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New research has highlighted a shortfall in the Standard Model (SM) because it predicts

neutrinos to have zero mass. However, recent experiments on neutrino oscillation have revealed
that the majority of neutrino parameters indeed indicate their significant mass. In response,
scientists are increasingly incorporating discrete symmetries alongside continuous ones for

the observed patterns of neutrino mixing. In this study, we have examined a model within

SU(2)L Xx U(1)y X Ag X Sa2 X Z10 X Z3 symmetry to estimate the neutrino masses using
particle swarm optimization technique for both mass hierarchy of neutrino. This model employed a
hybrid seesaw mechanism, a combination of seesaw mechanism of type-1 and type-II, to establish the
effective Majorana neutrino mass matrix. After calculating the mass eigenvalues and lepton mixing
matrix upto second order perturbation theory in this framework, this study seeks to investigate the
scalar potential for vacuum expectation values (VEVs), optimize the parameters, Uprns matrix,
neutrino masses: m’l(N> (upper) = 4.0000 x 1072 eV, m’z(N) (upper) = 4.0000 x 10~2 eV,
m, ™) (upper) = 4.0000 x 10~2 eV, m/ " (upper) = 3.8628 x 102 eV,

m’z(l) (upper) = 4.0548 x 1072 €V, mg(I) (upper) = 3.8532 x 1072 €V,

m, ™ (lower) = 2.0000 x 10~2 eV, m}, ™ (lower) = 2.0000 x 102 €V,

ml, ™) (lower) = 2.0000 x 10~2 eV, m}, " (lower) = 1.1049 x 1072 eV,

m’z(I) (lower) = 3.9298 x 10~2 eV and mg(I) (lower) = 9.6381 x 1073 eV, effective

neutrino mass parameters: (m.. )"~ (upper) = 40.0050 meV, (mg)~N (upper) = 40.0025 meV,
(Mee)! (upper) = 39.2181 meV, (mg)! (upper) = 39.2257 meV,

(Mee)™ (lower) = 20.0024 meV, (mg)™N (lower) = 20.0012 meV,

(Mee)! (lower) = 19.6608 meV, (mg)! (lower) = 23.5908 meV;, are predicted for both

mass hierarchy through particle swarm optimization (PSO), showing strong agreement with recent
experimental findings. The Dirac CP-violating phase d is measured to be — /2.

Keywords Discrete symmetry, Neutrino mixing, Particle swarm optimization

Known as the “ghost particles” of the universe, neutrinos have long intrigued the interest of cosmologists and
physicists alike. Despite being among the most prevalent particles in the universe, these elementary particles
(which are electrically neutral and almost massless) interact with matter very weakly, which makes them
notoriously difficult to detect. In 1930, Wolfgang Pauli postulated the existence of neutrinos as a possible
explanation for the violation of energy conservation observed in beta decay, they were only ever considered
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theoretical particles. Frederick Reines and Clyde Cowan eventually detected neutrinos in 1956'. Neutrinos, in
spite of their spectral appearance, are essential to the understanding of fundamental physics and the universe’s
evolution. Many astrophysical processes, such as nuclear fusion in stars?, supernova explosions*”, and even
the Big Bang itself*°, produce them. Neutrinos are also essential for solving some of the most significant
mysteries in cosmology and particle physics, including the properties of the elusive Higgs boson!?, the nature
of dark matter!!"!%, and the universe’s imbalance between matter and antimatter'®. One of the central puzzles
surrounding neutrinos is their masses!”. Neutrinos were originally thought to be massless in accordance with the
SM of particle physics'®. However, experiments in the late 20th and early 21st centuries, such as those conducted
by the Super-Kamiokande!®, KamLAND?®, K2K?!, Fermilab-MINOS??, Sudbury Neutrino Observatory
collaborations!® and CERN-OPERA?? provided irrefutable evidence that neutrinos oscillate between different
flavors (electron, muon, and tau), a phenomenon that can only occur if they possess non-zero masses. This
discovery fundamentally challenged our understanding of neutrinos and underscored the need for new
theoretical frameworks beyond the SM.

Researchers are looking in detail into seesaw frameworks, particularly type- and type-I , aside
from several other methods to explain small neutrino masses. Majorana and Dirac mass terms derive from the
introduction of extra right-handed neutrinos in SM in type I. Majorana mass terms derive from the introduction
of heavy SU(2), triplet in SM in type-1I. A hybrid seesaw mechanism?*3233 has been proposed for improved
mass suppression and new mixing patterns by combining type-I and type-II. With this hybrid technique, one
may explore various lepton mixing scenarios and generate effective Majorana neutrino mass matrices.

