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ABSTRACT

The Effective Field Theory formalism is applied to the study of problems in hadronic
and nuclear physics. We develop a framework to study the exclusive two-body de-
cays of bottomonium into two charmed mesons and apply it to study the decays
of the C-even bottomonia. Using a sequence of effective field theories, we take ad-
vantage of the separation between the scales contributing to the decay processes,
2my, > m. > Agep. We prove that, at leading order in the EFT power counting, the
decay rate factorizes into the convolution of two perturbative matching coefficients
and three non-perturbative matrix elements, one for each hadron. We calculate the
relations between the decay rate and non-perturbative bottomonium and D-meson
matrix elements at leading order, with next-to-leading log resummation. The phe-
nomenological implications of these relations are discussed. At lower energies, we use
Chiral Perturbation Theory and nuclear EFTs to set up a framework for the study of
time reversal (7") symmetry in one- and few-nucleon problems. We consider 7" viola-
tion from the QCD 6 term and from all the possible dimension 6 operators, expressed
in terms of light quarks, gluons and photons, that can be added to the Standard
Model Lagrangian. We construct the low energy chiral Lagrangian stemming from
different TV sources, and derive the implications for the nucleon Electric Dipole Form
Factor and the deuteron T violating electromagnetic Form Factors. Finally, with an
eye to applications to nuclei with A > 2, we construct the T violating nucleon-nucleon

potential from different sources of T" violation.
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CHAPTER 1

INTRODUCTION

Current nuclear and particle physics experiments probe the strong interaction on a
large variety of scales — from the MeV scale of nuclear experiments, to the GeV of the
B factories, and the TeV of the Large Hadron Collider — offering an extraordinary
opportunity to deepen our insight into the dynamics of strong interacting systems.
Furthermore, the accurate estimate of the effects of the strong interaction is crucial for
understanding the results of these experiments, to precisely constrain the parameters
of the Standard Model and to spot evidences of new physics.

The theory of the strong interaction is Quantum Chromodynamics (QCD). The
key feature of QCD is asymptotic freedom, the statement that the coupling of quarks
and gluons becomes weak at high energy, where a perturbative expansion in the
coupling constant « is possible. Since its first success in the 70s, the prediction of
violation of Bjorken scaling in Deep Inelastic Scattering, QCD in the perturbative
regime has been quantitatively tested in several experiments, over a wide range of
energies, from bottomonium decays, to eTe™ annihilation rates into hadrons and jets,
to jet production in pp and pp collisions at hadron colliders (for an introductory
review, see G. Dissertori and G. P. Salam, Quantum Chromodynamics, in Ref. [1]).
These experimental successes, and its conceptual simplicity and beauty, have firmly
established QCD as the correct theory of the strong interaction.

On the other hand, the same asymptotic freedom implies that at low energies, of
order of the hadronic scale Agcp = 1 GeV, the theory becomes strongly coupled, and
the possibility of a perturbative expansion in ay is lost.

Furthermore, the strong interaction shows a second striking feature, color confine-
ment. In experiments one does not directly observe quarks and gluons, the degrees

of freedom of QCD, but rather hadrons, colorless bound states of quark and gluons.



18

As a consequence, even processes with large momentum transfer are not entirely de-
scribable in perturbation theory, since, at a certain point, the soft, non-perturbative
dynamics that governs the structure of the hadrons in the initial and final states
kicks in. Perturbation theory is useful only insofar as the perturbative and non-
perturbative contributions to a process can be rigorously separated (factorized), and
the latter parametrized in terms of universal matrix elements, that can be computed
on the lattice or fitted to data.

In the last three decades, Effective Field Theories (EFTs) have emerged as a
powerful tool to describe various limits of QCD. The central idea behind EFTs is
that the accurate description of the physics at a low energy scale () does not require
the detailed knowledge of what happens at a scale A much larger than ). The EFT
approach takes advantage of the separation of scales to focus only on the relevant
degrees of freedom at low energy, without, at the same time, losing contact with the
fundamental, underlying theory and its symmetries.

In the context of QCD and the strong interaction, EFTs have been developed
both in the perturbative and non-perturbative regime.

For problems with one or more high energy scales A > Agcp, the QCD La-
grangian can be used to compute the dynamics of high energy degrees of freedom,
which are integrated out in perturbation theory, and contribute to the coefficients of
local effective operators. The EFT approach has several advantages. First of all, its
focus on the relevant degrees of freedom allows for the simplification of factorization
theorems. Secondly, in processes with well separated scales, fixed-order perturbation
theory can be invalidated by the presence of large logarithms of their ratio. Renor-
malization group invariance, a key ingredient of the EFT approach, gives the tools to
systematically resum these effects, improving the perturbative expansion. Third, the
identification of a second expansion parameter beyond « at the high scale — the ra-
tio of the typical momentum of external particles in the problem and the high energy

scale — provides an organizational principle (power counting) for non-perturbative
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contributions. Finally, the elimination of the high energy scales from the problem
simplifies the loop integrals in the EFT, which typically depend on only one scale.
At the same time, having only one relevant scale also simplifies the task of simulating
non-perturbative matrix elements on the lattice.

EFT techniques have been applied to systems with one heavy quark, like B and
D mesons, for which Heavy Quark Effective Theory (HQET) was developed [2, 3, 4].
HQET applies to problems in which the heavy quark exchanges with light degrees of
freedom momenta much smaller than its mass mg. The HQET Lagrangian consists
of an infinite series of operators, organized in an expansion in Agcp/mg. All the
dynamics related to the heavy quark mass (contributions to loop diagrams from the
region of integration k > mg, virtual heavy quark-antiquark pairs in loops, etc) is
encoded in the coefficients of the effective operators, which are computed in perturba-
tion theory by equating (matching) QCD and HQET amplitudes at the high energy
scale mqg. Below mg all the physics is non-perturbative, still the power counting
provides the rationale for considering only few non-perturbative matrix elements at a
given accuracy. Furthermore, in the heavy quark limit, new symmetries — spin and
heavy flavor symmetry — become manifest, allowing for the establishment of approx-
imate relations between non-perturbative matrix elements. HQET has been applied
to the description of several observables, especially in B physics. For a review, we
refer to Ref. [5]

EFT ideas found fertile ground in applications to systems with two heavy quarks,
like charmonium and bottomonium. These systems are described by Non Relativistic
QCD [6]. Differently from the case with a single heavy quark, the dynamics of non
relativistic bound states of a heavy quark and antiquark receives contributions from
several scales below mg: the relative momentum mgu, the binding energy mgv? and
the hadronic scale Agep. The NRQCD Lagrangian consists of a series of operators
organized according to their scaling in the quark-antiquark relative velocity v. In the

bilinear sector, the NRQCD Lagrangian has the same form as the HQET Lagrangian,
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but the importance of various terms is different. For example, the assumption of an
essentially static heavy quark, with kinetic energy of order £ ~ Agcp and recoil
P?/2mq ~ Ayop/meq, which works in HQET, does not capture the physics of heavy
quarkonium, for which E ~ p?/2mg ~ mgv?, and the importance of the respective
operators in the EFT Lagrangian has to be readjusted. Furthermore, at scales lower
than mg, heavy quarkonium annihilation is no longer resolved in the EFT, and it
manifests in contact four-quark operators in the NRQCD Lagrangian, with imaginary
matching coefficients.

One can further take advantage of the separation between the relative momentum
and the binding energy by matching onto lower energy EFTs, potential NRQCD
(pPNRQCD) [7, 8, 9] or velocity NRQCD (vNRQCD) [10, 11, 12, 13].

Since its first success — the solution of the long-standing problem of infrared
divergences in P-wave decays [6] — NRQCD, and lower-energy non relativistic EFTs,
have given a fundamental contribution to a better understanding of heavy quarkonium
physics, and they are today the standard theoretical tool for the study of heavy
quarkonium spectroscopy, production, and decays [14, 15].

A third class of problems to which the EFT approach can be applied are pro-
cesses with highly energetic, almost light-like hadrons, with one component of the
momentum much bigger than the mass. Below the hard scale, typically set by the
momentum transfer in hard scattering processes or by the mass of some heavy decay-
ing particle, the degrees of freedom relevant to these problems are collinear and soft
quarks and gluons, which are described by Soft Collinear Effective Theory (SCET)
[16, 17, 18, 19, 20]. The SCET Lagrangian is organized as an expansion in powers of
A= \/p?/s, where p? is the invariant mass of the hadrons (or jets of hadrons), and s
the square of the large energy scale in the problem. One important feature of SCET
is the decoupling of soft and collinear degrees of freedom at the Lagrangian level [18],
which greatly simplifies factorization theorems.

A first success of SCET is that it allows to recast in a EFT language “classical”
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QCD factorization theorems, like those for Deep Inelastic Scattering, or the Drell-
Yan process [19]. The strength of the EFT is by no way limited to a reformulation
of old results. SCET has been successfully applied to B decays, like B — X7,
semileptonic and exclusive B meson decays, and to heavy quarkonium decays in
particular kinematic limits, where the SCET approach is justified by the large energy
released to light degrees of freedom. A very promising direction of development in
recent years has been the application of SCET to collider physics, both to specific
processes (for example, Higgs production [21, 22, 23]), and as a theoretical tool to
understand and improve jet algorithms and event generators [24, 25]. Finally, the
key ingredients of the EFT, factorization, resummation and power counting (that is,
control of non-perturbative corrections), make it the ideal theoretical tool for high
precision extraction of QCD parameters, like the strong coupling constant ay, from
data [26, 27].

In Chapter 2, I will discuss an example that allows me to touch on the basic
features of different EFTs, the exclusive decays of the C-even bottomonia y; and
7, into two D mesons. The process involves a non-relativistic bound state, the 1,
or Y, that decays into two fast-moving, but massive, particles. Therefore, it calls
for a combination of non-relativistic EFTs (NRQCD, pNRQCD) for the description
of the initial state, and effective theories for highly energetic, but massive, particles
(SCET, boosted HQET) for the final state. As promised in this introduction, the EFT
formalism allows to derive a factorized formula for the decay rate, to resum logarithms
of the ratios m./m;, and Agep/m. and to estimate the impact of perturbative and
non-perturbative corrections to the decay rate. The work of Chapter 2 has been done
in collaboration with R. Azevedo and B. Long, and was published in Ref. [28].

A second type of EFTs has been developed to study the physics at scales () much
smaller than Agcp. For these theories, the possibility of a perturbative expansion in
the coupling ay is lost, but the underlying theory and its symmetries still provide a

strong constraint on the dynamics of low energy degrees of freedom. This is true in
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particular of the approximate chiral symmetry of QCD and its spontaneous breaking,
which predict the existence of a almost massless Goldstone boson, the pion, and
dictates the form of its interaction to heavier degrees of freedom in the theory, like
baryons (nucleon, Delta isobar, . ..) and heavy meson (p, D, B, ...). These constraints
lead to the formulation of an EFT for pions and nucleons, Chiral Perturbation Theory
(xPT) [29, 30, 31, 32, 33]. In systems with zero or one nucleon, chiral symmetry and
heavy baryon formalism (the baryonic analog of HQET [34]) justify a perturbative
expansion of amplitudes in powers of the ratio of the typical momentum @ of external
states and the scale Mgcp = 2mF; =~ 1 GeV. xPT has been very successfully applied
to pion-pion scattering, pion-nucleon scattering, pion and nucleon electromagnetic
form factors, and several other processes with light mesons and one nucleon [33].

For systems with two or more nucleons, where the scale of the nucleon binding
energy Q*/my, much smaller than the momentum, becomes relevant, perturbation
theory is bound to fail, as signaled by the appearance of shallow bound states, the
nuclei [35, 36]. Chiral symmetry and xPT, however, provide the tools to derive and
organize contributions to the two- and three-nucleon potential that is to be used in
the solution of the few-body Schrodinger equation. In recent years, the accuracy
of the EFT potential has reached the level to rival high precision phenomenological
potentials, with the advantage, once again, of a closer relation with QCD and the
possibility of systematic improvement [37, 38].

In this work, we use the machinery of YPT and nuclear EFTs to study the violation
of time reversal symmetry (7) in nuclear physics. The strength of the EF'T approach
is, first of all, the close relation between the possible sources of T' violation at high
energy and the form of the T-violating (TV) couplings of nucleons, photons and
pions. In particular, the chiral properties of the sources of T' violation determine the
relative importance of short- and long-distance contributions to TV observables, and
the form of the TV pion-nucleon couplings. Secondly, EFT provides a framework that

can accomodate at the same time one- and few-nucleon observables, in a consistent



23

fashion. In this way, we can identify the qualitatively different relations between one-
and two-nucleon TV observables that stem from the different chiral properties of high-
energy TV sources. If the next generation of EDM experiments will observe a signal
for the proton, neutron and deuteron TV electromagnetic moments these relations
will be an useful guide to trace TV in nuclear physics back to the fundamental sources
at high energy.

The work presented in Chapters 3-7 is the fruit of the collaboration with J. de
Vries, W. Hockings, C. Maekawa, R. Timmermans and U. van Kolck, and it is based
on the publications [39, 40, 41, 42]. Chapters 3 and 4 expand the discussion of Refs.
[39, 40] on the sources of T violation at high energy and the effective chiral Lagrangian
they generate, in particular for dimension 6 sources of T' violation. Chapter 5 com-
bines the results of Refs. [40, 41] for the nucleon Electric Dipole Moment (EDM) and
Electric Dipole Form Factor (EDFF). Chapter 6 is devoted to the deuteron TV elec-
tromagnetic moments, and it expands on [42], by including some next-to-leading order
corrections to the deuteron EDM. The results of Chapter 7 on the TV nucleon-nucleon

potential have not been published yet, and they were obtained in collaboration with

C. Maekawa and U. van Kolck.
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CHAPTER 2

EXCLUSIVE DECAYS OF YXj; AND 7, INTO TWO CHARMED
MESONS

2.1 Introduction

The exclusive two-body decays of heavy quarkonium into light hadrons have been
studied in the framework of perturbative QCD by many authors (for reviews, see
[43, 44]). These processes exhibit a large hierarchy between the heavy quark mass,
which sets the scale for annihilation processes, and the scales that determine the
dynamical structure of the particles in the initial and final states. The large energy
released in the annihilation of the heavy quark-antiquark pair and the kinematics of
the decay — with the products flying away from the decay point in two back-to-back,
almost light-like directions— allow for rigorously deriving a factorization formula
for the decay rate at leading twist (for an up-to-date review of the theoretical and
experimental status of the exclusive decays into light hadrons, see [14]).

For the bottomonium system, a particularly interesting class of two-body final
states is the one containing two charmed mesons. In these cases the picture is com-
plicated by the appearance of an additional intermediate scale, the charm mass m.,
which is much smaller than the bottom mass my; but is large enough to be pertur-
bative. These decays differ significantly from those involving only light quarks. The
creation of mesons that are made up of purely light quarks involves creating two
quark-antiquark pairs, with the energy shared between the quark and antiquark in
each pair. In the production of two D mesons, however, almost all the energy of the
bottomonium is carried away by the heavy ¢ and ¢, while the light quark and anti-
quark, which bind to the ¢ and ¢ respectively, carry away (boosted) residual energies.

The existence of well-separated scales in the system and the intuitive picture of the

decay process suggest to tackle the problem using a sequence of effective field theories
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(EFTs) that are obtained by subsequently integrating out the dynamics relevant to
the perturbative scales my; and m..

In the first step, we integrate out the scale my, by describing the b and b with Non-
Relativistic QCD (NRQCD) [6], and the highly energetic ¢ and ¢ with two copies
of Soft-Collinear Effective Theory (SCET) [16, 17, 18, 19, 20] in opposite light-cone
directions. In the second step, we integrate out the dynamics manifested at scales of
order m. by treating the quarkonium with potential NRQCD (pNRQCD) [7, 8, 9],
and the D mesons with a boosted version of Heavy-Quark Effective Theory (HQET)
2, 3, 4, 45, 46, 47, 48]. The detailed explanation of why the aforementioned EFTs
are employed is offered in Sec. 2.2. We will prove that, at leading order in the EFT
expansion, the decay rate factors into a convolution of two perturbative matching
coefficients and three (one for each hadron) non-perturbative matrix elements. The
non-perturbative matrix elements are process-independent and encode information
on both the initial and final states.

For simplicity, in this Chapter we focus on the decays of the C-even quarkonia s
and 7, that, at leading order in the strong coupling «,, proceed via the emission of two
virtual gluons. The same method can be generalized to the decays of C'-odd states
T and hy, which require an additional virtual gluon. We also refrain from processes
that have vanishing contributions at leading order in the EFT power counting. So
the specific processes studied in this Chapter are xp2 — DD, xpo,2 — D*D*, and
1, — DD* + c.c. However, the EFT approach developed in this Chapter enables one
to systematically include power-suppressed effects, making it possible to go beyond
the leading-twist approximation.

The study of the inclusive and exclusive charm production in bottomonium decays
and of the role played by the charm mass m, in such processes have recently drawn re-
newed attention [49, 50, 51, 52|, in connection with the experimental advances spurred
in the past few years by the abundance of bottomonium data produced at facilities

like BABAR, BELLE, and CLEO. The most notable result was the observation of the
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bottomonium ground state 7,, recently reported by the BABAR collaboration [53].
Furthermore, the CLEO collaboration published the first results for several exclusive
decays of x; into light hadrons [54] and for the inclusive decay of y, into open charm
[55]. In particular, they measured the branching ratio B(xs; — D°X), where J is
the total angular momentum of the y, state, and conclusively showed that for J =1
the production of open charm is substantial: B(x (1P) — D°X) = 12.59 4+ 1.94%.
For the J = 0,2 states the data are weaker, but the production of open charm still
appears to be relevant. The measurements of the CLEO collaboration are in good
agreement with the prediction of Bodwin et al. [49], where EFT techniques (in par-
ticular NRQCD) were for the first time applied to study the production of charm in
bottomonium decays.

The double-charm decay channels analyzed here have not yet been observed, so one
of our aims is to see if they may be observable given the current data. Unfortunately,
the poor knowledge of the D-meson matrix elements prevents us from providing
definitive predictions for the decay rates I'(xs; — DD), I'(xps — D*D*), and I'(n, —
DD* + c.c.). As we will show, these rates are indeed strongly dependent on the
parameters of the D- and D*-meson distribution amplitudes, in particular on their
first inverse moments Ap and Ap«: the rates vary by an order of magnitude in the
accepted ranges for A\p and A\p-. On the other hand, the factorization formula implies
that these channels, if measured with sufficient accuracy, could constrain the form
of the D-meson distribution amplitude and the value of its first inverse moment. In
turn, the details of the D-meson structure are relevant to other D-meson observables,
which are crucial for a model-independent determination of the CKM matrix elements
|Vea| and [Ves| [56].

This Chapter is organized as follows. In Sec. 2.2 we discuss the degrees of freedom
and the EFTs we use. In Sec. 2.3.1 we match QCD onto NRQCD and SCET at the
scale 2my. The renormalization-group equation (RGE) for the matching coefficient

is derived and solved in Sec. 2.3.2. In Sec. 2.4.1 the scale m, is integrated out by
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matching NRQCD and SCET onto pNRQCD and bHQET. The renormalization of
the low-energy EFT operators is performed in Sec. 2.4.2, with some technical details
left to App. A. The decay rates are calculated in Sec. 2.5 using two model distribution

amplitudes. In Sec. 2.6 we draw our conclusions.

2.2 Degrees of freedom and the Effective Field Theories

Several well-separated scales are involved in the decays of the C'-even bottomonia 7,
and s into two D mesons, making them ideal processes for the application of EFT
techniques. The distinctive structures of the bottomonium (a heavy quark-antiquark
pair) and the D meson (a bound state of a heavy quark and a light quark) suggest
that one needs different EFTs to describe the initial and final states.

We first look at the initial state. The 7, is the ground state of the bottomonium
system. It is a pseudoscalar particle, with spin S = 0, orbital angular momentum
L = 0, and total angular momentum J = 0. In what follows we will often use the
spectroscopic notation 21 ;, in which the 7, is denoted by 'Sy. The 3, is a triplet
of states with quantum numbers 3P;. The 7, and ;7 are non-relativistic bound states
of a b quark and a b antiquark. The scales in the system are the b quark mass my,
the relative momentum of the bb pair myw, the binding energy myw?, and Aqcp,
the scale where QCD becomes strongly coupled. w is the relative velocity of the
quark-antiquark pair in the meson, and from the bottomonium spectrum it can be
inferred that w? ~ 0.1. Since my > Aqcp, myp can be integrated out in perturbation
theory and the bottomonium can be described in NRQCD. The degrees of freedom of
NRQCD are non-relativistic heavy quarks and antiquarks, with energy and momen-
tum (E, |p|) of order (myw? myw), light quarks and gluons. In NRQCD, the gluons
can be soft (myw, myw), potential (myw?, myw), and ultrasoft (usoft) (myw?, myw?).

The NRQCD Lagrangian is constructed as a systematic expansion in 1/my, whose
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first few terms are

DB 548 B 548
ENRQCD:¢T<ZDO+—+ B +...>¢+XT<ZD0——— g +...>X,

2my,  2my 2my  2my
where ¢ and x! annihilate a b quark and a b antiquark respectively, and - - - denotes
higher-order contributions in 1/my,. In NRQCD several mass scales are still dynamical
and different assumptions on the hierarchy of these scales may lead to different power
countings for operators of higher dimensionality. However, as long as w < 1, higher-
dimension operators are suppressed by powers of w (for a critical discussion on the
different power countings we refer to [9]).

NRQCD still contains interactions that can excite the heavy quarkonium far from
its mass shell, for example, through the interaction of a non-relativistic quark with
a soft gluon. In the case myw > Aqgcp, we can integrate out these fluctuations,
matching perturbatively NRQCD onto a low-energy effective theory, pNRQCD. We
are then left with a theory of non-relativistic quarks and ultrasoft gluons, with non-
local potentials induced by the integration over soft- and potential-gluon modes. The
interactions of the heavy quark with ultrasoft gluons are still described by the NRQCD
Lagrangian, with the constraint that all the gluons are ultrasoft. In the weak coupling
regime myw > Aqep, the potentials are organized by an expansion in o, (myw), 1/my,
and r, where r is the distance between the quark and antiquark in the quarkonium,
r ~ 1/myw. If we assume myw? ~ Aqcp, each term in the expansion has a definite
power counting in w and the leading potential is Coulombic V' ~ ag(mpw)/r.

An alternative approach, which does not require a two-step matching, has been
developed in the effective theory vNRQCD [10, 11, 12, 13]. In the vNRQCD approach
there is only one EFT below m,, which is obtained by integrating out all the off-
shell fluctuations at the hard scale m; and introducing different fields for various
propagating degrees of freedom (non-relativistic quarks and soft and ultrasoft gluons).
In spite of the differences between the two formalisms, pNRQCD and vNRQCD give
equivalent final answers in all the known examples in which both theories can be

applied.
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We now turn to the structure of the D meson. The most relevant features of the
D meson are captured by a description in HQET. In HQET, in order to integrate out

the inert scale m., the momentum of the heavy quark is generically written as [4]
p=mw+k, (2.2.1)

where v is the four-velocity label, satisfying v? = 1, and k is the residual momentum.
If one chooses v to be the center-of-mass velocity of the D meson, k scales as k ~
vAqep. Introducing the light-cone vectors n# = (1,0,0, 1) and a* = (1,0,0, —1), one
can express the residual momentum in light-cone coordinates, k* = n - kn*/2 +n -
ka2 + kY or simply k = (n - k,n -k, k1 ). There are two relevant frames. One is
the D-meson rest frame, in which v is conveniently chosen as vy = (1,0, 0,0), and the
other is the bottomonium rest frame, in which the D mesons are highly boosted in
opposite directions, with v chosen as v = vp, the four-velocity of one of the D mesons.
By a simple consideration of kinematics and the scaling k ~ vAqcp, one can work out
the scalings for k in the two frames. In the D-meson rest frame, k ~ Aqep(1,1,1),
and in the bottomonium rest frame (supposing the D meson moving in the positive

z-direction),
k ~ Aqcp (n-vp,n-vp,1) ~ Ageph - vp (>\2, 1, )\) , (2.2.2)

where 7 - vp ~ 2my/m, and A\ = m./2m;, < 1. It is convenient for the calculation
in this Chapter to use the bottomonium rest frame, so we drop the subscript in vp
and we assume v = vp in the rest of this Chapter. The momentum scaling in Eq.
(2.2.2) is called ultracollinear (ucollinear), and boosted HQET (bHQET) is the theory
that describes heavy quarks with ultracollinear residual momenta and light degrees
of freedom (including gluons and light quarks) with the same momentum scaling.
The bHQET Lagrangian is organized as a series in powers of Aqep/m. and, for

residual momentum ultracollinear in the n-direction, the leading term is [47]

EbHQET = hnz'v . Dhn s (2.2.3)
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where the field h,, annihilates a heavy quark and the covariant derivative D contains
ultracollinear and ultrasoft gluons,

jz Al

iDH = %(iﬁ-8+gﬁ-An)+%(in-0+gn-An+gn-Aus)—l- (10} + gAL 1) .
(2.2.4)
The ultrasoft gluons only enter in the small component of the covariant derivative.
This fact can be exploited to decouple ultrasoft and ultracollinear modes in the
leading-order Lagrangian through a field redefinition reminiscent of the collinear-
ultrasoft decoupling in SCET [18, 47]. The ultracollinear-ultrasoft decoupling is an
essential ingredient for the factorization of the decay rate.

Therefore, the appropriate EFT to calculate the decay rate is a combination of
pNRQCD, for the bottomonium, and two copies of bHQET, with fields collinear to
the n and 7 directions, for the D and D mesons, symbolically written as EF Ty =
pNRQCD + bHQET.

As we mentioned earlier, we plan to describe the bottomonium structure with a
two-step scheme QCD — NRQCD — pNRQCD. However, at the intermediate stage,
where we first integrate out the hard scale 2m,; and arrive at the scale myw, the D
meson cannot yet be described in bHQET. This is because the interactions relevant
at the intermediate scale myw can change the c-quark velocity and leave the D meson
off-shell of order ~ (myw)* ~ mZ > Agcp. Highly energetic ¢ and ¢ travelling in
opposite directions can be described properly by SCET with mass. Thus, at the scale
1= 2my, we match QCD onto an intermediate EFT, EFT; = NRQCD + SCET, in
which the EFT expansion is organized by A and w. The degrees of freedom of EFT}
are tabulated in Tab. 2.1.

Then, we integrate out m, and mpw at the same time, matching EFT; onto
EFTy; at the scale ¢/ = m,.. In EFTy;, the low-energy approximation is organized by
Aqep/m. and w. The degrees of freedom of EF Ty are summarized in Tab. 2.2. When
no subscript is specified in the rest of this Chapter, any reference to EF'T applies to
both EFT; and EFTy;. To facilitate the power counting, we adopt w ~ A ~ Aqcp/me.
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NRQCD field momentum SCET field momentum
quark b, b Uy, X5 | (mpw?, mpyw) c, £ 2my (1, A%, \)
c & | 2am( 1,0
gluon | potential AH (mpw?, mpw) || collinear | AL | 2my(1, 22, \)
AZ 2mb()\2, 1, )\)
soft AH (myw, myw) soft AH 2mp(A, A, )
usoft AP (myw?, myw?) || usoft AR 2my (A2 020

TABLE 2.1. Degrees of freedom in EFT{(NRQCD + SCET). w is the bb relative
velocity in the bottomonium rest frame, while A ~ m./2m,, is the SCET expansion
parameter. We assume myw ~ m, (or, equivalently, w ~ \) and mpyw? ~ mpA? ~

AQCD-
pNRQCD field momentum bHQET field momentum
quark b, b Uy, Xp | (mpw?, myw) c hs, Q(l Ny
u, d &n Q(1,A2,))
gluon usoft Ar (mpw?, myw?) usoft AR Q\ N, )\)
ucollinear | A% | Q(1, )\2 A)

TABLE 2.2. Degrees of freedom in EFT(pNRQCD + bHQET). The scale @ in
bHQET is Q = n - v'"Aqep for the n-collinear sector and ) = n - vAqep for the n-
collinear sector. m - v’ and i - v are the large light-cone components of the D-meson
velocities in the bottomonium rest frame, n-v" ~ v ~ 2my/m,.. A and w are defined
as in Tab. 2.1. The scaling of quark and gluon fields collinear in the n direction is
obtained by exchanging the p™ and p~ components of fi-collinear fields

As a first study, we will perform in this Chapter the leading-order calculation of the

bottomonium decay rates.

2.3 NRQCD + SCET
2.3.1 Matching

In the first step, we integrate out the dynamics related to the hard scale 2m; by
matching the QCD diagrams for the production of a c¢¢ pair in the annihilation of
a bb pair onto their EFT; counterparts. The tree-level diagrams for the process are
shown in Fig. 2.1. The gluon propagator in the QCD diagram has off-shellness of

order ¢> = (2m)? and it is not resolved in EFTy, giving rise to a point-like interaction.
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FIGURE 2.1. Matching QCD onto EFT;. On the r.h.s., the double lines represent

the non-relativistic b (b) (anti)quark, while the dashed lines represent the collinear ¢
(¢) (anti)quark.

We calculate the diagrams on shell, finding

iJocp = 1C(p) Jerr, (1) (2.3.1)
with, at tree level,
T _1ya —c af a c Ozs(me)ﬂ'
JEFTI = XBUJ_t wb Xn Sﬁ ’}/“J_t Sn Xn and C'(,u = 2mb) = T y (232)
b

where t* are color matrices and the symbol o# denotes the four matrices o* = (1, 7),
with ¢ the Pauli matrices. The subscript L refers to the components orthogonal to
the light-cone vectors n* and n*. The fields 1 and X% are two-component spinors
that annihilate respectively a b quark and a b antiquark. Xp.np a0d X5 | are collinear

gauge-invariant fermion fields:

X = Wi nn s Xy = W€y (2.3.3)

where W, is defined as
W, = Z exp (—%ﬁ . An) : (2.3.4)

W5 has an analogous definition with n — 7n. Collinear fields are labeled by the large
component of their momentum. Note, however, we omit in Eq. (2.3.2) the subscripts
n - p and 7n - p of the collinear fermion fields, in order to simplify the notation. The
operator 7 - P in the definition (2.3.4) is a label operator that extracts the large

component of the momentum of a collinear field, 7 - P ¢y 7.p = 1 - P Pp np, Where
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®n,n-p 15 & generic collinear field. Sy is a soft Wilson line,

S, = Z [exp (—%n : A8>] , (2.3.5)

perms

where the operator n - P acts on soft fields, n- P ¢, = n - k ¢,.

Since in SCET different gluon modes are represented by different fields, we have to
guarantee the gauge invariance of the operator Jgpr, under separate soft and collinear
gauge transformations. A soft transformation is defined by Vi(z) = exp (i8%t?), with
0,V ~ 2my(A, A, A), while a gauge transformation U(x) is n-collinear if U(x) =
exp (1a®(x)t*) and 9,U(z) ~ 2my(A\?,1,A). It has been shown in Ref. [18] that
collinear fields do not transform under a soft transformation and that the combination
W, is gauge invariant under a collinear transformation. Soft fields do not transform
under collinear transformations but they do under soft transformations. For example,
the NRQCD quark and antiquark fields transform as 1, — V;(x)1,. The soft Wilson
line has the same transformation, S,, — V(x)S,. Therefore, X%Uit"@bb transforms as
an octet under soft gauge transformations. Since Y¢ St Yu 11" Sy X5, behaves like an
octet as well, Jgprp, is invariant. It is worth noting that the soft Wilson lines are
necessary to guarantee the gauge invariance of Jgpr,. We have explicitly checked
their appearance at one gluon by matching QCD diagrams like the one in Fig. 2.1,
with all the possible attachments of an extra soft or collinear gluon, onto four-fermion

operators in EFTY.

2.3.2 Running

The matching coefficient C' and the effective operator Jgpr, depend on the renor-
malization scale p. Since the effective operator is sensitive to the low-energy scales
in EFTy, logarithms that would appear in the evaluation of Jgpp, are minimized
by the choice g ~ m.. On the other hand, since the coefficient encodes the high-
energy dynamics of the scale 2my, such a choice would induce large logarithms of

me/2my in the matching coefficient. These logarithms can be resummed using RGEs
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in NRQCD + SCET.

The p dependence of Jgpr, is governed by an equation of the following form [5],

d
Jerr (1) = —verm (1) JeFT (1) (2.3.6)
dnp

where the anomalous dimension ygpr, is given by

d

VEFT; = ZF:I%TIMZEFTI (2.3.7)

and Zgpr, is the counterterm that relates the bare operator JéOF)TI to the renormalized
one, J}E:(?TI = Zwpr, (1) Jerr, (11). Since the Lh.s. of Eq. (2.3.1) is independent of the

scale p, the RGE (2.3.6) can be recast as an equation for the matching coefficient

C (),

d
dlnp

C(p) = verr (WC(1) - (2.3.8)

The counterterm Zgpr, cancels the divergences that appear in Green functions with
the insertion of the operator Jrpr,. We calculate Zgpr, in the MS scheme by evalu-
ating the divergent part of the four-point Green function at one loop, given by the

diagrams in Figs. 2.2 - 2.4.

4 P 7
\\\ \\\ \\\

FIGURE 2.2. Soft diagrams at one loop.

Since in NRQCD we do not introduce different gluon fields for different momentum
modes, “soft” and “ultrasoft” in Fig. 2.2 and Fig. 2.3 refer to the convention that we
impose soft or ultrasoft scaling to the corresponding loop momentum. The potential
region, which should be considered in the diagrams of Fig. 2.2, does not give any

divergent contribution.
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FiGURE 2.4. Collinear diagrams at one loop.

The integrals are evaluated in dimensional regularization, with d = 4 — 2e. We
regulate the infrared divergences by keeping the non-relativistic b and b and the
collinear ¢ and ¢ off-shell: Ej ; — ﬁb%l—)/2mb = Ay, p? —m? = A% and p2 — m? = A%
We power count the c-quark off-shellness as A% ~ A% ~ m2\? and the b-quark off-
shellness as Ay ~ mpw?. We also assume A%, A? > 0. To avoid double counting, we
define the one-loop integrals with the 0-bin subtraction [57].

Even with an off-shellness, the soft diagrams in Fig. 2.2 do not contain any scale

and they are completely canceled by their 0-bin.
The divergent part of the ultrasoft diagrams in Fig. 2.3 is

. Qg 1 1 A2 A2
St i3 L [L L (8

PRI N BT L -
N, e n ? N. ¢ EFTy »

where Cr = (N? — 1)/2N, and p is the MS unit mass, p? = 4dmpdgexp (—vg).
The first term in the curly brackets of Eq. (2.3.9) corresponds to the sum of the
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divergences in the second diagram in Fig. 2.3, where an ultrasoft gluon is exchanged
between the ¢ and ¢ quarks collinear in back-to-back directions, and those in the
last four diagrams of the same figure, which contain ultrasoft interactions between
the initial and final states. The second term is an extra imaginary piece generated
by the second diagram in Fig. 2.3. The —i0 prescription in the argument of the
logarithm, where 0 is a positive infinitesimal quantity, follows from the prescriptions
in the quark propagators and from the choice A%, A? > 0. The divergences arising
from the ultrasoft exchanges between the bb pair in the first diagram in Fig. 2.3 are
encoded in the last term in Eq. (2.3.9).

The initial and final states cannot interact by exchanging collinear gluons because
the emission or absorption of a collinear gluon would give the b quark an off-shellness
of order m?, which cannot appear in the effective theory. For the same reason, the
¢ and ¢ cannot exchange n or n-collinear gluons. The only collinear loop diagrams
consist of the emission of a n(n)-collinear gluon from the Wilson line W, (m) In JEFT,
and its absorption by the ¢(c¢) quark, as shown in Fig. 2.4. The divergent part of the
sum of the two collinear diagrams is

iMooy = iZ‘—;QOF [% + % (2 “In (%))] y— (2.3.10)
The collinear diagrams are calculated with a 0-bin subtraction [57], that is, we sub-
tract from the naive collinear integrals the same integrals in the limit in which the loop
momentum is ultrasoft. In this way we avoid double counting between the diagrams
in Figs. 2.3 and 2.4.
Summing Egs. (2.3.9) and (2.3.10) and adding factors of Z;/ ? for each field,

]_Oés 1a5
Zwb:Zszl_‘_g%CF’ Ze, = L, =

the divergent piece becomes

, Qg 2  2/(3 n - P - Pz 1 i 1
w=1—Cp|l+-(z—In|——— —N.+ —— ¢ J, .
= i {er [ 2 (5o (W) )+ e S e
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The counterterm Zgpr, is chosen so as to cancel the divergence in Eq. (2.3.11),

Qg 2 2/3 N - Pell - Pz 1 w1
Y AL R ) DERRIEE

From the definition (2.3.7), Eq. (2.3.12), and recalling that dag/dlnpu = —2ea, +

O(a?), the anomalous dimension at one loop is

s (1) " o1
YEFT, = —2 i {3C’F—|—N +4CFrIn (\/ﬁ) +Z7TNC} . (2.3.13)

An important feature of the anomalous dimension (2.3.13) is the presence of a
term proportional to Inu. Because of this term, the RGE (2.3.8) can be used to
resum Sudakov double logarithms. As we will show shortly, the general solution of

Eq. (2.3.8) can be written in the following form:

Lo g(pos 1)
C(u) = C(po) <m) exp U (o, t) (2.3.14)

where g and U depend on the initial scale py and the final scale g that we run down
to. For an anomalous dimension of the form (2.3.13), U can be expanded as a series,

n+1

U (o, 1t Za Lo Zun prbt B (2.3.15)

Mo

If p/ 110 < 1, the most relevant terms in the expansion (2.3.15) are those with L = 0,
which we call “leading logs” (LL). Terms with higher L are subleading; we call the
terms with L = 1 “next-to-leading logs” (NLL), those with L = 2 “next-to-next-
leading logs” (NNLL), and, if L = m, we denote them with N"LL. The RGE (2.3.8)
determines the coefficients in the expansion (2.3.15). With the anomalous dimensions

written as

VRt = —2 {7(043) + (o) In (ﬁ) } , (2.3.16)

where v(a;) and I'(c) are series in powers of ay,

Qg g\ 2
V(O‘s) = _7(0) + <_> 7(1) +... ) F(Oés) -

Ps 1(0) (
4 47 *

)2F(1)+...,

47 47
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it can be proved that the coefficients of the LL, u,q, are determined by the knowledge
of T'® and of the QCD 3 function at one loop. The NLL coefficients 1, are instead
completely determined if I" and 3 are known at two loops and () at one loop.

In the case we are studying, the ratio of the scales 1/ 19 ~ m./2m; is not extremely
small. Indeed, as to be seen shortly, the numerical contributions of the LL and NLL
terms in the series (2.3.15) are of the same size. It is therefore important to work at
NLL accuracy, which requires the calculation of the coefficient of In i to two loops.
The factors of Inpu are induced by cusp angles involving light-like Wilson lines and
their coefficients are universal I'(as) o< Ieygp(cvs) [58]. The cusp anomalous dimension

[eusp(@vs) is known at two loops [58],

Qg o\ 2
Ceusp(ts) = Erg?)sp + (E> N (2.3.17)
with
67 10
I, =4Cr, Il =4Cp [(5 — %) N.— gnf] : (2.3.18)

while the constant of proportionality between I'(ay) and I'eusp(cvs) is fixed by the
one-loop calculation. Since we have determined ~(©),

7® = 30, + N, + z% , (2.3.19)

and the 8 function is known, we have all the ingredients to provide the NLL approx-
imation for U(pg, 1) and g(po, pt). Taking into account the tree-level initial condition
in Eq. (2.3.2), Eq. (2.3.14) determines the leading-order matching coefficient, with

NLL resummation.

The solution (2.3.14) can be derived by writing Eq. (2.3.8) as

dInC = —2% {v(a) + Ceusp() {m (V#) + /o:uo) Bd(—:’)] } . (2.3.20)

where we have used the definition of the 5 function, f(«) = da/dIn p, to write In p

and dIn p in terms of «. Integrating both sides from o to g and exponentiating the
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result we find the form given in Eq. (2.3.14), with
@) do ¢ dd
U= =2 [ (@) + Tawate) [ 2L
as(po) ﬁ(a) : a(po) ﬁ(a,)
as(p) do

g o, 1 ———2/ —— T eusp() .
( ’ ) as(po) ﬁ(a) P( )
At NLL, we find

0) (0) (1)
Ulpp, 1) = . + ° g+ R B S
(b 1) = 5 ) oar@ RO R
I& 2 ] 71(0)
+ In“r| +—"1Inr,

8mBo Bo

(2.3.22)
e Iy Toks B\ as(m)

) = =P e 4 | =2 ) 2 r—1)1| , 2.3.23
g, 1) 5, RO ( ) ( )

where r = a,(p)/as(pp) and we have renamed the initial scale py, to denote its
connection to the scale 2my,. In Eqgs. (2.3.22) and (2.3.23) we have used the two-loop

beta function,

Qs s\ 2
Blas) = =20 <Eﬁ0 + (E) 51) ) (2.3.24)
with
2 34 10
%:u—?h @:EM—ECW—wmﬁ (2.3.25)

In Eq. (2.3.22) we have kept the contributions of the real and imaginary part of v
separated. The imaginary part of (9 changes the phase of the matching coefficient
C'(p), but this phase is irrelevant for the calculation of physical observables like the
decay rate, which depend on the square modulus of C'(x). In Sec. 2.5 the factor
U, pv) will be evaluated between the scales p, = 2my, and g = m,, with ny = 4
active quark flavors. The numerical evaluation shows that the LL term, represented
by the first term in the brackets in Eq. (2.3.22), is slightly smaller than and have the

o

opposite sign of the term proportional to vy ), which dominates the NLL contribution.

€

This observation confirms, a posteriori, the necessity to work at NLL accuracy in the

resummation of logarithms of m./2my,.
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The RGE (2.3.8) and its solution (2.3.14) thus allow us to rewrite Eq. (2.3.1) as

Jacp = C(p)Jerr, (1) = C(p = 2my) exp U (2my, me) Jger, (0 = me)

which avoids the occurrence of any large logarithm in the matching coefficient or in

the matrix element of the effective operator.

2.4 pNRQCD + bHQET
2.4.1 Matching

In the second step, we integrate out the soft modes by matching EFT; onto EFTy;.
In NRQCD + SCET, contributions to the exclusive decay processes are obtained by
considering time-ordered products of Jgpt, and the terms in the EFT; Lagrangian that
contain soft-gluon emissions. The soft gluons have enough virtuality to produce a pair
of light quarks travelling in opposite directions with ultracollinear momentum scaling.
These light quarks bind to the charm quarks to form back-to-back D mesons. The
total momentum of two back-to-back ultracollinear quarks is 2myAqep/me (1,1, A)
and the invariant mass of the pair is ¢* ~ (2myAqcp/me)? ~ m?: in NRQCD+SCET,
only soft gluons have enough energy to produce them. The time-ordered products
in NRQCD + SCET are matched onto six-fermion operators in pNRQCD + bHQET,
where fluctuations of order m? cannot be resolved.

We consider the scale y/ = m, to be much bigger than Aqcp, so the matching can
be done in perturbation theory. The Feynman diagrams contributing to the matching
are shown in Fig. 2.5. The gluon and the b-quark propagators have off-shellness of
order m?, so the two diagrams on the L.h.s. match onto six-fermion operators on the
r.h.s.

The amplitude for the decay of a bottomonium with quantum numbers 2>T!L;

into two D mesons has the following form:

. . dw dw _ ! !
M = ZC(:U“) :ET(wa W, s ;2S+1 LJ)F2(:U ) (2 4 1)

25+1LJ

(DA, DB|O 5 " (w, @, 1) |bb(**T1L)).
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FIGURE 2.5. Matching NRQCD +SCET onto pNRQCD +bHQET. On the r.h.s. the
double solid lines represent heavy b (b) (anti)quarks, the double dashed lines bHQET
¢ (¢) (anti)quarks, and the single dashed lines collinear light quarks.

A and B, which label the final states and the EF Ty operators OZS; ‘L , denote the
possible parity, spin, and polarization of the D mesons, A, B = { P, V, Vr}, indicating
respectively a pseudoscalar D meson, a longitudinally-polarized vector meson D*,
and a transversely-polarized vector meson D*. Unlike Jgpr,, we have dropped the
subscript EFTyy in OZS; "L in order to simplify the notation.

The EFTy; operators that contribute to the decay of the P-wave states are

F2(i') O (w,@, 1) = X 7y - 3140 ”% §(—w—n-P)xL

xx%é(w—ﬁ-PT) %757{;,

(2.4.2)

F2() O3 (w0, 40) = X 0 HE B 6 (—0 — - P) L
<6 (w-n-P) By e,

where pb(’iai) is a symmetric, traceless tensor,

v 1 v v Vo o=
pb(/iUJ_) D) (p' o +py 0 =g Dy 51) .

At leading order in the EFTy expansion, the 7, can only decay into a pseudoscalar
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and a vector meson, with an operator given by

F2 () O35, (05.) = X | H5 576 (-5 —m - Pk b (w0 — - P) B

+7:l%%5(—w—n-73)xlﬁ XL0 (w—n- Pl %WS’HE :
(2.4.3)

For later convenience, in the definition of the effective operators (2.4.2) and (2.4.3) we
have factored out the term F?(y’), which is related to the D-meson decay constant.
The definition of F?(u') will become clear when we introduce the D-meson distribu-
tion amplitudes. The fields x!, and X% are ultracollinear gauge-invariant light-quark
fields, while HS = Wihe and HE = Wihe are bHQET heavy-quark fields, which are
invariant under an ultracollinear gauge transformation. The Wilson lines W,, and W}
have the same definition as in Eq. (2.3.4), with the restriction to ultracollinear gluons.
Egs. (2.4.2) and (2.4.3) allow us to interpret w as the component of the light-quark
momentum along the direction n. Similarly, @w represents the component of the light-
antiquark momentum along 7. The minus sign in the delta function 6(—w —n - P) is
chosen so that @ is positive.

The tree-level matching coefficients are

Crarag(m.) 1
T(w, @, o = me; *Py) = o 22 (me) -,
N2 my wHw
. (2.4.4)
T(w,@, i, ! = my; 15) = SEATAs(me) Lw = &
y W oy 4 cy 0 NC2 my 2w+w-

Note that, at leading order in the EFT}; expansion, the matching coefficient T'(w, @, u,
u'; 3Py) is independent of the spin and polarization of the final states, or of the total
angular momentum J of the .

An important feature of bHQET is that the ultracollinear and ultrasoft sectors can
be decoupled at leading order in the power counting by a field redefinition reminiscent
of the collinear-usoft decoupling in SCET [18, 47]. For bHQET in the n direction,

L'yt where Y, is an

n-n?

the decoupling is achieved by defining h% — Y,h% and & — €
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ultrasoft Wilson line,

Yo=Y [exp (—ﬁn-flus)] . (2.4.5)

perms

An analogous redefinition with n — n decouples ultrasoft from n-ultracollinear quarks
and gluons. These redefinitions do not affect the operators in Eqgs. (2.4.2) and (2.4.3)
because all the induced Wilson lines cancel out. As a consequence, at leading order
in the EF Ty power counting, there is no interaction between the initial and the final
states, since the former can only emit and absorb ultrasoft gluons that do not couple
to ultracollinear degrees of freedom. Furthermore, fields in the two copies of PHQET,
boosted in opposite directions, cannot interact with each other because the interaction
with a n-ultracollinear gluon would give a n-ultracollinear quark or gluon a virtuality
of order m?, which, however, cannot appear in EFTy;. The matrix elements of the
operators O’ 4 B B7(w, @, p), therefore, factorize as
F2(u{AB|O) 5 (w, 0, )| Bb) =
OxiT, Ly bbY (A %mé (—0 —n-P)xL]0) (B, (w — 7 - P %FB HE0) |
(2.4.6)
where I'y = {75,1,7/} and TE;L" ={1,py- 0L, pb(’iai)}. The charge-conjugated
contribution is understood in the 7, case.
The quarkonium state and the D mesons in Eq. (2.4.6) have respectively non-
relativistic and HQET normalization:
(xea (B, 7)o (B, D)) = (2m)*6D (7 — 77
(D', k)| D(v, k)) = 20°6,. (27)26® (k — k'),
where v° is the Oth component of the 4-velocity v*.
The D-meson matrix elements can be expressed in terms of the D-meson light-
cone distribution amplitudes:
(PIY, 870 (0= PO HEIO) = iFp() ™S bp(w ), (247)
Vilg, 26 (0= PYHI0) = F () b0, (248)
n-wv

(Vr|x, Zﬁ 0 (w—n-PHH0) = Fy, (M/)Té‘i@@ (w, i), (24.9)
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where ¢/ is the transverse polarization of the vector meson. The constants Fu(u'),
with A = {P,V, Vr}, are related to the matrix elements of the local heavy-light cur-
rents in coordinate space. In the heavy-quark limit, where D and D* are degenerate,
F4 is the same for all the three states: F' = Fp = Fy, = Fy,. In this limit,

/

oig L 1) = i) (2.4.10)

At tree level, the matrix element is proportional to the D-meson decay constant
fp =205.8+ 8.5+ 2.5 MeV [59]. More precisely, F'(¢') = fp\/mp, where the factor
vmp is due to HQET normalization. The scale dependence of F' is determined by

the renormalization of heavy-light HQET currents. At one loop, Ref. [5] showed that

d
dlIn p/

F() = —9pF (') = 3CR T2yt (2.4.11)

The pNRQCD matrix elements can be expressed in terms of the heavy quarkonium
wavefunctions. The operator X%ﬁb - 011y contains a component with J = 0 and a
component with J = 2 and J, = 0, so its matrix element has non-vanishing overlap
with both xu and 4. The operator Xbpb Yol @bb instead has only contributions
with J = 2 and J, = +2 and therefore it only overlaps with Y. In terms of the

bottomonium wavefunctions, the pNRQCD matrix elements are expressed as

2 3N,

(O1xiph - FLilxan) = R, (0.40) (2.4.12)
L 3N,

(Ox{Ph - & 1| x2) \/ e m(o, i) (2.4.13)

Ohdp o Vlxae) = () +e?) 27T Ve (0.10) (2.4.14)

where R), (0) is the derivative of the radial wavefunction of the y;; evaluated at the
origin. At leading order, the pNRQCD Hamiltonian does not depend on J, so, up to
corrections of order w?, R}, (0) = R/, (0). The numerical pre-factors in Eqs. (2.4.12)
and (2.4.13) follow from decomposing pj - ¢, into components with definite .J,. 5,“,) is

the polarization tensor of the y,» state, and Eq. (2.4.14) states that, at leading order
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in the w? expansion, only the particles with polarization .J, = £2 contribute to Y

decay into two transversely-polarized vector mesons. Similarly, one finds

N, ,
(0T |ms) = \/;Rm(o,u) . (2.4.15)

The factorization of the matrix elements (2.4.6) implies that the decay rate also
factorizes. For the decays of xu and ype into two pseudoscalar mesons or two

longitudinally-polarized vector mesons, we find

4mD\/mibO 4m D3N
I (xpo = AA) = IC( )2 |RL,, (0, 4)]?

3 8T My,
9 n v'n-v [ dwdw 3 ?
F( ——T (w, @, 1, 15 °Pr) ¢a(@, 1) palw, 1)
(2.4.16)
and
9 b/, — 4mD3N
r AA C R, (0
(112 = A4) =5 = eSO () P R (0,4
9 n v'n-v [ dwdo ?
P ——TWWMM7 *Py) pa(@, f)pa(w, )|
(2.4.17)

where A = P, V},. For the decay of y into two transversely-polarized vector mesons,

one finds the decay rate by summing over the possible transverse polarizations:

2mD\/mm Ami, 3N
I (xp2 = VrVr) = 1C (w) |* |R,, (0, 1)

5 8Ty, 2m

n v’ n v [ dwdw 2
{FQ ——T (w, @,y 15? Py) vy (@, 1) s (w, M)} :

(2.4.18)

In the case of 7, decay into a pseudoscalar and a longitudinally-polarized vector

mpy/m2, —4mDN 1
)= S |C () I |y, (0, 1) 5

8mmy, 2m 2

/d—Wd—wT w,w, [, :uv SO) (¢VL(@>M,)¢P(W’M/) - ¢VL(W7M,)¢P(W’M/)):| :
(2.4.19)

meson, we find

n-vn-v
2

r (nb — PV, +c.c.

)
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Note that we are working in the limit m. — oo, where the mp- — mp mass splitting
vanishes.

The factorized formulas Eqgs. (2.4.6) and (2.4.16) - (2.4.19) are the main results of
this Chapter. Each decay rate of (2.4.16) - (2.4.19) depends on two calculable match-
ing coefficients, C' and T, and three non-perturbative, process-independent matrix
elements, namely, two D-meson distribution amplitudes and the bottomonium wave-
function. In Sec. 2.5 we will provide a model-dependent estimate of the decay rates
(2.4.16) - (2.4.19) and will discuss the phenomenological implications. We conclude
this section by observing that all the non-perturbative matrix elements cancel out in
the ratios I'(xpo — PP)/T'(xpe — PP) and I'(xpo — VVL) /T (xp2 — VLVL), since the
spin symmetry of pPNRQCD guarantees R, (0) = R, (0), at leading order in EFT};.

Neglecting the xuo - X2 mass difference, we find, up to corrections of order w?,

415

T = AA)/T 002 = A4d) = 35 = 10, (2.4.20)

2.4.2 Running

The dependence of the matching coefficient T'(w, @, i, p'; 271 L) and of the operators
in Egs. (2.4.16) - (2.4.19) on the scale y' is driven by a RGE that can be obtained
by renormalizing the EFTy; operators. The RGE for the EF Ty operators, which also

defines the anomalous dimension Ygpr,,, is similar to Eq. (2.3.6),

d
dln !

ZS+1LJ

FY ()0 ™ (w0,4)] =

S
_/ dw// A& yprry, (w, w's @, &5 ) F2 () O W (W, & i)
(2.4.21)

To calculate the anomalous dimension at one loop, we compute the divergent part of

the diagrams in Figs. 2.6 and 2.7. As mentioned in Sec. 2.2, the pNRQCD Lagrangian

has the following structure,

Lpxrqep = / &*x Lihon + Lot »
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where the superscript usoft indicates that the gluons in the NRQCD Lagrangian are
purely ultrasoft (myw?, myw?), while Ly, contains four-fermions operators, which are

non-local in space,

Lpot = /d3$1d33€2¢2(t7fl)Xﬁ(ta52)Vaﬁ,v5(7?)xi,(ta52)%(15751) :

At leading order in ag(mpw) and 7, V' is the Coulomb potential

as(myw)

vaﬁ,fy& = tZ(Sti;B .

