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Introduction

The detection of gravitational waves has started a new era in astronomy, pro-

viding a new way to observe and understand some of the most violent and

energetic events in the Universe. These waves, predicted by Einstein’s theory

of general relativity, are ripples in the fabric of spacetime and can be caused by

massive celestial events such as black hole mergers and neutron star collisions.

The detection and analysis of gravitational waves require extremely sensitive

instruments capable of distinguishing these faint signals from background noise.

The sensitivity of these detectors is defined by fundamental noises, but ulti-

mately limited by technical noises. This thesis focuses on the study of technical

noises in current ground-based detectors to reduce them, with particular em-

phasis on the Advanced Virgo Plus detector, and on the preliminary study

to cope with fundamental noises in future gravitational-wave detectors. In-

terferometric gravitational-wave detectors employ optical cavities within their

design. These cavities are crucial components where laser light is bounced back

and forth between highly reflective mirrors. Maintaining these cavities at the

precise operating point is essential to achieve the desired performance. Con-

sequently, all longitudinal and angular degrees of freedom must be carefully

controlled. This presents the challenge of managing a system with multiple

inputs and outputs.

This work describes the control of the main longitudinal degrees of freedom

of the Advanced Virgo Plus interferometer using a Multiple-Input Multiple-

Output (MIMO) approach, which allows also the define the cross-couplings

among them. The aim is to employ this approach for system identification and

for designing filters that mitigate noise re-injection caused by cross-couplings.

Using this MIMO model of the detector as a core, we develop a frequency

domain noise budget that can dynamically monitor the interferometer status

and help to mitigate technical noises. Additionally, other essential systems

of the detector are analyzed, highlighting the necessity of applying a MIMO
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approach across various interferometer components. The study also explores

an experimental setup to evaluate materials for the coatings of the mirrors for

future gravitational-wave detectors like the Einstein Telescope.

The first chapter, “Foundation of gravitational radiation”, sets the stage by

introducing the fundamental principles behind the gravitational-wave propa-

gation. It starts with a short review of general relativity and focuses on how

gravitational waves are predicted as solutions of the Einstein field equations.

The properties of these waves, including their speed, polarization, and inter-

action with matter, are explored. This chapter also delves into the history of

gravitational-wave detection, highlighting major milestones such as the first

detection done by Advanced LIGO and subsequent observations by Advanced

Virgo. The implications of these discoveries for astronomy and cosmology are

briefly discussed, illustrating how gravitational-wave detection has become a

pivotal field in astrophysics and how the era of multi-messenger astronomy

begun.

In the second chapter, “Gravitational-wave detectors”, the focus shifts to

the technological aspects of gravitational-wave detectors. The response of in-

terferometric detectors to the passage of gravitational waves are explained in

detail. This chapter includes a discussion on the basic operational principles

of laser interferometry. Furthermore, the specific sources of noise that impact

the sensitivity of the detectors are addressed, such as seismic activity, ther-

mal noise, and quantum fluctuations. Moreover, sources of technical noises are

described. These noises pose limits and challenges during the commissioning

and operation of these detectors. Understanding these noise sources is crucial

for developing effective strategies to mitigate their effects, which is critical for

increasing the reliability and accuracy of gravitational-wave detection.

Chapter three, “A MIMO approach for longitudinal sensing and control

noise projections of Advanced Virgo gravitational-wave detector”, introduces a

MIMO model based on simulations to study cross-couplings among the various

degrees of freedom and to design de-coupling filters to enhance the sensitivity

of the Advanced Virgo Plus detector. This chapter explains the theoretical

foundation of the description of MIMO systems in the frequency domain and

their adaptation for the main longitudinal degrees of freedom of the Advanced

Virgo Plus detector. It discusses how these systems can effectively manage and

mitigate cross-couplings and other complex noise sources within the detector

setup.

In Chapter four, “Longitudinal cross-couplings in Advanced Virgo Plus”, the

12



practical implementation of these decoupling filters in the Advanced Virgo Plus

detector is explored, including the challenges faced and the solutions developed.

The benefits of implementing MIMO control systems, such as improved noise

handling and enhanced detection capabilities, are evaluated, demonstrating

their significant impact on the operational efficiency of the detector.

Chapter five, “Frequency domain noise budget tool for Advanced Virgo

Plus”, delves into the development and application of a frequency domain noise

budget tool for the Advanced Virgo Plus detector. This chapter underscores

the critical importance of accurately identifying and quantifying various noise

sources to enhance the detector’s sensitivity and reliability. The noise budget

tool serves as a comprehensive framework for mapping out all significant noise

contributions, allowing researchers to isolate true gravitational-wave signals

from background disturbances. This chapter begins with a detailed expla-

nation of how gravitational-wave detectors employ noise budgets to maintain

and improve their performance. Then, it focuses on the implementation of a

“real-time” noise budget tool, designed to offer dynamic monitoring and anal-

ysis capabilities. By integrating various noise sources and employing advanced

modeling techniques, this tool aims to provide a robust and user-friendly plat-

form for ongoing noise management and mitigation efforts in gravitational-wave

detection.

In Chapter six, “A MIMO system identification approach for the longitu-

dinal control of the Filter Cavity of the Advanced Virgo Gravitational-wave

Detector”, the focus shifts to a specific case of a MIMO system. The chapter

starts with a description of the principles of frequency dependent squeezing

and details the operational principles of the filter cavity system, illustrating

how it manipulates squeezed states of light to reduce the broadband quan-

tum noise of the detector. The control of the filter cavity of Advanced Virgo

Plus exhibits strong cross-couplings. This chapter examines the application

of system identification techniques to understand and optimize the filter cav-

ity’s performance. The chapter elucidates the transition from a Single-Input

Single-Output (SISO) to a MIMO system identification method, highlighting

the superiority of the second one in capturing the intricate dynamics of the

system and ensuring robust control.

Chapter seven, “Toward direct measurement of Coating Thermal Noise for

Future Gravitational-wave Detectors”, introduces the preliminary experimen-

tal setup designed to directly measure the thermal noise of the coatings for

future gravitational-wave detectors at cryogenic temperature. This chapter
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outlines the working principle of the optical setup. It provides a comprehen-

sive look at the experimental setup, highlighting the challenges that could be

encountered along the way. The chapter also discusses the implications of these

measurements for future detector designs and the potential for incorporating

new materials and technologies to further reduce thermal noise. By directly

addressing this fundamental noise source, the research contributes to broader

efforts to enhance the detector sensitivity, paving the way for more precise and

reliable gravitational-wave detection in future observatories.
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Chapter 1

Foundation of gravitational radiation

February 2016, the Advanced Laser Interferometer Gravitational-wave Obser-

vatory (aLIGO) [1] announced the first direct observation of a gravitational-

wave (GW) signal [2]. This observation took place nearly 100 years after Ein-

stein’s General Relativity (GR) theory [3], which predicted these waves. This

first directly detected GW signal, referred to as GW150914, was traced back to

the coalescence of two black holes occurring about 1.3 billion years ago. Thus,

this observation unveiled an entire new frontier for the field of physics.

In 2017 both Advanced LIGO and Advanced Virgo [4] observed the first GW

signal originated from a binary neutron star (BNS) coalescence, GW170817

[5]. Light from this event was observed as well by several telescopes worldwide.

Moreover the Fermi Gamma-ray Space Telescope [6] and the INTErnational

Gamma-Ray Astrophysics Laboratory (INTEGRAL) [7] detected the gamma-

ray burst originated from this merger [8]. GW170817 signal is the keystone

that marked the start of the era of the multi-messenger astronomy. The first

part of this chapter briefly describes the derivation of GWs from GR. Then,

typical sources of GWs will be introduced to finally describe the main events

that started the era of the multi-messenger astronomy.

1.1 Summary of General Relativity

1.1.1 Introduction

The laws of motion and gravitation described in Newton’s Principia [9] have

been accepted for centuries and used for theories of mechanics and gravity. In

these laws, gravity has been considered as static and described as a pulling force
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1.1. SUMMARY OF GENERAL RELATIVITY

between objects with mass. This states that an object with a mass M1 would

exert a force F⃗12 on another object with mass M2 at a distance r⃗12 = r⃗1 − r⃗2.

This gravitational force is defined as:

F⃗12 = G
M1M2

|r⃗12|2
r̂12, (1.1)

where r̂12 is the unit vector from object two to object one and G is the universal

gravitational constant. This description of gravity is sufficiently precise for nu-

merous practical applications, hence is extensively used for instance in science

classes, structural and aerospace engineering. However, it lacks an explanation

on the origin of the gravitational force and assumes instantaneous actions at

any distance.

In the last century, this understanding was altered by Einstein’s theory of

General Relativity (GR), a generalization of the theory of Special Relativity

(SR) [10], which describes gravity as a consequence of curved space-time in

presence of mass [3]. In both SR and GR, for any frame of reference, the

speed of light remains constant for all observers and space-time is described

as a four-dimensional framework, which is the integration of the traditional

three-dimensional spatial coordinates with time as the fourth dimension. As a

result, space and time are relative to the observers conducting their measure-

ments. Additionally, in SR, the laws of physics are covariant when applied in

flat space-time, within non-accelerated frames of reference. In GR, Einstein

introduces the notion of covariance also for accelerated frames. In this context,

the gravitational attraction between masses is a consequence of the curvature

of space-time, and this curvature emerges due to the presence of mass. For this

four-dimensional coordinate system, one can define a measure of the distance

between two points:

ds2 = −(cdt)2 + dx2 + dy2 + dz2, (1.2)

where c is the speed of light. This four-dimensional manifold allows to describe

the curvature of space-time by the use of the metric gµν tensor, where the

indices (µ, ν) ∈ {0, 1, 2, 3} refer to the space-time coordinates (x0 = ct, x1 =

x, x2 = y, x3 = z). The same rule applies to other subscripts and superscripts

mentioned in this chapter.

A sign convention given by (−,+,+,+) is used for the metric tensor. For

example, in Cartesian coordinates, the Minkowski metric tensor ηµν is given by

ηµν = diag(−1, 1, 1, 1), where the speed of light c is set to unity. Subsequently,
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1.1. SUMMARY OF GENERAL RELATIVITY

using the Einstein summation convention, where an index appearing both as

sub- and superscript in a single term implies summation over all its possible

values, the distance ds between two points can be rewritten as:

ds2 = ηµνdx
µdxν . (1.3)

In SR, space is typically treated as Euclidean. As a result, free falling

objects follow straight paths. On the other hand, in GR, in the four-dimensional

curved space-time, free falling objects move along geodesics. A geodesic is

the shortest path between two points in space-time. To derive the geodesics

equation, we have to introduce the four-position vector S⃗ = (ct, x, y, z) and

the path parameter λ of the manifold. Assuming that free falling objects are

not accelerated along straight lines, the second derivative of the four-position

vector S⃗ satisfies the following condition:

∂2S⃗

∂λ2
= 0⃗. (1.4)

Thus, it follows that the general geodesics equation for any coordinate sys-

tem is given by:

0 =
d2xσ

dλ2
+ Γσ

µν

dxµ

dλ

dxν

dλ
, (1.5)

where σ is another tensor index and Γσ
µν are the Christoffel symbols or connec-

tion coefficients. These coefficients describe how the basis vectors change in a

curved space-time. To simplify the notation, using the metric tensor and rewrit-

ing the partial derivatives with respect to a space-time variable as ∂
∂xµ = ∂µ,

the connection coefficients become:

Γσ
µν =

1

2
gσρ (∂νgµρ + ∂µgνρ − ∂ρgµν) , (1.6)

where ρ is another tensor index and gµν is the inverse of the metric tensor gµν .

Such that gµρgρν = δµν , with δµν being the Kronecker delta.

The measure of the curvature of space-time can be described using the

Riemann curvature tensor:

Rρ
σµν = ∂µ(Γ

ρ
νσ)− ∂ν(Γ

ρ
µσ) + Γρ

µαΓ
α
νσ − Γρ

ναΓ
α
µσ, (1.7)

where α is another tensor index. The Ricci curvature tensor Rσν is the con-

traction of the Riemann tensor Rρ
σµν , meaning that Rσν = Rµ

σµν , and gives

17



1.1. SUMMARY OF GENERAL RELATIVITY

information about volume changes along geodesics. Next, the contraction of

the remaining two indices in the Ricci tensor gives the Ricci scalar, which

compares the area of a circumference in curved space-time as it travels along

geodesics with the area of a circumference in flat space-time, and is defined as:

R = gµνRµν . (1.8)

From this point, as defined in GR, the curvature of space-time is encoded

in the Einstein tensor Gµν , and defined by the Einstein field equations, as:

Gµν := Rµν − 1

2
gµνR =

8πG

c4
Tµν , (1.9)

where Tµν represents the energy-momentum tensor of matter, which describes

the energy and momentum of a given region in space-time. Essentially, this

means that energy and momentum cause curvature in space-time. The Ein-

stein field equations consist of ten coupled differential equations, and not six-

teen since Tµν and Gµν are symmetric. These equations are non-linear but,

since they have a well-defined initial-value structure, then gµν can be deter-

mined from given initial data. However, there exist four arbitrary degrees of

freedom related to the choice of coordinates. Therefore, to determine all ten

equations from initial data is not possible, since it will depend on the selection

of coordinates. Thus, the Einstein equations reduce to finally six independent

differential equations for six components within the metric tensor gµν .

1.1.2 Weak-field Einstein equations

In the absence of mass and, therefore, a gravitational field, space-time is flat.

An analytical solution of the Einstein field equations can be obtained only

under specific cases, such as in flat space Minkowski metric. In this context,

for a weak gravitational field and for nearly Lorentz coordinates, the metric for

a slightly curved space-time can be expressed as:

gµν = ηµν + hµν , (1.10)

where ηµν is the Minkowski metric tensor of flat space-time and |hµν | ≪ 1

is a small perturbation, which is a first order linear correction of the met-

ric. Other conditions that hold for the hµν are hσρhµν ≈ 0, |∂ρhµν | ≪ 1,

(∂σhαβ)(∂ρhµν) ≈ 0 and hαβ(∂ρhµν) ≈ 0. With these assumptions, it can be

shown that the inverse of the metric gµν is described as:
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1.1. SUMMARY OF GENERAL RELATIVITY

gµν = ηµν − hµν , (1.11)

where hµν = hσρη
σµηρν and |hµν | ≪ 1.

For regions of space-time with weak gravitational field, it holds that ∂σgµν =

∂σhµν . Therefore, the connection coefficients, or Christoffel symbols, can be

written as:

Γσ
µν =

1

2
ησρ (∂νhµρ + ∂µhνρ − ∂ρhµν) . (1.12)

Moreover, for linearized gravity, the product of the connection coefficients

can be assumed to be nearly zero. Thus, the Riemann tensor expressed in

equation (1.7) can be written as:

Rρ
σµν ≈ ∂µ(Γ

ρ
νσ)− ∂ν(Γ

ρ
µσ). (1.13)

Using equation (1.12), and reusing the auxiliary tensor index α, the Rie-

mann tensor can be simplified to:

Rρ
σµν =

1

2
ηρα (∂µ∂σhαν + ∂ν∂αhµσ − ∂µ∂αhνσ − ∂ν∂σhαµ) . (1.14)

Thanks to the symmetries and properties of the Riemann tensor, it can

be contracted to obtain the Ricci tensor. The upper index and the lower

middle index become the same, and Rσν = Rµ
σµν . Moreover, using the property

ηµνhµσ = hν
σ we can contract indices in the expression of the Riemann tensor.

Furthermore, the d’Alembertian operator is defined as □ = ηµα∂µ∂α = ∂µ∂
µ.

Finally, another definition is the trace h of the perturbation metric, given by

h = hµ
µ = ηµαhµα. With these definitions, the Ricci tensor in linearized gravity

takes the following form:

Rσν =
1

2
(∂µ∂σh

µ
ν + ∂ν∂αh

α
σ −□hνσ − ∂ν∂σh) . (1.15)

Contracting the remaining indices in the Ricci tensor, it is possible to obtain

the Ricci scalar, defined as:

R = ησνRσν

= ∂µ∂σh
µσ −□h.

(1.16)
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Hence, one can rewrite the Einstein field equations for linearized gravity

using equations (1.10), (1.15), (1.16) and reusing the auxiliary tensor indices

previously introduced as:

Gµν =
1

2

(

∂σ∂µh
σ
ν + ∂ν∂σh

σ
µ −□hµν − ∂µ∂νh− ηµν∂σ∂ρh

σρ + ηµν□h
)

.

(1.17)

Lowering the indices and introducing the term h̄µν ≡ hµν− 1
2ηµνh, equation

(1.17) becomes:

Gµν =
1

2

(

∂σ∂µh̄σν + ∂σ∂ν h̄µσ − ηµν∂
σ∂ρh̄σρ −□h̄µν

)

=
8πG

c4
Tµν . (1.18)

To further simplify the field equations, one can impose the Lorentz gauge

condition, in which the divergence of the metric perturbation is set to zero

(∂µhµν = 0). Then, equation (1.18) results in:

Gµν =
1

2

(

0 + 0− 0−□h̄µν

)

=
8πG

c4
Tµν . (1.19)

Finally, the expression for the linearized Einstein’s field equations, in this

condition, becomes:

□h̄µν = −16πG

c4
Tµν . (1.20)

1.1.3 Gravitational Radiation

In vacuum, where Tµν = 0, and for a weak gravitational field, the linearized

Einstein field equations are given by:

□h̄µν = 0. (1.21)

Developing the d’Alembertian operator and separating the spacial and time

terms, we can obtain:

− ∂2h̄µν

∂(x0)2
+

∂2h̄µν

∂(x1)2
+

∂2h̄µν

∂(x2)2
+

∂2h̄µν

∂(x3)2
h̄µν = 0, (1.22)

which can be re-written as:
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1.1. SUMMARY OF GENERAL RELATIVITY

1

c2
∂2h̄µν

∂t2
= ∇2h̄µν , (1.23)

where ∇2 is the Laplacian operator. Thus, equation (1.23) shows that the com-

ponents of h̄µν satisfy the wave equation. Hence, the Einstein field equations

predict the presence of waves that travel through the space-time curvature at

the speed of light c as small perturbations to the flat Minkowski metric.

The straightforward solutions of equation (1.23) are plane waves, which can be

written in the following form:

h̄µν = A cos (ηµσk
µxσ)

= Re
[

Aeiηµσk
µxσ
]

,
(1.24)

where kµ represents the wave vector components. In linearized gravity, the

linear metric perturbation hµν has 16 components. Therefore, the amplitude

A of the plane-wave solutions is instead a four by four symmetric matrix. Then,

equation (1.24) becomes:

h̄µν = Re
[

Aµνe
ikσx

σ
]

, (1.25)

where Aµν is a symmetric matrix, reducing the number of independent compo-

nents to ten. Furthermore, the Lorentz gauge condition, imposes that ∂µh̄µν =

0, giving four constraint equations, reducing the amount of independent com-

ponents to six. In the framework of the Lorentz gauge condition, we can in-

troduce a particular coordinate system called the Transverse-Traceless (TT)

gauge, where we consider only the part of the perturbation of the metric that

is perpendicular to the propagation, meaning that kµh̄
µν = 0 and Aµνk

µ = 0.

Moreover, in the TT gauge, the perturbations do not cause any overall expan-

sion or contraction of space as they propagate, meaning that h̄µ
µ = 0. As a

consequence, the amount of independent components reduces to two. Further-

more, it is possible to show that in the TT gauge h̄ = −h = 0, thus, h̄µν = hµν .

In this way, the original metric perturbation introduced in equation (1.10) can

be expressed as hµν = Aµνe
ikσx

σ

.

Thus, the set of equations for the plane wave amplitudes take the following

form:

21



1.1. SUMMARY OF GENERAL RELATIVITY
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Given the traceless conditions of this choice of coordinates, we have that

Aµ
µ = ηµνAµν = 0, meaning that ηxxAxx + ηyyAyy = 0, and Axx = −Ayy.

Moreover, since the matrix Aµν is symmetric, then Axy = Ayx. Finally, the

wave amplitude matrix Aµν has only two independent components, which can

be expressed as A+ and A×:













0 0 0 0

0 A+ A× 0

0 A× −A+ 0

0 0 0 0
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0 0 −A+ 0

0 0 0 0













+













0 0 0 0

0 0 A× 0

0 A× 0 0

0 0 0 0













. (1.27)

Where the subscripts denote the “Plus” and “Cross” polarization modes

of the gravitational waves respectively. In conclusion, the perturbation of the

space-time metric, i.e. the gravitational-wave, in the TT gauge coordinate

system, can be expressed as:

hµν =













0 0 0 0

0 A+ A× 0

0 A× −A+ 0

0 0 0 0













eikσx
σ

. (1.28)

1.1.4 Effects of gravitational radiation on free particles

The perturbations on the metric, denoted by hµν are no other than ripples in

the curvature of space-time. Considering free falling particles distributed in an

(x, y, z) coordinate system, a wave travelling along the z axis has an expansion

and contraction effect on x and y axes distribution of the particles. In order

to test this hypothesis, one has to study the proper length (L0) between two

neighbour geodesics. For a displacement vector r⃗ between two neighbour points

over the x− y plane in space-time, the proper length is given by:
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L0 =

∫

| d
dλ

|dλ

=

∫

√

−
(

dx

dλ

∂

∂x
+

dy

dλ

∂

∂y

)

·
(

dx

dλ

∂

∂x
+

dy

dλ

∂

∂y

)

dλ

=

∫ 1

0

√

−(rx)2gxx + (rx)(ry)gxy + (ry)2gyydλ

= |r⃗|,

(1.29)

where λ is the path parameter of the manifold. Therefore, to calculate the

proper distance, it is necessary to take the dot product of this vector r⃗ with

itself, defined as:

r⃗ · r⃗ = (rµe⃗µ) · (rν e⃗ν), (1.30)

where e⃗µ and e⃗ν are basis vectors. Then, summing only over the x − y plane,

the expression in equation (1.29) becomes:

L0 = r⃗ · r⃗
= rxrxgxx + rxrygxy + ryrxgyx + ryrygyy

= (rx)2(ηxx + hxx) + 2rxry(ηxy + hxy) + (ry)2(ηyy + hyy).

(1.31)

Using the plane-wave solution in equation (1.28) of the metric perturbation

and the Minkowski metric for flat space-time, the expression (1.31) turns into:

L0 = −[(rx)2 + (ry)2] + [A+((r
x)2 − (ry)2) + 2A×r

xry]eikσx
σ

, (1.32)

where the first term is the standard result for a Minkowski metric of flat space-

time and the second term corresponds to the effect of perturbations of the met-

ric due to GWs. Therefore, the separation between adjacent geodesics changes

due to fluctuations in the form of hµν , despite the fact that the geodesics have

constant space-time coordinates in the TT gauge.

In order to illustrate this effect, one can first align the displacement vector r⃗, be-

tween two geodesics, along the x axis. In this scenario, the changes on the sep-

aration results in ∆ = A+(r
x)2eikσx

σ

. On the other hand, if this displacement

vector is aligned along the y axis, this variation results in ∆ = A+(r
y)2eikσx

σ+π.
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1.2. GENERATION OF GRAVITATIONAL WAVES

This means that the variations due to the “Plus” polarization, along the x and

y axes, occur simultaneously, but they are phase-shifted by half a cycle. In

a similar way, one can study the results of placing the distance vector r⃗ in a

diagonal direction, for rx and ry with the same sign. This results in a change of

the separation of these geodesics of ∆ = 2A×|rxry|eikσx
σ

. Then, if this vector

r⃗ is oriented diagonally, but for rx and ry with opposite signs, the variation

of the proper length results in ∆ = 2A×|rxry|eikσx
σ+π. This means that the

variations due to the “Cross” polarization also occur simultaneously and they

are phase-shifted by half a cycle.

This can be summarized in the diagram in Fig. 1.1, which shows the effect of

a passing GW on a ring of free falling particles.

Figure 1.1: Effect of Cross-Plus Polarization gravitational waves passing by a
ring of free falling particles.

Note that GWs have two polarization modes. However, these are the first

order polarizations that GWs can have, since this study has been performed

for linearized gravity. In fact, under a different analysis it can be shown that

GWs can have up to six different polarization modes [11].

1.2 Generation of gravitational waves

When interested in studying the conditions that give rise to GWs, the energy-

momentum tensor Tµν has to be considered because at the GW source, where

the mass and energy are concentrated, curvature effects are significant. A

solution for the Einstein’s field equations (1.20) can be found by imposing

boundary conditions to the source geometry, defining a finite space, and by
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1.3. GRAVITATIONAL WAVES SOURCES

integrating over the source. Then, the tensor hµν can be expressed as:

hµν(t, x⃗− x⃗′) =
4G

c4

∫

Tµν(x⃗, t− |x⃗− x⃗′|/c)
|d⃗|

d3x′, (1.33)

where x⃗′ is a vector from a point of the source and x⃗ is the vector identifying the

observer position. For a source located in the origin of the coordinate system, at

large distances from the source, it is possible to assume that |x⃗− x⃗′| ≈ |x⃗| = r.

In this condition the energy momentum tensor can be expressed as Tµν(x⃗, t−
r/c). For this type of energy-momentum tensor and if the gravitational impact

to the total energy is small, then equation (1.33) can be simplified to the

quadrupole formula in the weak field limit on the TT gauge as [12]:

hµν(t, r) =
2G

c4
1

r

∂2Iµν
dt2

(t− r/c) (1.34)

where Iµν =
∫

ρ(x⃗)xµxνd
3x represents the quadrupole moment tensor and

ρ is the mass density of the object under study. Equation (1.34) suggests

that gravitational radiation is generated by sources that undergo accelerated

motion, as long as their distribution changes over time, and their symmetry is

nor spherical neither rotational.

1.3 Gravitational waves sources

As shown in equation (1.34), the magnitude of GWs is directly connected to

the mass of the system emitting these waves, and it is inversely proportional to

the distance from the source. Thus, a rough estimate for this amplitude can be

given by h ∼ 2G
c4

Msystem

r , which for a non-spherical system with a mass of the

order of one solar mass M⊙, with kinetic energy Esys at a distance of 1Mpc

(Mega parsec), can be given by:

h ∼ 10−19

(

Esys

M⊙c2

)(

1Mpc

r

)

, (1.35)

where it has been assumed that a large fraction of kinetic energy is converted

to gravitational radiation. While a rough estimate, equation (1.35) serves to

define an upper limit for GW amplitudes from a source located within the Local

Group of galaxies [13].

Typically, in GW astronomy possible sources are classified into four categories:

Compact Binaries, Continuous waves, Stochastic and Burst sources.
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1.3. GRAVITATIONAL WAVES SOURCES

1.3.1 Compact binary coalescence sources

Compact objects engaged in a cosmic dance abound in the known Universe.

These objects can be white dwarfs, neutron stars (NS), black holes (BH), among

others. Under specific conditions, these binary systems can emit powerful GWs,

which can be and have been observed by GW detectors such as Advanced LIGO

[1] and Advanced Virgo [4]. These systems generate GWs at the cost of losing

energy and angular momentum, getting closer and closer together in smaller

orbits until the two objects collide and merge into a single entity. This process

can be divided into three phases, which are the inspiral, the merger and the

ringdown, as shown in Fig. 1.2, taken from [14].

Figure 1.2: The upper inset provides an artistic representation of the merger,
illustrating the evolution of black hole event horizons during the coalescence and
merger process. The lower inset shows the gravitational-wave strain amplitude
over time for GW150914 detected by both the LIGO Hanford and Livingston
observatories on September 14, 2015.

The inspiral phase can take millions of years, and it is mainly characterized

by a consistent increase of both amplitude and frequency of the GW being

emitted. The frequency of these waves just before the merger is of the order

of hundred of Hz. For this reason and for the likelihood of this types of events

to occur, the design sensitivity for Earth based GW detectors reach their peak

around hundred of Hz. After the inspiral phase the merger comes, which takes

place in just some milliseconds [15]. This rapid increase in frequency and

amplitude is also known as the chirp. In this stage there is no longer space
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1.3. GRAVITATIONAL WAVES SOURCES

between the objects and they merge into one single compact object. Finally,

the ringdown describes that a new formed object settles to a stationary state.

After this phase finishes, the object ceases its gravitational radiation. These

waves can be generated by the merger of two BHs, Binary Black Hole (BBH),

the merger of two NSs, Binary Neutron Star (BNS) or by the merger of a BH

and a NS. The first indirect proof of GWs emission was indeed by studying a

BNS system. In the 1970s, Russell Hulse and Joseph Taylor discovered a binary

pulsar [16], a pair of neutron stars orbiting each other. Over the years, they

observed a gradual decrease in the orbital period of these stars, which matched

the predictions of energy loss due to gravitational-wave emission, as described

by GR. Additionally, for this binary pulsar system, they noted a cumulative

shift in the periastron, the point of closest approach in the orbit of the stars,

which aligned with relativistic predictions, as shown in Fig. 1.3, taken from

[17]. This indirect evidence of gravitational waves demonstrated a previously

theoretical phenomenon. For their discovery and work, Hulse and Taylor were

awarded the Nobel Prize in Physics in 1993.

Compact binary coalescence (CBC) is one of the most frequent source of

GWs that can be detected on Earth. The characteristic amplitude of these

waves from inspiral binaries can be written as [18]:

h = 4.1× 10−22

(

µ

M⊙

)
1

2

(

M

M⊙

)
1

3

(

100Mpc

r

)(

100Hz

fGW

)
1

6

(1.36)

where r is the distance from the detector to the binary system and fGW is

the characteristic frequency of the GW, M is the sum of the masses of the

objects (M = M1 + M2), and µ is the reduced mass of the objects, which is

given by µ = M1M2/M . For two objects of about one solar mass M⊙, orbiting

at 100Hz and within the Local Group of galaxies (r ≤ 3.1Mpc), then the

amplitude would be of h ≈ 1 × 10−20, which could be detected by all current

GW detectors in observing mode.

1.3.2 Continuous waves

A spinning compact object with non-axisymmetric deformations can emit con-

tinuous GWs [19]. A spinning NS with a distortion or without a perfect sur-

face exhibits a quadrupole moment which varies over time, meaning that emits

GWs. Some models have estimated the population of active pulsar in our
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Figure 1.3: Orbital decay due to the loss of energy via gravitational radiation.
The curve illustrates the expected shift in periastron time compared to an
unchanging orbit, as predicted by GR.

Galaxy to be of the order of half a million, from which only about 2000 have

been identified. In order to detect pulsars, their electromagnetic (EM) radia-

tion has to point the Earth, that is the reason why we have detected only a

small fraction of the estimated population. On the other hand, one could use

GWs to study pulsars that do not point to the Earth with its EM emission.

The expected strain amplitude h of such an object can be written as [20]:

h = 1.1× 10−24
( ϵ

10−6

)

(

Izz
I0

)(

fGW

1 kHz

)2(
1 kpc

r

)

(1.37)

where I0 is a nominal moment of inertia of a NS, ϵ is the mass quadrupole

asymmetry of the star, fGW is the characteristic frequency of the GW and r is

the distance from the NS to the detector. For a spinning object with a mass

quadrupole asymmetry e ∼ 10−6, within the vicinity of the Orion Arm (r ≤
3.07 kpc) and spinning at 1kHz, the amplitude would be of h ≈ 0.36 × 10−24,

which could be detected by the future generation of GW detectors.
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1.3.3 Stochastic gravitational-wave background

The superposition of numerous independent sources could give origin to a

stochastic GW background [21]. This background provides insights into the

early moments of the Universe. The theory supports that this radiation was

generated just fractions of a second after the Big Bang, well before the emer-

gence of the Cosmic Microwave Background (CMB). In order to characterize

the expected strain amplitude h of such stochastic waves, one starts by describ-

ing the GW spectrum in relation to the total energy density of all GWs over a

logarithmic frequency range as [22]:

Ωgw(f) =
1

ρcritical

dρgw
d ln(f)

, (1.38)

where ρgw is the energy density of the GW found within a specified frequency

range, ρcritical =
3c2H2

0

8πG is the critical energy density to cover the Universe

and H0 is the Hubble constant. Then, as described in [18], a characteristic

amplitude for a stochastic GW is:

h = 1.3 · 10−18

(

ρcritical
1.7× 10−8 erg cm−3

)
1

2

(

1Hz

f

)

[Ωgw(f)]
1

2 . (1.39)

Observing stochastic GWs would offer a unique chance to test GR dur-

ing the early stage of the Universe by detecting additional polarization modes

of GWs [23]. Furthermore, the stochastic gravitational-wave background can

provide insights into the formation and evolution of large-scale structures, the

dynamics of early universe phase transitions, and the contribution from numer-

ous unresolved binary systems, such as BBH and NSs, across the universe.

1.3.4 Burst emission of gravitational waves

Bursts are referred to brief duration events from sources that are either uniden-

tified or unexpected. These events may also involve release of EM radiation

as Gamma-ray bursts, which could originate from matter interactions with an

accreting BH, a star core collapsing supernovae or even NS mergers. Mod-

elling of gravitational collapse is a highly active field in astrophysics. However,

modelling wave-forms of those effects is a complex task, since it involves uncer-

tainties arising from violent processes, initial conditions, which means taking

into account multiple variables. Nevertheless, estimates of a GW amplitude
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generated by a supernova in our galaxy [24], emitting the energy (E) equiva-

lent to 10−7 M⊙, located at a distance of 10 kpc, at a frequency of 1 kHz and

having a duration of 1ms can be written as:

h ∼ 6× 10−21

(

E

10−7 M⊙

)
1

2

(

1ms

T

)
1

2

(

1 kHz

f

)(

10 kpc

r

)

. (1.40)

This magnitude should be detectable with current detector sensitivities on

Earth. However, such a supernova event in a vicinity of 10 kpc has a rate

significantly low, making the detection unlikely.

1.4 LIGO-Virgo signal extraction and analysis

The task of analyzing data from GW detectors involves unique challenges, such

as ensuring consistency across several GW antennas of the network that is cru-

cial to mitigate instrumental background noise and to facilitate analysis of GW

signals. Having detectors separated by vast distances helps to determine the

direction of the source due to the different arrival times of the signal. Such a

network plays a crucial role in discerning GW signals, exhibiting a correlated

response across the network, from uncorrelated noise in each instrument, al-

lowing for the distinction of signals from noise fluctuations. In addition, all-sky

searches, analysis of polarization, analysis of a broad spectrum of frequencies

and creating algorithms for multiple antennas are essential. Besides, the com-

putational demands are significant due to the continuous data acquisition and

due to the need of multiple filtering processes.

GW detection and understanding of physical parameters depend on

knowing the expected signal shape and noise distribution. Due to the nature

of GW signals, uncertainties in parameters can be considerable. A priori

assumptions about the amplitudes and phase evolution of these signals can

have a significant impact on the reconstructed waveform. Consequently,

determining physical parameters like masses and spins of merging objects is

achieved through Bayesian parameter estimation methods [25]. Wave-form

models are created for different parameters and these are compared with the

output data of the detector utilizing likelihood functions, to find the most

likely solution. The study of residuals from the comparison between the

observed and estimated values has to be consistent with noise properties.

