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Abstract: The article presents a theoretical study of Oleinik resonances in the process of scattering a

gamma quantum by an ultrarelativistic electron in the field of a strong electromagnetic wave with

intensities up to 1027 Wcm−2. The resonant kinematics for three possible resonant reaction channels

in a strong external field have been studied in detail. It is shown that under resonant conditions, the

scattering channels of the reaction effectively split into two first-order processes according to the fine

structure constant, such as the external field-stimulated Compton effect. The annihilation channel

of the reaction effectively decays into direct and reverse the external field-stimulated Breit–Wheeler

processes. In the absence of interference from the reaction channels, a resonant differential cross-

section was obtained in a strong external electromagnetic field. The cases when the energy of the

initial electrons significantly exceeds the energy of the initial gamma quanta have been studied. At

the same time, all particles (initial and final) fly in a narrow cone away from the direction of wave

propagation. The conditions under which the energy of ultrarelativistic initial electrons is converted

into the energy of a finite gamma quantum are studied. It is shown that the resonant differential cross-

section of such a process significantly (by several orders of magnitude) exceeds the corresponding

nonresonant cross-section. This theoretical study predicts a number of new physical effects that may

explain the high-energy fluxes of gamma quanta produced near neutron stars and magnetars.

Keywords: Oleinik resonances; Compton effect; gamma quanta; ultrarelativistic electrons; strong

electromagnetic fields

1. Introduction

Currently, high-intensity laser systems are being intensively developed [1–9], as well
as sources of high-energy particles, including high-energy gamma quanta [10–17]. All
this contributes to the intensive development of quantum electrodynamics (QED) in
strong electromagnetic fields (see, for example, reviews [18–27], monographs [28–31] and
articles [32–85]). It is important to emphasize that QED processes of higher orders with
respect to the fine structure constant in the laser field (QED processes modified by an
external electromagnetic field) can proceed in both resonant and nonresonant ways. The
so-called Oleinik resonances may occur here [32,33] (see also articles [45–60]) due to the
fact that lower-order processes are allowed in the electromagnetic field with respect to the
fine structure constant (QED processes stimulated by an external electromagnetic field).
Under resonant conditions, an intermediate particle in an external electromagnetic field
enters the mass shell. As a result, the initial second-order process effectively splits into
two first-order processes according to the fine structure constant. It should be noted that
reviews [20,24,30] and monographs [29,31] were devoted to various second-order processes
with respect to the fine structure constant in an external electromagnetic field studying
Oleinik resonances. Among the recent works on Oleinik resonances in a strong electromag-
netic field, the following can be noted. Resonant spontaneous bremsstrahlung radiation
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during scattering of ultrarelativistic electrons on nuclei in a strong electromagnetic field was
studied in [56,59]. The resonant photogeneration of ultrarelativistic electron-positron pairs
on nuclei in a strong electromagnetic field was considered in articles [55,58]. The resonant
process of the generation of ultrarelativistic electron-positron pairs by two gamma quanta
in a strong electromagnetic field (the Breit–Wheeler process modified by an external field)
was studied in [60]. It is important to emphasize that the resonant differential cross-sections
can significantly exceed the corresponding nonresonant differential cross-sections.

The Compton effect stimulated by an external electromagnetic field (a first-order
process by the fine structure constant) has been studied for a long time (see, for example,
the review [19] and articles [1,34–44]). The resonant Compton effect modified by an
external electromagnetic field (a second-order process with respect to the fine structure
constant) was previously studied in the field of a weak electromagnetic wave (see, for
example, [33,45–49]).

In this article, unlike the previous ones, we will study the resonant Compton effect
modified by the strong field of a plane circularly polarized wave for ultrarelativistic electron
energies. In this case, the main parameter is the classical relativistically invariant parameter

η =
eFλ̄

mc2
>
∼

1, (1)

which is numerically equal to the ratio of the work of the field at the wavelength to the rest
energy of the electron (e and m are the charge and mass of the electron, F and λ̄ = c/ω are
the electric field strength and wavelength, and ω is the frequency of the wave).

