
Available online at www.sciencedirect.com
ScienceDirect

Nuclear Physics B 920 (2017) 221–231

www.elsevier.com/locate/nuclphysb

Inhibition of the Fermi velocity renormalization in a 

graphene sheet by the presence of a conducting plate

Jeferson Danilo L. Silva a,∗, Alessandra N. Braga a, Wagner P. Pires a,b, 
Van Sérgio Alves a, Danilo T. Alves a, E.C. Marino c

a Faculdade de Física, Universidade Federal do Pará, 66075-110 Belém, Brazil
b Programa de Ciências Exatas, Universidade Federal do Oeste do Pará, 68040-470 Santarém, Brazil

c Instituto de Física, Universidade Federal do Rio de Janeiro, 21941-972 Rio de Janeiro, Brazil

Received 1 December 2016; received in revised form 31 March 2017; accepted 20 April 2017
Available online 26 April 2017

Editor: Hubert Saleur

Abstract

We investigate the renormalization of the Fermi velocity in a plane graphene sheet in the presence of a 
parallel conducting plate. We use the pseudo-quantum electrodynamics to describe the Coulombian interac-
tion between the electrons, but taking into account that this interaction is changed by the conducting plate. 
Incorporating the influence of the plate into the gauge field, we obtain the correspondent photon propagator 
and electron self-energy, showing that the logarithmic renormalization of the Fermi velocity is inhibited by 
the presence of the plate. Our result may be useful as an alternative way to control the electronic properties 
of graphene.
© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

There are several motivations for investigating properties of charged particles constrained to 
move on a plane. For instance, the quantum Hall effect [1], high-temperature superconductivity 

* Corresponding author.
E-mail addresses: jeferson.silva@icen.ufpa.br (J.D.L. Silva), alessandrabg@ufpa.br (A.N. Braga), 

wagner.pires@ufopa.edu.br (W.P. Pires), vansergi@ufpa.br (V.S. Alves), danilo@ufpa.br (D.T. Alves), 
marino@if.ufrj.br (E.C. Marino).
http://dx.doi.org/10.1016/j.nuclphysb.2017.04.014
0550-3213/© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

http://www.sciencedirect.com
http://dx.doi.org/10.1016/j.nuclphysb.2017.04.014
http://www.elsevier.com/locate/nuclphysb
http://creativecommons.org/licenses/by/4.0/
mailto:jeferson.silva@icen.ufpa.br
mailto:alessandrabg@ufpa.br
mailto:wagner.pires@ufopa.edu.br
mailto:vansergi@ufpa.br
mailto:danilo@ufpa.br
mailto:marino@if.ufrj.br
http://dx.doi.org/10.1016/j.nuclphysb.2017.04.014
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nuclphysb.2017.04.014&domain=pdf


222 J.D.L. Silva et al. / Nuclear Physics B 920 (2017) 221–231
Fig. 1. One-loop electron self-energy diagram.

[2], and the graphene, a system with the thickness of a carbon atom organized in a honeycomb 
lattice which has two inequivalent Dirac points (K and K ′) associated to a valley degree of 
freedom [3]. Using a tight-binding approach, the electronic band structure of graphene exhibits 
particle–hole symmetry and, at low-energies, the dispersion relation shows a linear dependence 
on the momentum, namely, E±(k) ≈ ±vF |k|, where vF is the bare Fermi velocity (vF ≈ c/300, 
where c is the speed of light). Therefore, electrons in graphene at low-energies can be effec-
tively described in terms of a massless Dirac Lagrangian. In such examples of two-dimensional 
systems, the fundamental physical properties are determined from the behavior of the electron 
dynamics and, in all realistic physical applications, although the electrons are constrained to a 
plane, the electromagnetic field is not. In 1993 Marino [4], taking as starting point the quantum 
electrodynamics (QED) in 3 + 1 dimensions in Euclidian space, namely

LQED = 1

4
FμνF

μν +LD + jμAμ − ξ

2
Aμ∂μ∂νAν, (1)

built an effective and complete description in 2 + 1 dimensions for electronic systems moving 
on a plane, but interacting as particles in 3 + 1 dimensions. This effective theory is given by

LPQED = 1

2

FμνF
μν

(−�)1/2
+LD + jμAμ − ξ

2
Aμ

∂μ∂ν

(−�)1/2
Aν, (2)

and it is denominated pseudo-quantum electrodynamics (PQED), and sometimes it is also called 
reduced quantum electrodynamics [5]. In Eq. (2), � is the d’Alembertian operator, LD stands 
for the Dirac’s Lagrangian while the last term corresponds to the gauge fixing term. Despite 
the nonlocality of the Maxwell term in Eq. (2), the theory satisfies causality [6], the Huygens 
principle and preserves unitarity [7]. In addition it reproduces the static Coulombian potential 
(∝ 1/r), instead of the peculiar logarithmic one from QED in 2 +1 dimensions (∝ ln r). Recently, 
PQED was used in the description of several graphene properties [8–10].