Fig. 1.4, taken from [25], shows an example of a comparison between the
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data and wave-form model of a GW signal with the related residual. Since

stationary Gaussian noise exhibits no correlation between frequency bins, and

the noise present in the LIGO-Virgo detectors is generally stationary, then it

is effective to analyze it in the frequency domain. Matched filters are used

for GW data analysis. Window functions are employed to avoid spectral

leakage and to prevent spurious correlations in phase between frequency bins

[26]. In particular, Tukey windows are especially advantageous for analyzing

transient data and cause minimal alteration to the data compared to other

window functions [27]. The challenges to analyze this data arise from the fact

that noise could have short and high transients referred to as glitches, that

ultimately cause the noise to deviate from ideal Gaussian.

Figure 1.4: The two top panels display the whitened and band-passed data
from the LIGO detectors for the signal GW150914. The data is overlaid with
maximum likelihood whitened templates. The lower panels show the residuals
obtained by subtracting the templates from the data. The y-axis of these panels
represents strain measurements with an order of magnitude of 10−22.
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Initially, the output of the detector is subjected to calibration and it is

converted to a GW strain measure in time. If the data is corrupted by en-

vironmental or technical noises, a flag is raised and, therefore, invalidated for

analysis. If the data is not flagged as corrupted, then it is passed through search

algorithms to define the quality of the obtained signal. Signals are ranked and

undergo different analyses depending on their significance. These candidates

are compared with the wave-forms previously generated and probability distri-

butions are generated for all the properties of the source. Finally, after checking

data quality and validations, the events are incorporated in a source catalog.

A scheme, which summarizes this process, is shown in Fig. 1.5.

Figure 1.5: A simplified diagram outlining the primary stages in LIGO-Virgo
data processing, starting from detector data.

.

1.5 Gravitational-wave detection

During the last decade, astronomy has undergone a remarkable revolution, with

three GW landmarks standing out. First, in 2015 during the initial observing

run, LIGO Livingston and LIGO Hanford detectors made history with a first

direct detection of a GW, which was denoted as GW150914 [2]. This signal
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was emitted by a BBH merger. This event was located at a luminosity distance

of 410+160
−180 Mpc, corresponding to a redshift of z = 0.09+0.03

−0.04. The initial BH

masses were of 36+5
−4 M⊙ and 29+4

−4 M⊙ respectively, and the merger culminated

in a BH with a mass of 62+4
−4 M⊙. Remarkably, this merger radiated energy

equivalent to 3.0+0.5
−0.5 M⊙ in the form of GWs. The detected signal ascends in

frequency from 35 to 250Hz, reaching a peak GW strain of 1.0 × 10−21. The

signal-to-noise ratio (SNR) of this observation was of 24. Fig. 1.6, taken from

[2], shows the time signals, the residuals and the spectrograms of the event

GW150914 acquired by the two LIGO detectors.

Figure 1.6: GW150914: First gravitational-wave detected by both LIGO Han-
ford (H1) and Livingston (L1) detectors on September 14, 2015, at 09:50:45
UTC. Filtering was applied to focus on the 35–350 Hz frequency range, and
filters removed instrumental spectral lines. The top row shows H1 and L1
strains, with GW150914 arriving first at L1, delayed by 6.9 ms at H1. The
second row displays the gravitational-wave strain projected onto each detec-
tor, accompanied by numerical relativity wave forms. Shaded areas represent
90 credible regions for waveform reconstructions, based on binary black hole
templates. Residuals and a time-frequency representations are featured in the
third and bottom rows, respectively.

The second landmark occurred nearly two years later. After having gone

through a major sensitivity enhancement and expending nearly ten months

of commissioning, Advanced LIGO detectors started a second observing run
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(O2) on November 2016. This time Advanced Virgo entered the run, joining

the network of detectors, in August 2017. A simultaneous detection of a GW,

generated by a BBH, took place on August 14th by the three detectors. This

signal is referred as GW170814 [28]. The source was located at an estimated

luminosity distance of 540+130
−210 Mpc. The estimated masses of the initial BHs

were 30.5+5.7
−3.0 M⊙ and 25.3+2.8

−4.2 M⊙, producing a final BH mass of 53.2+3.2
2.5 M⊙,

therefore radiating the equivalent to 2.7+0.4
0.3 M⊙ in GWs. Utilizing a network of

three detectors significantly enhanced the precision of the source localization,

reducing the uncertainty area from 1160 deg2 to 60 deg2, as shown in Fig. 1.7,

taken from [28].

Several subsequent investigations of the signal GW170814 were carried out by

25 detectors and observatories across various wavelengths, including neutrinos,

gamma rays, X-rays, optical and near infrared detectors. However, no counter-

part was found. Nevertheless, this detection provided an opportunity to test

GW polarizations and new tests of gravity.

Figure 1.7: Localization of GW170814 visually represented in different panels:
The initial localization based on Advanced LIGO data is shown in yellow, while
the one obtained including data from Advanced Virgo is displayed in green.
Using a fully coherent Bayesian localization and more sophisticated waveform
models [29], the localization was updated and is represented in purple with
90% credible regions. Different projections in equatorial coordinates are used
in the panels, and the inset on the right illustrates the posterior probability
distribution for the luminosity distance across the entire celestial sphere.

Shortly after, the third landmark took place. On August 17, 2017, at

12:41:04 UTC, Advanced LIGO and Advanced Virgo jointly observed their

first BNS inspiral, referred as GW170817 [5]. This signal had an estimated

luminosity distance of 40+8
−14 Mpc and a combined SNR of 32.4, being the closest

34



1.5. GRAVITATIONAL-WAVE DETECTION

and loudest GW signal detected so far. The estimated masses of the initial NSs

were 1.26 − 1.60M⊙ and 1.17 − 1.36M⊙. The energy emitted (Erad) in GW

strongly depends on the equation of state (EOS) of the NS matter, therefore

it was only possible to place a lower bound to it of Erad > 0.025M⊙c2. In

addition, using the detector network, the source of the signal was pinpointed

to a region in the sky of 28 deg2 with 90% probability, as shown in Fig. 1.8,

taken from [5].

Figure 1.8: Sky localization of GW170817. With both LIGO Hanford
and LIGO Livingstone detectors, the estimation of the localization results
in 190 deg2. For Hanford-Livingstone-Virgo the localization is improved to
28 deg2. Bottom right panel shows an estimation of the luminosity distance of
the GW source.

Every detector has certain areas of the sky where its sensitivity is limited

due to its orientation. This particular fact plays a key aspect in narrowing

down the localization of the source in the sky. As it can be seen in Fig. 1.9,

taken from [5], this source was located in the blind spot of the Advanced Virgo

detector.
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Figure 1.9: Time-frequency representations from the GW170817 event detected
by LIGO-Hanford, LIGO-Livingston, and Virgo. Time is referenced to August
17, 2017, 12:41:04 UTC, with each detector’s amplitude scale normalized to
its noise amplitude spectral density. It can be seen that the signal in the
spectrogram of Advanced Virgo, is null. This is due to the fact that the event
was localized in the blind region of the sky for Advanced Virgo, which was
fundamental for the small region for the sky localization.

As a result of this detection, an alert was sent to the astrophysical commu-

nity, reporting a highly confident detection of a BNS GW signal.

Other notable events on this list are the detections of two neutron star-black

hole (NS-BH) mergers in 2020, during the third observing run (O3) [30]. The

fist of these events, GW200105, had a primary mass of m1 = 8.9+1.2
−1.5 M⊙, con-

sistent with predicted black hole masses. The secondary mass was estimated to
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be m2 = 1.9+0.3
−0.2 M⊙, consistent with neutron star masses observed in the Milky

Way. The luminosity distance of this source was estimated to be 280+110
−110 Mpc.

Similarly, the second event, GW200115, had a primary mass of m1 =

5.7+1.8
−2.1 M⊙, also consistent with predicted BH masses. The secondary mass

was estimated to be m2 = 1.5+0.7
−0.3 M⊙ respectively, consistent with NS masses

observed in the Milky Way. The luminosity distance of this source was esti-

mated to be 300+150
−100 Mpc.

The first event has been observed by only LIGO Livingston and Virgo,

while the second one has been observed by the three detectors. For these

events, there was no observed EM counterparts. Future observations of NS-BH

systems, characterized by markedly unequal component masses, will offer new

opportunities to investigate matter under extreme conditions. Additionally,

these observations will offer possibilities to study potential deviations from

GR.

GW190412, with a network signal-to-noise ratio (SNR) of 19 [31], stands

out as another significant detection. This binary system is characterized by its

asymmetric masses: a merger between a ∼ 30M⊙ BH and an ∼ 8M⊙ BH. The

GW carried radiation oscillating not only at the dominant emission frequency

of the binary system but also at other frequencies. This observation marked

the first instance where higher-order GW modes were necessary to describe the

signals [32].

Another notable detection was GW190521 [33], corresponding to the

merger of two BHs with masses of 85+21
−14 M⊙ and 66+17

−18 M⊙. Following the

merger, a black hole of 142+28
−16 M⊙ was formed, which can be considered as an

intermediate-mass black hole (IMBH) [34]. The network SNR of this detection

was of 14.5 and the source luminosity distance was 5.3+2.4
−2.6 Gpc, corresponding

to a redshift of 0.82+0.28
−0.34 Gpc.

In summary, during the past few years, three observing runs took place

(O1, O2 and O3) detecting and collecting information about GW mergers. On

November 2021, with these observing runs, an extensive catalog of mergers of

NSs, BHs and NS-BH to this date was released [35]. It summarizes a total

of 90 GW events observed by the LIGO-Virgo network. Fig. 1.10 summarizes

the observations performed in these runs classified in terms of initial and final

masses.
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Figure 1.10: Masses of compact binaries identified by LIGO-Virgo network,
showcasing BHs in blue and NSs in orange. Credit: LIGO-Virgo / Aaron
Geller / Northwestern University.

1.6 Multi-messenger Astronomy

On August 17, 2017, at 12:41:06 there was a trigger in the Fermi Gamma-ray

Burst Monitor (GBM) [36]. This signal, referred as GRB170817A [37, 38],

was detected by the International Gamma-Ray Astrophysics Laboratory

(INTEGRAL)[39] and was announced to the astrophysical community at

12:41:20 UTC that day. Only six minutes later, the astrophysical community

received another alert, coming from the GW detector network, announcing a

GW candidate product of a BNS merger. The signal GW170817 was recorded

less than 2 s before the signal GRB170817A, as shown in Fig. 1.11, taken from

[40]. Therefore, in response to these alerts, a broadband observing campaign

was started across the EM spectrum. With the information collected with

LIGO/Virgo, FERMI/GBM and INTEGRAL a very accurate estimation of

the sky localization of the source, of about 28 deg2, was achieved, as shown in

Fig. 1.12, taken from [8]. Due to its estimated localization, in the Southern

Sky, the first bright optical counterpart was recorded by Las Campanas

Observatory [41] in Chile.
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Figure 1.11: Joint detection of GW170817 and GRB170817A trough various
detectors and observatories. The top panel depicts the detection of GRB in
the energy band of 10− 50 keV. The second panel focuses in the 50− 300 keV
range. The third panel displays the detection of GRB signals for energy above
100 keV. The bottom panel shows the frequency map of GW170817, detected
by the LIGO-Virgo detector network.
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Figure 1.12: Sky localization of GW, GRB and optical signals. The left panel
shows a 90% credible region of 190 deg2, and the improved localization to
28 deg2 by the LIGO-Virgo network. Together with triangulation from Fermi
and INTEGRAL, the apparent host galaxy NGC 4993 could be identified (Bot-
tom right). Later that day, 10.9 hr after the merger, a bright spot in the neigh-
bourhood of the galaxy NGC4993 was observed (Top right).

.

Furthermore, the simultaneous observation of GWs and light emitted by

the merging BNS system in GW170817 contributed independent estimations of

distance and redshift. This enabled a direct calculation of the Hubble constant,

H0, without the assumption of a particular cosmological model. The Hubble

constant is a key parameter used to describe the rate at which the Universe is

expanding and it is defined as the ratio of the recession velocity of the source

v and the distance from the observer D as:

v = H0D. (1.41)

With the measurements taken from the event GW170817, GWs have

emerged as a promising method for estimating the Hubble constant, thanks to

their inherit properties as “standard sirens” [42, 43]. This designation arises

because the energy dissipated during the collision of compact binary systems

and the energy observed upon reaching Earth can be accurately determined

from the GW signal, providing a direct measurement of distance. Finally with

this method combined with the other cosmological models, the estimation of

the Hubble constant was updated to H0 = 72.77+11.0
−7.55, km s−1 Mpc−1.

Thanks to all the observations of the spectral energy distribution of this
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event, as shown in Fig. 1.13, taken from [8], it was possible to determine the

energy output, the ejected material and the environment of the explosion,

concluding that the event was a kilonova [44]. In addition, this detection was

followed by neutrino observatories such as IceCube [45], ANTARES [46] and

Pierre Auger Observatory [47]. However, no neutrinos were found as a counter

part of this event, information used to constrain the properties of the merger.

This occurrence highlighted the significance of collaborative efforts, combining

GW, EM and neutrino observations and gave place to the start of a new and

exciting era in astrophysics, the multi-messenger era [8].

Figure 1.13: Time line of GW170817, GRB170817A and the follow-up detailed
for different messengers, observatories and wavelength. Solid lines in the dif-
ferent messenger rows represent the times when the signal of the source system
was detectable at least by one telescope.
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Chapter 2

Gravitational-wave detectors

Due to its extremely small effect on matter and the required technology, GWs

were initially considered to be impossible to measure. About four decades

after the formulation of GR, J. Weber, fascinated by this theory and Einstein’s

prediction of GWs, started a campaign of experimental methods to directly

detect these waves. This motivation led him to work on the innovative resonant

mass detector [48]. Following this work, several groups around the globe joined

the effort and several resonant bar detectors were developed for the hunt of such

elusive waves [49, 50, 51]. Although having theoretically a sufficient sensitivity

in a narrow bandwidth, these experiments did not record any gravitational-

wave.

The transition to interferometric detectors began in the early 1970’s with a

laser interferometer proposed in 1971 [52]. Several advantages come with the

choice of an interferometric detector over a resonant bar, as improved sensitiv-

ity and broader detection bandwidth. Therefore, interferometric detectors were

considered more suitable for the analysis of the acquired data to study astro-

physical phenomena. Some long baseline interferometers were designed, devel-

oped and implemented in the 1980’s and 1990’s such as TAMA [53], GEO600

[54].

During the last decades km-scale interferometric detectors, such as LIGO

[1], Virgo [4], and KAGRA [55], have been developed and upgraded. The cur-

rent upgrade of these interferometers is referred to as the 2nd Generation (2G)

of gravitational-wave detectors. The core of the 2G detectors is a Michelson

interferometer [56], enhanced with the addition of a Fabry-Perot cavity on each

arm. Moreover, two additional partially reflective mirrors are added at the in-

put and output ports of the Michelson interferometer. This chapter describes
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the working principle of ground-based interferometric detectors, with a detailed

focus on the Advanced Virgo Plus detector. Future ground-based and space

detectors will be introduced at the end of this chapter.

2.1 Working principle

2.1.1 Michelson Interferometer

The configuration of 2G detectors is a modified version of a Michelson inter-

ferometer. The main mirrors installed in these interferometers are suspended

from wires. Therefore, they can be considered as free falling masses along the

longitudinal axis given by the propagation direction of the main laser beam. In

the configuration of a Michelson interferometer, as the one shown in Fig. 2.1,

the incoming laser beam encounters a Beam Splitter (BS), dividing the beam

into two beams of equal intensity. Note that equal intensities are mandatory

to have symmetric arm powers needed to not degrade the sensitivity of the in-

strument. After having travelled along the interferometer’s arms, these beams

are reflected back by two mirrors positioned at the end of each arm. Upon

their return, the beams are recombined at the BS, leading to an interference

pattern based on their phase relationship.

Figure 2.1: Scheme of a Michelson interferometer.
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As detailed in Chapter 1, a passing GW will affect the Michelson interfer-

ometer by expanding one arm while shrinking the other one. This alteration

in arm lengths modifies the path that the light beams travel. Such a change in

the beam paths results in a phase difference between the two beams when they

recombine at the BS, leading to a modified interference pattern. Consequently,

in the context of interferometric GW detectors, this change in the interference

pattern leads to a variation in the intensity that can be detected by a photo-

diode (PD) positioned at the output of the interferometer. For a Michelson

interferometer with arm lengths lx along the x axis and with ly along the y

axis, the difference in length can be expressed as δl = lx − ly. Then, the phase

difference δϕ between the beams traveling along the two arms and recombined

at the BS can be expressed as:

δϕ =
2π

λ
δl = kδl, (2.1)

where λ is the wavelength of the laser beam and k is the wave number.

To study the phase variation due to the passage of a GW, one can start by

deriving the time difference for a round trip of a photon inside the interferom-

eter. For a passing GW along the z axis, with a plus polarization mode and an

interferometer detector with arms aligned with the x and y axes, as identified

in Fig. 2.1, for light traveling along theses axes, the space-time distance ds, as

detailed in Chapter 1 in equation (1.3), can be expressed as:

ds2 = gµνdx
µdxν

= −(cdt)2 + (1 + h+(t))dx
2 + (1− h+(t))dy

2 + dz2,
(2.2)

which in this case is null, since in the framework of GR, light travels such that

the time experienced by the light beam is zero, making the proper distance

zero. Therefore, focusing on the beam traveling only along the x axis, equation

(2.2) can be reduced to:

cdt =
√

(1 + h+(t))dx. (2.3)

By integrating dx along the round trip path from the BS to the end mirror,

we obtain:
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2lx
c

=

∫ t

t−τrt

1
√

1 + h(τ)
dτ

≈
∫ t

t−τrt

(

1− h(τ)

2

)

dτ.

(2.4)

Then, the round trip travel time τrt of the light, i.e. the time a photon

needs to go from the BS to the end mirror and come back to the BS, is given

by:

τrt ≈
2lx
c

+
1

2

∫ t

t−2lx/c

h(τ)dτ. (2.5)

Thus, the total phase acquired in that round trip, along the x axis, is

denoted by:

ϕx(t) = ω0τrt =
2ω0lx
c

+
ω0

2

∫ t

t−2lx/c

h(τ)dτ, (2.6)

where ω0 is the angular frequency of the laser field. The first term represents the

phase shift caused by the light traveling a distance of 2lx, while the second term

indicates the phase variation induced by the passage of a GW. Analogously,

the phase acquired in the distance ly along the y axis can be expressed by:

ϕy(t) =
2ω0ly
c

− ω0

2

∫ t

t−2ly/c

h(τ)dτ. (2.7)

Therefore, the phase difference acquired by the laser beams traveling in the

two arms of the interferometer can be expressed as:

δϕ(t) = ϕx(t)− ϕy(t)

=
2ω0(lx − ly)

c
+ δϕGW ,

(2.8)

where the phase acquired for a passing GW δϕGW is denoted by:

δϕGW = ω0

∫ t

t−2l/c

h(τ)dτ. (2.9)

Moreover, the second term in equations (2.6) and (2.7) have been approxi-
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mated since the arm lengths are nearly identical, meaning that lx ≈ ly = l.

Thus, the passage of a GW alters the condition of interference, resulting

in observable power fluctuations at the PD. Furthermore, the passage of a

GW with a long wavelength, i.e., one comparable to the arm length of the

interferometer and corresponding to GWs in the kHz frequency range, leads to

a phase shift that changes more slowly than the light round trip travel time.

The related phase change can be approximated to:

δϕGW ≈ 2ω0l

c
h. (2.10)

Considering a GWwith an angular frequency ωGW = 2πfGW , that produces

a strain h(t) = heiωGW t, using equation (2.9), the phase shift becomes:

δϕGW =
2lω0

c
e−ilωGW /c sin(lωGW /c)

lωGW /c
heiωGW t

= HMICH(ωGW , l)heiωGW t,

(2.11)

where HMICH(ωGW , l) is the frequency response of the Michelson interferom-

eter for the passage of a GW [57]. The trend of the phase shift due to the

passage of a GW in a Michelson interferometer as a function of the frequency

of the GW. This Transfer Function (TF) is shown in Fig. 2.2.

As expressed in equation (2.10), the longer the arms of the Michelson inter-

ferometer, the more sensitive it becomes to changes in path length. However,

there are practical limitations to construct extremely long detectors. Therefore,

to increase the effective path length traveled by the light, without physically

extending the arms of the interferometer, Fabry-Perot (FP) cavities can be

employed in the arms. Incorporating FP cavities allow the laser beam to be

reflected back and forth multiple times within the arms of the interferometer,

effectively increasing the arm lengths.
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Figure 2.2: Michelson interferometer response to the passage of a GW. The
interferometer parameters used for this figure are: l = 3 km and wavelength of
the laser beam λ = 1064 nm.
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2.1.2 Fabry-Perot Cavity

A Fabry-Perot (FP) cavity consists of two mirrors facing each other, typically

with a high reflectivity. Light is partially transmitted and partially reflected at

each mirror. Inside the cavity, light undergoes multiple reflections building-up

the intra-cavity electric field. A sketch of a FP cavity is shown in Fig. 2.3.

Figure 2.3: Sketch of a Fabry-Perot Cavity of length L including mirror pa-
rameters and characteristic electric fields.

For a FP cavity characterized by a length L, reflectivities (r1, r2) and

transmissivities (t1, t2) of the input and end mirrors, respectively, the power

circulating Pcirc = Ecirc · E∗
circ within the cavity is given by:

Pcirc =
t21

(1− r1r2)2 + 4r1r2 sin
2(kL)

Pin, (2.12)

where Pin = Ein · E∗
in is the input power and k = 2π/λ is the wave number.

The resonance condition of the cavity is met when the optical path length is a

multiple integer of the wavelength of the input light. It can be expressed as:

2πm = kL, (2.13)

where m is an integer. In this condition, equation (2.12) becomes:

Pcirc =
t21

(1− r1r2)2
Pin. (2.14)

This resonance condition is met at each half-wavelength, which is defined

as the Free Spectral Range (FSR) of the cavity. This characteristic parameter

can be expressed also in frequency as:

∆fFSR =
c

2L
. (2.15)

The linewidth of a cavity, a key characteristic parameter, indicates the range

of frequencies for which a laser beam is resonant. Typically defined by the Full

Width at Half Maximum (FWHM) of the resonance peak, the linewidth is
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calculated as follows:

FWHM =
2∆fFSR

π
arcsin

(

1− r1r2
2
√
r1r2

)

. (2.16)

In resonant state, the power inside the cavity is enhanced. The enhancement

in power is influenced by the finesse F of the cavity, which is defined as the

ratio of the FSR to the linewidth:

F =
∆fFSR

FWHM
=

π

2 arcsin
(

1−r1r2
2
√
r1r2

) . (2.17)

In the context of GW detectors, where the reflectivities r1 and r2 are nearly

1, the argument of the arcsin function is small and equation (2.17) can be

approximated to:

F ≈ π
√
r1r2

1− r1r2
≈ π

1− r1r2
. (2.18)

The storage time, or average time, τs, represents the time the photons

remain in the cavity, is determined by the finesse as τs = 2LF/cπ. Then,

starting from the storage time we can define the cavity pole fc as:

fc =
1

2πτs
. (2.19)

The cavity pole denotes the frequency beyond which any induced change

within the field of the cavity is canceled. The cavity pole originates from the

fact that a cavity storage time is not infinite.

In order to study the response of a FP cavity to the passage of a GW, the

reflected electric field should be defined. Considering the parameters of the

cavity shown in Fig. 2.3, the reflected electric field can be expressed as:

Erefl = −r1 − r2(1− L)e2ikL
1− r1r2e2ikL

Ein, (2.20)

where L denotes the losses of the input mirror. The resonance condition of

a FP cavity is given by e2ikL = 1. For the case of a resonant cavity with a

lossless input mirror and exposed to the passage of a GW inducing a change of

length δL, equation (2.20) can be approximated to [58]:
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Erefl(δL) =
r2 − r1
1− r1r2

(

1 + i2kδL
r2(1− r1)

2

(1− r1r2)(r2 − r1)

)

≈ r2 − r1
1− r1r2

eiφFP (δL),

(2.21)

where ϕFP (δL) represents the phase shift in the reflected field by the FP cavity

as a result of δL. For fully reflective end mirrors (r2 = 1), ϕFP (δL) can be

expressed as:

ϕFP (δL) =
2F
π

2kδL. (2.22)

Thus, employing resonant FP cavities in the arms of an interferometer can

enhance the power circulating and magnify the phase shift induced by changes

in the cavity length by a factor of 2F/π.

2.1.3 Fabry-Perot Michelson interferometer

For a given Michelson interferometer, the addition of FP cavities in each arm

can effectively increase the sensitivity. A configuration of a FP-Michelson in-

terferometer can be seen in Fig. 2.4: Lx denotes the length of the FP cavity

along the x axis; Ly denotes the length of the FP cavity along the y axis.

Figure 2.4: Fabry-Perot Michelson interferometer

For the arm aligned with the x axis, the phase change δϕFP,x induced by a
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length variation δLx between the two mirrors of the FP cavity, caused by the

passage of a GW propagating perpendicular to the x − y plane and having a

plus polarization, is given by:

δϕFP,x ≈ 4kF
π

δLx. (2.23)

Similarly, the phase shift along the arm aligned with the y axis can be

obtained by inverting the sign of the phase shift induced along the x arm

(δϕFP,y = −δϕFP,x). Then, the overall phase shift in a Michelson interferom-

eter with FP cavity arms is described as:

δϕFP−MICH = ϕFP,x − ϕFP,y = 2δϕFP,x =
8kF
π

δLx. (2.24)

Assuming that the two FP cavities in the arms are identical, taking into

account the cavity storage time for the photons, the pole of the cavity fc and

the response of the Michelson interferometer to a passing GW described in

equation (2.11), equation (2.24) becomes:

δϕFP−MICH =
4F
π

1
√

1 + (fGW /fc)2
HMICHheiωGW t. (2.25)

Therefore, adding FP cavities alters the response of the Michelson interfer-

ometer to the passage of a GW and enhances its sensitivity. Fig. 2.5 shows a

comparison between the frequency response of a Michelson interferometer and

the one of a FP-Michelson interferometer.
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Figure 2.5: Comparison between a Michelson interferometer and a FP-
Michelson interferometer Transfer Functions (TFs) to the passage of a GW.
The interferometer parameters used for this figure are: arm length of 3 km and
wavelength of the laser beam of 1064 nm. The addition of FP cavities in the
arms of a Michelson interferometer modifies its response and enhances the sen-
sitivity at lower frequencies (below 10 kHz). In this case by a factor of ∼ 500.
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2.1.4 Power-Recycling Cavity

The working point of a GW detector is tuned to have a destructive interference

for the light beams coming back from the arm cavities, the so-called Dark

Fringe (DF) configuration [59, 60]. In this configuration, resulting in minimal

or zero intensity of the laser beam at the output, most of the light is reflected

back towards the input port of the interferometer and lost. In order to not

waste this light and re-inject it into the system, a semi-reflective mirror, the

Power Recycling Mirror (PRM), is installed between the laser source and the

BS. Thereby, the installation of the PRM boosts the effective power inside the

interferometer. This configuration is shown in the left side of Fig. 2.6: lpr is

the distance between the PRM and the BS; lx and ly are the distances between

the BS and the input mirrors along the x and y axes, respectively; Lx denotes

the length of the FP cavity along the x axis; Ly denotes the length of the FP

cavity along the y axis.

Figure 2.6: Left: Power Recycling FP Michelson interferometer. Right: Dual
Recycling FP Michelson interferometer.

In order to study the behaviour of the updated configuration of the de-

tector, we can make some simplifications: since FP cavities can be treated as

an equivalent reflective mirror [61], the same can be applied to a Michelson

interferometer with FP cavity arms. In this framework, the interferometer acts

as a mirror with reflectivity and transmissivity that change depending on the

resonance condition of the FP cavities and the working point of the Michelson

interferometer. In this perspective, the entire FP-Michelson interferometer can

modeled as a single mirror that, together with the PRM, forms a FP cavity, as

shown in Fig. 2.7.

When the system is on resonance, the circulating power in the detector is
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Figure 2.7: Cavity made by the PRM and the compound FP-Michelson inter-
ferometer.

increased by a gain factor gPR, which is given by [62]:

gPR =
1− r2PR

(1− rPRrFP−MICH)
2 , (2.26)

where rPR represents the reflectivity of the PRM and rFP−MICH denotes the

reflectivity of the compound FP-Michelson interferometer.

2.1.5 Signal-Recycling Cavity

In a Fabry-Perot-Michelson interferometer enhanced with the installation of a

PRM, placing a partially reflective mirror, the Signal Recycling Mirror (SRM),

between the BS and the output port allows to shape the sensitivity of the

detector. A sketch of a GW detector including a SRM is shown on the right side

of Fig. 2.6: lsr is the distance between the SRM and the BS. The installation

of a SRM creates another optical cavity with the input mirrors: the Signal

Recycling Cavity (SRC). The SRM effectively shifts the frequency of the cavity

pole to a higher value, therefore broadening the frequency range over which the

detector’s response to the passage of GWs is optimized.

The impact of a passing GW on the laser beam is to create differential signal

side-bands in the light that travels through the two arms. These side-bands

have identical amplitudes but opposite signs. When they are constructively

recombined at the BS, they move toward the SRM. Here, the differential side-

bands encounter an equivalent input mirror, comprising the FP input mirror

(IM) and the SRM. The reflection and transmission coefficients, labeled rSRC

and tSRC , for this equivalent mirror are influenced by the precise adjustment of

the signal recycling cavity’s length, affecting the phase of the beam as it passes

through this cavity. The signal recycling cavity length is the distance between

the SRM and the input mirror, given by lsr +
lx+ly

2 . The phase of the beam in

the signal recycling cavity is given by:
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ϕSRC = k[lsr +
lx + ly

2
]. (2.27)

The reflection coefficient is expressed as:

rSRC =
rIM − rSRe

2iφSRC

1− rIMrSRe2iφSRC
, (2.28)

and the transmission coefficient is given by:

tSRC =
tIM tSRe

iφSRC

1− rIMrSRe2iφSRC
, (2.29)

where rIM , rSR and tIM , tSR are the reflectivity and transmissivity of the IM

and SRM, respectively.

When ϕSRC equals zero, the signal recycling cavity is tuned for resonance

with the carrier field. In this configuration, the reflectivity of the equivalent

input mirror is lower than the one of the FP input mirror, decreasing the finesse

of the FP cavity seen by the passing GW side-band signals. In this working

point the pole of the cavity is shifted to higher frequencies, enhancing the

bandwidth sensitivity of the detector.

2.2 Achieving the working point

2.2.1 Control Theory

To obtain the maximum sensitivity of the GW detectors, all the optical cavities

must be on resonance, requiring the implementation of several control loops.

Control theory is an interdisciplinary field that deals with the behavior of

dynamical systems. Typically, the systems under study are denoted as the plant

(G), which has inputs (u), outputs (y), and internal dynamics. To maintain a

desired working point, given by a reference or set point signal (r), a controller

manipulates the input signal by applying a correction signal. The input for

this controller is denoted as error signal (e), which is the difference between

the reference signal and the output signal of the plant. A block diagram of a

control loop system is shown in Fig. 2.8.

For a Linear Time-Invariant (LTI) system [63], the Laplace transform can

be used to represent relations between signals with algebraic equations in the

s-domain. This simplifies the analysis and the design of control systems. In the

Laplace transform, the dynamics of the systems can be described using transfer
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Figure 2.8: Block diagram of a control loop system.

functions (TFs). For the system presented in Fig. 2.8, the transfer functions of

the plant and the controller are denoted by G(s) and C(s), respectively. The

Laplace transforms of the reference, error, input, and output signals are given

by R(s), E(s), U(s) and Y (s), respectively.

Open Loop Transfer Functions (OLTFs) and Closed Loop Transfer Func-

tions (CLTFs) are crucial tools for system analysis and design. OLTFs provide

insights into the intrinsic characteristics of the system, which can be used to

assess stability, examine transients, and evaluate frequency response [63]. In

contrast, CLTFs consider the system’s behaviour under feedback control, allow-

ing for precise tuning of the system to meet specific performance and maintain

stability, even in the presence of disturbances. For the basic feedback system

illustrated in Fig. 2.8, the OLTF and CLTF can be derived using the following

relations:

E(s) = R(s)− Y (s)

U(s) = C(s)E(s)

Y (s) = G(s)U(s).

(2.30)

Thus, the relation between the set point R(s) and the output Y (s) is given

by:

Y (s)

R(s)
= T (s) =

G(s)C(s)

1 +G(s)P (s)
=

G(s)C(s)

1 + L(s)
, (2.31)

where T (s) is the CLTF and L(s) = G(s)P (s) is the OLTF. The denomina-

tor of the CLTF represents the characteristic equation of the system. If this

denominator equals zero, the system becomes unstable.

Different approaches can be used to design control loops. For simple systems

and simple control tasks, one can use a Single-Input Single-Output (SISO)

57



2.2. ACHIEVING THE WORKING POINT

approach. On the other hand, Multiple-Input Multiple-Output (MIMO) can be

used in more complex scenarios, where several variables, and internal dynamics

must be considered and need to be controlled simultaneously.

In control engineering, systems are often classified based on the number of

inputs and outputs they have. A SISO system is characterized by having only

one input and one output. In essence, this implies that there is a single control

signal that affects a single process or plant, resulting in a single measured

output. In a SISO system, the control algorithm processes the feedback from

the output to adjust the input signal, aiming to regulate the system’s behavior

and achieve the desired performance. The simplicity of SISO systems makes

them easier to be analyzed, designed, and implemented compared to more

complex systems. However, real physical systems are characterized by internal

couplings and multiple dynamics that, can not be fully described by using just

one input and one output.

On the other hand, a MIMO system has numerous inputs and numerous

outputs. In MIMO systems, multiple control signals can affect multiple pro-

cesses simultaneously, resulting in multiple measured outputs. MIMO systems

are often encountered in complex industrial processes or aerospace systems.

GW detectors can also be described using a MIMO approach, since interac-

tions among various inputs and outputs are significant as it will be shown in

Chapter 3. Designing control algorithms for MIMO systems requires careful

consideration of these interactions to ensure stability, performance, and ro-

bustness. While MIMO systems offer more flexibility and capability to address

complex control tasks, they also pose greater challenges in terms of analysis,

design, and implementation compared to SISO systems due to their increased

complexity and mutual interactions.

For SISO feedback systems, and for a single pair of inputs and outputs in

MIMO systems, a typical tool for studying stability is the Bode plot [63], which

consists of the Magnitude and Phase trends in frequency of the TFs. A key

aspect of this plot is the Unity Gain Frequency (UGF), where |G(s)C(s)| = 1,

which is the frequency at which the magnitude of the OLTF equals one (or

0 dB). At this frequency, one determines the Phase Margin, which indicates

the amount of additional phase lag required for the system to become unsta-

ble. A greater phase margin suggests that the system is more resistant to

changes and disturbances. Another important aspect is the Phase Crossover

Frequency, which is where the phase crosses −180 deg. At this frequency, one

determines the Gain Margin, indicating the maximum increase of gain for the
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system allowed to remain stable. A greater gain margin indicates a more sta-

ble system. An example of a Bode plot for a feedback system, indicating its

stability margins, is shown in Fig. 2.9.

Figure 2.9: Bode plot of a simple feedback system: the top plot shows the
magnitude and the bottom one shows the phase.