The process of scattering of a gamma quantum by an electron in an external electro-
magnetic field is a second-order process according to the fine structure constant and is
described by two Feynman diagrams (see Figure 1).

A B

Figure 1. Feynman diagrams of the scattering process of a gamma quantum on an electron in the field

of a plane electromagnetic wave, Channels (A,B). The solid incoming and outgoing lines correspond

to the Volkov functions of the electron in the initial and final states, and the inner line corresponds to

the Green function of the electron in the plane wave field. The dashed lines correspond to the wave

functions of the gamma quantum in the initial and final states.

In addition, in this problem, for three resonant reaction channels (see Feynman dia-
grams in Figure 2), characteristic quantum parameters arise equal to the ratio of the energies
of the initial particles to the characteristic energies of the process:

εiC =
Ei

h̄ωC
, ε′iC =

ωi

ωC
, ε′iBW =

ωi

ωBW
. (2)
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Here, Ei and h̄ωi are the energies of the initial electrons and gamma quanta, as well as h̄ωC

and h̄ωBW are the characteristic quantum energies of the Compton effect [56,59] and the
Breit–Wheeler process [54,55,58]:

h̄ωC =

(

m∗c2
)2

4(h̄ω) sin2(θ/2)
=

(

mc2
)2(

1 + η2
)

4(h̄ω) sin2(θ/2)
, ωBW = 4ωC. (3)

Here, m∗ is the effective mass of an electron in the field of a circularly polarized wave (12),
θ is the angle between the momentum of the initial gamma quantum and the direction of
propagation of the wave (22). Please note that the characteristic energies (3) are inversely
proportional to the frequency (ω) and directly proportional to the intensity of the external
electromagnetic wave

(

I ∼ η2
)

, and also depend on the angle between the momenta of
the wave and the initial particles. In this paper, it will be shown that the resonant energies
of final electrons and gamma quanta, as well as the resonant differential cross-sections,
significantly depend on the magnitude of the quantum parameters εiC, ε′iC and ε′iBW (2).

   A     B     D

Figure 2. Feynman diagrams of the resonant Compton effect in the field of a plane electromagnetic

wave, Channels (A,B,D).

Later in the article, the relativistic system of units is used: h̄ = c = 1.

2. The Amplitude of the Scattering of a Gamma Quantum by an Electron in an
Electromagnetic Field

The process of scattering of a gamma quantum by an electron in an external electro-
magnetic field is a second-order process according to the fine structure constant and is
described by two Feynman diagrams (see Figure 1). Let us choose the 4-potential of a plane
monochromatic circularly polarized electromagnetic wave propagating along the z axis in
the following form:

A(φ) =
F

ω

(

ex cos φ + δ · ey sin φ
)

, φ = kx = ω(t − z). (4)

Here, δ = ±1; ex,y =
(

0, ex,y

)

and k = (ω, k) are 4-polarization vectors and 4-wave vector
of the external field, k2 = 0, e2

x,y = −1,
(

kex,y
)

= 0.
The wave functions of an electron are determined by the Volkov functions [78,79], and

the intermediate states of an electron (positron) are given by the Green function in the field
of a plane wave (4) [80,81,86]. The amplitude of such a process after simple calculations
can be represented in the following form (see, for example, [45–49,83]):

S f i =
∞

∑
l=−∞

Sl , (5)
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where the partial amplitude with emission and absorption of l-photons of the wave has the
following form:

Sl = −i
(2π)4e2

√

Ẽi Ẽ f ωiω f

· exp
(

iϕ f i

)

·

[

ū f Mlui

]

δ(4)
[

p̃ f + k f − p̃i − ki − lk
]

, (6)

It is indicated here:
l = r2 − r1, (7)

Ml = εµε∗
′

ν

∞

∑
r2=−∞

[

Fν
r2

(

p̃ f , q̃−
)