For the explicit form of higher-order potentials, see, for example, Refs. [9, 13]. Ver-
tices from Ly generate one-loop diagrams as the first diagram in Fig. 2.6. However,
these diagrams do not give any contribution to the anomalous dimension at one loop.
Indeed, the insertion of the Coulomb potential 1/r in Fig. 2.6 does not produce UV
divergences. Insertions of the 1/m; potentials yield divergences but the coefficient of
the 1/my potential is proportional to a?(myw), so it is not relevant if we are content
with a NLL resummation. Insertions of 1/m} potentials give divergences propor-
tional to subleading operators, which can be neglected. The second diagram in Fig.
2.6 yields a result completely analogous to the last term in Eq. (2.3.9), with the only

difference of a color pre-factor,

s C 1
iMpNrQeD = —zg—ﬂ ?F(’)ZS; Lrw, @, p) . (2.4.22)

This divergence is completely canceled by the b-quark field renormalization constant
Zy, and hence the pNRQCD diagrams in Fig. 2.6 do not contribute to the anomalous
dimension at one loop.

On the bHQET side, the third diagram in Fig. 2.7 is convergent, and hence it

does not contribute to the anomalous dimension. The first two diagrams give

25+1LJ

iIMpQET 7 = i/dw'dw'A(w,w/, w0, 00,5 (W& ), (2.4.23)
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FIGURE 2.6. One-loop diagrams in pNRQCD. The first diagram contains insertions
of quark-antiquark potentials. In the second diagram the gluon is ultrasoft.
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FIGURE 2.7. One-loop diagrams in bHQET. There are three analogous diagrams for
the other copy of bHQET.

with
ro— oy Qs B a1 wn v 1
A(w,w,w,w)—QﬂCpé(w w){é(w w){ 52 6ln( = )+6]
+1[9(@—w’)< 17, +9(@/—@)‘9(@)£,<,1 ) ]} :
€ w—w'), WA\ —-w ),

(2.4.24)

The diagrams for the bHQET copy in the n-direction give a result analogous to Eqs.
(2.4.23) and (2.4.24), with w — w, @’ — W', and n-v" — n-v. Extracting vgpr,, from
the divergence is again standard, just as we did in the case of ygpr,. After adding
to Eq. (2.4.24) the bHQET field renormalization constants Z;, and Z; for heavy and
light quarks

1o 1o
Z,=14+=-220C Zo—1— 20
h +527r £ ¢ car T

YerTy (W, w0, @5 1) = 2950 (w — W) 0 (0 — &) + Yo (w, w0, 1),  (2.4.25)
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ir o ¢
_ Z—S4CF6(W — ') [9 (0 —a') (w _1 @f)+ O -) (@% (@’1—@)+]
— 408 (@ - ) [9(w — ) (w _w/)+ +0( —w)bw) (W’l—w)J
(2.4.26)

The term proportional to v in Eq. (2.4.25) reproduces the running of F2(y') (2.4.11).
~o is responsible for the running of the D-meson distribution amplitudes and it agrees
with the result found in Ref. [60]. Also, in Eq. (2.4.26) the coefficient of In p’ is pro-
portional to I'cysp(cvs). Note that, since the bHQET Lagrangian is spin-independent,
the anomalous dimension does not depend on the spin or on the polarization of the
D meson in the final state, at leading order in the power counting.

Using Eqgs. (2.4.21) and (2.4.25) we find the following integro-differential RGE for
the operator O(w, w, i'):

d
dln !

—- [ [ oo wio@ oW ), @42)

where we have dropped both the subscripts A, B, and the superscript 2+ L, since
Yo does not depend on the quantum numbers of the initial or final state. Us-

ing the fact that the convolution of F?(u') T (w,®,u,u'; 1L ;) and the operator

25+1LJ

O, 7 (w,0, ) is p/-independent, we can write an equation for the coefficient,
d 2
dhw,[F (W) T(w, @, p, )]

/dw /d ’——F2 u) T (W&, 1) vo(w' w;@ oy u')  (2.4.28)

w' !
= /dw’/d@’F2(u’) T(w', &', py 1 )vo(w, w0, 1)

where the last line follows from the property of v» at one loop,
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as can be explicitly verified from the expression in Eq. (2.4.26).

Eq. (2.4.28) can be solved following the methods described in Ref. [60]. We
discuss the details of the solution in App. A, where we derive the analytic expressions
for T(w, @, u, u'; 3Py) and T'(w, @, i, u'; 1Sp), with the initial conditions at the scale
(. = m,. expressed in Eq. (2.4.4).

2.5 Decay Rates and Phenomenology

In Sec. 2.4.1 we gave the factorized expressions for the decay rates (2.4.16) - (2.4.19):
I'(xe0,2 = PP), I'(xeo,2 = ViVi), T'(xpe — VoVp), and I'(npy, — PV +cc.). In
Secs. 2.3.2 and 2.4.2 we exploited the RGEs (2.3.8) and (2.4.28) to run the scales u
and g/, respectively, from the matching scales . = 2my; and p' = m,. to the natural
scales that contribute to the matrix elements, = m, and p’ ~ 1 GeV, resumming
in this way Sudakov logarithms of the ratios m./2m; and m./1 GeV.

We proceed now to estimate the decay rates (2.4.16) - (2.4.19). In order to do so,
we need to evaluate the following ingredients: the light-cone distribution amplitudes
of the D meson and of the longitudinally- and transversely-polarized D* mesons, and
the wavefunctions of the states 1, and x;;. In principle, these non-perturbative objects
could be extracted from other 7y, xp, and D-meson observables. In the case of the
7y, the value of the wavefunction at the origin can be obtained from a measurement
of the inclusive hadronic width or of the decay rate for the electromagnetic process
nb — 77, since they are both proportional to |R,, (0)|*. Unfortunately, at the moment
there are not sufficient data on 7, decays. Another way to proceed is to use the spin
symmetry of the leading-order pPNRQCD Hamiltonian, which implies R,, (0) = Ry (0),
and to extract the Upsilon wavefunction from I'(T — ete™) = 1.28 £ 0.07 KeV
[61]. Using the leading-order expression for I'(Y — e*e™) [62], one finds |Ry(0)]* =
6.92 + 0.38 GeV?, where the error only includes the experimental uncertainty. The

above value is in good agreement with the lattice evaluation by Bodwin, Sinclair, and

Kim [63] and it falls within the range of values obtained with four different potential
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models, as listed in Ref. [64].

|R;<b0,2(0)|2 can be obtained from the electromagnetic decay xp2 — 7y. Un-

fortunately, such decay rates have not been measured yet. The values listed in

Ref. [64] range from a minimum of |R! (0)]> = 1.417 GeV®, obtained with the

XbJ

Buchmuller-Tye potential [65], to a maximum of |R, (0)|? = 2.067 GeV?, obtained

XbJ

with a Coulomb-plus-linear potential. The lattice value is roughly of the same size,

|R., (0)|* = 2.3 GeV®, with an uncertainty of about 15% [63]. We use this value in

our estimate.
For the pseudoscalar D-meson distribution amplitude we use two model functions
widely adopted in the study of B physics. A first possible choice, suggested for

example in Ref. [60], is a simple exponential decay:
B (w, 1 = 1GeV) = H(w)% exp (—Ai) . (2.5.1)
D D
Another form, suggested in Ref. [66], is
T [ 1 2p-1)
Apml+@2 |1+ 02 2

where @ = w//. The theta function in Eqgs. (2.5.1) and (2.5.2) reflects the fact that

}IBDTSun(w”u/ — 1G€V) — ‘9((:)) 11’1(:]:| , (252)

the distribution amplitudes ¢4(w, p’), with A = {P,Vy, Vr}, have support on w > 0
[67].

The subscript 0 indicates that these functional forms are valid in the D-meson rest
frame, with a HQET velocity-label vy = (1,0,0,0). With the definition we adopt in
Eq. (2.4.7), the distribution amplitude is not boost-invariant and in the bottomonium
rest frame, in which the D meson has a velocity (n-v,n-v,0) ~ (m./2my, 2my/m., 0),

it becomes

1 w
¢p(w, ') = ——dp o <, ,,u/> : (2.5.3)
n-v n-v
as shown in App. B. Ap and op in Egs. (2.5.1) and (2.5.2) are, respectively, the

first inverse moment and the first logarithmic moment of the D-meson distribution

amplitude in the D-meson rest frame,

— / < dw /
)\Dl(lu“) = /0 UQSP,O((’U?/“’L) )
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ol ) == [ (5) bl i)

w

Furthermore we assume that the vector-meson distribution amplitudes ¢y, (w) and
¢y (w) have the same functional form as ¢p(w), but with different parameters Apx,
op; and Ap:, op:.

The D-meson distribution amplitude and its moments have not been intensively
studied unlike, for example, the B-meson distribution amplitude. Therefore, we in-
voke heavy-quark symmetry and use the moments of the B-meson distribution am-
plitude in order to estimate the decay rate. However, the value of A\p is affected
by a noticeable uncertainty. Using QCD sum rules, Braun et al. estimated [66]
Ap(p/ = 1GeV) = 0.460 4+ 0.110 GeV, where the uncertainty is about 25%. Other
authors [68, 69, 70] give slightly different central values and comparable uncertainties,
so that Ap falls in the range 0.350 GeV < A < 0.600 GeV. The first logarithmic
moment op is given in Ref. [66], op = op(p’ = 1GeV) = 1.4+ 0.4. We assume that
the moments of the D*-meson distribution amplitudes fall in the same range as the
moments of ¢p(w).

We evaluate numerically the convolution integrals in Eqs. (2.4.16) - (2.4.19). We
choose the matching scales p, and gl to be 2my, and m, respectively. Using the RGEs
we run the matching coefficients down to the scales = m, and /' = 1 GeV. For the
b and ¢ quark masses we adopt the 1S mass definition [71],

my(19) = 1% = 4730.15 £ 0.13 MeV

o (2.5.4)

me(1S) = —5 = 1548.46 £+ 0.01 MeV .

The values of ay at the relevant scales are [61] as(2my,) = 0.178 £ 0.005, as(m.) =

0.340 £ 0.020, and a,(1 GeV) ~ 0.5. With these choices, the value of g in Eq. (A.5)
is g(me, 1 GeV) = —0.12 £ 0.02.

The decay rates I'(xp; — AA) with A = {P,V;, Vr}, (2.4.16) - (2.4.18), depend
on the masses of the y;; and of the D mesons, whose most recent values are reported

in Ref. [61]. Since the effects due to the mass splitting of the x;; and D multiplets
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are subleading in the EFT power counting, we use in the evaluation the average mass
of the x;; multiplet and the average mass of D and D* mesons: m,,, = 9898.87 £
0.28 £ 0.31 MeV and mp = 1973.27 £ 0.18 MeV. Therefore, the velocity of the D
mesons in y,; decay is n-v = n-v' = m,,,/mp = 5.02, with negligible error. The
decay rate I'(n, — PV +c.c.) (2.4.19) depends on the mass of the 7,, which has been
recently measured: m,, = 9388.9%53 +£2.7 MeV [53]. The velocity of the D meson in
the 7, decay is n-v =n - v =m,,/mp = 4.76, again with negligible error.

The decay rate I'(xy — PP) (2.4.16), obtained with ¢®™P® and ¢P"*" separately,
is shown in Fig. 2.8. In order to see the impact of resumming Sudakov logarithms,
we show for both distribution amplitudes the results with (i) the LL and NLL resum-
mations and (77) without any resummation at all. In the plots, we call the resummed
results NLL-resummed, indicating that Sudakov logarithms are resummed up to NLL.
For both distribution amplitudes the resummation does have a relevant effect on the
decay rate. In the case of ™P the resummation decreases the decay rate by a factor
of 2 — 1.5 as Ap goes from the lowest to the highest value under consideration. In
the case of @B the decay rate decreases too, for example, by a factor 1.5 when
op = 1.4. In Fig. 2.9 we compare the decay rates obtained with the two distribution
amplitudes. Over the range of A\p we are considering the two decay rates are in rough
agreement with each other.

Figs. 2.8 - 2.9 also describe the relation between the decay rate I'(x,0 — V. V1) and
Apz . According to Egs. (2.4.17) and (2.4.18), the processes xp2 — PP, xp2 — VL. V1,
and xu2 — VrVr show an analogous dependence on the first inverse moments of the
light-cone distribution amplitudes, and they differ from Figs. 2.8 - 2.9 by constant
pre-factors. Therefore, we do not show explicitly their plots.

Qualitatively, Figs. 2.8 - 2.9 show a dramatic dependence of the decay rate on
the inverse moment Ap. Using Eqgs. (2.4.16), (2.5.3) and (A.16), one can show that
when ¢P™" is used, the decay rate is proportional to )\54, while it scales as )\56_4"

when we adopt ¢™P with g defined in Eq. (A.5). As a consequence, the decay rate
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FIGURE 2.8. T'(xpo — PP) as a function of Ap, calculated with the distribution
amplitudes ¢™P (left) and ¢ (right). The dash dotted and solid lines denote the
NLL-resummed decay rate. For comparison, the decay rate without resummation is
also shown, denoted by dash double-dotted (left) and dashed (right) lines. For ¢Braun
we vary the parameter op from op = 1 (lower curve) to op = 1.4 (middle curve) to
op = 1.8 (upper curve).

drops by an order of magnitude when \p goes from 0.350 GeV to 0.600 GeV. The
particular sensitivity of exclusive bottomonium decays into two charmed mesons to
the light-cone structure of the D meson —much stronger than usually observed in D-
and B-decay observables— is due to the dependence of the amplitude on the product
of two distributions (one for each meson) and to the non-trivial dependence of the
matching coefficient T" on the light-quark momentum labels w and @ at tree level.
On one hand, the strong dependence on a relatively poorly known quantity prevents
us from predicting the decay rate I'(xp0o — D D). On the other hand, however, it
suggests that, if the decay rate is measured, this channel could be used to better
determine interesting properties of the D-meson distribution amplitude, such as Ap
and op. The viability of this suggestion relies on the control over the theoretical error
attached to the curves in Fig. 2.8 and on the actual chances to observe the process
X» — DD at current experiments.

The uncertainty of the decay rate stems mainly from three sources. First, there
are corrections coming from subleading EFT operators. In matching NRQCD+SCET
onto pNRQCD + bHQET (Sec. 2.4.1), we neglected the subleading EFTy; operators
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FIGURE 2.9. I'(xp0 — PP) as a function A\p. The dash dotted line denotes the decay
rate calculated with P, while the three solid lines with ¢B™. For ¢B™" we vary
the value of the parameter op from op = 1 (lower curve) to op = 1.4 (middle curve)
to op = 1.8 (upper curve).

that are suppressed by powers of Aqcp/m. and w?, relative to the leading EF Ty
operators in Eqgs. (2.4.2) and (2.4.3). In matching QCD onto NRQCD + SCET
(Sec. 2.3.1), we kept only Jgpr, (2.3.2) and neglected subleading EFT] operators,

2. These subleading EFT; operators would match

suppressed by powers of A\ and w
onto subleading EFTy; operators, suppressed by powers of Aqcp/m. and w?. Using
w? ~ 0.1 and Aqep/me ~ 0.3, we find a conservative estimate for the non-perturbative
corrections to be about 30%.

Second, there are perturbative corrections to the matching coefficients C' and T'.
Since a4(2my) = 0.178, we expect a 20% correction from the one-loop contributions
in matching QCD onto NRQCD + SCET. In the second matching step, similarly, the
one-loop corrections to T'(w, @, i, p'; 21 L ;) would be proportional to as(m.) ~ 30%.
We can get an idea of their relevance by estimating the dependence of the decay rate
(2.4.16) on the matching scales u, and gl If the matching coefficients C' and 7" and
the anomalous dimensions ygpr, and vo(w,w’, 0, &"; 1) were known at all orders, the
decay rate would be independent of the matching scales u;, and p.. However, since

we only know the first terms in the perturbative expansions, the decay rate bears

a residual renormalization-scale dependence, whose size is determined by the first
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FIGURE 2.10. Left: Scale dependence of I'(xy0 — PP) on the matching scale .
We vary py, from a central value pu, = 2m, (solid line) to a maximum of p, = 20
GeV (dashed line) and a minimum of i, = 5 GeV (dotted line). The dashed and
dotted lines overlap almost perfectly. Right: Scale dependence of T'(xy — PP) on
the matching scale p.. We varied pl. from a central value of p/, = m, (solid line) to
a maximum of u! = 2.5 GeV (dashed line) and a minimum of y!, = 1.2 GeV (dotted
line).

neglected terms.

In Fig. 2.10 we show the effect of varying p;, between 4my, ~ 20 GeV and my, ~ 5
GeV on the decay rate, using ¢®™%. The solid line represents the choice sy, =
2my,, while the dashed and dotted lines, which overlap almost perfectly, correspond
respectively to p, = 20 GeV and p, = 5 GeV. The dependence on py is mild, its
effect being a variation of about 5%. We obtain analogous results for the decay rate
computed with ¢®P® which are not shown here in order to avoid redundancy.

On the other hand, even after the resummation, the decay rate strongly depends
on p.. We vary this scale between 1.2 GeV and 2.5 GeV and we observe an overall
variation of about 50%. We expect the scale dependence to be compensated by the
one-loop corrections to the matching coefficient T'(w, @, u, ¢’; Py). This observation
is reinforced by the fact that the numerical values of the running factors U (uy, i) and
V(i 1) (defined respectively in Eqgs. (2.3.22) and (A.6)) at NLL accuracy are smaller
than expected on the basis of naive counting of the logarithms. As a consequence,

the next-to-leading-order corrections to the matching coefficient could be as large as
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the effect of the NLL resummation. In the light of Fig. 2.10, the one-loop correction
to T'(w,w, i, s 3Py) seems to be an important ingredient for a reliable estimate of
the decay rate.

A third source of error comes from the unknown functional form of the D-meson
distribution amplitude. For the study of the B-meson shape function, an expansion
in a complete set of orthonormal functions has recently been proposed and it has
provided a systematic procedure to control the uncertainties due to the unknown
functional form [72]. The same method should be generalized to the B- and D-meson
distribution amplitudes, in order to reduce the model dependence of the decay rate.
We leave such an analysis to future work.

To summarize, the calculation of the one-loop matching coefficients and the in-
clusion of power corrections of order Aqcp/m. appear to be necessary to provide a
decay rate with an accuracy of 10%, that would make the decays x,; — DTD™,
xps — D°D competitive processes to improve the determination of A\p and op, if
the experimental decay rate is observed with comparable accuracy.

We estimate the decay rate I'(n, — PVy + c.c.) (2.4.19) using ¢™P and ¢ for
both ¢p and ¢y, . In the limit m, — oo, spin symmetry of the bHQET Lagrangian
would imply the equality of the pseudoscalar and vector distribution amplitudes,
¢p = ¢v,, and hence the vanishing of the decay rate I'(n, — PVy + c.c.). Assuming
spin-symmetry violations, the decay rate depends on (i) the two parameters \p =

(Ap + Ap;)/2 and & = (Ap: — Ap)/(Ap + Apy), if ¢™P is used, and on (i) three

AP s used.

parameters \p, 0, and lop: — opl, if

The two plots in the left column of Fig. 2.11 show the decay rate, computed
with ¢™P  as a function of Ap with § adopting various values, and as a function of
§ with Ap now being the parameter. In the right column, the decay rate computed
with ¢ is shown. Since in this case the decay rate does not strongly depend

on §, we fix it at § = 0 and we show the dependence of the decay rate on Ap and

lop: —op|. We “normalize” the difference between the first logarithmic moments by
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FIGURE 2.11. Left: TI'(n, — PV + c.c.) as a function of Ap and d, computed using

exponential distribution amplitudes ¢ and QS‘E/?’. Right: T'(ny, — PVy +c.c.) as a

function of Ap and |op: — op|/o, computed with the Braun distribution amplitudes
¢Braun and Braun
P \%3 .

dividing them by o = 20p.

The most striking feature of Fig. 2.11 is the huge sensitivity to the chosen func-
tional form. Though a precise comparison is difficult, due to the dependence on
different parameters, the decay rate increases by two orders of magnitude when we
switch from ¢™P® to ¢B®  Once again, this effect hinders our ability to predict
['(my, — PV +c.c.) but it opens up the interesting possibility to discriminate between
different model distribution amplitudes.

Using Egs. (2.4.19) and (A.17), we know that I'(y, — PV, +c.c.) goes like \;' ™%
when ¢™® used or A\;' when ¢P™" used. Fig. 2.11 appears to confirm this strong
dependence on Ap. The plots in the lower half of Fig. 2.11 reflect the fact that the

decay rate vanishes if one assumes ¢p(w) = ¢y, (w).
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We conclude this section with the determination of the branching ratios B(yy —
PP) = T'(xww — PP)/T(xp0 — light hadrons) and B(n, — PVy + c.c.) = ['(n, —
PVy + c.c.)/T'(n, — light hadrons). At leading order in pNRQCD, the only non-

perturbative parameter involved in the inclusive decay width of the 7, is |R,,(0)[?

[6] )

2Im f1(*Sg) N,
['(n, — light hadrons) = Mz_ R, (0)]. (2.5.5)

Therefore, B(n, — PV + c.c.) does not depend on the quarkonium wavefunction and
the only non-perturbative parameters in B(n, — PV, 4+ c.c.) are those describing the
D-meson distribution amplitudes.

For P-wave states, the inclusive decay rate was obtained in Refs. [6, 73], where the
contributions of the configurations in which the quark-antiquark pair is in a color-
octet S-wave state were first recognized. In pNRQCD the inclusive decay rate is

written as [74, 75]

1 3N,
my

I'(xp0 — light hadrons) = R, (0)]* | Im fi(*Py) + %Wlmfg(?’é’l)g} :

(2.5.6)
where the color-octet matrix element has been expressed in terms of the heavy quarko-
nium wavefunction and of the gluonic correlator £, whose precise definition is given in
Ref. [74]. £ is a universal parameter and is completely independent of any particular
heavy quarkonium state under consideration. Its value has been obtained by fitting to
existing charmonium data and, thanks to the universality, the same value can be used
to predict properties of bottomonium decays. It is found in Ref. [74] & = 53155,
The matching coefficients in Eqgs. (2.5.5) and (2.5.6) are known to one loop. For
the updated value we refer to Ref. [76] and references therein. For reference, the
tree-level values of the coefficients are as follows [6]:

Imf,(*Ry) = 3a§(2mb)7rc—

Imfl(lSo) = a§(2mb)7rc— ,
2N, (2.5.7)

F
2N, ’
n
Imfg(?’Sl) = Ffag(me)ﬁ .

With the above parameters, we plot B(xs — PP) and B(n, — PVi + c.c.) as
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FIGURE 2.12. Branching ratios B(xy — PP) (left) and B(n, — PVy + c.c.) (right).
The latter is computed using the distribution amplitude ¢B®,

a function of Ap and Ap, respectively, in Fig. 2.12. Over the range of A\p we are
considering, B(xy — PP) varies between 4 - 107> and 4 - 1075; it is approximately
one or two orders of magnitude smaller than the branching ratios observed in Ref.
[54] for x3; decays into light hadrons. B(n, — PV + c.c.) depends on the choice of
the distribution amplitude. Choosing the parameterization ¢ (2.5.2), it appears
that, despite the suppression at |op: — op| =0, B(n, — PV, + c.c.) assumes values
comparable to B(xy — PP) even for a small deviation from the spin-symmetry limit.
If ™ is chosen, the branching ratio is suppressed over a wide range of |O’Dz —op|.
The branching ratio B(n, — PV + c.c.) was first estimated in [77]. The authors of
[77] assumed that the exclusive decays into DD* dominate the inclusive decay into
charm, I'(n, — PVy +c.c.) ~ T'(ny, — cc+ X). With this assumption, they estimated
the branching ratio to be in the range 107% < B(n, — PVy + c.c.) < 1072, Our
analysis shows that such an assumption does not appear to be justified in the range
of Ap considered in Fig. 2.12, while it would be appropriate for smaller values of the
first inverse moments, for example for Ap ~ 0.200 GeV if the distribution amplitudes
are described by @Braun,

Our estimates indicate that observing the exclusive processes 1, — DD*+c.c. and
Xo — DD would be extremely challenging. A preliminary analysis for y, — D°D° [78]
suggests that the number of Y(25) produced at BABAR allows for the measurement
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of a branching ratio B(xz — D°D°) ~ 1073, which is two or three orders of magnitude
bigger than the values in Fig. 2.12. An even bigger branching ratio would be required
for the smaller Y(25) sample of CLEO. However, we stress once again the strong
dependence of the decay rates on the values of the first inverse moments. In particular,
our estimates rely on the relation Ap = A\g, which is valid in the limit of m;, m. — oo;
even small corrections to the heavy flavor symmetry, if they had the effect of shifting
the value of Ap towards the range 0.250 — 0.350 GeV, could considerably increase the

branching ratios.

2.6 Conclusions

In this Chapter we have analyzed the exclusive decays of the C-even bottomonia
into a pair of charmed mesons. We approached the problem using a series of EFTs
that lead to the factorization formulas for the decay rates (Eqs. (2.4.16) - (2.4.19)),
valid at leading order in the EFT power counting and at all orders in a,. We im-
proved the perturbative results by resumming Sudakov logarithms of the ratios of the
characteristic scales that are germane to the dynamics of the processes.

The decay rates (2.4.16) - (2.4.19) receive both perturbative and non-perturbative
corrections. Perturbative corrections come from loop corrections to the matching
coefficients C' and T', which are respectively of order as(2my) ~ 0.2 and a(m,.) ~ 0.3.
The largest non-perturbative contribution could be as big as Aqcp/m., which would
amount approximately to a 30% correction. Therefore, corrections to the leading-
order decay rates could be noticeable, as the strong dependence of the decay rates
on the renormalization-scale p, suggests. However, the EF'T approach shown in this
Chapter allows for a systematic treatment of both perturbative corrections and power-
suppressed operators, so that, if the experimental data require, it is possible to extend
the present analysis beyond the leading order.

For simplicity, we have focused in this Chapter on the decays of C-even bottomo-

nia, in which cases the decays proceed via two intermediate gluons and both the
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matching coefficients C' and T are non-trivial at tree level. The same EFT approach
can be applied to the decays of C-odd states, in particular, to the decays T — DD
and T — D*D* with the complication that the matching coefficient 7" arises only at
one-loop level. Moreover, the same EFT formalism developed in this Chapter can be
applied to the study of the channels that have vanishing decay rates at leading order
in the power counting, such as n, — D*D*, T — DD* 4 c.c., and xy — DD* + c.c..
Experimental data for the charmonium system show that, for the decays of charmo-
nium into light hadrons, the expected suppression of the subleading twist processes
is not seen. It is interesting to see whether such an effect appears in bottomonium
decays into two charmed mesons, using the EF'T approach of this Chapter to evaluate
the power-suppressed decay rates.

Finally, in Sec. 2.5 we used model distribution amplitudes to estimate the decay
rates. The most evident, qualitative feature of the decay rates is the strong depen-
dence on the parameters of the D-meson distribution amplitude. Even though this
feature may prevent us from giving reliable estimates of the decay rates or of the
branching ratios, it makes the channels analyzed here ideal candidates for the extrac-
tion of important D-meson parameters, when the branching ratios can be observed

with sufficient accuracy.
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CHAPTER 3

T VIOLATION IN NUCLEAR SYSTEMS

3.1 Introduction

Time-reversal (1) and C'P violation have been a subject of intense interest for nearly
half a century. The Standard Model with three families has a natural source of C'P
violation in the form of a complex phase in the Cabibbo-Kobayashi-Maskawa (CKM)
quark-mixing matrix. However, this violation is small in the sense that it comes [79]
in a combination of CKM parameters Jop ~ 3-107° < 1. Moreover, this mechanism
appears to be insufficient for electroweak baryogenesis [80]. As a consequence, it
has been hoped that the study of T violation will offer a window into new physics.
In this thesis, we study systematically the effects on hadronic and electromagnetic
interactions of the lowest-dimension sources of 7" violation that can be added to the
QCD Lagrangian, including all the possible TV operators up to dimension 6.

C'P violation has been observed in kaon and B-meson systems at a level consistent
with Standard Model expectations [1]. On the other hand, electric dipole moments
(EDMs) signal T" violation as well, but they are relatively insensitive to the CKM
phase because they involve flavor-diagonal C'P violation. Indeed, in the Standard
Model with # = 0, the neutron EDM, for example, is expected to be very small,
d, ~ 10732 e cm [81]. In contrast, the present experimental bound is |d,,| < 2.9-107%6 ¢
cm [82], and plans exist to decrease this limit by one or two orders of magnitude
using ultracold neutrons at the Spallation Neutron Source (SNS) of the Oak Ridge
National Laboratory [83] and at the UltraCold Neutron Source of the Paul Scherrer
Institute [84]. A less strict bound on the proton EDM, |d,| < 7.9 -10"*¢ cm,
can be extracted from the EDM of the ""Hg atom [85] using a calculation of the
contribution of the nuclear Schiff moment [86]. In addition, there exist exciting plans

to probe the deuteron EDM in a storage ring at the level of |dy| ~ 1072 ¢ cm [87].
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Hadronic and nuclear EDMs are thus sensitive to non-CKM sources of 1" violation
in the strong interactions. (For a review of both experimental and theoretical issues,
see, for example, Refs. [88, 81].)

A natural question that arises, if the proposed experiments do measure a non-
vanishing hadronic or nuclear EDM, is whether we can identify the dominant mech-
anism(s) of 7" violation. In this Thesis we would like to present a step in the di-
rection of answering this question. Calculating hadronic and nuclear properties di-
rectly from QCD has proved difficult to say the least. Nevertheless, at low momenta
Q ~ my K Mgcp, where m; is the pion mass and Mgcp ~ 1 GeV is the typical mass
scale in QCD, these properties can be described in terms of an effective field theory
(EFT) involving nucleons, pions and delta isobars, known as chiral perturbation the-
ory (xPT) [29, 30, 31]. In the EFT, all interactions are allowed which transform under
Lorentz, parity, time-reversal, and chiral symmetry in the same way as do terms in
the QCD Lagrangian. Long-range effects due to the light pions are separated from
short-range effects due to all higher-energy degrees of freedom. Observables are sys-
tematically expanded in powers of Q/Mgcp (times functions of @/m,). xPT has
been successfully applied to a variety of hadronic and nuclear systems. (For reviews,
see for example Refs. [32, 33, 37].) We want to use EFT to analyze T violation in a
way similar to what has been done for parity violation [89, 90].

Our first step will be to extend the chiral EFT to include 7' violation from the
lowest-dimension 7' violating (TV) sources. We include the dimension 4 QCD @
term, and all the possible dimension 6 operators allowed by invariance under the
gauge symmetry of the Standard Model, which, when heavy degrees of freedom are
integrated out, consist of a quark electric and chromo-electric dipole moment (qEDM
and qCEDM), the Weinberg three-gluon operator, which is interpreted as the gluon
chromo-EDM (gCEDM), two chiral invariant four-quark operators, and three two-
lepton-two-quark operators. The basic idea [92, 91] is that T" violation is accompanied

at the quark level by a specific form of chiral-symmetry breaking, and thus the inter-
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actions among low-energy hadrons and photons break chiral symmetry in the same
way. We construct here the TV Lagrangian governing the low-energy interactions
of pions and nucleons. (Some of these interactions have already been considered in
Refs. [92, 91].) Since various sources of 7" violation have distinct chiral-symmetry
transformation properties, they will generate different interactions at the hadronic
level [92]. This, in turn, leads to different relationships among observables.

Since we are interested in low-lying hadronic and nuclear systems, we limit our-
selves to two quark flavors, when the chiral symmetry is SU(2) x SU(2). We dedicate
the rest of this Chapter to a summary of the TV sources we are considering, a brief
review of xYPT and of the T' conserving (TC) xPT Lagrangian. In Chapter 4, we
construct the TV Chiral Lagrangian. As far as the 6 term is concerned, we extend
to higher orders in the chiral expansion the pioneering work of Ref. [93]. We do
not assume that the strange-quark mass makes a good expansion parameter. With
such an assumption more stringent (approximate) relations among observables exist
94, 95, 96, 97, 98, 99]. On the other hand, focusing on SU(2) x SU(2) will make some
intrinsic aspects of the connection between 7' violation and chiral-symmetry breaking
more obvious. For the dimension 6 operators, we construct for the first time the
TV Lagrangian that includes all the terms relevant to the calculation of the nucleon
EDM, of its momentum dependence, the Electric Dipole Form Factor (EDFF), and
of the deuteron EDM at leading order.

The TV Chiral Lagrangian enables us to study various TV nuclear observables in
a model independent way. We devote Chapter 5 to the study of the nucleon EDM
and its momentum dependence. We find that in the case of TV from 6 term and
the qCEDM, the leading contributions come from the pion cloud, where the pion
couples to the nucleon via a non-derivative isoscalar P- and T-odd interaction, and
from shorter-range interactions. At leading order (LO), the  term and the qCEDM
generate an identical signal for the nucleon EDM and EDFF, so that a measurement

of the nucleon EDM, or even of its detailed momentum dependence, cannot by itself
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discriminate between these two sources of 1" violation. In the case of the qEDM,
gCEDM and of the TV four-quark operators, we find that TV interactions between
nucleon and pions play a less important role, and the EDM at LO is completely
determined by physics at shorter range. Also the scale of the momentum variation of
the EDFF is determined not by m., but by the high-energy scale Mgcp ~ 1 GeV.

A measurement of the proton and neutron EDM can thus be attributed as well
to any of the TV sources we consider. The detailed momentum dependence of the
EDFF, or at least of its first derivative, would allow to discriminate between TV
from the QCD # term and the qCEDM on the one side and TV from the other
dimension 6 operators on the other, but, unfortunately, such a measurement will not
be performed in the next generation of EDM experiments. It is clear, then, that
nuclear TV observables are of the foremost importance, in the quest to trace the
signal from EDM experiments back to the dominant mechanism(s) of 7" violation
at high energy. It is therefore crucial to set up a framework that can consistently
accommodate one and few nucleon observables.

Chapter 6 is dedicated to the study of the TV moments of the simplest nucleus,
the deuteron. In the one-nucleon sector, we use the Lagrangian developed in Chapter
4, while the complications of the power counting for two nucleon system are ad-
dressed using in the “perturbative pion” approach. We find that a measurement of
the deuteron EDM in conjunction with the nucleon EDM allows to clearly identify
TV from the qCEDM. The measurement of the deuteron Magnetic Quadrupole Mo-
ment (MQM) would further allow to separate TV from the § term from the other TV
sources.

Finally in Chapter 7 we study the TV potential stemming from the § term at next-
to-next leading (N?LO) order, and the LO TV potential from dimension 6 operator.
This is the first step towards a description of TV observables for higher nuclei in the
same framework used for the calculation of the nucleon EDM. The combination of the

TV potential here derived with the TC forces and currents derived in the extension
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of xPT to multi-nucleon systems [100, 37, 38| opens the possibility of describing
all necessary ingredients in a single framework, which would then allow to use TV
parameters extracted from the observation of nucleon and deuteron TV moments to
predict in a model-independent and falsifiable way TV moments of light nuclei, like

3He, 1i or “Li.
3.2 Sources of T violation

3.2.1 The QCD 6 term

Well below the electroweak scale, strong interactions can be described by the most
general Lagrangian with Lorentz, color, and electromagnetic gauge invariance among
left-handed (g;) and right-handed (gr) quarks, gluons (G,) and photons (A,). The

lowest-dimension operators are included in the QCD Lagrangian,

1 a v a 9 ra a a 1 v
ﬁQC’D = _ZG # G;w - 93647{_28“ BG;W aff ZFu Fuu
+qrilD qr + qrilD qr + eqrAQ qr + eqrAQ qr
—qrMaqr, — LM qg, (3.2.1)

where G, and F,, are the gluon and photon field strengths, respectively; D, is the
color-gauge covariant derivative; M and () are the quark mass and charge matrices;
e is the electron charge; and 6 is a real parameter [101, 102].

The field ¢ = qr + qr represents a multiplet of fields, of dimension equal to the

number of quark flavors we consider. We work for simplicity with two light flavors, u

q:(Z) (3.2.2)

is an isospin doublet. Objects in isospin space can be written in terms of the identity

and d, so

and the Pauli matrices 7, for example

12 0\ 1 m
Q_§<0—4>_6+2' (3.2.3)
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The most general form of the diagonal mass matrix is

M = e < WS“ 773 ) =e?m (1 —ems), (3.2.4)
d

with real parameters p and m,, 4, or alternatively

m= M+ M (3.2.5)
2
and
e — Md ~ Mu (3.2.6)
My, + My

An important role is played by rotations in isospin space belonging to the chiral group

SUL(2) x SUR(2) ~ SO(4),
q—explify -t+1i04 - x]q, (3.2.7)
where 0y, 4 are real parameters and
t=1/2, T =77/2, (3.2.8)

the group generators.

The 6 term is a total derivative, but it contributes to physical processes through
extended, spacetime-dependent field configurations known as instantons [103, 104].
The 6 term can be eliminated from the Lagrangian by performing transformations
on the quark field. The most general transformation that leaves M diagonal is a
combination of a chiral transformation (3.2.7) with 8y, = (0,0, 5) and 64 = (0,0, «),

and two U(1) transformations,
q — exp [z’@% + iQOA%} q, (3.2.9)

with arbitrary parameters 67, ;. The axial U(1) transformation has an anomaly [105]
and induces a transformation in the integration measure in the path integral that is
equivalent to a modification of the # term in the QCD Lagrangian. With the choice
0% = —0/4, the 0 term can be eliminated and the QCD Lagrangian can be written as

1 1
Loop = =7 GG, = TF" Fu + Qi + GriPar + Lo+ La, (3.2.10)
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where
1
L. =eA,q"Qq=eA, (61“ + Tgfﬁl) (3.2.11)

is the electromagnetic interaction, and

o [ mge® 0
;Ca = —({Rre ( O mde_ia ) qr, + H.C.

_ 0 0 0
= —mcosacos§ 1+5tanatan§ Sy — 5+tanatan§ b

0 0
+ [etana — tan 5} P+ {tana — 5tan§] Sg}

(3.2.12)

is a family of C'P-violating mass terms labeled by the angle a and parametrized by
0 = 2p — 0. We have expressed the mass and electromagnetic Lagrangians in terms
of two SO(4) vectors, a Lorentz scalar
—iqy° Tq
S = | (3.2.13)
aq
and a Lorentz pseudoscalar

qTq
p=( 1 , 3.2.14
( iG7°q ) ( )

and two Lorentz vectors, an SO(4) scalar,

I" = gy"q, (3.2.15)
and an SO(4) antisymmetric tensor,
L cim@" V1o y"'7ig
T = — WEEL ‘ . 3.2.16
2 < —qtTiq 0 ( )

3.2.2 Dimension 6 TV operators

The current bound on the neutron EDM, as discussed more in detail in Chapter 5,
can be interpreted as a bound on , < 2.5-107'%. § is thus unnaturally small, and its
smallness leaves room for other sources of T" violation in the strong interaction. The

next-to-lowest-dimension TV operators involving quark and gluon fields that one can
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add to the QCD Lagrangian have effective dimension 6 [106, 107, 108, 109, 110, 111].
At this level, in the flavor diagonal sector, we encounter the quark electric dipole
moment, which couples quarks and photons; the quark chromoelectric dipole moment,
which couples quarks and gluons; the Weinberg operator, which couples three gluons
and can be identified as the gluon chromoelectric dipole moment, and two TV chiral
invariant four-quark operators. Extending our attention to leptons, we also consider
electron and muon EDMs and three two-lepton-two-quark operators.

These higher-dimension operators have their origin in an ultraviolet-complete the-
ory at a high-energy scale, such as, for example, supersymmetric extensions of the
Standard Model. We assume that 7" violation arises in this theory at a characteristic
scale, My. Well below the scale My we expect TV effects to be captured by the
lowest-dimension interactions among Standard Model fields that respect the theory’s
SU.(3) x SUL(2) x Uy(1) gauge symmetry.

The complete list of gauge-invariant operators with dimension up to 6 is given in
Refs. [106, 111] (the C'P violating operators are also listed in Ref. [107, 110]). Above
the electroweak scale, only one gauge invariant, dimension 5 operator can be written.
After electroweak symmetry breaking, it generates neutrino masses and mixing, and
we neglect it in the rest of our analysis.

TV effects are encoded in several dimension 6 operators, that, following Ref. [111],
we organize according to their field content: three-gluon (ggg), two quarks and a scalar
(qqp), two fermions, a scalar, and a vector boson (qqp v), four quarks (gqqq), and
two leptons and two quarks (llgg). Since our goal is to study the low energy manifes-
tations of T" violation in nuclear systems, we focus here on those operators that, after
electroweak symmetry breaking, can be expressed in terms of light degrees of freedom;
light quarks, leptons, photons and gluons. We neglect, for example, TV in the Higgs
sector, operators that represent the W boson electric dipole and magnetic quadrupole
moment, or flavor non-diagonal C'P violating four-quark operators containing both

heavy and light quark fields. These operators are listed in [106, 107, 111], to which we
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refer the interested reader. In the EFT spirit, they are integrated out in matching the
CP violating Lagrangian at the electroweak scale onto the C'P violating Lagrangian
at scales of order 1 GeV, and their contribution is hidden in the coupling constants
(matching coefficients) of the operators that appear in the latter.

The dimension 6 operators relevant to our discussion of T" violation are

Lo gqp = —2% (?CYL@M{LUR + gQLwMédR + 9365—%5“%‘5(;311 Zﬁ) + h.c..
(3.2.17)
Lo pes = ‘%W fabeerrabGa Gt Ger., (3.2.18)
L6 gaov = —%qLa’“’f“)\“% urGs, — %qmw/fdv% drGS,
—%qLa‘“’ (I'sB + Ty - W) % UpR
—%QLJ‘“’ (DB + Thm - W) Zdi
—%zm—w (0% B, + 57 - W) % en + e, (3.2.19)

£&qqqq = X (QZUR) EIK (Q§dR) + Xg (QZXIUR) EJK (‘ﬁ{)\ad}g) + h.c.
(3.2.20)
Lougg = g1 (I1er) (dral) + Sig2 (Iler) ek (T1 ur)
+3043 ({0 er) eyr (@) opwur) + hec. (3.2.21)
In Egs. (3.2.17)-(3.2.21), GY,, is the gluon field strength, A* the Gell-Man matrices
and f%¢ the structure constants. W}, and By, are the fields strengths of the SUL(2)
and U(1) gauge boson,
Wy, =0W, — 0,W, — ge"*"WIW}, B, =0,B,— 9,B,. (3.2.22)
We recall that Wi’ and B, can be expressed in terms of the physical photon and Z
boson fields
W3 = cos 0wZ, +sinb,A,,

B, = cosb,A, —sinb,Z,, (3.2.23)
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and, in terms of the electric charge e and of weak mixing angle 6,,, the SUL(2) and
U(1) gauge coupling g and ¢" are

e , e
g_sinﬁw’ g =

(3.2.24)

cos B,
The scalar field ¢ is a doublet under SU(2), and it has hypercharge Y = +1/2. The

electroweak symmetry is spontaneously broken by the vacuum expectation value of

the field ¢
{p) = - ( ! ) : (3.2.25)

with v = 247 GeV. The Higgs boson represents fluctuations around the vacuum Eq.
(3.2.25), in a unitary gauge

o = % ( . +(;L(I) ) . (3.2.26)

Egs. (3.2.17) and (3.2.19) thus also generate C'P violating couplings of the Higgs
to gluons, vector bosons and fermions, with coefficients fixed by gauge symmetry.
Since in the rest of our work we are interested in low-energy observables, we do not
further consider these couplings, which are carefully analyzed for example in [107].
We denote with the symbol ¢! = /77, where £/ is the antisymmetric tensor in two

dimension, and ' = 1.

The fields I;, and ¢, denote the left-handed doublets

lL:(Z), qL:(;i), (3.2.27)

while eg, ug and dg are right-handed fermion fields, singlet under SU(2). For sim-
plicity, we do not explicitly show the family indices in Eqgs. (3.2.17)-(3.2.21). In this
Section, we use the symbol u to indicate the fields of the u, ¢ and ¢t quarks, while d
stands in general for d, s and b. Similarly e and v denotes electron, muon and tau
fields, and their respective neutrinos. In a second step, we will integrate out the tau
and the heavy quarks, and concentrate only on the light lepton and quark flavors.
The coupling constants in Eqgs. (3.2.17)-(3.2.21) are all proportional to two inverse

powers of the new physics scale My. For example the coefficient of the three-gluon
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operator is

dy = O <4WM%> : (3.2.28)

with w a dimensionless constant. For reasons that will be clear in a moment, we
choose to rescale the scalar field by the Higgs vacuum expectation value. With this

choice, leL,d in Eq. (3.2.17) have dimension of mass, while ¢ is dimensionless:

, v? , 1,
=0 (ﬁ%) , wa =0 (\/_A M2> , (3.2.29)

In full generality M, ; should be interpreted as 3 x 3 complex-valued matrices in
flavor space. We assume them to be proportional to the Yukawa couplings of the
Higgs to quarks and leptons, so that in the basis of the mass eigenstates M, ; are
diagonal.

Similarly, in the most general case, the couplings in Eq. (3.2.19) I'g y, gy,
T'% w, I and T'¢ are 3 x 3 complex-valued matrices. Also in this case, since the
applications we will investigate are most sensitive to flavor-diagonal C'P violation,
we assume these matrices to be proportional to the Yukawa couplings in the Stan-
dard Model Lagrangian, so in the basis of the mass eigenstates, the couplings in Eq.
(3.2.19) are diagonal. Non-diagonal elements of the matrices I' are also interesting,
and they give rise to flavor-changing neutral current that contribute, for example, to
processes like Ko — putpu~, By — putpu~, or b — sy and b — dv. Since these processes
receive small contributions from the Standard Model, they are particularly sensitive
to new physics, and the subject of much theoretical and experimental interest.

With our assumption,

e " VAE " ) VA . ’U)\d
W) = © (g( e M2> ’ FW(B) =0 (g( Oy M2> ) 1—‘CVlV(B) =0 (9()561@) )

T T T
~ _ u B d
= o) oo (nid), 82.)

where \¢, \* and A\ are the Yukawa couplings that generate lepton and quark masses,

Me = v)\e/\/ﬁ, Myd = v)\“’d/\/ﬁ, and 5u7d and 9,4 are dimensionless constants.
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The couplings ¥ in Egs. (3.2.20) and (3.2.21) are four-index complex-valued
tensors in flavor space, labeled by the family-index of the quark and lepton fields. In
practice, we are mainly interested in operators containing the lightest quarks u and
d, and in what follow we ignore the possibility of complicated flavor structures. The

four-quark and two-quark-two-lepton couplings scale as

47)? |
Sig =0 (%) L N =0 (8?\?5) , (3.2.31)

7 7
where 0, g and oy, ; are dimensionless constants.
After electroweak symmetry breaking, Eq. (3.2.17) becomes

/

6472

£6,qqgo - — (ﬂLM;UR -+ CZLMC/ldR + guyaﬁqu gﬁ) + h.c. —+ ... y (3232)

where the dots denote operators with quark-Higgs and gluon-Higgs interactions. Com-
paring Eq. (3.2.32) and (3.2.1), it is apparent that M ; and ¢ are O (vz/M:,%> cor-
rections to the light quark masses and to the § term, where the size of v is determined
by the electroweak scale v ~ My;.

Egs. (3.2.18) and (3.2.19) are more interesting. The operator in Eq. (3.2.18) is
the Weinberg three-gluon operators, which represents the chromo-EDM of the gluon.
Other purely gluonic TV operators, like the gluon chromo-MQM, have higher dimen-
sion.

After electroweak symmetry breaking, and integrating out the W, Z and Higgs
bosons, Eq. (3.2.19) can be expressed in terms of quark and lepton magnetic and
chromo-magnetic dipole moments (MDM and CMDM) and electric and chromo-
electric dipole moments. In the assumptions that the matrices I'®%* are diagonal

in the mass eigenstate basis, Eq. (3.2.19) reduces to

Ce — , o ,
Lo qqov = —Eea“ (1+ztan¢675)eFW—§0qa“ (1+ztan¢0fy5)qFW
C3 50

) qot” (1 + 7 tan ¢375) 73q Fl — B qot” (1 + 7 tan &075) Nq G,

—6—23 qot” (1 + ¢ tan (5375) N 13q G, (3.2.33)

pv
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where the quark field ¢ is defined as in Eq. (3.2.2), and family indices are, as usual,
suppressed.
The coefficients in Eq. (3.2.33) are combinations of those introduced in Eq.

(3.2.19), for example, in the case of the qCMDM and qCEDM

&y = Re [f“ifd]ff, (3.2.34)
) I [ = 1]
tan gl , = - [f ifd]ff, (3.2.35)
e u
If

where f is the family index. Similar relations hold for the lepton and quark EDM
operators, with the slight complication that Eq. (3.2.23) has to be used to express
the operators in terms of the photon and Z boson fields.

Since our focus are the manifestations of the effects of the Lagrangian (3.2.33) in
nuclear physics, for which the lightest quarks are the most relevant, we integrate out
the heavy quarks ¢, b and ¢ (and the s quark as well), and we match Eq. (3.2.33) onto
an effective Lagrangian at a scale just above the typical QCD scale Moep ~ 1 GeV,
which only contains MDM and EDM of electron, muon, and u and d quarks. The form
of the Lagrangian is the same as Eq. (3.2.33), where now only light degrees of freedom
appear. The coefficients of the MDM and EDM operators receive contributions from
the coefficients I' in Eq. (3.2.19), and, via loops, also from all the Standard Model
TV operators that are no longer explicit in the theory (EDM of heavy quarks, EDM
and MQM of the W boson, C'P violation in the Higgs sector, ...).

The breaking of electroweak symmetry does not affect the form of the four-fermion

operators Egs. (3.2.20) and (3.2.21). For convenience, we rewrite Eq. (3.2.20) in
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terms of quark doublets ¢

Fomm = %Rezl (2999 —arq-ama +av’aqy’ ¢ — @¥'7q - ¢v'7q)
*ilmzl (a9@7°q — grq - q7i7°q)

+%R628 (A "qq\"q — qTX°q - GTX"q + 7’ Xq 7y ° Mg

—’TAq - Y TA)

1
+11m28 (QA“q Jiv°\q — qr\q - QTi75>\“q) , (3.2.36)

where as usual we are dropping flavor indices. The TC and TV operators in Eq.
(3.2.36) are invariant under the chiral group SUL(2) ® SUg(2), as it can be seen
either by directly applying the transformation (3.2.7) to Eq. (3.2.36), or by realizing
that the operators in (3.2.36) are constructed as scalar product of the chiral vectors
S and P defined in Eq. (3.2.13) and (3.2.14).

The two-lepton-two-quark operators can be rewritten in terms of the quark field
g and of the electron field e = eg + er. Neglecting the part of the operator which

contains neutrino-quark interactions, we find

Lougq = ReXj (eeqq+ ey’eqy’q) +1ImY,, (eiv’eqq + ee qin’q)
+ReY, , (ee qrsq + &7’ e qrsy°q) + ImY , (€ir’e qrsq + ee Giv’73q)
+ReX,, 30" e G, (14 73)q + ImE, 5 (e0™e Giow (14 73)q)
(3.2.37)

where ¥, , are linear combinations of ¥, . For our applications, once again, we
integrate out the heavy fields and express Egs. (3.2.36) and (3.2.37) in terms of
electron, muon, u and d fields. The scaling of the coefficients of Eqs. (3.2.36) and
(3.2.37) is given in Eq. (3.2.31).

The goal of the current generation of lepton, nuclear and atomic EDM experiments
is to constrain the coefficients of the TV operators in Egs. (3.2.18), (3.2.33), (3.2.36),

and (3.2.37), and, by doing so, to attain information on the new physics mechanism(s)
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responsible for 7" violation. From Eqs. (3.2.30) the scaling of the electron and muon

EDM is

d, = c.tan¢, = O (656%> , d,=cytan¢, = O (eéu%> ) (3.2.38)
T T

The factors o.,, depend on the particular extension of the Standard Model un-
der consideration, and on the details of T" violation. The minimal assumption is
de = O(1). In the Minimal SuperSymmetric extension of the Standard Model
(MSSM), 4., receives further suppression from the electroweak coupling constant
0 ~ Qem/(4msind?) (for the detailed results, we refer to the reviews [81, 112] and
references therein). In the Standard Model, the CKM phase generates a contribu-
tion to the d. , of the order d. ~ 10~ ¢ fm, which is way smaller than the current
experimental limits, and entirely negligible.

Experimentally, bounds on d. can be extracted by experiments that investigate
EDMs of paramagnetic atoms. The most accurate bound is extracted from the Thal-

linm EDM experiment [113], which gives
d. = (0.069 + 0.074) - 10~ ¢ fm. (3.2.39)

For the ratio of the parameter J. and the scale of new physics My, Eq. (3.2.39)

implies

5. _
e < (100 TeV) 2. (3.2.40)

A less stringent bound on d, was found by the g — 2 experiment at Brookhaven

National Laboratory (BNL) [114]

d,=—(0.1£0.9) - 107 %¢fm, (3.2.41)
which translates in
5 _
ﬁ*;% < (100 GeV) 2. (3.2.42)

The same g — 2 experiment sets the current limit on contributions of Beyond the

Standard Model physics to the muon MDM ¢, [115].

m CBSM m2
% = Augpz = (25563 +49) x 1071, (3.2.43)
T
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where we have defined 6, = A, tan¢, . Eq. (3.2.43) set the ratio of A, and the new
physics scale to be
]\i—% ~ (2 TeV) 2. (3.2.44)
The success of the g — 2 experiment, which, though optimized to measure the muon
anomalous magnetic moment, has improved the existing bound on d, by a factor of
5, has spurred plans for a dedicated muon EDM experiment [116], which could lower
the bound on the muon EDM by four or five orders of magnitude and thus allow to
probe 5M/M% with the same accuracy as Eq. (3.2.44).

The size of the qEDM, dy 3, and of the qCEDM, czo,g, can be estimated from Eqs.

(3.2.30), and (3.2.34) and (3.2.35).

m - . - m
doz = cogtan gz = O (650,3W> , doz =cogtangyz = O (47?50,3W> )
T 7
(3.2.45)

with the average light quark mass m defined in Eq. (3.2.5). As we have already
remarked, the EDM and CEDM of light quarks receive contributions from the inte-
gration of the heavy flavors, in which case we expect the heavy quark mass, rather
than m, to appear in Eq. (3.2.45). In most models, however, such enhancements is
compensated by the smallness of the flavor-changing parameters, so that we expect
Eq. (3.2.45) to still capture the size of the quark EDM and CEDM.

The sizes of dg s, 5073 and w depend on the exact mechanisms of electroweak and
T breaking and on the running to the low energies where non-perturbative QCD
effects take over. The minimal assumption is that they are O(1), O(gs/4m) and
O((gs/47)3), respectively, with g, the strong-coupling constant. However they can
be much smaller (when parameters encoding T violation beyond the Standard Model
are small) or much larger. In the Standard Model itself, where My = My, d 3, 5073
and w are suppressed not only by the Jarlskog parameter [79] Jop ~ 3-1075, but also
by additional powers of the TV scale, in this case equal to My, and by small gauge
coupling constants. For example, in the Standard Model, the gEDM and gCEDM
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both receive their first contribution at three loops [81, 117, 118§]

2 ol as m2  omi . M
60 = == m ¢ p? 2 In 3.2.46
a 277" (47)2 sin* ,, 47 M2, N m? N m2’ ( )
1 /g, )3 ol mim*m?  mi M,
= — |=—=) J o —In— In—- 3.2.47
v 12 (47r Tlam)2sinte, Mg, nmg " m2’ ( )

and 0 and w are much smaller of the naive expectation.