From Eq. (2), one obtains the free photon propagator in Euclidean space,

�(0)
μν (k) = 1

2
√

k2

[
δμν −

(
1 − 1

ξ

)
kμkν

k2

]
, (3)

where kμ = (k0, k) and k = (k1, k2). In the nonretarded regime, considering the Feynman gauge 
(ξ = 1), it becomes

�(0)
μν (k0 = 0, |k|) = 1

2|k|δ0μδ0ν, (4)

which leads to the Coulombian interaction for static charges. In this regime, the electron self-
energy in a graphene sheet (see Fig. 1) was calculated in Ref. [11] (see also Refs. [12–14]), and 
the result in one-loop order is

�0(p) = e2(p · γ )
ln

	
, (5)
16π |p|
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Fig. 2. Illustration of a graphene sheet parallel to a grounded conducting plate, separated by a distance ρ0.

where e is the nonrenormalized coupling constant, γ μ = (γ 0, γ ) stands for the Dirac matrices, 
and 	 is an ultraviolet cutoff introduced in the momentum integrals. From Eq. (5), the renormal-
ized Fermi velocity vR

F (|p|) with external momentum p reads [11]

vR
F (|p|) = vF

(
1 + αF

4
ln

	

|p|
)

, (6)

where αF = e2/(4πvF ) is the graphene fine structure constant. The Fig. 2c found in Ref. [15]
exhibits experimental results in good agreement with the theoretical prediction shown in Eq. (6).

In graphene, as well as in other two-dimensional systems, the transport properties of the elec-
trons can be controlled with the application of external electric and magnetic fields, or changing 
the geometry or topology of the sample [3,16]. The present paper is focused on investigating 
the effects of a grounded conducting plate on the Fermi velocity renormalization in a suspended 
graphene sheet (see Fig. 2). The presence of the plate imposes boundary conditions to the elec-
tromagnetic field and, when the dimensional reduction from Eq. (1) to Eq. (2) incorporates the 
effects of the boundary conditions imposed to the electromagnetic field in 3 + 1 dimensions, the 
influence of such external conditions is carried into PQED. This procedure generates models that 
we shall denominate cavity pseudo-quantum electrodynamics (Cavity PQED), a term suggested 
in analogy with the Cavity QED, a branch of QED which investigates how the boundary condi-
tions imposed by the environment influence the radiative properties of atomic systems [17–20].

The paper is organized as follows. In Sec. 2, we obtain an expression for the photon propagator 
modified due to the presence of a grounded perfectly conducting plate. In Sec. 3, using the results 
from the previous section, we calculate the electron self-energy in one-loop order, and the result 
is then used to obtain an expression for the renormalized Fermi velocity in a graphene sheet near 
a grounded conducting plate. In Sec. 4 we present a summary of the results and our final remarks.

2. The modified photon propagator

Let us start by considering an electric charge e at a distance ρ0 from a grounded and perfectly 
conducting plate. In this situation, the electrostatic potential vanishes on the plate (namely, it 
obeys the Dirichlet boundary condition). By the image method (which arises as a consequence 
of the uniqueness of the Laplace equation solutions), the potential V for this configuration at an 
arbitrary point P also separated by a distance ρ0 from the plate is (see Fig. 3)

V (P ) = e
(

1 − 1
′

)
, (7)
4π |r| |r|
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Fig. 3. The charge and its image are located, respectively, at the points A and A′ , the conducting plate is located at the 
plane y = 0, and P is an arbitrary point of the plane y = ρ0.

where |r| (|r|′) is the distance between the charge (image) and the point P , which can be rewritten 
as

|r| = ρ0 cot θ and |r|′ = ρ0

√
cot2 θ + 4, (8)

with the parameter θ being the angle shown in Fig. 3. Also, the unit system was set so that ε0 = 1. 
Therefore,

V (θ) = e

4πρ0

[
tan θ − 1√

cot2 θ + 4

]
. (9)

Notice that the potential is azimuthally symmetric. From this static potential, we can get the “00” 
component of the photon propagator for electrons constrained to the plane y = ρ0, via the inverse 
Fourier transform, which is given by (see, for instance, Ref. [21])