·

(

q̂− + m

q̃2
− − m2

∗

)

F
µ
r2−l(q̃−, p̃i) + F

µ
r2

(

p̃ f , q̃−
)

(

q̂− + m

q̃2
− − m2

∗

)

Fν
r2−l(q̃−, p̃i)

]

. (8)

In terms of (6)–(8) εµ, ε∗
′

ν are 4- polarization vectors of the initial and final gamma
quanta, ϕ f i is a phase independent of the summation indices, ui,ū f are Dirac bispinors,

p̃i =
(

Ẽi, p̃i

)

and p̃ f =
(

Ẽ f , p̃ f

)

are 4-quasi-momenta of the initial and final electrons, q̃− is

the 4-quasi-momentum of the intermediate electron, m∗ is the effective mass of the electron
in the plane wave field [19]. At the same time, for channels A and B, you can write:

A : q̃− = p̃i + ki − r1k = p̃ f + k f − r2k, (9)

B : q̃− = p̃i − k f + r1k = p̃ f − ki + r2k, (10)

p̃i, f = pi, f + η2 m2

2
(

kpi, f

) k, q̃− = q− + η2 m2

2(kq−)
k, (11)

p̃2
i, f = q̃2

− = m2
∗, m∗ = m

√

1 + η2. (12)

Here, ki, f = ωi, f

(

1, ni, f

)

are 4-the momentum of the initial and final gamma quantum,

pi, f =
(

Ei, f , pi, f

)

are 4-the momentum of the initial and final electrons. Expressions with a

cap in the ratio (8) and further mean the scalar product of the corresponding 4-vector on the
Dirac gamma matrices: γµ =

(

γ0, γ
)

, µ = 0, 1, 2, 3. For example, ˆ̃pi = p̃iµγµ = p̃i0γ0 − p̃iγ.

The amplitudes F
ν(µ)
r′−l (q̃−, p̃i) and F

µ(ν)
r′

(

p̃ f , q̃−
)

in the ratio (8) have the form:

F
µ′

n ( p̃2, p̃1) = aµ′

Ln( p̃2, p̃1) + b
µ′

− Ln−1 + b
µ′

+ Ln+1, (13)

n = r1, r2; µ′ = µ, ν; p̃1 = p̃i, q̃−; p̃2 = q̃−, p̃ f . (14)

In this expression, the matrices aµ′
, b

µ′

± are defined by the relationships

aµ′

= γ̃µ′

+ η2 m2

2(kp̃1)(kp̃2)
kµ′

k̂, (15)

b
µ′

± =
1

4
ηm ·

[

ε̂± k̂γµ′

(kp̃2)
+

γµ′
k̂ε̂±

(kp̃1)

]

, ε̂± = êx ± iδ · êy. (16)

The special functions Ln and Ln±1, and their arguments have the form [21]:

Ln( p̃2, p̃1) = exp
(

−inχ p̃2 p̃1

)

· Jn

(

γp̃2 p̃1

)

, (17)

tgχ p̃2 p̃1
= δ ·

(

eyQ p̃2 p̃1

)

(

exQ p̃2 p̃1

) , Q p̃2 p̃1
=

p̃2

(kp̃2)
−

p̃1

(kp̃1)
, (18)

γp̃2 p̃1
= ηm

√

−Q2
p̃2 p̃1

. (19)
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In the future, we will consider the case when the initial and final particles have
ultrarelativistic energies and fly in a narrow cone. In this case, the direction of wave
propagation should be far from the specified narrow cone of particles (otherwise, the
resonances disappear [20,24,54–56]). Thus, the energies of electrons and gamma quanta
must satisfy the conditions

Ej >> m, ωj >> m, j = i, f . (20)

θi = ∠(ki, pi) << 1, θ f = ∠

(

k f , p f

)

<< 1, (21)

θ = ∠(k, ki) ∼ 1, θkpi
= ∠(k, pi) ≈ θ. (22)