In supersymmetric models with various simplifying, universality assumptions of a
soft-breaking sector with a common scale Mgy sy, one has My = Mgygy and the size
of the dimensionless parameters is given by the minimal assumption times a factor
which is [81, 112], roughly (neglecting electroweak parameters), Acp = (gs/4m)? sin ¢,
with ¢ a phase encoding 7' violation. Allowing for non-diagonal terms in the soft-
breaking sfermion mass matrices, enhancements of the type my,/mg ~ 10% or even
my¢/m.,, ~ 10° are possible, although they are usually associated with other, smaller
phases [81].

The coefficients > g and ¥;,; have not received much attention in the literature. In
many models of Beyond the Standard Model physics, the gauge-invariant, dimension
6 operators in Eqs. (3.2.36) and (3.2.37) have vanishing matching coefficient, while
other, chiral violating four-fermion TV operators, are effectively dimension 8, and each
flip of chirality costs a power of the light quark or lepton mass [119, 120, 121]. For
example, in the MSSM, with certain simplifying assumptions, an operator similar to
ImY;,; receives a coefficient of order aemmem,/(4m) Mg, M2, suppressed by a further
mem, /M3, and a loop factor (47)% with respect to Eq. (3.2.31) [119] .

The examples of this section emphasize that the dimensionless coefficients dg 3,
5073, w, 018 and 07,4, that we have introduced, and their relative size, strongly depend
on the particular model of Beyond the Standard Model physics, making it difficult
to compare the relative contribution of different TV sources to the same observable
in a way that is independent of the details of the physics at the high energy scale
Myp. Our analysis of nuclear TV observables in Chapters 5 and 6 will rather try to

identify, for each TV source, a characteristic pattern of relations between different
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observables, specific of each source and rooted in its transformation properties under
chiral symmetry. The observation of such pattern in the current generation of nuclear
EDM experiments would then effectively pinpoint the dominant TV mechanism at
high energy. On the other hand, the formalism we develop can be easily adjusted
to specific extensions of the Standard Model. Once the values of g s, 5073, w, o18
and oy4; in a given model, and their running from My to Mqcp, are known, then the
relative importance of the interactions constructed in Chapter 4 can be reassessed to
accommodate, for instance, a large hierarchy between these parameters.

Below the hadronic scale Mgcp, the dimension 6 sources of 1" violation gener-
ate further effective interactions, which break chiral symmetry in their own ways.

Introducing the SO(4) singlets

1

Ty = e G, GUG,, (3.2.48)
1,

1) = 5 (@an'e—are-qrin’q). (3.2.49)
L a,. = a — \a _ . a

Iy = 1 (G\"qGin°X°q — GT\"q - gTin°Nq) (3.2.50)

and the SO(4) vectors

a1 —igo* o Tq a1 ( qotTq
W =1 < oy ) Fo, V=1 < 2 ) Fo. (3.2.51)
and
oo —igot T\ " 51 qotTAq .
W=l < 7o 2%g )GW, V=1 < iaaniyig ) G (3252)
Eq. (3.2.33) and (3.2.36) can be written as
£6 = —do‘/zl + 03‘/}, + dig + CQW4 — CZQ‘Z; -+ 63‘73 + CZgWg -+ 60W4
+dw Iy +Im3; I + Im¥g IS (3.2.53)

Similarly, introducing the vector P and S as in Eq. (3.2.13) and (3.2.14), and the

SO(4) vector, Lorentz tensors

s AMVAD = v
w _ qio™°Tq w _ [ q0"Tq
S ( o ) , P ( gio"A5q ) , (3.2.54)
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the lepton-quark Lagrangian can be expressed by

ﬁﬁquq = éi’}/5€ (Im22q154 + Rez;q253 + ImZ;qQPg — ReZ;qlP4)
+ee (ImY, Py + ReX o Py — ImY) , S5+ ReX;, 154)

+éO"uV6 [2R621q3 (54“,, + Pgw,) -+ 2Im21q3 (P‘UW — Sguy)] (3255)

The TV effective Lagrangian corresponding to Eqs. (3.2.53) and (3.2.55) can be
constructed by writing down all terms that transform in the same way under Lorentz,
P, T, and chiral symmetry as the terms in Eq. (3.2.53) and (3.2.55). This will be
the focus of Chapter 4.

3.3 Chiral Lagrangian

The low-energy EFT that describes interactions among pions and nucleons (and delta
isobars, since ma — my ~ 2m,) at low momentum Q@ ~ m, < Mgcp is xPT.
At such momenta we can resolve pion propagation, but not details of its structure.
Pions must explicitly be accounted for in the theory, while other mesons can be
integrated out. The special role of the pion is a consequence of the approximate
invariance of the QCD Lagrangian under chiral symmetry. Because it is not manifest
in the spectrum, which only exhibits approximate isospin symmetry, chiral symmetry
must be spontaneously broken down to its diagonal subgroup SUL;r(2) ~ SO(3).
From Goldstone’s theorem, one expects to find in the spectrum massless Goldstone
bosons that live on the “chiral circle” S* ~ SO(4)/SO(3). There are, of course,
infinite ways to parametrize the chiral circle. Here we use stereographic coordinates,
whose dimensionless fields we denote by an isovector field {. We can identify these
degrees of freedom with canonically normalized pion fields w = F.{, where F, ~ 186
MeV, called the pion decay constant, is the diameter of the chiral circle. Such fields
transform in a complicated way under chiral symmetry. However, a pion covariant
derivative can be defined by

D,m = D"'0,m, (3.3.1)
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with
2

™
D=1+, (3.3.2)

™
which transforms under chiral transformations as under an isospin transformation,
but with a field-dependent parameter (see App. C). One can also construct the
covariant derivative of this covariant derivative,

2
D,D,m = 0,D,m + I (# Dy7-Dym —D,mm-D,m), (3.3.3)

iy
and so on.

Nucleons are described by an isospin-1/2 field N, and we can define a nucleon

covariant derivative
)
DMN = <8u + F_gT . (TF X Duﬂ')) N, (334)

where 7;, 7 = 1,2, 3, are the Pauli matrices in isospin space. We also define D' through

ND' = DN, and use the shorthand notation
DY =D'+ DWW  DLDY =D'DY+ DD 4+ DD + DVDH (3.3.5)
and
n DY = D'+ Dy, 7, DYDY = ;D'DY + DDl r, £ D, DY £ DV, D*. (3.3.6)

At Q ~ m, < my, nucleons are essentially non-relativistic; as such, the only
coordinate with which their fields vary rapidly is v - x, where v is the velocity. For
simplicity, we employ a heavy-nucleon field from which this fast variation has been
removed [34]. This simplifies the gamma matrix algebra, since only the spin S*
remains. (This procedure can be easily generalized to include a heavy-delta field.)
Below we use the subscript L to denote the component of a four-vector perpendicular

to the velocity, for example

D,. =D, —v,v-D. (3.3.7)
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The first step in describing QCD at low energies is to construct the most general
Lagrangian that transforms under the symmetries of QCD in the same way as QCD
itself. Along with this, one needs a power-counting scheme so that interactions can
be ordered according to the expected size of their contributions. The Lagrangian
contains an infinite number of terms that we group using an integer “chiral index” A
and the (even) number of fermion fields f:

L=>">"rp. (3.3.8)

A=0 f/2
The technology for constructing the Lagrangian is well known, see, for example, Ref.
[32]. When we neglect L., Eq. (3.2.11), L,, Eq. (3.2.12), L, Eq. (3.2.53), and
L 1149, Eq. (3.2.55), the EFT Lagrangian includes all interactions made out of D,
N, and their covariant derivatives that are chiral invariant. In this case interactions

have index

A=d+f/2—2>0, (3.3.9)

in terms of the number d of derivatives (and powers of ma — my). For example, in

leading order the chiral-invariant Lagrangians are

LY, _y=-D,m- D'z (3.3.10)

. 2
% =N (w DT D“ﬂ') N, (3.3.11)

s

where g4 ~ 1.267 is the pion-nucleon axial-vector coupling.

Explicit chiral symmetry breaking can be systematically included in the yPT
Lagrangian. L,, Eq. (3.2.12), and L., Eq. (3.2.11), break chiral symmetry: L,
as third and fourth components of the vectors (3.2.13) and (3.2.14), and L. as the
third and fourth components of the antisymmetric tensor (3.2.16). In the EFT they
generate interactions, now involving 7r directly and A,,, that transform as these vectors
and tensors, and their tensor products. These terms are proportional to powers of

My,q and e.
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Operators proportional to the light-quark masses are power counted with the same
chiral index A as in eq. (3.3.9), where the definition of d is extended to count powers
of the quark mass. For power counting purposes, we count the average quark mass
and the quark mass difference in the same way, that is, we consider ¢ = O(1).

Explicit chiral symmetry breaking in the form of isospin violation is also present
in the electromagnetic terms from Eq. (3.2.11). They generate two classes of in-
teractions. In one class, hadrons interact with soft photons (those with momenta
below Mgep) in a gauge-invariant way. We can minimally couple charged pions and

nucleons to the photon by modifying their covariant derivatives,

1
(Duﬂ')a — (D/% emﬂ')a = B (8M6ab — eAuaEgab) Ty

1
D,N — DyemN = |0, + (T X Dypem™) — z'eAu§ (I+7m3)| N

7
F_ET
(3.3.12)
(For simplicity, in the text that follows we drop the subscript “em” in covariant
derivatives.) In addition, we can couple the photon through the field strength F),,.
The other class of interactions consists of purely hadronic interactions from the ex-
change of hard photons (momenta above Mgcp), which can be integrated out, giving
rise to operators with no explicit photon fields. The first class of interactions is very
important because of EDMs; the second class competes with interactions from Eq.
(3.2.12). We thus construct the low-energy interactions from Eq. (3.2.11) as well.
The index A defined in Eq. (3.3.9) can be generalized to label electromagnetic
operators. If the operator contains soft photons, the definition of d is enlarged to count
also the number of photon fields, which, having dimension one, require compensating
powers of Mqcp in their coefficients. Operators generated by the integration of hard
photons — sometimes called indirect electromagnetic operators — are proportional
to powers of 2. Typically, an extra inverse power of 472 appears in a loop, leading
to a factor of ey, /7. Since the numerical value of .y, /7 is very close to € m3 /M%C D

(using Mgocp ~ m,, the mass of the rho meson), we can still use A to label this class
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of operators, provided that each power of ay, /7 increases the chiral index by 3 [122].

The interactions stemming from the dimension 6 TV sources in Eq. (3.2.53) and
(3.2.55) can be organized according to a chiral index analogous to Eq. (3.3.9), with
the only difference that the coefficients of low-energy realizations of Eq. (3.2.53) and
(3.2.55) must contain two powers of the high energy scale My, which replace two

powers of Mocp. The powers of Mgep in a coefficient are therefore counted by
Ag=d+ f/2—4> =2, (3.3.13)

where d counts derivative and powers of the quark mass as described above.
For processes with at most one nucleon, A = 0,1, all momenta and energies
are typically ~ (). The contribution of a diagram with L loops and C' separately

connected pieces to the amplitude T" can then be estimated by

T o Q"F(Q/p), (3.3.14)

where F is a calculable function, i is a renormalization scale, and the counting index
v is

v=4-A+2L-C)+) A, (3.3.15)

Here, ¢ counts the number of insertions of vertices from E;A). From Eq. (3.3.15)
it is apparent that diagrams with increasingly higher number of loops and non-
vanishing-index interactions are increasingly suppressed, leading to a perturbative
expansion. Assigning to loops a characteristic factor Q?/(47)* and using naive di-
mensional analysis (NDA) to estimate the EFT parameters [123], the suppression
scale is Mocp ~ 2mF;. Note that in this sector of the theory nucleon recoil is a
subleading effect: the nucleon is nearly static.

The xPT power counting formula (3.3.15) cannot directly be applied to processes
with A > 2 [35, 36, 37, 100, 38]. Indeed, in diagrams in which the intermediate state
consists purely of propagating nucleons —which are called “reducible”— the contour
of integration for integrals over the Oth components of loop momenta cannot be de-

formed in way to avoid the poles of the nucleon propagators, thus picking up energies
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~ Q?/my from nucleon recoil, no longer a subleading effect, rather than ~ Q. There
is also an extra factor of 47w. These diagrams are therefore enhanced by factors of
4my/Q with respect to the YPT power counting that assigns Q?/(47)? to a loop,
and the need to resum them leads to the appearance of shallow bound states in sys-
tems with two or more nucleons, nuclei. Diagrams whose intermediate states contain
interacting nucleons and pions — “irreducible”— do not suffer from this infrared en-
hancement, and in them nucleon recoil remains a small effect. Reducible diagrams are
thus obtained by patching together irreducible diagrams with intermediate states con-
sisting of A free-nucleon propagators. Calling V' the sum of all irreducible diagrams,

an amplitude for a process with A > 2 can be written schematically as
T=V4+VGV+VGVG)WV +...=V +VG,T, (3.3.16)

where Gy is the free-nucleon, non-relativistic Green’s function. Equation (3.3.14) is
just the Lippmann-Schwinger equation, which is formally equivalent to a Schrédinger
equation with a potential V.

Naive dimensional analysis suggests [35, 36] that irreducible diagrams follow the
XPT power counting rule (3.3.15). While this is true for pion-exchange diagrams, the
situation is more complicated for contact interactions. In fact, it can be shown that
the iteration of the singular one-pion exchange requires for renormalization at the
same order a finite number of f = 4 interactions, some of which are less suppressed
than expected on the basis of naive dimensional analysis [124, 125, 126] (see also Refs.
[127, 128] for further discussion). On the other hand, corrections, which should be
perturbative, are expected to still conform to dimensional analysis [129, 130]. Since
the TV potential, the quantity we focus on in the f > 4 sector, is very small and it
can be treated as a perturbation, it should be amenable to an expansion in powers
of Q/Mgcp, with different contributions organized according to their chiral index v,

or, equivalently, according to the number of inverse powers of Mgcp.
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3.3.1 The TC yPT Lagrangian

We give here the TC chiral invariant terms of the yPT Lagrangian. The leading TC
chiral Lagrangian has chiral index A = 0 and is given by

(O lpr i T N (1D - 2D s ) N 3.3.17
x.f<2 7 9 T 7"—@7&' + w - - LT T ’ (3.3.17)

where g4 is the pion-nucleon axial coupling, g4 ~ 1.27. Electromagnetic interactions
at LO arise purely from the covariant derivatives D, and D,,, defined in Eq. (3.3.12).
For ease of reference, we have included in Eq. (3.3.17) the pion mass term, which,
though chiral symmetry breaking, has nonetheless chiral index A = 0.

Neglecting chiral-symmetry breaking from the quark masses, which will be exten-

sively treated in Chapter 4, at order A = 1 the relevant Lagrangian consists of

o L = ga . _
EX,fZQ = _%N,DJ‘N_'_Fﬂ_mN (ZUDT")NTSD_N
e _
"‘mEH,,poN {(1 + Ho)
2
+(14 K1) [7'3 — Fg—D (7727'3 — 3T - ‘r)} } vMSYNF?? (3.3.18)

where e#P? is the completely antisymmetric tensor in four dimension, with %% =

—1. Here the first two terms are the nucleon kinetic energy and a relativistic correction
to the pion-nucleon coupling. The coefficients of both operators are fixed by Galilean
invariance. The third and fourth terms represent the isoscalar and isovector magnetic
dipole moment of the nucleon, and the anomalous nucleon-photon couplings k¢ and

k1 have the values kg = —0.12 and k; = 3.7. At the next chiral order, A = 2,

ga
4F,m%

— D, Nr "D} N

Lgi)f:z = + Dym-N7($"D? _—D!_S-D,_ )N

&

. = o 1 1
+STH?VZ€“VQBNS Di_ |i<1 + Ko — 5) + T3 (1 + K1 — 5):| NFag.
(3.3.19)
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The first term represents further relativistic corrections to the g4 term in Eq. (3.3.17).
The constraints imposed by Lorentz invariance on Eqgs. (3.3.18) and (3.3.19) are
obtained following the method outlined in App. I, they do agree with the results
of Ref. [131, 132], once a field redefinition is used to eliminate time derivatives
acting on the nucleon field from the subleading A = 1 and A = 2 Lagrangians. The
operator with coefficient ¢, = O (1/M3p) in Eq. (3.3.19) is a contribution to the
square radius of the pion-nucleon form factor. The last two terms in Eq. (3.3.19) are
the isoscalar and isovector spin-orbit couplings of the nucleon to the photon. Their
coefficients is fixed by Lorentz invariance.

In the f = 4 sector, four-nucleon operators with no derivatives or insertion of the

pion mass have the lowest chiral index A = 0 [35, 36]

CTT

C i i
O  =-21 S NTN - NTN, (3.3.20)

e =~ NNNN —

where, by naive dimensional analysis [123], the coefficients scale as C'; ,, = O(1/F?).
The combinations Cy, = C1; — 3C,, and Cy; = C1 + C; contribute, respectively, to
the to the isospin-singlet (*S;) and the isospin-triplet (Sp) scattering lengths. As we
mentioned at the end of the previous Section, the iteration of the singular one-pion
exchange potential requires for renormalization the promotion of some contact P-
wave operators in the leading order f = 4 Lagrangian [124, 125, 126]. We will discuss
four-nucleon operators and their power counting in some more detail in Chapters 6
and 7.

Explicit chiral-symmetry breaking and isospin-breaking operators in the chiral
Lagrangian [122] stem from the average quark mass m, the quark mass difference
mg — m, = 2me, and from the quark coupling to photons through the fine-structure
constant ai,. We devote most of Chapter 4 to the inclusion of operators proportional
to the quark mass in the YPT Lagrangian. Here, we list the most important isospin-
breaking operators from electromagnetism. We count ¢ ~ 1/3 as O(1) and aem /7
as O(em /M2 p), since numerically ae /7™ ~ em3 /(2w F;)?. Isospin-violating terms

first contribute to the A = 1 Lagrangian in the pion sector, and to the A = 2
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Lagrangian in the pion nucleon sector,

1) _ 7r 2 2

L)oo = ~opz (T =), (3.3.21)
(2) _ N 2 5

Ly o om = TN T3 + ) (mym -7 — mw?3) | N. (3.3.22)

Here dm2 = O (aemMéc p/7) is the leading electromagnetic contribution to the pion
mass splitting, while the quark-mass-difference contribution §m?, which is defined in
Sec. 4.1.1, is smaller by a power of em,/Mocp. The pion mass splitting, mii —
m2, = om?2 +dm? = (35.5 MeV)?, is dominated by the electromagnetic contribution.
The nucleon mass splitting, m,, — m, = dmy + 5mN = 1.29 MeV [1] also receives
contributions from electromagnetism and from the quark masses. In this case, the
quark-mass contribution dmy is expected to be the largest. By dimensional analysis
dmy = O(em2/Mgep), and lattice simulations estimate it to be dmy = 2.26 +
0.57 £ 0.42 4+ 0.10 MeV [133], which is in agreement with an extraction from charge-
symmetry breaking in the pn — dn° reaction [134, 135, 136]. The electromagnetic
contribution is dmy = O (vemMgep /), that is, O (em2 /M) and about the 20%
of dmy. Using the Cottingham sum rule, dmy = —(0.76 & 0.30) MeV [137], which is
consistent with dimensional analysis.

We will extensively treat isospin violation from the quark mass difference in Chap-
ter 4. For many applications it is convenient to eliminate the nucleon mass difference
m, —my, = 0my + 5mN from the nucleon propagator and from asymptotic states.
This result can be accomplished through a field redefinition, defined in Ref. [138],

which we summarize in App. G.

3.4 Vacuum Alignment

Explicit breaking of chiral symmetry can be systematically implemented as a small
perturbation on the chiral invariant Lagrangian of Sec. 3.3 only if the true vacuum
of the theory, which is selected by the explicit breaking terms, is aligned with the

vacuum that was implicitly chosen in the construction of the yPT Lagrangian [32]
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(see also the discussion and the simple example, in the case of linear realization of
the symmetry group, in App. E). The S3 term in Eq. (3.2.12) is actually unphysical
because it gives rise to terms in the low-energy effective Lagrangian that make the
vacuum unstable under small fluctuations. At leading order a term would arise that
is linear in the pion fields (i.e. m3). The vacuum would then be unstable because it
could always produce mesons to lower its energy. The problem of such leading-order
tadpoles, which signal vacuum misalignment, is discussed below in Subsec. 3.4.1.

There are two approaches to removing these spurious terms. One approach [139] is
to impose, at quark level, the condition that TV interactions should not cause vacuum
instability. This has been done [140] to first-order in symmetry-breaking interactions,
and we review this argument in Subsec. 3.4.2. Then we derive in Chapter 4 the
corresponding low-energy EFT, which will not contain terms which cause vacuum
instability.

The other approach is to derive the low-energy EFT without putting any condi-
tions on how the resulting interactions affect the vacuum, then employ field redefi-
nitions on the fields at the hadronic level to eliminate terms that affect the stability
of the vacuum. It is the second approach that we follow in Subsec. 3.4.3. For most
of this section we neglect L., Eq. (3.2.11), but we consider the field redefinitions in
the presence of electromagnetism in Subsec. 3.4.4. Such an alternative procedure
will help to understand what kind of interactions can be removed from the chiral
Lagrangian. As we will see in Sec. 4.1.1, further pion tadpoles appear in subleading
orders but pose no problems. They can also be eliminated with a field redefinition of
the form discussed in this section.

The dimension 6 TV Lagrangian in Eq. (3.2.53) also contains terms which generate
pion tadpoles. Because of their small coupling constant, however, they do not cause

vacuum instability, and they can be treated in perturbation theory.
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3.4.1 The need for vacuum alignment

To illustrate the importance of vacuum alignment for the construction of the EFT, let
us suppose we do not align the vacuum at the quark level. One can construct the low-
energy interactions induced by Eq. (3.2.12) following the method sketched in App.
D. Among the various types of terms are the ones that are linear in the symmetry-
breaking parameters. These are the infinitely many operators that transform as third

and fourth components of S and P type vectors:
'Ca = Z {C4nS4n[7T> N] + CSnS3n[7T> N]}
+>  {DsnPsn[m, N| + Dy Pan[m, NI} + ..., (3.4.1)

where n runs over all S[mw, N] and P[m, N] that can be obtained using Eq. (D.5),
and “...” stand for higher-rank tensors. The coefficient C,, or D,, of each term
depends on details of the QCD dynamics, and cannot at present be determined.
However, chiral symmetry fixes the ratio of coefficients of components of the same

object, which is given by Eq. (3.2.12). Thus

Cs, tana — e tan g 0
_ — = tan |« — arctan | € tan 5 ,

Cun 1+ etanatan

. B} (3.4.2)
Dy, ctano — tan § [ <1 9)}
= — = = —tan | —arctan | —tan = | | .
Ds,, £+ tanatan e 2
The simplest symmetry breaking operator comes from S[0, N] = (0 )7, in which
case a piece in Eq. (3.4.1) is
Mm2F2  @m: ., gilF
—mr_ 2 m 7 4.
Lo = =7 ~9p™ T Top ™ (343)
where the bare pion mass is
4 6 9
m2 = Figﬁwosacos§ [1 + ctan o tan 5} , (3.4.4)

and the coupling of the neutral pion to the vacuum is

g = tan {a — arctan (5 tan g)} . (3.4.5)
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The first term in Eq. (3.4.3) is a constant that is irrelevant for our purposes. The
second term is a mass term, which together with the pion kinetic term in Eq. (3.3.10)
generates a pion propagator of conventional form,

1#?:—1—1’6’ (3.4.6)
when the pion momentum is p. Due to the non-linear realization of chiral symmetry,
both this term and the pion kinetic term in Eq. (3.3.10) generate also pion self-
interactions. The third term in Eq. (3.4.3) is T violating and allows neutral pions
to disappear into the vacuum. It generates both tadpoles and interactions among
an odd number of pions. Together, these two effects change pion propagation, since
the full pion propagator includes now an arbitrary number of m3s that disappear into
vacuum. Examples are illustrated in Fig. 3.1, where we draw all the diagrams that
contribute to the pion propagator up to order g*.

The physical pion mass m2 = m2(m2,g) is given by the pole of the two-point
Green’s function. The difficulty is that the contributions of all the diagrams in Fig.
3.1 to the two-point Green’s function are comparable to the one of the propagator.
Indeed, the first two diagrams in Fig. 3.1 give a contribution of order g?m?2 /(p?—m?2)?,
while the other diagrams in Fig. 3.1 scale as g*m?2/(p? — m2)? or g*ml/(p* — m?2)3,
where we take p ~ m,. These translate into contributions of relative order ¢ and ¢,
respectively, to the pion mass. Since g depends on « and is a priori not small, these
diagrams have the same power counting as the propagator (3.4.6): to calculate the
two-point Green’s function at tree level we need to sum all the diagrams of the type in
Fig. 3.1 with an arbitrary number of tadpoles. That is, the pion two-point function
in the presence of explicit chiral symmetry breaking in the form (3.4.1) cannot be
calculated in perturbation theory.

Notice that the vectors Wg and W3 (and ‘74, when combined with the antysim-
metric tensor T34 generated by an hard photon) in Eq. (3.2.53) also generate pion

tadpoles. However, as we will see in Sec. 4.1.1, in this case the coupling constant g
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FIGURE 3.1. Contributions of order g2 (first line) and g* (next three lines) to the
pion two-point Green’s function. A dashed line stands for a pion propagator, Eq.
(3.4.6). A cross denotes a vertex coming from the third term in Eq. (3.4.3). Other
vertices arise from Eq. (3.3.10) and the second term in Eq. (3.4.3).
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is small, being suppressed by two powers of Mqcp/My

B Qem (Moen\? = (Macep\®

Eq. (3.4.7) allows to treat pion tadpoles stemming from the dimension 6 sources in

perturbation theory, and no further alignment is needed.

The example of the pion mass can be extended to other observables, for example
pion-pion or pion-nucleon scattering cross sections: at any order in Q/Mgcp, an
infinite number of diagrams in which zero-momentum neutral pions disappear into the
vacuum contribute to the physical process. When explicit and spontaneous symmetry
breaking are badly misaligned, explicit symmetry breaking is not just a perturbation.
In App. E we show this in a simple example.

The resummation of pion tadpoles can be performed explicitly in diagrams. We
show in App. F how to do so in the case of the pion two-point Green’s function at
tree level. Although calculations can be carried out with arbitrary «, it is unpractical
to do so for all quantities and at every order. We are thus led to impose at least

approximate vacuum alignment.

3.4.2 Alignment at quark level

Explicit symmetry-breaking terms provide a preferred direction for spontaneous sym-
metry breaking [139]. The construction of the effective Lagrangian only relies on the
fact that the symmetry group is broken to one of its subgroups, for example, SO(4)
broken to SO(3). However, in the absence of explicit symmetry-breaking terms, there
is no way to say which particular subgroup it is broken to. We choose the SO(3) sub-
group of rotations in the three-dimensional space orthogonal to the vector n = (0 1),
but any other choice of n would be equivalent. Explicit symmetry-breaking terms
force a particular choice of vacuum, “aligned” with the breaking terms.

Here we consider alignment in first order in chiral-symmetry-breaking parameters,

as originally done by Baluni [140]. The chiral-symmetry-breaking Lagrangian (3.2.12)
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generates at tree level an effective potential
‘/1 = C4S4 + d3P3 + d4P4 -+ 0353. (348)

The vacuum alignment condition (see Eq. (E.5)) is

4

4
> (1°8), %+Z T°P). Wl - =0,
a=1 a=1
(3.4.9)
f:(xas) %+§4:(xap) M _
a3, op,

Il
—_

where the bar means we are considering the vacuum expectation value, and 7% and
X are the SO(4) generators. Using the explicit expression (C.2) of the generators,

the vacuum alignment condition (3.4.9) reads

dgpl + 0351 = 0, dgpg + 0352 = O,
) ) ) ) (3.4.10)
d4P1 -+ 0451 = 0, d4P2 + 0452 = O,
and

0453 + d4p3 — d3p4 — 0354 =0. (3411)

Assuming that the vacuum does not break isospin [141, 142] and parity [143],

S:(S), P:(g), (3.4.12)

with v # 0 a real number, which we can choose to be positive. Plugging in this guess

for the vacuum, Eq. (3.4.11) becomes
cyv = 0, (3.4.13)

which is satisfied only if the coefficient of the third component of the S vector in Eq.
(3.2.12) vanishes, c3 = 0. We can rephrase this result by saying that TV terms can be
implemented as small perturbations in the usual chiral Lagrangian if the freedom to
choose the parameter v in Eq. (3.2.12) is used to make the TV interaction an isospin

singlet [139, 144, 140]. Explicitly, the condition ¢3 = 0 is

0
tan o = € tan 3" (3.4.14)
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This choice automatically kills all coefficients C,, (see Eq. (3.4.2)), and in particular
the strength ¢ of the pion tadpole (see Eq. (3.4.5)).
Substituting Eq. (3.4.14) into Eq. (3.2.12), we obtain

L, =—mr(0)S;+emr (0) Ps+m, sinfr () P, (3.4.15)
where we introduced the standard parameter
m, = —wld % (1-2?) (3.4.16)

and the function 1/2
(14t tan? !
@) = (%‘_ﬂ> | (3.417)

The last term in Eq. (3.4.15) is T" violating. As it is well known, this source of

T violation is small for @ near 0 or near 7. If |§] < 1, then r() = 1 + O(#?) and
[140, 93]

Ly, =-mSi+emPy+m.0P +O(6%). (3.4.18)

On the other hand, for |§ — 7| < 1, 7(0) = |e| + O((f — 7)?) and [93]

Lo = —ile| Sy + — i Py + o

] o (7= 0) Pt O ((m—0)7). (3.4.19)

3.4.3 Alignment at hadronic level

In the previous section we exploited the freedom in the choice of the parameter «
in Eq. (3.2.12) to write the TV term in the QCD Lagrangian in a way compatible
with the usual choice of the vacuum, which respects parity and isospin symmetry. In
this section we follow a different approach: we start from the EFT Lagrangian (3.4.1)
that reflects Eq. (3.2.12) before alignment, and we look for a rotation within the EF'T
that enforces the vacuum alignment condition (3.4.13).

We define a new field ¢’ for the pion through

G = % {¢ =520+ S (1-¢7)]}, (3.4.20)
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where
d=1-C(1-¢"%)+25¢, (3.4.21)
and
1 1.
C= 5(1 — cos ), S = 5 sing, (3.4.22)

in terms of an angle ¢. Although this transformation is complicated, the pion covari-

ant derivative simply rotates,

)

D,m =Y OLD,x’ (3.4.23)
J

with a matrix

2

{C(¢” = ¢) 0ij — eanCresu(l] + (O + ) (Gidsy — Cjosi) } (3.4.24)
that is orthogonal,
Z 0,05 = ;5. (3.4.25)
Analogously, we define a new ﬁelld N’ for the nucleon via
N=UN/ (3.4.26)

with a matrix

I

!

VI—C+VC (¢ + 22‘53]-,,3(]’.@)} (3.4.27)

S

that is unitary,

Uty = 1. (3.4.28)

One can show that the covariant derivative of the nucleon is indeed covariant under
this field redefinition,
D,N = U’D;N’. (3.4.29)

As a consequence, nucleon bilinears change under this field redefinition as under

isospin; for example,

(3.4.30)
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More generally then, a generic pionless isoscalar and isovector operator, con-

structed with nucleon fields, their covariant derivatives and covariant derivatives of

the pion, transforms under (3.4.26) like
V40, N| = V[0, N'],

Z o, Vi[o,

(3.4.31)

The chiral-invariant part of the Lagrangian, for example Eqgs. (3.3.10) and (3.3.11), is

built out of isoscalar combinations of chiral-covariant objects. The properties (3.4.25)

and (3.4.28) thus ensure that the chiral-invariant Lagrangian is invariant under the

field redefinitions (3.4.20) and (3.4.26).

This is not true of the chiral-variant interactions (3.4.1). After the redefinitions

(3.4.20) and (3.4.26),
> {C Sunlm’, N + C3, Ssln', N'}}
+ 57 (D4 Paalw', N'] + D Pan[m', NI} + ..,

with
C?:n = (1 - 20) C3n + 2SC4n7 C4n (1 - 20) C4n — 25037“

All S3, can be eliminated from the Lagrangian by choosing

tan o — 25 ——03”——tan o — arctan 5tan€
= 1-2C B C4n B 2 ’
that is, by _
0
tan (p + a) = e tan 3

In this case,

Cy Cpp = —mr(0),

n - 9

Di =emr(0), D; =m, sinfr (),

just as it results from Eq. (3.4.15).

(3.4.32)

(3.4.33)

(3.4.34)

(3.4.35)

(3.4.36)
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Equation (3.4.35) is the counterpart of Eq. (3.4.14), which was found by imposing
the vacuum alignment condition at the level of the QCD Lagrangian. What the field
redefinitions (3.4.20) and (3.4.26) do is to realize in the EFT a chiral rotation that,
composed with the rotation in Eq. (3.2.12), changes the angle & — « + ¢. After the
field redefinition, there are no leading-order tadpoles; we have effectively resummed

in one go all terms generated by the third term in Eq. (3.4.3) and by all other Sss.

3.4.4 Alignment in the presence of electromagnetism

We now show that the transformations (3.4.20) and (3.4.26) do not change the real-
ization of isospin-breaking operators generated by the electromagnetic interaction of
the quarks.

In the presence of electromagnetism, the covariant derivatives change according

to Eq. (3.3.12). This does not change the results (3.4.23) and (3.4.29),
Dy em™; = ZO’ D, o (3.4.37)

and

DyeN =U'D, N (3.4.38)

1, em

As a consequence, chiral-invariant operators constructed with the minimally coupled
pion and nucleon covariant derivatives are unchanged by the field redefinitions (3.4.20)
and (3.4.26).

Following the method of App. D, the chiral-variant operators involving electro-
magnetism can be constructed from the components of SO(4) antisymmetric tensors:
the 4-i component, Ty;[0, N], which is an isovector, and under the field redefinitions
(3.4.20) and (3.4.26) transforms like Eq. (3.4.31); and the i-j component, T;;[0, N],

which transforms as

ZO T30, N']. (3.4.39)
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Since under the redefinitions (3.4.20) and (3.4.26)

1 mw? 2msT; 1 ' 2l
(3.4.40)

and

2 2
ﬁ ((53]'77'2‘ - 7Tj(532‘) ﬂj [O, N] = ﬁ (53j7T£ - 7T;-53i) ,_TZ/J [0, N/], (3441)

the tensor is also invariant.
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CHAPTER 4

THE T VIOLATING xPT LAGRANGIAN

4.1 Hadronic Interactions

In this section we construct the most important operators in the low-energy EFT
with the same chiral properties as Eqgs. (3.4.15), (3.2.53) and (3.2.55). We start from
studying Eq. (3.4.15).

The first class of interactions originates entirely from the average quark mass m,
the first term in Eq. (3.4.15). These interactions break SO(4) explicitly down to the
SO(3) of isospin. They are well known, and examples are given in App. D. The most

important effect is an S, that gives rise to the pion mass,

2 172 2
) mplT mr

(0 '
Lys=0= 75 oD

¢ (4.1.1)

where m2 = O(r(f)mMgcp). Also relevant for what follows is a similar S; but

containing two nucleon fields, the nucleon sigma term

W
Ly

_ 272
= AmyNN (1 - F2D) , (4.1.2)

where the nucleon mass correction Amy = O (r(8)m) = O (m?%/Mgcp). There is, of
course, an infinite number of other Sys, all of which will bring in interactions o m.

An example in the A = 2 Lagrangian is
1— —) D, - NTS*N, (4.1.3)

where 8y = O (m2/Mgcp) is a chiral-symmetry-breaking correction to g4 [145], the
so-called Goldberger-Treiman discrepancy. In addition, there are interactions from
tensor products of Sys proportional to higher powers of m. For example, Sy ® S, with
the same Sy that generates Eq. (4.1.1) produces

F2AmZ Ami o,

2)
Lro="g "~ ST (4.1.4)
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where Am?Z is an O(my /Mpp) contribution to the pion mass. All such chiral-variant
interactions have strengths proportional to powers of m? times appropriate powers of
Mgcp. Since by all evidence 7(6) is not small, the dimensionless factors are expected
to be of O(1). When we are interested in processes with typical momenta ¢ ~ m.,
the power counting of f < 2 interactions, Eq. (3.3.9), can be straightforwardly
generalized by defining d to count powers of m, as well.

More interesting are the low-energy interactions stemming from the other two
terms in Eq. (3.4.15). The second breaks the SO(3) of isospin down to SO(2)
of rotations in the 1-2 plane in ¢ space. In particular, it is also charge-symmetry
breaking (CSB) —charge symmetry is a discrete isospin rotation of 7w around the 2
axis that exchanges (up to a phase) the v and d quarks [146, 147]. The third term is P
and T violating but also breaks SO(4). The crucial point is that these two terms are
linked because they break chiral symmetry through components of the same chiral
four-vector. Therefore, T' violation from the @ term is intrinsically linked to CSB
because of chiral symmetry: for each TV hadronic interaction with an odd (even)
number of pions from a P, there is a CSB interaction with an even (odd) number
of pions from the associated P3;. The ratio between the coefficients of the P, and Ps
components is fixed by the ratio in Eq. (3.4.15),

T violation my . 1 —¢? _

= 0= ind = p(f,e). 415
isospin violation — em St oz p(0,€) ( )

This ratio p is small when sinf ~ 0 for |§| < 1 and sinf ~ 7 — 0 for |7 — ] < 1.

Unfortunately this link becomes ineffective when sufficiently complicated tensor
products have to be included. We show in App. H that in the pion-nucleon sector of
the purely hadronic Lagrangian this problem only appears when considering operators
suppressed by m? /Méc p relative to the leading TV interaction. As we will see in
Sec. 4.2, the electromagnetic interaction makes this problem more acute, so that
Eq. (4.1.5) is ineffective already for the leading short-distance contributions to the
nucleon EDM.

Relations analogous to Eq. (4.1.5) can be established for the operators stemming
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from the dimension 6 qEDM and ¢MDM, and qCEDM and qCMDM. From Eq.
(3.2.54), one sees that the isoscalar (isovector) qEDM breaks chiral symmetry as the
fourth (third) component V; (W;) of a chiral four-vector V' (W), whose third (fourth)
component V3 (Wy) represents the isovector (isoscalar) gMDM. In analogy to Eq.
(4.1.5), we thus introduce the factors py and ps3 to express, respectively, the ratio

between the coefficients of the V4 and V3 components and W3 and W, components

isoscalar qEDM do Co tan ¢
= —— = ——tang¢y =
isovector qMDM Cs cs 0= fo;
isovector qEDM ds ¢
= — =4 = ps. 4.1.6
isoscalar qMDM co Co an ¢3 = p3 ( )

Similarly, for the qCEDM and qCMDM, the ratios between the coefficients of V; and
V3 and W35 and W, are given by jy and js, with
po = —;—Ztangzgo, p3 = g—ztan 3. (4.1.7)
In the case of the qEDM and qCEDM, the formal link with the coefficients of
the operators generated by the qMDM and qCMDM carries little relevance. As
we will see from the explicit realization of Eq. (3.2.53) in the EFT, the low energy
manifestations of the qCMDM and gMDM amount to small corrections, suppressed by
O(Mep/ M%), to the coefficients of chiral-symmetry breaking and isospin-symmetry
breaking operators, whose leading contribution is given by the quark average mass
and quark mass difference terms in Eq. (3.4.15). It is therefore impossible to extract
the coefficients of the effective operators that realize the qCMDM and ¢qMDM in xyPT
from TC observables, and thus the ability of Eqs. (4.1.6) and (4.1.7) to express the
coefficients of TV operators in terms of a function of parameters of the Lagrangian
only (pos and pp3) and a strong interaction contributions, fitted to data for TC
observables, is lost.
For the two-lepton-two-quark operators, the ratio of the coefficients of TV and

TC lepton-quark operators is expressed by pjq1.2,3, with

Im Y, Im Y , ImY

Plg1 = ReZqu’ Plg2 = _Rezeqla Plg3 = ReEqu .

(4.1.8)
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We now proceed to build the low-energy interactions that arise from Eqs. (3.4.15),
(3.2.53) and (3.2.55). As for the chiral-variant but isospin- and 7-symmetric terms,
we will for simplicity take 7(f) to be O(1) for power-counting purposes. Note that
mixed operators that combine symmetry breaking from various sources have to be
included. Since the chiral-symmetry-breaking operators involving only Sys do not
directly affect the link (4.1.5), we do not list all of them, but only those relevant to
our discussion.

We consider here only the lower chiral-index A operators, classified according
to the number f of nucleon fields. As d and f increase, interactions decrease in
importance [33, 37], but obviously the procedure can be continued ad nauseum. As

we will show, non-aligned operators, like pion tadpoles, appear in power-suppressed

terms in the Lagrangian, but they can be dealt with in perturbation theory.

4.1.1 Pion sector

We start by discussing the leading interactions generated by the quark mass, the quark
mass difference and the @ term that involve only pion fields, that is, with f = 0. As it
turns out, one cannot construct any terms that transform as P; and P,. Higher-order
terms have the same transformation properties as the third and fourth components of
SO(4) tensors that correspond to tensor products of the different symmetry-breaking
sources in the QCD Lagrangian (3.4.15).

The chiral-symmetry-breaking Lagrangian with A = 2 could receive contributions
from the tensor products Sy ® P, and P, ® P,. No purely-pionic operator of the
first type can be constructed, while the tensor P, ® P, can be reduced to a chiral
invariant and a two-index symmetric tensor, P, ® P, = 04 1 + Sau. In the pion
sector the invariant is a constant, and can be discarded. The 3-3 component of
the symmetric tensor yields an isospin-breaking correction to the pion mass, the 4-4

component a chiral-breaking but isospin-conserving correction to the mass, while the
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3-4 component breaks isospin, parity and time reversal:

2F26m2  dm2 w2
ﬁ)(z;”=0 == P 3 —+ 2D2 |:7T?2) — p27'r2 + pFﬂ (]. — ﬁ) 7T3:| s (419)

™

where we introduced the coefficient

2.4
smi=0 | —Mr 4.1.10
m. <T4(‘9)M50D> ’ ( )

which is the largest quark-mass contribution to the pion-mass splitting [122]. Since the
latter receives a much larger electromagnetic contribution (see Eq. (3.3.21)) om2 =
O (emMgep/m) [122, 145], it is unlikely that this term is of any phenomenological
use in itself.

However, Eq. (4.1.9) presents a simple illustration of the link between isospin and
T violation. It also has the interesting feature that, even after we chose to align the
vacuum linearly in the chiral-symmetry breaking parameters, non-aligned operators
appear in the power-suppressed Lagrangian. We discuss the role of such tadpoles in
Sec. 4.3.

Pion tadpoles are generated also by indirect electromagnetic effects. If we count
Qe /T ~ em /M p, these term are booked in the A = 3 Lagrangian, and have the
form

0®m2 F2 §®)mp2

c T (2 + pFems) (4.1.11)

)
X f=0em 4 2D
the two terms corresponding to the tensor products Py ® T34 and P ® T34. Here the

coefficient

2
§@m2 = @ Lem M ) 41.12
M T r2(0) ( )

Equation (4.1.11) is exactly of the form of Eq. (3.4.3). The only TV operator is
the pion tadpole (and its associated interactions). Since 6®m2 < m2, it does not
signal vacuum instability and can be treated in perturbation theory. Because these
are already small terms, we do not bother to consider higher orders.

The dimension 6 sources in Eq. (3.2.53) also generate pion tadpoles. At lowest

order, Ay = —2, tadpoles come from the isovector qCEDM, which transforms as
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the third component of a SO(4) vector W, and from combining the effects of the
chiral-invariant TV operators, the gCEDM and the two four-quark operators in Eq.
(3.2.36), with isospin violation from the quark mass difference. At A = —2, we find

- F2? < 7w’ < < Fom
2 T ~ w3
L7y = FAmE = Bmias + (p3Aqm3 + Awmfr> =, (4.1.13)
where, from the rules of NDA [123],
~ - m2M? _ m2 M2
py Agm? = O (53”T§m> . Aymi=0 <w5“T§CD) . (4.1.14)
7 T

From here on, we always use the symbol w to denote collectively the dimensionless
constant w, defined in Eq. (3.2.28), and 0,5 in Eq. (3.2.31); w € {w,0y,08}. The
operators in Eq. (4.1.13) also receive a contribution from the quark EDM and MDM,
which is suppressed by one power of aen, /7, and appears in the Ag = 1 Lagrangian.

At Ag = 0, pion tadpoles emerge from considering operators that transform as
tensor product of the mass term in Eq. (3.4.15) and the qCEDM and qCMDM oper-
ators in Eq. (3.2.53). Purely pionic operators are generated by the tensor products

mS4 X (C()W4 + d3W3) and mEPg X (Cg‘;}, — d01~/4), and we find

g m2 7-‘-2 g m2 7T2
0 2300 ~ oMy _
1o - G Lreain(1-5)]- 82 emom 1)

(4.1.15)
where the new low-energy constants scale as
~ - mh ~ -
p~3 53m72r =0 53—7; s ﬁ() 50m72T =0 508—7; . (4116)
Mz My

The gCEDM and the TV four-quark operators generate operators identical to the
TV part of Eq. (4.1.9) through the tensor products d,m?cS; ® Ps ® I, with the
replacement dm?2p — 6,m?2

4
Spm? =0 (wsﬁ—%) . (4.1.17)
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Contributions from the qEDM are suppressed by a power of aen /7, and we do not
consider them explicitly.

In Eqs. (4.1.14), (4.1.16) and (4.1.17), we have assumed  to be small, in which
case 7(f) ~ 1. For generic 0, the scaling of the coefficients can be obtained by
replacing e with ¢/r%(f) in Eqs. (4.1.16) and (4.1.17). Notice that for generic 0,
one should also construct TV operators that transform like tensor products of the
term and the TC qCMDM, m, sin 0Py ® (coWy + ¢3V3). In the purely pionic sector,
the second tensor product gives an additional contribution to the coefficient of the

tadpole in Eq. (4.1.15) of order

- tanf cosf mt
0, — . 4.1.1
@ ( 0tan¢0 7,2(9) M%) ( 8)

Now, the rationale for considering TV from dimension 6 operators along side with the
dimension 4 0 term is that the M:,% suppression of the former is somehow balanced by
C'P violating phases much bigger than 6, that is tanf < tan ¢,. Consequently, the
contribution of Eq. (4.1.18) can be safely neglected.

The TC operators in Egs. (4.1.13) and (4.1.15) are a first example of the impos-
sibility to differentiate the low-energy manifestations of the qCMDM from the effects
of the quark mass term, at least in an approach which, as xPT, solely relies on the
symmetry properties of the quark-gluon operators. The correction to the pion mass
Aqur in Eq. (4.1.13) has exactly the same structure as the pion mass term in Eq.
(4.1.1), to which it gives a small correction of order Mg p /M% Similarly, d3m?2 and
Somfr in Eq. (4.1.15) are respectively identical to the correction to the pion mass
Am? in Eq. (4.1.4) and the correction to the neutral pion mass dm? in Eq. (4.1.9).
Once again, the only effect of the qCMDM is to give a correction of order Méc b/ M%

to these coefficients.
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4.1.2 Pion-nucleon sector. The QCD 6§ term.

In the case of T violation from the QCD 6 term interactions with f = 2 are potentially
the most important for TV phenomenology, because they appear at the lowest chiral
index. Already at A = 1 we can find a P, vector, whose third and fourth components

give the operators

5mN — 2ms - 2p _
= —— < NyN — Nt -wN — Nt -wN ;. 4.1.1
5 { T3 72D T -7 D T -7 ( 9)

(1)
£X7f:2

These operators provide the leading isospin-breaking [122] and TV [93] pion-nucleon

interactions, respectively. The low-energy constant

em

5mN:C)c3@ﬁ%;;) (4.1.20)

is the main quark-mass contribution to the nucleon mass splitting [122, 145]. Equa-
tion (4.1.19) links the leading TV pion-nucleon coupling to the strong nucleon mass
splitting dmy via the characteristic factor p, Eq. (4.1.5). We return to this issue in
Sec. 4.4.

Considering A = 2, we can construct operators that contain one covariant deriva-

tive,
ﬁ)(ez,}:z = % {D,ﬂrg — }72’,?%# D, — %W : Duﬂ'} NSHN, (4.1.21)
with 2

The subleading TV interaction thus consists of a seagull vertex (and its chiral part-
ners) [91], which is related to isospin violation in the pion-nucleon coupling constant
(122, 145, 148, 149].

Increasing the index by one, we find terms with two covariant derivatives and two

powers of symmetry-breaking parameters. We write

3 3 3
E)(é}=2 - ﬁ)(él),f:2 + E;(@),f:z' (4.1.23)
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With two covariant derivatives we find

3) RS - , Co -
Ly = {E (D,m)- N [S*,S"|TD,_N + T (v-Dv-Dmx)- NTN
—I—Q(D DY m)- N N—|—2—<4(D 7w xv-Dmw)  NS*TN
I w7 T Fﬁ I v T
1 |27 2
2D {ﬁ o (1 - F—s)]
S Nro DEN - SN N4 TN DD N
+ 1 TV D 1 Ti P ‘l’Fﬂ (7 x (v- L))
—i—@( -D -)NS-D N+2LC9(D X D, ) N[S“ SY|N
o v Dm; _ 2 U T VT0), ,
—i-@(D ')(D‘HTF)~NTN+$( -Dm;) (v-Dm) - NTN
Ff uTli Fﬁ v ;) \vU
Ci2 95 (13 9 1 2y m;  2pmW;
+F_7? (Dum)"N7iN + F_ﬁ(v - Dm)* N7;N 5 dig — FE—D — D)
(4.1.24)
where the coefficients
em?
=0 575— 1| (4.1.25)
Tz(e)M%CD

Again, we see that the TV terms have an extra factor of p compared to their isospin-
breaking partners.
Lorentz invariance relates the coefficients of some of the operators in Eq. (4.1.24)

to dmy and ;. We discuss such relations in App. I, where we find

o o
R
N

m3 my’

CIZCGI

The relation between (g and dmy is in agreement with the one found in Ref. [145].
Equation (4.1.26) reproduces the relations in Ref. [150], once a field redefinition is
used to eliminate time derivatives acting on the nucleon field from the subleading
chiral Lagrangian [151].

Contributions to 5)(2}:2 that do not contain derivatives come from consideration
of the tensor products P, ® P, and S; ® P,. As noticed earlier, the representation

of P, ® P, contains a chiral invariant and a symmetric tensor. In the pion-nucleon



110

sector, the chiral-invariant operator gives an inconsequential correction to the nucleon
mass, while the symmetric tensor yields a P- and T-conserving isospin-breaking term
from its 3-3 component, a P- and T-violating isospin-breaking term (o p) from its
3-4 component, and a P- and T-conserving chiral-symmetry breaking but isospin-
conserving term (o< p?) from its 4-4 component. The tensor product Sy ® P, in turn,
contributes the 3-4 (which is isospin-breaking) and 4-4 (which is P- and T-violating
and down by a factor of p) components of a symmetric tensor, and the 3-4 component
(which is isospin-breaking) of an antisymmetric tensor. We thus find the additional

A = 3 terms,
2 2 2
(3) @ | Am 2 4 4pms 03 _

§my [ - 2 42 )
+ 5 NTg—m 67T3 1_3}7—2D ™-T — T 73 N

™

S—— N w%g)} N, (4.1.27)

where we can estimate the coefficients,

2,4 4
B _ o M e =0 M 4.1.28
£ <r4<9>Mch ) =0\ Eangy, )

The TV interaction associated to 5§g)mN is similar to the leading TV pion-nucleon
interaction in Eq. (4.1.19), and it is also linked to a contribution to the nucleon mass
splitting, but it is suppressed by an extra m?2 /M%CD. More interesting is the TV
interaction associated to c§3’, since it involves only the neutral pion. Because of its
isospin character, it contributes differently to observables than the leading TV pion-
nucleon interaction. As one can see, it is suppressed with respect to the latter by a
factor em? /Méc p, and it is linked to an isospin-breaking two-neutral-pion-nucleon

seagull interaction. Note that there is no TV operator directly associated to 553)771 N-

This term has exactly the same form as the main electromagnetic contribution to
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the nucleon mass difference, Eq. (3.3.21), and can only be distinguished by the
dependence of its coefficient on m?2; in our power counting, it is suppressed by one
power of m./Mqcp.

One can of course continue the procedure to higher orders. It is hard to imagine
they would have much phenomenological use, but they are not entirely devoid of
structural interest. For example, it is from tensor products of three vectors (at A = 5)
that the first non-electromagnetic m3 N3N interaction appears. Also, at this point
the connection between isospin and 7' violation ceases to be useful. These tensor

products are discussed in App. H.

4.1.3 Pion-nucleon sector. Dimension 6 sources.

The leading contributions from dimension 6 operators to the f = 2 Lagrangian come
from the isoscalar and isovector qCEDM and from the chiral invariant gCEDM and
TV four-quark operators. From Eq. (3.3.13), one finds that, being 07073 proportional
to the light quark mass, in the case of the qCEDM pion-nucleon interactions first
appear in the Ag = —1 Lagrangian. As far as the chiral invariant operators are
concerned, it turns out that, in the f = 2 sector, it is impossible to build any chiral
invariant, TV operator with zero or one derivative. The first possible operators then
have two derivatives, or contain an insertion of the light quark mass, and thus also

the chiral invariant TV operators first contribute at Ag = —1. We find

_ J, . 2y 2y -
Li, = =5F {N@,N— N7 TN - Fplo)NT-wN}
A my 22\ - 205 -
- 1-— NN NN
> {( DF? T ED™
—Z?OEU)NT N — glgﬂgNN - Z}—;U(v -Dm x D,m)- NS*TN.

(4.1.29)
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The first two operators in Eq. (4.1.29) are induced by the qCEDM and they have

coefficients
~ - m2 ~ - m2
(SquﬁO =0 6OMZMQCD s Aquﬁg =0 (SgﬁgMQCD . (4130)
T T

The other three operators in Eq. (4.1.29) stem from the gCEDM and the TV four-

quark operators; their coefficients are

m?2 m?2
Jow = O (wﬁgMQCD> , Giw=0 (wgﬁgMQ(JD> ,
T

o = O <iMQ0D), (4.1.31)

where, as in the previous section, we use the shorthand w € {w,oq,05}, and we
assumed 7(f) ~ 1.

The qEDM generates indirect electromagnetic contributions, which are suppressed
by a power of qey /7 with respect to the operators in Eq. (4.1.29), and do not play
an important role for the observables we are interested in.