Considering the recent discovery of non-zero, small neutrino masses in multiple neutrino oscillation
experiments, numerous models for neutrino mass have been developed. These models are constructed based
on different discrete symmetries such as S4, A4, A(27) and T7 etc.>%°. In most cases, models extending
the Standard Model (SM) incorporate symmetries through the addition of specific field contents with their
respective charges. These models predict distinctive neutrino masses and mixing patterns by employing different
seesaw mechanisms (Type I, II, and III). However, the current model introduces a new aspect by using a hybrid
seesaw mechanism combining Type I and Type II, which is not commonly explored in earlier studies focusing
on A4 symmetry. This hybrid approach offers a novel pathway to derive neutrino masses and mixing parameters,
contributing to the uniqueness of the model compared to previous work.

Despite this innovation, deriving analytical expressions in such models remains challenging due to the
complexity of the equations involved. These equations often contain nonlinear terms relating to the neutrino
mass eigenstates, making them difficult to solve without advanced mathematical techniques. Compared to
earlier A4 models, the current model tackles these challenges with computational methods, particularly using
particle swarm optimization (PSO), which proves to be highly effective for solving such complex optimization
problems. The collective actions of fish and birds serve as the model for this population-based algorithm and
metaheuristic approach. PSO is used for approximating parameters in different types of research problems®:2,
In 1995, Russell Eberhart and James Kennedy introduced the concept of PSQ.63-65, drawing inspiration from
genetic algorithms (GAs) to refine its design®. PSO is commonly used to find optimal solutions to optimization
problems, where the aim is to minimize or maximize a particular fitness function. PSO is versatile and has been
utilized in diverse optimization scenarios, including engineering design®®-%, image processing®®’!, financial
modeling’?"7> and neural network training’®”’. Its efficacy is further underscored by its widespread use in
diverse optimization challenges, encompassing high-dimensional data clustering’®”®, parameter estimation for
chaotic maps®#!, optimization of core loading models in nuclear reactors®, optimization of nonlinear reference
frames®, attainment of optimal reactive power distribution®!, as well as problem-solving in domains such as
optical properties of multilayer thin films®-% and autoregressive models with moving average®®-!. Additionally,
PSO has proven effective in addressing challenges related to parameter estimation in electromagnetic plane
waves®2. Its simplicity, ease of implementation, and ability to handle non-linear and complex objective functions
make it a popular choice for solving optimization problems. PSO stands out in particular for having an easy-to-
implement architecture and requiring less memory®>%4,

After calculating the mass eigenvalues and lepton mixing matrix upto second order perturbation theory
in the framework® based on A4 symmetry, this study seeks to investigate the minimization of the scalar
potential for VEVs and optimize the parameters for Upasns matrix, neutrino masses and effective neutrino
mass parameters: (mec), mg, for both mass hierarchy through particle swarm optimization (PSO). The
format of this article is as follows: The A4 model is presented in the next section 2. In addition to describe
the superpotential terms for charged leptons and neutrinos, “Mass matrices of charged lepton and neutrino”
section provide the explanation for the mass eigenvalues and mixing matrix upto second order perturbation
theory. “Numerical analysis” section focuses on the utilization of PSO to determine optimal parameter values for
computing neutrino masses. “Vacuum alignment studies” section presents the scalar potential invariant under
SU(2)r x U(1l)y x As X Z1o X Z3, along with conditions for its minimization and explores the utilization
of PSO in determining optimal parameter values for VEVs of the scalars with addition of S> flavour symmetry.
At the end, in section 5, we provide a conclusion of our research.

124728 129731

The A4 based model

In reference®, the authors extended the SM group with A4 symmetry with three right handed heavy singlet
neutrino fields (Vep, Vup, Vrr) and with seven scalars ¢, ®, n, k, A, &, €. The SU(2) 1, doublets ¢, ® and
SU(2)y, triplet A are taken as A4 triplet. Four SU(2), singlets 7, x, £ and £’ are taken as the singlets of A4 as
1”,1’, 1 and 1 respectively. A additional symmetry, namely Z1 is also introduced to incorporate the undesired
terms, where, Z1¢ refers to the symmetry of integers modulo 10. A summary of all the fields under SU(2)r, A4
, Z10, Z3 and U(1)y are shown in Table 1.
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Fields Diy |ig Vip ¢ |® |n |k |Aa E]¢
SU(2)r |2 1 1 2 |2 |1 |1 |3 |1]1
Ay 3 (1,17,17) | (1,17,1") |3 |3 1173 11
Ul)y |—-1 |-2 0 1 |—1]0 |0 |—2]0]0
Z10 0 0 (0,4,6) 0 (o |2 [8 |0 |64
Zs 1 (wyw,w) | (1,1,1) W21 |1 |1 |1 |11

Table 1. The properties of transformation under SU (2)r x U(1)y X A4 X Z1o X Zs.