At the same time, we will assume that the value of the classical parameter η (1) is
limited from above by the value

η << ηmax, ηmax =
E f

m
>> 1. (23)

Therefore, further consideration of resonant processes will be valid for sufficiently high
wave intensities. However, the intensity of these fields should be less than the critical
Schwinger field F∗ ≈ 1.3 · 1016 V/cm [80,85]. In this article, within the framework of
condition (20), we will consider sufficiently large energies of initial electrons and not very
large energies of initial gamma quanta:

Ei>
∼

1GeV, ωi << 1GeV. (24)

At the same time, we will assume that the energy of the initial electron is much greater than
the characteristic energy of the Compton effect and that the energy of the initial gamma
quantum is less than or on the order of this energy:

Ei >> ωC, ωi<
∼

ωC. (25)

Within the framework of conditions (24) and (25), we determine the characteristic
energy of the Compton effect (3) for various frequencies and intensities if an external
electromagnetic wave propagates towards the momentum of the initial particles (θ = π).

ωC ≈







130.56 MeV, if ω = 1 keV, I = 1.86 · 1024 Wcm−2(η = 1)
26.112 MeV, if ω = 5 keV, I = 4.65 · 1025 Wcm−2(η = 1)
6.528 MeV, if ω = 20 keV, I = 7.44 · 1026 Wcm−2(η = 1)

(26)

The resonant behavior of the amplitude (6)–(8) is due to the quasi-discrete structure of
the system: an electron + a plane electromagnetic wave. Under resonant conditions, the
intermediate electron enters the mass shell (Oleinik resonances) [33,45–60]. Please note
that in this case, in addition to channels A and B, channel D is also possible, for which the
intermediate particle is a positron (see Figure 2). As a result, for intermediate electrons
(channels A and B) or positrons (channel D), the laws of conservation of energy-momentum
are fulfilled:

q̃2
− = m2

∗, (27)

q̃2
+ = m2

∗. (28)

At the same time, the elimination of resonant infinity in the field of a plane monochro-
matic electromagnetic wave is carried out by the Breit-Wigner procedure [20,54–56,82]:

(

q̃2
∓ − m2

∗

)2
→

(

q̃2
∓ − m2

∗

)2
+ 4m2

∗Γ2(η, ε). (29)
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In this case, the resonant width Γ(η, ε) is determined by the expression

Γ(η, ε) =
q̃0
∓

2m∗

W(η, ε), (30)

where W(η, ε) is the total probability (per unit time) of the Compton effect stimulated by
an external field on an intermediate electron or positron with a 4-momentum q̃∓ [19].

W(η, ε) =
αm2

4πq̃0
∓

K(η, ε), (31)

where

K(η, ε) =
∞

∑
n=1

∫ nε

0

du

(1 + u)2
Kn(η, u, nε), ε > 0. (32)

Here, the functions Kn(u, nε) are defined by the expression:

Kn(η, u, nε) = −4J2
n(γ) + η2

(

2 +
u2

1 + u

)

(

J2
n+1 + J2

n−1 − 2J2
n

)

, (33)

γ = 2n
η

√

1 + η2

√

u

nε

(

1 −
u

nε

)

. (34)

Let us note that in expressions (32)–(34), the parameter ε is determined by the corre-
sponding reaction channel (see Sections 3–5). Taking into account the ratios (30)–(32), the
resonant width (30) will take the form:

Γ(η, ε) =
αm2

8πm∗

K(η, ε). (35)

As will be shown below, under resonant conditions (27) and (28) channels A, B and D
may not interfere. Therefore, in the future, we will consider sequentially the resonances of
the Compton effect in a strong electromagnetic field for channels A, B, and D in the absence
of their interference. In Section 5, it will be shown that in the energy range of the initial
particles (24), the resonant channel A will be suppressed. Therefore, let us start studying
the resonant Compton effect from channel B.