Eq. (4.1.29) shows a first important difference between TV from dimension 6
operators and the QCD # term, namely the presence of a TV and isospin breaking
coupling already at leading order in the f = 2 Lagrangian. The implications of this
difference are particularly relevant for the TV electromagnetic moments of deuteron,
and we will further discuss them in Chapter 6.

The calculation of the nucleon EDM generated by the qCEDM at NLO requires
the knowledge of the Ag = 0 Lagrangian. In the case of the gCEDM and of the TV
four-quark operators, which also generate Ag = 0 pion-nucleon interactions, short-
range physics plays a more important role than long-range physics mediated by pions,

thus making the derivation of pion-nucleon couplings at sub-leading orders irrelevant.
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The qCEDM contribution to the Ag = 0 Lagrangian is

F. F2D F.D
By2 27?2 _2m ) -

qu 27T2 ~ 271'2'7'('3 _
+ T D + P | 0; F2D N (r xv-Dm), N, (4.1.32)

with the scaling of the coupling constant determined by

~ - m? N - m2
5q1 Po = @) 50Mg y ﬁng P3 = @) (Sgﬁg . (4133)

T T
At Ag = 1 we can construct operators with two covariant derivatives, or one inser-
tion of the light quark mass. With two covariant derivatives, the isoscalar component
of the qCEDM, and its chiral partner, the isovector qCMDM, generate interactions
identical to Eq. (4.1.24), with the replacement (; — Eqi and p — py. The coefficients

go as

- - m2
Ceipo =0 (50W’;CD> . (4.1.34)
The constraints imposed by Lorentz invariance on fql, &16 and g:qg are identical to
Eq. (4.1.26).
The isovector qCEDM generates TV interactions with two derivatives that also

violate isospin symmetry, accompanied by chiral-symmetry breaking, but isospin in-
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variant, TC operators stemming from the isoscalar qCMDM

Loty = {iﬂlDu mN [S*, 51D, _N + iqf (v-Dv- Dm)NN

i‘f’ (D" D, m) NN + qu‘*(puw x v- Dx); NS*N

s

é 5 — 2m; 5 2 m3m;
—|—’LFL7TN((D“7T) XT)iDHl,—N _FWD+p3 (532—5 FE

+{ gqﬁN D2N—%NDi_Nﬁ225}‘18(U~Dw)-NTS-D_N
+Zg—qg(p m x D,m) - N[S*, S| N @(Dﬂ )’NN
opz nT P 2T
gqll - 271'3
The scaling of the coefficients &,; is
- 2 1
iP3 = 0 . 4.1.
é-q p3 O 3M MQCD ( 36)

Reparameterization invariance constrains some of the coefficients in Eq. (4.1.35).

At order 1/m%, we find the following relations:

- > Amy Bas - ga x By
fql = _§q7 = 4(;”7?\[’ €q5 77(]1N’ §q8 = _m—?VAqu - (4’1’37)

At the same order, we consider insertion of the quark mass. The resulting oper-

ators transform as the tensor product of the QCD mass term and the qCEDM and
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qCMDM: (1mS; — emPy) ® (—ciofa + &3V + dsWs + 50W4)
1 )~ o)) 4ms w2 el 472 o 4n? ] -
e = |(@nr @) 1 (1- T+ (1- ) + &8 s | 9
N

Sgl)mNngél)mN— 2 4 ? 9
+ 5 73—F2D 673 1_§F2D m-T—7T13|| N

< 2 22\
—ﬁ05§1)mNFﬂD (1— ul )Nﬂ'~7‘N

~ 2Ty 2
—ﬁgéél)mNFj;N (7'3 — ﬂﬂ' . T) N
Sél)mN + Sil)mN
2

N {7'3 + F2D (7r37r ST — 7r273)] N. (4.1.38)
At this order, all three possible non-derivative pion-nucleon TV couplings receive
contribution from the qCEDM. The first TV operator in Eq. (4.1.38) represent a
correction to the isovector TV coupling in Eq. (4.1.29), from which it only differs
for observables with three or more pions. It receives a contribution from two tensor
products md~354 ® Wg and m»SOZOPg ® 174, which are encoded in the two coefficients Egl)
and é;l). They scale as
&y =0 <53m7’2f> . & =0 <Soem7’2f> . (4.1.39)
Mj;Mqep M7Maocp

The chiral partners of 6&1) ps and 6&1) po transform, respectively, as the products mc
Sy ® W, and mec3 Py ® ‘73 The first represents a isospin invariant correction to the
nucleon mass, which however has different multi-pion structure with respect to the
term Aqu in Eq. (4.1.29). The second operator violates isospin symmetry, and it
contributes to the scattering of neutral pion off the nucleon. The TV operator with
coefficient ﬁ05~§1)mN provides a correction to the isoscalar TV coupling N7r-7N in Eq.
(4.1.29), while ﬁgsél)mN is the first contribution of the qCEDM to the isospin breaking
coupling w5 N73N. These two operators realize the tensor products mdyS; @ V; and
meds Py ® Wy in the effective Lagrangian, and their coefficients go as

W mypo =0 (50m7i> . W myps =0 (535L> . (4.1.40)

MzMqcp M7 Macp
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The chiral partner of both ﬁoggl)mN and 53S§I)mN is the operator in the third line
of Eq. (4.1.38). Such operator contributes to the nucleon mass difference, and, at
least in principle, it can be distinguished from the operator proportional to 5qu in
Eq. (4.1.29) if observables with two or more pions are considered. However, here we
see a first failure of the link between TC and TV operators we established in Eqgs.
(4.1.6) and (4.1.7). Even in the purely hypothetical scenario that the coefficient of
the third operator in Eq. (4.1.38) could be extracted independently of 5%3)mN in Eq.
(4.1.27), this coefficient would carry information only on the sum Sgl)m]v + 5§I)mN,
and thus it would not provide any constraint on the coefficients of TV operators,
which depend on the individual value of 5%1)7711\/ and Sél)mN. Finally, the tensor
products mc3 Sy ® ‘73 and mecyPs ® W4 also generate two TC operators without TV
partners. These operators contribute to the nucleon mass difference in exactly the
same form as the electromagnetic contribution dmy in Eq. (3.3.22). The coefficients
Sél)mN and Sil)mN scale as

~ 5 m4 ~ 5 m4
WMmy =0 0_ ™ . omy =0 5 ™ o (4141
5N tan ¢ M;,%MQCD 4 ( )

4.1.4 Four-nucleon sector.

We discuss here the TV four-nucleon operators that stem from the QCD 6 term and
the dimension 6 sources of T violation. In this Section, different TV four-nucleon
operators are organized according to the chiral index A, defined in Eq. (3.3.9) for
the 6 term and in Eq. (3.3.13) for the dimension 6 sources. Modifications of the
power counting of four-nucleon operators that account for the unnatural size of the
nucleon-nucleon scattering lengths are discussed in Chapter 6.

In the case of the QCD 0 term, the first contribution to the f = 4 sector of the
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Lagrangian comes at A = 2,

. 21 -
= lN{(Tg— 377-7')—FfD7T-T}NNN

_ 9 _
+29,N { <7'3 L ‘r) — FpDTr : ‘r} SEN NS,N, (4.1.42)

in terms of two TV parameters 7, ,, which by naive dimensional analysis scale as
1 em?

Vso = O (ﬁ%) ) (4.1.43)
Just as for f < 2, here too TV operators are linked to isospin-violating operators,
which in this case generates the dominant contributions to the short-range isospin-
violating two-nucleon potential [122, 145]. The isospin-violating coefficients 7; can
be seen as low-energy remnants of p-w mixing [145] and a;-f; mixing [152]. The TV
operators in Eq. (4.1.42) are not relevant for the nuclear potential to the order we
work in Chapter 7, but contribute to the three-nucleon TV potential at next order.

The first operators relevant to the calculation of the TV potential are

(3) o 271‘3 271'2 — —
L, = G [FgD +p (1 — FED)} NN3,(NS"N)

[ 2o (1- 25N NeN D (NrSN), (41.44)
> | 72D p 2D T W(NT : 1.

where the C; = pC; are two new TV parameters. The covariant derivative in the
operator Cy is meant to be in the adjoint representation, that is, the isospin matrix
in Eq. (3.3.4) is replaced by (#/);, = ie¥*. The coefficients scale as

2

1 em
Cio=0| 5=+ 4.1.45

and therefore, in the case of the QCD @ term, TV four-nucleon effects are smaller
than those induced by the leading TV pion-nucleon coupling, in Eq. (4.1.19). For
example, we will see in Chapter 7 that TV one-pion-exchange (OPE) gives the biggest

contribution to the TV nucleon-nucleon potential. The contribution of C’Lg to the

TV potential is suppressed by two powers of m,/Mgcp, and it arises at the same
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level as the TV two-pion-exchange potential and subleading OPE potentials from
O(m2/Mep) corrections to leading TC and TV pion-nucleon couplings. Since the
contribution of the largest four-nucleon operators to TV observables is already small,
we do not construct corrections to Eq. (4.1.44).

The coefficients C; could in principle be determined from pion production in the
two-nucleon system and/or from isospin-violating three-nucleon forces. However,
even lower-order isospin-violating three-nucleon forces are very small [153, 154], so
prospects for extracting C; from TC data are grim.

For the chiral-symmetry breaking qCEDM, the relative importance of four-nucleon
interactions and pion exchanges is the same as for the § term, even if the isospin struc-
ture of the four-nucleon interactions is richer. The first four-nucleon operators appear
at Ag = 0. The isoscalar qCEDM and the isovector qCMDM generate interactions
with the same form as those in Eq. (4.1.42), with the replacement v , — 75, and
p — po- The isovector qCEDM generates

272 2 _
9, = %K1— T )+ﬁ3F”Z’)} NN NN

27?2 2 _ _
+47, [(1 S >+f)3 FWZ’)] NS*NNS,N.  (4.1.46)

In terms of the qCEDM parameters 50 and 53, the coefficients 7, , and %70 are

Pose = O (So FTA’;) R N G (Sg FT]\%) . (4.1.47)
L T
As in the case of the § term, the interactions in Eq. (4.1.46) contribute to the largest
TV three-body force.
Four-nucleon interactions from qCEDM that start with no pions first appear at
Ag = 1, that is, two orders down with respect to the leading pion-nucleon coupling

in Eq. (4.1.29). Once again, the interactions from the isoscalar qCEDM are already
contained in Eq. (4.1.44), with C} replaced by Ci, and p replaced by j,. The
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isovector qCEDM is responsible for TV and isospin breaking four-nucleon operators

1 ~ = 2 - 27'('3 —
£é7}:4 = (3N [_FWDW T+ p3 (7‘3 — F2D7T . ‘r)} N0, (NS“N)
P 2 ~ 27'('3 m —
—CyN —FﬂDﬂ"T—l—pg T3 — FgDﬂ'-T SHN 0, (NN)(.4.1.48)

The TV low-energy constants 5’1,2 = ﬁoé’172 and 5'3,4 = ﬁ36’374 scale as

- ofs o5 m
Ci2=0 (6()%) , C34=0 (6;),%) : (4.1.49)
Four-nucleon operators play a more relevant role in the case of the chiral-invariant
gCEDM and TV four-quark operators. In this case, four-nucleon operators appear

already in the Ag = —1 Lagrangian, that is at the same level as the pion-nucleon

couplings in Eq. (4.1.29). We find

£, = Coy NNOL(NSN) + CooNTN - D, (NTS*N), (4.1.50)
with coefficients
= Moep
Cup12 =0 wFQM% : (4.1.51)

As usual, w includes the effects of the gCEDM, and of two four-quark operators in
Eq. (3.237), w € {w,01,08}. The four-nucleon interactions in Eq. (4.1.50) are
thus responsible for a TV nucleon-nucleon potential of the same order as OPE from
Eq. (4.1.29). We will further discuss the implications of this observation for the TV
electromagnetic moments of the deuteron in Chapter 6. The chiral invariant and TV
dimension 6 operators contribute to the A = 0 and A = 1 four-nucleon Lagrangian.
Since these operators are not needed for the calculation of the observables discussed
in Chapters 5 and 6, we do not explicitly construct them.

The qEDM generates four-nucleon TV operators, which are, however, suppressed
by a factor of e /m with respect to Eq. (4.1.46) and (4.1.48) and thus completely

negligible.
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4.2 Electromagnetic Interactions

In this section we are interested in studying how the combined effects of the elec-
tromagnetic interaction of quarks and of the sources of T violation we are studying
manifest themselves in the low-energy Lagrangian. As we have mentioned, we have
to consider interactions of two types, with and without soft photons. The former pro-
vide short-range contributions to EDMs. The latter involve the exchange of at least
one hard photon, which cannot be resolved in the low-energy EFT and is therefore
integrated out —these interactions are purely hadronic and sometimes called indirect
electromagnetic effects. Such indirect effects include pion-nucleon TV vertices, which
result from a TV interaction accompanied by a hard-photon exchange.

As far as the QCD 6 term is concerned, the simplest operators are linear in the
chiral-breaking parameters m and e, and thus necessarily involve a soft photon. Under
SO(4), these operators have the transformation properties of tensor products of the

chiral-symmetry-breaking terms in £,,, Eq. (3.4.15), and L., Eq. (3.2.11),
~ - 1
[mr(0)Ss — mer™'(0) (Ps + pPy)| @ eA, (F + T?fﬁl) : (4.2.1)

We have therefore to construct operators that transform as components of SO(4)
vectors, Sy and P,, or components of tensor products, Sy ® T34 and P, ® T34, with
a = 3,4. The tensor product of the antisymmetric tensor T}, and the vector P, gives
rise to a vector (V,V}) and a three-index tensor Z,, ., antisymmetric in the first two
indices. As far as parity and time reversal are concerned, the vector (V',V}) has the
same properties as (S,S5;): Vyis P and T even while V' is P and T odd. On the
other hand, the tensor product T, ® S. generates a vector with the same properties
as P and a three-index tensor. For soft-photon interactions, our index A counts also
the number of photon fields and their derivatives.

The analysis of dimension 6 sources proceeds along similar lines. A quark chromo-

EDM and its chiral partner, a quark anomalous chromo-magnetic moment, induce
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soft-photon interactions via tensor products with £, of the form
o

. - s~ ~ I
(—dovzl + 53‘/}, + d3W3 + 50W4> & 6AM ( 6

+ T:,fﬁl) , (4.2.2)
while TV electromagnetic operators from the chiral invariant TV sources have the
same transformations as £.. The qEDM and qMDM already have a soft photon,
therefore they yield nucleon-photon operators that transforms like the fourth and
third components of the vectors V' and W in Eq. (3.2.51).

Another possibility is to construct operators that have higher powers of e. Those
with odd (even) powers of e generate operators with odd (even) number of external
photons. For example, for the @ term, the simplest of the indirect electromagnetic
effects come from operators that under the group SO(4) have the transformation
properties of tensor product of

_ _ " I
[mr(9)54 — ﬁl{:"r‘_l(e) (Pg + pP4)} & €A“ (E + Tgﬁ) & €A,, (g + T;4) , (423)

in which the photon is integrated out. In this case we need components of SO(4)
vectors, Sy and P,, and of tensor products, Sy ® T34, P, ®T34, S4® T34 T34, and P, ®
T34 ® T34. These contributions are proportional to the electromagnetic fine-structure
constant a.,,. Typically, there is also an extra inverse factor of m, so for power
counting purposes we assign them a factor of e, /7. Recall that we enlarge the chiral
index to count also powers of aem /7, with the assumption cem /m ~ emi /M@ p. With
this assumption, it turns out that indirect electromagnetic operators are negligible, at
the order we are working at. For example, pion-nucleon indirect couplings only appear
in the A = 4 Lagrangian, three orders down with respect to the leading TV coupling
from the 6 term. We derive these operators, in particular the first electromagnetic
contribution to the vertex 3 N3N in Ref. [39]. Similarly, in the case of the qEDM
or qCEDM, the first indirect pion-nucleon coupling has Ag = 2, which means it
contributes to the nucleon EDM at N3LO, which is far beyond the accuracy of our

analysis.
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Clearly, more complicated operators can be constructed, which involve either more
external photons and/or more powers of m and aey, /7. Operators with two photons
have been discussed in Ref. [156] in connection with nucleon Compton scattering;
since they give small contributions even to atomic EDMs [119], we do not list here
operators with more than a single soft photon. Higher-order terms in the Lagrangian
can also be realized by building operators with the transformation properties above
that contain covariant derivatives of the nucleon and pion fields or higher-dimension
gauge-invariant operators.

In the following we catalog the most important TV interactions with one external
photon, classifying them by the number of nucleon fields f. For the QCD @ term these
interactions are always linked to operators from quark mass difference, according to
Eq. (4.1.5). Below we list these partners together. Unlike the operators in Sec. 4.1,
however, here the Sys play an important role: although the interactions they generate
are of course T' conserving, when combined with T34s they lead to isospin-breaking
interactions that spoil the link (4.1.5) between operators from 6 and the quark mass
difference already for the leading electromagnetic terms. For the other chiral sym-
metry breaking sources, the qEDM and qCEDM, as in the case of purely hadronic
interaction, the links (4.1.6) and (4.1.7) are irrelevant because of the impossibility
to isolate the effects of the quark anomalous magnetic moment or chromo-magnetic
moment from those of the quark mass terms. We discuss in further detail the link

between TC and TV operators in Sec. 4.4

4.2.1 Photon-nucleon sector. The QCD 4 term

Interactions with soft photons can be obtained using the U(1)-gauge covariant deriva-
tives (3.3.12) in existing operators. More interesting are the interactions that arise
through the field strength F),,, which we describe here. Since the pion has spin 0, we
cannot construct an EDM operator in the f = 0 sector. In contrast, there are plenty

of TV interactions in the f = 2 sector.
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The first contributions from the QCD # term come at A = 3. TV appears in

273 272 _ DY
£ — 2p¥ 1— NS (v NF,,
Xof=2em o |Ep "' "D Y

27'('3 2

D" TTFED

3) = 2 27T3 v ZDJV-—
+2D§)N{FWD7T-T+,0 7'3—F2D7T‘7' StV + 2N N Fp

™

+EON (Tg - -ty T) [S*, ] N

om? 2pms) -
+E9 (1= 23— 2 ) Nils". SN
272
2D/(3) 3 1
R ED TP T D

N [(1 2 ) 7y T3 71'-7'] S (v + Di‘) NE,. (4.2.4)
F2?2D F2D 2my a

Here the first two sets of interactions have the transformation properties of P3 and Py,
while the other three represent the tensor product T34 ® P,. The TV operator with
coefficient D(3) Dé ) p contributes to the isoscalar nucleon EDM, while D(3) Dg?’) p
and Dl(3 = Dl( )p are isovector contributions. With coefficients E0 and E1 ,
find isoscalar and isovector contributions to the nucleon magnetic dipole moment,
suppressed by m2 /M%CD with respect to Eq. (3.3.18). They are associated to TV
interactions that contribute to pion photoproduction. The coefficients in Eq. (4.2.4)

scale as
2

P D ES =0 e . 425
0,1> 1 0,1 6T2(9>M%CD ( )
For convenience, the EDM operators in Eq. (4.2.5) include a recoil correction, which
will be needed in the calculation of the nucleon EDM at NLO. Other electromagnetic

interactions with A = 4 are constructed in Ref. [39].

At the same order A = 3, more TC electromagnetic operators are generated by
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tensor products involving the quark mass term Sy in Eq. (3.4.15). They are

ER 2
£§}=2,Om = 2F0(3) FW[?’)NSMUVN Fu + 2F1(3)F DN7T -TSMYN F,
— 2 2 2
+ Ni[S*,5"] {Gé3) (1 - %) +G§3) (7'3 _ 77-7')

™

2 2
'(3) 27 — 27 273
+ Gl (1—F2D)N|i<1—m)73+ﬁﬂ'T]}NFHV

™

Notice that the operators Fo(g) and F 1(3) have exactly the same form as the TC partners
of the isoscalar and isovector EDM operators with coefficients D((]s) and D§3), while
G(()g) and Gg?’) are identical to the TC operators E(()g) and Efg). Therefore experimental
data on TC pion photoproduction, or on the nucleon magnetic moment can at best
provide information on the sum of coefficients Dé‘?l) + Fo(i) and Eé?)l) + Gé‘?, but not on
the value of the individual coefficients. Since the short-distance contribution to the
nucleon EDM only depend on D((fl), this destroys our ability to extract information

about the TV operators from their TC partners.

4.2.2 Photon-nucleon sector. Dimension 6 sources.

We now consider the dimension 6 sources of 7" violation in Eq. (3.2.53). The chiral-
invariant sources, the gCEDM and the TV four-quark operators in Eq. (3.2.37),

generate the interaction with the lowest chiral index, Ag = —1.

- v {9pD 1 9p 2
Eé,fl)ZZ,em = N{2Dz(u01) +2D1(u11) [7'3 + 2D (msm T — 71'27'3)]}

s

1D¥
SE v — | NF,,, 4.2.7
(v 4 50 ) F, (12.7)
where, as before, we included a recoil correction in the Ag = —1 Lagrangian. The

scaling of the coefficient is

M2

_ M
Dfuol,)1 =0 (ew QCD) , (4.2.8)
T
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with w € {w, oy, 05}. Notice that, differently from TV from the @ term, for chiral
invariant TV sources the short-distance EDM operators have the same chiral index
as the leading pion-nucleon coupling, Eq. (4.1.29). Since the latter contributes to
the nucleon EDM only via loops, which pick up a further Q? /M%CD suppression, it
follows that, for chiral invariant sources, the nucleon EDM is mainly determined by
short-distance physics.

A second consequence of the enhancement of short-distance vs. long-distance
physics for chiral invariant sources is that the nucleon EDFF does not depend on the
momentum transfer at leading order in yPT. Momentum dependence only arises at
next-to-next leading order (N2LO). At this accuracy we need to consider the power-

suppressed, A = 1 Lagrangian

I 22 _ 2
‘CS,)f:Zom = 2N |iD1(u1()) (1 - F;TD) _'_le)l (7'3 - F;Tls)ﬂ' : T):| SMNUVFW/

_ ’ 2772 — 2

+2D£Ul% (1 — FED) N |:7'3 + FE—D (7T37T T — 7T2T3):| S“NUVFW/
1 - _ o 2

_4m?VN{2D£UOI) +2Dfu11) [7'3 + 72D (7r37r ST — 7727'3)]}

S-D, D! Nv'F,
N (S50 + SV7) (S DL DL, + 5D NoFy + .. (429)

The first three operators in Eq. (4.2.9) are proportional to the quark mass, while
the fourth and fifth are relativistic corrections to Df,;ol) and Dfu_ll). Finally, the two

operators in the last line are short-distance contributions to the first derivative of the

nucleon EDFF. The scaling of the coefficients is

_ _ 2 1 _ 1 1
PY O _ o el SO — o ew—s—". 4.2.10
w0,1" Hwl EZUM% MQCD ) w 0,1 cw Mg% MQCD ( )

Eq. (4.2.9) only contains the operators relevant to the calculation of the momentum
dependence of the EDFF, the full Ag = 1, electromagnetic Lagrangian stemming
from the gCEDM and four-quark TV operators is given in Ref. [155].

The qCEDM and qCMDM generate electromagnetic interactions very similar to

those stemming from the QCD 6 term and the quark mass difference. Also in this
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case, chiral symmetry breaking from electromagnetism spoils the relation between
TV operators and their TC chiral partners, which, for convenience, we list separately
in Egs. (4.2.11) and (4.2.12). Since dy and ds are proportional to the light quark
mass, the first TV operators with soft photons appears at A = 1. They are

1 - = (1 271’2 = (1 271'3
L e = QN{D;g (1 - 255+ DR (- o

~ 271'2 2
+ oy (1 B F2D) ng ~p (T T)]}

s

= 2 _ V
- 0 (- g2y - m-)] v
(4.2.11)

As usual, we have introduced recoil corrections to the isoscalar and isovector EDMs in
the leading Lagrangian. As in the case of the QCD @ term, the largest short-distance
electromagnetic interactions are contributions to the isoscalar and isovector EDMs
and to TV in pion photoproduction, and they appear with chiral index which is two
units bigger than the leading pion-nucleon TV coupling. The TC partners of the
operators in Eq. (4.2.11), generated by the isoscalar and isovector qCMDM, are

1 o) 2m | =) A 2
ﬁ((l(%MDM,leem = 2N{FWD Dlg(]) + D;(l) T3 — FgD (71’27'3 — T3T - T)

) = 2
{Eélo) + E;(ll) (7‘3 D (7727'3 — T3 - ‘r))} } i[S*, SN E,,.

(4.2.12)

and, as in the case of , they do constitute small corrections to the isoscalar and

isovector nucleon MDM and to TC pion photoproduction off the nucleon.
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The operators 117(510), Déll), Eélo) and 5(511) transform as third and fourth components
of chiral four vectors. They all receive contributions from both the isoscalar and

isovector qCEDM. Schematically, we write the scaling of these coefficients

~ - 2
pW EY _ o e(S +4 ) __Ma ) 42.13
q0,1 q0,1 0 3 M;,%MQCD ( )

where the “+” should not be interpreted literally, but simply as an indication of the
existence of two contributions to the coefficients. l:);(i) and E;(ll) respectively come
from the realization of the product doVy @ Ty, and d3Ws ® Thy. Consequently, they

scale as

DY =0 <e502m73> ., V=0 <653m7’2f> . (4.2.14)
MTMQC’D 4 M%MQCD
The scaling of the TC coefficient in Eq. (4.2.12) can be inferred from Eqs. (4.2.13)
and (4.2.14).

Finally, the qEDM only generates operators that transform as vector,
2 r TV
(1) B W | 273 21 , DY
Leppn f=2em = 2DgoN [F D + po (1 — FQD)} St <U + 2mN) NF,,

273 , , D7
7r-T+p3<7'3—F2D7r~T)] S“(v + 2mN>NF“V

s

2 2
[(7‘3— i W-T) —poFDTF'T} i[S*,SYIN F,,

N
272 27 —
(1) 3 . v
+ qu [(1— )_ngwD:| Nz[S“,S]NFW,

with coefficients
21 m2 1
pW E(1)> — 0| e, lx (D“’ E(1)> — 0| eg e~ ).
( q0> 241 ) Po € OM;,% MQCD ) qlr™q0 P3 € 3M2 MQCD

In the case of TV from the qEDM, long-range physics is suppressed by powers of o,

and TV observables like the neutron and deuteron TV electromagnetic moments are

dominated by short-range effects. Asin the case of TV from chiral-invariant operators,
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the scale of the momentum variation of the nucleon EDFF is thus determined not
by m,, but by Mgcp, and, consequently, we have to construct the power suppressed
A = 3 Lagrangian. As usual, we find operators with two more covariant derivatives,
or one extra insertion of the light quark mass. Neglecting the TC operators, and

using barred symbols to denote TV coefficients

€ s = 2 (DY + D) SN,

prm) (DY) + DY) 5D _DL_Nv'E,,

N (S + SiP7) (S DDA, + S#DE) Nv' By + . (4:217)

with
DY = O|e(d +bs2) MW%@)
Dé?’l) = O e(doe + 83) M2M30D>
SHCIG eéoM%ﬂ;/[%CD>, st :(o(e&ngT%m)). (4.2.18)

Once again, the “+” in the power counting estimate of D((;)O)J indicates the presence
of different contributions. The dots in Eq. (4.2.17) denote multi-pion components of
the listed operator, and operators which start at one pion, which are not relevant to

our discussion.

4.2.3 Four-nucleon currents

The study of TV electromagnetic moments of the deuteron and other nuclei requires
the construction of four-nucleon TV currents, which, as discussed in Chapter 6, can
play a role, especially for those TV sources, like the gEDM or the chiral invariant
gCEDM and TV four-quark operators, for which short-distance effects tend to dom-
inate. We construct in this Section the most important four-nucleon currents, which

appear with index A = 4 for the QCD 0 term, Ag = 2 for the gEDM and qCEDM
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and Ag = 0 in the case of chiral invariant TV sources. Modifications to the power
counting of four-nucleon currents in the Kaplan, Savage and Wise power counting are
discussed in Chapter 6.

In the case of 6 term, at A = 4 we find

_ Qg2 _ _
(4) _ v
ﬁMﬂMI—lMNO—F%JNWUNNW%

[ 23 _ 272 2 ) ]
o[ (-5 <2 (1- 755) (o= 5 o))

[NS“U”TZ-NNN — NS“UVNNTZ'N} F

[ 2m; s - 272 2 ) ]
+ _Lg <5z3 - FgD) +L4 <1 — —F3D> <5z3 — —FED (71' —7T37Ti))-

[NS”UVTZ'NNN—FNS“UVNNTZ'N] Fo+... (4.2.19)

where the first operator Dy y transforms like the vector Py, ZLLg and ZL274 as the vector
and the tensor in the representation of Py ® Ts4. The dots in Eq. (4.2.19) stand for
other TV operators with A = 4 that start with one pion. Since they do not contribute
to the deuteron EDM, we do not construct them explicitly. We also omitted the
TC partners of the operators Dyy and L;, since, as in the case of electromagnetic
operators with f = 2, the link is no longer useful. By naive dimensional analysis, the

coefficients of the four-nucleon currents in Eq. (4.2.19) are

_ _ _ m2
Dun.Li=0[ef—Tn ) 1.2.20
NN (e 7“2(9)F3M2190D> ( )

The operator Dyy represents a short-distance contribution to the deuteron EDM.
In the perturbative pion approach, its scaling is modified, and the operator is en-
hanced with respect to (4.2.20). Nonetheless, we find that it does not contribute to
the deuteron EDM at LO, but it is important at NLO. The operators L; and Lo
contribute to the radiative capture process n +p — d + v, and the inverse process,
the photodissociation of the deuteron d + vy — n + p, with the neutron and proton in

a 'Sy configuration. The operators Ly and L, do not contribute to S waves.
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The qCEDM generates exactly the same operators as (4.2.19), with coefficients

= = ~ ~ m2

D NN;L 12 = @ 6(50 —|—(53)—7r (4221)
= ~ m2
L 34 = @ 650—7T y (4222)

while the gEDM only contributes to the operators that transform like vectors, Dy,
I/l and Eg

m2 m2

Dony = 0| ebg——2+—|, El,gz(’) e03——s5— | .
“ ( F2MEMp ey, “ F2MZMRp

(4.2.23)

The operators stemming from chiral invariant gCEDM and TV four-quark oper-
ators differ from those in Eq. (4.2.19) only in their chiral structure. They appear in

the A = 0 Lagrangian
Eé(,])f:4,em == Dw NNNS”UVN NNFH,,
2 _ _ _ _ _
+ (52-3 ~ =D (mw? — mm)) [Lw1 (NS*0"7; N NN — NS*v” N N7;N)
+ Ly2 (NS*0"7; N NN + NS*v” N N7;N)| F,,

(4.2.24)

with coefficients given by

= = w
DynNN: L1z =0 (e 5 2) . (4.2.25)
F2M;

For the gEDM and the chiral invariant T'V sources, it is interesting to go one order

further, and construct short-range contributions to the deuteron MQM. We find

n = = _ _ 22
Lé’;::lzlvem = &Py, NSgN NS\N O*F,, {Mw + M, <1 - F;TD” +... (4.2.26)

where the dots denote other TV operators at this order that do not contribute to the
deuteron MQM. The chiral index n is n = 2 for the gEDM and n = 0 for the gCEDM
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and the TV four-quark operators. Consequently, the scaling of the coefficient is

1 - m?
My=0ew—gg—— |, M=0|elom5rgra— |- 4.2.27
( F;M%MQCD> ‘ ( 0F2M2M50D> (4.227)

Once again, these scalings are modified if we want to account for the fine tuning in

nuclear physics, as we discuss in Chapter 6.

4.2.4 Lepton-nucleon operators

Finally, we take into account the lepton-nucleon operators stemming from the two-
lepton-two-quark operators in Eq. (3.2.55). At leading order in the xPT power
counting, we obtain

2
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to which we assign the coefficients

i
20 =0 (&ﬁé) . (4.2.29)

Increasing the chiral order by one, at Ag = 1 there are operators with one covari-

ant derivative, for example with the form (neglecting chiral partners and isospin)
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eeNS - D, N and coefficients of order O(eay, /M:,%MQ(;D). We do not construct them
explicitly.

The QCD 6 term, and the other dimension 6 sources of T' violation in Eq. (3.2.53)
can also generate couplings of the form (4.2.28), when hard photon exchanges between
quark and leptons are integrated out. However, the chiral violating structures ee,
eiyse and e in the lepton sector can only be generated by insertions of the lepton
mass, and require the exchange of at least two hard photons, leading to tiny coeffi-
cients. Long-range contributions to lepton-nucleon interactions of the form (4.2.28)
are less suppressed, and arise from TV operators with two nucleons and two photons,
still their contribution to atomic EDM appears to be small [119], and we do not ex-
plicitly calculate them here. The largest lepton-nucleon couplings from the 6 term
and the dimension 6 sources of TV comes from the radius of the Electric Dipole Form
Factor, which we discuss in detail in Chapter 5.

Operators of the form (4.2.28) are important for the EDMs of paramagnetic atoms.
For example, in the case of ?® Tl it is found that [81, 119]

dpy = —585d, — (43 GeV) (ng> 1 /529) (4.2.30)

which, with our estimates (3.2.38) and (4.2.29), and neglecting .

Me

dTl ~ —EMQ% (585 5@ +

43 GeV )

e“oiq1 (4.2.31)

e

If, as in the majority of the models, 041 is proportional to m./Mpy, then the con-
tribution of short-distance lepton-nucleon operators is negligible, and experimental
constraints on the Thallium EDM are immediately translated in bounds on d.. On
the other hand, if there exist models in which oy,; is not suppressed by the lepton
mass, as could be the case of certain two Higgs doublet models, 2§°) and Zgo) can

contribute significantly to dz;, polluting the extraction of d..
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4.3 Role of tadpoles

In Sec. 3.4 we discussed how the quark mass term, in presence of T violation, can
cause vacuum instability and we imposed vacuum alignment in first order in the
symmetry-breaking parameters by choosing ¢ according to Eq. (3.4.35) so that no S3
was present in the leading Lagrangian. Yet, non-aligned terms, tadpoles in particular,
germinate in second order in the symmetry breaking parameters, or when higher
dimension TV sources are added to the mix.

In this Section we show how the subleading tadpoles do not constitute a problem.
Because of the smallness of their coupling constant, they can be dealt with in pertur-
bation theory, meaning that, for any given TV observable at a given accuracy only a
finite number of neutral pion disappearing into the vacuum must be considered. For
the applications we discuss in Chapters 5 and 7 it is more convenient to eliminate
the pion tadpoles from the mesonic Lagrangian. This result can be achieved with
field redefinitions of the form (3.4.20) and (3.4.26) and an appropriate choice of the
rotation angle . The field redefinitions do not induce new TV interactions. Their
net effect is to modify the dependence of the coefficients of the TV operators con-
structed of Secs. 4.1 and 4.2 on the parameters £ (3.2.6), and dy5 (3.2.45). Since in
the previous Section we kept track of the dependence of the low energy constants on
€ and 5073, here we show in detail how such dependence is modified by the elimination
of the tadpoles.

For the reader not interested in the details, we can summarize the main result of
this Section by noting that the elimination of the leading tadpole from dimension 6
sources, in Eq. (4.1.13) causes an ineffectual shift of the coefficients of the operators
generated by the isovector qCEDM, while it produces an additional contribution,
proportional to d; and to the quark mass difference ¢, to the EFT operators that
represent the isoscalar qCEDM. Schematically, the effect of the elimination of the
leading tadpole can be obtained by replacing do with dg + £d3 in the scaling formulas

in Secs. 4.1 and 4.2.
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Now the details. The chiral symmetry breaking Lagrangian in the purely mesonic
sector, including operators with A up to 2 in the case of chiral symmetry breaking

from the quark masses, and Ag = 0 for dimension 6 sources was constructed in Eqs.

(4.1.1), (4.1.4), (4.1.9), (4.1.13), (4.1.15). We summarize it here.

c  miF? 1+Am72T m?2 1+Am72T 2+5mfr )
tadpole 2m2 2D m72_‘_D ™ 50?2 T3

s

om> 2m? - _
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Fﬂ— U s s 1 _
- 2D D)7

Fﬂﬂ'g
2D

(4.3.1)

The quark masses are responsible for the TC operators in the first line of Eq. (4.3.1),
while 6 causes the A = 2 tadpole. We have

4 2,4
Am2 =0 -2 ) smi=0(—-"z |, 432
<M6230D> (7’4(9)]\/[2900 ( )

The qCEDM and the chiral invariant TV sources produce tadpoles in the Ag = —2

and Ag = 0 Lagrangian,

_ - m2M3 _ m2M3
pahom? = 0 <5$> A -0 (“’ﬁ) | 433)
and
B B 4 ~ B 4 B 4
psdym? = O (@%) . podgm =0 (m%) . dumi=0 (wa%) . (4.3.4)
T T T

In Eq. (4.3.1) we have not written the TC operators in Eq. (4.1.13) and (4.1.15),
whose variation is negligible at the accuracy we are working, and we also neglect
terms proportional to p?, which are small for small 6.

The suppressed non-aligned tadpole operators in Eq. (4.3.1) can be dealt with in
perturbation theory and do not constitute per se a problem. This can be seen, for
example, in the case of the two-point pion Green’s function, already discussed in Sec.
3.4.1. The Lagrangian (4.3.1) generates Feynman diagrams similar to those in Fig.

3.1. If we limit ourselves to power counting and neglect the details of the diagrams,
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the tadpole term generates interactions analogous to those in Eq. (3.4.3), with the

replacement
om? pe?m?
~ T =0 ——7o— 4.3.5
T <r4<9>Mch )
in the case of the # term, and
- Aqmi Awmi z MécD MéCD
g~ p3 m2 + ) =0 |3 M% +O | we M:,% (4.3.6)

for the largest tadpoles generated by dimension 6 sources.

In the present case ¢ is much smaller than one, suppressed by two powers of
mx/Mgcp or Mgep/Myp. The subleading tadpoles generated by dimension 6 sources
yield an even smaller g, of the size of m?2/ M% Therefore, the tadpoles in Eq. (4.3.1)
do not cause vacuum instability, that is, the choice of vacuum done in the construction
of the chiral Lagrangian is still viable and the explicit symmetry-breaking terms can
be handled in YPT. A toy model that illustrates this fact can be found in App. E.

However, generally pion tadpoles need to be considered when calculating any
observable. Due to the smallness of their coefficients, only a manageable number
of them contribute to the calculation of an observable at a given accuracy in the
expansion in powers of ()/Mgcp. A concrete example where tadpoles play a role is
the TV pion-nucleon form factor at relative O(Q?/Mgp), which will be discussed in
App. J.

Still, one can rotate the tadpoles away using Eqs. (3.4.20) and (3.4.26). With the

choice
p},Aqmi + A,ym? - MécD MécD
an m2 O | 05 M;I% + O | we M;z% (4.3.7)

we can eliminate the tadpoles that transform like S3 from Eq. (4.3.1). Since the
angle is small, tan p ~ ¢, and from here on we keep only terms linear in ¢. The
fact that the angle ¢ scales as Mgqp /M% implies that the transformation of chiral
variant operators generated from the quark mass at A = n + 2 contributes to TV

operators from dimension 6 TV sources at Ag = n. The variation of TV operators
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from @ generates a TC contribution proportional to  and to 1/M?, which, for the
same argument of Sec. 4.1.1, is small, while the variation of TC operators from the
TC and chiral breaking dimension 6 sources generates TV operators proportional to
1/M}, which are also negligible. Chiral invariant operators are not modified by the
redefinitions (3.4.20) and (3.4.26).

The effect of the rotation (3.4.20), with angle (4.3.7), on the mesonic Lagrangian
is to cancel the tadpoles with transformation properties of a chiral vector, and to
modify the coefficients of the tensor:

m2F? Am? m?2 Am2\ , dmi ,
Faapre = =\ 502 ) “op M ep) ™ T ape™

+55 (5m72rp + 04m?2 py + dym?2 po + E;mi) (1 - 13773712)) 73,(4.3.8)
with
Sim2ps = Sym2ps — Aym? s Aﬂ:;“, (4.3.9)
oym2py = dgm?2po + Aqmiﬁ?)inﬂjra (4.3.10)
Fm? = §om?— Aym? (W) | (43.11)

The new terms come from the transformation of the TC operators in Eqgs. (4.1.4) and
(4.1.9). We can thus rotate away the tadpole without introducing new interactions in
the meson Lagrangian. The net effect of the rotation is only to change the dependence
of the coefficients on the parameters 50, 53, and €. The rotation indeed replaces Egs.

(4.1.16) and (4.1.17) with

B ~ 4
pbim? = O 53]\”;—%>, (4.3.12)
B ~ B 4
ﬁo(%m?r = 0 8(50+€53)]n\;—;>, (4313)
Smi = O wa(l—l—az)m—i) (4.3.14)
2 = 3 ) 3.
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where, as usual, the “4” in power counting estimates is used to indicate the presence
of different contributions to the coefficients.
The remaining tadpole in Eq. (4.3.8) can eliminated by a second rotation, now
with angle
o = —% (5m,%p + 8y s + 8)m?2 o + E;mi> . (4.3.15)
In this case, the size of ¢’ implies that the variation of T'C, chiral breaking operators
generated by the quark mass at order A = n yields new TV contributions to the
A = n + 2 Lagrangian from the § term and Ag = n Lagrangian from the dimension

6 sources.

In the mesonic sector, we are left with

r m2F? " Am? m2 ”m Am2\ N dmz
_ — ™ s
tadpole 4 2m2 2D m2D 2D2"?
——Z (m2p + 0im2 ps + dhm2 o + 0. m? 2’ 7T (4.3.16)
2D =P 303 070 w''ty FED 3, 9.

Since the tadpole generated by the rotation (3.4.20) and the one in Eq. (4.3.8)
have different chiral properties, residual TV interactions involving an odd number of
pions are left behind. In many processes they will only contribute at loop level and,
consequently, at high order.

The two rotations that allow to eliminate the tadpoles affect the other sectors of
the Lagrangian as well. Also in this case, no new interactions are introduced, but the
dependence of the coefficients of TV operators on the parameters of the quark-gluon
Lagrangian 50,3, and £ becomes more complicated.

For the § term, the rotation with angle ¢’ turns Eqs. (4.1.2), (4.1.19) and (4.1.27)

into
LE5) = AmyNN (1 - ;;;) MTN {NTgN ;;;NT wN}
—FfDémN (1 + 67:5) Nt -7N + 53);7;;%2NN
+ Fi ’;) P — A?N 5%3 - 2;2;;2 NN+ .. (4.3.17)
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where we neglected terms quadratic in p, and ... denotes the remaining terms in Eq.
(4.1.27), which are not affected by the rotation. Eliminating the tadpoles amounts
to a O(e?m2/Mpep) shift in the 6 contribution to go, and a shift in the m NN
coupling. Recall that the c§3’ term originated in the symmetric tensor contained
in a P, ® P, structure just like the tadpole, as it is obvious from the form of the
corresponding terms. However, since there is no a priori relation between c§3’ /Ampy
and dm?2/2m?2, the m3s NN coupling is not eliminated when we rotate the tadpole
away. The new contribution to the isovector coupling gf’) has the same scaling as

cf’). Notice, however, that the two contributions differ in their multi-pion structure,

and, at least in principle, the two coefficients cg?’) and Amydm2/m? can be extracted
independently.
The elimination of the tadpole has more consequences for the dimension 6 oper-

ators. In the pion-nucleon sector, the rotation with an angle ¢ = O (MécD /M%)
transforms the TV part of Eq. (4.1.29) into

L5 = (g + Bo) o VT TN = Gy + G
—Zl?-,—;;(v D x Dym) - NS'TN. (4.3.18)
with
Jog = SquﬁoJrémNﬁgA;g’% (4.3.19)
Jow = §ow+5mNA;”§’2f (4.3.20)
9, = Aquﬁg—zAmNﬁg,A?jg’% (4.3.21)
Jw = glw_2AmNAwm3r (4.3.22)

mz
From Eqs. (4.1.14) and the scaling of Amy = m2/Mgcp, we see that the shift in the

isovector couplings gi, and g, is inconsequential, their scaling is still the same as

Egs. (4.1.30) and (4.1.31). Instead, for the isoscalar couplings, the behavior in Eqs.
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(4.1.30) and (4.1.31) is replaced, after the rotation, by
2

_ N N me —/ 2 mgr
goq =0 ((50 + 853) WMQCD s Gow — @ w(l +é )WMQCD . (4323)
7 7

The rotation used to eliminate the subleading tadpole induces a further, small, shift
in the qCEDM and gCEDM contributions to g and g; in Eqs. (4.3.18). Such a
shift contributes at Ag = 1 in the pion-nucleon sector, for which we only considered

qCEDM contributions. We find that gp , is replaced by g;, + dg ,, with

’ om ~ ~ ~ _

0%, = 5 (Jm2ps + om0 (4.3.24)
' AMN [~ 5. o~ o

0g1, = —2 mgN <5§m3rp3+56mipo). (4.3.25)

The rotation with angle ¢’ does not affect, at the order we are working, the nucleon-
nucleon and nucleon-photon Lagrangian from the qCEDM and from the gCEDM and
four-quark operators.

On the contrary, the rotation used to eliminate the leading tadpole from dimen-
sion 6 sources also affects the subleading pion-nucleon Lagrangian, and the nucleon-
nucleon and nucleon-photon Lagrangian. In the subleading pion-nucleon Lagrangian,
for operators that transform as Wi, like qu and Bq 3 in Eq. (4.1.32) and all the op-
erators in Eq. (4.1.35) the effects of the rotation can be absorbed in a redefinition of
the coefficients, whose scaling is still determined by Eqgs. (4.1.33) and (4.1.36). For

operators that transform as V;, the scaling of the coefficients is modified.

503 =~ 7 L, Agm? < <\ m2
poByr = poBer + P 7‘;2 =0 <<6o+553) ﬁ%) (4.3.26)

2

< - A,m?2 ~ - m
0 ! == 0 : 0 ; q T = %
A R ((60 +203) v MQCD) . (4.3.27)

K

For the tensors (4.1.38), the shift in the coefficient Sél)mN is inconsequential. The

coefficients of the isoscalar and isovector couplings N7t - 7N and w3 NN receive an



140

additional contribution:

)~ s ) s, - @ Agm2

psey” + oy = (ﬂscgl) + pocs” + pct” 7312 “) (4.3.28)
.z oz _ A,m?
P051(1)mN = ,005§1)mN + 935§3)mN 7;2 = (4.3.29)

where the new contributions to the coefficients go as €265 and £03. Once again, they
can be obtained by replacing dy with 8y + €03 in Eqs. (4.1.39) and (4.1.40).

The same replacement in Eqs. (4.1.47) and (4.1.49) takes care of the effects of
the elimination of the tadpoles in the four-nucleon sector. Notice in particular that
the coefficient of the chiral invariant operators in Eq. (4.1.50) are not changed by the
field redefinition.

The same argument applies to electromagnetic operators. The elimination of the
leading tadpole generated by the qCEDM modifies to coefficients in Eq. (4.2.11) in a
way that can be schematically summarized by the replacement &y — o + €03 in Eqs.
(4.2.13) and (4.2.14) (and also Eq. (4.2.21) and (4.2.22)). The rotation of the leading
tadpole generated by the chiral invariant gCEDM and TV four-quark operators does
not modify the coefficients of the electromagnetic operators with Ag = —1 in Eqs.
(4.2.7), while it changes the chiral breaking operators DS}OJ in Eq. (4.2.9) in a way
that corresponds to shifting w — w(1 + 2).

Since in EFT a field redefinition does not change the result for any observable,

it is our choice whether to keep or eliminate tadpoles. We give an example of this

flexibility in App. J.

4.4 Discussion

In Secs. 4.1 and 4.2 we constructed the lowest orders of the TV chiral Lagrangian
involving pions and up to four nucleons, which is generated by dimension 4 and
dimension 6 TV sources. Tab. 4.1 summarizes the accuracy of our results in the pion-

nucleon, nucleon-photon and nucleon-nucleon sector. The coefficients of TV operators
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Correction | pion-nucleon | photon-nucleon | nucleon-nucleon
< Q? x F2Q
0 term, leading 1 QQ/MC%CD Q/Mocp
qCEDM | derivative Q/Mgcp Q*/Mdep Q*/Mep
derivative® | Q?/Mqp — —
mass m2/Mgcp — —
gCEDM leading 1 1 1
4-quark | derivative — Q/Mocp —
derivative? — Q*/Mep —
mass — m2/Mgep —
qEDM leading Qo /T Qz/MéCD Qem@/TMoep

TABLE 4.1. Size of the coefficients of the TV terms in the Lagrangian constructed
in Secs. 4.1 and 4.2. Operators stemming from the § term are measured in units
of 9_7317% /Mgcp, while operators generated by the dimensions 6 TV sources in units
of (0, 6, w)ym2Mgcp /M72’ for the qCEDM, qEDM and chiral invariant respectively.
To compare quantity of the same dimension, photon-nucleon and nucleon-nucleon
coefficients are multiplied by Q% and F2Q, where @ is the momentum of external
particles, of the order of the pion mass.

stemming from the § term are measured in units of #m?2/Mgcp, while for dimension
6 sources we are using units of (4, 6, w)miMQCD/M% for the qCEDM, qEDM and
for the chiral invariant dimension 6 sources respectively. In order to compare objects
with the same dimension, we have multiplied the photon-nucleon coefficients by @Q?
and the nucleon-nucleon by F2Q, where () denotes the typical momentum of external
particles, and it is of order of the pion mass.

Even before delving into the details of the calculation of some TV nuclear observ-
ables, which is the subject of Chapters 5 and 6, we can already draw some qualitative
conclusion from Tab. 4.1.

For the dimension 4 QCD @ term, the first noticeable aspect is that all interac-
tions are proportional to negative powers of the large scale Mgcp. This is a simple
consequence of two facts: i) the  term can be traded for a mass term, which then
brings at least one power of m?2 in the EFT; ii) no P vector can be constructed out of

pion fields alone. Time reversal is an accidental symmetry, in the sense that it only
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appears in the subleading effective Lagrangian, even though it is (for  # 0) a lead-
ing interaction (that is, represented by a dimension-four operator) in the underlying
theory. T violation would thus be somewhat suppressed at low energies, even if  had
natural size. The same is true of isospin violation and ¢ [122].

Extending the analysis to the dimension 6 operators, we notice that the different
chiral properties of the § term and the gCEDM on the one side and the gCEDM and
four-quark operators on the other imply very different relations between long-distance
and short-distance TV effects. The € term and the qCEDM both violate chiral sym-
metry, and thus they can generate TV pion-nucleon interactions in which the pion
couples to the nucleon non-derivatively (see App. D). As a consequence, the first
TV pion-nucleon couplings appear in the Lagrangian two orders before short-range
contributions to the nucleon EDM, and to the first nucleon-nucleon interaction which
contributes to the TV nucleon-nucleon potential. For the nucleon EDM and EDFF,
this fact implies that even though pion-nucleon TV couplings can only contribute to
the nucleon EDM via loops, which bring in a m2 /(27 F,)? suppression, they are still
as important as the short-distance operators [93, 91]. For higher nuclei, the most
important contribution to TV electromagnetic moments comes from the one-pion-
exchange TV potential, which causes the nucleus wavefunction to mix with states of
different parity, unless the admixed component has quantum numbers that cause the
dipole matrix element to vanish. We will discuss in detail the example of the deuteron
EDM and MQM in Chapter 6. The application of chiral EFT to study the effects
of # term and the qCEDM in few nucleon systems with A > 2 is thus particularly
promising, since TV observables are likely to depend on few low energy constants, in
the f =2 TV Lagrangian. Once these constants are fixed in TV experiments, one is
in the position to make testable, model independent predictions.

For the chiral invariant sources of T violation, instead, the pion-nucleon TV cou-
pling appear in the Lagrangian at the same order as short-distance nucleon EDM

operators and four-nucleon TV operators. This happens because it is not possible
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to write a TV chiral invariant pion-nucleon coupling with only one derivative. The
first chiral invariant TV pion-nucleon coupling must have two derivatives, while non-
derivative couplings can be generated by considering the combined effects of chiral
invariant TV sources and the chiral-breaking quark mass; in any case, pion-nucleon
couplings receive a further suppression of Q? /Méc p- This difficulty does not affect
the nucleon-photon and nucleon-nucleon sector, where chiral invariant operators with
a minimal number of derivatives can be constructed.

The consequence for the nucleon EDM is that it is dominated in this case by short-
distance contributions. For higher nuclei, TV corrections to the wavefunction now
are not only due to TV pion-exchange, but also to short-distance operators. More in
general, we will see in the concrete examples of Chapters 5 and 6 that the increased
role of short-distance interactions in the case of chiral invariant TV operators reduces
the predictive power of our analysis, because of the appearance of more low energy
constant.

Finally, pion physics is suppressed also in the case of TV from the gEDM. In this
case the suppression comes from the need to integrate out the photon in the qEDM,
which leads to the factor of aey /7 in Tab. 4.1. Also in this case, the predominance

of short-distance effects poses a serious limitation to our predictive power.

9o g1 92

0 term LO 0 — —

N2LO | 0(1,e%) m2/Mdop | Oe m2 /M —

QCEDM LO (50, 853 53 —

N2LO (50,853,8250,8353) (53, ESO, 8253) 853
Xm?r/MC%CD Xm?r/MC%CD Xm?r/MC%CD

gCEDM | LO w, we? we —

TABLE 4.2. List of possible non-derivative TV pion-nucleon vertices, up to
O(m2/Mgep) wrt. the leading pion-nucleon coupling. We give the size of the
contributions to the interaction strengths in units of m2/Mgcp for the 6 term and of
m2Mocp/ M72“ for the dimension 6 TV sources. For simplicity we assumed 0 < 1.

We can now look more in detail to the structure of the TV pion-nucleon vertex.
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Traditionally [157, 158, 159, 160, 161], implications of 7" violation in nuclear physics
have been drawn from the possible isospin structures of non-derivative pion-nucleon

interactions, without prejudice about their relative sizes:

Ly = _I%Nﬂ- TN — %ﬂ'gNN — %N (Bmgmy — 7 - T). (4.4.1)

In Tab. 4.2 we list the estimated sizes of the non-derivative TV pion-nucleon couplings
found in Sec. 4.1.2 for different sources of 1" violation.

Since the § term breaks chiral symmetry, but not isospin symmetry, at leading
order it only contributes to the isoscalar coupling go via Eq. (4.1.19) which is nothing
but the pion-nucleon interaction of Ref. [93] with its chiral partners, in stereographic
coordinates. From Eq. (4.1.19)

Jog = Omyp. (4.4.2)

This coupling receives hadronic corrections of O(m2 /Mg p), and, after the elimina-

tion of the tadpoles, from Eqs. (4.1.27) and (4.3.17) one gets

_ om?
0Gog = 2p (_5§3)mN + dmy 2m2> : (4.4.3)

K
Jog also receives electromagnetic corrections, which are suppressed by en /7, and are
not explicitly constructed here.

