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New research has highlighted a shortfall in the Standard Model (SM) because it predicts 
neutrinos to have zero mass. However, recent experiments on neutrino oscillation have revealed 
that the majority of neutrino parameters indeed indicate their significant mass. In response, 
scientists are increasingly incorporating discrete symmetries alongside continuous ones for 
the observed patterns of neutrino mixing. In this study, we have examined a model within 
SU(2)L × U(1)Y × A4 × S2 × Z10 × Z3 symmetry to estimate the neutrino masses using 
particle swarm optimization technique for both mass hierarchy of neutrino. This model employed a 
hybrid seesaw mechanism, a combination of seesaw mechanism of type-I and type-II, to establish the 
effective Majorana neutrino mass matrix. After calculating the mass eigenvalues and lepton mixing 
matrix upto second order perturbation theory in this framework, this study seeks to investigate the 
scalar potential for vacuum expectation values (VEVs), optimize the parameters, UP MNS  matrix, 
neutrino masses: m′
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neutrino mass parameters: ⟨mee⟩N (upper) = 40.0050 meV, ⟨mβ⟩N (upper) = 40.0025 meV, 
⟨mee⟩I(upper) = 39.2181 meV, ⟨mβ⟩I(upper) = 39.2257 meV, 
⟨mee⟩N (lower) = 20.0024 meV, ⟨mβ⟩N (lower) = 20.0012 meV, 
⟨mee⟩I(lower) = 19.6608 meV, ⟨mβ⟩I(lower) = 23.5908 meV, are predicted for both 
mass hierarchy through particle swarm optimization (PSO), showing strong agreement with recent 
experimental findings. The Dirac CP-violating phase δ is measured to be −π/2.
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Known as the “ghost particles” of the universe, neutrinos have long intrigued the interest of cosmologists and 
physicists alike. Despite being among the most prevalent particles in the universe, these elementary particles 
(which are electrically neutral and almost massless) interact with matter very weakly, which makes them 
notoriously difficult to detect. In 1930, Wolfgang Pauli postulated the existence of neutrinos as a possible 
explanation for the violation of energy conservation observed in beta decay, they were only ever considered 
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theoretical particles. Frederick Reines and Clyde Cowan eventually detected neutrinos in 19561. Neutrinos, in 
spite of their spectral appearance, are essential to the understanding of fundamental physics and the universe’s 
evolution. Many astrophysical processes, such as nuclear fusion in stars2, supernova explosions3–7, and even 
the Big Bang itself8,9, produce them. Neutrinos are also essential for solving some of the most significant 
mysteries in cosmology and particle physics, including the properties of the elusive Higgs boson10, the nature 
of dark matter11–15, and the universe’s imbalance between matter and antimatter16. One of the central puzzles 
surrounding neutrinos is their masses17. Neutrinos were originally thought to be massless in accordance with the 
SM of particle physics18. However, experiments in the late 20th and early 21st centuries, such as those conducted 
by the Super-Kamiokande19, KamLAND20, K2K21, Fermilab-MINOS22, Sudbury Neutrino Observatory 
collaborations19 and CERN-OPERA23 provided irrefutable evidence that neutrinos oscillate between different 
flavors (electron, muon, and tau), a phenomenon that can only occur if they possess non-zero masses. This 
discovery fundamentally challenged our understanding of neutrinos and underscored the need for new 
theoretical frameworks beyond the SM.

Researchers are looking in detail into seesaw frameworks, particularly type-I24–28 and type-II29–31, aside 
from several other methods to explain small neutrino masses. Majorana and Dirac mass terms derive from the 
introduction of extra right-handed neutrinos in SM in type I. Majorana mass terms derive from the introduction 
of heavy SU(2)L triplet in SM in type-II. A hybrid seesaw mechanism24,32,33 has been proposed for improved 
mass suppression and new mixing patterns by combining type-I and type-II. With this hybrid technique, one 
may explore various lepton mixing scenarios and generate effective Majorana neutrino mass matrices.

Considering the recent discovery of non-zero, small neutrino masses in multiple neutrino oscillation 
experiments, numerous models for neutrino mass have been developed. These models are constructed based 
on different discrete symmetries such as S4, A4, ∆(27) and T7 etc.34–60. In most cases, models extending 
the Standard Model (SM) incorporate symmetries through the addition of specific field contents with their 
respective charges. These models predict distinctive neutrino masses and mixing patterns by employing different 
seesaw mechanisms (Type I, II, and III). However, the current model introduces a new aspect by using a hybrid 
seesaw mechanism combining Type I and Type II, which is not commonly explored in earlier studies focusing 
on A4 symmetry. This hybrid approach offers a novel pathway to derive neutrino masses and mixing parameters, 
contributing to the uniqueness of the model compared to previous work.