3. Resonant Compton Effect in a Strong Field: Channel B

For channel B, taking into account the resonant condition (27), the laws of conservation
of the 4-momentum at the first and second vertices can be represented as follows (see
Channel B in Figure 2):

p̃i + r1k = q̃− + k f , r1 ≥ 1, (36)

q̃− + ki = p̃ f + r2k, r2 ≥ 1. (37)

Hence, and from the type of amplitude (6)–(8), it follows that for channel B under resonant
conditions, the second-order process according to the fine structure constant is effectively
reduced to two first-order processes of the type of Compton effect stimulated by an external
electromagnetic field. At the first vertex, the absorption of the r1-wave photons by the
initial electron and the emission of the intermediate electron and the final gamma quantum
take place. At the second vertex, we obtain the scattering of the initial gamma quantum on
an intermediate electron with radiation r2-photons of the wave and the final electron.
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The expression for the resonant frequency
(

ωB(r1)

)

of the scattered gamma quantum

in the case of channel B (see Figure 2B) is obtained taking into account the conservation
law of the 4-momentum (36) for the first vertex, as well as conditions (20), (22) and (27):

ωB(r1)
= Ei

r1εiC

r1εiC +
(

1 + δ2
f i

) < Ei. (38)

Here, the quantum parameter εiC is determined by the expression (2), (3), and the ultrarela-
tivistic parameter δ2

f i, which determines the outgoing angle of the final gamma quantum

relative to the momentum of the initial electron, is equal to

δ2
f i =

E2
i θ2

f i

m2
∗

, θ f i = ∠

(

k f , pi

)

<< 1. (39)

It is important to note that for channel B, the resonant frequency of the final gamma
quantum is determined by the outgoing angle (δ2

f i ), the number of absorbed photons of the

wave (r1), as well as the quantum parameter εiC. At the same time, the energy of the final
gamma quantum for channel B is always less than the initial energy of the initial electron.
As will be shown below, the opposite situation will be for channel D.

Carrying out similar calculations for the second vertex, from the ratios (27) and (37),

we obtain an expression for the resonant energy of the final electron
(

EB(r2)

)

in the case of

channel B:

EB(r2) = ωi

r2ε′iC +

√

(

r2ε′iC
)2

+ 4
(

r2ε′iC − δ
′2
f i

)

2
(

r2ε′iC − δ
′2
f i

) > ωi. (40)

Here, the quantum parameter ε′iC is determined by the expression (2), (3), and the ultrarela-

tivistic parameter δ
′2
f i, which determines the outgoing angle of the final electron relative to

the momentum of the initial gamma quantum, is equal to

δ
′2
f i =

ω2
i θ

′2
f i

m2
∗

, θ′f i = ∠

(

p f , ki

)

<< 1. (41)

It can be seen from expression (40) that the resonant energy of a final electron depends

on its outgoing angle
(

δ
′2
f i

)

, the number of emitted photons of the wave (r2) and the

quantum parameter ε′iC. It is important to note that for channel B, the resonant energy of
the final electron always exceeds the energy of the initial gamma quantum. As will be
shown below, for channel D, the energy of the final electron will be less than the initial
energy of the gamma quantum. It should be borne in mind that in expression (40), the

ultrarelativistic parameter δ
′2
f i should not come very close to the value of the parameter

r2ε′iC. This is due to the fact that the law of conservation of energy must be fulfilled for
channel B

EB(r2) + ωB(r1)
≈ E0 = Ei + ωi. (42)

Substituting the energy of the electron (40) into expression (42), after simple transfor-
mations, we obtain a connection of ultrarelativistic parameters that determine the outgoing
angles of the final electron and the gamma quantum:

δ
′2
f i = r2ε′iC







1 −
ε′iCβ f i(r1)

(

1 + ε′iCβ f i(r1)

)



1 +
β f i(r1)

2r2

(

1 + ε′iCβ f i(r1)

)











. (43)
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It is indicated here:

β f i(r1)
=

1

εiC
+

r1

1 + δ2
f i

. (44)