The isospin breaking coupling m3 N N is suppressed by two powers of m,/Mgcp:

gig = —4p <c§3) — Amy (25:;:2%) . (4.4.4)
It also receives corrections of order aep, /7, which we do not explicitly list here. Nu-
merically oem/m ~ eml /Mg p (using Mgep ~ m,, the mass of the rho-meson), so
the most important contribution is presumably the hadronic one. Finally, the most
relevant contribution to gs has electromagnetic origin and is suppressed by aep, /7 with
respect to go [39]. Hadronic contributions to msN7sN are suppressed by mi/Mqp,
as shown in App. H.

It is clear then that the calculation of TV observables that are mostly sensitive to

g1 requires, at least for TV from the QCD @ term, the construction of the full N?LO
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TV Lagrangian, which contains not only non-derivative pion-nucleon couplings of the
form (4.4.1), but also derivative pion-nucleon couplings and short-range interactions.
We will return on this subject in Chapter 7.

In the case of the qCEDM, if we assume that the isoscalar and isovector qCEDM
have the same size, 8y = 83, the isospin conserving and isospin breaking couplings go
and g; both are present at leading order, and, after the rotation of the tadpole they
are (dropping the primes in Egs. (4.3.19) and (4.3.21) )

< _Am?

Jog = Ogmnpy -+ Omyps— (4.4.5)
~ N _Aym?

Gy = Aymyps — 2Amyps 4 (4.4.6)

Two orders down, we encounter hadronic corrections to gy and g;, and the first
hadronic contribution to g,. Dropping for a moment the assumption §y & ds, a
predominantly isoscalar qCEDM, d > 63 will not be distinguishable from the 6
term in low energy observables. In particular, as far as pion-nucleon couplings are
concerned one would find in this case that go > g;. A predominantly isovector
qCEDM, b3 > 0, would instead yield go and g; of approximately the same order,
with the extra factor of € in the isoscalar coupling suggesting g; 2 go.

The chiral invariant TV sources give rise to the same relations between the non-
derivative couplings go, g1 and g» as the qCEDM, even though in this case, derivative
couplings appear already at leading order.

The fact that different sources of TV are responsible for different hierarchies be-
tween the non-derivative TV couplings go, g1 and g has important implications for
the TV electromagnetic moments of nuclei. In Chapter 6, we will explore them more
in detail in the simplest possible example, the calculation of the EDM and MQM of

the deuteron.
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4.4.1 Connection to TC operators

As we have shown, in the purely hadronic sector of the theory, chiral symmetry links
the coefficients of the leading TV operators to those of TC operators. This relation
is particularly important for TV from the # term, on which we focus in the first part
of this Section. We will briefly discuss the operators induced by the TC partners of
the qCEDM and qEDM at the end of the Section.

TV from the  term is linked, in particular, to isospin breaking from the quark
mass difference. Therefore, the measurement of TC but isospin-breaking observables
can determine the contribution of the QCD dynamics to TV coupling constants. Since
isospin violation that is linear in the quark masses always breaks charge symmetry,
while this is not necessarily true of indirect electromagnetic interactions, it is in CSB
observables that we have the best chance of making inferences about 7' violation
from the § term. If we consider the latter as the only source of 7" violation, this link
would leave 6 as the only parameter to be determined in the direct observation of T
violation.

The most important example of the link to isospin violation is in the lowest-order

terms [93, 92, 163]: Eq. (4.1.19) links the leading TV interaction

L)y =~ =Nt 7N (4.4.7)

to the quark-mass contribution to the nucleon mass splitting dmy:

2
_ pEM.
— pomy =0 (L) 4438
go = pomn (TQ(Q)MQCD) (4.48)

It is well-known that this interaction produces the dominant long-range contribution
to the nucleon EDM and form factor [93, 94, 95, 96, 162, 97, 91, 98, 99]. With dmy
known, a determination of gy would allow one to obtain the value of 6 via Eq. (4.1.5).

Now, dmp cannot be determined solely from the observed mass splitting, since
the latter also receives an indirect electromagnetic contribution of similar size dmy =
O(aemMoep/m) [122, 145], given in Eq. (3.3.22). One can use models for higher-

energy physics in order to extract dmy from the Cottingham sum rule, dmy =
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—(0.76 £ 0.30) MeV [137], thus inferring édmy. There is also a lattice calculation,
dmy = 2.26+0.57£0.42+£0.10 MeV [133]. Alternatively, one would like to determine
dmy directly from low-energy data. This is in principle possible [122] because omu
originates from a chiral tensor, and thus generates different interactions between
the nucleon and an even number of pions than does Eq. (4.1.19). In fact, CSB
observables in pion production reactions such as pn — dr° [134, 135, 136] and dd —
am® [164, 165] are quite sensitive to dmy. Unfortunately they are also sensitive
to other CSB parameters and the calculation of the strong interactions themselves
are not easy, so that at present there is room for improvement in the extraction of
dmy from data [166, 167]. This should, nevertheless, be possible as we hone our
theoretical and experimental tools [147]. The link with 7" violation should serve as
an extra motivation for this program.

The connection with CSB is in no way limited to leading order. The first correction

in the pion-nucleon sector [91],

has a coefficient related by Eq. (4.1.21) to the quark-mass contribution to isospin
breaking in the pion-nucleon coupling constant,

- pem?
hy=ph=0 L0 ) 4.4.10
0 = <T2(9)M50D> ( )

At present there are only bounds on ;. For example, from a phase-shift analysis of
two-nucleon data [145, 148, 149], 5; = 0(9) - 1073, which is comparable to estimates
of 8y from 7-n mixing.

Note that when we face interactions that are no longer linear in €, the connection
is not necessarily to CSB; it might be merely to more general isospin violation. For

example, the new TV structure 73 NN in Eq. (4.1.27),

=(3) 2
@ % 2w -
ETJN = 7D (1 FﬁD) T NN + ..., (4.4.11)
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with

2,,4
i® — 4pc® — o [ <M 4.4.12
gl ,001 <T4(9)M%CD ) ( )

has a partner that is isospin-breaking but does respect charge symmetry. The param-
eter 053) can in principle be extracted from isospin violation in pion-nucleon scattering,
but it is not easy: even the very sophisticated, state-of-the-art analysis of Ref. [168]
stops one order shy of it, at which level many other poorly determined parameters
already appear.

We can thus obtain information about some strong-interaction matrix elements
that appear in 1" violation from an analysis of isospin violation. However, at higher
orders in the strong-interaction sector this connection disappears. The consideration
of subleading TV interactions requires the construction of operators that transform as
tensor products of the chiral-breaking terms in the QCD Lagrangian. In this case, the
relation (4.1.5) applies to the ratio of the coefficients of the TV and TC components of
the tensors. In general, however, the tensors thus obtained belong to some reducible
representation of SO(4), and they have to be decomposed as the sum of independent
operators belonging to irreducible representations of the group. High-order tensor
products may generate operators that have the same chiral properties as the vectors
S and P in the QCD Lagrangian. T violation is still in Ps and S3s proportional to
p, but their number might no longer match those of T-conserving Sys and Pis.

One example, given in App. H, is that of a TV operator with the same transfor-
mation properties as Sz, which is linked by Eq. (4.1.5) to a chiral-breaking operator
that transforms as S;. This S, is merely a subleading correction to another Sy, the
nucleon sigma term, which does not have a TV partner. The correction cannot be
separated experimentally from the lower-order term; it could potentially be separated
theoretically via lattice simulations with varying quark masses (although if it is nec-
essary to appeal to lattice calculations then one could calculate the strong-interaction
coefficient of the TV operator directly). Worse still, another Sy without TV partner

can appear at the same order as the S; we are interested in, which is in fact the
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case of the example in App. H. In this case, the connection with a TC observable is
completely lost.

Similarly, in another App. H example, only part of a P is linked to a Pz, which is
a correction to the nucleon mass splitting. As a consequence, the connection between
the coefficient of a N7 - 7N interaction and émy, shown in leading order in Eq.
(4.4.8), no longer holds four orders down in the m,/Mgcp expansion.

As soon as the electromagnetic interaction is turned on, the combined isospin-
breaking effects of the electromagnetic coupling and of the quark-mass difference
destroy the validity of the relation (4.1.5). Here the most important example is the
case of the short-distance contributions to the nucleon EDM, extracted from Eq.

(4.2.4):

ﬁgv,y — 92N

_ _ _ o (DG DB
D + (Df’) +D’1(3’> it 73 < S

DY 2 2
(7T37'r -T — 7r27'3)} SH (UV + z2 L—) NeFH,, (1 - F;TD) )

my P
(4.4.13)
with coefficients
2
D® — ,p® — o[ LM ) 44.14
) p (2 T2(9)M%CD ( )

Since by power counting they should be comparable to the EDM generated by a pion
loop [93, 94, 95, 96, 97, 91, 98, 99], the nucleon EDM up to next-to-leading order
depends on three TV parameters: go, D(()?’), and Df’) + D'l(?’).

These operators are linked by Eq. (4.2.5) to operators that contribute to pion
photoproduction on the nucleon. (We do not see here a direct link to anomalous
magnetic moments [169].) However, the coefficients cannot be extracted from the
measurement of isospin violation in pion photoproduction due to the existence in Eq.
(4.2.6) of operators with the same chiral properties as D(()?’) and Dg?’) that are not
linked to TV operators. Even if one assumes TV to arise solely from the § term, the

measurement of the neutron and proton EDMs alone would not be sufficient to fix
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Go (and thus extract the value of the angle § using émy), unless the short-distance
operators are calculated in lattice QCD.

These conclusions are obtained by considering the chiral group SU(2), x SU(2)x.
If one assumes the strange quark mass to provide a suitable expansion parameter, one
works with SU(3), x SU(3)g instead. This larger symmetry increases our ability to
extract strong-interaction matrix elements needed for an analysis of 1" violation from
TC measurements [93, 94, 95, 96, 97, 98, 99]. The limitation of this approach comes,
of course, from the poorer convergence of the chiral expansion in the SU(3), x SU(3)g
case.

In Sec. 4.1.1 we pointed out that the isoscalar and isovector qCEDM break chiral
symmetry as components of two chiral four-vectors whose TC components represent
the anomalous quark chromo-magnetic dipole moment. Therefore, we introduced the
parameters pp and p3 and we could establish relations analogous to Eq. (4.1.5). We
also noticed that, unfortunately, such a relation carries no practical effect, since the
contribution of the quark anomalous chromo-magnetic moment to TC low-energy
observables can never be isolated from other, more relevant chiral breaking effects, in
particular the effects of the quark mass and the quark mass difference.

We can more concretely see this in the realization of the Lagrangian from the
qCMDM in Secs. 4.1 and 4.2. Eq. (4.1.29) contains the leading interactions in
the pion-nucleon sector. We can see the the qCMDM generates a contribution to
the nucleon mass difference, Squ, and a contribution to the sigma term, Aqu,
which have the exact same form as Eqgs. (4.1.19) and (4.1.2) and are suppressed by
Méc D /M% with respect to dmy and Amy. In the nucleon-photon sector, the contri-
butions to the isoscalar and isovector nucleon magnetic moment Egé), quand E;(ll)
are O(Mjop/M;) corrections to EP+6% E® 4G and G4¥, which are already
smaller by m2/Mgqp with respect to the leading contributions to the anomalous
magnetic moments in Eq. (3.3.18). The same can be said for the pion photoproduc-

tion operators in Eq. (4.2.12), and also for the electromagnetic operators from the
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gMDM. Thus we see that the symmetry properties of the qCMDM and ¢MDM are
not sufficient to allow us to identify their contributions to low-energy observables in
nuclear physics, and to disentangle them from those of other operators that have the
same chiral properties.

If on the one hand chiral symmetry is not sufficient to fully constrain the QCD
dynamics that enters the TV couplings, on the other hand it is a powerful tool to
organize the TV Lagrangian as a series of terms suppressed by more and more powers
of mr/Mgcp and QQ/Mgoep. It can be used to extrapolate lattice calculations, in this
case the nucleon EDM [170, 171, 172], to realistic values of m,, and to take one-

nucleon information, experimental or numerical, into nuclear systems [37].
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CHAPTER 5

THE NUCLEON ELECTRIC DIPOLE MOMENT

5.1 Introduction

The electric dipole form factor (EDFF) completely specifies the parity (P) and time-
reversal (7T") -violating coupling of a spin 1/2 particle to a single photon [91, 92].
Together with the well-known parity P and T-preserving electric and magnetic form
factors and the P-violating, T-preserving anapole form factor, the P- and T-violating
EDFF completely specifies the Lorentz covariant electromagnetic current of a particle
with spin 1/2. At zero momentum, it reduces to the nucleon electric dipole moment
(EDM). Although the full momentum dependence of a nuclear EDFF will not be
measured anytime soon, the radius of the form factor provides a contribution to
the Schiff moment (SM) of the corresponding atom, because it produces a short-
range electron-nucleus interaction. Furthermore, it can be used in lattice simulations
to extract the EDM by extrapolation from a finite-momentum calculation [173] (in
addition to the required extrapolations in quark masses and volume [163]).

There has been some recent interest [91, 92, 174, 175, 99, 40] in the nucleon EDFF
motivated by prospects of experiments that aim to improve the current bound on the
neutron EDM, |d,,| < 2.9-107"3 ¢ fm [82], by nearly two orders of magnitude [83], and
to constrain the proton and deuteron EDMs at similar levels [87]. We would like to
understand the implications of a possible signal in these measurements to the sources
of T violation at the quark level, which include, in order of increasing dimension,
the QCD 6 term, the quark color-EDM (qCEDM) and EDM, the gluon color-EDM,
TV four-quark operators ete. [107, 108, 110, 111]. Unfortunately, as with other low-
energy observables, both the EDM and the SM of hadrons and nuclei are difficult
to calculate directly in QCD. However, long-range contributions from pions can, to

some extent, be calculated using Chiral Perturbation Theory, in particular the TV
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Lagrangian constructed in Chapters 3 and 4.

The TV current-current nucleon-electron interaction is of the form
iT = —iee(l')y"e(l) Dy (q) N(p')J2y(q, K)N(p), (5.1.1)

where e(l) (N(p)) is an electron (nucleon) spinor with momentum [ (p) and D, (q) =
—i(nu/q*+. . .) is the photon propagator with ¢* = (p—p')? = —Q? < 0. The nucleon
electric dipole current J*, can be expressed in terms of ¢ =p —p’ and K = (p+p')/2
as an expansion in powers of Q)/my that reads [91, 39, 40]
J:d(qa K) = 2 (FO(Q2) + FI(Q2)T3) [S“U -q— 8- qut
1 1
+ —(S"q- K-8 -qK")+ —S-K(K -q"—K'v-q)|,
my 2my,

(5.1.2)

where Fy(Q?) and Fy(Q?) are the isoscalar and isovector EDFF of the nucleon. We

will write
Fi(Q*) = Di — 5] Q° + Hy(Q*), (5.1.3)
where D; is the EDM, S; the Schiff moment
dri(Q?)
Si=——2—" 5.1.4
i dQ? ( )

and H;(Q?) accounts for the remaining Q? dependence of the form factor. The form
factor itself can be expanded in powers of QQ/Mgcp. In Sec. 5.2 we compute the
nucleon EDFF generated by the § term and the qCEDM, at next-to-leading order
(NLO) in @/Mgep. In Sec. 5.3 we turn our attention to the other dimension 6
sources. In this case, the momentum dependence of the EDFF only arises at next-to-
next LO ( N2LO), and we work at this accuracy. Finally, in Sec. 5.4 we discuss how

the nucleon EDFF partially reflects the source of T" violation at the quark level.

5.2 The Nucleon EDFF. QCD 6 and qCEDM

The leading-order contribution to the EDM from the QCD 6 term has been known for

a long time [93]. It includes loop diagrams made out of the leading TV pion-nucleon
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(c) (d)

F1GURE 5.1. Tree level and one-loop diagrams contributing to the nucleon electric
dipole form factor from the § and qCEDM in leading order. Solid, dashed and wavy
lines represent nucleons, pions and (virtual) photons, respectively; single filled circles
stand for interactions from Egg)fgz in Eq. (3.3.17), squares represent the TV vertices

from the leading TV pion-nucleon and nucleon-photon Lagrangian, E)(el)fzz (4.1.19)

and Eg’)fﬁpm (4.2.4), and Eé’_]})zz (4.1.29) and ‘C((;C)EDM,f:Zem (4.2.7). For simplicity

only one possible ordering is shown here.

interaction gp in E)(él}zz in Eq. (4.1.19) and the unknown short-range contributions

: (3)
in £ 4 f=2.em

loop diagram and the short-range operators contribute to the TV electromagnetic

in Eq. (4.2.4). We depict these contributions in Fig. 5.1. Both the one-

current at the order O (em2Q/Myqp), where Mgcp is the typical hadronic scale,
Mgcep = 2mF;. More recently, the calculation has been extended to the nucleon SM
[162], and to the full momentum dependence of the EDFF [91]

In this Section, we extend the analysis to the nucleon EDM and EDFF generated
by the qCEDM, and, for both sources, we carry out the calculation of the EDFF to
NLO in the xPT power counting.

We remarked in Chapter 4 that the relative importance of long- and short-distance
physics is similar for TV from qCEDM and the § term, and that the main difference
between the two sources is that, in leading order, the QCD @ term only contributes
to the isoscalar non-derivative pion-nucleon coupling gg, while the qCEDM induces
contributions to gy and g; at the same level. Consequently, we find that also in the
case of the qCEDM the leading contributions to the EDFF come from pion loops,
with the leading TV couplings given in Eq. (4.1.29), and from the short-distance
EDM operators that appear in the Ag = 1 Lagrangian, in Eq. (4.2.11). In this case,
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FIGURE 5.2. One-loop diagrams contributing to the nucleon electric dipole form
factor in sub-leading order coming from one insertion of an LS)Z)Q operator. Solid,
dashed and wavy lines represent nucleons, pions and (virtual) photons, respectively;
single filled circles stand for interactions from [,;07)#2 while double circles for TC chiral

invariant and chiral breaking interactions from 5;1,}:2 (3.3.18), and ES}:Z, given in
Egs. (4.1.2) and (4.1.19). Squares represent the TV vertices from E)(él)fZQ (4.1.19) and

E(;_;):z (4.1.29) for the 6 and qCEDM, respectively. For simplicity only one possible

ordering is shown here.
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(a) (b) (©)

FiGURE 5.3. Diagrams contributing to the nucleon electric dipole form factor in sub-
leading order coming from one insertion of the subleading TV vertices, represented by
the circled square. The form of the interaction is given in Ef)fzz (4.1.21) and Eg?)f:Q

(Eq. (4.1.29)) for the # and qCEDM, respectively. Other symbols are as in Fig. 5.2.
For simplicity only one possible ordering is shown here.

the contribution to the current is of the order O (emer /MQ%MQCD).

The explicit calculation of the diagrams in Fig. 5.1 shows that the only one loop
diagram that does not vanish in leading order is diagram 5.1(a). Since only charged
pions contribute to the diagram, it turns out that the nucleon EDM in leading order
is sensitive only to go, while g;, which couples the nucleon the a neutral pion, does
not play any role in LO. As a consequence, the nucleon EDM and EDFF induced by
the QCD 6 term and by the qCEDM have identical form, at least in leading order.

At NLO, there are no new, unknown short-range parameters appearing at tree
level, the recoil corrections in ‘C)(é)f:2,om and Eé?)f:um (which we included in Egs.
(4.2.4) and (4.2.11)) simply ensuring —together with the relativistic corrections in
E;l’)fzz (3.3.18) — the form (5.1.1) of the current.

The loop diagrams contributing to the nucleon EDFF in NLO are shown in Figs.
5.2 and 5.3, classified according to the combination of couplings that they contain.

All other contributions to the EDFF are formally of higher order: they come from

more powers of momenta in diagrams with the same number of loops, or from extra
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loops.

The NLO diagrams of Fig. 5.2 are built from the leading TV interaction, in Eq.
(4.1.19) for § and Eq. (4.1.29) for the qCEDM, the leading TC interactions in Eq.
(3.3.17), plus one insertion of an operator from the subleading TC Lagrangian, Eq.

(3.3.18). Diagrams 5.2(a,b,c) represent a correction to the external energies,

K
1 2 5
e (K2+qz)$%, (5.2.2)

of a proton (— sign) or neutron (4 sign) in LO diagrams. (In the remaining NLO
diagrams, we set the right-hand side of these equations to zero.) Analogous insertions
in the nucleon propagator are represented by diagrams 5.2(d,e,f). Diagrams 5.2(g,h,i)
originate in the recoil correction in pion emission/absorption, while diagram 5.2(j)
arises from the magnetic photon-nucleon interaction. Diagrams 5.2(k,l,m) represent
an insertion of the pion mass splitting in pion propagation. These one-loop diagrams
contribute to the current at order O(eg;Q?/ (27 F,)*my).

The NLO diagrams in Fig. 5.3 are built from the leading interactions in Eq.
(3.3.17) with one insertion of an operator from the TV subleading Lagrangian, Egs.
(4.1.21) and (4.1.32) for § and qCEDM. The # term only contribute to diagrams
5.3(a,b), which, in the case of § are only proportional to the coupling hg. The qCEDM
contributes to all the diagrams in Fig. 5.3, diagrams 5.3(a,b) stem from the sub-
leading pion-nucleon couplings hy = Bqlﬁo and hy = quﬁg, and diagrams 2(c,d,e,f)
from the sub-leading coupling hy = Bq2ﬁ3. These one-loop diagrams contribute to the
current at order O(eh;Q? /(27 F,)?), which is precisely the same order as the diagrams
in Fig. 5.2.

The diagrams in Figs. 5.1, 5.2 and 5.3 can be evaluated in a straightforward way.

We use regularization in d spacetime dimensions, and define

2
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where v = 0.557 ... is the Euler constant. The LO loop contributions depend on a
renormalization scale p but this dependence is compensated for by the contribution
from the short-range interactions in Eq. (4.2.4) and (4.2.11). The NLO diagrams are
finite in this regularization scheme.

Most of the diagrams actually vanish when the on-shell conditions (5.2.1) and
(5.2.2) are consistently enforced. Diagrams (a,b) in Fig. 5.3 vanish due to isospin.
Since diagrams 5.3(c,d,e,f) vanish too, the EDFF to this order depends only on the
leading TV parameters go; through Fig. 5.2. Diagram 5.2(j) vanishes due to its
spin structure and therefore the EDFF does not depend on the anomalous magnetic
moments, either. Diagram 5.2(h) gives both isoscalar and isovector contributions.
The remaining non-vanishing diagrams are 5.2(a,d,k). Neglecting TC isospin vio-
lation, these diagrams give purely isovector results. In the case of @, the results
are proportional to egago/(2mF,)?, as in LO [91], times the recoil suppression factor
mx/my. For qCEDM, there is an additional momentum-independent contribution
proportional to g;.

We have checked each of the isospin-breaking contributions in two ways. The
contributions from Smi come through diagrams 5.2(k,l,m). Because the LO EDFF
originates entirely in charged-pion diagrams, these contributions can be obtained
alternatively by evaluating the LO EDFF with m2 4 dm2, then expanding in powers
of om2 /m2:

Fl(Q2)|m?r+Sm$r = F1(Q%)]mz + Smi %@?2) . +... (5.2.4)
The resulting EDFF is thus isovector. Including the nucleon mass difference dmy,
diagrams 5.2(a,d) generate an additional isoscalar contribution. As a check, we have
performed the field redefinition of Ref. [138], which amounts here to adding to the
isospin breaking Lagrangian Eq. (4.1.19)

ALY = —MTvang —omy (w xv-Dm),. (5.2.5)

The first term eliminates dmy from the internal nucleon lines and from the asymptotic
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states (and thus from Eq. (5.2.2)), but the second term generates extra contributions
x dmy in diagrams 5.2(k,J;m) and a new isospin-breaking photon-pion coupling,
which appears in a diagram with the same topology as diagram 5.2(d). The same
final result is obtained.

The diagrams in Fig. 5.2 contribute to both isoscalar and isovector EDMs. Taking
the NLO contributions, together with the LO from Ref. [91], we have

B €gago 3m g1 5mN
Dy = D 1+—) - 5.2.6
° AN Oy [4mN ( - 3g0> e } ’ (5.2.6)
Dy — Dyt D+ S9A%0 |y g, ST (5 L (5.2.7)
1 N (n ) w2 Amy U g)  om2 |

The meaning of the low-energy-constants in Eq. (5.2.7) is as follows. In the case
of the  term, gy = gog, defined in Eqgs. (4.1.19) and (4.4.2). The coupling g, is
suppressed, and it can be neglected at NLO accuracy. The isoscalar and isovector
short-distance EDM operators are defined in Eq. (4.2.4) and we have Dy = D((]s) 0,
D, = Df’)p and D) = D;(g)p, with scaling given by Eq. (4.2.5). For the qCEDM,
Jo = Goq and g1 = g1, The two couplings have roughly the same size, given in
Eq. (4.3.19) and (4.3.21). The short-distance contributions to the isoscalar EDM are
given in Eq. (4.2.11). The TC couplings in Eqgs. (5.2.6) and (5.2.7) are all defined in
Sec. 3.3.1

2

T

The LO piece in Eq. (5.2.7), which depends on gy and is non-analytic in m2, is,
with the use of the Goldberger-Treiman relation, the result of Ref. [93], which holds
also for the qCEDM. The short-range isovector combination D; + D’ absorbs the
divergence and i dependence of the LO loop. The short- and long-range contributions
to the EDM are in general of the same size, but a cancellation is unlikely due to the
non-analytic dependence on m, of the pion contribution. The isoscalar parameter
Dy is not needed for renormalization at this order, but there is no apparent reason to
assume its size to be much smaller than NDA either.

At NLO, the EDM receives finite non-analytic corrections, which depend also on

g1 for qCEDM. From Eqs. (5.2.6) and (5.2.7) we see that, as usual in baryon yPT, the
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NLO contributions are enhanced by 7 over NDA. However, the other dimensionless
factors are not large enough to overcome the m, /my suppression. Setting p to my as
a representative value for the size of Dy [93], the NLO term in Eq. (5.2.7) (Eq. (5.2.6))
is about 15% (10%) of the leading non-analytic term in Eq. (5.2.7), indicating good
convergence of the chiral expansion. The isovector character of the LO non-analytic
terms is approximately preserved at NLO. Isospin-breaking contributions, although
formally NLO, are pretty small, amounting to 15-20% of the total NLO contribution.

In the case of § we can use Eq. (4.1.5) and expect

ega  Omy mi T M, dm? my | =
d,| =|Dg— D1 2 — — —= 0
ldn] =100 i (2mFy)? 2 [ m2  2my  m2 o My
~ (1.99+0.12 - 0.04 +0.03) - 107 § e fm (5.2.8)
for the neutron EDM and
ega  omy m?\, My om?2 omy | =
= > _ T _
\dp| = |Do + D1] 2 (OrF)? 2 [1 ) —|—27TmN m2 T o~ 0
~ (1.99+0.46 — 0.04 — 0.03) - 107* § e fm (5.2.9)

for the proton EDM, using the lattice QCD value dmy/2c = 2.8 MeV [133]. Non-
analytic NLO corrections are therefore somewhat larger for the proton EDM, but
this difference is unlikely to be significant in light of our ignorance about the size of
short-range contributions.

The non-analytic terms in Eq. (5.2.6) represent a lower-bound estimate for the
size of the nucleon isoscalar EDM, as the short-range contribution D is nominally
of lower order. The expected lower bound on the nucleon isoscalar EDM might have
implications for proposed experiments on EDMs of light nuclei. In these cases, there
will be additional many-nucleon contributions, which could be dominant, but the
average of the one-nucleon contributions still provides a lower bound for the expected
nuclear EDM. For the deuteron, the average one-nucleon contribution is exactly 2D,

and, in the case of 8, we expect for the deuteron EDM

) )
dy] 22 ega  Omy {Sm my

— 0~ (3.4—06)-10"*0efm. 2.1
) 2% prony mw] (3 0.6)-10"*Aefm (5.2.10)
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Therefore, if there are no cancellations, a deuteron EDM signal from 6 is expected to
be larger than about 15% of the neutron EDM signal.

Note that short- and long-range physics cannot be separated with a measurement
of the neutron and proton EDMs alone. On the other hand, the momentum de-
pendence of the EDFF is completely determined, to the order we are working, by
long-range contributions generated by go. It is therefore the same for # and qCEDM.
It turns out that the isoscalar form factor receives momentum dependence only from
isospin-breaking terms, while there is a non-vanishing correction to the isovector mo-
mentum dependence also from isospin-conserving terms.

The variation of the form factor with Q% can be characterized at very small mo-
menta by the electromagnetic contribution to the nucleon SM, the leading and sub-

leading contributions of which we find to be

€gago  TOmy
Sy = — — 5.2.11
0 6(2mFr)?m2 2 m, ' ( )

g 51 my 0
T —CL [ il B (5.2.12)

" Gk | T

The LO, isovector term is the result of Refs. [162, 91]. The NLO correction, which
agrees with the 6 result of Ref. [99] when TC isospin violation is neglected, vanishes
in the chiral limit but gives a relatively large correction to the isovector SM of about
60%), due to the numerical factor 57/4. Again, the isospin-breaking corrections are
relatively small, and, as a consequence, at NLO the SM remains mostly isovector.
To this order, the SM is entirely given, apart for gy, by quantities that can be

determined from other processes. In the case of 6, we can again use Eq. (4.1.5) to

estimate
dmy)? - _
g — 94 TOMN) 5 0 1075 ¢ fmd 52.13
0 12(20F, )2 2em? s (5:2.13)
ega  Omy 5rm.  om2| - R
S = - T T T fh~68-10"0ef
LT 12(2nF )2 em2 [ Lmy  m2 e

(5.2.14)
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where again we used the lattice-QCD value [133] for dmy/2¢. From these results
we can straightforwardly obtain the SM for the proton and the neutron. Although
we could again use the isoscalar component as an estimate for a lower bound on the
deuteron SM, there could be potentially significant contributions from the deuteron
binding momentum.

The full momentum dependence of the EDFF is given in addition by the functions
H;(Q?) introduced in Eq. (5.1.3),

degago 3momy ) [ Q*
Hy(Q*) = — — h — 2.1
(@) 15(2nF)2 4 my ° \4m2)’ (5:2.15)

4egago o [ Q@ Tmme q [ Q 20m2 <)y [ Q*
H(QY) = A% o) (% ) T ) (2 ) 20Ma p (% ]
1(@) 152rF)2 |t \4m2 8 my o \4m2 m2 1 \4m2
(5.2.16)
Here, the LO term,
1 1 V141 1
h§°>(:c):——5 \/1+= In Vitljztl —2(1+5> , (5.2.17)
4 x V1i+1/z—1 3

is the one calculated in Refs. [91], while we now obtain the NLO isovector functions

B () = —% 301+ 20) ) () — 1022 (5.2.18)
and
P () — 1 (0) >
@) = 10 (hl (z) - 5z ) (5.2.19)

and the NLO isoscalar function

hW(z) =5 (% arctan v/xr — 1 + g) : (5.2.20)

In compliance with the definition of H;, the four functions behave as hg")(:)s) =a?+
O(z?) for x < 1.

As in lowest order, the momentum dependence is fixed by the pion cloud. Thus
the scale for momentum variation is determined by 2m,. Both the SM and the

functions Hy1(Q?) are testable predictions of yPT. In Fig. 5.4 we plot the LO h§°),
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FIGURE 5.4. The isovector H;(Q*) in LO (dashed line) and LO+NLO (solid
line), and the isoscalar Hy(Q?) in LO+NLO (dash-dotted line), both in units of
4egago/15 (2w F,)?, as functions of @ , in units of 4m?2.

the LO+NLO combination h\” — (7rm. /8my)h"Y — (20m2/m2)h{", and the NLO
—(3momy /4m7r)h(()l) as functions of Q?. We use the same values of parameters as
before. As for the SM, NLO corrections can be significant, but the isospin-breaking

contributions are small.

5.3 The Nucleon EDFF. Dimension 6 sources

We discuss here the remaining dimension 6 sources of T violation, the qgEDM, the
gCEDM and the chiral-invariant, TV four-quark operators.

The tree level and one loop diagram contributing to the nucleon EDFF for T
violation generated by a qEDM are shown in Fig. 5.5. At leading order, one finds
only short-distance contributions, who have chiral index A = 1 and are listed in
Eq. (4.2.15). At this order, the EDFF is momentum-independent, and it coincides
with the EDM. At N2LO, there are other short-range contributions, from the A = 3
Lagrangian, Eq. (4.2.17). To this order there are no contributions from pion-nucleon

TV interactions, while the loop diagrams in Fig. 5.5, with TV interactions from Eq.
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(a) (b) (©)

FIGURE 5.5. Diagrams contributing to the nucleon EDFF at N2LO, for T violation
from the qEDM. Squares represent the short-distance contributions to the nucleon
EDM in EégDM’ f=2,em (4.2.15). Doubly circled squares represent short-distance oper-

ators in ESBDMJ:Z% (4.2.17) Other symbols are as in Fig. 5.1. For simplicity only
one possible ordering is shown here.

(4.2.15), only renormalize the tree-level contributions without any energy dependence.

To O(edmy /M;Mcp), we find the EDMs

A1 ~(3 3~ m% [ 72r
Do qgpy = D;(}+Dg>+1D§(}(2wa)2 (2+4¢3) (L-In—Z ) +2+ 44,
(5.3.1)
A L A® L Lem_mr ] 2 . 2
Dl,qEDM = Dq1+Dq1+ZDql(2TrF )2 (2—|—8gA) L—hl—2 —|—2+39A y
(5.3.2)
and the momentum dependence given entirely by the SMs,
Sz(,qEDM = 5,;(3)7 (5.3.3)
H; qepm(Q*) = 0. (5.3.4)

In the case of the gCEDM, the relevant diagrams at N?LO are shown in Fig. 5.6.
Short-range contributions to the EDFF start at A = —1, which dominate, and appear
again at A = 1, suppressed by m? /M(%CD. At this order there are also contributions
from the TV pion-nucleon interactions in Eq. (4.1.29) through diagrams 5.6(e)-(h),
and from the photon-nucleon interactions in Eq. (4.2.7) through diagrams 5.6(c)-(d).
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FIGURE 5.6. Diagrams contributing to the nucleon EDFF at N2LO, for T violation
from the chiral invariant, dimension 6 operators. Squares represent the short-distance

contributions to the nucleon EDM in ﬁf(i,_}):Zem (4.2.7) and TV pion-nucleon interac-
tions from Eé’_;)zz (4.1.29). Doubly circled squares represents short-distance operators
in ES’) =2, em (4:2.9) Other symbols are as in Fig. 5.1. For simplicity only one possible
ordering is shown here.

Thus, to O(ewm}/MjMqcp) we find the y-independent EDMs

S(-1) L A0) L a2 A1) ME m2
D = PO pm L pY . Ma [ 2y ph . Fow
lLbw — wl + w1+ wl +(27TF7T)2 ( +gA) w1l + )
= > 2
2\ 7(=1) JowdgA | Ww m;

The isoscalar momentum dependence is entirely due to short-range operators in Eq.

(4.2.9),

Sy = Sy (5.3.7)
Hy (Q*) = 0. (5.3.8)



166

The isovector part, on the other hand, receives also non-analytic contributions:

— 2 —
& e %0 ma gago
4em? gago | % 0 [ @
H w 2 — T Lo h() A
Lw(@) 15(27 F,)2 {( mz 12) " \dm2
B Q° 5 Q* o [ Q
R . ) N 5.3.10
12 4m2 { 2 4m2 i 4m2 ’ ( )

where the function 1" (z) is defined in Eq. (5.2.17)

5.4 Discussion

First, we note that at NLO the nucleon EDFF stemming from the qCEDM has a
form that is identical to that from the @ term [91, 99]. In both cases the momentum
dependence, and thus the SM, is predominantly isovector, has a scale (relative to
the EDM) set by 2m,, and is determined by the lowest-order pion-nucleon coupling
Jo- The momentum dependence of the isoscalar EDFF is entirely due to the nucleon
mass splitting, and the isoscalar SM is about the 10 % of the isovector. The EDFF
depends on just three independent combinations of LECs, gy and the short-range
EDM contributions D(()l) and DP + DE”, which contain nucleon matrix elements
of V; and W3 for qCEDM and P, for the # term. The numerical factors relating
these couplings to either 50,3 or § will thus be different. In the case of #, the matrix
element in gy can be determined from TC observables, because it is related to the
matrix element of P3 that generates the quark-mass contribution to the nucleon mass
splitting: go/f ~ 3 MeV. For the qCEDM, an argument identical to that in Ref.
[93] serves to estimate D; in terms of gy, but no analogous constraint exists for gy
in this case and without a lattice calculation or a model we cannot do better than
dimensional analysis. (For an estimate with QCD sum rules, see Ref. [176].) In any
case, to the order we consider here, any EDFF measurement alone will be equally well

reproduced by a certain value of @ or a certain value of 5073. Note that the qCEDM
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does give rise to an additional pion-nucleon coupling at LO, g;. ¢ contributes ad-
ditional momentum-independent pieces to the isovector and isoscalar nucleon EDFF
at NLO, which, however, are unlikely to be phenomenologically relevant, since they
cannot be distinguished from the LEC Dy and D; + D. On the contrary, we will
see that this coupling plays an extremely important role for other nuclear observ-
ables, for example the deuteron EDM. The NLO calculation shows good convergence
of the chiral expansion, although NLO corrections are enhanced by extra factors of
7. Under the assumption that higher-order results are not afflicted by anomalously-
large dimensionless factors, the relative error of our results at momentum () should
be ~ (Q/Mgcp)?. The NLO isospin breaking contributions are relatively small, and
could be overcome by isospin conserving contributions at N2LO.

Second, the pion-nucleon sector of the qEDM is suppressed compared to that of
the qCEDM because of the smallness of a.,, compared to g2/4r at low energies. The
consequence is that, up to the lowest order where momentum dependence appears,
both the EDM and the SM from the qEDM are determined by four combinations
of six independent LECs, which at this point can only be estimated by dimensional
analysis. The momentum dependence is expected to be governed by the QCD scale
Maqcp, small relative to the EDM, and nearly linear in Q.

Finally, in the case of the chiral-invariant gCEDM and TV four-quark operators
pion loops are also suppressed, but do bring in non-analytic terms not only to isoscalar
and isovector EDMs, but also to the isovector momentum dependence (and thus SM).
Again the momentum dependence is governed by Mqcp. In addition to seven short-
range contributions to the EDMs and SMs, also two independent pion-nucleon LECs
appear (Jo, and %y,) which endow the isovector EDFF with a richer momentum
dependence than in other cases. The isoscalar momentum dependence is identical
to qEDM. For the gCEDM, using the pion loop together with an estimate of g
[177] is likely to be an underestimate of the EDM, because chiral symmetry allows a

short-range contribution that is larger by a factor Mgep/m2.
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Source 0 qCEDM qEDM gCEDM

4-quark
oo |0 (i5) o (3) o(15) o(nhe)
d,/d, O (1) 01) O (1) 0(1)
m2S,/d, | O(1) o) o) o)
visin | o(st) 0(ts) o) o)

TABLE 5.1. Expected orders of magnitude for the neutron EDM (in units of e/Mqcp),
the ratio of proton-to-neutron EDMs, and the ratios of the proton and isoscalar SMs
(in units of 1/m?) to the neutron EDM, for the § term and for the three dimension-6
sources of 1" violation discussed in the text.

As it is clear from Egs. (5.2.15), (5.2.16), (5.3.4), (5.3.8) and (5.3.10) the full
EDFF momentum dependences (for example, the second derivatives of F; with respect
to Q?) are different for qCEDM (and 6), gEDM, and gCEDM (and TV four-quark
operators). Although the isoscalar components all have linear dependences in (?
(with different slopes) to the order considered here, the isovector components show an
increasingly complex structure as one goes from qEDM to § and qCEDM to gCEDM.
Determination of nucleon EDMs and SMs alone would not be enough to separate the
four sources, yet they would yield clues. Expectations about the orders of magnitude
of various dimensionless quantities are summarized in Table 5.1.

In the first line of Table 5.1 one finds the expected NDA size of the neutron
EDM. As it is well known [81], this is consistent with many other estimates, such as
d,, = O(d;) in the constituent quark model, and d,, = O(ed; /4, edy Mqcp /47) from
QCD sum rules. If 50,3 ~ 603 ~w = O(1) (as would be the case for g; ~ 47 and no
small phases), then the gCEDM and the TV chiral-invariant four-quark operators give
the biggest dimension-6 contribution to the EDFF because of the chiral-symmetry-
breaking suppression O(m2/Mgcp) for the qCEDM and gEDM. However, models
exist (for example, Refs. [178, 179]) where 6y 3 and 50,3 are enhanced relative to w,
and all the sources produce EDFF contributions of the same overall magnitude. Even

so, there is no a priori reason to expect cancellations among the various sources. A
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measurement of the neutron EDM d,, could be fitted by any one source. Conversely,
barring unlikely cancellations, the current bound yields order-of-magnitude bounds

on the various parameters at the scale where NDA applies: using 27 F,; ~ 1.2 GeV

for MQCD;
6 < 1071 (5.4.1)
s 003 < (108 Gov) 2 5.4.2
ez S (107GeV) (5.4.2)
T My
w -2
7 < (10°Gev) . (5.4.3)

(For comparison, Eq. (5.4.1) is consistent within a factor of a few with bounds
obtained by taking representative values of y in the non-analytic terms to estimate
[93] the size of the renormalized LECs for the EDM, and using either SU(2) [39] or
SU(3) [99] symmetry to constrain go.) In all four cases we expect the proton and
neutron EDMs to be comparable, |d,| ~ |d,|, but the presence of undetermined LECs
does not allow further model-independent statements.

It is in the pattern of the S} that we see some texture. (This pattern is not evident
in Ref. [175], possibly because of the way chiral symmetry is broken explicitly in
the model used, both in the form of the T-conserving pion-nucleon Lagrangian and
in the gCEDM magnitude of the T-violating pion-nucleon coupling.) While in all
cases one expects |S)| ~ [S]], the relative size to the EDMs, in particular of the
isovector component, allows one in principle to separate qEDM and gCEDM from
0 and qCEDM. Since all these sources generate different pion-nucleon interactions
thanks to their different chiral-symmetry-breaking properties, nuclear EDMs might
provide further probes of the hadronic source of T" violation.

More could be said with input from lattice QCD. For each source the pion-mass
dependence is different. A fit to lattice data on the Q? and m? dependences of the
nucleon EDFF with the expressions of this paper would allow in principle the separate
determination of LECs. In this case a measurement of the neutron and proton alone

would suffice to pinpoint a dominant source if it exists, but in the more general case
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of two or more comparable sources further observables are needed.

One should keep in mind that our approach is limited to low energies. The contri-
butions associated with quarks heavier than up and down are buried in the LECs, as
done, for example, in other calculations of nucleon form factors: electric and magnetic
[180, 181, 131, 182], anapole [183, 184], and electric dipole from 6§ [91]. Heavy-quark
EDMs and CEDMs are also singlets under SU(2);, x SU(2)g, so they generate in
two-flavor yPT interactions with the same structure as those from the gCEDM, and
cannot be separated explicitly from the latter. (This is clear already in the one-loop
running of dy, which gets a contribution of the heavy-quark CEDMs [108].) The pa-
rameter w here should be interpreted as subsuming heavier-quark EDMs and CEDMs.
With the additional assumption that mg makes a good expansion parameter, effects
of the s quark could be included explicitly. The larger SU(3), x SU(3)g symmetry
would yield further relations among observables (for example, between the EDFFs
of the nucleon and of the A), and we could, in principle, isolate the contributions of
the strange quark. Since our nucleon results, which can be used as input in nuclear
calculations in two-flavor nuclear EFT, would be recovered in the low-energy limit
anyway —as was explicitly verified in Ref. [99] for the § results of Ref. [91]— we
leave a study of the identification of explicit s-quark effects to future work.

In summary, we have investigated the low-energy electric dipole form factor that
emerges as a consequence of effectively dimension-6 sources of T' violation at the
quark-gluon level: the quark electric and color-electric dipole moments, and the gluon
color-electric dipole moment. Only the full momentum dependence could in principle
separate these sources, although the Schiff moments, if they were isolated, would

partially exhibit a texture of T" violation.
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CHAPTER 6

THE DEUTERON ELECTRIC DIPOLE MOMENT

6.1 Introduction

The observation of the neutron and proton EDM in the next generation of experiments
would be a clear signal of new physics. However, we argued in Chapter 5 that it would
not be sufficient to unequivocally pinpoint the dominant mechanism of T’ violation at
high energy. A signal for the neutron and proton EDM can be reproduced as well by
a non zero value of the angle 8, or by any of the dimension 6 sources of T' violation
we considered. More clues could be extracted from the momentum dependence of the
EDFF, which, unfortunately, is not going to be measured any time soon. In this light,
experiments that probe EDMs (and, possibly, higher TV moments) of light nuclei can
provide important additional insight.

In recent years the proposal and development of novel experimental techniques
to measure the EDMs of charged particles in storage rings [87] have generated great
excitement. These techniques have the potential to achieve a sensitivity comparable to
that of classical neutron EDM experiments, if not greater. A proton EDM experiment
at BNL, with the goal to see a signal of the order d, ~ 107'¢ fm, has already been
approved, is in the Research and Development phase and it is projected to start
taking data by 2016. In parallel, the possibility to study the deuteron EDM with the
same accuracy at the COSY accelerator at the Jiilich Forschungszentrum is under
investigation. After the completion of these two experiments, one can envision the
application of the same experimental methods to 3He.

From the theoretical point of view, the challenge is to treat the one- and few-
nucleon problems in a consistent framework, based upon QCD. This task is com-
plicated by the non-perturbative nature of QCD at the scales relevant to nuclear

physics. In recent years, remarkable progress has been achieved in tackling nuclear
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physics problems directly from lattice QCD, and lattice simulations that are closer
and closer to the physical light quark mass, m, ~ 140 MeV, in large volumes and
small lattice spacing are rapidly becoming available (for a review, see Ref. [185]).
In the two-nucleon system, the unnatural values of the nucleon-nucleon scattering
lengths and of the deuteron binding momentum point to a precise cancellation be-
tween different contributions, which only happens when the QCD parameters are
fine-tuned to their physical value, and disappears as soon as one moves away from
it. This was nicely confirmed in [186], where the S-wave nucleon-nucleon scattering
lengths were computed on the lattice, and, for a value of m, ~ 350 MeV were found
to be natural, of size m_'. Consequently, the simulation of the two-nucleon system
on the lattice is complicated by the fact that it needs to be carried out with light
quark masses very close to their physical value. At present, no lattice calculation of
the deuteron EDM is yet available.

The approach we follow is based on nuclear Effective Field Theories, which are
built on the bedrock of the symmetries of QCD, chiral symmetry in particular. In
Chapter 5, we discussed applications to problems with one nucleon. Applications to
problems with more than one heavy particle are complicated by the appearance of a
new low energy scale, the binding energy, much smaller than the particles’ momentum,
and, in the particular case of nuclear physics, by the fine-tuning that makes the
scattering lengths unnatural. We briefly discuss how to extend chiral EFT to few
nucleon systems in Sec. 6.2 (for more in-depth discussions of these issues, we refer
to the reviews [37, 38]). In particular, we introduce the Kaplan, Savage and Wise
power counting (KSW) and the perturbative pion approach [187, 188, 189], which we
use to study the TV electromagnetic moments of the deuteron. In this approach, the
deuteron wavefunction is determined in leading order by a contact interaction, whose
strength is fixed by the deuteron binding energy, while contributions from TC pion
exchanges are treated as a perturbation.

In Sec. 6.3 we compute the deuteron EDM and MQM at leading order, for the
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different TV sources introduced in Chapter 3. The deuteron EDM and MQM have
been previously computed by Khriplovich and Korkin [157], using a zero range ap-
proach for the deuteron wavefunction. They assumed the EDM and MQM to be
dominated by TV one-pion-exchange, and made no discrimination between the pos-
sible non-derivative TV pion-nucleon couplings. Later, Timmermans and Liu [159]
repetead the calculation, with a more realistic deuteron wavefunction. They also
included the contribution to the deuteron EDM from the nucleon isoscalar EDM,
and supplemented the TV potential with the contributions of TV heavy-meson ex-
changes. The main advantage of our EFT approach is the closer relation between
the couplings in the low-energy Lagrangian and the fundamental TV sources, which
allows to assess, for each TV source, the relative size of the different contributions
considered in Ref. [159]. We will see that for sources like the qCEDM, for which
i) pion-nucleon couplings are the TV interactions with lowest chiral index, i) the
isoscalar and isovector TV pion-nucleon couplings have comparable size, our analysis
reproduces the results in [157, 159]. On the other hand, sources for which either 7)
or 7i) are not valid lead to qualitatively different results. We will discuss our results

more in depth in Sec. 6.4.

6.2 Formalism and Power Counting

In the mesonic and one-nucleon sectors, chiral symmetry and its spontaneous break-
ing, and the heavy baryon formalism, justify a perturbative expansion of any ampli-
tude in powers of the typical external momentum () of the particles in the problem
over the typical QCD scale, Moep = 2nF,; ~ 1 GeV. Eq. (3.3.14) and (3.3.15) show
explicitly that to calculate an amplitude at a given accuracy v only a finite number
of interactions, up a to maximum chiral index A, and a finite number of loops have
to be considered.

The power counting formulas (3.3.14) and (3.3.15) cannot be directly used in

problems with more than one nucleon. A first issue is that in problems with two
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nucleons a second energy scale, the nucleon binding energy, becomes relevant. This
scale is of order @Q?/my, much smaller than the momentum @, and it enhances
diagrams in which the contour of integration cannot be deformed to avoid poles in
the nucleon propagator. In a failure of perturbation theory, these diagrams must be
resummed at all orders, and lead to the appearance of bound states. Weinberg [35, 36]
proposed to split the calculation of amplitudes in two steps. First one evaluates the
potential (and electromagnetic and weak currents), for which an expansion in powers
of Q/Mgcp should be suitable. Then, the full amplitude is obtained by iterating the
potential with A free nucleon propagators, i.e. by solving the Lippmann-Schwinger
equation with the EFT potential. We return to this approach in Chapter 7, where
we compute the TV potential at N2LO, in the Weinberg power counting.

A second issue, more specific of nuclear physics, is the unnatural size of the nu-
cleon S-wave scattering lengths. The scattering lengths for two nucleons in the isospin
triplet channel, a; = —23.7 fm, and isospin singlet channel, a, = 5.4 fm, are much
larger than the range of the nucleon-nucleon potential, 1/m, ~ 1 fm, which suggests
that the QCD parameters are “fine-tuned” to cause large cancellations between dif-
ferent contributions to the scattering lengths. In the Weinberg power counting, the
fine tuning manifests a posteriori in values of the coefficients Cys and Cy; that are
somewhat larger than their naive power counting size.

Kaplan, Savage and Wise (KSW) proposed a modification of the power counting
to explicitly accommodate for unnatural scattering lengths [187, 188]. In the KSW
power counting, S-wave four-nucleon operators are enhanced. While in a theory with
natural scattering lengths, by naive dimensional analysis one would expect C; and Cly,
to scale as 47 /my My, where My is the range of validity of the theory, KSW assign
these coefficients the behavior Cys; = 47 /my@Q, where @ is the typical momentum of
external particles in the problem, @) < Myy. The KSW power counting is manifestly
realized in the Power Divergence Subtraction (PDS) renormalization scheme [187,

188]. In this scheme, loop diagrams are regulated in dimensional regularization,
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and counterterms are introduced to eliminate not only poles in d = 4 (as done, for
example, in Minimal Subtraction), but also poles in d = 3, which would correspond
to linear divergences if the theory were regulated with a cut-off (for a more nuanced
descriptions of the scheme, and for alternative renormalization schemes compatible
with the KSW power counting, we refer to Refs. [190, 191]).

In the PDS scheme, C;, follow a renormalization group equation, which is solved
by [187, 188]

4 1
Cosslp) = —————,
0 7t(u) mN 1/as7t _ /,,L

(6.2.1)
with boundary condition Cp,(0) = 4mas,/my. If p1 is chosen to be of the order of the
typical momentum in the problem, u ~ @, Eq. (6.2.1) explicitly realizes the KSW
power counting.

In the KSW power counting, the enhancement of the leading S-wave operators
and renormalization group invariance drive the scaling of other S-wave four-nucleon
operators. In general, the coefficient of a TC four-nucleon operator that connects two

angular momentum states L and L', and has 2d = L+ L' + 2n spatial derivatives and

m insertions of the quark mass scale [189)

—n—-m—1 ; 4 1 3 3
nm 7 if L, L e€{'5,°5,”D
CL,—E/ (,U,) ~ { 0 { ’ ! 1}

6.2.2
W otherwise. ( )

For example, of the four-nucleon operators with two derivatives, Cy s, which connect
two 1Sy or two 35 states, scale as 47 /myMynQ?, the operator responsible for the
mixing between the 3S; and 3D, state scales as 47 /my Mz @, while P-wave opera-
tors scale as 47 /my M3 . Four-nucleon currents that connect S-waves are similarly
enhanced. In the KSW power counting, the leading terms in the f = 4 Lagrangian
are
Lig = =Y (Coi+ Dym?) (N'PN) N'PN +
i=s,t

s %2 (VRN NRYN fhe] 4 (6.2.3)

i=s,t
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where the isospin triplet and isospin singlet projectors are

1 , 1 ,
P = ——=757,09 Pl = ———0307 1, (6.2.4)

Ve NG
and the spin/isospin indices in Eq. (6.2.3) are appropriately contracted. All the other
operators with two derivative are suppressed by Q/Myy or Q*/M3, with respect to
Dy; and Cy;.

For momenta () of the order of the pion mass, one has to introduce the pion
as a propagating degree of freedom in the theory. Then one needs to assess the
importance of pion-exchange relative to short-range interactions, and of diagrams
with exchanges of pions relative to one-pion exchange. With the KSW assignment
to Cosy, it turns out that the ratio between one-pion exchange and short-range, and
between diagrams with two iterations of one-pion exchange and one-pion exchange is
@AmnQ/ATE? = Q/Myy, where KSW identify the range of validity of the theory,
My, with Myy = 47 F?/myg%. Numerically, Myy ~ 300 MeV. In the perturbative
pion approach, /My is assumed to be much smaller than one, and TC pion effects
do not need to be iterated in the EFT.

To summarize, in the KSW power counting amplitudes have a scaling in Q/Myy
(and, when subleading interactions in the f = 2 pion-nucleon Lagrangian are included,
Q/Mgcep). The scaling of a diagram is obtained by assigning a power of Q°/(4mmy)
to each loop, my/Q?* to each nucleon propagator, 1/Q?* to each pion propagator, a
power of A as in Eq. (3.3.9) to each pion-nucleon vertex, while four-nucleon operators
are counted as in Eq. (6.2.2). With these rules, the insertion of an arbitrary number
of Cos ¢ vertices does not cost any power of Q /My, and Cps; must be iterated at all
orders. Instead, all the other interactions in the theory cost powers of Q/Myy, and,
to reach a wanted accuracy, only a finite number of them is needed.