2.2.2 Pound-Drever-Hall Technique

The Pound-Drever-Hall (PDH) technique [64] is a commonly used method for

stabilizing laser frequency and controlling optical cavity length, as the one

shown in Fig. 2.10. This technique is broadly used in GW detectors. Essen-

tially, it enables the generation of an error signal that can either stabilize the

frequency of the laser source when the cavity length is constant or control and

stabilize the cavity length when the frequency of the laser source is stable. In

this technique, an Electro-Optic Modulator (EOM) is used to phase modulate
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Figure 2.10: Basic layout for locking a cavity to a laser: The reflected signal is
sensed with a photodetector and is mixed with the local oscillator signal; the
output of the mixer is sent to the actuator through a controller.

the laser beam before it enters a FP cavity. The modulation process generates

side-bands around the main carrier frequency of the laser source. Thus, the

electric field after the EOM can be expressed as:

Ein = E0e
i(ωt+β sinΩt), (2.32)

where ω represents the laser’s (angular) frequency, Ω is the modulation

frequency, and β represents the modulation index. To accurately control the

length of an optical cavity, the carrier frequency is chosen to be resonant within

the cavity, while the side-bands are chosen to be anti-resonant. Equation (2.32)

can be expanded using Bessel functions Jn(β) [65]. Thus, neglecting higher-

order side-bands with smaller amplitudes, equation (2.32) becomes:

Ein = E0e
iωt(J0(β) + iJ1(β)e

−iΩt + iJ1(β)e
iΩt + ...), (2.33)

where J0(β) and J1(β) are the zeroth and first order Bessel functions, respec-

tively. This means that the modulated electric field entering the cavity is

represented by a carrier field and a pair of side-bands. The total power can be

expressed as P0 ≈ Pc + 2Psb, where Pc = J0
2(β)P0 is the power of the carrier,

and Psb = J1
2(β)P0 is the power of each side-band. The field reflected off the

optical cavity can be expressed as:

Erefl = E0e
iωt
(

F (ω)J0(β) + F (ω +Ω)J1(β)e
iΩt − F (ω − Ω)J1(β)e

−iΩt
)

,

(2.34)

where F (ω,Ω) is the reflection coefficient, which depends on the laser angular

frequency ω for the carrier and on Ω for the side-bands. It can be expressed

as:
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F (ω,Ω) =
r(eiφ − 1)

1− r2eiφ
, (2.35)

where r is the reflectivity of the cavity mirrors, and ϕ is the phase that the

beam acquires in a round trip, given by ϕ = 2ωL/c for the carrier and by

ϕ = 2(ω ± Ω)L/c for the side-bands. In general, the phase acquired by the

beam can be described in terms either of the laser frequency and the free

spectral range of the cavity as ϕ = 2πf/∆fFSR; or of the round trip optical

path in the cavity in light wavelengths as ϕ = 2π2L/λ.

A photo-detector is used to sense the power reflected from the cavity, which

is expressed as:

Prefl = Pc|F (ω)|2 + Psb

[

|F (ω +Ω)|2 + |F (ω − Ω)|2
]

+ 2
√

PcPsbℜ [F (ω)F ∗(ω +Ω)− F ∗(ω)F (ω − Ω)] cos(Ωt)

+ 2
√

PcPsbℑ [F (ω)F ∗(ω +Ω)− F ∗(ω)F (ω − Ω)] sin(Ωt)

+ (terms at 2Ω and higher).

(2.36)

Three waves with distinct frequencies are combined: the carrier at ω, and

the upper and lower side-bands at ω + Ω and ω − Ω. The outcome is a wave

with frequency ω, characterized by an envelope that exhibits a beat pattern

with two frequencies. The terms related to ω ± Ω result from the interference

between the carrier and the side-bands, while the terms with 2Ω originate

from the interference between the side-bands themselves. We focus on the two

terms oscillating at the modulation frequency, since they sample the phase of

the reflected carrier. Equation 2.36 includes both a sine term and a cosine

term. Typically, only one of these terms will be significant, while the other

will disappear. The modulation frequency determines which term vanishes and

which persists. For low modulation frequencies the expression F (ω)F ∗(ω +

Ω)− F ∗(ω)F (ω − Ω) is purely real, and only the cosine term persists. On the

other hand, at high modulation frequencies, i.e. when Ω ≫ ∆fFSR/F (F is

the finesse of the cavity) and near resonance, this expression becomes purely

imaginary, and only the sine term remains.

The signal recorded by the PD produces a voltage Vrefl that is proportional

to the reflected power Prefl. This voltage is then mixed with the signal from

the local oscillator (LO), which operates at the same frequency (modulation

frequency) as the one used for the EOM. The output from this mixing process

is then passed through a Low Pass Filter (LPF), which isolates the terms
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that are proportional to the beating between the carrier and the side-bands

(ω ± Ω) from higher frequency components. This filtered signal is the PDH

error signal, denoted as e, used to control the length of a cavity, i.e. keeping

the resonance condition of the cavity. The phase of the signal at the LO,

denoted as ϕLO, can be adjusted. This adjustment allows the extraction of

specific components of the mixed signal, effectively filtering out the desired

signal component that is in-phase or quadrature (90 degrees out of phase)

with the LO signal. Thus, after mixing and filtering, the output signal that

is in-phase with the LO’s modulation signal can be isolated. This in-phase

component is directly proportional to the sinΩt term, then the error signal is

expressed by:

e = 2
√

PcPsbℑ[F (ω)F ∗(ω +Ω)− F ∗(ω)F (ω − Ω)]. (2.37)

In the fast modulation case and near resonance, which is the typical case

in GW detectors, it is possible to assume that the reflection coefficients for

the side-bands, F (ω +Ω) and F (ω − Ω), approach −1, signifying almost total

reflection at these frequencies. Then, F (ω)F ∗(ω + Ω) − F ∗(ω)F (ω − Ω) ≈
−i2ℑ[F (ω)], resulting in an error signal given by:

e = 4
√

PcPsbℑ[F (ω)]. (2.38)

Near resonance, the phase acquired by the beam can be expressed as:

ϕ ≈ 2πN + 4π
δL

λ
, (2.39)

where δL represents a slight deviation in the cavity length from resonance

and N is an integer. This indicates that even very minor changes in the cavity

length, as small as a fraction of a wavelength, can significantly affect the system.

Then, rewriting the reflection coefficient F (ω) in terms of the small length

displacement δL, it becomes:

F (δL) =
r(ei4πδL/λ − 1)

1− r2ei4πδL/λ
≈ r

1− r2

(

i
4πδL

λ

)

≈ i
4F
λ

δL. (2.40)

Finally, the error signal obtained with this technique is proportional to the

change in the cavity length (or the frequency of the laser), and is given by:

e(δL) = −16
√

PcPsbF
δL

λ
. (2.41)
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The linearity of the error signal near resonance enables the application of

standard control theory tools to control the cavity length (or laser frequency).
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Figure 2.11: PDH error signal in free spectral ranges for a cavity with identical
mirrors, a high demodulation frequency of 50MHz and a modulation index
β = 0.7.

The top plot of Fig. 2.11 shows the reflected power of a FP cavity with

identical mirrors without losses: the reflected power is minimum when the

carrier crosses the resonance, meaning that all the power circulates in the cavity.

Note that in real cases also the side-bands can be slightly resonant. The bottom

plot of Fig. 2.11 shows the PDH error signal: the error signal crosses zero when

any of the beams, the carrier or the side-bands, achieve resonance within the

cavity. Note that the sign of the slope is opposite for the carrier and the

side-bands.

2.3 Advanced Virgo Plus detector

The Advanced Virgo Plus detector is a gravitational-wave detector located near

Pisa, Italy. It employs a dual-recycling Fabry-Perot Michelson interferometer

(DRFPMI) configuration, which incorporates a BS, a PRM, a SRM, and FP

cavities, each with a length of 3 km in the arms of the Michelson interferometer.
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This detector is part of a global network of gravitational-wave detectors, which

includes the two LIGO observatories in the United States [1] and the KAGRA

detector in Japan [55].

Advanced Virgo Plus represents an upgrade of the Advanced Virgo detector,

implemented in two phases. Phase I, completed in 2020, aims at enhancing and

shaping the detector’s sensitivity. Key improvements includes increasing the

power of the input laser beam to reduce the impact of the shot noise, installing

a SRM to shape the detector’s bandwidth, and implementing the frequency-

dependent squeezing (FDS) system to effectively reduce the quantum noise

impact across low, medium, and high frequency bands, thereby a broadband

enhancement of the sensitivity.

Phase II focuses on minimizing mirror thermal noise to further increase the

detector’s sensitivity. This will be achieved by altering the beam geometry in

the arm cavities to increase the beam size on the end mirrors, which reduces

the thermal noise impact by averaging out the mirror surface vibrations over

a larger area. Using larger beams implies the installation of larger and heavier

end mirrors. Additionally, this phase plans to introduce improved coatings with

lower mechanical losses to reduce the coating thermal noise. Together with an

increase of the power of the laser beam, these upgrades aim to significantly

enhance the detector’s sensitivity.

The optical scheme for the Phase I configuration, implemented in view of the

Observing Run 4 (O4), is shown in Fig. 2.12. The entire detector is divided

into four main parts: the input optics system, the main interferometer, the

output optics and the frequency-dependent squeezing system.

• Input optics system: The main beam of the interferometer is gen-

erated by a Nd:YAG laser system, its wavelength λ is 1064 nm. This

system is designed to provide the laser beam with the required power,

geometric shape, frequency and pointing stability to be matched into

the interferometer. The frequency of the laser is pre-stabilized with a

series of cavities, among which a triangular Input Mode Cleaner (IMC)

cavity. Three EOMs are installed along the beam path to provide the

modulation frequencies needed to control all the optical cavities. A

mode matching telescope is installed to modify the properties of the

input beam to match and inject it into the interferometer.
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Figure 2.12: Advanced Virgo Plus optical configuration implemented in view
of O4.
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• Main interferometer: It consists of seven main mirrors: the PRM,

the 50:50 BS, the SRM, the North Input (NI) mirror together with the

North End (NE) mirror forming the FP cavity along the North arm,

and the West Input (WI) mirror together with the West End (WE)

mirror forming the FP cavity along the West arm. The shorter arms

of the Michelson interferometer are formed by the BS, NI, and WI

mirrors. The PRM together with the NI and WI mirrors forms the

PRC, while the SRM together with the NI and WI mirrors forms the SRC.

• Output optics: At the output port of the interferometer the beam

passes through the Output Mode Cleaner (OMC) cavity, placed in

between the SRM and the photo-diodes used to detect GWs. This cavity

is used to filter out control side-bands and higher-order-spatial modes

[65], which can be generated by imperfections or misalignments of the

main interferometer. A mode matching telescope is installed to adapt

the properties of the interferometer beam to match it into the OMC.

• Frequency Dependent Squeezing system: It consists of a Frequency

Independent Squeezing (FIS) source and a Filter Cavity with a length of

285m. By injecting FDS light into the interferometer´s output through

a Faraday isolator, before the OMC, the broadband quantum noise level

can be reduced.

Fig. 2.12 shows also all the suspended benches and the names of the photo-

diodes that sense the main beams extracted from the interferometer. These

beams are summarized in Table 2.1.

Photo-diode Measured beam
B1 Output beam from the interferometer.
B2 Reflected beam from the interferometer.
B4 Pick-off from the beam between the PRM and the BS.
B7 Transmitted beam through the North arm cavity.
B8 Transmitted beam through the West arm cavity.

Table 2.1: Main photo-diodes and beams in Advanced Virgo Plus.

The designed sensitivity curves for both Phase I and Phase II are shown in

Fig. 2.13.
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Figure 2.13: Advanced Virgo Plus designed sensitivity curves for Phase I and
Phase II compared to the maximum sensitivities obtained during O3a and O3b.

In this figure the maximum obtained sensitivity curves during O3a and O3b

are depicted in red and blue. The blue shaded region is the sensitivity achiev-

able during Phase I depending on the configuration [66]: the upper limit means

a low input power, injection of only FIS and no Newtonian noise mitigation,

while the lower part means a higher input power, injection of FDS and im-

plementation of Newtonian noise subtraction. The red shaded region is the

sensitivity achievable during Phase II depending on the configuration [66]: the

upper limit means the use of the current coatings for the mirrors and low input

power, while the lower part means the use of improved coatings on the mirror

reducing the impact of the thermal noise and higher input power.

2.3.1 Length sensing and control

Adding new mirrors, such as in the case of the upgrades of the Advanced

Virgo Plus, increases the number of cavities and, therefore, the number of

Degrees of Freedom (DoF) to be controlled. The correct working point of the

interferometer is obtained when all the optical cavities are on resonance for the

carrier beam to achieve maximum detector’s sensitivity. In a Dual-Recycled

Fabry-Perot Michelson Interferometer (DRFPMI) configuration, there are five

main longitudinal DoFs defined as follows:
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• DARM = LN−LW

2 : Differential ARM length of the two FP cavities in

the arms. This is the most crucial DoF, since it is the one sensitive to

the passage of GWs.

• CARM = LN+LW

2 : Common ARM length, average of the long arm

lengths.

• MICH = lN − lW : Length difference between the lengths from the BS

and, respectively, the NI and the WI mirrors, forming the MICHelson

interferometer.

• PRCL = lPR + lN+lW
2 : Power Recycling Cavity Length.

• SRCL = lSR + lN+lW
2 : Signal Recycling Cavity Length.

The lengths of these various cavities, which form the above DoFs, are illus-

trated in Fig. 2.14, together with a list of the side-bands generated to control

the full interferometer.

Note that not all the side-bands are resonant in all the cavities. By design,

all the side-bands, except the ones multiple of f4, are resonant in the IMC and

pass through it going into the interferometer. The side-bands at f4, which are

reflected by the IMC, are used to control the IMC length. None of the side-

bands is resonant inside the FP arm cavities. f1 is defined to be resonant inside

the PRC. f2 is defined to be resonant inside the PRC and the SRC. Finally, f3

is defined to be anti-resonant inside both the PRC and SRC.

The proper Length Sensing and Control (LSC) of a laser interferometric

detector is crucial to meet and keep during the run its design sensitivity. The

functionality and working point of these detectors depend on keeping the inter-

ferometric condition, which depends on both the optical lengths of the cavities

and laser frequency of the detector. However, maintaining this condition is

challenging due to constant disturbances. Without active control loops for

both the optical cavity lengths and laser frequency, it becomes nearly impos-

sible to maintain the requested interferometric condition and, thereby, to have

sufficient sensitivity to detect the passage of GWs.

2.4 Limiting noises

The coupling into DARM of noises due to various sources can spoil the sensi-

tivity. These random variations could mask a real GW signal or create a false
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Figure 2.14: O4 Observing Run Optical Layout of Advanced Virgo Plus. The
laser beam travels towards the interferometer. It passes through the IMC
cavity and the PR mirror, then the laser beam is split at the BS and directed
towards the North and West arms. Thereafter, the beams are reflected by the
end mirrors of each arm and directed back to the BS, where the beams are
recombined and split again towards the input port and output port passing
through the SR mirror. The carrier is shown in red. The different side-bands
f1, f2, f3, f4 are indicated in green, blue, pink and orange, respectively.

one. Therefore, all noises, disturbances and couplings must be characterized

and studied. Typically, for GW detectors, these noises are characterized using

their Amplitude Spectral Density (ASD), which is given by:

A(f) =
√

S(f), (2.42)

where S(f) is the Power Spectral Density (PSD), which in turn is given by:

S(f) = lim
T→∞

2

T

∣

∣

∣

∣

∣

∫ T

−T

x(t)e−2iπftdt

∣

∣

∣

∣

∣

, (2.43)

where x(t) is the noise signal and T is the time observation window. Moreover,

for GW detectors, there is a typical distinction being made between funda-

mental and technical noises. Fundamental noises define the design sensitivity

of the detector by the incoherent sum of all of them. On the other hand,
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technical noises are due to the technology used in these detectors and to the

infrastructure where they are hosted.

2.4.1 Design sensitivity

All these sources of fundamental noise impose limitations in GW detectors.

Combining all the strains of these different fundamental noises it is possible to

produce a design sensitivity curve. The estimated design sensitivity due to the

limits imposed by the fundamental noises for Advanced Virgo Plus Phase I is

shown in Fig. 2.15.
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Figure 2.15: Design sensitivity of Advanced Virgo Plus configuration for O4.

2.4.2 Fundamental noises

Fundamental noises in GW detectors can originate from a range of different

physical phenomena and impact the detectors in unique ways and in different

frequency bands. The most significant fundamental noises are seismic noise,

quantum noise, thermal noise and Newtonian noise. Understanding these noises

is crucial for reducing their impact and, therefore, enhancing the detector’s

sensitivity. The quest to minimize these noises involves an effort that covers

multiple disciplines, encompassing advancements in mechanical engineering,

quantum optics, material science and environmental isolation techniques. In
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this section, we delve into the details of the main fundamental noises, each

subsection provides details on the nature and sources of the different noises

and the mitigation strategies.

Seismic noise

Seismic noise arises from the natural vibrations of the Earth. These vibrations

can originate e.g. from earthquakes, wind and ocean waves. Seismic noise

affect the GW detectors mostly at lower frequencies (below 10Hz).

A sensitivity of the order of 10−22 per
√
Hz at 10Hz and above, corresponds

to a mirror motion of the order of 10−19 m/
√
Hz for the arm length of 3 km

of Advanced Virgo Plus. For the Virgo and LIGO sites, the seismic motion

at 10Hz is of the order of 10−10 m/
√
Hz as shown in Fig. 2.16: dashed curves

represent the upper and lower bounds of the ambient seismic noise levels, the

so-called New High Noise Model (NHNM) and New Low Noise Model (NLNM),

respectively. Additionally, the typical levels of seismic noise at the Virgo, LIGO

Hanford and LIGO Livingston are depicted in red, green and blue, respectively.

Figure taken from [67].

Figure 2.16: Horizontal motion spectra measured at LIGO and Virgo sites com-
pared with the Peterson’s high-noise (NHNM) and low-noise (NLNM) models.

Since the characteristic seismic motion for all the sites is of the order of

10−10 m/
√
Hz at 10Hz, an attenuation of, at least, a factor of 109 is needed

on the mirror motion to detect GW signals. To mitigate seismic noise, GW

detectors employ active and passive isolation systems. Active isolation requires

the use of sensors to monitor seismic motion and actuators to mitigate these
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measured vibrations in real time. Passive isolation, typically, involves the use of

pendula to suspend the mirrors and optical components. For a pendulum, the

motion above its resonant frequency is significantly reduced. For a pendulum

with length l, with a suspended mass m, its dynamics can be described as:

mẍ =
mg

l
(x− xgnd), (2.44)

where x denotes the displacement of the attached mass, xgnd denotes the dis-

placement from the suspension point and g represents the acceleration due to

Earth’s gravity. From the differential equation (2.44), the transfer function that

relates the displacement of the mass and the displacement of the suspension

point is given by:

x(f)

xgnd(f)
=

f2
0

f2
0 − f2

, (2.45)

where f0 =
√

g/l/2π is the resonance frequency of the pendulum. Finally, for

frequencies higher than f0, equation (2.45) can be approximated to:

x(f)

xgnd(f)
≈ f2

0

f2
, (2.46)

meaning that the motion at higher frequencies is attenuated as 1/f2. Using sev-

eral stages of pendula in a seismic isolation system, one can effectively enhance

the attenuation at frequencies above the resonant frequency. For a system with

N stages, the overall transfer function between the top stage of the pendulum

array and the bottom stage becomes:

xbottom(f)

xtop(f)
≈
(

f2
0

f2

)N

. (2.47)

Therefore, implementing a multiple pendula chain allows to reach the atten-

uation factor of, at least, 109 needed to filter out the residual seismic motion,

as shown in Fig. 2.17.

Active isolation systems are used in the Advanced LIGO detectors, while

mainly passive ones are exploited in Advanced Virgo Plus and KAGRA.

Fig. 2.18 depicts the Advanced Virgo Plus isolation system, which features

a complex multi-stage pendulum chain, an inverted pendulum (IP), and the
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Figure 2.17: TF of a pendulum compared to the TFs of chains of multiple
pendula characterized by different number of stages: Increasing the number of
stages, the attenuation is improved above the resonance frequency.

payload that includes the suspended mirror. 1

The IP is used to control the resonance modes of the entire chain, to pre-

filter horizontal motion at low frequencies around the site’s microseism peak,

to provide inertial damping, and to position the entire suspension system. The

chain of pendula acts as mechanical filters, each incorporating multiple pairs of

concentric blade springs and magnetic anti-springs that reduce the coupling of

vertical ground motion into the motion of the mirror. The payload, consisting

of the marionetta and the mirror, is suspended from the final stage of the

pendulum chain.

1The initial design included filters 1-7. However, this was before the inverted pendulum

was introduced, which made a few filters unnecessary. Filter 7 was retained as the steering

filter, but filters 5 and 6 were removed. Conversely, filter 0 was added to attenuate the

vertical degree of freedom, a function not provided by the inverted pendulum.
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Figure 2.18: Sketch of the Advanced Virgo Plus isolation system.
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Newtonian noise

Newtonian noise refers to the fluctuations in the gravitational field at the lo-

cation of the GW detector due to local mass distributions. These fluctuations

can originate from seismic activity, atmospheric pressure variations and oceanic

tides. This fundamental noise interacts directly with the test masses and is not

suppressed by the active or passive isolation systems. A simplified model for

the amplitude spectral density of the seismic Newtonian noise can be expressed

as:

hNN (f) =
Gρxg√
3πLf2

, (2.48)

where ρ is the density of the soil surrounding the test masses, xg is the distribu-

tion of the ground motion and L is the arm length of the detector. On the other

hand, the atmospheric Newtonian noise is mainly affected by temperature and

air flux changes.

There are some strategies aiming to reduce Newtonian noise. An initial ap-

proach consists of an offline subtraction of Newtonian noise from the strain data

[68]. To implement this technique, seismometers and infra-sound microphones

are placed in different locations inside the buildings that host the main optics

of the interferometer. Fig. 2.19 shows an example of the seismometers and

infra-sound microphones installed in one the Advanced Virgo Plus buildings.

Figure 2.19: Seismometers and infra-sound microphones installed at the Ad-
vanced Virgo Plus site.
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Another possible approach will be to construct future GW detectors under-

ground, since it has been measured that surface seismic waves are significantly

suppressed at some hundred of meters underground [69].

Quantum noise

In the context of interferometric GW detectors, quantum noise arises from

the quantum-mechanical nature of the laser beam. Quantum noise in GW

detectors consists of two components: shot noise and radiation pressure noise.

It is described using its ASD calibrated in strain units (hQN ), that is the

incoherent sum of shot noise and radiation pressure noise:

hQN =
√

h2
SN + h2

RPN . (2.49)

Shot Noise (SN) arises from the quantized light, leading to fluctuations in

the number of photons arriving on a photo-detector and follow a Poisson dis-

tribution. As a result, when a laser illuminates a photo-detector, the resulting

photo-current time-series exhibits fluctuations. These fluctuations, known as

shot noise, scale with the square root of the laser beam’s optical power. In

contrast, the sensitivity of a GW detector increases linearly with the optical

power. Therefore, enhancing the optical power in a GW detector can effectively

improve the signal-to-shot-noise ratio, scaling with the square root of the op-

tical power within the GW interferometer. The ASD of photon shot noise in

units of strain for the case of a Michelson interferometer is expressed as:

hSN =
1

L

√

ℏcλ

2πP
, (2.50)

where L represents the average arm length of the interferometer, ℏ denotes the

reduced Planck constant, c stands for the speed of light, λ is the wavelength of

the laser and P is the average optical power.

Additionally, photons carry momentum, and when they reflect off a free-

falling test mass, they impart a radiation pressure force to the mirror. Since

the photons reach the test mass at different intervals, the force exerted on

the mirror and, consequently, its position fluctuates over time. This results in

what is known as radiation pressure noise. The resulting ASD due to Radiation

Pressure Noise (RPN) in the sensitivity band can be expressed as:

hRPN =
1

mf2L

√

ℏP

2π3cλ
, (2.51)
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where f is the frequency andm is the mass of the mirrors. From equation (2.50),

we can see that shot noise is frequency independent. On the other hand, from

equation (2.51), we can see that RPN is inversely proportional to the square

of the frequency. The sum of the SN and RPN is shown in Fig. 2.20: It can be

noticed that RP mainly limits the detector sensitivity at low frequencies, while

SN dominates at high frequencies.
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Figure 2.20: Sum of shot noise and radiation pressure noise for an interferom-
eter characterized by m = 40 kg, L = 3km and P = 100 kW.

For each frequency, we could find an optimal laser power to minimize the

quantum noise, where the RPN and the SN have the same level. All these opti-

mal points create a curve, crossing the whole detection spectrum, the Standard

Quantum Limit (SQL), which is defined as:

hSQL =

√

ℏ

mπ2f2L2
. (2.52)

For a GW interferometer with fixed arm lengths and mirror masses, the

standard quantum limit defines its quantum sensitivity limit. The trend of the

QN and the SQL for three different optical powers inside the interferometer is

shown in Fig. 2.21. One can see that increasing the optical power the level of

the SN improves, worsening the level of RPN.
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Figure 2.21: Effective strain quantum noise computed as the incoherent sum
of shot noise and radiation pressure noise in a Michelson interferometer for
different high circulating powers. Parameters are: L = 3km, λ = 1064 nm,
P = 10, 100, 250 kW and m = 40 kg. Standard quantum limit, in dashed blue
lines, shows the minimum strain limited by quantum noise.

Thermal noise

Thermal noise is the actual displacement of the mirrors due to the Brownian

motion of the particles making up the test masses suspension, substrate and

optical coating. Brownian noise is usually studied with the application of the

fluctuation-dissipation theorem. Therefore, this section offers an introductory

overview of the fluctuation-dissipation theorem, followed by a description of

the different types of thermal noises affecting GW detectors. These include

suspension thermal noise, substrate Brownian noise, substrate thermo-elastic

noise and coating thermal noise.

The fluctuation-dissipation theorem was first articulated by Einstein to de-

scribe how particles suspended in a fluid undergo random movements due to

thermal fluctuations [70] in 1905. Almost five decades later, the theorem was

formulated in a more comprehensive version [71]: for a given coordinate x(f)

with speed given by v(f), the theorem outlines the relationship between the ap-

plied fluctuating thermal force F (f) and the complex impedance of the system

Z(f). The complex impedance of the system is described as:

Z(f) =
F (f)

v(f)
=

F (f)

i2πfx(f)
. (2.53)
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Then, the Fluctuation-Dissipation theorem is formulated as:

F 2(f) = 4kBTℜ[Z(f)], (2.54)

where kB is the Boltzmann constant and T is the temperature. The thermal

noise or the fluctuation of the generalized coordinate Xth(f) within a system

is given by:

Xth
2(f) =

4kBT

4π2f2
ℜ[Z(f)], (2.55)

where Xth(f) is the Fourier transform of an observable xth(t).

In GW detectors, mirrors and certain optical components are suspended like

pendula using wires. The primary forces restoring these pendula are gravity,

which is lossless, and the elasticity of the wires, which does incur losses. The

elastic constant of the pendulum is calculated as follows:

k =
Mg

L
+Nw

√
TwEI

2L2
(1 + iϕw) = kg + ky(1 + iϕw), (2.56)

where L is the pendulum length, Nw is the number of supporting wires, M is

the mass of the mirror, E is the Young’s modulus of the wire, I is the moment of

inertia of the wire’s cross-section and ϕw is the loss angle due to wire elasticity,

representing loss of energy as heat. kg and ky represent the elastic constants

due to gravity and wire elasticity, respectively. Then, assuming gravitational

forces dominate those from the wires, the overall pendulum elastic constant in

equation (2.56) simplifies to:

k = kg

(

1 +
ky
kg

+ i
ky
kg

ϕw

)

≈ kg

(

1 + i
ky
kg

ϕw

)

. (2.57)

The loss angle of the pendulum ϕp is defined as:

ϕp =
ky
kg

ϕw. (2.58)

Finally, the pendulum thermal noise is expressed as:

Xth
2(f) =

4kBTϕp

128π7f2
0Mf5

, (2.59)

where f0 is the resonance frequency of the system. Equation (2.59) shows

that pendulum thermal noise inversely correlates with the mirror mass and

frequency across the overall bandwidth. Consequently, advanced GW detectors
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aim for heavier and larger test masses to minimize noise and enhance detection

capabilities.

In the initial Virgo detector, pendulum thermal noise was a significant lim-

iting factor of the sensitivity at low frequencies, largely due to the high loss

angle, of the order of 10−6, associated with the steel wires used to suspend the

mirrors. To address this issue, silica wires, which feature a considerably lower

loss angle, were introduced. This change allowed for a reduction in the sus-

pension loss angle by three orders of magnitude. The adoption of these silica

monolithic suspensions decreased the pendulum thermal noise to the order of

10−9. These suspensions are constructed using silica fibers that are welded to

silica blocks, which are then silicate bonded directly to the mirror side. This

design, shown in Fig. 2.22, significantly improved the sensitivity of the detector

from the initial Virgo to Advanced Virgo Plus.

Figure 2.22: Monolitic suspension in Advanced Virgo Plus.

To describe the thermal noise in the substrate of the mirror test masses,

one needs a comprehensive model that includes every possible vibration eigen-

mode. However, this approach demands substantial computational resources

[72]. An alternate method was suggested by Levin in 1998 [73]. Using this novel

approach it was possible to obtain an expression for the substrate thermal noise,

given by:

xth
2(ω) =

kBT

ω

1− σ2

√
πE0w

ϕ, (2.60)
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where σ is the Poisson ratio, E0 is the Young modulus of the substrate, ϕ

represents the loss angle and w is the beam radius used in the method described

in [73]. The loss angle depends primarily on the type of material used for

the substrate. Therefore, selecting a substrate with lower losses is crucial to

minimize this source of noise. Currently, fused silica is the preferred material

for large-scale detectors because of its very low loss angle, potentially as low

as 10−9. Other materials considered for this purpose include sapphire, silicon,

and calcium fluoride, all of which also exhibit favorable properties for GW

detectors.

The substrate thermo-elastic noise can be analyzed also using the

fluctuation-dissipation theorem. When a Gaussian beam hits the substrate

surface, it converts energy to heat, which is absorbed by the substrate,

reducing the restoring force. Then, the substrate thermo-elastic noise can be

expressed as:

xth
2(ω) =

16kBT

ω2

α2(1 + σ)2kT√
πCρ2w3

, (2.61)

where α represents the thermal expansion coefficient, k stands for the thermal

conductivity, ρ is the density of the material and C denotes the specific heat per

unit volume. Unlike fused silica, materials such as silicon and sapphire, which

are strong candidates for future cryogenic gravitational-wave detectors, exhibit

higher thermal conductivity and expansion coefficients, leading to increased

thermo-elastic noise. However, experiments indicate that at cryogenic temper-

atures (10 − 20K), these materials show better performance with significant

reductions in mechanical losses and thermal expansion.

For optimal reflectivity, a substrate is layered with a coating that is several

micrometers thick, involving 15 to 40 alternating layers of different materials

such as doped silica (SiO2 with low refractive index) and doped tantala (Ta2O5

with high refractive index). The higher loss angle of tantala significantly raises

the losses. Although the coating is much thinner than the substrate itself, it

is the primary cause of thermal noise in the mirror. This predominance is

because the majority of the energy from a Gaussian laser beam is concentrated

at the surface where the coating is applied, making the losses from the coating

more significant than other types of losses. The coating thermal noise can be

expressed through the following equation:

xth
2(ω) =

4kBT

ω

1− σ2

√
πE0w

ϕeff (ω), (2.62)
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where ϕeff (ω) represents the effective coating loss, defined as:

ϕeff (ω) =
d√
πw

(

E0

E⊥
ϕ⊥(ω) +

E∥
E0

ϕ∥(ω)

)

, (2.63)

where d denotes the thickness of the coating, w is the beam radius, E0 is the

Young’s modulus of the substrate, and E⊥ and E∥ correspond to the Young’s

modulus of the coating in the perpendicular and parallel orientations to the

layers, respectively. ϕ⊥ and ϕ∥ represent the loss angles in these orientations.

These parameters are determined by the thicknesses of the layers and the prop-

erties of the used materials.

Empirical studies have verified that coating thermal noise is consistent with

theoretical predictions and significantly affects the sensitivity of advanced de-

tectors in the mid-frequency range [74, 75]. Plans for future enhancements,

such as in the Advanced Virgo Plus detector, include increasing the beam size

to mitigate mirror thermal noise, as highlighted in equations (2.60) and (2.62).

Fig. 2.23 shows the contribution to the total thermal noise from the suspen-

sion thermal noise, the coating Brownian noise, the substrate Brownian noise,

the coating thermo-optic noise and the substrate thermo-elastic noise for Ad-

vanced Virgo Plus. Note that the coating Brownian noise becomes the most

dominant component of the total thermal noise above approximately 30Hz.

Figure 2.23: Thermal noise strain for Advanced Virgo Plus.
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2.4.3 Technical noises

In addition to fundamental noises, which are intrinsic to the design of the in-

terferometer, the detector’s performance can be limited by technical noises.

During the design of the various components of the detector, the goal is to

have all contributions from technical noises, at least, a factor of 10 below the

design sensitivity. Technical noises are not directly connected to the design of

the detector but, as noted in previous observing runs of current GW detec-

tors, they can limit their performance. A crucial part of the commissioning

process involves suppressing or reducing various technical noises. Though not

an exhaustive list, the following sections specifically describe some of the most

important technical noises with focus on sensing noises.

Readout noise

The readout noise should be limited by the shot noise. This means that the

noise due to the electronics in the detection chain should be lower than the shot

noise. The electronic noise impacts the sensitivity in two primary ways, de-

pending on the involved photo-diodes. First, the readout noises associated with

the photo-diodes used to detect the B1 beam directly affect the measurement

of the GW signal. Second, the error signals to control the different DoFs can

propagate through the control loops and convert into mirror position noises, as

explain in detail in Chapter 3.

The total signal at the modulation frequency Ω can be expressed in terms

of its in-phase VI(t) and quadrature VQ(t) components as:

VΩ(t) = VI(t) · cos(2πΩt) + VQ(t) · sin(2πΩt). (2.64)

This signal is processed using a demodulation board, which delivers the

signals V ch
I (t) = VI(t)

2 and V ch
Q (t) =

VQ(t)
2 for the in-phase and quadrature

components, respectively.

The electronic noise at the detection chain output primarily comes from

the quantization noise of the ADCs and the noise generated by the preampli-

fier. The quantization noise is a white noise with a spectral density of about

∼ 100 nV/
√
Hz. Generally, the electronic noise generated upstream of the

demodulation board becomes dominant, especially at higher frequencies. Ad-

justing the gain of the demodulation board helps to minimize this noise.

On the other hand, the preamplifier noise propagates through the demodula-

tion board, resulting in an electronic noise level slightly higher than 1µV/
√
Hz.
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The impact of readout noises on the detector’s sensitivity depends on the

signal-to-noise ratio at the output of the photo-diode acquisition chain. Thus,

the contribution of readout noises can be reduced by increasing the power of

the beam incident on the photo-diodes.