We also incorporate an additional S2 symmetry. The Sa group, known as the permutation group of two
elements, has specific generators when expressed in the 3-dimensional representation, which are as follows:

1.0 0 1 00
e=[0 1 0], a={0 0 1
00 1 010

By choosing the following couplings and imposing S2 flavor symmetry, the resulting constraints are as follows:
Y2 <> Y3, YR YRy, £ &, Mok

All remaining fields transform trivially under Sa.

Mass matrices of charged lepton and neutrino

The Lagrangian serves as a cornerstone in describing the interactions and behaviors of particles within the
context of physics of particles. The superpotential term for charged leptons, Dirac neutrinos and right handed
Majorana neutrinos is given as

—Ly =ye(Diy )1 er + yu(Dip @)1 pr + yr(Diyd)1vr 4+ y1 (D1, @)1 vep

Y2 = Y3 = 1 c 1 c
+ A (Dqu))l’ Vup &+ A (DZLCI))l”VTR fl + 5 M (VeR VER) + By M, [(VMRVTR) (1)

c 1 c 1 c B c -
+ (VTRVNR)] + 5 YRy (VuR VHR) n+ 5 yR2(VTRV‘FR) K+ y(DlL DZL) io2 A + h.C.,
In this context, Ye, Yu, Y=» Y1,2,3, M1,2, YRy .2 and y are represent the dimensionless Yukawa couplings. Due to

the VEVs (see section 4) and S2 flavour symmetry, one can generate mass matrices for charged leptons (M),
Dirac neutrinos (Mp) and right handed Majorana neutrinos as

Ye 0 0 0 ?IZAUE Y2Ve
Ml_'U<O Yu 0) ) MD_u<y1 0 y21\6>7 (2)

0 0 Yr Y1 yZAUE 0
My 0 0 g [0 1 -1
Mpgr = 0 YRUm Mo s M" = —/— 1 2 0 . (3)
0 Mo YRUm 3 -1 0 -2

Here, seesaw frameworks, particularly type-124-28 and type-112°-3!, used besides several other methods to explain
small neutrino masses. Majorana and Dirac mass terms derived from the introduction of extra right-handed
neutrinos in SM in type 1. Majorana mass terms (M"’) derived from the introduction of heavy SU(2), triplet
in SM in type-IL In other words, a hybrid seesaw mechanism?*3>3 proposed for improved mass suppression
and new mixing patterns by combining type-I and type-II. With this hybrid technique, one may explore various
lepton mixing scenarios and generate effective Majorana neutrino mass matrices (M, ) as

M, =M +M"=—-mpMz'mp +M" (4)

with
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<P Q Q) (0 P —p>

M=|lQ R S|, M'=(p ¢ 0],

Q S R -p 0 —gq
Y

y 2,2y w2, 2yy?
;g =2p, PZ*Q—yQ7 QZ*Z—y?7 (5)
A2(Ms2 + vmyr) A2(Ms2 + vmyr)

R— 2 vmvly’yr oy g2 v’ Movey2?
A2 (M22 — vm2yR2) M, |’ M, A2 (M22 _ UmzyR2)

The first effective Majorana matrix is diagonalized under the conditions y2 = y3, Yyr, = yYr, and Sz symmetry,
by the subsequent mixing matrix,

P="3

c s 0
Uo_<s/ﬂ ¢/vV2 1/ﬂ>, ©
—s/V2 c¢/V2 —1/V2

such as diag(mi, ma, ms) = UoT My Uy, where, ¢ = cosf, s = sinf and 6 = arccos( k ) with,

VK242

_ P-R-S-/P>—2PR—2PS+8Q?+ R? +2RS + 52

k 7)
2Q ’
and
1
mip=o(P+R+SF\/(-P+R+5)2+8Q%), ms=R-5. 8)
In the context of three-neutrino physics, the mixing matrix of lepton (Up s ns) may be represented as*
C12C13 ) S$12€C13 ) «9136“s
Upnmns = | —s12c23 — C12513523€""  C1acas — S12813523€"°  cizsas | P2 )
12823 — C1aCass13€"0  —Cias23 — S12813¢23€™  Ci3Cas

where, P12 = diag(1,e"?,e"?) which contains two Majorana phases that do not influence neutrino
oscillations. The matrix Uy in Eq. (6) suggests 023 = 7/4, 613 = 0 and 012 = 6, Recent data contradicts this
claim. However, the inclusion of the second matrix in Eq. (4) is expected to ameliorate this discrepancy. In first-
order perturbation corrections, the second matrix in Eq. (4) doesn't affect the eigenvalues but it does influence
the eigenvectors. Moving to second-order perturbation theory, this matrix contributes to the determination of
both eigenvalues and eigenvectors. Consequently, the masses of neutrino upto the second order perturbation
corrections can be expressed as:

21 2 212 2 2
r r 2T r
m'lzml—&—ip L m/2:m2+p727 mé—m3+p2< 2 + 2 ), (10)
mi1 — ms mo — M3 ms3 — M1 ms3 — ma

where the parameters p, g, and mi 2,3 are defined in Egs. (5) and (8), respectively. The contributions to the
eigenvalues from first-order perturbation are negligible, with only minor changes arising at second-order

2 2 2 2 2 2
perturbation. In Eq. (10), the terms -2 - Elme’, 752 Ezms , and p? (mirfml + m;im2) are significantly smaller

compared to m1, ma, and ma, respectively. This is consistent with the condition M "< M. Subsequently, the
resulting lepton mixing matrix is as follows:

U=Uy+ AU+ AU’ (11)

where Uy is given by in Eq. (6), AU represents the mixing matrix corresponding to first-order corrections, and
AU’ represents the mixing matrix corresponding to second-order corrections. They have the following entries:

(AU)11 = (AU)12 =0,

(AU)13:p( Ticosf FQS]H@)
ms — mi m3 — m2

pl's \/§T2p
AUV = —(AU)ss = — P22 (AU)gy = —(AU)n = - V2P
(AU)2 (AU)s1 p— (AU)s2 (AU)22 2(ms — )’

p((m1 —m2)ly + 2(m1 + ma — 2mg3))
2v/2(m3 — m1)(ma —ma)

(AU)23 = (AU)33 =

)
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2
p“l
(AU = m [ cos Oy +

2sin 0(m1 — m3)l2
mi1 — M2 ’
p’I2

2(777,2 — m3)2

2cos O(mz — ms)I'y
mi1 — mo

(AU’)12 = |:— sin 6" — :| , (5U’)13 =0,

(AU )1 = (AU")31 = p°T {F5(3m1 Iz Bms) e - Qmﬂ :

2\/§(m1 — mz)(ml — m3)2

2 |:F5(m1 — 3ma + 2m3) + m1 + ma — 2m3}
% F2 )

(AU")22 = (AU")32 = — 2v2(m1 — ma)(ma — ms)?

(AU")a3 = — (AU")33 = ol DR S '
23 33 22 | s —m)2 | (s —m)? |’
with,I'1 = —2sin 0 + v/2cos6,T'2 = v/2sinf + 2cos0,'s = v/2sin — cos 6, T4 = v/2sin 20 + 2 cos 20
and I's = cos 20 4 /2 sin 6 cos #. The lepton mixing angles can be determined from Egs. (9) and (11), which
define the mixing matrix of neutrino:

_ |Unz] _ |U2s|

t1g = =
12 |U11| ) 23 ‘U35| )

s13 = |Uns|, (12)

with, s;; = sin 6y, ¢;; = cos ;5 and t;; = tan 6;;. Most of A4 models predict 813 = 0. In this model, there
is a deviation, for sure there is some correlation with other observable like 612, 023. The correlations between
different parameters are given in Fig. 1.

Numerical analysis

Taking into consideration the latest experimental data®, the mixing angles are measured as follows: The solar
neutrino mixing angle, 612, is determined to be 34° & 1°, the atmospheric neutrino mixing angle, 623, is found to
be42° £ 3°,and the reactor an&le, 913,35 measured tobe 8.5° £+ 0.5°. Additionaléy, the sguared mass differences
are determined as Amgol =mh —m) ~T7.53x107°eVZand Am2,, =m5 —mb ~ 2.453 x 1073 V2
(Am2,, =mb —mb ~ —2.536 x 1072 eV?) for normal (inverted) neutrino mass ordering®”. The lower and
upper bounds of ¥m’ are constrained to 0.06 eV and 0.12 eV, respectively®®. Utilizing Egs. (11) and (12), the
objective or fitness function (€) corresponding to these experimental constraints can be expressed as follows.

€ =¢€1 + €2+ €3 + €4 + €5 + €6, (13)
with,
- 2 2 2
U
a=|my’ —mt —Aml,| , e=|mi—ms - Ami.| ., e Uzl _ tiz| ,
|Un1]
- 2 2
U.
€4 = }UQS: —ta| , e = |Uz— 813] ) (14)
33
- 2
o / / / 0.12 eV, for upper bound limit
€ = |m1tmy+ms—1| (o eV, for lower bound limit )

where, m'1,273, Ui, Uiz, Uas, Uss, U13 are given in Egs. (10) and (11).

