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Abstract

The Effective Field Theory formalism is applied to the study of problems in hadronic

and nuclear physics. We develop a framework to study the exclusive two-body de-

cays of bottomonium into two charmed mesons and apply it to study the decays

of the C-even bottomonia. Using a sequence of effective field theories, we take ad-

vantage of the separation between the scales contributing to the decay processes,

2mb ≫ mc ≫ ΛQCD. We prove that, at leading order in the EFT power counting, the

decay rate factorizes into the convolution of two perturbative matching coefficients

and three non-perturbative matrix elements, one for each hadron. We calculate the

relations between the decay rate and non-perturbative bottomonium and D-meson

matrix elements at leading order, with next-to-leading log resummation. The phe-

nomenological implications of these relations are discussed. At lower energies, we use

Chiral Perturbation Theory and nuclear EFTs to set up a framework for the study of

time reversal (T ) symmetry in one- and few-nucleon problems. We consider T viola-

tion from the QCD θ̄ term and from all the possible dimension 6 operators, expressed

in terms of light quarks, gluons and photons, that can be added to the Standard

Model Lagrangian. We construct the low energy chiral Lagrangian stemming from

different TV sources, and derive the implications for the nucleon Electric Dipole Form

Factor and the deuteron T violating electromagnetic Form Factors. Finally, with an

eye to applications to nuclei with A ≥ 2, we construct the T violating nucleon-nucleon

potential from different sources of T violation.
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Chapter 1

Introduction

Current nuclear and particle physics experiments probe the strong interaction on a

large variety of scales — from the MeV scale of nuclear experiments, to the GeV of the

B factories, and the TeV of the Large Hadron Collider — offering an extraordinary

opportunity to deepen our insight into the dynamics of strong interacting systems.

Furthermore, the accurate estimate of the effects of the strong interaction is crucial for

understanding the results of these experiments, to precisely constrain the parameters

of the Standard Model and to spot evidences of new physics.

The theory of the strong interaction is Quantum Chromodynamics (QCD). The

key feature of QCD is asymptotic freedom, the statement that the coupling of quarks

and gluons becomes weak at high energy, where a perturbative expansion in the

coupling constant αs is possible. Since its first success in the ’70s, the prediction of

violation of Bjorken scaling in Deep Inelastic Scattering, QCD in the perturbative

regime has been quantitatively tested in several experiments, over a wide range of

energies, from bottomonium decays, to e+e− annihilation rates into hadrons and jets,

to jet production in pp̄ and pp collisions at hadron colliders (for an introductory

review, see G. Dissertori and G. P. Salam, Quantum Chromodynamics, in Ref. [1]).

These experimental successes, and its conceptual simplicity and beauty, have firmly

established QCD as the correct theory of the strong interaction.

On the other hand, the same asymptotic freedom implies that at low energies, of

order of the hadronic scale ΛQCD = 1 GeV, the theory becomes strongly coupled, and

the possibility of a perturbative expansion in αs is lost.

Furthermore, the strong interaction shows a second striking feature, color confine-

ment. In experiments one does not directly observe quarks and gluons, the degrees

of freedom of QCD, but rather hadrons, colorless bound states of quark and gluons.



18

As a consequence, even processes with large momentum transfer are not entirely de-

scribable in perturbation theory, since, at a certain point, the soft, non-perturbative

dynamics that governs the structure of the hadrons in the initial and final states

kicks in. Perturbation theory is useful only insofar as the perturbative and non-

perturbative contributions to a process can be rigorously separated (factorized), and

the latter parametrized in terms of universal matrix elements, that can be computed

on the lattice or fitted to data.

In the last three decades, Effective Field Theories (EFTs) have emerged as a

powerful tool to describe various limits of QCD. The central idea behind EFTs is

that the accurate description of the physics at a low energy scale Q does not require

the detailed knowledge of what happens at a scale Λ much larger than Q. The EFT

approach takes advantage of the separation of scales to focus only on the relevant

degrees of freedom at low energy, without, at the same time, losing contact with the

fundamental, underlying theory and its symmetries.

In the context of QCD and the strong interaction, EFTs have been developed

both in the perturbative and non-perturbative regime.

For problems with one or more high energy scales Λ ≫ ΛQCD, the QCD La-

grangian can be used to compute the dynamics of high energy degrees of freedom,

which are integrated out in perturbation theory, and contribute to the coefficients of

local effective operators. The EFT approach has several advantages. First of all, its

focus on the relevant degrees of freedom allows for the simplification of factorization

theorems. Secondly, in processes with well separated scales, fixed-order perturbation

theory can be invalidated by the presence of large logarithms of their ratio. Renor-

malization group invariance, a key ingredient of the EFT approach, gives the tools to

systematically resum these effects, improving the perturbative expansion. Third, the

identification of a second expansion parameter beyond αs at the high scale — the ra-

tio of the typical momentum of external particles in the problem and the high energy

scale — provides an organizational principle (power counting) for non-perturbative
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contributions. Finally, the elimination of the high energy scales from the problem

simplifies the loop integrals in the EFT, which typically depend on only one scale.

At the same time, having only one relevant scale also simplifies the task of simulating

non-perturbative matrix elements on the lattice.

EFT techniques have been applied to systems with one heavy quark, like B and

D mesons, for which Heavy Quark Effective Theory (HQET) was developed [2, 3, 4].

HQET applies to problems in which the heavy quark exchanges with light degrees of

freedom momenta much smaller than its mass mQ. The HQET Lagrangian consists

of an infinite series of operators, organized in an expansion in ΛQCD/mQ. All the

dynamics related to the heavy quark mass (contributions to loop diagrams from the

region of integration k >∼ mQ, virtual heavy quark-antiquark pairs in loops, etc) is

encoded in the coefficients of the effective operators, which are computed in perturba-

tion theory by equating (matching) QCD and HQET amplitudes at the high energy

scale mQ. Below mQ all the physics is non-perturbative, still the power counting

provides the rationale for considering only few non-perturbative matrix elements at a

given accuracy. Furthermore, in the heavy quark limit, new symmetries — spin and

heavy flavor symmetry — become manifest, allowing for the establishment of approx-

imate relations between non-perturbative matrix elements. HQET has been applied

to the description of several observables, especially in B physics. For a review, we

refer to Ref. [5]

EFT ideas found fertile ground in applications to systems with two heavy quarks,

like charmonium and bottomonium. These systems are described by Non Relativistic

QCD [6]. Differently from the case with a single heavy quark, the dynamics of non

relativistic bound states of a heavy quark and antiquark receives contributions from

several scales below mQ: the relative momentum mQv, the binding energy mQv
2 and

the hadronic scale ΛQCD. The NRQCD Lagrangian consists of a series of operators

organized according to their scaling in the quark-antiquark relative velocity v. In the

bilinear sector, the NRQCD Lagrangian has the same form as the HQET Lagrangian,
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but the importance of various terms is different. For example, the assumption of an

essentially static heavy quark, with kinetic energy of order E ∼ ΛQCD and recoil

~p 2/2mQ ∼ Λ2
QCD/mQ, which works in HQET, does not capture the physics of heavy

quarkonium, for which E ∼ p 2/2mQ ∼ mQv
2, and the importance of the respective

operators in the EFT Lagrangian has to be readjusted. Furthermore, at scales lower

than mQ, heavy quarkonium annihilation is no longer resolved in the EFT, and it

manifests in contact four-quark operators in the NRQCD Lagrangian, with imaginary

matching coefficients.

One can further take advantage of the separation between the relative momentum

and the binding energy by matching onto lower energy EFTs, potential NRQCD

(pNRQCD) [7, 8, 9] or velocity NRQCD (vNRQCD) [10, 11, 12, 13].

Since its first success — the solution of the long-standing problem of infrared

divergences in P -wave decays [6] — NRQCD, and lower-energy non relativistic EFTs,

have given a fundamental contribution to a better understanding of heavy quarkonium

physics, and they are today the standard theoretical tool for the study of heavy

quarkonium spectroscopy, production, and decays [14, 15].

A third class of problems to which the EFT approach can be applied are pro-

cesses with highly energetic, almost light-like hadrons, with one component of the

momentum much bigger than the mass. Below the hard scale, typically set by the

momentum transfer in hard scattering processes or by the mass of some heavy decay-

ing particle, the degrees of freedom relevant to these problems are collinear and soft

quarks and gluons, which are described by Soft Collinear Effective Theory (SCET)

[16, 17, 18, 19, 20]. The SCET Lagrangian is organized as an expansion in powers of

λ =
√

p2/s, where p2 is the invariant mass of the hadrons (or jets of hadrons), and s

the square of the large energy scale in the problem. One important feature of SCET

is the decoupling of soft and collinear degrees of freedom at the Lagrangian level [18],

which greatly simplifies factorization theorems.

A first success of SCET is that it allows to recast in a EFT language “classical”
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QCD factorization theorems, like those for Deep Inelastic Scattering, or the Drell-

Yan process [19]. The strength of the EFT is by no way limited to a reformulation

of old results. SCET has been successfully applied to B decays, like B → Xsγ,

semileptonic and exclusive B meson decays, and to heavy quarkonium decays in

particular kinematic limits, where the SCET approach is justified by the large energy

released to light degrees of freedom. A very promising direction of development in

recent years has been the application of SCET to collider physics, both to specific

processes (for example, Higgs production [21, 22, 23]), and as a theoretical tool to

understand and improve jet algorithms and event generators [24, 25]. Finally, the

key ingredients of the EFT, factorization, resummation and power counting (that is,

control of non-perturbative corrections), make it the ideal theoretical tool for high

precision extraction of QCD parameters, like the strong coupling constant αs, from

data [26, 27].

In Chapter 2, I will discuss an example that allows me to touch on the basic

features of different EFTs, the exclusive decays of the C-even bottomonia χb and

ηb into two D mesons. The process involves a non-relativistic bound state, the ηb

or χb, that decays into two fast-moving, but massive, particles. Therefore, it calls

for a combination of non-relativistic EFTs (NRQCD, pNRQCD) for the description

of the initial state, and effective theories for highly energetic, but massive, particles

(SCET, boosted HQET) for the final state. As promised in this introduction, the EFT

formalism allows to derive a factorized formula for the decay rate, to resum logarithms

of the ratios mc/mb and ΛQCD/mc and to estimate the impact of perturbative and

non-perturbative corrections to the decay rate. The work of Chapter 2 has been done

in collaboration with R. Azevedo and B. Long, and was published in Ref. [28].

A second type of EFTs has been developed to study the physics at scales Q much

smaller than ΛQCD. For these theories, the possibility of a perturbative expansion in

the coupling αs is lost, but the underlying theory and its symmetries still provide a

strong constraint on the dynamics of low energy degrees of freedom. This is true in
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particular of the approximate chiral symmetry of QCD and its spontaneous breaking,

which predict the existence of a almost massless Goldstone boson, the pion, and

dictates the form of its interaction to heavier degrees of freedom in the theory, like

baryons (nucleon, Delta isobar, . . .) and heavy meson (ρ, D, B, . . .). These constraints

lead to the formulation of an EFT for pions and nucleons, Chiral Perturbation Theory

(χPT) [29, 30, 31, 32, 33]. In systems with zero or one nucleon, chiral symmetry and

heavy baryon formalism (the baryonic analog of HQET [34]) justify a perturbative

expansion of amplitudes in powers of the ratio of the typical momentum Q of external

states and the scale MQCD = 2πFπ ≈ 1 GeV. χPT has been very successfully applied

to pion-pion scattering, pion-nucleon scattering, pion and nucleon electromagnetic

form factors, and several other processes with light mesons and one nucleon [33].

For systems with two or more nucleons, where the scale of the nucleon binding

energy Q2/mN , much smaller than the momentum, becomes relevant, perturbation

theory is bound to fail, as signaled by the appearance of shallow bound states, the

nuclei [35, 36]. Chiral symmetry and χPT, however, provide the tools to derive and

organize contributions to the two- and three-nucleon potential that is to be used in

the solution of the few-body Schrödinger equation. In recent years, the accuracy

of the EFT potential has reached the level to rival high precision phenomenological

potentials, with the advantage, once again, of a closer relation with QCD and the

possibility of systematic improvement [37, 38].

In this work, we use the machinery of χPT and nuclear EFTs to study the violation

of time reversal symmetry (T ) in nuclear physics. The strength of the EFT approach

is, first of all, the close relation between the possible sources of T violation at high

energy and the form of the T -violating (TV) couplings of nucleons, photons and

pions. In particular, the chiral properties of the sources of T violation determine the

relative importance of short- and long-distance contributions to TV observables, and

the form of the TV pion-nucleon couplings. Secondly, EFT provides a framework that

can accomodate at the same time one- and few-nucleon observables, in a consistent
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fashion. In this way, we can identify the qualitatively different relations between one-

and two-nucleon TV observables that stem from the different chiral properties of high-

energy TV sources. If the next generation of EDM experiments will observe a signal

for the proton, neutron and deuteron TV electromagnetic moments these relations

will be an useful guide to trace TV in nuclear physics back to the fundamental sources

at high energy.

The work presented in Chapters 3-7 is the fruit of the collaboration with J. de

Vries, W. Hockings, C. Maekawa, R. Timmermans and U. van Kolck, and it is based

on the publications [39, 40, 41, 42]. Chapters 3 and 4 expand the discussion of Refs.

[39, 40] on the sources of T violation at high energy and the effective chiral Lagrangian

they generate, in particular for dimension 6 sources of T violation. Chapter 5 com-

bines the results of Refs. [40, 41] for the nucleon Electric Dipole Moment (EDM) and

Electric Dipole Form Factor (EDFF). Chapter 6 is devoted to the deuteron TV elec-

tromagnetic moments, and it expands on [42], by including some next-to-leading order

corrections to the deuteron EDM. The results of Chapter 7 on the TV nucleon-nucleon

potential have not been published yet, and they were obtained in collaboration with

C. Maekawa and U. van Kolck.
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Chapter 2

Exclusive decays of χbJ and ηb into two charmed

mesons

2.1 Introduction

The exclusive two-body decays of heavy quarkonium into light hadrons have been

studied in the framework of perturbative QCD by many authors (for reviews, see

[43, 44]). These processes exhibit a large hierarchy between the heavy quark mass,

which sets the scale for annihilation processes, and the scales that determine the

dynamical structure of the particles in the initial and final states. The large energy

released in the annihilation of the heavy quark-antiquark pair and the kinematics of

the decay — with the products flying away from the decay point in two back-to-back,

almost light-like directions— allow for rigorously deriving a factorization formula

for the decay rate at leading twist (for an up-to-date review of the theoretical and

experimental status of the exclusive decays into light hadrons, see [14]).

For the bottomonium system, a particularly interesting class of two-body final

states is the one containing two charmed mesons. In these cases the picture is com-

plicated by the appearance of an additional intermediate scale, the charm mass mc,

which is much smaller than the bottom mass mb but is large enough to be pertur-

bative. These decays differ significantly from those involving only light quarks. The

creation of mesons that are made up of purely light quarks involves creating two

quark-antiquark pairs, with the energy shared between the quark and antiquark in

each pair. In the production of two D mesons, however, almost all the energy of the

bottomonium is carried away by the heavy c and c̄, while the light quark and anti-

quark, which bind to the c̄ and c respectively, carry away (boosted) residual energies.

The existence of well-separated scales in the system and the intuitive picture of the

decay process suggest to tackle the problem using a sequence of effective field theories
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(EFTs) that are obtained by subsequently integrating out the dynamics relevant to

the perturbative scales mb and mc.

In the first step, we integrate out the scale mb by describing the b and b̄ with Non-

Relativistic QCD (NRQCD) [6], and the highly energetic c and c̄ with two copies

of Soft-Collinear Effective Theory (SCET) [16, 17, 18, 19, 20] in opposite light-cone

directions. In the second step, we integrate out the dynamics manifested at scales of

order mc by treating the quarkonium with potential NRQCD (pNRQCD) [7, 8, 9],

and the D mesons with a boosted version of Heavy-Quark Effective Theory (HQET)

[2, 3, 4, 45, 46, 47, 48]. The detailed explanation of why the aforementioned EFTs

are employed is offered in Sec. 2.2. We will prove that, at leading order in the EFT

expansion, the decay rate factors into a convolution of two perturbative matching

coefficients and three (one for each hadron) non-perturbative matrix elements. The

non-perturbative matrix elements are process-independent and encode information

on both the initial and final states.

For simplicity, in this Chapter we focus on the decays of the C-even quarkonia χbJ

and ηb that, at leading order in the strong coupling αs, proceed via the emission of two

virtual gluons. The same method can be generalized to the decays of C-odd states

Υ and hb, which require an additional virtual gluon. We also refrain from processes

that have vanishing contributions at leading order in the EFT power counting. So

the specific processes studied in this Chapter are χb0,2 → DD, χb0, 2 → D∗D∗, and

ηb → DD∗ + c.c. However, the EFT approach developed in this Chapter enables one

to systematically include power-suppressed effects, making it possible to go beyond

the leading-twist approximation.

The study of the inclusive and exclusive charm production in bottomonium decays

and of the role played by the charm massmc in such processes have recently drawn re-

newed attention [49, 50, 51, 52], in connection with the experimental advances spurred

in the past few years by the abundance of bottomonium data produced at facilities

like BABAR, BELLE, and CLEO. The most notable result was the observation of the
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bottomonium ground state ηb, recently reported by the BABAR collaboration [53].

Furthermore, the CLEO collaboration published the first results for several exclusive

decays of χb into light hadrons [54] and for the inclusive decay of χb into open charm

[55]. In particular, they measured the branching ratio B(χbJ → D0X), where J is

the total angular momentum of the χb state, and conclusively showed that for J = 1

the production of open charm is substantial: B(χb1(1P ) → D0X) = 12.59 ± 1.94%.

For the J = 0, 2 states the data are weaker, but the production of open charm still

appears to be relevant. The measurements of the CLEO collaboration are in good

agreement with the prediction of Bodwin et al. [49], where EFT techniques (in par-

ticular NRQCD) were for the first time applied to study the production of charm in

bottomonium decays.

The double-charm decay channels analyzed here have not yet been observed, so one

of our aims is to see if they may be observable given the current data. Unfortunately,

the poor knowledge of the D-meson matrix elements prevents us from providing

definitive predictions for the decay rates Γ(χbJ → DD), Γ(χbJ → D∗D∗), and Γ(ηb →
DD∗ + c.c.). As we will show, these rates are indeed strongly dependent on the

parameters of the D- and D∗-meson distribution amplitudes, in particular on their

first inverse moments λD and λD∗ : the rates vary by an order of magnitude in the

accepted ranges for λD and λD∗ . On the other hand, the factorization formula implies

that these channels, if measured with sufficient accuracy, could constrain the form

of the D-meson distribution amplitude and the value of its first inverse moment. In

turn, the details of the D-meson structure are relevant to other D-meson observables,

which are crucial for a model-independent determination of the CKM matrix elements

|Vcd| and |Vcs| [56].
This Chapter is organized as follows. In Sec. 2.2 we discuss the degrees of freedom

and the EFTs we use. In Sec. 2.3.1 we match QCD onto NRQCD and SCET at the

scale 2mb. The renormalization-group equation (RGE) for the matching coefficient

is derived and solved in Sec. 2.3.2. In Sec. 2.4.1 the scale mc is integrated out by
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matching NRQCD and SCET onto pNRQCD and bHQET. The renormalization of

the low-energy EFT operators is performed in Sec. 2.4.2, with some technical details

left to App. A. The decay rates are calculated in Sec. 2.5 using two model distribution

amplitudes. In Sec. 2.6 we draw our conclusions.

2.2 Degrees of freedom and the Effective Field Theories

Several well-separated scales are involved in the decays of the C-even bottomonia ηb

and χbJ into two D mesons, making them ideal processes for the application of EFT

techniques. The distinctive structures of the bottomonium (a heavy quark-antiquark

pair) and the D meson (a bound state of a heavy quark and a light quark) suggest

that one needs different EFTs to describe the initial and final states.

We first look at the initial state. The ηb is the ground state of the bottomonium

system. It is a pseudoscalar particle, with spin S = 0, orbital angular momentum

L = 0, and total angular momentum J = 0. In what follows we will often use the

spectroscopic notation 2S+1LJ , in which the ηb is denoted by 1S0. The χbJ is a triplet

of states with quantum numbers 3PJ . The ηb and χbJ are non-relativistic bound states

of a b quark and a b̄ antiquark. The scales in the system are the b quark mass mb,

the relative momentum of the b b̄ pair mbw, the binding energy mbw
2, and ΛQCD,

the scale where QCD becomes strongly coupled. w is the relative velocity of the

quark-antiquark pair in the meson, and from the bottomonium spectrum it can be

inferred that w2 ∼ 0.1. Since mb ≫ ΛQCD, mb can be integrated out in perturbation

theory and the bottomonium can be described in NRQCD. The degrees of freedom of

NRQCD are non-relativistic heavy quarks and antiquarks, with energy and momen-

tum (E, |~p |) of order (mbw
2, mbw), light quarks and gluons. In NRQCD, the gluons

can be soft (mbw,mbw), potential (mbw
2, mbw), and ultrasoft (usoft) (mbw

2, mbw
2).

The NRQCD Lagrangian is constructed as a systematic expansion in 1/mb whose
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first few terms are

LNRQCD = ψ†

(

iD0 +
~D2

2mb

+
~σ · g ~B
2mb

+ . . .

)

ψ + χ†

(

iD0 −
~D2

2mb

− ~σ · g ~B
2mb

+ . . .

)

χ ,

where ψ and χ† annihilate a b quark and a b̄ antiquark respectively, and · · · denotes
higher-order contributions in 1/mb. In NRQCD several mass scales are still dynamical

and different assumptions on the hierarchy of these scales may lead to different power

countings for operators of higher dimensionality. However, as long as w ≪ 1, higher-

dimension operators are suppressed by powers of w (for a critical discussion on the

different power countings we refer to [9]).

NRQCD still contains interactions that can excite the heavy quarkonium far from

its mass shell, for example, through the interaction of a non-relativistic quark with

a soft gluon. In the case mbw ≫ ΛQCD, we can integrate out these fluctuations,

matching perturbatively NRQCD onto a low-energy effective theory, pNRQCD. We

are then left with a theory of non-relativistic quarks and ultrasoft gluons, with non-

local potentials induced by the integration over soft- and potential-gluon modes. The

interactions of the heavy quark with ultrasoft gluons are still described by the NRQCD

Lagrangian, with the constraint that all the gluons are ultrasoft. In the weak coupling

regime mbw ≫ ΛQCD, the potentials are organized by an expansion in αs(mbw), 1/mb,

and r, where r is the distance between the quark and antiquark in the quarkonium,

r ∼ 1/mbw. If we assume mbw
2 ∼ ΛQCD, each term in the expansion has a definite

power counting in w and the leading potential is Coulombic V ∼ αs(mbw)/r.

An alternative approach, which does not require a two-step matching, has been

developed in the effective theory vNRQCD [10, 11, 12, 13]. In the vNRQCD approach

there is only one EFT below mb, which is obtained by integrating out all the off-

shell fluctuations at the hard scale mb and introducing different fields for various

propagating degrees of freedom (non-relativistic quarks and soft and ultrasoft gluons).

In spite of the differences between the two formalisms, pNRQCD and vNRQCD give

equivalent final answers in all the known examples in which both theories can be

applied.
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We now turn to the structure of the D meson. The most relevant features of the

D meson are captured by a description in HQET. In HQET, in order to integrate out

the inert scale mc, the momentum of the heavy quark is generically written as [4]

p = mcv + k , (2.2.1)

where v is the four-velocity label, satisfying v2 = 1, and k is the residual momentum.

If one chooses v to be the center-of-mass velocity of the D meson, k scales as k ∼
vΛQCD. Introducing the light-cone vectors nµ = (1, 0, 0, 1) and n̄µ = (1, 0, 0,−1), one
can express the residual momentum in light-cone coordinates, kµ = n̄ · k nµ/2 + n ·
k n̄µ/2 + kµ⊥ or simply k = (n · k, n̄ · k,~k⊥). There are two relevant frames. One is

the D-meson rest frame, in which v is conveniently chosen as v0 = (1, 0, 0, 0), and the

other is the bottomonium rest frame, in which the D mesons are highly boosted in

opposite directions, with v chosen as v = vD, the four-velocity of one of the D mesons.

By a simple consideration of kinematics and the scaling k ∼ vΛQCD, one can work out

the scalings for k in the two frames. In the D-meson rest frame, k ∼ ΛQCD(1, 1, 1),

and in the bottomonium rest frame (supposing the D meson moving in the positive

z-direction),

k ∼ ΛQCD (n · vD, n̄ · vD, 1) ∼ ΛQCDn̄ · vD
(

λ2, 1, λ
)

, (2.2.2)

where n̄ · vD ∼ 2mb/mc and λ = mc/2mb ≪ 1. It is convenient for the calculation

in this Chapter to use the bottomonium rest frame, so we drop the subscript in vD

and we assume v = vD in the rest of this Chapter. The momentum scaling in Eq.

(2.2.2) is called ultracollinear (ucollinear), and boosted HQET (bHQET) is the theory

that describes heavy quarks with ultracollinear residual momenta and light degrees

of freedom (including gluons and light quarks) with the same momentum scaling.

The bHQET Lagrangian is organized as a series in powers of ΛQCD/mc and, for

residual momentum ultracollinear in the n-direction, the leading term is [47]

LbHQET = h̄niv ·Dhn , (2.2.3)
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where the field hn annihilates a heavy quark and the covariant derivative D contains

ultracollinear and ultrasoft gluons,

iDµ =
nµ

2
(in̄ · ∂ + gn̄ · An) +

n̄µ

2
(in · ∂ + gn ·An + gn · Aus) +

(

i∂µ⊥ + gAµn,⊥
)

.

(2.2.4)

The ultrasoft gluons only enter in the small component of the covariant derivative.

This fact can be exploited to decouple ultrasoft and ultracollinear modes in the

leading-order Lagrangian through a field redefinition reminiscent of the collinear-

ultrasoft decoupling in SCET [18, 47]. The ultracollinear-ultrasoft decoupling is an

essential ingredient for the factorization of the decay rate.

Therefore, the appropriate EFT to calculate the decay rate is a combination of

pNRQCD, for the bottomonium, and two copies of bHQET, with fields collinear to

the n and n̄ directions, for the D and D̄ mesons, symbolically written as EFTII ≡
pNRQCD + bHQET.

As we mentioned earlier, we plan to describe the bottomonium structure with a

two-step scheme QCD→ NRQCD→ pNRQCD. However, at the intermediate stage,

where we first integrate out the hard scale 2mb and arrive at the scale mbw, the D

meson cannot yet be described in bHQET. This is because the interactions relevant

at the intermediate scale mbw can change the c-quark velocity and leave the D meson

off-shell of order ∼ (mbw)
2 ∼ m2

c ≫ Λ2
QCD. Highly energetic c and c̄ travelling in

opposite directions can be described properly by SCET with mass. Thus, at the scale

µ = 2mb, we match QCD onto an intermediate EFT, EFTI ≡ NRQCD + SCET, in

which the EFT expansion is organized by λ and w. The degrees of freedom of EFTI

are tabulated in Tab. 2.1.

Then, we integrate out mc and mbw at the same time, matching EFTI onto

EFTII at the scale µ′ = mc. In EFTII, the low-energy approximation is organized by

ΛQCD/mc and w. The degrees of freedom of EFTII are summarized in Tab. 2.2. When

no subscript is specified in the rest of this Chapter, any reference to EFT applies to

both EFTI and EFTII. To facilitate the power counting, we adopt w ∼ λ ∼ ΛQCD/mc.
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NRQCD field momentum SCET field momentum
quark b, b̄ ψb, χb̄ (mbw

2, mbw) c, ξcn̄ 2mb(1, λ
2, λ)

c̄ ξ c̄n 2mb(λ
2, 1, λ)

gluon potential Aµ (mbw
2, mbw) collinear Aµn̄ 2mb(1, λ

2, λ)
Aµn 2mb(λ

2, 1, λ)
soft Aµ (mbw,mbw) soft Aµs 2mb(λ, λ, λ)
usoft Aµ (mbw

2, mbw
2) usoft Aµus 2mb(λ

2, λ2, λ2)

Table 2.1. Degrees of freedom in EFTI(NRQCD + SCET). w is the b b̄ relative
velocity in the bottomonium rest frame, while λ ∼ mc/2mb is the SCET expansion
parameter. We assume mbw ∼ mc (or, equivalently, w ∼ λ) and mbw

2 ∼ mbλ
2 ∼

ΛQCD.

pNRQCD field momentum bHQET field momentum
quark b, b̄ ψb, χb̄ (mbw

2, mbw) c hcn̄ Q (1, λ2, λ)
u, d ξn̄ Q (1, λ2, λ)

gluon usoft Aµ (mbw
2, mbw

2) usoft Aµus Q(λ, λ, λ)
ucollinear Aµn̄ Q (1, λ2, λ)

Table 2.2. Degrees of freedom in EFTII(pNRQCD + bHQET). The scale Q in
bHQET is Q = n · v′ΛQCD for the n̄-collinear sector and Q = n̄ · vΛQCD for the n-
collinear sector. n · v′ and n̄ · v are the large light-cone components of the D-meson
velocities in the bottomonium rest frame, n ·v′ ∼ n̄ ·v ∼ 2mb/mc. λ and w are defined
as in Tab. 2.1. The scaling of quark and gluon fields collinear in the n direction is
obtained by exchanging the p+ and p− components of n̄-collinear fields

As a first study, we will perform in this Chapter the leading-order calculation of the

bottomonium decay rates.

2.3 NRQCD + SCET

2.3.1 Matching

In the first step, we integrate out the dynamics related to the hard scale 2mb by

matching the QCD diagrams for the production of a c c̄ pair in the annihilation of

a b b̄ pair onto their EFTI counterparts. The tree-level diagrams for the process are

shown in Fig. 2.1. The gluon propagator in the QCD diagram has off-shellness of

order q2 = (2mb)
2 and it is not resolved in EFTI, giving rise to a point-like interaction.
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Figure 2.1. Matching QCD onto EFTI. On the r.h.s., the double lines represent
the non-relativistic b (b̄) (anti)quark, while the dashed lines represent the collinear c
(c̄) (anti)quark.

We calculate the diagrams on shell, finding

iJQCD = iC(µ)JEFTI
(µ) , (2.3.1)

with, at tree level,

JEFTI
= χ†

b̄
σµ⊥t

aψb χ̄
c
n̄ S

†
n̄ γµ⊥t

a Sn χ
c̄
n and C(µ = 2mb) =

αs(2mb)π

m2
b

, (2.3.2)

where ta are color matrices and the symbol σµ denotes the four matrices σµ = (1, ~σ),

with ~σ the Pauli matrices. The subscript ⊥ refers to the components orthogonal to

the light-cone vectors nµ and n̄µ. The fields ψb and χ†
b̄
are two-component spinors

that annihilate respectively a b quark and a b̄ antiquark. χc̄n, n̄·p and χ
c
n̄, n·p are collinear

gauge-invariant fermion fields:

χc̄n, n̄·p ≡ (W †
nξ

c̄
n)n̄·p , χcn̄, n·p ≡ (W †

n̄ξ
c
n̄)n·p , (2.3.3)

where Wn is defined as

Wn ≡
∑

perms

exp
(

− g

n̄ · P n̄ · An
)

. (2.3.4)

Wn̄ has an analogous definition with n→ n̄. Collinear fields are labeled by the large

component of their momentum. Note, however, we omit in Eq. (2.3.2) the subscripts

n · p and n̄ · p of the collinear fermion fields, in order to simplify the notation. The

operator n̄ · P in the definition (2.3.4) is a label operator that extracts the large

component of the momentum of a collinear field, n̄ · P φn, n̄·p = n̄ · p φn, n̄·p, where
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φn, n̄·p is a generic collinear field. Sn(n̄) is a soft Wilson line,

Sn ≡
∑

perms

[

exp
(

− g

n · P n · As
)]

, (2.3.5)

where the operator n · P acts on soft fields, n · P φs = n · k φs.
Since in SCET different gluon modes are represented by different fields, we have to

guarantee the gauge invariance of the operator JEFTI
under separate soft and collinear

gauge transformations. A soft transformation is defined by Vs(x) = exp (iβas t
a), with

∂µV ∼ 2mb(λ, λ, λ), while a gauge transformation U(x) is n-collinear if U(x) =

exp (iαa(x)ta) and ∂µU(x) ∼ 2mb(λ
2, 1, λ). It has been shown in Ref. [18] that

collinear fields do not transform under a soft transformation and that the combination

W †
nξn is gauge invariant under a collinear transformation. Soft fields do not transform

under collinear transformations but they do under soft transformations. For example,

the NRQCD quark and antiquark fields transform as ψb → Vs(x)ψb. The soft Wilson

line has the same transformation, Sn → Vs(x)Sn. Therefore, χ
†
b̄
σµ⊥t

aψb transforms as

an octet under soft gauge transformations. Since χ̄cn̄ S
†
n̄ γµ⊥t

a Sn χ
c̄
n behaves like an

octet as well, JEFTI
is invariant. It is worth noting that the soft Wilson lines are

necessary to guarantee the gauge invariance of JEFTI
. We have explicitly checked

their appearance at one gluon by matching QCD diagrams like the one in Fig. 2.1,

with all the possible attachments of an extra soft or collinear gluon, onto four-fermion

operators in EFTI.

2.3.2 Running

The matching coefficient C and the effective operator JEFTI
depend on the renor-

malization scale µ. Since the effective operator is sensitive to the low-energy scales

in EFTI, logarithms that would appear in the evaluation of JEFTI
are minimized

by the choice µ ∼ mc. On the other hand, since the coefficient encodes the high-

energy dynamics of the scale 2mb, such a choice would induce large logarithms of

mc/2mb in the matching coefficient. These logarithms can be resummed using RGEs
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in NRQCD + SCET.

The µ dependence of JEFTI
is governed by an equation of the following form [5],

d

d lnµ
JEFTI

(µ) = −γEFTI
(µ)JEFTI

(µ) , (2.3.6)

where the anomalous dimension γEFTI
is given by

γEFTI
= Z−1

EFTI

d

d lnµ
ZEFTI

(2.3.7)

and ZEFTI
is the counterterm that relates the bare operator J

(0)
EFTI

to the renormalized

one, J
(0)
EFTI

= ZEFTI
(µ)JEFTI

(µ). Since the l.h.s. of Eq. (2.3.1) is independent of the

scale µ, the RGE (2.3.6) can be recast as an equation for the matching coefficient

C(µ),

d

d lnµ
C(µ) = γEFTI

(µ)C(µ) . (2.3.8)

The counterterm ZEFTI
cancels the divergences that appear in Green functions with

the insertion of the operator JEFTI
. We calculate ZEFTI

in the MS scheme by evalu-

ating the divergent part of the four-point Green function at one loop, given by the

diagrams in Figs. 2.2 - 2.4.

Figure 2.2. Soft diagrams at one loop.

Since in NRQCD we do not introduce different gluon fields for different momentum

modes, “soft” and “ultrasoft” in Fig. 2.2 and Fig. 2.3 refer to the convention that we

impose soft or ultrasoft scaling to the corresponding loop momentum. The potential

region, which should be considered in the diagrams of Fig. 2.2, does not give any

divergent contribution.
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Figure 2.3. Ultrasoft diagrams at one loop.

Figure 2.4. Collinear diagrams at one loop.

The integrals are evaluated in dimensional regularization, with d = 4 − 2ε. We

regulate the infrared divergences by keeping the non-relativistic b and b̄ and the

collinear c and c̄ off-shell: Eb, b̄ − ~p 2
b, b̄
/2mb = ∆b, p

2
c −m2

c = ∆2 and p2c̄ −m2
c = ∆̄2.

We power count the c-quark off-shellness as ∆2 ∼ ∆̄2 ∼ m2
bλ

2 and the b-quark off-

shellness as ∆b ∼ mbw
2. We also assume ∆2, ∆̄2 > 0. To avoid double counting, we

define the one-loop integrals with the 0-bin subtraction [57].

Even with an off-shellness, the soft diagrams in Fig. 2.2 do not contain any scale

and they are completely canceled by their 0-bin.

The divergent part of the ultrasoft diagrams in Fig. 2.3 is

iMusoft = −i
αs
4π

{

2CF

[

1

ε2
− 1

ε
ln

(

∆2 ∆̄2

n · pcn̄ · pc̄ µ2

)]

+
1

Nc

1

ε
ln(−1− i0)− 1

Nc

1

ε

}

JEFTI
,

(2.3.9)

where CF = (N2
c − 1)/2Nc and µ is the MS unit mass, µ2 = 4πµ2

MS exp (−γE).
The first term in the curly brackets of Eq. (2.3.9) corresponds to the sum of the
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divergences in the second diagram in Fig. 2.3, where an ultrasoft gluon is exchanged

between the c and c̄ quarks collinear in back-to-back directions, and those in the

last four diagrams of the same figure, which contain ultrasoft interactions between

the initial and final states. The second term is an extra imaginary piece generated

by the second diagram in Fig. 2.3. The −i0 prescription in the argument of the

logarithm, where 0 is a positive infinitesimal quantity, follows from the prescriptions

in the quark propagators and from the choice ∆2, ∆̄2 > 0. The divergences arising

from the ultrasoft exchanges between the b b̄ pair in the first diagram in Fig. 2.3 are

encoded in the last term in Eq. (2.3.9).

The initial and final states cannot interact by exchanging collinear gluons because

the emission or absorption of a collinear gluon would give the b quark an off-shellness

of order m2
b , which cannot appear in the effective theory. For the same reason, the

c and c̄ cannot exchange n or n̄-collinear gluons. The only collinear loop diagrams

consist of the emission of a n(n̄)-collinear gluon from the Wilson line Wn (n̄) in JEFTI

and its absorption by the c̄(c) quark, as shown in Fig. 2.4. The divergent part of the

sum of the two collinear diagrams is

iMcoll = i
αs
4π

2CF

[

2

ε2
+

1

ε

(

2− ln

(

∆2∆̄2

µ2µ2

))]

JEFTI
. (2.3.10)

The collinear diagrams are calculated with a 0-bin subtraction [57], that is, we sub-

tract from the naive collinear integrals the same integrals in the limit in which the loop

momentum is ultrasoft. In this way we avoid double counting between the diagrams

in Figs. 2.3 and 2.4.

Summing Eqs. (2.3.9) and (2.3.10) and adding factors of Z
1/2
ψ for each field,

Zψb
= Zχb

= 1 +
1

ε

αs
2π
CF , Zξn = Zξn̄ = 1− 1

ε

αs
4π
CF ,

the divergent piece becomes

iMdiv = i
αs
4π

{

CF

[

2

ε2
+

2

ε

(

3

2
− ln

(

n · pcn̄ · pc̄
µ2

))]

+
1

ε
Nc +

iπ

ε

1

Nc

}

JEFTI
.

(2.3.11)
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The counterterm ZEFTI
is chosen so as to cancel the divergence in Eq. (2.3.11),

ZEFTI
=
αs
4π

{

CF

[

2

ε2
+

2

ε

(

3

2
− ln

(

n · pcn̄ · pc̄
µ2

))]

+
1

ε
Nc +

iπ

ε

1

Nc

}

. (2.3.12)

From the definition (2.3.7), Eq. (2.3.12), and recalling that dαs/d lnµ = −2εαs +
O(α2

s), the anomalous dimension at one loop is

γEFTI
= −2αs(µ)

4π

{

3CF +Nc + 4CF ln

(

µ√
n · pcn̄ · pc̄

)

+ iπ
1

Nc

}

. (2.3.13)

An important feature of the anomalous dimension (2.3.13) is the presence of a

term proportional to lnµ. Because of this term, the RGE (2.3.8) can be used to

resum Sudakov double logarithms. As we will show shortly, the general solution of

Eq. (2.3.8) can be written in the following form:

C(µ) = C(µ0)

(

µ0√
n · pcn̄ · pc̄

)g(µ0, µ)

expU(µ0, µ) , (2.3.14)

where g and U depend on the initial scale µ0 and the final scale µ that we run down

to. For an anomalous dimension of the form (2.3.13), U can be expanded as a series,

U(µ0, µ) =
∞
∑

n=1

αns (µ0)
n+1
∑

L=0

un,L ln
n−L+1 µ

µ0

. (2.3.15)

If µ/µ0 ≪ 1, the most relevant terms in the expansion (2.3.15) are those with L = 0,

which we call “leading logs” (LL). Terms with higher L are subleading; we call the

terms with L = 1 “next-to-leading logs” (NLL), those with L = 2 “next-to-next-

leading logs” (NNLL), and, if L = m, we denote them with NmLL. The RGE (2.3.8)

determines the coefficients in the expansion (2.3.15). With the anomalous dimensions

written as

γEFTI
= −2

{

γ(αs) + Γ(αs) ln

(

µ√
n · pcn̄ · pc̄

)}

, (2.3.16)

where γ(αs) and Γ(αs) are series in powers of αs,

γ(αs) =
αs
4π
γ(0) +

(αs
4π

)2

γ(1) + . . . , Γ(αs) =
αs
4π

Γ(0) +
(αs
4π

)2

Γ(1) + . . . ,
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it can be proved that the coefficients of the LL, un0, are determined by the knowledge

of Γ(0) and of the QCD β function at one loop. The NLL coefficients un1 are instead

completely determined if Γ and β are known at two loops and γ(αs) at one loop.

In the case we are studying, the ratio of the scales µ/µ0 ∼ mc/2mb is not extremely

small. Indeed, as to be seen shortly, the numerical contributions of the LL and NLL

terms in the series (2.3.15) are of the same size. It is therefore important to work at

NLL accuracy, which requires the calculation of the coefficient of lnµ to two loops.

The factors of lnµ are induced by cusp angles involving light-like Wilson lines and

their coefficients are universal Γ(αs) ∝ Γcusp(αs) [58]. The cusp anomalous dimension

Γcusp(αs) is known at two loops [58],

Γcusp(αs) =
αs
4π

Γ(0)
cusp +

(αs
4π

)2

Γ(1)
cusp , (2.3.17)

with

Γ(0)
cusp = 4CF , Γ(1)

cusp = 4CF

[(

67

9
− π2

3

)

Nc −
10

9
nf

]

, (2.3.18)

while the constant of proportionality between Γ(αs) and Γcusp(αs) is fixed by the

one-loop calculation. Since we have determined γ(0),

γ(0) = 3CF +Nc + i
π

Nc
, (2.3.19)

and the β function is known, we have all the ingredients to provide the NLL approx-

imation for U(µ0, µ) and g(µ0, µ). Taking into account the tree-level initial condition

in Eq. (2.3.2), Eq. (2.3.14) determines the leading-order matching coefficient, with

NLL resummation.

The solution (2.3.14) can be derived by writing Eq. (2.3.8) as

d lnC = −2 dα

β(α)

{

γ(α) + Γcusp(α)

[

ln

(

µ0√
n · pcn̄ · pc̄

)

+

∫ α

α(µ0)

dα′

β(α′)

]}

, (2.3.20)

where we have used the definition of the β function, β(α) = dα/d lnµ, to write lnµ

and d lnµ in terms of α. Integrating both sides from µ0 to µ and exponentiating the
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result we find the form given in Eq. (2.3.14), with

U(µ0, µ) = −2
∫ αs(µ)

αs(µ0)

dα

β(α)

{

γ(α) + Γcusp(α)

∫ α

α(µ0)

dα′

β(α′)

}

,

g(µ0, µ) = −2
∫ αs(µ)

αs(µ0)

dα

β(α)
Γcusp(α) .

(2.3.21)

At NLL, we find

U(µb, µ) =
2πΓ

(0)
cusp

β2
0

[

r − 1− r ln r
αs(µ)

+
β0γ

(0)
Re

2πΓ
(0)
cusp

ln r +

(

Γ
(1)
cusp

Γ
(0)
cusp

− β1
β0

)

1− r + ln r

4π

+
β1

8πβ0
ln2 r

]

+
γ
(0)
Im

β0
ln r ,

(2.3.22)

and

g(µb, µ) =
Γ
(0)
cusp

β0

[

ln r +

(

Γ
(1)
cusp

Γ
(0)
cusp

− β1
β0

)

αs(µb)

4π
(r − 1)

]

, (2.3.23)

where r = αs(µ)/αs(µb) and we have renamed the initial scale µb, to denote its

connection to the scale 2mb. In Eqs. (2.3.22) and (2.3.23) we have used the two-loop

beta function,

β(αs) = −2αs
(

αs
4π
β0 +

(αs
4π

)2

β1

)

, (2.3.24)

with

β0 = 11− 2

3
nf , β1 =

34

3
N2
c −

10

3
Ncnf − 2CFnf . (2.3.25)

In Eq. (2.3.22) we have kept the contributions of the real and imaginary part of γ(0)

separated. The imaginary part of γ(0) changes the phase of the matching coefficient

C(µ), but this phase is irrelevant for the calculation of physical observables like the

decay rate, which depend on the square modulus of C(µ). In Sec. 2.5 the factor

U(µb, µ) will be evaluated between the scales µb = 2mb and µ = mc, with nf = 4

active quark flavors. The numerical evaluation shows that the LL term, represented

by the first term in the brackets in Eq. (2.3.22), is slightly smaller than and have the

opposite sign of the term proportional to γ
(0)
Re , which dominates the NLL contribution.

This observation confirms, a posteriori, the necessity to work at NLL accuracy in the

resummation of logarithms of mc/2mb.
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The RGE (2.3.8) and its solution (2.3.14) thus allow us to rewrite Eq. (2.3.1) as

JQCD = C(µ)JEFTI
(µ) = C(µb = 2mb) expU(2mb, mc)JEFTI

(µ = mc) ,

which avoids the occurrence of any large logarithm in the matching coefficient or in

the matrix element of the effective operator.

2.4 pNRQCD + bHQET

2.4.1 Matching

In the second step, we integrate out the soft modes by matching EFTI onto EFTII.

In NRQCD + SCET, contributions to the exclusive decay processes are obtained by

considering time-ordered products of JEFTI
and the terms in the EFTI Lagrangian that

contain soft-gluon emissions. The soft gluons have enough virtuality to produce a pair

of light quarks travelling in opposite directions with ultracollinear momentum scaling.

These light quarks bind to the charm quarks to form back-to-back D mesons. The

total momentum of two back-to-back ultracollinear quarks is 2mbΛQCD/mc (1, 1, λ)

and the invariant mass of the pair is q2 ∼ (2mbΛQCD/mc)
2 ∼ m2

c : in NRQCD+SCET,

only soft gluons have enough energy to produce them. The time-ordered products

in NRQCD+ SCET are matched onto six-fermion operators in pNRQCD+ bHQET,

where fluctuations of order m2
c cannot be resolved.

We consider the scale µ′ = mc to be much bigger than ΛQCD, so the matching can

be done in perturbation theory. The Feynman diagrams contributing to the matching

are shown in Fig. 2.5. The gluon and the b-quark propagators have off-shellness of

order m2
c , so the two diagrams on the l.h.s. match onto six-fermion operators on the

r.h.s.

The amplitude for the decay of a bottomonium with quantum numbers 2S+1LJ

into two D mesons has the following form:

iM = iC(µ)

∫

dω

ω

dω̄

ω̄
T (ω, ω̄, µ, µ′;2S+1 LJ)F

2(µ′)

〈DA, DB|O2S+1LJ
AB (ω, ω̄, µ′)|b̄b(2S+1LJ)〉.

(2.4.1)
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Figure 2.5. Matching NRQCD+SCET onto pNRQCD+bHQET. On the r.h.s. the
double solid lines represent heavy b (b̄) (anti)quarks, the double dashed lines bHQET
c (c̄) (anti)quarks, and the single dashed lines collinear light quarks.

A and B, which label the final states and the EFTII operators O
2S+1LJ
AB , denote the

possible parity, spin, and polarization of the D mesons, A,B = {P, VL, VT}, indicating
respectively a pseudoscalar D meson, a longitudinally-polarized vector meson D∗,

and a transversely-polarized vector meson D∗. Unlike JEFTI
, we have dropped the

subscript EFTII in O
2S+1LJ
AB in order to simplify the notation.

The EFTII operators that contribute to the decay of the P -wave states are

F 2(µ′)O3PJ
PP (ω, ω̄, µ′) = χ†

b̄
~pb · ~σ⊥ψb H̄c

n̄

/n

2
γ5 δ (−ω̄ − n · P)χl̄n̄

× χ̄lnδ
(

ω − n̄ · P†) /̄n

2
γ5Hc̄

n ,

F 2(µ′)O3PJ
VL VL

(ω, ω̄, µ′) = χ†
b̄
~pb · ~σ⊥ψb H̄c

n̄

/n

2
δ (−ω̄ − n · P)χl̄n̄

× χ̄lnδ
(

ω − n̄ · P†) /̄n

2
Hc̄
n ,

F 2(µ′)O3PJ
VT VT

(ω, ω̄, µ′) = χ†
b̄
p
(µ
b⊥σ

ν)
⊥ ψb H̄c

n̄

/n

2
γµ⊥ δ (−ω̄ − n · P)χl̄n̄

× χ̄lnδ
(

ω − n̄ · P†) /̄n

2
γν⊥Hc̄

n,

(2.4.2)

where p
(µ
b⊥σ

ν)
⊥ is a symmetric, traceless tensor,

p
(µ
b⊥σ

ν)
⊥ =

1

2
(pµb⊥σ

ν
⊥ + p νb⊥σ

µ
⊥ − g

µν
⊥ ~pb · ~σ⊥) .

At leading order in the EFTII expansion, the ηb can only decay into a pseudoscalar
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and a vector meson, with an operator given by

F 2(µ′)O1S0

P VL
(ω, ω̄, µ′) = χ†

b̄
ψb

[

H̄c
n̄

/n

2
γ5 δ (−ω̄ − n · P)χl̄n̄ χ̄lnδ

(

ω − n̄ · P†) /̄n

2
Hc̄
n

+ H̄c
n̄

/n

2
δ (−ω̄ − n · P)χl̄n̄ χ̄lnδ

(

ω − n̄ · P†) /̄n

2
γ5Hc̄

n

]

.

(2.4.3)

For later convenience, in the definition of the effective operators (2.4.2) and (2.4.3) we

have factored out the term F 2(µ′), which is related to the D-meson decay constant.

The definition of F 2(µ′) will become clear when we introduce the D-meson distribu-

tion amplitudes. The fields χln and χl̄n̄ are ultracollinear gauge-invariant light-quark

fields, while Hc
n̄ = W †

n̄h
c
n̄ and Hc̄

n = W †
nh

c̄
n are bHQET heavy-quark fields, which are

invariant under an ultracollinear gauge transformation. The Wilson lines Wn and Wn̄

have the same definition as in Eq. (2.3.4), with the restriction to ultracollinear gluons.

Eqs. (2.4.2) and (2.4.3) allow us to interpret ω as the component of the light-quark

momentum along the direction n. Similarly, ω̄ represents the component of the light-

antiquark momentum along n̄. The minus sign in the delta function δ(−ω̄− n · P) is
chosen so that ω̄ is positive.

The tree-level matching coefficients are

T (ω, ω̄, µ, µ′ = mc;
3PJ) =

CF
N2
c

4παs(mc)

mb

1

ω + ω̄
,

T (ω, ω̄, µ, µ′ = mc;
1S0) =

CF
N2
c

4παs(mc)

mb

1

2

ω − ω̄
ω + ω̄

.

(2.4.4)

Note that, at leading order in the EFTII expansion, the matching coefficient T (ω, ω̄, µ,

µ′; 3PJ) is independent of the spin and polarization of the final states, or of the total

angular momentum J of the χb.

An important feature of bHQET is that the ultracollinear and ultrasoft sectors can

be decoupled at leading order in the power counting by a field redefinition reminiscent

of the collinear-usoft decoupling in SCET [18, 47]. For bHQET in the n direction,

the decoupling is achieved by defining hc̄n → Ynh
c̄
n and ξ̄ln → ξ̄lnY

†
n , where Yn is an
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ultrasoft Wilson line,

Yn =
∑

perms

[

exp
(

− g

n · P n ·Aus
)]

. (2.4.5)

An analogous redefinition with n→ n̄ decouples ultrasoft from n̄-ultracollinear quarks

and gluons. These redefinitions do not affect the operators in Eqs. (2.4.2) and (2.4.3)

because all the induced Wilson lines cancel out. As a consequence, at leading order

in the EFTII power counting, there is no interaction between the initial and the final

states, since the former can only emit and absorb ultrasoft gluons that do not couple

to ultracollinear degrees of freedom. Furthermore, fields in the two copies of bHQET,

boosted in opposite directions, cannot interact with each other because the interaction

with a n̄-ultracollinear gluon would give a n-ultracollinear quark or gluon a virtuality

of order m2
c , which, however, cannot appear in EFTII. The matrix elements of the

operators O2S+1LJ
AB (ω, ω̄, µ), therefore, factorize as

F 2(µ′)〈AB|O2S+1LJ
AB (ω, ω̄, µ′)|b̄b〉 =

〈0|χ†
b̄
T

2S+1LJ
AB ψb|b̄b〉 〈A|H̄c

n̄

/n

2
ΓA δ (−ω̄ − n · P)χl̄n̄|0〉 〈B|χ̄lnδ

(

ω − n̄ · P†) /̄n

2
ΓBHc̄

n|0〉 ,
(2.4.6)

where ΓA = {γ5, 1, γµ⊥} and T
2S+1LJ
AB = {1, ~pb · ~σ⊥, p (µ

b⊥σ
ν)
⊥ }. The charge-conjugated

contribution is understood in the ηb case.

The quarkonium state and the D mesons in Eq. (2.4.6) have respectively non-

relativistic and HQET normalization:

〈χbJ(E ′, ~p ′)|χbJ(E, ~p)〉 = (2π)3δ(3)(~p− ~p ′) ,

〈D(v′, k′)|D(v, k)〉 = 2v0δv,v′(2π)
3δ(3)(~k − ~k′) ,

where v0 is the 0th component of the 4-velocity vµ.

The D-meson matrix elements can be expressed in terms of the D-meson light-

cone distribution amplitudes:

〈P |χ̄ln
/̄n
2
γ5 δ

(

ω − n̄ · P†)Hc̄
n|0〉 = iFP (µ

′)
n̄ · v
2
φP (ω, µ

′) , (2.4.7)

〈VL|χ̄ln
/̄n
2
δ
(

ω − n̄ · P†)Hc̄
n|0〉 = FVL(µ

′)
n̄ · v
2
φVL(ω, µ

′) , (2.4.8)

〈VT |χ̄ln
/̄n
2
γµ⊥ δ

(

ω − n̄ · P†)Hc̄
n|0〉 = FVT (µ

′)
n̄ · v
2
εµ⊥φVT (ω, µ

′) , (2.4.9)
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where εµ⊥ is the transverse polarization of the vector meson. The constants FA(µ
′),

with A = {P, VL, VT}, are related to the matrix elements of the local heavy-light cur-

rents in coordinate space. In the heavy-quark limit, where D and D∗ are degenerate,

FA is the same for all the three states: F ≡ FP = FVL = FVT . In this limit,

〈0|ξ̄ l̄n
/̄n

2
γ5hcn(0)|P 〉 = −iF (µ′)

n̄ · v′
2

. (2.4.10)

At tree level, the matrix element is proportional to the D-meson decay constant

fD = 205.8± 8.5± 2.5 MeV [59]. More precisely, F (µ′) = fD
√
mD, where the factor

√
mD is due to HQET normalization. The scale dependence of F is determined by

the renormalization of heavy-light HQET currents. At one loop, Ref. [5] showed that

d

d lnµ′F (µ
′) = −γFF (µ′) = 3CF

αs
4π
F (µ′) . (2.4.11)

The pNRQCD matrix elements can be expressed in terms of the heavy quarkonium

wavefunctions. The operator χ†
b̄
~pb · ~σ⊥ψb contains a component with J = 0 and a

component with J = 2 and Jz = 0, so its matrix element has non-vanishing overlap

with both χb0 and χb2. The operator χ†
b̄
p
(µ
b σ

ν)
⊥ ψb instead has only contributions

with J = 2 and Jz = ±2 and therefore it only overlaps with χb2. In terms of the

bottomonium wavefunctions, the pNRQCD matrix elements are expressed as

〈0|χ†
b̄
~pb · ~σ⊥ψb|χb0〉 =

2√
3

√

3Nc

2π
R′
χb0

(0, µ′) , (2.4.12)

〈0|χ†
b̄
~pb · ~σ⊥ψb|χb2〉 = −

√

2

15

√

3Nc

2π
R′
χb2

(0, µ′) , (2.4.13)

〈0|χ†
b̄
p
(µ
b σ

ν)
⊥ ψb|χb2〉 = (ε(2)µν + ε(−2)

µν )

√

3Nc

2π
R′
χb2

(0, µ′) , (2.4.14)

where R′
χbJ

(0) is the derivative of the radial wavefunction of the χbJ evaluated at the

origin. At leading order, the pNRQCD Hamiltonian does not depend on J , so, up to

corrections of order w2, R′
χb2

(0) = R′
χb0

(0). The numerical pre-factors in Eqs. (2.4.12)

and (2.4.13) follow from decomposing ~pb ·~σ⊥ into components with definite Jz. ε
(j)
µν is

the polarization tensor of the χb2 state, and Eq. (2.4.14) states that, at leading order
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in the w2 expansion, only the particles with polarization Jz = ±2 contribute to χb2

decay into two transversely-polarized vector mesons. Similarly, one finds

〈0|χ†
b̄
ψb|ηb〉 =

√

Nc

2π
Rηb(0, µ

′) . (2.4.15)

The factorization of the matrix elements (2.4.6) implies that the decay rate also

factorizes. For the decays of χb0 and χb2 into two pseudoscalar mesons or two

longitudinally-polarized vector mesons, we find

Γ (χb0 → AA) =
4

3

m2
D

√

m2
χb0
− 4m2

D

8πmχb0

3Nc

2π
|C (µ) |2 |R′

χb0
(0, µ′)|2

[

F 2(µ′)
n · v′
2

n̄ · v
2

∫

dω

ω

dω̄

ω̄
T
(

ω, ω̄, µ, µ′; 3PJ
)

φA(ω̄, µ
′)φA(ω, µ

′)

]2

(2.4.16)

and

Γ (χb2 → AA) =
2

15

m2
D

√

m2
χb2
− 4m2

D

8πmχb2

3Nc

2π
|C (µ) |2 |R′

χb2
(0, µ′)|2

[

F 2(µ′)
n · v′
2

n̄ · v
2

∫

dω

ω

dω̄

ω̄
T
(

ω, ω̄, µ, µ′; 3PJ
)

φA(ω̄, µ
′)φA(ω, µ

′)

]2

,

(2.4.17)

where A = P, VL. For the decay of χb2 into two transversely-polarized vector mesons,

one finds the decay rate by summing over the possible transverse polarizations:

Γ (χb2 → VTVT ) =
2

5

m2
D

√

m2
χb2
− 4m2

D

8πmχb2

3Nc

2π
|C (µ) |2 |R′

χb2
(0, µ′)|2

[

F 2(µ′)
n · v′
2

n̄ · v
2

∫

dω

ω

dω̄

ω̄
T
(

ω, ω̄, µ, µ′;3 PJ
)

φVT (ω̄, µ
′)φVT (ω, µ

′)

]2

.

(2.4.18)

In the case of ηb decay into a pseudoscalar and a longitudinally-polarized vector

meson, we find

Γ (ηb → PVL + c.c.) =
m2
D

√

m2
ηb
− 4m2

D

8πmηb

Nc

2π
|C (µ) |2 |Rηb(0, µ

′)|2 1
2

[

F 2(µ′)
n · v′
2

n̄ · v
2

∫

dω

ω

dω̄

ω̄
T
(

ω, ω̄, µ, µ′; 1S0

)

(φVL(ω̄, µ
′)φP (ω, µ

′)− φVL(ω, µ′)φP (ω̄, µ
′))

]2

.

(2.4.19)
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Note that we are working in the limit mc →∞, where the mD∗ −mD mass splitting

vanishes.

The factorized formulas Eqs. (2.4.6) and (2.4.16) - (2.4.19) are the main results of

this Chapter. Each decay rate of (2.4.16) - (2.4.19) depends on two calculable match-

ing coefficients, C and T , and three non-perturbative, process-independent matrix

elements, namely, two D-meson distribution amplitudes and the bottomonium wave-

function. In Sec. 2.5 we will provide a model-dependent estimate of the decay rates

(2.4.16) - (2.4.19) and will discuss the phenomenological implications. We conclude

this section by observing that all the non-perturbative matrix elements cancel out in

the ratios Γ(χb0 → PP )/Γ(χb2 → PP ) and Γ(χb0 → VLVL)/Γ(χb2 → VLVL), since the

spin symmetry of pNRQCD guarantees R′
χb0

(0) = R′
χb2

(0), at leading order in EFTII.

Neglecting the χb0 - χb2 mass difference, we find, up to corrections of order w2,

Γ(χb0 → AA)/Γ(χb2 → AA) =
4

3

15

2
= 10 , (2.4.20)

with A = P, VL.

2.4.2 Running

The dependence of the matching coefficient T (ω, ω̄, µ, µ′; 2S+1LJ) and of the operators

in Eqs. (2.4.16) - (2.4.19) on the scale µ′ is driven by a RGE that can be obtained

by renormalizing the EFTII operators. The RGE for the EFTII operators, which also

defines the anomalous dimension γEFTII
, is similar to Eq. (2.3.6),

d

d lnµ′

[

F 2(µ′)O2S+1LJ
AB (ω, ω̄, µ′)

]

=

−
∫

dω′
∫

dω̄′γEFTII
(ω, ω′; ω̄, ω̄′;µ′)F 2(µ′)O2S+1LJ

AB (ω′, ω̄′, µ′) .

(2.4.21)

To calculate the anomalous dimension at one loop, we compute the divergent part of

the diagrams in Figs. 2.6 and 2.7. As mentioned in Sec. 2.2, the pNRQCD Lagrangian

has the following structure,

LpNRQCD =

∫

d3xLusoftNRQCD + Lpot ,
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where the superscript usoft indicates that the gluons in the NRQCD Lagrangian are

purely ultrasoft (mbw
2, mbw

2), while Lpot contains four-fermions operators, which are

non-local in space,

Lpot =

∫

d3x1d
3x2ψ

†
α(t, ~x1)χβ(t, ~x2)Vαβ,γδ(~r )χ

†
γ(t, ~x2)ψδ(t, ~x1) .

At leading order in αs(mbw) and r, V is the Coulomb potential

Vαβ,γδ =
αs(mbw)

r
taαδt

a
γβ .

For the explicit form of higher-order potentials, see, for example, Refs. [9, 13]. Ver-

tices from Lpot generate one-loop diagrams as the first diagram in Fig. 2.6. However,

these diagrams do not give any contribution to the anomalous dimension at one loop.

Indeed, the insertion of the Coulomb potential 1/r in Fig. 2.6 does not produce UV

divergences. Insertions of the 1/mb potentials yield divergences but the coefficient of

the 1/mb potential is proportional to α
2
s(mbw), so it is not relevant if we are content

with a NLL resummation. Insertions of 1/m2
b potentials give divergences propor-

tional to subleading operators, which can be neglected. The second diagram in Fig.

2.6 yields a result completely analogous to the last term in Eq. (2.3.9), with the only

difference of a color pre-factor,

iMpNRQCD = −iαs
2π

CF
ε
O2S+1LJ
AB (ω, ω̄, µ) . (2.4.22)

This divergence is completely canceled by the b-quark field renormalization constant

Zb, and hence the pNRQCD diagrams in Fig. 2.6 do not contribute to the anomalous

dimension at one loop.

On the bHQET side, the third diagram in Fig. 2.7 is convergent, and hence it

does not contribute to the anomalous dimension. The first two diagrams give

iMbHQET,n̄ = i

∫

dω′dω̄′∆(ω, ω′, ω̄, ω̄′)O2S+1LJ
AB (ω′, ω̄′, µ) , (2.4.23)
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Figure 2.6. One-loop diagrams in pNRQCD. The first diagram contains insertions
of quark-antiquark potentials. In the second diagram the gluon is ultrasoft.

