitudes, one may summarize this as follows. Leading eikonal loga-
rithms arising from soft gluon emission exponentiate. NE logarithms do not exponentiate,
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but can be separated into the sum of a series which does exponentiate, and a remainder
sum which does not exponentiate, but is obtainable in principle to all orders in the coupling
constant.

To further clarify the above formulae, it is instructive to consider the case where the
hard interaction H is a scalar. Then it can only depend on Lorentz invariant products of
momenta. The derivatives with respect to the 4-momenta in eq. (2.33) can be reexpressed
in terms of derivatives with respect to products of 4-vectors (corresponding to Mandelstam
invariants in the hard scattering process). One may verify that derivatives w.r.t. p? vanish,
and in the case of two external lines (n = 2) there is only one scalar p; - p2. eq. (2.33) then
becomes

S(p1y---ypn) :/DA

/ d’k <n‘f(kz-n2—kz-n1) +n§‘(k-n1—k-n2)>

(27T)d ni- k ng - k
0
X mH(Pl, oo Dn)Au(R) | f(O,p15A) ... f(O,pr; A) . (2.34)

This is precisely the form one expects based on a conventional Feynman diagram treatment
(see appendix C), and one may interpret the bracketed factor in eq. (2.34) as an extra vertex
describing soft emission from within the hard interaction.

3 Non-abelian gauge theory

So far we have considered an abelian background gauge field. In the case where the gauge
field is non-abelian, the derivation of the scattering amplitude for eikonally factorized dia-
grams proceeds similarly to section 2. Here we consider the simple case of a hard interaction
with two outgoing external lines. That is, the analogue of eq. (2.9) can be written

S(p1,p2) _ /DA? Hiliz (xl, $2)e—ip1x1f1i1j1 (Oo)e—imxzfQinQ (OO)@iS[AS]- (3.1)

Here {ix} and {j;} are indices in the fundamental representation of the gauge group, such
that the outgoing particles have indices {ji} and summation over repeated color indices is
implied. The external line factors f%J(co0) have the form

1171

filjl(oo) _ [/(O) Dz fpeifow dt( 322+ (py+i)-Awitpst+a(t))+ L4 0-Alzitpst+a)) . (32

i.e. similar to before, but matrix-valued in color space due to the exponent being linear
in the non-abelian gauge field A* = AZtA, where ¢4 is a generator of the gauge group.
Furthermore, there is a path ordering of the color matrices along the external line. As
before, the external line factors act as source terms for the soft gauge field when the path
integral over A% is performed. However, it is no longer immediately clear that the soft
corrections exponentiate. In the abelian case, the exponentiation of soft gauge boson cor-
rections was identified with the exponentiation of disconnected diagrams between sources.
Crucial to the combinatorics of this result is the fact that in the abelian case, the source
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terms commute with each other. This is no longer true in the non-abelian case, due to the
matrix valued nature of the source terms, and also the path ordering of the exponential
in eq. (3.2). We will see, however, that it is still possible to address exponentiation in the
non-abelian case, by rephrasing the problem using the replica trick of statistical physics
(see appendix A for another application i.e. the proof of the exponentiation of disconnected
diagrams in field theory). One can then write the scattering amplitude in a form such that
extra structure emerges in the exponent, whereby the contraction of soft gluon emissions
between eikonal lines gives rise to a exponentiating subset of diagrams. These can then be
identified with the webs of [11, 12].

To simplify the discussion, we first restrict ourselves to the strict eikonal limit. Fur-
thermore, we consider the case of a hard interaction with the color singlet structure

HiliQ(xl,xg) = H(ml,xg) (SiliQ, (33)

where §712 is the Kronecker symbol. Such a structure arises in interactions where e.g. an
incoming color singlet particle gives rise to the pair production of two hard final charged
scalars (the scalar analogue of eTe™ pair production by a virtual photon), as shown in
figure 2. Given that, up to the NE corrections discussed in section 2.4, one may consider
the external lines as being created at « = 0, one may take the hard interaction outside the
path integral over A in eq. (3.1) to obtain (in this case)

S(p1,p2) = H(Phpz)/DAg ffjl(oo)fzijQ(OO)eiS[AS}- (3.4)

Here S[A;] is the action for the soft gauge field which is independent of the emitting
particles. The product of external line factors, suppressing momentarily the color indices,
is given by

F1(00) fa(00) = {zpeifdxyA(ml)} [Peifdmg-A(xg)] . (3.5)

The first factor is a Wilson line parametrized by xi(s), where s = —t increases along
the direction of the charge flow, with —oo < s < 0. The second factor is a Wilson line
parametrized by z2(s), with s = ¢ and 0 < s < co. One may combine these into a single
curve given by

= {00 el 0

Due to the path ordering in the definition of the Wilson line, one has the property
[Peifdl‘l-A(l‘l)] [PeifdxguA(xg) _ PeifdabA(x), (37)

so that, for the simple interaction considered here, one may combine the two external line
factors into the single factor

F(00) = f1(00) fo(00) = Pt 44w, (38)
The scattering amplitude of eq. (3.4) is now given by:

S(p1,p2) = H(p1,p2) T, (3.9)
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where

F= / DA f (00) ¢S4, (3.10)

We now consider the quantity
FN _ [/ DAlff(l)(oo)eiS[Al]] [/ DAMNf(N)(OO)eiS[AN} . (3.11)

Here {AY} are N replicas of the soft gauge field (we have dropped the subscript s for
brevity), and S[A;] the action for the i*" replica. One has a different external line factor
f@ for each replica field. Combining the path integrals using DA* = [, DAY, one can

rewrite eq. (3.11) as
FN = / DA* M (00) ... fN) (00)etSIAF-AiSIAN], (3.12)

The physical interpretation of this quantity is as follows. The external line factors, as in
the abelian case, contain sources for the gauge field. In this case, they generate diagrams
containing any mixture of the NV replica gauge fields, which span the external lines of the
hard interaction (which in this case have become a single external line). Each of the vertices
for the emission of a gauge field replica has a non-trivial color structure, such that neither
the external factors £ nor the vertices they give rise to commute. However, by definition
one has:

FN =14 Nlog(F) + O(N?). (3.13)

It follows that, if one can extract a term in eq. (3.12) that is linear in the number N of
replica fields, one has

F = exp [Z W} , (3.14)

where the sum is over all diagrams W that contribute at O(N). Crucially, we will find
that not all diagrams in the theory have terms of O(N), so one recovers the property of
exponentiation of soft radiative corrections in terms of a subset of diagrams with certain
properties. The diagrams in this case will still contain replica fields. However, given that
the gauge group of the replicated theory is the same as that in the standard theory, it must
be true that the color structures of the subdiagrams which exponentiate are the same in
the two theories.