At the same time, the expression in curly brackets in the ratio (43) will be positive
if the condition for the number of emitted photons of the wave at the second vertex is
met (see ratio (63)). We emphasize that the ratio (43) gives an unambiguous relationship
between the outgoing angles of the final electron and the gamma quantum. Figure 3
shows the dependence of the square of the outgoing angle of a final electron on the
square of the outgoing angle of a final gamma quantum in a strong X-ray wave field for a
different number of absorbed (at the first vertex) and emitted (at the second vertex) photon
waves. This connection is a distinctive feature of the resonant process, in contrast to the
nonresonant process, where there is no such connection between the outgoing angles of the
final particles.

It is important to note that when the energy of the initial electron significantly exceeds
the characteristic energy of the Compton effect (see relations (25)), then the resonant energy
of the final gamma quantum (38) tends to the energy of the initial electron from the bottom:

ωB(r1)
≈ Ei

(

1 −
1 + δ2

f i

εiC(r1)

)

= Ei −
1

r1

(

1 + δ2
f i

)

ωC ≈ Ei, (Ei >> ωC). (45)

At the same time, the resonant energy of the final electron, according to the ratios (42)
and (45), can be determined by the outgoing angle of the final gamma quantum and the
number of absorbed photons of the wave at the first vertex r1:

EB(r1)
≈ ωi +

1

r1

(

1 + δ2
f i

)

ωC. (46)

In the future, we will study the resonant cross-section in the absence of interference of
channels A, B, and D. As will be shown below, this is possible since in the energy region (24),
channel A will be suppressed. At the same time, for resonant channels, the energies of final
particles lie in different energy regions. In addition, within each channel (B or D), processes
with different numbers of absorbed and emitted photons of the wave also have different
energies and do not interfere. Because of this, in the future, we will consider the resonant
cross-section separately for each of the reaction channels.

0.0

0.5

1.0

1.5

2.0

2.5

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1

26 26.528MeV, =7.44 10 WcmI

2
fi

1
2
fi

Ei=100Gev, wi=10Mev            
 1) r1 = r2=1
 2) r1 = 1, r2=2
 3) r1 = 2, r2=2

23

a)

0

2

4

6

8

0 2 4 6 8 10 12

26 26.528MeV, =7.44 10 WcmI

2
fi

1

2
fi

Ei=100Gev, wi=100Mev
 1) r1 = r2=1
 2) r1 = 1, r2=2
 3) r1 = 2, r2=2

23
b)

Figure 3. Dependence of the ultrarelativistic parameters δ
′2
f i and δ2

f i (43) and (44) determining the

squares of the outgoing angles of the electron and gamma quantum, (a) ωi = 10 MeV, and (b) ωi =

100 MeV for a different number of emitted and absorbed photons of the X-ray wave at fixed values of

the initial energy of the electron and the characteristic energy of the Compton effect and two possible

values of the initial energy of the gamma quantum.

Using an expression for the amplitude of the process (see expressions (5)–(8) and (13)),
It is not difficult to obtain a resonant differential cross-section in the case of unpolarized
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particles and the absence of interference of reaction channels. After the standard calcula-
tions [83] for channel B, we obtain:

dσB(r1r2)
= r2

e

2m6Ei

(4π)2ωiω f E f m2
∗

(

1 + δ2
i

)

Kr1(u1B, v1B)Kr2(u2B, v2B)
[

(

q̃2
− − m2

∗

)2
+ 4m2

∗Γ2(η, εiC)
] δ(4)

[

p̃ f + k f − p̃i − ki − (r2 − r1)k
]

d3 p̃ f d3k f . (47)

When obtaining a resonant differential cross-section, the corresponding probability (per
unit of time and unit of volume) was divided by the flux density of the initial particles [83]:

ji =
(ki p̃i)

ωi Ẽi
≈

m2
∗

2E2
i

(

1 + δ2
i

)

, δ2
i =

E2
i θ2

i

m2
∗

. (48)