Figure 2.7. One-loop diagrams in bHQET. There are three analogous diagrams for
the other copy of bHQET.

with

∆(ω, ω′, ω̄, ω̄′) =
αs
2π
CF δ(ω − ω′)

{

δ (ω̄ − ω̄′)

[

− 1

2ε2
− 1

ε
ln

(

µ′n · v′
ω̄′

)

+
1

ε

]

+
1

ε

[

θ (ω̄ − ω̄′)

(

1

ω̄ − ω̄′

)

+

+ θ (ω̄′ − ω̄) θ (ω̄) ω̄
ω̄′

(

1

ω̄′ − ω̄

)

+

]}

.

(2.4.24)

The diagrams for the bHQET copy in the n-direction give a result analogous to Eqs.

(2.4.23) and (2.4.24), with ω̄ → ω, ω̄′ → ω′, and n · v ′ → n̄ · v. Extracting γEFTII
from

the divergence is again standard, just as we did in the case of γEFTI
. After adding

to Eq. (2.4.24) the bHQET field renormalization constants Zh and Zξ for heavy and

light quarks

Zh = 1 +
1

ε

αs
2π
CF , Zξ = 1− 1

ε

αs
4π
CF ,

we find

γEFTII
(ω, ω′; ω̄, ω̄′;µ′) = 2γF δ (ω − ω′) δ (ω̄ − ω̄′) + γO(ω, ω

′; ω̄, ω̄′;µ′) , (2.4.25)
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with

γO(ω, ω
′; ω̄, ω̄′;µ′)

=
αs
4π

4CF δ (ω − ω′) δ (ω̄ − ω̄′)

[

−1 + ln

(

µ′n · v′
ω̄′

)

+ ln

(

µ′n̄ · v
ω′

)]

− αs
4π

4CF δ (ω − ω′)

[

θ (ω̄ − ω̄′)

(

1

ω̄ − ω̄′

)

+

+ θ (ω̄′ − ω̄) θ (ω̄) ω̄
ω̄′

(

1

ω̄′ − ω̄

)

+

]

− αs
4π

4CF δ (ω̄ − ω̄′)

[

θ (ω − ω′)

(

1

ω − ω′

)

+

+ θ (ω′ − ω) θ (ω) ω
ω′

(

1

ω′ − ω

)

+

]

.

(2.4.26)

The term proportional to γF in Eq. (2.4.25) reproduces the running of F 2(µ′) (2.4.11).

γO is responsible for the running of the D-meson distribution amplitudes and it agrees

with the result found in Ref. [60]. Also, in Eq. (2.4.26) the coefficient of lnµ′ is pro-

portional to Γcusp(αs). Note that, since the bHQET Lagrangian is spin-independent,

the anomalous dimension does not depend on the spin or on the polarization of the

D meson in the final state, at leading order in the power counting.

Using Eqs. (2.4.21) and (2.4.25) we find the following integro-differential RGE for

the operator O(ω, ω̄, µ′):

d

d lnµ′O(ω, ω̄, µ
′) = −

∫

dω′
∫

dω̄′γO(ω, ω
′; ω̄, ω̄′;µ′)O(ω′, ω̄′, µ′) , (2.4.27)

where we have dropped both the subscripts A, B, and the superscript 2S+1LJ , since

γO does not depend on the quantum numbers of the initial or final state. Us-

ing the fact that the convolution of F 2(µ′) T (ω, ω̄, µ, µ′; 2S+1LJ) and the operator

O2S+1LJ
AB (ω, ω̄, µ′) is µ′-independent, we can write an equation for the coefficient,

d

d lnµ′ [F
2(µ′)T (ω, ω̄, µ, µ′)]

=

∫

dω′
∫

dω̄′ ω

ω′
ω̄

ω̄′F
2(µ′) T (ω′, ω̄′, µ, µ′)γO(ω

′, ω; ω̄′, ω̄;µ′)

=

∫

dω′
∫

dω̄′F 2(µ′) T (ω′, ω̄′, µ, µ′)γO(ω, ω
′; ω̄, ω̄′;µ′) ,

(2.4.28)

where the last line follows from the property of γO at one loop,

ω

ω′
ω̄

ω̄′γO(ω
′, ω; ω̄′, ω̄;µ′) = γO(ω, ω

′; ω̄, ω̄′;µ′) ,
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as can be explicitly verified from the expression in Eq. (2.4.26).

Eq. (2.4.28) can be solved following the methods described in Ref. [60]. We

discuss the details of the solution in App. A, where we derive the analytic expressions

for T (ω, ω̄, µ, µ′; 3PJ) and T (ω, ω̄, µ, µ
′; 1S0), with the initial conditions at the scale

µ′
c = mc expressed in Eq. (2.4.4).

2.5 Decay Rates and Phenomenology

In Sec. 2.4.1 we gave the factorized expressions for the decay rates (2.4.16) - (2.4.19):

Γ(χb0, 2 → PP ), Γ(χb0, 2 → VLVL), Γ(χb2 → VTVT ), and Γ(ηb → PVL + c.c.). In

Secs. 2.3.2 and 2.4.2 we exploited the RGEs (2.3.8) and (2.4.28) to run the scales µ

and µ′, respectively, from the matching scales µ = 2mb and µ
′ = mc to the natural

scales that contribute to the matrix elements, µ = mc and µ
′ ∼ 1 GeV, resumming

in this way Sudakov logarithms of the ratios mc/2mb and mc/1 GeV.

We proceed now to estimate the decay rates (2.4.16) - (2.4.19). In order to do so,

we need to evaluate the following ingredients: the light-cone distribution amplitudes

of the D meson and of the longitudinally- and transversely-polarized D∗ mesons, and

the wavefunctions of the states ηb and χbJ . In principle, these non-perturbative objects

could be extracted from other ηb, χb, and D-meson observables. In the case of the

ηb, the value of the wavefunction at the origin can be obtained from a measurement

of the inclusive hadronic width or of the decay rate for the electromagnetic process

ηb → γγ, since they are both proportional to |Rηb(0)|2. Unfortunately, at the moment

there are not sufficient data on ηb decays. Another way to proceed is to use the spin

symmetry of the leading-order pNRQCD Hamiltonian, which implies Rηb(0) = RΥ(0),

and to extract the Upsilon wavefunction from Γ(Υ → e+e−) = 1.28 ± 0.07 KeV

[61]. Using the leading-order expression for Γ(Υ → e+e−) [62], one finds |RΥ(0)|2 =
6.92 ± 0.38GeV3, where the error only includes the experimental uncertainty. The

above value is in good agreement with the lattice evaluation by Bodwin, Sinclair, and

Kim [63] and it falls within the range of values obtained with four different potential
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models, as listed in Ref. [64].

|R′
χb0, 2

(0)|2 can be obtained from the electromagnetic decay χb0,2 → γγ. Un-

fortunately, such decay rates have not been measured yet. The values listed in

Ref. [64] range from a minimum of |R′
χbJ

(0)|2 = 1.417 GeV5, obtained with the

Buchmuller-Tye potential [65], to a maximum of |R′
χbJ

(0)|2 = 2.067 GeV5, obtained

with a Coulomb-plus-linear potential. The lattice value is roughly of the same size,

|R′
χbJ

(0)|2 = 2.3 GeV5, with an uncertainty of about 15% [63]. We use this value in

our estimate.

For the pseudoscalar D-meson distribution amplitude we use two model functions

widely adopted in the study of B physics. A first possible choice, suggested for

example in Ref. [60], is a simple exponential decay:

φExp
P,0 (ω, µ

′ = 1GeV) = θ(ω)
ω

λ2D
exp

(

− ω

λD

)

. (2.5.1)

Another form, suggested in Ref. [66], is

φBraun
P, 0 (ω, µ′ = 1GeV) = θ(ω̃)

4

λDπ

ω̃

1 + ω̃2

[

1

1 + ω̃2
− 2(σD − 1)

π2
ln ω̃

]

, (2.5.2)

where ω̃ = ω/µ′. The theta function in Eqs. (2.5.1) and (2.5.2) reflects the fact that

the distribution amplitudes φA(ω, µ
′), with A = {P, VL, VT}, have support on ω > 0

[67].

The subscript 0 indicates that these functional forms are valid in the D-meson rest

frame, with a HQET velocity-label v0 = (1, 0, 0, 0). With the definition we adopt in

Eq. (2.4.7), the distribution amplitude is not boost-invariant and in the bottomonium

rest frame, in which the D meson has a velocity (n ·v, n̄ ·v, 0) ∼ (mc/2mb, 2mb/mc, 0),

it becomes

φP (ω, µ
′) =

1

n̄ · vφP, 0
( ω

n̄ · v , µ
′
)

, (2.5.3)

as shown in App. B. λD and σD in Eqs. (2.5.1) and (2.5.2) are, respectively, the

first inverse moment and the first logarithmic moment of the D-meson distribution

amplitude in the D-meson rest frame,

λ−1
D (µ′) =

∫ ∞

0

dω

ω
φP,0(ω, µ

′) ,
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σD(µ
′)λ−1

D (µ′) = −
∫ ∞

0

dω

ω
ln

(

ω

µ′

)

φP,0(ω, µ
′) .

Furthermore we assume that the vector-meson distribution amplitudes φVL(ω) and

φVT (ω) have the same functional form as φP (ω), but with different parameters λD∗
L
,

σD∗
L
and λD∗

T
, σD∗

T
.

The D-meson distribution amplitude and its moments have not been intensively

studied unlike, for example, the B-meson distribution amplitude. Therefore, we in-

voke heavy-quark symmetry and use the moments of the B-meson distribution am-

plitude in order to estimate the decay rate. However, the value of λB is affected

by a noticeable uncertainty. Using QCD sum rules, Braun et al. estimated [66]

λB(µ
′ = 1GeV) = 0.460 ± 0.110 GeV, where the uncertainty is about 25%. Other

authors [68, 69, 70] give slightly different central values and comparable uncertainties,

so that λB falls in the range 0.350 GeV < λB < 0.600 GeV. The first logarithmic

moment σD is given in Ref. [66], σD = σB(µ
′ = 1GeV) = 1.4± 0.4. We assume that

the moments of the D∗-meson distribution amplitudes fall in the same range as the

moments of φP (ω).

We evaluate numerically the convolution integrals in Eqs. (2.4.16) - (2.4.19). We

choose the matching scales µb and µ
′
c to be 2mb and mc respectively. Using the RGEs

we run the matching coefficients down to the scales µ = mc and µ
′ = 1 GeV. For the

b and c quark masses we adopt the 1S mass definition [71],

mb(1S) =
mΥ

2
= 4730.15± 0.13 MeV ,

mc(1S) =
mJ/ψ

2
= 1548.46± 0.01 MeV .

(2.5.4)

The values of αs at the relevant scales are [61] αs(2mb) = 0.178 ± 0.005, αs(mc) =

0.340± 0.020, and αs(1GeV) ∼ 0.5. With these choices, the value of g in Eq. (A.5)

is g(mc, 1GeV) = −0.12± 0.02.

The decay rates Γ(χbJ → AA) with A = {P, VL, VT}, (2.4.16) - (2.4.18), depend
on the masses of the χbJ and of the D mesons, whose most recent values are reported

in Ref. [61]. Since the effects due to the mass splitting of the χbJ and D multiplets
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are subleading in the EFT power counting, we use in the evaluation the average mass

of the χbJ multiplet and the average mass of D and D∗ mesons: mχbJ
= 9898.87 ±

0.28 ± 0.31 MeV and mD = 1973.27 ± 0.18 MeV. Therefore, the velocity of the D

mesons in χbJ decay is n̄ · v = n · v′ = mχbJ
/mD = 5.02, with negligible error. The

decay rate Γ(ηb → PVL+c.c.) (2.4.19) depends on the mass of the ηb, which has been

recently measured: mηb = 9388.9+3.1
−2.3± 2.7 MeV [53]. The velocity of the D meson in

the ηb decay is n̄ · v = n · v′ = mηb/mD = 4.76, again with negligible error.

The decay rate Γ(χb0 → PP ) (2.4.16), obtained with φExp and φBraun separately,

is shown in Fig. 2.8. In order to see the impact of resumming Sudakov logarithms,

we show for both distribution amplitudes the results with (i) the LL and NLL resum-

mations and (ii) without any resummation at all. In the plots, we call the resummed

results NLL-resummed, indicating that Sudakov logarithms are resummed up to NLL.

For both distribution amplitudes the resummation does have a relevant effect on the

decay rate. In the case of φExp the resummation decreases the decay rate by a factor

of 2 − 1.5 as λD goes from the lowest to the highest value under consideration. In

the case of φBraun the decay rate decreases too, for example, by a factor 1.5 when

σD = 1.4. In Fig. 2.9 we compare the decay rates obtained with the two distribution

amplitudes. Over the range of λD we are considering the two decay rates are in rough

agreement with each other.

Figs. 2.8 - 2.9 also describe the relation between the decay rate Γ(χb0 → VLVL) and

λD∗
L
. According to Eqs. (2.4.17) and (2.4.18), the processes χb2 → PP , χb2 → VLVL,

and χb2 → VTVT show an analogous dependence on the first inverse moments of the

light-cone distribution amplitudes, and they differ from Figs. 2.8 - 2.9 by constant

pre-factors. Therefore, we do not show explicitly their plots.

Qualitatively, Figs. 2.8 - 2.9 show a dramatic dependence of the decay rate on

the inverse moment λD. Using Eqs. (2.4.16), (2.5.3) and (A.16), one can show that

when φBraun is used, the decay rate is proportional to λ−4
D , while it scales as λ−6−4g

D

when we adopt φExp, with g defined in Eq. (A.5). As a consequence, the decay rate
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Figure 2.8. Γ(χb0 → PP ) as a function of λD, calculated with the distribution
amplitudes φExp (left) and φBraun (right). The dash dotted and solid lines denote the
NLL-resummed decay rate. For comparison, the decay rate without resummation is
also shown, denoted by dash double-dotted (left) and dashed (right) lines. For φBraun

we vary the parameter σD from σD = 1 (lower curve) to σD = 1.4 (middle curve) to
σD = 1.8 (upper curve).

drops by an order of magnitude when λD goes from 0.350 GeV to 0.600 GeV. The

particular sensitivity of exclusive bottomonium decays into two charmed mesons to

the light-cone structure of the D meson —much stronger than usually observed in D-

and B-decay observables— is due to the dependence of the amplitude on the product

of two distributions (one for each meson) and to the non-trivial dependence of the

matching coefficient T on the light-quark momentum labels ω and ω̄ at tree level.

On one hand, the strong dependence on a relatively poorly known quantity prevents

us from predicting the decay rate Γ(χb0 → DD). On the other hand, however, it

suggests that, if the decay rate is measured, this channel could be used to better

determine interesting properties of the D-meson distribution amplitude, such as λD

and σD. The viability of this suggestion relies on the control over the theoretical error

attached to the curves in Fig. 2.8 and on the actual chances to observe the process

χb → DD at current experiments.

The uncertainty of the decay rate stems mainly from three sources. First, there

are corrections coming from subleading EFT operators. In matching NRQCD+SCET

onto pNRQCD + bHQET (Sec. 2.4.1), we neglected the subleading EFTII operators
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Figure 2.9. Γ(χb0 → PP ) as a function λD. The dash dotted line denotes the decay
rate calculated with φExp, while the three solid lines with φBraun. For φBraun we vary
the value of the parameter σD from σD = 1 (lower curve) to σD = 1.4 (middle curve)
to σD = 1.8 (upper curve).

that are suppressed by powers of ΛQCD/mc and w2, relative to the leading EFTII

operators in Eqs. (2.4.2) and (2.4.3). In matching QCD onto NRQCD + SCET

(Sec. 2.3.1), we kept only JEFTI
(2.3.2) and neglected subleading EFTI operators,

suppressed by powers of λ and w2. These subleading EFTI operators would match

onto subleading EFTII operators, suppressed by powers of ΛQCD/mc and w
2. Using

w2 ∼ 0.1 and ΛQCD/mc ∼ 0.3, we find a conservative estimate for the non-perturbative

corrections to be about 30%.

Second, there are perturbative corrections to the matching coefficients C and T .

Since αs(2mb) = 0.178, we expect a 20% correction from the one-loop contributions

in matching QCD onto NRQCD+SCET. In the second matching step, similarly, the

one-loop corrections to T (ω, ω̄, µ, µ′; 2S+1LJ) would be proportional to αs(mc) ∼ 30%.

We can get an idea of their relevance by estimating the dependence of the decay rate

(2.4.16) on the matching scales µb and µ
′
c. If the matching coefficients C and T and

the anomalous dimensions γEFTI
and γO(ω, ω

′, ω̄, ω̄′;µ′) were known at all orders, the

decay rate would be independent of the matching scales µb and µ
′
c. However, since

we only know the first terms in the perturbative expansions, the decay rate bears

a residual renormalization-scale dependence, whose size is determined by the first
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Figure 2.10. Left : Scale dependence of Γ(χb0 → PP ) on the matching scale µb.
We vary µb from a central value µb = 2mb (solid line) to a maximum of µb = 20
GeV (dashed line) and a minimum of µb = 5 GeV (dotted line). The dashed and
dotted lines overlap almost perfectly. Right : Scale dependence of Γ(χb0 → PP ) on
the matching scale µ′

c. We varied µ′
c from a central value of µ′

c = mc (solid line) to
a maximum of µ′

c = 2.5 GeV (dashed line) and a minimum of µ′
c = 1.2 GeV (dotted

line).

neglected terms.

In Fig. 2.10 we show the effect of varying µb between 4mb ∼ 20 GeV and mb ∼ 5

GeV on the decay rate, using φBraun. The solid line represents the choice µb =

2mb, while the dashed and dotted lines, which overlap almost perfectly, correspond

respectively to µb = 20 GeV and µb = 5 GeV. The dependence on µb is mild, its

effect being a variation of about 5%. We obtain analogous results for the decay rate

computed with φExp, which are not shown here in order to avoid redundancy.

On the other hand, even after the resummation, the decay rate strongly depends

on µ′
c. We vary this scale between 1.2 GeV and 2.5 GeV and we observe an overall

variation of about 50%. We expect the scale dependence to be compensated by the

one-loop corrections to the matching coefficient T (ω, ω̄, µ, µ′; 3PJ). This observation

is reinforced by the fact that the numerical values of the running factors U(µb, µ) and

V (µ′
c, µ

′) (defined respectively in Eqs. (2.3.22) and (A.6)) at NLL accuracy are smaller

than expected on the basis of naive counting of the logarithms. As a consequence,

the next-to-leading-order corrections to the matching coefficient could be as large as
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the effect of the NLL resummation. In the light of Fig. 2.10, the one-loop correction

to T (ω, ω̄, µ, µ′; 3PJ) seems to be an important ingredient for a reliable estimate of

the decay rate.

A third source of error comes from the unknown functional form of the D-meson

distribution amplitude. For the study of the B-meson shape function, an expansion

in a complete set of orthonormal functions has recently been proposed and it has

provided a systematic procedure to control the uncertainties due to the unknown

functional form [72]. The same method should be generalized to the B- and D-meson

distribution amplitudes, in order to reduce the model dependence of the decay rate.

We leave such an analysis to future work.

To summarize, the calculation of the one-loop matching coefficients and the in-

clusion of power corrections of order ΛQCD/mc appear to be necessary to provide a

decay rate with an accuracy of 10%, that would make the decays χbJ → D+D−,

χbJ → D0D̄0 competitive processes to improve the determination of λD and σD, if

the experimental decay rate is observed with comparable accuracy.

We estimate the decay rate Γ(ηb → PVL+ c.c.) (2.4.19) using φExp and φBraun for

both φP and φVL. In the limit mc → ∞, spin symmetry of the bHQET Lagrangian

would imply the equality of the pseudoscalar and vector distribution amplitudes,

φP = φVL, and hence the vanishing of the decay rate Γ(ηb → PVL + c.c.). Assuming

spin-symmetry violations, the decay rate depends on (i) the two parameters λ̄D =

(λD + λD∗
L
)/2 and δ = (λD∗

L
− λD)/(λD + λD∗

L
), if φExp is used, and on (ii) three

parameters λ̄D, δ, and |σD∗
L
− σD|, if φBraun is used.

The two plots in the left column of Fig. 2.11 show the decay rate, computed

with φExp, as a function of λ̄D with δ adopting various values, and as a function of

δ with λ̄D now being the parameter. In the right column, the decay rate computed

with φBraun is shown. Since in this case the decay rate does not strongly depend

on δ, we fix it at δ = 0 and we show the dependence of the decay rate on λ̄D and

|σD∗
L
− σD|. We “normalize” the difference between the first logarithmic moments by
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Figure 2.11. Left : Γ(ηb → PVL + c.c.) as a function of λD and δ, computed using
exponential distribution amplitudes φExp

P and φExp
VL

. Right : Γ(ηb → PVL + c.c.) as a
function of λD and |σD∗

L
− σD|/σ, computed with the Braun distribution amplitudes

φBraun
P and φBraun

VL
.

dividing them by σ = 2σD.

The most striking feature of Fig. 2.11 is the huge sensitivity to the chosen func-

tional form. Though a precise comparison is difficult, due to the dependence on

different parameters, the decay rate increases by two orders of magnitude when we

switch from φExp to φBraun. Once again, this effect hinders our ability to predict

Γ(ηb → PVL+c.c.) but it opens up the interesting possibility to discriminate between

different model distribution amplitudes.

Using Eqs. (2.4.19) and (A.17), we know that Γ(ηb → PVL+c.c.) goes like λ̄−4−4g
D

when φExp used or λ̄−4
D when φBraun used. Fig. 2.11 appears to confirm this strong

dependence on λ̄D. The plots in the lower half of Fig. 2.11 reflect the fact that the

decay rate vanishes if one assumes φP (ω) = φVL(ω).
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We conclude this section with the determination of the branching ratios B(χb0 →
PP ) = Γ(χb0 → PP )/Γ(χb0 → light hadrons) and B(ηb → PVL + c.c.) = Γ(ηb →
PVL + c.c.)/Γ(ηb → light hadrons). At leading order in pNRQCD, the only non-

perturbative parameter involved in the inclusive decay width of the ηb is |Rηb(0)|2

[6],

Γ(ηb → light hadrons) =
2Imf1(

1S0)

m2
b

Nc

2π
|Rηb(0)|2 . (2.5.5)

Therefore, B(ηb → PVL+c.c.) does not depend on the quarkonium wavefunction and

the only non-perturbative parameters in B(ηb → PVL+ c.c.) are those describing the

D-meson distribution amplitudes.

For P -wave states, the inclusive decay rate was obtained in Refs. [6, 73], where the

contributions of the configurations in which the quark-antiquark pair is in a color-

octet S-wave state were first recognized. In pNRQCD the inclusive decay rate is

written as [74, 75]

Γ(χb0 → light hadrons) =
1

m4
b

3Nc

π
|R′

χb
(0)|2

[

Imf1(
3P0) +

1

9N2
c

Imf8(
3S1)E

]

,

(2.5.6)

where the color-octet matrix element has been expressed in terms of the heavy quarko-

nium wavefunction and of the gluonic correlator E , whose precise definition is given in

Ref. [74]. E is a universal parameter and is completely independent of any particular

heavy quarkonium state under consideration. Its value has been obtained by fitting to

existing charmonium data and, thanks to the universality, the same value can be used

to predict properties of bottomonium decays. It is found in Ref. [74] E = 5.3 +3.5
−2.2.

The matching coefficients in Eqs. (2.5.5) and (2.5.6) are known to one loop. For

the updated value we refer to Ref. [76] and references therein. For reference, the

tree-level values of the coefficients are as follows [6]:

Imf1(
1S0) = α2

s(2mb)π
CF
2Nc

, Imf1(
3P0) = 3α2

s(2mb)π
CF
2Nc

,

Imf8(
3S1) =

nf
6
α2
s(2mb)π .

(2.5.7)

With the above parameters, we plot B(χb0 → PP ) and B(ηb → PVL + c.c.) as
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Figure 2.12. Branching ratios B(χb0 → PP ) (left) and B(ηb → PVL + c.c.) (right).
The latter is computed using the distribution amplitude φBraun.

a function of λD and λ̄D, respectively, in Fig. 2.12. Over the range of λD we are

considering, B(χb0 → PP ) varies between 4 · 10−5 and 4 · 10−6; it is approximately

one or two orders of magnitude smaller than the branching ratios observed in Ref.

[54] for χbJ decays into light hadrons. B(ηb → PVL + c.c.) depends on the choice of

the distribution amplitude. Choosing the parameterization φBraun (2.5.2), it appears

that, despite the suppression at |σD∗
L
− σD| = 0, B(ηb → PVL + c.c.) assumes values

comparable to B(χb0 → PP ) even for a small deviation from the spin-symmetry limit.

If φExp is chosen, the branching ratio is suppressed over a wide range of |σD∗
L
− σD|.

The branching ratio B(ηb → PVL + c.c.) was first estimated in [77]. The authors of

[77] assumed that the exclusive decays into DD∗ dominate the inclusive decay into

charm, Γ(ηb → PVL+c.c.) ∼ Γ(ηb → cc̄+X). With this assumption, they estimated

the branching ratio to be in the range 10−3 < B(ηb → PVL + c.c.) < 10−2. Our

analysis shows that such an assumption does not appear to be justified in the range

of λ̄D considered in Fig. 2.12, while it would be appropriate for smaller values of the

first inverse moments, for example for λ̄D ∼ 0.200 GeV if the distribution amplitudes

are described by φBraun.

Our estimates indicate that observing the exclusive processes ηb → DD∗+c.c. and

χb → DD would be extremely challenging. A preliminary analysis for χb → D0D̄0 [78]

suggests that the number of Υ(2S) produced at BABAR allows for the measurement
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of a branching ratio B(χb0 → D0D̄0) ∼ 10−3, which is two or three orders of magnitude

bigger than the values in Fig. 2.12. An even bigger branching ratio would be required

for the smaller Υ(2S) sample of CLEO. However, we stress once again the strong

dependence of the decay rates on the values of the first inverse moments. In particular,

our estimates rely on the relation λD = λB, which is valid in the limit of mb, mc →∞;

even small corrections to the heavy flavor symmetry, if they had the effect of shifting

the value of λD towards the range 0.250−0.350 GeV, could considerably increase the

branching ratios.

2.6 Conclusions

In this Chapter we have analyzed the exclusive decays of the C-even bottomonia

into a pair of charmed mesons. We approached the problem using a series of EFTs

that lead to the factorization formulas for the decay rates (Eqs. (2.4.16) - (2.4.19)),

valid at leading order in the EFT power counting and at all orders in αs. We im-

proved the perturbative results by resumming Sudakov logarithms of the ratios of the

characteristic scales that are germane to the dynamics of the processes.

The decay rates (2.4.16) - (2.4.19) receive both perturbative and non-perturbative

corrections. Perturbative corrections come from loop corrections to the matching

coefficients C and T , which are respectively of order αs(2mb) ∼ 0.2 and αs(mc) ∼ 0.3.

The largest non-perturbative contribution could be as big as ΛQCD/mc, which would

amount approximately to a 30% correction. Therefore, corrections to the leading-

order decay rates could be noticeable, as the strong dependence of the decay rates

on the renormalization-scale µ′
c suggests. However, the EFT approach shown in this

Chapter allows for a systematic treatment of both perturbative corrections and power-

suppressed operators, so that, if the experimental data require, it is possible to extend

the present analysis beyond the leading order.

For simplicity, we have focused in this Chapter on the decays of C-even bottomo-

nia, in which cases the decays proceed via two intermediate gluons and both the
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matching coefficients C and T are non-trivial at tree level. The same EFT approach

can be applied to the decays of C-odd states, in particular, to the decays Υ → DD

and Υ→ D∗D∗, with the complication that the matching coefficient T arises only at

one-loop level. Moreover, the same EFT formalism developed in this Chapter can be

applied to the study of the channels that have vanishing decay rates at leading order

in the power counting, such as ηb → D∗D∗, Υ→ DD∗ + c.c., and χb2 → DD∗ + c.c..

Experimental data for the charmonium system show that, for the decays of charmo-

nium into light hadrons, the expected suppression of the subleading twist processes

is not seen. It is interesting to see whether such an effect appears in bottomonium

decays into two charmed mesons, using the EFT approach of this Chapter to evaluate

the power-suppressed decay rates.

Finally, in Sec. 2.5 we used model distribution amplitudes to estimate the decay

rates. The most evident, qualitative feature of the decay rates is the strong depen-

dence on the parameters of the D-meson distribution amplitude. Even though this

feature may prevent us from giving reliable estimates of the decay rates or of the

branching ratios, it makes the channels analyzed here ideal candidates for the extrac-

tion of important D-meson parameters, when the branching ratios can be observed

with sufficient accuracy.
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Chapter 3

T Violation in Nuclear Systems

3.1 Introduction

Time-reversal (T ) and CP violation have been a subject of intense interest for nearly

half a century. The Standard Model with three families has a natural source of CP

violation in the form of a complex phase in the Cabibbo-Kobayashi-Maskawa (CKM)

quark-mixing matrix. However, this violation is small in the sense that it comes [79]

in a combination of CKM parameters JCP ≃ 3 · 10−5 ≪ 1. Moreover, this mechanism

appears to be insufficient for electroweak baryogenesis [80]. As a consequence, it

has been hoped that the study of T violation will offer a window into new physics.

In this thesis, we study systematically the effects on hadronic and electromagnetic

interactions of the lowest-dimension sources of T violation that can be added to the

QCD Lagrangian, including all the possible TV operators up to dimension 6.

CP violation has been observed in kaon and B-meson systems at a level consistent

with Standard Model expectations [1]. On the other hand, electric dipole moments

(EDMs) signal T violation as well, but they are relatively insensitive to the CKM

phase because they involve flavor-diagonal CP violation. Indeed, in the Standard

Model with θ̄ = 0, the neutron EDM, for example, is expected to be very small,

dn ∼ 10−32 e cm [81]. In contrast, the present experimental bound is |dn| < 2.9·10−26 e

cm [82], and plans exist to decrease this limit by one or two orders of magnitude

using ultracold neutrons at the Spallation Neutron Source (SNS) of the Oak Ridge

National Laboratory [83] and at the UltraCold Neutron Source of the Paul Scherrer

Institute [84]. A less strict bound on the proton EDM, |dp| < 7.9 · 10−25 e cm,

can be extracted from the EDM of the 199Hg atom [85] using a calculation of the

contribution of the nuclear Schiff moment [86]. In addition, there exist exciting plans

to probe the deuteron EDM in a storage ring at the level of |dd| ∼ 10−29 e cm [87].
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Hadronic and nuclear EDMs are thus sensitive to non-CKM sources of T violation

in the strong interactions. (For a review of both experimental and theoretical issues,

see, for example, Refs. [88, 81].)

A natural question that arises, if the proposed experiments do measure a non-

vanishing hadronic or nuclear EDM, is whether we can identify the dominant mech-

anism(s) of T violation. In this Thesis we would like to present a step in the di-

rection of answering this question. Calculating hadronic and nuclear properties di-

rectly from QCD has proved difficult to say the least. Nevertheless, at low momenta

Q ∼ mπ ≪MQCD, where mπ is the pion mass andMQCD ∼ 1 GeV is the typical mass

scale in QCD, these properties can be described in terms of an effective field theory

(EFT) involving nucleons, pions and delta isobars, known as chiral perturbation the-

ory (χPT) [29, 30, 31]. In the EFT, all interactions are allowed which transform under

Lorentz, parity, time-reversal, and chiral symmetry in the same way as do terms in

the QCD Lagrangian. Long-range effects due to the light pions are separated from

short-range effects due to all higher-energy degrees of freedom. Observables are sys-

tematically expanded in powers of Q/MQCD (times functions of Q/mπ). χPT has

been successfully applied to a variety of hadronic and nuclear systems. (For reviews,

see for example Refs. [32, 33, 37].) We want to use EFT to analyze T violation in a

way similar to what has been done for parity violation [89, 90].

Our first step will be to extend the chiral EFT to include T violation from the

lowest-dimension T violating (TV) sources. We include the dimension 4 QCD θ̄

term, and all the possible dimension 6 operators allowed by invariance under the

gauge symmetry of the Standard Model, which, when heavy degrees of freedom are

integrated out, consist of a quark electric and chromo-electric dipole moment (qEDM

and qCEDM), the Weinberg three-gluon operator, which is interpreted as the gluon

chromo-EDM (gCEDM), two chiral invariant four-quark operators, and three two-

lepton-two-quark operators. The basic idea [92, 91] is that T violation is accompanied

at the quark level by a specific form of chiral-symmetry breaking, and thus the inter-
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actions among low-energy hadrons and photons break chiral symmetry in the same

way. We construct here the TV Lagrangian governing the low-energy interactions

of pions and nucleons. (Some of these interactions have already been considered in

Refs. [92, 91].) Since various sources of T violation have distinct chiral-symmetry

transformation properties, they will generate different interactions at the hadronic

level [92]. This, in turn, leads to different relationships among observables.

Since we are interested in low-lying hadronic and nuclear systems, we limit our-

selves to two quark flavors, when the chiral symmetry is SU(2)×SU(2). We dedicate

the rest of this Chapter to a summary of the TV sources we are considering, a brief

review of χPT and of the T conserving (TC) χPT Lagrangian. In Chapter 4, we

construct the TV Chiral Lagrangian. As far as the θ̄ term is concerned, we extend

to higher orders in the chiral expansion the pioneering work of Ref. [93]. We do

not assume that the strange-quark mass makes a good expansion parameter. With

such an assumption more stringent (approximate) relations among observables exist

[94, 95, 96, 97, 98, 99]. On the other hand, focusing on SU(2)×SU(2) will make some

intrinsic aspects of the connection between T violation and chiral-symmetry breaking

more obvious. For the dimension 6 operators, we construct for the first time the

TV Lagrangian that includes all the terms relevant to the calculation of the nucleon

EDM, of its momentum dependence, the Electric Dipole Form Factor (EDFF), and

of the deuteron EDM at leading order.

The TV Chiral Lagrangian enables us to study various TV nuclear observables in

a model independent way. We devote Chapter 5 to the study of the nucleon EDM

and its momentum dependence. We find that in the case of TV from θ̄ term and

the qCEDM, the leading contributions come from the pion cloud, where the pion

couples to the nucleon via a non-derivative isoscalar P - and T -odd interaction, and

from shorter-range interactions. At leading order (LO), the θ̄ term and the qCEDM

generate an identical signal for the nucleon EDM and EDFF, so that a measurement

of the nucleon EDM, or even of its detailed momentum dependence, cannot by itself
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discriminate between these two sources of T violation. In the case of the qEDM,

gCEDM and of the TV four-quark operators, we find that TV interactions between

nucleon and pions play a less important role, and the EDM at LO is completely

determined by physics at shorter range. Also the scale of the momentum variation of

the EDFF is determined not by mπ, but by the high-energy scale MQCD ∼ 1 GeV.

A measurement of the proton and neutron EDM can thus be attributed as well

to any of the TV sources we consider. The detailed momentum dependence of the

EDFF, or at least of its first derivative, would allow to discriminate between TV

from the QCD θ̄ term and the qCEDM on the one side and TV from the other

dimension 6 operators on the other, but, unfortunately, such a measurement will not

be performed in the next generation of EDM experiments. It is clear, then, that

nuclear TV observables are of the foremost importance, in the quest to trace the

signal from EDM experiments back to the dominant mechanism(s) of T violation

at high energy. It is therefore crucial to set up a framework that can consistently

accommodate one and few nucleon observables.

Chapter 6 is dedicated to the study of the TV moments of the simplest nucleus,

the deuteron. In the one-nucleon sector, we use the Lagrangian developed in Chapter

4, while the complications of the power counting for two nucleon system are ad-

dressed using in the “perturbative pion” approach. We find that a measurement of

the deuteron EDM in conjunction with the nucleon EDM allows to clearly identify

TV from the qCEDM. The measurement of the deuteron Magnetic Quadrupole Mo-

ment (MQM) would further allow to separate TV from the θ̄ term from the other TV

sources.

Finally in Chapter 7 we study the TV potential stemming from the θ̄ term at next-

to-next leading (N2LO) order, and the LO TV potential from dimension 6 operator.

This is the first step towards a description of TV observables for higher nuclei in the

same framework used for the calculation of the nucleon EDM. The combination of the

TV potential here derived with the TC forces and currents derived in the extension



67

of χPT to multi-nucleon systems [100, 37, 38] opens the possibility of describing

all necessary ingredients in a single framework, which would then allow to use TV

parameters extracted from the observation of nucleon and deuteron TV moments to

predict in a model-independent and falsifiable way TV moments of light nuclei, like

3He, 6Li or 7Li.

3.2 Sources of T violation

3.2.1 The QCD θ̄ term

Well below the electroweak scale, strong interactions can be described by the most

general Lagrangian with Lorentz, color, and electromagnetic gauge invariance among

left-handed (qL) and right-handed (qR) quarks, gluons (Gµ) and photons (Aµ). The

lowest-dimension operators are included in the QCD Lagrangian,

LQCD = −1
4
GaµνGa

µν − g2s
θ

64π2
εµναβGa

µνG
a
αβ −

1

4
F µνFµν

+q̄Li /D qL + q̄Ri /D qR + eq̄L /AQqL + eq̄R /AQqR

−q̄RMqL − q̄LM∗qR, (3.2.1)

where Ga
µν and Fµν are the gluon and photon field strengths, respectively; Dµ is the

color-gauge covariant derivative; M and Q are the quark mass and charge matrices;

e is the electron charge; and θ is a real parameter [101, 102].

The field q = qL + qR represents a multiplet of fields, of dimension equal to the

number of quark flavors we consider. We work for simplicity with two light flavors, u

and d, so

q =

(

u
d

)

(3.2.2)

is an isospin doublet. Objects in isospin space can be written in terms of the identity

and the Pauli matrices τ , for example

Q =
1

3

(

2 0
0 −1

)

=
1

6
+
τ3
2
. (3.2.3)
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The most general form of the diagonal mass matrix is

M = eiρ
(

mu 0
0 md

)

= eiρm̄ (1− ετ3) , (3.2.4)

with real parameters ρ and mu,d, or alternatively

m̄ =
mu +md

2
(3.2.5)

and

ε =
md −mu

mu +md
. (3.2.6)

An important role is played by rotations in isospin space belonging to the chiral group

SUL(2)× SUR(2) ∼ SO(4),

q → exp [iθV · t+ iθA · x] q, (3.2.7)

where θV,A are real parameters and

t = τ/2, x = γ5τ/2, (3.2.8)

the group generators.

The θ term is a total derivative, but it contributes to physical processes through

extended, spacetime-dependent field configurations known as instantons [103, 104].

The θ term can be eliminated from the Lagrangian by performing transformations

on the quark field. The most general transformation that leaves M diagonal is a

combination of a chiral transformation (3.2.7) with θV = (0, 0, β) and θA = (0, 0, α),

and two U(1) transformations,

q → exp
[

iθ0V + iθ0Aγ5
]

q, (3.2.9)

with arbitrary parameters θ0V,A. The axial U(1) transformation has an anomaly [105]

and induces a transformation in the integration measure in the path integral that is

equivalent to a modification of the θ term in the QCD Lagrangian. With the choice

θ0A = −θ/4, the θ term can be eliminated and the QCD Lagrangian can be written as

LQCD = −1
4
GaµνGa

µν −
1

4
F µνFµν + q̄Li /DqL + q̄Ri /DqR + Le + Lα, (3.2.10)
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where

Le = eAµq̄γ
µQq = eAµ

(

1

6
Iµ + T µ34

)

(3.2.11)

is the electromagnetic interaction, and

Lα = −q̄Rei
θ̄
2

(

mue
iα 0

0 mde
−iα

)

qL +H.c.

= −m̄ cosα cos
θ̄

2

{[

1 + ε tanα tan
θ̄

2

]

S4 −
[

ε+ tanα tan
θ̄

2

]

P3

+

[

ε tanα− tan
θ̄

2

]

P4 +

[

tanα− ε tan θ̄
2

]

S3

}

(3.2.12)

is a family of CP -violating mass terms labeled by the angle α and parametrized by

θ̄ = 2ρ − θ. We have expressed the mass and electromagnetic Lagrangians in terms

of two SO(4) vectors, a Lorentz scalar

S =

(

−iq̄γ5 τ q
q̄q

)

(3.2.13)

and a Lorentz pseudoscalar

P =

(

q̄ τ q
iq̄γ5q

)

, (3.2.14)

and two Lorentz vectors, an SO(4) scalar,

Iµ = q̄γµq, (3.2.15)

and an SO(4) antisymmetric tensor,

T µ =
1

2

(

εijkq̄γ
µγ5τkq q̄γµτiq

−q̄γµτjq 0

)

. (3.2.16)

3.2.2 Dimension 6 TV operators

The current bound on the neutron EDM, as discussed more in detail in Chapter 5,

can be interpreted as a bound on θ̄, θ̄ . 2.5·10−10. θ̄ is thus unnaturally small, and its

smallness leaves room for other sources of T violation in the strong interaction. The

next-to-lowest-dimension TV operators involving quark and gluon fields that one can
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add to the QCD Lagrangian have effective dimension 6 [106, 107, 108, 109, 110, 111].

At this level, in the flavor diagonal sector, we encounter the quark electric dipole

moment, which couples quarks and photons; the quark chromoelectric dipole moment,

which couples quarks and gluons; the Weinberg operator, which couples three gluons

and can be identified as the gluon chromoelectric dipole moment, and two TV chiral

invariant four-quark operators. Extending our attention to leptons, we also consider

electron and muon EDMs and three two-lepton-two-quark operators.

These higher-dimension operators have their origin in an ultraviolet-complete the-

ory at a high-energy scale, such as, for example, supersymmetric extensions of the

Standard Model. We assume that T violation arises in this theory at a characteristic

scale, M/T . Well below the scale M/T we expect TV effects to be captured by the

lowest-dimension interactions among Standard Model fields that respect the theory’s

SUc(3)× SUL(2)× UY (1) gauge symmetry.

The complete list of gauge-invariant operators with dimension up to 6 is given in

Refs. [106, 111] (the CP violating operators are also listed in Ref. [107, 110]). Above

the electroweak scale, only one gauge invariant, dimension 5 operator can be written.

After electroweak symmetry breaking, it generates neutrino masses and mixing, and

we neglect it in the rest of our analysis.

TV effects are encoded in several dimension 6 operators, that, following Ref. [111],

we organize according to their field content: three-gluon (ggg), two quarks and a scalar

(qqϕ), two fermions, a scalar, and a vector boson (qqϕ v), four quarks (qqqq), and

two leptons and two quarks (llqq). Since our goal is to study the low energy manifes-

tations of T violation in nuclear systems, we focus here on those operators that, after

electroweak symmetry breaking, can be expressed in terms of light degrees of freedom;

light quarks, leptons, photons and gluons. We neglect, for example, TV in the Higgs

sector, operators that represent the W boson electric dipole and magnetic quadrupole

moment, or flavor non-diagonal CP violating four-quark operators containing both

heavy and light quark fields. These operators are listed in [106, 107, 111], to which we
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refer the interested reader. In the EFT spirit, they are integrated out in matching the

CP violating Lagrangian at the electroweak scale onto the CP violating Lagrangian

at scales of order 1 GeV, and their contribution is hidden in the coupling constants

(matching coefficients) of the operators that appear in the latter.

The dimension 6 operators relevant to our discussion of T violation are

L6, qqϕ = −2ϕ
†ϕ

v2

(√
2

v
q̄Lϕ̃M

′
uuR +

√
2

v
q̄LϕM

′
ddR + g2s

θ′

64π2
εµναβGa

µνG
a
αβ

)

+ h.c..

(3.2.17)

L6, ggg =
dW
6
fabcεµναβGa

αβG
b
µρG

c ρ
ν . (3.2.18)

L6, qqϕv = − 1√
2
q̄Lσ

µνΓ̃uλa
ϕ̃

v
uRG

a
µν −

1√
2
q̄Lσ

µν Γ̃dλa
ϕ

v
dRG

a
µν

− 1√
2
q̄Lσ

µν (ΓuBBµν + ΓuWτ ·Wµν)
ϕ̃

v
uR

− 1√
2
q̄Lσ

µν
(

ΓdBBµν + ΓdWτ ·Wµν

) ϕ

v
dR

− 1√
2
l̄Lσ

µν (ΓeBBµν + ΓeWτ ·Wµν)
ϕ

v
eR + h.c. (3.2.19)

L6, qqqq = Σ1

(

q̄JLuR
)

εJK
(

q̄KL dR
)

+ Σ8

(

q̄JLλ
auR
)

εJK
(

q̄KL λ
adR
)

+ h.c.

(3.2.20)

L6, llqq = Σlq 1
(

l̄JLeR
) (

d̄Rq
J
L

)

+ Σlq 2
(

l̄JLeR
)

εJK
(

q̄KL uR
)

+Σlq 3
(

l̄JLσ
µνeR

)

εJK
(

q̄KL σµνuR
)

+ h.c. (3.2.21)

In Eqs. (3.2.17)-(3.2.21), Ga
µν is the gluon field strength, λa the Gell-Man matrices

and fabc the structure constants. W i
µν and Bµν are the fields strengths of the SUL(2)

and U(1) gauge boson,

W i
µν = ∂µW

i
ν − ∂νW i

µ − gεijkW j
µW

i
ν , Bµν = ∂µBν − ∂νBµ. (3.2.22)

We recall that W 3
µ and Bµ can be expressed in terms of the physical photon and Z

boson fields

W 3
µ = cos θwZµ + sin θwAµ,

Bµ = cos θwAµ − sin θwZµ, (3.2.23)
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and, in terms of the electric charge e and of weak mixing angle θw, the SUL(2) and

U(1) gauge coupling g and g′ are

g =
e

sin θw
, g′ =

e

cos θw
. (3.2.24)

The scalar field ϕ is a doublet under SU(2), and it has hypercharge Y = +1/2. The

electroweak symmetry is spontaneously broken by the vacuum expectation value of

the field ϕ

〈ϕ〉 = 1√
2

(

0
v

)

, (3.2.25)

with v = 247 GeV. The Higgs boson represents fluctuations around the vacuum Eq.

(3.2.25), in a unitary gauge

ϕ =
1√
2

(

0
v + h(x)

)

. (3.2.26)

Eqs. (3.2.17) and (3.2.19) thus also generate CP violating couplings of the Higgs

to gluons, vector bosons and fermions, with coefficients fixed by gauge symmetry.

Since in the rest of our work we are interested in low-energy observables, we do not

further consider these couplings, which are carefully analyzed for example in [107].

We denote with the symbol ϕ̃I = εIJϕJ , where εIJ is the antisymmetric tensor in two

dimension, and ε12 = 1.

The fields lL and qL denote the left-handed doublets

lL =

(

νL
eL

)

, q̄L =

(

uL
dL

)

, (3.2.27)

while eR, uR and dR are right-handed fermion fields, singlet under SU(2). For sim-

plicity, we do not explicitly show the family indices in Eqs. (3.2.17)-(3.2.21). In this

Section, we use the symbol u to indicate the fields of the u, c and t quarks, while d

stands in general for d, s and b. Similarly e and ν denotes electron, muon and tau

fields, and their respective neutrinos. In a second step, we will integrate out the tau

and the heavy quarks, and concentrate only on the light lepton and quark flavors.

The coupling constants in Eqs. (3.2.17)-(3.2.21) are all proportional to two inverse

powers of the new physics scale M/T . For example the coefficient of the three-gluon
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operator is

dW = O
(

4π
w

M2
/T

)

, (3.2.28)

with w a dimensionless constant. For reasons that will be clear in a moment, we

choose to rescale the scalar field by the Higgs vacuum expectation value. With this

choice, M ′
u,d in Eq. (3.2.17) have dimension of mass, while θ′ is dimensionless:

θ′ = O
(

v2

M2
/T

)

, M ′
u,d = O

(

1√
2
λ′u,dv

v2

M2
/T

)

, (3.2.29)

In full generality M ′
u,d should be interpreted as 3 × 3 complex-valued matrices in

flavor space. We assume them to be proportional to the Yukawa couplings of the

Higgs to quarks and leptons, so that in the basis of the mass eigenstates M ′
u,d are

diagonal.

Similarly, in the most general case, the couplings in Eq. (3.2.19) ΓeB,W , ΓuB,W ,

ΓdB,W , Γ̃u and Γ̃d are 3 × 3 complex-valued matrices. Also in this case, since the

applications we will investigate are most sensitive to flavor-diagonal CP violation,

we assume these matrices to be proportional to the Yukawa couplings in the Stan-

dard Model Lagrangian, so in the basis of the mass eigenstates, the couplings in Eq.

(3.2.19) are diagonal. Non-diagonal elements of the matrices Γ are also interesting,

and they give rise to flavor-changing neutral current that contribute, for example, to

processes like K0 → µ+µ−, B0 → µ+µ−, or b→ sγ and b→ dγ. Since these processes

receive small contributions from the Standard Model, they are particularly sensitive

to new physics, and the subject of much theoretical and experimental interest.

With our assumption,

ΓeW (B) = O
(

g(′)δe
vλe

M2
/T

)

, ΓuW (B) = O
(

g(′)δu
vλu

M2
/T

)

, ΓdW (B) = O
(

g(′)δd
vλd

M2
/T

)

,

Γ̃u = O
(

4πδ̃u
vλu

M2
/T

)

, Γ̃d = O
(

4πδ̃d
vλd

M2
/T

)

, (3.2.30)

where λe, λu and λd are the Yukawa couplings that generate lepton and quark masses,

me = vλe/
√
2, mu,d = vλu,d/

√
2, and δ̃u,d and δu,d are dimensionless constants.
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The couplings Σ in Eqs. (3.2.20) and (3.2.21) are four-index complex-valued

tensors in flavor space, labeled by the family-index of the quark and lepton fields. In

practice, we are mainly interested in operators containing the lightest quarks u and

d, and in what follow we ignore the possibility of complicated flavor structures. The

four-quark and two-quark-two-lepton couplings scale as

Σ1,8 = O
(

(4π)2σ1,8
M2

/T

)

, Σlq i = O
(

e2
σlq i
M2

/T

)

, (3.2.31)

where σ1,8 and σlq, i are dimensionless constants.

After electroweak symmetry breaking, Eq. (3.2.17) becomes

L6,qqϕ = −
(

ūLM
′
uuR + d̄LM

′
ddR +

θ′

64π2
εµναβGa

µνG
a
αβ

)

+ h.c. + . . . , (3.2.32)

where the dots denote operators with quark-Higgs and gluon-Higgs interactions. Com-

paring Eq. (3.2.32) and (3.2.1), it is apparent that M ′
u,d and θ′ are O

(

v2/M2
/T

)

cor-

rections to the light quark masses and to the θ̄ term, where the size of v is determined

by the electroweak scale v ≈ MW .

Eqs. (3.2.18) and (3.2.19) are more interesting. The operator in Eq. (3.2.18) is

the Weinberg three-gluon operators, which represents the chromo-EDM of the gluon.

Other purely gluonic TV operators, like the gluon chromo-MQM, have higher dimen-

sion.

After electroweak symmetry breaking, and integrating out the W , Z and Higgs

bosons, Eq. (3.2.19) can be expressed in terms of quark and lepton magnetic and

chromo-magnetic dipole moments (MDM and CMDM) and electric and chromo-

electric dipole moments. In the assumptions that the matrices Γe,d,u are diagonal

in the mass eigenstate basis, Eq. (3.2.19) reduces to

L6, qqϕv = −ce
2
ē σµν

(

1 + i tanφeγ
5
)

e Fµν −
c0
2
q̄ σµν

(

1 + i tanφ0γ
5
)

q Fµν

−c3
2
q̄σµν

(

1 + i tanφ3γ
5
)

τ3q Fµν −
c̃0
2
q̄ σµν

(

1 + i tan φ̃0γ
5
)

λaq Ga
µν

− c̃3
2
q̄σµν

(

1 + i tan φ̃3γ
5
)

λa τ3q G
a
µν , (3.2.33)
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where the quark field q is defined as in Eq. (3.2.2), and family indices are, as usual,

suppressed.

The coefficients in Eq. (3.2.33) are combinations of those introduced in Eq.

(3.2.19), for example, in the case of the qCMDM and qCEDM

c̃f0,3 = Re
[

Γ̃u ± Γ̃d
]

ff
, (3.2.34)

tan φ̃f0,3 =
Im
[

Γ̃u ± Γ̃d
]

ff

Re
[

Γ̃u ± Γ̃d
]

ff

, (3.2.35)

where f is the family index. Similar relations hold for the lepton and quark EDM

operators, with the slight complication that Eq. (3.2.23) has to be used to express

the operators in terms of the photon and Z boson fields.

Since our focus are the manifestations of the effects of the Lagrangian (3.2.33) in

nuclear physics, for which the lightest quarks are the most relevant, we integrate out

the heavy quarks t, b and c (and the s quark as well), and we match Eq. (3.2.33) onto

an effective Lagrangian at a scale just above the typical QCD scale MQCD ∼ 1 GeV,

which only contains MDM and EDM of electron, muon, and u and d quarks. The form

of the Lagrangian is the same as Eq. (3.2.33), where now only light degrees of freedom

appear. The coefficients of the MDM and EDM operators receive contributions from

the coefficients Γ in Eq. (3.2.19), and, via loops, also from all the Standard Model

TV operators that are no longer explicit in the theory (EDM of heavy quarks, EDM

and MQM of the W boson, CP violation in the Higgs sector, . . .).

The breaking of electroweak symmetry does not affect the form of the four-fermion

operators Eqs. (3.2.20) and (3.2.21). For convenience, we rewrite Eq. (3.2.20) in
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terms of quark doublets q

L6, qqqq =
1

8
ReΣ1

(

q̄q q̄q − q̄τ q · q̄τ q + q̄γ5q q̄γ5q − q̄γ5τ q · q̄γ5τ q
)

+
1

4
ImΣ1

(

q̄q q̄iγ5q − q̄τ q · q̄τ iγ5q
)

+
1

8
ReΣ8

(

q̄λaq q̄λaq − q̄τλaq · q̄τλaq + q̄γ5λaq q̄γ5λaq

−q̄γ5τλaq · q̄γ5τλaq
)

+
1

4
ImΣ8

(

q̄λaq q̄iγ5λaq − q̄τλaq · q̄τ iγ5λaq
)

, (3.2.36)

where as usual we are dropping flavor indices. The TC and TV operators in Eq.

(3.2.36) are invariant under the chiral group SUL(2) ⊗ SUR(2), as it can be seen

either by directly applying the transformation (3.2.7) to Eq. (3.2.36), or by realizing

that the operators in (3.2.36) are constructed as scalar product of the chiral vectors

S and P defined in Eq. (3.2.13) and (3.2.14).

The two-lepton-two-quark operators can be rewritten in terms of the quark field

q and of the electron field e = eR + eL. Neglecting the part of the operator which

contains neutrino-quark interactions, we find

L6, llqq = ReΣ′
lq 1

(

ēe q̄q + ēγ5e q̄γ5q
)

+ ImΣ′
lq 1

(

ēiγ5e q̄q + ēe q̄iγ5q
)

+ReΣ′
lq 2

(

ēe q̄τ3q + ēγ5e q̄τ3γ
5q
)

+ ImΣ′
lq 2

(

ēiγ5e q̄τ3q + ēe q̄iγ5τ3q
)

+ReΣlq 3 ēσ
µνe q̄σµν(1 + τ3)q + ImΣlq 3

(

ēσµνe q̄iσµνγ
5(1 + τ3)q

)

,

(3.2.37)

where Σ′
lq 1,2 are linear combinations of Σlq 1,2. For our applications, once again, we

integrate out the heavy fields and express Eqs. (3.2.36) and (3.2.37) in terms of

electron, muon, u and d fields. The scaling of the coefficients of Eqs. (3.2.36) and

(3.2.37) is given in Eq. (3.2.31).

The goal of the current generation of lepton, nuclear and atomic EDM experiments

is to constrain the coefficients of the TV operators in Eqs. (3.2.18), (3.2.33), (3.2.36),

and (3.2.37), and, by doing so, to attain information on the new physics mechanism(s)
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responsible for T violation. From Eqs. (3.2.30) the scaling of the electron and muon

EDM is

de = ce tanφe = O
(

eδe
me

M2
/T

)

, dµ = cµ tanφµ = O
(

eδµ
mµ

M2
/T

)

. (3.2.38)

The factors δe, µ depend on the particular extension of the Standard Model un-

der consideration, and on the details of T violation. The minimal assumption is

δe = O (1). In the Minimal SuperSymmetric extension of the Standard Model

(MSSM), δe,µ receives further suppression from the electroweak coupling constant

δe ∼ αem/(4π sin θ
2
w) (for the detailed results, we refer to the reviews [81, 112] and

references therein). In the Standard Model, the CKM phase generates a contribu-

tion to the de,µ of the order de ∼ 10−25 e fm, which is way smaller than the current

experimental limits, and entirely negligible.

Experimentally, bounds on de can be extracted by experiments that investigate

EDMs of paramagnetic atoms. The most accurate bound is extracted from the Thal-

lium EDM experiment [113], which gives

de = (0.069± 0.074) · 10−13 e fm. (3.2.39)

For the ratio of the parameter δe and the scale of new physics M/T , Eq. (3.2.39)

implies
δe
M2

/T

. (100 TeV)−2 . (3.2.40)

A less stringent bound on dµ was found by the g − 2 experiment at Brookhaven

National Laboratory (BNL) [114]

dµ = −(0.1± 0.9) · 10−6 e fm, (3.2.41)

which translates in
δµ
M2

/T

. (100 GeV)−2 . (3.2.42)

The same g − 2 experiment sets the current limit on contributions of Beyond the

Standard Model physics to the muon MDM cµ [115].

mµc
BSM
µ

e
= ∆µ

m2
µ

M2
/T

= (255± 63± 49)× 10−11, (3.2.43)
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where we have defined δµ = ∆µ tanφµ . Eq. (3.2.43) set the ratio of ∆µ and the new

physics scale to be
∆µ

M2
/T

∼ (2 TeV)−2. (3.2.44)

The success of the g − 2 experiment, which, though optimized to measure the muon

anomalous magnetic moment, has improved the existing bound on dµ by a factor of

5, has spurred plans for a dedicated muon EDM experiment [116], which could lower

the bound on the muon EDM by four or five orders of magnitude and thus allow to

probe δµ/M
2
/T with the same accuracy as Eq. (3.2.44).

The size of the qEDM, d0,3, and of the qCEDM, d̃0,3, can be estimated from Eqs.

(3.2.30), and (3.2.34) and (3.2.35).

d0,3 ≡ c0,3 tanφ0,3 = O
(

eδ0,3
m̄

M2
/T

)

, d̃0,3 ≡ c̃0,3 tan φ̃0,3 = O
(

4πδ̃0,3
m̄

M2
/T

)

,

(3.2.45)

with the average light quark mass m̄ defined in Eq. (3.2.5). As we have already

remarked, the EDM and CEDM of light quarks receive contributions from the inte-

gration of the heavy flavors, in which case we expect the heavy quark mass, rather

than m̄, to appear in Eq. (3.2.45). In most models, however, such enhancements is

compensated by the smallness of the flavor-changing parameters, so that we expect

Eq. (3.2.45) to still capture the size of the quark EDM and CEDM.

The sizes of δ0,3, δ̃0,3 and w depend on the exact mechanisms of electroweak and

T breaking and on the running to the low energies where non-perturbative QCD

effects take over. The minimal assumption is that they are O(1), O(gs/4π) and

O((gs/4π)3), respectively, with gs the strong-coupling constant. However they can

be much smaller (when parameters encoding T violation beyond the Standard Model

are small) or much larger. In the Standard Model itself, where M/T = MW , δ0,3, δ̃0,3

and w are suppressed not only by the Jarlskog parameter [79] JCP ≃ 3 ·10−5, but also

by additional powers of the TV scale, in this case equal to MW , and by small gauge

coupling constants. For example, in the Standard Model, the qEDM and gCEDM
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both receive their first contribution at three loops [81, 117, 118]

δd =
2

27
JCP

α2
em

(4π)2 sin4 θw

αs
4π

m2
c

M2
W

ln2 m
2
b

m2
c

ln
M2

W

m2
b

, (3.2.46)

w =
1

12

( gs
4π

)3

JCP
α2
em

(4π)2 sin4 θw

m2
bm

2
cm

2
s

M6
W

ln
m2
b

m2
s

ln
M2

W

m2
b

, (3.2.47)

and δ and w are much smaller of the naive expectation.

In supersymmetric models with various simplifying, universality assumptions of a

soft-breaking sector with a common scale MSUSY , one has M/T =MSUSY and the size

of the dimensionless parameters is given by the minimal assumption times a factor

which is [81, 112], roughly (neglecting electroweak parameters), ACP = (gs/4π)
2 sinφ,

with φ a phase encoding T violation. Allowing for non-diagonal terms in the soft-

breaking sfermion mass matrices, enhancements of the type mb/md ∼ 103 or even

mt/mu ∼ 105 are possible, although they are usually associated with other, smaller

phases [81].

The coefficients Σ1,8 and Σlq i have not received much attention in the literature. In

many models of Beyond the Standard Model physics, the gauge-invariant, dimension

6 operators in Eqs. (3.2.36) and (3.2.37) have vanishing matching coefficient, while

other, chiral violating four-fermion TV operators, are effectively dimension 8, and each

flip of chirality costs a power of the light quark or lepton mass [119, 120, 121]. For

example, in the MSSM, with certain simplifying assumptions, an operator similar to

ImΣlq 1 receives a coefficient of order αemmemq/(4π)M
2
WM

2
/T , suppressed by a further

memq/M
2
W and a loop factor (4π)2 with respect to Eq. (3.2.31) [119] .

The examples of this section emphasize that the dimensionless coefficients δ0,3,

δ̃0,3, w, σ1,8 and σlq i that we have introduced, and their relative size, strongly depend

on the particular model of Beyond the Standard Model physics, making it difficult

to compare the relative contribution of different TV sources to the same observable

in a way that is independent of the details of the physics at the high energy scale

M/T . Our analysis of nuclear TV observables in Chapters 5 and 6 will rather try to

identify, for each TV source, a characteristic pattern of relations between different
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observables, specific of each source and rooted in its transformation properties under

chiral symmetry. The observation of such pattern in the current generation of nuclear

EDM experiments would then effectively pinpoint the dominant TV mechanism at

high energy. On the other hand, the formalism we develop can be easily adjusted

to specific extensions of the Standard Model. Once the values of δ0,3, δ̃0,3, w, σ1,8

and σlq i in a given model, and their running from M/T to MQCD, are known, then the

relative importance of the interactions constructed in Chapter 4 can be reassessed to

accommodate, for instance, a large hierarchy between these parameters.

Below the hadronic scale MQCD, the dimension 6 sources of T violation gener-

ate further effective interactions, which break chiral symmetry in their own ways.

Introducing the SO(4) singlets

IW =
1

6
ǫµνλσfabcGa

µρG
b,ρ
ν G

c
λσ, (3.2.48)

I(1)qq =
1

4

(

q̄q q̄iγ5q − q̄τ q · q̄τ iγ5q
)

, (3.2.49)

I(8)qq =
1

4

(

q̄λaq q̄iγ5λaq − q̄τλaq · q̄τ iγ5λaq
)

(3.2.50)

and the SO(4) vectors

W = 1
2

(

−iq̄σµνγ5τ q
q̄σµνq

)

Fµν , V = 1
2

(

q̄σµντ q
iq̄σµνγ5q

)

Fµν , (3.2.51)

and

W̃ = 1
2

(

−iq̄σµνγ5τλaq
q̄σµνλaq

)

Ga
µν , Ṽ = 1

2

(

q̄σµντλaq
iq̄σµνγ5λaq

)

Ga
µν , (3.2.52)

Eq. (3.2.33) and (3.2.36) can be written as

L6 = −d0V4 + c3V3 + d3W3 + c0W4 − d̃0Ṽ4 + c̃3Ṽ3 + d̃3W̃3 + c̃0W̃4

+dW IW + ImΣ1 I
(1)
qq + ImΣ8 I

(8)
qq . (3.2.53)

Similarly, introducing the vector P and S as in Eq. (3.2.13) and (3.2.14), and the

SO(4) vector, Lorentz tensors

Sµν =

(

−q̄iσµνγ5τ q
q̄σµνq

)

, P µν =

(

q̄σµντ q
q̄iσµνγ5q

)

, (3.2.54)
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the lepton-quark Lagrangian can be expressed by

L6, llqq = ēiγ5e
(

ImΣ′
lq 1S4 + ReΣ′

lq 2S3 + ImΣ′
lq 2P3 − ReΣ′

lq 1P4

)

+ēe
(

ImΣ′
lq 1P4 + ReΣ′

lq 2P3 − ImΣ′
lq 2S3 + ReΣ′

lq 1S4

)

+ēσµνe [2ReΣlq 3 (S4µν + P3µν) + 2ImΣlq 3 (P4µν − S3µν)] .(3.2.55)

The TV effective Lagrangian corresponding to Eqs. (3.2.53) and (3.2.55) can be

constructed by writing down all terms that transform in the same way under Lorentz,

P , T , and chiral symmetry as the terms in Eq. (3.2.53) and (3.2.55). This will be

the focus of Chapter 4.