Note that the contribution of electronic noise to the sensitivity curve de-

creases as the incident power on the photo-diodes increases, while, the absolute

level of shot noise rises with the square root of the power. Moreover, in GW

detectors the contribution of electronic noise should be, at least, 10 times lower

that the contribution of shot noise also to make use of Squeezing techniques

[76].

Demodulation noise

During the demodulation process, relative phase fluctuations between the sig-

nal at the modulation frequency delivered by the photo-diode and the local

oscillator signal can introduce noise into the demodulated signal, known as de-

modulation noise. The coupling mechanism for this phenomenon is described as

follows: if the signal at the modulation frequency delivered by the photo-diode

undergoes phase fluctuations δϕΩ(t), such that:

VΩ(t) = VI(t) cos(2πΩt+ δϕΩ(t)) + VQ(t) sin(2πΩt+ δϕΩ(t)), (2.65)

and the local oscillator undergoes phase fluctuations δϕLO(t), resulting in:

VLO(t) = cos(2πΩt+ δϕLO(t)), (2.66)

the signal obtained at the output of the mixer of the in-phase channel V ch
I is,

then, given by:

V ch
I (t) =

VI(t)

2
· [cos(4πΩt+ δϕΩ(t) + δϕLO(t)) + cos(δϕΩ(t)− δϕLO(t))]

+
VQ(t)

2
· [sin(4πΩt+ δϕΩ(t) + δϕLO(t)) + sin(δϕΩ(t)− δϕLO(t))] .

(2.67)

Filtering out the components at twice the modulation frequency from equa-

tion (2.67) and expanding the trigonometric functions to the first order, the

signal V ch
I (t) at the output of the detection chain is written as:
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V ch
I (t) =

VI(t)

2
+

VQ(t)

2
· δϕdem(t), (2.68)

where δϕdem(t) represents the relative phase fluctuations between the signal at

the modulation frequency delivered by the photo-diode and the local oscillator

signal, i.e. δϕdem(t) = δϕΩ(t)− δϕLO(t).

The previous calculation shows that relative phase fluctuations between the

signal at the modulation frequency from the photo-diode and the local oscil-

lator signal generate noise in the demodulated signal of the in-phase channel,

with an ASD proportional to the signal induced on the quadrature channel.

Analogously, this phenomenon is symmetrical for the quadrature channel. The

demodulation phase noise δϕdem can have two different origins: it can be gener-

ated at the electronic level of the detection chain, or it can result from intrinsic

phase noise of the generator that delivers the signal for the phase modulation

of the laser beam.

Longitudinal sensing and control noise

Controls are essential for the operation of GW detectors. They are implemented

on several systems of the detector to keep their proper working point. For

instance they are used to maintain the longitudinal and angular position of the

mirrors, to damp the modes of the suspension system, to continuously align the

laser beam, among others. Unfortunately, without subtraction, or decoupling

techniques, longitudinal control noise is the main limitation of GW detectors

at low frequencies. This type of noise emerges from the sensor noise that is

fed-back to the system to keep the interferometer in the proper working point.

From the error signal derived from the PDH technique, described in section

2.2.2, the controls must keep the optics in the desired longitudinal position. To

generate these error signals, the PDH technique uses photo-detectors, which are

affected by electronic noise, ADC noise, shot noise, among others. Sensor noise

is indistinguishable from real displacement noise and it dominates the noise

floor above ∼ 50Hz. At the beginning of the lock acquisition procedure, the

controllers are designed to be robust and strong to acquire the resonance state.

Later, the bandwidth of the different control loops are dialed back, weakening

the control action but reducing the re-injection of the sensor noise. However,

this process alone is not enough due to optical cross-couplings, which transfer

the noise from one channel to another of the different DoFs. This particular

aspect is studied in detail in Chapter 3, where starting from an interferometer
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simulation tool, the optical cross-coupling of all longitudinal DoF are studied

and the effects on the sensitivity are explained. Furthermore, Chapter 3 covers

the development of a full Multiple-Input Multiple-Output system, that allows

to predict cross-couplings and helps to design decoupling filters to circumvent

the re-injection of noise in current and future GW detectors.

Angular control noise

If the beam is well-aligned and centered with respect to the mirrors, at first or-

der angular noise from a mirror does not affect the optical path length traveled

by the beam, having no significant impact on the DARM DoF signal. However,

if the beam is decentered relative to the mirrors, angular noise can couple to

the output of the interferometer, thus limiting its sensitivity.

Suppose the incident beam is vertically decentered on the BS, as depicted

in Fig. 2.24, where d denotes the beam decentering, and δθ denotes the Pitch

angular noise of the mirror, around its horizontal axis.

Figure 2.24: Effect of an Pitch displacement noise δθ of a mirror, in the hy-
pothesis of a decentered beam relative to the optical axis.

The angular noise induces a variation in the optical path length of the beam

reflected towards the West arm that can be expressed as:
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δlW ≈ δl0 = dδθ, (2.69)

where δl0 denotes the longitudinal shift of the mirror with respect to its nomi-

nal position. On the other hand, the beam transmitted towards the North arm

experiences a variation δlN = −δlW . Thus, the angular noise of the BS intro-

duces an asymmetry between the lengths of the short arms of the Michelson

interferometer, which can be expressed as:

δlMICH ≈ 2dδθ. (2.70)

This asymmetry produces a noise on the output signal, that is equivalent

to a length difference δl between the two Fabry-Perot cavities, defined as:

δl =
π

2F δlMICH , (2.71)

where the factor π/2F represents the inverse of the number of round-trips

made by the beam resonating in a FP cavity.

The origin of the noise introduced by angular control loops comes from the

fact that some mirrors are independently controlled using only their local con-

trol systems, which allow to keep the mirrors in their nominal position with

respect to only their local reference frames without considering their longitudi-

nal and angular positions with respect to the other mirrors. On the other hand,

a more accurate, and less noisy, angular control can be implemented using a

wavefront sensing technique [77, 78], which considers the relative position of

all the mirrors together.

For Advanced Virgo Plus, as described in [69], the angular DoFs did not

spoil Virgo’s sensitivity during O3 and remained at an acceptable level (within

1 order of magnitude of the designed sensitivity) in preparation for O4. How-

ever, this can become a problem for future GW detectors, such as the Einstein

Telescope [79]. Addressing both longitudinal and angular control noises is an

ongoing effort in the GW community and of paramount importance for the

commissioning team and future observing runs. Therefore, a model for the

full interferometer, covering longitudinal and angular DoFs, will significantly

help to better understand the detector and exploit its capabilities. This model

should be able to represent the interaction of cross-coupling between angular

and longitudinal DoF and the re-injection of noise in closed-loop.
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Monitoring lines

Temporal variations in the different control loop parameters, especially for the

DARM DoF loop, can be tracked by injecting modulated excitations into the

loop. These excitations generate peaks, or lines, at the modulation frequencies

in the ASD of the corresponding error signal, with cross-coupling to others.

In Advanced Virgo Plus, several lines are introduced in different ways, either

through a photon calibrator system or directly into the error signals of different

control loops to monitor different properties of the interferometer such as the

control loops UGFs, the coupling of some noises, the contrast defect, among

others. For example, two photon calibrators induce modulated displacements

on the ETMs (End Test Masses) through photon radiation pressure generated

by an auxiliary laser with a wavelength of 1047 nm. The identification and

cataloging of all these purely instrumental monitoring lines are crucial for the

process of “offline cleaning” when searching for the effect of a passing GW.

Charging noise

Ideally there should be no charge on the test masses of Advanced Virgo Plus.

However, residual charges may remain due to incomplete removal of the First

Contact polymer used to protect the optics during transportation and instal-

lation, and to clean them. Additionally, UV photons from ion pumps in the

vacuum system strip electrons from the test mass surfaces, and dust particles

contribute to charging as well.

Charging noise couples to the measured GW signal through two mecha-

nisms: Time-variant charge interacts with the metal cage around the test mass;

and voltage fluctuations from grounded metal near the test mass create electric

field fluctuations E that can apply a force Fch on the test mass, given by:

Fch =

∫

EσdS, (2.72)

where σ is the estimate of the charge density on the front and back surfaces of

the test mass under examination.

The coupling of voltage fluctuations to sensitive signals can be reduced by

discharging key optics, specially the test masses. Ion guns, which introduce

positive and negative ions into the system can efficiently remove charge from

surfaces. This is one of the future upgrades that will be implemented in Ad-

vanced Virgo Plus.
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Mirror actuator noise

The correction signal from the control system is sent to a digital-to-analog

converter (DAC). The voltage from the DAC output is applied to an amplifier

connected to a coil. The current flowing through the coil generates a magnetic

field, exerting a force on the magnets attached to the mirror or the marionetta,

which is the isolation stage just above the mirror, allowing to steer it. The

DAC and amplifier produce electronic noise, with an overall level of about

400 nV/
√
Hz. Additionally, if the DAC is not perfectly adjusted, this noise

increases proportionally to the amplitude of the correction signal sent to the

DAC. The electronic noise of the actuators causes a current in the coil, inducing

a mirror position noise δLmirror, expressed in the frequency domain as:

δLmirror(f) = K ·H(f) ·M(f) · n(f), (2.73)

where: K represents the static gain of the actuation chain, including the

response of the electronics, the mechanical response of the mirror and its sus-

pension system; H(f) is the TF of the coil response; M(f) is the TF of the

mirror’s mechanical response, which varies depending on whether the force is

applied at the level of the marionetta or directly on the mirror; and n(f) is the

electronic noise level of the actuators.

The TF of the electrical response of the coil can be expressed by:

A(f) =
1

1 + i f
fcoil

, (2.74)

where fcoil =
Rcircuit

Lcoil
, Rcircuit is the total resistance of the circuit connected

to the coil and Lcoil is the coil’s inductance.

When the force is applied directly to the mirror, the mechanical system

behaves like a pendulum resonating at a frequency fp ≈ 0.7Hz and the TF of

the mirror’s mechanical response can be expressed as:

M(f) =
1

1 + i f
Qfp

−
(

f
fp

)2 , (2.75)

where Q is the quality factor of the pendulum wires.

When the force is applied to the marionetta, the mechanical filtering be-

tween the marionetta and the mirror makes the noise from actuators acting

on the marionetta negligible compared to the one of the actuators acting di-

rectly on the test mass. For the four mirrors in the arms, the longitudinal dis-
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placement δLmirror due to actuator noise induces a variation δL in the length

difference between the FP cavities, similar to the effect of a passing GW.

Laser frequency and intensity noise

Current GW detectors use a high power Nd:YAG laser system to deliver the

beam at the input of the interferometer. However, these laser systems are

characterized by an intrinsic frequency noise of ∼ 104f−1 Hz/
√
Hz 2 between

10Hz and 5 kHz, while the requirement for GW detectors is of ∼ 10−6 Hz/
√
Hz

between 10Hz and 10 kHz. Therefore, before injecting this laser beam into

the interferometer, its frequency must be stabilized. This is true also for the

intensity, which fluctuates approximately at ∼ 10−4f−1 1/
√
Hz between 10Hz

and 5 kHz, while the requirement for GW detectors is of ∼ 10−8 1/
√
Hz 3

between 10Hz and 10 kHz. The stabilization of these two properties can be

achieved by several active and passive control systems [80].

Frequency noise refers to the fluctuations in the laser light’s frequency over

time. Laser frequency noise can couple to the GW detector output by the

chosen working point of the Michelson interferometer and due to imbalances in

the reflectivity of the mirrors forming the FP cavities [81]. Frequency noise

is primarily canceled at the output port by the Michelson interferometer’s

common-mode rejection. However, residual frequency noise couples into the

GW channel, or DARM DoF, through intentional asymmetry introduced for

the RF control side-bands, and through to the imbalances in the FP cavities

pole frequencies.

Amplitude noise, or intensity noise, refers to the variations in the intensity

or amplitude of the laser light. This noise coupling into the interferometer

is due to a nonzero differential arm offset (∆L), or Schnupp asymmetry [82],

designed to enable the transmission of modulation side-bands through the inter-

ferometer to the output port. It also couples through mismatches in circulating

arm powers and mirror masses, causing coupling through radiation pressure at

low frequencies. Furthermore, imperfections in the mirrors can create a con-

version of the fundamental mode of the laser into higher-order modes, thus

contributing to the coupling of amplitude noise to the interferometer output.

These last imperfections can be compensated using a Thermal Compensation

System (TCS) [83].

2Typical frequency noise for a nominal frequency in the order of terahertz.
3Upper limit requirement, the shape of the noise can vary according to the noise suppres-

sion loop.
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Scattered light noise

Scattered light noise in the GW readout has multiple origins. When the laser

light interacts with both the main mirrors and the auxiliary optical components

installed in the input and output optics systems, a fraction of it can scatter

out, due to the imperfection of these optics. This scattered light can interact

with mechanical components, and chamber walls and be reflected back into

the main beam, modulating its phase and amplitude, thus, adding noise to the

measured GW signal.

For example, the light scattered out from the main mirrors can be character-

ized using the Bi-directional Reflectivity Distribution Function (BRDF), which

depends on the imperfections on the mirror surface, determining the amount

and angle of scattered light. The power scattered out in a cone with an angle

Φ, formed between the scattered light and the main beam, is approximated as

follows:

dPs

Parm
≈ BRDRmirror × dΨ, (2.76)

where dΨ = 2πΦdΦ is the solid angle of scattering. Some of this scattered

light hits the beam tube or mechanical components and it is reflected back

into the main beam, coupling the motion of these elements into the measured

GW signal. Therefore, the effect of the scattered light noise can be seen in

the sensitivity curve as structures or bumps around the resonant frequencies

of these mechanical components. An example of the effect on the sensitivity of

the light scattered out by a sensor and re-coupled into the main beam can be

seen in Fig. 2.25, taken from [84].

Mitigation strategies for scattered light noise include: High-quality opti-

cal coatings on test masses and auxiliary optics to minimize imperfections;

Baffles strategically placed within the vacuum system or on optical benches

to intercept scattered light, preventing its re-injection into the main beam;

Vacuum chambers designed to minimize scattering surfaces and optimize the

optical environment; Control systems actively monitoring and mitigating low-

frequency motion of scattering surfaces; Installation of optics on seismically

isolated benches.
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Figure 2.25: Effect of scattered light noise on the sensitivity curve in red,
compared to the clean sensitivity curve in green.

Residual gas noise

Residual gas within vacuum chambers and tubes can influence the readout of

GW detectors. Residual gas exerts a damping force on the test masses, which

introduces displacement noise [85]. The noise can be estimated by applying the

fluctuation-dissipation theorem or through Monte Carlo simulations. The type

of gas present, including nitrogen, hydrogen, and water vapor, also influences

the damping noise.

Furthermore, gas molecules moving through the laser beam in the arm

cavities can cause phase noise by disturbing the optical phase of the beam.

This phase noise is modeled by considering the impulsive disturbance caused by

each molecule’s transit through the laser beam. This effect can vary depending

on the pressure distribution in the arm cavities and the profile of the laser

beam, with the most significant contributions coming from the beam waist.

Accurately reading out this noise is a challenge, as the exact composition of

residual gases is unknown, and there is limited spatial resolution due to the

limited number of vacuum gauges. Currently in Advanced Virgo Plus the

residual gas pressure is of the order of 10−10 mbar in the arm tubes and of the

order of 10−8 mbar in the mirror vacuum chambers.
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Environmental noise

The environmental noise sources affecting Advanced Virgo Plus include seismic

disturbances, acoustic noise, wind, and magnetic interference. Seismic distur-

bances arise from ground vibrations caused by various factors such as traffic,

local human activity, and mechanical equipment within the buildings. These

vibrations can affect the sensitivity of the interferometer by inducing unwanted

motion in its suspended mirrors. Acoustic noise results from sound waves gener-

ated by vacuum pumps, motors, electronic equipment, and other sources within

the surroundings of the interferometer. Wind-induced noise is caused by air

movement around the buildings and structures of the detector. High winds can

lead to increased acoustic and seismic noise levels, potentially impacting the in-

terferometer’s performance and even producing loss of control. Magnetic noise

arises from surrounding metal structures in Advanced Virgo Plus that can gen-

erate eddy current due to electromagnetic disturbances, producing magnetic

gradients that couple to the magnets of the mirrors, thus, exerting unwanted

displacement of the optics, affecting their stability and potentially introducing

noise into the GW signal readout.

For seismic noise, the superattenuator is utilized to isolate the interferom-

eter from ground vibrations, equipped with active inertial damping to further

suppress horizontal movements. Acoustic noise is addressed through acoustic

isolation measures, such as placing sensitive components in isolated rooms and

employing soundproofing materials, and installing most of the main compo-

nents in vacuum. Wind-induced noise is managed by designing the interfer-

ometer’s infrastructure to minimize its effects, such as using sturdy construc-

tion materials and locating sensitive components in areas less susceptible to

wind disturbances. Magnetic interference is mitigated by employing magnetic

shielding techniques to minimize the impact of external magnetic fields on in-

terferometer components. Additionally, continuous monitoring and analysis of

environmental noise characteristics help in further refinements of noise mitiga-

tion strategies.

2.5 Future GW detectors

Ground-based detectors, such as Advanced LIGO, Advanced Virgo Plus and

KAGRA represent the second generation of GW detectors. In preparation for

O4 and in perspective of O5 and future runs, these detectors are upgraded to
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improve their sensitivity. However, they will reach eventually strict limitations

due to the sites or the infrastructure where they are implemented. An effort

is currently ongoing to design a new generation of GW detectors, which will

overcome the limitations of the current observatories. The target is to improve

the sensitivity and broaden the observation bandwidth. There are two proposed

3rd generation ground-based GW detectors: the Einstein Telescope (ET) [86]

in Europe and the Cosmic Explorer (CE) [87] in the US. The science case of

these future detectors, in addition to the further study of BBHs and BNSs, is

to explore the origins of the universe by detecting primordial GWs [88, 23, 89]

and possibly the observation of unexpected sources. Moreover, they will allow

to test the principles of GR and investigate alternative theories of gravity.

The ET is an European enterprise that consists of three pairs of under-

ground Michelson interferometers with 10 km arm length at an angle of 60 deg,

forming a triangular observatory. This configuration allows to reduce the false

alarm rate and to reconstruct both plus and cross polarizations of GW signals.

As shown in Fig. 2.26 [90], each vertex and corresponding arms of the equilat-

eral triangle will host two Michelson interferometers: One is optimized for low

frequencies and will work at low power and cryogenic temperature; the other

one is optimized for high frequencies and will work at high power and at room

temperature. On the other hand, the CE will inherit the design of current

GW detectors but with an arm length 10-times longer, featuring a 40 km long,

L-shaped interferometer.

The design sensitivity for these two proposed ground-based GW detectors,

compared with the current GW detectors, is shown in Fig. 2.27 [91]. The

operation bandwidth of ground-based detectors spans from few Hz to a few

kHz and it is primarily constrained by Seismic and Newtonian noises.

In parallel to the design of future ground-based GW detectors, also an

effort to design and build space-based GW detectors is on going. Space-based

detectors offer the potential to extend the bandwidth of GW detectors to much

lower frequencies and, therefore, allowing to study massive black hole mergers

[92]. Among various proposed space-based projects, the Laser Interferometer

Space Antenna (LISA) [93] stands out as one of the most advanced and in a

mature stage [94]. The science case for LISA is primarily focused on massive BH

mergers, compact BNS within the Milky Way and extreme mass ratio inspirals.

For this, LISA aims to operate at a bandwidth between 0.1mHz and 1Hz. A

comparison of the different sensitivity bandwidths for ground-based detectors

and LISA is shown in Fig. 2.28 [95].
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Figure 2.26: Einstein Telescope configuration with three pairs of interferom-
eters: the ones optimized for Low Frequencies (LF) are shown in solid lines
while the ones optimized for High Frequencies (HF) are shown in dashed lines.

The LISA configuration consists of three identical spacecrafts arranged in

a triangular formation. Each spacecraft, separated by millions of kilometers,

will host a pair of test masses that are free-floating and shielded from exter-

nal disturbances, and a pair of lasers to get interferometric measurements of

the distances between the test masses. A precursor of LISA was the LISA

Pathfinder, launched by ESA in 2015 to demonstrate the key technologies nec-

essary for the success of LISA [96]. Apart of demonstrating the concept of

free-falling test masses in space, LISA Pathfinder also verified the operation at

the Lagrange point, a gravitationally stable region in space where the gravita-

tional forces of the Earth and the Sun balance out, allowing the spacecraft a

relatively fixed position with minimal energy consumption. With these criti-

cal milestones achieved, LISA Pathfinder laid the ground for the realization of

space-based GW detectors.
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Figure 2.27: Comparison of the design sensitivity of third generation vs second
generation of ground-based gravitational-wave detectors.

Figure 2.28: Comparison of the different bandwidths for ground-based and
space-based GW detectors.
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Chapter 3

A MIMO approach for longitudinal

sensing and control noise projections of

Advanced Virgo Gravitational-wave

detector

The re-injection of sensing and control noises can constrain the sensitivity of

gravitational-wave (GW) detectors. These noises originate from the control

systems used to maintain the proper working point of the interferometric de-

tector and can severely limit its sensitivity, if not properly mitigated. In the

case of Advanced Virgo Plus 1, one of the key upgrades in view of the O4

observing run involves the installation of a signal recycling (SR) mirror. This

mirror, installed at the output port of the detector, is designed to enhance and

shape the sensitivity.

To address the challenges posed by the re-injection of sensing and control

noises, we propose a multiple-input multiple-output (MIMO) approach for the

control of the longitudinal degrees of freedom (DoFs) of the detector. This

approach utilizes a comprehensive model of the interferometric detector, incor-

porating the coupling mechanisms between the different DoFs. By employing

this model, we can predict the contribution of sensing and control noises to the

overall detector sensitivity and develop strategies for noise mitigation.

Our methodology consist of implementing a MIMO model of the Advanced

Virgo Plus detector, which takes into account the sensing noise sources and

their interactions. The results obtained from these simulations provide valuable

1This paper refers to the configuration of the Advanced Virgo Plus, but for simplicity, it

is referred to as Advanced Virgo in the text.
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insights into the dominant noise contributors and their frequency-dependent be-

havior. Based on the MIMO model simulations, we have developed decoupling

filters aimed at reducing the impact of sensing and control noises, particu-

larly in the low-frequency region. These filters are designed to suppress the

re-injection of sensing noises in the control loops and subtract them from the

detector’s output, thus enhancing the overall sensitivity. The effectiveness of

these filters is validated through extensive simulations, demonstrating their

potential to achieve the desired low control noise target.

In addition to test noise subtraction filters, this MIMO model serves as

the core of a so-called noise budget tool. This tool will allow us to estimate

the contribution of all the known noise sources to the measured sensitivity,

providing a comprehensive understanding of the detector’s noise environment.

This work is described in a paper that was published on August 21st, 2023,

in the journal Classical and Quantum Gravity, Volume 40, Number 18. DOI:

10.1088/1361-6382/aceb4e.
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Abstract

So far, the sensitivity of gravitational-wave (GW) detectors, in the low-

frequency and mid-frequency regions of its bandwidth, has been limited

by technical noises. The re-injection of sensing and control noises can be

one of the main limitations. After the end of the third observing run O3,

in preparation for the fourth observing run O4, an upgrade phase started

among all the km-scale GW detectors, namely LIGO, Virgo and KAGRA,

with the aim of improving their sensitivity. In particular, for the case of

Advanced Virgo, one of the most significant upgrades is the installation

of a signal recycling (SR) mirror, introducing the signal recycling cavity.

The main target of this signal recycling mirror is to shape the sensitivity

curve of the detector. The installation of a signal recycling mirror adds an

extra optical cavity and, thus, extra degrees of freedom (longitudinal and

angular), that should be controlled to keep its working point, ultimately

increasing the complexity of the whole control strategy. In order to have

an accurate description of the interferometer, we have implemented a

multiple-input multiple-output (MIMO) model in the frequency domain.
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The target of this paper, after showing the Advanced Virgo configuration

for the next observing run, is to describe the control scheme used for the

main longitudinal degrees of freedom using a MIMO approach. In particular,

we detail a useful matrix representation for the modeled system. Finally,

we use the implemented model to project the sensing and control noises

on the sensitivity curve. Following the obtained results, we propose noise

subtraction filters to achieve the low control noise target in the low-frequency

region of the sensitivity curve. Additionally, using this model, we have

implemented the core of a noise budget tool, which will allow to estimate the

contribution of all the known sources of noise on the measured sensitivity.

3.1 Introduction:

Gravitational-wave astronomy is now a consolidated research field. The first

observation was done in 2015 [97] by the Advanced LIGO detectors [98] during

the first observing run (O1). A total of three binary black hole (BBH) mergers

were detected in O1 [99]. In 2017, during the last month of the second observing

run (O2), Advanced Virgo [4] joined the network. During this second run, seven

BBH mergers [100] were detected and also the first observation of a GW signal

originated from the merger of neutron stars was achieved [101]. This detection

gave rise to the era of the multi-messenger astronomy [102]. For the third

observing run (O3) all the detectors were upgraded in order to improve their

sensitivity and 79 GW signals have been detected [103, 104]. In view of the

fourth observing run O4, all the detectors have gone through different upgrades

with the aim of improving sensitivity [105].

The design sensitivity of GW detectors is limited by the so-called fundamental

noises. In particular, at frequencies below 10Hz, it is limited by seismic noise

[106], Newtonian noise [107] and radiation pressure noise [108]. Between 10Hz

and ∼ 100Hz, the sensitivity is limited by thermal noise, respectively of the

suspensions and of the mirrors [109]. Finally, above 100Hz, the sensitivity

is limited by shot noise [110]. Unfortunately, the real sensitivity of all the

detectors is partially limited by the so-called technical noises, related to the

environment hosting the experiments and the technology used to implement

them. One target of the commissioning activities done before the observing runs

is to characterize and understand these noises and reduce them. Among the

various technical noises, one important role is played by the sensing and control

noises from the longitudinal and angular degrees of freedom (DoFs). Despite
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the fact that during O3 these specific noises were not the main limitation in the

low-frequency region of the sensitivity, they could become the main offender

following the continuous upgrades implemented in the detectors. It could also

impact the sensitivity of future detectors, such as the Einstein Telescope [111],

considering that this detector will focus on getting its sensitivity improved for

lower frequencies than the current detectors (1Hz - 10Hz).

This work will focus on the characterization of the longitudinal controls of

Advanced Virgo, with the purpose to better understand and unravel the con-

tribution of the control noises in preparation for O4. In particular, a multiple-

input multiple-output (MIMO) approach [112], used to model these controls,

will be presented. In this model, in contrast with a single-input single-output

(SISO) approach, all the cross-coupling terms from the longitudinal DoFs are

taken into account.

Similar models have been already developed in the past for LIGO to imple-

ment feed-forward filters from auxiliary DoFs to the GW strain channel. They

are described in [113] and in [114] . In an analogous way, this technique has

been implemented also for the Virgo detector and described in [115] and in

[116]. In these works, MIMO models have been also used to implement feed-

forward or noise subtraction filters in order to reduce the effect of the control

noises of auxiliary DoFs to the signal sensitive to the passage of a GW. These

methods typically start with a description of a reduced representation of a sys-

tem using a MIMO model with two inputs and two outputs. From this model,

one can design a subtraction filter to reduce the contribution of the control

noise of one of the loops to the targeted DoF. In this paper, we describe in

detail this method for the case of the Advanced Virgo configuration for O4,

expanding it for the full interferometer, considering five DoFs. We focus on

the couplings limiting the sensitivity, designing the related subtraction filters.

We plug-in these noise subtraction filters in a MIMO model of the longitudinal

DoFs of the detector in order to study the effects of more than one noise sub-

traction filter at the same time. In this way, the path by which these noises are

propagated inside the loop and projected into the sensitivity can be studied

and characterized. It will be shown that Advanced Virgo needs to use these

decoupling filters in order to satisfy the requirements on the sensitivity curve

for O4.

In general, not only sensing and control noises, but also other technical

noises can limit the sensitivity of the detectors. For that reason, the model

has been built in a way that can be upgraded to include also the estimated
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projections of other typical noise sources. This model can serve as a core

of a noise budget directly in the frequency domain by computing the noise

projection on the DoF sensitive to GW from all the noises or perturbations

entering the control loop through different points.

3.2 Advanced Virgo configuration for O4

For the next planned observing run (O4), the Advanced Virgo configuration

will be a Dual-Recycled, Fabry-Perot, Michelson interferometer (DRFPMI) [4].

This configuration involves seven core optics: a power recycling mirror (PR), a

signal recycling mirror (SR), a beam-splitter (BS), an input mirror and an end

mirror for the arm West-pointing arm cavity (WI and WE, respectively) and

an input mirror and an end mirror for the arm North-pointing arm cavity (NI

and NE, respectively). The Michelson interferometer, formed by the BS and

the two arms, is the typical core configuration of the current GW detectors. In

order to increase the effective arm length and, most importantly, its sensitivity,

Fabry-Perot (FP) cavities are added to each arm of the detector. The working

point of the interferometer is tuned to have a destructive interference for the

light beams coming back from the arm cavities, the so-called dark fringe (DF)

configuration. Thus, most of the light is reflected back towards the input port

of the interferometer and lost. However, by placing a semi-transparent mirror

(PR) between the BS and the main laser, forming a power recycling cavity

(PRC), one can recycle this light and inject it back into the interferometer.

This increases the effective power circulating inside the interferometer and,

therefore, improves its sensitivity, at the cost of adding another control DoF.

The passage of a gravitational-wave causes a differential change in the arm

length, inducing a phase-shift of the recombined laser at the output port. This

out-of-phase beam leaks towards the output port and GWs can be detected.

By placing a mirror (SR) between the BS and the output port of the detector,

forming a signal recycling cavity (SRC), it is possible to shape and optimize

the detector bandwidth for specific GW sources. Again this is at the cost of

adding another DoF.

Some other systems and elements are needed to build a GW detector: for ex-

ample, a high-power stabilized laser, electro-optic modulators (EOMs), photo-

diodes (PDs), a data acquisition system, electronics, seismic isolation systems

and optical systems among others. The main pre-stabilized laser provides a

coherent light beam, characterized by high power to reduce the impact of the
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shot noise. The EOMs are used to modulate the main laser beam and generate

sidebands of the carrier signal, which are used to control the different DoFs

of the detector. An input mode cleaner cavity (IMC) filters out higher-order

modes, in order to have only the fundamental Gaussian mode entering in the

interferometer. A reference cavity (RFC), in combination with the IMC, is

used to further stabilize the frequency of the main laser [117]. Various PDs are

installed at different pick-off ports of the interferometer: IMCREFL is located

at the reflection port of the IMC; B1 is located at the output port of the in-

terferometer; B2 is installed at the input port, in reflection of the PR cavity;

B4, is located to acquire a pick-off beam from the light circulating inside the

PR cavity; B7 and B8 are used to sense the transmission of the light from the

FP cavities.

A sketch of the Advanced Virgo optical configuration is shown in Fig. 3.1.

Figure 3.1: Advanced Virgo optical configuration for the O4 observing run.
The laser beam travels towards the interferometer. It passes through the IMC
cavity and the PR mirror, then the laser beam is split at the BS and directed
towards the North and West arms. Then, the beams are reflected by the
end mirrors of each arm and directed back to the BS, where the beams are
recombined and split again towards the input port and output port passing
through the SR mirror. The carrier is shown in red. The different sidebands
f1, f2, f3, f4 are indicated in green, blue, pink and orange respectively.
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3.2.1 Main longitudinal degrees of freedom

Adding additional cavities to the detector increases the number of DoFs that

should be controlled to have the interferometer properly working to achieve the

maximum sensitivity. The long arms, i.e. the FP cavities, are composed by

WI and WE mirrors for the West arm and by the NI and NE mirrors for the

North arm. The short arms of the Michelson interferometer are made by the

BS, the NI and the WI mirrors. The power recycling cavity (PRC) is made by

the PR, the NI and the WI mirrors. The signal recycling cavity (SRC) is made

by the SR, the NI and the WI mirrors. The five main longitudinal DoFs of a

DRFPMI configuration are defined as:

• DARM = LN−LW

2 : Differential ARM length of the two FP cavities in

the arms. This is the most crucial DoF, since it is the one sensitive to

the passage of GWs.

• CARM = LN+LW

2 : Common ARM length, average of the long arms

length.

• MICH = lN − lW : Length difference between the lengths from the BS

and, respectively, the NI and the WI mirrors, forming the MICHelson

interferometer.

• PRCL = lPR + lN+lW
2 : Power Recycling Cavity Length.

• SRCL = lSR + lN+lW
2 : Signal Recycling Cavity Length.

The lengths of the different cavities forming these DoFs are shown in Fig. 3.1.

3.2.2 Modulation-Demodulation technique

As previously mentioned, in order to achieve maximum sensitivity and stabil-

ity, the interferometer has to keep the FP, the PRC and the SRC cavities on

resonance and the MICH degree of freedom in the DF configuration [4]. The

error signals for these control loops are generated using a radio frequency (RF)

modulation-demodulation technique, derived from the classical Pound-Drever-

Hall (PDH) technique [118, 64]. In this technique, the light field is modulated

at a certain frequency. Then, the error signals are obtained by demodulating

the output of the PDs using a mixer at the same chosen frequencies.

For the Advanced Virgo case, the light field of the main laser is phase mod-

ulated at four different frequencies (f1 = 6MHz, f2 = 56MHz, f3 = 8MHz
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and f4 = 22MHz) using EOMs, which are summarized as a single element in

Fig. 3.1. These EOMs generate sidebands at multiples of the modulation fre-

quencies. The interferometer, i.e. the length of the cavities, is designed and the

modulation frequencies are chosen to allow or not the resonance of the different

sidebands in the various cavities. By design, all the sidebands, except the ones

multiple of f4, are resonant in the IMC and pass through it going into the

interferometer. The sidebands at f4, which are reflected by the IMC, are used

to control the IMC length. None of the sidebands is resonant inside the FP

arm cavities. f1 is defined to be resonant inside the PRC. f2 is defined to be

resonant inside the PRC and the SRC. Finally, f3 is defined to be anti-resonant

inside both the PRC and SRC. The resonant sidebands in the different cavities

are shown in Fig. 3.1.

3.2.3 Longitudinal Sensing and Control scheme

The DARM DoF corresponds to the differential length of the North and West

FP cavities. For the Advanced Virgo detector, this DoF is sensed using a DC

readout scheme [119], extracting the error signal from the B1 photodiode used

in DC. The signal is acquired and passes through a series of servo filters of

the control loop. From the output of the servo filters, a correction signal is

obtained and sent to the actuators of the system. The actuators used to control

the position of the suspended mirrors are coil-magnet pairs, which can apply a

force on the mirrors over a limited bandwidth defined by the coil-driver circuit.

The magnets are glued almost at the edge of the anti-reflective face of the

mirrors, while the coils are installed on the mechanical structure surrounding

the mirrors. Therefore, it is necessary to consider also the pendulum dynamics

in the actuation characterization. In the case of DARM, the actuation is

applied to the end mirrors of the FP cavities, i.e. the NE and the WE mirrors.

In a similar way, with the definition given in section 3.2.1, one can describe

the feedback loop of the other DoFs.