�
(0)
00 (k0 = 0, |k|) = 1

e2

∫
d2r e−ik·reV (θ), (10)

with k and r being restricted to the plane y = ρ0 (see Fig. 3), so that

d2r = |r|dϕ d|r| = −ρ2
0 cot θ csc2 θ dθ dϕ, (11)

and

k · r = |k||r| cosϕ = |k|ρ0 cot θ cosϕ, (12)

where ϕ is integrated from 0 to 2π and θ from π/2 to 0 [since θ = π/2 corresponds to |r| = 0
and θ → 0 corresponds to |r| → ∞ (see Fig. 3)], thus we can write

�
(0)
00 (|k|) = ρ0

4π

∫
dθ dϕ csc2 θ

[
cot θ√

cot2 θ + 4
− 1

]
exp (−i|k|ρ0 cot θ cosϕ) , (13)

where it should be understood that k0 = 0 in �(0)
00 (|k|). By integrating in ϕ one gets

�
(0)
00 (|k|) = ρ0

2

π/2∫
dθ csc2 θ

[
1 − cot θ√

cot2 θ + 4

]
J0(|k|ρ0 cot θ), (14)
0
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where J0 is the Bessel function of first kind. The change of variables u = |k|ρ0 cot θ makes the 
integration in θ straightforward since [22]

∞∫
0

du
uJ0(u)√
u2 + a2

= e−a. (15)

Therefore, after integration in θ , we get

�
(0)
00 (ρ0, |k|) = 1

2|k|
[
1 − exp(−2ρ0|k|)] . (16)

The first term in the right-hand side of Eq. (16) is the propagator in absence of plate, as shown in 
Eq. (4), recovered when ρ0 → ∞, and the exponential term arises due to the present of the plate.

Next, we shall use Eq. (16) for the photon propagator to obtain the new expression for the 
electron self-energy, from which we get the renormalized Fermi velocity.

3. One-loop electron self-energy and Fermi velocity renormalization

As the massless electrons move with a Fermi velocity in a graphene sheet, instead of the speed 
of light, the Dirac’s Lagrangian is given by

LD = ψ̄a

(
iγ 0∂0 + ivF γ · ∇

)
ψa, (17)

where ψ̄a = ψ
†
a γ 0, and a is a flavor index representing a sum over valleys K and K ′, γ μ are 

rank-4 Dirac matrices and ψ†
a = (

ψ�
A↑ ψ�

A↓ ψ�
B↑ ψ�

B↓
)
a

a four-component Dirac spinor repre-
senting electrons in sublattices A and B in graphene, with different spin orientations.

The Lagrangian above leads to the following bare fermion propagator

S
(0)
F (kμ) = k0γ

0 + vF k · γ
k2

0 + v2
F |k|2 . (18)

If we consider only the static case (vF /c � 1), which means that the vertex interaction will be 
eγ 0, the one-loop electron self-energy (see Fig. 1) reads (since this calculation does not involve 
a fermion loop, it is sufficient to consider only one species of fermions)

�(ρ0,p) = e2
∫

d2k
(2π)2

dk0

2π
γ 0S

(0)
F (kμ + pμ)γ 0�

(0)
00 (ρ0, |k|)

= e2

2

∫
d2k

(2π)2

(k + p) · γ
|k + p| �

(0)
00 (ρ0, |k|). (19)

In the last equation we used γ 0γ γ 0 = −γ . The electron self-energy can be written as

�(ρ0,p) = �0(p) + �̃(ρ0,p), (20)

where �0 is the self-energy in the absence of the plate (recovered when ρ0 → ∞), and �̃ is the 
contribution due to the presence of the conducting plate, namely

�0(p) = e2

2

∫
d2k

(2π)2

(k + p) · γ
|k + p|

1

2|k| , (21)

�̃(ρ0,p) = −e2 ∫
d2k

2

(k + p) · γ exp(−2ρ0|k|)
. (22)
2 (2π) |k + p| 2|k|
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The integral in Eq. (21) is ultraviolet divergent, but a cutoff 	 = |k|max can be used in order to 
regularize it, which results in Eq. (5) (in accordance to Refs. [11–14]). On the other hand, the 
term due to the plate, given by Eq. (22), is naturally finite at the ultraviolet since the exponential 
factor in the integrand vanishes very fast. However, since the cutoff 	 used to regularize (21) has 
physical meaning (it is of the order of the inverse lattice parameter of graphene), it must be also 
considered in the term due to the plate (22), even this being finite at the ultraviolet. As we shall 
see later, it plays an important role in the Fermi velocity renormalization.