3.3 Chiral Lagrangian

The low-energy EFT that describes interactions among pions and nucleons (and delta

isobars, since m∆ − mN ∼ 2mπ) at low momentum Q ∼ mπ ≪ MQCD is χPT.

At such momenta we can resolve pion propagation, but not details of its structure.

Pions must explicitly be accounted for in the theory, while other mesons can be

integrated out. The special role of the pion is a consequence of the approximate

invariance of the QCD Lagrangian under chiral symmetry. Because it is not manifest

in the spectrum, which only exhibits approximate isospin symmetry, chiral symmetry

must be spontaneously broken down to its diagonal subgroup SUL+R(2) ∼ SO(3).

From Goldstone’s theorem, one expects to find in the spectrum massless Goldstone

bosons that live on the “chiral circle” S3 ∼ SO(4)/SO(3). There are, of course,

infinite ways to parametrize the chiral circle. Here we use stereographic coordinates,

whose dimensionless fields we denote by an isovector field ζ. We can identify these

degrees of freedom with canonically normalized pion fields π = Fπζ, where Fπ ≃ 186

MeV, called the pion decay constant, is the diameter of the chiral circle. Such fields

transform in a complicated way under chiral symmetry. However, a pion covariant

derivative can be defined by

Dµπ = D−1∂µπ, (3.3.1)
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with

D = 1 +
π2

F 2
π

, (3.3.2)

which transforms under chiral transformations as under an isospin transformation,

but with a field-dependent parameter (see App. C). One can also construct the

covariant derivative of this covariant derivative,

DνDµπ = ∂νDµπ +
2

F 2
π

(π Dνπ ·Dµπ −Dνπ π ·Dµπ) , (3.3.3)

and so on.

Nucleons are described by an isospin-1/2 field N , and we can define a nucleon

covariant derivative

DµN =

(

∂µ +
i

F 2
π

τ · (π ×Dµπ)

)

N, (3.3.4)

where τi, i = 1, 2, 3, are the Pauli matrices in isospin space. We also define D† through

N̄D† = DN , and use the shorthand notation

Dµ± ≡ Dµ ±D†µ, Dµ±Dν± ≡ DµDν +D†νD†µ ±D†µDν ±D†νDµ (3.3.5)

and

τiDµ± ≡ τiDµ±D†µτi, τiDµ±Dν± ≡ τiDµDν+D†νD†µτi±D†µτiDν±D†ντiDµ. (3.3.6)

At Q ∼ mπ ≪ mN , nucleons are essentially non-relativistic; as such, the only

coordinate with which their fields vary rapidly is v · x, where v is the velocity. For

simplicity, we employ a heavy-nucleon field from which this fast variation has been

removed [34]. This simplifies the gamma matrix algebra, since only the spin Sµ

remains. (This procedure can be easily generalized to include a heavy-delta field.)

Below we use the subscript ⊥ to denote the component of a four-vector perpendicular

to the velocity, for example

Dµ⊥ ≡ Dµ − vµ v · D. (3.3.7)
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The first step in describing QCD at low energies is to construct the most general

Lagrangian that transforms under the symmetries of QCD in the same way as QCD

itself. Along with this, one needs a power-counting scheme so that interactions can

be ordered according to the expected size of their contributions. The Lagrangian

contains an infinite number of terms that we group using an integer “chiral index” ∆

and the (even) number of fermion fields f :

L =
∞
∑

∆=0

∑

f/2

L(∆)
f . (3.3.8)

The technology for constructing the Lagrangian is well known, see, for example, Ref.

[32]. When we neglect Le, Eq. (3.2.11), Lα, Eq. (3.2.12), L6, Eq. (3.2.53), and

L6, llqq, Eq. (3.2.55), the EFT Lagrangian includes all interactions made out of Dµπ,

N , and their covariant derivatives that are chiral invariant. In this case interactions

have index

∆ = d+ f/2− 2 ≥ 0, (3.3.9)

in terms of the number d of derivatives (and powers of m∆ −mN ). For example, in

leading order the chiral-invariant Lagrangians are

L(0)
χ,f=0 =

1

2
Dµπ ·Dµπ (3.3.10)

and (omitting delta isobars)

L(0)
χ,f=2 = N̄

(

iv · D − 2gA
Fπ

Sµτ ·Dµπ

)

N, (3.3.11)

where gA ≃ 1.267 is the pion-nucleon axial-vector coupling.

Explicit chiral symmetry breaking can be systematically included in the χPT

Lagrangian. Lα, Eq. (3.2.12), and Le, Eq. (3.2.11), break chiral symmetry: Lα
as third and fourth components of the vectors (3.2.13) and (3.2.14), and Le as the

third and fourth components of the antisymmetric tensor (3.2.16). In the EFT they

generate interactions, now involving π directly andAµ, that transform as these vectors

and tensors, and their tensor products. These terms are proportional to powers of

mu,d and e.
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Operators proportional to the light-quark masses are power counted with the same

chiral index ∆ as in eq. (3.3.9), where the definition of d is extended to count powers

of the quark mass. For power counting purposes, we count the average quark mass

and the quark mass difference in the same way, that is, we consider ε = O(1).
Explicit chiral symmetry breaking in the form of isospin violation is also present

in the electromagnetic terms from Eq. (3.2.11). They generate two classes of in-

teractions. In one class, hadrons interact with soft photons (those with momenta

below MQCD) in a gauge-invariant way. We can minimally couple charged pions and

nucleons to the photon by modifying their covariant derivatives,

(Dµπ)a → (Dµ, emπ)a =
1

D
(∂µδab − eAµε3ab) πb

DµN → Dµ, emN =

[

∂µ +
i

F 2
π

τ · (π ×Dµ,emπ)− ieAµ
1

2
(1 + τ3)

]

N

. (3.3.12)

(For simplicity, in the text that follows we drop the subscript “em” in covariant

derivatives.) In addition, we can couple the photon through the field strength Fµν .

The other class of interactions consists of purely hadronic interactions from the ex-

change of hard photons (momenta above MQCD), which can be integrated out, giving

rise to operators with no explicit photon fields. The first class of interactions is very

important because of EDMs; the second class competes with interactions from Eq.

(3.2.12). We thus construct the low-energy interactions from Eq. (3.2.11) as well.

The index ∆ defined in Eq. (3.3.9) can be generalized to label electromagnetic

operators. If the operator contains soft photons, the definition of d is enlarged to count

also the number of photon fields, which, having dimension one, require compensating

powers of MQCD in their coefficients. Operators generated by the integration of hard

photons — sometimes called indirect electromagnetic operators — are proportional

to powers of e2. Typically, an extra inverse power of 4π2 appears in a loop, leading

to a factor of αem/π. Since the numerical value of αem/π is very close to εm3
π/M

3
QCD

(using MQCD ∼ mρ, the mass of the rho meson), we can still use ∆ to label this class
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of operators, provided that each power of αem/π increases the chiral index by 3 [122].

The interactions stemming from the dimension 6 TV sources in Eq. (3.2.53) and

(3.2.55) can be organized according to a chiral index analogous to Eq. (3.3.9), with

the only difference that the coefficients of low-energy realizations of Eq. (3.2.53) and

(3.2.55) must contain two powers of the high energy scale M/T , which replace two

powers of MQCD. The powers of MQCD in a coefficient are therefore counted by

∆6 = d+ f/2− 4 ≥ −2, (3.3.13)

where d counts derivative and powers of the quark mass as described above.

For processes with at most one nucleon, A = 0, 1, all momenta and energies

are typically ∼ Q. The contribution of a diagram with L loops and C separately

connected pieces to the amplitude T can then be estimated by

T ∝ QνF(Q/µ), (3.3.14)

where F is a calculable function, µ is a renormalization scale, and the counting index

ν is

ν = 4− A+ 2(L− C) +
∑

i

∆i. (3.3.15)

Here, i counts the number of insertions of vertices from L(∆)
f . From Eq. (3.3.15)

it is apparent that diagrams with increasingly higher number of loops and non-

vanishing-index interactions are increasingly suppressed, leading to a perturbative

expansion. Assigning to loops a characteristic factor Q2/(4π)2 and using naive di-

mensional analysis (NDA) to estimate the EFT parameters [123], the suppression

scale is MQCD ∼ 2πFπ. Note that in this sector of the theory nucleon recoil is a

subleading effect: the nucleon is nearly static.

The χPT power counting formula (3.3.15) cannot directly be applied to processes

with A ≥ 2 [35, 36, 37, 100, 38]. Indeed, in diagrams in which the intermediate state

consists purely of propagating nucleons —which are called “reducible”— the contour

of integration for integrals over the 0th components of loop momenta cannot be de-

formed in way to avoid the poles of the nucleon propagators, thus picking up energies
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∼ Q2/mN from nucleon recoil, no longer a subleading effect, rather than ∼ Q. There

is also an extra factor of 4π. These diagrams are therefore enhanced by factors of

4πmN/Q with respect to the χPT power counting that assigns Q2/(4π)2 to a loop,

and the need to resum them leads to the appearance of shallow bound states in sys-

tems with two or more nucleons, nuclei. Diagrams whose intermediate states contain

interacting nucleons and pions —“irreducible”— do not suffer from this infrared en-

hancement, and in them nucleon recoil remains a small effect. Reducible diagrams are

thus obtained by patching together irreducible diagrams with intermediate states con-

sisting of A free-nucleon propagators. Calling V the sum of all irreducible diagrams,

an amplitude for a process with A ≥ 2 can be written schematically as

T = V + V G0V + V G0V G0V + . . . = V + V G0T, (3.3.16)

where G0 is the free-nucleon, non-relativistic Green’s function. Equation (3.3.14) is

just the Lippmann-Schwinger equation, which is formally equivalent to a Schrödinger

equation with a potential V .

Naive dimensional analysis suggests [35, 36] that irreducible diagrams follow the

χPT power counting rule (3.3.15). While this is true for pion-exchange diagrams, the

situation is more complicated for contact interactions. In fact, it can be shown that

the iteration of the singular one-pion exchange requires for renormalization at the

same order a finite number of f = 4 interactions, some of which are less suppressed

than expected on the basis of naive dimensional analysis [124, 125, 126] (see also Refs.

[127, 128] for further discussion). On the other hand, corrections, which should be

perturbative, are expected to still conform to dimensional analysis [129, 130]. Since

the TV potential, the quantity we focus on in the f ≥ 4 sector, is very small and it

can be treated as a perturbation, it should be amenable to an expansion in powers

of Q/MQCD, with different contributions organized according to their chiral index ν,

or, equivalently, according to the number of inverse powers of MQCD.
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3.3.1 The TC χPT Lagrangian

We give here the TC chiral invariant terms of the χPT Lagrangian. The leading TC

chiral Lagrangian has chiral index ∆ = 0 and is given by

L(0)
χ, f≤2 =

1

2
Dµπ ·Dµπ − m2

π

2D
π2 + N̄

(

iv · D − 2gA
Fπ

Dµπ · τSµ
)

N, (3.3.17)

where gA is the pion-nucleon axial coupling, gA ≃ 1.27. Electromagnetic interactions

at LO arise purely from the covariant derivatives Dµ and Dµ, defined in Eq. (3.3.12).

For ease of reference, we have included in Eq. (3.3.17) the pion mass term, which,

though chiral symmetry breaking, has nonetheless chiral index ∆ = 0.

Neglecting chiral-symmetry breaking from the quark masses, which will be exten-

sively treated in Chapter 4, at order ∆ = 1 the relevant Lagrangian consists of

L(1)
χ, f=2 = − 1

2mN
N̄D2

⊥N +
gA

FπmN
(iv ·Dπ) · N̄τ S · D−N

+
e

4mN

ǫµνρσN̄

{

(1 + κ0)

+(1 + κ1)

[

τ3 −
2

F 2
πD

(

π2τ3 − π3π · τ
)

]}

vµSνNF ρσ, (3.3.18)

where εµνρσ is the completely antisymmetric tensor in four dimension, with ε0123 =

−1. Here the first two terms are the nucleon kinetic energy and a relativistic correction

to the pion-nucleon coupling. The coefficients of both operators are fixed by Galilean

invariance. The third and fourth terms represent the isoscalar and isovector magnetic

dipole moment of the nucleon, and the anomalous nucleon-photon couplings κ0 and

κ1 have the values κ0 = −0.12 and κ1 = 3.7. At the next chiral order, ∆ = 2,

L(2)
χ, f=2 = +

gA
4Fπm2

N

Dµπ · N̄τ
(

SµD2
⊥,− −Dµ⊥,− S · D⊥,−

)

N

− c1
Fπ
Dµπ · N̄τ SµD2

⊥,+N

+
e

8m2
N

iεµναβN̄S
νDµ⊥,−

[(

1 + κ0 −
1

2

)

+ τ3

(

1 + κ1 −
1

2

)]

NFαβ .

(3.3.19)
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The first term represents further relativistic corrections to the gA term in Eq. (3.3.17).

The constraints imposed by Lorentz invariance on Eqs. (3.3.18) and (3.3.19) are

obtained following the method outlined in App. I, they do agree with the results

of Ref. [131, 132], once a field redefinition is used to eliminate time derivatives

acting on the nucleon field from the subleading ∆ = 1 and ∆ = 2 Lagrangians. The

operator with coefficient c1 = O
(

1/M2
QCD

)

in Eq. (3.3.19) is a contribution to the

square radius of the pion-nucleon form factor. The last two terms in Eq. (3.3.19) are

the isoscalar and isovector spin-orbit couplings of the nucleon to the photon. Their

coefficients is fixed by Lorentz invariance.

In the f = 4 sector, four-nucleon operators with no derivatives or insertion of the

pion mass have the lowest chiral index ∆ = 0 [35, 36]

L(0)
χ, f=4 = −

C11

2
N̄NN̄N − Cττ

2
N̄τN · N̄τN, (3.3.20)

where, by naive dimensional analysis [123], the coefficients scale as C11,ττ = O(1/F 2
π ).

The combinations C0s = C11 − 3Cττ and C0t = C11 + Cττ contribute, respectively, to

the to the isospin-singlet (3S1) and the isospin-triplet (1S0) scattering lengths. As we

mentioned at the end of the previous Section, the iteration of the singular one-pion

exchange potential requires for renormalization the promotion of some contact P -

wave operators in the leading order f = 4 Lagrangian [124, 125, 126]. We will discuss

four-nucleon operators and their power counting in some more detail in Chapters 6

and 7.

Explicit chiral-symmetry breaking and isospin-breaking operators in the chiral

Lagrangian [122] stem from the average quark mass m̄, the quark mass difference

md −mu = 2m̄ε, and from the quark coupling to photons through the fine-structure

constant αem. We devote most of Chapter 4 to the inclusion of operators proportional

to the quark mass in the χPT Lagrangian. Here, we list the most important isospin-

breaking operators from electromagnetism. We count ε ∼ 1/3 as O(1) and αem/π

as O(εm3
π/M

3
QCD), since numerically αem/π ∼ εm3

π/(2πFπ)
3. Isospin-violating terms

first contribute to the ∆ = 1 Lagrangian in the pion sector, and to the ∆ = 2
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Lagrangian in the pion nucleon sector,

L(1)
/I, f=0, em = − δ̆m

2
π

2D2

(

π 2 − π2
3

)

, (3.3.21)

L(2)
/I, f=2, em =

δ̆mN

2
N̄

[

τ3 +
2

F 2
πD

(

π3π · τ − π 2τ3
)

]

N. (3.3.22)

Here δ̆m2
π = O

(

αemM
2
QCD/π

)

is the leading electromagnetic contribution to the pion

mass splitting, while the quark-mass-difference contribution δm2
π, which is defined in

Sec. 4.1.1, is smaller by a power of εmπ/MQCD. The pion mass splitting, m2
π± −

m2
π0 = δ̆m2

π + δm2
π = (35.5 MeV)2, is dominated by the electromagnetic contribution.

The nucleon mass splitting, mn − mp = δmN + δ̆mN = 1.29 MeV [1] also receives

contributions from electromagnetism and from the quark masses. In this case, the

quark-mass contribution δmN is expected to be the largest. By dimensional analysis

δmN = O(εm2
π/MQCD), and lattice simulations estimate it to be δmN = 2.26 ±

0.57± 0.42± 0.10 MeV [133], which is in agreement with an extraction from charge-

symmetry breaking in the pn → dπ0 reaction [134, 135, 136]. The electromagnetic

contribution is δ̆mN = O (αemMQCD/π), that is, O
(

εm3
π/M

2
QCD

)

and about the 20%

of δmN . Using the Cottingham sum rule, δ̆mN = −(0.76± 0.30) MeV [137], which is

consistent with dimensional analysis.

We will extensively treat isospin violation from the quark mass difference in Chap-

ter 4. For many applications it is convenient to eliminate the nucleon mass difference

mn − mp = δmN + δ̆mN from the nucleon propagator and from asymptotic states.

This result can be accomplished through a field redefinition, defined in Ref. [138],

which we summarize in App. G.

3.4 Vacuum Alignment

Explicit breaking of chiral symmetry can be systematically implemented as a small

perturbation on the chiral invariant Lagrangian of Sec. 3.3 only if the true vacuum

of the theory, which is selected by the explicit breaking terms, is aligned with the

vacuum that was implicitly chosen in the construction of the χPT Lagrangian [32]
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(see also the discussion and the simple example, in the case of linear realization of

the symmetry group, in App. E). The S3 term in Eq. (3.2.12) is actually unphysical

because it gives rise to terms in the low-energy effective Lagrangian that make the

vacuum unstable under small fluctuations. At leading order a term would arise that

is linear in the pion fields (i.e. π3). The vacuum would then be unstable because it

could always produce mesons to lower its energy. The problem of such leading-order

tadpoles, which signal vacuum misalignment, is discussed below in Subsec. 3.4.1.

There are two approaches to removing these spurious terms. One approach [139] is

to impose, at quark level, the condition that TV interactions should not cause vacuum

instability. This has been done [140] to first-order in symmetry-breaking interactions,

and we review this argument in Subsec. 3.4.2. Then we derive in Chapter 4 the

corresponding low-energy EFT, which will not contain terms which cause vacuum

instability.

The other approach is to derive the low-energy EFT without putting any condi-

tions on how the resulting interactions affect the vacuum, then employ field redefi-

nitions on the fields at the hadronic level to eliminate terms that affect the stability

of the vacuum. It is the second approach that we follow in Subsec. 3.4.3. For most

of this section we neglect Le, Eq. (3.2.11), but we consider the field redefinitions in

the presence of electromagnetism in Subsec. 3.4.4. Such an alternative procedure

will help to understand what kind of interactions can be removed from the chiral

Lagrangian. As we will see in Sec. 4.1.1, further pion tadpoles appear in subleading

orders but pose no problems. They can also be eliminated with a field redefinition of

the form discussed in this section.

The dimension 6 TV Lagrangian in Eq. (3.2.53) also contains terms which generate

pion tadpoles. Because of their small coupling constant, however, they do not cause

vacuum instability, and they can be treated in perturbation theory.
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3.4.1 The need for vacuum alignment

To illustrate the importance of vacuum alignment for the construction of the EFT, let

us suppose we do not align the vacuum at the quark level. One can construct the low-

energy interactions induced by Eq. (3.2.12) following the method sketched in App.

D. Among the various types of terms are the ones that are linear in the symmetry-

breaking parameters. These are the infinitely many operators that transform as third

and fourth components of S and P type vectors:

Lα =
∑

n

{C4nS4n[π, N ] + C3nS3n[π, N ]}

+
∑

n

{D3nP3n[π, N ] +D4nP4n[π, N ]}+ . . . , (3.4.1)

where n runs over all S[π, N ] and P [π, N ] that can be obtained using Eq. (D.5),

and “. . .” stand for higher-rank tensors. The coefficient Cαn or Dαn of each term

depends on details of the QCD dynamics, and cannot at present be determined.

However, chiral symmetry fixes the ratio of coefficients of components of the same

object, which is given by Eq. (3.2.12). Thus

C3n

C4n

=
tanα− ε tan θ̄

2

1 + ε tanα tan θ̄
2

= tan

[

α− arctan

(

ε tan
θ̄

2

)]

,

D4n

D3n
= −ε tanα− tan θ̄

2

ε+ tanα tan θ̄
2

= − tan

[

α− arctan

(

1

ε
tan

θ̄

2

)]

.

(3.4.2)

The simplest symmetry breaking operator comes from S[0, N ] = (0 v0)
T , in which

case a piece in Eq. (3.4.1) is

Lm2
π
=
m̃2
πF

2
π

4
− m̃2

π

2D
π2 +

gm̃2
πFπ

2D
π3, (3.4.3)

where the bare pion mass is

m̃2
π =

4v0
F 2
π

m̄ cosα cos
θ̄

2

[

1 + ε tanα tan
θ̄

2

]

, (3.4.4)

and the coupling of the neutral pion to the vacuum is

g = tan

[

α− arctan

(

ε tan
θ̄

2

)]

. (3.4.5)
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The first term in Eq. (3.4.3) is a constant that is irrelevant for our purposes. The

second term is a mass term, which together with the pion kinetic term in Eq. (3.3.10)

generates a pion propagator of conventional form,

iδab
p2 − m̃2

π + iε
, (3.4.6)

when the pion momentum is p. Due to the non-linear realization of chiral symmetry,

both this term and the pion kinetic term in Eq. (3.3.10) generate also pion self-

interactions. The third term in Eq. (3.4.3) is T violating and allows neutral pions

to disappear into the vacuum. It generates both tadpoles and interactions among

an odd number of pions. Together, these two effects change pion propagation, since

the full pion propagator includes now an arbitrary number of π3s that disappear into

vacuum. Examples are illustrated in Fig. 3.1, where we draw all the diagrams that

contribute to the pion propagator up to order g4.

The physical pion mass m2
π = m2

π(m̃
2
π, g) is given by the pole of the two-point

Green’s function. The difficulty is that the contributions of all the diagrams in Fig.

3.1 to the two-point Green’s function are comparable to the one of the propagator.

Indeed, the first two diagrams in Fig. 3.1 give a contribution of order g2m̃2
π/(p

2−m̃2
π)

2,

while the other diagrams in Fig. 3.1 scale as g4m̃2
π/(p

2 − m̃2
π)

2 or g4m̃4
π/(p

2 − m̃2
π)

3,

where we take p ∼ m̃π. These translate into contributions of relative order g2 and g4,

respectively, to the pion mass. Since g depends on α and is a priori not small, these

diagrams have the same power counting as the propagator (3.4.6): to calculate the

two-point Green’s function at tree level we need to sum all the diagrams of the type in

Fig. 3.1 with an arbitrary number of tadpoles. That is, the pion two-point function

in the presence of explicit chiral symmetry breaking in the form (3.4.1) cannot be

calculated in perturbation theory.

Notice that the vectors W̃3 and W3 (and Ṽ4, when combined with the antysim-

metric tensor T34 generated by an hard photon) in Eq. (3.2.53) also generate pion

tadpoles. However, as we will see in Sec. 4.1.1, in this case the coupling constant g
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Figure 3.1. Contributions of order g2 (first line) and g4 (next three lines) to the
pion two-point Green’s function. A dashed line stands for a pion propagator, Eq.
(3.4.6). A cross denotes a vertex coming from the third term in Eq. (3.4.3). Other
vertices arise from Eq. (3.3.10) and the second term in Eq. (3.4.3).
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is small, being suppressed by two powers of MQCD/M/T

g = O
(

(δ3 + δ0)
αem

π

(

MQCD

M/T

)2

, δ̃3

(

MQCD

M/T

)2
)

. (3.4.7)

Eq. (3.4.7) allows to treat pion tadpoles stemming from the dimension 6 sources in

perturbation theory, and no further alignment is needed.

The example of the pion mass can be extended to other observables, for example

pion-pion or pion-nucleon scattering cross sections: at any order in Q/MQCD, an

infinite number of diagrams in which zero-momentum neutral pions disappear into the

vacuum contribute to the physical process. When explicit and spontaneous symmetry

breaking are badly misaligned, explicit symmetry breaking is not just a perturbation.

In App. E we show this in a simple example.

The resummation of pion tadpoles can be performed explicitly in diagrams. We

show in App. F how to do so in the case of the pion two-point Green’s function at

tree level. Although calculations can be carried out with arbitrary α, it is unpractical

to do so for all quantities and at every order. We are thus led to impose at least

approximate vacuum alignment.

3.4.2 Alignment at quark level

Explicit symmetry-breaking terms provide a preferred direction for spontaneous sym-

metry breaking [139]. The construction of the effective Lagrangian only relies on the

fact that the symmetry group is broken to one of its subgroups, for example, SO(4)

broken to SO(3). However, in the absence of explicit symmetry-breaking terms, there

is no way to say which particular subgroup it is broken to. We choose the SO(3) sub-

group of rotations in the three-dimensional space orthogonal to the vector n = (0 1)T ,

but any other choice of n would be equivalent. Explicit symmetry-breaking terms

force a particular choice of vacuum, “aligned” with the breaking terms.

Here we consider alignment in first order in chiral-symmetry-breaking parameters,

as originally done by Baluni [140]. The chiral-symmetry-breaking Lagrangian (3.2.12)
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generates at tree level an effective potential

V1 = c4S4 + d3P3 + d4P4 + c3S3. (3.4.8)

The vacuum alignment condition (see Eq. (E.5)) is

4
∑

α=1

(

T aS̄
)

α

∂V1
∂Sα

+

4
∑

α=1

(

T aP̄
)

α

∂V1
∂Pα

= 0,

4
∑

α=1

(

X aS̄
)

α

∂V1
∂Sα

+

4
∑

α=1

(

X aP̄
)

α

∂V1
∂Pα

= 0,

(3.4.9)

where the bar means we are considering the vacuum expectation value, and T a and

X a are the SO(4) generators. Using the explicit expression (C.2) of the generators,

the vacuum alignment condition (3.4.9) reads

d3P̄1 + c3S̄1 = 0, d3P̄2 + c3S̄2 = 0,

d4P̄1 + c4S̄1 = 0, d4P̄2 + c4S̄2 = 0,
(3.4.10)

and

c4S̄3 + d4P̄3 − d3P̄4 − c3S̄4 = 0. (3.4.11)

Assuming that the vacuum does not break isospin [141, 142] and parity [143],

S̄ =

(

0

v

)

, P̄ =

(

0

0

)

, (3.4.12)

with v 6= 0 a real number, which we can choose to be positive. Plugging in this guess

for the vacuum, Eq. (3.4.11) becomes

c3v = 0, (3.4.13)

which is satisfied only if the coefficient of the third component of the S vector in Eq.

(3.2.12) vanishes, c3 = 0. We can rephrase this result by saying that TV terms can be

implemented as small perturbations in the usual chiral Lagrangian if the freedom to

choose the parameter α in Eq. (3.2.12) is used to make the TV interaction an isospin

singlet [139, 144, 140]. Explicitly, the condition c3 = 0 is

tanα = ε tan
θ̄

2
. (3.4.14)
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This choice automatically kills all coefficients C3n (see Eq. (3.4.2)), and in particular

the strength g of the pion tadpole (see Eq. (3.4.5)).

Substituting Eq. (3.4.14) into Eq. (3.2.12), we obtain

Lm = −m̄ r(θ̄)S4 + εm̄ r−1(θ̄)P3 +m⋆ sin θ̄ r
−1(θ̄)P4, (3.4.15)

where we introduced the standard parameter

m⋆ =
mumd

mu +md

=
m̄

2

(

1− ε2
)

(3.4.16)

and the function

r(θ̄) =

(

1 + ε2 tan2 θ̄
2

1 + tan2 θ̄
2

)1/2

. (3.4.17)

The last term in Eq. (3.4.15) is T violating. As it is well known, this source of

T violation is small for θ̄ near 0 or near π. If |θ̄| ≪ 1, then r(θ̄) = 1 + O(θ̄2) and

[140, 93]

Lm = −m̄ S4 + εm̄ P3 +m⋆θ̄ P4 +O
(

θ̄2
)

. (3.4.18)

On the other hand, for |θ̄ − π| ≪ 1, r(θ̄) = |ε|+O((θ̄ − π)2) and [93]

Lm = −m̄|ε|S4 +
ε

|ε|m̄ P3 +
m⋆

|ε|
(

π − θ̄
)

P4 +O
(

(π − θ̄)2
)

. (3.4.19)

3.4.3 Alignment at hadronic level

In the previous section we exploited the freedom in the choice of the parameter α

in Eq. (3.2.12) to write the TV term in the QCD Lagrangian in a way compatible

with the usual choice of the vacuum, which respects parity and isospin symmetry. In

this section we follow a different approach: we start from the EFT Lagrangian (3.4.1)

that reflects Eq. (3.2.12) before alignment, and we look for a rotation within the EFT

that enforces the vacuum alignment condition (3.4.13).

We define a new field ζ ′ for the pion through

ζi =
1

d′
{

ζ ′i − δi3
[

2Cζ ′3 + S
(

1− ζ ′2)]} , (3.4.20)
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where

d′ = 1− C
(

1− ζ ′2)+ 2Sζ ′3, (3.4.21)

and

C =
1

2
(1− cosϕ), S =

1

2
sinϕ, (3.4.22)

in terms of an angle ϕ. Although this transformation is complicated, the pion covari-

ant derivative simply rotates,

Dµπi =
∑

j

O′
ijD

′
µπ

′
j (3.4.23)

with a matrix

O′
ij = δij −

2

d′
{

C
[(

ζ ′2 − ζ ′23
)

δij − ε3ikζ ′kε3jlζ ′l
]

+ (Cζ ′3 + S)
(

ζ ′iδ3j − ζ ′jδ3i
)}

(3.4.24)

that is orthogonal,
∑

l

O′
ilO

′
jl = δij . (3.4.25)

Analogously, we define a new field N ′ for the nucleon via

N = U ′N ′, (3.4.26)

with a matrix

U ′ =
1√
d′

[√
1− C +

√
C
(

ζ ′3 + 2iε3jkζ
′
jtk
)

]

(3.4.27)

that is unitary,

U ′†U ′ = 1. (3.4.28)

One can show that the covariant derivative of the nucleon is indeed covariant under

this field redefinition,

DµN = U ′D′
µN

′. (3.4.29)

As a consequence, nucleon bilinears change under this field redefinition as under

isospin; for example,

N̄N = N̄ ′N ′,

N̄ tiN =
∑

j

O′
ijN̄

′tjN
′.

(3.4.30)
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More generally then, a generic pionless isoscalar and isovector operator, con-

structed with nucleon fields, their covariant derivatives and covariant derivatives of

the pion, transforms under (3.4.26) like

V4[0, N ] = V ′
4 [0, N

′],

Vi[0, N ] =
∑

j

O′
ijV

′
j [0, N

′].
(3.4.31)

The chiral-invariant part of the Lagrangian, for example Eqs. (3.3.10) and (3.3.11), is

built out of isoscalar combinations of chiral-covariant objects. The properties (3.4.25)

and (3.4.28) thus ensure that the chiral-invariant Lagrangian is invariant under the

field redefinitions (3.4.20) and (3.4.26).

This is not true of the chiral-variant interactions (3.4.1). After the redefinitions

(3.4.20) and (3.4.26),

Lα =
∑

n

{C ′
4nS4n[π

′, N ′] + C ′
3nS3n[π

′, N ′]}

+
∑

n

{D ′
3nP3n[π

′, N ′] +D ′
4nP4n[π

′, N ′]}+ . . . , (3.4.32)

with

C ′
3n = (1− 2C)C3n + 2SC4n, C ′

4n = (1− 2C)C4n − 2SC3n,

D ′
3n = (1− 2C)D3n + 2SD4n, D ′

4n = (1− 2C)D4n − 2SD3n.
(3.4.33)

All S3n can be eliminated from the Lagrangian by choosing

tanϕ =
2S

1− 2C
= −C3n

C4n
= − tan

[

α− arctan

(

ε tan
θ̄

2

)]

, (3.4.34)

that is, by

tan (ϕ+ α) = ε tan
θ̄

2
. (3.4.35)

In this case,

C ′
3n = 0, C ′

4n = −m̄ r(θ̄),

D ′
3n = ε m̄ r−1(θ̄), D ′

4n = m⋆ sin θ̄ r
−1(θ̄),

(3.4.36)

just as it results from Eq. (3.4.15).



99

Equation (3.4.35) is the counterpart of Eq. (3.4.14), which was found by imposing

the vacuum alignment condition at the level of the QCD Lagrangian. What the field

redefinitions (3.4.20) and (3.4.26) do is to realize in the EFT a chiral rotation that,

composed with the rotation in Eq. (3.2.12), changes the angle α→ α+ ϕ. After the

field redefinition, there are no leading-order tadpoles; we have effectively resummed

in one go all terms generated by the third term in Eq. (3.4.3) and by all other S3s.

3.4.4 Alignment in the presence of electromagnetism

We now show that the transformations (3.4.20) and (3.4.26) do not change the real-

ization of isospin-breaking operators generated by the electromagnetic interaction of

the quarks.

In the presence of electromagnetism, the covariant derivatives change according

to Eq. (3.3.12). This does not change the results (3.4.23) and (3.4.29),

Dµ, emπi =
∑

j

O′
ijD

′
µ, emπ

′
j (3.4.37)

and

Dµ, emN = U ′D′
µ, emN

′. (3.4.38)

As a consequence, chiral-invariant operators constructed with the minimally coupled

pion and nucleon covariant derivatives are unchanged by the field redefinitions (3.4.20)

and (3.4.26).

Following the method of App. D, the chiral-variant operators involving electro-

magnetism can be constructed from the components of SO(4) antisymmetric tensors:

the 4-i component, T4i[0, N ], which is an isovector, and under the field redefinitions

(3.4.20) and (3.4.26) transforms like Eq. (3.4.31); and the i-j component, Tij [0, N ],

which transforms as

Tij [0, N ] =
∑

l,m

O′
ilO

′
jmT

′
lm[0, N

′]. (3.4.39)
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Since under the redefinitions (3.4.20) and (3.4.26)

[

1

D

(

1− π2

F 2
π

)

δ3i +
2π3πi
F 2
πD

]

T4i[0, N ] =

[

1

D

(

1− π′2

F 2
π

)

δ3i +
2π′

3π
′
i

F 2
πD

′

]

T ′
4i[0, N

′]

(3.4.40)

and

2

FπD
(δ3jπi − πjδ3i)Tij [0, N ] =

2

FπD′

(

δ3jπ
′
i − π′

jδ3i
)

T ′
ij [0, N

′], (3.4.41)

the tensor is also invariant.
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Chapter 4

The T Violating χPT Lagrangian

4.1 Hadronic Interactions

In this section we construct the most important operators in the low-energy EFT

with the same chiral properties as Eqs. (3.4.15), (3.2.53) and (3.2.55). We start from

studying Eq. (3.4.15).

The first class of interactions originates entirely from the average quark mass m̄,

the first term in Eq. (3.4.15). These interactions break SO(4) explicitly down to the

SO(3) of isospin. They are well known, and examples are given in App. D. The most

important effect is an S4 that gives rise to the pion mass,

L(0)
/χ,f=0 =

m2
πF

2
π

4
− m2

π

2D
π2, (4.1.1)

where m2
π = O(r(θ̄)m̄MQCD). Also relevant for what follows is a similar S4 but

containing two nucleon fields, the nucleon sigma term

L(1)
/χ, f=2 = ∆mN N̄N

(

1− 2π2

F 2
πD

)

, (4.1.2)

where the nucleon mass correction ∆mN = O
(

r(θ̄)m̄
)

= O (m2
π/MQCD). There is, of

course, an infinite number of other S4s, all of which will bring in interactions ∝ m̄.

An example in the ∆ = 2 Lagrangian is

L(2)
/χ, f=2 =

β2
Fπ

(

1− 2π 2

F 2
πD

)

Dµπ · N̄τSµN, (4.1.3)

where β2 = O
(

m2
π/M

2
QCD

)

is a chiral-symmetry-breaking correction to gA [145], the

so-called Goldberger-Treiman discrepancy. In addition, there are interactions from

tensor products of S4s proportional to higher powers of m̄. For example, S4⊗S4 with

the same S4 that generates Eq. (4.1.1) produces

L(2)
/χ,f=0 =

F 2
π ∆m

2
π

8
− ∆m2

π

2D2
π2, (4.1.4)
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where ∆m2
π is an O(m4

π/M
2
QCD) contribution to the pion mass. All such chiral-variant

interactions have strengths proportional to powers of m2
π times appropriate powers of

MQCD. Since by all evidence r(θ̄) is not small, the dimensionless factors are expected

to be of O(1). When we are interested in processes with typical momenta Q ∼ mπ,

the power counting of f ≤ 2 interactions, Eq. (3.3.9), can be straightforwardly

generalized by defining d to count powers of mπ as well.

More interesting are the low-energy interactions stemming from the other two

terms in Eq. (3.4.15). The second breaks the SO(3) of isospin down to SO(2)

of rotations in the 1-2 plane in ζ space. In particular, it is also charge-symmetry

breaking (CSB) —charge symmetry is a discrete isospin rotation of π around the 2

axis that exchanges (up to a phase) the u and d quarks [146, 147]. The third term is P

and T violating but also breaks SO(4). The crucial point is that these two terms are

linked because they break chiral symmetry through components of the same chiral

four-vector. Therefore, T violation from the θ̄ term is intrinsically linked to CSB

because of chiral symmetry: for each TV hadronic interaction with an odd (even)

number of pions from a P4, there is a CSB interaction with an even (odd) number

of pions from the associated P3. The ratio between the coefficients of the P4 and P3

components is fixed by the ratio in Eq. (3.4.15),

T violation

isospin violation
=
m⋆

εm̄
sin θ̄ =

1− ε2
2ε

sin θ̄ ≡ ρ(θ̄, ǫ). (4.1.5)

This ratio ρ is small when sin θ̄ ≃ θ̄ for |θ̄| ≪ 1 and sin θ̄ ≃ π − θ̄ for |π − θ̄| ≪ 1.

Unfortunately this link becomes ineffective when sufficiently complicated tensor

products have to be included. We show in App. H that in the pion-nucleon sector of

the purely hadronic Lagrangian this problem only appears when considering operators

suppressed by m4
π/M

4
QCD relative to the leading TV interaction. As we will see in

Sec. 4.2, the electromagnetic interaction makes this problem more acute, so that

Eq. (4.1.5) is ineffective already for the leading short-distance contributions to the

nucleon EDM.

Relations analogous to Eq. (4.1.5) can be established for the operators stemming
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from the dimension 6 qEDM and qMDM, and qCEDM and qCMDM. From Eq.

(3.2.54), one sees that the isoscalar (isovector) qEDM breaks chiral symmetry as the

fourth (third) component V4 (W3) of a chiral four-vector V (W ), whose third (fourth)

component V3 (W4) represents the isovector (isoscalar) qMDM. In analogy to Eq.

(4.1.5), we thus introduce the factors ρ0 and ρ3 to express, respectively, the ratio

between the coefficients of the V4 and V3 components and W3 and W4 components

isoscalar qEDM

isovector qMDM
= −d0

c3
= −c0

c3
tanφ0 ≡ ρ0,

isovector qEDM

isoscalar qMDM
=

d3
c0

=
c3
c0

tanφ3 ≡ ρ3. (4.1.6)

Similarly, for the qCEDM and qCMDM, the ratios between the coefficients of Ṽ4 and

Ṽ3 and W̃3 and W̃4 are given by ρ̃0 and ρ̃3, with

ρ̃0 ≡ −
c̃0
c̃3

tan φ̃0, ρ̃3 ≡
c̃3
c̃0

tan φ̃3. (4.1.7)

In the case of the qEDM and qCEDM, the formal link with the coefficients of

the operators generated by the qMDM and qCMDM carries little relevance. As

we will see from the explicit realization of Eq. (3.2.53) in the EFT, the low energy

manifestations of the qCMDM and qMDM amount to small corrections, suppressed by

O(M2
QCD/M

2
/T ), to the coefficients of chiral-symmetry breaking and isospin-symmetry

breaking operators, whose leading contribution is given by the quark average mass

and quark mass difference terms in Eq. (3.4.15). It is therefore impossible to extract

the coefficients of the effective operators that realize the qCMDM and qMDM in χPT

from TC observables, and thus the ability of Eqs. (4.1.6) and (4.1.7) to express the

coefficients of TV operators in terms of a function of parameters of the Lagrangian

only (ρ0,3 and ρ̃0,3) and a strong interaction contributions, fitted to data for TC

observables, is lost.

For the two-lepton-two-quark operators, the ratio of the coefficients of TV and

TC lepton-quark operators is expressed by ρlq 1,2,3, with

ρlq 1 ≡
ImΣ′

lq 1

ReΣeq 2
, ρlq 2 ≡ −

ImΣ′
lq 2

ReΣeq 1
, ρlq 3 ≡

ImΣ′
lq 3

ReΣeq 3
. (4.1.8)
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We now proceed to build the low-energy interactions that arise from Eqs. (3.4.15),

(3.2.53) and (3.2.55). As for the chiral-variant but isospin- and T -symmetric terms,

we will for simplicity take r(θ̄) to be O(1) for power-counting purposes. Note that

mixed operators that combine symmetry breaking from various sources have to be

included. Since the chiral-symmetry-breaking operators involving only S4s do not

directly affect the link (4.1.5), we do not list all of them, but only those relevant to

our discussion.

We consider here only the lower chiral-index ∆ operators, classified according

to the number f of nucleon fields. As d and f increase, interactions decrease in

importance [33, 37], but obviously the procedure can be continued ad nauseum. As

we will show, non-aligned operators, like pion tadpoles, appear in power-suppressed

terms in the Lagrangian, but they can be dealt with in perturbation theory.

4.1.1 Pion sector

We start by discussing the leading interactions generated by the quark mass, the quark

mass difference and the θ̄ term that involve only pion fields, that is, with f = 0. As it

turns out, one cannot construct any terms that transform as P3 and P4. Higher-order

terms have the same transformation properties as the third and fourth components of

SO(4) tensors that correspond to tensor products of the different symmetry-breaking

sources in the QCD Lagrangian (3.4.15).

The chiral-symmetry-breaking Lagrangian with ∆ = 2 could receive contributions

from the tensor products S4 ⊗ Pb and Pa ⊗ Pb. No purely-pionic operator of the

first type can be constructed, while the tensor Pa ⊗ Pb can be reduced to a chiral

invariant and a two-index symmetric tensor, Pa ⊗ Pb = δab I + Sab. In the pion

sector the invariant is a constant, and can be discarded. The 3-3 component of

the symmetric tensor yields an isospin-breaking correction to the pion mass, the 4-4

component a chiral-breaking but isospin-conserving correction to the mass, while the
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3-4 component breaks isospin, parity and time reversal:

L(2)
/χ,f=0 =

ρ2F 2
π δm

2
π

8
+
δm2

π

2D2

[

π2
3 − ρ2π2 + ρFπ

(

1− π2

F 2
π

)

π3

]

, (4.1.9)

where we introduced the coefficient

δm2
π = O

(

ε2m4
π

r4(θ̄)M2
QCD

)

, (4.1.10)

which is the largest quark-mass contribution to the pion-mass splitting [122]. Since the

latter receives a much larger electromagnetic contribution (see Eq. (3.3.21)) δ̆m2
π =

O
(

αemM
2
QCD/π

)

[122, 145], it is unlikely that this term is of any phenomenological

use in itself.

However, Eq. (4.1.9) presents a simple illustration of the link between isospin and

T violation. It also has the interesting feature that, even after we chose to align the

vacuum linearly in the chiral-symmetry breaking parameters, non-aligned operators

appear in the power-suppressed Lagrangian. We discuss the role of such tadpoles in

Sec. 4.3.

Pion tadpoles are generated also by indirect electromagnetic effects. If we count

αem/π ∼ εm3
π/M

3
QCD, these term are booked in the ∆ = 3 Lagrangian, and have the

form

L(3)
/χ,f=0,em =

δ̆(3)m2
π F

2
π

4
− δ̆(3)m2

π

2D

(

π2 + ρFπ π3
)

, (4.1.11)

the two terms corresponding to the tensor products P4 ⊗ T34 and P3 ⊗ T34. Here the

coefficient

δ̆(3)m2
π = O

(

αem

π

εm2
π

r2(θ̄)

)

. (4.1.12)

Equation (4.1.11) is exactly of the form of Eq. (3.4.3). The only TV operator is

the pion tadpole (and its associated interactions). Since δ̆(3)m2
π ≪ m2

π, it does not

signal vacuum instability and can be treated in perturbation theory. Because these

are already small terms, we do not bother to consider higher orders.

The dimension 6 sources in Eq. (3.2.53) also generate pion tadpoles. At lowest

order, ∆6 = −2, tadpoles come from the isovector qCEDM, which transforms as
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the third component of a SO(4) vector W̃3, and from combining the effects of the

chiral-invariant TV operators, the gCEDM and the two four-quark operators in Eq.

(3.2.36), with isospin violation from the quark mass difference. At ∆ = −2, we find

L(−2)
6, f=0 =

F 2
π

4
∆̃qm

2
π − ∆̃qm

2
π

π2

2D
+
(

ρ̃3∆̃qm
2
π + ∆̄wm

2
π

) Fππ3
2D

, (4.1.13)

where, from the rules of NDA [123],

ρ̃3 ∆̃qm
2
π = O

(

δ̃3
m2
πM

2
QCD

M2
/T

)

, ∆̄wm
2
π = O

(

wε
m2
πM

2
QCD

M2
/T

)

. (4.1.14)

From here on, we always use the symbol w to denote collectively the dimensionless

constant w, defined in Eq. (3.2.28), and σ1,8 in Eq. (3.2.31); w ∈ {w, σ1, σ8}. The

operators in Eq. (4.1.13) also receive a contribution from the quark EDM and MDM,

which is suppressed by one power of αem/π, and appears in the ∆6 = 1 Lagrangian.

At ∆6 = 0, pion tadpoles emerge from considering operators that transform as

tensor product of the mass term in Eq. (3.4.15) and the qCEDM and qCMDM oper-

ators in Eq. (3.2.53). Purely pionic operators are generated by the tensor products

m̄S4 ⊗ (c0W̃4 + d3W̃3) and m̄εP3 ⊗ (c3Ṽ3 − d0Ṽ4), and we find

L(0)
6, f=0 =

δ̃3m
2
π

2D2

[

−π2 + ρ̃3Fππ3

(

1− π2

F 2
π

)]

+
δ̃0m

2
π

2D2

[

π2
3 + ρ̃0Fππ3

(

1− π2

F 2
π

)]

,

(4.1.15)

where the new low-energy constants scale as

ρ̃3 δ̃3m
2
π = O

(

δ̃3
m4
π

M2
/T

)

, ρ̃0 δ̃0m
2
π = O

(

δ̃0ε
m4
π

M2
/T

)

. (4.1.16)

The gCEDM and the TV four-quark operators generate operators identical to the

TV part of Eq. (4.1.9) through the tensor products dwm̄
2εS4 ⊗ P3 ⊗ I, with the

replacement δm2
πρ→ δ̄wm

2
π

δ̄wm
2
π = O

(

wε
m4
π

M2
/T

)

. (4.1.17)
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Contributions from the qEDM are suppressed by a power of αem/π, and we do not

consider them explicitly.

In Eqs. (4.1.14), (4.1.16) and (4.1.17), we have assumed θ̄ to be small, in which

case r(θ̄) ∼ 1. For generic θ̄, the scaling of the coefficients can be obtained by

replacing ε with ε/r2(θ̄) in Eqs. (4.1.16) and (4.1.17). Notice that for generic θ̄,

one should also construct TV operators that transform like tensor products of the θ̄

term and the TC qCMDM, m⋆ sin θ̄P4 ⊗ (c0W̃4 + c3Ṽ3). In the purely pionic sector,

the second tensor product gives an additional contribution to the coefficient of the

tadpole in Eq. (4.1.15) of order

O
(

δ̃0
tan θ̄

tanφ0

cos θ̄

r2(θ̄)

m4
π

M2
/T

)

. (4.1.18)

Now, the rationale for considering TV from dimension 6 operators along side with the

dimension 4 θ̄ term is that the M2
/T suppression of the former is somehow balanced by

CP violating phases much bigger than θ̄, that is tan θ̄ ≪ tanφ0. Consequently, the

contribution of Eq. (4.1.18) can be safely neglected.

The TC operators in Eqs. (4.1.13) and (4.1.15) are a first example of the impos-

sibility to differentiate the low-energy manifestations of the qCMDM from the effects

of the quark mass term, at least in an approach which, as χPT, solely relies on the

symmetry properties of the quark-gluon operators. The correction to the pion mass

∆̃qm
2
π in Eq. (4.1.13) has exactly the same structure as the pion mass term in Eq.

(4.1.1), to which it gives a small correction of order M2
QCD/M

2
/T . Similarly, δ̃3m

2
π and

δ̃0m
2
π in Eq. (4.1.15) are respectively identical to the correction to the pion mass

∆m2
π in Eq. (4.1.4) and the correction to the neutral pion mass δm2

π in Eq. (4.1.9).

Once again, the only effect of the qCMDM is to give a correction of order M2
QCD/M

2
/T

to these coefficients.
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4.1.2 Pion-nucleon sector. The QCD θ̄ term.

In the case of T violation from the QCD θ̄ term interactions with f = 2 are potentially

the most important for TV phenomenology, because they appear at the lowest chiral

index. Already at ∆ = 1 we can find a Pa vector, whose third and fourth components

give the operators

L(1)
/χ,f=2 =

δmN

2

{

N̄τ3N −
2π3
F 2
πD

N̄τ · πN − 2ρ

FπD
N̄τ · πN

}

. (4.1.19)

These operators provide the leading isospin-breaking [122] and TV [93] pion-nucleon

interactions, respectively. The low-energy constant

δmN = O
(

εm2
π

r2(θ̄)MQCD

)

(4.1.20)

is the main quark-mass contribution to the nucleon mass splitting [122, 145]. Equa-

tion (4.1.19) links the leading TV pion-nucleon coupling to the strong nucleon mass

splitting δmN via the characteristic factor ρ, Eq. (4.1.5). We return to this issue in

Sec. 4.4.

Considering ∆ = 2, we can construct operators that contain one covariant deriva-

tive,

L(2)
/χ,f=2 =

β1
Fπ

{

Dµπ3 −
2π3
F 2
πD

π ·Dµπ −
2ρ

FπD
π ·Dµπ

}

N̄SµN, (4.1.21)

with

β1 = O
(

εm2
π

r2(θ̄)M2
QCD

)

. (4.1.22)

The subleading TV interaction thus consists of a seagull vertex (and its chiral part-

ners) [91], which is related to isospin violation in the pion-nucleon coupling constant

[122, 145, 148, 149].

Increasing the index by one, we find terms with two covariant derivatives and two

powers of symmetry-breaking parameters. We write

L(3)
/χ,f=2 = L

(3)

/χ1,f=2 + L
(3)

/χ2,f=2. (4.1.23)
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With two covariant derivatives we find

L(3)

/χ1,f=2 =

{

ζ1
Fπ

(Dνπ) · N̄ [Sµ, Sν ] τDµ−N +
ζ2
Fπ

(v · D v ·Dπ) · N̄τN

+
ζ3
Fπ

(Dµ⊥D
µ
⊥ π) · N̄τN +

2ζ4
F 2
π

(Dµπ × v ·Dπ) · N̄SµτN
}

1

2D

[

2π3
Fπ

+ ρ

(

1− π2

F 2
π

)]

+

{

−ζ5
4
N̄τi v · D2

−N −
ζ6
4
N̄τiD2

⊥,−N +
ζ7
Fπ
N̄Sµ (τ × (v · DDµπ))iN

+
iζ8
Fπ

(v ·Dπi) N̄S · D−N +
2iζ9
F 2
π

(Dµπ ×Dνπ)i N̄ [Sµ, Sν ]N

+
ζ10
F 2
π

(Dµπi) (D
µπ) · N̄τN +

ζ11
F 2
π

(v ·Dπi) (v ·Dπ) · N̄τN

+
ζ12
F 2
π

(Dµπ)
2N̄τiN +

ζ13
F 2
π

(v ·Dπ)2 N̄τiN

}

1

2

(

δi3 −
2π3 πi
F 2
πD
− 2ρπi
FπD

)

,

(4.1.24)

where the coefficients

ζi = O
(

εm2
π

r2(θ̄)M3
QCD

)

. (4.1.25)

Again, we see that the TV terms have an extra factor of ρ compared to their isospin-

breaking partners.

Lorentz invariance relates the coefficients of some of the operators in Eq. (4.1.24)

to δmN and β1. We discuss such relations in App. I, where we find

ζ1 = ζ6 =
δmN

2m2
N

, ζ8 =
gAδmN

m2
N

− β1
mN

. (4.1.26)

The relation between ζ6 and δmN is in agreement with the one found in Ref. [145].

Equation (4.1.26) reproduces the relations in Ref. [150], once a field redefinition is

used to eliminate time derivatives acting on the nucleon field from the subleading

chiral Lagrangian [151].

Contributions to L(3)
/χ,f=2 that do not contain derivatives come from consideration

of the tensor products Pa ⊗ Pb and S4 ⊗ Pb. As noticed earlier, the representation

of Pa ⊗ Pb contains a chiral invariant and a symmetric tensor. In the pion-nucleon
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sector, the chiral-invariant operator gives an inconsequential correction to the nucleon

mass, while the symmetric tensor yields a P - and T -conserving isospin-breaking term

from its 3-3 component, a P - and T -violating isospin-breaking term (∝ ρ) from its

3-4 component, and a P - and T -conserving chiral-symmetry breaking but isospin-

conserving term (∝ ρ2) from its 4-4 component. The tensor product S4⊗Pb, in turn,

contributes the 3-4 (which is isospin-breaking) and 4-4 (which is P - and T -violating

and down by a factor of ρ) components of a symmetric tensor, and the 3-4 component

(which is isospin-breaking) of an antisymmetric tensor. We thus find the additional

∆ = 3 terms,

L(3)

/χ2,f=2 = c
(3)
1

[

4π2
3

F 2
πD

2
+ ρ2

(

1− 4π2

F 2
πD

2

)

+
4ρπ3
FπD2

(

1− π2

F 2
π

)]

N̄N

+
δ
(3)
1 mN

2

{

N̄

[

τ3 −
2

F 2
πD

(

6π3

(

1− 4π2

3F 2
πD

)

π · τ − π2τ3

)]

N

+
4ρ

FπD2

(

1− π2

F 2
π

)

N̄π · τN
}

+
δ
(3)
2 mN

2
N̄

[

τ3 +
2

F 2
πD

(

π3π · τ − π2τ3
)

]

N, (4.1.27)

where we can estimate the coefficients,

c
(3)
1 = O

(

ε2m4
π

r4(θ̄)M3
QCD

)

, δ
(3)
1,2mN = O

(

εm4
π

r2(θ̄)M3
QCD

)

. (4.1.28)

The TV interaction associated to δ
(3)
1 mN is similar to the leading TV pion-nucleon

interaction in Eq. (4.1.19), and it is also linked to a contribution to the nucleon mass

splitting, but it is suppressed by an extra m2
π/M

2
QCD. More interesting is the TV

interaction associated to c
(3)
1 , since it involves only the neutral pion. Because of its

isospin character, it contributes differently to observables than the leading TV pion-

nucleon interaction. As one can see, it is suppressed with respect to the latter by a

factor εm2
π/M

2
QCD, and it is linked to an isospin-breaking two-neutral-pion-nucleon

seagull interaction. Note that there is no TV operator directly associated to δ
(3)
2 mN .

This term has exactly the same form as the main electromagnetic contribution to
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the nucleon mass difference, Eq. (3.3.21), and can only be distinguished by the

dependence of its coefficient on m2
π; in our power counting, it is suppressed by one

power of mπ/MQCD.

One can of course continue the procedure to higher orders. It is hard to imagine

they would have much phenomenological use, but they are not entirely devoid of

structural interest. For example, it is from tensor products of three vectors (at ∆ = 5)

that the first non-electromagnetic π3N̄τ3N interaction appears. Also, at this point

the connection between isospin and T violation ceases to be useful. These tensor

products are discussed in App. H.

4.1.3 Pion-nucleon sector. Dimension 6 sources.

The leading contributions from dimension 6 operators to the f = 2 Lagrangian come

from the isoscalar and isovector qCEDM and from the chiral invariant gCEDM and

TV four-quark operators. From Eq. (3.3.13), one finds that, being d̃0,3 proportional

to the light quark mass, in the case of the qCEDM pion-nucleon interactions first

appear in the ∆6 = −1 Lagrangian. As far as the chiral invariant operators are

concerned, it turns out that, in the f = 2 sector, it is impossible to build any chiral

invariant, TV operator with zero or one derivative. The first possible operators then

have two derivatives, or contain an insertion of the light quark mass, and thus also

the chiral invariant TV operators first contribute at ∆6 = −1. We find

L(−1)
6, f=2 =

δ̃qmN

2

{

N̄τ3N −
2π3
F 2
πD

N̄τ · πN − 2ρ̃0
FπD

N̄τ · πN
}

−∆̃qmN

2

{(

1− 2π 2

DF 2
π

)

N̄N +
2ρ̃3
FπD

π3N̄N

}

− ḡ0w
FπD

N̄τ · πN − ḡ1w
FπD

π3N̄N −
ı̄0w
F 2
π

(v ·Dπ ×Dµπ) · N̄SµτN.

(4.1.29)
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The first two operators in Eq. (4.1.29) are induced by the qCEDM and they have

coefficients

δ̃qmN ρ̃0 = O
(

δ̃0
m2
π

M2
/T

MQCD

)

, ∆̃qmN ρ̃3 = O
(

δ̃3
m2
π

M2
/T

MQCD

)

. (4.1.30)

The other three operators in Eq. (4.1.29) stem from the gCEDM and the TV four-

quark operators; their coefficients are

ḡ0w = O
(

w
m2
π

M2
/T

MQCD

)

, ḡ1w = O
(

wε
m2
π

M2
/T

MQCD

)

,

ı̄0w = O
(

w

M2
/T

MQCD

)

, (4.1.31)

where, as in the previous section, we use the shorthand w ∈ {w, σ1, σ8}, and we

assumed r(θ̄) ≈ 1.

The qEDM generates indirect electromagnetic contributions, which are suppressed

by a power of αem/π with respect to the operators in Eq. (4.1.29), and do not play

an important role for the observables we are interested in.

Eq. (4.1.29) shows a first important difference between TV from dimension 6

operators and the QCD θ̄ term, namely the presence of a TV and isospin breaking

coupling already at leading order in the f = 2 Lagrangian. The implications of this

difference are particularly relevant for the TV electromagnetic moments of deuteron,

and we will further discuss them in Chapter 6.

The calculation of the nucleon EDM generated by the qCEDM at NLO requires

the knowledge of the ∆6 = 0 Lagrangian. In the case of the gCEDM and of the TV

four-quark operators, which also generate ∆6 = 0 pion-nucleon interactions, short-

range physics plays a more important role than long-range physics mediated by pions,

thus making the derivation of pion-nucleon couplings at sub-leading orders irrelevant.
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The qCEDM contribution to the ∆6 = 0 Lagrangian is

L(0)
6,f=2 =

β̃q 1
Fπ

{

Dµπ3 −
2π3
F 2
πD

π ·Dµπ −
2ρ̃0
FπD

π ·Dµπ

}

N̄SµN

+
β̃q 2
Fπ

{(

1− 2π2

F 2
πD

)

+ ρ̃3
2π3
FπD

}

N̄Sµτ ·DµπN

+
β̃q 3
Fπ

{

− 2πi
FπD

+ ρ̃3

(

δi3 −
2πiπ3
F 2
πD

)}

N̄ (τ × v ·Dπ)iN, (4.1.32)

with the scaling of the coupling constant determined by

β̃q 1 ρ̃0 = O
(

δ̃0
m2
π

M2
/T

)

, β̃q 2,3 ρ̃3 = O
(

δ̃3
m2
π

M2
/T

)

. (4.1.33)

At ∆6 = 1 we can construct operators with two covariant derivatives, or one inser-

tion of the light quark mass. With two covariant derivatives, the isoscalar component

of the qCEDM, and its chiral partner, the isovector qCMDM, generate interactions

identical to Eq. (4.1.24), with the replacement ζi → ζ̃q i and ρ→ ρ̃0. The coefficients

go as

ζ̃q i ρ̃0 = O
(

δ̃0
m2
π

M2
/TMQCD

)

. (4.1.34)

The constraints imposed by Lorentz invariance on ζ̃q 1, ζ̃q 6 and ζ̃q 8 are identical to

Eq. (4.1.26).

The isovector qCEDM generates TV interactions with two derivatives that also

violate isospin symmetry, accompanied by chiral-symmetry breaking, but isospin in-
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variant, TC operators stemming from the isoscalar qCMDM

L(1)
6,f=2 =

{

ξ̃q 1
Fπ

DνπiN̄ [Sµ, Sν ]Dµ−N +
ξ̃q 2
Fπ

(v · Dv ·Dπi)N̄N

+
ξ̃q 3
Fπ

(Dµ⊥Dµ⊥πi) N̄N +
2ξ̃q 4
F 2
π

(Dµπ × v ·Dπ)i N̄S
µN

+ i
ξ̃q 5
Fπ

N̄ ((Dµπ)× τ )iDµ⊥,−N

}

[

− 2πi
FπD

+ ρ̃3

(

δ3i −
2

D

π3πi
F 2
π

)]

+

{

− ξ̃q 6
4
N̄v · D2

−N −
ξ̃q 7
4
N̄D2

⊥,−Nv +
iξ̃q 8
2Fπ

(v ·Dπ) · N̄τ S · D−N

+
iξ̃q 9
2F 2

π

(Dµπ ×Dνπ) · N̄ [Sµ, Sν]τN +
ξ̃q 10
F 2
π

(Dµπ )2N̄N

+
ξ̃q 11
F 2
π

(v ·Dπ )2N̄N

}

[(

1− 2π2

F 2
πD

)

+ ρ̃3
2π3
FπD

]

(4.1.35)

The scaling of the coefficients ξ̃q i is

ξ̃q i ρ̃3 = O
(

δ̃3
m2
π

M2
/T

1

MQCD

)

. (4.1.36)

Reparameterization invariance constrains some of the coefficients in Eq. (4.1.35).