Despite this innovation, deriving analytical expressions in such models remains challenging due to the 
complexity of the equations involved. These equations often contain nonlinear terms relating to the neutrino 
mass eigenstates, making them difficult to solve without advanced mathematical techniques. Compared to 
earlier A4 models, the current model tackles these challenges with computational methods, particularly using 
particle swarm optimization (PSO), which proves to be highly effective for solving such complex optimization 
problems. The collective actions of fish and birds serve as the model for this population-based algorithm and 
metaheuristic approach. PSO is used for approximating parameters in different types of research problems61,62. 
In 1995, Russell Eberhart and James Kennedy introduced the concept of PSO.63–65, drawing inspiration from 
genetic algorithms (GAs) to refine its design63. PSO is commonly used to find optimal solutions to optimization 
problems, where the aim is to minimize or maximize a particular fitness function. PSO is versatile and has been 
utilized in diverse optimization scenarios, including engineering design66–68, image processing69–71, financial 
modeling72–75 and neural network training76,77. Its efficacy is further underscored by its widespread use in 
diverse optimization challenges, encompassing high-dimensional data clustering78,79, parameter estimation for 
chaotic maps80,81, optimization of core loading models in nuclear reactors82, optimization of nonlinear reference 
frames83, attainment of optimal reactive power distribution84, as well as problem-solving in domains such as 
optical properties of multilayer thin films85–88 and autoregressive models with moving average89–91. Additionally, 
PSO has proven effective in addressing challenges related to parameter estimation in electromagnetic plane 
waves92. Its simplicity, ease of implementation, and ability to handle non-linear and complex objective functions 
make it a popular choice for solving optimization problems. PSO stands out in particular for having an easy-to-
implement architecture and requiring less memory93,94.

After calculating the mass eigenvalues and lepton mixing matrix upto second order perturbation theory 
in the framework95 based on A4 symmetry, this study seeks to investigate the minimization of the scalar 
potential for VEVs and optimize the parameters for UP MNS  matrix, neutrino masses and effective neutrino 
mass parameters: ⟨mee⟩, mβ , for both mass hierarchy through particle swarm optimization (PSO). The 
format of this article is as follows: The A4 model is presented in the next section 2. In addition to describe 
the superpotential terms for charged leptons and neutrinos, “Mass matrices of charged lepton and neutrino” 
section provide the explanation for the mass eigenvalues and mixing matrix upto second order perturbation 
theory. “Numerical analysis” section focuses on the utilization of PSO to determine optimal parameter values for 
computing neutrino masses. “Vacuum alignment studies” section presents the scalar potential invariant under 
SU(2)L × U(1)Y × A4 × Z10 × Z3, along with conditions for its minimization and explores the utilization 
of PSO in determining optimal parameter values for VEVs of the scalars with addition of S2 flavour symmetry. 
At the end, in section 5, we provide a conclusion of our research.

The A4 based model
In reference95, the authors extended the SM group with A4 symmetry with three right handed heavy singlet 
neutrino fields (νeR , νµR , ντR ) and with seven scalars ϕ, Φ, η, κ, ∆, ξ, ξ′. The SU(2)L doublets ϕ, Φ and 
SU(2)L triplet ∆ are taken as A4 triplet. Four SU(2)L singlets η, κ, ξ and ξ′ are taken as the singlets of A4 as 
1′′, 1′, 1 and 1 respectively. A additional symmetry, namely Z10 is also introduced to incorporate the undesired 
terms, where, Z10 refers to the symmetry of integers modulo 10. A summary of all the fields under SU(2)L, A4
, Z10, Z3 and U(1)Y  are shown in Table 1.
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We also incorporate an additional S2 symmetry. The S2 group, known as the permutation group of two 
elements, has specific generators when expressed in the 3-dimensional representation, which are as follows:

	
e =

(
1 0 0
0 1 0
0 0 1

)
, a =

(
1 0 0
0 0 1
0 1 0

)

By choosing the following couplings and imposing S2 flavor symmetry, the resulting constraints are as follows:

	 y2 ↔ y3, yR1 ↔ yR2 , ξ ↔ ξ′, η ↔ κ

All remaining fields transform trivially under S2.

Mass matrices of charged lepton and neutrino
The Lagrangian serves as a cornerstone in describing the interactions and behaviors of particles within the 
context of physics of particles. The superpotential term for charged leptons, Dirac neutrinos and right handed 
Majorana neutrinos is given as

	

−LY = ye(D̄lL ϕ)1 eR + yµ(D̄lL ϕ)1′ µR + yτ (D̄lL ϕ)1′′ τR + y1 (D̄lL Φ)1 νeR

+ y2

Λ (D̄lL Φ)1′ νµR ξ + y3

Λ (D̄lL Φ)1′′ ντR ξ′ + 1
2 M1 (νc

eR
νeR ) + 1

2 M2 [(νc
µR

ντR )

+ (νc
τR

νµR )] + 1
2 yR1 (νc

µR
νµR ) η + 1

2 yR2 (νc
τR

ντR ) κ + y(D̄lL Dc
lL

) iσ2∆ + h.c.,

� (1)

In this context, ye, yµ, yτ , y1,2,3, M1,2, yR1,2  and y are represent the dimensionless Yukawa couplings. Due to 
the VEVs (see section 4) and S2 flavour symmetry, one can generate mass matrices for charged leptons (Ml), 
Dirac neutrinos (MD) and right handed Majorana neutrinos as

	
Ml = v

(
ye 0 0
0 yµ 0
0 0 yτ

)
, MD = u

(
0 y2vϵ

Λ
y2vϵ

Λ
y1 0 y2vϵ

Λ
y1

y2vϵ
Λ 0

)
, � (2)

	
MR =

(
M1 0 0
0 yRvm M2
0 M2 yRvm

)
, M ′′ = yω

3

(
0 1 −1
1 2 0

−1 0 −2

)
. � (3)