To perform the integrals shown in Eqs. (21) and (22), one can use elliptical coordinates (see, 
for instance, Refs. [12,23]), namely

k1 = |p|
2

(coshμ cosν − 1) , k2 = |p|
2

sinhμ sinν, (23)

where ν ∈ [0, 2π) and μ ∈ [0, ∞), thus

|k| = |p|
2

(coshμ − cosν) . (24)

Since |k| cannot assume values greater than the cutoff 	 (|k| ≤ 	), the variable μ must be 
limited by a maximum value μ	 (which depends on ν). Therefore, from Eq. (24),

coshμ	 = 2	

|p| + cosν. (25)

Using Eq. (23) into Eq. (22), and taking into account that μ ≤ μ	 [with μ	 being defined in 
Eq. (25)], the term of the electron self-energy that arises due to the plate becomes

�̃(ρ0,p) = − (p · γ )e2

16π

[
L1(ρ0|p|) + L2(ρ0|p|)] , (26)

where

L1(ρ0|p|) =
2π∫

0

dν

μ	∫
0

dμ f (ρ0|p|;μ,ν), (27)

L2(ρ0|p|) =
2π∫

0

dν cosν

μ	∫
0

dμ coshμf (ρ0|p|;μ,ν), (28)

and

f (ρ0|p|;μ,ν) = 1

2π
exp

[
ρ0 |p| (cosν − coshμ)

]
. (29)

In Eqs. (27) and (28) the integration in μ must be done first since μ	 depends on ν.
Equations (27) and (28) are very stable for numerical integration due to the decreasing expo-

nential factor present into f (ρ0|p|; μ, ν). To illustrate this assertion, some qualitative plots of the 
integrands of Eqs. (27) and (28) are shown in Fig. 4, from which one can see that the integrands 
vanish very fast, indeed. In the following, we shall leave clear the role played by the cutoff 	 in 
these naturally finite integrals.

In situations where the distance between the graphene sheet and the conducting plate is very 
short as, for instance, distances of the order of the lattice parameter, the upper limit μ	 of the 
integrals in Eqs. (27) and (28) prevents spurious contributions to be computed in the electron 
self-energy, what would occur if the integrals were up to infinity (see the thick lines in Fig. 4a, 
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Fig. 4. Integrands of L1 and L2 [Eqs. (27) and (28)] as functions of μ and ν, with |p| = 	/10. Fig. 4a shows the 
integrands of L1 (left) and L2 (right) with ρ0 = 1/	. Fig. 4b shows the integrands of L1 (left) and L2 (right) with 
ρ0 = 5/	. The thick lines are indicating μ	 , which delimits the region of integration.

which represent the cutoff μ	, and notice that the integrands have not vanished yet at these lines). 
However, a small increase in the distance between the graphene sheet and the plate is enough to 
make the integrands of Eqs. (27) and (28) vanish before reaching the cutoff μ	 (see the thick 
lines in Fig. 4b and notice that, in this case, the integrands have already vanished at these lines). 
Therefore, one may consider, in good approximation, the upper limit of integration as infinity in 
this case, allowing the integrals to be computed exactly, resulting in [22]

L1(ρ0|p|) ≈ I0(ρ0|p|)K0(ρ0|p|), (30)

L2(ρ0|p|) ≈ I1(ρ0|p|)K1(ρ0|p|), (31)

where Iν and Kν are the modified Bessel functions of first and second kind, respectively.
The electron self-energy in the presence of the plate is given by

�(ρ0,p) = e2(p · γ )

16π

[
ln

	

|p| − L1(ρ0|p|) − L2(ρ0|p|)
]

, (32)

where L1 and L2 are given by Eqs. (27) and (28) [or approximately by Eqs. (30) and (31)].
The complete fermion propagator can be written in terms of the electron self-energy as

SF (kμ) = 1

−kμγ μ + �(kμ)
, (33)

from which we obtain the following renormalized Fermi velocity in the presence of a grounded 
conducting plate,

vR
F (ρ0, |p|) = 1 + αF

[
ln

	 − L1(ρ0|p|) − L2(ρ0|p|)
]

. (34)

vF 4 |p|
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Fig. 5. Renormalized Fermi velocity as function of the external momentum |p|, for several values of ρ0 (considering 
	 = αF = 1).