We now describe how to isolate the term linear in N in eq. (3.12). The product of
external line factors has the form:

FV(00) ... fN)(c0) = Pexp [/ dz - Al(x)] ... Pexp [/ dz - AN(;C)} . (3.15)

Ideally we want to write this as a single path-ordered exponential, so that one can identify
the usual rules of perturbation theory. This can be achieved by writing eq. (3.15) in the
following form:

f[lpexp [ / dx-Ai(:c)} = RP exp : (3.16)

N
;/dx-Ai(x)
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Figure 7. Example of radiative corrections generated by the source terms of eq. (3.17), where two
gauge boson replicas are shown. Each set of replica emissions is time ordered, such that (in this
case) ta > t1 > to and ¢ > .

where we have introduced the replica ordering operator R, defined such that

Ai(r)A;j(y), i<y

Aj()Ai(z), >3’ (3.17)

RIA: () A; (y)] = {
with obvious generalization to higher numbers of operators. That is, R orders any product
of matrix-valued fields into a sequence of increasing replica number. Note that the resulting
product is no longer strictly time ordered, although the matrix fields of any given replica
number remain time ordered.

As before (and by analogy with conventional Feynman perturbation theory for non-
Abelian gauge fields), the single exponent in eq. (3.16) acts as a collection of sources for
the soft gauge field. The path integration over the soft gauge field generates diagrams
containing multiple replica emissions along the eikonal line, where the replica numbers are
not necessarily ordered along the line (see figure 7). However, the expression for a given
diagram, as dictated by the source terms arising from eq. (3.16), involves replica ordered
products of operators, each of which involves a color matrix. Thus, the color structure
associated with each diagram is not the same as that which would result from conventional
perturbation theory, but rather that associated with the given replica-ordered product of
matrix-valued fields. The subset of diagrams which exponentiates then has a modified
color structure, as is known to be the case for webs [11-13]. To see which diagrams W
actually contribute in eq. (3.14), one must consider contracting gluons emitted from two
or more vertices. Given that the gauge field replicas do not interact with each other (i.e.
are only tangled through color structure), one can clearly only contract gluons which have
the same replica number 7 and adjoint color index A. Here we consider this up to O(Aﬁ)
in the scattering amplitude (i.e. up to two gluon lines). Firstly, we need only consider
contributions from vertices on different segments of the combined Wilson line z(t), as those
on the same segment ultimately give contributions proportional to (at least in covariant
gauges) p? = 0 or p3 = 0. Also, each diagram has a multitude of similar diagrams obtained
by permuting the replica labels. The operator R for each diagram orders the color matrices
in the form

A A PO Ay (3.18)

i.e. a product of strings of color matrices, with one string for each replica (if present), and
n; matrices for replica i. Given that the replicas do not interact with each other, the color
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Figure 8. Diagrams that potentially contribute to the exponentiated contribution to the scattering
amplitude in the case of two external lines connected by a color singlet structure, for one and two
gluon emissions. In fact, only (a) and (c) contribute as discussed in the text.

indices of each string in eq. (3.18) are contracted independently of the other strings. That
is, the color factor for each diagram has the form

N
TTA" ), @10
i=1

where KZA et is a combination of factors involving f48¢ and §48 which implements the
color contractions for replica i in the diagram being considered. Each of the strings of color
matrices corresponding to a given replica number in eq. (3.19) has two color indices in the
fundamental representation, thus by Schur’s Lemma must be proportional to the identity.
Hence, the color factor of a complete diagram in the replica ordered perturbation theory
is the product of the individual color factors associated with the subdiagrams formed
from each replica separately. Furthermore, the ordering of the factors in eq. (3.18) is
unimportant, so that the color factors associated with the set of diagrams obtained from
a given diagram merely by permuting replica numbers are the same. There are yFP,,, =
N!/(N —m)! such permutations, where m is the number of different replica species present
in the diagram.

For one gluon emission, there is only one possible diagram, shown in figure 8(a). There
is a sum over the replica number of the exchanged gluon, so that this diagram is clearly
proportional to IV, denoting a color structure that exponentiates. The color factor of this
diagram is

A = Cp, (3.20)

where 4 is a generator in the fundamental representation of the gauge group, and C'r the
relevant Casimir invariant. Note that this is the same as the color factor in conventional
perturbation theory, although things become more complicated when more than one gluon
is involved.

For two gluon emission, one has the two diagrams shown in figure 8(b,c). For each of
these, one must consider separately the cases where i = j and i # j, because of the fact
that the replica ordering operator R acts differently in the two cases.

For figure 8(b), in the case where i = j one has a color factor

Pt tl = CF, (3.21)
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X2

Figure 9. Diagrams contributing to the exponentiated scattering amplitude at O(aflg), and involv-
ing the 3-gluon vertex.

where we have explicitly indicated which color matrix is associated with each replica. When
i # j, the color matrices in eq. (3.22) get reordered by the R operator i.e. one has

ti 717 = Ch (3.22)

for i < j, with a similar expression for ¢ > j (but where ¢ and j are interchanged). The
color factors of these diagrams are the same, and thus one may combine the results for
i =j and i # j. Then one sees that the contribution from figure (8)(b) is O(N?).
For figure 8(c), the i = j case has the color factor
CrCy

ti 2t l = CF - o (3.23)

When ¢ # j one has
it 218 = CF. (3.24)

Note that the color factors for ¢ = j and ¢ # j are now different, such that the two cases do
not combine to give a term O(N?). There are N diagrams where i = j, and y P, = N(N—1)
diagrams where ¢ # j. Thus the term linear in IV has a color factor:

CFCA) +(~=N)C%2 =N <_ CFQCA> .