The expansion parameter in the perturbative pion approach, /My, is not ex-
tremely small, Q/Myxn ~ 0.5 if one takes ¢ ~ m,. One might therefore expect the
EFT to converge slowly, and might wonder if it converges at all. The KSW power

counting has been successfully applied to the P- and T-conserving electromagnetic
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form factors of the deuteron [189]. NLO corrections to the electric charge form factor
are about 25 % of the leading order, and the NLO calculation of the deuteron square
radius is within 10 % of the experimental value. The deuteron magnetic moment
is well approximated by the LO result, the isoscalar nucleon magnetic moment. At
NLO there is one free parameter, a short-range contribution to the deuteron mag-
netic dipole moment, whose value is somewhat smaller than expected in the KSW
power counting. The KSW power counting has been applied also to the P-violating
and T-conserving deuteron anapole form factor, computed at LO in Ref. [192]. In
nucleon-nucleon scattering, the S, D and P phase shifts have been calculated at
N2LO in Ref. [193]. In the spin-singlet channels 1Sy, *P; and ' Dy, the perturbative
series converges well also for momenta of the order of the pion mass. However, the
spin-triplet channels are poorly described in the perturbative pion approach, and for
momenta of order ) ~ 100 MeV, pion exchanges have to be considered at all orders.

In the TV Lagrangian, the KSW power counting alters the scaling of the coeffi-
cients of TV four-nucleon operators in Sec. 4.1.4 and 4.2.3. In the f = 4 sector, the
leading operators with only nucleons have the form (reverting from the partial waves

notation of Eq. (6.2.3) to the notation used in Sec. 4.1.4)
Eva:‘l = C’lNNﬁu(NS‘uN) -+ C’QNTN . 8u(NTS‘uN)
+C3N3N 9, (NS*N) + C4NN 8, (N3S*N) ... (6.2.5)

where we neglect the detailed chiral structure, which is not relevant in the deuteron
calculation. As we discussed in Sec. 4.1.4, the QCD @ term and the chiral invariant
TV sources only contribute to the isospin symmetric operators 6'1,2 in lowest order,
while the qCEDM also generates a contribution to 67’374. The operators C’Lg cause the
TV and isospin conserving transitions of two nucleons in the 1S, configuration into the
3Py configuration, or from 35 into 'P;. The isobreaking operators Cs 4 instead, are
responsible for the transition 3S; to 3P, which also breaks isospin. All the operators
in Eq. (6.2.5) involve one S-wave, and we expect them to scale as 1/@Q. This prejudice

has to be confirmed by an analysis of the renormalization group equations in the PDS
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scheme.

While the renormalization group equations in the PDS scheme unambiguously
determine the dependence of the coefficient of a four-nucleon operator on the low-
energy scale (), the presence of two high-energy scales, Myy and Mgcp, leaves room
for some ambiguity in power-counting assignments, that cannot be fixed by the di-
mension of the coefficient alone. Here, we estimate the size of four-nucleon operators
and currents by “matching” the perturbative pion EFT onto the non-perturbative
pion EFT at scales u ~ Myy. A real matching calculation is non-perturbative, so in
practice what we do is to estimate the coefficients by applying dimensional analysis
to loop diagrams in the non-perturbative pion theory with a cut-off of order My, in
the same spirit as the naive dimensional analysis of Ref. [123].

In the case of the QCD 6 term, we obtain

_ _ Am m? )
Crin=01(0 n , 6.2.6
0 1,2 < mNQ MJQVNMQCD ( )

For the qCEDM

= ~ 4w m2MQCD
;= ) u , 2.
Cpi=0 ( G My (6.2.7)

with ¢ = 1,...,4, and the detailed dependence on &, and &5 is as in Eq. (4.1.49).

Finally, the chiral invariant TV sources give

= . 4 MQCD
Cng = O (meQ M% ) . (628)

The relevant four-nucleon-one-photon operators are
L7 j—gem = DNnNS*0"N NNF,, + Me®*" v, NSgN NS\N O*F,,,,, (6.2.9)

which represent short-distance contributions to the deuteron EDM and MQM. These
operators connect two S-waves, and we expect them to scale as 1/Q?. In the case of
the 6 term, short-range contributions to the deuteron EDM and MQM go as

2

_ _ Ar m _ _ Am m?2 )
Dyy = O | e : N, =0 (e : (6210
i ( myQ? MNNM50D> f < mnQ? My v Mocp ( )
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For the qCEDM,

= ~ 4r m%MéCD = ~ Am m2MQcD
D = 0 M, = o = . 2.11
iy O<€ @ 2 ) M= O\ g ) 621

Again, we use 6 for both &y and &5, the detailed dependence is given in Sec. 4.2.3.
For the qEDM,

_ 47 m?2 _ < 4w m?2
D = ) z M, = ) z ) 2.12
any =0 (e my Q> MNNM;,%> My =0 (e my Q> MNNMQCDM;,%> (6 )
Finally, for the gCEDM and the TV four-quark operators

_ A M3 . Am M
Dynn =0 (ew - Qcp ) , My =0 (ew T QCp ) . (6.2.13)

myQ? MNNM;/% myQ? MNNM;/%

In Sec. 6.6 we will see how, with the assignment (6.2.10), Dyy gives a contribution
to the deuteron EDM of exactly the right size to absorb the logarithmic divergences

of certain one-pion-exchange diagrams, justifying, a posteriori, our NDA estimate.

6.3 Deuteron TV currents

The time and space components of the TV electromagnetic current of a spin 1 particle
are expressed in terms of the Electric Dipole and Magnetic Quadrupole Form Factors.

In the case of the deuteron

=/ - — - ym,.m — 1an mi . j mj 1 —
<p/]|J£m,T|PZ> = —&'"q FD(q2)+ZE lm—dql(5 ¢ +9 JQ)FM(qz),

(6.3.1)
> - 7k = - igm ka =2 1 kml 1 ( smi _j mj i =2
(Pl emrlt) = —"Mq EFD(Q )+ 55 (6™ ¢’ + 6™ q") Fu ().
(6.3.2)

Here |p'i) denotes a deuteron state of momentum p’ and polarization £/ = ¢! in the
rest frame, normalized so that (§"j[p'1) = \/1 + p2/m2 (27)%6) (p'— p")6ij. §= p— P’
is the photon momentum, K = (p" + p)/2, and my is the deuteron mass, my =

2mpy — v*/my. 7 is the deuteron binding momentum, v = 45 MeV. In Egs. (6.3.1)
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and (6.3.2), Fp(g?) represents the deuteron EDFF, and its value at g% = 0 is the
deuteron EDM, dy = Fp(0). Analogously, Fy;(¢?) denotes the Magnetic Quadrupole
Form Factor (MQFF), and its value at zero transfer momentum is the deuteron MQM,
My = Fy(0).

In the perturbative pion approach, the form factors Fp(g?) and Fy(g?) are ex-
panded in powers of /My, where () denotes scales of the order of the pion mass,
and of the deuteron binding energy, which are assumed to be comparable. Our goal
is to calculate the EDFF and MQFF stemming from the QCD @ term and from the
dimension 6 TV sources at leading order in this expansion.

Following the approach of Kaplan, Savage and Wise [189], the form factors are
obtained by computing in perturbation theory the irreducible two-point function X
and three-point function I'j; of the deuteron interpolating field D;, where “irreducible”
here means the sum of graphs which do not fall apart when cut at any Cj vertex. The
interpolating field D; is any field with the same quantum numbers as the deuteron.
We choose D;(x) = N(x)PN(z). P? is the spin 1, isospin 0 projector, in Eq. (6.2.4).
Physical observables are independent of the choice of field, so long as it is used
consistently.

The LSZ reduction formula relates the matrix element of the electromagnetic
current to the irreducible three-point function I'j; and the derivative of the two-point

function ¥ [189],
r“ (B, B, q)

SEE (6.3.3)

(0731 |PE) =

E,E'—»—B
where E is the deuteron energy in the center of mass frame E = E — p?/4my and
the deuteron form factors are obtained by setting £ to the deuteron binding energy
E=—-B=—/my.

We show in Fig. 6.1 the diagrams contributing to the irreducible two-point func-
tion %(E) at NLO. It turns out that diagrams which only contain one TV vertex do
not contribute to the two-point function, which is therefore identical to the two-point

function in absence of 7" violation, computed in [189] at NLO in Q/Myn. In particu-
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FIGURE 6.1. The irreducible two-point function 3(£) at NLO. Solid and dashed lines
denote nucleons and pions. Filled circles mark the leading TC interactions, while the
circled circle denotes the subleading four-nucleon operators Cy or Dyg. The hatched
circle denotes an insertion of the interpolating field D;(z).

lar we are interested in the first derivative of 3, which, at leading and next-to-leading

order is
ax 2
3 = —igh (6.3.4)
dE |p_ 5 87y
d(2) m3A my [ ¢34 m2 )
T = l—— | = -7 Do, .
dE |g—_p Z87w 21 | F? = Mr + 27 + Dasmz(p —7)
+ Coy(p—7)(n— 27)] (6.3.5)

where v = /myB ~ 45 MeV.

In Ref. [189], the contribution to the two-point function from the correction to the
nucleon mass coming from the diagram 6.1(d) and from the insertion of the sigma term
Amy in the nucleon propagator was neglected. In the PDS scheme, the correction
to the nucleon mass is p-dependent, and the linear p dependence is absorbed by the

sigma term

395 m?
A =A 2T — : 3.
RN my + 2 Ink? (1 —maz) (6.3.6)

The net effect of this shift in the nucleon mass is to change the deuteron binding
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(a)

F1GURE 6.2. LO diagrams for the deuteron EDFF. Solid, dashed, and wavy lines
represent nucleons, pions, and photons. A square marks TV interactions, filled circles
the leading TC interactions. The hatched vertex represents the deuteron interpolating
field D;(z). Only one topology per diagram is shown.

momentum -y

v =+ 0y (6.3.7)
with
- Apmy Amy  3¢4 mZmy (u—my)
0y =my . my S + ) Ink? — (6.3.8)

Such a shift in v is automatically taken care of when the physical value of the nucleon

mass and v are used in the evaluation of observables.

6.4 The Deuteron EDM and MQM at Leading Order

The calculation of the EDFF and MQFF involves at LO the diagrams of Figs. 6.2
and 6.3. The squares denote TV interactions constructed in Secs. 4.1 and 4.2. The
circles denote the leading TC interactions in E;(]’)fg, in Eq. (3.3.17). The pion-
nucleon vertex is the standard axial-vector coupling, g4 = 1.27. The photon vertex
denoted by a filled circle is the coupling to the charge e, and that denoted by a circled
circle is the magnetic coupling parametrized by the anomalous magnetic moments,
the isoscalar kg = —0.12 and the isovector k1 = 3.71. The hatched circles denote
insertions of the deuteron interpolating field D;(x). We use dimensional regularization
with power-divergence subtraction [187, 188, 189] at a renormalization scale . Our

results depend on the ratio { = v/m, and on three functions of the momentum in
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FI1GURE 6.3. LO diagrams for the deuteron MQFF. Solid, dashed, and wavy lines rep-
resent nucleons, pions, and photons. A square marks TV interactions, circled circles
subleading TC interactions. The hatched vertex represents the deuteron interpolating
field D;(x). Only one topology per diagram is shown.

the ratio z = || /4~:
Fi(z) = arctan(z) /z, (6.4.1)

which originates in a bubble with one photon coupling and appears also in the charge
form factor [189], and two complicated functions that result from two-loop diagrams

with a pion propagator, which can be expanded as

5 10 + 65¢ + 144€% + 7263

2 = 1- O(a*
2(2) TS T v aeE o)
£2(12 + 8¢€)
F. = 1-2° ); 4.2
in all cases F;(0) = 1. The scale of momentum variation, including that of the

corresponding electromagnetic contribution to the Schiff moment, is set by 4.

The LO deuteron EDFF is due to diagrams Fig. 6.2(a,b). Diagram 6.2(a) repre-
sents the contribution to the deuteron EDFF from the neutron and proton EDMs, in
particular their isoscalar combination, while in diagram 6.2(b) the deuteron EDM is

caused by a TV correction to the deuteron wavefunction. We find

egagimy 14+¢

Fol@) = 2Do1i(@) = G T 26

Fy(x). (6.4.3)
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where Dy is the isoscalar nucleon EDM, defined by Eq. (5.1.3), and g; the isovector,
TV non derivative pion-nucleon coupling. It is important to notice that the isoscalar
pion-nucleon coupling gy does not contribute to the deuteron EDM at LO. The rea-
son is that TV one-pion exchange with gy causes the deuteron wavefunction, whose
quantum numbers are mainly 35, to develop a P, component, which, however, has
a vanishing dipole matrix element with the 2S; state. A non-vanishing dipole matrix
element requires mixing with a spin 1 P-wave, the 3P, state, which also breaks isospin
and it is realized by g;.

The relative importance of diagrams 6.2(a) and 6.2(b) is different for different
sources of T" violation.

We already remarked that long-distance physics is suppressed for the gEDM and
the chiral-invariant sources of 1" violation, the gCEDM and the TV four-quark op-
erators. As a consequence, it is not surprising that for both sources, the dominant
contribution to the deuteron EDM comes from diagram 6.2(a). In the case of the

qEDM, Dy is given by a short-distance coefficient at LO, Dy = DY Eq. (4.2.15). It

q0>

follows that
21
dd qEDM — 2Dq0 =0 (6(5 WMQCD> . (644)

For the qEDM, indirect electromagnetic pion-nucleon couplings only appear in the

Ag = 2 Lagrangian, that is

g1 = @) ((50 + 53>Ojlem e MQCD) . (645)

With the usual assumption aem/4m ~ em3 /M., one can see that the TV pion-
exchange contribution is suppressed by m2 /My yMgcp with respect to the contribu-
tion (6.4.4). Indeed, in the case of the qEDM, also the NLO is determined by short-
range physics, by the four-nucleon current in Eqs. (4.2.23) (with scaling (6.2.11)),
which is suppressed, in the PDS scheme, by Q/Myy with respect to Eq. (6.4.4).

In the case of the gCEDM and the TV four-quark operators, Dy is also purely
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short-distance at leading order, Dy = Dfu_ol), Eq. (4.2.7), and

_ M,
dgo=2DS =0 <ew AZ;”) . (6.4.6)

In this case, the first contribution to g; is given in Eq. (4.1.29) and from the scaling

in Eq. (4.1.31) we see that the contribution of diagram 6.2(b) is only suppressed by
@ /My . Notice that if the pions are treated non-perturbatively, that is, if Q/Myy =
O(1), the two contributions in Eq. (6.4.3) arise at the same order. According to Eq.
(6.2.13), four-nucleon currents also contribute an NLO.

We saw in Chapters 3 and 4 that for the chiral symmetry breaking # term and
qCEDM, long-distance physics plays a more important role. However, the fact that
the QCD 6 term does not break isospin causes the coupling g; only to arise in the A =
3 Lagrangian, two orders smaller than the leading TV coupling go. As a consequence,
the leading contribution to the deuteron EDM is still the isoscalar nucleon EDM Dy,
given in Eq. (4.2.6), which, at leading order is once again given by a LEC constant
only, Dy = D((]g), so that

~3) - m
dyg=2DY =0 (2] (6.4.7)
MQCD

The leading contribution to g; is given in Eq. (4.1.27), and from the scaling (4.1.28),
diagram 6.2(b) contributes at NLO. At this order one has to consider the NLO correc-
tions to the isoscalar nucleon EDM, Eq. (5.2.6), which are also suppressed by Q /My
with respect to the LO, and also the contribution of the relativistic corrections to gy
and the other TV derivative couplings in Eq. (4.1.24). With the scaling (6.2.10),
Dy gives also a NLO contribution.

The qCEDM generates an isovector coupling g; already in leading order, (4.1.29).
In this case, the deuteron EDM is dominated by long distance physics,

egagimy  1+§ :O< < Mocp mx )

5
67 F2m, (1 + 26)2 “TMZ My

dg qcEDM = — (6.4.8)

The isoscalar nucleon EDM is still given at leading order by a LEC, Dy = Délo), in

Eq. (4.2.11). From the scaling Eq. (4.2.13) we see that the one-body contribution,
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diagram 6.2(a), is suppressed in this case by a factor of m,Myy /Méc p- In the case
of the qCEDM, the NLO is dominated by three-loop diagrams, with an extra TC
pion-exchange or an insertion of the suppressed four-nucleon vertices Css and Doy.

The LO MQFF comes from diagrams 6.3(a,b,c,d). Diagrams 6.3(a) and (b) are
contributions to the MQM that come from TV corrections to the deuteron wavefunc-
tion, in the form of TV pion-exchange, or TV short-distance four-nucleon operators.
Diagram 6.3(c) and (d) are a long- and short-distance contribution to the TV elec-
tromagnetic current. The resulting MQFF is

%;gi;;nw [go(l + ko) + %(1 + ’fl)] ( Lt 5)2F2($)

1+2¢
gaEry (1—2¢ 1/ M
P F 21
R (1+2§ s(x) + 27
e(1+ ko) 2y

2T T

Fa(7?)

+ (1 =7 CoFi(z) + —=(n—7)*M, (6.4.9)

where Cy = (O] — 3C5)/4 and FE) is an isoscalar TV pion-nucleon-photon coupling,
constructed in Eqs. (4.2.4), (4.2.11) and (4.2.15). Notice that in this case both the
isoscalar g and the isovector g; couplings contribute to the MQM. As a consequence,
for both the § term and the qCEDM the MQFF is dominated by diagram 6.3(a).
In the case of the 6 term, only gy is relevant in leading order, and, with the scaling

(4.1.20), we have

_ 1 o )
magMy g = e;qTAgﬂ(l + /%0)%5)2 =0 (9 mn ) ) (6.4.10)

For the qCEDM, gy and g; are given in Eq. (4.1.29), and they lead to
egamn [_

g 1+¢&
magMg qcEDM = T F2m. [90(1 + Ko) + 3(1 + %1)] m

5 .\ M _
— 0 <e (50 + b +53) Y ]\ZVN) . (6.4.11)
T

For TV from the # term and qCEDM, Diagrams 6.3(a,b,c) are at least NLO, at
which level one has also to consider three-loop diagrams constructed by adding a TC

one-pion exchange, or the operators Cos and Dy, to diagram 6.3(a).
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In the case of the chiral-invariant sources of TV, even if the TV four-nucleon
couplings C, 19 appear with the same chiral index Ag = —1 as the leading pion-
nucleon couplings in Eq. (4.1.29), the perturbative pion power counting enhances the
former over the latter. The leading contribution to the MQM comes therefore from

diagram 6.2(b), and, in the perturbative pion power counting, it goes as

MmaMa,w = M(u —VmyCo = O <wMQ§D> , (6.4.12)
s MT
while the contribution of diagram 6.3(a) is suppressed by Q/Myy.
Finally, TV currents dominate the MQM for TV from the gEDM. The coupling
E, = Eéll) in defined in Eq. (4.2.15), and it generates a long-range contribution to
the TV current. At the same level we find a short-range contribution to the current,

defined in Eq. (6.2.9), with scaling (6.2.12), which is needed to absorb the logarithmic
divergence of diagram 6.3(c). The MQM at LO is

gaBimyy (1-2¢ ) mey 4ry ,
= 4 21 — (0 — M
mgMa,qEpM oy (1 T oe Ty e T (k=) my
m? v
= O|ed = . 6.4.13
( " MZMqon MNN> (8413)

6.5 Discussion

We can now discuss the implications of the various TV sources for the deuteron EDFF
and MQFF. In Table 6.1 we list the orders of magnitude for the deuteron EDM, d,
the ratio of deuteron-to-neutron EDMs, dy/d,, and the ratio of the deuteron MQM
and EDM, M/dy, for the different TV sources: 8 [93, 91], and qCEDM, qEDM, and
gCEDM [40]. Just as for d,, a dg signal by itself could be attributed to any source
with a parameter of appropriate size. For 8, gEDM, and gCEDM the deuteron EDFF
is determined by the LO isoscalar nucleon EDM, and thus, except for qCEDM, d,
is well approximated by the sum of neutron and proton EDM. For # in particular,

using the most important long-range contributions, which appear at NLO, as a lower
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Source | 0 qCEDM qEDM gCEDM
o m2 maM2qp m2 M2 qp
madafe | O (055=) © (5 MNN%) 0 <5E) 0 (w s )
M2
dy/d, o) O (mQTNN> o) o)
ma Ma/dy | O (mMQTNN) O (1) @ (M%V) O (1)

TABLE 6.1. Orders of magnitude for the deuteron EDM (in units of e/my), the ratio
of deuteron-to-neutron EDMs, and the ratio of the deuteron MQM and EDM (in
units of 1/my), for TV sources of effective dimension up to six.

bound for Dy [41, 99], one finds |dy| 2 2.8 - 10740 efm. If, however, the dominant
TV source is the qCEDM, d; comes mainly from neutral-pion exchange. When we
again take the long-range part of the nucleon EDM [40] as an estimate of its size,
we find that |dy/d,| ~ 2, which is smaller than expected from NDA. In any case, a
measurement of |dy| significantly larger than |d,,| would be indicative of a qCEDM.

Additional information comes from the ratio My /dy. For 6, m4| M| is expected to
be larger than |dy|, whereas for the dimension-six sources we expect mg| M| to be of
similar size or somewhat smaller than |dg|. For 8, M, is determined by pion exchange,
and we can again use the link with isospin violation [39] to find My~ 2.0-10730 e
fm?2. An upper bound on M, can therefore constrain § without relying on an estimate
of short-range physics via the size of the chiral log, which is necessary when using d,,
[93]. Moreover, if mg|M,| is found to be much smaller than |d4|, the source would
likely be qEDM. Clearly, a measurement of My, in addition to d,, and d;, would be
very valuable.

The deuteron EDM and MQM were calculated previously in Refs. [157, 159]. In
Ref. [157] the chiral limit m, — 0 and the zero-range approximation for the NN
interaction were assumed, while Ref. [159] used a TV NN interaction with long-range
one-pion exchange and a general short-range interaction parametrized by heavy-meson
exchange, in addition to a realistic deuteron wavefunction. Since these calculations
did not use the chiral properties of the fundamental TV sources, the TV pion-nucleon

interactions were assumed to be all of the same size. When the dominant source is the



189

qCEDM, their results agree with ours. The advantage of our EFT framework is that
it has a direct link to QCD by exploiting the chiral properties of the TV dimension
4 and 6 operators. This is demonstrated by the g, Nm373 N interaction used in many
previous calculations, which due to its chiral properties only comes in at higher order
for all TV sources [39]. Consequently, for the qCEDM, the ratio of d; to M, depends
at LO only on the ratio g1/go,

mD./\/ld
2d,

- (1 T LI mo)) . (6.5.1)

g1
If g, is extracted from the deuteron EDM, and gy from another observable, such
as the proton Schiff moment [40] or the *He EDM [161], the ratio (6.5.1) becomes
a testable, falsifiable prediction of our calculation. In addition, the power-counting
scheme allows a perturbative framework with analytical results that can be improved
systematically. Our estimates for dy are consistent with those from QCD sum rules
[194]. Our conclusions, of course, depend on how rapidly the chiral series converges.
In summary, we have investigated the leading-order, low-energy electric-dipole
and magnetic-quadrupole form factors of the deuteron that result from the 8 angle,
the quark electric and chromo-electric dipole moments, and the gluon chromo-electric
dipole moment and the TV four-quark operators. While for qCEDM we expect |d|
to be larger than |d,| by a factor O(Mgcp/m-Mny), for the other TV sources we
have shown that d; is given by the sum of d,, and d,. Furthermore, the Standard
Model predicts my| M| to be larger than |dy|, whereas beyond-the-SM physics prefers
mg|My| smaller than, or of similar size as |dy|. EDM and MQM measurements are

therefore complementary.

6.6 Some contribution to deuteron EDM at NLO

We discuss in this section some NLO corrections to the deuteron EDM from the QCD
6 term, in connection with our comment on the size of the counterterm Dy in Sec.

6.2.
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FIGURE 6.4. Corrections to the one-body contribution to the deuteron EDM. Solid,
dashed and wavy lines represent nucleons, pions and photons. A square and a circled
square denote the leading and next-to-leading isoscalar nucleon EDM. Circles repre-
sent interactions from the leading TC Lagrangian. The doubly circled circle denotes
an insertion of the subleading four-nucleon operators Cs, and Dyg. The hatched ver-
tex represents the deuteron interpolating field D;(z). Only one topology per diagram
is shown.

As remarked in Sec. 6.4, there are several NLO contributions. We first consider
corrections to the one-body contribution, diagram 6.2(a). They are depicted in Fig.
6.4. Diagram 6.4(c) represents corrections to the isoscalar nucleon EDFF, which
we computed in Sec. 5.2 and we give in Egs. (5.2.6), (5.2.13) and (5.2.15). Dia-
grams 6.4(a) and 6.4(b) are corrections to the TC wavefunction, which go beyond the
zero-range approximation. The doubly circled circle in diagram 6.4(a) denotes one
insertion of the subleading S-wave four-nucleon operators Cy, and Do, while diagram
6.4(b) represents corrections to the wavefunction from one-pion exchange, which is a
NLO effect in the perturbative pion approach.

We find that at NLO the one-body contribution is

FRet(@?) = 2R(q) {Fi(w) = S Caos() (= ) (1 = Fi(w))

2 2
gamny ms 9
1—F; H
* 2 F? [mw + 27 ( @)+ (x)} } ’

(6.6.1)
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Ficure 6.5. NLO diagrams for the deuteron EDM from TV corrections to the
wavefunction. Solid, dashed and wavy lines represent nucleons, pions and photons.
A square denote the leading TV pion-nucleon interaction, or the four-nucleon TV
current. A doubly circled square denotes an interaction from the subleading, A = 3
TV Lagrangians. Circles denote interactions from the leading TC Lagrangian, while
doubly circled circles vertices from the A =1 TC Lagrangian.

where Fy(g?) is the nucleon isoscalar EDFF, defined in Eqs. (5.1.2) and (5.1.3), and
the function H(x) is some complicated function of x and £, whose expansion starts
at O(z°). Notice that the contribution of Dy, cancels when taking the ratio of the
two- and three-point Green’s functions. Diagrams 6.4(a) and (b) do not contribute
to the deuteron EDM, but only to the momentum dependence of the EDFF. This
is analogous to what found for charge form factor in Ref. [189]. The only one-body
NLO contribution to the deuteron EDM then comes from the NLO correction to the
isoscalar nucleon EDM, Eq. (5.2.6). At NLO

dzno—body _ 2D0 +

Jo 3m Lmyd
€gago Sm (1 M) (6.6.2)

ATF22my \© 3 m2

Another class of contributions consists in diagrams of the same topology as dia-
grams 6.2(b), but with power-suppressed corrections to the TC and TV pion-nucleon
couplings and to the photon-nucleon coupling. At this order, one has the contribu-

tion from diagram 6.5(c), with the TV isovector coupling g;, defined in Eqgs. (4.1.27)
and (4.4.4). At the same order, one has to consider diagram 6.5(b) with the leading
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TV coupling gy, and the isospin breaking pion-nucleon coupling S, defined in Eq.
(4.1.21), These two diagrams can be accounted for by replacing in Eq. (6.4.3) ¢
with g1 + gof1/2ga. There is a further isospin breaking contribution, coming from
the nucleon mass difference. With the field redefinition of [138], which eliminates the
nucleon mass difference from the nucleon propagator and the asymptotic states, this
contribution manifests in a diagram with the same topology of diagram 6.5(b). The
TC pion-nucleon coupling is a new isospin breaking coupling, induced by the field
redefinition and proportional to dmy, which is given in Eq. (G.3). The contribution

to the deuteron EDFF from isospin-breaking effects is then

_ qg q 1 +£ 5mN 1
Fe(5?) = _ 29A90mN | (91 P F N F 6.6.3
where the new two-loop function Fy(z) is
20 + 166& + 1052
Fy(r) =1 — 2* + 166 + 1055 + O(xh). (6.6.4)

60(1 + 2¢)?

It is interesting to compare the isospin-breaking contributions (6.6.3) to the non-
analytic, NLO correction to the isoscalar nucleon EDM. At x = 0, the term propor-
tional to dmy in Eq. (6.6.3) is approximately 1/5 of the analogous dmy term in Eq.
(6.6.2), which, in its turn, is about 15 % of the largest non-analytic contribution to
Dy. We can safely neglect it.

As discussed in Sec. 4.4, the ratios g;/go and (1/2ga could both, in principle,
be extracted by TC isospin breaking observables. In practice, this would require
the evaluation of isospin violating observables at rather high order, and a precise
extraction is, at present, not possible. Thus, we cannot, at the moment, do better
than power counting. By replacing g;/go and [31/2g4 with their power counting
estimate em? /MéCD ~ 1072 (which is compatible with bounds on 3; from phase
shift analysis of nucleon-nucleon scattering), one finds that the contribution of Eq.
(6.6.3) to the deuteron EDM is approximately 20 % of the non-analytic contribution
to Dy in (6.6.2). Isospin-breaking effects, then, do not modify the fact that, for TV
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from the @ term, the deuteron EDM is well approximated by the isoscalar nucleon
EDM.

As we noted in Sec. 4.4, in the case of the QCD 6 term several derivative TV pion-
nucleon couplings come into play at the same level as g;, in particular relativistic,
1/m?;, corrections to go. These interactions might contribute to the EDM at NLO, to-
gether with relativistic corrections to T'C pion-nucleon vertex, to the nucleon-photon
vertex (the spin-orbit interaction in Eq. (3.3.19)), and to the contact interaction Cos.

The full calculation of the deuteron EDM from relativistic corrections is not com-
plete yet. Here we simply quote a partial result to corroborate the discussion on the
size of the counterterm Dyy of Sec. 6.2. We computed the correction due to the
spin-orbit coupling of the nucleon to the photon, followed by a TV one-pion exchange,
with the leading coupling gy, represented by diagram 6.5(a). While there are several
other relativistic corrections, no other comes with the isoscalar anomalous magnetic
moment kg, so, while large cancellations are in general possible, the part of the result
proportional to xy will not be affected. We find that the diagram has a logarithmic
divergence. At ¢? = 0, the contribution to EDM is

- J 1 1—2¢
P orbit €gago?y 1 _ = _
; IrF2my T TS ) T2
1 4 my 427\
1 — —4log =1 . 6.
+ | o= + e —logr 3+og< . )]} (6.6.5)

The divergence only affects the deuteron EDM, not the momentum dependence, and it
can be absorbed by the short-range, four-nucleon current Dy, whose contributions,
in the PDS scheme, is

(1 —")

2
or

FRo"(q%) = 7 D (1) (6.6.6)

The evaluation of the remaining contributions to the deuteron EDM from relativistic

corrections to g4, go and Cj; is in progress.
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CHAPTER 7

THE NUCLEAR TV POTENTIAL

7.1 Introduction

We can summarize the results of Chapters 5 and 6 by saying that the observation of
the neutron and proton EDM alone does not provide enough information to unequiv-
ocally determine the dominant source of TV at high energy. Experiments with nuclei
have the potential to offer valuable complementary evidences, and to enable a more
complete picture of T' violation to emerge.

Nuclear EDMs and other moments receive various contributions. There are, of
course, contributions from the individual nucleons’ EDMs. In the deuteron, as de-
tailed in Chapter 6, the isovector component cancels, while in *He one can expect a
cancellation between the contributions of the two nearly anti-aligned protons. Thus,
nuclear EDMs, in particular the deuteron’s [194, 42], are sensitive to a different com-
bination of hadronic TV parameters than the neutron EDM. However, these one-
nucleon contributions are modified from their “in-vacuum” counterparts because the
nucleons are not free but bound in the nucleus. There are many-nucleon effects that
are TV. First, the TV component of the pion cloud can generate a TV pion-exchange
interaction among nucleons, and no symmetry forbids interactions of shorter range,
either. These TV nuclear forces will mix in components of the nuclear wave func-
tion that do not appear in the absence of TV. It is a source of polarization effects
for the entire nucleus. Second, there maybe multi-nucleon contributions to the TV
coupling of the photon; such TV currents can be generated by either pion exchange
or shorter-range dynamics.

TV one-pion exchange (OPE) has long been recognized as an important compo-
nent of the TV two-nucleon (NN) potential, and expressed [195, 196] in terms of

three non-derivative pion-nucleon couplings [197], associated with isospin I = 0,1, 2.
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So far, the analysis of TV nuclear effects has been based on tree-level potentials
where OPE is sometimes supplemented by the single exchange of heavier mesons,
the eta [198], rho [199], and omega [199] being most popular. Allowing sufficiently
many couplings of these mesons to nucleons one can produce [159] the most general
short-range TV NN local interaction with one derivative [200]. This is the TV ana-
log of the Desplanques-Donoghue-Holstein (DHH) approach [201] for nuclear TC P
violation (PV).

The contributions from such potentials to the deuteron and *He EDMs have been
calculated in the literature under various assumptions. OPE from the [ = 2 TV
pion-nucleon coupling does not contribute to the NN system at tree level. It was
noticed early on [202] that OPE from the I = 0 TV pion-nucleon coupling does not
contribute to the deuteron EDM, either, but it does for *He, where it was estimated
with a phenomenological strong-interaction potential [203]. The deuteron EDM that
arises from an I = 1 TV exchange of either pion- or shorter-range, together with
a separable strong-interaction potential, was calculated in Ref. [202]. The effects
of OPE on the deuteron EDM and MQM were calculated using both zero-range
and phenomenological strong-interaction potentials in Ref. [157, 158]. More recent
calculations of the deuteron EDM and MQM [159] and of the *He EDM [161] have
considered other TV contributions besides those from the TV potential, and used
more modern, “realistic” strong-interaction potentials. Meson-exchange currents were
found small in the deuteron [159], and neglected in *He [161]. The TV-potential
contributions are consistent with earlier results; they are dominated by OPE from
the I = 1 pion-nucleon coupling in the case of the deuteron [159], and from all three
pion-nucleon couplings in the case of *He [161].

TV moments of heavier nuclei are more difficult to calculate. It has been argued
[195] that the T'V potential can lead to an enhancement over the nucleon EDM thanks
to the near-degeneracy of levels of opposite parity, while meson-exchange currents

are comparatively small. The size of the effect can be estimated through the single-
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particle potential obtained by averaging the NN potential over a closed nuclear core.
The OPE from the I = 0, 2 pion-nucleon couplings are proportional to the nuclear I3,
(N—Z)/A [195, 196, 204], while the OPE from the I = 1 coupling does not have such
a suppressing factor [196, 204]. It has also been found that the matrix elements from
the rho and omega are small compared to the I = 1 pion contribution [199]. EDMs
and MQMs (for example from / = 0 OPE [195]) and SMs [205, 206, 207] of several
interesting nuclei have been estimated. A sample of recent SM calculations can be
found in Refs. [86, 208, 209]. There are, of course, other nuclear tests of TV, see
for example Ref. [210]. The most promising for effects of the TV nuclear interaction
seems to be neutron scattering [211]. On the proton, TV neutron scattering is again
dominated by OPE, but sensitive mostly to the I = 0,2 couplings [160]. For heavy
nuclei, one can again obtain estimates using the single-particle potential [196, 210].

For consistency, we would like to describe nuclear TV observables in the same
framework used for the calculation of the nucleon EDM. The non-analytic behavior
of the nucleon EDM in m, and the dominance of OPE in nuclear observables point
to the need of a framework that can account for both effects simultaneously, with
chiral symmetry playing a central role. In fact, the dimension 4 and dimension 6
sources of T violation that we consider have specific chiral properties, which imply
that neither all pion-nucleon interactions are allowed, nor all allowed forms have the
same strength. Here we use the chiral Lagrangian built in Chapter 4, where TV
interactions stemming from the # term and the dimension 6 sources of 1" violation
have been constructed and ordered according to the same power counting used to
order TC interactions in xPT.

In addition to consistency between one- and few-nucleon TV interactions, nuclear
TV also requires consistency between TV and TC forces, in order there to be no
mismatch in the off-shell behaviors of the various ingredients. Of course, off-shell
effects are dependent on the choice of fields, while physical quantities are not, provided

the same choice of fields has been made throughout the calculation. As far as TV
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nuclear interactions are concerned, phenomenological TC models bring additional
uncertainties, such as the choice of zero-range or finite-range interactions and the
role of heavy mesons. On the other hand, yPT has been extended to multi-nucleon
systems [100, 37, 38], leading to the derivation of TC nuclear forces and currents. This
opens the possibility of describing all necessary ingredients in a single framework.

The goal of this Chapter is to provide the first step in the extension of TV in-
teractions in the EFT to the multi-nucleon sector. The TV nuclear potential is the
most important ingredient in this extension. Most of the Chapter is dedicated to the
TV potential from the QCD 6 term at N?LO. For this source, it is necessary to work
at high order because the I = 1 pion-nucleon TV coupling, which is the only non-
derivative coupling that in nuclei is not suppressed by the factor (N — Z)/A, does not
appear in the leading order Lagrangian. As we are going to see, new elements appear
with respect to phenomenological treatments, such as two-pion exchange (TPE) at
the same level as short-range interactions representing heavier-meson exchange. In
the case of the qCEDM, the gCEDM and the TV four-quark operators it is enough
to consider the LO TV potential. These TV potentials have to be used, for example,
with the TC, parity-conserving (PC) potentials from Refs. [212, 213, 214, 215, 216,
217, 218, 219, 220, 145, 148, 149, 221, 222, 223, 138, 153, 154]. The construction
here is similar to that of the TC PV potential [90, 224, 225, 226, 227], which ex-
tends the EFT from the TC, PV one-nucleon sector [89, 183, 184, 228, 229, 229] to
multi-nucleon systems. Such a framework provides an alternative to the DDH ap-
proach [201], allowing for a model-independent analysis of nuclear TC PV phenomena
(231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241]. Our present TV PV EFT frame-
work stands in respect to previous approaches like this TC PV EFT framework with
respect to the DDH approach.

The Chapter is organized as follows. In Sec. 7.2 we briefly consider processes
involving momenta below M,,,. ~ 100 MeV, for which pion degrees of freedom can be

integrated out, and we list the dominant TV contact interactions for various sources
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of T violation. The nuclear potential from the QCD 6 term to subleading order in
XPT is then presented in momentum (Sec. 7.3) and coordinate (Sec. 7.4) spaces.
(We relegate details of the Fourier transformation to Appendix K.) In Sec. 7.3.1,
we derive the LO potential from the qCEDM and the chiral invariant, dimension 6
sources of T' violation. In Sec. 7.5 we discuss the size of different components of the

potential, and we draw our conclusions in Sec. 7.6.

7.2 Pionless Theory

Before we discuss the TV potential in yPT, it is educative to consider a much simpler
EFT. At momenta much smaller than the pion mass, pion degrees of freedom can be
integrated out and one is left with a pionless EFT, in which the interactions are
represented by operators involving only nucleon fields. If we denote by M,,. ~ 100
MeV the scales associated with pion physics, this EFT applies to processes where all
momenta ) < M,,.. Power counting in this EFT is reviewed in Ref. [100, 37, 38].

The lowest-order TC two-nucleon interactions can be taken as [35, 36]

Ll = —%NNNN - 02 NTN - NTN, (7.2.1)

where Cyy .- = O(4w/myR), with X < M, a low-energy scale. The corresponding

potential in momentum space is simply

1
‘/#(22 = 5 [011 + CTT’T(l) . 7(2)} s (722)

where 7 /2 is the isospin of nucleon i. These interactions affect only the two S
waves. Since the effect of free two-nucleon propagation is ~ my@Q/4m, for momenta
@ 2 N these interactions have to be iterated to all orders [187, 242]. Using dimensional
regularization with power divergence subtraction [187, 189] at a scale p,

47T 1 -1 47T 1 —1
COS:CM_BCTT:—<__:U) 5 COt:CH_I'CTT:—(__M) s

mpy \ Qs my \ Gt
(7.2.3)
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in terms of the isospin-singlet (35;) and -triplet (1Sy) scattering lengths, a, and a;.
Because the coefficients C; - subsume physics at the scale of the pion mass, their
scaling is different from the one in the pionful EFT.

In leading order, the 6 term, the qCEDM and the chiral-invariant TV sources

induce TV four-nucleon operators similar to those in Eq. (6.2.5):
Lip = CyyNN 9,(NS*N) + C.,N7N - 9,(NS'7N)
+CrN73N 9,(NS*N) + C1, NN, (NS*3N), (7.2.4)

where C4; ,, and Ci, ;1 are new short-range parameters. In momentum space the

interaction Hamiltonian is given by

Ver(@) = —% [Coy + OtV 7] (30 — 5@ . 7
—i (Cir+ Crr) (AV +77) (30 - 5@) - q
O e (=) O o 629

where &(® /2 is the spin of nucleon i and § = p; — p] = P — P» is the momentum
transfer. In nucleon-nucleon scattering, operators that break P and 7" induce mixing
between waves of different parity. At low energy, the most relevant effect is the
mixing between S and P waves, and indeed the single momentum in Eq. (7.2.5) can
only connect an S to a P wave. At leading order, the P wave is free. Since the
short-range TV potential involves one S wave, we expect [100, 37, 38| in the pionless
EFT that the coefficients C’ij scale as 1/XN. Indeed, the amplitude for a nucleon-
nucleon transition can be computed from Eq. (7.2.5) as done in the PV case in Refs.
90, 231, 232, 233, 234]. In leading order, it involves one insertion of the TV operators
C,;, dressed by the all-order iteration of the appropriate S-wave operator, Cys or C;.
The renormalization-group invariance of the amplitude implies that the C’ij follow a

renormalization-group equation of the form d(C;;/Cp)/dIn pu = 0, which is satisfied if
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the four independent parameters are taken to be

S ~ ~ 47TES 1 ! = = = 4re, 1 !
Cre = Cn =30 = <__M) , Cu=Cn +Crr = t<—_,u) ;

my \ Qs my \ Gt

_ _ _ dre, (1 I _ dwey (1 -

C3s = Clr - C1‘r1 = = <_ - lu) ) C3t = Cl'r + CTl = o <_ - :u) (?726)
my Qg my Gy

in terms of four p-independent coefficients ¢, ¢ 353, As in the TC sector, the scaling
of the short-range parameters is different in the pionless EFT than in ChPT. We can

write

_ 47 - AT
Cll,r'r =0 < Cs,t) ’ Cl'r,rl =0 <—C3s,3t) : (727)

mNN mNN
In order to estimate the coefficients s 353, Wwe use naive dimensional analysis [123]

with the pionful EFT as the underlying theory. We then find that at leading order

the isoscalar ¢, receive contributions from all the sources,

o 7 < <~ Mocp  Mgep
Cst =0 <MQCD’ (60 + €93) M% , W M;z% , (7.2.8)

while the isospin-breaking cs, 3, only from the dimension-6 sources,

~ <~ Mgcp Mocep
C3s,3t = @ (53 D) ,Ew D) ) . (729)
( Mg My

In general, one would expect five possible amplitudes connecting S to P waves
[159, 160]: three —one for each possible value of I3 = 1,0, —1— to describe the mixing
of the isotriplet 1Sy and 3P, waves, one for the mixing of the isosinglet 3S; and ' P,
states, and one for the mixing of nucleons in the 3S; configuration with the isotriplet
3P, wave. The @ term yields a short-range potential in the form of the isospin-
conserving terms of Ref. [159]. Because the TV operator in Eq. (3.4.15) is isoscalar
and isospin violation is a subleading effect in ChPT, for which the pionless EFT is
the low-energy limit, the # term does not contribute at leading order to quantities
that violate both 7" and isospin. The two terms contribute to 3S;-'P; mixing and
to 1Sy—? Py mixing, in equal way for the three I3 configurations. The 3S;-2P, mixing

vanishes at leading order, a fact that has important consequences for the estimate
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of the deuteron EDM [42]. If 43 and ¢ are different from zero, the qCEDM and
the chiral-invariant TV sources also contribute to isospin-breaking TV observables at
leading order. The operator Cs; is proportional to the third component of the total
isospin of the two-nucleon pair, and thus it does contribute to 1.Sy-3P, mixing, but
only for Is = +1. Cs, is instead proportional to the total spin of the two nucleons,

and it is relevant to 3S;-2P; mixing, and, consequently, to the deuteron EDM.

7.3 The TV Potential in Momentum Space

In processes involving momenta ) ~ M,,., which presumably comprise the bound
states of most nuclei, pion effects are important and pion degrees of freedom should
be included explicitly in the theory. In this Section we use the interactions given
in Chapters 3 and 4 to compute the TV nuclear potential from the QCD @ term in
momentum space up to v = 3, that is, including corrections of O(Q? /M%CD) with
respect to the leading TV potential. For the 6 term, it is important to work at
this accuracy, since the isovector coupling g; only appears in the N?LO Lagrangian.
Therefore, for observables which are particularly sensitive to g;, as for example the
deuteron EDM, a consistent calculation in the Weinberg power counting requires the
knowledge of the full TV potential at N?LO. We will return to the dimension 6 sources
of T violation in Sec. 7.3.1. In this case, it is sufficient to work at LO, either because
the interesting couplings go and g; are both leading, as in the case of the qCEDM, or
because, in the case of chiral invariant TV sources, short-distance effects overshadow
the importance of corrections to the leading TV potential.

In the lowest orders, the TV nuclear potential involves only two nucleons. We
write the two incoming momenta as p; = 15/2 +pand py = ﬁ/Q — p, and the two
outgoing momenta as p; = ]3/2 +p’ and pi = 13/2 —p’. The potential in momentum
space can be expressed as function not only of the momentum transfer ¢ = p'— p’,
but also of the center-of-mass momentum P and of the variable K = (5'+5")/2: Vi =

—

Vr(q, K , P). Expressions for the potential in the center-of-mass frame are obtained
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FiGUure 7.1. OPE diagrams contributing to the leading TV two-nucleon potential.
The solid and dashed lines represent nucleon and pion, respectively; a square stands

for the TV pion-nucleon coupling gy in E,}l’ )W n (4.4.7), while the filled circle represents
0)

an interaction from 5;7 <9 (3.3.17). Only one possible ordering is shown.

by setting P = 0. Notice that although some of the terms below vanish in the center-
of-mass frame, they can be relevant to the calculation of the TV electromagnetic form
factors of deuteron, or for calculations of T" violation in nuclei with A > 2, where the
interaction with the photon or other nucleons changes the center-of-mass momentum
of the nucleon pair.

In leading order, the TV nuclear potential comes from the OPE diagrams of Fig.
7.1, with TC and TV pion-nucleon interactions taken from E;O}SQ and E)(él’)fzz in Egs.
(3.3.17) and (4.1.19), respectively. The strong-interaction vertex introduces a factor
of gaQ/F,, while the TV vertex brings in a factor gy oc m2/Mgcp. As a result
this contribution goes as MééD and it is of order ¥ = 1. In momentum space, the

expression for the potential is simply

1 .9490 @ 2) (=(1) =2 q

™

which agrees with Ref. [195]. Just like the potential (7.2.5) in the pionless theory,
this OPE potential contributes to !Sy—3P, and *S;-! P, mixing, but not to the isospin-
violating 3S;-3P; mixing. At this order, there is a single unknown TV parameter,
go. Contrary to the PC, TC case [100, 37, 38] and more like the PV, TC potential
[90], pion physics is enhanced relative to short-range physics due to the absence of a
derivative in the simplest pion-nucleon TV interaction and the presence of one in the

simplest TV two-nucleon contact interaction.
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The next contributions to the TV potential appear at orders v = 2,3. According
to Eq. (3.3.15), corrections at these orders come from one-loop diagrams involving
E;O,)Sz and E)(é)fﬁ only, and tree diagrams with insertions of higher-order terms. The
tree contributions come from the four-nucleon TV operators in E;?j)f: B (4.1.44),
and from OPE diagrams in which either the TC or the TV vertices originate in the
power-suppressed f < 2 Lagrangians.

The most important loop diagrams are from TPE, depicted in Fig. 7.2. The
T-odd pion-nucleon coupling gy and one of the strong-interaction vertices bring in a
factor of goga/F?. The other two vertices of the box and crossed diagrams of Fig.
7.2 are strong-interaction pion-nucleon vertices from Eq. (3.3.17), and combined with
the (47)? from the loop integration, they yield the suppression factor g2 /(47 Fy;)* ~
1 /M%CD. For the triangle diagrams, the seagull vertex is the Weinberg-Tomozawa
term, also from Eq. (3.3.17), which brings in a factor of 1/F? that, combined with the
(4m)? from the loop, also leads to a suppression of 1/(47F;)* ~ 1/Mgqp. All these
diagrams are thus of order Még p- Care of course has to be taken with the subtraction
from the box diagrams in Fig. 7.2 and the iterated static OPE, which is infrared
enhanced and already included in the computation of wave functions. Following the
procedure described for instance in Ref. [90], the subtraction is accomplished by
exploiting the identity

1 L i
—v -k +1e v-k+ie

+2mb(v - k). (7.3.2)

When Eq. (7.3.2) is used in place of one of the nucleon propagators in the box
diagrams, the first term on the right hand side leads to a contour integral over the
Oth component of the loop momentum, which can be performed without picking up
the nucleon poles and is free of the infrared enhancement discussed in Sec. 3.3, while
the delta function corresponds to the two-nucleon pole and must be discarded in the
calculation of the potential. For the crossed-box and triangle diagrams, instead, it is
always possible to avoid the nucleon poles, and these diagrams only contribute to the

potential.
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FI1GURE 7.2. Box, crossed and triangle TPE diagrams contributing to the subleading
TV two-nucleon potential. Notation as in Fig. 7.1. Only one possible ordering per
topology is shown.

The TPE diagrams in Fig. 7.2 are ultraviolet divergent. We regulate them in
dimensional regularization in d spacetime dimensions, where divergences get encoded
in the factor

L — v + Indm, (7.3.3)

4—d
where g is the Euler constant. We denote by i the renormalization scale. Proper
renormalization requires that sufficiently many counterterms appear at the same order
to compensate for the L and p dependence of the loops. Indeed, here this dependence
can be absorbed by the renormalization of the contact interaction Cj from ﬁ)(é?:)f= 4

Eq. (4.1.44), which we do by redefining it through

2

= = 29490 1 2 H 2

™

Note that we chose to absorb in C, some finite constant pieces. TPE graphs do
not renormalize the coupling C at this order. With this redefinition, the contact

interactions yield the short-range potential
7; Y Y = g —
Vign(@) = —5 G+ . @] (¢ —5@) . ¢ (7.3.5)

which is formally identical to the leading potential in the pionless EFT, Eq. (7.2.5).
The couplings, however, are different. We can see from Eq. (7.3.4) that the natural
size of the coefficients C; is, as advertised, @m2/FZMp ., implying a suppression of

Q*/Mp¢p with respect to TV OPE.
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Once the divergent, short-range part of TPE has been lumped with the contact

terms, we are left with the non-analytic contributions of medium range,

yeo o H0a 1w e G0 _0). 7|90 B N\ _p (4
TMR F2 (2nF,)? 4m3 4m2 )|’
(7.3.6)

in terms of the functions

T(x) = ,/Hxln <f+ \/1+—x> 1;”5 B(x), (7.3.7)

As the leading OPE potential, Eq. (7.3.1), the TPE potential is a function only of
the momentum transfer ¢. The scale of momentum variation is, as one would expect,
2m,. TPE and leading OPE share the same spin-isospin structure, which means they
can only be separated if we can probe their different momentum dependences.

A much richer structure arises from the remaining v < 3 contributions to the
two-nucleon TV potential, which come from the OPE diagrams depicted in Fig. 7.3.
Double-circled vertices in the first two diagrams denote O(Q? /Méc p) corrections to
the TV and TC pion—nucleon couplings, given by the operators in the Lagrangians
Y, o, £, and £, found in Eqs. (3.3.18), (3.3.19), (G.3), and Egs.
(4.1.24) and (4.1.27) (the effects of the elimination of the tadpoles on Eq. (4.1.27) are

summarized in Eq. (4.3.17)). The last diagram is proportional to corrections to the

(1,2)
7, f<2° If<2

that there are no further loop diagrams to consider explicitly. The loop diagrams

pion mass in E)é =0 and L and to the nucleon mass difference in £\" Note
involving the leading S-wave TC four-nucleon operators and a TV pion exchange all
vanish. The analysis of [124, 125, 126] showed that some P-wave four-nucleon opera-
tors are less suppressed than expected on the grounds of naive dimensional analysis,
and they must be included in the leading order f = 4 Lagrangian. Loop diagrams
with these P-wave operators and a TV pion exchange do not vanish. However, these

diagrams do not depend on the momentum transfer ¢ and they simply renormalize

the couplings C; and Cy. We do not explicitly compute their contribution.
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FiGure 7.3. OPE corrections to the TV two-nucleon potential up to order
O(Q*/Mpcp). The double circles denote vertices in the A = 1,2 TC chiral La-

grangians, ES)fZQ (3.3.18), Eg)fzz (3.3.19), and E;,lfz; (G.3). The double-circled

square denote vertices from the A = 3 TV Lagrangians, £ =y (4.1.24) and E;‘? =2
(4.1.27). Other notation as in Fig. 7.1.

Corrections that originate in the pion mass are closely connected to the leading
OPE, Eq. (7.3.1). At the order we are considering, the pion mass receives correc-
tions from one-loop diagrams, which we absorb [30, 31] in the renormalization of the
coupling Am? in Eq. (4.1.4). With the definitions of Eqgs. (3.3.17), (3.3.21), (4.1.4),
and (4.1.9), the physical masses of the neutral and charged pions are, respectively,
m2, = m2+Am2 —m? = (135 MeV)? and m2, = m? +Am? +om?2 = (139.6 MeV)?
[1]. The isospin-symmetric correction to the pion mass can be accounted at v = 3 by
substituting m2 — m?2 4+ Am?2 in the leading order TV potential. Isospin-breaking
corrections come from the different masses of the neutral and charged pions. With
the assumption ey /m ~ em? / Mgc D, which is numerically reasonable, the pion mass
splitting is dominated by the electromagnetic contribution Smi, which gives rise to a
potential of order v = 2. The quark mass difference m? contributes at v = 3, when
one should also consider diagrams with two insertions of Smfr The sum of these

components generates two structures, an isoscalar

@+3) o _ 909 (1) @) (=) _ =2y, 4
Vi (@) = =g T L (@2 +m2)2

£ 232
X (25m3r —6m?2 — 2M> , (7.3.8)

g +m3
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and an isotensor

—

@3) o _ ;9094 (3 (1) e D @) (20) _ = q
VEP(g) = 7o (3 T().T()> (U()_U()).m
9 dm2)2
X <5m72r +om2 — %) . (7.3.9)

The isoscalar component, Eq. (7.3.8), can be expressed in a more convenient way
by using the physical values of the neutral and charged pion mass in the leading

potential, Eq. (7.3.1). We can write

2 1
v V23 gOgA +O @ () _ 72 . 7
T (q_>+ T7,a (_> 3F2 T (U 9 ) q q—»2+m7gri+q»2_'_m3ro 9
(7.3.10)
which, expanding in gmfr and dm?2, reproduces Eq. (7.3.8). The combination of
neutral and charged pion propagators in Eq. (7.3.10) represents an “average” pion

static propagator, which naturally appears in the isoscalar contribution. Similarly,

we can express the tensor component as

1 1
1(243) _ gogA <3 (1) (2) a (2)) S(1) _ =2(2)) .~ _ ‘
7 (@) ?)F2 - (@ 7)q Z+mi. 2 +mi

(7.3.11)

In applications to nucleon-nucleon scattering, this tensor component would contribute
at low energies to 'Sy—2 Py mixing, affecting proton-proton and neutron-neutron (I3 =
+1) and neutron-proton (I3 = 0) scattering differently.