Here, θi is the angle of the solution between the momenta of the initial particles (21). In
expression (47), Γ(η, εiC) this is the resonant width, which is determined by expression (35).
The functions Kr1(u1B, v1B)and Kr2(u2B, v2B) determine the probability of the Compton
effect stimulated by an external field at the first and second vertices (see Figure 2B)

Krj

(

ujB, vjB

)

= −4J2
rj

(

γjB

)

+

+η2

(

2 +
u2

jB

1+ujB

)

(

J2
rj+1 + J2

rj−1 − 2J2
rj

)

, j = 1, 2.
(49)

At the same time, the arguments of the Bessel functions and the corresponding relativisti-
cally invariant parameters ujB, vjB are defined by expressions:

γjB = 2rj
η

√

1 + η2

√

√

√

√

ujB

vjB

(

1 −
ujB

vjB

)

, j = 1, 2, (50)

u1B =

(

kk f

)

(kq−)
≈

ω f
(

Ei − ω f

) , v1B = 2r1
(kpi)

m2
∗

≈ r1εiC, (51)

u2B =
(kki)

(kq−)
≈

ωi

E f − ωi
=

ωi

Ei − ω f
, (52)

v2B = 2r2

(

kp f

)

m2
∗

≈ r2ε′iC
E f

ωi
= r2ε′iC

(

E0 − ω f

)

ωi
. (53)

The four-dimensional Dirac delta function in expression (47) makes it easy to integrate
the resonant cross-section in terms of energy and azimuthal angle of a final gamma quantum.
Taking this into account, the resonant differential cross-section under conditions (20)–(23)
will take the following form:

RB(r1r2) =
dσ(r1r2)

dδ2
f i

=
r2

e

8π
(

1 + δ2
i

)

(

m4

m4
∗

)

m2Ei

ωiω f

(

E0 − ω f

)

Kr1(u1B, v1B)Kr2(u2B, v2B)
[

(

δ2
f i(0)

− δ2
f i

)2
+ Υ2

f i

] . (54)

Here, δ2
f i(0) is an ultrarelativistic parameter that varies independently of the resonant

frequency of the gamma quantum, and the ultrarelativistic parameter δ2
f i (39) is related to

the resonant frequency by the ratio (38). The value Υ f i is the angular resonant width for
channel B.

Υ f i =
αm2

4πm2
∗

(

Ei

ω f

)

K(η, εiC). (55)
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When the condition is met

(

δ2
f i(0) − δ2

f i

)2
<< Υ2

f i, (56)

then in expression (54) we can put ω f = ωB(r1)
. As a result, after simple transformations,

we obtain the maximum resonant differential cross-section for channel B:

Rmax
B(r1r2)

=
dσmax

B(rr′)

dδ2
f i

= r2
e cBΨB(r1r2). (57)

Here, the function cB is determined by the initial installation parameters

cB =
2π

α2
(

1 + δ2
i

)

ε′iCK2(η, εiC)

(

m

ωC

)2

≈
1.18 · 105

(

1 + δ2
i

)

ε′iCK2(η, εiC)

(

m

ωC

)2

, (58)

and the functions ΨB(rr′) determine the spectral-angular distribution of the resonant scat-
tering cross-section for channel B:

ΨB(r1r2) =
r1 · Kr1(u1B, v1B)Kr2(u2B, v2B)

r1ε′iC +
(

1 + δ2
f i

)

(E0/Ei)
. (59)

Here, the relativistically invariant parameters (50) and (51) for the first vertex of the Feyn-
man diagram (Figure 2B) take the following form:

u1B ≈
r1εiC

(

1 + δ2
f i

) , v1B ≈ r1εiC, (60)

γ1B = 2r1
η

√

1 + η2

δ f i
(

1 + δ2
f i

) . (61)

For the second vertex, the relativistically invariant parameters (52) and (53) take the form:

u2B ≈ ε′iCβ f i(r1)
, v2B ≈ r2

(

ε′iC +
1

β f i(r1)