Here, seesaw frameworks, particularly type-I24–28 and type-II29–31, used besides several other methods to explain 
small neutrino masses. Majorana and Dirac mass terms derived from the introduction of extra right-handed 
neutrinos in SM in type I. Majorana mass terms (M ′′) derived from the introduction of heavy SU(2)L triplet 
in SM in type-II. In other words, a hybrid seesaw mechanism24,32,33 proposed for improved mass suppression 
and new mixing patterns by combining type-I and type-II. With this hybrid technique, one may explore various 
lepton mixing scenarios and generate effective Majorana neutrino mass matrices (Mν) as

	 Mν = M ′ + M ′′ = −mDM−1
R mT

D + M ′′� (4)

with

Fields DlL lR
νlR ϕ Φ η κ ∆ ξ ξ′

SU(2)L 2 1 1 2 2 1 1 3 1 1

A4 3 (1, 1′′, 1′) (1, 1′′, 1′) 3 3 1′′ 1′ 3 1 1

U(1)Y −1 −2 0 1 −1 0 0 −2 0 0

Z10 0 0 (0, 4, 6) 0 0 2 8 0 6 4

Z3 1 (ω, ω, ω) (1, 1, 1) ω2 1 1 1 1 1 1

Table 1.  The properties of transformation under SU(2)L × U(1)Y × A4 × Z10 × Z3.
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M ′ =

(
P Q Q
Q R S
Q S R

)
, M ′′ =

(
0 p −p
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)
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� (5)

The first effective Majorana matrix is diagonalized under the conditions y2 = y3, yR1 = yR2  and S2 symmetry, 
by the subsequent mixing matrix,

	
U0 =

(
c s 0

−s/
√

2 c/
√

2 1/
√

2
−s/

√
2 c/

√
2 −1/

√
2

)
,� (6)

such as diag(m1, m2, m3) = U0
T M1 U0, where, c = cos θ, s = sin θ and θ = arccos( k√

k2+2
) with,

	
k =

P − R − S −
√

P 2 − 2P R − 2P S + 8Q2 + R2 + 2RS + S2

2Q
,� (7)

and

	
m1,2 = 1

2(P + R + S ∓
√

(−P + R + S)2 + 8Q2), m3 = R − S.� (8)

In the context of three-neutrino physics, the mixing matrix of lepton (UP MNS) may be represented as96

	
UP MNS =

(
c12c13 s12c13 s13eiδ

−s12c23 − c12s13s23eiδ c12c23 − s12s13s23eiδ c13s23
s12s23 − c12c23s13eiδ −c12s23 − s12s13c23eiδ c13c23

)
P12� (9)

where, P12 = diag(1, eiβ1 , eiβ2 ) which contains two Majorana phases that do not influence neutrino 
oscillations. The matrix U0 in Eq. (6) suggests θ23 = π/4, θ13 = 0 and θ12 = θ, Recent data contradicts this 
claim. However, the inclusion of the second matrix in Eq. (4) is expected to ameliorate this discrepancy. In first-
order perturbation corrections, the second matrix in Eq. (4) doesn’t affect the eigenvalues but it does influence 
the eigenvectors. Moving to second-order perturbation theory, this matrix contributes to the determination of 
both eigenvalues and eigenvectors. Consequently, the masses of neutrino upto the second order perturbation 
corrections can be expressed as:

	
m′

1 = m1 + p2Γ1
2

m1 − m3
, m′

2 = m2 + p2Γ2
2

m2 − m3
, m′

3 = m3 + p2
(

2Γ3
2

m3 − m1
+ Γ2

2

m3 − m2

)
,� (10)

where the parameters p, q, and m1,2,3 are defined in Eqs.  (5) and (8), respectively. The contributions to the 
eigenvalues from first-order perturbation are negligible, with only minor changes arising at second-order 

perturbation. In Eq. (10), the terms p2Γ1
2

m1−m3
, p2Γ2

2

m2−m3
, and p2

(
2Γ3

2

m3−m1
+ Γ2

2

m3−m2

)
 are significantly smaller 

compared to m1, m2, and m3, respectively. This is consistent with the condition M ′′ ≪ M ′. Subsequently, the 
resulting lepton mixing matrix is as follows:

	 U = U0 + ∆U + ∆U ′� (11)

where U0 is given by in Eq. (6), ∆U  represents the mixing matrix corresponding to first-order corrections, and 
∆U ′ represents the mixing matrix corresponding to second-order corrections. They have the following entries:

	 (∆U)11 = (∆U)12 = 0,

	
(∆U)13 = p

( Γ1 cos θ

m3 − m1
+ Γ2 sin θ

m3 − m2

)
,

	
(∆U)21 = −(∆U)31 = pΓ3

m3 − m1
, (∆U)32 = −(∆U)22 =

√
2Γ2p

2(m3 − m2) ,

	
(∆U)23 = (∆U)33 = p ((m1 − m2)Γ4 + 2(m1 + m2 − 2m3))

2
√

2(m3 − m1)(m2 − m3)
,
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(∆U ′)11 = p2Γ1

2(m1 − m3)2

[
− cos θΓ1 + 2 sin θ(m1 − m3)Γ2

m1 − m2

]
,

	
(∆U ′)12 = p2Γ2

2(m2 − m3)2

[
− sin θΓ2 − 2 cos θ(m2 − m3)Γ1

m1 − m2

]
, (δU ′)13 = 0,

	
(∆U ′)21 = (∆U ′)31 = p2Γ1

[
Γ5(3m1 − m2 − 2m3) + m1 + m2 − 2m3)