In this article we use PSO instead of classical Chi-square fitting for optimization and parameter estimation tasks
because of following reasons: (1) PSO is a population-based optimization technique that searches the entire
solution space for the optimal solution. It can escape local optima more effectively compared to Chi-square
fitting, which might get stuck in local minima. (2) PSO tends to converge faster than Chi-square fitting. (3) PSO
does not require initial guesses for the parameters being optimized, unlike Chi-square fitting, where a good initial
guess is required for convergence to the proper solution. (4) PSO can handle non-linear optimization problems
efficiently, which may be challenging for Chi-square fitting. (5) PSO is highly adaptable and can be easily modified
or extended to handle various types of optimization tasks, including parameter estimation, feature selection, and
function optimization. (6) PSO can be parallelized effectively, allowing for faster computation times on parallel
computing architectures compared to Chi-square fitting, which may not be as easily parallelized. (7) PSO is
robust to noise and can handle noisy objective functions better than some Chi-square fitting methods, which
may struggle with noisy data.
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Fig. 1. The correlation plots include sin?6;3 versus sin6e3 and sin’612, sin’023 versus sin6;a, m;
(neutrino mass in eV without perturbations) versus the sum of perturbed neutrino masses, and the sum of
perturbed neutrino masses (in eV) versus sin*013, sin?6012, and sin6a3 as shown in last plot.

We use PSO algorithm to optimize the objective or fitness functions e for optimal values of parameters.
In the usual way of doing particle swarm optimization (PSO), we treat each possible solution to a problem is
represented as a moving point within the search space. These points form a group called a swarm), and they
work together to check out the whole search area. Each point is assigned a unique score based on its efficacy in
solving the problem. Initially, these points are randomly selected. Throughout each iteration, the positions and
velocities of the points are updated based on their previous performance based on its local Py ;" and global
PZ5" positions. The basic rules for updating position and velocity of a point are given as,

of =wul T Ferm(Pigt — XY 4 coma(PER — XTTY, (15)

XF =Xl

i (16)
In these rules, i goes from 1 to p, where p is just a integer telling us how many points there are. The weight 'w’
and c; and ¢z are also integers that help to control how the points move. Also, the velocity gradually gets smaller
as we keep looking around (between 0 and 1). The random numbers 71 and r2 are just there to add a bit of
randomness. Finally, the velocity of the points is kept within certain limits so they don’t go too fast or too slow.

The points traverse the search space by adapting their positions and velocities, drawing from their individual
experiences and insights gained from neighboring points. The algorithm involves the following key steps:
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Fig. 2. Generic flow chart of PSO.
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Fig. 3. Fitness function versus number of iterations.

1. Initialization: Commence by populating a set of points, assigning them random positions and velocities
distributed throughout the exploration area.

2. Objective Assessment: Assess the fitness or objective function value for each point according to its present
position.

3. Update Personal and Global Bests: Update the personal best position (Pbest) for each point based on its
current fitness. Update the global best position (Gbest) considering the best position among all points.

4. Update Velocities and Positions: Adjust the velocity and position of each point using its current velocity,
personal best, and global best positions.

5. Tteration: Continue steps 2 through 4 for a predetermined number of iterations or until reaching a conver-
gence criterion.The generic flow chart PSO is given in Fig. 2.

To inspire the development of meta-heuristic optimization algorithms, we employed PSO technique to minimize
the objective function for both mass hierarchy and for upper and lower bound limits of Xm’. The objective
function is minimized through PSO with 500 iteration are presented in Fig. 3 and corresponding values of p, 6,
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Parameters | Optimal values Parameters | Optimal values

p —4.5205 x 10716 |9 0.5894 rad

my 4.0000 x 1072 eV | m2 4.0000 x 1072 eV
ms 4.0000 x 1072 eV

Table 2. The optimal values of parameters p, 6, m1, m2, ms, through PSO for upper bound limit of
¥m' = 0.12 €V and normal mass hierarchy.

Parameters | Optimal values Parameters | Optimal values

p 1.0964 x 10~ 14 6 0.5909 rad

my 2.0000 x 1072 eV | m2 2.0000 x 1072 eV
ms 2.0000 x 1072 eV

Table 3. The optimal values of parameters p, 6, m1, m2, ms, through PSO for lower bound limit of
¥m’ = 0.06 eV and normal mass hierarchy.

Parameters | Optimal values Parameters | Optimal values

p 1.0000 x 104 6 0.5909 rad

my 3.8627 x 1072 eV | m2 4.0517 x 1072 eV
ms 3.8563 x 1072 eV

Table 4. The optimal values of parameters p, 6, m1, ma, ms, through PSO for inverted mass hierarchy and for
upper bound limit of ¥m’ = 0.12 eV

Parameters | Optimal values Parameters | Optimal values

p 1.4714 x 1073 0 0.5909 rad

my 1.1040 x 1072 eV | m2 3.8846 x 1072 eV
ms 1.0098 x 1072 eV

Table 5. The optimal values of parameters p, 6, m1, ma, ms, through PSO for lower bound limit of
Ym' = 0.06 eV and inverted mass hierarchy.

my, mz and m3 are given in Tables 2, 3, 4 and 5 in which m1, m2 and m3 are masses of neutrinos in eV without
perturbations correspond to zero reactor angle and p and 6 are the free parameters of the model. The masses of
neutrino without perturbations (1m1, m2, m3) and other model free parameters p and 0 are predicted using PSO
by using experimental squared mass differences of perturbed masses.