Corrections from the nucleon mass come in several guises. The use of a heavy-
nucleon field ensures that the large scale my appears always in denominators. In the
isospin-symmetric limit the first effects of my enter in the A = 1,2 TC Lagrangians,
Egs. (3.3.18) and (3.3.19), the two-derivative contribution to the A = 3 TV La-
grangian, Eq. (4.1.24), and, via the on-shell condition for the nucleons, the energy of
the potential pion propagator. They yield relativistic corrections to the leading OPE
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with the same spin-isospin structure,

G- 2 By _ 9490 _1) _@2) (=21 _ =@ q
VT,a(Q? K? P) - _ZFETTL%VT T (U —-g ) ’ q—‘2+m72r
o PP1(Pg)
gral 2 \a) 7.3.12
x ( + 4 4q2+m2 )’ ( )

(7.3.13)

This potential includes the contribution of the 1/my correction to g4 in Eq. (3.3.18).
Naively, one would expect this correction to contribute at order v = 2; however the
interaction brings in a factor of v - ¢, which, for on-shell nucleons, becomes v - ¢ =
q- P /2myy, suppressing the potential by a further factor of 1/my. There is a subtlety
in this argument. When one performs the integral involving both OPE with a pion
energy in the numerator and another interaction in the potential, and picks the pion
pole, one gets a one-loop contribution to the potential. However, by power counting,
such diagrams are suppressed by a further Q) /Mgcp. This of course does not preclude
enhancements by factors of 7w that in principle might affect any yPT loop, but are
hard to incorporate in power counting. The same on-shell condition was used to
express v - ¢% in the pion propagator in terms of the momentum of the nucleons.
Corrections to the nucleon mass can be removed from nucleon propagators by
redefinitions of the nucleon field. The chiral-symmetry-breaking correction to the
nucleon mass, Amy in Eq. (4.1.2), can be absorbed in my, my — my — Amy, by
a redefinition of the nucleon field of the same type of that which eliminates the mass

from Eq. (3.3.17) in the first place. The isospin-violating nucleon mass splitting 0m y
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can be dealt with the field redefinition of Ref. [138], which leads to Eq. (G.3). The

corresponding potential linear in dmy has a 1/my factor,

@) (2 By _ Jogadmy 1 ; N
A R = B; (T x ), [(a”+a(>)-K

p q_' =4
>(1) _ =(2)) . _1 I L7
+ (a o ) (2 + 7 72TP Q>

This potential has the right quantum numbers to produce 3S;—3P; mixing, and there-

(7.3.14)

fore must be included in a calculation of the deuteron EDM. Indeed, in the pertur-
bative pion approach, one-pion exchange of the form (7.3.14) generates a NLO con-
tribution to the deuteron EDM, as discussed in Sec. 6.6. In addition, there are terms
quadratic in dmy, which generates an additional contribution to the isoscalar and

tensor potentials in Eqs. (7.3.8) and (7.3.9),

Vﬁ)d(@ = i—g}g?ém?\, [27'(1) N A (37'3(1)7352) — 7 -7(2))}
X (5(1) — 6(2)) N S (7.3.15)

(¢* +m2)>

Finally we arrive at contributions from v = 3 effects in the pion-nucleon vertices.
At this order, several contributions can be absorbed into redefinitions of the couplings
g4, Go, and Cy. One-loop corrections to g4 do not introduce any non-analytic contri-
bution and, for an on-shell nucleon, they renormalize the coupling 55 in Eq. (4.1.3)
[243]. The operator with coefficient S, gives rise to a potential like Eq. (7.3.1), with g
replaced by — /2. For simplicity we absorb (s in g4, g4 — ga+/2/2. In Appendix J,
we show that the one-loop corrections to gy do not introduce any non-trivial momen-

tum dependence, so they simply renormalize the coupling Agy = —25%3)mNp in Eq.

2
_

(4.1.27). These m?2 corrections to gy can be absorbed in it, gy — go—Ago—godm?2 /m

™

As for the operators with coefficients ¢, in Eq. (3.3.19) and 775 = p(3 in Eq. (4.1.24),
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they give potentials of the form

e
@) . £+ (1) @) my D) @ (1) )
=-T77-7T (O’ -0 ) o 72r+7' T (a -0 ) q,

(7.3.16)

which cannot be distinguished from those of g4gy and Cs, and can therefore be ab-
sorbed into further redefinitions of g, go, and Cy. Now the Goldberger-Treiman
relation for the strong pion-nucleon constant, g.ny = 2myga/Fy, applies without an
explicit correction. If for the pion-nucleon coupling constant we use g,nyy = 13.07
244, 245], then in the leading-order TV potential we should use g4 = 1.29.

The remaining contributions come from vertex corrections, both in the TV sector
via the TV pion-nucleon coupling ms NN in Eq. (4.1.27), and in the TC sector via
the isospin-breaking pion-nucleon axial-vector coupling 9,m3NS#N in Eq. (G.3). We
find

1 1 Gof3
3 _ o~1 1 2 R 5 .
VZZEI’)O(q_) Y2 q* + m? {(gAgl B T) <T§ '+ Té )> (U(l) - 0(2)) q

n (gA§1 n 9051) (T?El) _ T§2>) (7 +&?) .q*} 7 (7.3.17)

where defined g; to absorb the tadpole contribution, like in Eq. (4.4.4)

om?
_ 4 (3) T 31
g =—4p <cl — Amy 2m2) (7.3.18)

The first structure contributes to 'Sy—2F, mixing. Being proportional to I3, the
contribution vanishes in the case of neutron-proton scattering, and is only relevant for
proton-proton or neutron-neutron scattering. Because of its isospin structure, it does
not affect the 35,1 P, and 3S;-2P; channels, and, in particular, it is not relevant for
the calculation of the deuteron EDM. The second structure, in contrast, contributes
to 35,2 P, mixing, and, consequently, to the deuteron EDM. Its contribution vanishes

in the other low-energy channels.
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One can proceed in the same manner to construct higher-order potentials. At next
order there are further OPE and TPE contributions to the two-nucleon potential,
and the appearance of the lowest-order three-nucleon TV potential. It arises from
essentially three mechanisms: (i) a TPE component o< g4go/myF2 involving a pion
energy in a Weinberg-Tomozawa seagull vertex; (i) a TPE component o g%ho/F2
involving the seagull vertex from E)(g)f:2, Eq. (4.1.21); and (7i) a one-pion/short-
range component x ¢g4%;/F? involving the short-range pion-two-nucleon interactions
from £>(€2,)f: . Ed. (4.1.42). The fact that, in the absence of an explicit delta isobar,
the three-nucleon potential first shows up three orders beyond leading is completely
analogous to the TC PC case [218, 219, 220]. An important difference is that, because
of the relative enhancement of pion exchange compared to short-range physics, the
leading TV PV three-nucleon force does not include a purely short-range component.
Thus, this TV PV three-nucleon force is in principle determined by one- and two-

nucleon physics.

7.3.1 The TV Potential from dimension 6 sources.

Our attention has been focused so far on the TV potential from the § term, in which
case the vanishing of g; at LO makes it important to consider N*LO contributions.
We now briefly turn our attention to the TV potential from the dimension 6 sources
of T" violation.

In the case of the qCEDM, the TV couplings gy and g; both appear at the same
order, in the Ag = —1 Lagrangian in Eq. (4.1.29). As a consequence, the leading
potential from the qCEDM has chiral index Ag = —1, and it has an isospin conserving

part, identical to Eq. (7.3.1), and an isospin breaking one. The leading potential is

—

VD (@) = 2P0 @ (0 _g@). 9

qCEDM Fg (jg _l_m72r
.gag 1 . - . S . i
+292A}€’12qq—’2 L [(él) +7§2)) (G0 —5®) . g+ (7?51) _ 73(2)) (G0 4 &) .q} ,

(7.3.19)
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with go, and gy, given in Eqgs. (4.4.5) and (4.4.6).

At N2LO, the potential receives corrections from one-loop diagrams, with the same
topology as in Fig. 7.2, the square now denoting both gy, and g4, from tree-level
OPE diagrams, with subleading TC and TV pion-nucleon vertices, and from short-
range nucleon-nucleon interactions, the operators in Eq. (4.1.48). We refrain here
from carrying out the complete calculation, which proceeds on lines that are very
similar to Sec. 7.3, with the only difference of a richer isospin structure.

For the chiral invariant sources of T" violation, the gCEDM and the TV four-quark
operators, TV pion-nucleon couplings and four-nucleon interactions have the same
importance, both of them appearing in the Ag = —1 Lagrangian, in Eqs. (4.1.29)
and (4.1.50). As a consequence, the leading nucleon-nucleon potential consists of a

pion-exchange contribution and a short-distance piece

(D(m _ 9AT0w (1) @) (2) _ =@y, 1
Vi Nq) =i Iz T T (O’ b ) R

G 1 ) i} ) . . .
+ig§]gl2 P |:<T3(1) +T§2)> (0(1) _ 0,(2)) g+ (T?El) B 7352)) (0(1) X 0,(2)) _q}

—5 [Cor+ Cun 7@ - 7?] (30 - 5?) . q (7.3.20)

At N2LO, along with contributions similar to those discussed in Sec. 7.3 (TPE di-
agrams, relativistic corrections to go and g;) one has to include all the possible TV
four-nucleon operators with three derivatives.

In the case of the QCD 6 term, TV three-body forces only appear at N3LO, one
order higher than the accuracy of our analysis. One might wonder whether for chiral-
invariant sources of T violation, which appear to be more sensitive to short-distance
physics, TV three-body forces are more relevant. However, also in this case it turns
out that the three-nucleon potential is a N3LO effect. The lowest order three-nucleon
potential receives various contributions: (i) a TPE component o« g4do 14w /myFE?} in-
volving a pion energy in the Weinberg-Tomozawa vertex, (ii) a TPE component
o g4%0w/my Ed involving a pion energy in the leading TV seagull 7, (i7i) TPE com-

ponents from TV seagulls in the Ag = 0 pion-nucleon Lagrangian, which we did
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not explicitly construct, (iv) a one-pion/short-range component oc g4%;/F2, where in
the case of TV from the gCEDM and TV four-quark operators, four-nucleon opera-
tors that contain at least one pion field first appear in the Ag = 0 Lagrangian, (v)
short-range six-nucleon operators, which, according to Eq. (3.3.13) also appear in the
Ag = 0 Lagrangian. From the power counting formula (3.3.15), all these three-body
contributions are suppressed by three powers of m,/Mgcp with respect to the effects
of the two-body potential (7.3.20) in the three-body system.

Since in the Weinberg power-counting, three-nucleon electromagnetic currents are
also small, even in the case of TV from dimension 6 chiral invariant sources the EDM
of 3He and *H does not involve, at least at leading order in the Weinberg power
counting, any new three-body low-energy constant, and, if enough one- and two-

)

. _ = =(—1 e .
nucleon observables are measured to fix the couplings go 1, Ci2., and DED 04, it 1s a

falsifiable prediction of the theory.

7.4 The TV Potential in Configuration Space

The evaluation of T-odd observables in nuclear and atomic systems is often more
easily carried out in configuration space. In this section we give the TV nuclear
potential derived in Sect. 7.3 in coordinate space.

In the two-body case, it is convenient to introduce the relative position of the
two nucleons 7 = 7| — T, their center-of-mass coordinate X = (71 + ¥9)/2, and the
conjugate variables —iV, = —id/0F and —iVy = —id/0X. Translation invariance
constrains the potential to commute with v x and, therefore, not to depend on X ,
so that in general the potential is a function of 7 and of the nucleons’ relative and
center-of-mass momenta, Vp = Vp(7, v,V x). The relations between the potential in
momentum space and in coordinate space are defined in the Appendix K. Some care
must be taken, and a regularization scheme has to be defined, when computing the
Fourier transform of functions that blow up as || goes to infinity, as is the case of the

subleading TV potential. As described in the Appendix K, we follow Ref. [246] and
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define the Fourier transform in d dimensions. We apply the d-dimensional Fourier
integration of the momentum-space potential before setting d = 4. This method
eliminates naturally the divergent factor I'(2 — d/2) arising from loops and yields a
finite result. As we will see, the divergent behavior at large momentum translates
in a singular ~ 1/r% potential at short distances. Expressions in configuration space
obtained with this method are equivalent to the procedure based on old-fashioned
perturbation theory [246].

In order to write the results of the Fourier transform we introduce a few functions

of the magnitude r = || of the radial coordinate:

1

Ui =15

[2 exp (—mg+7) + exp (—mqor)], (7.4.1)

which reduces to the usual Yukawa function U(r) = exp(—m,r)/4mr when we ignore

the pion mass difference;

W(r) = lexp (—mg+7) — exp (—myor)], (7.4.2)

Ay

which is entirely a consequence of isospin breaking; and the TPE functions

X(r) = W/o dz (34 308r + 8*r?) exp(—pr), (7.4.3)
Y(r) = m /0 dz (1 + Br) exp(—Br), (7.4.4)

with 8% = m2 /z(1 — z).
The Fourier transform of the leading OPE potential including the corrections to

the pion mass (7.3.10) and those coming from the nucleon kinetic energy (7.3.12) is

V) + V) + VL 9, ) = B0 70 (50— @)

s

v, Ulr )( Zjl%\f)+{237i\/7{2:iv,(6r(](r))}}

(7.4.5)
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where {--- .-} denotes the anticommutator. The remaining pion-mass correction,

Eq. (7.3.11), is

V() = %fi;‘ (302 =70 2@ (30 - 5@) - (VW (), (746)

while the Fourier transform of the other relativistic corrections to the leading OPE,

Eq. (7.3.13), is

VR T Tx) = B0 [0 5. Ty (,00)) -9
ﬂmN

| 9jgiik (0(1)1'0(2” _ 0_(1)10.(2)i) (Vl VkU(T)) \Véi

s T s

+ g% (eWig®! 4 W@ (VIVEU (1)) V?ﬂ . (7.4.7)

The nucleon mass-splitting corrections in Eq. (7.3.14) become

I .Goga om . -
Vi, Ve, V) = =gt (e x 2 ), (50 +59) {9, U0) )
(6 %) (U( ¥ — = (¥, 9150() vaf)] ,
(7.4.8)

while those in Eq. (7.3.15) read

3) Gogaoma [y - 1 )
VZSId(_) = T3 m:[ {7(1) 7@ 5 (3735 )2 L) T(z))}
x (71 — 5?). (ﬁr TU(T)> ' (7.4.9)

The last OPE terms, Eq. (7.3.17), are

VO o _Gga (g P ( <2>> (1) _ @)
77e(7) 2rz |\G " 20 + 7 (¢ )

@) ) o] (e)

(7.4.10)

Finally, the Fourier transform of the TPE potential in Eq. (7.3.6) reads

V() = = 29470 2@ (50 - 52). ¥, (X0 - Y()] . (141

T
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The potential in Eq. (7.4.11) is singular, and the cutoff dependence it introduces in
the evaluation of matrix elements and observables is absorbed by the renormalization

of Cy in the short-distance potential (7.3.5),

Vrsa(7) = % [C1+ Cor® -7 @) (30 - 53@) - (V,.69(7)). (7.4.12)

The Fourier transform of the leading TV potential from dimension 6 sources can
be immediately read from the results in Eqgs. (7.4.5), (7.4.10) and (7.4.12).

We compare these various potentials with the literature in the next section.

7.5 Discussion

Traditionally the study on 7' violation in nuclear physics has been carried out by in-
cluding the most general pion-nucleon non-derivative couplings in a phenomenological

TV Lagrangian [197], which we write in our notation as

LT,non = _%NT TN — %ﬂ'gNN - % \ (37’37’(’3 - T 7'(') N, (751)

and by inferring from it the TV two-nucleon potential [196],

2
1 (30 2 — 02 0)] (50— )

+ D (A =AY @0+ 5 - (YUm), (752)

VT,non(F) = _% { [QO T(l) ' 7(2) + ﬂ <T?E1) + 7-352))

with U(r) defined in Eq. (7.4.1). When short-distance contributions are included
in the model, the most general TV two-nucleon local potential with the minimum

number of derivative assumes the form [200]

. 1
Vi) = (60 —52).¥ [uo(r) + 70 DY) + 5 <T§” + T§2>) Uy (r)
1 —
+ (37}3” 7'332) — 7M. 7(2)) Vg(’l“):| + 3 (7'321) — T§2)> (5(1) + 5(2)) - VYV, (r)

(7.5.3)
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in terms of five radial functions Uy 1 (r) and V1 2(r). These functions are assumed to
originate in one-boson exchange [198, 199, 159]: pion exchange is taken to give long-
range contributions to Vo, (Vi +U;)/2 and Vs, while eta, rho and omega mesons give
shorter-range contributions to the same quantities, and to Uy and V; — U;. The five
momentum-independent potentials in Eq. (7.5.3) are treated on the same footing,
and they provide enough information to describe the five S—P mixing amplitudes
discussed in Sec. 7.2.

For TV stemming from the QCD @ term, the proper account of chiral symmetry
radically changes the picture. As noticed in Ref. [93], at leading order the § term
generates only the isoscalar pion-nucleon T-odd coupling g, and thus contributes at
tree level only to the I = 0 potential [195]. A coupling of g; form appears two orders
down in the xPT expansion, and the one of g, form is even more suppressed [39].
To evaluate the effects of the § term on observables which, like the deuteron EDM,
are mostly sensitive to the I = 1 components, it is necessary to consider the TV
two-nucleon potential to next-to-next-to-leading order in xPT. As described in Sec.
7.3, this implies the consideration not only of the non-derivative pion-nucleon TV
couplings, but also of subleading TV derivative couplings, of power-suppressed TC
interactions (with particular care for isospin-breaking operators, which contribute to
the I = 1 and I = 2 potentials), and of one-loop and short-range contributions to
the two-nucleon potential. When all these elements are considered, the potential has
a much richer structure than Eq. (7.5.3): (i) a hierarchy emerges between the five
spin-isospin structures already present in Eq. (7.5.3), and (74) momentum-dependent
potentials appear, with the same importance as most of the momentum-independent
ones.

We first analyze the implications of our results to V/ min(F’). Using the chiral index

v, as defined in Eq. (3.3.15), to keep track of the size of different pieces, the # term
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contributions to Eq. (7.5.3) are

W) = ~E2ue), (75.4)
V(r) = _g%go [QQiX(T)—Y(T)ﬂLWrU(T) +02%,(7.5.5)
Uy = +0 (756)
V() = _g;go (% + 2%) U(r), (7.5.7)
U (r) = _9;?0 (% ~ 2%) U(r), (7.5.8)
VEI () = +g§?§ {(m”z;:”p)zw(r) +W(r)] , (7.5.9)

where U(r), W(r), X(r), and Y (r) are defined in Eqgs. (7.4.1), (7.4.2), (7.4.3), and
(7.4.4), respectively. In Eq. (7.5.4) the use of the definition (7.4.1) to express Vél) in
terms of the physical pion masses introduces subleading corrections in the v = 1 term,
which strictly speaking would use a function U(r) that only depends on a common
pion mass, say the neutral one, Uy(r) = exp(—myor)/4nr. In Egs. (7.5.5)—(7.5.9) we
can neglect the pion mass difference in U(r), and use Uy(r), the error thus introduced

being at higher orders in the yPT power counting. Similarly, in Eq. (7.5.4) the use
2

s

of g4 and gy with their m2 corrections included accounts for some v = 3 corrections,
while whether or not such m? corrections are included in Eqs. (7.5.5)—(7.5.9) is
beyond the order we consider. In Egs. (7.5.5) and (7.5.9) we replaced dmy, the
quark-mass-difference contribution to the nucleon mass splitting, with the physical
value of the nucleon mass splitting itself, m,, —m,,, the difference being a higher order
contribution in yPT.

As one can see, at order v = 3 in xPT all the possible spin-isospin structures
considered in Refs. [200, 198, 199, 159] appear. The dominant component is the
isoscalar Vy [195]. In Figs. 7.4 and 7.5 we plot, respectively, the momentum-space

and configuration-space expressions for VVy. The dashed line represents the leading-

order VVO(I), Egs. (7.3.10) and (7.4.5) with the use of the definition (7.4.1) for U(r)



219

to express Vo(l) in terms of the physical pion masses. The dashed-double-dotted line
illustrates the effect of the difference between the leading OPE potential computed
with the function U(r) and with Uy(r). Other isospin-breaking corrections, which
come from the nucleon mass splitting in V0(3), Egs. (7.3.15) and (7.4.9), are also very
small, as indicated by the long-dashed-dotted line barely distinguishable from the
z-axis. At next-to-next-to-leading order, V, also exhibits a medium-range component
originating in TPE diagrams and a short-range component. The dashed-dotted line
depicts the non-analytic piece of the TPE diagrams, Eqs. (7.3.6) and (7.4.11). We
estimate the short-range potential by assuming the coefficient Cy in Eq. (7.3.4) to
be dominated by the In p?/m?2 term with p = my. The rationale is that there is no
obvious reason to expect that such a contribution, non-analytic in m,, should get
exactly canceled by m,-independent short-distance contributions. However, the sign
cannot be guessed reliably and our choice is purely arbitrary, for illustration only.
Equation (7.3.5) gives rise to the straight dotted line in Fig. 7.4 but Eq. (7.4.12)
does not appear in Fig. 7.5 since it is concentrated at » = 0. The solid line in both
figures is the sum of the long, estimated medium, and short-range contributions to
V.

From Fig. 7.4, we can appreciate that, as expected from the yPT power counting,
the medium and short-range corrections to the TV potential have comparable size in
the momentum range we are considering, and for momenta ¢ 2 m, they noticeably
affect the leading order. At momenta of order 300-400 MeV the medium and short-
range contributions have roughly the same size as the leading potential. In this region,
degrees of freedom which we have not explicitly included in the EFT, like the A isobar,
become relevant, and the convergence of the perturbative expansion can be improved
by extending the EFT to incorporate them. Isospin-breaking, long-range corrections,
although of formally the same order as TPE and contact terms, are much smaller, at
least in part because of factors of €, except at very small momenta where their longer

range compensates. In Fig. 7.5 we focus our attention on the long-distance region,
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FIGURE 7.4. Components of the TV two-nucleon potential |¢'|V,, in units of
gago/m-F2, as a function of the transferred momentum |7, in units of m,. The
(blue) dashed line denotes the leading-order OPE contribution with physical pion
masses; the (orange) dashed-double-dotted line shows the effect of the pion mass dif-
ference on the leading OPE contribution; the (dark green) long-dashed-dotted line
accounts for the even smaller effect of the nucleon mass splitting; the (purple) dashed-
dotted line is the non-analytic TPE contribution; and the (green) dotted line presents
an estimate of the short-range component of the potential. The (red) solid line is the
sum of all the contributions up to next-to-next-to-leading order.

r > 1/m,. At distances of up to r < 2/m, TPE is still the dominant correction

to the potential, but it is overcome at longer distances, r 2 2/m., by the long-range
effects of pion mass splitting in OPE.

It is instructive to compare our results for 1, to the corresponding TV potential
obtained in a one-boson-exchange model. In such a model, T violation in the coupling
of a rho-meson to the nucleon generates corrections to Vy of the form [199, 159

7] Gop b €77
V(p) _ 9490 YpNN GopL'x ’ 7510
o (7) F? g.nn Go 4wr ( )

where g,y is the TC rho-nucleon vector coupling and go, is an isoscalar, TV, one-
derivative rho-nucleon coupling, defined, for example, in Ref. [159]. In the limit

where the rho mass is large, m, — oo, Vép ) (r) approximates a delta function and the
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FicGure 7.5. Components of the TV two-nucleon potential V), in units of
gagom?/AmEF?, as functions of the distance between the two nucleons r = |7], in
units of 1/m,. Curves as in Fig. 7.4, except that the short-range component of the
potential is not shown.

effect of TV rho-exchange amounts to a contribution to C of the form

P — _p 9490 9onn ool 1 (7.5.11)
EF2 gann 9o m,z)
Since m, ~ Mgcp and there is no reason for go,F/go to be particularly big or small,
the size of rho-meson contribution is comparable to the power-counting expectation,
Cy = O(m2/Mpcp), with some suppression coming from the numerical smallness
of the TC rho-nucleon vector coupling compared to the pion-nucleon coupling. As-
suming the TV pion-nucleon and rho-nucleon couplings to have the same strength,
GopLx/go = 1, and using for the rho-nucleon vector coupling the value determined
in modern high-precision two-nucleon potentials, g,ny = 3.2 [247, 248], in Fig. 7.6
we compare the rho-meson contribution to VV; to the pion-mass-splitting and TPE
medium-range corrections discussed above. For r 2 1/m,, the contribution of the p
meson is numerically small compared to both pion-mass-splitting and TPE correc-
tions. At shorter ranges, r < 1/m,, rho exchange overcomes the effect of pion mass

splitting, but it always remains smaller than TPE. Of course we can make one-rho
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FiGure 7.6. Comparison between one-rho-exchange and EFT contributions to the
magnitude of the TV two-nucleon potential |[VV;| in units of gagom?2 /472, as func-
tions of the distance r, in units of 1/m,. The rho-exchange contribution is depicted
as a (blue) long-dashed-dotted line, while TPE and pion mass splitting in OPE are
as in Fig. 7.4.

exchange more important by jacking up go,Fx/go, but we cannot compensate for the
different ranges of the two contributions, m, versus 2m,. We see little justification
for neglecting TPE in the TV potential.

We now turn to the other spin-isospin structures in Eq. (7.5.3), which in EFT
are all suppressed by one power of Q? /M%CD with respect to the leading OPE TV
potential. The function Llég) only receives contributions from short-range physics.
Again, in a one-boson-exchange scenario, contributions of exactly the size of C; come

from eta and omega exchanges [198, 199, 159],

C£77,w) _ QgA.gO (gnNN §0ani B 9JuNN ngFw L)
F2 \gann o mi  Genn o mZ)

(7.5.12)

where m, (m,) is the eta (omega) mass, g,nn (gunn) is the TC eta-nucleon axial
(omega-nucleon vector) coupling, and go, (o) is an isoscalar, TV no-derivative eta-
nucleon (one-derivative omega-nucleon) coupling.

In contrast, Vl(g), Ul(g), and V2(2+3) sprout entirely from OPE. The TV, isospin-
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breaking coupling g; contributes equally to V; and U, as expected [196] from the
identification at the Lagrangian level, c¢f. Eqs. (4.1.27) and (7.5.1). However, at
this level, we cannot neglect the long-range piece of U; — V;, which stems from the
combination of the isospin-violating vertex (3, and the TV vertex go. As discussed in
Sec. 4.4, strong-dynamics contributions to the coefficients of these I = 1 potentials
are in principle determined by measurement of TC, isospin-breaking observables. For
example g;/go could be extracted from a detailed analysis of isospin-breaking effects
in pion-nucleon scattering. At present, however, even the very sophisticated, state-
of-the art analysis of Ref. [168] stops one order shy of the accuracy required for such
extraction. Similarly, the ratio ;/ga affects isospin violation in nucleon-nucleon
scattering, but at present phase-shift analysis of two-nucleon data can only provide
a bound on f;, which is in accordance with the power-counting expectation [145,
148, 149]. In the absence of better constraints on the parameters in Eqs. (7.5.7) and
(7.5.8), the ratios Vl(s)/Vél) and Z/ll(?’)/Vél) can only be estimated by power counting, as
O(em2 [Mgep) ~ 5%. As for the last component of the phenomenological potential,
V2(2+3), it originates entirely from the isospin-violating corrections to the pion and
nucleon masses, and it is also relatively small.

In one-boson-exchange models the I = 1,2 potentials are assumed to arise from
pion, eta, rho, and omega isovector and tensor TV couplings to the nucleon [198, 199,
159]. In the xPT power counting, short-range contributions to these potentials are
suppressed with respect to the long-range pieces, because of the isoscalar character
of the  term, Eq. (3.4.15). (Of course, because of the factors ¢ in the long-range
contributions of this order, short-range terms might not be entirely negligible.) This
is consistent with the argument that the dominant meson-exchange contributions are
from the pion and the eta [198].

There are, therefore, a few points of contact between the local part of our v <
3 potential and the phenomenological potential V. . () (7.5.3). However, as we

have seen in Sects. 7.3 and 7.4, at this order EFT yields also momentum-dependent
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interactions, which in coordinate space appear as non-local potentials and corrections
that account for center-of-mass motion of the nucleon pair. They can be found in
the relativistic and isospin-breaking corrections to OPE in Egs. (7.4.5), (7.4.7), and
(7.4.8).

At v = 3, the TV two-nucleon potential contains in the center-of-mass frame,

P =0, four spin-isospin structures that are momentum-dependent,

VFF) = 9ado__qy (@) [(5(1) —7®). {pj,, {pi,ﬁrU(r)}}

4m3 F2?
2 /5

-2 (sz(r)) (D x 7)) -,

+ (30 x 52)" (V;”Vﬁ,U(r) — %Wﬁ?ﬂ (7”)) pfn}

gago omy (T(l) % 7_(2))

+ 2mNF7?

, (@0 +6®) {p, U@}, (7.5.13)

where p, = —iV, denotes the quantum-mechanical relative momentum operator.
The general structure of the momentum-dependent TV potentials was considered
previously in Ref. [200], where all possible Hermitian operators were constructed,
which violate time-reversal and parity, and contain up to one power of momentum p,.
The momentum-dependent TV potential was parameterized with eleven unknown
functions d;(r), i = 1,2...,11. The first term in Eq. (7.5.13) is quadratic in the
momentum operator and was not considered in Ref. [200]. The second and third
spin-isospin structures correspond, respectively, to the isoscalar functions dy(r) and
ds(r). For TV from the QCD @ term, these two functions are therefore dominated
by pion-exchange, and their coefficients are fixed by Lorentz invariance and do not
contain any new TV parameter. Isospin-breaking effects in the strong interaction
give rise to the last term in Eq. (7.5.13), which is proportional to the nucleon mass
difference, and it is the first contribution of the 6 term to dyo(r). Once again, dy is
dominated by OPE diagrams, and the only TV parameter intervening is g,. We find
that, at order v = 3 in yPT, the other isospin-conserving (the isoscalar d; and ds)

and isospin-breaking (ds, dy, d7, ds, dy and dy1) functions do not receive contributions
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from 6.

In order to get a sense of the importance of the momentum-dependent contri-
butions, we consider the effect of the relativistic correction in Eq. (7.5.13) that is
quadratic in p,. In Fig. 7.7 we compare it (long-dashed-dotted line) to leading OPE
(dashed line), medium-range TPE (dashed-dotted line), and pion mass-splitting cor-
rections (double-dotted-dashed line), all applied to a simple bound-state wave func-
tion with the scale present in the 'Sy channel, a, = —23.714 fm:

R n)

r

(7.5.14)

pion mass splitting (orange double dotted dashed line), all applied to the same func-
tion. In this qualitative example the relativistic correction cannot be neglected with
respect to the other v = 3 corrections, and we take Fig. 7.7 as an indication that
also in actual calculations of TV observables it would not be justified to neglect Eq.
(7.5.13), when the TV potential is needed to next-to-next-to-leading-order accuracy.

Finally, to the same order we find six contributions proportional to the center-of-

mass momentum of the nucleon pair,

V(F g, B) = J4% L. L@ [(5(1@5(2)).{;7 (ﬁr (r)).ﬁ}
2 -

8m3, F2

+
—
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e
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—~
=
S~—
N———
gl
[\

4gidk (0(1)2'0(2)1 +

gago om 1) =
+§77on15’,; (7 x 7.(2))3 (7Y — &®)

- [U(r)ﬁ - mi (9, virU(r) PZ} , (7.5.15)

where P = —iVx. Although the operators in Eq. (7.5.15) vanish in the two-nucleon
center-of-mass frame and are not important for the study of 1" violation in nucleon-
nucleon scattering, they impact observables like TV electromagnetic form factors of
the deuteron, where the recoil against the photon changes the center-of-mass mo-

mentum of the nucleon pair, and they have to be considered in nuclear systems with
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FiGure 7.7. Comparison between a relativistic correction to OPE and local com-
ponents of the TV two-nucleon potential VV, applied to an illustrative bound-state
wave function v, in units of gagom? /4w F?, as functions of the distance r, in units of
1/m,. The (dark green) long-dashed-dotted line represents the term in the potential
that is quadratic in momentum. Other curves are as in Fig. 7.4.

A > 2. An example of the effects of recoil on TC deuteron processes can be found in
Compton scattering [249].
At leading order, the dimension 6 sources of TV only contribute to Vi min(7), the

two-nucleon potential with minimal number of derivatives, in Eq. (7.5.3). We find

Vi) = ——gf‘(goggo‘“) U(r)+@w2$, (7.5.16)
u V) = +@w1%, (7.5.17)
V) = —WW), (7.5.18)
Uy = —WW). (7.5.19)

In the case of the qCEDM, at leading order the potential is dominated by OPE, while
in the case of the gCEDM and the TV four-quark operators, short-range effects are

also leading.
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7.6 Conclusions

The power-counting scheme of EFTs allowed us to organize the contributions to the
potential in powers of Mq_)ép- The TV PV potential from the QCD # term has a
similar ordering as the TC PV potential [90]. At leading order, O(Q/Mgcp), we
find only the well-known OPE from the I = 0 pion-nucleon TV coupling [195]. The
OPE from the I = 1 pion-nucleon TV coupling is suppressed by two orders in the
expansion parameter and is of O(Q? /M%CD). Since the I = 0 OPE is suppressed in
nuclei, higher orders in the potential could be important.

We have thus also examined the corrections in the next two orders, which are
up to O(Q*/Mpep) relative to leading. We have found that the potential is purely
two-body, and:

e At the longest, one-pion range, there are more general vertex corrections than
usually assumed. We employed the results of Ref. [39] where the TV pion-
nucleon vertex was examined to this order. In addition to the qualitatively
different I = 1 pion-nucleon TV coupling, there are corrections to the local
potential stemming from isospin breaking in the pion and nucleon masses, and
in the TC pion-nucleon coupling. There are also recoil (x 1/my) and relativistic
(o< 1/m3%;) corrections to leading OPE, which make the potential non-local and

dependent on the total momentum of the nucleon pair.

e At this order, we find, additionally, two-pion exchange from the I = 0 TV
coupling. The non-analytic, medium-range part of the TPE potential is inde-
pendent of the choice of fields and regulators. Like the leading OPE potential,
this part of the TPE potential has as only (so-far) unknown quantity the I =0
TV pion-nucleon coupling. Under reasonable assumptions about the strengths
of TV couplings, this potential is stronger, and has a different radial depen-
dence, than phenomenological one-meson-exchange potentials. The main effect

of TPE is to modify the potential in the same channels as the leading OPE
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potential.

e The short-range part of the TPE potential, on the other hand, cannot be sep-
arated from contact interactions, the most general form of which we also write
at this order. They are two of the terms given in the literature [159]. In the
context of a theory without pions, this implies a contribution to only two of five
possible S—P transitions. When pions are included explicitly, the short-range
terms are expected to be of the same size as TPE, and thus their strengths
depend on the renormalization scale. They subsume short-range dynamics that
includes the effects of heavier mesons, but whether such effects are sufficient to

saturate them is unknown.

The structure of the resulting potential is therefore significantly different than
the phenomenological potential used in the literature, due to the specific way in
which the  term breaks chiral symmetry. If consideration of short-range dynamics
or I = 1 OPE is necessary, one should also include the TPE potential and OPE
corrections calculated here. EFT offers a framework where the calculation of nuclear

TV observables can be carried out in a model independent way:.
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CHAPTER 8

CONCLUSION

In this dissertation I have studied applications of Effective Field Theory techniques
to problems in hadronic and nuclear physics.

Our first example, the exclusive decays of the x;, and 7, into two D mesons, to
which we devoted Chapter 2, is the perfect boot camp for effective-field-theorists to-
be. The problem contains a non-relativistic bound state, the bottomonium states y,
or 1, that decays in a pair of fast-moving, but massive, final states. Its discussion in an
EFT framework calls for a combination of non relativistic EFTs (NRQCD, pNRQCD)
for the description of the initial state, and effective theories for fast-moving, almost
light-like, but massive, particles for the final state (SCET with masses, bHQET).
The EFT approach allows to achieve a factorization theorem for the decay rate,
that can be written in terms of two matching coefficients and three non-perturbative
matrix elements, one for each hadron. By solving the renormalization group equations
in the EFTs we evolve the matching coefficients from their natural scales at high
energy (2m; and m.) to the low energy scale, where the non-perturbative matrix
elements sit. In this way, we improve perturbation theory by resumming possibly
large logarithms of the ratio of scales in the problem. The study of this process, thus,
gave us the possibility to face various technical aspects of the three most important
EFTs developed for QCD in a perturbative regime, HQET, NRQCD and SCET.

Unfortunately, our analysis shows that the branching ratios for these decay chan-
nels are rather small (see Fig. 2.12). As we argued in Sec. 2.5, even their interesting
qualitative features, like the strong dependence on the light-cone structure of the
D meson, require, before any quantitative information can be extracted from these
channels, a refinement of our theoretical treatment (the inclusion of perturbative and

non-perturbative corrections), which, in the absence of a measurement of the branch-
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ing ratios, is not worthy to pursue. To reiterate, the most important lesson from our
study is the familiarization with EFT techniques that are applicable to several other
interesting processes involving highly energetic and massive particles. A two-step
approach similar to that delineated in Chapter 2 can, for example, be applied to the
study of the fragmentation of a highly energetic heavy quark into a heavy meson, in
the process ete™ — D(B) + X. Once again, we believe that an EFT approach can
clarify the interplay between the different mass scales relevant to the process, and
define in a systematic and model-independent way non-perturbative effects. We are
currently working on this problem.

The second application I discussed carried us in the realm of nuclear physics. The
main result of the work of my collaborators and I is the establishment of a coherent
framework to study 7' violation in one- and few-nucleon systems, based on nuclear
EFTs.

In Chapter 3 we identify the TV sources we are taking into account. We include all
the TV operators with dimension up to 6 that can be written in terms of light degrees
of freedom, light quarks, photons and gluons, and we catalog them according to their
chiral properties. The second step, described in Chapter 4, is the construction of the
low-energy Lagrangian. The interesting observation here is that different properties
of the fundamental sources of T" violation under chiral symmetry imply different rela-
tions between short- and long-distance contributions to nuclear TV observables. For
example, for sources that violate chiral symmetry the interaction with lowest chiral
index are pion-nucleon non derivative TV couplings. As a consequence, long-distance
effects, mediated by pions, are likely to dominate TV observables. On the other hand,
for chiral invariant sources, TV pion-nucleon couplings, short-distance nucleon EDM
operators and short-distance TV four-nucleon couplings all appear at the same order,
so that long- and short-distance physics contribute to many observables at the same
level. Finally for the gEDM, indirect electromagnetic operators are suppressed by the

electromagnetic coupling constant aep,/m, and TV observables like the nucleon and
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deuteron EDMs are dominated by TV currents.

Not only it is important whether a TV source breaks chiral symmetry or not,
it is also important how it breaks it. For example, the QCD @ term breaks chiral
symmetry, but not isospin, while the qCEDM is expected to break chiral symmetry
and isospin at the same level. The consequence at low energy is that these two sources
generate very different hierarchies between TV non derivative pion-nucleon couplings:
0 only contributes to the isoscalar coupling gy in LO, while for the qCEDM g, and g,
arise at the same level.

In the third step, we examine the implications of these different relations for TV
observables in the one- and two-nucleon sectors. We dedicate Chapter 5 to the nucleon
EDFF. The measurement of the neutron and proton EDMs alone, though would be an
incredibly exciting finale to a hunt lasted for more than 50 years, would not provide
enough information to differentiate between 7 violation from the 6 term or from
the dimension 6 sources of T" violation. In Chapter 6 we study the deuteron EDM
and MQM. A measurement of the nucleon and deuteron EDM would give interesting
clues. A deuteron EDM substantially bigger than the nucleon EDM (in particular,
than the isoscalar nucleon EDM) would indicate the qCEDM as likely culprit. 8, the
qEDM and the chiral invariant TV sources all predict that the deuteron EDM is well
approximated by the isoscalar nucleon EDM, so a measurement of a deuteron EDM
of the same size as the nucleon EDM would not be conclusive. If also the deuteron
MQM were to be observed, and observed to be substantially bigger than the deuteron
EDM, one would have good reasons to believe to be in the presence of TV from the
0 term.

Unfortunately, the indications we can receive from nucleon and deuteron exper-
iments are qualitative. In the case of qCEDM, the isovector and isoscalar nucleon
EDM, and the deuteron EDM and MQM depend on four LECs. An observation of
these four quantities will then be sufficient to fix the LECs, but not enough to verify
any prediction. In the case of the # term, the nucleon EDM and the deuteron MQM
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depend on three TV LECs. Once the isoscalar nucleon EDM is observed, then the
deuteron EDM is a prediction, but not sufficient to pinpoint @ as dominant TV source.
The deuteron MQM and the isovector nucleon EDM can fix the other two LECs, in
particular go, but once again there is no room for a model-independent predictions.

Even a measurement of the TV moments of the deuteron, then, will not be conclu-
sive. However, and here we see the power of the EFT approach, the framework we set
up can be extended to other observables. The most promising is the EDM of 3He and
3H, which is sensitive to both gy and g; [161], and thus, both for TV from the 0 term
and the qCEDM, would be dominated by TV OPE correction to the three-nucleon
wavefunction. Consequently, if nucleon and deuteron TV moments are observed, the
EDM of *He and 3H is a testable and falsifiable prediction of the theory, opening up
the possibility to quantitatively discriminate between different TV sources.

The natural conclusion of our work on 7" violation in nuclear physics is the calcu-
lation of the EDM of *He and *H from the QCD 6 term and the dimension 6 sources,
in the perturbative pion approach.

While we work to this goal, we also have to settle some interesting technical
questions we have sidestepped. First of all, we have to check the convergence of
the perturbative pion approach, by completing the NLO corrections to our results in
Chapter 6. The indication that the range of validity of the perturbative pion approach
is not significantly larger than that of the pionless theory [193] suggests that the
pions should be treated non-perturbatively; we plan to repeat the calculation of the
deuteron and *He EDMs with non-perturbative pions. To this goal, the derivation
of the TV potential in Chapter 7 is a necessary prerequisite. Finally, in our work
we have always neglected the strange quark, it is interesting to extend our analysis
of T violation to SUL(3) ® SUg(3) chiral symmetry, in particular to see whether
more information can be extracted from the link between TV and isospin symmetry

breaking.
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APPENDIX A

SOLUTION OF THE RUNNING EQUATION IN PNRQCD
AND BHQET

The RGE in Eq. (2.4.28) can be solved by applying the methods discussed in Ref.
[60] to find the evolution of the B-meson distribution amplitude. We generalize this
approach to the specific case discussed here, where two distribution amplitudes are

present. Following Ref. [60], we define

Meid,a) = =2 o) (;25) +ow w005 (55) |-

™ W —w W —w

Lange and Neubert [60] prove that
/dw'wf(w,w', ag) (W) = w'F(a, ay) , (A1)

with

Fla,a)) = 22F [6(1 4+ 0) +(1 — a) + 23]

¥ is the digamma function and g the Euler constant. Eq. (A.1) is valid if —1 <
Rea < 1. Exploiting (A.1), a solution of the running equation Eq. (2.4.28) with

initial condition T'(w, @, 1)) = (w/ph)" (@/4h)* at a certain scale ) is

F*(uN)T(w, @, 1) = F2(ug) f (w, i, iy, m) f(@, 1, 16, ) (A2)
with
w n—g
Flwn it iy, ) = (M—) (-0 exp Uy 1)
0
/ ) g
g= g(:ué)alu) = / —FcuSp(a) )
as(kp) Ble) (A.3)
W) da @ da/
U(u',u',m:/ Ao p <a>/ A0 @)+ F-g.0)] |
’ o) B@) [T oy Bl@) T
OéSCF

/71(&5) = _2 47T
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The function f(w, i, g, €) has the same form as f(w, 1, g, m) and is obtained by
replacing w — w, n — &, and n-v — n - v in Eq. (A.3). The integrals over a can be

performed explicitly using the beta function in Eq. (2.3.24). The result is

w\"Y /o §—g
P sy 1) @t 1, €) = (E) (;7) (7 vn o) exp [V (i, 1)
(1~ 5+ )01 4 )T — &+ g1+ &)

FA4+n—glA-nlA+{—gl'1—-¢)"

(A4)

Where, at NLL,
i Dok B\ os(iy
g(M67M/> == : {ll’l’f’ + ( (0)p - i::()) (T - 1) ) (A5>

2ﬁ0 Fcusp 50
and
2r | r—1—rlnr ) BiY\1—r+Inr 15}
Vi, ) =—-T0 = 4o == 2L + L In?r
o) ==Tomgz \ "oy 10, @A) s
C
+_F(2_87E)lnra
Bo

(A.6)
with r = (1) /as(gy). Notice that in the running from pj = m, to ¢/ =1 GeV only
three flavors are active, so in the expressions for 3y, 31, and F&ﬁ’sp we use ny = 3.

Eq. (A.4) is the solution for the initial condition T'(w,@, ih) = (w/ph)" (@/1f)¢.
To solve the RGE for a generic initial condition, we express 1" as the Fourier transform

with respect to Inw/puy,

T(w,, 1) = ! /+ drdse irln 2 ) ex isln 2 F[T)(r, s, ug)
= X —_ —_— — R
» Wy g (271')2 B p ,ulo p ,ulo » S5 Mo

() (3 s
drds | — — FT|(r,s, ,
(2m)? ) o 11 11 T)(r. 5. o)

where F'[T] denotes the Fourier transform of 7. From the solution (A.2)-(A.4) it

follows that

F2(u)T (w, @, 1) :1?25:;2)/_ ooalrals (M%))_ : (M%)_ : (n-vn-v')?
D(l+ir+g) (1 —ar) (1 4+is+ g)I'(1 —is)
F'l—ir—g)'(1+ir) (1 —is — g)T'(1 +is)
(A7)

FIT)(r, s, po) exp [V (1o, 1))
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The Fourier transform of the matching coefficient in Eq. (A.7) has to be under-
stood in the sense of distributions [250]. That is, we define the Fourier transform of

T as the function of r and s that satisfies

<2ivt/}“dSFTTKﬁSjuﬁon:uﬁwBuﬁuﬁ

0 dw diw _ _
- [ B Twe e i )6n@ )
0 W @
(A.8)
or, more precisely, F'[T|(r, s, i) is the linear functional that acts on the test functions
wa(r) and pp(s) according to

(2711_>2 (F[T] (T7 S5 :U’,)v ()OA(Tv M/)()OB(‘S? :u/)) = / N d_WdT@T(wv w, M/>¢A(w7 Ml)¢B(w7 :U’,) .

S (A.9)

The function ¢4 is the Fourier transform of the D-meson distribution amplitude,
, ©dw (w\” ,
QOA(T, 1% ) = I ¢A(w7 2 ) ) (A10>
0o W \H
where the integral on the r.h.s. should converge in the ordinary sense because of
the regularity properties of the D-meson distribution amplitude. As in Sec. 2.4, the
subscript A denotes the spin and polarization of the D meson.

In the distribution sense, the Fourier transform of the coefficient 1/(w + @) is

F L i @} (r, 5, 10) = (127r)2 2;,0 5+ 5+ ) sech [ (r — 5)]

1 m
— —(2r)2— ) sech | =
2( ) 2M65(R+z)sec [25] ;

(A.11)

1

5 comes from the Jacobian of the change

where R =r+s, S =r — s, and the factor

of variables. The hyperbolic secant is defined as sech = 1/ cosh. Similarly, we find

w—w A 3 2 T . To .
F L" n EJ} (R, S, pgy) = 2(27r) I(R) <cosech [25 + Z&?] + cosech [25 ze’;‘D .
(A.12)
The § function in Eq. (A.11) has complex argument. The definition is analogous

to the one in real space [250],

(O(R +1), p(R)) = o(=i) . (A.13)
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Using Eqs. (A.11) and (A.12), we can perform the integral in Eq. (A.7), obtaining
respectively T(w,w, u, i1'; 3Py) and T(w, @, u, p'; 1Sp). In order to give an explicit
example, we proceed using Eq. (A.11). Integrating the ¢ function we are left with
1 1/24g
PTG 00) = P esp Vo] (E2) oty
Ho \WW

S S w ] 1 TE+g+3S)T(5+g-19)
/_dSGXp["Eln;]SGChBS]1+S2r(§—g—gs) INCE R

(A.14)

The integral (A.14) can be done by contour. The integrand has poles along the
imaginary axis. In S = #4i there is a double pole, coming from the coincidence of one
pole of the hyperbolic secant and the singularities in 1/(1 + S?). The T' functions in
the numerator have poles respectively in S = +i (2n + 3 + 2g) with n > 0, while the
other poles of sech are in S = +i(2n + 1), with n > 1. We close the contour in the
upper half plane for @ > w and in the lower half plan for w > @, obtaining

F T 4) = F sV ()] 00— ) (ALY
(s - 0 - )~ v(=g) + 001 +9) - w2+ 9)

"‘Z(‘)nH (g)n ( 1 T(l-n+gT2+n+yg)

S

t w/ nn+1) T'(—=n—g)I'(1—g+n)
() T peselom) L nt )
=\ (n—1)! (n+¢)(1+n+ g)T(1+n)(—n — 2g)
+(w—w),

(A.15)

with csc(gm) = 1/sin(gm) and ¢ is the digamma function. More compactly, we can
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express Eq. (A.15) using the hypergeometric functions 4F3 and 3F5,
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(A.16)

where we have introduced the constants that appear in the initial condition in Eq.

(2.4.4). In the same way, we obtain

Cr Amag(p, ., _
Cr MOV o v ()] 01— )

w2 on -\ [T+ g)T2+g)w w
(T) QFEI—g;PEQ—g;;SFé <1>g+1,g+2;1—9,2—9;—t>

%1+ g)
I?(1-g)
—(w—w) .

F2(') T(w, @, p, s *So) = F(u)

w\ 1+g y
B <5> 4 cos(gm)I'(1 +29)1'(29 +2) 2 11 (29 +2,29+ 1;2; —t) }
w

(A.17)

In Egs. (A.16) and (A.17) we renamed the initial scale py = ! to denote its con-
nection to the scale m.. Setting p/ = p., or, equivalently, g = 0, it can be explicitly
verified that the solutions Eqs. (A.16) and (A.17) satisfy the initial conditions Eq.
(2.4.4).
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APPENDIX B

B0OOST TRANSFORMATION OF THE [D-MESON
DISTRIBUTION AMPLITUDE

We derive in this Appendix the relation between the distribution amplitudes in the D-
meson and in the bottomonium rest frames, as given in Eq. (2.5.3). In the D-meson
rest frame, characterized by the velocity label vy = (1,0,0,0), the local heavy-light

matrix element is defined as

(OIE1(0) 25 5 (0)1D)., = —i () 0 (B.1)

The matrix element of the heavy- and light-quark fields at a light-like separation
2 =n - 297" /2 defines the light-cone distribution ¢g(n - z, i/) in coordinate space:

T_l'U(] ~

5 do(n - zo, 1) . (B.2)

Ol - 20) S MO}, = i (4

Eqs. (B.1) and (B.2) imply ¢(0,/) = 1. In the definitions (B.1) and (B.2) the
subscript 0 is used to denote quantities in the D-meson rest frame. This convention
is used in the rest of this Appendix. In the bottomonium rest frame, where the velocity
label in light-cone coordinates is v = (n - v,n - v,0) and the light-like separation is

2 =mn-zn"/2, we define

O01EE0) 25 s 0)1), = i)™ (B3
and )
Ol 2) B Mo 1D}, = —iF ()2 o - .4 (B.4)

Suppose that A is some standardized boost that takes the D meson from v, its
velocity in the bottomonium rest frame, to rest. It is straightforward to find the

relations between the D-meson momenta in the two frames:

n-p=n-vn-p and nN-py=n-vn-p.
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There is a similar relation for the light-cone coordinates,
n-2p="n-vn-z.

With U(A), the unitary operator that implements the boost A, one can write
U(A)| D)o = |D)y, -

We choose A such that, for the Dirac fields,

UM)E () U (A) = Ay €' (Az) and U (M) (x) U™ (A) = Ay, h(Ax)

1/2

b — i o

A1/2_COSh + 1 sin 5

with « related to v by e* =n-v and e™ =n - v.

Now we can write the matrix element in Eq. (B.3) as

0l &Esn 0)1D),
= o) (TWE U (W) é% C@EOU @) UL
= (O O0)A1 5 AL OD), = - OO Ersie (@)1 D).,
- —z'F(,u')%ﬁ g = —iF(u')% .

where, in the last step, we have used n - vy = 1. Eq. (B.5) is thus in agreement with

the definition in Eq. (B.3). Applying the same reasoning to Eq. (B.4), one finds

B M O)ID), = 70 O (- vn - 2) B ae0) 1),

n - ~

= —iF ()=~ S CRENTOR

3

(Olxa(n - 2)
(B.6)

Comparing Eq. (B.6) with (B.4), we see that Qg(n sz ) = ¢ -vn -z i), Note
that in the bottomonium rest frame the normalization condition for the distribution

amplitude is also QE(O, W) =1.
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In the main text of this paper we have used the D-meson distribution amplitudes

in momentum space,

1
27

8 4) = o= / dn- =63 2,4l

bo(wo, 1) /dn © 20 €iw°n'zo¢~>0(n - 2o, 1)

Using Eq. (B.6), we can relate the two distributions:

2T

11 e 1 w
I——/dn-zel”'” Go(n -z, 1) = = ¢0(7 ,/f) ’
n-v

1 - 1 L
dlw, ') = — /dn e Fo(n -z 1)) = P /dn sz go(n-vm -z, 1)

2rn v n-v
as stated in Eq. (2.5.3). The D-meson light-cone distribution is normalized to 1 in

both frames,
/dw0¢0(w07ul> = /dw¢(w7,u/) = 17

as can be easily proved using ¢o(0, i) = ¢(0, 1/) = 1.
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APPENDIX C

SPONTANEOUS CHIRAL SYMMETRY BREAKING

Here we discuss spontaneous chiral symmetry breaking for two quark flavors combined
in an isospin doublet, Eq. (3.2.2), following Refs. [32, 122]. The QCD Lagrangian
(3.2.1) for massless and chargeless quarks is invariant under a chiral transformation

(3.2.7). The (G4) = (¢, x) have the commutation relations
[t 7] = ic"* ¢F,
[, 2] = i ¢*, (1)
[#,29] = iei* o,

and generate the chiral group SUL(2) x SUg(2), which is isomorphic to the group

SO(4) of rotations in four-dimensional Euclidean space. Acting on four-dimensional

vectors, the generators are written as

(T = —ic™, (T)oa = (T) gy = (T")4s = 0,
(X)py = — (X)y = —10ap, (X)pe = (X?)y =0. (C.2)

The chiral symmetry of the QCD Lagrangian is spontaneously broken to its vector
(isospin) subgroup SUy (2), isomorphic to SO(3): SUL(2) x SUR(2) — SUy(2) or,
equivalently, SO(4) — SO(3). Goldstone’s theorem requires that for each broken
symmetry a massless particle exists, with spin 0 and the same parity and internal
quantum numbers as the current associated to the broken generators. Here there are
three broken generators, @, and thus three massless, spin-0 Goldstone bosons with
negative parity, identified with the pions. The Goldstone bosons live in the coset
space SUL(2) x SUR(2)/SUy(2) ~ SO(4)/SO(3) ~ S3, the “chiral circle”. We can
parametrize this space with stereographic coordinates {(z) = m(z)/F,, where m(x) is

the canonically normalized pion field and F, ~ 186 MeV (the “pion decay constant”)
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is the diameter of the chiral circle. The point on the chiral circle labeled by ¢ is
obtained by a rotation R,z[(],

4
> RoyRpgy = das, (C.3)
y=1

from the north pole (0 1)7, given by

200, 20
Roldl = (M Z759 L o). (C.4)

where

D=1+¢% (C.5)

Under an infinitesimal isospin transformation, the Goldstone-boson field ¢ trans-
forms like an isovector
5¢ = By x ¢, (C.6)
while an infinitesimal axial transformation is non-linear in the field,
¢=(1-¢04+2(04-C)¢. (C.7)
It is convenient to introduce the covariant derivative of the pion field,
0u€

which has simpler transformation properties: it is an isovector,

§D,¢ = 0y x D, (C.9)

that under an axial transformation transforms in the same way, but with a field-

dependent angle ¢ X 04,
0D, =2(¢ x04) x D,C. (C.10)
One can also construct the covariant derivative of this covariant derivative,

DVDMC:aVDMC_Q(CDMC)DVC+2(DVCDNC)C? (Cll)
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and so on. These covariant objects make it simpler to construct interactions with the
desired transformation properties.