2
√

2(m1 − m2)(m1 − m3)2

]
,

	
(∆U ′)22 = (∆U ′)32 = −p2Γ2

[
Γ5(m1 − 3m2 + 2m3) + m1 + m2 − 2m3

2
√

2(m1 − m2)(m2 − m3)2

]
,

	
(∆U ′)23 = − (∆U ′)33 = −p2

2
√

2

[
Γ1

2

(m1 − m3)2 + Γ2
2

(m2 − m3)2

]
,

with, Γ1 = −2 sin θ +
√

2 cos θ, Γ2 =
√

2 sin θ + 2 cos θ, Γ3 =
√

2 sin θ − cos θ, Γ4 =
√

2 sin 2θ + 2 cos 2θ 
and Γ5 = cos 2θ +

√
2 sin θ cos θ. The lepton mixing angles can be determined from Eqs. (9) and (11), which 

define the mixing matrix of neutrino:

	
t12 = |U12|

|U11| , t23 = |U23|
|U33| , s13 = |U13|,� (12)

with, sij = sin θij , cij = cos θij  and tij = tan θij . Most of A4 models predict θ13 = 0. In this model, there 
is a deviation, for sure there is some correlation with other observable like θ12, θ23. The correlations between 
different parameters are given in Fig. 1.

Numerical analysis
Taking into consideration the latest experimental data26, the mixing angles are measured as follows: The solar 
neutrino mixing angle, θ12, is determined to be 34◦ ± 1◦, the atmospheric neutrino mixing angle, θ23, is found to 
be 42◦ ± 3◦, and the reactor angle, θ13, is measured to be 8.5◦ ± 0.5◦. Additionally, the squared mass differences 
are determined as ∆m2

sol = m′2
2 − m′2

1 ≈ 7.53 × 10−5 eV2 and ∆m2
atm = m′2

3 − m′2
2 ≈ 2.453 × 10−3 eV2 

(∆m2
atm = m′2

3 − m′2
2 ≈ −2.536 × 10−3 eV2) for normal (inverted) neutrino mass ordering97. The lower and 

upper bounds of Σm′ are constrained to 0.06 eV and 0.12 eV, respectively98. Utilizing Eqs. (11) and (12), the 
objective or fitness function (ϵ) corresponding to these experimental constraints can be expressed as follows.

	 ϵ = ϵ1 + ϵ2 + ϵ3 + ϵ4 + ϵ5 + ϵ6,� (13)

with,

	

ϵ1 =

[
m′

2
2 − m′2

1 − ∆m2
sol

]2

, ϵ2 =

[
m′

3
2 − m′2

2 − ∆m2
atm

]2

, ϵ3 =

[
|U12|
|U11| − t12

]2

,

ϵ4 =

[
|U23|
|U33| − t23

]2

, ϵ5 =

[
U13 − s13

]2

,

ϵ6 =

[
m′

1 + m′
2 + m′

3 −

(
0.12 eV, for upper bound limit
0.06 eV, for lower bound limit

)]2

,

� (14)

where, m′
1,2,3, U11, U12, U23, U33, U13 are given in Eqs. (10) and (11).

In this article we use PSO instead of classical Chi-square fitting for optimization and parameter estimation tasks 
because of following reasons: (1) PSO is a population-based optimization technique that searches the entire 
solution space for the optimal solution. It can escape local optima more effectively compared to Chi-square 
fitting, which might get stuck in local minima. (2) PSO tends to converge faster than Chi-square fitting. (3) PSO 
does not require initial guesses for the parameters being optimized, unlike Chi-square fitting, where a good initial 
guess is required for convergence to the proper solution. (4) PSO can handle non-linear optimization problems 
efficiently, which may be challenging for Chi-square fitting. (5) PSO is highly adaptable and can be easily modified 
or extended to handle various types of optimization tasks, including parameter estimation, feature selection, and 
function optimization. (6) PSO can be parallelized effectively, allowing for faster computation times on parallel 
computing architectures compared to Chi-square fitting, which may not be as easily parallelized. (7) PSO is 
robust to noise and can handle noisy objective functions better than some Chi-square fitting methods, which 
may struggle with noisy data.
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We use PSO algorithm to optimize the objective or fitness functions ϵ for optimal values of parameters. 
In the usual way of doing particle swarm optimization (PSO), we treat each possible solution to a problem is 
represented as a moving point within the search space. These points form a group called a ’swarm’, and they 
work together to check out the whole search area. Each point is assigned a unique score based on its efficacy in 
solving the problem. Initially, these points are randomly selected. Throughout each iteration, the positions and 
velocities of the points are updated based on their previous performance based on its local P x−1

LB  and global 
P x−1

GB  positions. The basic rules for updating position and velocity of a point are given as,

	 vx
i = wvt−1

i + c1r1(P x−1
LB − Xx−1

i ) + c2r2(P x−1
GB − Xx−1

i ), � (15)

	 Xx
i = Xx−1

i + vx−1
i . � (16)

In these rules, i goes from 1 to p, where p is just a integer telling us how many points there are. The weight ’w’ 
and c1 and c2 are also integers that help to control how the points move. Also, the velocity gradually gets smaller 
as we keep looking around (between 0 and 1). The random numbers r1 and r2 are just there to add a bit of 
randomness. Finally, the velocity of the points is kept within certain limits so they don’t go too fast or too slow.