At order 1/m2
N , we find the following relations:

ξ̃q 1 = −ξ̃q 7 =
∆̃qmN

4m2
N

, ξ̃q 5 =
β̃q 3
2mN

, ξ̃q 8 = −
gA
m2
N

∆̃qmN −
β̃q 2
mN

. (4.1.37)

At the same order, we consider insertion of the quark mass. The resulting oper-

ators transform as the tensor product of the QCD mass term and the qCEDM and
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qCMDM: (m̄S4 − ǫm̄P3)⊗
(

−d̃0Ṽ4 + c̃3Ṽ3 + d̃3W̃3 + c̃0W̃4

)

L(1)
6,f=2 =

[

(

c̃
(1)
1 ρ̃3 + c̃

(1)
2 ρ̃0

) 4π3
FπD2

(

1− π2

F 2
π

)

+ c̃
(1)
1

(

1− 4π2

F 2
πD

2

)

+ c̃
(1)
2

4π2
3

F 2
πD

2

]

N̄N

+
δ̃
(1)
1 mN + δ̃

(1)
2 mN

2
N̄

[

τ3 −
2

F 2
πD

(

6π3

(

1− 4

3

π2

F 2
πD

)

π · τ − π2τ3

)]

N

−ρ̃0δ̃(1)1 mN
2

FπD

(

1− 2π2

F 2
πD

)

N̄π · τN

−ρ̃3δ̃(1)2 mN
2π3
FπD

N̄

(

τ3 −
2π3
F 2
πD

π · τ
)

N

+
δ̃
(1)
3 mN + δ̃

(1)
4 mN

2
N̄

[

τ3 +
2

F 2
πD

(

π3π · τ − π2τ3
)

]

N. (4.1.38)

At this order, all three possible non-derivative pion-nucleon TV couplings receive

contribution from the qCEDM. The first TV operator in Eq. (4.1.38) represent a

correction to the isovector TV coupling in Eq. (4.1.29), from which it only differs

for observables with three or more pions. It receives a contribution from two tensor

products m̄d̃3S4⊗ W̃3 and m̄εd̃0P3⊗ Ṽ4, which are encoded in the two coefficients c̃
(1)
1

and c̃
(1)
2 . They scale as

c̃
(1)
1 ρ̃3 = O

(

δ̃3
m2
π

M2
/TMQCD

)

, c̃
(1)
2 ρ̃0 = O

(

δ̃0ε
m2
π

M2
/TMQCD

)

. (4.1.39)

The chiral partners of c̃
(1)
1 ρ̃3 and c̃

(1)
2 ρ̃0 transform, respectively, as the products m̄c̃0

S4 ⊗ W̃4 and m̄εc̃3P3 ⊗ Ṽ3. The first represents a isospin invariant correction to the

nucleon mass, which however has different multi-pion structure with respect to the

term ∆̃qmN in Eq. (4.1.29). The second operator violates isospin symmetry, and it

contributes to the scattering of neutral pion off the nucleon. The TV operator with

coefficient ρ̃0δ̃
(1)
1 mN provides a correction to the isoscalar TV coupling N̄π ·τN in Eq.

(4.1.29), while ρ̃3δ̃
(1)
2 mN is the first contribution of the qCEDM to the isospin breaking

coupling π3N̄τ3N . These two operators realize the tensor products m̄d̃0S4 ⊗ Ṽ4 and

m̄εd̃3P3 ⊗ W̃3 in the effective Lagrangian, and their coefficients go as

δ̃
(1)
1 mN ρ̃0 = O

(

δ̃0
m4
π

M2
/TMQCD

)

, δ̃
(1)
2 mN ρ̃3 = O

(

δ̃3ε
m4
π

M2
/TMQCD

)

. (4.1.40)
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The chiral partner of both ρ̃0δ̃
(1)
1 mN and ρ̃3δ̃

(1)
2 mN is the operator in the third line

of Eq. (4.1.38). Such operator contributes to the nucleon mass difference, and, at

least in principle, it can be distinguished from the operator proportional to δ̃qmN in

Eq. (4.1.29) if observables with two or more pions are considered. However, here we

see a first failure of the link between TC and TV operators we established in Eqs.

(4.1.6) and (4.1.7). Even in the purely hypothetical scenario that the coefficient of

the third operator in Eq. (4.1.38) could be extracted independently of δ
(3)
1 mN in Eq.

(4.1.27), this coefficient would carry information only on the sum δ̃
(1)
1 mN + δ̃

(1)
2 mN ,

and thus it would not provide any constraint on the coefficients of TV operators,

which depend on the individual value of δ̃
(1)
1 mN and δ̃

(1)
2 mN . Finally, the tensor

products m̄c̃3S4 ⊗ Ṽ3 and m̄εc̃0P3 ⊗ W̃4 also generate two TC operators without TV

partners. These operators contribute to the nucleon mass difference in exactly the

same form as the electromagnetic contribution δ̆mN in Eq. (3.3.22). The coefficients

δ̃
(1)
3 mN and δ̃

(1)
4 mN scale as

δ̃
(1)
3 mN = O

(

δ̃0

tan φ̃0

m4
π

M2
/TMQCD

)

, δ̃
(1)
4 mN = O

(

ε
δ̃3

tan φ̃3

m4
π

M2
/TMQCD

)

. (4.1.41)

4.1.4 Four-nucleon sector.

We discuss here the TV four-nucleon operators that stem from the QCD θ̄ term and

the dimension 6 sources of T violation. In this Section, different TV four-nucleon

operators are organized according to the chiral index ∆, defined in Eq. (3.3.9) for

the θ̄ term and in Eq. (3.3.13) for the dimension 6 sources. Modifications of the

power counting of four-nucleon operators that account for the unnatural size of the

nucleon-nucleon scattering lengths are discussed in Chapter 6.

In the case of the QCD θ̄ term, the first contribution to the f = 4 sector of the
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Lagrangian comes at ∆ = 2,

L(2)
/χ,f=4 =

γs
2
N̄

{(

τ3 −
2π3
F 2
πD

π · τ
)

− ρ

FπD
π · τ

}

N N̄N

+2γσN̄

{(

τ3 −
2π3
F 2
πD

π · τ
)

− ρ

FπD
π · τ

}

SµN N̄SµN, (4.1.42)

in terms of two TV parameters γs,σ, which by naive dimensional analysis scale as

γs,σ = O
(

1

F 2
π

εm2
π

r2(θ̄)M2
QCD

)

. (4.1.43)

Just as for f ≤ 2, here too TV operators are linked to isospin-violating operators,

which in this case generates the dominant contributions to the short-range isospin-

violating two-nucleon potential [122, 145]. The isospin-violating coefficients γi can

be seen as low-energy remnants of ρ-ω mixing [145] and a1-f1 mixing [152]. The TV

operators in Eq. (4.1.42) are not relevant for the nuclear potential to the order we

work in Chapter 7, but contribute to the three-nucleon TV potential at next order.

The first operators relevant to the calculation of the TV potential are

L(3)
/χ, f=4 = C1

[

2π3
F 2
πD

+ ρ

(

1− 2π2

F 2
πD

)]

N̄N∂µ(N̄S
µN)

+C2

[

2π3
F 2
πD

+ ρ

(

1− 2π2

F 2
πD

)]

N̄τN · Dµ(N̄τSµN), (4.1.44)

where the C̄i = ρCi are two new TV parameters. The covariant derivative in the

operator C2 is meant to be in the adjoint representation, that is, the isospin matrix

in Eq. (3.3.4) is replaced by (tj)ik = iεijk. The coefficients scale as

C1,2 = O
(

1

F 2
π

εm2
π

r2(θ̄)M3
QCD

)

, (4.1.45)

and therefore, in the case of the QCD θ̄ term, TV four-nucleon effects are smaller

than those induced by the leading TV pion-nucleon coupling, in Eq. (4.1.19). For

example, we will see in Chapter 7 that TV one-pion-exchange (OPE) gives the biggest

contribution to the TV nucleon-nucleon potential. The contribution of C̄1,2 to the

TV potential is suppressed by two powers of mπ/MQCD, and it arises at the same
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level as the TV two-pion-exchange potential and subleading OPE potentials from

O(m2
π/M

2
QCD) corrections to leading TC and TV pion-nucleon couplings. Since the

contribution of the largest four-nucleon operators to TV observables is already small,

we do not construct corrections to Eq. (4.1.44).

The coefficients Ci could in principle be determined from pion production in the

two-nucleon system and/or from isospin-violating three-nucleon forces. However,

even lower-order isospin-violating three-nucleon forces are very small [153, 154], so

prospects for extracting Ci from TC data are grim.

For the chiral-symmetry breaking qCEDM, the relative importance of four-nucleon

interactions and pion exchanges is the same as for the θ̄ term, even if the isospin struc-

ture of the four-nucleon interactions is richer. The first four-nucleon operators appear

at ∆6 = 0. The isoscalar qCEDM and the isovector qCMDM generate interactions

with the same form as those in Eq. (4.1.42), with the replacement γs,σ → γ̃s,σ and

ρ→ ρ̃0. The isovector qCEDM generates

L(0)
6, f=4 = γ̃′s

[(

1− 2π2

F 2
πD

)

+ ρ̃3
2π3
FπD

]

N̄N N̄N

+4γ̃′σ

[(

1− 2π2

F 2
πD

)

+ ρ̃3
2π3
FπD

]

N̄SµN N̄SµN. (4.1.46)

In terms of the qCEDM parameters δ̃0 and δ̃3, the coefficients γ̃s,σ and γ̃′s,σ are

ρ̃0γ̃s,σ = O
(

δ̃0
m2
π

F 2
πM

2
/T

)

, ρ̃3γ̃
′
s,σ = O

(

δ̃3
m2
π

F 2
πM

2
/T

)

. (4.1.47)

As in the case of the θ̄ term, the interactions in Eq. (4.1.46) contribute to the largest

TV three-body force.

Four-nucleon interactions from qCEDM that start with no pions first appear at

∆6 = 1, that is, two orders down with respect to the leading pion-nucleon coupling

in Eq. (4.1.29). Once again, the interactions from the isoscalar qCEDM are already

contained in Eq. (4.1.44), with C1,2 replaced by C̃1,2 and ρ replaced by ρ̃0. The
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isovector qCEDM is responsible for TV and isospin breaking four-nucleon operators

L(1)
6,f=4 = C̃3N̄

[

− 2

FπD
π · τ + ρ̃3

(

τ3 −
2π3
F 2
πD

π · τ
)]

N ∂µ
(

N̄SµN
)

−C̃4N̄

[

− 2

FπD
π · τ + ρ̃3

(

τ3 −
2π3
F 2
πD

π · τ
)]

SµN ∂µ
(

N̄N
)

.(4.1.48)

The TV low-energy constants ˜̄C1,2 = ρ̃0C̃1,2 and ˜̄C3,4 = ρ̃3C̃3,4 scale as

˜̄C1,2 = O
(

δ̃0
m2
π

F 2
πM

2
/TMQCD

)

, ˜̄C3,4 = O
(

δ̃3
m2
π

F 2
πM

2
/TMQCD

)

. (4.1.49)

Four-nucleon operators play a more relevant role in the case of the chiral-invariant

gCEDM and TV four-quark operators. In this case, four-nucleon operators appear

already in the ∆6 = −1 Lagrangian, that is at the same level as the pion-nucleon

couplings in Eq. (4.1.29). We find

L(−1)
6, f=4 = C̄w1N̄N∂µ(N̄S

µN) + C̄w2N̄τN · Dµ(N̄τSµN), (4.1.50)

with coefficients

C̄w1,2 = O
(

w
MQCD

F 2
πM

2
/T

)

. (4.1.51)

As usual, w includes the effects of the gCEDM, and of two four-quark operators in

Eq. (3.2.37), w ∈ {w, σ1, σ8}. The four-nucleon interactions in Eq. (4.1.50) are

thus responsible for a TV nucleon-nucleon potential of the same order as OPE from

Eq. (4.1.29). We will further discuss the implications of this observation for the TV

electromagnetic moments of the deuteron in Chapter 6. The chiral invariant and TV

dimension 6 operators contribute to the ∆ = 0 and ∆ = 1 four-nucleon Lagrangian.

Since these operators are not needed for the calculation of the observables discussed

in Chapters 5 and 6, we do not explicitly construct them.

The qEDM generates four-nucleon TV operators, which are, however, suppressed

by a factor of αem/π with respect to Eq. (4.1.46) and (4.1.48) and thus completely

negligible.



120

4.2 Electromagnetic Interactions

In this section we are interested in studying how the combined effects of the elec-

tromagnetic interaction of quarks and of the sources of T violation we are studying

manifest themselves in the low-energy Lagrangian. As we have mentioned, we have

to consider interactions of two types, with and without soft photons. The former pro-

vide short-range contributions to EDMs. The latter involve the exchange of at least

one hard photon, which cannot be resolved in the low-energy EFT and is therefore

integrated out —these interactions are purely hadronic and sometimes called indirect

electromagnetic effects. Such indirect effects include pion-nucleon TV vertices, which

result from a TV interaction accompanied by a hard-photon exchange.

As far as the QCD θ̄ term is concerned, the simplest operators are linear in the

chiral-breaking parameters m̄ and e, and thus necessarily involve a soft photon. Under

SO(4), these operators have the transformation properties of tensor products of the

chiral-symmetry-breaking terms in Lm, Eq. (3.4.15), and Le, Eq. (3.2.11),

[

m̄r(θ̄)S4 − m̄εr−1(θ̄) (P3 + ρP4)
]

⊗ eAµ

(

Iµ

6
+ T µ34

)

. (4.2.1)

We have therefore to construct operators that transform as components of SO(4)

vectors, S4 and Pa, or components of tensor products, S4 ⊗ T34 and Pa ⊗ T34, with
a = 3, 4. The tensor product of the antisymmetric tensor Tab and the vector Pc gives

rise to a vector (V , V4) and a three-index tensor Zab,c, antisymmetric in the first two

indices. As far as parity and time reversal are concerned, the vector (V , V4) has the

same properties as (S, S4): V4 is P and T even while V is P and T odd. On the

other hand, the tensor product Tab ⊗ Sc generates a vector with the same properties

as P and a three-index tensor. For soft-photon interactions, our index ∆ counts also

the number of photon fields and their derivatives.

The analysis of dimension 6 sources proceeds along similar lines. A quark chromo-

EDM and its chiral partner, a quark anomalous chromo-magnetic moment, induce
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soft-photon interactions via tensor products with Le of the form

(

−d̃0Ṽ4 + c̃3Ṽ3 + d̃3W̃3 + c̃0W̃4

)

⊗ eAµ
(

Iµ

6
+ T µ34

)

, (4.2.2)

while TV electromagnetic operators from the chiral invariant TV sources have the

same transformations as Le. The qEDM and qMDM already have a soft photon,

therefore they yield nucleon-photon operators that transforms like the fourth and

third components of the vectors V and W in Eq. (3.2.51).

Another possibility is to construct operators that have higher powers of e. Those

with odd (even) powers of e generate operators with odd (even) number of external

photons. For example, for the θ̄ term, the simplest of the indirect electromagnetic

effects come from operators that under the group SO(4) have the transformation

properties of tensor product of

[

m̄r(θ̄)S4 − m̄εr−1(θ̄) (P3 + ρP4)
]

⊗ eAµ

(

Iµ

6
+ T µ34

)

⊗ eAν

(

Iν

6
+ T ν34

)

, (4.2.3)

in which the photon is integrated out. In this case we need components of SO(4)

vectors, S4 and Pa, and of tensor products, S4⊗T34, Pa⊗T34, S4⊗T34⊗T34, and Pa⊗
T34 ⊗ T34. These contributions are proportional to the electromagnetic fine-structure

constant αem. Typically, there is also an extra inverse factor of π, so for power

counting purposes we assign them a factor of αem/π. Recall that we enlarge the chiral

index to count also powers of αem/π, with the assumption αem/π ∼ εm3
π/M

3
QCD. With

this assumption, it turns out that indirect electromagnetic operators are negligible, at

the order we are working at. For example, pion-nucleon indirect couplings only appear

in the ∆ = 4 Lagrangian, three orders down with respect to the leading TV coupling

from the θ̄ term. We derive these operators, in particular the first electromagnetic

contribution to the vertex π3N̄τ3N in Ref. [39]. Similarly, in the case of the qEDM

or qCEDM, the first indirect pion-nucleon coupling has ∆6 = 2, which means it

contributes to the nucleon EDM at N3LO, which is far beyond the accuracy of our

analysis.
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Clearly, more complicated operators can be constructed, which involve either more

external photons and/or more powers of m̄ and αem/π. Operators with two photons

have been discussed in Ref. [156] in connection with nucleon Compton scattering;

since they give small contributions even to atomic EDMs [119], we do not list here

operators with more than a single soft photon. Higher-order terms in the Lagrangian

can also be realized by building operators with the transformation properties above

that contain covariant derivatives of the nucleon and pion fields or higher-dimension

gauge-invariant operators.

In the following we catalog the most important TV interactions with one external

photon, classifying them by the number of nucleon fields f . For the QCD θ̄ term these

interactions are always linked to operators from quark mass difference, according to

Eq. (4.1.5). Below we list these partners together. Unlike the operators in Sec. 4.1,

however, here the S4s play an important role: although the interactions they generate

are of course T conserving, when combined with T34s they lead to isospin-breaking

interactions that spoil the link (4.1.5) between operators from θ̄ and the quark mass

difference already for the leading electromagnetic terms. For the other chiral sym-

metry breaking sources, the qEDM and qCEDM, as in the case of purely hadronic

interaction, the links (4.1.6) and (4.1.7) are irrelevant because of the impossibility

to isolate the effects of the quark anomalous magnetic moment or chromo-magnetic

moment from those of the quark mass terms. We discuss in further detail the link

between TC and TV operators in Sec. 4.4

4.2.1 Photon-nucleon sector. The QCD θ̄ term

Interactions with soft photons can be obtained using the U(1)-gauge covariant deriva-

tives (3.3.12) in existing operators. More interesting are the interactions that arise

through the field strength Fµν , which we describe here. Since the pion has spin 0, we

cannot construct an EDM operator in the f = 0 sector. In contrast, there are plenty

of TV interactions in the f = 2 sector.
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The first contributions from the QCD θ̄ term come at ∆ = 3. TV appears in

L(3)
/χ,f=2,em = 2D

(3)
0

[

2π3
FπD

+ ρ

(

1− 2π2

F 2
πD

)]

N̄Sµ
(

vν +
iDν⊥−
2mN

)

N Fµν

+E
(3)
1 N̄

(

τ3 −
2π3
F 2
πD

π · τ − 2ρ

FπD
π · τ

)

i [Sµ, Sν ]N Fµν

+2D
(3)
1 N̄

[

2

FπD
π · τ + ρ

(

τ3 −
2π3
F 2
πD

π · τ
)]

Sµ
(

vν +
iDν⊥−
2mN

)

N Fµν

+E
(3)
0

(

1− 2π2

F 2
πD
− 2ρπ3
FπD

)

N̄i [Sµ, Sν]N Fµν

+2D
′ (3)
1

[

2π3
FπD

+ ρ

(

1− 2π2

F 2
πD

)]

N̄

[(

1− 2π2

F 2
πD

)

τ3 +
2π3
F 2
πD

π · τ
]

Sµ
(

vν +
iDν⊥−
2mN

)

N Fµν . (4.2.4)

Here the first two sets of interactions have the transformation properties of P3 and P4,

while the other three represent the tensor product T34 ⊗ Pa. The TV operator with

coefficient D̄
(3)
0 = D

(3)
0 ρ contributes to the isoscalar nucleon EDM, while D̄

(3)
1 = D

(3)
1 ρ

and D̄
′(3)
1 = D

′(3)
1 ρ are isovector contributions. With coefficients E

(3)
0 and E

(3)
1 , we

find isoscalar and isovector contributions to the nucleon magnetic dipole moment,

suppressed by m2
π/M

2
QCD with respect to Eq. (3.3.18). They are associated to TV

interactions that contribute to pion photoproduction. The coefficients in Eq. (4.2.4)

scale as

D
(3)
0,1, D

′ (3)
1 , E

(3)
0,1 = O

(

e
εm2

π

r2(θ̄)M3
QCD

)

. (4.2.5)

For convenience, the EDM operators in Eq. (4.2.5) include a recoil correction, which

will be needed in the calculation of the nucleon EDM at NLO. Other electromagnetic

interactions with ∆ = 4 are constructed in Ref. [39].

At the same order ∆ = 3, more TC electromagnetic operators are generated by
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tensor products involving the quark mass term S4 in Eq. (3.4.15). They are

L(3)
S,f=2,em = 2F

(3)
0

2π3
FπD

N̄SµvνN Fµν + 2F
(3)
1

2

FπD
N̄π · τSµvνN Fµν

+ N̄ i [Sµ, Sν ]

{

G
(3)
0

(

1− 2π2

F 2
π

)

+G
(3)
1

(

τ3 −
2π3
F 2
πD

π · τ
)

+ G
′(3)
1

(

1− 2π2

F 2
πD

)

N̄

[(

1− 2π2

F 2
πD

)

τ3 +
2π3
F 2
πD

π · τ
]}

N Fµν .

(4.2.6)

Notice that the operators F
(3)
0 and F

(3)
1 have exactly the same form as the TC partners

of the isoscalar and isovector EDM operators with coefficients D
(3)
0 and D

(3)
1 , while

G
(3)
0 and G

(3)
1 are identical to the TC operators E

(3)
0 and E

(3)
1 . Therefore experimental

data on TC pion photoproduction, or on the nucleon magnetic moment can at best

provide information on the sum of coefficients D
(3)
0,1 +F

(3)
0,1 and E

(3)
0,1 +G

(3)
0,1, but not on

the value of the individual coefficients. Since the short-distance contribution to the

nucleon EDM only depend on D
(3)
0,1, this destroys our ability to extract information

about the TV operators from their TC partners.

4.2.2 Photon-nucleon sector. Dimension 6 sources.

We now consider the dimension 6 sources of T violation in Eq. (3.2.53). The chiral-

invariant sources, the gCEDM and the TV four-quark operators in Eq. (3.2.37),

generate the interaction with the lowest chiral index, ∆6 = −1.

L(−1)
6, f=2, em = N̄

{

2D̄
(−1)
w 0 + 2D̄

(−1)
w 1

[

τ3 +
2

F 2
πD

(

π3π · τ − π 2τ3
)

]}

Sµ
(

vν +
iDν−
2mN

)

NFµν , (4.2.7)

where, as before, we included a recoil correction in the ∆6 = −1 Lagrangian. The

scaling of the coefficient is

D̄
(−1)
w 0,1 = O

(

ew
MQCD

M2
/T

)

, (4.2.8)
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with w ∈ {w, σ1, σ8}. Notice that, differently from TV from the θ̄ term, for chiral

invariant TV sources the short-distance EDM operators have the same chiral index

as the leading pion-nucleon coupling, Eq. (4.1.29). Since the latter contributes to

the nucleon EDM only via loops, which pick up a further Q2/M2
QCD suppression, it

follows that, for chiral invariant sources, the nucleon EDM is mainly determined by

short-distance physics.

A second consequence of the enhancement of short-distance vs. long-distance

physics for chiral invariant sources is that the nucleon EDFF does not depend on the

momentum transfer at leading order in χPT. Momentum dependence only arises at

next-to-next leading order (N2LO). At this accuracy we need to consider the power-

suppressed, ∆ = 1 Lagrangian

L(1)
w, f=2, em = 2N̄

[

D̄
(1)
w 0

(

1− 2π2

F 2
πD

)

+ D̄
(1)
w 1

(

τ3 −
2π3
F 2
πD

π · τ
)]

SµN vνFµν

+2D̄
(1)′

w 1

(

1− 2π2

F 2
πD

)

N̄

[

τ3 +
2

F 2
πD

(

π3π · τ − π2τ3
)

]

SµN vνFµν

− 1

4m2
N

N̄

{

2D̄
(−1)
w 0 + 2D̄

(−1)
w 1

[

τ3 +
2

F 2
πD

(

π3π · τ − π 2τ3
)

]}

S · D⊥−Dµ⊥−N vνFµν

−N̄
(

S̄
′(1)
w 0 + S̄

′(1)
w 1 τ3

)

(

S · D⊥+Dµ⊥+ + SµD2
⊥+

)

N vνFµν + . . . (4.2.9)

The first three operators in Eq. (4.2.9) are proportional to the quark mass, while

the fourth and fifth are relativistic corrections to D̄
(−1)
w 0 and D̄

(−1)
w 1 . Finally, the two

operators in the last line are short-distance contributions to the first derivative of the

nucleon EDFF. The scaling of the coefficients is

D̄
(1)
w 0,1, D̄

′ (1)
w 1 = O

(

ew
m2
π

M2
/T

1

MQCD

)

, S̄
(1)
w 0,1 = O

(

ew
1

M2
/T

1

MQCD

)

. (4.2.10)

Eq. (4.2.9) only contains the operators relevant to the calculation of the momentum

dependence of the EDFF, the full ∆6 = 1, electromagnetic Lagrangian stemming

from the gCEDM and four-quark TV operators is given in Ref. [155].

The qCEDM and qCMDM generate electromagnetic interactions very similar to

those stemming from the QCD θ̄ term and the quark mass difference. Also in this
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case, chiral symmetry breaking from electromagnetism spoils the relation between

TV operators and their TC chiral partners, which, for convenience, we list separately

in Eqs. (4.2.11) and (4.2.12). Since d̃0 and d̃3 are proportional to the light quark

mass, the first TV operators with soft photons appears at ∆ = 1. They are

L(1)
qCEDM,f=2,em = 2N̄

{

˜̄D
(1)
q 0

(

1− 2π2

F 2
πD

)

+ ˜̄D
(1)
q 1

(

τ3 −
2π3
F 2
πD

π · τ
)

+ ˜̄D
′ (1)
q 1

(

1− 2π2

F 2
πD

)[

τ3 −
2

F 2
πD

(

π2τ3 − π3π · τ
)

]}

Sµ
(

vν +
iDν⊥−
2mN

)

N Fµν

−N̄
{

˜̄E
(1)
q 1

2π · τ
FπD

+
2π3
FπD

[

˜̄E
(1)
q 0

− ˜̄E
′(1)
q 1

(

τ3 −
2

F 2
πD

(

π2τ3 − π3π · τ
)

)]}

i [Sµ, Sν]N Fµν .

(4.2.11)

As usual, we have introduced recoil corrections to the isoscalar and isovector EDMs in

the leading Lagrangian. As in the case of the QCD θ̄ term, the largest short-distance

electromagnetic interactions are contributions to the isoscalar and isovector EDMs

and to TV in pion photoproduction, and they appear with chiral index which is two

units bigger than the leading pion-nucleon TV coupling. The TC partners of the

operators in Eq. (4.2.11), generated by the isoscalar and isovector qCMDM, are

L(1)
qCMDM,f=2,em = 2N̄

{

2π3
FπD

[

D̃
(1)
q 0 + D̃

′ (1)
q 1

(

τ3 −
2

F 2
πD

(

π2τ3 − π3π · τ
)

)]

+ D̃q 1
2

FπD
π · τ

}

Sµ
(

vν +
iDν⊥−
2mN

)

N Fµν

+N̄

{

Ẽ
(1)
q 1

(

τ3 −
2π3
F 2
πD

π · τ
)

+

(

1− 2π2

F 2
πD

)

[

Ẽ
(1)
q 0 + Ẽ

′(1)
q 1

(

τ3 −
2

F 2
πD

(

π2τ3 − π3π · τ
)

)]}

i [Sµ, Sν ]N Fµν .

(4.2.12)

and, as in the case of θ̄, they do constitute small corrections to the isoscalar and

isovector nucleon MDM and to TC pion photoproduction off the nucleon.
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The operators ˜̄D
(1)
q 0 ,

˜̄D
(1)
q 1 ,

˜̄E
(1)
q 0 and ˜̄E

(1)
q 1 transform as third and fourth components

of chiral four vectors. They all receive contributions from both the isoscalar and

isovector qCEDM. Schematically, we write the scaling of these coefficients

˜̄D
(1)
q 0,1,

˜̄E
(1)
q 0,1 = O

(

e
(

δ̃0 + δ̃3

) m2
π

M2
/TMQCD

)

, (4.2.13)

where the “+” should not be interpreted literally, but simply as an indication of the

existence of two contributions to the coefficients. ˜̄D
′(1)
q 1 and ˜̄E

′(1)
q 1 respectively come

from the realization of the product d̃0Ṽ4 ⊗ T34 and d̃3W̃3 ⊗ T34. Consequently, they

scale as

˜̄D
′(1)
q 1 = O

(

eδ̃0
m2
π

M2
/TMQCD

)

, ˜̄E
′(1)
q 1 = O

(

eδ̃3
m2
π

M2
/TMQCD

)

. (4.2.14)

The scaling of the TC coefficient in Eq. (4.2.12) can be inferred from Eqs. (4.2.13)

and (4.2.14).

Finally, the qEDM only generates operators that transform as vector,

L(1)
qEDM,f=2,em = 2D

(1)
q 0 N̄

[

2π3
FπD

+ ρ0

(

1− 2π2

F 2
πD

)]

Sµ
(

vν +
iDν⊥−
2mN

)

N Fµν

+ 2D
(1)
q 1 N̄

[

2

FπD
π · τ + ρ3

(

τ3 −
2π3
F 2
πD

π · τ
)]

Sµ
(

vν +
iDν⊥−
2mN

)

N Fµν

+ E
(1)
q 1 N̄

[(

τ3 −
2π3
F 2
πD

π · τ
)

− ρ0
2

FπD
π · τ

]

i [Sµ, Sν]N Fµν

+ E
(1)
q 0

[(

1− 2π2

F 2
πD

)

− ρ3
2π3
FπD

]

N̄ i [Sµ, Sν ]N Fµν ,

(4.2.15)

with coefficients

(

D
(1)
q 0 , E

(1)
q 1

)

ρ0 = O
(

eδ0
m2
π

M2
/T

1

MQCD

)

,
(

D
(1)
q 1 , E

(1)
q 0

)

ρ3 = O
(

eδ3
m2
π

M2
/T

1

MQCD

)

.

(4.2.16)

In the case of TV from the qEDM, long-range physics is suppressed by powers of αem

and TV observables like the neutron and deuteron TV electromagnetic moments are

dominated by short-range effects. As in the case of TV from chiral-invariant operators,
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the scale of the momentum variation of the nucleon EDFF is thus determined not

by mπ, but by MQCD, and, consequently, we have to construct the power suppressed

∆ = 3 Lagrangian. As usual, we find operators with two more covariant derivatives,

or one extra insertion of the light quark mass. Neglecting the TC operators, and

using barred symbols to denote TV coefficients

L(3)
6, f=2 em = 2N̄

(

D̄
(3)
q 0 + D̄

(3)
q 1 τ3

)

SµN vνFµν

− 1

4m2
N

N̄
(

D̄
(1)
q 0 + D̄

(1)
q 1 τ3

)

S · D⊥−Dµ⊥−N vνFµν

−N̄
(

S̄
′(3)
q 0 + S̄

′(3)
q 1 τ3

)

(

S · D⊥+Dµ⊥+ + SµD2
⊥+

)

N vνFµν + . . . ,(4.2.17)

with

D̄
(3)
q 0 = O

(

e(δ0 + δ3ε)
m4
π

M2
/TM

3
QCD

)

,

D̄
(3)
q 1 = O

(

e(δ0ε+ δ3)
m4
π

M2
/TM

3
QCD

)

,

S̄
′(3)
q 0 = O

(

eδ0
m2
π

M2
/TM

3
QCD

)

, S̄
′ (3)
q 1 = O

(

eδ3
m2
π

M2
/TM

3
QCD

)

. (4.2.18)

Once again, the “+” in the power counting estimate of D̄
(3)
q 0,1 indicates the presence

of different contributions. The dots in Eq. (4.2.17) denote multi-pion components of

the listed operator, and operators which start at one pion, which are not relevant to

our discussion.

4.2.3 Four-nucleon currents

The study of TV electromagnetic moments of the deuteron and other nuclei requires

the construction of four-nucleon TV currents, which, as discussed in Chapter 6, can

play a role, especially for those TV sources, like the qEDM or the chiral invariant

gCEDM and TV four-quark operators, for which short-distance effects tend to dom-

inate. We construct in this Section the most important four-nucleon currents, which

appear with index ∆ = 4 for the QCD θ̄ term, ∆6 = 2 for the qEDM and qCEDM
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and ∆6 = 0 in the case of chiral invariant TV sources. Modifications to the power

counting of four-nucleon currents in the Kaplan, Savage and Wise power counting are

discussed in Chapter 6.

In the case of θ̄ term, at ∆ = 4 we find

L(4)
/χ, f=4,em = D̄NN

(

1− 2π2

F 2
πD

)

N̄SµvνN N̄NFµν

+

[

L̄1

(

δi3 −
2πiπ3
F 2
πD

)

+ L̄2

(

1− 2π2

F 2
πD

)(

δi3 −
2

F 2
πD

(

π2 − π3πi
)

)]

[

N̄SµvντiN N̄N − N̄Sµvν N N̄τiN
]

Fµν

+

[

L̄3

(

δi3 −
2πiπ3
F 2
πD

)

+ L̄4

(

1− 2π2

F 2
πD

)(

δi3 −
2

F 2
πD

(

π2 − π3πi
)

)]

[

N̄SµvντiN N̄N + N̄Sµvν N N̄τiN
]

Fµν + . . . , (4.2.19)

where the first operator D̄NN transforms like the vector P4, L̄1,3 and L̄2,4 as the vector

and the tensor in the representation of P4 ⊗ T34. The dots in Eq. (4.2.19) stand for

other TV operators with ∆ = 4 that start with one pion. Since they do not contribute

to the deuteron EDM, we do not construct them explicitly. We also omitted the

TC partners of the operators D̄NN and L̄i, since, as in the case of electromagnetic

operators with f = 2, the link is no longer useful. By naive dimensional analysis, the

coefficients of the four-nucleon currents in Eq. (4.2.19) are

D̄NN , L̄i = O
(

eθ̄
m2
π

r2(θ̄)F 2
πM

4
QCD

)

. (4.2.20)

The operator D̄NN represents a short-distance contribution to the deuteron EDM.

In the perturbative pion approach, its scaling is modified, and the operator is en-

hanced with respect to (4.2.20). Nonetheless, we find that it does not contribute to

the deuteron EDM at LO, but it is important at NLO. The operators L̄1 and L̄2

contribute to the radiative capture process n + p → d + γ, and the inverse process,

the photodissociation of the deuteron d+ γ → n+ p, with the neutron and proton in

a 1S0 configuration. The operators L̄3 and L̄4 do not contribute to S waves.
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The qCEDM generates exactly the same operators as (4.2.19), with coefficients

˜̄Dq NN ,
˜̄Lq 1,2 = O

(

e(δ̃0 + δ̃3)
m2
π

F 2
πM

2
/TM

2
QCD

)

(4.2.21)

˜̄Lq 3,4 = O
(

eδ̃0
m2
π

F 2
πM

2
/TM

2
QCD

)

, (4.2.22)

while the qEDM only contributes to the operators that transform like vectors, D̄NN ,

L̄1 and L̄3

D̄q NN = O
(

eδ0
m2
π

F 2
πM

2
/TM

2
QCD

)

, L̄q 1,3 = O
(

eδ3
m2
π

F 2
πM

2
/TM

2
QCD

)

.

(4.2.23)

The operators stemming from chiral invariant gCEDM and TV four-quark oper-

ators differ from those in Eq. (4.2.19) only in their chiral structure. They appear in

the ∆ = 0 Lagrangian

L(0)
6, f=4,em = D̄wNNN̄S

µvνN N̄NFµν

+

(

δi3 −
2

F 2
πD

(

π2 − π3πi
)

)

[

L̄w 1

(

N̄SµvντiN N̄N − N̄Sµvν N N̄τiN
)

+ L̄w 2

(

N̄SµvντiN N̄N + N̄Sµvν N N̄τiN
)]

Fµν ,

(4.2.24)

with coefficients given by

D̄wNN , L̄w 1,2 = O
(

e
w

F 2
πM

2
/T

)

. (4.2.25)

For the qEDM and the chiral invariant TV sources, it is interesting to go one order

further, and construct short-range contributions to the deuteron MQM. We find

L(n+1)
6, f=4,em = εµναβvαN̄SβN N̄SλN ∂λFµν

[

M̄w + M̄q

(

1− 2π2

F 2
πD

)]

+ . . . (4.2.26)

where the dots denote other TV operators at this order that do not contribute to the

deuteron MQM. The chiral index n is n = 2 for the qEDM and n = 0 for the gCEDM
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and the TV four-quark operators. Consequently, the scaling of the coefficient is

M̄w = O
(

ew
1

F 2
πM

2
/TMQCD

)

, M̄q = O
(

eδ0
m2
π

F 2
πM

2
/TM

3
QCD

)

. (4.2.27)

Once again, these scalings are modified if we want to account for the fine tuning in

nuclear physics, as we discuss in Chapter 6.

4.2.4 Lepton-nucleon operators

Finally, we take into account the lepton-nucleon operators stemming from the two-

lepton-two-quark operators in Eq. (3.2.55). At leading order in the χPT power

counting, we obtain

L(0)
llNN = Σ

(0)
1 ēiγ5e N̄N

[

2π3
FπD

+ ρlq 1

(

1− 2π2

F 2
πD

)]

+Σ
(0)
2 ēiγ5e N̄τ iN

[

− 2πi
FπD

+ ρlq 2

(

δi3 −
2πiπ3
F 2
πD

)]

+Σ
(0)
3 ēe N̄τiN

[(

δi3 −
2πiπ3
F 2
πD

)

− ρlq 1
2πi

FπD

]

+Σ
(0)
4 ēe N̄N

[(

1− 2π2

F 2
πD

)

+ ρlq 2
2π3
FπD

]

+Σ
(0)
5 ēσµνe N̄ SµvνN

[

2π3
FπD

+ ρlq 3

(

1− 2π2

F 2
πD

)]

+Σ
(0)
6 ēσµνe N̄τ iSµvνN

[

− 2πi
FπD

+ ρlq 3

(

δi3 −
2πiπ3
F 2
πD

)]

+Σ
(0)
7 ēσµνe N̄τii [Sµ, Sν]N

[(

δi3 −
2πiπ3
F 2
πD

)

− ρlq 3
2πi

FπD

]

+Σ
(0)
8 ēσµνe N̄i [Sµ, Sν ]N

[(

1− 2π2

F 2
πD

)

+ ρlq 3
2π3
FπD

]

, (4.2.28)

to which we assign the coefficients

Σ
(0)
i = O

(

e2
σlq
M2

/T

)

. (4.2.29)

Increasing the chiral order by one, at ∆6 = 1 there are operators with one covari-

ant derivative, for example with the form (neglecting chiral partners and isospin)
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ēeN̄S · D+N and coefficients of order O(e2σlq/M2
/TMQCD). We do not construct them

explicitly.

The QCD θ̄ term, and the other dimension 6 sources of T violation in Eq. (3.2.53)

can also generate couplings of the form (4.2.28), when hard photon exchanges between

quark and leptons are integrated out. However, the chiral violating structures ēe,

ēiγ5e and ēσ
µν in the lepton sector can only be generated by insertions of the lepton

mass, and require the exchange of at least two hard photons, leading to tiny coeffi-

cients. Long-range contributions to lepton-nucleon interactions of the form (4.2.28)

are less suppressed, and arise from TV operators with two nucleons and two photons,

still their contribution to atomic EDM appears to be small [119], and we do not ex-

plicitly calculate them here. The largest lepton-nucleon couplings from the θ̄ term

and the dimension 6 sources of TV comes from the radius of the Electric Dipole Form

Factor, which we discuss in detail in Chapter 5.

Operators of the form (4.2.28) are important for the EDMs of paramagnetic atoms.

For example, in the case of 205 Tl it is found that [81, 119]

dT l = −585de − e(43GeV)
(

Σ
(0)
1 − 1/5Σ

(0)
2

)

(4.2.30)

which, with our estimates (3.2.38) and (4.2.29), and neglecting Σ
(0)
2

dT l ≈ −e
me

M2
/T

(

585 δe +
43GeV

me

e2σlq 1

)

. (4.2.31)

If, as in the majority of the models, σlq 1 is proportional to me/M/T , then the con-

tribution of short-distance lepton-nucleon operators is negligible, and experimental

constraints on the Thallium EDM are immediately translated in bounds on de. On

the other hand, if there exist models in which σlq 1 is not suppressed by the lepton

mass, as could be the case of certain two Higgs doublet models, Σ
(0)
1 and Σ

(0)
2 can

contribute significantly to dT l, polluting the extraction of de.
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4.3 Role of tadpoles

In Sec. 3.4 we discussed how the quark mass term, in presence of T violation, can

cause vacuum instability and we imposed vacuum alignment in first order in the

symmetry-breaking parameters by choosing ϕ according to Eq. (3.4.35) so that no S3

was present in the leading Lagrangian. Yet, non-aligned terms, tadpoles in particular,

germinate in second order in the symmetry breaking parameters, or when higher

dimension TV sources are added to the mix.

In this Section we show how the subleading tadpoles do not constitute a problem.

Because of the smallness of their coupling constant, they can be dealt with in pertur-

bation theory, meaning that, for any given TV observable at a given accuracy only a

finite number of neutral pion disappearing into the vacuum must be considered. For

the applications we discuss in Chapters 5 and 7 it is more convenient to eliminate

the pion tadpoles from the mesonic Lagrangian. This result can be achieved with

field redefinitions of the form (3.4.20) and (3.4.26) and an appropriate choice of the

rotation angle ϕ. The field redefinitions do not induce new TV interactions. Their

net effect is to modify the dependence of the coefficients of the TV operators con-

structed of Secs. 4.1 and 4.2 on the parameters ε (3.2.6), and δ̃0,3 (3.2.45). Since in

the previous Section we kept track of the dependence of the low energy constants on

ε and δ̃0,3, here we show in detail how such dependence is modified by the elimination

of the tadpoles.

For the reader not interested in the details, we can summarize the main result of

this Section by noting that the elimination of the leading tadpole from dimension 6

sources, in Eq. (4.1.13) causes an ineffectual shift of the coefficients of the operators

generated by the isovector qCEDM, while it produces an additional contribution,

proportional to δ̃3 and to the quark mass difference ε, to the EFT operators that

represent the isoscalar qCEDM. Schematically, the effect of the elimination of the

leading tadpole can be obtained by replacing δ̃0 with δ̃0 + εδ̃3 in the scaling formulas

in Secs. 4.1 and 4.2.
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Now the details. The chiral symmetry breaking Lagrangian in the purely mesonic

sector, including operators with ∆ up to 2 in the case of chiral symmetry breaking

from the quark masses, and ∆6 = 0 for dimension 6 sources was constructed in Eqs.

(4.1.1), (4.1.4), (4.1.9), (4.1.13), (4.1.15). We summarize it here.

Ltadpole =
m2
πF

2
π

4

(

1 +
∆m2

π

2m2
π

)

− m2
π

2D

(

1 +
∆m2

π

m2
πD

)

π2 +
δm2

π

2D2
π2
3

+Fπ
δm2

πρ

2D

(

1− 2π2

F 2
πD

)

π3 +
(

ρ̃3∆̃qm
2
π + ∆̄wm

2
π

) Fππ3
2D

+Fπ
δ̃3m

2
πρ̃3 + δ̃0m

2
πρ̃0 + δ̄wm

2
π

2D

(

1− 2π2

F 2
πD

)

π3. (4.3.1)

The quark masses are responsible for the TC operators in the first line of Eq. (4.3.1),

while θ̄ causes the ∆ = 2 tadpole. We have

∆m2
π = O

(

m4
π

M2
QCD

)

, δm2
π = O

(

ε2m4
π

r4(θ̄)M2
QCD

)

. (4.3.2)

The qCEDM and the chiral invariant TV sources produce tadpoles in the ∆6 = −2
and ∆6 = 0 Lagrangian,

ρ̃3∆̃qm
2
π = O

(

δ̃3
m2
πM

2
QCD

M2
/T

)

, ∆̄w = O
(

wε
m2
πM

2
QCD

M2
/T

)

, (4.3.3)

and

ρ̃3δ̃3m
2
π = O

(

δ̃3
m4
π

M2
/T

)

, ρ̃0δ̃0m
2
π = O

(

δ̃0ε
m4
π

M2
/T

)

, δ̄wm
2
π = O

(

wε
m4
π

M2
/T

)

. (4.3.4)

In Eq. (4.3.1) we have not written the TC operators in Eq. (4.1.13) and (4.1.15),

whose variation is negligible at the accuracy we are working, and we also neglect

terms proportional to ρ2, which are small for small θ̄.

The suppressed non-aligned tadpole operators in Eq. (4.3.1) can be dealt with in

perturbation theory and do not constitute per se a problem. This can be seen, for

example, in the case of the two-point pion Green’s function, already discussed in Sec.

3.4.1. The Lagrangian (4.3.1) generates Feynman diagrams similar to those in Fig.

3.1. If we limit ourselves to power counting and neglect the details of the diagrams,
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the tadpole term generates interactions analogous to those in Eq. (3.4.3), with the

replacement

g ∼ ρ
δm2

π

m2
π

= O
(

ρε2m2
π

r4(θ̄)M2
QCD

)

(4.3.5)

in the case of the θ̄ term, and

g ∼ ρ̃3
∆̃qm

2
π

m2
π

+
∆̄wm

2
π

m2
π

= O
(

δ̃3
M2

QCD

M2
/T

)

+O
(

wε
M2

QCD

M2
/T

)

(4.3.6)

for the largest tadpoles generated by dimension 6 sources.

In the present case g is much smaller than one, suppressed by two powers of

mπ/MQCD or MQCD/M/T . The subleading tadpoles generated by dimension 6 sources

yield an even smaller g, of the size of m2
π/M

2
/T . Therefore, the tadpoles in Eq. (4.3.1)

do not cause vacuum instability, that is, the choice of vacuum done in the construction

of the chiral Lagrangian is still viable and the explicit symmetry-breaking terms can

be handled in χPT. A toy model that illustrates this fact can be found in App. E.

However, generally pion tadpoles need to be considered when calculating any

observable. Due to the smallness of their coefficients, only a manageable number

of them contribute to the calculation of an observable at a given accuracy in the

expansion in powers of Q/MQCD. A concrete example where tadpoles play a role is

the TV pion-nucleon form factor at relative O(Q2/M2
QCD), which will be discussed in

App. J.

Still, one can rotate the tadpoles away using Eqs. (3.4.20) and (3.4.26). With the

choice

tanϕ = − ρ̃3∆̃qm
2
π + ∆̄wm

2
π

m2
π

= O
(

δ̃3
M2

QCD

M2
/T

)

+O
(

wε
M2

QCD

M2
/T

)

(4.3.7)

we can eliminate the tadpoles that transform like S3 from Eq. (4.3.1). Since the

angle is small, tanϕ ≈ ϕ, and from here on we keep only terms linear in ϕ. The

fact that the angle ϕ scales as M2
QCD/M

2
/T implies that the transformation of chiral

variant operators generated from the quark mass at ∆ = n + 2 contributes to TV

operators from dimension 6 TV sources at ∆6 = n. The variation of TV operators
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from θ̄ generates a TC contribution proportional to θ̄ and to 1/M2
/T , which, for the

same argument of Sec. 4.1.1, is small, while the variation of TC operators from the

TC and chiral breaking dimension 6 sources generates TV operators proportional to

1/M4
/T , which are also negligible. Chiral invariant operators are not modified by the

redefinitions (3.4.20) and (3.4.26).

The effect of the rotation (3.4.20), with angle (4.3.7), on the mesonic Lagrangian

is to cancel the tadpoles with transformation properties of a chiral vector, and to

modify the coefficients of the tensor:

Ltadpole =
m2
πF

2
π

4

(

1 +
∆m2

π

2m2
π

)

− m2
π

2D

(

1 +
∆m2

π

m2
πD

)

π2 +
δm2

π

2D2
π2
3

+
Fπ
2D

(

δm2
πρ+ δ̃′3m

2
πρ̃3 + δ̃′0m

2
πρ̃0 + δ̄′wm

2
π

)

(

1− 2π2

F 2
πD

)

π3,(4.3.8)

with

δ̃′3m
2
πρ̃3 = δ̃3m

2
πρ̃3 − ∆̃qm

2
πρ̃3

∆m2
π

m2
π

, (4.3.9)

δ̃′0m
2
πρ̃0 = δ̃0m

2
πρ̃0 + ∆̃qm

2
πρ̃3

δm2
π

m2
π

, (4.3.10)

δ̄′wm
2
π = δ̄wm

2
π − ∆̄wm

2
π

(

∆m2
π − δm2

π

m2
π

)

. (4.3.11)

The new terms come from the transformation of the TC operators in Eqs. (4.1.4) and

(4.1.9). We can thus rotate away the tadpole without introducing new interactions in

the meson Lagrangian. The net effect of the rotation is only to change the dependence

of the coefficients on the parameters δ̃0, δ̃3, and ε. The rotation indeed replaces Eqs.

(4.1.16) and (4.1.17) with

ρ̃3δ̃
′
3m

2
π = O

(

δ̃3
m4
π

M2
/T

)

, (4.3.12)

ρ̃0δ̃
′
0m

2
π = O

(

ε(δ̃0 + εδ̃3)
m4
π

M2
/T

)

, (4.3.13)

δ̄′wm
2
π = O

(

wε(1 + ε2)
m4
π

M2
/T

)

, (4.3.14)
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where, as usual, the “+” in power counting estimates is used to indicate the presence

of different contributions to the coefficients.

The remaining tadpole in Eq. (4.3.8) can eliminated by a second rotation, now

with angle

ϕ′ = − 1

m2
π

(

δm2
πρ+ δ̃′3m

2
πρ̃3 + δ̃′0m

2
πρ̃0 + δ̄′wm

2
π

)

. (4.3.15)

In this case, the size of ϕ′ implies that the variation of TC, chiral breaking operators

generated by the quark mass at order ∆ = n yields new TV contributions to the

∆ = n + 2 Lagrangian from the θ̄ term and ∆6 = n Lagrangian from the dimension

6 sources.

In the mesonic sector, we are left with

Ltadpole =
m2
πF

2
π

4

(

1 +
∆m2

π

2m2
π

)

− m2
π

2D

(

1 +
∆m2

π

m2
πD

)

π2 +
δm2

π

2D2
π2
3

− Fπ
2D

(

δm2
πρ+ δ̃′3m

2
πρ̃3 + δ̃′0m

2
πρ̃0 + δ̄′wm

2
π

) 2π2

F 2
πD

π3, (4.3.16)

Since the tadpole generated by the rotation (3.4.20) and the one in Eq. (4.3.8)

have different chiral properties, residual TV interactions involving an odd number of

pions are left behind. In many processes they will only contribute at loop level and,

consequently, at high order.

The two rotations that allow to eliminate the tadpoles affect the other sectors of

the Lagrangian as well. Also in this case, no new interactions are introduced, but the

dependence of the coefficients of TV operators on the parameters of the quark-gluon

Lagrangian δ̃0,3, and ε becomes more complicated.

For the θ̄ term, the rotation with angle ϕ′ turns Eqs. (4.1.2), (4.1.19) and (4.1.27)

into

L(∆≤3)
/χ, f=2 = ∆mN N̄N

(

1− 2π2

F 2
πD

)

+
δmN

2

{

N̄τ3N −
2π3
F 2
πD

N̄τ · πN
}

− ρ

FπD
δmN

(

1 +
δm2

π

m2
π

)

N̄τ · πN + c
(3)
1

4π2
3

F 2
πD

2
N̄N

+
4ρ

FπD

[

c
(3)
1 −

∆mN

2

δm2
π

m2
π

− 2c
(3)
1 π2

F 2
πD

]

π3N̄N + . . . (4.3.17)
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where we neglected terms quadratic in ρ, and . . . denotes the remaining terms in Eq.

(4.1.27), which are not affected by the rotation. Eliminating the tadpoles amounts

to a O(ε2m2
π/M

2
QCD) shift in the θ̄ contribution to ḡ0, and a shift in the π3N̄N

coupling. Recall that the c
(3)
1 term originated in the symmetric tensor contained

in a Pa ⊗ Pb structure just like the tadpole, as it is obvious from the form of the

corresponding terms. However, since there is no a priori relation between c
(3)
1 /∆mN

and δm2
π/2m

2
π, the π3N̄N coupling is not eliminated when we rotate the tadpole

away. The new contribution to the isovector coupling ḡ
(3)
1 has the same scaling as

c
(3)
1 . Notice, however, that the two contributions differ in their multi-pion structure,

and, at least in principle, the two coefficients c
(3)
1 and ∆mNδm

2
π/m

2
π can be extracted

independently.

The elimination of the tadpole has more consequences for the dimension 6 oper-

ators. In the pion-nucleon sector, the rotation with an angle ϕ = O
(

M2
QCD/M

2
/T

)

transforms the TV part of Eq. (4.1.29) into

L(−1)
6, f=2 = −(ḡ′0 q + ḡ′0w)

1

FπD
N̄τ · πN − (ḡ′1 q + ḡ′1w)

1

FπD
π3N̄

− ı̄0w
F 2
π

(v ·Dπ ×Dµπ) · N̄SµτN. (4.3.18)

with

ḡ′0 q = δ̃qmN ρ̃0 + δmN ρ̃3
∆̃qm

2
π

m2
π

(4.3.19)

ḡ′0w = ḡ0w + δmN
∆̄wm

2
π

m2
π

(4.3.20)

ḡ′1 q = ∆̃qmN ρ̃3 − 2∆mN ρ̃3
∆̃qm

2
π

m2
π

(4.3.21)

ḡ′1w = ḡ1w − 2∆mN
∆̄wm

2
π

m2
π

. (4.3.22)

From Eqs. (4.1.14) and the scaling of ∆mN = m2
π/MQCD, we see that the shift in the

isovector couplings ḡ1 q and ḡ1w is inconsequential, their scaling is still the same as

Eqs. (4.1.30) and (4.1.31). Instead, for the isoscalar couplings, the behavior in Eqs.
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(4.1.30) and (4.1.31) is replaced, after the rotation, by

ḡ′0 q = O
(

(

δ̃0 + εδ̃3

) m2
π

M2
/T

MQCD

)

, ḡ′0w = O
(

w(1 + ε2)
m2
π

M2
/T

MQCD

)

. (4.3.23)

The rotation used to eliminate the subleading tadpole induces a further, small, shift

in the qCEDM and gCEDM contributions to ḡ0 and ḡ1 in Eqs. (4.3.18). Such a

shift contributes at ∆6 = 1 in the pion-nucleon sector, for which we only considered

qCEDM contributions. We find that ḡ′0,1 is replaced by ḡ′0,1 + δḡ′0,1, with

δḡ
′

0 q =
δmN

m2
π

(

δ̃′3m
2
πρ̃3 + δ̃′0m

2
πρ̃0

)

(4.3.24)

δḡ
′

1 q = −2∆mN

m2
π

(

δ̃′3m
2
πρ̃3 + δ̃′0m

2
πρ̃0

)

. (4.3.25)

The rotation with angle ϕ′ does not affect, at the order we are working, the nucleon-

nucleon and nucleon-photon Lagrangian from the qCEDM and from the gCEDM and

four-quark operators.

On the contrary, the rotation used to eliminate the leading tadpole from dimen-

sion 6 sources also affects the subleading pion-nucleon Lagrangian, and the nucleon-

nucleon and nucleon-photon Lagrangian. In the subleading pion-nucleon Lagrangian,

for operators that transform as W̃3, like β̃q 2 and β̃q 3 in Eq. (4.1.32) and all the op-

erators in Eq. (4.1.35) the effects of the rotation can be absorbed in a redefinition of

the coefficients, whose scaling is still determined by Eqs. (4.1.33) and (4.1.36). For

operators that transform as Ṽ4, the scaling of the coefficients is modified.

ρ̃0β̃
′
q 1 = ρ̃0β̃q 1 + ρ̃3β1

∆̃qm
2
π

m2
π

= O
(

(

δ̃0 + εδ̃3

) m2
π

M2
/T

)

(4.3.26)

ρ̃0ζ̃
′
q i = ρ̃0ζ̃q i + ρ̃3ζi

∆̃qm
2
π

m2
π

= O
(

(

δ̃0 + εδ̃3

) m2
π

M2
/TMQCD

)

. (4.3.27)

For the tensors (4.1.38), the shift in the coefficient δ̃
(1)
2 mN is inconsequential. The

coefficients of the isoscalar and isovector couplings N̄π · τN and π3N̄N receive an
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additional contribution:

ρ̃3c̃
′(1)
1 + ρ̃0c̃

′(1)
2 =

(

ρ̃3c̃
(1)
1 + ρ̃0c̃

(1)
2 + ρ̃3c

(3)
1

∆̃qm
2
π

m2
π

)

(4.3.28)

ρ̃0δ̃
′(1)
1 mN = ρ̃0δ̃

(1)
1 mN + ρ̃3δ

(3)
1 mN

∆̃qm
2
π

m2
π

(4.3.29)

where the new contributions to the coefficients go as ε2δ̃3 and εδ̃3. Once again, they

can be obtained by replacing δ̃0 with δ̃0 + εδ̃3 in Eqs. (4.1.39) and (4.1.40).

The same replacement in Eqs. (4.1.47) and (4.1.49) takes care of the effects of

the elimination of the tadpoles in the four-nucleon sector. Notice in particular that

the coefficient of the chiral invariant operators in Eq. (4.1.50) are not changed by the

field redefinition.

The same argument applies to electromagnetic operators. The elimination of the

leading tadpole generated by the qCEDM modifies to coefficients in Eq. (4.2.11) in a

way that can be schematically summarized by the replacement δ̃0 → δ̃0 + εδ̃3 in Eqs.

(4.2.13) and (4.2.14) (and also Eq. (4.2.21) and (4.2.22)). The rotation of the leading

tadpole generated by the chiral invariant gCEDM and TV four-quark operators does

not modify the coefficients of the electromagnetic operators with ∆6 = −1 in Eqs.

(4.2.7), while it changes the chiral breaking operators D̄
(1)
w, 0,1 in Eq. (4.2.9) in a way

that corresponds to shifting w → w(1 + ε2).

Since in EFT a field redefinition does not change the result for any observable,

it is our choice whether to keep or eliminate tadpoles. We give an example of this

flexibility in App. J.

4.4 Discussion

In Secs. 4.1 and 4.2 we constructed the lowest orders of the TV chiral Lagrangian

involving pions and up to four nucleons, which is generated by dimension 4 and

dimension 6 TV sources. Tab. 4.1 summarizes the accuracy of our results in the pion-

nucleon, nucleon-photon and nucleon-nucleon sector. The coefficients of TV operators
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Correction pion-nucleon photon-nucleon nucleon-nucleon
× Q2 × F 2

πQ
θ̄ term, leading 1 Q2/M2

QCD Q/MQCD

qCEDM derivative Q/MQCD Q3/M3
QCD Q2/M2

QCD

derivative2 Q2/M2
QCD — —

mass m2
π/M

2
QCD — —

gCEDM leading 1 1 1
4-quark derivative — Q/MQCD —

derivative2 — Q2/M2
QCD —

mass — m2
π/M

2
QCD —

qEDM leading αem/π Q2/M2
QCD αemQ/πMQCD

Table 4.1. Size of the coefficients of the TV terms in the Lagrangian constructed
in Secs. 4.1 and 4.2. Operators stemming from the θ̄ term are measured in units
of θ̄m2

π/MQCD, while operators generated by the dimensions 6 TV sources in units
of (δ̃, δ, w)m2

πMQCD/M
2
/T for the qCEDM, qEDM and chiral invariant respectively.

To compare quantity of the same dimension, photon-nucleon and nucleon-nucleon
coefficients are multiplied by Q2 and F 2

πQ, where Q is the momentum of external
particles, of the order of the pion mass.

stemming from the θ̄ term are measured in units of θ̄m2
π/MQCD, while for dimension

6 sources we are using units of (δ̃, δ, w)m2
πMQCD/M

2
/T for the qCEDM, qEDM and

for the chiral invariant dimension 6 sources respectively. In order to compare objects

with the same dimension, we have multiplied the photon-nucleon coefficients by Q2

and the nucleon-nucleon by F 2
πQ, where Q denotes the typical momentum of external

particles, and it is of order of the pion mass.

Even before delving into the details of the calculation of some TV nuclear observ-

ables, which is the subject of Chapters 5 and 6, we can already draw some qualitative

conclusion from Tab. 4.1.

For the dimension 4 QCD θ̄ term, the first noticeable aspect is that all interac-

tions are proportional to negative powers of the large scale MQCD. This is a simple

consequence of two facts: i) the θ̄ term can be traded for a mass term, which then

brings at least one power of m2
π in the EFT; ii) no P vector can be constructed out of

pion fields alone. Time reversal is an accidental symmetry, in the sense that it only
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appears in the subleading effective Lagrangian, even though it is (for θ̄ 6= 0) a lead-

ing interaction (that is, represented by a dimension-four operator) in the underlying

theory. T violation would thus be somewhat suppressed at low energies, even if θ̄ had

natural size. The same is true of isospin violation and ε [122].

Extending the analysis to the dimension 6 operators, we notice that the different

chiral properties of the θ̄ term and the qCEDM on the one side and the gCEDM and

four-quark operators on the other imply very different relations between long-distance

and short-distance TV effects. The θ̄ term and the qCEDM both violate chiral sym-

metry, and thus they can generate TV pion-nucleon interactions in which the pion

couples to the nucleon non-derivatively (see App. D). As a consequence, the first

TV pion-nucleon couplings appear in the Lagrangian two orders before short-range

contributions to the nucleon EDM, and to the first nucleon-nucleon interaction which

contributes to the TV nucleon-nucleon potential. For the nucleon EDM and EDFF,

this fact implies that even though pion-nucleon TV couplings can only contribute to

the nucleon EDM via loops, which bring in a m2
π/(2πFπ)

2 suppression, they are still

as important as the short-distance operators [93, 91]. For higher nuclei, the most

important contribution to TV electromagnetic moments comes from the one-pion-

exchange TV potential, which causes the nucleus wavefunction to mix with states of

different parity, unless the admixed component has quantum numbers that cause the

dipole matrix element to vanish. We will discuss in detail the example of the deuteron

EDM and MQM in Chapter 6. The application of chiral EFT to study the effects

of θ̄ term and the qCEDM in few nucleon systems with A ≥ 2 is thus particularly

promising, since TV observables are likely to depend on few low energy constants, in

the f = 2 TV Lagrangian. Once these constants are fixed in TV experiments, one is

in the position to make testable, model independent predictions.

For the chiral invariant sources of T violation, instead, the pion-nucleon TV cou-

pling appear in the Lagrangian at the same order as short-distance nucleon EDM

operators and four-nucleon TV operators. This happens because it is not possible
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to write a TV chiral invariant pion-nucleon coupling with only one derivative. The

first chiral invariant TV pion-nucleon coupling must have two derivatives, while non-

derivative couplings can be generated by considering the combined effects of chiral

invariant TV sources and the chiral-breaking quark mass; in any case, pion-nucleon

couplings receive a further suppression of Q2/M2
QCD. This difficulty does not affect

the nucleon-photon and nucleon-nucleon sector, where chiral invariant operators with

a minimal number of derivatives can be constructed.

The consequence for the nucleon EDM is that it is dominated in this case by short-

distance contributions. For higher nuclei, TV corrections to the wavefunction now

are not only due to TV pion-exchange, but also to short-distance operators. More in

general, we will see in the concrete examples of Chapters 5 and 6 that the increased

role of short-distance interactions in the case of chiral invariant TV operators reduces

the predictive power of our analysis, because of the appearance of more low energy

constant.

Finally, pion physics is suppressed also in the case of TV from the qEDM. In this

case the suppression comes from the need to integrate out the photon in the qEDM,

which leads to the factor of αem/π in Tab. 4.1. Also in this case, the predominance

of short-distance effects poses a serious limitation to our predictive power.

ḡ0 ḡ1 ḡ2
θ̄ term LO θ̄ — —

N2LO θ̄ (1, ε2) m2
π/M

2
QCD θ̄εm2

π/M
2
QCD —

qCEDM LO δ̃0, εδ̃3 δ̃3 —

N2LO (δ̃0, εδ̃3, ε
2δ̃0, ε

3δ̃3) (δ̃3, εδ̃0, ε
2δ̃3) εδ̃3

×m2
π/M

2
QCD ×m2

π/M
2
QCD ×m2

π/M
2
QCD

gCEDM LO w,wε2 wε —

Table 4.2. List of possible non-derivative TV pion-nucleon vertices, up to
O(m2

π/M
2
QCD) w.r.t. the leading pion-nucleon coupling. We give the size of the

contributions to the interaction strengths in units of m2
π/MQCD for the θ̄ term and of

m2
πMQCD/M

2
/T for the dimension 6 TV sources. For simplicity we assumed θ̄ ≪ 1.

We can now look more in detail to the structure of the TV pion-nucleon vertex.
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Traditionally [157, 158, 159, 160, 161], implications of T violation in nuclear physics

have been drawn from the possible isospin structures of non-derivative pion-nucleon

interactions, without prejudice about their relative sizes:

L/T,πN = − ḡ0
Fπ
N̄π · τN − ḡ1

Fπ
π3N̄N −

ḡ2
Fπ
N̄ (3π3τ3 − π · τ ) . (4.4.1)

In Tab. 4.2 we list the estimated sizes of the non-derivative TV pion-nucleon couplings

found in Sec. 4.1.2 for different sources of T violation.