N (C% - (3.25)

The above discussion can be summarized as follows. Up to two gluon emissions, a
subset of diagrams exponentiates. Namely, the one gluon emission diagram of figure 8(a),
and the crossed gluon diagram of figure 8(c). Figure 8(b) does not contribute due to
being O(N?), and figure 8(c) has a color factor which differs from that of conventional
perturbation theory, and indeed is precisely the modified color factor associated with the
known webs of [11-13].

Note at this order in ag one also has diagrams containing gluon self-interactions, of
which there are two possibilities, shown in figure 9. There are N such diagrams in each case,
so that they also exponentiate (i.e. are webs) with a color factor equal to the ordinary one.

We now consider the generalization of the above remarks to higher orders in pertur-
bation theory. The subdiagrams which exponentiate can be characterized by the fact that
they are two-eikonal irreducible. That is, one cannot disconnect each diagram by cutting
eikonal lines in two places. This property is well-known [11, 12], but we prove it in the
following using the methods outlined above.
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Figure 10. A two-eikonal reducible diagram, in the simplest case of two disconnected components
with respect to the external lines.

Consider the general two-eikonal reducible diagram shown in figure 10 (where each of
the subdiagrams could itself be reducible). We focus on a given gauge boson replica i in
subdiagram H in figure 10, and consider first the case where subdiagram G contains no
gauge bosons with replica number i. According to the Feynman rules of the replica-ordered
perturbation theory described above, the diagram of figure 10 then gives a color factor

J#i

~AnBi-Bm g the color

where C(j) is the color factor associated with replica j, and K Z-A L
contraction factor for replica ¢ introduced above. That is, [[ C(j) contains the results of all
contractions in G as well as those of H that do not involve replica number ¢. The indices
{Ar} and {By} denote emissions from the lower and upper eikonal lines respectively. Now
consider the case where G as well as H contains emissions with replica number i. Then
(due to the reducible structure) one can write K; as a product of factors Sg,, Sp, for each
subdiagram, so that the color factor associated with figure 10 is

A ...A, B ...B Aj.. A B1...B A
ng+1 n Dmpg+1 m 1 ny D1 myy A1 ny
Ky Sy ead

x [tgm ] [ ] e < T ) (3.27)
i

We may use the fact that

Ang+1--An B 41..Bm [, An Am
Kg ! L [ N | R S (3.28)

where [ is the identity in color space. This follows given that the contribution in color space
from a given replica in a disconnected subdiagram G has two indices in the fundamental
representation. By Schur’s Lemma, this must be proportional to the identity i.e. the only
possible two-index invariant tensor. We may then rewrite eq. (3.27) as

A ...A, B ...B Ap.. A B;...B A
npg+1 n Dmpg+1 m 1 ny D1 myy A1 np
Ky Ky ]

x [tﬁmff ...tf}] {tg"H“ ...tén] [tém...témHH} < [Tcw. (3.29)
i#i
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This has the same color structure as would arise if one were considering a different replica
number in G than has been considered in H. i.e. one can absorb all G-dependent factors
into the product [[C(j), such that eq. (3.29) is then the same as eq. (3.26). The color
structures of the subdiagrams are thus independent, and it follows that the number of ways
of forming the total diagram in figure 10 is the product of the number of ways of forming
the individual subdiagrams. For each subdiagram this is at least o< N, such that the
contribution from diagrams which are two-eikonal reducible is at least o« N2 (in general,
o« NM where M is the number of two-eikonal irreducible subdiagrams). Thus, two-eikonal
reducible diagrams do not exponentiate.

In fact, one can proceed further and obtain a general solution for the color factors of
the diagrams to all orders. Consider a given diagram consisting of n. connected pieces (i.e.
gluons connected by self interactions or fermion bubbles). For each such diagram, we then
consider the set { P} of partitions. These are sets containing a number n(P) of subgraphs g,
each of which contains only one replica (see figure 11). Permuting the replica numbers (but
keeping the subgraphs g intact) corresponds to the same partition (see figure 12), such that
there are y P, (p) distinct diagrams in each partition, each of which has the same color factor

[Icw. (3.30)

geP

where C'(g) is the color factor associated with subgraph g. The total color factor of the
complete diagram is now given by

ZNPn(P) H C(g) (3.31)

geP

i.e. one sums over all possible partitions, each of which has a color factor given by eq. (3.30),
and weighted by the number of diagrams represented by each partition. The only depen-
dence on the replica number resides in the factor y P, (p), which has the form

NPopy = (=1)"P) " (n(P) — 1)IN + O(N?). (3.32)
The contribution from a given complete diagram G which is linear in N is thus given by

(@) = (-1 n(P) - D1 ] Clo)- (3.33)

P geP

The bar on the left hand side denotes the fact that this is the modified color factor asso-
ciated with G, rather than the color factor one would obtain in conventional perturbation
theory (i.e. without the R operator). The color factors on the right hand side, C'(g), are
the ordinary color factors associated with each replica subgraph g. Eq. (3.33) is a closed
form solution for the modified color factor associated with any given diagram, in that
modified color factors only appear on the left-hand side. It has the property, as it must
do from the above considerations, of being zero if GG is not a web. As a simple example
(already encountered above), consider the diagram of figure 8(c). There are two possible
partitions. Either the two gluons have the same replica number, i.e. one subgraph with

,25,



(@) (b)
Figure 11. Examples of (a) a diagram containing 3 connected pieces; (b) three possible partitions

generated by this diagram, where colors represent distinct replica numbers. Permuting colors gives
the same partition.

AR AK A

Figure 12. Examples of diagrams in the same partition, where colors represent distinct replica

000 J

numbers.

color factor C( ), or they have different color factors i.e. two subgraphs with total color
factor C'(1)C( ). Then eq. (3.33) gives a total modified color factor

c(=c()-cO)e), (3.34)

which gives —%CFC 4 as required.