The points traverse the search space by adapting their positions and velocities, drawing from their individual 
experiences and insights gained from neighboring points. The algorithm involves the following key steps: 

Fig. 1.  The correlation plots include sin2θ13 versus sin2θ23 and sin2θ12, sin2θ23 versus sin2θ12, m1 
(neutrino mass in eV without perturbations) versus the sum of perturbed neutrino masses, and the sum of 
perturbed neutrino masses (in eV) versus sin2θ13, sin2θ12, and sin2θ23 as shown in last plot.
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	1.	� Initialization: Commence by populating a set of points, assigning them random positions and velocities 
distributed throughout the exploration area.

	2.	� Objective Assessment: Assess the fitness or objective function value for each point according to its present 
position.

	3.	� Update Personal and Global Bests: Update the personal best position (Pbest) for each point based on its 
current fitness. Update the global best position (Gbest) considering the best position among all points.

	4.	� Update Velocities and Positions: Adjust the velocity and position of each point using its current velocity, 
personal best, and global best positions.

	5.	� Iteration: Continue steps 2 through 4 for a predetermined number of iterations or until reaching a conver-
gence criterion.The generic flow chart PSO is given in Fig. 2.

To inspire the development of meta-heuristic optimization algorithms, we employed PSO technique to minimize 
the objective function for both mass hierarchy and for upper and lower bound limits of Σm′. The objective 
function is minimized through PSO with 500 iteration are presented in Fig. 3 and corresponding values of p, θ, 

Fig. 3.  Fitness function versus number of iterations.

 

Fig. 2.  Generic flow chart of PSO.

 

Scientific Reports |         (2025) 15:5129 7| https://doi.org/10.1038/s41598-024-81791-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


m1, m2 and m3 are given in Tables 2, 3, 4 and 5 in which m1, m2 and m3 are masses of neutrinos in eV without 
perturbations correspond to zero reactor angle and p and θ are the free parameters of the model. The masses of 
neutrino without perturbations (m1, m2, m3) and other model free parameters p and θ are predicted using PSO 
by using experimental squared mass differences of perturbed masses.

The lepton mixing matrices upto second order perturbation theory for both mass hierarchy and for upper 
(0.12 eV ) and lower (0.06 eV ) bound limits of Σm′ are given as:

	
|U (N)upper

P MNS | =

(
0.8208 0.5519 0.1476
0.3317 0.6710 0.6617
0.4653 0.4952 0.7353

)
� (17)

	
|U (N)lower

P MNS | =

(
0.8201 0.5539 0.1470
0.3336 0.6710 0.6615
0.4650 0.4938 0.7355

)
� (18)

	
|U (I)upper

P MNS | =

(
0.8200 0.5531 0.1477
0.3330 0.6710 0.6618
0.4657 0.4938 0.7350

)
� (19)

	
|U (I)lower

P MNS | =

(
0.8200 0.5531 0.1478
0.3330 0.6710 0.6618
0.4658 0.4938 0.7350

)
� (20)

On the behalf of the values of p, θ, m1, m2 and m3, the mass corrections upto second 
order perturbation theory for both mass hierarchy and for upper (0.12 eV ) and lower 
(0.06 eV ) bound limits of Σm′ are given as: m′

1
(N)(upper) = 4.0000 × 10−2 eV, 

Parameters Optimal values Parameters Optimal values

p 1.4714 × 10−3
θ 0.5909 rad

m1 1.1040 × 10−2 eV m2 3.8846 × 10−2 eV

m3 1.0098 × 10−2 eV

Table 5.  The optimal values of parameters p, θ, m1, m2, m3, through PSO for lower bound limit of 
Σm′ = 0.06 eV  and inverted mass hierarchy.

 

Parameters Optimal values Parameters Optimal values

p 1.0000 × 10−4
θ 0.5909 rad

m1 3.8627 × 10−2 eV m2 4.0517 × 10−2 eV

m3 3.8563 × 10−2 eV

Table 4.  The optimal values of parameters p, θ, m1, m2, m3, through PSO for inverted mass hierarchy and for 
upper bound limit of Σm′ = 0.12 eV .

 

Parameters Optimal values Parameters Optimal values

p 1.0964 × 10−14
θ 0.5909 rad

m1 2.0000 × 10−2 eV m2 2.0000 × 10−2 eV

m3 2.0000 × 10−2 eV

Table 3.  The optimal values of parameters p, θ, m1, m2, m3, through PSO for lower bound limit of 
Σm′ = 0.06 eV  and normal mass hierarchy.

 

Parameters Optimal values Parameters Optimal values

p −4.5205 × 10−16
θ 0.5894 rad

m1 4.0000 × 10−2 eV m2 4.0000 × 10−2 eV

m3 4.0000 × 10−2 eV

Table 2.  The optimal values of parameters p, θ, m1, m2, m3, through PSO for upper bound limit of 
Σm′ = 0.12 eV  and normal mass hierarchy.
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m′
2

(N)(upper) = 4.0000 × 10−2 eV, m′
3

(N)(upper) = 4.0000 × 10−2 eV, m′
1

(I)(upper) 
= 3.8628 × 10−2 eV, m′

2
(I)(upper) = 4.0548 × 10−2 eV, m′

3
(I)(upper) = 3.8532 × 10−2 eV,

m′
1

(N)(lower) = 2.0000 × 10−2 eV, m′
2

(N)(lower) = 2.0000 × 10−2 eV,  
m′

3
(N)(lower) = 2.0000 × 10−2 eV, m′

1
(I)(lower)  