The lepton mixing matrices upto second order perturbation theory for both mass hierarchy and for upper
(0.12 eV) and lower (0.06 V) bound limits of ¥m' are given as:

. 0.8208 0.5519 0.1476
(U wrer) — (03317 0.6710 0.6617 (17)
Fans 0.4653 0.4952 0.7353
0.8201 0.5539 0.1470
(U Jewer| = [ 0.3336  0.6710  0.6615 (18)
0.4650 0.4938 0.7355
. 0.8200 0.5531 0.1477
(e = [ 0.3330 0.6710 0.6618 (19)
0.4657 0.4938 0.7350
0 0.8200 0.5531 0.1478
U Douer | 0.3330 0.6710 0.6618 (20)
parNs 0.4658 0.4938 0.7350

On the behalf of the values of p, 6, mi, mz and m3, the mass corrections upto second
order perturbation theory for both mass hierarchy and for u)pper (0.12 V) and lower
(0.06 V)  bound limits of Ym' are given as: (upper) = 4.0000 x 1072 eV,
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my ™) (upper) = 4.0000 x 1072 eV, ms ™ (upper) = 4.0000 x 1072 eV, m; " (upper)
— 38628 x 102 eV, my )(upper) = 4.0548 x 1072 eV, ms"" (upper) = 3.8532 x 1072 ¢V,
m'l(N (lower) = 2.0000 x 102 ¢V, m2(N)(loweT) =2.0000 x 102 eV,

mi ™) (lower) = 2.0000 x 102 eV, m} " (lower)
— 11049 x 102 eV, ms" (lower) = 3.9298 x 1072 eV and m4" (lower) = 9.6381 x 10~% eV, which
are correspond to non zero reactor angle. The Dirac CP-violating phase § is measured to be —7 /2. In our
numerical analysis, we concentrated on only two specific values for the sum of neutrino masses, instead of
a continuous spectrum. We utilized 0.06 eV, representing the lower limit of the sum of masses, and 0.12 eV
as the upper limit. In the NO case and the neutrino masses appear nearly degenerate and normal hierarchy
could not be adequately reproduced here. In contrast, for the inverted ordering, a more defined hierarchy was
observable, making the model consistent with an inverted hierarchy (IO). These ﬁndmgs are consistent with a
quasi-degenerate normal hierarchy (QDNH) mass spectrum, characterized by mi~ <mj5" < mgN, and an
inverted mass hierarchy (IH), where m3I < mlI < mh ! for both T/ = 0.06 and 0. 12

Effective neutrino mass parameters
The expressions for the effective neutrino masses
and beta decay (mg) are structured as follows:

99-103 associated with neutrinoless double beta decay ({mee))

mee ) (21)

§ 2 7
UClm’L

Considering the leptonic mixing matrix elements Ue; with i ranging from 1 to 3, representing the masses m; of
three neutrinos, the effective neutrino masses associated with neutrinoless double beta decay ({mn..)) and beta
decay (mgp) are computed using the parameters obtained in section 3. This calculation is performed for both
mass hierarchy of neutrino, yielding the following results:

W N(upper) = 40.0025 meV,

(mee)” (upper) = 40.0050 meV, (mg)

(mee)! (upper) = 39.2181 meV, (mg)! (upper) = 39.2257 meV, 22)
(mee)™ (lower) = 20.0024 meV, (mg)N (lower) = 20.0012 meV,

(mee) (lower) = 19.6608 meV, (mg)! (lower) = 23.5908 meV.

Vacuum alignment studies
In particle physics, the dynamics of scalar fields are encapsulated by an invariant scalar potential within the
symmetry group. The following Eq. (23) describes the invariant scalar potential within the symmetry group
SU(2)r x U(1l)y x As X Z1o X Zs. It plays a crucial role in understanding spontaneous symmetry breaking
and the generation of particle masses. While A4, Z19 and Z3 are discrete symmetries that add to the rich
structure of the potential, the SU(2) 1, symmetry describes weak isospin.
V=V(9) +V(®)+V(A)+ V() + V(k) + V(&) + V(E) + V(¢ ®) + V(¢,A) + V(¢,m)
+ V(0 5) + V(6,6 + V($,€) + V(2,A) + V(®,n) + V(®, k) + V(2,8) + V(2,8
+H VAN + V(A R) + V(A + VAL +V(n,k) + V(0,6 +V(0,&) +V(k &) (23)
V(k, &)+ V(EE) +V(dn,6) +V(6,6E) +V(2,m,k) + V(D,6E) + V(A,1,K)

V(AEE)+V (k68

/.\AAA

Writing the terms explicitly, we have,
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V($) = —p5(6'6) + AT (676)(670) + AL (6Td)1 (081 + XS (67 0)s. (670)s,