To further clarify the discussion, we consider here a pair of three loop examples.
We consider first the diagram represented in the above shorthand notation by .. From
eq. (3.33), one has schematically

C(1)=C()=200)C( )= C)C( ) +20()°

=C(/1)-20()C( ) -C()?, (3.35)

~—

where in the second line we have used the fact that C(|) =C( )and C() ) =C( )—C( )%
The second line then agrees with the modified color factor given in [11, 12].
Our second example is |, for which one has

ct)=c()-cO)e). (3.36)

Reducibility implies C(| ) = C()C( ), and thus C(| ) = 0, as expected for a non-web.
To summarize, the above replica trick has allowed us to determine the subset of dia-
grams which exponentiate in non-abelian theory i.e. the diagrams which exponentiate are
those which have a term linear in the number of replicas N. This is related to the original
gauge theory (with no replicas) as follows. Firstly, the replica gluons all have the same
self-interactions and scalar-gluon interactions, but do not interact with each other. Thus
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in any diagram one can replace replica gluons with original gluons to yield the same kine-
matic result. Then the color weights of the exponentiating diagrams are precisely those
found above i.e. modified with respect to the original theory. The structure of two-eikonal
irreducible diagrams with modified color factors is precisely that of web exponentiation,
described in [12, 14].

The above discussion proceeds similarly in the case of fermionic emitting particles,
given that the gauge boson emission vertices which distinguish scalar from fermion emitters
only appear at NE order. We discuss subleading corrections in the next section.

3.1 Non-abelian exponentiation at NE order

The significance of the above derivation of web exponentiation in terms of the path integral
method is that one may then easily extend the analysis to NE order, using the A-scaling
technique discussed in section 2.2. We have already shown that a subset of NE corrections

exponentiate in the abelian case, and that eikonal corrections in the non-abelian case ex-
ponentiate. Thus, it is not surprising that a subset of non-abelian NE terms exponentiates.

In this section we again consider the simple case of two external lines emerging from
a hard interaction which has a color singlet structure. Then the scattering amplitude
factorizes as in eq. (3.10), but where the external line factor is given by

_ (A N
f(oo)—/x(O)OD:UPexp [1/0 dt<2x +(n+1x)- A(nt + x)

l 1
—9- — gt
+ 2)\6 A(nt + x) 2)\0 FW>], (3.37)

One next performs the path integral in x (as detailed for the abelian case in appendix B),
which gives

f(o0) =Pexp [i/ooodtn-A(nt) - %/OOO dto - A(nt)
L[ > /7 U (4] /
+ 5/0 dt/o dt' (zh(t)z" (1)) Au(nt) A, (nt')
- / dt / dt’ (@ (t)z*(t'))n” A, (nt)0a Ay (nt')
0 0
_ % /0 dt /0 dt' (2 ()27 () ) n* 9y A, (nt) D Ay (nf)

+5 /0 dt n#(z” ()2 (£))0, 00 Ap(nt) | (3.38)

For reasons that will become clear, we have stayed in position space in the exponent.
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X2 ® X2
Xy X1
(c) (d)

Figure 13. Webs involving local vertices occurring at NE order, where e represents a vertex of NE
order. Additional diagrams arise by reflecting each diagram shown about the horizontal axis.

Inserting the correlators of the x fields (see egs. (B.18)), eq. (3.38) becomes:

f(o0) =P exp [z/ dtn-AA(nt)tA—%/ dtd - AN (nt)t!
0 0

1> 1 i
- —/ dt n” A%} (nt) AyB(nt)i{tA,tB} +—

> wav AA A
A 2)\/0 dtn"9"0, A, (nt)t

1 [e%¢) t
-5 / dt / dt’ nn” A (nt) 0o A (nt') t4 P
0 0
1 [e%¢) t
-5 / dt / dt' t'n¥n” 0, Al) (nt) 95 AJ (nt') t4 tB]. (3.39)
0 0

Here we have explicitly factored out color matrices from the non-abelian gauge fields. Note
that path ordering (i.e. time ordering in this case) has appeared in some of the terms in
the exponent, due to the © function occurring in the correlators of eq. (B.18). There are
two types of vertex occurring in eq. (3.39) — those that depend on a single time (in the
first two lines), and those that depend on two different times (in the third and fourth
lines). Of the former type, there are one gluon vertices and a two gluon vertex. For these
vertices, the arguments of the previous section (involving the replica trick) carry forward
with minimal modification, and one has eikonal exponentiation up to NE webs, where each
NE vertex must occur only once per diagram. The additional webs that appear at two gluon
order are shown in figure 13. At higher orders, the NE webs again have the property of
being two-external-line irreducible. The time ordered vertices in the third line of eq. (3.39)
generate diagrams such as those shown in figure 14, which involve correlated emissions from
different positions on the external line, but where additional eikonal emissions may occur
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Figure 14. Example of a web involving the NE vertex (denoted here by [0), which correlates gluons
emitted from different positions on the external line. As shown here, further eikonal emissions may
occur between the correlated NE emissions.

in between. One must then sum over all possible correlations (pairs of gluons). There are
two types of such diagrams. Firstly, diagrams whose structure is such that they form a web
at eikonal level (i.e. are two-eikonal irreducible in that case). The time ordered vertices
then implement correlations between pairs of gluons in the same web. Secondly, one has
diagrams that would be two-eikonal reducible at eikonal level (i.e. are a product of webs),
but which become irreducible at NE level due to correlations between gluons in separate
webs (e.g. figure 14). The sum over all such diagrams then enters the exponent of eq. (3.14).
To summarize, the set of NE corrections resulting from non-abelian gauge boson emission
outside of the hard interaction exponentiate. The exponent involves a subset of diagrams,
NE webs, some of which are more complicated in structure than their eikonal equivalents.
However, they still share the property of being two-external-line irreducible.

In the case of a spinor emitting particle, the additional vertex

d /Oo wp (3.40)
— o y )
2X Jo a

appears in the exponent of eq. (3.37) i.e. the non-abelian analogue of eq. (B.30). This gives
rise to both a one- and a two-gluon vertex, derived from the position space expressions

% / D AN () ot 4, (3.41)

0

% / ot A (t) AL [t 5] (2). (3.42)
0

Both of these vertices depend on a single time, and thus are handled similarly to those
occurring in eq. (3.39). Note that the two-gluon vertex eq. (3.42) has no abelian ana-
logue, which can be seen from the fact that the commutator [t4, %] vanishes for an abelian
gauge field.