= 1.1049 × 10−2 eV, m′
2

(I)(lower) = 3.9298 × 10−2 eV   and m′
3

(I)(lower) = 9.6381 × 10−3 eV, which 
are correspond to non zero reactor angle. The Dirac CP-violating phase δ is measured to be −π/2. In our 
numerical analysis, we concentrated on only two specific values for the sum of neutrino masses, instead of 
a continuous spectrum. We utilized 0.06 eV, representing the lower limit of the sum of masses, and 0.12 eV 
as the upper limit. In the NO case and the neutrino masses appear nearly degenerate and normal hierarchy 
could not be adequately reproduced here. In contrast, for the inverted ordering, a more defined hierarchy was 
observable, making the model consistent with an inverted hierarchy (IO). These findings are consistent with a 
quasi-degenerate normal hierarchy (QDNH) mass spectrum, characterized by m′

1
N ≲ m′

2
N ≲ m′

3
N

, and an 
inverted mass hierarchy (IH), where m′

3
I

< m′
1

I
< m′

2
I  for both Σm′ = 0.06 and 0.12.

Effective neutrino mass parameters
The expressions for the effective neutrino masses99–103 associated with neutrinoless double beta decay (⟨mee⟩) 
and beta decay (mβ) are structured as follows:

	

mβ =

√√√√
3∑

i=1

|Uei|2m′2
i , ⟨mee⟩ =

∣∣∣∣∣
3∑

i=1

U2
eim

′
i

∣∣∣∣∣,� (21)

Considering the leptonic mixing matrix elements Uei with i ranging from 1 to 3, representing the masses m′
i of 

three neutrinos, the effective neutrino masses associated with neutrinoless double beta decay (⟨mee⟩) and beta 
decay (mβ) are computed using the parameters obtained in section 3. This calculation is performed for both 
mass hierarchy of neutrino, yielding the following results:

	

⟨mee⟩N (upper) = 40.0050 meV, ⟨mβ⟩N (upper) = 40.0025 meV,

⟨mee⟩I(upper) = 39.2181 meV, ⟨mβ⟩I(upper) = 39.2257 meV,

⟨mee⟩N (lower) = 20.0024 meV, ⟨mβ⟩N (lower) = 20.0012 meV,

⟨mee⟩I(lower) = 19.6608 meV, ⟨mβ⟩I(lower) = 23.5908 meV.

� (22)

Vacuum alignment studies
In particle physics, the dynamics of scalar fields are encapsulated by an invariant scalar potential within the 
symmetry group. The following Eq.  (23) describes the invariant scalar potential within the symmetry group 
SU(2)L × U(1)Y × A4 × Z10 × Z3. It plays a crucial role in understanding spontaneous symmetry breaking 
and the generation of particle masses. While A4, Z10 and Z3 are discrete symmetries that add to the rich 
structure of the potential, the SU(2)L symmetry describes weak isospin.

	

V =V (ϕ) + V (Φ) + V (∆) + V (η) + V (κ) + V (ξ) + V (ξ′) + V (ϕ, Φ) + V (ϕ, ∆) + V (ϕ, η)
+ V (ϕ, κ) + V (ϕ, ξ) + V (ϕ, ξ′) + V (Φ, ∆) + V (Φ, η) + V (Φ, κ) + V (Φ, ξ) + V (Φ, ξ′)
+ V (∆, η) + V (∆, κ) + V (∆, ξ) + V (∆, ξ′) + V (η, κ) + V (η, ξ) + V (η, ξ′) + V (κ, ξ)
+ V (κ, ξ′) + V (ξ, ξ′) + V (ϕ, η, κ) + V (ϕ, ξ, ξ′) + V (Φ, η, κ) + V (Φ, ξ, ξ′) + V (∆, η, κ)
+ V (∆, ξ, ξ′) + V (η, κ, ξ, ξ′).

� (23)

Writing the terms explicitly, we have,
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V (ϕ) = −µ2
ϕ(ϕ†ϕ) + λϕ

1 (ϕ†ϕ)(ϕ†ϕ) + λϕ
2 (ϕ†ϕ)1′ (ϕ†ϕ)1′′ + λϕ

3 (ϕ†ϕ)3s (ϕ†ϕ)3s ,

V (Φ) = V (ϕ → Φ),
V (∆) = −µ2

∆T r(∆†∆) + λ∆
1 T r(∆†∆)T r(∆†∆) + λ∆

2 T r(∆†∆)1′ T r(∆†∆)1′′

+ λ∆
3 T r(∆†∆)3s T r(∆†∆)3s

V (η) = −µ2
η(η∗η) + λη(η∗η)2, V (κ) = −µ2

κ(κ∗κ) + λκ(κ∗κ)2,

V (ξ) = −µ2
ξ(ξ∗ξ) + λξ(ξ∗ξ)2, V (ξ′) = −µ2

ξ′ (ξ′∗
ξ′) + λξ′

(ξ′∗
ξ′)2,

V (ϕ, Φ) = λϕΦ
1 (ϕ†ϕ)(Φ†Φ) + λϕΦ

2 ((ϕ†ϕ)1′ (Φ†Φ)1′′ + (ϕ†ϕ)1′′ (Φ†Φ)1′ )
+ λϕΦ

3 (ϕ†ϕ)3s (Φ†Φ)3s ,

V (ϕ, ∆) = V (ϕ, Φ → ϕ, ∆), V (ϕ, η) = λϕη(ϕ†ϕ)η∗η, V (ϕ, κ) = λϕκ(ϕ†ϕ)κ∗κ,

V (ϕ, ξ) = λϕξ(ϕ†ϕ)ξ∗ξ, V (ϕ, ξ′) = λϕξ′
(ϕ†ϕ)ξ′∗

ξ′, V (Φ, ∆) = V (ϕ, Φ → Φ, ∆),
V (Φ, η) = λΦη(Φ†Φ)η∗η, V (Φ, κ) = λΦκ(Φ†Φ)κ∗κ, V (Φ, ξ) = λΦξ(Φ†Φ)ξ∗ξ,