V(@) =V(p— ®),

V(A) = —pATr(ATA) + AL Tr(ATA)YTr(ATA) + A8 Tr(ATA) L Tr(ATA) 0
+ ASTr(ATA)s, Tr(ATA)s,

V(n) = —pa(m™n) + N(n"n)%, V(k) = —pn(s*K) + A" (5" k)%,

V(€) = —p2(€76) + XS(€7€)%, V() = —pd(€7€) + 25 (7€),

V(g, @) = A7 (¢79)(@70) + AL ((¢7¢)1 (27®)11 + (¢70)11 (2TD)1/)
+ A% (07 9)s, (©TD)s, ,

V($,A)=V($,® = ¢,4), V(g,n)=X"(d'¢)n'n, V(g,k) =" (¢'¢)r"r
V(6,6 = \5(810)6°e, V(9,€) =N (610)€"¢, V(®,4) =V(s,® - ,A), (24)
V(@) =A@ )"y, V(D,k) = AT(@T0)R"K,  V(®,8) = AT (@TR)E7E,
V(®, &) =A% (@1 0)e" ¢, V(A n) = NATr(ATA n, V(A k) = N2Tr(A Ak k,
V(A6 = XM¥Tr(ATA)EE, V(A €)=\ Tr(ATA)E"
V(n, &) = X" (0" nk" K + pipe (0 + hoc) + (K% + hec)),
V(€)= Nyt nee, Vin &) =Nt ne e, V(EE) =Vn ke —£E),
V(k,6) = NSR"REE, V(n€) = XNk R€7E, V(g w) = 27 ((6'¢)nk + hec),
V(g,€.€) = A‘m (679)E¢' + he), V(@,m,5) = X" (@ @) + Do),
V(@,6,6) = X" (@1D)¢e’ + he), V(A n,5) = A(Tr(AT A)ns + hoc),
V(A 6€) = M (Tr(ATA)EE + he), Vi, &, €) = A€ (nite’ + h.c).

Many terms containing (¢'¢)s,, (®7®)s, and Tr(ATA)3, are also invariant but are not appeared in (23)
because they are vanished due to the antisymmetric of 3, as a consequence of the tensor product of 3 x 3 of
Ay and the VEV alignment of ¢, ® and A. The minimization conditions (VEVs) of this potential can result in
the extreme solutions detailed in (25). These VEVs provide information about the stable configurations of the
system since they represent crucial places where potential energy is minimized.

@) = (@) 0, 0, G)=0 0, (@) =(0, (D), (Ba)),
(@2) = (@) = (u 0)7, (A)=(0, (Aa), (Ag)), 5)
B2) = () Ga==(n 0): D=0 =vm ©=()=0.

PSO Treatment for Scalar Potential:

Due to VEVs (24), multiplication rules for A4 symmetry in the T-diagonal basis!® and S> symmetry, Eq. (23)
become as

12
V=- uivz + )\‘f /\gv — 2uq>u + 4)\1 ut + >\2 H)gu‘l + 2u2Aw2 + 4/\1Aw4

+A2A 4 %2/\3111 +2)\f@v2u2 3x\§5¢y2u2 2)\fA02w2+3)\§’A02w2 4)\¢A 2w?

+225% 0 w® + gAfAu2w2 v + NMom, — piavm, + N, — pgv? + Xvf — pgo?
+ )\5/04 + 220202, + A%, 4+ AP60%0? + A% 2 V2 + 20%1u 202, + 222 fn (26)
+ 22Ty %2 —|—2)\(I)5 u?v? — 22w, — 2N P02, — 2228 w2y? — oAy,

+ N (v, + 2,ufmfu,2n + 200m) + A0 02 + /\nf,v i+ A (v + 2u£§/v€ + 21)6)
+ A2 02 4 A”Elvfnvz + 2)\¢WU 2+ INPEE 2 2+ T2, + ANTEE 3202
— ANBTR P2, ANAEE 22 o NTREE 2 2

€

and the fitness function (€’) for (26) is expressed as follows.
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4 12
€=1- ,uin + /\‘fv4 + §)\§5v4 — 2u%u2 + 4/\11)u4 + )\;I)u4 + j)gu‘l + 2,u2w2 + 4/\1Aw4

+ 25wt + %A?w‘l + 220% 0% — %)\gq)quQ — 220w + %)\gszwQ — P’
+ ZAg)Au2w2 + %)\gmuzw2 — uivi + Nk — ,uivfn + Aol — uzvf + 250 — ,ug/vf

+ )\g/vf + 220202, + AP %02, 4+ AP50%0? + )\‘7)5/1121)3 + 22%70 %02 + 22% 202, 27)
+ AT + 2/\q>5/u2v52 — 2?02, — 2\ we?, — 222 w%? — 2)\A5/w2'u€2

+ N7 (v, + 2#%;&% + 20p) + A0 02 + X’glvfnvf 42 (v + 2/125/1}62 + 20%)

+ A2 02 4 )\Nglvfnv? + 2P 22 2)\¢§§/v2v? + AT 202 4 4)\q)§£’u2v€2
2
! !
— AN 202 — ANPEE %0 4 2ATREE 2 2|

To stimulate the advancement of meta-heuristic optimization algorithms, we again utilized PSO technique to
minimize the scalar potential. The objective function is minimized through PSO for scalar potential with 500
iteration is presented in Fig. 4.