Since the θ̄ term breaks chiral symmetry, but not isospin symmetry, at leading

order it only contributes to the isoscalar coupling ḡ0 via Eq. (4.1.19) which is nothing

but the pion-nucleon interaction of Ref. [93] with its chiral partners, in stereographic

coordinates. From Eq. (4.1.19)

ḡ0 θ̄ = δmNρ. (4.4.2)

This coupling receives hadronic corrections of O(m2
π/M

2
QCD), and, after the elimina-

tion of the tadpoles, from Eqs. (4.1.27) and (4.3.17) one gets

δḡ0 θ̄ = 2ρ

(

−δ(3)1 mN + δmN
δm2

π

2m2
π

)

. (4.4.3)

ḡ0 θ̄ also receives electromagnetic corrections, which are suppressed by αem/π, and are

not explicitly constructed here.

The isospin breaking coupling π3N̄N is suppressed by two powers of mπ/MQCD:

ḡ1 θ̄ = −4ρ
(

c
(3)
1 −∆mN

δm2
π

2m2
π

)

. (4.4.4)

It also receives corrections of order αem/π, which we do not explicitly list here. Nu-

merically αem/π ∼ εm3
π/M

3
QCD (using MQCD ∼ mρ, the mass of the rho-meson), so

the most important contribution is presumably the hadronic one. Finally, the most

relevant contribution to ḡ2 has electromagnetic origin and is suppressed by αem/π with

respect to ḡ0 [39]. Hadronic contributions to π3N̄τ3N are suppressed by m4
π/M

4
QCD,

as shown in App. H.

It is clear then that the calculation of TV observables that are mostly sensitive to

ḡ1 requires, at least for TV from the QCD θ̄ term, the construction of the full N2LO
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TV Lagrangian, which contains not only non-derivative pion-nucleon couplings of the

form (4.4.1), but also derivative pion-nucleon couplings and short-range interactions.

We will return on this subject in Chapter 7.

In the case of the qCEDM, if we assume that the isoscalar and isovector qCEDM

have the same size, δ̃0 ≈ δ̃3, the isospin conserving and isospin breaking couplings ḡ0

and ḡ1 both are present at leading order, and, after the rotation of the tadpole they

are (dropping the primes in Eqs. (4.3.19) and (4.3.21) )

ḡ0 q = δ̃qmN ρ̃0 + δmN ρ̃3
∆̃qm

2
π

m2
π

(4.4.5)

ḡ1 q = ∆̃qmN ρ̃3 − 2∆mN ρ̃3
∆̃qm

2
π

m2
π

. (4.4.6)

Two orders down, we encounter hadronic corrections to ḡ0 and ḡ1, and the first

hadronic contribution to ḡ2. Dropping for a moment the assumption δ̃0 ≈ δ̃3, a

predominantly isoscalar qCEDM, δ̃0 ≫ δ̃3 will not be distinguishable from the θ̄

term in low energy observables. In particular, as far as pion-nucleon couplings are

concerned one would find in this case that ḡ0 ≫ ḡ1. A predominantly isovector

qCEDM, δ̃3 ≫ δ̃0 would instead yield ḡ0 and ḡ1 of approximately the same order,

with the extra factor of ε in the isoscalar coupling suggesting ḡ1 & ḡ0.

The chiral invariant TV sources give rise to the same relations between the non-

derivative couplings ḡ0, ḡ1 and ḡ2 as the qCEDM, even though in this case, derivative

couplings appear already at leading order.

The fact that different sources of TV are responsible for different hierarchies be-

tween the non-derivative TV couplings ḡ0, ḡ1 and ḡ2 has important implications for

the TV electromagnetic moments of nuclei. In Chapter 6, we will explore them more

in detail in the simplest possible example, the calculation of the EDM and MQM of

the deuteron.
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4.4.1 Connection to TC operators

As we have shown, in the purely hadronic sector of the theory, chiral symmetry links

the coefficients of the leading TV operators to those of TC operators. This relation

is particularly important for TV from the θ̄ term, on which we focus in the first part

of this Section. We will briefly discuss the operators induced by the TC partners of

the qCEDM and qEDM at the end of the Section.

TV from the θ̄ term is linked, in particular, to isospin breaking from the quark

mass difference. Therefore, the measurement of TC but isospin-breaking observables

can determine the contribution of the QCD dynamics to TV coupling constants. Since

isospin violation that is linear in the quark masses always breaks charge symmetry,

while this is not necessarily true of indirect electromagnetic interactions, it is in CSB

observables that we have the best chance of making inferences about T violation

from the θ̄ term. If we consider the latter as the only source of T violation, this link

would leave θ̄ as the only parameter to be determined in the direct observation of T

violation.

The most important example of the link to isospin violation is in the lowest-order

terms [93, 92, 163]: Eq. (4.1.19) links the leading TV interaction

L(1)
/T,πN = − ḡ0

FπD
N̄τ · πN (4.4.7)

to the quark-mass contribution to the nucleon mass splitting δmN :

ḡ0 = ρ δmN = O
(

ρεm2
π

r2(θ̄)MQCD

)

. (4.4.8)

It is well-known that this interaction produces the dominant long-range contribution

to the nucleon EDM and form factor [93, 94, 95, 96, 162, 97, 91, 98, 99]. With δmN

known, a determination of ḡ0 would allow one to obtain the value of θ̄ via Eq. (4.1.5).

Now, δmN cannot be determined solely from the observed mass splitting, since

the latter also receives an indirect electromagnetic contribution of similar size δ̆mN =

O(αemMQCD/π) [122, 145], given in Eq. (3.3.22). One can use models for higher-

energy physics in order to extract δ̆mN from the Cottingham sum rule, δ̆mN =
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−(0.76 ± 0.30) MeV [137], thus inferring δmN . There is also a lattice calculation,

δmN = 2.26±0.57±0.42±0.10 MeV [133]. Alternatively, one would like to determine

δmN directly from low-energy data. This is in principle possible [122] because δ̆mN

originates from a chiral tensor, and thus generates different interactions between

the nucleon and an even number of pions than does Eq. (4.1.19). In fact, CSB

observables in pion production reactions such as pn→ dπ0 [134, 135, 136] and dd→
απ0 [164, 165] are quite sensitive to δmN . Unfortunately they are also sensitive

to other CSB parameters and the calculation of the strong interactions themselves

are not easy, so that at present there is room for improvement in the extraction of

δmN from data [166, 167]. This should, nevertheless, be possible as we hone our

theoretical and experimental tools [147]. The link with T violation should serve as

an extra motivation for this program.

The connection with CSB is in no way limited to leading order. The first correction

in the pion-nucleon sector [91],

L(2)
/T,2πN = − 2h̄0

F 2
πD

π ·DµπN̄S
µN, (4.4.9)

has a coefficient related by Eq. (4.1.21) to the quark-mass contribution to isospin

breaking in the pion-nucleon coupling constant,

h̄0 = ρβ1 = O
(

ρεm2
π

r2(θ̄)M2
QCD

)

. (4.4.10)

At present there are only bounds on β1. For example, from a phase-shift analysis of

two-nucleon data [145, 148, 149], β1 = 0(9) · 10−3, which is comparable to estimates

of β1 from π-η mixing.

Note that when we face interactions that are no longer linear in ε, the connection

is not necessarily to CSB; it might be merely to more general isospin violation. For

example, the new TV structure π3N̄N in Eq. (4.1.27),

L(3)
/T,πN =

ḡ
(3)
1

FπD

(

1− 2π2

F 2
πD

)

π3N̄N + . . . , (4.4.11)
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with

ḡ
(3)
1 = 4ρc

(3)
1 = O

(

ρε2m4
π

r4(θ̄)M3
QCD

)

, (4.4.12)

has a partner that is isospin-breaking but does respect charge symmetry. The param-

eter c
(3)
1 can in principle be extracted from isospin violation in pion-nucleon scattering,

but it is not easy: even the very sophisticated, state-of-the-art analysis of Ref. [168]

stops one order shy of it, at which level many other poorly determined parameters

already appear.

We can thus obtain information about some strong-interaction matrix elements

that appear in T violation from an analysis of isospin violation. However, at higher

orders in the strong-interaction sector this connection disappears. The consideration

of subleading TV interactions requires the construction of operators that transform as

tensor products of the chiral-breaking terms in the QCD Lagrangian. In this case, the

relation (4.1.5) applies to the ratio of the coefficients of the TV and TC components of

the tensors. In general, however, the tensors thus obtained belong to some reducible

representation of SO(4), and they have to be decomposed as the sum of independent

operators belonging to irreducible representations of the group. High-order tensor

products may generate operators that have the same chiral properties as the vectors

S and P in the QCD Lagrangian. T violation is still in P4s and S3s proportional to

ρ, but their number might no longer match those of T -conserving S4s and P3s.

One example, given in App. H, is that of a TV operator with the same transfor-

mation properties as S3, which is linked by Eq. (4.1.5) to a chiral-breaking operator

that transforms as S4. This S4 is merely a subleading correction to another S4, the

nucleon sigma term, which does not have a TV partner. The correction cannot be

separated experimentally from the lower-order term; it could potentially be separated

theoretically via lattice simulations with varying quark masses (although if it is nec-

essary to appeal to lattice calculations then one could calculate the strong-interaction

coefficient of the TV operator directly). Worse still, another S4 without TV partner

can appear at the same order as the S4 we are interested in, which is in fact the
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case of the example in App. H. In this case, the connection with a TC observable is

completely lost.

Similarly, in another App. H example, only part of a P4 is linked to a P3, which is

a correction to the nucleon mass splitting. As a consequence, the connection between

the coefficient of a N̄π · τN interaction and δmN , shown in leading order in Eq.

(4.4.8), no longer holds four orders down in the mπ/MQCD expansion.

As soon as the electromagnetic interaction is turned on, the combined isospin-

breaking effects of the electromagnetic coupling and of the quark-mass difference

destroy the validity of the relation (4.1.5). Here the most important example is the

case of the short-distance contributions to the nucleon EDM, extracted from Eq.

(4.2.4):

L(3)
/T,Nγ = 2N̄

[

D̄
(3)
0 +

(

D̄
(3)
1 + D̄

′ (3)
1

)

τ3 +
2

F 2
π

(

D̄
′(3)
1

D
− D̄

(3)
1

2−D

)

(

π3π · τ − π2τ3
)]

Sµ
(

vν +
iDν⊥−
2mN

)

NeFµν

(

1− 2π2

F 2
πD

)

,

(4.4.13)

with coefficients

D̄
(3)
i = ρD

(3)
i = O

(

ρεm2
π

r2(θ̄)M3
QCD

)

. (4.4.14)

Since by power counting they should be comparable to the EDM generated by a pion

loop [93, 94, 95, 96, 97, 91, 98, 99], the nucleon EDM up to next-to-leading order

depends on three TV parameters: ḡ0, D̄
(3)
0 , and D̄

(3)
1 + D̄

′ (3)
1 .

These operators are linked by Eq. (4.2.5) to operators that contribute to pion

photoproduction on the nucleon. (We do not see here a direct link to anomalous

magnetic moments [169].) However, the coefficients cannot be extracted from the

measurement of isospin violation in pion photoproduction due to the existence in Eq.

(4.2.6) of operators with the same chiral properties as D
(3)
0 and D

(3)
1 that are not

linked to TV operators. Even if one assumes TV to arise solely from the θ̄ term, the

measurement of the neutron and proton EDMs alone would not be sufficient to fix
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ḡ0 (and thus extract the value of the angle θ̄ using δmN ), unless the short-distance

operators are calculated in lattice QCD.

These conclusions are obtained by considering the chiral group SU(2)L×SU(2)R.
If one assumes the strange quark mass to provide a suitable expansion parameter, one

works with SU(3)L × SU(3)R instead. This larger symmetry increases our ability to

extract strong-interaction matrix elements needed for an analysis of T violation from

TC measurements [93, 94, 95, 96, 97, 98, 99]. The limitation of this approach comes,

of course, from the poorer convergence of the chiral expansion in the SU(3)L×SU(3)R
case.

In Sec. 4.1.1 we pointed out that the isoscalar and isovector qCEDM break chiral

symmetry as components of two chiral four-vectors whose TC components represent

the anomalous quark chromo-magnetic dipole moment. Therefore, we introduced the

parameters ρ̃0 and ρ̃3 and we could establish relations analogous to Eq. (4.1.5). We

also noticed that, unfortunately, such a relation carries no practical effect, since the

contribution of the quark anomalous chromo-magnetic moment to TC low-energy

observables can never be isolated from other, more relevant chiral breaking effects, in

particular the effects of the quark mass and the quark mass difference.

We can more concretely see this in the realization of the Lagrangian from the

qCMDM in Secs. 4.1 and 4.2. Eq. (4.1.29) contains the leading interactions in

the pion-nucleon sector. We can see the the qCMDM generates a contribution to

the nucleon mass difference, δ̃qmN , and a contribution to the sigma term, ∆̃qmN ,

which have the exact same form as Eqs. (4.1.19) and (4.1.2) and are suppressed by

M2
QCD/M

2
/T with respect to δmN and ∆mN . In the nucleon-photon sector, the contri-

butions to the isoscalar and isovector nucleon magnetic moment Ẽ
(1)
q0 , Ẽq 1and Ẽ

′ (1)
q 1

are O(M2
QCD/M

2
/T ) corrections to E

(3)
0 +G

(3)
0 , E

(3)
1 +G

(3)
1 and G

′ (3)
1 , which are already

smaller by m2
π/M

2
QCD with respect to the leading contributions to the anomalous

magnetic moments in Eq. (3.3.18). The same can be said for the pion photoproduc-

tion operators in Eq. (4.2.12), and also for the electromagnetic operators from the
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qMDM. Thus we see that the symmetry properties of the qCMDM and qMDM are

not sufficient to allow us to identify their contributions to low-energy observables in

nuclear physics, and to disentangle them from those of other operators that have the

same chiral properties.

If on the one hand chiral symmetry is not sufficient to fully constrain the QCD

dynamics that enters the TV couplings, on the other hand it is a powerful tool to

organize the TV Lagrangian as a series of terms suppressed by more and more powers

of mπ/MQCD and Q/MQCD. It can be used to extrapolate lattice calculations, in this

case the nucleon EDM [170, 171, 172], to realistic values of mπ, and to take one-

nucleon information, experimental or numerical, into nuclear systems [37].
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Chapter 5

The Nucleon Electric Dipole Moment

5.1 Introduction

The electric dipole form factor (EDFF) completely specifies the parity (P ) and time-

reversal (T ) -violating coupling of a spin 1/2 particle to a single photon [91, 92].

Together with the well-known parity P and T -preserving electric and magnetic form

factors and the P -violating, T -preserving anapole form factor, the P - and T -violating

EDFF completely specifies the Lorentz covariant electromagnetic current of a particle

with spin 1/2. At zero momentum, it reduces to the nucleon electric dipole moment

(EDM). Although the full momentum dependence of a nuclear EDFF will not be

measured anytime soon, the radius of the form factor provides a contribution to

the Schiff moment (SM) of the corresponding atom, because it produces a short-

range electron-nucleus interaction. Furthermore, it can be used in lattice simulations

to extract the EDM by extrapolation from a finite-momentum calculation [173] (in

addition to the required extrapolations in quark masses and volume [163]).

There has been some recent interest [91, 92, 174, 175, 99, 40] in the nucleon EDFF

motivated by prospects of experiments that aim to improve the current bound on the

neutron EDM, |dn| < 2.9 ·10−13 e fm [82], by nearly two orders of magnitude [83], and

to constrain the proton and deuteron EDMs at similar levels [87]. We would like to

understand the implications of a possible signal in these measurements to the sources

of T violation at the quark level, which include, in order of increasing dimension,

the QCD θ̄ term, the quark color-EDM (qCEDM) and EDM, the gluon color-EDM,

TV four-quark operators etc. [107, 108, 110, 111]. Unfortunately, as with other low-

energy observables, both the EDM and the SM of hadrons and nuclei are difficult

to calculate directly in QCD. However, long-range contributions from pions can, to

some extent, be calculated using Chiral Perturbation Theory, in particular the TV
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Lagrangian constructed in Chapters 3 and 4.

The TV current-current nucleon-electron interaction is of the form

iT = −ie ē(l′)γµe(l)Dµν(q) N̄(p′)Jνed(q,K)N(p), (5.1.1)

where e(l) (N(p)) is an electron (nucleon) spinor with momentum l (p) and Dµν(q) =

−i(ηµν/q2+. . .) is the photon propagator with q2 = (p−p′)2 ≡ −Q2 < 0. The nucleon

electric dipole current Jµed can be expressed in terms of q = p− p′ and K = (p+ p′)/2

as an expansion in powers of Q/mN that reads [91, 39, 40]

Jµed(q,K) = 2
(

F0(Q
2) + F1(Q

2)τ3
)

[

Sµv · q − S · qvµ

+
1

mN

(Sµq ·K − S · qKµ) +
1

2m2
N

S ·K (K · qvµ −Kµv · q)
]

,

(5.1.2)

where F0(Q
2) and F1(Q

2) are the isoscalar and isovector EDFF of the nucleon. We

will write

Fi(Q
2) = Di − S ′

i Q
2 +Hi(Q

2), (5.1.3)

where Di is the EDM, S ′
i the Schiff moment

S ′
i = −

dFi(Q
2)

dQ2
, (5.1.4)

and Hi(Q
2) accounts for the remaining Q2 dependence of the form factor. The form

factor itself can be expanded in powers of Q/MQCD. In Sec. 5.2 we compute the

nucleon EDFF generated by the θ̄ term and the qCEDM, at next-to-leading order

(NLO) in Q/MQCD. In Sec. 5.3 we turn our attention to the other dimension 6

sources. In this case, the momentum dependence of the EDFF only arises at next-to-

next LO ( N2LO), and we work at this accuracy. Finally, in Sec. 5.4 we discuss how

the nucleon EDFF partially reflects the source of T violation at the quark level.

5.2 The Nucleon EDFF. QCD θ̄ and qCEDM

The leading-order contribution to the EDM from the QCD θ̄ term has been known for

a long time [93]. It includes loop diagrams made out of the leading TV pion-nucleon
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Figure 5.1. Tree level and one-loop diagrams contributing to the nucleon electric
dipole form factor from the θ̄ and qCEDM in leading order. Solid, dashed and wavy
lines represent nucleons, pions and (virtual) photons, respectively; single filled circles

stand for interactions from L(0)
χ, f≤2 in Eq. (3.3.17), squares represent the TV vertices

from the leading TV pion-nucleon and nucleon-photon Lagrangian, L(1)
/χ, f=2 (4.1.19)

and L(3)
/χ, f=2,em (4.2.4), and L(−1)

6, f=2 (4.1.29) and L(1)
qCEDM,f=2,em (4.2.7). For simplicity

only one possible ordering is shown here.

interaction ḡ0 in L(1)
/χ,f=2 in Eq. (4.1.19) and the unknown short-range contributions

in L(3)
/χ, f=2,em in Eq. (4.2.4). We depict these contributions in Fig. 5.1. Both the one-

loop diagram and the short-range operators contribute to the TV electromagnetic

current at the order O
(

em2
πQ/M

3
QCD

)

, where MQCD is the typical hadronic scale,

MQCD = 2πFπ. More recently, the calculation has been extended to the nucleon SM

[162], and to the full momentum dependence of the EDFF [91]

In this Section, we extend the analysis to the nucleon EDM and EDFF generated

by the qCEDM, and, for both sources, we carry out the calculation of the EDFF to

NLO in the χPT power counting.

We remarked in Chapter 4 that the relative importance of long- and short-distance

physics is similar for TV from qCEDM and the θ̄ term, and that the main difference

between the two sources is that, in leading order, the QCD θ̄ term only contributes

to the isoscalar non-derivative pion-nucleon coupling ḡ0, while the qCEDM induces

contributions to ḡ0 and ḡ1 at the same level. Consequently, we find that also in the

case of the qCEDM the leading contributions to the EDFF come from pion loops,

with the leading TV couplings given in Eq. (4.1.29), and from the short-distance

EDM operators that appear in the ∆6 = 1 Lagrangian, in Eq. (4.2.11). In this case,
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Figure 5.2. One-loop diagrams contributing to the nucleon electric dipole form
factor in sub-leading order coming from one insertion of an L(1)

f=2 operator. Solid,
dashed and wavy lines represent nucleons, pions and (virtual) photons, respectively;

single filled circles stand for interactions from L(0)
χ,f=2 while double circles for TC chiral

invariant and chiral breaking interactions from L(1)
χ,f=2 (3.3.18), and L(1)

/χ,f=2, given in

Eqs. (4.1.2) and (4.1.19). Squares represent the TV vertices from L(1)
/χ, f=2 (4.1.19) and

L(−1)
6, f=2 (4.1.29) for the θ̄ and qCEDM, respectively. For simplicity only one possible

ordering is shown here.
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Figure 5.3. Diagrams contributing to the nucleon electric dipole form factor in sub-
leading order coming from one insertion of the subleading TV vertices, represented by
the circled square. The form of the interaction is given in L(2)

/χ, f=2 (4.1.21) and L(0)
6, f=2

(Eq. (4.1.29)) for the θ̄ and qCEDM, respectively. Other symbols are as in Fig. 5.2.
For simplicity only one possible ordering is shown here.

the contribution to the current is of the order O
(

em2
πQ/M

2
/TMQCD

)

.

The explicit calculation of the diagrams in Fig. 5.1 shows that the only one loop

diagram that does not vanish in leading order is diagram 5.1(a). Since only charged

pions contribute to the diagram, it turns out that the nucleon EDM in leading order

is sensitive only to ḡ0, while ḡ1, which couples the nucleon the a neutral pion, does

not play any role in LO. As a consequence, the nucleon EDM and EDFF induced by

the QCD θ̄ term and by the qCEDM have identical form, at least in leading order.

At NLO, there are no new, unknown short-range parameters appearing at tree

level, the recoil corrections in L(4)
/χ, f=2, em and L(2)

6, f=2, em (which we included in Eqs.

(4.2.4) and (4.2.11)) simply ensuring —together with the relativistic corrections in

L(1)
χ, f=2 (3.3.18) — the form (5.1.1) of the current.

The loop diagrams contributing to the nucleon EDFF in NLO are shown in Figs.

5.2 and 5.3, classified according to the combination of couplings that they contain.

All other contributions to the EDFF are formally of higher order: they come from

more powers of momenta in diagrams with the same number of loops, or from extra
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loops.

The NLO diagrams of Fig. 5.2 are built from the leading TV interaction, in Eq.

(4.1.19) for θ̄ and Eq. (4.1.29) for the qCEDM, the leading TC interactions in Eq.

(3.3.17), plus one insertion of an operator from the subleading TC Lagrangian, Eq.

(3.3.18). Diagrams 5.2(a,b,c) represent a correction to the external energies,

v · q = −q ·K
mN

, (5.2.1)

v ·K = − 1

2mN

(

K2 +
q2

4

)

∓ δmN

2
, (5.2.2)

of a proton (− sign) or neutron (+ sign) in LO diagrams. (In the remaining NLO

diagrams, we set the right-hand side of these equations to zero.) Analogous insertions

in the nucleon propagator are represented by diagrams 5.2(d,e,f). Diagrams 5.2(g,h,i)

originate in the recoil correction in pion emission/absorption, while diagram 5.2(j)

arises from the magnetic photon-nucleon interaction. Diagrams 5.2(k,l,m) represent

an insertion of the pion mass splitting in pion propagation. These one-loop diagrams

contribute to the current at order O(eḡiQ2/(2πFπ)
2mN ).

The NLO diagrams in Fig. 5.3 are built from the leading interactions in Eq.

(3.3.17) with one insertion of an operator from the TV subleading Lagrangian, Eqs.

(4.1.21) and (4.1.32) for θ̄ and qCEDM. The θ̄ term only contribute to diagrams

5.3(a,b), which, in the case of θ̄ are only proportional to the coupling h̄0. The qCEDM

contributes to all the diagrams in Fig. 5.3, diagrams 5.3(a,b) stem from the sub-

leading pion-nucleon couplings h̄0 = β̃q 1ρ̃0 and h̄1 = β̃q 2ρ̃3, and diagrams 2(c,d,e,f)

from the sub-leading coupling h̄2 = β̃q 2ρ̃3. These one-loop diagrams contribute to the

current at order O(eh̄iQ2/(2πFπ)
2), which is precisely the same order as the diagrams

in Fig. 5.2.

The diagrams in Figs. 5.1, 5.2 and 5.3 can be evaluated in a straightforward way.

We use regularization in d spacetime dimensions, and define

L ≡ 2

4− d − γE + ln 4π, (5.2.3)
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where γE = 0.557 . . . is the Euler constant. The LO loop contributions depend on a

renormalization scale µ but this dependence is compensated for by the contribution

from the short-range interactions in Eq. (4.2.4) and (4.2.11). The NLO diagrams are

finite in this regularization scheme.

Most of the diagrams actually vanish when the on-shell conditions (5.2.1) and

(5.2.2) are consistently enforced. Diagrams (a,b) in Fig. 5.3 vanish due to isospin.

Since diagrams 5.3(c,d,e,f) vanish too, the EDFF to this order depends only on the

leading TV parameters ḡ0,1 through Fig. 5.2. Diagram 5.2(j) vanishes due to its

spin structure and therefore the EDFF does not depend on the anomalous magnetic

moments, either. Diagram 5.2(h) gives both isoscalar and isovector contributions.

The remaining non-vanishing diagrams are 5.2(a,d,k). Neglecting TC isospin vio-

lation, these diagrams give purely isovector results. In the case of θ̄, the results

are proportional to egAḡ0/(2πFπ)
2, as in LO [91], times the recoil suppression factor

mπ/mN . For qCEDM, there is an additional momentum-independent contribution

proportional to ḡ1.

We have checked each of the isospin-breaking contributions in two ways. The

contributions from δ̆m2
π come through diagrams 5.2(k,l,m). Because the LO EDFF

originates entirely in charged-pion diagrams, these contributions can be obtained

alternatively by evaluating the LO EDFF with m2
π + δ̆m2

π, then expanding in powers

of δ̆m2
π/m

2
π:

F1(Q
2)|m2

π+δ̆m
2
π
= F1(Q

2)|m2
π
+ δ̆m2

π

∂F1(Q
2)

∂m2
π

∣

∣

∣

∣

m2
π

+ . . . (5.2.4)

The resulting EDFF is thus isovector. Including the nucleon mass difference δmN ,

diagrams 5.2(a,d) generate an additional isoscalar contribution. As a check, we have

performed the field redefinition of Ref. [138], which amounts here to adding to the

isospin breaking Lagrangian Eq. (4.1.19)

∆L(1) = −δmN

2
N̄τ3N − δmN (π × v ·Dπ)3 . (5.2.5)

The first term eliminates δmN from the internal nucleon lines and from the asymptotic
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states (and thus from Eq. (5.2.2)), but the second term generates extra contributions

∝ δmN in diagrams 5.2(k,l,m) and a new isospin-breaking photon-pion coupling,

which appears in a diagram with the same topology as diagram 5.2(d). The same

final result is obtained.

The diagrams in Fig. 5.2 contribute to both isoscalar and isovector EDMs. Taking

the NLO contributions, together with the LO from Ref. [91], we have

D0 = D̄0 +
egAḡ0
(2πFπ)2

π

[

3mπ

4mN

(

1 +
ḡ1
3ḡ0

)

− δmN

mπ

]

, (5.2.6)

D1 = D̄1 + D̄′
1 +

egAḡ0
(2πFπ)2

[

L− ln
m2
π

µ2
+

5π

4

mπ

mN

(

1 +
ḡ1
5ḡ0

)

− δ̆m2
π

m2
π

]

.(5.2.7)

The meaning of the low-energy-constants in Eq. (5.2.7) is as follows. In the case

of the θ̄ term, ḡ0 = ḡ0 θ̄, defined in Eqs. (4.1.19) and (4.4.2). The coupling ḡ1 is

suppressed, and it can be neglected at NLO accuracy. The isoscalar and isovector

short-distance EDM operators are defined in Eq. (4.2.4) and we have D̄0 = D
(3)
0 ρ,

D̄1 = D
(3)
1 ρ and D̄′

1 = D
′ (3)
1 ρ, with scaling given by Eq. (4.2.5). For the qCEDM,

ḡ0 = ḡ0 q and ḡ1 = ḡ1 q. The two couplings have roughly the same size, given in

Eq. (4.3.19) and (4.3.21). The short-distance contributions to the isoscalar EDM are

given in Eq. (4.2.11). The TC couplings in Eqs. (5.2.6) and (5.2.7) are all defined in

Sec. 3.3.1

The LO piece in Eq. (5.2.7), which depends on ḡ0 and is non-analytic in m2
π, is,

with the use of the Goldberger-Treiman relation, the result of Ref. [93], which holds

also for the qCEDM. The short-range isovector combination D̄1 + D̄′
1 absorbs the

divergence and µ dependence of the LO loop. The short- and long-range contributions

to the EDM are in general of the same size, but a cancellation is unlikely due to the

non-analytic dependence on mπ of the pion contribution. The isoscalar parameter

D̄0 is not needed for renormalization at this order, but there is no apparent reason to

assume its size to be much smaller than NDA either.

At NLO, the EDM receives finite non-analytic corrections, which depend also on

ḡ1 for qCEDM. From Eqs. (5.2.6) and (5.2.7) we see that, as usual in baryon χPT, the
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NLO contributions are enhanced by π over NDA. However, the other dimensionless

factors are not large enough to overcome the mπ/mN suppression. Setting µ to mN as

a representative value for the size ofD1 [93], the NLO term in Eq. (5.2.7) (Eq. (5.2.6))

is about 15% (10%) of the leading non-analytic term in Eq. (5.2.7), indicating good

convergence of the chiral expansion. The isovector character of the LO non-analytic

terms is approximately preserved at NLO. Isospin-breaking contributions, although

formally NLO, are pretty small, amounting to 15-20% of the total NLO contribution.

In the case of θ̄ we can use Eq. (4.1.5) and expect

|dn| = |D0 −D1| >∼
egA

(2πFπ)2
δmN

2ε

[

ln
m2
N

m2
π

+
π

2

mπ

mN

− δ̆m2
π

m2
π

+ π
δmN

mπ

]

θ̄

≃ (1.99 + 0.12− 0.04 + 0.03) · 10−3 θ̄ e fm (5.2.8)

for the neutron EDM and

|dp| = |D0 +D1| >∼
egA

(2πFπ)2
δmN

2ε

[

ln
m2
N

m2
π

+ 2π
mπ

mN
− δ̆m2

π

m2
π

− πδmN

mπ

]

θ̄

≃ (1.99 + 0.46− 0.04− 0.03) · 10−3 θ̄ e fm (5.2.9)

for the proton EDM, using the lattice QCD value δmN/2ε = 2.8 MeV [133]. Non-

analytic NLO corrections are therefore somewhat larger for the proton EDM, but

this difference is unlikely to be significant in light of our ignorance about the size of

short-range contributions.

The non-analytic terms in Eq. (5.2.6) represent a lower-bound estimate for the

size of the nucleon isoscalar EDM, as the short-range contribution D̄0 is nominally

of lower order. The expected lower bound on the nucleon isoscalar EDM might have

implications for proposed experiments on EDMs of light nuclei. In these cases, there

will be additional many-nucleon contributions, which could be dominant, but the

average of the one-nucleon contributions still provides a lower bound for the expected

nuclear EDM. For the deuteron, the average one-nucleon contribution is exactly 2D0

and, in the case of θ̄, we expect for the deuteron EDM

|dd| >∼ 2
egA

(2πFπ)
2

δmN

2ε
π

[

3mπ

4mN
− δmN

mπ

]

θ̄ ≃ (3.4− 0.6) · 10−4 θ̄ e fm. (5.2.10)
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Therefore, if there are no cancellations, a deuteron EDM signal from θ̄ is expected to

be larger than about 15% of the neutron EDM signal.

Note that short- and long-range physics cannot be separated with a measurement

of the neutron and proton EDMs alone. On the other hand, the momentum de-

pendence of the EDFF is completely determined, to the order we are working, by

long-range contributions generated by ḡ0. It is therefore the same for θ̄ and qCEDM.

It turns out that the isoscalar form factor receives momentum dependence only from

isospin-breaking terms, while there is a non-vanishing correction to the isovector mo-

mentum dependence also from isospin-conserving terms.

The variation of the form factor with Q2 can be characterized at very small mo-

menta by the electromagnetic contribution to the nucleon SM, the leading and sub-

leading contributions of which we find to be

S ′
0 = − egAḡ0

6(2πFπ)2m2
π

π

2

δmN

mπ
, (5.2.11)

S ′
1 =

egAḡ0
6(2πFπ)2m2

π

[

1− 5π

4

mπ

mN
− δ̆m2

π

m2
π

]

. (5.2.12)

The LO, isovector term is the result of Refs. [162, 91]. The NLO correction, which

agrees with the θ̄ result of Ref. [99] when TC isospin violation is neglected, vanishes

in the chiral limit but gives a relatively large correction to the isovector SM of about

60%, due to the numerical factor 5π/4. Again, the isospin-breaking corrections are

relatively small, and, as a consequence, at NLO the SM remains mostly isovector.

To this order, the SM is entirely given, apart for ḡ0, by quantities that can be

determined from other processes. In the case of θ̄, we can again use Eq. (4.1.5) to

estimate

S ′
0 = − egA

12(2πFπ)2
π(δmN )

2

2εm3
π

θ̄ ≃ −5.0 · 10−6 θ̄ e fm3, (5.2.13)

S ′
1 =

egA
12(2πFπ)2

δmN

εm2
π

[

1− 5π

4

mπ

mN
− δ̆m2

π

m2
π

]

θ̄ ≃ 6.8 · 10−5 θ̄ e fm3,

(5.2.14)
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where again we used the lattice-QCD value [133] for δmN/2ε. From these results

we can straightforwardly obtain the SM for the proton and the neutron. Although

we could again use the isoscalar component as an estimate for a lower bound on the

deuteron SM, there could be potentially significant contributions from the deuteron

binding momentum.

The full momentum dependence of the EDFF is given in addition by the functions

Hi(Q
2) introduced in Eq. (5.1.3),

H0(Q
2) = − 4egAḡ0

15(2πFπ)2
3π

4

δmN

mπ

h
(1)
0

(

Q2

4m2
π

)

, (5.2.15)

H1(Q
2) =

4egAḡ0
15(2πFπ)2

[

h
(0)
1

(

Q2

4m2
π

)

− 7π

8

mπ

mN

h
(1)
1

(

Q2

4m2
π

)

− 2δ̆m2
π

m2
π

h̆
(1)
1

(

Q2

4m2
π

)

]

.

(5.2.16)

Here, the LO term,

h
(0)
1 (x) = −15

4

[

√

1 +
1

x
ln

(

√

1 + 1/x+ 1
√

1 + 1/x− 1

)

− 2
(

1 +
x

3

)

]

, (5.2.17)

is the one calculated in Refs. [91], while we now obtain the NLO isovector functions

h
(1)
1 (x) = −1

7

[

3(1 + 2x) h
(1)
0 (x)− 10x2

]

, (5.2.18)

and

h̆
(1)
1 (x) = − 1

4(1 + x)

(

h
(0)
1 (x)− 5x2

)

, (5.2.19)

and the NLO isoscalar function

h
(1)
0 (x) = 5

(

1√
x
arctan

√
x− 1 +

x

3

)

. (5.2.20)

In compliance with the definition of Hi, the four functions behave as h
(n)
i (x) = x2 +

O(x3) for x≪ 1.

As in lowest order, the momentum dependence is fixed by the pion cloud. Thus

the scale for momentum variation is determined by 2mπ. Both the SM and the

functions H0,1(Q
2) are testable predictions of χPT. In Fig. 5.4 we plot the LO h

(0)
1 ,
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Figure 5.4. The isovector H1(Q
2) in LO (dashed line) and LO+NLO (solid

line), and the isoscalar H0(Q
2) in LO+NLO (dash-dotted line), both in units of

4egAḡ0/15 (2πFπ)
2, as functions of Q2 , in units of 4m2

π.

the LO+NLO combination h
(0)
1 − (7πmπ/8mN)h

(1)
1 − (2δ̆m2

π/m
2
π)h̆

(1)
1 , and the NLO

−(3πδmN/4mπ)h
(1)
0 as functions of Q2. We use the same values of parameters as

before. As for the SM, NLO corrections can be significant, but the isospin-breaking

contributions are small.

5.3 The Nucleon EDFF. Dimension 6 sources

We discuss here the remaining dimension 6 sources of T violation, the qEDM, the

gCEDM and the chiral-invariant, TV four-quark operators.

The tree level and one loop diagram contributing to the nucleon EDFF for T

violation generated by a qEDM are shown in Fig. 5.5. At leading order, one finds

only short-distance contributions, who have chiral index ∆ = 1 and are listed in

Eq. (4.2.15). At this order, the EDFF is momentum-independent, and it coincides

with the EDM. At N2LO, there are other short-range contributions, from the ∆ = 3

Lagrangian, Eq. (4.2.17). To this order there are no contributions from pion-nucleon

TV interactions, while the loop diagrams in Fig. 5.5, with TV interactions from Eq.
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Figure 5.5. Diagrams contributing to the nucleon EDFF at N2LO, for T violation
from the qEDM. Squares represent the short-distance contributions to the nucleon
EDM in L(1)

qEDM, f=2, em (4.2.15). Doubly circled squares represent short-distance oper-

ators in L(3)
qEDM, f=2, em (4.2.17) Other symbols are as in Fig. 5.1. For simplicity only

one possible ordering is shown here.

(4.2.15), only renormalize the tree-level contributions without any energy dependence.

To O(eδm4
π/M

2
/TM

3
QCD), we find the EDMs

D0, qEDM = D̄
(1)
q 0 + D̄

(3)
0 +

3

4
D̄

(1)
q 0

m2
π

(2πFπ)2

[

(2 + 4g2A)

(

L− ln
m2
π

µ2

)

+ 2 + g2A

]

,

(5.3.1)

D1, qEDM = D̄
(1)
q 1 + D̄

(3)
q 1 +

1

4
D̄

(1)
q 1

m2
π

(2πFπ)2

[

(2 + 8g2A)

(

L− ln
m2
π

µ2

)

+ 2 + 3g2A

]

,

(5.3.2)

and the momentum dependence given entirely by the SMs,

S ′
i,qEDM = S̄

′(3)
i , (5.3.3)

Hi,qEDM(Q
2) = 0. (5.3.4)

In the case of the gCEDM, the relevant diagrams at N2LO are shown in Fig. 5.6.

Short-range contributions to the EDFF start at ∆ = −1, which dominate, and appear

again at ∆ = 1, suppressed by m2
π/M

2
QCD. At this order there are also contributions

from the TV pion-nucleon interactions in Eq. (4.1.29) through diagrams 5.6(e)-(h),

and from the photon-nucleon interactions in Eq. (4.2.7) through diagrams 5.6(c)-(d).
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Figure 5.6. Diagrams contributing to the nucleon EDFF at N2LO, for T violation
from the chiral invariant, dimension 6 operators. Squares represent the short-distance
contributions to the nucleon EDM in L(−1)

6, f=2, em (4.2.7) and TV pion-nucleon interac-

tions from L(−1)
6, f=2 (4.1.29). Doubly circled squares represents short-distance operators

in L(1)
w, f=2, em (4.2.9) Other symbols are as in Fig. 5.1. For simplicity only one possible

ordering is shown here.

Thus, to O(ewm2
π/M

2
/TMQCD) we find the µ-independent EDMs

D0, w = D̄
(−1)
w 0 + D̄

(1)
w 0 + 3g2AD̄

(−1)
w 0

m2
π

(2πFπ)2

(

L− ln
m2
π

µ2

)

, (5.3.5)

D1, w = D̄
(−1)
w 1 + D̄

(1)
w 1 + D̄

(1)′

w 1 +
m2
π

(2πFπ)2

{

(

1 + g2A
)

D̄
(−1)
w 1 +

eı̄0w
8

+

[

(

1 + 2g2A
)

D̄
(−1)
w 1 + e

(

ḡ0wgA
m2
π

+
ı̄0w
8

)](

L− ln
m2
π

µ2

)}

. (5.3.6)

The isoscalar momentum dependence is entirely due to short-range operators in Eq.

(4.2.9),

S ′
0, w = S̄

′(1)
0 . (5.3.7)

H0, w(Q
2) = 0. (5.3.8)
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The isovector part, on the other hand, receives also non-analytic contributions:

S ′
1, w = S̄

′(1)
1 +

e

6(2πFπ)2

[

− ı̄0
8

(

L− ln
m2
π

µ2

)

+
gAḡ0
m2
π

]

, (5.3.9)

H1, w(Q
2) =

4em2
π

15(2πFπ)2

{(

gAḡ0
m2
π

+
ı̄0
12

)

h
(0)
1

(

Q2

4m2
π

)

+
ı̄0
12

Q2

4m2
π

[

−5
2

Q2

4m2
π

+ h
(0)
1

(

Q2

4m2
π

)]}

, (5.3.10)

where the function h
(0)
1 (x) is defined in Eq. (5.2.17)

5.4 Discussion

First, we note that at NLO the nucleon EDFF stemming from the qCEDM has a

form that is identical to that from the θ̄ term [91, 99]. In both cases the momentum

dependence, and thus the SM, is predominantly isovector, has a scale (relative to

the EDM) set by 2mπ, and is determined by the lowest-order pion-nucleon coupling

ḡ0. The momentum dependence of the isoscalar EDFF is entirely due to the nucleon

mass splitting, and the isoscalar SM is about the 10 % of the isovector. The EDFF

depends on just three independent combinations of LECs, ḡ0 and the short-range

EDM contributions D̄
(1)
0 and D̄

(1)
1 + D̄

(1)′

1 , which contain nucleon matrix elements

of Ṽ4 and W̃3 for qCEDM and P4 for the θ̄ term. The numerical factors relating

these couplings to either δ̃0,3 or θ̄ will thus be different. In the case of θ̄, the matrix

element in ḡ0 can be determined from TC observables, because it is related to the

matrix element of P3 that generates the quark-mass contribution to the nucleon mass

splitting: ḡ0/θ̄ ≃ 3 MeV. For the qCEDM, an argument identical to that in Ref.

[93] serves to estimate D1 in terms of ḡ0, but no analogous constraint exists for ḡ0

in this case and without a lattice calculation or a model we cannot do better than

dimensional analysis. (For an estimate with QCD sum rules, see Ref. [176].) In any

case, to the order we consider here, any EDFF measurement alone will be equally well

reproduced by a certain value of θ̄ or a certain value of δ̃0,3. Note that the qCEDM
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does give rise to an additional pion-nucleon coupling at LO, ḡ1. ḡ1 contributes ad-

ditional momentum-independent pieces to the isovector and isoscalar nucleon EDFF

at NLO, which, however, are unlikely to be phenomenologically relevant, since they

cannot be distinguished from the LEC D̄0 and D̄1 + D̄′
1. On the contrary, we will

see that this coupling plays an extremely important role for other nuclear observ-

ables, for example the deuteron EDM. The NLO calculation shows good convergence

of the chiral expansion, although NLO corrections are enhanced by extra factors of

π. Under the assumption that higher-order results are not afflicted by anomalously-

large dimensionless factors, the relative error of our results at momentum Q should

be ∼ (Q/MQCD)
2. The NLO isospin breaking contributions are relatively small, and

could be overcome by isospin conserving contributions at N2LO.

Second, the pion-nucleon sector of the qEDM is suppressed compared to that of

the qCEDM because of the smallness of αem compared to g2s/4π at low energies. The

consequence is that, up to the lowest order where momentum dependence appears,

both the EDM and the SM from the qEDM are determined by four combinations

of six independent LECs, which at this point can only be estimated by dimensional

analysis. The momentum dependence is expected to be governed by the QCD scale

MQCD, small relative to the EDM, and nearly linear in Q2.

Finally, in the case of the chiral-invariant gCEDM and TV four-quark operators

pion loops are also suppressed, but do bring in non-analytic terms not only to isoscalar

and isovector EDMs, but also to the isovector momentum dependence (and thus SM).

Again the momentum dependence is governed by MQCD. In addition to seven short-

range contributions to the EDMs and SMs, also two independent pion-nucleon LECs

appear (ḡ0w and ı̄0w) which endow the isovector EDFF with a richer momentum

dependence than in other cases. The isoscalar momentum dependence is identical

to qEDM. For the gCEDM, using the pion loop together with an estimate of ḡ0

[177] is likely to be an underestimate of the EDM, because chiral symmetry allows a

short-range contribution that is larger by a factor M2
QCD/m

2
π.
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Source θ̄ qCEDM qEDM gCEDM
4-quark

MQCD dn/e O
(

θ̄ m2
π

M2
QCD

)

O
(

δ̃m
2
π

M2
/T

)

O
(

δm
2
π

M2
/T

)

O
(

w
M2

QCD

M2
/T

)

dp/dn O (1) O (1) O (1) O (1)

m2
πS

′
p/dn O (1) O (1) O

(

m2
π

M2
QCD

)

O
(

m2
π

M2
QCD

)

m2
πS

′
0/dn O

(

mπ

MQCD

)

O
(

mπ

MQCD

)

O
(

m2
π

M2
QCD

)

O
(

m2
π

M2
QCD

)

Table 5.1. Expected orders of magnitude for the neutron EDM (in units of e/MQCD),
the ratio of proton-to-neutron EDMs, and the ratios of the proton and isoscalar SMs
(in units of 1/m2

π) to the neutron EDM, for the θ̄ term and for the three dimension-6
sources of T violation discussed in the text.

As it is clear from Eqs. (5.2.15), (5.2.16), (5.3.4), (5.3.8) and (5.3.10) the full

EDFF momentum dependences (for example, the second derivatives of Fi with respect

to Q2) are different for qCEDM (and θ̄), qEDM, and gCEDM (and TV four-quark

operators). Although the isoscalar components all have linear dependences in Q2

(with different slopes) to the order considered here, the isovector components show an

increasingly complex structure as one goes from qEDM to θ̄ and qCEDM to gCEDM.

Determination of nucleon EDMs and SMs alone would not be enough to separate the

four sources, yet they would yield clues. Expectations about the orders of magnitude

of various dimensionless quantities are summarized in Table 5.1.

In the first line of Table 5.1 one finds the expected NDA size of the neutron

EDM. As it is well known [81], this is consistent with many other estimates, such as

dn = O(di) in the constituent quark model, and dn = O(ed̃i/4π, edWMQCD/4π) from

QCD sum rules. If δ̃0,3 ∼ δ0,3 ∼ w = O(1) (as would be the case for gs ∼ 4π and no

small phases), then the gCEDM and the TV chiral-invariant four-quark operators give

the biggest dimension-6 contribution to the EDFF because of the chiral-symmetry-

breaking suppression O(m2
π/M

2
QCD) for the qCEDM and qEDM. However, models

exist (for example, Refs. [178, 179]) where δ0,3 and δ̃0,3 are enhanced relative to w,

and all the sources produce EDFF contributions of the same overall magnitude. Even

so, there is no a priori reason to expect cancellations among the various sources. A
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measurement of the neutron EDM dn could be fitted by any one source. Conversely,

barring unlikely cancellations, the current bound yields order-of-magnitude bounds

on the various parameters at the scale where NDA applies: using 2πFπ ≃ 1.2 GeV

for MQCD,

θ̄ <∼ 10−10, (5.4.1)

δ̃0,3
M2

/T

,
δ0,3
M2

/T

<∼
(

105 GeV
)−2

, (5.4.2)

w

M2
/T

<∼
(

106 GeV
)−2

. (5.4.3)

(For comparison, Eq. (5.4.1) is consistent within a factor of a few with bounds

obtained by taking representative values of µ in the non-analytic terms to estimate

[93] the size of the renormalized LECs for the EDM, and using either SU(2) [39] or

SU(3) [99] symmetry to constrain ḡ0.) In all four cases we expect the proton and

neutron EDMs to be comparable, |dp| ∼ |dn|, but the presence of undetermined LECs

does not allow further model-independent statements.

It is in the pattern of the S ′
i that we see some texture. (This pattern is not evident

in Ref. [175], possibly because of the way chiral symmetry is broken explicitly in

the model used, both in the form of the T -conserving pion-nucleon Lagrangian and

in the gCEDM magnitude of the T -violating pion-nucleon coupling.) While in all

cases one expects |S ′
p| ∼ |S ′

n|, the relative size to the EDMs, in particular of the

isovector component, allows one in principle to separate qEDM and gCEDM from

θ̄ and qCEDM. Since all these sources generate different pion-nucleon interactions

thanks to their different chiral-symmetry-breaking properties, nuclear EDMs might

provide further probes of the hadronic source of T violation.

More could be said with input from lattice QCD. For each source the pion-mass

dependence is different. A fit to lattice data on the Q2 and m2
π dependences of the

nucleon EDFF with the expressions of this paper would allow in principle the separate

determination of LECs. In this case a measurement of the neutron and proton alone

would suffice to pinpoint a dominant source if it exists, but in the more general case
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of two or more comparable sources further observables are needed.

One should keep in mind that our approach is limited to low energies. The contri-

butions associated with quarks heavier than up and down are buried in the LECs, as

done, for example, in other calculations of nucleon form factors: electric and magnetic

[180, 181, 131, 182], anapole [183, 184], and electric dipole from θ̄ [91]. Heavy-quark

EDMs and CEDMs are also singlets under SU(2)L × SU(2)R, so they generate in

two-flavor χPT interactions with the same structure as those from the gCEDM, and

cannot be separated explicitly from the latter. (This is clear already in the one-loop

running of dW , which gets a contribution of the heavy-quark CEDMs [108].) The pa-

rameter w here should be interpreted as subsuming heavier-quark EDMs and CEDMs.

With the additional assumption that ms makes a good expansion parameter, effects

of the s quark could be included explicitly. The larger SU(3)L × SU(3)R symmetry

would yield further relations among observables (for example, between the EDFFs

of the nucleon and of the Λ), and we could, in principle, isolate the contributions of

the strange quark. Since our nucleon results, which can be used as input in nuclear

calculations in two-flavor nuclear EFT, would be recovered in the low-energy limit

anyway —as was explicitly verified in Ref. [99] for the θ̄ results of Ref. [91]— we

leave a study of the identification of explicit s-quark effects to future work.

In summary, we have investigated the low-energy electric dipole form factor that

emerges as a consequence of effectively dimension-6 sources of T violation at the

quark-gluon level: the quark electric and color-electric dipole moments, and the gluon

color-electric dipole moment. Only the full momentum dependence could in principle

separate these sources, although the Schiff moments, if they were isolated, would

partially exhibit a texture of T violation.
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Chapter 6

The Deuteron Electric Dipole Moment

6.1 Introduction

The observation of the neutron and proton EDM in the next generation of experiments

would be a clear signal of new physics. However, we argued in Chapter 5 that it would

not be sufficient to unequivocally pinpoint the dominant mechanism of T violation at

high energy. A signal for the neutron and proton EDM can be reproduced as well by

a non zero value of the angle θ̄, or by any of the dimension 6 sources of T violation

we considered. More clues could be extracted from the momentum dependence of the

EDFF, which, unfortunately, is not going to be measured any time soon. In this light,

experiments that probe EDMs (and, possibly, higher TV moments) of light nuclei can

provide important additional insight.

In recent years the proposal and development of novel experimental techniques

to measure the EDMs of charged particles in storage rings [87] have generated great

excitement. These techniques have the potential to achieve a sensitivity comparable to

that of classical neutron EDM experiments, if not greater. A proton EDM experiment

at BNL, with the goal to see a signal of the order dp ∼ 10−16e fm, has already been

approved, is in the Research and Development phase and it is projected to start

taking data by 2016. In parallel, the possibility to study the deuteron EDM with the

same accuracy at the COSY accelerator at the Jülich Forschungszentrum is under

investigation. After the completion of these two experiments, one can envision the

application of the same experimental methods to 3He.

From the theoretical point of view, the challenge is to treat the one- and few-

nucleon problems in a consistent framework, based upon QCD. This task is com-

plicated by the non-perturbative nature of QCD at the scales relevant to nuclear

physics. In recent years, remarkable progress has been achieved in tackling nuclear
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physics problems directly from lattice QCD, and lattice simulations that are closer

and closer to the physical light quark mass, mπ ∼ 140 MeV, in large volumes and

small lattice spacing are rapidly becoming available (for a review, see Ref. [185]).

In the two-nucleon system, the unnatural values of the nucleon-nucleon scattering

lengths and of the deuteron binding momentum point to a precise cancellation be-

tween different contributions, which only happens when the QCD parameters are

fine-tuned to their physical value, and disappears as soon as one moves away from

it. This was nicely confirmed in [186], where the S-wave nucleon-nucleon scattering

lengths were computed on the lattice, and, for a value of mπ ∼ 350 MeV were found

to be natural, of size m−1
π . Consequently, the simulation of the two-nucleon system

on the lattice is complicated by the fact that it needs to be carried out with light

quark masses very close to their physical value. At present, no lattice calculation of

the deuteron EDM is yet available.

The approach we follow is based on nuclear Effective Field Theories, which are

built on the bedrock of the symmetries of QCD, chiral symmetry in particular. In

Chapter 5, we discussed applications to problems with one nucleon. Applications to

problems with more than one heavy particle are complicated by the appearance of a

new low energy scale, the binding energy, much smaller than the particles’ momentum,

and, in the particular case of nuclear physics, by the fine-tuning that makes the

scattering lengths unnatural. We briefly discuss how to extend chiral EFT to few

nucleon systems in Sec. 6.2 (for more in-depth discussions of these issues, we refer

to the reviews [37, 38]). In particular, we introduce the Kaplan, Savage and Wise

power counting (KSW) and the perturbative pion approach [187, 188, 189], which we

use to study the TV electromagnetic moments of the deuteron. In this approach, the

deuteron wavefunction is determined in leading order by a contact interaction, whose

strength is fixed by the deuteron binding energy, while contributions from TC pion

exchanges are treated as a perturbation.

In Sec. 6.3 we compute the deuteron EDM and MQM at leading order, for the



173

different TV sources introduced in Chapter 3. The deuteron EDM and MQM have

been previously computed by Khriplovich and Korkin [157], using a zero range ap-

proach for the deuteron wavefunction. They assumed the EDM and MQM to be

dominated by TV one-pion-exchange, and made no discrimination between the pos-

sible non-derivative TV pion-nucleon couplings. Later, Timmermans and Liu [159]

repetead the calculation, with a more realistic deuteron wavefunction. They also

included the contribution to the deuteron EDM from the nucleon isoscalar EDM,

and supplemented the TV potential with the contributions of TV heavy-meson ex-

changes. The main advantage of our EFT approach is the closer relation between

the couplings in the low-energy Lagrangian and the fundamental TV sources, which

allows to assess, for each TV source, the relative size of the different contributions

considered in Ref. [159]. We will see that for sources like the qCEDM, for which

i) pion-nucleon couplings are the TV interactions with lowest chiral index, ii) the

isoscalar and isovector TV pion-nucleon couplings have comparable size, our analysis

reproduces the results in [157, 159]. On the other hand, sources for which either i)

or ii) are not valid lead to qualitatively different results. We will discuss our results

more in depth in Sec. 6.4.

6.2 Formalism and Power Counting

In the mesonic and one-nucleon sectors, chiral symmetry and its spontaneous break-

ing, and the heavy baryon formalism, justify a perturbative expansion of any ampli-

tude in powers of the typical external momentum Q of the particles in the problem

over the typical QCD scale, MQCD = 2πFπ ∼ 1 GeV. Eq. (3.3.14) and (3.3.15) show

explicitly that to calculate an amplitude at a given accuracy ν only a finite number

of interactions, up a to maximum chiral index ∆, and a finite number of loops have

to be considered.

The power counting formulas (3.3.14) and (3.3.15) cannot be directly used in

problems with more than one nucleon. A first issue is that in problems with two
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nucleons a second energy scale, the nucleon binding energy, becomes relevant. This

scale is of order Q2/mN , much smaller than the momentum Q, and it enhances

diagrams in which the contour of integration cannot be deformed to avoid poles in

the nucleon propagator. In a failure of perturbation theory, these diagrams must be

resummed at all orders, and lead to the appearance of bound states. Weinberg [35, 36]

proposed to split the calculation of amplitudes in two steps. First one evaluates the

potential (and electromagnetic and weak currents), for which an expansion in powers

of Q/MQCD should be suitable. Then, the full amplitude is obtained by iterating the

potential with A free nucleon propagators, i.e. by solving the Lippmann-Schwinger

equation with the EFT potential. We return to this approach in Chapter 7, where

we compute the TV potential at N2LO, in the Weinberg power counting.

A second issue, more specific of nuclear physics, is the unnatural size of the nu-

cleon S-wave scattering lengths. The scattering lengths for two nucleons in the isospin

triplet channel, at = −23.7 fm, and isospin singlet channel, as = 5.4 fm, are much

larger than the range of the nucleon-nucleon potential, 1/mπ ∼ 1 fm, which suggests

that the QCD parameters are “fine-tuned” to cause large cancellations between dif-

ferent contributions to the scattering lengths. In the Weinberg power counting, the

fine tuning manifests a posteriori in values of the coefficients C0s and C0t that are

somewhat larger than their naive power counting size.

Kaplan, Savage and Wise (KSW) proposed a modification of the power counting

to explicitly accommodate for unnatural scattering lengths [187, 188]. In the KSW

power counting, S-wave four-nucleon operators are enhanced. While in a theory with

natural scattering lengths, by naive dimensional analysis one would expect C0t and C0s

to scale as 4π/mNMNN , whereMNN is the range of validity of the theory, KSW assign

these coefficients the behavior C0s,t = 4π/mNQ, where Q is the typical momentum of

external particles in the problem, Q≪MNN . The KSW power counting is manifestly

realized in the Power Divergence Subtraction (PDS) renormalization scheme [187,

188]. In this scheme, loop diagrams are regulated in dimensional regularization,
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and counterterms are introduced to eliminate not only poles in d = 4 (as done, for

example, in Minimal Subtraction), but also poles in d = 3, which would correspond

to linear divergences if the theory were regulated with a cut-off (for a more nuanced

descriptions of the scheme, and for alternative renormalization schemes compatible

with the KSW power counting, we refer to Refs. [190, 191]).

In the PDS scheme, C0s,t follow a renormalization group equation, which is solved

by [187, 188]

C0s,t(µ) =
4π

mN

1

1/as,t − µ
, (6.2.1)

with boundary condition C0s,t(0) = 4πas,t/mN . If µ is chosen to be of the order of the

typical momentum in the problem, µ ∼ Q, Eq. (6.2.1) explicitly realizes the KSW

power counting.

In the KSW power counting, the enhancement of the leading S-wave operators

and renormalization group invariance drive the scaling of other S-wave four-nucleon

operators. In general, the coefficient of a TC four-nucleon operator that connects two

angular momentum states L and L′, and has 2d = L+L′+2n spatial derivatives and

m insertions of the quark mass scale [189]

Cn+m
L,L′ (µ) ∼

{

µ−n−m−1 if L, L′ ∈ {1S0,
3 S1,

3D1}
µ0 otherwise.

(6.2.2)

For example, of the four-nucleon operators with two derivatives, C2t,s, which connect

two 1S0 or two 3S1 states, scale as 4π/mNMNNQ
2, the operator responsible for the

mixing between the 3S1 and 3D1 state scales as 4π/mNM
2
NNQ, while P -wave opera-

tors scale as 4π/mNM
3
NN . Four-nucleon currents that connect S-waves are similarly

enhanced. In the KSW power counting, the leading terms in the f = 4 Lagrangian

are

Lf=4 = −
∑

i=s,t

(

C0i +D2im
2
π

) (

N tPiN
)†
N tPiN +

+
∑

i=s,t

C2i

8

[

(

N tPiN
)†
N tPi

←→∇ 2N + h.c.
]

+ . . . (6.2.3)
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where the isospin triplet and isospin singlet projectors are

P a
t = − 1√

8
τ2τaσ2 P j

s = − 1√
8
σ2σ

jτ2, (6.2.4)

and the spin/isospin indices in Eq. (6.2.3) are appropriately contracted. All the other

operators with two derivative are suppressed by Q/MNN or Q2/M2
NN with respect to

D2i and C2i.

For momenta Q of the order of the pion mass, one has to introduce the pion

as a propagating degree of freedom in the theory. Then one needs to assess the

importance of pion-exchange relative to short-range interactions, and of diagrams

with exchanges of pions relative to one-pion exchange. With the KSW assignment

to C0s,t, it turns out that the ratio between one-pion exchange and short-range, and

between diagrams with two iterations of one-pion exchange and one-pion exchange is

g2AmNQ/4πF
2
π = Q/MNN , where KSW identify the range of validity of the theory,

MNN , withMNN = 4πF 2
π/mNg

2
A. Numerically, MNN ∼ 300 MeV. In the perturbative

pion approach, Q/MNN is assumed to be much smaller than one, and TC pion effects

do not need to be iterated in the EFT.

To summarize, in the KSW power counting amplitudes have a scaling in Q/MNN

(and, when subleading interactions in the f = 2 pion-nucleon Lagrangian are included,

Q/MQCD). The scaling of a diagram is obtained by assigning a power of Q5/(4πmN)

to each loop, mN/Q
2 to each nucleon propagator, 1/Q2 to each pion propagator, a

power of ∆ as in Eq. (3.3.9) to each pion-nucleon vertex, while four-nucleon operators

are counted as in Eq. (6.2.2). With these rules, the insertion of an arbitrary number

of C0s,t vertices does not cost any power of Q/MNN , and C0s,t must be iterated at all

orders. Instead, all the other interactions in the theory cost powers of Q/MNN , and,

to reach a wanted accuracy, only a finite number of them is needed.

The expansion parameter in the perturbative pion approach, Q/MNN , is not ex-

tremely small, Q/MNN ∼ 0.5 if one takes Q ∼ mπ. One might therefore expect the

EFT to converge slowly, and might wonder if it converges at all. The KSW power

counting has been successfully applied to the P - and T -conserving electromagnetic
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form factors of the deuteron [189]. NLO corrections to the electric charge form factor

are about 25 % of the leading order, and the NLO calculation of the deuteron square

radius is within 10 % of the experimental value. The deuteron magnetic moment

is well approximated by the LO result, the isoscalar nucleon magnetic moment. At

NLO there is one free parameter, a short-range contribution to the deuteron mag-

netic dipole moment, whose value is somewhat smaller than expected in the KSW

power counting. The KSW power counting has been applied also to the P -violating

and T -conserving deuteron anapole form factor, computed at LO in Ref. [192]. In

nucleon-nucleon scattering, the S, D and P phase shifts have been calculated at

N2LO in Ref. [193]. In the spin-singlet channels 1S0,
1P1 and 1D2, the perturbative

series converges well also for momenta of the order of the pion mass. However, the

spin-triplet channels are poorly described in the perturbative pion approach, and for

momenta of order Q ∼ 100 MeV, pion exchanges have to be considered at all orders.

In the TV Lagrangian, the KSW power counting alters the scaling of the coeffi-

cients of TV four-nucleon operators in Sec. 4.1.4 and 4.2.3. In the f = 4 sector, the

leading operators with only nucleons have the form (reverting from the partial waves

notation of Eq. (6.2.3) to the notation used in Sec. 4.1.4)

L/T, f=4 = C̄1N̄N∂µ(N̄S
µN) + C̄2N̄τN · ∂µ(N̄τSµN)

+C̄3N̄τ3N ∂µ
(

N̄SµN
)

+ C̄4N̄N ∂µ
(

N̄τ3S
µN
)

. . . (6.2.5)

where we neglect the detailed chiral structure, which is not relevant in the deuteron

calculation. As we discussed in Sec. 4.1.4, the QCD θ̄ term and the chiral invariant

TV sources only contribute to the isospin symmetric operators C̄1,2 in lowest order,

while the qCEDM also generates a contribution to C̄3,4. The operators C̄1,2 cause the

TV and isospin conserving transitions of two nucleons in the 1S0 configuration into the

3P0 configuration, or from 3S1 into 1P1. The isobreaking operators C̄3,4 instead, are

responsible for the transition 3S1 to
3P1, which also breaks isospin. All the operators

in Eq. (6.2.5) involve one S-wave, and we expect them to scale as 1/Q. This prejudice

has to be confirmed by an analysis of the renormalization group equations in the PDS
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scheme.