V (Φ, ξ′) = λΦξ′
(Φ†Φ)ξ′∗

ξ′, V (∆, η) = λη∆T r(∆†∆)η∗η, V (∆, κ) = λκ∆T r(∆†∆)κ∗κ,

V (∆, ξ) = λ∆ξT r(∆†∆)ξ∗ξ, V (∆, ξ′) = λ∆ξ′
T r(∆†∆)ξ′∗

ξ′,

V (η, κ) = ληκ(η∗ηκ∗κ + µ2
ηκ(ηκ + h.c) + (η2κ2 + h.c)),

V (η, ξ) = ληξη∗ηξ∗ξ, V (η, ξ′) = ληξ′
η∗ηξ′∗

ξ′, V (ξ, ξ′) = V (η, κ → ξ, ξ′),

V (κ, ξ) = λκξκ∗κξ∗ξ, V (κ, ξ′) = λκξ′
κ∗κξ′∗

ξ′, V (ϕ, η, κ) = λϕηκ((ϕ†ϕ)ηκ + h.c),

V (ϕ, ξ, ξ′) = λϕξξ′
((ϕ†ϕ)ξξ′ + h.c), V (Φ, η, κ) = λΦηκ((Φ†Φ)ηκ + h.c),

V (Φ, ξ, ξ′) = λΦξξ′
((Φ†Φ)ξξ′ + h.c), V (∆, η, κ) = λ∆ηκ(T r(∆†∆)ηκ + h.c),

V (∆, ξ, ξ′) = λ∆ξξ′
(T r(∆†∆)ξξ′ + h.c), V (η, κ, ξ, ξ′) = ληκξξ′

(ηκξξ′ + h.c).

� (24)

Many terms containing (ϕ†ϕ)3a , (Φ†Φ)3a  and T r(∆†∆)3a  are also invariant but are not appeared in (23) 
because they are vanished due to the antisymmetric of 3a as a consequence of the tensor product of 3 × 3 of 
A4 and the VEV alignment of ϕ, Φ and ∆. The minimization conditions (VEVs) of this potential can result in 
the extreme solutions detailed in (25). These VEVs provide information about the stable configurations of the 
system since they represent crucial places where potential energy is minimized.

	

⟨ϕ⟩ = (⟨ϕ1⟩, 0, 0), ⟨ϕ1⟩ = (0 v)T , ⟨Φ⟩ = (0, ⟨Φ2⟩, ⟨Φ3⟩),
⟨Φ2⟩ = ⟨Φ3⟩ = (u 0)T , ⟨∆⟩ = (0, ⟨∆2⟩, ⟨∆3⟩),

⟨∆2⟩ =
(0 0

w 0
)

, ⟨∆3⟩ = −
(0 0

w 0
)

, ⟨η⟩ = ⟨κ⟩ = vm, ⟨ξ⟩ =
⟨
ξ′⟩ = vϵ,

� (25)

PSO Treatment for Scalar Potential:

Due to VEVs (24), multiplication rules for A4 symmetry in the T-diagonal basis104 and S2 symmetry, Eq. (23) 
become as

	

V = − µ2
ϕv2 + λϕ

1 v4 + 4
9λϕ

3 v4 − 2µ2
Φu2 + 4λΦ

1 u4 + λΦ
2 u4 + 12

9 λΦ
3 u4 + 2µ2

∆w2 + 4λ∆
1 w4

+ λ∆
2 w4 + 12

9 λ∆
3 w4 + 2λϕΦ

1 v2u2 − 4
9λϕΦ

3 v2u2 − 2λϕ∆
1 v2w2 + 4

9λϕ∆
3 v2w2 − 4λΦ∆

1 u2w2

+ 2λΦ∆
2 u2w2 + 4

9λΦ∆
3 u2w2 − µ2

ηv2
m + ληv4

m − µ2
κv2

m + λκv4
m − µ2

ξv2
ϵ + λξv4

ϵ − µ2
ξ′ v2

ϵ

+ λξ′
v4

ϵ + λϕηv2v2
m + λϕκv2v2

m + λϕξv2v2
ϵ + λϕξ′

v2v2
ϵ + 2λΦηu2v2

m + 2λΦκu2v2
m

+ 2λΦξu2v2
ϵ + 2λΦξ′

u2v2
ϵ − 2λη∆w2v2

m − 2λκ∆w2v2
m − 2λ∆ξw2v2

ϵ − 2λ∆ξ′
w2v2

ϵ

+ ληκ(v4
m + 2µ2

ηκv2
m + 2v4

m) + ληξv2
mv2

ϵ + ληξ′
v2

mv2
ϵ + λξξ′

(v4
ϵ + 2µ2

ξξ′ v2
ϵ + 2v4

ϵ )