Being light, pions are important degrees of freedom at low energies. In addition,
the lightest baryons, the proton (p) and the neutron (n), are present in the ground
state of strong-interacting systems. We then have to include a field N(x) = (p n)?
and its interactions with pions. We choose N to transform non-linearly in the same

way as D, (. Being an isospin doublet, under an SU(2)y transformation,
ON =1it- 0y N, (C.12)
and under an infinitesimal axial transformation,
ON =2it-({ x 04)N. (C.13)

It is straightforward to show that the chiral-covariant derivative of this nucleon field
is

D,N = (0, +2it-{ x D,C) N. (C.14)
As before, we can also define higher covariant derivatives. Notice that the covariant
derivative of D, ¢ in Eq. (C.11) is nothing but Eq. (C.14) in the adjoint representa-
tion, (#/); = ",
At the energies we are working at, a nucleon is non-relativistic since its typical

momentum is much smaller than its mass, () ~ m, < my. The nucleon momentum

can be written as

P =myo" + k¥, (C.15)
where the nucleon velocity satisfies v> = 1 and in the nucleon rest frame v* = (1, 5),
and the residual momentum k ~ (). Pion-nucleon interactions do not modify the
nucleon velocity but only the residual momentum. In this regime, the nucleon mass

is not a dynamical scale and it can be eliminated from the theory by defining a

velocity-dependent nucleon field [34]

N, = exp (imypv - x) N. (C.16)
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Derivatives of N, are proportional to the residual momentum. The field N, satisfies

#Nv _ N, (C.17)

which allows us to reduce the possible Dirac matrices to be used in the construction
of operators bilinear in the heavy nucleon field to I' = {1, S*}. Here S* is the spin

operator, satisfying

v-S = 0, S?N, = —%Nv, [S*,57] = ie**F 0,55,
1
{8, 87} = 3 (V07 — g) . (C.18)

In the nucleon rest frame, S* = (0,5/2). In the rest of this paper we drop the label
v from the nucleon field.

The same procedure can be followed for other baryons. Since its mass difference
to the nucleon is only a factor 2 larger than the pion mass, ma — my ~ 300 MeV,
the delta isobar is the most important of these resonances. For simplicity we neglect
the delta in this paper. The method can be easily generalized for any baryon.

Chiral symmetry strongly constrains the form of the interactions among Goldstone
bosons and other particles in the theory. The most general Lagrangian containing
nucleons and pions, invariant under chiral symmetry, can be constructed by including
all the operators that are invariant under isospin and contains the covariant derivative
of the pion field D, the nucleon field N, and their covariant derivatives. Equations

(3.3.10) and (3.3.11) are the most important examples.
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APPENDIX D

ExprLiciT CHIRAL SYMMETRY BREAKING

Explicit symmetry breaking terms can be included in the effective Lagrangian by
mimicking the breaking in the QCD Lagrangian [32, 122]. Consider the generic case
in which the symmetry is explicitly broken by a linear combination of the components

O, of some representation D of the group:
AL =Y caOy4 (D.1)
A

with
OA — ZDAB[Q]OB (D2)
B

under a transformation g belonging to the symmetry group.
In a non-linear realization of the symmetry, two statements can be proved. First,

there exists an element of the group v(¢) such that
Oal¢, ¥] =D Dv(¢)]as05[0,4], (D.3)
B

where 1 is a shorthand notation for the possible chiral-covariant fields in the the-
ory, including nucleons, nucleon covariant derivatives, pion covariant derivatives, etc.
Thus, operators with explicit Goldstone bosons, O[¢, ], can be found if their rep-
resentations and the form of the operators without Goldstone bosons, O]0,v], are

known. Second,

OA[O’ h’gb] - Z D[h]ABOB [07 Qﬂ? (D4)

where h belongs to the unbroken subgroup SO(3). That is, the operators without
Goldstone bosons O[0, 1] transform linearly under the unbroken subgroup, according

to one of the representations of the subgroup that can be found in D 4.
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In the simplest example, the SO(4) representation is the defining (vector) repre-
sentation, so D[v(¢)] = v(¢) and v({) has the form of Eq. (C.4). Thus, for V=5, P,

Vi[m, N] = iRm[ﬂ-]Va[O,N] _1 (1 - 7’—2) VA0, N] — =% v[o, N,

pa D 2 DF,
) , (D.5)
27'('7; 27TZ'7T]'
Vilmw, N] =) Ria[w]Va[0, N] = 57 Valo, N + > (65— & ) Vil N,
a=1 g j=1 7f

Moreover, S;[0, N| (P4[0, N]) is isoscalar, parity-even (parity-odd) and time-reversal-
even (time-reversal-odd), while S[0, N] (P[0, N]) is isovector, parity-odd (parity-
even) and time-reversal-odd (time-reversal-even).

The simplest vector, containing no nucleon fields nor pion covariant derivatives,

S[0,0] = ( 0 ) (D.6)

Vo

is

with vy a real number determined by the details of the dynamics of spontaneous chiral

symmetry breaking. From Eq. (D.5),

. Vo 2C
sico =3 (% ) (0.7)
As a second example,
0
with v; another real number, yields
. U1 QCNN
sico =2 (o 25w )- (D.9)

This method can be used to construct the chiral-variant terms in the effective
Lagrangian. Consider £,, from Eq. (3.4.15) when ¢ = 0 and 6 = 0. In this case, the
fourth component of Eq. (D.7) generates, apart from a constant, a pion mass term
in the Lagrangian, Eq. (4.1.1), where we introduce the pion mass m2 = 4vgm/F? =
O (mMgep). Similarly, Eq. (D.9) gives rise to the so-called sigma term, Eq. (4.1.2),

where we introduce the nucleon mass correction Amy = vym = O (m2/Mgcp).
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Chiral symmetry relates this mass correction to a pion-nucleon seagull interaction.
This procedure can be repeated ad infinitum.

In analogous fashion, one can construct the operators originating from the other
mass terms of the QCD Lagrangian, Eq. (3.4.15), as we explicitly do in Sec. 4.1

Finally, we realize the chiral-symmetry-breaking operators due to the electromag-
netic interaction of the quarks [122]. An obvious class of electromagnetic operators
consists of operators that contain soft photons. These are obtained by minimally cou-
pling the charged pions and the proton to the photon, using the covariant derivatives
defined in Eq. (3.3.12), and by constructing the most general gauge-invariant opera-
tors involving F),,. From Eq. (3.2.11), these operators are either chiral invariant or
transform as the 3-4 component of an antisymmetric chiral tensor. For such a tensor,

2 )
ﬂ4[ﬂ,N] = —l |}Slk (1 T ) + M} T4k[0,N]

D - F_ﬁ 2 (mj0i — 6i5mk) Tjx[0, N,

L2
DF,
(D.10)

where 7},;[0, N] is an isovector and 7};[0, N|, an antisymmetric tensor.

In the nucleon sector, the simplest objects with two Lorentz-tensor indices are

1[0, N] = ¢V Ni [S*, S”] N, (D.11)
and
0 Ni[SH, SN
uv _ (D _ ) ) i
™[0, N] = ¢ (_NZ.[SH,SV]TZN 0 ) (D.12)

which lead to the lowest-order contribution of this type:

LY, = AVNi[S*, SY]NeF,,

(D.13)

+IN = 2 (et e )| 4157, Ne,

F2D

where the coefficients scale as cSZ = O(1/Mgcp). The two operators in Eq. (D.13)
are leading contributions to the isosinglet and isovector magnetic dipole moments of
the nucleon, which, with the identification c§12, = (1 + ko1)/4mn, we gave in Eq.

(3.3.18). Other such “direct” electromagnetic interactions can be derived similarly.
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There is, however, another type of electromagnetic contribution. As discussed
at the beginning of Sec. 4.2, exchanges of hard photons between quarks cannot be
resolved in the effective theory and generate purely hadronic operators. At lowest
order in «., these operators involve the exchange of one hard photon and, as conse-
quence of Eq. (3.2.11), they have the SO(4) transformation properties of the tensor
product (1#/6 + T4,) @ (1,/6 + T54,). The resulting chiral-invariant operators sim-
ply represent O(cem) corrections to their strong-interaction counterparts. The mixed
terms transform as antisymmetric tensors, Eq. (D.10). For the tensor product of two
antisymmetric tensors,

1 2 2 e 2 2mm
Tija[m, N] =53 {@-k (1 — ﬁ) + 7 } [5]- (1 - ﬁ) + F{2 Tua1[0, N|

™

2 2 2mm

~ F.D? {5““ (1 - ﬁ) + sz] (MGjm — 0jum) Taam|0, N
2 772 27Tj7Tk
4

+ W (Trl(sik - 5il7rk) (ﬂ-méj" - 5jm7rn) Tklmn[oa N]

(D.14)

In the mesonic sector, the first chiral-breaking operator induced by the electro-

magnetic interaction has the transformation properties of T34 ® T34. The choices
U/ em
Ty41]0, 0] = vo,em Okt Thimn 0, 0] = OT (OkmOum — Oknlim) (D.15)

. , . . . . .
with real numbers vg e, and vy ., produce an isospin-breaking correction to the pion

mass,
2

0
1) - M em (7?2 _ 7T£)2)) ’ (D.16)

‘C)é,fzo,om - 2D?2

where dm? . = 8(Vo.em— V) em)/Fr = O(Qem M@ p /) is the dominant contribution to
the pion mass splitting. Using m, for Mgcp, this estimate is very close to the observed
value, which corroborates our assignment of a factor ae, /7 for the contribution of

hard photons.
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In the pion-nucleon sector, the operators with the properties of T34 ® T34 have a

structure very similar to Eq. (D.16),

(2) _ ﬁl,em 2 N\ AT
ﬁ)é,f:lom - 22 (71' - 7T3) NN> (D].?)

where 1 om = O(@emMgep/m). More interesting operators come from the realization
of the tensor product T4y ®I,,/6. The simplest tensor has the structure of Eq. (D.12),

just without the commutator i[S*, S*|, which induces the operator

om = 2 -
= TN NT3N+ FE—DN (7T37T'T—772T3)N y (D18)

\v
i
@
3
|

I?

where dmy = O(aemMgep/m) is the leading electromagnetic contribution to the
nucleon mass splitting. Again, this estimate is within a factor of two of the observed
value, although in this case a quark-mass contribution of similar magnitude has to be
accounted for.

These and other “indirect” electromagnetic operators have been discussed in more

detail in Refs. [122, 145, 148, 149, 221, 222, 223, 153, 154, 134, 135, 136, 164, 165].
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APPENDIX E

LINEAR REALIZATION

Let us consider a linear realization ® of the full group, here SO(4). Suppose the
effective potential is

V(®) = Vo(®) + Vi (D), (E.1)

where Vj is the effective potential generated by the symmetric part of the Lagrangian,
while V; is the small correction due to explicit symmetry breaking. If the explicit
breaking is small, the vacuum ® of the full theory will not be far from the vacuum
®, calculated in the absence of explicit breaking: ® = &, + ®;, with ®; small. From
the equilibrium condition for the vacuum,

oV (P)
0P,

~0, (E.2)

=P +d;

using the invariance of the effective potential V;(®), it can be shown [32] that, if V;

and ®; are small, the following condition holds:

5 —0, (E.3)

o=

«

where G* are the generators of the group, in our case SO(4). Equation (E.3) is called
the “vacuum alignment” condition. If Eq. (E.3) does not hold, it means that the real
vacuum is far from the unperturbed one, and the expansion around the vacuum @ is
not perturbative. Let us assume, for example, that the perturbation to the effective

potential has the form

Vi(®) = ua, (E.4)

with u, given parameters. The vacuum alignment condition becomes

D ua(G4®g) =0, (E.5)
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and, being the generators of SO(4) antisymmetric, this condition is satisfied if the
vectors @y and u are parallel. This explains the name “vacuum alignment”.
As a concrete example of chiral symmetry breaking we can consider a toy model

—the linear sigma model— where the Lagrangian is

1 1 2 A
Lo = 50,80"D — Vy(®) = 50,20"® — Mgz 2

5 . (®)?, (E.6)

with two real parameters m? and A\. When m? < 0, the minimum of the potential

Vo(®) is given by the condition
= - =% (E.7)

We pick a vacuum in the fourth direction,

0
By—v| 0|, (E.8)
0
1
a spontaneous breaking of SO(4) symmetry.
Let us add a small explicit breaking potential, in the form
Vi(®) = g(P3 + Pu), (E.9)

with ¢ < m?v. The vacuum we chose is not aligned with the symmetry-breaking
potential and the situation is analogous to the case we discussed in Sec. 3.4 —there
are two explicit symmetry-breaking terms of the same order, one aligned with the
vacuum (®4), the other not (®3). If we calculate the minimum of the potential

Vo + Vi, we find that it is no longer degenerate and it is

0
_ 0 )
b=v| L. o |+0() (E.10)
\{i 277;21)
72T

We see that even a small perturbation rotates the vacuum dramatically, the angle

between the true and the old vacuum being approximately /4.



252

Consider now instead the explicit breaking

2
g

Vi(®) =gPy + — E.11

(@) = g0, + L, (E.11)

still with ¢ < m?v. This situation resembles the second case we discussed in the text,

with a non-aligned perturbation much smaller than the aligned one —see Secs. 4.1

and 4.3. We again can find a minimum,

KA
Il
4
o O© O

+ O(g%). (E.12)

m2v

1+ 5%
This time, the true vacuum is very close to the one we chose to expand the Lagrangian
around.

Once the vacuum is aligned with the dominant perturbation, let us say, along the
fourth direction, we can perform an explicit field redefinition to exhibit the Goldstone
modes [32]:

O, = Rou(z)o(x), (E.13)

where R is a rotation matrix that belongs to SO(4), that is, satisfies Eq. (C.3). In
the stereographic representation, we parameterize the rotation as in Eq. (C.4) and

define the fields
D,

Ci:(b4—|—0"

1=1,2,3. (E.14)
Under an infinitesimal isospin transformation with parameter 8y,
0d; = Zc":‘ijkewq)k, (E.15)
ik
oo = 0, (E.16)

it is easy to see that ¢ is an isovector, Eq. (C.6). Likewise, under an infinitesimal

axial transformation 6 4,

0By = =2 00, (E.18)
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the transformation of the Goldstone boson field is non-linear, Eq. (C.7).
Defining the covariant derivative (C.8), the Lagrangian (E.6) can be recast in the
form
1

1 1
L= 5@0’8“0 - §m202 - 204 + 502Du§’ - DF¢. (E.19)

It is easy to see that the Lagrangian is still invariant under SO(4). The aligned
potential (E.11), on the other hand, when expressed in terms of the Goldstone boson

fields, will depend on ¢ explicitly:

1-¢ 2 2«
- —=. E.2
D + mzva D (E.20)

Vi(®) = go

In the vacuum, & = v+ g/2m?+O(g?) and (; = &;39/2m?v +O(g?). For processes
at momenta () < m, we can integrate out the fluctuations of the field o, obtaining a
Lagrangian that for g = 0 is a function of D#{ only. For g # 0, one can recognize in
Eq. (E.20) the fourth and third components of the vector S[¢, 0] given by Eq. (D.7),

with coefficients in the ratio g : g?/m?v, just as in the original perturbation (E.11).
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APPENDIX F

RESUMMATION OF PION TADPOLES

In this Appendix we show how to resum the tadpole diagrams generated by the
Lagrangian (3.4.3). The method is general and can in principle be applied to other
quantities, but we illustrate it for the pion two-point Green’s function at tree level.
Some of the contributions from tadpoles in this case were displayed in Fig. 3.1.

We start by defining the full one-pion Green’s function

iT, = %gﬁferféag, (F.1)

where a is the isospin index of the pion. In lowest order in the chiral expansion we need
to worry only about tree-level diagrams. In Fig. F.1 we display the corresponding
diagrams contributing to i7" to order ¢° and, for convenience, we explicitly show the
symmetry factor due to exchange of equivalent tadpoles. In the diagrams in Fig. F.1,
the external neutral pion is connected to one of the basic vertices of the Lagrangian
(3.4.3), with three, four, ..., n-branches. Each branch then develops into a tadpole
tree and ends up with the disappearance of an arbitrary number of m3s into the
vacuum. The diagrams in Fig. F.1 can be rearranged as in Fig. F.2, and we can

write the diagrammatic equation

S A L A N A
§mﬂgFﬂT—§mﬂng+;E<—m—g) <§m7rFﬂgT) V! (m2), (F.2)

where the factor V!(m?2) can be obtained from the Lagrangian (3.4.3) and it is

52

- i m gm:
Vo (m2) = =(=1)"(2m + 1)! Tm1

(=)™ (2m + 2)! Fz;.

| = o

Equation (F.2) can be rewritten as

i(—nm(zm +1) (g;)m T — i(—l)m(m +1) (g;)mT?m“ =0. (F4)
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Ficure F.1. Contributions to the pion one-point function 71" at tree level up to
order ¢g°. Vertices are from the Lagrangian (3.4.3). For each diagram, the symmetry
factor is explicitly indicated.

The two series can be summed and we obtain

1 S 2
— [1 -T - %Tz} =0, (F.5)
5 ~
(1+477)
which admits two solutions,
- 2 -
T:—?(li 1+g>. (F.6)

The non-analytic dependence on ¢ is a direct consequence of the non-perturbative
character of the problem.

With the one-pion Green’s function, Eqgs. (F.1) and (F.6), we can calculate the
effect of pion tadpoles on quantities more directly related to experiment. Let us
consider the two-point Green’s function for a pion of four-momentum p and isospin
index a, G,(p*,m?2). The diagrams that contribute to the two-point function up

to order ¢g* are shown in Fig. 3.1. Let us call, with abuse of language, “one-particle
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FIGURE F.2. Diagrammatic equation for the one-pion Green’s function i7", Eq. (F.2).

FiGure F.3. The full pion propagator GG, denoted by a shaded blob, as an iteration
of the sum of 1PI diagrams —:X, denoted by an empty circle.

irreducible” (1PI), those diagrams that cannot be disconnected by cutting an internal
line in which non-vanishing p flows, and denote the sum of all the 1PI diagrams by
—iX4(p*,m2). The full propagator can be expressed as the geometric sum of 1PI
diagrams —see Fig.F.3— and

» 2 =2 20,2 2
% _Z:;;’ + ie (1 ’ pQE—(iﬁnrz& ' (pfi(gﬁl?z’)ef T ) (F.7)

Ga(p2a m2 )5ab -

™

10ab

T p2 =2 — B (p?, m2) +ie’

At tree level, contributions to the sum of 1PI diagrams —i%,(p?,m?2) have the
following structure: the vertex connected to the two lines in which p flows has a
certain number of branches; from each branch a tadpole tree sprouts, which ends with
the disappearance of an arbitrary number of 73s into the vacuum. Diagrammatically,

the sum of 1PI diagrams can be expressed in terms of the pion one-point Green’s
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function T, as shown in Fig. F.4:

, i —~ 1 (—=i\"[i_ -\ i
i) =3 (o) (greeT) vttt @)
n=1 " 4

where V,, is a factor coming from the Feynman rules for the (n + 2)-pion vertex. It
can be derived from the Lagrangians (3.3.17) and (3.4.3), and it is

~ 2
. ) m m;
Vasomi1 (p?,m2) = i(—1) “—ﬁf’mﬂ (m+1)2m + ) {1+ 2(m + 1)da3},

- . m Y
Va;2m+2(pzam3r) =i(-1) +1F2m+2

{p* = [1+2(m+ 1), M2} .

(m+2)(2m +2)!

We can write

m 4+ 2
2

o0 2 m B ~
08 (p?, m2) = m2g” (—gz) (m+1) [(m + 1) — T2m+2} 5.

(F.11)
Summing the series and using Eq. (F.5), 0%,(p? m?2) vanishes and the sum of 1PI

diagrams becomes the same for charged and neutral pions:

2 . 2 )
Sa(p?m2) = —— {(p2 —m2) T? (1 + %T2) + miT] . (F.12)
2 (1 + §T2>
The inverse of the propagator (F.7) is now
AN 9
Gl (p% W) = (1 + ZT2) {pz —m?2 (1 + 5T>} , (F.13)

and it vanishes at the physical pion mass

2
m2 = 12 <1+9—T> = +m2y/1+ g7, (F.14)

2
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FiGure F.4. Diagrammatic equation for —i¥ in terms of the one-point Green’s
function i7", Eq. (F.8).

where we used the solutions (F.6). Inserting the values of m? and g, Egs. (3.4.4) and
(3.4.5),
m2 =+— mr(0). (F.15)

Equation (F.15) shows that, as it should be, the physical pion mass is independent
of the arbitrary angle «, and its value is equal to the one we would get by working
directly with the aligned Lagrangian (4.1.1). Presumably the same can be shown for

other observable quantities using this method.
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APPENDIX G

[SOSPIN VIOLATING LAGRANGIAN

We summarize here the isospin violating terms given in Secs. 3.3 and 4.2, and we show
the new isospin-breaking interactions induced in the A = 1 and A = 2 Lagrangian
from the field redefinitions that eliminate the nucleon mass difference from the yPT
Lagrangian.

Isospin-violating terms first contribute to the A = 1 Lagrangian,

)
£17f§2__2D2 (m _7T3)+TN (Tg—FEDﬂ'-‘r) N, (G.1)
while at order A = 2,
5m2 gm _
2 s
E;,}gz = +2D27T32’ + 2NN {7'3 + D (msm - T — 71'27-3)] N

(G.2)

2 _
+ % <Du7r3 - %n : Duﬂ-) NSHN.

Here 5mfr =0 (aemMéc o/ 47r) is the leading electromagnetic contribution to the pion
mass splitting, while the quark-mass-difference contribution, ém? = O (52mfr / M%C D),
is smaller by a power of em,/Mgcp. The leading contribution to the nucleon mass
splitting is generated by the quark mass difference, dmy = O(em?/Mgcp), while the
electromagnetic contribution is dmy = O (vemMgep/47), that is, O (em2/Md¢p)
and about the 20% of dmy. The operator with coefficient 8, = O (em2 /Mg ) is an
isospin-violating pion-nucleon coupling.

For the solution of the Lippman-Schwinger equation, it is convenient to eliminate
the nucleon mass difference m,,—m,, from the nucleon propagator and from asymptotic

states. This result can be accomplished through a field redefinition, defined in Ref.
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[138]. After the field redefinition, Egs. (G.1) and (G.2) become

1 /. dm?2
(172) — i
cl’,f§2 = ~3m; (677172T - 5m?\,) (772 - 7r§) ~5p2 7T§
o ) _
—(0my + dmy) (m x v - D), + g];; :;N 1630y To NS - D_N
Tl TON
I3} 213 =
+o D, s — =pT D, ) NS*N. (G.3)

We use Eq. (G.3) to check the isospin breaking contributions to the nucleon EDFF
at NLO, in Sec. 5.2, to discuss isospin breaking corrections to the deuteron EDM

in Sec. 6.6 and to incorporate isospin-breaking effects in the TV potential from the

QCD @ term at N°LO in Chapter 7.



261

APPENDIX H

HIGHER-ORDER INTERACTIONS

We construct in this appendix operators that contribute to the chiral breaking pion-
nucleon Lagrangian ﬁ)%”:? and that do not contain covariant derivatives of the pion
or of the nucleon field. Because they are strongly suppressed by (m,/Mgcp)* with
respect to the leading pion-nucleon chiral-breaking vertices, these operators are not
relevant for any phenomenological application. Nonetheless they are of some formal
interest because, as we shall see, this is the first order in the purely hadronic sector
of the chiral Lagrangian where the relation (4.1.5) between TV and isospin-breaking
operators breaks down. This is also the lowest order where a purely hadronic TV
vertex m3 N3N appears.

The operators we consider here are obtained from the tensor products P, ® P,&® .Sy,
P,®P,®P,., and P, ®S,®S,, and we write the non-derivative part of the Lagrangian
as

(5) _ p(5) (5) (5)
£x3,f:2 - E)é3,f:2,PPS + E;é3,f:2,PPP + E;é3,f:2,PSS‘ (Hl)

The tensor product P, ® P, ® S; can be decomposed into two SO(4) vectors and
a three-index tensor, symmetric in the first two indices: P, ® P, ® Sy = 0,Vy +
(0040bd + 0640ad) Wa + Sapa. The vectors V' and W have the same properties under
P and T as the vector S introduced in Eq. (3.2.13). In the realization of the third
and fourth components of the tensor product, the third and fourth components of W
appear, but only the fourth component of V' does. In the f = 2 sector, P, ® P, ® Sy

generates the operators

5(5) ) (5)+(1+ 2) G (1 2m® NN+2pC§5) NN
¥ f=2,pps — |G P) 2 2D E.D 3

2 2 2 2
(5) 2m 4ms 9 4 4pms 0 -
+eg (1_F2D) {F2D2+p (1_F2D2)+F7TD2 l_ﬁ NN.(H.2)
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Here the 03) term has a similar structure to the cl) term in Eq. (4.1.27). The
cg) term is nothing but a correction to the nucleon sigma term, Eq. (4.1.2). More
interestingly, Eq. (H.2) shows that even at the hadronic level the relation (4.1.5)
ceases to be valid at higher orders in the expansion in m,/Mgcp. Indeed, it is not
possible to disentangle the individual coefficients cf” and c;@ by measuring a TC
observable, and, therefore, it is not possible to constrain the coefficient of the TV
operator in Eq. (H.2) with the properties of an Ss.

The tensor product P,® P,® P, yields symmetry-breaking terms that transform as
components either of a four-vector with the same properties as the vector P defined

in Eq. (3.2.14), or of a completely symmetric tensor. In the f = 2 sector, the

corresponding operators are

27T3 2p
7"' -T J—

_ (3
£X3f o.pPP — G N{Tg_FﬁD F.D
2ms \ 2 - 21
—i—cg’) <Fﬂ;) N <7'3 — Fﬂl?’)ﬂ'-r) N
4ms 2 32
(5) 3 2
*es f’p DN[““"m(m (“ﬁ)”'””’)h

107T3 71'2
(1~ 5p) ¥ [ g (1) o] v

7T~T:|N

2025 3 47\ -
28 p°(1— F2D? Nm - TN. (H.3)

The 04 term realizes the SO(4) vector in the tensor product, and thus has a form
identical to Eq. (4.1.19); it is simply a correction to dmy. The other four operators
correspond to the 3-3-3, 3-3-4, 3-4-4 and 4-4-4 components of the symmetric tensor.
In them, a link between 7" violation and isospin breaking survives. The operator with

coefficient cé5) p is the first purely hadronic contribution to the T-violating vertex

s 3N T: 3N .
The representation of tensor products P, ® Sy ® S, contains two SO(4) vectors
with the same properties as P and a three-index tensor. When we select the fourth

component of the tensor product, the fourth component of both vectors appears,
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while, if a = 3, we find only the third component of one of the two vectors. This

implies that, in the f = 2 sector, the Lagrangian is

5 5) \7 2ms 2p 5 5\ o
L0 ypss = N (rg—Fng-r N- 5 (6 + ) N rN

5 472 - 213 2p
+c§3)<1—F2D2 N 7'3—F2D7T'T—F7FD7T'T N

(5) 2 2
2¢y 2m 2ms ™ -
l——— ) | — — 1—— || Nw 7TN. H.4
*Ftz( FD)[F ”( F)] morN. ()

Here some links between TV interactions and isospin breaking survive. The c§5) term

is identical in form to the cf) term in Eq. (H.3), so it also provides a correction

to omy in Eq. (4.1.19). The cg’) term has a similar form. The 055) term links a

TV interaction to an isospin-breaking seagull. However, we see that the term with
coefficient cg’) p does not have any TC partner, and cannot be determined from a
measurement of a TC observable.

The coefficients in Eqgs. (H.2), (H.3), and (H.4) scale as

2,.,6 3,,,6
(5) _ O ? mﬂ_ (5) _ O ? m7r
<r4<9>Mch> T\ SO M )

6
- _ EMx
Colg = O <T2(¢9)M50D> . (H.5)
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APPENDIX [

LORENTZ-INVARIANCE CONSTRAINTS

In this Appendix we derive the relations (4.1.26), which stem from Lorentz invariance.
In the heavy-baryon formalism, Lorentz invariance is implemented order by order in
a Q/my expansion that goes hand-in-hand with the QQ/Mgcp expansion of xPT. It
relates the coefficients of operators at different orders. There are many ways to derive
such relations. One method, intrinsic to the formalism and dubbed reparametrization
invariance, is to demand invariance under small changes of the velocity v* in Eq.
(C.15) [251]. Going beyond 1/my corrections is complicated but can be done [252,
151]. Another method is to implement a Foldy-Wouthuysen transformation [253]. A
third, more popular method [131, 150] is to start from a relativistic Lagrangian and
perform an integration over antinucleon fields in the path integral. Here we follow a
variant of the latter, where we match the non-relativistic Green’s functions to their
relativistic counterparts .
The TC dynamics of a relativistic nucleon is described by the Lagrangian
EzN(i@—mN+%—A75T~$7r)N+..., (L.1)

«

where “...” denotes higher-dimension operators, with more nucleon or pion covariant
derivatives and more powers of chiral-symmetry breaking parameters. The TV rela-

tivistic Lagrangian in the strong-interaction sector with operators containing up to

'Most of the results in this appendix were obtained independently by J. de Vries using the method
of Ref. [151], which is a generalization of Ref. [252] to the xPT Lagrangian
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two derivatives with respect to the leading TV coupling gy is

_— 5 )
Ly = —FgODNﬂ' TN — F20D7T - D, Ny s N
73 1 7’ <
+2F7T5 (1 — F—E) DuDuﬂ' -NTN
+%5 (1 - %) (D7 x D,m) - No""v° TN
—FZQDW (D7 x D,m) Nic"” N
—FTQ%W D, D' - NTN — ;;;Duﬂ' Dt - NTN, (1.2)

where, with abuse of notation, we denote the relativistic coupling constants by the
same symbols used in the text for the non-relativistic constants.

We find the f = 2 TV heavy-baryon Lagrangian by equating (matching) the
relativistic two-nucleon n-pion Green’s functions, computed with the Lagrangians in
Egs. (I.1) and (I.2), to the non-relativistic Green’s functions, obtained with the TV
Lagrangians (4.1.19), (4.1.21), and (4.1.24) and the TC chiral Lagrangians (3.3.17),
(3.3.18) and (3.3.19) Chiral-symmetry breaking operators induced by the quark mass
m and by the quark mass difference me should be included in the relativistic and in
the heavy-baryon Lagrangian, Eqgs. (I.1) and (3.3.18) and (3.3.19). However, it turns
out that these terms do not affect the matching of the TV one-pion and two-pion
Green’s functions at the order we consider.

We set the external nucleon on shell, and expand the relativistic Green’s function
in powers of 1/my, retaining terms up to order 1/m%. We do the matching in the
nucleon rest frame, v = (1,5), where the spin operator is S* = (0,5/2). In the
relativistic part of the matching, the incoming and outgoing nucleons are represented

by the Dirac spinors u(p) and u(p”), whose explicit expressions are

BN o0 i) = BTN (e PO
U(ﬁ)— 2E ( E:Z;Ng)> u(p)— 2E, (fa fE/—i-mN)’ (13)

where £ is a two-component spinor, normalized to one, and the nucleon energy is £ =

m3 + p2. In the heavy-baryon part of the matching, the nucleons are represented
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Ficure I.1. Matching of the one-pion TC Green’s function. The l.h.s. represents
the relativistic Lagrangian (I.1). On the r.h.s., the circle denotes the interaction
in the leading-order Lagrangian Eg?)fzz (3.3.17), while the vertices with circled and

doubly circled circles denote, respectively, once- and twice-suppressed interactions in
the Lagrangian E;lfz; (3.3.18) and (3.3.19).

by the spinor &.

The Feynman diagrams for the matching of the one-pion TC and TV Green’s
function are depicted in Figs. 1.1 and 1.2. On the relativistic side, the interactions
are given by the Lagrangians (I.1) and (I1.2). In Fig. 1.1, on the heavy-baryon side the
circle denotes the leading pion-nucleon interaction in Eq. (3.3.17), while diagrams
with circled and doubly circled circles denote contributions suppressed by one or
two powers of QQ/Mgep in Egs. (3.3.18) and (3.3.19). Similarly, on the heavy-
baryon side of Fig. 1.2 the diagrams with zero and two circles denote contributions
from, respectively, the leading TV Lagrangian ﬁ)(é}:g (4.1.19) and the subleading TV
Lagrangian 5;31), =y (4.1.24). Equating the relativistic and non-relativistic TC Green’s
functions we reproduced the 1/my and 1/m3; terms in Eq. (3.3.18) and (3.3.19) and,
for the TV Green’s function, we find

90
2m%;

pomy = go, pC=pC = (I.4)

The Feynman diagrams for the matching of the two-pion TV Green’s function are
shown in Fig. 1.3. The first row shows the relativistic diagrams. As before, the TV
vertices from Eq. (1.2) are denoted by squares: in the first diagram, the TV coupling
is either h, or 7, while the last four diagrams are proportional to gy or 773. The TC
vertices come from the Lagrangian (I.1) and are proportional to the axial coupling

ga. The second, third and fourth rows contain the diagrams evaluated in the heavy-
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Ficure 1.2. Matching of the one-pion TV Green’s function. The L.h.s represents the

relativistic Lagrangian (I1.2). On the r.h.s., the square denotes the TV vertex in the

leading TV Lagrangian E)(é}:z (4.1.19), while the square with two circles the vertices

in the power-suppressed Lagrangian E)(Z’l) oo (4.1.24).

baryon theory. The double circle indicates that we consider vertices and corrections
to the heavy-baryon propagator in the TC and TV chiral Lagrangians with up to two
powers of Q/Mgcp with respect to E;O,)fzz (3.3.17) and E)(el’)fzz (4.1.19). Equating the
two-pion Green’s functions we find

06 =, pcszgnj—g)—;;—jv. (L5)
The relations for the subleading TC operators in Eq. (3.3.18) and (3.3.19) and for
the isospin-breaking coefficients, summarized in Eqs. (I.4) and (I1.5), reproduce those
in Refs. [131, 150], obtained by integrating the antinucleon field out of a relativistic
Lagrangian, once a field redefinition is used to eliminate the time derivatives acting
on the nucleon field from the power-suppressed Lagrangians. We refer to [151] for
more details. There the relations (I.4) and (I.5) are derived in a more sophisticated
fashion, by adapting the method of [252] to the yPT Lagrangian and by using field
redefinitions to eliminate time derivatives acting on the nucleon fields. The method
there developed can be applied also to four-nucleon operators, and it is showed to
reproduce the results of [254]
Equations (I.4) and (I.5) lead to Eq. (4.1.26). Equation (I.2) and the matching
above imply that the coefficients (3, (4, (9, (10, and (12 are new arbitrary low-energy
constants, not linked to the couplings appearing in the A = 1 and A = 2 TV

Lagrangians. The operators proportional to (;; and (;3 do not appear in the rela-

tivistic Lagrangian, so their coefficient could be linked to dmy or ;. In order to find
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FiGure 1.3. Matching of the TV two-pion Green’s function. In the top row, the
nucleon is relativistic. In the bottom rows, the nucleon is described by the heavy-
baryon Lagrangian. Circles and squares indicate vertices from the leading TC and TV
Lagrangian, respectively. Doubly circled circles and squares vertices from the power
suppressed TC and TV Lagrangian. The double circle in the propagator indicates that
in each heavy-baryon diagram we consider corrections to the heavy-baryon propagator
with up to two powers of Q/Mgcp.

the exact relation, we should match three-pion Green’s functions. We refrain from
doing this here because these three-pion operators play no role in any foreseeable
phenomenological application.

The constraints on TV operators stemming from the qCEDM, Eq. (4.1.37), and
on the TV electromagnetic operators generated by the QCD 6 term and the dimension
6 TV operators are obtained with the same method, by equating the relativistic and
non-relativistic three-point Green’s functions with two nucleon and one photon fields.

Also in this case, our results have been checked with the alternative method described
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in [151].
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APPENDIX J

THE P1ON-NUCLEON TV FOrRM FACTOR

One ingredient in the calculation of the N2LO potential from the QCD 6 term is the
N2LO pion-nucleon TV form factor. From Sec. 4.3, we see that the TV pion-nucleon
interaction receives corrections two orders down. After the field redefinition of Sec.

4.3, and expanding in the number of pions,

ﬁg;N - T [(AQO“'QO m;) ™= %(U'a)%" - %027&'} -NTN

N — gO 2
+ W'NT{?’]g,(U'a_)z—l-—a _}N
2m3, -

— N (9,m) N[S" S 70, N

2

_r (—4c§3> + 2AmN6nZ“) NN + ..., (J.1)
m

s

where the non-derivative couplings are given in Eqs. (4.1.27), they scale as

4 2, .4
Adn = —206.m® = @ [ L G _o LM ) 7.2
90 P 1mN <T2(9)M50D ) pcl TQ(H)M%CD ( )

and they receive a correction from the elimination of the tadpole, as detailed in Sec.
4.3. The derivative couplings are

o pem;
h=pG=0 (ﬂ(éwgw) | J3)

In addition to a correction Agy to gy and to the isospin-breaking non-derivative pcgs)

coupling, plus the two terms from the field redefinition, the remaining terms all involve
derivatives, either of the pion or the nucleon.

In fact, some of these other couplings are necessary to renormalize processes in-
volving the coupling of pions and nucleons, while others lead to momentum depen-

dence. To make this point evident, let us consider the three-point Green’s function
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for an incoming (outgoing) nucleon of momentum p#* (p'#) and a pion of momentum
g" = p" — p'* and isospin a. It can be written as

l

Va(qa K) - F

[Fl(Qa K)Ta + F2(Q> K)5a3 + F3(Q> K)5a37_3] ) (J4)

in terms of the functions Fj 53 of ¢* and K* = (p* + p'#)/2. We will work up to
relative O(Q?/Mpg¢p), when the form factors Fy53(q, K) receive contributions from
the TV pion-nucleon vertex (4.1.19) at tree and one-loop levels, and from the TV
pion-nucleon vertices (J.1) at tree level.

The loops, shown in Fig. J.1, only contribute to F(q, K). (Note that we do not
include wavefunction renormalization here; this can be easily done if needed.) The
leading TV interaction (4.1.19) is dressed by TC interactions from the A = 0 La-
grangian (3.3.17). The one-loop diagrams are of course divergent; we use dimensional
regularization in d spacetime dimensions, which introduces the renormalized scale p
and

2
L=—— In4 .

with v = 0.55721.... We define the renormalized parameters

- 2 2
_ _ G0 mg my
A, = Ago+ Zom [(1 +39%) <L+ 1—In F) —393} , (J.6)
= 2 2
_ _ g g my
Ny = 7}2+m< —ZA) (L—FQ—IHF), (J?)
_ _ g 3 mz
s = n5+7(27di E <§gi—2) <L+2—ln MQ). (J.8)

At one loop, the form factors are found to be

om? m?2 voqg v-K . )
Fi(q K) = go |1 u al Ag —n :
1(g, K) 90[ + m2 + (27TF7r)2f<2m7r’ e )} + 90+2772 (v-q)
s K B2 90 K2_.§0 ﬁ-(f? q> .
+15 (v - K) 54 oz Z2m?VS X q), (J.9)
§@m?
B¢, K) = —dp <c§3> — Amy T ) (J.10)

B¢, K) = 0, (J.11)
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FIGURE J.1. One-loop contributions of O(gom2/(27F,)?) to the pion-nucleon form
factor Fi(q, K) . A nucleon (pion) is represented by a solid (dashed) line; the TV
vertex (4.1.19) is indicated by a square, while other vertices come from Eq. (3.3.17).

with

flr.y) = gai—\1-(y+a) {2y + 6z + gA [1—(y+2)7] } arccos (—y — )
7
1—(y—ax)° {2y 6x — 2— [1 —(y — :)3)2} } arccos (—y + x)(J.12)
x
The result greatly simplifies if we let the nucleons go on shell, which we write in

a short-hand notation in terms of the nucleon isospin as

1
mN 2 b+ ) (‘] 3)

1 q? dmy
v- K = 2mN <K2+ 4) AmN—Téag’Tg—l— (J14)
In this limit, f(v-q/2mg,v - K/m,) is subleading,
v-q v-K m3
=0+0 J.15
f <2m7r’ mey ) * <M%CD> ’ ( )

and, at the accuracy to which we are working, it can be neglected. The form factors

for on-shell nucleons become

om? -3 Jdo -~ Jdo 3z (=
Fi(. K) = g1 m) 4 AGy— Bz 90 gy S-(K *) 16

om?
Fyq, K) = —4p (cg?)) — Amy Z”) : (J.17)
Fs3(¢, K) = 0. (J.18)
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FIGURE J.2. Tadpole contributions to the pion-nucleon form factors F;(q, K), i =
1,2,3. The TV vertex from Eq. (4.1.9) is indicated by a twice-circled square. The
circle is the Weinberg-Tomozawa term in Eq. (3.3.17). The circled circle denotes both
the nucleon sigma term from Eq. (4.1.2) and a recoil correction to the Weinberg-
Tomozawa term from Eq. (3.3.18), while the cross represents the isospin-breaking
operator in Eq. (4.1.19).

They are in the form of a local expansion in momenta. The coupling Agg and the tad-
pole factor godm?/m? are chiral corrections of O(m2 /M3 ) to the leading coupling
go- The vertex —4c§3) and the tadpole correction —pAmuydm2/m?2 are the leading
contributions to Fy. As far as the pion-nucleon form factor goes, one could as well
absorb the tadpole terms in Agy and c§3’, as we do in Chapter 7. Note, however,
that the tadpole contributions and the vertices have different tensorial properties and
could, in principle, be separated in other reactions. The 75 term gives the F} form-
factor radius, while the remaining two terms in Eq. (J.16) are relativistic corrections.
Note that F3 does not receive any contribution up to this order.

The results (J.16)-(J.18) can be obtained using the TV Lagrangian before the
rotation of the tadpoles. We use the same Lagrangian (J.1), but with dm? — 0.
Instead, we have to include explicitly the tadpole in Eq. (4.1.9). It generates tadpole
trees, shown in Fig. J.2, which contribute to all three form factors. The TV tadpole
(4.1.9) connects to the outgoing pion via seagulls from the nucleon covariant derivative
in Eq. (3.3.17) (the so-called Weinberg-Tomozawa term), from a recoil correction to
it found in Eq. (3.3.18), from the nucleon sigma term (4.1.2), and from the isospin-
breaking operator in Eq. (4.1.19).

In this case we get also an additional term in the form factor,

L

[Fl(q, K)Ta + Fg(q, K)5a3 + Fg(q, K)5a37'3] -+ ‘/a,tada (Jlg)
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where

dm? m2 veg v K B 1_
Fi(¢,K) = QO{H 5+ = f( g )]+A§o+—ﬁ2(U'Q)2

2m (2 F)?" \2m, m, 2
il (v K — %q*? _ 251—0%}?2 _ z'Qg%vﬁ- (K xa), (J.20)
Fy(q, K) = —dp <c§3> — Amy gzz; ) , (J.21)
Fy(q,K) = —90%, (J.22)
and L
Vatad(q, K) = 63“5’77,]%2272; [U g — [;—Nq] ) (J.23)

These relations are slightly different than in the case of the field redefinitions, Eqgs.
(J.9), (J.10), and (J.11). This is not surprising because in general a field redefinition
changes quantities off-shell. When the nucleons are on-shell, Egs. (J.13) and (J.14)
hold. The function f(v-q/2m,,v - K/m,) is still higher order. More care has to be

taken, however, with Eq. (J.23), which gives

1Go O My
Vasaa(g, K) = =L 220 (7, = 8,9), (7:24)

so that the on-shell form factors become exactly Eqs. (J.16), (J.17), and (J.18).

The TV pion-nucleon form factor has recently been studied in Ref. [255] using
a model relativistic Lagrangian for the interactions of nucleons, pions, p, w and 7
mesons. The TV sector of the Lagrangian in Ref. [255] contains all the possible
non-derivative one-pion/two-nucleon interactions —in particular an isoscalar coupling
with coupling constant c¢,— and interactions of the p, w and 7 mesons with the
nucleon. Similarly, the TC sector includes a pseudo-vector pion-nucleon coupling
with coupling constant g., the coupling of the p meson to the nucleon and to two
pions with constants g, and g, respectively, and the couplings of the 7 and w mesons
to the nucleon. The model Lagrangian in Ref. [255] does not include multi-pion
terms and, therefore, it is not fully consistent with the chiral symmetry of the QCD

Lagrangian.
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On the other hand, our framework is limited to momentum transfer Q) ~ m, <
m,. It is instructive to make contact between Ref. [255] and the formalism presented
here. For that, we have first of all to integrate out the contributions of the p, w and
7 mesons. At energies much smaller than the 1 and w masses, loops containing the
w and 7 mesons appear as short-distance contributions, absorbed in the coupling gp.
At energies much smaller than m,, the TC processes in which the nucleon emits a p
meson that subsequently decays into two pions appear like a local seagull vertex, the
Weinberg-Tomozawa term. We can thus establish the relation g,g,./m’ = —1/F?.
Analogously, the emission of a p meson via a TV interaction, followed by its decay
into two pions, matches onto a TV seagull interaction with the form of the operator (4
in Eq. (4.1.24). Loops containing such a vertex are subleading in the power counting.
Terms cubic in the TV couplings are similarly of higher orders. Expanding the result
of Ref. [255] in powers of m2 /m3; and m3/m, we find that the sum of the last five
diagrams in Fig. J.1 reproduces the infrared behavior of the fully relativistic calcula-
tion, that is, the factors of Inm, /u exactly match in the two calculations, provided
that we use ¢, = —go/F, and the Goldberger-Treiman relation g, = 2my/F,ga.
However, the first diagram of Fig. J.1 does not have a counterpart in the calculation
of Ref. [255], whose model Lagrangian does not include multi-pion terms. These
multi-pion terms follow from the chiral properties of the TV operators, which are
tied to their roots in the § term in the QCD Lagrangian.

The framework presented here thus affords a method to carry out hadronic calcu-
lations where the QCD symmetries are included properly. It also allows a systematic
ordering of the infinite number of contributions allowed by the symmetries. The
results (J.16), (J.17), and (J.18) can be used as input, for example, in nuclear calcu-
lations. If more accuracy is needed, one can compute the form factor in higher orders.
For example, as we saw in Table 4.2, F3 first appears at relative O(en /7), which, in
the way we count powers of aey, /7, is the next order in the QQ/Mgep expansion. At

this order one would have to include photon loops as well.



276

APPENDIX K

FOURIER TRANSFORM

In general a potential obtained in EF'T depends not only on the transferred momen-
tum ¢ but also on K , and the center-of-mass momentum 13, V(q, K , 13) The Fourier

transform of such a potential is defined as
V(F? Fl? X? X’) =

CK [ PP [ A _px g iRk iy 7B (K.1)
[ G | g | e ROV . P

where, if Z; and 75 are the positions of the incoming nucleons and #| and ZJ the
positions of the outgoing nucleons, the relative coordinates are ¥ = #; — ¥y and
7" = & — &}, while the center-of-mass position of the incoming and outgoing pairs
are 2X = 7| + 7 and 2X’ = 7/ + 7. The potential in Eq. (K.1) has to be used in a

two-nucleon Schrodinger equation of the form

i, 12 = - (e o) X”)+/d3F/d3X'V(*F' X, X" (7, X)
ot ’ 4mN my ) PRAN s s .
(K.2)
For potentials that, like the ones in Sec. 7.3, are polynomials in K and P,
V(g K, P) oc K"P"f(q). (K.3)
V(r,, X, X’) assumes the form
= 2 ! n s3)( v / Sms(3) (= 77
I CO N
where

d3q

f(7) = / (27T)3e‘i‘ﬁ f(q). (K.5)

Plugging Eq. (K.4) in Eq. (K.2), and integrating by parts, the derivatives acting

on the delta functions can be turned into derivatives acting on f and on the wave



277

function (7, X ). The integrals in Eq. (K.2) then become trivial, and the Schrédinger

equation assumes the form

D g %y = — (T2 V2 e 2 v B S 0, ), (K6)
"ot ’ N dmy  my . PV VXA .

where the two potentials in Egs. (K.2) and (K.6) are related by integrations by parts.

For a potential of the form (K.3), schematically we would have

Vi Vo T o (1o { T T s e k)

where the indices i, ..., 1, are appropriately contracted.

In order to obtain the potential in configuration space for functions that diverge as
the momentum transfer |g] goes to infinity, one has to define a regularization scheme.
Here, following Ref. [246], we find it convenient to extend the definition of the Fourier

transform (K.5) to a space-time of d = n + 1 dimensions:

V() Z/(;Z%e‘w V(7). (K.8)

The amplitude V' (§) is the expression in momentum space of corresponding loop con-
tributions right after the d-dimensional integration over loop momenta is performed,
but before setting d = 4 or performing the integration over Feynman parameters.
Writing

n—3

d"q=q"'dq(1 —cos*0) 2 dcosfdQ, 1, (K.9)

the angular integrations are evaluated with the aid of the formulas

27 2
dQ, 1 = , K.10
f a9~ g -
and
271-%71 ! n—3 . n n
@ /1 dcosf (1 —cos®f) 7 e "reest — (QW)E(C]T’)I_EJ%_l(QT), (K.11)
) J-

where ¢ = ||, = ||, and J,(z) denotes a Bessel Function of the first kind. For
momentum integrals, a useful relation is [256]

> n o Juoa(qr) r\ "2l prTE
| et (5) T e K ). (K1)
0

(@ +80)"7 2 I (25")
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where [ is a constant and K, (z) is the modified Bessel function of the second kind.

For example, in the case of the triangle diagrams discussed in Sec. 7.3,

Va o QAQO (47‘,U ) (1) (2) 1 =(1) =(2) g 3—n
T T ol — 00 -q 1

(K.13)

n—3

/01 dz [m2 + qzzv(l — )] ®

For m = 3 and 82 = m2/z(1 — ), the result in Eq. (K.12) allows one to cancel the
divergent factor of I'((3 —n)/2) in Eq. (K.13) and get an expression that is finite for
r # 0. Now we can set d = 4 and with the aid of the properties of modified Bessel

functions [256] we can write the potential in configuration space as

1

o 1
VA (’f’ ) QAQO o

F? (2rF,)?

1
) 2 (5'(1) — 5’(2)) vV [ / dx(1+ pr) 6_57} - (K.14)
0

The contributions from box and crossed diagrams can be obtained in a similar fashion,
leading to the result in Eq. (7.4.11).
Alternatively, we can isolate the short-range, divergent part of the interaction with

integration by parts. In Eq. (K.13), for instance, we then obtain

—-n

ZgAgo (4mp?)*3"
2 (2rEL )

[F (3_7”) T (5; ) /01 o [m2 f;(;(ii)fz" 19

The first, divergent piece in Eq. (K.15) is a contribution to a delta-function potential.

M. 70 (0 _ 52y . 7

Va(q) q

Applying the d-dimensional Fourier transform to Eq. (K.15) and taking the d — 4

limit we find

. gago 1 ~ . -
Valr) = 942 (anﬂ)Jm'T@) GO 70). 7

®) w L 2,8

™

where L is given in Eq. (7.3.3). Proceeding in this way also for box and crossed
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terms, we find that Fourier transform of the TPE potential can be expressed as

3) o gago 1 . . -
Vi) = 942 oF )27<1>.T<2> (G0 — 5.

{-5(3) () {(3931 - 1) (L +1n Z—Z) + 29,24}

1 [t 3 1— 2z
— | dx g% 4— — 2e7Pr L (K1
+47rr 0 x{gA< 2x(1—x)) 1—x]ﬁe } (K.17)

The piece proportional to the delta function can then be absorbed in a redefinition

of Cy very similar to Eq. (7.3.4), the only difference residing in the finite pieces.
Integrating by parts, it can be explicitly verified that the non-analytic piece of the
expression (K.17) gives the medium-range potential in the form of Eq. (7.4.11).

As a further check of our results, we computed the Fourier transform of the triangle
diagrams with a Gaussian regulator exp(—¢*/A?), for different values of the cutoff A.
The calculation was performed numerically with Mathematica [257] and we focused
on the region r > 1/m,. For A >~ m,, the result we get is still quite different from
the Fourier transform obtained in dimensional regularization, but as we increase the
cutoff to 1-2 GeV, it approximates Eq. (K.14) better and better.

As pointed out in Ref. [246], in the d-dimensional Fourier-transform procedure
the infinities are “regularized” away because the nucleon distance is kept finite. The
ultraviolet divergences and the regulator dependence are now hidden in the singular
behavior (~ 1/r*) of the potential for small r, which forces the reintroduction of a
regulator in the calculation of matrix elements of V' (r). If the chosen regulator were
dimensional regularization, then the d — 4 limit of Eq. (K.12), which lead to the 1/r3
singularity in Eq. (K.14), must be taken in the sense of generalized functions; the
singularity is then encoded by a delta function, proportional to the divergent factor
2/(d — 4), while the 1/r® behaviour is replaced by a more regular plus distribution
[250].
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