While the renormalization group equations in the PDS scheme unambiguously

determine the dependence of the coefficient of a four-nucleon operator on the low-

energy scale Q, the presence of two high-energy scales, MNN and MQCD, leaves room

for some ambiguity in power-counting assignments, that cannot be fixed by the di-

mension of the coefficient alone. Here, we estimate the size of four-nucleon operators

and currents by “matching” the perturbative pion EFT onto the non-perturbative

pion EFT at scales µ ∼MNN . A real matching calculation is non-perturbative, so in

practice what we do is to estimate the coefficients by applying dimensional analysis

to loop diagrams in the non-perturbative pion theory with a cut-off of order MNN , in

the same spirit as the naive dimensional analysis of Ref. [123].

In the case of the QCD θ̄ term, we obtain

C̄θ̄ 1,2 = O
(

θ̄
4π

mNQ

m2
π

M2
NNMQCD

)

, (6.2.6)

For the qCEDM

˜̄Cq i = O
(

δ̃
4π

mNQ

m2
πMQCD

M2
NNM

2
/T

)

, (6.2.7)

with i = 1, . . . , 4, and the detailed dependence on δ̃0 and δ̃3 is as in Eq. (4.1.49).

Finally, the chiral invariant TV sources give

C̄w 1,2 = O
(

w
4π

mNQ

MQCD

M2
/T

)

. (6.2.8)

The relevant four-nucleon-one-photon operators are

L/T, f=4 em = D̄NN N̄S
µvνN N̄NFµν + M̄εαβµνvα N̄SβN N̄SλN ∂λFµν , (6.2.9)

which represent short-distance contributions to the deuteron EDM and MQM. These

operators connect two S-waves, and we expect them to scale as 1/Q2. In the case of

the θ̄ term, short-range contributions to the deuteron EDM and MQM go as

D̄NN = O
(

eθ̄
4π

mNQ2

m2
π

MNNM
2
QCD

)

, M̄θ̄ = O
(

eθ̄
4π

mNQ2

m2
π

M3
NNMQCD

)

. (6.2.10)
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For the qCEDM,

˜̄Dq NN = O
(

eδ̃
4π

mNQ2

m2
πM

2
QCD

M3
NNM

2
/T

)

, ˜̄Mq = O
(

eδ̃
4π

mNQ2

m2
πMQCD

M3
NNM

2
/T

)

. (6.2.11)

Again, we use δ̃ for both δ̃0 and δ̃3, the detailed dependence is given in Sec. 4.2.3.

For the qEDM,

D̄q NN = O
(

eδ
4π

mNQ2

m2
π

MNNM2
/T

)

, M̄q = O
(

eδ̃
4π

mNQ2

m2
π

MNNMQCDM2
/T

)

. (6.2.12)

Finally, for the gCEDM and the TV four-quark operators

D̄wNN = O
(

ew
4π

mNQ2

M2
QCD

MNNM2
/T

)

, M̄w = O
(

ew
4π

mNQ2

MQCD

MNNM2
/T

)

. (6.2.13)

In Sec. 6.6 we will see how, with the assignment (6.2.10), D̄NN gives a contribution

to the deuteron EDM of exactly the right size to absorb the logarithmic divergences

of certain one-pion-exchange diagrams, justifying, a posteriori, our NDA estimate.

6.3 Deuteron TV currents

The time and space components of the TV electromagnetic current of a spin 1 particle

are expressed in terms of the Electric Dipole and Magnetic Quadrupole Form Factors.

In the case of the deuteron

〈~p ′ j|J0
em,/T |~p i〉 = −εijmqm FD(~q 2) +

1

4
εnml

Kn

md
ql(δmiqj + δmjqi)FM(~q 2),

(6.3.1)

〈~p ′ j|Jkem,/T |~p i〉 = −εijmqmK
k

md
FD(~q

2) +
1

4
εkmlql

(

δmiqj + δmjqi
)

FM(~q 2).

(6.3.2)

Here |~p i〉 denotes a deuteron state of momentum ~p and polarization εµi = δµi in the

rest frame, normalized so that 〈~p ′j|~p i〉 =
√

1 + ~p 2/m2
d (2π)

3δ(3)(~p−~p ′)δij . ~q = ~p−~p ′

is the photon momentum, ~K = (~p ′ + ~p)/2, and md is the deuteron mass, md =

2mN − γ2/mN . γ is the deuteron binding momentum, γ = 45 MeV. In Eqs. (6.3.1)



180

and (6.3.2), FD(~q
2) represents the deuteron EDFF, and its value at ~q 2 = 0 is the

deuteron EDM, dd = FD(0). Analogously, FM(~q 2) denotes the Magnetic Quadrupole

Form Factor (MQFF), and its value at zero transfer momentum is the deuteron MQM,

Md = FM(0).

In the perturbative pion approach, the form factors FD(~q
2) and FM (~q 2) are ex-

panded in powers of Q/MNN , where Q denotes scales of the order of the pion mass,

and of the deuteron binding energy, which are assumed to be comparable. Our goal

is to calculate the EDFF and MQFF stemming from the QCD θ̄ term and from the

dimension 6 TV sources at leading order in this expansion.

Following the approach of Kaplan, Savage and Wise [189], the form factors are

obtained by computing in perturbation theory the irreducible two-point function Σ

and three-point function Γµij of the deuteron interpolating field Di, where “irreducible”
here means the sum of graphs which do not fall apart when cut at any C0 vertex. The

interpolating field Di is any field with the same quantum numbers as the deuteron.

We choose Di(x) = N(x)P j
sN(x). P j

s is the spin 1, isospin 0 projector, in Eq. (6.2.4).

Physical observables are independent of the choice of field, so long as it is used

consistently.

The LSZ reduction formula relates the matrix element of the electromagnetic

current to the irreducible three-point function Γµij and the derivative of the two-point

function Σ [189],

〈~p ′j|Jµem,/T |~pi〉 = i

[

Γµij(Ē, Ē
′, ~q)

dΣ(Ē)/dE

]

Ē,Ē′→−B

. (6.3.3)

where Ē is the deuteron energy in the center of mass frame Ē = E − ~p 2/4mN and

the deuteron form factors are obtained by setting Ē to the deuteron binding energy

Ē = −B = −γ2/mN .

We show in Fig. 6.1 the diagrams contributing to the irreducible two-point func-

tion Σ(Ē) at NLO. It turns out that diagrams which only contain one TV vertex do

not contribute to the two-point function, which is therefore identical to the two-point

function in absence of T violation, computed in [189] at NLO in Q/MNN . In particu-
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Figure 6.1. The irreducible two-point function Σ(Ē) at NLO. Solid and dashed lines
denote nucleons and pions. Filled circles mark the leading TC interactions, while the
circled circle denotes the subleading four-nucleon operators C2s or D2s. The hatched
circle denotes an insertion of the interpolating field Di(x).

lar we are interested in the first derivative of Σ, which, at leading and next-to-leading

order is

dΣ(1)

dĒ

∣

∣

∣

∣

Ē=−B
= −im

2
N

8πγ
(6.3.4)

dΣ(2)

dĒ

∣

∣

∣

∣

Ē=−B
= i

m2
N

8πγ

mN

2π

[

g2A
F 2
π

(

µ− γ − m2
π

mπ + 2γ

)

+D2sm
2
π(µ− γ)

+ C2sγ(µ− γ)(µ− 2γ)
]

(6.3.5)

where γ =
√
mNB ∼ 45 MeV.

In Ref. [189], the contribution to the two-point function from the correction to the

nucleon mass coming from the diagram 6.1(d) and from the insertion of the sigma term

∆mN in the nucleon propagator was neglected. In the PDS scheme, the correction

to the nucleon mass is µ-dependent, and the linear µ dependence is absorbed by the

sigma term

∆RmN = ∆mN +
3g2A
2

m2
π

4πF 2
π

(µ−mπ). (6.3.6)

The net effect of this shift in the nucleon mass is to change the deuteron binding
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Figure 6.2. LO diagrams for the deuteron EDFF. Solid, dashed, and wavy lines
represent nucleons, pions, and photons. A square marks TV interactions, filled circles
the leading TC interactions. The hatched vertex represents the deuteron interpolating
field Di(x). Only one topology per diagram is shown.

momentum γ

γ′ = γ + δγ (6.3.7)

with

δγ = mN
∆RmN

γ
= mN

∆mN

γ
+

3g2A
2

m2
πmN

4πF 2
π

(µ−mπ)

γ
. (6.3.8)

Such a shift in γ is automatically taken care of when the physical value of the nucleon

mass and γ are used in the evaluation of observables.

6.4 The Deuteron EDM and MQM at Leading Order

The calculation of the EDFF and MQFF involves at LO the diagrams of Figs. 6.2

and 6.3. The squares denote TV interactions constructed in Secs. 4.1 and 4.2. The

circles denote the leading TC interactions in L(0)
χ, f≤2, in Eq. (3.3.17). The pion-

nucleon vertex is the standard axial-vector coupling, gA = 1.27. The photon vertex

denoted by a filled circle is the coupling to the charge e, and that denoted by a circled

circle is the magnetic coupling parametrized by the anomalous magnetic moments,

the isoscalar κ0 = −0.12 and the isovector κ1 = 3.71. The hatched circles denote

insertions of the deuteron interpolating field Di(x). We use dimensional regularization

with power-divergence subtraction [187, 188, 189] at a renormalization scale µ. Our

results depend on the ratio ξ = γ/mπ and on three functions of the momentum in
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Figure 6.3. LO diagrams for the deuteron MQFF. Solid, dashed, and wavy lines rep-
resent nucleons, pions, and photons. A square marks TV interactions, circled circles
subleading TC interactions. The hatched vertex represents the deuteron interpolating
field Di(x). Only one topology per diagram is shown.

the ratio x = |~q |/4γ:
F1(x) = arctan(x)/x, (6.4.1)

which originates in a bubble with one photon coupling and appears also in the charge

form factor [189], and two complicated functions that result from two-loop diagrams

with a pion propagator, which can be expanded as

F2(x) = 1− x2 10 + 65ξ + 144ξ2 + 72ξ3

30(1 + ξ)(1 + 2ξ)2
+O(x4),

F3(x) = 1− x2 ξ2(12 + 8ξ)

5(1− 2ξ)(1 + 2ξ)2
+O(x4); (6.4.2)

in all cases Fi(0) = 1. The scale of momentum variation, including that of the

corresponding electromagnetic contribution to the Schiff moment, is set by 4γ.

The LO deuteron EDFF is due to diagrams Fig. 6.2(a,b). Diagram 6.2(a) repre-

sents the contribution to the deuteron EDFF from the neutron and proton EDMs, in

particular their isoscalar combination, while in diagram 6.2(b) the deuteron EDM is

caused by a TV correction to the deuteron wavefunction. We find

FD(~q
2) = 2D0F1(x)−

egAḡ1mN

6πF 2
πmπ

1 + ξ

(1 + 2ξ)2
F2(x). (6.4.3)
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where D0 is the isoscalar nucleon EDM, defined by Eq. (5.1.3), and ḡ1 the isovector,

TV non derivative pion-nucleon coupling. It is important to notice that the isoscalar

pion-nucleon coupling ḡ0 does not contribute to the deuteron EDM at LO. The rea-

son is that TV one-pion exchange with ḡ0 causes the deuteron wavefunction, whose

quantum numbers are mainly 3S1, to develop a 1P1 component, which, however, has

a vanishing dipole matrix element with the 3S1 state. A non-vanishing dipole matrix

element requires mixing with a spin 1 P -wave, the 3P1 state, which also breaks isospin

and it is realized by ḡ1.

The relative importance of diagrams 6.2(a) and 6.2(b) is different for different

sources of T violation.

We already remarked that long-distance physics is suppressed for the qEDM and

the chiral-invariant sources of T violation, the gCEDM and the TV four-quark op-

erators. As a consequence, it is not surprising that for both sources, the dominant

contribution to the deuteron EDM comes from diagram 6.2(a). In the case of the

qEDM, D0 is given by a short-distance coefficient at LO, D0 = D̄
(1)
q 0 , Eq. (4.2.15). It

follows that

dd, qEDM = 2D̄
(1)
q 0 = O

(

eδ0
m2
π

M2
/T

1

MQCD

)

. (6.4.4)

For the qEDM, indirect electromagnetic pion-nucleon couplings only appear in the

∆6 = 2 Lagrangian, that is

ḡ1 = O
(

(δ0 + δ3)
αem

4π

m2
π

M2
/T

MQCD

)

. (6.4.5)

With the usual assumption αem/4π ∼ εm3
π/M

3
QCD, one can see that the TV pion-

exchange contribution is suppressed by m2
π/MNNMQCD with respect to the contribu-

tion (6.4.4). Indeed, in the case of the qEDM, also the NLO is determined by short-

range physics, by the four-nucleon current in Eqs. (4.2.23) (with scaling (6.2.11)),

which is suppressed, in the PDS scheme, by Q/MNN with respect to Eq. (6.4.4).

In the case of the gCEDM and the TV four-quark operators, D0 is also purely
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short-distance at leading order, D0 = D̄
(−1)
w 0 , Eq. (4.2.7), and

dd, w = 2D̄
(−1)
w 0 = O

(

ew
MQCD

M2
/T

)

. (6.4.6)

In this case, the first contribution to ḡ1 is given in Eq. (4.1.29) and from the scaling

in Eq. (4.1.31) we see that the contribution of diagram 6.2(b) is only suppressed by

Q/MNN . Notice that if the pions are treated non-perturbatively, that is, if Q/MNN =

O(1), the two contributions in Eq. (6.4.3) arise at the same order. According to Eq.

(6.2.13), four-nucleon currents also contribute an NLO.

We saw in Chapters 3 and 4 that for the chiral symmetry breaking θ̄ term and

qCEDM, long-distance physics plays a more important role. However, the fact that

the QCD θ̄ term does not break isospin causes the coupling ḡ1 only to arise in the ∆ =

3 Lagrangian, two orders smaller than the leading TV coupling ḡ0. As a consequence,

the leading contribution to the deuteron EDM is still the isoscalar nucleon EDM D0,

given in Eq. (4.2.6), which, at leading order is once again given by a LEC constant

only, D0 = D̄
(3)
0 , so that

dd, θ̄ = 2D̄
(3)
0 = O

(

θ̄
m2
π

M3
QCD

)

. (6.4.7)

The leading contribution to ḡ1 is given in Eq. (4.1.27), and from the scaling (4.1.28),

diagram 6.2(b) contributes at NLO. At this order one has to consider the NLO correc-

tions to the isoscalar nucleon EDM, Eq. (5.2.6), which are also suppressed by Q/MNN

with respect to the LO, and also the contribution of the relativistic corrections to ḡ0

and the other TV derivative couplings in Eq. (4.1.24). With the scaling (6.2.10),

D̄NN gives also a NLO contribution.

The qCEDM generates an isovector coupling ḡ1 already in leading order, (4.1.29).

In this case, the deuteron EDM is dominated by long distance physics,

dd, qCEDM = −egAḡ1mN

6πF 2
πmπ

1 + ξ

(1 + 2ξ)2
= O

(

eδ̃3
MQCD

M2
/T

mπ

MNN

)

. (6.4.8)

The isoscalar nucleon EDM is still given at leading order by a LEC, D0 = ˜̄D
(1)
q 0 , in

Eq. (4.2.11). From the scaling Eq. (4.2.13) we see that the one-body contribution,



186

diagram 6.2(a), is suppressed in this case by a factor of mπMNN/M
2
QCD. In the case

of the qCEDM, the NLO is dominated by three-loop diagrams, with an extra TC

pion-exchange or an insertion of the suppressed four-nucleon vertices C2s and D2s.

The LO MQFF comes from diagrams 6.3(a,b,c,d). Diagrams 6.3(a) and (b) are

contributions to the MQM that come from TV corrections to the deuteron wavefunc-

tion, in the form of TV pion-exchange, or TV short-distance four-nucleon operators.

Diagram 6.3(c) and (d) are a long- and short-distance contribution to the TV elec-

tromagnetic current. The resulting MQFF is

FM(~q 2) =
egA

2πF 2
πmπ

[

ḡ0(1 + κ0) +
ḡ1
3
(1 + κ1)

] 1 + ξ

(1 + 2ξ)2
F2(x)

+2
gAĒ1γ

πF 2
π

(

1− 2ξ

1 + 2ξ
F3(x) + 2 ln

µ/mπ

1 + 2ξ

)

+
e(1 + κ0)

2π
(µ− γ)C̄0F1(x) +

2γ

π
(µ− γ)2M̄, (6.4.9)

where C̄0 = (C̄1 − 3C̄2)/4 and Ē1 is an isoscalar TV pion-nucleon-photon coupling,

constructed in Eqs. (4.2.4), (4.2.11) and (4.2.15). Notice that in this case both the

isoscalar ḡ0 and the isovector ḡ1 couplings contribute to the MQM. As a consequence,

for both the θ̄ term and the qCEDM the MQFF is dominated by diagram 6.3(a).

In the case of the θ̄ term, only ḡ0 is relevant in leading order, and, with the scaling

(4.1.20), we have

mdMd, θ̄ =
egAḡ0mN

πF 2
πmπ

(1 + κ0)
1 + ξ

(1 + 2ξ)2
= O

(

θ̄
1

MQCD

mπ

MNN

)

. (6.4.10)

For the qCEDM, ḡ0 and ḡ1 are given in Eq. (4.1.29), and they lead to

mdMd, qCEDM =
egAmN

πF 2
πmπ

[

ḡ0(1 + κ0) +
ḡ1
3
(1 + κ1)

] 1 + ξ

(1 + 2ξ)2

= O
(

e
(

δ̃0 + εδ̃3 + δ̃3

)MQCD

M2
/T

mπ

MNN

)

. (6.4.11)

For TV from the θ̄ term and qCEDM, Diagrams 6.3(a,b,c) are at least NLO, at

which level one has also to consider three-loop diagrams constructed by adding a TC

one-pion exchange, or the operators C2s and D2s, to diagram 6.3(a).



187

In the case of the chiral-invariant sources of TV, even if the TV four-nucleon

couplings C̄w 1,2 appear with the same chiral index ∆6 = −1 as the leading pion-

nucleon couplings in Eq. (4.1.29), the perturbative pion power counting enhances the

former over the latter. The leading contribution to the MQM comes therefore from

diagram 6.2(b), and, in the perturbative pion power counting, it goes as

mdMd, w =
e(1 + κ0)

π
(µ− γ)mN C̄0 = O

(

w
MQCD

M2
/T

)

, (6.4.12)

while the contribution of diagram 6.3(a) is suppressed by Q/MNN .

Finally, TV currents dominate the MQM for TV from the qEDM. The coupling

Ē1 = Ē
(1)
q 1 in defined in Eq. (4.2.15), and it generates a long-range contribution to

the TV current. At the same level we find a short-range contribution to the current,

defined in Eq. (6.2.9), with scaling (6.2.12), which is needed to absorb the logarithmic

divergence of diagram 6.3(c). The MQM at LO is

mdMd, qEDM = 4
gAĒ1mNγ

πF 2
π

(

1− 2ξ

1 + 2ξ
+ 2 ln

µ/mπ

1 + 2ξ

)

+
4γ

π
(µ− γ)2mNM̄

= O
(

eδ0
m2
π

M2
/TMQCD

γ

MNN

)

. (6.4.13)

6.5 Discussion

We can now discuss the implications of the various TV sources for the deuteron EDFF

and MQFF. In Table 6.1 we list the orders of magnitude for the deuteron EDM, dd,

the ratio of deuteron-to-neutron EDMs, dd/dn, and the ratio of the deuteron MQM

and EDM,Md/dd, for the different TV sources: θ̄ [93, 91], and qCEDM, qEDM, and

gCEDM [40]. Just as for dn, a dd signal by itself could be attributed to any source

with a parameter of appropriate size. For θ̄, qEDM, and gCEDM the deuteron EDFF

is determined by the LO isoscalar nucleon EDM, and thus, except for qCEDM, dd

is well approximated by the sum of neutron and proton EDM. For θ̄ in particular,

using the most important long-range contributions, which appear at NLO, as a lower
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Source θ̄ qCEDM qEDM gCEDM

md dd/e O
(

θ̄ m2
π

M2
QCD

)

O
(

δ̃
mπM2

QCD

MNNM
2
/T

)

O
(

δm
2
π

M2
/T

)

O
(

w
M2

QCD

M2
/T

)

dd/dn O (1) O
(

M2
QCD

mπMNN

)

O (1) O (1)

mdMd/dd O
(

M2
QCD

mπMNN

)

O (1) O
(

γ
MNN

)

O (1)

Table 6.1. Orders of magnitude for the deuteron EDM (in units of e/md), the ratio
of deuteron-to-neutron EDMs, and the ratio of the deuteron MQM and EDM (in
units of 1/md), for TV sources of effective dimension up to six.

bound for D̄0 [41, 99], one finds |dd|>∼ 2.8 · 10−4 θ̄ e fm. If, however, the dominant

TV source is the qCEDM, dd comes mainly from neutral-pion exchange. When we

again take the long-range part of the nucleon EDM [40] as an estimate of its size,

we find that |dd/dn| ≃ 2, which is smaller than expected from NDA. In any case, a

measurement of |dd| significantly larger than |dn| would be indicative of a qCEDM.

Additional information comes from the ratioMd/dd. For θ̄, md|Md| is expected to

be larger than |dd|, whereas for the dimension-six sources we expect md|Md| to be of

similar size or somewhat smaller than |dd|. For θ̄,Md is determined by pion exchange,

and we can again use the link with isospin violation [39] to findMd ≃ 2.0 · 10−3 θ̄ e

fm2. An upper bound onMd can therefore constrain θ̄ without relying on an estimate

of short-range physics via the size of the chiral log, which is necessary when using dn

[93]. Moreover, if md|Md| is found to be much smaller than |dd|, the source would

likely be qEDM. Clearly, a measurement ofMd, in addition to dn and dd, would be

very valuable.

The deuteron EDM and MQM were calculated previously in Refs. [157, 159]. In

Ref. [157] the chiral limit mπ → 0 and the zero-range approximation for the NN

interaction were assumed, while Ref. [159] used a TV NN interaction with long-range

one-pion exchange and a general short-range interaction parametrized by heavy-meson

exchange, in addition to a realistic deuteron wavefunction. Since these calculations

did not use the chiral properties of the fundamental TV sources, the TV pion-nucleon

interactions were assumed to be all of the same size. When the dominant source is the
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qCEDM, their results agree with ours. The advantage of our EFT framework is that

it has a direct link to QCD by exploiting the chiral properties of the TV dimension

4 and 6 operators. This is demonstrated by the ḡ2N̄π3τ3N interaction used in many

previous calculations, which due to its chiral properties only comes in at higher order

for all TV sources [39]. Consequently, for the qCEDM, the ratio of dd toMd depends

at LO only on the ratio ḡ1/ḡ0,

∣

∣

∣

∣

mDMd

2dd

∣

∣

∣

∣

=

(

1 + κ1 +
3ḡ0
ḡ1

(1 + κ0)

)

. (6.5.1)

If ḡ1 is extracted from the deuteron EDM, and ḡ0 from another observable, such

as the proton Schiff moment [40] or the 3He EDM [161], the ratio (6.5.1) becomes

a testable, falsifiable prediction of our calculation. In addition, the power-counting

scheme allows a perturbative framework with analytical results that can be improved

systematically. Our estimates for dd are consistent with those from QCD sum rules

[194]. Our conclusions, of course, depend on how rapidly the chiral series converges.

In summary, we have investigated the leading-order, low-energy electric-dipole

and magnetic-quadrupole form factors of the deuteron that result from the θ̄ angle,

the quark electric and chromo-electric dipole moments, and the gluon chromo-electric

dipole moment and the TV four-quark operators. While for qCEDM we expect |dd|
to be larger than |dn| by a factor O(M2

QCD/mπMNN ), for the other TV sources we

have shown that dd is given by the sum of dn and dp. Furthermore, the Standard

Model predicts md|Md| to be larger than |dd|, whereas beyond-the-SM physics prefers

md|Md| smaller than, or of similar size as |dd|. EDM and MQM measurements are

therefore complementary.

6.6 Some contribution to deuteron EDM at NLO

We discuss in this section some NLO corrections to the deuteron EDM from the QCD

θ̄ term, in connection with our comment on the size of the counterterm D̄NN in Sec.

6.2.
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Figure 6.4. Corrections to the one-body contribution to the deuteron EDM. Solid,
dashed and wavy lines represent nucleons, pions and photons. A square and a circled
square denote the leading and next-to-leading isoscalar nucleon EDM. Circles repre-
sent interactions from the leading TC Lagrangian. The doubly circled circle denotes
an insertion of the subleading four-nucleon operators C2s and D2s. The hatched ver-
tex represents the deuteron interpolating field Di(x). Only one topology per diagram
is shown.

As remarked in Sec. 6.4, there are several NLO contributions. We first consider

corrections to the one-body contribution, diagram 6.2(a). They are depicted in Fig.

6.4. Diagram 6.4(c) represents corrections to the isoscalar nucleon EDFF, which

we computed in Sec. 5.2 and we give in Eqs. (5.2.6), (5.2.13) and (5.2.15). Dia-

grams 6.4(a) and 6.4(b) are corrections to the TC wavefunction, which go beyond the

zero-range approximation. The doubly circled circle in diagram 6.4(a) denotes one

insertion of the subleading S-wave four-nucleon operators C2s and D2s, while diagram

6.4(b) represents corrections to the wavefunction from one-pion exchange, which is a

NLO effect in the perturbative pion approach.

We find that at NLO the one-body contribution is

F one-body
D (~q 2) = 2F0(~q

2)
{

F1(x)−
mNγ

2π
C2s(µ)(µ− γ)2 (1− F1(x))

+
g2AmNγ

2πF 2
π

[

m2
π

mπ + 2γ
(1− F1(x)) + x2H(x)

]}

,

(6.6.1)
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Figure 6.5. NLO diagrams for the deuteron EDM from TV corrections to the
wavefunction. Solid, dashed and wavy lines represent nucleons, pions and photons.
A square denote the leading TV pion-nucleon interaction, or the four-nucleon TV
current. A doubly circled square denotes an interaction from the subleading, ∆ = 3
TV Lagrangians. Circles denote interactions from the leading TC Lagrangian, while
doubly circled circles vertices from the ∆ = 1 TC Lagrangian.

where F0(~q
2) is the nucleon isoscalar EDFF, defined in Eqs. (5.1.2) and (5.1.3), and

the function H(x) is some complicated function of x and ξ, whose expansion starts

at O(x0). Notice that the contribution of D2s cancels when taking the ratio of the

two- and three-point Green’s functions. Diagrams 6.4(a) and (b) do not contribute

to the deuteron EDM, but only to the momentum dependence of the EDFF. This

is analogous to what found for charge form factor in Ref. [189]. The only one-body

NLO contribution to the deuteron EDM then comes from the NLO correction to the

isoscalar nucleon EDM, Eq. (5.2.6). At NLO

done-bodyd = 2D̄0 +
egAḡ0
4πF 2

π

3mπ

2mN

(

1− 4

3

mNδmN

m2
π

)

. (6.6.2)

Another class of contributions consists in diagrams of the same topology as dia-

grams 6.2(b), but with power-suppressed corrections to the TC and TV pion-nucleon

couplings and to the photon-nucleon coupling. At this order, one has the contribu-

tion from diagram 6.5(c), with the TV isovector coupling ḡ1, defined in Eqs. (4.1.27)

and (4.4.4). At the same order, one has to consider diagram 6.5(b) with the leading
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TV coupling ḡ0, and the isospin breaking pion-nucleon coupling β1, defined in Eq.

(4.1.21), These two diagrams can be accounted for by replacing in Eq. (6.4.3) ḡ1

with ḡ1 + ḡ0β1/2gA. There is a further isospin breaking contribution, coming from

the nucleon mass difference. With the field redefinition of [138], which eliminates the

nucleon mass difference from the nucleon propagator and the asymptotic states, this

contribution manifests in a diagram with the same topology of diagram 6.5(b). The

TC pion-nucleon coupling is a new isospin breaking coupling, induced by the field

redefinition and proportional to δmN , which is given in Eq. (G.3). The contribution

to the deuteron EDFF from isospin-breaking effects is then

F ε
D(~q

2) = −egAḡ0mN

6πF 2
πmπ

[(

ḡ1
ḡ0

+
β1
2gA

)

1 + ξ

(1 + 2ξ)2
F2(x) +

δmN

mN

1

1 + 2ξ
F4(x)

]

, (6.6.3)

where the new two-loop function F4(x) is

F4(x) = 1− x2 20 + 166ξ + 105ξ2

60(1 + 2ξ)2
+O(x4). (6.6.4)

It is interesting to compare the isospin-breaking contributions (6.6.3) to the non-

analytic, NLO correction to the isoscalar nucleon EDM. At x = 0, the term propor-

tional to δmN in Eq. (6.6.3) is approximately 1/5 of the analogous δmN term in Eq.

(6.6.2), which, in its turn, is about 15 % of the largest non-analytic contribution to

D0. We can safely neglect it.

As discussed in Sec. 4.4, the ratios ḡ1/ḡ0 and β1/2gA could both, in principle,

be extracted by TC isospin breaking observables. In practice, this would require

the evaluation of isospin violating observables at rather high order, and a precise

extraction is, at present, not possible. Thus, we cannot, at the moment, do better

than power counting. By replacing ḡ1/ḡ0 and β1/2gA with their power counting

estimate εm2
π/M

2
QCD ≈ 10−2 (which is compatible with bounds on β1 from phase

shift analysis of nucleon-nucleon scattering), one finds that the contribution of Eq.

(6.6.3) to the deuteron EDM is approximately 20 % of the non-analytic contribution

to D0 in (6.6.2). Isospin-breaking effects, then, do not modify the fact that, for TV
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from the θ̄ term, the deuteron EDM is well approximated by the isoscalar nucleon

EDM.

As we noted in Sec. 4.4, in the case of the QCD θ̄ term several derivative TV pion-

nucleon couplings come into play at the same level as ḡ1, in particular relativistic,

1/m2
N , corrections to ḡ0. These interactions might contribute to the EDM at NLO, to-

gether with relativistic corrections to TC pion-nucleon vertex, to the nucleon-photon

vertex (the spin-orbit interaction in Eq. (3.3.19)), and to the contact interaction C0s.

The full calculation of the deuteron EDM from relativistic corrections is not com-

plete yet. Here we simply quote a partial result to corroborate the discussion on the

size of the counterterm D̄NN of Sec. 6.2. We computed the correction due to the

spin-orbit coupling of the nucleon to the photon, followed by a TV one-pion exchange,

with the leading coupling ḡ0, represented by diagram 6.5(a). While there are several

other relativistic corrections, no other comes with the isoscalar anomalous magnetic

moment κ0, so, while large cancellations are in general possible, the part of the result

proportional to κ0 will not be affected. We find that the diagram has a logarithmic

divergence. At ~q 2 = 0, the contribution to EDM is

d spin-orbit
d =

egAḡ0γ

4πF 2
πmN

(

1 + κ0 −
1

2

){

−1 − 2ξ

1 + 2ξ

+

[

1

d− 4
+ γE − log π − 4

3
+ log

(

mπ + 2γ

µ

)2
]}

. (6.6.5)

The divergence only affects the deuteron EDM, not the momentum dependence, and it

can be absorbed by the short-range, four-nucleon current D̄NN , whose contributions,

in the PDS scheme, is

F short
D (~q 2) = γ D̄NN(µ)

(µ− γ)2
2π

. (6.6.6)

The evaluation of the remaining contributions to the deuteron EDM from relativistic

corrections to gA, ḡ0 and C0s is in progress.
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Chapter 7

The Nuclear TV Potential

7.1 Introduction

We can summarize the results of Chapters 5 and 6 by saying that the observation of

the neutron and proton EDM alone does not provide enough information to unequiv-

ocally determine the dominant source of TV at high energy. Experiments with nuclei

have the potential to offer valuable complementary evidences, and to enable a more

complete picture of T violation to emerge.

Nuclear EDMs and other moments receive various contributions. There are, of

course, contributions from the individual nucleons’ EDMs. In the deuteron, as de-

tailed in Chapter 6, the isovector component cancels, while in 3He one can expect a

cancellation between the contributions of the two nearly anti-aligned protons. Thus,

nuclear EDMs, in particular the deuteron’s [194, 42], are sensitive to a different com-

bination of hadronic TV parameters than the neutron EDM. However, these one-

nucleon contributions are modified from their “in-vacuum” counterparts because the

nucleons are not free but bound in the nucleus. There are many-nucleon effects that

are TV. First, the TV component of the pion cloud can generate a TV pion-exchange

interaction among nucleons, and no symmetry forbids interactions of shorter range,

either. These TV nuclear forces will mix in components of the nuclear wave func-

tion that do not appear in the absence of TV. It is a source of polarization effects

for the entire nucleus. Second, there maybe multi-nucleon contributions to the TV

coupling of the photon; such TV currents can be generated by either pion exchange

or shorter-range dynamics.

TV one-pion exchange (OPE) has long been recognized as an important compo-

nent of the TV two-nucleon (NN) potential, and expressed [195, 196] in terms of

three non-derivative pion-nucleon couplings [197], associated with isospin I = 0, 1, 2.
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So far, the analysis of TV nuclear effects has been based on tree-level potentials

where OPE is sometimes supplemented by the single exchange of heavier mesons,

the eta [198], rho [199], and omega [199] being most popular. Allowing sufficiently

many couplings of these mesons to nucleons one can produce [159] the most general

short-range TV NN local interaction with one derivative [200]. This is the TV ana-

log of the Desplanques-Donoghue-Holstein (DHH) approach [201] for nuclear TC P

violation (PV).

The contributions from such potentials to the deuteron and 3He EDMs have been

calculated in the literature under various assumptions. OPE from the I = 2 TV

pion-nucleon coupling does not contribute to the NN system at tree level. It was

noticed early on [202] that OPE from the I = 0 TV pion-nucleon coupling does not

contribute to the deuteron EDM, either, but it does for 3He, where it was estimated

with a phenomenological strong-interaction potential [203]. The deuteron EDM that

arises from an I = 1 TV exchange of either pion- or shorter-range, together with

a separable strong-interaction potential, was calculated in Ref. [202]. The effects

of OPE on the deuteron EDM and MQM were calculated using both zero-range

and phenomenological strong-interaction potentials in Ref. [157, 158]. More recent

calculations of the deuteron EDM and MQM [159] and of the 3He EDM [161] have

considered other TV contributions besides those from the TV potential, and used

more modern, “realistic” strong-interaction potentials. Meson-exchange currents were

found small in the deuteron [159], and neglected in 3He [161]. The TV-potential

contributions are consistent with earlier results; they are dominated by OPE from

the I = 1 pion-nucleon coupling in the case of the deuteron [159], and from all three

pion-nucleon couplings in the case of 3He [161].

TV moments of heavier nuclei are more difficult to calculate. It has been argued

[195] that the TV potential can lead to an enhancement over the nucleon EDM thanks

to the near-degeneracy of levels of opposite parity, while meson-exchange currents

are comparatively small. The size of the effect can be estimated through the single-
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particle potential obtained by averaging the NN potential over a closed nuclear core.

The OPE from the I = 0, 2 pion-nucleon couplings are proportional to the nuclear I3,

(N−Z)/A [195, 196, 204], while the OPE from the I = 1 coupling does not have such

a suppressing factor [196, 204]. It has also been found that the matrix elements from

the rho and omega are small compared to the I = 1 pion contribution [199]. EDMs

and MQMs (for example from I = 0 OPE [195]) and SMs [205, 206, 207] of several

interesting nuclei have been estimated. A sample of recent SM calculations can be

found in Refs. [86, 208, 209]. There are, of course, other nuclear tests of TV, see

for example Ref. [210]. The most promising for effects of the TV nuclear interaction

seems to be neutron scattering [211]. On the proton, TV neutron scattering is again

dominated by OPE, but sensitive mostly to the I = 0, 2 couplings [160]. For heavy

nuclei, one can again obtain estimates using the single-particle potential [196, 210].

For consistency, we would like to describe nuclear TV observables in the same

framework used for the calculation of the nucleon EDM. The non-analytic behavior

of the nucleon EDM in mπ and the dominance of OPE in nuclear observables point

to the need of a framework that can account for both effects simultaneously, with

chiral symmetry playing a central role. In fact, the dimension 4 and dimension 6

sources of T violation that we consider have specific chiral properties, which imply

that neither all pion-nucleon interactions are allowed, nor all allowed forms have the

same strength. Here we use the chiral Lagrangian built in Chapter 4, where TV

interactions stemming from the θ̄ term and the dimension 6 sources of T violation

have been constructed and ordered according to the same power counting used to

order TC interactions in χPT.

In addition to consistency between one- and few-nucleon TV interactions, nuclear

TV also requires consistency between TV and TC forces, in order there to be no

mismatch in the off-shell behaviors of the various ingredients. Of course, off-shell

effects are dependent on the choice of fields, while physical quantities are not, provided

the same choice of fields has been made throughout the calculation. As far as TV
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nuclear interactions are concerned, phenomenological TC models bring additional

uncertainties, such as the choice of zero-range or finite-range interactions and the

role of heavy mesons. On the other hand, χPT has been extended to multi-nucleon

systems [100, 37, 38], leading to the derivation of TC nuclear forces and currents. This

opens the possibility of describing all necessary ingredients in a single framework.

The goal of this Chapter is to provide the first step in the extension of TV in-

teractions in the EFT to the multi-nucleon sector. The TV nuclear potential is the

most important ingredient in this extension. Most of the Chapter is dedicated to the

TV potential from the QCD θ̄ term at N2LO. For this source, it is necessary to work

at high order because the I = 1 pion-nucleon TV coupling, which is the only non-

derivative coupling that in nuclei is not suppressed by the factor (N−Z)/A, does not
appear in the leading order Lagrangian. As we are going to see, new elements appear

with respect to phenomenological treatments, such as two-pion exchange (TPE) at

the same level as short-range interactions representing heavier-meson exchange. In

the case of the qCEDM, the gCEDM and the TV four-quark operators it is enough

to consider the LO TV potential. These TV potentials have to be used, for example,

with the TC, parity-conserving (PC) potentials from Refs. [212, 213, 214, 215, 216,

217, 218, 219, 220, 145, 148, 149, 221, 222, 223, 138, 153, 154]. The construction

here is similar to that of the TC PV potential [90, 224, 225, 226, 227], which ex-

tends the EFT from the TC, PV one-nucleon sector [89, 183, 184, 228, 229, 229] to

multi-nucleon systems. Such a framework provides an alternative to the DDH ap-

proach [201], allowing for a model-independent analysis of nuclear TC PV phenomena

[231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241]. Our present TV PV EFT frame-

work stands in respect to previous approaches like this TC PV EFT framework with

respect to the DDH approach.

The Chapter is organized as follows. In Sec. 7.2 we briefly consider processes

involving momenta below Mnuc ∼ 100 MeV, for which pion degrees of freedom can be

integrated out, and we list the dominant TV contact interactions for various sources
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of T violation. The nuclear potential from the QCD θ̄ term to subleading order in

χPT is then presented in momentum (Sec. 7.3) and coordinate (Sec. 7.4) spaces.

(We relegate details of the Fourier transformation to Appendix K.) In Sec. 7.3.1,

we derive the LO potential from the qCEDM and the chiral invariant, dimension 6

sources of T violation. In Sec. 7.5 we discuss the size of different components of the

potential, and we draw our conclusions in Sec. 7.6.

7.2 Pionless Theory

Before we discuss the TV potential in χPT, it is educative to consider a much simpler

EFT. At momenta much smaller than the pion mass, pion degrees of freedom can be

integrated out and one is left with a pionless EFT, in which the interactions are

represented by operators involving only nucleon fields. If we denote by Mnuc ∼ 100

MeV the scales associated with pion physics, this EFT applies to processes where all

momenta Q≪ Mnuc. Power counting in this EFT is reviewed in Ref. [100, 37, 38].

The lowest-order TC two-nucleon interactions can be taken as [35, 36]

L(0)
/π,T = −C11

2
N̄NN̄N − Cττ

2
N̄τN · N̄τN, (7.2.1)

where C11,ττ = O(4π/mNℵ), with ℵ < Mnuc a low-energy scale. The corresponding

potential in momentum space is simply

V
(0)
/π,T =

1

2

[

C11 + Cτττ
(1) · τ (2)

]

, (7.2.2)

where τ (i)/2 is the isospin of nucleon i. These interactions affect only the two S

waves. Since the effect of free two-nucleon propagation is ∼ mNQ/4π, for momenta

Q>∼ℵ these interactions have to be iterated to all orders [187, 242]. Using dimensional

regularization with power divergence subtraction [187, 189] at a scale µ,

C0s = C11 − 3Cττ =
4π

mN

(

1

as
− µ

)−1

, C0t = C11 + Cττ =
4π

mN

(

1

at
− µ

)−1

,

(7.2.3)
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in terms of the isospin-singlet (3S1) and -triplet (1S0) scattering lengths, as and at.

Because the coefficients C11,ττ subsume physics at the scale of the pion mass, their

scaling is different from the one in the pionful EFT.

In leading order, the θ̄ term, the qCEDM and the chiral-invariant TV sources

induce TV four-nucleon operators similar to those in Eq. (6.2.5):

L/π,/T = C̄11N̄N ∂µ(N̄S
µN) + C̄ττ N̄~τN · ∂µ(N̄Sµ~τN)

+C̄τ1N̄τ3N ∂µ(N̄S
µN) + C̄1τN̄N∂µ(N̄S

µτ3N), (7.2.4)

where C̄11,ττ and C̄1τ,τ1 are new short-range parameters. In momentum space the

interaction Hamiltonian is given by

V/π,/T (~q) = − i
2

[

C̄11 + C̄τττ
(1) · τ (2)

] (

~σ (1) − ~σ (2)
)

· ~q

− i
4

(

C̄1τ + C̄τ1
)

(

τ
(1)
3 + τ

(2)
3

)

(

~σ (1) − ~σ (2)
)

· ~q

− i
4

(

C̄1τ − C̄τ1
)

(

τ
(1)
3 − τ

(2)
3

)

(

~σ (1) + ~σ (2)
)

· ~q, (7.2.5)

where ~σ (i)/2 is the spin of nucleon i and ~q = ~p1 − ~p ′
1 = ~p ′

2 − ~p2 is the momentum

transfer. In nucleon-nucleon scattering, operators that break P and T induce mixing

between waves of different parity. At low energy, the most relevant effect is the

mixing between S and P waves, and indeed the single momentum in Eq. (7.2.5) can

only connect an S to a P wave. At leading order, the P wave is free. Since the

short-range TV potential involves one S wave, we expect [100, 37, 38] in the pionless

EFT that the coefficients C̄ij scale as 1/ℵ. Indeed, the amplitude for a nucleon-

nucleon transition can be computed from Eq. (7.2.5) as done in the PV case in Refs.

[90, 231, 232, 233, 234]. In leading order, it involves one insertion of the TV operators

C̄ij, dressed by the all-order iteration of the appropriate S-wave operator, C0s or C0t.

The renormalization-group invariance of the amplitude implies that the C̄ij follow a

renormalization-group equation of the form d(C̄ij/C0)/d lnµ = 0, which is satisfied if
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the four independent parameters are taken to be

C̄1s = C̄11 − 3C̄ττ =
4πc̄s
mN

(

1

as
− µ

)−1

, C̄1t = C̄11 + C̄ττ =
4πc̄t
mN

(

1

at
− µ

)−1

,

C̄3s = C̄1τ − C̄τ1 =
4πc̄3s
mN

(

1

as
− µ

)−1

, C̄3t = C̄1τ + C̄τ1 =
4πc̄3t
mN

(

1

at
− µ

)−1

,(7.2.6)

in terms of four µ-independent coefficients c̄s,t,3s,3t. As in the TC sector, the scaling

of the short-range parameters is different in the pionless EFT than in ChPT. We can

write

C̄11,ττ = O
(

4π

mNℵ
c̄s,t

)

, C̄1τ,τ1 = O
(

4π

mNℵ
c̄3s,3t

)

. (7.2.7)

In order to estimate the coefficients c̄s,t,3s,3t, we use naive dimensional analysis [123]

with the pionful EFT as the underlying theory. We then find that at leading order

the isoscalar c̄s,t receive contributions from all the sources,

c̄s,t = O
(

θ̄

MQCD
, (δ̃0 + εδ̃3)

MQCD

M2
/T

, w
MQCD

M2
/T

)

, (7.2.8)

while the isospin-breaking c̄3s,3t only from the dimension-6 sources,

c̄3s,3t = O
(

δ̃3
MQCD

M2
/T

, εw
MQCD

M2
/T

)

. (7.2.9)

In general, one would expect five possible amplitudes connecting S to P waves

[159, 160]: three —one for each possible value of I3 = 1, 0,−1— to describe the mixing

of the isotriplet 1S0 and 3P0 waves, one for the mixing of the isosinglet 3S1 and 1P1

states, and one for the mixing of nucleons in the 3S1 configuration with the isotriplet

3P1 wave. The θ̄ term yields a short-range potential in the form of the isospin-

conserving terms of Ref. [159]. Because the TV operator in Eq. (3.4.15) is isoscalar

and isospin violation is a subleading effect in ChPT, for which the pionless EFT is

the low-energy limit, the θ̄ term does not contribute at leading order to quantities

that violate both T and isospin. The two terms contribute to 3S1–
1P1 mixing and

to 1S0–
3P0 mixing, in equal way for the three I3 configurations. The 3S1–

3P1 mixing

vanishes at leading order, a fact that has important consequences for the estimate



201

of the deuteron EDM [42]. If δ̃3 and ε are different from zero, the qCEDM and

the chiral-invariant TV sources also contribute to isospin-breaking TV observables at

leading order. The operator C̄3t is proportional to the third component of the total

isospin of the two-nucleon pair, and thus it does contribute to 1S0–
3P0 mixing, but

only for I3 = ±1. C̄3s is instead proportional to the total spin of the two nucleons,

and it is relevant to 3S1–
3P1 mixing, and, consequently, to the deuteron EDM.

7.3 The TV Potential in Momentum Space

In processes involving momenta Q ∼ Mnuc, which presumably comprise the bound

states of most nuclei, pion effects are important and pion degrees of freedom should

be included explicitly in the theory. In this Section we use the interactions given

in Chapters 3 and 4 to compute the TV nuclear potential from the QCD θ̄ term in

momentum space up to ν = 3, that is, including corrections of O(Q2/M2
QCD) with

respect to the leading TV potential. For the θ̄ term, it is important to work at

this accuracy, since the isovector coupling ḡ1 only appears in the N2LO Lagrangian.

Therefore, for observables which are particularly sensitive to ḡ1, as for example the

deuteron EDM, a consistent calculation in the Weinberg power counting requires the

knowledge of the full TV potential at N2LO. We will return to the dimension 6 sources

of T violation in Sec. 7.3.1. In this case, it is sufficient to work at LO, either because

the interesting couplings ḡ0 and ḡ1 are both leading, as in the case of the qCEDM, or

because, in the case of chiral invariant TV sources, short-distance effects overshadow

the importance of corrections to the leading TV potential.

In the lowest orders, the TV nuclear potential involves only two nucleons. We

write the two incoming momenta as ~p1 = ~P/2 + ~p and ~p2 = ~P/2 − ~p, and the two

outgoing momenta as ~p ′
1 =

~P/2+ ~p ′ and ~p ′
2 =

~P/2− ~p ′. The potential in momentum

space can be expressed as function not only of the momentum transfer ~q = ~p − ~p ′,

but also of the center-of-mass momentum ~P and of the variable ~K = (~p+~p ′)/2: V/T =

V/T (~q, ~K, ~P ). Expressions for the potential in the center-of-mass frame are obtained
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Figure 7.1. OPE diagrams contributing to the leading TV two-nucleon potential.
The solid and dashed lines represent nucleon and pion, respectively; a square stands
for the TV pion-nucleon coupling ḡ0 in L(1)

/T, πN (4.4.7), while the filled circle represents

an interaction from L(0)
χ, f≤2 (3.3.17). Only one possible ordering is shown.

by setting ~P = 0. Notice that although some of the terms below vanish in the center-

of-mass frame, they can be relevant to the calculation of the TV electromagnetic form

factors of deuteron, or for calculations of T violation in nuclei with A > 2, where the

interaction with the photon or other nucleons changes the center-of-mass momentum

of the nucleon pair.

In leading order, the TV nuclear potential comes from the OPE diagrams of Fig.

7.1, with TC and TV pion-nucleon interactions taken from L(0)
χ,f≤2 and L

(1)
/χ, f=2 in Eqs.

(3.3.17) and (4.1.19), respectively. The strong-interaction vertex introduces a factor

of gAQ/Fπ, while the TV vertex brings in a factor ḡ0 ∝ m2
π/MQCD. As a result

this contribution goes as M−1
QCD and it is of order ν = 1. In momentum space, the

expression for the potential is simply

V
(1)
/T = i

gAḡ0
F 2
π

τ (1) · τ (2)
(

~σ(1) − ~σ(2)
)

· ~q

~q 2 +m2
π

, (7.3.1)

which agrees with Ref. [195]. Just like the potential (7.2.5) in the pionless theory,

this OPE potential contributes to 1S0–
3P0 and

3S1–
1P1 mixing, but not to the isospin-

violating 3S1–
3P1 mixing. At this order, there is a single unknown TV parameter,

ḡ0. Contrary to the PC, TC case [100, 37, 38] and more like the PV, TC potential

[90], pion physics is enhanced relative to short-range physics due to the absence of a

derivative in the simplest pion-nucleon TV interaction and the presence of one in the

simplest TV two-nucleon contact interaction.
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The next contributions to the TV potential appear at orders ν = 2, 3. According

to Eq. (3.3.15), corrections at these orders come from one-loop diagrams involving

L(0)
χ,≤2 and L(1)

/χ, f=2 only, and tree diagrams with insertions of higher-order terms. The

tree contributions come from the four-nucleon TV operators in L(3)
/χ, f=4, Eq. (4.1.44),

and from OPE diagrams in which either the TC or the TV vertices originate in the

power-suppressed f ≤ 2 Lagrangians.

The most important loop diagrams are from TPE, depicted in Fig. 7.2. The

T -odd pion-nucleon coupling ḡ0 and one of the strong-interaction vertices bring in a

factor of ḡ0gA/F
2
π . The other two vertices of the box and crossed diagrams of Fig.

7.2 are strong-interaction pion-nucleon vertices from Eq. (3.3.17), and combined with

the (4π)2 from the loop integration, they yield the suppression factor g2A/(4πFπ)
2 ∼

1/M2
QCD. For the triangle diagrams, the seagull vertex is the Weinberg-Tomozawa

term, also from Eq. (3.3.17), which brings in a factor of 1/F 2
π that, combined with the

(4π)2 from the loop, also leads to a suppression of 1/(4πFπ)
2 ∼ 1/M2

QCD. All these

diagrams are thus of orderM−3
QCD. Care of course has to be taken with the subtraction

from the box diagrams in Fig. 7.2 and the iterated static OPE, which is infrared

enhanced and already included in the computation of wave functions. Following the

procedure described for instance in Ref. [90], the subtraction is accomplished by

exploiting the identity

i

−v · k + iε
= − i

v · k + iε
+ 2πδ(v · k). (7.3.2)

When Eq. (7.3.2) is used in place of one of the nucleon propagators in the box

diagrams, the first term on the right hand side leads to a contour integral over the

0th component of the loop momentum, which can be performed without picking up

the nucleon poles and is free of the infrared enhancement discussed in Sec. 3.3, while

the delta function corresponds to the two-nucleon pole and must be discarded in the

calculation of the potential. For the crossed-box and triangle diagrams, instead, it is

always possible to avoid the nucleon poles, and these diagrams only contribute to the

potential.
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Figure 7.2. Box, crossed and triangle TPE diagrams contributing to the subleading
TV two-nucleon potential. Notation as in Fig. 7.1. Only one possible ordering per
topology is shown.

The TPE diagrams in Fig. 7.2 are ultraviolet divergent. We regulate them in

dimensional regularization in d spacetime dimensions, where divergences get encoded

in the factor

L =
2

4− d − γE + ln 4π, (7.3.3)

where γE is the Euler constant. We denote by µ the renormalization scale. Proper

renormalization requires that sufficiently many counterterms appear at the same order

to compensate for the L and µ dependence of the loops. Indeed, here this dependence

can be absorbed by the renormalization of the contact interaction C̄2 from L(3)
/χ, f=4,

Eq. (4.1.44), which we do by redefining it through

C̄2 → C̄2 +
2gAḡ0
F 2
π

1

(2πFπ)2

[

(

3g2A − 1
)

(

L+ ln
µ2

m2
π

)

+ 2
(

g2A − 1
)

]

. (7.3.4)

Note that we chose to absorb in C̄2 some finite constant pieces. TPE graphs do

not renormalize the coupling C̄1 at this order. With this redefinition, the contact

interactions yield the short-range potential

V
(3)
/T,SR(~q) = −

i

2

[

C̄1 + C̄2 τ
(1) · τ (2)

] (

~σ (1) − ~σ (2)
)

· ~q, (7.3.5)

which is formally identical to the leading potential in the pionless EFT, Eq. (7.2.5).

The couplings, however, are different. We can see from Eq. (7.3.4) that the natural

size of the coefficients C̄i is, as advertised, θ̄m
2
π/F

2
πM

3
QCD, implying a suppression of

Q2/M2
QCD with respect to TV OPE.



205

Once the divergent, short-range part of TPE has been lumped with the contact

terms, we are left with the non-analytic contributions of medium range,

V
(3)
/T,MR = −i2ḡ0gA

F 2
π

1

(2πFπ)2
τ (1) · τ (2)

(

~σ(1) − ~σ(2)
)

· ~q
[

2g2A B

(

~q 2

4m2
π

)

− T
(

~q 2

4m2
π

)]

,

(7.3.6)

in terms of the functions

T (x) =

√

1 + x

x
ln
(√

x+
√
1 + x

)

=
1 + x

1 + 3
2
x
B(x), (7.3.7)

As the leading OPE potential, Eq. (7.3.1), the TPE potential is a function only of

the momentum transfer ~q. The scale of momentum variation is, as one would expect,

2mπ. TPE and leading OPE share the same spin-isospin structure, which means they

can only be separated if we can probe their different momentum dependences.

A much richer structure arises from the remaining ν ≤ 3 contributions to the

two-nucleon TV potential, which come from the OPE diagrams depicted in Fig. 7.3.

Double-circled vertices in the first two diagrams denote O(Q2/M2
QCD) corrections to

the TV and TC pion-nucleon couplings, given by the operators in the Lagrangians

L(1,2)
χ, f=2, L

(1,2)
/I, f≤2, L

(3)

/χ1, f=2 and L(3)

/χ2, f=2 found in Eqs. (3.3.18), (3.3.19), (G.3), and Eqs.

(4.1.24) and (4.1.27) (the effects of the elimination of the tadpoles on Eq. (4.1.27) are

summarized in Eq. (4.3.17)). The last diagram is proportional to corrections to the

pion mass in L(2)
/χ, f=0 and L(1,2)

/I, f≤2, and to the nucleon mass difference in L(1,2)
/I, f≤2. Note

that there are no further loop diagrams to consider explicitly. The loop diagrams

involving the leading S-wave TC four-nucleon operators and a TV pion exchange all

vanish. The analysis of [124, 125, 126] showed that some P -wave four-nucleon opera-

tors are less suppressed than expected on the grounds of naive dimensional analysis,

and they must be included in the leading order f = 4 Lagrangian. Loop diagrams

with these P -wave operators and a TV pion exchange do not vanish. However, these

diagrams do not depend on the momentum transfer ~q and they simply renormalize

the couplings C̄1 and C̄2. We do not explicitly compute their contribution.
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Figure 7.3. OPE corrections to the TV two-nucleon potential up to order
O(Q3/M3

QCD). The double circles denote vertices in the ∆ = 1, 2 TC chiral La-

grangians, L(1)
χ, f=2 (3.3.18), L(2)

χ, f=2 (3.3.19), and L(1,2)
/I, f≤2 (G.3). The double-circled

square denote vertices from the ∆ = 3 TV Lagrangians, L(3)
/χ1, f=2 (4.1.24) and L

(3)
/χ2, f=2

(4.1.27). Other notation as in Fig. 7.1.

Corrections that originate in the pion mass are closely connected to the leading

OPE, Eq. (7.3.1). At the order we are considering, the pion mass receives correc-

tions from one-loop diagrams, which we absorb [30, 31] in the renormalization of the

coupling ∆m2
π in Eq. (4.1.4). With the definitions of Eqs. (3.3.17), (3.3.21), (4.1.4),

and (4.1.9), the physical masses of the neutral and charged pions are, respectively,

m2
π0 = m2

π+∆m2
π−δm2

π = (135 MeV)2 and m2
π± = m2

π+∆m2
π+ δ̆m

2
π = (139.6 MeV)2

[1]. The isospin-symmetric correction to the pion mass can be accounted at ν = 3 by

substituting m2
π → m2

π + ∆m2
π in the leading order TV potential. Isospin-breaking

corrections come from the different masses of the neutral and charged pions. With

the assumption αem/π ∼ εm3
π/M

3
QCD, which is numerically reasonable, the pion mass

splitting is dominated by the electromagnetic contribution δ̆m2
π, which gives rise to a

potential of order ν = 2. The quark mass difference δm2
π contributes at ν = 3, when

one should also consider diagrams with two insertions of δ̆m2
π. The sum of these

components generates two structures, an isoscalar

V
(2+3)
/T/I,a (~q) = −i ḡ0gA

3F 2
π

τ (1) · τ (2)
(

~σ(1) − ~σ(2)
)

· ~q

(~q 2 +m2
π)

2

×
(

2δ̆m2
π − δm2

π − 2
(δ̆m2

π)
2

q2 +m2
π

)

, (7.3.8)
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and an isotensor

V
(2+3)
/T/I,b (~q) = i

ḡ0gA
3F 2

π

(

3τ
(1)
3 τ

(2)
3 − τ (1) · τ (2)

)

(

~σ(1) − ~σ(2)
)

· ~q

(~q 2 +m2
π)

2

×
(

δ̆m2
π + δm2

π −
(δ̆m2

π)
2

q2 +m2
π

)

. (7.3.9)

The isoscalar component, Eq. (7.3.8), can be expressed in a more convenient way

by using the physical values of the neutral and charged pion mass in the leading

potential, Eq. (7.3.1). We can write

V
(1)
/T (~q) + V

(2+3)
/T/I,a (~q) = i

ḡ0gA
3F 2

π

τ (1) · τ (2)
(

~σ(1) − ~σ(2)
)

· ~q
(

2

~q 2 +m2
π±

+
1

~q 2 +m2
π0

)

,

(7.3.10)

which, expanding in δ̆m2
π and δm2

π, reproduces Eq. (7.3.8). The combination of

neutral and charged pion propagators in Eq. (7.3.10) represents an “average” pion

static propagator, which naturally appears in the isoscalar contribution. Similarly,

we can express the tensor component as

V
(2+3)
/T/I,b (~q) = −i ḡ0gA

3F 2
π

(

3τ
(1)
3 τ

(2)
3 − τ (1) · τ (2)

)

(

~σ(1) − ~σ(2)
)

· ~q
(

1

~q 2 +m2
π±

− 1

~q 2 +m2
π0

)

.

(7.3.11)

In applications to nucleon-nucleon scattering, this tensor component would contribute

at low energies to 1S0–
3P0 mixing, affecting proton-proton and neutron-neutron (I3 =

±1) and neutron-proton (I3 = 0) scattering differently.

Corrections from the nucleon mass come in several guises. The use of a heavy-

nucleon field ensures that the large scale mN appears always in denominators. In the

isospin-symmetric limit the first effects of mN enter in the ∆ = 1, 2 TC Lagrangians,

Eqs. (3.3.18) and (3.3.19), the two-derivative contribution to the ∆ = 3 TV La-

grangian, Eq. (4.1.24), and, via the on-shell condition for the nucleons, the energy of

the potential pion propagator. They yield relativistic corrections to the leading OPE
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with the same spin-isospin structure,

V
(3)
/T, a(~q,

~K, ~P ) = −i gAḡ0
F 2
πm

2
N

τ (1) · τ (2)
(

~σ(1) − ~σ(2)
)

· ~q

~q 2 +m2
π

×
(

~K2 +
~P 2

4
− 1

4

(~P · ~q )2
~q 2 +m2

π

)

, (7.3.12)

and with new structures,

V
(3)
/T,b (~q,

~K, ~P ) = −i gAḡ0
4F 2

πm
2
N

τ (1) · τ (2) 1

~q 2 +m2
π

{

~P · ~q
[

(

~σ(1) − ~σ(2)
)

·
~P

2
+
(

~σ(1) + ~σ(2)
)

· ~K
]

+i~σ(1) ·
[

~q ×
(

~P

2
+ ~K

)]

~σ(2) · ~q + i~σ(1) · ~q ~σ(2) ·
[

~q ×
(

~P

2
− ~K

)]}

.

(7.3.13)

This potential includes the contribution of the 1/mN correction to gA in Eq. (3.3.18).

Naively, one would expect this correction to contribute at order ν = 2; however the

interaction brings in a factor of v · q, which, for on-shell nucleons, becomes v · q =

~q · ~P/2mN , suppressing the potential by a further factor of 1/mN . There is a subtlety

in this argument. When one performs the integral involving both OPE with a pion

energy in the numerator and another interaction in the potential, and picks the pion

pole, one gets a one-loop contribution to the potential. However, by power counting,

such diagrams are suppressed by a further Q/MQCD. This of course does not preclude

enhancements by factors of π that in principle might affect any χPT loop, but are

hard to incorporate in power counting. The same on-shell condition was used to

express v · q2 in the pion propagator in terms of the momentum of the nucleons.

Corrections to the nucleon mass can be removed from nucleon propagators by

redefinitions of the nucleon field. The chiral-symmetry-breaking correction to the

nucleon mass, ∆mN in Eq. (4.1.2), can be absorbed in mN , mN → mN −∆mN , by

a redefinition of the nucleon field of the same type of that which eliminates the mass

from Eq. (3.3.17) in the first place. The isospin-violating nucleon mass splitting δmN
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can be dealt with the field redefinition of Ref. [138], which leads to Eq. (G.3). The

corresponding potential linear in δmN has a 1/mN factor,

V
(3)
/T/I,c(~q,

~K, ~P ) =
ḡ0gA
F 2
π

δmN

mN

1

~q 2 +m2
π

(

τ (1) × τ (2)
)

3

[

(

~σ(1) + ~σ(2)
)

· ~K

+
(

~σ(1) − ~σ(2)
)

·
(

~P

2
+

~q

~q 2 +m2
π

~P · ~q
)]

. (7.3.14)

This potential has the right quantum numbers to produce 3S1–
3P1 mixing, and there-

fore must be included in a calculation of the deuteron EDM. Indeed, in the pertur-

bative pion approach, one-pion exchange of the form (7.3.14) generates a NLO con-

tribution to the deuteron EDM, as discussed in Sec. 6.6. In addition, there are terms

quadratic in δmN , which generates an additional contribution to the isoscalar and

tensor potentials in Eqs. (7.3.8) and (7.3.9),

V
(3)
/T/I,d(~q) = i

ḡ0gA
3F 2

π

δm2
N

[

2τ (1) · τ (2) −
(

3τ
(1)
3 τ

(2)
3 − τ (1) · τ (2)

)]

×
(

~σ(1) − ~σ(2)
)

· ~q

(~q 2 +m2
π)

2
. (7.3.15)

Finally we arrive at contributions from ν = 3 effects in the pion-nucleon vertices.

At this order, several contributions can be absorbed into redefinitions of the couplings

gA, ḡ0, and C̄2. One-loop corrections to gA do not introduce any non-analytic contri-

bution and, for an on-shell nucleon, they renormalize the coupling β2 in Eq. (4.1.3)

[243]. The operator with coefficient β2 gives rise to a potential like Eq. (7.3.1), with gA

replaced by −β2/2. For simplicity we absorb β2 in gA, gA → gA+β2/2. In Appendix J,

we show that the one-loop corrections to ḡ0 do not introduce any non-trivial momen-

tum dependence, so they simply renormalize the coupling ∆ḡ0 = −2δ(3)1 mNρ in Eq.