Some comments are in order regarding the color factors associated with the NE webs.
We note that the derivation of the formula for modified color factors in the eikonal case
(eq. (3.33)) is independent of the eikonal approximation. Thus, it also applies in the NE
case, where the color factors C'(j) associated with each subgraph involving replica number
j are the normal color factors one obtains using the NE Feynman rules.
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The above discussion shows that, for the simple hard interaction considered above, a
subset of corrections exponentiates up to NE order i.e. those associated with soft gauge
boson emission outside the hard interaction. As in the abelian case, one still has to worry
about corrections due to eikonal emissions from within the hard interaction (which give
rise to the remainder term in eq. (2.20)). This is the subject of the next section.

3.2 Internal emissions of non-abelian gauge fields

In the abelian case, we identified a subset of NE corrections which exponentiate (i.e. those
arising from soft gauge boson emissions outside of the hard interaction). There were then
remainder terms, which did not have an exponential structure but could be obtained it-
eratively to all orders in the perturbation expansion. Here we briefly discuss how this
structure can be generalized to the case of a non-abelian gauge field. As in the previous
section, we consider the case where the matrix element for the hard interaction with no
internal emissions has a color singlet structure, with two outgoing eikonal lines.

We begin with the non-abelian analogue of the abelian gauge transformation law of
eq. (2.24), which is

f(xi,pﬁ A,u) - f(CC@',pf, UAuU_l - Z'UauU_l) = U(xi)f(xi’pf; Au) (3'43)
for an external particle, and
f(i,pps Ay) — flai,pp, UALU™ — iU U™Y) = flai,pp; A)U ™ (ai) (3.44)

for an external antiparticle, where U(x) = exp(i#*(x)t?), and the coupling constant g of
the non-abelian gauge field has been absorbed in A. The hard interaction (in the two
eikonal line, color singlet case considered in the previous sections) then transforms as

H(xy, 29, A) — H(z1,22,UA U — iU, U™ Y) = Ulwo)H(w1,22)U 1)  (3.45)

Expanding this to first order in A and 6%(x), and using the fact that the latter is arbitrary
gives the analogue of eq. (2.26)

— O HM (21, w95 )t = i H (21, 29) Zgjé(x — )4, (3.46)
J

where g; = +1 for an eikonal particle, and —1 for an antiparticle. This has the same
interpretation as in the abelian case i.e. the amplitude for an internal emission is related to
the amplitude with no such emission. In the non-abelian case, the amplitude for internal
emission is proportional to the color matrix t#, as indeed it must be from group theory
considerations (the quantity H* has one adjoint index and two fundamental indices).

As in the abelian case, eq. (3.46) can be interpreted as an extra vertex for soft gluon
emission. This vertex is located on the Wilson line at ¢ = 0 i.e. where the eikonal segments
x1 and zo meet. There are terms (also by analogy with the abelian case of section 2.4)
which correct for the fact that the external lines do not originate from x = 0. However,
these also take the form of an additional vertex localized at ¢ = 0. The diagrams containing
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these additional vertices do not necessarily exponentiate (as before), and form a remainder
term analogously to that of eq. (2.20).

Thus, the all-order structure of matrix elements up to NE order is conceptually equiv-
alent to the abelian case. One has a subset of NE corrections which exponentiate (i.e. NE
webs), and a set of corrections which form a remainder term which mixes with the exponen-
tiated NE corrections. The remainder term does not necessarily have a simple structure,
but at least has an iterative structure due to the fact that diagrams with no internal
emission are sufficient to generate higher order diagrams involving an internal emission.

4 Discussion

In this paper, we have considered the issue of soft gauge boson corrections for matrix ele-
ments in abelian and non-abelian gauge theories from a path integral point of view. This
involves considering factorized diagrams involving hard interactions with a given number of
external lines, each of which emits further soft radiation. The propagator for each external
line can then be cast into a first quantized path integral representation, where the integral
is a sum over paths for the emitting particle. This path integral can be performed by
expanding about the classical straight line path for the emitter, which corresponds to sys-
tematic corrections to the eikonal approximation. The scattering amplitude then factorizes
into a hard interaction plus factors for each external line which act as source terms for the
soft gauge field A%, where the sources are placed along the external lines. In the abelian
case, exponentiation of eikonal corrections then follows from the usual exponentiation of
disconnected diagrams in quantum field theory. Furthermore, a subset of next-to-eikonal
corrections can also be shown to exponentiate, and a set of effective Feynman rules for
radiation in the NE limit is obtained.

The case of a non-abelian gauge field is more complicated, but can be analyzed using
the replica trick, in which one considers an ensemble of N gauge fields. Diagrams which
have a term linear in N then exponentiate, and crucially only a subset of diagrams in
the theory have such a property. We considered the simple case of two external lines,
connected by a hard interaction with color singlet structure. Then the diagrams which
exponentiate contain sources arising from the replica ordered perturbation theory arising
from eq. (3.16). Those which contribute at O(N) have the property of being two-external
line irreducible, and also have (in general) color factors which differ from those of the
corresponding diagrams in the original theory. These diagrams are then precisely the webs
of [12, 14]. As in the abelian case, a subset of NE corrections also exponentiates, and the
exponent contains a sum of webs up to NE level.

In both the abelian and non-abelian cases, there are NE corrections which do not
exponentiate, and which form a remainder term such that the total matrix element (up
to NE order) has the form shown in eq. (2.20). These terms are associated with Low’s
theorem, and the relevant diagrams involve contractions between eikonal photons or gluons
on the external lines, and a NE vertex localized at the cusp at which the outgoing eikonal
lines meet. Furthermore, these terms have an iterative structure in perturbation theory, in
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that the extra vertices that contribute can be related to diagrams at a lower order in the
perturbation expansion.

A comment is in order regarding the nature of NE exponentiation. Up to NE order,
eq. (2.20) can be expanded to give

M = exp [MP] (1 + M, + MNF) (4.1)

i.e. one may either consider the NE terms arising from eikonally factorized diagrams as
being in the exponent, or kept to linear order. This masks the fact that the terms in MNF
genuinely do exponentiate, whereas the remainder terms in M, do not. However, it is
true that the exponentiated NE terms lead to NNE, NNNE etc. contributions which would
then mix with higher order (in the eikonal expansion) remainder terms. The exponentiated
form of eq. (4.1) is particularly useful if the contribution from MNP (when exponentiated)
gives the dominant contribution to higher order terms in the eikonal expansion. Whether
or not this is the case is presumably process dependent.