The MICH DoF is sensed using the in-phase (0 rad) component of the B2

photodiode demodulated at f2. This error signal is passed through a bank of

filters properly designed for this DoF. The correction signal for this DoF is

sent to the coil-magnet actuators of the BS. The same correction signal is sent

also to the PR and SR mirrors, in order to compensate the length variation

of lPR and lSR due to the motion of BS. Thus, these three mirrors are the

actuators of MICH DoF.

105



3.2. ADVANCED VIRGO CONFIGURATION FOR O4

The PRCL DoF is sensed using the in-phase component of the B2 photodiode

demodulated at f3. The correction signal of this DoF is sent to the coil-

magnets of the PR mirror, which is the actuator of the PRCL DoF.

The SRCL DoF is sensed using the in-quadrature component of the B2

photodiode demodulated at f2. The correction signal of this DoF is sent to

the coil-magnets of the SR mirror, which is the actuator of the SRCL DoF.

A sketch of the Longitudinal Sensing and Control (LSC) scheme is shown in

Fig. 3.2.
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Figure 3.2: Longitudinal Sensing and Control scheme of Advanced Virgo for
O4. A beat note signal between the partially reflected carrier field and the
sidebands are measured by PDs located at different ports of the interferometer.
By demodulating this beat note at one of the frequencies of the generated
sidebands and with a low-pass filter, one gets an error signal to control a cavity.
The connection between error signal, control filter and actuators of DARM is
shown in purple. The connection of CARM/SSFS loop is shown in orange and
calypso. The connection of MICH loop is shown in blue. The connection of
PRCL loop is shown in green. The connection of SRCL loop is shown in pink.

On the other hand, the CARM DoF is sensed using the in-phase component

of the B4 photodiode demodulated at f1. This is a special case, since this

error signal is sent towards the laser injection system to further stabilize the
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frequency of the main laser. Then, another error signal taken from the reflection

port of the RFC cavity is sent to the end mirrors of the FP cavities, i.e. the NE

and the WE mirrors [120]. This control loop is described in detail in section

6.6.

The sensing and actuation of these five longitudinal DoFs are summarized in

table 3.1.

DoF PD and demod. frequency Actuator
DARM B1 DC differentially NE and WE
CARM B4 6MHz I commonly NE and WE
MICH B2 56MHz I BS, PR and SR
PRCL B2 8MHz I PR
SRCL B2 56MHz Q SR

Table 3.1: Readout and actuators of longitudinal DoFs.

For the characterization and the design of a single DoF control loop, infor-

mation about the different components are needed: the optical response in the

frequency domain of the considered DoF or, in other words, the plant transfer

function (TF); the photodiode response of the sensing, or the error signal; the

pendulum dynamics of the actuator; the sign of the actuation. In general, this

is the description of five DoFs controlled as a five separate Single-Input Single-

Output (SISO) system, under the assumption of small couplings among them.

This approach is also known as decentralized control scheme. However, for

such a complex and sophisticated system, this should be revisited and studied

in detail, considering, in particular, the cross-coupling effects among the five

DoFs. Therefore, in this study we propose a model that takes into account all

the cross-couplings among these DoFs with a Multiple-Input Multiple-Output

(MIMO) approach. With this method we study the re-injection of sensing and

control noises into the closed loop system of the particular case of Advanced

Virgo. On top of that, this approach provides also guidance on the design of

noise subtractions or decoupling filters to meet the requirements on the noise

projections of these DoFs on the sensitivity curve.

3.2.4 Second Stage of Frequency Stabilization loop

As mentioned before, GW detectors need a very stable laser source. A pre-

stabilization of the laser frequency is part of the early stages of the process

implemented to control the whole experiment. In particular, the laser fre-

quency is pre-stabilized using a fixed cavity as reference [121]. A further step
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Figure 3.3: Block diagram of the SSFS/CARM loop.

is needed to improve the stabilization of the laser frequency. Therefore, when

the FP optical cavities are controlled, they are used as a better reference. This

further step is called Second Stage of Frequency Stabilization (SSFS) [120].

The SSFS is coupled to the control of CARM. In this section, we describe the

CARM/SSFS DoF scheme using the block diagram shown in Fig. 3.3. After

a block diagram reduction, the equivalent block between the error signal of

CARM eCARM and the perturbations n2 can be considered as a controller of

CARM DoF. Then, its equivalent plant of the loop is Gc. The final target

of this block diagram reduction is to include it in the global MIMO control

scheme.

The output of this scheme, yCARM , is the power measured by the dedicated

PD to sense CARM in units of [W]. All the blocks and variables are described

below:

• GC : Optical response from the motion of the NE and the WE mirrors to

the SSFS error signal [W/m].

• HC : Relation between the frequency fluctuations and the change of the

length of the CARM DoF [m/Hz].

• AITF : Pendulum dynamics of the actuator of the end mirrors of the long

optical cavities [m/V].

• KRFC : Controller to correct the length of CARM for variations in the

laser frequency [V/W].

• GRFC : Response of the PD placed in reflection of the RFC cavity for the

fluctuations in the laser frequency [W/Hz].

• T ν
IMC : Optical transfer function of the IMC cavity which relates the input

frequency noise to its output frequency noise [Hz/Hz].

• KPS : Controller to correct the frequency of the main laser source [Hz/W].
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• Gν
IMC : Response of the PD placed in reflection of the IMC cavity for the

fluctuations in the laser frequency [W/Hz].

• T z
IMC : Transfer function from longitudinal motion of the IMC cavity to

frequency noise in transmission [Hz/m].

• Gz
IMC : Optical response from the motion of the IMC end mirror to the

IMC error signal [W/m].

• KIMC : Controller acting on the IMC end mirror for frequencies below

200Hz in [V/W]. This bandwidth is enough to stabilize the low frequency

motion of the mirror.

• AIMC : Pendulum dynamics of the actuator of the end mirror of the IMC

cavity[m/V].

• KSSFS : SSFS controller using the CARM error signal above 200Hz and

serving as reference signal for the pre-stabilization loop [W/W].

In the scheme of Fig. 3.3, the error signal for the SSFS is represented by

eCARM . this signal is taken from the in-phase component of the B4 photodiode

demodulated at f3. Sensing noises n1 and perturbations n2 are also included

in this diagram and will be addressed in detail in section 3.4.

3.3 Multiple-Input Multiple-Output scheme for

the longitudinal controls

A MIMO scheme of the longitudinal loops is presented in Fig. 3.4. In this

scheme, the vector of the discrete-time error signals is represented by e(nTs),

for n = 0, ..., N−1, whereN is the number of samples and Ts is the sample time.

The vector of the discrete-time outputs measured by the PDs is represented

by y(nTs). Different discrete-time noise sources have been included in this

diagram as ni(nTs), where i = 1, ..., 6. For this tool only six types of noise or

perturbations have been considered (sensing noise, perturbations/calibration,

perturbations, driver noise, DAC noise and ADC noise), but it can be upgraded

to include more different noises.

The blocks, or matrices, of this scheme are described below:

• G(jωk), where ωk = 2πfk and fk = k/NTs, is the “Optical response

matrix”. It defines all the relations, including cross-coupling, among the
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change of length of the different optical cavities and the power readout

by the dedicated PDs. Since there are five main longitudinal DoFs for

Advanced Virgo in the O4 configuration, this matrix has five rows and

five columns of transfer functions (TFs). These TFs are estimated using

the tool Finesse [122, 123].

• C(jωk) is the “Control matrix”. It contains all the designed control filters

used to control each longitudinal DoF. Since a SISO system approach is

typically used to design these filters, this is a diagonal matrix.

• B(jωk) is the “Decoupling filter matrix”. If needed, this matrix is used

to include filters to decouple the other DoFs from DARM, which is sen-

sitive to GWs. When no decoupling filters are applied, this matrix is

the Identity, therefore each DoF is controlled independently by its own

control filter. In Section 3.5 the presence of coupling will be described

and this matrix will be modified to include decoupling filters.

• D is the “Driving matrix”. It provides a coordinate transformation from

the longitudinal DoF to the individual mirror motion. It is used to select

the output signals of the control filters that is sent to a set of mirror

actuators.

• H(jωk) is the “Coil Driver matrix”. It includes the low-pass filters

present in the coil drivers of the magnet-coil actuators of the mirrors.

This is a diagonal matrix.

• A(jωk) is the “Pendulum dynamics matrix”. It includes the dynamics

of the actuator that follows a double pendulum shape in frequency, due

to its seismic isolation system. This is also a diagonal matrix.

• O is the “Geometrical matrix”. It provides a coordinate transformation

from the mirror motion to the longitudinal DoF motion. It is the inverse

of the driving matrix D.

• I is the “Sensing matrix”. It passes the error signal obtained with the

PDs to the different DoFs. Each signal of the dedicated PD is passed

directly to the respective DoF error signal, therefore this is a diagonal

matrix.

The elements of these matrices are represented as Frequency Response

Functions (FRFs) of N frequency bins. Therefore, these blocks are three-

dimensional complex arrays of size 5x5xN . In the calculations, each frequency
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bin is treated separately and standard matrix operations can be used. All

described matrices are square.

There is no actuation applied on the NI and WI mirrors, therefore the

geometrical matrices O and D are square instead of having a dimension of

5x7xN and 7x5xN respectively. The elements of the matrices D and O are

frequency independent.

Finesse, the tool used to estimate the optical transfer function matrix

G(jωk), can compute the behaviour of light beams inside different optical

systems. These computations are performed in the frequency domain. The

first step is implementing a model of the interferometer in Finesse. Next, a

working point is defined and the lengths of the optical cavities are tuned to

maximize the optical gain. In this way the TFs from the motion of the mirrors

corresponding to a motion of one DoF at the time can be estimated, obtaining

the TFs to the readout of all the five DoFs. With this process a total of 25

Optical TFs is obtained. Thus, for the longitudinal DoFs DARM, CARM,

MICH, PRCL and SRCL with corresponding subindices 1, ..., 5, the “Optical

Response Matrix” has the following representation:

















DARMoutput

CARMoutput

MICHoutput

PRCLoutput

SRCLoutput

















= G(jωk) ·

















DARMinput

CARMinput

MICHinput

PRCLinput

SRCLinput

















. (3.1)

Using the same procedure, also the other blocks of the scheme shown in

Fig. 3.4 can be estimated. C(jωk), H(jωk) and A(jωk) are diagonal matrices.

3.4 MIMO transfer function matrices

In this section we will describe the properties of the useful transfer function

matrices for the LSC model shown in block diagrams in Fig. 3.4. Typically, a

control loop is characterized by its open loop transfer function (OLTF), which

is the response obtained by opening the loop at a certain node, injecting noise

on that node and measuring the signal at the same node after passing through
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Figure 3.4: Block diagram of the LSC loops in a MIMO representation.

all the blocks of the loop. The result of the OLTF is the product of all the

blocks specified in the control system scheme. In the case of Advanced Virgo,

the nodes used for the TF estimations are called “DoF Pre” and “DoF Post”.

These names are due to fact that they are taken at the points before and

after the node of noise injections. The noise is injected in the node “DoF

Noise”. Other nodes are available for the LSC loops, called “DoF Input” and

“DoF Corr”, which are used during commissioning and serve, respectively, to

check the status of the error signals and to check the applied correction sent to

actuators. However, these nodes are not relevant for the present study. Another

property of a control loop is the closed loop transfer function (CLTF), which is

measured at the output and determines the effect on the measured output when

the feedback system is closed. Other TFs provide information about noise and

disturbance rejection. Since these TFs are studied for a MIMO system, they are

matrices. They are the sensitivity function matrix S and the complementary

sensitivity function matrixT. All these TFs are useful to study the stability, the

controllability, the observability, the robustness, the disturbance the rejection,

and the optimization of the system.

Assuming that all the elements of the blocks of the diagram in Fig. 3.4 are

linear and time-invariant, the relation of the variables of the system can be

analysed using the Discrete Fourier transform (DFT) [124]. The output signal

y(nTs) of the diagram in Fig. 3.4 can be represented in the frequency domain

as:

Y (k) =
1√
N

N−1
∑

n=0

y(nTs)e
−j2πnk/N . (3.2)

For the case without noises and perturbations, taking the DFT of the rest of

the signals, the relations among the signals Y (k), F (k), U(k), V (k) and E(k)
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can be obtained. For these signals, passing through the blocks of the system

and omitting the term jωk for simplicity, the OLTF matrix is:

L(jωk) = G ·O ·A ·H ·D ·B · C · I. (3.3)

In a similar way, also the CLTF matrix can be computed. In a typical control

system scheme, the error signal is obtained by subtracting the fed-back signal

Y (k) of the loop from a target reference value R(k). For the control of optical

cavities, the error signal is obtained demodulating the signal measured by the

PDs as mentioned in section 6.4. The ratio between the measured output and

this reference signal is the CLTF:

Y (k)

R(k)
= L(jωk) · (1 + L(jωk))

−1. (3.4)

The vector Y (k) is not the true output of the system, because these signals

are perturbed by the intrinsic sensing noise of the PDs, denoted by N1(k).

Therefore, for the study of noises, the relation between the different noise

sources and the measured outputs in closed loop should be estimated. The

relation between the sensing noise of the photo-diodes and the vector of the

measured outputs is given by the sensitivity function matrix S:

S(k) =
Y (k)

N1(k)
= (1 + L(jωk))

−1
. (3.5)

In a similar way, the relation between a perturbation on a DoF, denoted by

Ni(k) at the level of the DoF motion, and the vector of the measured outputs

Y (k) is given by the complementary sensitivity function matrix Ti(jωk) . For

example, for perturbation N2(k), a related complementary sensitivity function

matrix T2(jωk) is:

T2(jωk) =
Y (k)

N2(k)
= G(jωk) · (1 + L(jωk))

−1
. (3.6)

Note that a calibration procedure of DARM can also be considered as a

perturbation applied and producing a DARM motion.

The same computation can be done for other types of noises or perturbations

entering from different nodes of the closed loop system. All these relationships

are summarized in table 3.2.
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Name of matrix TF Source
L Open loop transfer function L -
CLTF Closed loop transfer function L · (1 + L)−1 R
S Sensitivity function (1 + L)−1 N1

T2 Complementary sensitivity G · (1 + L)−1 N2

T3 Complementary sensitivity GO · (1 + L)−1 N3

T4 Complementary sensitivity GOA · (1 + L)−1 N4

T5 Complementary sensitivity GOAH · (1 + L)−1 N5

T6 Complementary sensitivity GOAHDBCI · (1 + L)−1 N6

Table 3.2: Transfer function matrices for the Advanced Virgo MIMO model.

This is a subset of the technical noises entering in the control loops of

Advanced Virgo and affecting the main DoFs of the interferometer. Using

this MIMO model it is possible to produce a core for a noise budget tool, as

described in details in section 3.6.

3.5 Sensing and control noise projections

Noises or perturbations are normally characterized locally, meaning that they

are characterized at the level of where they enter in the control loop. These

noises are shaped by the CLTF and affect the DoF output. Considering the

MIMO closed loop system representing the Advanced Virgo detector, DARM

is the DoF sensitive to the passage of GWs. For this reason, all the projec-

tions of the different noises are compared to DARM. Referring to Fig. 3.4 and,

specifically for the sensing and control noises, the projections are estimated

with the following procedure. As a first step, this tool computes the in-loop

effect of the amplitude spectral density (ASD) [125] Ñ1(fk) of the sensing and

control noise n1(nTs) of the PDs at the output node. For this purpose, the

sensitivity function matrix S is used to transfer the sensing noise of the PDs

to the equivalent noise at the output node taking into account the effect of the

closed loop.
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Ñ in−loop
1 (fk) = |S(fk)|
















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















. (3.7)

Since we are interested in the noise projected on DARM, only the row corre-

sponding to the in-loop noise from the different DoFs to DARM is considered.

Therefore, only the first row of the matrix S is used:

ÑDARM in−loop
1 (fk) = |SDoF (fk)|Ñ1(fk). (3.8)

Next, the input-referred noise, i.e. the equivalent noise at the input of the

block G(jωk) from the sensing noise entering in the loop at the output of the

optical response matrix, should be checked. For this purpose, the previous

result is divided by the first term of the complementary sensitivity function

matrix T2(fk). This denominator corresponds to the TF from the DARM

motion to the DARM error signal in closed loop:

ÑProj
1 (fk) =

|SDoF (fk)|Ñ1(fk)

|TDARM
2 (fk)|

. (3.9)

Finally, these last results in units of m√
Hz

are divided by the length of the

arms of Advanced Virgo to make a comparison with the strain sensitivity h.

In the long-wavelength approximation [126], h is given by the differential arm

length of the interferometer over the arm length of the FP cavities L0 (L0 =

3km for Advanced Virgo):

h =
LN − LW

L0
=

∆L

L0
. (3.10)

3.5.1 Noise projections without decoupling filters

In order to produce the sensing noise projections on the sensitivity curve, we

need the level of sensing noise present in the PDs used to sense the optical

fields inside, in reflection or in transmission of the different optical cavities of
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the interferometer. One of the noises that enter from the sensing noise node is

the quantum noise. The quantum noise in GW detectors is composed by two

types of noises: shot noise and radiation pressure noise. Shot noise arises from

the number of photons impinging on the PD for a constant power level and a

fixed measuring time. On the other hand, radiation pressure noise arises from

the number of the photons of a laser beam impinging on a mirror with finite

mass. The quantum noise level of the PDs used for Advanced Virgo controls is

shown in Fig. 3.5. Since B1 is sensitive to the motion of DARM, it can sense

the effect of radiation pressure [127] due to high power build-up inside the FP

cavities. For the PDs B2 and B4 the shot noise is predominant.

Figure 3.5: Quantum noise level on photo-diodes used for the longitudinal
controls. B1 PD is sensitive to DARM, so it can see both radiation pressure
and shot noise. B2 and B4 PDs only see shot noise since, not sensing DARM,
they do not see any effect of radiation pressure in the 3km FP cavities.

Using this information and the equations 3.7, 3.8, 3.9 and 3.10 one can esti-

mate the sensing noise projections of the main longitudinal DoFs and compare

them to the design sensitivity.

Fig. 3.6 shows the Advanced Virgo target sensitivity for O4 (blue region),

corresponding to a binary neutron star (BNS) range of 80− 115Mpc [128]. As

general requirement, all the technical noises should be, at least, a factor of ten

below the sensitivity to be sure that the detector is not limited by them. This

safety margin corresponds to the orange region in Fig. 3.6.

Moreover, the control noise projections from the re-injection of the PDs

sensing noise are estimated for the main longitudinal DoFs (CARM, MICH,

PRCL, SRCL) and compared to the target sensitivity and the safety margin
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Figure 3.6: Sensing noise projections for the LSC control loops compared to
designed sensitivity without any noise subtraction filter.

in Fig. 3.6. The MICH noise projection is shown in red: it is clearly not

compliant with the sensitivity target. Its shape is defined by the matrix S.

Moreover, also the noise projection of SRCL, shown in brown, is slightly above

the target sensitivity at low frequencies. In the bandwidth 20 − 90Hz, also

the noise projection of PRCL, shown in purple, is above the target sensitivity.

The CARM/SSFS noise projection, shown in green, is inside the target sensi-

tivity region at low frequencies, while its shape at high frequencies is given by

the coupling between CARM and DARM DoFs due to the imperfect common

mode rejection. Additionally, also the quantum-noise limited sensitivity esti-

mated with Finesse and the quantum-noise limited sensitivity estimated with

the MIMO tool from the Optical TFs are shown in Fig. 3.6, respectively in the

dashed blue and dashed orange lines, and compared to the target sensitivity

and the LSC noise projections.

It is clear that the sensitivity target for O4 is spoiled by the re-injection of

sensing and control noises from the PDs of the main longitudinal DoFs. There-

fore, to reduce these noises, it is necessary to introduce decoupling filters in the

control loop.

117



3.5. SENSING AND CONTROL NOISE PROJECTIONS

3.5.2 Decoupling filters

As mentioned before, a GW detector is a complex system full of cross-coupled

DoFs. In principle, all the cross-couplings can be tackled with a full B(jωk)

decoupling matrix. With the aim of reducing or removing the interactions from

the control signals V (k) to measured outputs Y (k) of Fig. 3.4, the following

product should be a diagonal matrix, namely Q(jωk):

G ·O ·A ·H ·D ·B = Q. (3.11)

Commonly, when the matrix Q(jωk) is not diagonal, the diagonal elements

of the plant matrix G(jωk) can be chosen in order to obtain Q(jωk), which

simulates a plant without cross-couplings:

Q(jωk) = diag[G(jωk)]. (3.12)

Then, B(jωk) can be chosen to obtain the following relation:

B(jωk) = (G ·O ·A ·H ·D)
−1 ·Q. (3.13)

This technique is known as generalized decoupling, which is possible if

the model is perfect and, thus, it is not feasible in practice. Therefore, if a

subset of DoF couplings are more critical than others, a possible solution is to

implement a partial decoupling. In order to do this, a model of N inputs and N

outputs is reduced to a 2x2 MIMO model between the variables that should be

decoupled. Following a procedure similar to the one shown in [129], decoupling

filters for the main LSC DoFs spoiling the sensitivity curve have been designed.

Figure 3.7: 2x2 MIMO scheme with decoupling filter included.
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Fig. 3.7 shows a 2x2 MIMO system. The controllers of the two DoFs are

defined as C11 and C22. A filter B12 is included to decouple the dynamics of

the lower loop to the upper loop. Finally, the blocks P11, P12, P21 and P22

represent the plant including cross-coupling terms. In this way, it is possible

to write the OLTF of the scheme as:

P ·B · C =

(

P11 P12

P21 P22

)

·
(

1 B12

0 1

)

·
(

C11 0

0 C22

)

(3.14)

=

(

P11 P12

P21 P22

)

·
(

C11 x = B12C22

0 C22

)

(3.15)

=

(

P11C11 P11x+ P12C22

P21C11 P21x+ P22C22

)

. (3.16)

In order to decouple the interactions from the lower loop to the upper one

shown in Fig. 3.7, one forces P11x+ P12C22 = 0. Thus, the decoupling matrix

B(jωk) turns in:

B(jωk) =

(

1 −P12

P11

0 1

)

. (3.17)

As a consequence, the OLTF of this scheme becomes:

P ·B · C =

(

P11C11 0

P21C11
−P12C22P21

P11

+ P22C22

)

. (3.18)

The decoupling filters can be included in the MIMO scheme, specifically in

the block B(jωk) from Fig. 3.4. Following the previously described procedure,

we have designed decoupling filters for interactions from MICH to DARM and

from SRCL to DARM.

3.5.3 MICH2DARM decoupling filter

First, following the procedure described in section 3.5.2 for a simplified MIMO

model, we add a “mich2darm” decoupling filter in the first row and third col-

umn of matrix B(jωk) of the full 5x5 MIMO model. The filter “mich2darm”

is computed as −G13

G11 from the optical response matrix G(jωk). Its shape is

shown in Fig. 3.8.

Fig. 3.9 shows the LSC noise projections compared to the target sensitivity

including the “mich2darm” decoupling filter: it is possible to see that, with
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Figure 3.8: Computed decoupling “mich2darm” filter from MIMO model.

the implementation of the filter, the sensing noise from MICH projected onto

DARM is reduced. Moreover, also the shape of the other projections changes.

This is due to the not diagonal 5x5 Optical matrix. Therefore, all the elements

of the matrix S(jωk) are modified by the addition of the “mich2darm” fil-

ter. Additionally, with this configuration, the SRCL sensing and control noise

projection limits the sensitivity in the low-frequency region.

3.5.4 SRCL2DARM decoupling filter

It is possible to reduce the sensing and control noise projection of SRCL by

adding a “srcl2darm” filter in the first row and fifth column of the decoupling

matrix B(jωk). The filter “srcl2darm” is computed as −G15

G11 from the optical

response matrix G(jωk). Its shape is shown in Fig. 3.10.

With the implementation of the “srcl2darm” decoupling filter, the sensing

noise from SRCL projected onto DARM is reduced. However, the other sensing

and control noise projections do not change much and the sensitivity is mostly

spoiled by the MICH noise projection as shown in Fig. 3.11. Therefore, adding

a filter to decrease only the SRCL cross-coupling to DARM is not sufficient to

satisfy the requirements.
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Figure 3.9: Sensing noise projections from LSC control loops compared to the
designed sensitivity with the “mich2darm” decoupling filter.

3.5.5 Noise projections with decoupling filters

Adding both “mich2darm” and “srcl2darm” filters in the matrix B(jωk) can

effectively reduce MICH and SRCL cross-couplings to DARM. Therefore, the

decoupling filter matrix becomes:

B =

















1 0 mich2darm 0 srcl2darm

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

















. (3.19)

All the elements of the matrix S(jωk) are modified by the addition of the

“mich2darm” and “srcl2darm” filters in the matrix B(jωk). Finally, the im-

plementation of these filters in the scheme results in a cleaner DARM signal

and, therefore, a cleaner sensitivity curve, as shown in Fig. 3.12.

This last result might be overoptimistic: even though the terms of the opti-

cal response needed to compute the “mich2darm” and “srcl2darm” decoupling

filters are available in the model over a wide range of frequencies, in practice,

only a limited bandwidth of the measured plant is available. Therefore, the

filters implemented in the actual detector might not be as good as the model

over the entire observation frequency band. However, this could be improved
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Figure 3.10: Computed decoupling “srcl2darm” filter from MIMO model.

with a swept sine system identification procedure. Although the noise present

in the measurements will ultimately limit the identification of the system plus

errors from fitting a FRF with a zero-pole-gain model.

3.6 Advanced Virgo Noise Budget tool

As mentioned before, ultimately, the ideal sensitivity of the GW detectors is

given by the sum of fundamental noises. However, during the previous observa-

tion runs, the real sensitivity curve was spoiled by technical and not-understood

noises. In particular, the low and mid frequency bands were spoiled. This

result pointed out the importance of having an always updated model for the

understanding of the interferometer limits, which can help to identify and char-

acterize most of the noise sources entering the detector at different points.

In section 3.5 the projection of the intrinsic sensing noise of the PDs was pre-

sented: the sensitivity is mainly covered by the projection of the coupling of

MICH into DARM and of SRCL into DARM sensing noise. Therefore, a first

step is to reduce this re-injection of noise as much as possible using a noise

subtraction or decoupling filters technique. Once these filters are applied, the

resulting sensitivity curve is no longer limited by the longitudinal control noises.

However there may be other noises hidden beneath the projection of longitu-

dinal noises. Thus, a tool to identify and disentangle these noises is needed,
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Figure 3.11: Sensing noise projections from LSC control loops compared to the
designed sensitivity with the “srcl2darm” decoupling filter.

in particular in the commissioning phase, when the limiting noises are studied.

Such a tool was available for Advanced Virgo for O3, but it needed a relatively

long time to compute the noise projections. With a noise budget in real time

or in almost real time, it would be easier to identify the sources of noise.

Using the MIMO approach in the frequency domain presented in this work,

in order to estimate noise projections, only the computation of the different

transfer function matrices relating the noise entering from one node to the pro-

jected noise on the DARM DoF is needed. The computation of these transfer

function matrices requires no real time processing. Only time of data collection

is required from the different sensors to finally compute the projection of the

noises. Therefore, with this approach, a noise budget tool can compute almost

in real time the sensitivity.

In order to get a more realistic model, that can be used as a noise budget tool,

we need to be able to obtain the full matrix G(jωk) over a wide frequency

range. For this, several noise injections are required. Once this matrix is ob-

tained, it is possible to estimate noise projections with a MIMO approach as

discussed in sections 3.4 and 3.5.

Finally, with the aim of using this MIMO model of the interferometer as a

noise budget tool, one needs to consider several other noises that can enter

the control loop, either in the same six nodes previously described or in other

nodes. Moreover, some noises could enter the loop in a way that would force
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Figure 3.12: Sensing noise projections from LSC control loops onto designed
sensitivity with “mich2darm” and “srcl2darm” decoupling filters.

modifications of the model to include them. Apart from that, this model has to

be calibrated in order to project other types of noises into the sensitivity curve,

since this was calibrated to show the projections of sensing noises so far. The

target is to conclude the calibration of the model in order to include the pro-

jections of the different identified noises to have the most complete description

possible of the sensitivity of Advanced Virgo.

3.7 Conclusions

During the previous data taking periods, Advanced Virgo was mainly limited

by technical noises in the low and mid frequency regions of the detection band

i.e. between 10Hz and ∼ 100Hz. With the aim of getting a better under-

standing of the interferometer, we have developed a simplified MIMO model

of the Advanced Virgo detector. With this model we have produced projec-

tions of the sensing and control noises of the main longitudinal DoFs onto the

gravitational-wave strain sensitivity, taking into account all the cross-coupling

terms of the optical plant. Then, we have shown that the re-injection of these

noises limits the detector sensitivity for Advanced Virgo in O4. Next, using

the optical response we have designed noise subtraction filters in order to get a

cleaner sensitivity curve. Finally we have used the MICH to DARM and SRCL

to DARM decoupling filters to demonstrate that the re-injection of noise from
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these channels can be reduced below the safety margin for technical noises of

the sensitivity curve. Ultimately, it has also been highlighted that the core of

a noise budget tool can be fabricated using this approach, since several nodes

where noise or perturbation can enter the control loop have been considered.

This simplified noise budget tool could compute the level of some noises of the

real interferometer almost in real time, which can speed up the commissioning

process and also help to identify sources of noise that could be limiting the

sensitivity during the next observing run.
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Chapter 4

Longitudinal cross-couplings in

Advanced Virgo Plus

As shown in Chapter 3, a critical point lies within complex systems as Ad-

vanced Virgo Plus: the cross-coupling among the different longitudinal degrees

of freedom. This behaviour, while inherently sophisticated, is extremely im-

portant in the interferometer’s performance, impacting the level of sensitivity

that can be achieved. In this chapter, we look into the cross-couplings ob-

served among all the longitudinal DoFs mainly focusing on the DoF sensitive

to the passage of gravitational waves (DARM). In Chapter 3, we worked with

a simulation tool implemented for the O4 configuration of Advanced Virgo

Plus, here instead we obtain the cross-coupling terms with experimental mea-

surements. By combining real data and simulation methods, this chapter aim

to understand the main offenders of the sensitivity of the detector among the

longitudinal DoF couplings. However, the final goal is not only to understand

these cross-couplings, but also to find ways to counter act these effects, by em-

ploying decoupling filters and, thus, improving the sensitivity of the detector.

Examining the longitudinal DoFs of Advanced Virgo Plus as a MIMO system

in the frequency domain provides essential insights about their complex inter-

actions. This study sets a base to study different decoupling filters and their

effects, which are not only limited to one DoF to DARM, but also among the

other longitudinal DoFs. These decoupling filters are vital for the operation of

the detector and to achieve an optimal sensitivity.
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4.1 Cross-couplings among the longitudinal

DoFs

As detailed in Chapter 3, Advanced Virgo Plus has five longitudinal DoFs,

respectively named DARM, CARM, MICH, PRCL and SRCL. These DoFs

are defined as combinations of the lengths of the different optical cavities in

the interferometer, as explained in section 6.3. To have such an interferometer

working as a GW detector, all the five DoFs have to be controlled to achieve the

intended interferometric state. The procedure to reach this state is known as

lock acquisition, for which new techniques have been developed for the second

generation of GW interferometers [130]. The error signals that are used to

control these DoFs can be optimized by fine tuning the demodulation phase

used in the PDH technique. From here, optimal signals are selected for each

DoF. However, once all the five DoFs are controlled, the sensitivity of the

detector is spoiled by the sensing and control noises being re-injected into

DARM through all the other DoFs. This is due to the fact that the error

signals do not purely measure one DoF, but a combination of all the others

as a result of the intrinsic cross-couplings of the opto-mechanical plant. As

shown in Chapter 3, the longitudinal DoFs of Advanced Virgo Plus can be

considered as a MIMO system, where all the DoFs are interconnected and

influence each other through cross-coupling mechanisms. A characterization

as a MIMO system is crucial for considering the complex interactions among

these DoFs and to design the decoupling filters required to obtain an optimal

performance. For this study, we have implemented a MIMO representation

of the longitudinal DoFs of Advanced Virgo Plus in the frequency domain.

A sketch for the dynamics of the system with five inputs and five outputs,

interconnected with one another, is depicted in Fig. 4.1; yn, un, en and rn,

respectively indicate the output, input signal, error signal and reference of

each “n” DoF. Additionally for each DoF, perturbations are denoted as dn,

noise injection signals are denoted as xn and sensing noises are denoted as

n1
n. Furthermore, the cross-coupling terms of the plant are denoted as Gnm(s)

to represent a coupling from a DoF “m” to a DoF “n”. Finally, filters and

decoupling filters are depicted as Cnn(s) and Cnm(s), respectively.

Solving analytically the expressions of a complex system with five inputs

and five outputs can become unfeasible. However, using a MIMO system iden-

tification approach, we can measure all the 25 resulting Open-Loop Transfer

Functions (OLTFs) of this system. Subsequently, we develop a structure in

128



4.1. CROSS-COUPLINGS AMONG THE LONGITUDINAL DOFS

Figure 4.1: Visual representation of a 5×5 MIMO system. Some example of
decoupling filters are included.

the frequency domain which describes the complete opto-mechanical system in

multidimensional arrays (5×5×N), where N is the number of frequency bins.
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4.2 System identification technique

The task of identifying a complex system within a closed-loop condition is

notably challenging. Adding additional feedback loops often leads to biased

results [131]. To address this issue, estimating the Frequency Response Func-

tion (FRF) is the starting point for this system identification method. To give

a visualization of the method, we present a general opto-mechanical scheme in

Fig. 4.2. In this scheme the block “G0” represents the physical plant, optical

cavities for the case of GW detectors; the block “A” represents the actuator

dynamics of the mirrors; the block “C” depicts the control filter used to main-

tain a working point as well as the closed loop operation, and the block “H”

represents the dynamics of the sensor readout. Additionally, the representa-

tion of the array of the discrete-time input signals of the plant is denoted as

u(nTs), the error signal e(nTs) is derived with the PDH technique, the noise

injection node is represented by x(nTs), e
′(nTs) indicates the point after the

noise injection node, the outputs are denoted as y(nTs) and the disturbances

are labeled as d(nTs). Here n ranges from 0 to N − 1, with N representing the

number of samples and Ts depicts the sample time. In the frequency domain,

the Discrete Fourier Transform (DFT) [132] of the array of the input signals is

given by:

U(k) =
1√
N

N−1
∑

n=0

u(nTs)e
−j2πnk/N , (4.1)

Figure 4.2: General closed-loop system, where the PDH technique has been
used to obtain an error signal.

For a Linear Time Invariant (LTI) system and in the open-loop working
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configuration, an empirical transfer function estimation can be derived from

the observed data of the output Y (k), which is the DFT of the output of the

system, and the input signal U(k). Thus, the plant transfer function (TF) can

be estimated and expressed as Ĝ(ωk) =
Y (k)
U(k) , where ωk = 2πfk, fk = k/NTs is

the frequency at index k in the discrete frequency domain and k is the index of

the frequency bin. The impact of noise can be diminished if this computation

is averaged for several segmented portions of input and output signals. While

with a different approach, a TF estimation of the plant can be derived also

from the estimated cross-power spectrum of its input and output signals (Φ̂yu)

along with the estimated auto-power spectrum of its input signal (Φ̂uu) [133].