(4.1.27). These m2
π corrections to ḡ0 can be absorbed in it, ḡ0 → ḡ0−∆ḡ0−ḡ0δm2

π/m
2
π.

As for the operators with coefficients c1 in Eq. (3.3.19) and η̄3 = ρζ3 in Eq. (4.1.24),
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they give potentials of the form

τ (1) · τ (2)
(

~σ(1) − ~σ(2)
)

· ~q ~q 2

~q 2 +m2
π

= −τ (1) · τ (2)
(

~σ(1) − ~σ(2)
)

· ~q m2
π

~q 2 +m2
π

+ τ (1) · τ (2)
(

~σ(1) − ~σ(1)
)

· ~q,

(7.3.16)

which cannot be distinguished from those of gAḡ0 and C̄2, and can therefore be ab-

sorbed into further redefinitions of gA, ḡ0, and C̄2. Now the Goldberger-Treiman

relation for the strong pion-nucleon constant, gπNN = 2mNgA/Fπ, applies without an

explicit correction. If for the pion-nucleon coupling constant we use gπNN = 13.07

[244, 245], then in the leading-order TV potential we should use gA = 1.29.

The remaining contributions come from vertex corrections, both in the TV sector

via the TV pion-nucleon coupling π3N̄N in Eq. (4.1.27), and in the TC sector via

the isospin-breaking pion-nucleon axial-vector coupling ∂µπ3N̄S
µN in Eq. (G.3). We

find

V
(3)
/T/I,e(~q) = i

1

2F 2
π

1

~q 2 +m2
π

{(

gAḡ1 −
ḡ0β1
2

)

(

τ
(1)
3 + τ

(2)
3

)

(

~σ(1) − ~σ(2)
)

· ~q

+

(

gAḡ1 +
ḡ0β1
2

)

(

τ
(1)
3 − τ

(2)
3

)

(

~σ(1) + ~σ(2)
)

· ~q
}

, (7.3.17)

where defined ḡ1 to absorb the tadpole contribution, like in Eq. (4.4.4)

ḡ1 = −4ρ
(

c
(3)
1 −∆mN

δm2
π

2m2
π

)

. (7.3.18)

The first structure contributes to 1S0–
3P0 mixing. Being proportional to I3, the

contribution vanishes in the case of neutron-proton scattering, and is only relevant for

proton-proton or neutron-neutron scattering. Because of its isospin structure, it does

not affect the 3S1–
1P1 and 3S1–

3P1 channels, and, in particular, it is not relevant for

the calculation of the deuteron EDM. The second structure, in contrast, contributes

to 3S1–
3P1 mixing, and, consequently, to the deuteron EDM. Its contribution vanishes

in the other low-energy channels.
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One can proceed in the same manner to construct higher-order potentials. At next

order there are further OPE and TPE contributions to the two-nucleon potential,

and the appearance of the lowest-order three-nucleon TV potential. It arises from

essentially three mechanisms: (i) a TPE component ∝ gAḡ0/mNF
4
π involving a pion

energy in a Weinberg-Tomozawa seagull vertex; (ii) a TPE component ∝ g2Ah̄0/F
4
π

involving the seagull vertex from L(2)
/χ, f=2, Eq. (4.1.21); and (iii) a one-pion/short-

range component ∝ gAγ̄i/F
2
π involving the short-range pion-two-nucleon interactions

from L(2)
/χ, f=4, Eq. (4.1.42). The fact that, in the absence of an explicit delta isobar,

the three-nucleon potential first shows up three orders beyond leading is completely

analogous to the TC PC case [218, 219, 220]. An important difference is that, because

of the relative enhancement of pion exchange compared to short-range physics, the

leading TV PV three-nucleon force does not include a purely short-range component.

Thus, this TV PV three-nucleon force is in principle determined by one- and two-

nucleon physics.

7.3.1 The TV Potential from dimension 6 sources.

Our attention has been focused so far on the TV potential from the θ̄ term, in which

case the vanishing of ḡ1 at LO makes it important to consider N2LO contributions.

We now briefly turn our attention to the TV potential from the dimension 6 sources

of T violation.

In the case of the qCEDM, the TV couplings ḡ0 and ḡ1 both appear at the same

order, in the ∆6 = −1 Lagrangian in Eq. (4.1.29). As a consequence, the leading

potential from the qCEDM has chiral index ∆6 = −1, and it has an isospin conserving

part, identical to Eq. (7.3.1), and an isospin breaking one. The leading potential is

V
(−1)
qCEDM(~q) = i

gAḡ0 q
F 2
π

τ (1) · τ (2)
(

~σ (1) − ~σ (2)
)

· ~q

~q 2 +m2
π

+i
gAḡ1 q
2F 2

π

1

~q 2 +m2
π

[(

τ
(1)
3 + τ

(2)
3

)

(

~σ (1) − ~σ (2)
)

· ~q +
(

τ
(1)
3 − τ

(2)
3

)

(

~σ(1) + ~σ(2)
)

· ~q
]

,

(7.3.19)
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with ḡ0 q and ḡ1 q given in Eqs. (4.4.5) and (4.4.6).

At N2LO, the potential receives corrections from one-loop diagrams, with the same

topology as in Fig. 7.2, the square now denoting both ḡ0 q and ḡ1 q, from tree-level

OPE diagrams, with subleading TC and TV pion-nucleon vertices, and from short-

range nucleon-nucleon interactions, the operators in Eq. (4.1.48). We refrain here

from carrying out the complete calculation, which proceeds on lines that are very

similar to Sec. 7.3, with the only difference of a richer isospin structure.

For the chiral invariant sources of T violation, the gCEDM and the TV four-quark

operators, TV pion-nucleon couplings and four-nucleon interactions have the same

importance, both of them appearing in the ∆6 = −1 Lagrangian, in Eqs. (4.1.29)

and (4.1.50). As a consequence, the leading nucleon-nucleon potential consists of a

pion-exchange contribution and a short-distance piece

V (−1)
w (~q) = i

gAḡ0w
F 2
π

τ (1) · τ (2)
(

~σ (1) − ~σ (2)
)

· ~q

~q 2 +m2
π

+i
gAḡ1w
2F 2

π

1

~q 2 +m2
π

[(

τ
(1)
3 + τ

(2)
3

)

(

~σ (1) − ~σ (2)
)

· ~q +
(

τ
(1)
3 − τ

(2)
3

)

(

~σ(1) + ~σ(2)
)

· ~q
]

− i
2

[

C̄w 1 + C̄w 2 τ
(1) · τ (2)

] (

~σ (1) − ~σ (2)
)

· ~q. (7.3.20)

At N2LO, along with contributions similar to those discussed in Sec. 7.3 (TPE di-

agrams, relativistic corrections to ḡ0 and ḡ1) one has to include all the possible TV

four-nucleon operators with three derivatives.

In the case of the QCD θ̄ term, TV three-body forces only appear at N3LO, one

order higher than the accuracy of our analysis. One might wonder whether for chiral-

invariant sources of T violation, which appear to be more sensitive to short-distance

physics, TV three-body forces are more relevant. However, also in this case it turns

out that the three-nucleon potential is a N3LO effect. The lowest order three-nucleon

potential receives various contributions: (i) a TPE component ∝ gAḡ0,1w/mNF
4
π in-

volving a pion energy in the Weinberg-Tomozawa vertex, (ii) a TPE component

∝ g2Aı̄0w/mNF
4
π involving a pion energy in the leading TV seagull ı̄0w (iii) TPE com-

ponents from TV seagulls in the ∆6 = 0 pion-nucleon Lagrangian, which we did
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not explicitly construct, (iv) a one-pion/short-range component ∝ gAγ̄i/F
2
π , where in

the case of TV from the gCEDM and TV four-quark operators, four-nucleon opera-

tors that contain at least one pion field first appear in the ∆6 = 0 Lagrangian, (v)

short-range six-nucleon operators, which, according to Eq. (3.3.13) also appear in the

∆6 = 0 Lagrangian. From the power counting formula (3.3.15), all these three-body

contributions are suppressed by three powers of mπ/MQCD with respect to the effects

of the two-body potential (7.3.20) in the three-body system.

Since in the Weinberg power-counting, three-nucleon electromagnetic currents are

also small, even in the case of TV from dimension 6 chiral invariant sources the EDM

of 3He and 3H does not involve, at least at leading order in the Weinberg power

counting, any new three-body low-energy constant, and, if enough one- and two-

nucleon observables are measured to fix the couplings ḡ0,1w, C̄1,2w and D̄
(−1)
w 0,1, it is a

falsifiable prediction of the theory.

7.4 The TV Potential in Configuration Space

The evaluation of T -odd observables in nuclear and atomic systems is often more

easily carried out in configuration space. In this section we give the TV nuclear

potential derived in Sect. 7.3 in coordinate space.

In the two-body case, it is convenient to introduce the relative position of the

two nucleons ~r = ~x1 − ~x2, their center-of-mass coordinate ~X = (~x1 + ~x2)/2, and the

conjugate variables −i~∇r ≡ −i∂/∂~r and −i~∇X ≡ −i∂/∂ ~X . Translation invariance

constrains the potential to commute with ~∇X and, therefore, not to depend on ~X ,

so that in general the potential is a function of ~r and of the nucleons’ relative and

center-of-mass momenta, V/T = V/T (~r, ~∇r, ~∇X). The relations between the potential in

momentum space and in coordinate space are defined in the Appendix K. Some care

must be taken, and a regularization scheme has to be defined, when computing the

Fourier transform of functions that blow up as |~q | goes to infinity, as is the case of the

subleading TV potential. As described in the Appendix K, we follow Ref. [246] and
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define the Fourier transform in d dimensions. We apply the d-dimensional Fourier

integration of the momentum-space potential before setting d = 4. This method

eliminates naturally the divergent factor Γ(2 − d/2) arising from loops and yields a

finite result. As we will see, the divergent behavior at large momentum translates

in a singular ∼ 1/r4 potential at short distances. Expressions in configuration space

obtained with this method are equivalent to the procedure based on old-fashioned

perturbation theory [246].

In order to write the results of the Fourier transform we introduce a few functions

of the magnitude r = |~r | of the radial coordinate:

U(r) =
1

12πr
[2 exp (−mπ±r) + exp (−mπ0r)] , (7.4.1)

which reduces to the usual Yukawa function U(r) = exp(−mπr)/4πr when we ignore

the pion mass difference;

W (r) =
1

4πr
[exp (−mπ±r)− exp (−mπ0r)] , (7.4.2)

which is entirely a consequence of isospin breaking; and the TPE functions

X(r) =
1

4π(2πFπ)2r3

∫ 1

0

dx
(

3 + 3βr + β2r2
)

exp(−βr), (7.4.3)

Y (r) =
1

2π(2πFπ)2r3

∫ 1

0

dx (1 + βr) exp(−βr), (7.4.4)

with β2 = m2
π/x(1− x).

The Fourier transform of the leading OPE potential including the corrections to

the pion mass (7.3.10) and those coming from the nucleon kinetic energy (7.3.12) is

V
(1)
/T (~r) + V

(2+3)
/T/I,a (~r) + V

(3)
/T,a (~r,

~∇r, ~∇X) = −
ḡ0gA
F 2
π

τ (1) · τ (2)
(

~σ (1) − ~σ (2)
)

·
[

(

~∇r U(r)
)

(

1 +
~∇ 2
X

4m2
N

)

+

{ ∇i
r

2mN

,

{ ∇i
r

2mN

,
(

~∇rU(r)
)

}}

+
(~∇r · ~∇X)

2

8mπm2
N

(

~∇rrU(r)
)

]

,

(7.4.5)
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where {· · · , · · · } denotes the anticommutator. The remaining pion-mass correction,

Eq. (7.3.11), is

V
(2+3)
/T/I,b (~r) =

ḡ0gA
3F 2

π

(

3τ
(1)
3 τ

(2)
3 − τ (1) · τ (2)

)

(

~σ(1) − ~σ(2)
)

·
(

~∇rW (r)
)

, (7.4.6)

while the Fourier transform of the other relativistic corrections to the leading OPE,

Eq. (7.3.13), is

V
(3)
/T,b (~r,

~∇r, ~∇X) = − ḡ0gA
8F 2

πm
2
N

τ (1) · τ (2)
[

(

~σ (1) − ~σ (2)
)

· ~∇X

(

~∇rU(r)
)

· ~∇X

+
(

~σ (1) + ~σ (2)
)

·
{

~∇r,
(

~∇rU(r)
)

· ~∇X

}

+ 2iεijk
(

σ(1) iσ(2) l − σ(1) lσ(2) i
) (

∇l
r∇k

rU(r)
)

∇j
r

+ iεijk
(

σ(1) iσ(2) l + σ(1) lσ(2) i
) (

∇l
r∇k

rU(r)
)

∇j
X

]

. (7.4.7)

The nucleon mass-splitting corrections in Eq. (7.3.14) become

V
(3)
/T/I,c(~r,

~∇r, ~∇X) = −i ḡ0gA
2F 2

π

δmN

mN

(

τ (1) × τ (2)
)

3

[

(

~σ(1) + ~σ(2)
)

·
{

~∇r, U(r)
}

+
(

~σ(1) − ~σ(2)
)

·
(

U(r)~∇X −
1

mπ

(

~∇r∇i
r rU(r)

)

∇i
X

)]

,

(7.4.8)

while those in Eq. (7.3.15) read

V
(3)
/T/I,d(~r) = − ḡ0gA

3F 2
π

δm2
N

mπ

[

~τ (1) · ~τ (2) − 1

2

(

3τ
(1)
3 τ

(2)
3 − τ (1) · τ (2)

)

]

×
(

~σ(1) − ~σ(2)
)

·
(

~∇r rU(r)
)

. (7.4.9)

The last OPE terms, Eq. (7.3.17), are

V
(3)
/T/I,e(~r) = − ḡ0gA

2F 2
π

[(

ḡ1
ḡ0
− β1

2gA

)

(

τ
(1)
3 + τ

(2)
3

)

(

~σ(1) − ~σ(2)
)

+

(

ḡ1
ḡ0

+
β1
2gA

)

(

τ
(1)
3 − τ

(2)
3

)

(

~σ(1) + ~σ(2)
)

]

·
(

~∇rU(r)
)

.

(7.4.10)

Finally, the Fourier transform of the TPE potential in Eq. (7.3.6) reads

V
(3)
/T,MR(~r) = −

ḡ0gA
F 2
π

τ (1) · τ (2)
(

~σ(1) − ~σ(2)
)

·
[

~∇r

(

2g2AX(r)− Y (r)
)

]

. (7.4.11)
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The potential in Eq. (7.4.11) is singular, and the cutoff dependence it introduces in

the evaluation of matrix elements and observables is absorbed by the renormalization

of C̄2 in the short-distance potential (7.3.5),

V
(3)
/T,SR(~r) =

1

2

[

C̄1 + C̄2τ
(1) · τ (2)

] (

~σ (1) − ~σ (2)
)

·
(

~∇r δ
(3)(~r )

)

. (7.4.12)

The Fourier transform of the leading TV potential from dimension 6 sources can

be immediately read from the results in Eqs. (7.4.5), (7.4.10) and (7.4.12).

We compare these various potentials with the literature in the next section.

7.5 Discussion

Traditionally the study on T violation in nuclear physics has been carried out by in-

cluding the most general pion-nucleon non-derivative couplings in a phenomenological

TV Lagrangian [197], which we write in our notation as

L/T,non = − ḡ0
Fπ
N̄τ · πN − ḡ1

Fπ
π3N̄N −

ḡ2
Fπ
N̄ (3τ3π3 − τ · π)N, (7.5.1)

and by inferring from it the TV two-nucleon potential [196],

V/T,non(~r) = − gA
F 2
π

{[

ḡ0 τ
(1) · τ (2) +

ḡ1
2

(

τ
(1)
3 + τ

(2)
3

)

+ḡ2

(

3τ
(1)
3 τ

(2)
3 − τ (1) · τ (2)

)]

(

~σ(1) − ~σ(2)
)

+
ḡ1
2

(

τ
(1)
3 − τ

(2)
3

)

(

~σ(1) + ~σ(2)
)

}

·
(

~∇U(r)
)

, (7.5.2)

with U(r) defined in Eq. (7.4.1). When short-distance contributions are included

in the model, the most general TV two-nucleon local potential with the minimum

number of derivative assumes the form [200]

V/T,min(~r) =
(

~σ(1) − ~σ(2)
)

· ~∇
[

U0(r) + τ (1) · τ (2)V0(r) +
1

2

(

τ
(1)
3 + τ

(2)
3

)

U1(r)

+
(

3τ
(1)
3 τ

(2)
3 − τ (1) · τ (2)

)

V2(r)
]

+
1

2

(

τ
(1)
3 − τ

(2)
3

)

(

~σ(1) + ~σ(2)
)

· ~∇V1(r)

(7.5.3)
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in terms of five radial functions U0,1(r) and V0,1,2(r). These functions are assumed to

originate in one-boson exchange [198, 199, 159]: pion exchange is taken to give long-

range contributions to V0, (V1 +U1)/2 and V2, while eta, rho and omega mesons give

shorter-range contributions to the same quantities, and to U0 and V1 − U1. The five

momentum-independent potentials in Eq. (7.5.3) are treated on the same footing,

and they provide enough information to describe the five S–P mixing amplitudes

discussed in Sec. 7.2.

For TV stemming from the QCD θ̄ term, the proper account of chiral symmetry

radically changes the picture. As noticed in Ref. [93], at leading order the θ̄ term

generates only the isoscalar pion-nucleon T -odd coupling ḡ0, and thus contributes at

tree level only to the I = 0 potential [195]. A coupling of ḡ1 form appears two orders

down in the χPT expansion, and the one of ḡ2 form is even more suppressed [39].

To evaluate the effects of the θ̄ term on observables which, like the deuteron EDM,

are mostly sensitive to the I = 1 components, it is necessary to consider the TV

two-nucleon potential to next-to-next-to-leading order in χPT. As described in Sec.

7.3, this implies the consideration not only of the non-derivative pion-nucleon TV

couplings, but also of subleading TV derivative couplings, of power-suppressed TC

interactions (with particular care for isospin-breaking operators, which contribute to

the I = 1 and I = 2 potentials), and of one-loop and short-range contributions to

the two-nucleon potential. When all these elements are considered, the potential has

a much richer structure than Eq. (7.5.3): (i) a hierarchy emerges between the five

spin-isospin structures already present in Eq. (7.5.3), and (ii) momentum-dependent

potentials appear, with the same importance as most of the momentum-independent

ones.

We first analyze the implications of our results to V/T,min(~r). Using the chiral index

ν, as defined in Eq. (3.3.15), to keep track of the size of different pieces, the θ̄ term
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contributions to Eq. (7.5.3) are

V(1)
0 (r) = −gAḡ0

F 2
π

U(r), (7.5.4)

V(3)
0 (r) = −gAḡ0

F 2
π

[

2g2AX(r)− Y (r) + (mn −mp)
2

3mπ

r U(r)

]

+ C̄2
δ(r)

8πr2
,(7.5.5)

U (3)
0 (r) = +C̄1

δ(r)

8πr2
, (7.5.6)

V(3)
1 (r) = −gAḡ0

F 2
π

(

ḡ1
ḡ0

+
β1
2gA

)

U(r), (7.5.7)

U (3)
1 (r) = −gAḡ0

F 2
π

(

ḡ1
ḡ0
− β1

2gA

)

U(r), (7.5.8)

V(2+3)
2 (r) = +

gAḡ0
3F 2

π

[

(mn −mp)
2

2mπ
rU(r) +W (r)

]

, (7.5.9)

where U(r), W (r), X(r), and Y (r) are defined in Eqs. (7.4.1), (7.4.2), (7.4.3), and

(7.4.4), respectively. In Eq. (7.5.4) the use of the definition (7.4.1) to express V(1)
0 in

terms of the physical pion masses introduces subleading corrections in the ν = 1 term,

which strictly speaking would use a function U(r) that only depends on a common

pion mass, say the neutral one, U0(r) = exp(−mπ0r)/4πr. In Eqs. (7.5.5)–(7.5.9) we

can neglect the pion mass difference in U(r), and use U0(r), the error thus introduced

being at higher orders in the χPT power counting. Similarly, in Eq. (7.5.4) the use

of gA and ḡ0 with their m2
π corrections included accounts for some ν = 3 corrections,

while whether or not such m2
π corrections are included in Eqs. (7.5.5)–(7.5.9) is

beyond the order we consider. In Eqs. (7.5.5) and (7.5.9) we replaced δmN , the

quark-mass-difference contribution to the nucleon mass splitting, with the physical

value of the nucleon mass splitting itself, mn−mp, the difference being a higher order

contribution in χPT.

As one can see, at order ν = 3 in χPT all the possible spin-isospin structures

considered in Refs. [200, 198, 199, 159] appear. The dominant component is the

isoscalar V0 [195]. In Figs. 7.4 and 7.5 we plot, respectively, the momentum-space

and configuration-space expressions for ∇V0. The dashed line represents the leading-

order ∇V(1)
0 , Eqs. (7.3.10) and (7.4.5) with the use of the definition (7.4.1) for U(r)
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to express V(1)
0 in terms of the physical pion masses. The dashed-double-dotted line

illustrates the effect of the difference between the leading OPE potential computed

with the function U(r) and with U0(r). Other isospin-breaking corrections, which

come from the nucleon mass splitting in V(3)
0 , Eqs. (7.3.15) and (7.4.9), are also very

small, as indicated by the long-dashed-dotted line barely distinguishable from the

x-axis. At next-to-next-to-leading order, V0 also exhibits a medium-range component

originating in TPE diagrams and a short-range component. The dashed-dotted line

depicts the non-analytic piece of the TPE diagrams, Eqs. (7.3.6) and (7.4.11). We

estimate the short-range potential by assuming the coefficient C̄2 in Eq. (7.3.4) to

be dominated by the lnµ2/m2
π term with µ = mN . The rationale is that there is no

obvious reason to expect that such a contribution, non-analytic in mπ, should get

exactly canceled by mπ-independent short-distance contributions. However, the sign

cannot be guessed reliably and our choice is purely arbitrary, for illustration only.

Equation (7.3.5) gives rise to the straight dotted line in Fig. 7.4 but Eq. (7.4.12)

does not appear in Fig. 7.5 since it is concentrated at r = 0. The solid line in both

figures is the sum of the long, estimated medium, and short-range contributions to

∇V0.
From Fig. 7.4, we can appreciate that, as expected from the χPT power counting,

the medium and short-range corrections to the TV potential have comparable size in

the momentum range we are considering, and for momenta q >∼mπ they noticeably

affect the leading order. At momenta of order 300–400 MeV the medium and short-

range contributions have roughly the same size as the leading potential. In this region,

degrees of freedom which we have not explicitly included in the EFT, like the ∆ isobar,

become relevant, and the convergence of the perturbative expansion can be improved

by extending the EFT to incorporate them. Isospin-breaking, long-range corrections,

although of formally the same order as TPE and contact terms, are much smaller, at

least in part because of factors of ε, except at very small momenta where their longer

range compensates. In Fig. 7.5 we focus our attention on the long-distance region,
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Figure 7.4. Components of the TV two-nucleon potential |~q |V0, in units of
gAḡ0/mπF

2
π , as a function of the transferred momentum |~q |, in units of mπ. The

(blue) dashed line denotes the leading-order OPE contribution with physical pion
masses; the (orange) dashed-double-dotted line shows the effect of the pion mass dif-
ference on the leading OPE contribution; the (dark green) long-dashed-dotted line
accounts for the even smaller effect of the nucleon mass splitting; the (purple) dashed-
dotted line is the non-analytic TPE contribution; and the (green) dotted line presents
an estimate of the short-range component of the potential. The (red) solid line is the
sum of all the contributions up to next-to-next-to-leading order.

r ≥ 1/mπ. At distances of up to r . 2/mπ TPE is still the dominant correction

to the potential, but it is overcome at longer distances, r >∼ 2/mπ, by the long-range

effects of pion mass splitting in OPE.

It is instructive to compare our results for V0 to the corresponding TV potential

obtained in a one-boson-exchange model. In such a model, T violation in the coupling

of a rho-meson to the nucleon generates corrections to V0 of the form [199, 159]

V(ρ)
0 (r) = −gAḡ0

F 2
π

gρNN
gπNN

ḡ0ρFπ
ḡ0

e−mρr

4πr
, (7.5.10)

where gρNN is the TC rho-nucleon vector coupling and ḡ0ρ is an isoscalar, TV, one-

derivative rho-nucleon coupling, defined, for example, in Ref. [159]. In the limit

where the rho mass is large, mρ →∞, V(ρ)
0 (r) approximates a delta function and the
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Figure 7.5. Components of the TV two-nucleon potential ∇V0 in units of
gAḡ0m

2
π/4πF

2
π , as functions of the distance between the two nucleons r = |~r|, in

units of 1/mπ. Curves as in Fig. 7.4, except that the short-range component of the
potential is not shown.

effect of TV rho-exchange amounts to a contribution to C̄2 of the form

C̄
(ρ)
2 = −2gAḡ0

F 2
π

gρNN
gπNN

ḡ0ρFπ
ḡ0

1

m2
ρ

. (7.5.11)

Since mρ ∼MQCD and there is no reason for ḡ0ρFπ/ḡ0 to be particularly big or small,

the size of rho-meson contribution is comparable to the power-counting expectation,

C̄2 = O(m2
π/M

3
QCD), with some suppression coming from the numerical smallness

of the TC rho-nucleon vector coupling compared to the pion-nucleon coupling. As-

suming the TV pion-nucleon and rho-nucleon couplings to have the same strength,

ḡ0ρFπ/ḡ0 = 1, and using for the rho-nucleon vector coupling the value determined

in modern high-precision two-nucleon potentials, gρNN = 3.2 [247, 248], in Fig. 7.6

we compare the rho-meson contribution to ∇V0 to the pion-mass-splitting and TPE

medium-range corrections discussed above. For r >∼ 1/mπ, the contribution of the ρ

meson is numerically small compared to both pion-mass-splitting and TPE correc-

tions. At shorter ranges, r . 1/mπ, rho exchange overcomes the effect of pion mass

splitting, but it always remains smaller than TPE. Of course we can make one-rho
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Figure 7.6. Comparison between one-rho-exchange and EFT contributions to the
magnitude of the TV two-nucleon potential |∇V0| in units of gAḡ0m

2
π/4πF

2
π , as func-

tions of the distance r, in units of 1/mπ. The rho-exchange contribution is depicted
as a (blue) long-dashed-dotted line, while TPE and pion mass splitting in OPE are
as in Fig. 7.4.

exchange more important by jacking up ḡ0ρFπ/ḡ0, but we cannot compensate for the

different ranges of the two contributions, mρ versus 2mπ. We see little justification

for neglecting TPE in the TV potential.

We now turn to the other spin-isospin structures in Eq. (7.5.3), which in EFT

are all suppressed by one power of Q2/M2
QCD with respect to the leading OPE TV

potential. The function U (3)
0 only receives contributions from short-range physics.

Again, in a one-boson-exchange scenario, contributions of exactly the size of C̄1 come

from eta and omega exchanges [198, 199, 159],

C̄
(η,ω)
1 = 2

gAḡ0
F 2
π

(

gηNN
gπNN

ḡ0ηFπ
ḡ0

1

m2
η

− gωNN
gπNN

ḡ0ωFπ
ḡ0

1

m2
ω

)

, (7.5.12)

where mη (mω) is the eta (omega) mass, gηNN (gωNN) is the TC eta-nucleon axial

(omega-nucleon vector) coupling, and ḡ0η (ḡ0ω) is an isoscalar, TV no-derivative eta-

nucleon (one-derivative omega-nucleon) coupling.

In contrast, V(3)
1 , U (3)

1 , and V(2+3)
2 sprout entirely from OPE. The TV, isospin-
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breaking coupling ḡ1 contributes equally to V1 and U1, as expected [196] from the

identification at the Lagrangian level, cf. Eqs. (4.1.27) and (7.5.1). However, at

this level, we cannot neglect the long-range piece of U1 − V1, which stems from the

combination of the isospin-violating vertex β1 and the TV vertex ḡ0. As discussed in

Sec. 4.4, strong-dynamics contributions to the coefficients of these I = 1 potentials

are in principle determined by measurement of TC, isospin-breaking observables. For

example ḡ1/ḡ0 could be extracted from a detailed analysis of isospin-breaking effects

in pion-nucleon scattering. At present, however, even the very sophisticated, state-

of-the art analysis of Ref. [168] stops one order shy of the accuracy required for such

extraction. Similarly, the ratio β1/gA affects isospin violation in nucleon-nucleon

scattering, but at present phase-shift analysis of two-nucleon data can only provide

a bound on β1, which is in accordance with the power-counting expectation [145,

148, 149]. In the absence of better constraints on the parameters in Eqs. (7.5.7) and

(7.5.8), the ratios V(3)
1 /V(1)

0 and U (3)
1 /V(1)

0 can only be estimated by power counting, as

O(εm2
π/M

2
QCD) ∼ 5%. As for the last component of the phenomenological potential,

V(2+3)
2 , it originates entirely from the isospin-violating corrections to the pion and

nucleon masses, and it is also relatively small.

In one-boson-exchange models the I = 1, 2 potentials are assumed to arise from

pion, eta, rho, and omega isovector and tensor TV couplings to the nucleon [198, 199,

159]. In the χPT power counting, short-range contributions to these potentials are

suppressed with respect to the long-range pieces, because of the isoscalar character

of the θ̄ term, Eq. (3.4.15). (Of course, because of the factors ε in the long-range

contributions of this order, short-range terms might not be entirely negligible.) This

is consistent with the argument that the dominant meson-exchange contributions are

from the pion and the eta [198].

There are, therefore, a few points of contact between the local part of our ν ≤
3 potential and the phenomenological potential V/T,min(~r) (7.5.3). However, as we

have seen in Sects. 7.3 and 7.4, at this order EFT yields also momentum-dependent
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interactions, which in coordinate space appear as non-local potentials and corrections

that account for center-of-mass motion of the nucleon pair. They can be found in

the relativistic and isospin-breaking corrections to OPE in Eqs. (7.4.5), (7.4.7), and

(7.4.8).

At ν = 3, the TV two-nucleon potential contains in the center-of-mass frame,

~P = 0, four spin-isospin structures that are momentum-dependent,

V (~r, ~pr) =
gAḡ0

4m2
NF

2
π

τ (1) · τ (2)
[

(

~σ(1) − ~σ(2)
)

·
{

pir,
{

pir, ~∇rU(r)
}}

−2
3

(

~∇2
rU(r)

)

(

~σ(1) × ~σ(2)
)

· ~pr

+
(

~σ(1) × ~σ(2)
)m
(

∇m
r ∇l

rU(r)−
1

3
δlm~∇2

rU(r)

)

plr

]

+
gAḡ0 δmN

2mNF 2
π

(

τ (1) × τ (2)
)

3

(

~σ(1) + ~σ(2)
)

· {~pr, U(r)} , (7.5.13)

where ~pr = −i~∇r denotes the quantum-mechanical relative momentum operator.

The general structure of the momentum-dependent TV potentials was considered

previously in Ref. [200], where all possible Hermitian operators were constructed,

which violate time-reversal and parity, and contain up to one power of momentum ~pr.

The momentum-dependent TV potential was parameterized with eleven unknown

functions di(r), i = 1, 2 . . . , 11. The first term in Eq. (7.5.13) is quadratic in the

momentum operator and was not considered in Ref. [200]. The second and third

spin-isospin structures correspond, respectively, to the isoscalar functions d2(r) and

d6(r). For TV from the QCD θ̄ term, these two functions are therefore dominated

by pion-exchange, and their coefficients are fixed by Lorentz invariance and do not

contain any new TV parameter. Isospin-breaking effects in the strong interaction

give rise to the last term in Eq. (7.5.13), which is proportional to the nucleon mass

difference, and it is the first contribution of the θ̄ term to d10(r). Once again, d10 is

dominated by OPE diagrams, and the only TV parameter intervening is ḡ0. We find

that, at order ν = 3 in χPT, the other isospin-conserving (the isoscalar d1 and d5)

and isospin-breaking (d3, d4, d7, d8, d9 and d11) functions do not receive contributions
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from θ̄.

In order to get a sense of the importance of the momentum-dependent contri-

butions, we consider the effect of the relativistic correction in Eq. (7.5.13) that is

quadratic in ~pr. In Fig. 7.7 we compare it (long-dashed-dotted line) to leading OPE

(dashed line), medium-range TPE (dashed-dotted line), and pion mass-splitting cor-

rections (double-dotted-dashed line), all applied to a simple bound-state wave func-

tion with the scale present in the 1S0 channel, as = −23.714 fm:

ψ(r) =
exp(−r/as)

r
. (7.5.14)

pion mass splitting (orange double dotted dashed line), all applied to the same func-

tion. In this qualitative example the relativistic correction cannot be neglected with

respect to the other ν = 3 corrections, and we take Fig. 7.7 as an indication that

also in actual calculations of TV observables it would not be justified to neglect Eq.

(7.5.13), when the TV potential is needed to next-to-next-to-leading-order accuracy.

Finally, to the same order we find six contributions proportional to the center-of-

mass momentum of the nucleon pair,

V (~r, ~pr, ~P ) =
gAḡ0

8m2
NF

2
π

τ (1) · τ (2)
[

(

~σ (1) + ~σ (2)
)

·
{

~pr,
(

~∇rU(r)
)

· ~P
}

+
(

~σ(1) − ~σ(2)
)

·
(

2
(

~∇rU(r)
)

~P 2 + ~P
(

~∇rU(r)
)

· ~P
)

+
(

~σ(1) − ~σ(2)
)

·
(

1

mπ

(~P · ~∇r)
2
(

~∇rrU(r)
)

)

+εijk
(

σ(1) i σ(2) l + σ(1) l σ(2) i
) (

∇l
r∇k

rU(r)
)

P j
]

+
gAḡ0 δmN

2mNF 2
π

(

τ (1) × τ (2)
)

3

(

~σ(1) − ~σ(2)
)

·
[

U(r)~P − 1

mπ

(

~∇r∇i
r rU(r)

)

P i

]

, (7.5.15)

where ~P = −i~∇X . Although the operators in Eq. (7.5.15) vanish in the two-nucleon

center-of-mass frame and are not important for the study of T violation in nucleon-

nucleon scattering, they impact observables like TV electromagnetic form factors of

the deuteron, where the recoil against the photon changes the center-of-mass mo-

mentum of the nucleon pair, and they have to be considered in nuclear systems with
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Figure 7.7. Comparison between a relativistic correction to OPE and local com-
ponents of the TV two-nucleon potential ∇V0 applied to an illustrative bound-state
wave function ψ, in units of gAḡ0m

3
π/4πF

2
π , as functions of the distance r, in units of

1/mπ. The (dark green) long-dashed-dotted line represents the term in the potential
that is quadratic in momentum. Other curves are as in Fig. 7.4.

A > 2. An example of the effects of recoil on TC deuteron processes can be found in

Compton scattering [249].

At leading order, the dimension 6 sources of TV only contribute to V/T,min(~r), the

two-nucleon potential with minimal number of derivatives, in Eq. (7.5.3). We find

V(−1)
0 (r) = −gA(ḡ0 q + ḡ0w)

F 2
π

U(r) + C̄w 2
δ(r)

8πr2
, (7.5.16)

U (−1)
0 (r) = +C̄w 1

δ(r)

8πr2
, (7.5.17)

V(−1)
1 (r) = −gA(ḡ1 q + ḡ1w)

F 2
π

U(r), (7.5.18)

U (−1)
1 (r) = −gA(ḡ1 q + ḡ1w)

F 2
π

U(r). (7.5.19)

In the case of the qCEDM, at leading order the potential is dominated by OPE, while

in the case of the gCEDM and the TV four-quark operators, short-range effects are

also leading.
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7.6 Conclusions

The power-counting scheme of EFTs allowed us to organize the contributions to the

potential in powers of M−1
QCD. The TV PV potential from the QCD θ̄ term has a

similar ordering as the TC PV potential [90]. At leading order, O(Q/MQCD), we

find only the well-known OPE from the I = 0 pion-nucleon TV coupling [195]. The

OPE from the I = 1 pion-nucleon TV coupling is suppressed by two orders in the

expansion parameter and is of O(Q3/M3
QCD). Since the I = 0 OPE is suppressed in

nuclei, higher orders in the potential could be important.

We have thus also examined the corrections in the next two orders, which are

up to O(Q2/M2
QCD) relative to leading. We have found that the potential is purely

two-body, and:

• At the longest, one-pion range, there are more general vertex corrections than

usually assumed. We employed the results of Ref. [39] where the TV pion-

nucleon vertex was examined to this order. In addition to the qualitatively

different I = 1 pion-nucleon TV coupling, there are corrections to the local

potential stemming from isospin breaking in the pion and nucleon masses, and

in the TC pion-nucleon coupling. There are also recoil (∝ 1/mN ) and relativistic

(∝ 1/m2
N) corrections to leading OPE, which make the potential non-local and

dependent on the total momentum of the nucleon pair.

• At this order, we find, additionally, two-pion exchange from the I = 0 TV

coupling. The non-analytic, medium-range part of the TPE potential is inde-

pendent of the choice of fields and regulators. Like the leading OPE potential,

this part of the TPE potential has as only (so-far) unknown quantity the I = 0

TV pion-nucleon coupling. Under reasonable assumptions about the strengths

of TV couplings, this potential is stronger, and has a different radial depen-

dence, than phenomenological one-meson-exchange potentials. The main effect

of TPE is to modify the potential in the same channels as the leading OPE
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potential.

• The short-range part of the TPE potential, on the other hand, cannot be sep-

arated from contact interactions, the most general form of which we also write

at this order. They are two of the terms given in the literature [159]. In the

context of a theory without pions, this implies a contribution to only two of five

possible S–P transitions. When pions are included explicitly, the short-range

terms are expected to be of the same size as TPE, and thus their strengths

depend on the renormalization scale. They subsume short-range dynamics that

includes the effects of heavier mesons, but whether such effects are sufficient to

saturate them is unknown.

The structure of the resulting potential is therefore significantly different than

the phenomenological potential used in the literature, due to the specific way in

which the θ̄ term breaks chiral symmetry. If consideration of short-range dynamics

or I = 1 OPE is necessary, one should also include the TPE potential and OPE

corrections calculated here. EFT offers a framework where the calculation of nuclear

TV observables can be carried out in a model independent way.
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Chapter 8

Conclusion

In this dissertation I have studied applications of Effective Field Theory techniques

to problems in hadronic and nuclear physics.

Our first example, the exclusive decays of the χb and ηb into two D mesons, to

which we devoted Chapter 2, is the perfect boot camp for effective-field-theorists to-

be. The problem contains a non-relativistic bound state, the bottomonium states χb

or ηb, that decays in a pair of fast-moving, but massive, final states. Its discussion in an

EFT framework calls for a combination of non relativistic EFTs (NRQCD, pNRQCD)

for the description of the initial state, and effective theories for fast-moving, almost

light-like, but massive, particles for the final state (SCET with masses, bHQET).

The EFT approach allows to achieve a factorization theorem for the decay rate,

that can be written in terms of two matching coefficients and three non-perturbative

matrix elements, one for each hadron. By solving the renormalization group equations

in the EFTs we evolve the matching coefficients from their natural scales at high

energy (2mb and mc) to the low energy scale, where the non-perturbative matrix

elements sit. In this way, we improve perturbation theory by resumming possibly

large logarithms of the ratio of scales in the problem. The study of this process, thus,

gave us the possibility to face various technical aspects of the three most important

EFTs developed for QCD in a perturbative regime, HQET, NRQCD and SCET.

Unfortunately, our analysis shows that the branching ratios for these decay chan-

nels are rather small (see Fig. 2.12). As we argued in Sec. 2.5, even their interesting

qualitative features, like the strong dependence on the light-cone structure of the

D meson, require, before any quantitative information can be extracted from these

channels, a refinement of our theoretical treatment (the inclusion of perturbative and

non-perturbative corrections), which, in the absence of a measurement of the branch-
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ing ratios, is not worthy to pursue. To reiterate, the most important lesson from our

study is the familiarization with EFT techniques that are applicable to several other

interesting processes involving highly energetic and massive particles. A two-step

approach similar to that delineated in Chapter 2 can, for example, be applied to the

study of the fragmentation of a highly energetic heavy quark into a heavy meson, in

the process e+e− → D(B) +X . Once again, we believe that an EFT approach can

clarify the interplay between the different mass scales relevant to the process, and

define in a systematic and model-independent way non-perturbative effects. We are

currently working on this problem.

The second application I discussed carried us in the realm of nuclear physics. The

main result of the work of my collaborators and I is the establishment of a coherent

framework to study T violation in one- and few-nucleon systems, based on nuclear

EFTs.

In Chapter 3 we identify the TV sources we are taking into account. We include all

the TV operators with dimension up to 6 that can be written in terms of light degrees

of freedom, light quarks, photons and gluons, and we catalog them according to their

chiral properties. The second step, described in Chapter 4, is the construction of the

low-energy Lagrangian. The interesting observation here is that different properties

of the fundamental sources of T violation under chiral symmetry imply different rela-

tions between short- and long-distance contributions to nuclear TV observables. For

example, for sources that violate chiral symmetry the interaction with lowest chiral

index are pion-nucleon non derivative TV couplings. As a consequence, long-distance

effects, mediated by pions, are likely to dominate TV observables. On the other hand,

for chiral invariant sources, TV pion-nucleon couplings, short-distance nucleon EDM

operators and short-distance TV four-nucleon couplings all appear at the same order,

so that long- and short-distance physics contribute to many observables at the same

level. Finally for the qEDM, indirect electromagnetic operators are suppressed by the

electromagnetic coupling constant αem/π, and TV observables like the nucleon and
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deuteron EDMs are dominated by TV currents.

Not only it is important whether a TV source breaks chiral symmetry or not,

it is also important how it breaks it. For example, the QCD θ̄ term breaks chiral

symmetry, but not isospin, while the qCEDM is expected to break chiral symmetry

and isospin at the same level. The consequence at low energy is that these two sources

generate very different hierarchies between TV non derivative pion-nucleon couplings:

θ̄ only contributes to the isoscalar coupling ḡ0 in LO, while for the qCEDM ḡ1 and ḡ0

arise at the same level.

In the third step, we examine the implications of these different relations for TV

observables in the one- and two-nucleon sectors. We dedicate Chapter 5 to the nucleon

EDFF. The measurement of the neutron and proton EDMs alone, though would be an

incredibly exciting finale to a hunt lasted for more than 50 years, would not provide

enough information to differentiate between T violation from the θ̄ term or from

the dimension 6 sources of T violation. In Chapter 6 we study the deuteron EDM

and MQM. A measurement of the nucleon and deuteron EDM would give interesting

clues. A deuteron EDM substantially bigger than the nucleon EDM (in particular,

than the isoscalar nucleon EDM) would indicate the qCEDM as likely culprit. θ̄, the

qEDM and the chiral invariant TV sources all predict that the deuteron EDM is well

approximated by the isoscalar nucleon EDM, so a measurement of a deuteron EDM

of the same size as the nucleon EDM would not be conclusive. If also the deuteron

MQM were to be observed, and observed to be substantially bigger than the deuteron

EDM, one would have good reasons to believe to be in the presence of TV from the

θ̄ term.

Unfortunately, the indications we can receive from nucleon and deuteron exper-

iments are qualitative. In the case of qCEDM, the isovector and isoscalar nucleon

EDM, and the deuteron EDM and MQM depend on four LECs. An observation of

these four quantities will then be sufficient to fix the LECs, but not enough to verify

any prediction. In the case of the θ̄ term, the nucleon EDM and the deuteron MQM
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depend on three TV LECs. Once the isoscalar nucleon EDM is observed, then the

deuteron EDM is a prediction, but not sufficient to pinpoint θ̄ as dominant TV source.

The deuteron MQM and the isovector nucleon EDM can fix the other two LECs, in

particular ḡ0, but once again there is no room for a model-independent predictions.

Even a measurement of the TV moments of the deuteron, then, will not be conclu-

sive. However, and here we see the power of the EFT approach, the framework we set

up can be extended to other observables. The most promising is the EDM of 3He and

3H, which is sensitive to both ḡ0 and ḡ1 [161], and thus, both for TV from the θ̄ term

and the qCEDM, would be dominated by TV OPE correction to the three-nucleon

wavefunction. Consequently, if nucleon and deuteron TV moments are observed, the

EDM of 3He and 3H is a testable and falsifiable prediction of the theory, opening up

the possibility to quantitatively discriminate between different TV sources.

The natural conclusion of our work on T violation in nuclear physics is the calcu-

lation of the EDM of 3He and 3H from the QCD θ̄ term and the dimension 6 sources,

in the perturbative pion approach.

While we work to this goal, we also have to settle some interesting technical

questions we have sidestepped. First of all, we have to check the convergence of

the perturbative pion approach, by completing the NLO corrections to our results in

Chapter 6. The indication that the range of validity of the perturbative pion approach

is not significantly larger than that of the pionless theory [193] suggests that the

pions should be treated non-perturbatively; we plan to repeat the calculation of the

deuteron and 3He EDMs with non-perturbative pions. To this goal, the derivation

of the TV potential in Chapter 7 is a necessary prerequisite. Finally, in our work

we have always neglected the strange quark, it is interesting to extend our analysis

of T violation to SUL(3) ⊗ SUR(3) chiral symmetry, in particular to see whether

more information can be extracted from the link between TV and isospin symmetry

breaking.
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Appendix A

Solution of the running equation in pNRQCD

and bHQET

The RGE in Eq. (2.4.28) can be solved by applying the methods discussed in Ref.

[60] to find the evolution of the B-meson distribution amplitude. We generalize this

approach to the specific case discussed here, where two distribution amplitudes are

present. Following Ref. [60], we define

ωΓ(ω, ω′, αs) = −
αsCF
π

[

θ (ω − ω′)

(

1

ω − ω ′

)

+

+ θ (ω′ − ω) θ (ω) ω
ω′

(

1

ω′ − ω

)

+

]

.

Lange and Neubert [60] prove that

∫

dω′ωΓ(ω, ω′, αs)(ω
′)a = ωaF(a, αs) , (A.1)

with

F(a, αs) =
αsCF
π

[ψ(1 + a) + ψ(1− a) + 2γE] .

ψ is the digamma function and γE the Euler constant. Eq. (A.1) is valid if −1 <
Re a < 1. Exploiting (A.1), a solution of the running equation Eq. (2.4.28) with

initial condition T (ω, ω̄, µ′
0) = (ω/µ′

0)
η (ω̄/µ′

0)
ξ at a certain scale µ′

0 is

F 2(µ′)T (ω, ω̄, µ′) = F 2(µ′
0)f(ω, µ

′, µ′
0, η)f(ω̄, µ

′, µ′
0, ξ) , (A.2)

with

f(ω, µ′, µ′
0, η) =

(

ω

µ′
0

)η−g
(n̄ · v)g expU(µ′

0, µ
′, η) ,

g ≡ g(µ′
0, µ

′) =

∫ αs(µ′)

αs(µ′0)

dα

β(α)
Γcusp(α) ,

U(µ′
0, µ

′, η) =

∫ αs(µ′)

αs(µ′0)

dα

β(α)

[

Γcusp(α)

∫ α

αs(µ′0)

dα′

β(α′)
+ γ1(α) + F(η − g, α)

]

,

γ1(αs) = −2
αsCF
4π

.

(A.3)
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The function f(ω̄, µ′, µ′
0, ξ) has the same form as f(ω, µ′, µ′

0, η) and is obtained by

replacing ω → ω̄, η → ξ, and n̄ · v → n · v′ in Eq. (A.3). The integrals over α can be

performed explicitly using the beta function in Eq. (2.3.24). The result is

f(ω, µ′, µ′
0, η)f(ω̄, µ

′, µ′
0, ξ) =

(

ω

µ′
0

)η−g (
ω̄

µ′
0

)ξ−g
(n̄ · v n · v′)g exp [V (µ′

0, µ
′)]

Γ(1− η + g)Γ(1 + η)

Γ(1 + η − g)Γ(1− η)
Γ(1− ξ + g)Γ(1 + ξ)

Γ(1 + ξ − g)Γ(1− ξ) ,
(A.4)

Where, at NLL,

g(µ′
0, µ

′) = −Γ
(0)
cusp

2β0

{

ln r +

(

Γ
(1)
cusp

Γ
(0)
cusp

− β1
β0

)

αs(µ
′
0)

4π
(r − 1)

}

, (A.5)

and

V (µ′
0, µ

′) =− Γ(0)
cusp

2π

β2
0

{

r − 1− r ln r
αs(µ′)

+

(

Γ
(1)
cusp

Γ
(0)
cusp

− β1
β0

)

1− r + ln r

4π
+

β1
8πβ0

ln2 r

}

+
CF
β0

(2− 8γE) ln r ,

(A.6)

with r = αs(µ
′)/αs(µ

′
0). Notice that in the running from µ′

0 = mc to µ
′ = 1 GeV only

three flavors are active, so in the expressions for β0, β1, and Γ
(1)
cusp we use nf = 3.

Eq. (A.4) is the solution for the initial condition T (ω, ω̄, µ′
0) = (ω/µ′

0)
η (ω̄/µ′

0)
ξ.

To solve the RGE for a generic initial condition, we express T as the Fourier transform

with respect to lnω/µ′
0,

T (ω, ω̄, µ′
0) =

1

(2π)2

∫ +∞

−∞
drds exp

(

−ir ln ω

µ′
0

)

exp

(

−is ln ω̄

µ′
0

)

F [T ](r, s, µ′
0)

=
1

(2π)2

∫ +∞

−∞
drds

(

ω

µ′
0

)−ir (
ω̄

µ′
0

)−is

F [T ](r, s, µ′
0) ,

where F [T ] denotes the Fourier transform of T . From the solution (A.2)-(A.4) it

follows that

F 2(µ′)T (ω, ω̄, µ′) =
F 2(µ′

0)

(2π)2

∫ +∞

−∞
drds

(

ω

µ′
0

)−ir−g (
ω̄

µ′
0

)−is−g
(n̄ · v n · v′)g

F [T ](r, s, µ′
0) exp [V (µ′

0, µ
′)]

Γ(1 + ir + g)Γ(1− ir)
Γ(1− ir − g)Γ(1 + ir)

Γ(1 + is+ g)Γ(1− is)
Γ(1− is− g)Γ(1 + is)

.

(A.7)
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The Fourier transform of the matching coefficient in Eq. (A.7) has to be under-

stood in the sense of distributions [250]. That is, we define the Fourier transform of

T as the function of r and s that satisfies

1

(2π)2

∫

drds F [T ](r, s, µ′)ϕA(r, µ
′)ϕB(s, µ

′)

=

∫ +∞

0

dω

ω

dω̄

ω̄
T (ω, ω̄, µ′)φA(ω, µ

′)φB(ω̄, µ
′) ,

(A.8)

or, more precisely, F [T ](r, s, µ′) is the linear functional that acts on the test functions

ϕA(r) and ϕB(s) according to

1

(2π)2
(F [T ](r, s, µ′), ϕA(r, µ

′)ϕB(s, µ
′)) =

∫ +∞

0

dω

ω

dω̄

ω̄
T (ω, ω̄, µ′)φA(ω, µ

′)φB(ω̄, µ
′) .

(A.9)

The function ϕA is the Fourier transform of the D-meson distribution amplitude,

ϕA(r, µ
′) =

∫ ∞

0

dω

ω

(

ω

µ′

)ir

φA(ω, µ
′) , (A.10)

where the integral on the r.h.s. should converge in the ordinary sense because of

the regularity properties of the D-meson distribution amplitude. As in Sec. 2.4, the

subscript A denotes the spin and polarization of the D meson.

In the distribution sense, the Fourier transform of the coefficient 1/(ω + ω̄) is

F

[

1

ω + ω̄

]

(r, s, µ′
0) = (2π)2

1

2µ′
0

δ(r + s+ i) sech
[π

2
(r − s)

]

=
1

2
(2π)2

1

2µ′
0

δ(R + i) sech
[π

2
S
]

,

(A.11)

where R = r + s, S = r− s, and the factor 1
2
comes from the Jacobian of the change

of variables. The hyperbolic secant is defined as sech = 1/ cosh. Similarly, we find

F

[

ω − ω̄
ω + ω̄

]

(R, S, µ′
0) =

i

2
(2π)2δ(R)

(

cosech
[π

2
S + iε

]

+ cosech
[π

2
S − iε

])

.

(A.12)

The δ function in Eq. (A.11) has complex argument. The definition is analogous

to the one in real space [250],

(δ(R + i), ϕ(R)) = ϕ(−i) . (A.13)
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Using Eqs. (A.11) and (A.12), we can perform the integral in Eq. (A.7), obtaining

respectively T (ω, ω̄, µ, µ′; 3PJ) and T (ω, ω̄, µ, µ′; 1S0). In order to give an explicit

example, we proceed using Eq. (A.11). Integrating the δ function we are left with

F 2(µ′)T (ω, ω̄;µ′) = F 2(µ′
0) exp [V (µ

′
0, µ

′)]
1

µ′
0

(

µ′ 2
0

ωω̄

)1/2+g

(n̄ · v n · v′)g

∫ ∞

−∞
dS exp

[

−iS
2
ln
ω

ω̄

]

sech
[π

2
S
] 1

1 + S2

Γ
(

3
2
+ g + i

2
S
)

Γ
(

1
2
− g − i

2
S
)

Γ
(

3
2
+ g − i

2
S
)

Γ
(

1
2
− g + i

2
S
) .

(A.14)

The integral (A.14) can be done by contour. The integrand has poles along the

imaginary axis. In S = ±i there is a double pole, coming from the coincidence of one

pole of the hyperbolic secant and the singularities in 1/(1 + S2). The Γ functions in

the numerator have poles respectively in S = ±i (2n+ 3 + 2g) with n > 0, while the

other poles of sech are in S = ±i(2n + 1), with n ≥ 1. We close the contour in the

upper half plane for ω̄ > ω and in the lower half plan for ω > ω̄, obtaining

F 2(µ′)T (ω, ω̄, µ′) = F 2(µ′
0) exp [V (µ′

0, µ
′)] θ(ω̄ − ω) 1

ω̄

(

µ′ 2
0 n̄ · v n · v′

ωω̄

)g

{

Γ(1 + g)Γ(2 + g)

Γ(1− g)Γ(−g)
[

1− ln
ω

ω̄
+ ψ(1− g)− ψ(−g) + ψ(1 + g)− ψ(2 + g)

]

+
∞
∑

n=1

(−)n+1
(ω

ω̄

)n 1

n(n+ 1)

Γ(1− n + g)Γ(2 + n+ g)

Γ(−n− g)Γ(1− g + n)

−
∞
∑

n=1

(ω

ω̄

)n+g π

(n− 1)!
csc(gπ)

1

(n+ g)(1 + n+ g)

Γ(2 + n+ 2g)

Γ(1 + n)Γ(−n− 2g)

}

+ (ω → ω̄) ,

(A.15)

with csc(gπ) = 1/ sin(gπ) and ψ is the digamma function. More compactly, we can



237

express Eq. (A.15) using the hypergeometric functions 4F3 and 3F2,

F 2(µ′) T (ω, ω̄, µ, µ′; 3PJ) = F 2(µ′
c)
CF
N2
c

4παs(µ
′
c)

mb
exp [V (µ′

c, µ
′)]

(

µ′ 2
c n̄ · vn · v′
ω ω̄

)g

θ(ω̄ − ω)
ω̄

{

Γ(1 + g)Γ(2 + g)

Γ(1− g)Γ(−g)
[

1− ln
ω

ω̄
+ ψ(1− g)− ψ(−g) + ψ(1 + g)− ψ(2 + g)

]

+
1

2

ω

ω̄

Γ(g + 2)Γ(g + 3)

Γ(1− g)Γ(2− g) 4F3

(

1, 1, g + 2, g + 3; 3, 1− g, 2− g;−ω
ω̄

)

−
(ω

ω̄

)1+g

4 cos(gπ)
Γ(2 + 2g)2

g + 2
3F2

(

g + 1, 2g + 2, 2g + 3; 2, g + 3;−ω
ω̄

)

}

+ (ω → ω̄) ,

(A.16)

where we have introduced the constants that appear in the initial condition in Eq.

(2.4.4). In the same way, we obtain

F 2(µ′) T (ω, ω̄, µ, µ′; 1S0) = F 2(µ′
c)
CF
2N2

c

4παs(µ
′
c)

mb
exp [V (µ′

c, µ
′)] θ(ω̄ − ω)

(

µ′ 2
c n̄ · vn · v′
ω ω̄

)g {

2
Γ(1 + g)Γ(2 + g)

Γ(1− g)Γ(2− g)
ω

ω̄
3F2

(

1, g + 1, g + 2; 1− g, 2− g;−ω
ω̄

)

+
Γ2(1 + g)

Γ2(1− g) −
(ω

ω̄

)1+g

4 cos(gπ)Γ(1 + 2g)Γ(2g + 2) 2F1

(

2g + 2, 2g + 1; 2;−ω
ω̄

)

}

− (ω → ω̄) .

(A.17)

In Eqs. (A.16) and (A.17) we renamed the initial scale µ′
0 = µ′

c to denote its con-

nection to the scale mc. Setting µ′ = µ′
c or, equivalently, g = 0, it can be explicitly

verified that the solutions Eqs. (A.16) and (A.17) satisfy the initial conditions Eq.

(2.4.4).
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Appendix B

Boost transformation of the D-meson

distribution amplitude

We derive in this Appendix the relation between the distribution amplitudes in the D-

meson and in the bottomonium rest frames, as given in Eq. (2.5.3). In the D-meson

rest frame, characterized by the velocity label v0 = (1, 0, 0, 0), the local heavy-light

matrix element is defined as

〈0|ξ̄ l̄n(0)
/̄n

2
γ5 h

c
n(0)|D〉v0 = −iF (µ′)

n̄ · v0
2

. (B.1)

The matrix element of the heavy- and light-quark fields at a light-like separation

zµ0 = n · z0 n̄µ/2 defines the light-cone distribution φ̃0(n · z0, µ′) in coordinate space:

〈0|χ̄ l̄n(n · z0)
/̄n

2
γ5Hc

n(0)|D〉v0 = −iF (µ′)
n̄ · v0
2

φ̃0(n · z0, µ′) . (B.2)

Eqs. (B.1) and (B.2) imply φ̃0(0, µ
′) = 1. In the definitions (B.1) and (B.2) the

subscript 0 is used to denote quantities in the D-meson rest frame. This convention

is used in the rest of this Appendix. In the bottomonium rest frame, where the velocity

label in light-cone coordinates is v = (n · v, n̄ · v, 0) and the light-like separation is

zµ = n · z n̄µ/2, we define

〈0|ξ̄ l̄n(0)
/̄n

2
γ5 h

c
n(0)|D〉v = −iF (µ′)

n̄ · v
2

(B.3)

and

〈0|χ̄ l̄n(n · z)
/̄n

2
γ5Hc

n(0)|D〉v = −iF (µ′)
n̄ · v
2

φ̃(n · z, µ′) . (B.4)

Suppose that Λ is some standardized boost that takes the D meson from v, its

velocity in the bottomonium rest frame, to rest. It is straightforward to find the

relations between the D-meson momenta in the two frames:

n · p0 = n̄ · vn · p and n̄ · p0 = n · vn̄ · p .
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There is a similar relation for the light-cone coordinates,

n · z0 = n̄ · v n · z .

With U(Λ), the unitary operator that implements the boost Λ, one can write

U(Λ)|D〉v = |D〉v0 .

We choose Λ such that, for the Dirac fields,

U (Λ)ξ l̄n(x)U
−1(Λ) = Λ−1

1/2 ξ
l̄(Λx) and U (Λ)hcn(x)U

−1(Λ) = Λ−1
1/2 h

c(Λx) ,

where

Λ1/2 = cosh
α

2
+

/̄n/n− /n/̄n

4
sinh

α

2
,

with α related to v by eα = n̄ · v and e−α = n · v.
Now we can write the matrix element in Eq. (B.3) as

〈0| ξ̄ l̄n
/̄n

2
γ5h

c
n(0)|D〉v

= 〈0|U−1(Λ)
(

U (Λ)ξ̄ l̄n(0)U
−1(Λ)

) /̄n

2
γ5
(

U (Λ)hcn(0)U
−1(Λ)

)

U (Λ)|D〉v

= 〈0|ξ̄ l̄(0)Λ1/2
/̄n

2
γ5Λ

−1
1/2h

c(0)|D〉v0 = n̄ · v 〈0|ξ̄ l̄(0) /̄n
2
γ5h

c(0)|D〉v0

= −iF (µ′)
n̄ · v
2
n̄ · v0 = −iF (µ′)

n̄ · v
2

.

(B.5)

where, in the last step, we have used n̄ · v0 = 1. Eq. (B.5) is thus in agreement with

the definition in Eq. (B.3). Applying the same reasoning to Eq. (B.4), one finds

〈0|χ̄ l̄n(n · z)
/̄n

2
γ5Hc

n(0)|D〉v = n̄ · v 〈0|χ̄ l̄(n̄ · v n · z) /̄n
2
γ5Hc(0)|D〉v0

= −iF (µ′)
n̄ · v
2

φ̃0(n · z0, µ′) .
(B.6)

Comparing Eq. (B.6) with (B.4), we see that φ̃(n · z, µ′) = φ̃0(n̄ · v n · z, µ′). Note

that in the bottomonium rest frame the normalization condition for the distribution

amplitude is also φ̃(0, µ′) = 1.
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In the main text of this paper we have used the D-meson distribution amplitudes

in momentum space,

φ0(ω0, µ
′) ≡ 1

2π

∫

dn · z0 eiω0n·z0φ̃0(n · z0, µ′) ,

φ(ω, µ′) ≡ 1

2π

∫

dn · z eiωn·zφ̃(n · z, µ′) .

Using Eq. (B.6), we can relate the two distributions:

φ(ω, µ′) =
1

2π

∫

dn · z eiωn·zφ̃(n · z, µ′) =
1

2π

∫

dn · z eiωn·zφ̃0(n̄ · v n · z, µ′)

=
1

2π

1

n̄ · v

∫

dn · z ei ω
n̄·v

n·zφ̃0(n · z, µ′) =
1

n̄ · vφ0

( ω

n̄ · v , µ
′
)

,

as stated in Eq. (2.5.3). The D-meson light-cone distribution is normalized to 1 in

both frames,
∫

dω0φ0(ω0, µ
′) =

∫

dωφ(ω, µ′) = 1,

as can be easily proved using φ̃0(0, µ
′) = φ̃(0, µ′) = 1.
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Appendix C

Spontaneous Chiral Symmetry Breaking

Here we discuss spontaneous chiral symmetry breaking for two quark flavors combined

in an isospin doublet, Eq. (3.2.2), following Refs. [32, 122]. The QCD Lagrangian

(3.2.1) for massless and chargeless quarks is invariant under a chiral transformation

(3.2.7). The (GA) = (t,x) have the commutation relations

[

ti, tj
]

= iεijk tk,
[

xi, xj
]

= iεijk tk,

[

ti, xj
]

= iεijk xk,

(C.1)

and generate the chiral group SUL(2) × SUR(2), which is isomorphic to the group

SO(4) of rotations in four-dimensional Euclidean space. Acting on four-dimensional

vectors, the generators are written as

(T a)bc = −iεabc, (T a)b4 = (T a)4b = (T a)44 = 0,

(X a)b4 = − (X a)4b = −iδab, (X a)bc = (X a)44 = 0. (C.2)

The chiral symmetry of the QCD Lagrangian is spontaneously broken to its vector

(isospin) subgroup SUV (2), isomorphic to SO(3): SUL(2) × SUR(2) → SUV (2) or,

equivalently, SO(4) → SO(3). Goldstone’s theorem requires that for each broken

symmetry a massless particle exists, with spin 0 and the same parity and internal

quantum numbers as the current associated to the broken generators. Here there are

three broken generators, x, and thus three massless, spin-0 Goldstone bosons with

negative parity, identified with the pions. The Goldstone bosons live in the coset

space SUL(2) × SUR(2)/SUV (2) ∼ SO(4)/SO(3) ∼ S3, the “chiral circle”. We can

parametrize this space with stereographic coordinates ζ(x) = π(x)/Fπ, where π(x) is

the canonically normalized pion field and Fπ ≃ 186 MeV (the “pion decay constant”)
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is the diameter of the chiral circle. The point on the chiral circle labeled by ζ is

obtained by a rotation Rαβ[ζ],

4
∑

γ=1

RαγRβγ = δαβ , (C.3)

from the north pole (0 1)T , given by

Rαβ [ζ] =

(

δij − 2
D
ζiζj

2
D
ζi

− 2
D
ζj

1
D
(1− ζ2)

)

, (C.4)

where

D = 1 + ζ2. (C.5)

Under an infinitesimal isospin transformation, the Goldstone-boson field ζ trans-

forms like an isovector

δζ = θV × ζ, (C.6)

while an infinitesimal axial transformation is non-linear in the field,

δζ = (1− ζ2)θA + 2 (θA · ζ) ζ. (C.7)

It is convenient to introduce the covariant derivative of the pion field,

Dµζ =
∂µζ

D
, (C.8)

which has simpler transformation properties: it is an isovector,

δDµζ = θV ×Dµζ, (C.9)

that under an axial transformation transforms in the same way, but with a field-

dependent angle ζ × θA,

δDµζ = 2(ζ × θA)×Dµζ. (C.10)

One can also construct the covariant derivative of this covariant derivative,

DνDµζ = ∂νDµζ − 2 (ζ ·Dµζ)Dνζ + 2 (Dνζ ·Dµζ) ζ, (C.11)
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and so on. These covariant objects make it simpler to construct interactions with the

desired transformation properties.