The proof of exponentiation in the abelian case, as presented here, clearly generalizes
to higher numbers of eikonal lines. However, in the non-abelian case we considered only the
simplest possible hard interaction, namely that with two external lines with a color singlet
structure. This could be easily related to a single Wilson line with a cusp. The general
case of higher numbers of external lines is more complicated due to the color structures
involved. Nevertheless, the methods introduced in this paper may provide a useful starting
point in addressing NE corrections in these situations.

We have only considered matrix elements in this paper. Thus, any exponentiation of
NE corrections pertains only before any integration over the phase space of the final state
gauge bosons has been performed. In the strict eikonal approximation, the phase space
factorizes into a product of single particle phase spaces (i.e. conservation of energy is a
subleading effect), thus exponentiation in the matrix element implies exponentiation of soft
logarithms in differential (but partially integrated) cross-sections. This is not necessarily
the case beyond the eikonal approximation, where one expects NE corrections resulting
from the eikonal matrix element with integration over the full phase space. Naively, one
expects a given differential cross-section (e.g. in some variable & related to the total energy
fraction carried by soft gluons) to have the form

Z—Z = /dPS(E) IME)2 4 UdPS(E) yM<NE>y2+/dPs<NE> IMP)2| + O(NNE). (4.2)
Here M NE) denote the eikonal and next-to-eikonal matrix elements respectively, and
dPS®) the eikonal phase space, consisting of a factorized product of one-particle phase
spaces. The first term in eq. (4.2) is then of eikonal order, and the bracketed term is NE,
where dPS(NE) represents that part of the multi-gluon phase space which implements next-
to-eikonal corrections (i.e. subleading terms in §). The precise nature of this latter term is
unclear, and an investigation of its effect is deferred to a future publication. Nevertheless,
all of the ingredients for the first bracketed term in eq. (4.2) are contained in this paper.
To conclude, the path integral methods used in this paper provide a new viewpoint
for the exponentiation of soft radiative corrections to matrix elements, in both abelian and
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non-abelian gauge theories. In particular, the discussion of webs is rephrased such that a
closed form solution for the modified color factors can be given. Furthermore, the approach
naturally encompasses the exponentiation of classes of next-to-eikonal corrections. This
approach should prove fruitful in the further investigation of soft radiative corrections to
all orders in perturbation theory.
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A Exponentiation of disconnected diagrams

Here we briefly prove the exponentiation of disconnected diagrams in quantum field theory,
using the replica trick of statistical physics. Although we consider a single self-interacting
scalar field ¢, the proof generalizes easily to other systems.

The Green’s functions of a given quantum field theory are described by the generat-

ing functional

Z[J] = /D¢ei5[¢1+ifJ¢, (A.1)

where J is a source for the field ¢, and S is the classical action. Now consider defining N
replicas of the theory, involving fields ¢; (i € {1,...,n}). This has generating functional

Zn[J] = /DqSl . DoyeSOti[ o giSlonl+i[ Jon (A.2)

which clearly satisfies
Zn1I) = ([N (A.3)

The Feynman rules for each field are similar, and there are no interactions between the
fields. Thus, there can be no more than one field in each connected Feynman diagram,
and connected diagrams therefore have N copies. By the same reasoning, disconnected

diagrams containing n > 2 constituent parts have N copies. It follows that

> G N, (A.4)

where G denotes a connected diagram. Furthermore, no disconnected diagrams contribute
terms proportional to N. From eq. (A.3) one has

Zn[J] =1+ Nlog(Z[J]) + O(N?), (A.5)
and comparing egs. (A.4), (A.5) gives

> G =log(Z[J)). (A.6)
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Finally, one writes this as:
Z[J] = exp [Z Gc] (A7)

and sets N = 1. This is the statement that disconnected diagrams exponentiate, as required.

The above proof shortcuts the nontrivial combinatoric fact that the symmetry factor
associated with a disconnected Feynman graph is the product of the symmetry factors
of each of the constituent connected graphs. The results of this paper demonstrate that
the same combinatoric reasoning applies to the exponentiation of soft radiative corrections
from fast-moving external particles.

B Next-to-eikonal Feynman rules

In this appendix, we show how to derive effective Feynman rules for the eikonal and next-
to-eikonal approximations in the path integral approach discussed in section 2.2, and show
explicitly that these agree with the rules one obtains by starting from exact perturbation
theory before taking the NE limit.

We begin with the conventional perturbative approach, and consider the case of a
charged scalar interacting with a background gauge field. The theory and its Green func-
tions are defined via the generating functional

Z[J,J* = /D¢Dq§* exp [i/ddac [—(Duo)*D*¢ — m*¢* ¢+ Jo* + T ¢| | . (B.1)

where D,, = 0,, —iA,,. From this functional one derives the Feynman rules

1
i(p? +m? —ig)’

3

=

1 2 i(p1 + p2)t,

(B.2)

pjbp

1 2 — 277“”.

Note the symmetry factor in the seagull vertex. With these rules one can describe emissions
from a charged scalar line, and from them we can derive Feynman rules for the eikonal
and NE approximation. To do so, we shall take m = 0 and use A-scaling as discussed in
section 2. That is, we consider an external particle of 4-momentum p = An, and consider
the limit A — oco. As discussed in section 2, this corresponds to the eikonal approximation,
with the first subleading corrections in A representing the NE approximation.