This figure demonstrates that the objective function converges to zero with each iteration when employing the
VEVs provided in (25). The optimal parameter values, as measured within the objective function of the scalar
potential using PSO technique, are listed in Table 6.

The scalar potential is minimized from these optimal values. In contrast to>, which analyzed the scalar
potential without determining the masses of extra flavon fields, the PSO approach not only analyzes the scalar
potential but also determines the numerical values of the flavon field masses. Table 6, revealing that the flavon
masses are on the order of O(100 GeV’), which is relevant to current experimental searches.

Conclusion

In this study, we have examined a model within SU(2)r x U(1)y X A4 X S2 X Z1o X Z3 to estimate
the neutrino masses using particle swarm optimization technique for both neutrino hierarchy. In this
model, a hybrid seesaw mechanism proposed for improved mass suppression and new mixing patterns by
combining type-I and type-II and generate effective Majorana neutrino mass matrices. After calculating
the mass eigenvalues and lepton mixing matrix upto second order perturbation theory in the framework
based on A4 symmetry, we investigated the minimization of the scalar potential for VEVs through PSO.
The utilization of PSO in determining optimal parameters for computing Upasns matrices, neutrino
masses  as: m'l(N)(upper) =4.0000 x 1072 eV, m'Z(N)(upper) =4.0000 x 1072 eV, méw)(upper)
= 4.0000 x 1072 eV, m; " (upper) = 3.8628 x 1072 ¢V,

m'Q(I)(upper) = 4.0548 x 1072 €V, mgm(upper) =3.8532 x 1072 eV, m’l(N)(loweT)

=2.0000 x 1072 eV, ms"™ (lower) = 2.0000 x 1072 eV, m4"™ (lower)

= 2.0000 x 1072 eV, m} " (lower) = 1.1049 x 1072 eV, m5"" (lower) = 3.9298 x 1072 eV’ and
A lower) = 9.6381 x 10~ eV, effective neutrino mass parameters as: (m..)" (upper) = 40.0050 meV,
(mg)N (upper) = 40.0025 meV,  (mee) (upper) = 39.2181 meV,  (mg)! (upper) = 39.2257 meV,

1018 ! ! : : ! ; | :

1010 L 4

10~10 o ol

1015 . . . I . L L 1
0 5 10 15 20 25 30 35 40 45

Number of Iterations

Fig. 4. Fitness function of scalar potential versus number of iterations.
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Parameters | Optimal values | Parameters | Optimal values
Ko 179.175 GeV | ko 139.331 GeV
Ha 145.538 GeV | B 178.33 GeV
Hr 115.583 GeV | H¢ 187.052 GeV
He/ 153.417 GeV | Hnx 104.519 GeV
Heg! 158.023 GeV |V 134.316 GeV
u 113.798 GeV | W 134.684 GeV
U 158.347 GeV | ve 159.224 GeV
A9 10.00000 2D 6.08711

AP —8.95786 AT 3.55938

AT —2.54363 AR —2.6438

D 3.96077 AL 2.64742

AP 9.7041 AP 0.225504

APA 7.95572 A8 —6.47177
APA —0.953689 | ADA 3.49581

ATA —5.0444 A7 —10.00000
G 9.14604 A€ —2.93147
AE —2.35666 A¢7 10.00000

AEK 8.98456 A€ —10.00000
P23 1.73548 A®7 —5.4436

N —4.29061 PN —3.53999
2\2€ 1.25844 AnA —4.9442

ARA —9.23625 AAE —2.61907
A\ae —5.5742 AT 10.00000

A6 —1.84958 Ané’ 2.21404

2&¢ 2.37551 ARE 10.00000

Are! —7.90574 PNl —10.00000
P33 —0.973407 AEnr —2.65544
A\pee’ —10.00000 A\Ans —1.32635
P33 7.21468 P33 1.23132

Table 6. The optimal values of parameters given in (23) through PSO.

(Mee) N (lower) = 20.0024 meV,  (mg)N (lower) = 20.0012 meV,  (mee)’ (lower) = 19.6608 meV,
(mg)! (lower) = 23.5908 meV for both mass hierarchy are illustrated as well. The Dirac CP-violating phase
0 is measured to be —m/2.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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