Being light, pions are important degrees of freedom at low energies. In addition,

the lightest baryons, the proton (p) and the neutron (n), are present in the ground

state of strong-interacting systems. We then have to include a field N(x) = (p n)T

and its interactions with pions. We choose N to transform non-linearly in the same

way as Dµζ. Being an isospin doublet, under an SU(2)V transformation,

δN = it · θVN, (C.12)

and under an infinitesimal axial transformation,

δN = 2it · (ζ × θA)N. (C.13)

It is straightforward to show that the chiral-covariant derivative of this nucleon field

is

DµN = (∂µ + 2it · ζ ×Dµζ)N. (C.14)

As before, we can also define higher covariant derivatives. Notice that the covariant

derivative of Dµζ in Eq. (C.11) is nothing but Eq. (C.14) in the adjoint representa-

tion, (tj)ik = iεijk.

At the energies we are working at, a nucleon is non-relativistic since its typical

momentum is much smaller than its mass, Q ∼ mπ ≪ mN . The nucleon momentum

can be written as

pµ = mNv
µ + kµ, (C.15)

where the nucleon velocity satisfies v2 = 1 and in the nucleon rest frame vµ = (1,~0),

and the residual momentum k ∼ Q. Pion-nucleon interactions do not modify the

nucleon velocity but only the residual momentum. In this regime, the nucleon mass

is not a dynamical scale and it can be eliminated from the theory by defining a

velocity-dependent nucleon field [34]

Nv = exp (imN/vv · x)N. (C.16)
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Derivatives of Nv are proportional to the residual momentum. The field Nv satisfies

1 + /v

2
Nv = Nv, (C.17)

which allows us to reduce the possible Dirac matrices to be used in the construction

of operators bilinear in the heavy nucleon field to Γ = {1, Sµ}. Here Sµ is the spin

operator, satisfying

v · S = 0, S2Nv = −
3

4
Nv, [Sλ, Sσ] = iελσαβvαSβ,

{Sλ, Sσ} =
1

2

(

vλvσ − gλσ
)

. (C.18)

In the nucleon rest frame, Sµ = (0, ~σ/2). In the rest of this paper we drop the label

v from the nucleon field.

The same procedure can be followed for other baryons. Since its mass difference

to the nucleon is only a factor 2 larger than the pion mass, m∆ − mN ≃ 300 MeV,

the delta isobar is the most important of these resonances. For simplicity we neglect

the delta in this paper. The method can be easily generalized for any baryon.

Chiral symmetry strongly constrains the form of the interactions among Goldstone

bosons and other particles in the theory. The most general Lagrangian containing

nucleons and pions, invariant under chiral symmetry, can be constructed by including

all the operators that are invariant under isospin and contains the covariant derivative

of the pion field Dµπ, the nucleon field N , and their covariant derivatives. Equations

(3.3.10) and (3.3.11) are the most important examples.
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Appendix D

Explicit Chiral Symmetry Breaking

Explicit symmetry breaking terms can be included in the effective Lagrangian by

mimicking the breaking in the QCD Lagrangian [32, 122]. Consider the generic case

in which the symmetry is explicitly broken by a linear combination of the components

OA of some representation D of the group:

∆L =
∑

A

cAOA (D.1)

with

OA →
∑

B

DAB[g]OB (D.2)

under a transformation g belonging to the symmetry group.

In a non-linear realization of the symmetry, two statements can be proved. First,

there exists an element of the group γ(ζ) such that

OA[ζ, ψ] =
∑

B

D[γ(ζ)]ABOB[0, ψ], (D.3)

where ψ is a shorthand notation for the possible chiral-covariant fields in the the-

ory, including nucleons, nucleon covariant derivatives, pion covariant derivatives, etc.

Thus, operators with explicit Goldstone bosons, O[ζ, ψ], can be found if their rep-

resentations and the form of the operators without Goldstone bosons, O[0, ψ], are
known. Second,

OA[0, hψ] =
∑

B

D[h]ABOB[0, ψ], (D.4)

where h belongs to the unbroken subgroup SO(3). That is, the operators without

Goldstone bosons O[0, ψ] transform linearly under the unbroken subgroup, according

to one of the representations of the subgroup that can be found in DAB.
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In the simplest example, the SO(4) representation is the defining (vector) repre-

sentation, so D[γ(ζ)] = γ(ζ) and γ(ζ) has the form of Eq. (C.4). Thus, for V = S, P ,

V4[π, N ] =
4
∑

α=1

R4α[π]Vα[0, N ] =
1

D

(

1− π2

F 2
π

)

V4[0, N ]− 2π

DFπ
· V [0, N ],

Vi[π, N ] =
4
∑

α=1

Riα[π]Vα[0, N ] =
2πi
DFπ

V4[0, N ] +
3
∑

j=1

(

δij −
2πiπj
DF 2

π

)

Vj[0, N ].

(D.5)

Moreover, S4[0, N ] (P4[0, N ]) is isoscalar, parity-even (parity-odd) and time-reversal-

even (time-reversal-odd), while S[0, N ] (P [0, N ]) is isovector, parity-odd (parity-

even) and time-reversal-odd (time-reversal-even).

The simplest vector, containing no nucleon fields nor pion covariant derivatives,

is

S[0, 0] =

(

0

v0

)

, (D.6)

with v0 a real number determined by the details of the dynamics of spontaneous chiral

symmetry breaking. From Eq. (D.5),

S[ζ, 0] =
v0
D

(

2ζ
1− ζ2

)

. (D.7)

As a second example,

S[0, N ] =

(

0

v1N̄N

)

, (D.8)

with v1 another real number, yields

S[ζ, 0] =
v1
D

(

2ζN̄N
(

1− ζ2
)

N̄N

)

. (D.9)

This method can be used to construct the chiral-variant terms in the effective

Lagrangian. Consider Lm from Eq. (3.4.15) when ε = 0 and θ̄ = 0. In this case, the

fourth component of Eq. (D.7) generates, apart from a constant, a pion mass term

in the Lagrangian, Eq. (4.1.1), where we introduce the pion mass m2
π = 4v0m̄/F

2
π =

O (m̄MQCD). Similarly, Eq. (D.9) gives rise to the so-called sigma term, Eq. (4.1.2),

where we introduce the nucleon mass correction ∆mN = v1m̄ = O (m2
π/MQCD).
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Chiral symmetry relates this mass correction to a pion-nucleon seagull interaction.

This procedure can be repeated ad infinitum.

In analogous fashion, one can construct the operators originating from the other

mass terms of the QCD Lagrangian, Eq. (3.4.15), as we explicitly do in Sec. 4.1

Finally, we realize the chiral-symmetry-breaking operators due to the electromag-

netic interaction of the quarks [122]. An obvious class of electromagnetic operators

consists of operators that contain soft photons. These are obtained by minimally cou-

pling the charged pions and the proton to the photon, using the covariant derivatives

defined in Eq. (3.3.12), and by constructing the most general gauge-invariant opera-

tors involving Fµν . From Eq. (3.2.11), these operators are either chiral invariant or

transform as the 3-4 component of an antisymmetric chiral tensor. For such a tensor,

Ti4[π, N ] = − 1

D

[

δik

(

1− π2

F 2
π

)

+
2πiπk
F 2
π

]

T4k[0, N ] +
2

DFπ
(πjδik − δijπk) Tjk[0, N ],

(D.10)

where T4i[0, N ] is an isovector and Tij[0, N ], an antisymmetric tensor.

In the nucleon sector, the simplest objects with two Lorentz-tensor indices are

Iµν [0, N ] = c(1)s N̄ i [Sµ, Sν ]N, (D.11)

and

T µν [0, N ] = c(1)v

(

0 N̄i [Sµ, Sν] τiN
−N̄ i [Sµ, Sν ] τ iN 0

)

, (D.12)

which lead to the lowest-order contribution of this type:

L(1)
f=2,em = c(1)s N̄ i [Sµ, Sν ]NeFµν

+c(1)v N̄

[

τ3 −
2

F 2
πD

(

π2τ3 − π3π · τ
)

]

i [Sµ, Sν ]NeFµν , (D.13)

where the coefficients scale as c
(1)
s,v = O(1/MQCD). The two operators in Eq. (D.13)

are leading contributions to the isosinglet and isovector magnetic dipole moments of

the nucleon, which, with the identification c
(1)
s,v = (1 + κ0,1)/4mN , we gave in Eq.

(3.3.18). Other such “direct” electromagnetic interactions can be derived similarly.
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There is, however, another type of electromagnetic contribution. As discussed

at the beginning of Sec. 4.2, exchanges of hard photons between quarks cannot be

resolved in the effective theory and generate purely hadronic operators. At lowest

order in αem these operators involve the exchange of one hard photon and, as conse-

quence of Eq. (3.2.11), they have the SO(4) transformation properties of the tensor

product (Iµ/6 + T µ34) ⊗ (Iµ/6 + T34µ). The resulting chiral-invariant operators sim-

ply represent O(αem) corrections to their strong-interaction counterparts. The mixed

terms transform as antisymmetric tensors, Eq. (D.10). For the tensor product of two

antisymmetric tensors,

Ti4j4[π, N ] =
1

D2

[

δik

(

1− π2

F 2
π

)

+
2πiπk
F 2
π

] [

δjl

(

1− π2

F 2
π

)

+
2πjπl
F 2
π

]

T4k4l[0, N ]

− 2

FπD2

[

δik

(

1− π2

F 2
π

)

+
2πiπk
F 2
π

]

(πlδjm − δjlπm) T4klm[0, N ]

− 2

FπD2
(πlδim − δilπm)

[

δjk

(

1− π2

F 2
π

)

+
2πjπk
F 2
π

]

Tlm4k[0, N ]

+
4

D2F 2
π

(πlδik − δilπk) (πmδjn − δjmπn) Tklmn[0, N ].

(D.14)

In the mesonic sector, the first chiral-breaking operator induced by the electro-

magnetic interaction has the transformation properties of T34 ⊗ T34. The choices

T4k4l[0, 0] = v0,emδkl, Tklmn[0, 0] =
v′0,em
4

(δkmδln − δknδlm) , (D.15)

with real numbers v0,em and v′0,em, produce an isospin-breaking correction to the pion

mass,

L(1)
/χ, f=0, em = −

δm2
π,em

2D2

(

π2 − π2
3

)

, (D.16)

where δm2
π,em = 8(v0,em−v′0,em)/F 2

π = O(αemM
2
QCD/π) is the dominant contribution to

the pion mass splitting. Usingmρ forMQCD, this estimate is very close to the observed

value, which corroborates our assignment of a factor αem/π for the contribution of

hard photons.
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In the pion-nucleon sector, the operators with the properties of T34 ⊗ T34 have a

structure very similar to Eq. (D.16),

L(2)
/χ, f=2, em =

β1,em
F 2
πD

2

(

π2 − π2
3

)

N̄N, (D.17)

where β1,em = O(αemMQCD/π). More interesting operators come from the realization

of the tensor product T µ34⊗Iµ/6. The simplest tensor has the structure of Eq. (D.12),

just without the commutator i[Sµ, Sν ], which induces the operator

L(2)
/I, f=2, em =

δ̆mN

2

[

N̄τ3N +
2

F 2
πD

N̄
(

π3π · τ − π2τ3
)

N

]

, (D.18)

where δ̆mN = O(αemMQCD/π) is the leading electromagnetic contribution to the

nucleon mass splitting. Again, this estimate is within a factor of two of the observed

value, although in this case a quark-mass contribution of similar magnitude has to be

accounted for.

These and other “indirect” electromagnetic operators have been discussed in more

detail in Refs. [122, 145, 148, 149, 221, 222, 223, 153, 154, 134, 135, 136, 164, 165].
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Appendix E

Linear Realization

Let us consider a linear realization Φ of the full group, here SO(4). Suppose the

effective potential is

V (Φ) = V0(Φ) + V1(Φ), (E.1)

where V0 is the effective potential generated by the symmetric part of the Lagrangian,

while V1 is the small correction due to explicit symmetry breaking. If the explicit

breaking is small, the vacuum Φ̄ of the full theory will not be far from the vacuum

Φ̄0 calculated in the absence of explicit breaking: Φ̄ = Φ̄0 + Φ̄1, with Φ̄1 small. From

the equilibrium condition for the vacuum,

∂V (Φ)

∂Φα

∣

∣

∣

∣

Φ=Φ̄0+Φ̄1

= 0, (E.2)

using the invariance of the effective potential V0(Φ), it can be shown [32] that, if V1

and Φ̄1 are small, the following condition holds:

∑

α

(

GAΦ̄0

)

α

∂V1(Φ)

∂Φα

∣

∣

∣

∣

Φ=Φ̄0

= 0, (E.3)

where GA are the generators of the group, in our case SO(4). Equation (E.3) is called

the “vacuum alignment” condition. If Eq. (E.3) does not hold, it means that the real

vacuum is far from the unperturbed one, and the expansion around the vacuum Φ̄0 is

not perturbative. Let us assume, for example, that the perturbation to the effective

potential has the form

V1(Φ) =
∑

α

uαΦα, (E.4)

with uα given parameters. The vacuum alignment condition becomes

∑

α

uα(G
AΦ̄0)α = 0, (E.5)
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and, being the generators of SO(4) antisymmetric, this condition is satisfied if the

vectors Φ̄0 and u are parallel. This explains the name “vacuum alignment”.

As a concrete example of chiral symmetry breaking we can consider a toy model

—the linear sigma model— where the Lagrangian is

Lσ =
1

2
∂µΦ∂

µΦ− V0(Φ) =
1

2
∂µΦ∂

µΦ− m2

2
Φ2 − λ

4

(

Φ2
)2
, (E.6)

with two real parameters m2 and λ. When m2 < 0, the minimum of the potential

V0(Φ) is given by the condition

Φ̄2
0 = −

m2

λ
= v2. (E.7)

We pick a vacuum in the fourth direction,

Φ̄0 = v









0
0
0
1









, (E.8)

a spontaneous breaking of SO(4) symmetry.

Let us add a small explicit breaking potential, in the form

V1(Φ) = g(Φ3 + Φ4), (E.9)

with g ≪ m2v. The vacuum we chose is not aligned with the symmetry-breaking

potential and the situation is analogous to the case we discussed in Sec. 3.4 —there

are two explicit symmetry-breaking terms of the same order, one aligned with the

vacuum (Φ4), the other not (Φ3). If we calculate the minimum of the potential

V0 + V1, we find that it is no longer degenerate and it is

Φ̄ = v









0
0

1√
2
+ g

2m2v
1√
2
+ g

2m2v









+O(g2). (E.10)

We see that even a small perturbation rotates the vacuum dramatically, the angle

between the true and the old vacuum being approximately π/4.
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Consider now instead the explicit breaking

V1(Φ) = gΦ4 +
g2

m2v
Φ3, (E.11)

still with g ≪ m2v. This situation resembles the second case we discussed in the text,

with a non-aligned perturbation much smaller than the aligned one —see Secs. 4.1

and 4.3. We again can find a minimum,

Φ̄ = v









0
0
g

m2v

1 + g
2m2v









+O(g2). (E.12)

This time, the true vacuum is very close to the one we chose to expand the Lagrangian

around.

Once the vacuum is aligned with the dominant perturbation, let us say, along the

fourth direction, we can perform an explicit field redefinition to exhibit the Goldstone

modes [32]:

Φn = Rn4(x)σ(x), (E.13)

where R is a rotation matrix that belongs to SO(4), that is, satisfies Eq. (C.3). In

the stereographic representation, we parameterize the rotation as in Eq. (C.4) and

define the fields

ζi =
Φi

Φ4 + σ
, i = 1, 2, 3. (E.14)

Under an infinitesimal isospin transformation with parameter θV ,

δΦi =
∑

jk

εijkθV jΦk, (E.15)

δσ = 0, (E.16)

it is easy to see that ζ is an isovector, Eq. (C.6). Likewise, under an infinitesimal

axial transformation θA,

δΦi = 2θAiΦ4, (E.17)

δΦ4 = −2
∑

i

θAiΦi, (E.18)
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the transformation of the Goldstone boson field is non-linear, Eq. (C.7).

Defining the covariant derivative (C.8), the Lagrangian (E.6) can be recast in the

form

L =
1

2
∂µσ∂

µσ − 1

2
m2σ2 − λ

4
σ4 +

1

2
σ2Dµζ ·Dµζ. (E.19)

It is easy to see that the Lagrangian is still invariant under SO(4). The aligned

potential (E.11), on the other hand, when expressed in terms of the Goldstone boson

fields, will depend on ζ explicitly:

V1(Φ) = gσ
1− ζ2

D
+

g2

m2v
σ
2ζ3

D
. (E.20)

In the vacuum, σ̄ = v+g/2m2+O(g2) and ζ̄i = δi3g/2m
2v+O(g2). For processes

at momenta Q≪ m, we can integrate out the fluctuations of the field σ, obtaining a

Lagrangian that for g = 0 is a function of Dµζ only. For g 6= 0, one can recognize in

Eq. (E.20) the fourth and third components of the vector S[ζ, 0] given by Eq. (D.7),

with coefficients in the ratio g : g2/m2v, just as in the original perturbation (E.11).
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Appendix F

Resummation of pion tadpoles

In this Appendix we show how to resum the tadpole diagrams generated by the

Lagrangian (3.4.3). The method is general and can in principle be applied to other

quantities, but we illustrate it for the pion two-point Green’s function at tree level.

Some of the contributions from tadpoles in this case were displayed in Fig. 3.1.

We start by defining the full one-pion Green’s function

iTa =
i

2
gm̃2

πFπT̃ δa3, (F.1)

where a is the isospin index of the pion. In lowest order in the chiral expansion we need

to worry only about tree-level diagrams. In Fig. F.1 we display the corresponding

diagrams contributing to iT to order g5 and, for convenience, we explicitly show the

symmetry factor due to exchange of equivalent tadpoles. In the diagrams in Fig. F.1,

the external neutral pion is connected to one of the basic vertices of the Lagrangian

(3.4.3), with three, four, . . ., n-branches. Each branch then develops into a tadpole

tree and ends up with the disappearance of an arbitrary number of π3s into the

vacuum. The diagrams in Fig. F.1 can be rearranged as in Fig. F.2, and we can

write the diagrammatic equation

i

2
m̃2
πgFπT̃ =

i

2
m̃2
πgFπ +

∞
∑

n=2

1

n!

(

− i

m̃2
π

)n(
i

2
m̃2
πFπgT̃

)n

V ′
n(m̃

2
π), (F.2)

where the factor V ′
n(m̃

2
π) can be obtained from the Lagrangian (3.4.3) and it is

V ′
2m(m̃

2
π) =

i

2
(−1)m(2m+ 1)!

gm̃2
π

F 2m−1
π

,

V ′
2m+1(m̃

2
π) =

i

2
(−1)m+1(2m+ 2)!

m̃2
π

F 2m
π

.

(F.3)

Equation (F.2) can be rewritten as

∞
∑

m=0

(−1)m(2m+ 1)

(

g2

4

)m

T̃ 2m −
∞
∑

m=0

(−1)m(m+ 1)

(

g2

4

)m

T̃ 2m+1 = 0. (F.4)
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Figure F.1. Contributions to the pion one-point function iT at tree level up to
order g5. Vertices are from the Lagrangian (3.4.3). For each diagram, the symmetry
factor is explicitly indicated.

The two series can be summed and we obtain

1
(

1 + g2

4
T̃ 2
)2

[

1− T̃ − g2

4
T̃ 2

]

= 0, (F.5)

which admits two solutions,

T̃ = − 2

g2

(

1±
√

1 + g2
)

. (F.6)

The non-analytic dependence on g is a direct consequence of the non-perturbative

character of the problem.

With the one-pion Green’s function, Eqs. (F.1) and (F.6), we can calculate the

effect of pion tadpoles on quantities more directly related to experiment. Let us

consider the two-point Green’s function for a pion of four-momentum p and isospin

index a, Ga(p
2, m̃2

π). The diagrams that contribute to the two-point function up

to order g4 are shown in Fig. 3.1. Let us call, with abuse of language, “one-particle
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Figure F.2. Diagrammatic equation for the one-pion Green’s function iT , Eq. (F.2).

= + + + . . .

Figure F.3. The full pion propagator G, denoted by a shaded blob, as an iteration
of the sum of 1PI diagrams −iΣ, denoted by an empty circle.

irreducible” (1PI), those diagrams that cannot be disconnected by cutting an internal

line in which non-vanishing p flows, and denote the sum of all the 1PI diagrams by

−iΣa(p2, m̃2
π). The full propagator can be expressed as the geometric sum of 1PI

diagrams —see Fig.F.3— and

Ga(p
2, m̃2

π)δab =
iδab

p2 − m̃2
π + iε

(

1 +
Σa(p

2, m̃2
π)

p2 − m̃2
π + iε

+
Σ2
a(p

2, m̃2
π)

(p2 − m̃2
π + iε)2

+ . . .

)

=
iδab

p2 − m̃2
π − Σa(p2, m̃2

π) + iε
.

(F.7)

At tree level, contributions to the sum of 1PI diagrams −iΣa(p2, m̃2
π) have the

following structure: the vertex connected to the two lines in which p flows has a

certain number of branches; from each branch a tadpole tree sprouts, which ends with

the disappearance of an arbitrary number of π3s into the vacuum. Diagrammatically,

the sum of 1PI diagrams can be expressed in terms of the pion one-point Green’s
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function iT , as shown in Fig. F.4:

−iΣa(p2, m̃2
π) =

∞
∑

n=1

1

n!

(−i
m̃2
π

)n(
i

2
m̃2
πFπgT̃

)n

Va;n(p
2, m̃2

π), (F.8)

where Vn is a factor coming from the Feynman rules for the (n + 2)-pion vertex. It

can be derived from the Lagrangians (3.3.17) and (3.4.3), and it is

Va;2m+1(p
2, m̃2

π) = i(−1)m+1 gm̃2
π

F 2m+1
π

(m+ 1)(2m+ 1)! {1 + 2(m+ 1)δa3} ,

Va;2m+2(p
2, m̃2

π) = i(−1)m+1 g

F 2m+2
π

(m+ 2)(2m+ 2)!

{

p2 − [1 + 2(m+ 1)δa3] m̃
2
π

}

.

(F.9)

We can write

Σa(p
2, m̃2

π) =
g2

2

∞
∑

m=0

(

−g
2

4

)m [

(p2 − m̃2
π)
m+ 2

2
T̃ 2m+2 + m̃2

π(m+ 1)T̃ 2m+1

]

+δΣa(p
2, m̃2

π), (F.10)

where

δΣa(p
2, m̃2

π) = m̃2
πg

2
∞
∑

m=0

(

−g
2

4

)m

(m+ 1)

[

(m+ 1)T̃ 2m+1 − m+ 2

2
T̃ 2m+2

]

δa3.

(F.11)

Summing the series and using Eq. (F.5), δΣa(p
2, m̃2

π) vanishes and the sum of 1PI

diagrams becomes the same for charged and neutral pions:

Σa(p
2, m̃2

π) =
g2

2
(

1 + g2

4
T̃ 2
)2

[

(

p2 − m̃2
π

)

T̃ 2

(

1 +
g2

8
T̃ 2

)

+ m̃2
πT̃

]

. (F.12)

The inverse of the propagator (F.7) is now

G−1
a (p2, m̃2

π) =

(

1 +
g2

4
T̃ 2

)−2 [

p2 − m̃2
π

(

1 +
g2

2
T̃

)]

, (F.13)

and it vanishes at the physical pion mass

m2
π = m̃2

π

(

1 +
g2

2
T̃

)

= ± m̃2
π

√

1 + g2, (F.14)
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Figure F.4. Diagrammatic equation for −iΣ in terms of the one-point Green’s
function iT , Eq. (F.8).

where we used the solutions (F.6). Inserting the values of m̃2
π and g, Eqs. (3.4.4) and

(3.4.5),

m2
π = ±4v0

F 2
π

m̄ r(θ̄). (F.15)

Equation (F.15) shows that, as it should be, the physical pion mass is independent

of the arbitrary angle α, and its value is equal to the one we would get by working

directly with the aligned Lagrangian (4.1.1). Presumably the same can be shown for

other observable quantities using this method.
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Appendix G

Isospin violating Lagrangian

We summarize here the isospin violating terms given in Secs. 3.3 and 4.2, and we show

the new isospin-breaking interactions induced in the ∆ = 1 and ∆ = 2 Lagrangian

from the field redefinitions that eliminate the nucleon mass difference from the χPT

Lagrangian.

Isospin-violating terms first contribute to the ∆ = 1 Lagrangian,

L(1)
/I, f≤2 = −

δ̆m2
π

2D2

(

π2 − π2
3

)

+
δmN

2
N̄

(

τ3 −
2π3
F 2
πD

π · τ
)

N, (G.1)

while at order ∆ = 2,

L(2)
/I, f≤2 = +

δm2
π

2D2
π2
3 +

δ̆mN

2
N̄

[

τ3 +
2

F 2
πD

(

π3π · τ − π 2τ3
)

]

N

+
β1
Fπ

(

Dµπ3 −
2π3
F 2
πD

π ·Dµπ

)

N̄SµN.

(G.2)

Here δ̆m2
π = O

(

αemM
2
QCD/4π

)

is the leading electromagnetic contribution to the pion

mass splitting, while the quark-mass-difference contribution, δm2
π = O

(

ε2m4
π/M

2
QCD

)

,

is smaller by a power of εmπ/MQCD. The leading contribution to the nucleon mass

splitting is generated by the quark mass difference, δmN = O(εm2
π/MQCD), while the

electromagnetic contribution is δ̆mN = O (αemMQCD/4π), that is, O
(

εm3
π/M

2
QCD

)

and about the 20% of δmN . The operator with coefficient β1 = O
(

εm2
π/M

2
QCD

)

is an

isospin-violating pion-nucleon coupling.

For the solution of the Lippman-Schwinger equation, it is convenient to eliminate

the nucleon mass differencemn−mp from the nucleon propagator and from asymptotic

states. This result can be accomplished through a field redefinition, defined in Ref.
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[138]. After the field redefinition, Eqs. (G.1) and (G.2) become

L(1,2)
/I, f≤2 = − 1

2D2

(

δ̆m2
π − δm2

N

)

(

π2 − π2
3

)

− δm2
π

2D2
π2
3

−(δmN + δ̆mN ) (π × v ·Dπ)3 +
gAδmN

FπmN
iε3abπaN̄τbS · D−N

+
β1
Fπ

(

Dµπ3 −
2π3
F 2
πD

π ·Dµπ

)

N̄SµN. (G.3)

We use Eq. (G.3) to check the isospin breaking contributions to the nucleon EDFF

at NLO, in Sec. 5.2, to discuss isospin breaking corrections to the deuteron EDM

in Sec. 6.6 and to incorporate isospin-breaking effects in the TV potential from the

QCD θ̄ term at N2LO in Chapter 7.
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Appendix H

Higher-order interactions

We construct in this appendix operators that contribute to the chiral breaking pion-

nucleon Lagrangian L(5)
/χ,f=2 and that do not contain covariant derivatives of the pion

or of the nucleon field. Because they are strongly suppressed by (mπ/MQCD)
4 with

respect to the leading pion-nucleon chiral-breaking vertices, these operators are not

relevant for any phenomenological application. Nonetheless they are of some formal

interest because, as we shall see, this is the first order in the purely hadronic sector

of the chiral Lagrangian where the relation (4.1.5) between TV and isospin-breaking

operators breaks down. This is also the lowest order where a purely hadronic TV

vertex π3N̄τ3N appears.

The operators we consider here are obtained from the tensor products Pa⊗Pb⊗S4,

Pa⊗Pb⊗Pc, and Pa⊗S4⊗S4, and we write the non-derivative part of the Lagrangian

as

L(5)
/χ3,f=2 = L

(5)
/χ3,f=2,PPS + L

(5)
/χ3,f=2,PPP + L(5)

/χ3,f=2,PSS. (H.1)

The tensor product Pa ⊗ Pb ⊗ S4 can be decomposed into two SO(4) vectors and

a three-index tensor, symmetric in the first two indices: Pa ⊗ Pb ⊗ S4 = δabV4 +

(δa4δbd + δb4δad)Wd + Sab,4. The vectors V and W have the same properties under

P and T as the vector S introduced in Eq. (3.2.13). In the realization of the third

and fourth components of the tensor product, the third and fourth components of W

appear, but only the fourth component of V does. In the f = 2 sector, Pa ⊗ Pb ⊗ S4

generates the operators

L(5)

/χ3,f=2,PPS =
[

ρ2c
(5)
1 +

(

1 + ρ2
)

c
(5)
2

]

(

1− 2π2

F 2
πD

)

N̄N +
2ρc

(5)
1

FπD
π3N̄N

+c
(5)
3

(

1− 2π2

F 2
πD

)[

4π2
3

F 2
πD

2
+ ρ2

(

1− 4π2

F 2
πD

2

)

+
4ρπ3
FπD2

(

1− π2

F 2
π

)]

N̄N.(H.2)
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Here the c
(5)
3 term has a similar structure to the c

(3)
1 term in Eq. (4.1.27). The

c
(5)
2 term is nothing but a correction to the nucleon sigma term, Eq. (4.1.2). More

interestingly, Eq. (H.2) shows that even at the hadronic level the relation (4.1.5)

ceases to be valid at higher orders in the expansion in mπ/MQCD. Indeed, it is not

possible to disentangle the individual coefficients c
(5)
1 and c

(5)
2 by measuring a TC

observable, and, therefore, it is not possible to constrain the coefficient of the TV

operator in Eq. (H.2) with the properties of an S3.

The tensor product Pa⊗Pb⊗Pc yields symmetry-breaking terms that transform as

components either of a four-vector with the same properties as the vector P defined

in Eq. (3.2.14), or of a completely symmetric tensor. In the f = 2 sector, the

corresponding operators are

L(5)
/χ3,f=2,PPP = c

(5)
4 N̄

[

τ3 −
2π3
F 2
πD

π · τ − 2ρ

FπD
π · τ

]

N

+c
(5)
5

(

2π3
FπD

)2

N̄

(

τ3 −
2π3
FπD

π · τ
)

N

+c
(5)
5 ρ

4π3
FπD

N̄

[

τ3 −
2

F 2
πD

(

2π3

(

1− 3π2

2F 2
π

)

π · τ + π2τ3

)]

N

+c
(5)
5 ρ2

(

1− 2π2

F 2
πD

)

N̄

[

τ3 −
10π3
F 2
πD

2

(

1 +
π2

5F 2
π

)

π · τ
]

N

−2c
(5)
5

Fπ
ρ3
(

1− 4π2

F 2
πD

2

)

N̄π · τN. (H.3)

The c
(5)
4 term realizes the SO(4) vector in the tensor product, and thus has a form

identical to Eq. (4.1.19); it is simply a correction to δmN . The other four operators

correspond to the 3-3-3, 3-3-4, 3-4-4 and 4-4-4 components of the symmetric tensor.

In them, a link between T violation and isospin breaking survives. The operator with

coefficient c
(5)
5 ρ is the first purely hadronic contribution to the T -violating vertex

π3N̄τ3N .

The representation of tensor products Pa ⊗ S4 ⊗ S4 contains two SO(4) vectors

with the same properties as P and a three-index tensor. When we select the fourth

component of the tensor product, the fourth component of both vectors appears,
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while, if a = 3, we find only the third component of one of the two vectors. This

implies that, in the f = 2 sector, the Lagrangian is

L(5)

/χ3,f=2,PSS = c
(5)
7 N̄

(

τ3 −
2π3
F 2
πD

π · τ
)

N − 2ρ

FπD

(

c
(5)
6 + c

(5)
7

)

N̄π · τN

+c
(5)
8

(

1− 4π2

F 2
πD

2

)

N̄

[

τ3 −
2π3
F 2
πD

π · τ − 2ρ

FπD
π · τ

]

N

+
2c

(5)
9

FπD2

(

1− 2π2

F 2
πD

)[

2π3
Fπ
− ρ

(

1− π2

F 2
π

)]

N̄π · τN. (H.4)

Here some links between TV interactions and isospin breaking survive. The c
(5)
7 term

is identical in form to the c
(5)
4 term in Eq. (H.3), so it also provides a correction

to δmN in Eq. (4.1.19). The c
(5)
8 term has a similar form. The c

(5)
9 term links a

TV interaction to an isospin-breaking seagull. However, we see that the term with

coefficient c
(5)
6 ρ does not have any TC partner, and cannot be determined from a

measurement of a TC observable.

The coefficients in Eqs. (H.2), (H.3), and (H.4) scale as

c
(5)
1−3 = O

(

ε2m6
π

r4(θ̄)M5
QCD

)

, c
(5)
4,5 = O

(

ε3m6
π

r6(θ̄)M5
QCD

)

,

c
(5)
6−9 = O

(

εm6
π

r2(θ)M5
QCD

)

. (H.5)
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Appendix I

Lorentz-Invariance Constraints

In this Appendix we derive the relations (4.1.26), which stem from Lorentz invariance.

In the heavy-baryon formalism, Lorentz invariance is implemented order by order in

a Q/mN expansion that goes hand-in-hand with the Q/MQCD expansion of χPT. It

relates the coefficients of operators at different orders. There are many ways to derive

such relations. One method, intrinsic to the formalism and dubbed reparametrization

invariance, is to demand invariance under small changes of the velocity vµ in Eq.

(C.15) [251]. Going beyond 1/mN corrections is complicated but can be done [252,

151]. Another method is to implement a Foldy-Wouthuysen transformation [253]. A

third, more popular method [131, 150] is to start from a relativistic Lagrangian and

perform an integration over antinucleon fields in the path integral. Here we follow a

variant of the latter, where we match the non-relativistic Green’s functions to their

relativistic counterparts 1.

The TC dynamics of a relativistic nucleon is described by the Lagrangian

L = N̄

(

i /D −mN +
gA
Fπ
γ5τ · /Dπ

)

N + . . . , (I.1)

where “. . .” denotes higher-dimension operators, with more nucleon or pion covariant

derivatives and more powers of chiral-symmetry breaking parameters. The TV rela-

tivistic Lagrangian in the strong-interaction sector with operators containing up to

1Most of the results in this appendix were obtained independently by J. de Vries using the method
of Ref. [151], which is a generalization of Ref. [252] to the χPT Lagrangian
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two derivatives with respect to the leading TV coupling ḡ0 is

L/T = − ḡ0
FπD

N̄π · τN − h̄0
F 2
πD

π ·DµπN̄γ
µγ5N

+
η̄3
2Fπ

1

D

(

1− π2

F 2
π

)

DµDµπ · N̄τN

+
η̄4
4F 2

π

1

D

(

1− π2

F 2
π

)

(Dµπ ×Dνπ) · N̄σµνγ5τN

− η̄9
F 3
πD

π · (Dµπ ×Dνπ) N̄iσ
µνN

− η̄10
F 3
πD

π ·DµπD
µπ · N̄τN − η̄12

F 3
πD

Dµπ ·Dµππ · N̄τN, (I.2)

where, with abuse of notation, we denote the relativistic coupling constants by the

same symbols used in the text for the non-relativistic constants.

We find the f = 2 TV heavy-baryon Lagrangian by equating (matching) the

relativistic two-nucleon n-pion Green’s functions, computed with the Lagrangians in

Eqs. (I.1) and (I.2), to the non-relativistic Green’s functions, obtained with the TV

Lagrangians (4.1.19), (4.1.21), and (4.1.24) and the TC chiral Lagrangians (3.3.17),

(3.3.18) and (3.3.19) Chiral-symmetry breaking operators induced by the quark mass

m̄ and by the quark mass difference m̄ε should be included in the relativistic and in

the heavy-baryon Lagrangian, Eqs. (I.1) and (3.3.18) and (3.3.19). However, it turns

out that these terms do not affect the matching of the TV one-pion and two-pion

Green’s functions at the order we consider.

We set the external nucleon on shell, and expand the relativistic Green’s function

in powers of 1/mN , retaining terms up to order 1/m2
N . We do the matching in the

nucleon rest frame, v = (1,~0), where the spin operator is Sµ = (0, ~σ/2). In the

relativistic part of the matching, the incoming and outgoing nucleons are represented

by the Dirac spinors u(~p) and ū(~p ′), whose explicit expressions are

u(~p) =

√

E +mN

2E

(

ξ
~p·~σ

E+mN
ξ

)

, ū(~p ′) =

√

E ′ +mN

2E ′

(

ξ†,−ξ† ~p ′ · ~σ
E ′ +mN

)

, (I.3)

where ξ is a two-component spinor, normalized to one, and the nucleon energy is E =
√

m2
N + ~p 2. In the heavy-baryon part of the matching, the nucleons are represented
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=⇒

Figure I.1. Matching of the one-pion TC Green’s function. The l.h.s. represents
the relativistic Lagrangian (I.1). On the r.h.s., the circle denotes the interaction

in the leading-order Lagrangian L(0)
χ,f=2 (3.3.17), while the vertices with circled and

doubly circled circles denote, respectively, once- and twice-suppressed interactions in
the Lagrangian L(1,2)

χ,f=2 (3.3.18) and (3.3.19).

by the spinor ξ.

The Feynman diagrams for the matching of the one-pion TC and TV Green’s

function are depicted in Figs. I.1 and I.2. On the relativistic side, the interactions

are given by the Lagrangians (I.1) and (I.2). In Fig. I.1, on the heavy-baryon side the

circle denotes the leading pion-nucleon interaction in Eq. (3.3.17), while diagrams

with circled and doubly circled circles denote contributions suppressed by one or

two powers of Q/MQCD in Eqs. (3.3.18) and (3.3.19). Similarly, on the heavy-

baryon side of Fig. I.2 the diagrams with zero and two circles denote contributions

from, respectively, the leading TV Lagrangian L(1)
/χ,f=2 (4.1.19) and the subleading TV

Lagrangian L(3)
/χ1, f=2 (4.1.24). Equating the relativistic and non-relativistic TC Green’s

functions we reproduced the 1/mN and 1/m2
N terms in Eq. (3.3.18) and (3.3.19) and,

for the TV Green’s function, we find

ρ δmN = ḡ0, ρ ζ1 = ρ ζ6 =
ḡ0

2m2
N

. (I.4)

The Feynman diagrams for the matching of the two-pion TV Green’s function are

shown in Fig. I.3. The first row shows the relativistic diagrams. As before, the TV

vertices from Eq. (I.2) are denoted by squares: in the first diagram, the TV coupling

is either h̄0 or η̄4, while the last four diagrams are proportional to ḡ0 or η̄3. The TC

vertices come from the Lagrangian (I.1) and are proportional to the axial coupling

gA. The second, third and fourth rows contain the diagrams evaluated in the heavy-
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=⇒

Figure I.2. Matching of the one-pion TV Green’s function. The l.h.s represents the
relativistic Lagrangian (I.2). On the r.h.s., the square denotes the TV vertex in the

leading TV Lagrangian L(1)
/χ,f=2 (4.1.19), while the square with two circles the vertices

in the power-suppressed Lagrangian L(3)

/χ1, f=2 (4.1.24).

baryon theory. The double circle indicates that we consider vertices and corrections

to the heavy-baryon propagator in the TC and TV chiral Lagrangians with up to two

powers of Q/MQCD with respect to L(0)
χ, f=2 (3.3.17) and L

(1)
/χ, f=2 (4.1.19). Equating the

two-pion Green’s functions we find

ρ β1 = h̄0, ρ ζ8 =
gAḡ0
m2
N

− h̄0
mN

. (I.5)

The relations for the subleading TC operators in Eq. (3.3.18) and (3.3.19) and for

the isospin-breaking coefficients, summarized in Eqs. (I.4) and (I.5), reproduce those

in Refs. [131, 150], obtained by integrating the antinucleon field out of a relativistic

Lagrangian, once a field redefinition is used to eliminate the time derivatives acting

on the nucleon field from the power-suppressed Lagrangians. We refer to [151] for

more details. There the relations (I.4) and (I.5) are derived in a more sophisticated

fashion, by adapting the method of [252] to the χPT Lagrangian and by using field

redefinitions to eliminate time derivatives acting on the nucleon fields. The method

there developed can be applied also to four-nucleon operators, and it is showed to

reproduce the results of [254]

Equations (I.4) and (I.5) lead to Eq. (4.1.26). Equation (I.2) and the matching

above imply that the coefficients ζ3, ζ4, ζ9, ζ10, and ζ12 are new arbitrary low-energy

constants, not linked to the couplings appearing in the ∆ = 1 and ∆ = 2 TV

Lagrangians. The operators proportional to ζ11 and ζ13 do not appear in the rela-

tivistic Lagrangian, so their coefficient could be linked to δmN or β1. In order to find
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Figure I.3. Matching of the TV two-pion Green’s function. In the top row, the
nucleon is relativistic. In the bottom rows, the nucleon is described by the heavy-
baryon Lagrangian. Circles and squares indicate vertices from the leading TC and TV
Lagrangian, respectively. Doubly circled circles and squares vertices from the power
suppressed TC and TV Lagrangian. The double circle in the propagator indicates that
in each heavy-baryon diagram we consider corrections to the heavy-baryon propagator
with up to two powers of Q/MQCD.

the exact relation, we should match three-pion Green’s functions. We refrain from

doing this here because these three-pion operators play no role in any foreseeable

phenomenological application.

The constraints on TV operators stemming from the qCEDM, Eq. (4.1.37), and

on the TV electromagnetic operators generated by the QCD θ̄ term and the dimension

6 TV operators are obtained with the same method, by equating the relativistic and

non-relativistic three-point Green’s functions with two nucleon and one photon fields.

Also in this case, our results have been checked with the alternative method described
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in [151].



270

Appendix J

The Pion-Nucleon TV Form Factor

One ingredient in the calculation of the N2LO potential from the QCD θ̄ term is the

N2LO pion-nucleon TV form factor. From Sec. 4.3, we see that the TV pion-nucleon

interaction receives corrections two orders down. After the field redefinition of Sec.

4.3, and expanding in the number of pions,

L(3)
/T,πN = − 1

Fπ

[(

∆ḡ0 + ḡ0
δm2

π

m2
π

)

π − η̄2
2
(v · ∂)2π − η̄3

2
∂2π

]

· N̄τN

+
1

4Fπ
π · N̄τ

[

η̄5 (v · ∂−)2 +
ḡ0

2m2
N

∂2⊥−

]

N

+
ḡ0

4m2
NFπ

(∂νπ) · N̄ [Sµ, Sν ] τ∂µ−N

− ρ

Fπ

(

−4c(3)1 + 2∆mN
δm2

π

m2
π

)

π3N̄N + . . . , (J.1)

where the non-derivative couplings are given in Eqs. (4.1.27), they scale as

∆ḡ0 = −2ρδ1m(3)
N = O

(

ρεm4
π

r2(θ̄)M3
QCD

)

, ρc
(3)
1 = O

(

ρε2m4
π

r2(θ̄)M3
QCD

)

, (J.2)

and they receive a correction from the elimination of the tadpole, as detailed in Sec.

4.3. The derivative couplings are

η̄i = ρ ζi = O
(

ρεm2
π

r2(θ̄)M3
QCD

)

. (J.3)

In addition to a correction ∆ḡ0 to ḡ0 and to the isospin-breaking non-derivative ρc
(3)
1

coupling, plus the two terms from the field redefinition, the remaining terms all involve

derivatives, either of the pion or the nucleon.

In fact, some of these other couplings are necessary to renormalize processes in-

volving the coupling of pions and nucleons, while others lead to momentum depen-

dence. To make this point evident, let us consider the three-point Green’s function
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for an incoming (outgoing) nucleon of momentum pµ (p′µ) and a pion of momentum

q µ = pµ − p′µ and isospin a. It can be written as

Va(q,K) = − i

Fπ
[F1(q,K)τa + F2(q,K)δa3 + F3(q,K)δa3τ3] , (J.4)

in terms of the functions F1,2,3 of q µ and K µ = (pµ + p′µ)/2. We will work up to

relative O(Q2/M2
QCD), when the form factors F1,2,3(q,K) receive contributions from

the TV pion-nucleon vertex (4.1.19) at tree and one-loop levels, and from the TV

pion-nucleon vertices (J.1) at tree level.

The loops, shown in Fig. J.1, only contribute to F1(q,K). (Note that we do not

include wavefunction renormalization here; this can be easily done if needed.) The

leading TV interaction (4.1.19) is dressed by TC interactions from the ∆ = 0 La-

grangian (3.3.17). The one-loop diagrams are of course divergent; we use dimensional

regularization in d spacetime dimensions, which introduces the renormalized scale µ

and

L =
2

4− d + γE + ln 4π, (J.5)

with γE = 0.55721 . . .. We define the renormalized parameters

∆¯̄g0 = ∆ḡ0 +
ḡ0
4

m2
π

(2πFπ)2

[

(

1 + 3g2A
)

(

L+ 1− ln
m2
π

µ2

)

− 3g2A

]

, (J.6)

¯̄η2 = η̄2 +
ḡ0

(2πFπ)2

(

3− g2A
4

)(

L+ 2− ln
m2
π

µ2

)

, (J.7)

¯̄η5 = η̄5 +
ḡ0

(2πFπ)2

(

3

2
g2A − 2

)(

L+ 2− ln
m2
π

µ2

)

. (J.8)

At one loop, the form factors are found to be

F1(q,K) = ḡ0

[

1 +
δm2

π

m2
π

+
m2
π

(2πFπ)2
f

(

v · q
2mπ

,
v ·K
mπ

)]

+∆¯̄g0 +
1

2
¯̄η2 (v · q)2

+¯̄η5 (v ·K)2 − η̄3
2
~q 2 − ḡ0

2m2
N

~K2 − i ḡ0
2m2

N

~S ·
(

~K × ~q
)

, (J.9)

F2(q,K) = −4ρ
(

c
(3)
1 −∆mN

δ(2)m2
π

2m2
π

)

, (J.10)

F3(q,K) = 0, (J.11)
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Figure J.1. One-loop contributions of O(ḡ0m2
π/(2πFπ)

2) to the pion-nucleon form
factor F1(q,K) . A nucleon (pion) is represented by a solid (dashed) line; the TV
vertex (4.1.19) is indicated by a square, while other vertices come from Eq. (3.3.17).

with

f(x, y) = g2A −
√

1− (y + x)2
{

2y + 6x+
g2A
2x

[

1− (y + x)2
]

}

arccos (−y − x)

−
√

1− (y − x)2
{

2y − 6x− g2A
2x

[

1− (y − x)2
]

}

arccos (−y + x)(J.12)

The result greatly simplifies if we let the nucleons go on shell, which we write in

a short-hand notation in terms of the nucleon isospin as

v · q =
~K · ~q
mN

+ i
δmN

2
ε3abτb + . . . , (J.13)

v ·K =
1

2mN

(

~K2 +
~q 2

4

)

−∆mN −
δmN

2
δa3τ3 + . . . (J.14)

In this limit, f(v · q/2mπ, v ·K/mπ) is subleading,

f

(

v · q
2mπ

,
v ·K
mπ

)

= 0 +O
(

m3
π

M3
QCD

)

, (J.15)

and, at the accuracy to which we are working, it can be neglected. The form factors

for on-shell nucleons become

F1(q,K) = ḡ0

(

1 +
δm2

π

m2
π

)

+∆¯̄g0 −
η̄3
2
~q 2 − ḡ0

2m2
N

~K2 − i ḡ0
2m2

N

~S ·
(

~K × ~q
)

,(J.16)

F2(q,K) = −4ρ
(

c
(3)
1 −∆mN

δm2
π

2m2
π

)

, (J.17)

F3(q,K) = 0. (J.18)
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Figure J.2. Tadpole contributions to the pion-nucleon form factors Fi(q,K), i =
1, 2, 3. The TV vertex from Eq. (4.1.9) is indicated by a twice-circled square. The
circle is the Weinberg-Tomozawa term in Eq. (3.3.17). The circled circle denotes both
the nucleon sigma term from Eq. (4.1.2) and a recoil correction to the Weinberg-
Tomozawa term from Eq. (3.3.18), while the cross represents the isospin-breaking
operator in Eq. (4.1.19).

They are in the form of a local expansion in momenta. The coupling ∆¯̄g0 and the tad-

pole factor ḡ0δm
2
π/m

2
π are chiral corrections of O(m2

π/M
2
QCD) to the leading coupling

ḡ0. The vertex −4c(3)1 and the tadpole correction −ρ∆mN δm
2
π/m

2
π are the leading

contributions to F2. As far as the pion-nucleon form factor goes, one could as well

absorb the tadpole terms in ∆¯̄g0 and c
(3)
1 , as we do in Chapter 7. Note, however,

that the tadpole contributions and the vertices have different tensorial properties and

could, in principle, be separated in other reactions. The η̄3 term gives the F1 form-

factor radius, while the remaining two terms in Eq. (J.16) are relativistic corrections.

Note that F3 does not receive any contribution up to this order.

The results (J.16)-(J.18) can be obtained using the TV Lagrangian before the

rotation of the tadpoles. We use the same Lagrangian (J.1), but with δm2
π → 0.

Instead, we have to include explicitly the tadpole in Eq. (4.1.9). It generates tadpole

trees, shown in Fig. J.2, which contribute to all three form factors. The TV tadpole

(4.1.9) connects to the outgoing pion via seagulls from the nucleon covariant derivative

in Eq. (3.3.17) (the so-called Weinberg-Tomozawa term), from a recoil correction to

it found in Eq. (3.3.18), from the nucleon sigma term (4.1.2), and from the isospin-

breaking operator in Eq. (4.1.19).

In this case we get also an additional term in the form factor,

Va(q,K) = − i

Fπ
[F1(q,K)τa + F2(q,K)δa3 + F3(q,K)δa3τ3] + Va,tad, (J.19)
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where

F1(q,K) = ḡ0

[

1 +
δm2

π

2m2
π

+
m2
π

(2πFπ)2
f

(

v · q
2mπ

,
v ·K
mπ

)]

+∆¯̄g0 +
1

2
¯̄η2 (v · q)2

+¯̄η5 (v ·K)2 − η̄3
2
~q 2 − ḡ0

2m2
N

~K2 − i ḡ0
2m2

N

~S ·
(

~K × ~q
)

, (J.20)

F2(q,K) = −4ρ
(

c
(3)
1 −∆mN

δm2
π

2m2
π

)

, (J.21)

F3(q,K) = −ḡ0
δm2

π

2m2
π

, (J.22)

and

Va,tad(q,K) = ε3abτb
ρ

Fπ

δm2
π

2m2
π

[

v · q −
~K · ~q
mN

]

. (J.23)

These relations are slightly different than in the case of the field redefinitions, Eqs.

(J.9), (J.10), and (J.11). This is not surprising because in general a field redefinition

changes quantities off-shell. When the nucleons are on-shell, Eqs. (J.13) and (J.14)

hold. The function f(v · q/2mπ, v ·K/mπ) is still higher order. More care has to be

taken, however, with Eq. (J.23), which gives

Va,tad(q,K) = −iḡ0
Fπ

δmπ

2m2
π

(τa − δa3τ3), (J.24)

so that the on-shell form factors become exactly Eqs. (J.16), (J.17), and (J.18).

The TV pion-nucleon form factor has recently been studied in Ref. [255] using

a model relativistic Lagrangian for the interactions of nucleons, pions, ρ, ω and η

mesons. The TV sector of the Lagrangian in Ref. [255] contains all the possible

non-derivative one-pion/two-nucleon interactions —in particular an isoscalar coupling

with coupling constant cπ— and interactions of the ρ, ω and η mesons with the

nucleon. Similarly, the TC sector includes a pseudo-vector pion-nucleon coupling

with coupling constant gπ, the coupling of the ρ meson to the nucleon and to two

pions with constants gρ and gρπ respectively, and the couplings of the η and ω mesons

to the nucleon. The model Lagrangian in Ref. [255] does not include multi-pion

terms and, therefore, it is not fully consistent with the chiral symmetry of the QCD

Lagrangian.
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On the other hand, our framework is limited to momentum transfer Q ∼ mπ ≪
mρ. It is instructive to make contact between Ref. [255] and the formalism presented

here. For that, we have first of all to integrate out the contributions of the ρ, ω and

η mesons. At energies much smaller than the η and ω masses, loops containing the

ω and η mesons appear as short-distance contributions, absorbed in the coupling ḡ0.

At energies much smaller than mρ, the TC processes in which the nucleon emits a ρ

meson that subsequently decays into two pions appear like a local seagull vertex, the

Weinberg-Tomozawa term. We can thus establish the relation gρgρπ/m
2
ρ = −1/F 2

π .

Analogously, the emission of a ρ meson via a TV interaction, followed by its decay

into two pions, matches onto a TV seagull interaction with the form of the operator ζ4

in Eq. (4.1.24). Loops containing such a vertex are subleading in the power counting.

Terms cubic in the TV couplings are similarly of higher orders. Expanding the result

of Ref. [255] in powers of m2
π/m

2
N and m2

π/m
2
ρ, we find that the sum of the last five

diagrams in Fig. J.1 reproduces the infrared behavior of the fully relativistic calcula-

tion, that is, the factors of lnmπ/µ exactly match in the two calculations, provided

that we use cπ = −ḡ0/Fπ and the Goldberger-Treiman relation gπ = 2mN/FπgA.

However, the first diagram of Fig. J.1 does not have a counterpart in the calculation

of Ref. [255], whose model Lagrangian does not include multi-pion terms. These

multi-pion terms follow from the chiral properties of the TV operators, which are

tied to their roots in the θ̄ term in the QCD Lagrangian.

The framework presented here thus affords a method to carry out hadronic calcu-

lations where the QCD symmetries are included properly. It also allows a systematic

ordering of the infinite number of contributions allowed by the symmetries. The

results (J.16), (J.17), and (J.18) can be used as input, for example, in nuclear calcu-

lations. If more accuracy is needed, one can compute the form factor in higher orders.

For example, as we saw in Table 4.2, F3 first appears at relative O(αem/π), which, in

the way we count powers of αem/π, is the next order in the Q/MQCD expansion. At

this order one would have to include photon loops as well.
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Appendix K

Fourier Transform

In general a potential obtained in EFT depends not only on the transferred momen-

tum ~q but also on ~K, and the center-of-mass momentum ~P , V (~q, ~K, ~P ). The Fourier

transform of such a potential is defined as

V (~r, ~r ′, ~X, ~X ′) =
∫

d3K

(2π)3

∫

d3P

(2π)3

∫

d3q

(2π)3
e−i

~P ·( ~X− ~X ′)e−i
~K·(~r−~r ′)e−

i
2
~q·(~r+~r ′)V (~q, ~K, ~P ),

(K.1)

where, if ~x1 and ~x2 are the positions of the incoming nucleons and ~x ′
1 and ~x ′

2 the

positions of the outgoing nucleons, the relative coordinates are ~r = ~x1 − ~x2 and

~r ′ = ~x ′
1 − ~x ′

2, while the center-of-mass position of the incoming and outgoing pairs

are 2 ~X = ~x1 + ~x2 and 2 ~X ′ = ~x ′
1 + ~x ′

2. The potential in Eq. (K.1) has to be used in a

two-nucleon Schrödinger equation of the form

i
∂

∂t
ψ(~r ′, ~X ′) = −

(

~∇ 2
X′

4mN
+
~∇2
r′

mN

)

ψ(~r ′, ~X ′) +

∫

d3~r

∫

d3 ~X V (~r, ~r ′, ~X, ~X ′)ψ(~r, ~X).

(K.2)

For potentials that, like the ones in Sec. 7.3, are polynomials in ~K and ~P ,

V (~q, ~K, ~P ) ∝ ~Km ~P nf(~q), (K.3)

V (~r, ~r ′, ~X, ~X ′) assumes the form

V (~r, ~r ′, ~X, ~X ′) ∝
(

~∇n
Xδ

(3)( ~X − ~X ′)
) (

~∇m
r δ

(3)(~r − ~r′)
)

f

(

~r + ~r ′

2

)

, (K.4)

where

f(~r ) =

∫

d3q

(2π)3
e−i~q·~r f(~q ). (K.5)

Plugging Eq. (K.4) in Eq. (K.2), and integrating by parts, the derivatives acting

on the delta functions can be turned into derivatives acting on f and on the wave
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function ψ(~r, ~X). The integrals in Eq. (K.2) then become trivial, and the Schrödinger

equation assumes the form

i
∂

∂t
ψ(~r ′, ~X ′) = −

(

~∇ 2
X′

4mN
+
~∇2
r′

mN

)

ψ(~r ′, ~X ′) + V (~r ′, ~∇r′, ~∇X′)ψ(~r ′, ~X ′), (K.6)

where the two potentials in Eqs. (K.2) and (K.6) are related by integrations by parts.

For a potential of the form (K.3), schematically we would have

V (~r ′, ~∇r′, ~∇X′) ∝ (−)n(−)m
{∇r′ i1

2
, ...

{∇r′ im

2
, f(~r ′)

}}

∇n
X′ , (K.7)

where the indices ii, . . . , im are appropriately contracted.

In order to obtain the potential in configuration space for functions that diverge as

the momentum transfer |~q| goes to infinity, one has to define a regularization scheme.

Here, following Ref. [246], we find it convenient to extend the definition of the Fourier

transform (K.5) to a space-time of d = n + 1 dimensions:

Vn(~r ) =

∫

dnq

(2π)n
e−i~q·~r V (~q ). (K.8)

The amplitude V (~q) is the expression in momentum space of corresponding loop con-

tributions right after the d-dimensional integration over loop momenta is performed,

but before setting d = 4 or performing the integration over Feynman parameters.

Writing

dnq = qn−1dq (1− cos2 θ)
n−3
2 d cos θ dΩn−1, (K.9)

the angular integrations are evaluated with the aid of the formulas
∫

dΩn−1 =
2π

n−1
2

Γ
(

n−1
2

) , (K.10)

and

2π
n−1
2

Γ
(

n−1
2

)

∫ 1

−1

d cos θ (1− cos2 θ)
n−3
2 e−iqr cos θ = (2π)

n
2 (qr)1−

n
2 Jn

2
−1(qr), (K.11)

where q = |~q |, r = |~r |, and Jn(x) denotes a Bessel Function of the first kind. For

momentum integrals, a useful relation is [256]
∫ ∞

0

dq q
n
2

Jn
2
−1(qr)

(q2 + β2)
m−n

2

=
(r

2

)
m−n

2
−1 βn−

m
2

Γ
(

m−n
2

)Km
2
−n (βr) , (K.12)
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where β is a constant and Kn(x) is the modified Bessel function of the second kind.

For example, in the case of the triangle diagrams discussed in Sec. 7.3,

V△(~q ) = −i
gAḡ0
F 2
π

(4πµ2)
3−n
2

(2πFπ)2
τ (1) · τ (2) (~σ(1) − ~σ(2)) · ~q Γ

(

3− n
2

)

∫ 1

0

dx
[

m2
π + q2x(1− x)

]
n−3
2 .

(K.13)

For m = 3 and β2 = m2
π/x(1 − x), the result in Eq. (K.12) allows one to cancel the

divergent factor of Γ((3− n)/2) in Eq. (K.13) and get an expression that is finite for

r 6= 0. Now we can set d = 4 and with the aid of the properties of modified Bessel

functions [256] we can write the potential in configuration space as

V△(~r ) =
gAḡ0
F 2
π

1

(2πFπ)2
τ (1) · τ (2) (~σ(1) − ~σ(2)) · ~∇

[

1

2πr3

∫ 1

0

dx(1 + βr) e−βr
]

. (K.14)

The contributions from box and crossed diagrams can be obtained in a similar fashion,

leading to the result in Eq. (7.4.11).

Alternatively, we can isolate the short-range, divergent part of the interaction with

integration by parts. In Eq. (K.13), for instance, we then obtain

V△(~q ) = −igAḡ0
F 2
π

(4πµ2)
3−n
2

(2πFπ)2
τ (1) · τ (2) (~σ(1) − ~σ(2)) · ~q

[

Γ

(

3− n
2

)

mn−3
π + Γ

(

5− n
2

)
∫ 1

0

dx
q2x(1 − 2x)

[m2
π + q2x(1− x)]

5−n
2

]

.(K.15)

The first, divergent piece in Eq. (K.15) is a contribution to a delta-function potential.

Applying the d-dimensional Fourier transform to Eq. (K.15) and taking the d → 4

limit we find

V△(~r ) =
gAḡ0
F 2
π

1

(2πFπ)2
τ (1) · τ (2) (~σ(1) − ~σ(2)) · ~∇

[

δ(3)(~r)

(

L+ ln
µ2

m2
π

)

− 1

4πr

∫ 1

0

dx
1− 2x

1− x β
2 e−βr

]

, (K.16)

where L is given in Eq. (7.3.3). Proceeding in this way also for box and crossed
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terms, we find that Fourier transform of the TPE potential can be expressed as

V
(3)
TPE(~r ) =

gAḡ0
F 2
π

1

(2πFπ)2
τ (1) · τ (2) (~σ(1) − ~σ(2)) · ~∇

{

−δ(3)(~r)
[

(3g2A − 1)

(

L+ ln
µ2

m2
π

)

+ 2g2A

]

+
1

4πr

∫ 1

0

dx

[

g2A

(

4− 3

2x(1− x)

)

− 1− 2x

1− x

]

β2e−βr
}

. (K.17)

The piece proportional to the delta function can then be absorbed in a redefinition

of C̄2 very similar to Eq. (7.3.4), the only difference residing in the finite pieces.

Integrating by parts, it can be explicitly verified that the non-analytic piece of the

expression (K.17) gives the medium-range potential in the form of Eq. (7.4.11).

As a further check of our results, we computed the Fourier transform of the triangle

diagrams with a Gaussian regulator exp(−q2/Λ2), for different values of the cutoff Λ.

The calculation was performed numerically with Mathematica [257] and we focused

on the region r > 1/mπ. For Λ ≃ mρ, the result we get is still quite different from

the Fourier transform obtained in dimensional regularization, but as we increase the

cutoff to 1–2 GeV, it approximates Eq. (K.14) better and better.

As pointed out in Ref. [246], in the d-dimensional Fourier-transform procedure

the infinities are “regularized” away because the nucleon distance is kept finite. The

ultraviolet divergences and the regulator dependence are now hidden in the singular

behavior (∼ 1/r4) of the potential for small r, which forces the reintroduction of a

regulator in the calculation of matrix elements of V (r). If the chosen regulator were

dimensional regularization, then the d→ 4 limit of Eq. (K.12), which lead to the 1/r3

singularity in Eq. (K.14), must be taken in the sense of generalized functions; the

singularity is then encoded by a delta function, proportional to the divergent factor

2/(d − 4), while the 1/r3 behaviour is replaced by a more regular plus distribution

[250].
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