We first consider the propagator-vertex combination for one-photon emission. The
diagram and corresponding expression is

k

[VAYAVAY,

' —_i(2p— k)", (B.3)
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where we have taken this diagram to represent the combined vertex and propagator factors
(to the left of the vertex). Setting p = An and expanding eq. (B.3) to O(1/A) yields

nt 1 k# n#
-— 4+ —k? . B.4
n-k+)\<2n-k 2(n-/<:)2> (B-4)

We recognize the first term as the eikonal approximation, and the remainder as the NE

contribution. Each term in eq. (B.4) is to be contracted with a background gauge field, so
that we can treat each as a one-photon source. We represent these sources graphically as

k

p-k’
§ (B.5)
> (2a) fok,
ip (2b) _ k2ﬁ

Note that here and in following graphs, we replace n — p/A so that the Feynman rules
are given in terms of the physical momenta. We now consider possible two-photon sources.
Starting with the seagull term, we take the following propagator-vertex combination:

k

prkel—f——p (o), B.6
Scaling p and gathering terms up to O(1/)\) yields
1 ntv
- B.7
An - (k+1) (B-7)

Evidently, at the eikonal level the seagull term is absent. One expects this given that there
is no such seagull vertex in the exact Feynman rules for a fermionic emitting particle, and,
as is well known, in the eikonal approximation the emitted radiation is insensitive to the
particle’s spin.

We next examine the contribution of two individual photon emissions, as shown in
figure 15. At eikonal level these diagrams give a contribution

<_n-(7:+ l)> <_nn.“k> + <_#V+l)> <_nn_!gl)> (B.8)

which one may rearrange to give:
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Figure 15. Diagrams contributing to two photon emission. At NE level, one must sum over all
possible insertions of a NE one-photon emission vertex, as given in eq. (B.5).

The contribution from the soft emissions explicitly factorizes into a product of uncorrelated

emissions, as is well-known.

At O(1/)), corresponding to the NE limit, one must sum over all possible insertions
of a NE one-photon emission vertex in figure (15). There are possible vertices, as given in
eq. (B.5). The vertex (2a) yields an expression

(oiesn) (en) * (o) (o)
(oriern) (o) (i) (o) - 0
which can be rearranged to give
<_:-Ul> (25“14) * <_nn-uk> (251) B l:nyzlkf ;;:yzznll (B-11)

Notice that the first two terms correspond to two uncorrelated NE emissions, while the

last term represents a correlated two-photon emission (i.e. is non-factorizable into terms
dependent on a single photon momentum). The NE vertex (2b) gives a contribution

(ofon) () (o) (5)+
(otiern) () + (o ) () - @

which can be rewritten as

() () (2 () it o

Again this is the sum of an uncorrelated part, and a term implementing correlated photon

emission. The various correlated contributions given in egs. (B.7), (B.11) and (B.13) can
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be represented as new two-photon vertices, and are given respectively by

s
E R—

PSS

R\j
MYy -k + kVphp - 1 (B.14)
a5 (o) PP RE R

p-(k+Dp-kp-1~

o
SIS W g LA,

p-(k+Dp-kp-1

We have shown that these vertices apply when two photons are emitted next to the on-shell

eikonal line. From our analysis in this appendix, it does not necessarily follow that these
vertices apply to emissions anywhere on the external line, at all orders of perturbation
theory. That this is indeed the case is clear when one rederives these vertices using the
path integral methods described in this paper, and we defer a full proof within conventional
perturbation theory to a forthcoming paper [37]. Here we will only demonstrate that these
terms are precisely reproduced in our path-integral formalism. The path integral represen-
tation of a charged scalar coupled to a background gauge field is given by eq. (2.16) as

_ (M s ) A
f(oo)—/x(O)OD:U exp |:Z/O dt(zx +(n+1x)- A(z; + nt + x)
+;78 Az + pyt + :c)> } . (B.15)

Our task is to derive the photon source terms from this expression. To this end we need
to determine the propagator and vertices for the x field, and their scaling with A.
The x kinetic term is given by

- /0 "tk (m%) 2(0), (B.16)

The propagator for x is given by the inverse of the quadratic operator in eq. (B.16), which

is found to be )
Gt ) = %min(t, t). (B.17)

Note that it is symmetric, proportional to 1/A (thus is of NE order), and satisfies the
condition G(0,t") = 0. Other two-point correlators of 2 and &, which we need below, are

((O)z(t)) = Gt ) = %min(t, ),

(@(t)z(t')) = % = ie(t’ —t), (B.18)
PGt i

(D)) = T = L6 ).
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We will also need the properties of the equal time correlator (z(t)z(t)). Using the dis-
cretization of space-time adopted throughout this paper, the derivative (t) is given by

x(t+¢€) — x(t)

Ii B.19
i ¢ ; (B.19)

and thus one has
(a(D)a(t)) = Lt DREFE) Zmintt) (B.20)

A el0 €

The vertices involving the x field can be obtained by Taylor expansion of the other terms
in eq. (B.15). Due to the subleading nature of the x propagator in the eikonal limit, we
shall need them to second order in x or & only for a NE analysis. The terms without a

power of x are

[ L dk nt -
Z/o ditn - A(nt) = /( in k:A (k),

1 [ 1 ddk: k* -
- dto - A(nt ——A,(k

(B.21)

where we have also represented the terms in momentum space. Note that these A source
terms correspond to the vertex in eq. (B.5) (2a). Terms with one power of = are

oo ddkj _ oo )
. . o .. z(n-k)t
1/0 dtit A, (nt) —/—(271_)6[14“(]{:)/0 dtiit(t)e )

(B.22)
[ v d’k A > v i(n-
2/0 dtn*0, A, (nt)x” (t) = _/WnMAM(k)kV/O dt ¥ (t)e! ™Rt &

To distinguish the vertices in our discussion below, we have labeled them with symbols.

Terms with two powers of x are

[e.e] d B 0o '
‘ / did9, Ay(nt)z” = — / (d—deM(k)ku / dtd* (t)z” (H)e'H - ©
0 0

27)
. [e%¢) : ddk _ o] .
% /0 dtn 0,00 A, (nt)z (£)z" (t) = —% / (™ A b /0 dtz” (£)z" () ™R &
(B.23)

The term & is quadratic in z, and thus the factor of 1/2 does not appear in the result-
ing vertex.