This computation also involves a segmentation into smaller sections of both

signals, minimizing spectral leakage. The estimated cross-power and estimated

auto-power spectra are given by:

Φ̂yu =
1

W

∑

w

Yw(k)U
H
w (k) (4.2)

and

Φ̂uu =
1

W

∑

w

Uw(k)U
H
w (k), (4.3)

correspondingly. Where w is the window function applied to process the data,

W is the total amount of window functions and ∗H represents the hermitian

transpose of a matrix. Hence, the plant TF estimation is given by Ĝ′(ωk) =
Φ̂yu

Φ̂uu
.

When these LTI systems are in a closed-loop working condition, they are set

to operate in a precise working point. Then, it is possible to estimate the TFs

of the system in closed-loop using a vector of noise injections “x”, and taking

measurements at the nodes “pre” and “post”, see Fig. 4.2, of the error signal

of each DoF [134, 135]. In this context the estimated TF of the real plant,

depicted in Fig. 4.2, is given by:

Ĝ′(ωk) =
Φ̂yu

Φ̂uu

=
G0(ωk)Φxx − C(ωk)Φdd

Φxx + |C(ωk)|2Φdd
. (4.4)

When the noise injections dominate among the sources of noise in the sys-

tem, equation (4.4) reduces to the real plant G0(ωk). However, the problem

arises when disturbances dominate the noises entering the loop. In this case,

equation (4.4) reduces to − 1
C(ωk)

. When neither x nor d are zero, the result

131



4.2. SYSTEM IDENTIFICATION TECHNIQUE

of (4.4) is a mix of both contributions. In contrast with the different methods

previously explained, we can apply an indirect approach [136], which consists of

computing various closed-loop TFs, i.e. the sensitivity function matrix S(ωk)

and the complementary sensitivity function matrix T (ωk). The relation be-

tween them is given by:

S(ωk) + T (ωk) = I, (4.5)

where I is the identity matrix.

For this system, the estimated sensitivity function Ŝ′(ωk) and the estimated

complementary sensitivity function T̂ ′(ωk) are given by:

Ŝ′(ωk) =
Φ̂e′x

Φ̂xx

=
1

1 + L̂′(ωk)
(4.6)

and

−T̂ ′(ωk) =
Φ̂ex

Φ̂xx

= − L̂′(ωk)

1 + L̂′(ωk)
, (4.7)

where L̂′(ωk) is the estimated OLTF of the system depicted in Fig. 4.2, and is

given by the product of all the in-loop elements, i.e. L(ωk) = H ·G0 ·A · C.

Ultimately, an unbiased estimation of the OLTF matrix is obtained from these

measurements in closed-loop as:

L̂′(ωk) = T̂ ′(ωk) · (Ŝ′(ωk))
−1. (4.8)

Lastly, since the controllers of this system are known, the dynamics of the

actuators and the responses of the photo-diode sensors are well understood,

then the unbiased opto-mechanical plant TF can be derived from (4.8).

Thus, following the idea presented in Chapter 3 for Advanced Virgo Plus, we

develop a model of the interferometer that includes all the cross-coupling terms

of the opto-mechanical plant. For this, the mirror actuators are described using

the models already cross-checked for previous observing runs [61], where all the

opto-mechanical components were characterized and further updated with the

inclusion of the model for the Signal Recycling mirror [137]. The filters used

to acquire the lock of the optical cavities are known and can be imported from

the Virgo Process Monitoring (VPM) software interface, described in Chap-

ter 2. However the opto-mechanical TFs are not previously known and have

to be measured. Therefore, the data obtained using the system identification
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technique described above allow us to represent the interferometer detector as

a MIMO system in the frequency domain using its measured Frequency Re-

sponse Functions (FRFs), with opto-mechanical TFs based on measurements.

A scheme that represents the model obtained from measurements is depicted in

Fig. 4.3. This scheme is the particular case for focusing only on sensing noise

(n1). A more general scheme describing all its elements, input and outputs, is

shown in Fig. 3.4 in Chapter 3. Note that each denoted signal is actually a

vector of multiple signals.

Figure 4.3: MIMO block diagram representation of the longitudinal DoFs of
Advanced Virgo Plus. Each block is a multidimensional array of five rows, five
columns and N frequency bins.
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The 25 resulting FRFs obtained with this approach are shown in Fig. 4.4.

The first row on this figure, shows the different effects of moving all the longi-

tudinal DoFs and recording the output of the DARM DoF. The second, third,

fourth and fifth rows show the effect of moving all the longitudinal DoFs and

recording the signals for CARM, MICH, PRCL and SRCL DoFs, respectively.

Not all the elements get to have a high coherence during the measurements,

meaning that their cross-coupling can, in principle, be neglected.

Nevertheless, after the locking process and when the interferometer is fully

controlled, the DARM error signal is almost completely covered by noise re-

injected through other DoFs. Using the data obtained during the noise in-

jections “x”, we identify the sources of noise due to cross-couplings on the

DARM signal. An example of this working condition, and an initial DARM

noise budget, is depicted in Fig. 4.5. Each cross-coupling contribution to the

DARM DoF error signal is depicted with a different color, these different contri-

butions are denoted as “CARM2DARM”, “MICH2DARM”, “PRCL2DARM”

and “SRCL2DARM”. The dominant contribution limiting the DARM signal is

MICH2DARM.

Since the opto-mechanical matrix G(ωk) is not diagonal, we focus on the

re-injection of the sensing noise (n1) in the loop scheme shown in Fig. 4.3,

which includes the experimental measurements of the various TFs. Therefore,

the error signals obtained with their dedicated photo-diodes are affected by the

cross-coupled dynamics that lie in the off-diagonal terms ofG(ωk). Nonetheless,

it is possible to mitigate these re-injections of noise by implementing decoupling

filters (in the decoupling filter matrix B(ωk)) between the correction signals

coming from the locking filters (placed in the control filter matrix C(ωk)) and

the driving signal (from the Driving Matrix D).
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Figure 4.4: Measurement of all the 25 OLTFs resulting from the noise injections
at 5 different nodes and 5 outputs. The measured TFs are depicted in blue.
When the TFs exhibit high coherence, they are depicted in orange.
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Figure 4.5: Pure DARM noise budget without the implementation of any de-
coupling filter.
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4.3 Decoupling filters

As detailed in Chapter 3, we identified and foresaw plausible couplings that

could affect the DARM signal, and therefore, spoil the sensitivity of the detec-

tor. The study concluded that the main offenders due to cross-couplings for the

O4 sensitivity target are from MICH, CARM and SRCL DoFs. In Advanced

Virgo Plus, the decoupling filters used to mitigate these effects are denoted by

Greek letter names [138], this list describes them:

• Alpha: Decoupling filter for MICH to DARM coupling;

• Beta: Decoupling filter for PRCL to DARM coupling;

• Gamma: Decoupling filter for CARM to DARM coupling;

• Delta: Decoupling filter for SRCL to DARM coupling.

It is important to underline that neither the previous study using simula-

tions nor measurements stated the need to implement a decoupling filter for

PRCL to DARM cross-interaction. In the following sections, the three men-

tioned decoupling filters are described.
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4.4 MICH to DARM coupling

As highlighted in Fig. 4.5, the main limit to the DARM noise budget is the re-

injection of the MICH sensing and control noises. For this reason, a decoupling

filter to mitigate the re-injection of this noise has to be implemented. As

detailed in Chapter 3, the decoupling filter is designed to cancel the contribution

fromMICH to DARM. The filter is obtained by the ratio of the TFG12(ωk) over

the TF of DARM G11(ωk). These TFs together with the empirically derived

and the implemented decoupling filter are depicted in Fig. 4.6. The left plots

represent the magnitude and the phase of the opto-mechanical DARM TF and

the TF from MICH to DARM DoFs. The plot on the right side represents the

ratio of these two TFs and the implemented filter in the system.

Figure 4.6: MICH coupling to DARM and DARM TFs. The ratio between
these TFs is the decoupling filter implemented to mitigate MICH coupling to
DARM.

Following the procedure described in Chapter 3, we implement this filter

in between the correction sent to the MICH DoF and the DARM DoF. In the

model, this filter is placed in the first row and third column of B(ωk). A com-

parison of the 25 OLTFs before and after the implementation of a decoupling

filter for MICH to DARM coupling is shown in Fig. 4.7. In the first row and

third column, it can be seen that the coupling from the MICH to DARM DoF

was reduced by a factor of 20 at ∼ 30Hz.
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After the implementation of this Alpha filter, we check the spectrum of

the error signal of DARM again to see its effect. The resulting DARM error

signal is shown in Fig. 4.8. When Alpha is implemented, the DARM error

signal is reduced by a factor of 13 at ∼ 30Hz. However, this still has room for

improvement, as it will be shown in the following sections.

By implementing an initial Alpha filter, the contribution from

MICH2DARM decreases by a factor of 20 but it is still limiting the

DARM signal in the frequency range between ∼ 30 and ∼ 70Hz. Furthermore,

additional decoupling filters can be computed from the cross-coupling terms

of the measured opto-mechanical matrix. In order to illustrate this, in the

following sections, the effects of implementing different decoupling filters are

addressed.
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Figure 4.7: Measurement of all the 25 OLTFs resulting from the noise injections
at 5 different nodes and 5 outputs. The measured TFs are depicted in blue.
When the TFs exhibit high coherence, they are depicted in green and red.
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Figure 4.8: DARM noise budget with a MICH2DARM (Alpha) filter ON.
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4.5 CARM to DARM coupling

Analogously, the coupling from the CARM DoF to the DARM error signal

is obtained. Thus, a decoupling filter to mitigate this effect is implemented.

Again, by employing the MIMO model approach in the frequency domain,

we evaluate and anticipate the impact of a Gamma filter on the DoF error

signal sensitive to the passage of GW. Fig. 4.9 illustrates the scenario wherein

a Gamma filter is introduced alongside the existing Alpha filter. With the

implementation of a perfect Gamma filter, the CARM2DARM cross-coupling

could be reduced up to a factor of 40 at ∼ 20Hz.

Figure 4.9: DARM noise budget with the implemented MICH2DARM (Alpha)
and the computed CARM2DARM (Gamma) filters ON.
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4.6 SRCL to DARM coupling

For the same set of noise injections previously used, we estimate the coupling

from the SRCL DoF to the DARM error signal. Therefore, it is possible to

compute a decoupling filter to mitigate this effect. Using this MIMO model

approach in the frequency domain, we check and predict the effect the filter

should have on the DoF error signal sensitive to the passage of GW. Fig. 4.10

depicts the situation when a Delta filter is implemented together with the

already implemented Alpha filter. It can be seen that with the implementation

of a perfect Delta filter, the SRCL2DARM cross-coupling could be reduced up

to a factor of 500 at ∼ 30Hz.

Figure 4.10: DARM noise budget with the implemented MICH2DARM (Alpha)
and the computed SRCL2DARM (Delta) filters ON.
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4.7 Alpha, Gamma and Delta implementation

Implementing all the three decoupling filters provides a cleaner DARM error

signal, an example of this scenario is depicted in Fig. 4.11. Here the current

Alpha filter was implemented together with computedGamma andDelta filters.

With these filters, SRCL and CARM contributions to DARM error signal could

be reduced up to a factor of 500 and 40 at ∼ 30Hz, respectively. But now, the

limiting noise contribution is again from MICH, therefore a new Alpha filter

has to be computed, as already mentioned in section 4.4.

Figure 4.11: DARM noise budget with the implemented MICH2DARM (Alpha)
and the computed CARM2DARM (Gamma) and SRCL2DARM (Delta) filters
ON.

Then, with an updated Alpha filter implemented together with the Gamma

and Delta filters previously showed, the re-injection of noise can be minimized,

achieving a level of noise 10 times lower than the current DARM error signal

noise level, as shown in Fig. 4.12. Moreover, it can be seen that the DARM

error signal gets cleaned up. The total noise contribution from all the other

DoFs is reduced by a factor of 25 at ∼ 30Hz.

Finally, Fig. 4.13 serves as a comparison between the starting point of the

DARM error signal without any decoupling filters and with the exploration of

different decoupling filters. It can be seen that the level of noise in DARM

was reduced by a factor of ∼ 10 between 20Hz and ∼ 100Hz. In this scenario
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Figure 4.12: DARM noise budget with the updated MICH2DARM (Alpha)
and the computed CARM2DARM (Gamma) and SRCL2DARM (Delta) filters
ON.

the DARM signal is affected by other technical noises and a process of noise

hunting started in preparation for O4. Using the information obtained in this

process it is possible to generate a noise budget of the signal sensitive to GWs

and explain its limitations.

Finally, Fig. 4.13 serves as a comparison between the initial DARM error

signal without any decoupling filters and the signal with various decoupling

filters applied. It can be seen that the noise level in DARM was reduced

by a factor of approximately 10 between 20,Hz and around 100,Hz. In this

scenario, the DARM signal is affected by other technical noises, prompting

the initiation of a noise hunting process in preparation for O4. Using the

information obtained from this noise hunting process, it is possible to generate

a noise budget for the signal sensitive to GWs and explain its limitations.
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Figure 4.13: Comparison of DARM error signal with and without decoupling
filters.
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Chapter 5

Frequency domain noise budget tool for

Advanced Virgo Plus

Even the most minuscule disturbances can mask the signals that GW detectors

seek to observe. To identify these signals from a vast array of noise, LIGO,

Virgo and KAGRA employ comprehensive noise budgets [139]. A noise budget

is an essential tool that outlines and quantifies all known noise sources within a

system, providing a road-map for noise mitigation and enabling the isolation of

true GW signals from noise. A noise budget is typically represented as a graph

plotting the ASD of the different noises (in strain sensitivity) over frequency.

Each major noise is graphically represented, helping to identify and understand

the predominant noise sources at different frequencies. This meticulous process

of noise budgeting is critical to enhance the sensitivity of the detectors and to

ensure the validity of the detected signals.

GW detectors are capable to detect variations in distance as small as

10−18 m over a frequency range from about 10Hz to a few kHz. However,

numerous sources of noise can interfere with the detection of GWs. As detailed

in Chapter 2, the primary categories of noise, referred to as fundamental

noise sources in these detectors, include quantum noise, thermal noise, seismic

noise, and Newtonian noise. The interplay of these noise sources determines

the overall design sensitivity of GW detectors. Each type of noise has a

characteristic frequency dependence. Therefore, a starting point is to generate

an initial noise budget that defines the maximum achievable sensitivity of the

detector, given its infrastructure, materials, and primary parameters.

One pivotal tool used by LIGO, Virgo and KAGRA collaborations for gen-

erating and managing their design sensitivity and, thus, their initial noise bud-
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gets is the Gravitational-Wave Interferometer Noise Calculator (GWINC) [140].

This open-source software helps predict and analyze noise sources in GW inter-

ferometers. Through the input of various parameters, GWINC calculates the

expected level of (fundamental) noises across frequencies. For the Advanced

Virgo Plus configuration for O4 and its corresponding parameters, the noise

budget of fundamental noise or designed sensitivity computed with GWINC is

shown in Fig. 5.1, which was shown also in Chapter 2.

Figure 5.1: Design sensitivity and fundamental noises for O4 Advanced Virgo
Plus configuration.

GWINC is not limited to study current detectors; it is also applicable in the

preliminary design stages of future detectors, offering insights into how changes

in design parameters can affect sensitivity. While GWINC is powerful, during

the operation of GW detectors, scientists and engineers also need to identify

dynamic factors that could degrade sensitivity. Therefore, a tool for the real-

time assessment of detector limitations becomes essential. This tool would

enable the monitoring of fluctuating noise sources, such as seismic fluctuations

and temperature fluctuations related to different weather conditions or human

activities, ensuring optimal detector performance.

Robust frameworks for analyzing noise in GW detectors have been devel-

oped using MATLAB and Simulink [141]. These tools import signals in the

time domain and process them with internal modeled dynamics of the inter-

ferometer, that are included in block diagrams using Simulink. While very
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accurate, these software programs require considerable time and computing

power, making the processing rather slow. An example of the plots produced

using these tools is shown in Fig. 5.2. Despite their strengths, these tools often

come with limitations, such as a steep learning curve and difficulties in sharing

work within large collaborations. Typically, only a handful of experts have a

deep understanding of these tools, posing challenges in their maintenance and

restricting cooperative efforts. Consequently, shifting from specialized, propri-

etary platforms to ones more open and encouraging to collaboration is essential.

Moreover, tools delivering a dynamic noise budget that can compute and tell

which noise limits the sensitivity at any moment are crucial.

Figure 5.2: Noise budget of Advanced Virgo produced using a MATLAB
Simulink tool.

Several types of noise can degrade the sensitivity of a GW detector. As

described in previous chapters, for the Advanced Virgo Plus detector, one of

the primary offenders is the re-injection of sensing noise into the control loop

of its longitudinal DoFs. To study and mitigate this effect, a MIMO model was

developed. This model includes the sensing noises from each longitudinal DoF

as sources of technical noise. These noises are introduced at a specific node

within the MIMO model. This chapter is dedicated to the development of a

noise budget tool for Advanced Virgo Plus, derived from the framework estab-

lished in previous chapters and expanded to include several noises. The core of

this model is a snapshot of the real interferometer when it is fully controlled.
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5.1. FROM THE ASTROPHYSICAL EVENT TO THE
RECONSTRUCTED STRAIN TO STUDY THE DETECTOR

This means that the noise budget tool is based on intrinsic measurements. Fur-

thermore, this tool can also work with a simulated model of the interferometer,

as outlined in Chapter 3.

The tool uses Python and addresses two main objectives: increasing speed,

as all data are already imported in the frequency domain and formatted as pre-

viously computed multidimensional matrices; and enhancing user-friendliness

by facilitating contributions in an open-source environment and allowing for

parallel collaboration.

5.1 From the astrophysical event to the recon-

structed strain to study the detector

5.1.1 Reconstructed strain (HREC)

As mentioned in Chapter 1, a GW produces a strain h(t) in space-time which,

on Earth, can be detected thanks to the GW detectors described in Chapter

2. For a passing GW, the detector produces an effect on the DARM DoF

eDARM (t) through the detector’s response R. Ultimately, eDARM (t) is pro-

cessed to get a reconstructed strain hREC(t) through a calibration process

(R−1). Fig. 5.3 shows a sketch of detecting a GW signal and producing a re-

constructed strain. The signal used for parameter estimation of GW sources is

hREC(t). Therefore, calibration of the detector will always be a fundamental

constraint on the precision of astrophysical parameter estimation.

The complexity of both calibrating the detector and creating a noise bud-

get for the measured strain lies in the fact that this signal is contained within

the DARM DoF, meaning that it is part of a closed-loop control system that

continuously adjusts the interferometer working point. To obtain the recon-

structed strain hREC(t) signal from this closed-loop system, a specific process

must be followed using calibration data [142]. This process generates an error

signal that impose deviations of the current state from the desired state of the

interferometer arms. This error signal captures the influence of passing GW

along with other disturbances. However, for the purpose of developing a noise

budget in the frequency domain, the reconstructed strain HREC(f) would be

sufficient. An accurate estimated reconstructed strain ĤREC(f) can be ob-

tained by unfolding the error signal of DARM. In this context, unfold means

to extract the measured strain from the closed-loop of the DARM DoF.
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5.1. FROM THE ASTROPHYSICAL EVENT TO THE
RECONSTRUCTED STRAIN TO STUDY THE DETECTOR

Figure 5.3: Diagram of a GW detection, from the astrophysical signal to the
reconstructed strain for parameter estimation and data analysis.

5.1.2 Unfolding DARM error signal

As it has been mentioned before, the DoF sensitive to GW is DARM. By

unfolding the DARM DoF from its closed-loop state one obtains an estimate of

HREC(f). This is done by transferring the closed-loop error signal of DARM

in V/
√
Hz back to the DARM DoF motion in m/

√
Hz and, then, dividing this

quantity by the length of the arms.

Mathematically, the estimated ĤREC(f) can be obtained from the DARM

error signal in the following way:

ĤREC(f) =
eDARM (f)

3 km
· (1 + LDARM (f))

IDARM (f) ·GDARM (f)
, (5.1)

where eDARM (f) is the DARM error signal, LDARM (f) is the closed-loop

TF of the DARM DoF, IDARM (f) corresponds to the DARM error signal

conversion factor in V/W, and GDARM (f) is the optical response of DARM

in W/m. An illustrative diagram to help the visualization of this process is

shown in Fig. 5.4 1. This figure represents the block diagram of the closed-loop

MIMO model of the longitudinal DoFs of Advanced Virgo Plus. Point A is the

1Description of each of these blocks can be found in Chapter 3.
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Figure 5.4: Visual representation of how to convert DARM error signal in
closed-loop onto ĤREC in the frequency domain.

closed-loop error signal of DARM in V/
√
Hz and point B corresponds to the

DARM DoF motion in m/
√
Hz. A comparison between the estimated strain

ĤREC(f) and the measured HREC(f) obtained with the full calibration and

reconstruction process is shown in Fig. 5.5.

It can be seen that this method provides a useful estimate of HREC(f) for

the purpose of producing the noise projections, that are used to construct a

noise budget.

5.2 Nodes for noise projections

Different types of noise can couple to the primary output, i.e. DARM DoF,

of the interferometer throughout various mechanisms. These noises can be

included in the model illustrated in Chapters 3 and 4 by adding nodes at

different points of the closed loop diagram, shown in Fig. 5.4. In the previous

chapters, only two nodes where considered in the MIMO model: a node n used

for injecting noise for system identification, located at the error signal point of

the closed loop and used to measure OLTFs; and a node n1 that summarizes the

sensing noises entering all the DoF readouts. However, as unveiled in Chapter 2,

we know that these are not the only types of noise that can spoil the sensitivity

of the detector. Therefore, we have upgraded the closed-loop MIMO model to

take into account more types of noise by expanding the number of nodes. An

updated scheme, that includes several nodes, is shown in Fig. 5.6.

Note that the model includes the possibility for future changes and up-

grades, thus more nodes can be added if necessary. Regardless, the current
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Figure 5.5: Comparison of the estimated reconstructed strain ĤREC and the
measured reconstructed strain HREC .

model accounts for six nodes, which can be used to add the following types of

noise:

• Sensing noises (n1): Noise at the level of the photo-diode, such as dark

noise, shot noise, demodulation phase noise, scattered light noise.

• Perturbations on DoFs (n2): Noise at the level of the DoFs, such as

Newtonian noise, Photon Calibration injections, Newtonian Calibration

injections, magnetic noise, acoustic noise, seismic noise, radiation pres-

sure noise, angular control noise, frequency noise.

• Perturbations on Mirrors (n3): Magnetic noise, acoustic noise, unbal-

anced actuators, seismic noise, thermal noise, radiation pressure noise,

angular control noise, frequency noise.

• Actuation noise (n4): Magnetic noise, amplifier noise.

• DAC Noise (n5): Operational amplifier noise, electronics noise.

• ADC Noise (n6): Electronic thermal noise, quantization noise.

Note that this is not an exhaustive list and more noises can be included

in the existent nodes. Note that in the list some noises are repeated, because
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Figure 5.6: Updated closed loop scheme, which includes more nodes in between
matrix elements of the model.

certain types of noise could affect the optics of the interferometer either locally

or broadly, or both. Also note that the angular corrections, which are pivotal

for the control of the interferometer, are considered as residual motion on the

longitudinal axis of the mirrors.

This model is the core of this noise budget tool, meaning that it can be further

modified to include different mechanisms or ways that different noises could

enter the interferometer.

5.3 Recipe for noise projections

The model described before is used to study the effects of different types of

noise entering the detector at different nodes (or points). Here we present a

recipe to study the effect on the DARM DoF or on ĤREC(f) of a noise entering

the interferometer through one of these nodes. To study the effect of a certain

noise in the interferometer, one first has to select (or install) a sensor that

can measure such type of noise locally in its corresponding units. Then, one

has to identify and select one of the nodes where this noise could enter the

detector. If the units do not match with the ones shown in Fig. 5.6, then one

has to include a coupling factor or a coupling matrix in the case of a vector of

different noises. This coupling can be computed by a series of noise injections

throughout the detector, using HREC(f) and a local sensor as monitors. Then,

using the corresponding pre-computed closed-loop TF matrices, i.e. S(ωk) and

T (ωk) described in Chapter 4, it is possible to project this type of noise or

noises on the sensitivity curve.

An active campaign is ongoing to characterize different type of couplings

from environmental noises to HREC(f). The plan of this campaign is detailed
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in the report of environmental noises in Advanced Virgo Plus [143, 144]. As

detailed in these reports, the first step to characterize a certain type of noise and

its coupling to HREC(f) is to compute a coupling coefficient CF by injecting

noise near the main optics and measure the effect of this noise on HREC(f).

The CF (f) is given by:

CF (f) =

√

[Yinj(f)]2 − [Ybkg(f)]2

[Xinj(f)]2 − [Xbkg(f)]2
, (5.2)

where Yinj andXinj are the ASDs ofHREC and the witness sensor, respectively,

during the noise injection period; Ybkg and Xbkg are the ASDs of HREC and

the witness sensor, respectively, during a quiet period.

This tool also provides the option to study the coupling from different noises

not only to DARM, but also to the other four longitudinal DoFs, i.e. CARM,

MICH, PRCL and SRCL.

5.3.1 Example of noise projection recipe

As an example, we consider the case of the magnetic noise coupling at the level

of the mirrors, which enters in the loop through the node between blocks A

and O in the scheme in Fig. 5.6, i.e. perturbations on mirrors n3. A coupling

TF has to be computed with dedicated magnetic noise injections at different

points of the interferometer, typically near the main optics. Then, by using

HREC(f) as an observer, a TF is computed between a local sensor for magnetic

noise and HREC(f) [143]. Finally, using the pre-computed matrix T3, which

is the closed loop TF matrix that relates n3 noises to the error signal of the

different DoFs and is given by:

T3(jωk) = S(jωk) · I(jωk) ·G(jωk) ·O(jωk), (5.3)

then, the projection on the different longitudinal DoFs can be studied with the

following expression:

Ñ in−loop
3 (fk) = |T3(fk)|

















ÑNE
3 (fk)

ÑWE
3 (fk)

ÑBS
3 (fk)

ÑPR
3 (fk)

ÑSR
3 (fk)

















. (5.4)
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Note that the effect of magnetic noises on the different main optics can be

studied for all the longitudinal DoFs with Ñ in−loop
3 (fk). For example, the first

row of Ñ in−loop
3 (fk) corresponds to the effect of these noises on DARM and the

third row of Ñ in−loop
3 (fk) corresponds to the effect of these noises on MICH.

Therefore, this approach can serve to study coupling of different type of noises

to each main longitudinal DoF of the interferometer.

In the following sections, different types of technical noises are explored and

coupling factors are computed to integrate them in the noise budget core.

5.4 Noise projections results

In this section, we present the current preliminary results obtained with the

developed Python-based noise budget tool. As the tool is still in active de-

velopment, the results discussed here correspond only to a small subset of the

noise sources that have been integrated thus far. These findings offer an initial

insight into the potential capabilities and performance of the tool. They also

serve as groundwork for future improvements and future integration of more

noise sources. The computed closed-loop TFs are derived from the measured

opto-mechanical TF matrix G(jωk). This matrix was derived from data ob-

tained in June 2023, when several noise injections were performed to study the

working point of the interferometer. Once all the pieces are put together and

all the needed matrices are computed, one can test the tool. For this, we used

several noise injections, which were performed in an equivalent state of the

interferometer and we compared the projected noise using this method with

the measured output of the interferometer. In the next subsections, we present

two examples, together with the integration of shot noise, which help also as a

demonstration of how this tool can be used.

5.4.1 Magnetic noise injections

Several noise injections at various locations within the buildings of the Virgo

site where the interferometer is held were performed during the last two years.

These injections were performed by the Environmental Noise team of Advanced

Virgo Plus. Using these instances, we have tested the capabilities of this tool.

At first we describe the noise injections performed [143, 145]: small coils were

placed at different times near the base of the different vacuum towers where

the mains optics are suspended, for example near the input optics and output
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optics towers, NI and WI towers, BS tower and, finally, WE and NE towers.

For both NE and WE towers, the coupling functions are simpler to obtain,

since there are no other nearby main interferometer optics either in West-end

or North-end buildings. Thus, no extra magnetic coupling contributions have

to be taken into account.

Fig. 5.7 illustrates the location of the coil placed near one of the towers for

this campaign of noise injections. Noise injections occurred around the WE

tower in July 2023 and around the NE tower in September 2023. These were

“shaped” noise (signal whose PSD varies with frequency, unlike white noise

which has equal power across all frequencies) injections with a frequency range

from 8 to 330Hz and a duration of 600 s. Furthermore, the coil used for the

injections was placed in three different orientations: along the E-W axis, along

the N-S axis, and in the vertical direction. The magnetic noise generated by

these coils is expected to couple with the magnets installed on the main optics

of Advanced Virgo Plus.

Figure 5.7: Location of the coils used for magnetic injections near the towers
along one Fabry-Perot arm. The sketch shows the external magnetic coil loca-
tions for the NE and WE towers, as well as for the WI and NI towers, with the
main mirror at the center.

Using the coupling functions computed for WE and NE during their corre-

sponding noise injections and adding them to the node n3 in the model shown

in Fig. 5.6, we have computed their noise projections on the DARM DoF. The

results obtained following the recipe mentioned in section 5.3 for these noise

injections and projections on the DARM DoF are presented in Fig. 5.8 and in

Fig. 5.9: both figures show the effect of a magnetic injection in one of the end

buildings of Advanced Virgo Plus. In both of them, the projections of magnetic

noise on all the main mirrors is shown. We can note that in Fig. 5.8 the level

of eDARM (f) is explained by the noise projection of the WE magnetic noise,

while in Fig. 5.9 the level of eDARM (f) is explained by the noise projection of
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the NE magnetic noise. In both cases, the DARM error signal is superposed

with the noise projections of these magnetic injections, meaning that there is

a strong coupling of magnetic noise.
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Figure 5.8: Noise projections of the WE magnetic noise injections onto ĤREC .

Figure 5.9: Noise projections of the NE magnetic noise injections onto ĤREC .
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5.4.2 Calibration noise injections

One of the methods for the calibration of the Advanced Virgo Plus detector

is performed using a photon calibrator [146]: this actuator exerts a controlled

force on the end test masses of the interferometer using laser radiation. By di-

recting a known amount of photon momentum on the mirrors, the calibration

procedure replicates the physical effect of a passing GW, allowing a precise

characterization of the response of the detector. Significant aspects of this

calibration process are the establishment of the correct sign of the response

of the detector and the cross-checks of systematic uncertainties. During the

calibration campaign for O4, several measurements were performed with the

interferometer fully controlled to contrast the mirror motion along its longitu-

dinal axis z with and without the noise injection of the photon calibrator. For

the WE and NE mirrors the injections in their longitudinal axes occurred in

September 2023. Since in this case of noise injections the optics are perturbed

directly, the closed loop matrix that relates the noises in n4 to the error signals

of the different DoFs T4 is given by:

T4(jωk) = S(jωk) · I(jωk) ·G(jωk) ·O(jωk) ·A(jωk). (5.5)

Using equation (5.5) and following the recipe detailed in section 5.3 one can

compute the noise projections onto the error signal of the DARM DoF. The

obtained results are shown in Fig. 5.10 and Fig. 5.11: both figures show the

effect of a photon calibrator injection on one of the end mirrors of Advanced

Virgo Plus. In both of them, the projections of the photon calibrator noise on all

the main mirrors is shown. We can note that in Fig. 5.10 the level of eDARM (f)

is explained by the noise projection of the WE photon calibrator noise, while

in Fig. 5.11 the level of eDARM (f) is explained by the noise projection of the

NE photon calibrator noise.2

Note that there are also several “lines” or spikes at different frequencies that

are always being injected in the optics and they serve for continuous calibration

and monitoring.

2Due to the noisy measurements of the optical plant at higher frequencies, the noise

projections are shown in the frequency band from 5Hz to 100Hz.
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Figure 5.10: Noise projections of the WE photon calibrator noise injections
onto ĤREC .

Figure 5.11: Noise projections of the NE photon calibrator noise injections onto
ĤREC .
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5.5 Integration of noises and future work

In the development of the noise budget tool, progress has been made to enhance

its number of nodes and capabilities for noise analysis. The tool now integrates

magnetic noise, calibration lines, longitudinal DoF sensing noise (including

shot noise, electronic noise, and read-out noise) and longitudinal DoF UGFs

monitoring lines. These additions make the noise budget tool a valid but

still very preliminary resource for identifying and quantifying various noise

contributions on the sensitivity curve of the detector. An example of the output

of the current results of this noise budget tool is shown in Fig. 5.12: measured

HREC and estimated strain ĤREC with the noises integrated in the tool so

far are presented. The level of HREC is mainly covered by the re-injection of

the noise from the MICH DoF. Several peaks at different frequencies in HREC

can be explained by the projections of the noise from UGF monitoring lines

of the longitudinal DoFs and calibration lines of WE and NE. Note that the

results cover up to about 200Hz, because the snapshot of the physical TF of

the interferometer has high coherence in the measured OLTFs in this region.

Figure 5.12: Estimated ĤREC with the current set of noises integrated in the
noise budget tool.

Fig.5.13 shows the sums of the different types of noise integrated so far

in this tool, i.e. the total sensing noise, total shot noise, total magnetic noise,

total calibration noise, and total UGF monitoring noise. Several of the spikes in

frequency are intentionally injected signals used for calibrating different optics

and monitoring the detector’s status. These lines are effectively projected onto

the sensitivity plot using this noise budget tool; however, many still need to
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be integrated. Note that these known lines are removed in the data processing

pipelines for data analysis.

Figure 5.13: Estimated ĤREC with the sum of the current types of noise inte-
grated in the noise budget tool.

In the next months, several other noises will be included in this tool in

collaboration with the different teams studying the various noises impacting

the sensitivity of Advanced Virgo Plus. Note that this tool currently uses a

snapshot of the Advanced Virgo Plus interferometer to produce these noise

projections. However, it is possible to replace the block of the measured op-

tomechanical TFs G(jωk) by simulation results to study the contribution of

noises in different configuration and working points of the interferometer.
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Chapter 6

A MIMO system identification

approach for the longitudinal control of

the Filter Cavity of the Advanced Virgo

Gravitational-wave Detector

One of the main challenges in gravitational-wave (GW) detection is overcoming

various sources of noise that can obscure the signals from distant astronomical

events. Among these, quantum noise is a significant limiting factor. Quantum

noise in GW detectors has two primary components: radiation pressure noise,

which predominates at low frequencies, and shot noise, which dominates at high

frequencies. The integration of a frequency-dependent squeezed system into

these detectors aims to reduce the quantum noise across the entire detection

bandwidth.

The injection of squeezed vacuum states through the detector’s dark port

can enhance sensitivity. These squeezed states, manipulated via a detuned

Filter Cavity (FC), undergo a frequency-dependent rotation that effectively

mitigates quantum noise across the entire accessible frequency band. However,

achieving the precise longitudinal control of the FC is crucial for maximizing

this noise suppression. This involves the simultaneous active correction of both

the cavity length and the squeezing laser frequency, transforming the setup into

a complex Multiple-Input Multiple-Output (MIMO) system.