+ λκξv2
mv2

ϵ + λκξ′
v2

mv2
ϵ + 2λϕηκv2v2

m + 2λϕξξ′
v2v2

ϵ + 4λΦηκu2v2
m + 4λΦξξ′

u2v2
ϵ

− 4λ∆ηκw2v2
m − 4λ∆ξξ′

w2v2
ϵ + 2ληκξξ′

v2
mv2

ϵ ,

� (26)

and the fitness function (ϵ′) for (26) is expressed as follows.
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ϵ′ =
[

− µ2
ϕv2 + λϕ

1 v4 + 4
9λϕ

3 v4 − 2µ2
Φu2 + 4λΦ

1 u4 + λΦ
2 u4 + 12

9 λΦ
3 u4 + 2µ2

∆w2 + 4λ∆
1 w4

+ λ∆
2 w4 + 12

9 λ∆
3 w4 + 2λϕΦ

1 v2u2 − 4
9λϕΦ

3 v2u2 − 2λϕ∆
1 v2w2 + 4

9λϕ∆
3 v2w2 − 4λΦ∆

1 u2w2

+ 2λΦ∆
2 u2w2 + 4

9λΦ∆
3 u2w2 − µ2

ηv2
m + ληv4

m − µ2
κv2

m + λκv4
m − µ2

ξv2
ϵ + λξv4

ϵ − µ2
ξ′ v2

ϵ

+ λξ′
v4

ϵ + λϕηv2v2
m + λϕκv2v2

m + λϕξv2v2
ϵ + λϕξ′

v2v2
ϵ + 2λΦηu2v2

m + 2λΦκu2v2
m

+ 2λΦξu2v2
ϵ + 2λΦξ′

u2v2
ϵ − 2λη∆w2v2

m − 2λκ∆w2v2
m − 2λ∆ξw2v2

ϵ − 2λ∆ξ′
w2v2

ϵ

+ ληκ(v4
m + 2µ2

ηκv2
m + 2v4

m) + ληξv2
mv2

ϵ + ληξ′
v2

mv2
ϵ + λξξ′

(v4
ϵ + 2µ2

ξξ′ v2
ϵ + 2v4

ϵ )

+ λκξv2
mv2

ϵ + λκξ′
v2

mv2
ϵ + 2λϕηκv2v2

m + 2λϕξξ′
v2v2

ϵ + 4λΦηκu2v2
m + 4λΦξξ′

u2v2
ϵ

− 4λ∆ηκw2v2
m − 4λ∆ξξ′

w2v2
ϵ + 2ληκξξ′

v2
mv2

ϵ

]2

,

� (27)

To stimulate the advancement of meta-heuristic optimization algorithms, we again utilized PSO technique to 
minimize the scalar potential. The objective function is minimized through PSO for scalar potential with 500 
iteration is presented in Fig. 4.

This figure demonstrates that the objective function converges to zero with each iteration when employing the 
VEVs provided in (25). The optimal parameter values, as measured within the objective function of the scalar 
potential using PSO technique, are listed in Table 6.

The scalar potential is minimized from these optimal values. In contrast to95, which analyzed the scalar 
potential without determining the masses of extra flavon fields, the PSO approach not only analyzes the scalar 
potential but also determines the numerical values of the flavon field masses. Table 6, revealing that the flavon 
masses are on the order of O(100 GeV ), which is relevant to current experimental searches.

Conclusion
In this study, we have examined a model within SU(2)L × U(1)Y × A4 × S2 × Z10 × Z3 to estimate 
the neutrino masses using particle swarm optimization technique for both neutrino hierarchy. In this 
model, a hybrid seesaw mechanism proposed for improved mass suppression and new mixing patterns by 
combining type-I and type-II and generate effective Majorana neutrino mass matrices. After calculating 
the mass eigenvalues and lepton mixing matrix upto second order perturbation theory in the framework 
based on A4 symmetry, we investigated the minimization of the scalar potential for VEVs through PSO. 
The utilization of PSO in determining optimal parameters for computing UP MNS  matrices, neutrino 
masses as: m′

1
(N)(upper) = 4.0000 × 10−2 eV, m′

2
(N)(upper) = 4.0000 × 10−2 eV, m′

3
(N)(upper) 

= 4.0000 × 10−2 eV, m′
1

(I)(upper) = 3.8628 × 10−2 eV, 
m′

2
(I)(upper) = 4.0548 × 10−2 eV, m′

3
(I)(upper) = 3.8532 × 10−2 eV, m′

1
(N)(lower)   

= 2.0000 × 10−2 eV, m′
2

(N)(lower) = 2.0000 × 10−2 eV, m′
3

(N)(lower)  
= 2.0000 × 10−2 eV, m′

1
(I)(lower) = 1.1049 × 10−2 eV, m′

2
(I)(lower) = 3.9298 × 10−2 eV    and 

m′
3

(I)(lower) = 9.6381 × 10−3 eV, effective neutrino mass parameters as: ⟨mee⟩N (upper) = 40.0050 meV, 
⟨mβ⟩N (upper) = 40.0025 meV, ⟨mee⟩I(upper) = 39.2181 meV, ⟨mβ⟩I(upper) = 39.2257 meV, 

Fig. 4.  Fitness function of scalar potential versus number of iterations.
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⟨mee⟩N (lower) = 20.0024 meV, ⟨mβ⟩N (lower) = 20.0012 meV, ⟨mee⟩I(lower) = 19.6608 meV, 
⟨mβ⟩I(lower) = 23.5908 meV  for both mass hierarchy are illustrated as well. The Dirac CP-violating phase 
δ is measured to be −π/2.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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