Since L1(ρ0|p|) and L2(ρ0|p|) can be written in terms of Bessel functions, as shown in Eqs. (30)
and (31), in the limit of ρ0|p| � 1 one gets [22]

I0(ρ0|p|) = 1 +O
(
ρ2

0 |p|2
)

, (35)

I1(ρ0|p|) = ρ0|p|
2

+O
(
ρ3

0 |p|3
)

, (36)

K0(ρ0|p|) = ln
2

ρ0|p| + C +O
(
ρ2

0 |p|2
)

, (37)

K1(ρ0|p|) = 1

ρ0|p| − ρ0|p|
2

(
ln

2

ρ0|p| + C + 1

2

)
+O

(
ρ3

0 |p|3
)

, (38)

where C ≈ 0.577215 is the Euler–Mascheroni constant. In this limit, Eq. (34) becomes

vR
F (ρ0, |p|)

vF

= 1 + αF

4

[
ln

	ρ0

2
− C − 1

2
+ ρ2

0 |p|2
4

ln
1

ρ0|p| +O
(
ρ2

0 |p|2
)]

. (39)

Therefore, in the limit ρ0|p| � 1, L1(ρ0|p|) has a logarithmic behavior that compensates the 
divergent term ln(	/|p|) in Eq. (34). This is responsible for the behavior of the renormalized 
Fermi velocity shown in Fig. 5 and discussed in the following.

Notice that the negative signs of L1 and L2 in the right hand side of Eq. (34), along with 
the observation that L1(ρ0|p|) > 0 and L2(ρ0|p|) > 0, lead to the conclusion that the Fermi 
velocity renormalization is inhibited by the presence of the conducting plate. The behavior of the 
renormalized Fermi velocity given by Eq. (34) can be visualized in Fig. 5, and the ratio between 
the Fermi velocity given by Eq. (34) and the renormalized Fermi velocity in the absence of the 
plate is shown in Fig. 6. In these figures, the solid lines, obtained by making ρ0 = 105/	 (the 
distance between the graphene sheet and the plate is 105 times the lattice parameter), can be 
considered a good approximation to the result without the plate found in the literature [Eq. (6)], 
which, in turn, is associated to the solid line in Fig. 2c found in Ref. [15]. We can see that for 
ρ0 = 100/	 (the dotted lines, of Figs. 5 and 6), a considerable inhibition of vR(ρ0, |p|) occurs for 
F



J.D.L. Silva et al. / Nuclear Physics B 920 (2017) 221–231 229
Fig. 6. Ratio between the renormalized Fermi velocity with and without the plate as function of the external momentum 
|p|, for several values of ρ0 (considering 	 = αF = 1).

|p| → 0. For ρ0 = 10/	 and ρ0 = 1/	, the inhibition of vR
F (ρ0, |p|) becomes more expressive, 

with the characteristic that vR
F (ρ0, |p|)/vF ≈ constant.

4. Final remarks

We considered the electron–electron Coulombian interaction in graphene described via PQED 
[Eq. (2)]. Moreover, we introduced the Cavity PQED — a branch of PQED that includes effects 
of boundary conditions imposed by the environment to the electromagnetic field. We investigated 
the renormalization of the Fermi velocity in a graphene sheet in the presence of a perfectly con-
ducting and grounded plate. Our results showed that the well-known logarithmic renormalization 
of the Fermi velocity [see Eq. (6)] is inhibited, as shown in Eqs. (34) and (39), and Figs. 5 and 6. 
This inhibition occurs because the effective interaction of the electrons in a graphene sheet is 
affected by the presence of the plate, changing the photon propagator (16) and, consequently, the 
electron self-energy (20).

For small distances between the graphene sheet and the plate, for instance ρ0 ≈ 1/	 or ρ0 ≈
10/	 (respectively, dashed and dot-dashed lines in Figs. 5 and 6), our model shows a significant 
inhibition of the renormalized Fermi velocity. However, even for larger distances in comparison 
to the graphene lattice parameter, for instance ρ0 ≈ 100/	 or ρ0 ≈ 105/	, (respectively, dotted 
and solid lines in Figs. 5 and 6) the renormalized Fermi velocity will be still inhibited. The 
inhibition becomes more significant for lower values of the external momentum. In the limit 
ρ0 → ∞ (the distance between the graphene sheet and the plate goes to infinity), our results are 
in agreement with those found in the literature [11–14].

Although the specific model of Cavity PQED investigated here deals with some ideal situ-
ations, our results reveal that the renormalization of the Fermi velocity can be inhibited by the 
presence of a conducting plate, which may be useful as an additional way to control the electronic 
properties of graphene, as usually done via external electric and magnetic fields or changing the 
geometry or topology of the sample [3,16]. More complex models of Cavity PQED, including 
more realistic conditions imposed by the environment on the graphene properties, are under in-
vestigation.
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