This research addresses the need for an effective identification approach for

the MIMO loop of the longitudinal control of the Filter Cavity in the Ad-
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vanced Virgo Plus detector 1. Traditional Single-Input Single-Output (SISO)

methodologies fall short in this complex control scenario. Our work demon-

strates that adopting a MIMO system identification framework provides deeper

insights into the underlying dynamics of the Filter Cavity’s longitudinal control

and facilitates better control strategies. By improving the duty-cycle, by mak-

ing the controllers robust, our approach directly contributes to the enhanced

sensitivity of the detector.

Our study is structured as follows: we first present an overview of the funda-

mental principles of quantum noise in GW detectors and the role of frequency-

dependent squeezing in mitigating this noise. We then delve into the specific

challenges associated with the longitudinal control of the Filter Cavity, high-

lighting the limitations of traditional SISO approaches. Following this, we

introduce our MIMO system identification framework, detailing the theoretical

underpinnings and practical implementation of our method. The following sec-

tions of the manuscript provide a thorough analysis of the experimental setup,

data acquisition, and system modeling techniques employed in our research.

We also present the results of our identification process. Finally, we discuss the

broader implications of our findings for the field of GW detectors and outline

potential directions for future research. This work is detailed in a paper that

has been submitted to the journal Physical Review Applied.

1This paper refers to the configuration of the Advanced Virgo Plus, but for simplicity, it

is referred to as Advanced Virgo in the text.
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Abstract

The sensitivity of the second generation ground-based gravitational-wave

detectors is mainly limited by fundamental noises. Among them, the main

contribution is due to the quantum noise that has two different components:

radiation pressure noise, limiting the low frequency sensitivity and shot noise,

limiting at high frequencies. It was shown that the injection of frequency

dependent squeezed vacuum states through the detector dark port brings to

a whole bandwidth reduction of the quantum noise. For this reason, in the

break between the third and the fourth scientific observing runs, the LIGO

and Virgo detectors implemented a Frequency Dependent Squeezing source.

This system is based on a detuned linear cavity, the Filter Cavity, that re-

flects frequency independent squeezed states, impressing on them a frequency

dependent rotation. The lock precision of the longitudinal control of the Fil-

ter Cavity is one of the key parameters affecting the quantum noise suppres-

sion factor. The target lock precision was achieved by simultaneously actively

correcting both the cavity length and the frequency of the squeezing main

laser. In this scenario, the setup turns into a highly coupled-structure and

it was necessary to consider it as a Multiple-Input Multiple-Output system.

In this work, we demonstrate that following a Single-Input Single-Output

approach to describe this setup leads to inconsistencies while, with the use
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of Multiple Input Multiple-Output system identification techniques we can

not only effectively characterize the system but also improve its robustness.

Ultimately, we show that with the proper design of the filters it is possible

to ensure the required robustness and locking precision to provide frequency

dependent squeezed states of light for the Advanced Virgo interferometer.

6.1 Introduction

After the landmark observation of a gravitational-wave (GW) emitted by the

coalescence of a Binary Black Hole (BBH) system [97] in 2015, the detection

of a GW arisen from a Binary Neutron Star (BNS) system [147] and multiple

GW observations have been performed [103, 104]. After the completion of the

third scientific Observing Run (O3) in 2020, all the ground-based gravitational-

wave (GW) detectors, Advanced LIGO [1], Advanced Virgo [4], KAGRA [148]

and GEO600 [149], have gone through several upgrades to increase their sensi-

tivity. During O3, Advanced LIGO and Advanced Virgo were mainly limited

by quantum noise, in particular by the shot noise component at high frequen-

cies. Therefore, a technique called Frequency Independent Squeezing (FIS)

[150, 151], which limits the impact of the quantum shot noise (above ∼ 50Hz),

was implemented. The downside of the FIS injection is that excessively high

squeezing levels, while enhancing the sensitivity of the detector at high fre-

quencies, leads to a degradation at low frequencies. This is a consequence of

the increase of the radiation pressure noise, which is the second component

of quantum noise, as measured by both LIGO and Virgo detectors [152, 108].

This effect is connected to the Heisenberg’s uncertainty principle, which im-

poses limitations on the ability to precisely determine a pair of measurements,

i.e. position and momentum on a quantum system [153].

In gravitational-wave detectors, quantum noise is originated by the vacuum

fluctuations entering from the output port. Furthermore, these fluctuations

can mask or spoil the GW signal. However, with the use of proper squeezed

vacuum states, both quantum noise components can be modified manipulating

the entering vacuum state. Thus, in preparation for the fourth Observing

Run (O4), a Frequency Dependent Squeezing (FDS) [154] system has been

implemented in both Advanced LIGO and Advanced Virgo detectors [155, 156].

FDS systems are designed to provide a stable source of squeezed states of

light to be injected into the output port of the Dual-Recycled, Fabry-Perot,

Michelson interferometer. Using the FDS technique a reduction of quantum
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noise of about 4.5 dB at high frequencies and about 2 dB at low frequencies is

expected for Advanced Virgo during O4. The frequency dependent squeezed

field is produced with a phase rotation of a squeezed field coming from a FIS

source, by means of the reflection from a detuned high-finesse Fabry-Perot

linear cavity, denoted as Filter Cavity (FC). In Advanced Virgo, the control of

the FC is achieved through different steps. Initially, the lock of the cavity is

obtained using an auxiliary laser beam, also generated by the FIS source. This

secondary laser beam is characterized by a wavelength different from the one of

the main squeezed beam, for which the finesse of the cavity is lower. Then, to

further improve the lock precision of the cavity, a second loop is implemented

by acting on the working point of the phase-locked loop (PLL) used to ensure

that the frequency of the squeezer main laser is the same as the frequency of

the main laser of the detector.

In this work, we present a new scheme developed to fully characterize the

control of the FC of the Advanced Virgo FDS system via a Multiple-Input

Multiple-Output (MIMO) approach [157]. A MIMO scheme, in contrast to a

Single-Input Single-Output (SISO) approach [158], can disentangle the system

dynamics and its cross-coupled terms. At first, we briefly introduce the Ad-

vanced Virgo FDS system. Then, we describe a model of the FC control system

characterizing it and comparing measured transfer functions (TFs) with the-

oretical ones. Finally, we used this MIMO approach to develop a new model

of the control system. Furthermore, we use these results to design robust con-

trollers for the system without spoiling the locking precision, which is crucial

to achieve the proper squeezing level to be injected into the interferometer.

6.2 Quantum noise and Squeezing

In second generation GW detectors, quantum shot noise and quantum radiation

pressure noise are dynamically correlated [159]. In interferometers quantum

noise is described using its amplitude spectral density calibrated in strain units

(hQN ) [160], consisting in the incoherent sum of shot noise (SN) and radiation

pressure noise (RPN):

hQN =
√

h2
SN + h2

RPN . (6.1)

The amplitude spectral density of these components can be expressed as:

hSN =
1

L0

√

ℏcλ

2πP
(6.2)
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for the shot noise, and:

hRPN =
1

mf2L0

√

ℏP

2π3cλ
, (6.3)

for the radiation pressure noise, where L0 represents the average arm length

of the interferometer, ℏ denotes the reduced Planck constant, c stands for the

speed of light, λ is the wavelength of the laser, P is the average optical power, f

is the frequency and m is the mass of the mirrors. SN is frequency-independent,

while RPN follows a 1/f2 shape. Therefore, QN is dominated by RPN at low

frequencies and by SN at high frequencies. For each frequency, we could find

an optimal laser power to minimize the quantum noise, where the RPN and

the SN have the same level. All these optimal points create a curve, crossing

the whole detection spectrum, the Standard Quantum Limit (SQL), which is

defined as:

hSQL =

√

ℏ

mπ2f2L2
0

. (6.4)

For a GW interferometer with fixed arm lengths and mirror masses, the stan-

dard quantum limit defines its sensitivity limit. The trend of the QN and the

SQL for three different optical powers inside the interferometer is shown in

Fig. 6.1. One can see that increasing the optical power the level of the SN

improves, worsening the level of RPN.

RPN arises from the quantum fluctuations in the light’s amplitude, causing

the mirrors in the detector to move unpredictably. Amplitude squeezing reduces

the quantum uncertainty in the number of photons, thereby decreasing the

fluctuations in the motion of the mirrors [161], but increasing the impact of

the SN. This reduction in RPN enhances the detector sensitivity in the low-

frequency range. While SN arises from the random and discrete arrival of

photons on the photo-diodes, resulting in fluctuations of the phase of the light

beam. Phase squeezing helps in making the arrival times of photons on the

photo-diode more uniform, thus reducing SN, but increasing the RPN. The

effect of injecting phase squeezing is equivalent to increasing the input power of

the interferometer, as shown in Fig. 6.1. Therefore, to obtain a full bandwidth

reduction of the QN of GW detectors, the squeezing ellipse should rotate at the

SQL frequency of the system, i.e. generating a frequency dependent squeezed

state. A description of the squeezed states can be found in the appendix.

170



6.3. ADVANCED VIRGO FREQUENCY DEPENDENT SQUEEZING
SYSTEM

Figure 6.1: Effective strain quantum noise computed as the incoherent sum
of shot noise and radiation pressure noise in a Michelson interferometer for
different high circulating powers. Parameters are: L0 = 3km, λ = 1064 nm,
P = 10, 100, 250 kW and m = 40 kg. Standard quantum limit, in dashed blue
lines, shows the minimum strain limited by quantum noise. The purple trace
shows the effect of injecting Frequency Dependent Squeezing (4.5 dB of phase
squeezing and 2 dB of amplitude squeezing) into a Michelson interferometer
with a circulating power of 100 kW: the QN improves in the full bandwidth.
The rotation of the squeezed states is shown in the bottom of the figure, phase
squeezing at high frequencies, while amplitude squeezing at low frequencies.
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6.3 Advanced Virgo Frequency Dependent

Squeezing System

In preparation for O4, a FDS system has been implemented in Advanced Virgo

with the target of achieving a QN reduction of about 4.5 dB at high frequen-

cies and about 2 dB at low frequencies. In order to meet these values, strict

requirements have been imposed on both the losses and phase noise. In this

particular case, the spectra of SN and RPN meet in the region between 20 to

30Hz. Therefore, the optimal rotation of the squeezing ellipse has been de-

signed to be ∼ 25Hz [156]. A sketch of the frequency dependent rotation of

the squeezing ellipse is shown in Fig. 6.1: at low frequencies the uncertainty

of X̂1 is smaller than the one of X̂2, while the contrary happens at high fre-

quencies. As detailed in the previous section, in order to reduce QN at low

frequencies, amplitude squeezing is required, while phase squeezing is needed

for the reduction of QN at high frequencies. Therefore, the injection of both

amplitude squeezing at low frequency and phase squeezing at high frequency

is required. The rotation of the angle of the squeezing ellipse for different fre-

quencies is achieved by reflecting a squeezed light state off the Filter Cavity.

The source of squeezing used in Advanced Virgo is the same FIS source already

installed and operational during O3 [162], set to deliver phase squeezed states.

The system operates with a wavelength of 1064 nm as the main interferome-

ter. The squeezed states are generated using an independent laser from the

interferometer. However, to have an impact on the sensitivity, the squeezed

states should be at the same frequency of the interferometer main laser. Thus,

a PLL is implemented to match the frequency of the laser of the FIS source

with the one of the Virgo main laser [150]. A Filter Cavity, consisting of two

suspended mirrors, has been installed along one of the main arms of Advanced

Virgo during the upgrade break between O3 and O4. It has been shown that

a cavity length of the order of hundreds of meters is less influenced by losses

than cavities with lengths of tens of meters [163], since they are characterized

by a lower finesse value. Considering this input and the infrastructural config-

uration of the Virgo site, a length of 285m has been chosen. In order to achieve

the target squeezing ellipse rotation, the FC works in a detuned configuration,

meaning that its resonance is deliberately shifted by a few Hertz away from the

carrier frequency. The detuning frequency of this FC has been defined to be of

25Hz. In order to achieve it, the required linewidth of the optical cavity is also

25Hz. According to the measured linewidth, the estimated finesse for the IR
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(Infrared) laser is FIR = 9695± 4 [156]. A simplified scheme of the Advanced

Virgo detector with the FDS system is shown in Fig. 6.2.

6.3.1 Longitudinal control of the Filter Cavity

Having such a notable finesse value for the IR beam, the acquisition of the

control of the FC turns into a difficult task. Therefore, the full longitudinal

control of the cavity is achieved in two subsequent steps: at first, the cavity is

locked using an auxiliary green laser; then, the longitudinal control is moved to

an IR beam. Moreover, one of the crucial factors to achieve the required level

of FDS is to have a high level of locking precision. The target lock precision

level is below 1Hz RMS, which effectively minimizes the fluctuations on the

detuning of the FC and, therefore, reduces the degradation of the FDS, as

described in [164]. In order to achieve this value of lock precision, the actuation

of the control loop is divided in two parts according to the frequency range:

the correction signals below 100Hz are sent to the output mirror of the FC,

while the corrections at higher frequencies are used to stabilize the frequency

of the laser source, as described in sections 6.3.2 and 6.3.3. A scheme of the

FC length control and frequency stabilization of the laser source plus all its

relevant components is shown in Fig. 6.3.

6.3.2 Length control loop

The lock of the FC is initially achieved with an auxiliary green laser (532 nm).

This laser beam is produced through a Second Harmonic Generation pro-

cess [165], a non-linear optical phenomenon, where two photons of identical

wavelength interact inside a specific material to get a new photon at half the

original wavelength. The Second Harmonic Generator (SHG) is installed in

the FIS source [162] and is doubling the main squeezer laser frequency. The

FC finesse for the green beam is FG ∼ 100, much lower than the one for

the IR beam. To keep the FC on resonance, the Pound-Drever-Hall (PDH)

modulation-demodulation technique [64] is used. First, side-bands are gener-

ated with an electro-optic modulator (EOM) at 5.5MHz, then an error signal

is derived demodulating the beam reflected by the cavity and passed through

a low pass filter. This signal is then used to close the loop with a control filter,

which produces a correction signal sent to the actuators, consisting of pair of

coils-magnets, of the output mirror of the FC. Once the FC is controlled, the

detuning of the carrier beam in relation to the resonant condition is actively
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Figure 6.2: Simplified scheme of the Advanced Virgo detector optical configu-
ration with the FDS system for O4 run. The main laser beam first goes through
a power recycling (PR) mirror, then is split at the Beam Splitter (BS) mirror
and directed towards the North and West arms passing through the North
Input (NI) and West Input (WI) mirrors. These beams travel along the arm
cavities and are reflected back by the North End (NE) and West End (WE)
mirrors to be recombined at the BS. The recombined beam passes through a
Signal Recycling (SR) mirror before reaching the output photo-diode (PD).
This scheme includes some of the key components of the FDS system: the FIS
source; the PLL between the main laser and the Squeezing laser; and the Filter
Cavity installed along the North arm of the detector. The Squeezed beam is
injected at the output of the interferometer through a Faraday isolator.
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Figure 6.3: Scheme of the longitudinal control loop of the FC. For both the
length control and frequency control loops, the error signal is derived from the
same photo-diode with a modulation-demodulation technique. For the cavity
length and frequency control loops, the control filters are denoted as C1 and
C2, respectively. The first loop controls the length of the cavity using the coil-
magnet actuators of the end mirror. The second loop controls the PLL working
point using a VCO.

controlled using an Acousto-Optic Modulator (AOM) installed along the green

optical path. To achieve the required level of locking precision (RMS < 1Hz)

with the IR beam, the first step is to improve the locking precision using the

green beam.

6.3.3 Frequency stabilization loop

In the early stages of the commissioning of the FDS system, only the control

of the length of the FC was foreseen. However, this strategy resulted in a level

of locking precision not compliant with the requirement: most of the measured

RMS of the locking precision came from additional noise around ∼ 100Hz

and the bandwidth of the loop was limited by delays of the digital system.

Therefore, an additional loop was implemented acting in the high frequency

band (above ∼ 100Hz) on the squeezing main laser frequency, through the

same actuator of the PLL, already implemented to lock the frequency of the

main squeezing laser to the one of the main Virgo laser. The error signal for

this loop is the same PDH signal extracted from the reflection of the FC. After

passing through a controller, it is used to closed the loop by acting on the PLL

working point through a Voltage-Controlled Oscillator (VCO).
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Figure 6.4: General closed loop system, where a modulation-demodulation
technique has been used to obtain an error signal.

6.4 Modelling the system

As described in section 6.3, the control system of the Filter Cavity of the FDS

system of Advanced Virgo consists of two feedback loops working together to

achieve the high required level of locking precision, both for the green and IR

beams. Control systems are typically described in the frequency domain by

their Open Loop Transfer Functions (OLTFs). The OLTFs can be derived

from differential equations or block diagrams including all the components of

the loop. Furthermore, this description provides insights of the system stability,

resonances, bandwidth and overall performance. A block diagram for a generic

opto-mechanical control loop is shown in Fig. 6.4: G0 represents the opto-

mechanical plant; H represents the sensor; C stands for the controller and A

is the representation of the actuator. Note that each block can be either a

single component or a matrix, i.e. each block can be either a Single-Input

Single-Output (SISO) system or a Multiple-Input Multiple-Output (MIMO)

one. Moreover, Y and U are the output and input signals respectively, n

represents the noise used to characterize the loop, d stands for the perturbations

that can disturb the system, finally, assuming that the error signal is derived

with a modulation-demodulation technique, e and e′ stand for the error signals

before and after the noise injection node.

Considering the control loop of the FC length based on the PDH technique,

the Transfer Functions of the various elements with the corresponding units

176



6.5. MIMO MODEL AND SYSTEM IDENTIFICATION TECHNIQUE

are the following:

• GFC [Wm ]: Optical cavity, representing the longitudinal motion.

• AFC [mV ] : Made of two components, Acoil [
N
V ], for the coil actuator and

Apend [
m
N ] for the pendulum dynamics.

• HFC [ VW ]: Photo-diode response.

• CFC [VV ]: FC length control filter.

In the same way, also the elements of the control loop of the frequency

stabilization part can be defined as:

• GLaser [
W
Hz ]: Frequency response of the main squeezing laser.

• ALaser [
Hz
V ]: VCO dynamics.

• HLaser [
V
W ]: Photo-diode response.

• CLaser [
V
V ]: Squeezing laser frequency stabilization control filter.

To validate theoretically estimated OLTFs, a comparison with their re-

spective experimentally measured equivalents is needed. A comparison of the

theoretical and measured OLTFs of the two parts of the Advanced Virgo FC

control loop is depicted in Fig. 6.5. The measured and the theoretical OLTFs

are shown, respectively, in blue and in orange . It can be seen that the measured

OLTFs differ from the theoretically modeled OLTFs for both the segments of

the loop. For the FC length control loop, the Unity Gain Frequency (UGF),

the Phase Margin (PM) and the Gain Margin (GM) are different between the

model and the measurement. For the Squeezing main laser frequency control

loop, the shape is different below few hundreds of Hz. In general, this difference

can be due to various reasons: either the system exhibits uncertainties and pa-

rameter variations or there are limitations in the measurements. In the case

of the Advanced Virgo FDS, all the components of the FC operate in highly

controlled environments. Furthermore, the system has been well-characterized

and its parameters are accurately known. Therefore, in this scenario the case

of uncertainties and parameter variations can be ruled out or, at least, ne-

glected until a certain degree. Thus, a possible explanation of the difference

between the theoretical and the measured OLTFs can be the way to perform

the measurements.
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Figure 6.5: Bode plots of the modeled and measured OLTFs for both the
length control of the FC (left) and the frequency control (right). The orange
line represents the theoretical model, while the blue dashed lines depict the
measurements of the OLTFs obtained with a SISO system identification ap-
proach.
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6.5 MIMO model and system identification

technique

A SISO system approach was initially used to design the control filters of the

two parts of the FC control loop. With this approach, discrepancies arose

comparing measured with modeled OLTF, as shown in Fig. 6.5. Furthermore,

the system exhibited instabilities, i.e. sudden loss of control, that could not

be explained in a first instance. Therefore, in order to better understand the

dynamics of the full opto-mechanical system, two steps have been made: at first,

a system identification approach that can unfold the cross-coupled dynamics2

when measuring the system OLTF has been used; then, a MIMO approach

including the cross-coupling terms has been considered to model the system.

6.5.1 System identification technique

Identifying a complex system within a closed-loop condition is notably chal-

lenging. Characterizing complex systems with multiple control loops, as the FC

of the FDS system of Advanced Virgo, leads to measurements that could not be

explained with simple SISO OLTF models. Therefore, adding extra feedback

loops often leads to biased measured results [131]. To better understand the

results, and to get unbiased OLTFs, a MIMO system identification approach

should be considered. Obtaining the Frequency Response Function (FRF) is

the starting point for this method. Considering the general opto-mechanical

scheme shown in Fig. 6.4, the representation of the array of the discrete-time

input signals of the plant, is denoted as u(nTs). n ranges from 0 to N − 1,

with N representing the number of samples, while Ts is the sample time. In

the frequency domain, with the application of the Discrete Fourier Transform

(DFT) [132], the array of the input signals is given by:

U(ωk) =
1√
N

N−1
∑

n=0

u(nTs)e
−j2πnk/N (6.5)

where ωk = 2πfk, fk = k/NTs is the frequency at index k in the discrete

frequency domain and k is the index of the frequency bin. Note that these

are array of signals, so they count for multiple-inputs. Furthermore, for a

Linear Time Invariant (LTI) system in open loop, an empirical transfer function

2The cross-coupled dynamics lie in the off-diagonal elements of the opto-mechanical plant

matrix.
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estimation can be derived from the observed data of the output Y (ωk) and

input signals U(ωk). Thus, the plant TF can be estimated and expressed

as Ĝ(ωk) = Y (ωk)
U(ωk)

. The error of the measurement can be diminished if this

computation is averaged for several segmented portions of input and output

signals. While with a different approach, a TF of the plant can be derived from

the cross-power spectrum of its input and output signals (Φyu) along with the

auto-power spectrum of its input signal (Φuu) [132]. This computation involves

as well segmentation into smaller sections of both signals, which minimizes

spectral leakage. Hence, the TF estimate is given by Ĝ′(ωk) =
Φyu

Φuu
. However,

when these LTI systems are in a closed loop condition to operate in a precise

working point, such as the case of the FC of the FDS system, it is possible

to estimate the TFs of the system in closed loop using the array of excitation

inputs n(nTs), and measuring the signals before and after the noise injection

node. These measurements are performed for both the controls of the length

of the FC and the frequency of the main squeezing laser. In this context the

estimated TF of the real plant is given by [134]:

Ĝ′(ωk) =
Φyu

Φuu
=

G0(ωk)Φnn − C(ωk)Φdd

Φnn + |C(ωk)|2Φdd
. (6.6)

When noise injections dominate among the sources of noise of the loop, equation

(6.6) reduces to the real plant G0(ωk). However, the problem arises when

disturbances dominate the noises entering the loop. In this case, equation (6.6)

reduces to − 1
C(ωk)

. When neither n nor d are zero, then the result of (6.6)

is a mix of both contributions, Φyu and Φuu. In contrast with the different

methods previously explained, we can apply an indirect approach [136], which

consists of computing closed loop TFs, i.e. Sensitivity function (S′(ωk)) and

complementary sensitivity function (T ′(ωk)) of this system, which are given

by:

Ŝ′(ωk) =
Φ̂e′n

Φ̂nn

=
1

1 + L̂′(ωk)
(6.7)

and:

−T̂ ′(ωk) =
Φ̂en

Φ̂nn

= − L̂′(ωk)

1 + L̂′(ωk)
, (6.8)

where L̂′(ωk) is the estimated OLTF of the system depicted in Fig. 6.4, given by

the product of all the elements in the loop, i.e. L(ωk) = H ·G0·A·C. Ultimately,

the estimation of the OLTF can be obtained from these measurements in closed
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loop as:

L̂′(ωk) = T̂ ′(ωk)(Ŝ′(ωk))
−1. (6.9)

Lastly, since the controllers of this system are known, the dynamics of the

actuators and the response of the photo-diode are well understood, then the

matrix of the unbiased opto-mechanical plant TFs can be derived starting from

(6.9).

6.5.2 MIMO model of the system

A MIMO block diagram scheme of the FC opto-mechanical system is depicted

in Fig. 6.6. In the scheme, the opto-mechanical plant that involves the control

of the length of the optical cavity and the PLL that controls the frequency

of the main squeezing laser are represented by the four elements (G11, G12,

G21 and G22) of the real opto-mechanical plant matrix, G0(jωk). In particu-

lar, G11 represents the dynamics of the optical cavity length, G12 represents

the cross-coupling dynamics of the optical cavity length to the frequency of

the squeezing laser, G21 is the cross-coupling dynamics of the frequency of the

squeezing laser to the optical cavity length and G22 stands for the dynamics

of the main squeezing laser frequency. The actuator dynamics matrix A(jωk),

a diagonal matrix, has two non-zero elements: the dynamic of the mirror ac-

tuators (A11), and the Voltage-Controller Oscillator (VCO) dynamic (A22).

The sensing response matrix H(jωk) has two identical elements H11 and H22,

representing the response of the photo-diode placed in reflection of the cavity.

Finally, this scheme also includes the control filters used for the cavity length

control (C11) and for the frequency stabilization (C22), which are the non-zero

elements of the diagonal control matrix C(jωk).

6.5.3 Model results

The combination of the system identification technique presented in section

6.5.1 and the detailed MIMO scheme shown in section 6.5.2 allows to not neglect

the re-injection of noise from one control loop to another, as explained in [166].

This approach facilitates the estimation of all cross-coupling elements within

this complex system, which are included in the non-diagonal terms of the OLTF

matrix L(jωk). Meanwhile, the diagonal terms of L(jωk) represent the pure

dynamics of both the FC length and the squeezing main laser frequency, i.e. not

affected by re-injection of noise. Thus, it can be used to explain the difference
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Figure 6.6: Schematic representation of a 2x2 MIMO control system. The
system has two nodes for noise injections, used for characterization and perfor-
mance check-up. A11 and A22 represent the actuator dynamics of each branch.
The sensor response is characterized by the TFs H11 and H22. The control
filters for these loops are denoted as C11 and C22. The interaction between
these two loops is due to the plant cross-coupled dynamics denoted as G11,
G12, G21 and G22. The dashed pink line denotes the equivalent plant that is
“seen” by the upper loop, when these two loops work in closed loop condition.

between the theoretical and experimental OLTFs shown in Fig. 6.5. Indeed,

we could validate the model detailed in section 6.4, as shown in Fig. 6.7: green

curves are the performed measurements analyzed with the MIMO approach

and the orange curves are the model. Finally, the model fits the measurement.

Furthermore, it was possible to explain the measurement results obtained

in the first analysis performed with a SISO approach, shown in blue in Fig. 6.5.

To reproduce these measurement results, we need to introduce the concept of

equivalent plant. In the case of the Advanced Virgo FC, the equivalent plant

of one loop takes into account also the dynamics of the other loop working in

closed-loop condition. The equivalent plant of the FC length control Geq
11 is

shown inside the dashed pink section of Fig. 6.6 and is given by:

Geq
11 = G11 −

G21H22C22A22G12

1 +G22H22C22A22
. (6.10)

Note that Geq
11 deviates from the plant G11 due the interaction of these two

loops, expressed in the second term of equation (6.10). Analogously, we can

estimate the equivalent plant of the squeezing main laser frequency control Geq
22.
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Figure 6.7: Bode plot analysis of the FC length and frequency control loops.
The solid orange lines depict the model of the system and the dashed blue lines
show the measurements performed with a SISO approach. The dashed green
lines depict the results of the measurements obtained using a MIMO approach.
The dashed red lines represent the OLTFs when the equivalent plant is included
in the model, explaining the results of the measurements obtained with the
SISO approach.
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The OLTFs estimated using the equivalent plants are shown in red in Fig. 6.7

and they fit the measurement results obtained with the SISO approach.

6.6 Robustness analysis

To deliver the target level of FDS, the full system should meet the required level

of locking precision and be stable and robust. The initial set of implemented

control filters allowed to achieve the required level of lock precision. However,

the target working condition was not always feasible due to the loss of control

of the FC, indicating instabilities in the system. Since the initial controllers

were designed using a SISO approach, possible intrinsic cross-couplings were

neglected. Thus, they could not necessarily perform as expected, explaining

the instabilities of the system. To understand this behaviour, we analyze with

the Nichols chart the stability of the MIMO opto-mechanical system, because

it has been shown that they are valid in particular conservative scenarios [167].

The Nichols charts of the four elements of the OLTF matrix L(jωk) for this

system are presented with the blue curves in Fig. 6.8. It can be seen that the

OLTFs of the diagonal terms, i.e. L11 and L22, are robust and stable. However,

inspecting the Nichols chart of the off-diagonal terms, i.e. L12 and L21, of

the OLTF matrix, it can be observed that their phases are below −180 deg,

indicating instability. Therefore, minor disturbances or noise sources entering

the loop could introduce instabilities in the system unlocking the optical cavity.

In this analysis, our focus was understanding the behaviour and ensuring

the stability of the MIMO system. Therefore we optimized the filters to gain

overall stability and robustness, without affecting the level of the achieved

locking precision. Note that both the current and new control filters have been

designed in a decentralized architecture [158] due to the limitations imposed

by the installed hardware and software. The Nicholas chart for the OLTFs

estimated using the new control filters are shown with the orange curves in

Fig. 6.8. It can be noticed that with the new set of control filters, the system

has a sufficient level of stability margin.

6.7 Conclusions

In the break between the Observing Runs O3 and O4, the ground-based GW

detectors have gone through several upgrades to improve their sensitivity. In
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Figure 6.8: Nichols plot comparison for two sets of control filters. The blue
curves represent the OLTFs with the current implemented filters, while the
orange curves denote the updated OLTFs for redesigned control filters. The
red “plus” represents the point of unity gain and −180 deg of phase, the critical
point for stability studies. The modification of these filters aims to enhance
both the stability and robustness of the longitudinal control of the FC system.
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Advanced Virgo, among the various upgrades, a FDS system has been imple-

mented to obtain a reduction of the impact of the Quantum Noise in the full

detection bandwidth. The frequency dependent squeezed field is produced with

a rotation of a squeezing ellipse coming from a FIS source, by reflecting it from

a detuned high-finesse Fabry-Perot linear cavity, called Filter Cavity (FC). To

achieve the target of a QN reduction of about 4.5 dB at high frequencies and

about 2 dB at low frequencies, strict requirements have been imposed on both

the losses and phase noise of the system. In particular, to obtain the required

level of phase noise, the target lock precision level for the longitudinal control

of the FC was set to be below 1Hz RMS. In the Advanced Virgo detector, the

control of the FC is achieved through different steps. Initially, the lock of the

cavity is obtained using an auxiliary laser beam. Since it was not possible to

reach this level of locking precision acting only on the mirrors of the cavity, a

second control loop, acting on the frequency of the squeezing main laser has

been implemented.

A SISO system approach was initially used to design the control filters of

the two parts of the FC control loop. With this approach, discrepancies arose

comparing measured with modeled OLTFs. Therefore, to better understand

the dynamics of the full opto-mechanical system, two steps have been made:

at first, a system identification approach that can unfold the cross-coupled

dynamics when measuring the system OLTF has been used; then, a MIMO

approach including the cross-coupling terms has been considered to model the

system. Using the MIMO model we were able to explain the difference between

the theoretical and experimental OLTFs. Moreover, the investigation revealed

that the initial longitudinal controllers, while effective in achieving a high level

of precision, exhibited instabilities when studying cross-coupled terms, leading

to lock losses of the system. To mitigate these issues, we performed robustness

analyses and, subsequently, redesigned the filters to enhance the stability mar-

gins of the FC system.

Thanks to this result, we achieved the target lock precision required in the

control of the filter cavity only using the auxiliary beam in the low finesse con-

figuration, simplifying the control scheme. The current study has underscored

the importance of employing a suitable system identification technique to un-

derstand the behavior of complex feedback systems. This work also aims to

open avenues for future research directed toward enhancing control strategies.
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Appendix: Squeezed states

The quantum noise in interferometers can be described also using the quan-

tum mechanics notation expressing a laser beam as an electromagnetic field

at a frequency ω in terms of creation (a†ω) and annihilation operators (âω)

[168, 169]. This notation will be useful to introduce and describe the concept

of squeezed states. Since annihilation and creation operators are not Hermitian,

they cannot be used to describe observable quantities. Therefore, we introduce

Hermitian quadrature operators as a way to represent the amplitude and phase

components of the electromagnetic field. Quantization of light imposes uncer-

tainties when measuring either of these two observables. Then, the amplitude

quadrature operator is defined as [170]:

X̂1 = âω + a†ω (6.11)

while the phase quadrature operator is defined as:

X̂2 = i(a†ω − âω). (6.12)

The uncertainty principle imposes restrictions on the variances of these

operators as:

⟨(∆X̂1)
2⟩⟨(∆X̂2)

2⟩ ≥ 1, (6.13)

meaning that measuring both the amplitude and phase quadratures precisely

at the same time is not possible. Using this notation we can first defined the
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Figure 6.9: Phasor representation of different quantum states: (a) Vacuum
state, (b) Coherent state, (c) Squeezed state along X̂1.

vacuum state |0⟩, the state of a field where no photons are present, shown

in Fig. 6.9(a). Then we can introduce coherent states, which refer to the

eigenstates of the annihilation operator. A coherent state can be represented

as |α⟩, where α, the complex field amplitude, is the eigenvalue that corresponds

to the eigenstate, and is related to the number of photons.

A way to describe a laser beam as a coherent state is by applying a displace-

ment operator (D̂ = eαâ−α∗a†

) to the vacuum state. Thus, the representation

of a laser beam as a coherent state, can be expressed as:

|α⟩ = D̂(α)|0⟩ (6.14)

For a coherent state, the product defined in equation (6.13) is minimized to

1, meaning that the variances for the amplitude and phase quadrature are

identical. This leads to a spherically symmetric uncertainty distribution as

shown in Fig. 6.9(b). Giving that the product in equation (6.13) must hold,

the uncertainties can be redistributed between the two quadratures. This can

be achieved by deforming the spherical distribution of the uncertainties into an

ellipse. This is denoted as the process of squeezing a coherent state, resulting

in a squeezed state of light, as shown in Fig. 6.9(c). Hence, a state squeezed

in its phase-quadrature exhibits a reduced uncertainty in X̂2 at the expense

of an increased uncertainty in X̂1. A squeezed state can be obtained applying

the unitary squeezing operator (Ŝ(reiΦ)) to a coherent state, with a squeezing

degree r and a squeezing angle Φ (Φ = 0 denotes amplitude squeezing, whereas

Φ = π/2 defines phase squeezing).
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Chapter 7

Toward direct measurement of Coating

Thermal Noise for Future

Gravitational-wave Detectors

In the second generation of GW detectors, the fundamental noise limiting the

sensitivity in the mid-frequency range is the Brownian coating thermal noise.

Indeed, this noise could also limit the sensitivity of the 3rd-generation of detec-

tors. Thermal noise is present not only in the coating but also in the substrate

of the mirrors and in their suspension wires. In order to overcome the barrier of

this fundamental noise, the plan for Einstein Telescope is to replace the current

fused-silica mirrors with silicon mirrors and cool them down to 10K for the in-

terferometer focused on improving the sensitivity at low frequencies. Since this

is a new material at a new operation temperature for GW detectors, two things

are extremely essential. The first one is to measure directly the thermal noise

of the coatings at cryogenic temperatures and the second one is to character-

ize the coating materials that are intended to be used for this new generation

of detectors. To directly measure the thermal noise of the coatings, optical

techniques can be used. Unfortunately, this kind of direct measurements has

several complications. Firstly, if the vacuum level is insufficient, residual gases

risk to condense and freeze on the sample mirror surface due to the cryogenic

environment and will thereby spoil the measurement. Secondly, the noise floor

of the electronics used for the control and measurements in this setup must be

well below the expected noise level related to the coating thermal noise itself.