The next step is to carry out the x path-integral. This amounts to using the Feynman
rules in egs. (B.17), (B.23), keeping terms to O(1/\)

/ Dx exp [2/ dt <i —i—(n—l—dn)-A(xi—i-nt—i-x)—i-i@-A(mi—i-pft—i-x))} =
2(0)=0 0 2 2\

Ak n* . ddk k“ _
exp[—/(ﬂ)d —A,( 2)\/ i Au( +Z-—'—|—Z } (B.24)
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We have written the result as the exponent of connected diagrams, where terms beyond
O(1/X) are neglected. The first two terms (B.21) are the vertices (1) and (2a) of (B.5).
The third and fourth terms represent tree and loop graphs, with a sum over all possible
insertions of the vertices denoted above by &, >, © and #. In the tree graph, there are
three different combinations of one-x vertices from (B.22). The & — & combination together
with a two-x correlator gives

1 Ak Ak - _ 00 i / A /
2 —o(t — pv i(n-kt4n-lt’) _
2 / (27T)d (27T)d Au(kj)Ay(l) /0 dt dt \ 5(75 t )77 e

d d _ _ v
3/ Ak Au(k)Ay(l)%. (B.25)

This precisely reproduces source term (3) of eq. (B.14). The & — < combination gives
dk  dk ~ oo i pi(n-kt+n-1t')
A, (KA, (Dn” (—k, dtdt'i | =6(t —t) | " —m—— =
[ Gt An A ) [ arar i (Soe - e0) e

dp  gdp v
/ (;lwljd (Zw];:d Au(k) 4, (1) An - ln - (l: +1)’ (B-26)

which can be rewritten as

1 [ d% dk o nln - k4 ntkn -l
S == AL (A, () (- . B.2
2/( (k) U( )\n-ln-kn-(k—i—l)) (B-27)

This is source term (4a) of (B.14). The ¢ — { combination gives

L[ d%k d% . - o i pi(nktnlt')
_ J7ee 2 / e o/ po _
5 / o) (27T)dAu(k:)Al,(l)n n” k, lo/o dt dt <)\6(t t )> n Cin R —in D)

1 dk A%k - ~ k-l
- / L BT WL AP
which produces term (4b) of (B.14).

The loop graph in eq. (B.24) has in principle two possible choices of vertex from (B.14).
However, the O vertex does not actually contribute, as it involves the equal time correlator
(z(t)x(t)), which was shown above to be zero. The # vertex, however, does contribute
and gives

1 dik A% - i
— i —= A, (K ky [ dt —te™Ft = —
21/(%)61 (i A F)ks / xe

This finally yields source term (2b) of (B.5).

We conclude that, to next-to-eikonal order, the one- and two-photon source terms
found by approximations in standard perturbation theory are precisely reproduced in our
first-quantized path-integral approach. The considerations of section 2 then show that NE
corrections from eikonally factorized diagrams exponentiate to all orders.
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Figure 16. Amplitude I'* corresponding to all possible soft emissions from a graph containing
a given hard interaction, in the simple case of two outgoing scalar particles. The Lorentz index
corresponds to the emitted photon.

We have considered the case of scalar emitting particles in the above discussion. How-
ever, things proceed similarly for the spinor case, with the only modification arising due
to the presence of an additional term in the exponent of eq. (B.15)

. [e's) d
i L _ _l/ d%k v
3\ /0 a F/J,l/ \ (27T)d k. [’7 y 7Y ] Au(k)a (B30)

where the right-hand-side corresponds to the momentum space vertex

k

i” =k, [v",7"]. (B.31)

This is O(1/)), as expected from the fact that a magnetic moment vertex only contributes
for particles having non-zero spin, and radiation in the strictly eikonal limit is insensitive
to the spin of the emitting particle.

The above discussion assumes an abelian gauge field. The non-abelian generalization
is discussed in section 3.

C DMatrix elements with internal emissions

In section 2.4, we show from our path integral representation of the scattering amplitude
how NE corrections arising from soft photon emissions from within the hard interaction
can be related to the hard interaction with no emissions, which is part of the content of
the Low-Burnett-Kroll theorem [34, 35] (see also [36]). To clarify this discussion, we here
present how one would obtain a similar result using traditional Feynman diagram methods,
in the case of two scalar lines. Our presentation follows that of e.g. [38].

We consider the momentum-space amplitude I'* shown pictorially in figure 16, and
corresponding to a single gluon emission emitted from a graph containing a given hard
interaction with two external scalar particles. We first define I' = F(p%,p%, p1 - p2) to be
the hard interaction amplitude with no photon emission. Then using the normal Feynman

rules for scalar electrodynamics, one may write I'* as

2p = B)" 2py + k)H
%F[(pl—k‘)Q,pg,(m—@-mHMr[p%,(pﬁk)?,pl.(p2+k)]+rﬁlt,

p—
r 2p2 -k
(C.1)
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where we have assumed light-like external particles, and '\ is the amplitude for emission
from within the hard interaction, as represented by the second diagram on the right-hand-
side in figure 16. Also, we have neglected coupling constants for brevity. In the limit where
k is soft, one may Taylor expand eq. (C.1) to next-to-leading order in k (corresponding to
the NE approximation) to obtain

2 [ ar ar ] < 1 1
M=—"1 T -2 k—s —py-k + kM +
—2p; - k R 2p1 -k 2py -k

2pl or or
L'+ 2ps - k—5 -k re.. C.2
" 2py - k [ e ap3 iR Ip1 - p2 e (©2)
The gauge invariance condition k,I'* = 0 implies
or or
k VY = —2py - k—s —2p1 - k—s — k- + . C.3
K~ int D2 ap% D1 ap% (pl p2)6p1 - po ( )

This must be true for arbitrary k, so that one may remove factors of k£ in eq. (C.3). Then
one may substitute the resulting form of T'* back into eq. (16) to obtain

(2p1—k)“+(2p2+k)“}r+[pﬁ‘(k‘-pz—k-m)+p§‘(k-p1—k-p2) or

—2p1 - k 2ps - k p1-k p2 -k Ip1-p2’
(C.4)

Identifying p; = n; in the notation of section 2.4, one sees that the first term of eq. (C.4)

It =

is the contribution one expects from the effective Feynman rules for soft emission up to
NE order. Also, the second term in eq. (C.4) is precisely the contribution contained in
eq. (2.34). Furthermore, when p? = p3 = 0, one may simplify eq. (C.3) so that one obtains

or or
e = —pt —ph . C.5
e = P gy e P2 0ps (©5)
Rewriting
0 0
I _
i = C.6
dpi-p;  Opy (©.6)
one finds or
I =— Z P’ (C.7)

which is indeed a special case of eq. (2.29).
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