Implementing such a kind of experiment will help in answering the following

questions:
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• Is it possible to directly measure the Coating Thermal Noise (CTN) for

the 3rd-generation GW detectors?

• What coating material should be used to maximize the sensitivity of these

detectors?

• What would be the maximum sensitivity for these detectors?

To support research and development for 3rd-generation GW detectors, we

started to design and develop an advanced optical setup to directly measure

the CTN at cryogenic temperatures. The optical design is derived from the

one completed at MIT by Gras and Evans [171, 172]. We decided to integrate

the core of the optical experiment into a seismic isolation system to minimize

vibrations and external disturbances, ensuring accurate measurements and re-

liable testing results. With this setup we could profit of a quiet environment at

cryogenic temperature to test and characterize also new sensors and actuators

that could be exploited by the Einstein Telescope.

By providing a controlled and stable environment, our setup is poised to

play a crucial role in advancing the development of next-generation GW detec-

tion technologies, contributing to the continuous progress of the field.

In this chapter we present the conceptual design of the optical cavity and

the preliminary design of the control architecture of this optical setup. The

commissioning of the full setup and the first CTN measurement results are

expected for the next year.

7.1 Working principle of the optical setup

We use an optical setup to characterize the CTN of a high-reflectivity sample

mirror. In GW detectors, the internal thermal noise of the test mass mirrors is

defined as the fluctuations in the longitudinal motion of the optical axis. These

fluctuations are produced by the internal damping inside the test mass, as de-

scribed in Chapter 2. Internal damping of mirrors refers to the intrinsic energy

dissipation within the mirror material due to internal friction and structural

rearrangements when it deforms. This damping affects the mirror’s perfor-

mance by reducing its quality factor (Q-factor) and increasing thermal noise.

At first, we install a sample mirror inside a folded high-Finesse optical cavity.

Then, this cavity must allow the co-resonance of three modes: The fundamen-

tal mode of the laser beam (TEM00) and two higher-order modes (TEM02
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and TEM20). Under those circumstances CTN appears as a fluctuation in

the resonant frequency difference between the two higher-order modes (HOM).

The fundamental Gaussian mode (TEM00), and two Hermite-Gaussian modes

(TEM02 and TEM20) are shown in Fig. 7.1.

(a) TEM00 (b) TEM20 (c) TEM02

Figure 7.1: Shape of the far field intensity of (a) the fundamental mode
(TEM00) and higher-order modes (b) TEM20 and (c) TEM02. Intensity in
W/m2.

The thermal noise level that is sensed by the TEM02 mode is different

from the thermal noise level sensed by the TEM20 mode because they do not

explore the same area of the sample mirror coating. On the contrary, these

HOMs and the fundamental mode sense the same common noises. These noises,

are for example: cavity length noise, frequency noise and substrate thermal

noise of the mirror. Thus, the fundamental mode can be used to decouple

the common noises from the CTN measurement, and we can obtain a clean

CTN measurement. In this experiment, the CTN is obtained as a result of

the beat note signal from the resonant frequencies of the TEM02 and TEM20

modes. While multiple dissipation mechanisms within the coating can cause

the observable to fluctuate, we focus on the primary one: mechanical loss of

the coating materials. Although this constitutes only a portion of all coating

thermal noises, we will denote the noise associated with this mechanism as

CTN. Knowing this information one can better understand and update the

sensitivity achievable by future detectors.

7.2 Optical experimental setup

This optical setup is composed by two main parts. The first one aims to

generate the three beams that are injected into the folded cavity and to detect

the reflected and transmitted beams needed for the various control loops and
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for the measurement of the CTN. It is composed of a 1550 nm fiber laser source

and various optical components and electro-optical devices. The second one is

an in-vacuum high-finesse multi resonant cavity. The general scheme is shown

in Fig. 7.2.

Figure 7.2: Sketch of the optical setup to measure CTN.

The laser beam is split in three components: one is injected in an Electro-

Optic Modulator (EOM) to be phase modulated; the other two are injected

into two Acousto-Optic Modulators (AOMs) to shift their frequency, allowing

the resonance of the HOMs within the cavity. At the output of the modulators

the three beams, propagating in free space, are superposed, sent through a

mode matching telescope and injected into the cavity.

As for the controls, the main laser is stabilized in frequency by locking the

TEM00 mode to the folded cavity length using a Pound-Drever-Hall (PDH)

loop in reflection, while the TEM02 and TEM20 are DC locked to the folded

cavity. In addition to that, the two beams shifted in frequency are also stabi-

lized in intensity actuating on the AOMs, by using Intensity Stabilization Servo

(ISS) loops. Each loop for the two frequency shifted beams includes a Voltage-

Controlled Oscillator (VCO). It is important to note that all the beams are in

their fundamental mode all the time outside the folded cavity. The conversion

of the frequency shifted beams into TEM02 and TEM20 takes place only inside

the cavity. A key of the experiment is that the radius of curvature (RoC) of

the input and output couplers of the cavity are slightly different. Therefore,

by tuning the orientation of the input mirror, with respect to the output one,

one can get the two HOMs co-resonating, together with the TEM00, inside the

folded cavity. This happens since, in contrast to an ideal situation, the Trans-

verse Mode Spacing (TMS) differs for them. In other words, the frequencies

of the TEM20 and TEM02 modes are separated by a few MHz. Another key

point is that the “fixed” resonant frequencies difference of these modes changes
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due to the coating thermal noise.

7.3 Folded optical cavity

The optical cavity is installed in-vacuum at a temperature of 10K. It is com-

posed of the input and output couplers characterized by a nominal RoC of

50mm, reflectance R = r2 = 0.9998, transmittance T = t2 = 200 ppm and

losses L = 25 · 10−6, where r and t stand for the amplitude reflection and

transmission coefficients, respectively, with 0 ≤ r and t ≤ 1 and r2 + t2 < 1.

The length of the cavity is L = 97.6mm. The waist w of the beam is placed on

the sample mirror to maximize the effect of the thermal noise (CTN ∝ 1/w).

In order to align the folded cavity, the mirrors are provided with actuators to

adjust them in specific Degrees of Freedom (DoF):

• Sample Mirror: Transverse (T), Pitch (P) and Yaw (Y).

• Input Coupler: Longitudinal (L), Pitch (P) and Yaw (Y).

• Output Coupler: Longitudinal (L), Pitch (P) and Yaw (Y).

This is summarized in Fig. 7.3.

Figure 7.3: Controllable DoFs of the folded cavity

7.3.1 Simulations

With the objective of testing, understanding and speeding up the commission-

ing of the optical setup, the folded cavity has been simulated using Finesse

[122, 123] simulation tool. These simulations help to refine design parameters
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7.3. FOLDED OPTICAL CAVITY

and minimize risks. Using the design parameters of the optics and laser and

a frequency modulation of fm = 15MHz, we have checked the resonance con-

dition, linewidth, finesse and cavity pole. The results are shown in Fig. 7.4a

and Fig. 7.4b. Fig. 7.4a shows the transmitted, reflected and circulating pow-

ers around the resonance condition of the cavity: Everything works as ex-

pected. Fig. 7.4b shows the transfer function of the cavity, the cavity pole is

at fc = 55981Hz. The computed finesse with this tool is F = 13717.
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Figure 7.4: (a) Transmitted (blue), circulating (black) and reflected (red) pow-
ers of the folded cavity for frequencies near the resonance frequency. (b) Trans-
fer function of the cavity for the fundamental mode.

The main laser is stabilized in frequency by locking the TEM00 mode to

the folded cavity length using a PDH loop in reflection: the error signal to lock

the fundamental mode using the PDH technique can and must be optimized.

Fig. 7.5a shows a preliminary study to find the optimal demodulation phase

using the PDH technique: Depending on the demodulation phase, the error

signal linear range can be maximized.

Since the RoC of the input and output couplers of the cavity are slightly

different, by tuning the orientation of the input mirror with respect to the out-

put mirror, one can get the three modes co-resonating inside the folded cavity.

In the simulation, this effect is mimicked by adding astigmatism to one of the

mirrors. Fig. 7.5b shows a preliminary study of modes co-resonating inside the

folded cavity varying the level of astigmatism applied on the output coupler:

scan of the cavity shows multiple peaks, corresponding to the resonance of the

fundamental (TEM00) mode and the TEM 02/20 modes.

Fig.7.6 shows a photo of the assembled folded cavity.
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Figure 7.5: (a) Optimization of PDH error signal: Scan of different demod-
ulation phases. (b) Circulating power corresponding to the fundamental and
HOMs for different astigmatism in the output mirror.

Figure 7.6: Photo of the folded cavity for the CTN experiment.
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7.4. CONTROL SCHEMES

7.4 Control schemes

As mentioned before, the main laser is stabilized in frequency using the TEM00

resonating inside the cavity with a PDH loop as shown in Fig. 7.7: The error

signal is derived from the reflection port of the folded cavity. A slow, large

dynamic range loop is used to find the resonant region. A fast loop is used to

continuously adjust the laser frequency to maintain the beam resonating in the

cavity.

Figure 7.7: PDH loop diagram to lock the laser frequency on the cavity length.

The TEM02 and TEM20 modes are controlled using a technique known as

DC locking. The error signals are derived from the intensity signals obtained

from the cavity’s transmission port. Fig. 7.8 shows a sketch of the DC-locking:

The signal in transmission from the folded cavity is used to keep the TEM02 and

TEM20 resonating inside the cavity by controlling the RF frequency generators

that drive the AOMs, which runs in parallel to the control of the loop for the

TEM00.

Figure 7.8: Block diagram of the DC locking scheme. TEM02 and TEM20 are
frequency locked to the cavity.
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7.5. VIBRATION ISOLATION AND CRYOGENIC SYSTEM

In addition to DC locking, intensity stability loops are also used to maintain

the stability of the optical intensity injected into the cavity. A pick-off from the

beam the output of each AOM is used as error signal; the intensity is stabilized

by modulating the amplitude of the VCO output by means of a RF mixer.

The set up uses two intensity stabilization loops, one for TEM20 and other

for TEM02. A sketch of one of the intensity stabilization loops is shown in

Fig. 7.9.

Figure 7.9: Block diagram of the intensity stability servo loop for the control
of each HOM. TEM02 and TEM20 are stabilized in intensity with VCOs and
AOMs.

Since beams shifted in frequency are frequency-locked to the TEM02 and

TEM20 frequencies of the folded cavity, the CTN of the sample mirror can be

measured by the frequency of the beat note between these beams. It’s worth

noting that the input coupler has been rotated with respect to the output

coupler to establish a “fixed” difference between the TEM02 and TEM20 mode

frequencies. This frequency difference is measured by analyzing the beat note

signal of the two beams. Subsequently, fluctuations in the beat note are tracked

using a Phase-Locked Loop (PLL) setup, as illustrated in Figure 7.10.

Finally, the oscillations in the beat signal frequency are transformed into

a corresponding variation in cavity length by applying the conversion factor

Lλ/c, where L is the total length of folded cavity, λ is the wavelength of the

laser light and c is the speed of light. The Amplitude Spectral Density (ASD) of

this adjusted signal contains the coating thermal noise alongside fundamental

and technical noises. These extra noises, apart from the CTN, will have to

be reduced within the relevant frequency range of the CTN measurement to

enhance the accuracy and reliability of the results.
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Figure 7.10: Phase Locked loop diagram to track the difference in frequencies
of the beat note of the two HOMs.

7.5 Vibration isolation and cryogenic system

The optical bench is cooled down to 10K using cooling wires connected to a

Thermal Storage Unit (TSU), as shown in Fig. 7.11. Furthermore, in order to

suppress undesirable vibrations and to minimize the vibration induced by the

thermal link on it, the optical bench is suspended by three maraging steel wires.

These wires are connected to three Geometric Anti Spring (GAS) filters, which

are mounted on a movable top plate. These filters provide vertical vibration

isolation to the optical bench [173]. Three flexible inverted pendulum (IP) legs

support the top movable plate. Altogether, this entire system is situated inside

a vacuum tank to reduce the fluctuations produced by air and the acoustic

noise.

Mounted on the IP legs, the top plate has three Linear Variable Differential

Transformers (LVDTs) circumferentially arranged. Each LVDT is colocated to

a voice coil actuator to sense and adjust the position of the top plate. Thus,

the optical bench can be adjusted in longitudinal, transverse and yaw DoFs.

Moreover, each GAS filter unit also has one LVDT with a co-located voice coil

actuator. Consequently it is possible to adjust the position of the optical bench

in vertical, pitch and roll DoFs. To summarize, the optical bench can be moved

in all six DoFs.

In order to sense the position of the optical bench for the alignment with re-

spect to the input and output of the optical experiment, we will use a quadrant

photo-diode installed along the path of the beam transmitted by the cavity.
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Figure 7.11: Vibration isolation system and cryogenics for the CTN optical
bench.
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7.6. CONCLUSIONS AND FUTURE WORK

7.6 Conclusions and future work

In the next steps of the project, the focus will shift to analyzing and reducing

the impact of noises on the experimental setup. This will involve characterizing

and quantifying various noise contributions such as seismic vibrations, thermal

fluctuations, and laser stability to refine common mode rejection techniques.

Having a convenient optical setup for testing current and new coatings

designed for future GW detectors would be a significant asset. This setup is

specifically designed to work with a main laser wavelength of 1550 nm. Initially

it will be tested at room temperature and later at cryogenic temperatures, to

directly measure the coating thermal noise in the working conditions planned

for the Einstein Telescope.
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Closure

Up to 2015 the Universe was observable for us only through electromagnetic

waves, high energy particles, and neutrinos. The direct detection of gravita-

tional waves (GWs) opened another window to observe it.

This thesis has explored the capabilities of ground based interferometer to

detect GWs, focusing on the Advanced Virgo Plus detector. The thesis first

provides an overview of the foundation of gravitational radiation, setting the

stage by emphasizing the importance of precise detection capabilities in GW

observatories. It was revealed early on that noise is the principal antagonist

in the tale of GW detection. Various sources of noise, from seismic distur-

bances to thermal fluctuations, quantum noise and most importantly, technical

noises, were explored in detail. Through this exploration, the thesis not only

highlighted the challenges faced by current GW detectors but also framed the

necessity for innovative noise reduction techniques that were later discussed

and implemented.

In response to these challenges, the study of the implementation of a

Multiple-Input Multiple-Output (MIMO) control system in Advanced Virgo

Plus was detailed. This sophisticated system was designed to enhance the

detector’s ability to discriminate against noise without compromising the

integrity of GW signals. The effectiveness of the MIMO system was under-

scored by extensive simulations and real-time operational adjustments, which

demonstrated its capacity to significantly reduce the re-injection of noise in

the detector’s data output. This was not just a theoretical enhancement but a

practical upgrade to Advanced Virgo Plus operation. The next step will be to

revisit all controllers in place to account for the intrinsic cross-couplings and

reduce the re-injection of noise among all these degrees of freedom.

The thesis also delved into the implementation of a reliable MIMO system

identification framework. This was tested for the Filter Cavity of the frequency

dependent squeezing system, designed to reduce the impact of quantum noise.
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The results from these experiments provided compelling evidence supporting

the effectiveness of frequency dependent squeezing, facilitated by the MIMO

control system identification and design. The next step will be to optimize these

longitudinal control filters, as the current implementation ensures robustness

but allows for improvement.

Further discussions included the development of a frequency domain noise

budget tool, a framework for identifying and quantifying noises at various fre-

quencies. This tool proved its capabilities for ongoing tests and assessments

of the detector’s sensitivity and will be essential in pinpointing specific noise

sources that could be targeted for further mitigation. Being a real-time snap-

shot of the detector’s noise, this tool can provide insights into the noises that

limit or could limit the sensitivity of the detector, thereby enhancing signal

clarity and detection confidence. This is, however, just the start, since many of

the known noises have to be integrated and this will be a collaborative effort.

A portion of the research was dedicated to the design and preliminary work

towards directly measuring coating thermal noise at cryogenic temperatures

for future GW detectors. By designing and implementing a new experimental

setup, the research can provide directions for the direct measurement of this

critical noise source. Once ready, this setup will not only contribute to a better

understanding of thermal noise characteristics but also to test new materials

and technologies that could lead to improvements in future GW detectors. This

is just a preliminary design to complete the experiments. In the near term, after

the completion of the experiment, these direct measurements will clarify the

directions to take for coatings in future GW detectors.

Looking forward, the thesis outlines several pathways for further research.

The refinement of the MIMO control systems, the efficient system identification

frameworks and the design of an optical setup to explore new materials for the

coatings of the main mirrors of these detectors. The ongoing development of

next-generation detectors, such as the proposed Einstein Telescope, will ben-

efit also from the findings and methodologies developed in this research. The

advancements made through this thesis in the field of GW detection repre-

sent a substantial progress toward the integration of advanced noise reduction

techniques, sophisticated control systems, and innovative experimental setups,

marking a key transition in our approach to observing the cosmos.
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Summary

The detection of gravitational waves has marked a monumental leap in our

ability to perceive and understand the Universe. These waves, ripples in

space-time caused by massive celestial events like black-hole and neutron

star mergers, were first predicted by Albert Einstein in his theory of general

relativity. Their detection provides a new way of looking at the Universe,

differing from traditional electromagnetic observations. However, capturing

these faint signals requires extraordinarily sensitive instruments capable of

distinguishing gravitational waves in a world of background noise. This thesis

focuses on the challenges and advancements in detecting gravitational waves,

emphasizing noise reduction techniques and sophisticated control systems to

enhance the sensitivity of detectors.

What are gravitational waves?

Gravitational waves are distortions in space-time generated by massive

astrophysical events, such as black hole mergers, neutron star collisions, and

even from the Big Bang. These waves propagate outward from their source

at the speed of light, carrying information about the dynamics of the process

that generated them. The detection of gravitational waves allows scientists to

study these colossal events, providing a new method of exploring the Universe

that complements traditional electromagnetic observations.

How do we measure gravitational waves?

Interferometric gravitational-wave detectors are highly sophisticated instru-

ments designed to measure the minute distortions in space-time caused by the

passage of gravitational waves. The primary detectors in use today are large-

scale interferometers like LIGO, Virgo and KAGRA. These detectors use the

principle of a Michelson Interferometer enhanced with Fabry-Perot and Re-

cycling Cavities to measure small changes in the distance between suspended
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mirrors, caused by gravitational waves stretching and compressing the space-

time.

• Michelson Interferometer: Splits a laser beam into two perpendicular

paths. When gravitational waves pass through, they cause tiny changes

in the length of these paths, which can be detected as shifts in the inter-

ference pattern of the recombined beams.

• Fabry-Perot Cavity: Increases the interaction time of the laser beams

with gravitational waves by reflecting the beams multiple times between

mirrors, enhancing the sensitivity of the detector.

• Recycling Cavities: Reuse the power that gets reflected back to the

source and recycle and enhance the gravitational-wave signal.

Fig. 1 depicts two typical configurations of current gravitational-wave detec-

tors. The use of additional optical cavities enhances the detector’s sensitivity

but adds complexity due to the introduction of extra degrees of freedom per

added mirror.

Figure 1: Left: Power Recycling Fabry-Perot Michelson interferometer. Right:
Dual (power, PRM, and signal, SRM) Recycling Fabry-Perot Michelson inter-
ferometer.

The most important degree of freedom in these detectors is the Differential

Arm (DARM) motion, which is sensitive to the passage of gravitational waves.

For a passing GW, the detector produces an effect on the DARM degree of

freedom eDARM (t) through the detector’s response R. Ultimately, eDARM (t)

is processed to get a reconstructed strain hREC(t) through a calibration process

(R−1). Fig. 2 shows a sketch of detecting a gravitational-wave signal and pro-

ducing a reconstructed strain. The different degrees of freedom of the detector
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can be affected by various types of noise, and due to their intrinsic cross-

couplings to the DARM degree of freedom, they can affect the measurement of

gravitational-wave signals.

Figure 2: Diagram of a GW detection, from the astrophysical signal to the
reconstructed strain for parameter estimation and data analysis.

Performance limitations of gravitational-wave detectors.

The detection of gravitational waves can be significantly affected by various

types of noise that can obscure the faint signals. This thesis explores several

key sources of noise and their impact on detector performance:

• Seismic Noise: Vibrations from the Earth’s surface, such as those

caused by natural seismic activity or human activities.

• Thermal Noise: Random fluctuations generated by the natural motion

of particles at the atomic level within the materials of the detector.

• Quantum Noise: Inherent uncertainties in the measurement process

due to quantum nature of light.

• Technical Noises: Imperfections in the instrumentation and control

systems used in the detectors.

Multiple-Input Multiple-Output (MIMO) Dynamic Systems.

The operation of gravitational-wave detectors is a complex task. Multi-

ple sensors and actuators located at various places of the interferometer are

used to measure and assess the correct working point of the interferometric
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detector. This thesis has a special focus on implementing a Multiple-Input

Multiple-Output (MIMO) control system model for the Advanced Virgo Plus

detector. This sophisticated model is used to design de-coupling filters which

can significantly reduce the noise being re-injected by the control system of the

detector. This practical upgrade not only improved the sensitivity of the Ad-

vanced Virgo Plus but also established a framework for future enhancements

in gravitational-wave detection technology.

For this study, we have implemented a MIMO representation of the longi-

tudinal degrees of freedom of Advanced Virgo Plus in the frequency domain.

A sketch for the dynamics of the system with five inputs and five outputs, in-

terconnected with one another, is depicted in Fig. 3; yn, un, en and rn indicate

the output, input signal, error signal and reference of each “n” degree of free-

dom, respectively. Additionally for each degree of freedom, perturbations are

denoted as dn, noise injection signals are denoted as xn and sensing noises are

denoted as n1
n. Furthermore, the cross-coupling terms of the plant are denoted

as Gnm(s) to represent a coupling from a degree of freedom “m” to another

degree of freedom “n”. Finally, filters and decoupling filters are depicted as

Cnn(s) and Cnm(s), respectively.
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Figure 3: Visual representation of a 5×5 MIMO system. Some examples of
decoupling filters are included.
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Reducing technical noises.

This thesis explores techniques to reduce technical noises, focusing on the

development of a reliable MIMO model and system identification framework.

Additionally, using this model as a core, a noise budget tool was developed.

In this tool several sources of noise can be included to understand the noises

that can limit sensitivity in almost real-time. Furthermore, the MIMO model

framework and the MIMO system identification approach was tested for the

Filter Cavity of the Frequency Dependent Squeezing system. The results were

promising, demonstrating the capability of the MIMO model to understand

highly coupled systems across different degrees of freedom and to analyze its

performance in a closed-loop configuration.

The research also delves into the development of optical setups for testing

new materials and coatings designed to minimize thermal noise. These

materials are crucial for future detectors, which aim to operate at higher

sensitivities and at cryogenic temperatures.

Where do we go from here?

Looking ahead, the thesis outlines several key areas for future research and

development. These include:

• Characterization and Quantification of Noise: Continued efforts

to understand and measure various noise contributions, such as seismic

vibrations, thermal fluctuations, and laser stability. This knowledge is

vital for refining noise mitigation techniques.

• System Identification: Studying new approaches for system identifica-

tion, especially for multiple-input multiple-output systems in closed-loop

and with highly cross-coupled terms.

• Optical Setup for Coating Tests: Completion of the optical setup to

test new coatings for future detectors. This setup will be tested both at

room temperature and cryogenic temperatures. The goal is to measure

coating thermal noise under conditions similar to those expected in the

Einstein Telescope, a next-generation gravitational-wave observatory.
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Samenvatting

De detectie van zwaartekrachtgolven heeft een monumentale sprong betekend

in ons vermogen om het Universum waar te nemen en te begrijpen. Deze

golven, rimpelingen in de ruimtetijd veroorzaakt door massieve kosmische

gebeurtenissen zoals botsingen van zwarte gaten en neutronensterren, werden

voor het eerst voorspeld door Albert Einstein in zijn algemene relativiteit-

stheorie. Hun detectie biedt een nieuwe manier om het Universum te

bekijken, verschillend van traditionele elektromagnetische waarnemingen. Het

vastleggen van deze zwakke signalen vereist echter buitengewoon gevoelige

instrumenten die in staat zijn zwaartekrachtgolven te onderscheiden in een

wereld vol achtergrondgeluid. Dit proefschrift richt zich op de uitdagingen

en vooruitgangen in de detectie van zwaartekrachtgolven, met nadruk op

technieken voor ruisonderdrukking en geavanceerde regelsystemen om de

gevoeligheid van detectoren te verbeteren.

Wat zijn zwaartekrachtgolven?

Zwaartekrachtgolven zijn vervormingen in de ruimtetijd die worden

gegenereerd door massieve astrofysische gebeurtenissen, zoals botsingen van

zwarte gaten, botsingen van neutronensterren en zelfs door de oerknal. Deze

golven verspreiden zich vanaf hun bron met de snelheid van het licht en

dragen informatie over de dynamiek van het proces dat ze veroorzaakte. De

detectie van zwaartekrachtgolven stelt wetenschappers in staat deze kolossale

gebeurtenissen te bestuderen en biedt een nieuwe methode om het Universum

te verkennen die traditionele elektromagnetische waarnemingen aanvult.

Hoe meten we zwaartekrachtgolven?

Interferometrische zwaartekrachtgolven-detectoren zijn zeer geavanceerde

instrumenten die zijn ontworpen om de kleine vervormingen in de ruimtetijd te

meten die worden veroorzaakt door de doorgang van zwaartekrachtgolven. De
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primaire detectoren die tegenwoordig in gebruik zijn, zijn grootschalige interfer-

ometers zoals LIGO, Virgo en KAGRA. Deze detectoren gebruiken het principe

van een Michelson-interferometer, verbeterd met Fabry-Perot- en recycling-

cavities, om kleine veranderingen in de afstand tussen opgehangen spiegels

te meten, veroorzaakt door zwaartekrachtgolven die de ruimtetijd rekken en

samendrukken.

• Michelson-interferometer: Splitst een laserstraal in twee loodrechte

paden. Wanneer zwaartekrachtgolven passeren, veroorzaken ze kleine ve-

randeringen in de lengte van deze paden, die kunnen worden gedetecteerd

als verschuivingen in het interferentiepatroon van de gerecombineerde

stralen.

• Fabry-Perot Cavity: Verhoogt de interactie tijd van de laserstralen

met zwaartekrachtgolven door de stralen meerdere keren tussen spiegels

te reflecteren, wat de gevoeligheid van de detector verhoogt.

• Recycling Cavities: Hergebruiken de kracht die wordt teruggekaatst

naar de bron en recyclen en versterken het zwaartekrachtgolf-signaal.

Fig. 1 toont twee typische configuraties van huidige zwaartekrachtgolven-

detectoren. Het gebruik van extra optische cavities verhoogt de gevoeligheid

van de detector, maar voegt complexiteit toe door de introductie van extra

vrijheidsgraden per toegevoegde spiegel.

Figure 1: Links: Power Recycling FP Michelson-interferometer. Rechts: Dual
Recycling FP Michelson-interferometer.

De belangrijkste vrijheidsgraad in deze detectoren is de Differential Arm

(DARM) beweging, die gevoelig is voor de doorgang van zwaartekrachtgolven.
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Voor een passerende zwaartekrachtgolf produceert de detector een effect op de

DARM-vrijheidsgraad eDARM (t) via de respons van de detector R. Uiteindelijk

wordt eDARM (t) verwerkt om een gereconstrueerde rek hREC(t) te verkrijgen

via een kalibratie-proces (R−1). Fig. 2 toont een schets van het detecteren

van een zwaartekrachtgolf-signaal en het produceren van een gereconstrueerde

rek. De verschillende vrijheidsgraden van de detector kunnen worden bëınvloed

door verschillende soorten ruis en door hun intrinsieke kruisverstrengeling met

de DARM-vrijheidsgraad kunnen ze de meting van zwaartekrachtgolf-signalen

bëınvloeden.

Figure 2: Diagram van een zwaartekrachtgolf-detectie, van het astrofysische
signaal tot de gereconstrueerde rek voor parameter estimatie en data-analyse.

Prestatiebeperkingen van zwaartekrachtgolvendetectoren.

De detectie van zwaartekrachtgolven kan aanzienlijk worden bëınvloed door

verschillende soorten ruis die de zwakke signalen kunnen verdoezelen. Dit

proefschrift onderzoekt verschillende belangrijke bronnen van ruis en hun im-

pact op de prestaties van de detector:

• Seismische ruis: Trillingen van het aardoppervlak, zoals die veroorza-

akt door natuurlijke seismische activiteit of menselijke activiteiten.

• Thermische ruis: Willekeurige fluctuaties die worden veroorzaakt door

de natuurlijke beweging van deeltjes op atomair niveau binnen de mate-

rialen van de detector.

• Kwantuumruis: Inherente onzekerheden in het meetproces vanwege de

kwantum natuur van licht.
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• Technische ruis: Onvolkomenheden in de instrumentatie en regelsys-

temen die in de detectoren worden gebruikt.

Multiple-Input Multiple-Output (MIMO) dynamische systemen.

Het bedienen van zwaartekrachtgolven-detectoren is een complexe taak.

Meerdere sensoren en actuatoren, geplaatst op verschillende locaties van

de interferometer, worden gebruikt om het juiste werkpunt van de interfer-

ometrische detector te meten en te beoordelen. Dit proefschrift richt zich in

het bijzonder op de implementatie van een Multiple-Input Multiple-Output

(MIMO) regelsysteemmodel voor de Advanced Virgo Plus detector. Dit

geavanceerde model wordt gebruikt om ontkoppelingsfilters te ontwerpen

die de door het regelsysteem van de detector gerëınjecteerde ruis aanzienlijk

kunnen verminderen. Deze praktische upgrade verbeterde niet alleen de

gevoeligheid van de Advanced Virgo Plus, maar stelde ook een raamwerk vast

voor toekomstige verbeteringen in de zwaartekrachtgolf-detectie technologie.

Voor deze studie hebben we een MIMO-representatie van de longitudi-

nale vrijheidsgraden van Advanced Virgo Plus in het frequentiedomein ge-

ı̈mplementeerd. Een schets van de dynamiek van het systeem met vijf ingan-

gen en vijf uitgangen, onderling met elkaar verbonden, wordt weergegeven in

Fig. 3; yn, un, en en rn geven respectievelijk de uitgang, het ingangssignaal, het

foutsignaal en de referentie van elke “n” vrijheidsgraad aan. Bovendien worden

voor elke vrijheidsgraad verstoringen aangeduid als dn, ruisinjectiesignalen als

xn en sensor ruis als n1
n. Verder worden de kruisverstrengelingstermen van de

plant aangeduid als Gnm(s) om een koppeling van een vrijheidsgraad “m” naar

een andere vrijheidsgraad “n” te vertegenwoordigen. Tot slot worden filters en

ontkoppeling filters weergegeven als Cnn(s) en Cnm(s), respectievelijk.
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Figure 3: Visuele representatie van een 5×5 MIMO-systeem. Enkele voor-
beelden van ontkoppeling filters zijn inbegrepen.
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Verminderen van technische ruis.

Dit proefschrift onderzoekt technieken om technische ruis te verminderen,

met een focus op de ontwikkeling van een betrouwbaar MIMO-model en

systeemidentificatiekader. Daarnaast werd, met dit model als kern, een

ruisbudgettool ontwikkeld. In deze tool kunnen verschillende ruisbronnen

worden opgenomen om bijna real-time de ruis te begrijpen die de gevoeligheid

kan beperken. Bovendien werd het MIMO-modelkader en de MIMO-

systeemidentificatieaanpak getest voor de Filter Cavity van het Frequency

Dependent Squeezing systeem. De resultaten waren veelbelovend en toonden

de capaciteit van het MIMO-model aan om sterk gekoppelde systemen over

verschillende vrijheidsgraden te begrijpen en de prestaties ervan in een

gesloten-lusconfiguratie te analyseren.

Het onderzoek gaat ook in op de ontwikkeling van optische opstellingen

voor het testen van nieuwe materialen en coatings die zijn ontworpen om ther-

mische ruis te minimaliseren. Deze materialen zijn cruciaal voor toekomstige

detectoren, die streven naar een hogere gevoeligheid en werking bij cryogene

temperaturen.

Waar gaan we vanaf hier naartoe?

Vooruitkijkend schetst het proefschrift verschillende belangrijke gebieden

voor toekomstig onderzoek en ontwikkeling. Deze omvatten:

• Karakterisering en Kwantificering van Ruis: Voortdurende inspan-

ningen om verschillende ruisbijdragen te begrijpen en te meten, zoals seis-

mische trillingen, thermische fluctuaties en laserstabiliteit. Deze kennis

is van vitaal belang voor het verfijnen van technieken voor ruisonder-

drukking.

• Systeemidentificatie: Het bestuderen van nieuwe benaderingen voor

systeemidentificatie, vooral voor multiple-input multiple-output systemen

in gesloten-lus en met sterk gekoppelde termen.

• Optische Opstelling voor Coatingtests: Voltooiing van de optis-

che opstelling om nieuwe coatings voor toekomstige detectoren te testen.

Deze opstelling zal worden getest bij zowel kamertemperatuur als cryo-

gene temperaturen. Het doel is om de thermische ruis van de coating te

meten onder omstandigheden die vergelijkbaar zijn met die verwacht wor-

den in de Einstein Telescope, een next-generation zwaartekrachtgolven-

observatorium.
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Gamma-Ray Astrophysics Laboratory. ESA Journal, 17(3):207–223, Jan-

uary 1993.

[40] B. P. Abbott et al. Gravitational waves and gamma-rays from a binary

neutron star merger: GW170817 and GRB 170817A. The Astrophysical

Journal Letters, 848(2):L13, oct 2017.

[41] F. Di Mille, K. Boutsia, L. Infante, D. Osip, P. Palunas, and M. Phillips.

Las Campanas Observatory. In Observatory Operations: Strategies, Pro-

cesses, and Systems VII, volume 10704 of Society of Photo-Optical In-

strumentation Engineers (SPIE) Conference Series, page 107041S, July

2018.

[42] Daniel E. Holz and Scott A. Hughes. Using gravitational-wave standard

sirens. The Astrophysical Journal, 629(1):15, aug 2005.

[43] A. Palmese, C. R. Bom, S. Mucesh, and W. G. Hartley. A standard siren

measurement of the Hubble constant using gravitational-wave events from

the first three LIGO/Virgo observing runs and the DESI Legacy Survey.

The Astrophysical Journal, 943(1):56, jan 2023.

[44] S. J. Smartt et al. A kilonova as the electromagnetic counterpart to a

gravitational-wave source. , 551(7678):75–79, November 2017.

[45] M.G. Aartsen et al. The IceCube Neutrino Observatory: instrumentation

and online systems. Journal of Instrumentation, 12(03):P03012, mar

2017.

[46] G. Giacomelli. The ANTARES Neutrino Telescope. In Viktor Begun,
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