)

. (62)

Here, the function β f i(r1)
is defined by the expression (44). At the same time, due to the

coordination of processes in the first and second vertices, it is necessary to require the
fulfillment of a condition u2B ≤ v2B that guarantees the validity of Bessel’s arguments
γ2B (50) in functions Kr2(u2B, v2B). This process matching condition can be written as a
condition for the allowed number of emitted photons of the wave at the second vertex:

r2 ≥ rmin
B(r1)

=
⌈

rB(r1)

⌉

, rB(r1)
=

βmax(r1)

1 +
(

ε′iCβmax(r1)

)−1
, βmax(r1)

= r1 +
1

εiC
. (63)

Let us note that the condition (63) for the number of photons of the wave at the second
vertex ensures the positivity of the ultrarelativistic parameter δ2

f i in the ratio (43). Thus,

conditions (43) and (63) uniquely determine the dependence of the outgoing angles of the
final electron and the gamma quantum in the resonant case (see Figure 3). It is important
to emphasize that for channel B, the number of absorbed photons of the wave at the first
vertex can be arbitrary (r1 ≥ 1), and the number of emitted photons at the second vertex is
limited from below by the condition (63).

Consider the case when the energy of the initial electron significantly exceeds the
characteristic energy of the Compton effect (see ratio (25)). Then, the quantum parameter
εiC >> 1 and even with a small number of absorbed photons of the wave r1 ≥ 1, the
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resonant frequency of the final gamma quantum will be close to the energy of the initial
electron (see expression (45)). At the same time, the parameter u1B (60) will be much larger
than one. As a result, the expression for functions Kr1(u1B, v1B) is simplified

Kr1(u1B, v1B) ≈ εiCη2 r1
(

1 + δ2
f i

)

[

J2
r1+1 + J2

r1−1 − 2J2
r1
(γ1B)

]

. (64)

Now let us simplify the expressions for relativistically invariant parameters (62). After
simple calculations, we obtain:

u2B ≈
r1ε

′

iC

1 + δ2
f i

, v2B ≈ r2



ε
′

iC +

(

1 + δ2
f i

)

r1



. (65)

Considering this, after simple transformations, the expression for the maximum
resonant section (57) will take the form:

R
′ max
B(r1r2)

= r2
e c′BΨ′

B(r1r2)
, (Ei >> ωC), (66)

where the functions c′B and Ψ′
B(r1r2)

have the following form:

c′B =
2πη2

α2
(

1 + δ2
i

)

(

m

ωC

)2 εiC

ε′iCK2(η, εiC)
, (67)

Ψ′
B(r1r2)

=
r2

1

[

J2
r1+1 + J2

r1−1 − 2J2
r1
(γ1B)

]

Kr2(u2B, v2B)
(

1 + δ2
f i

)[(

1 + δ2
f i

)

(E0/Ei) + r1ε′iC

] . (68)

Here, the parameter γ1B is given by the expression (61), and the parameters u2B, v2B

have the form (65). It is important to note that the maximum order of magnitude of the
resonant section (66) (at r1 = r2 = 1) is determined by the function c′B (see Tables 1–3).
Therefore, you can write

R
′ max
B(r1r2)

<
∼

c′Br2
e . (69)

Figures 4–6 show the dependences of the resonance section (57)–(59) on the square of
the outgoing angle of the final gamma quantum for various energies of the initial particles,
as well as various characteristic energies of the Compton effect and the numbers of absorbed

(r1) and emitted (r2) photons of the wave. Tables 1–3 show the values of the maximum res-
onant cross-section corresponding to the peaks in Figures 4–6, as well as the corresponding
values of the resonant energies of final gamma quanta and electrons. It can be seen from
these figures and tables that the resonant cross-section has the largest value for the numbers
of absorbed and emitted photons of the wave r1 = r2 = 1 at zero outgoing angles of the
final gamma quantum relative to the momentum of the initial electron. With an increase
in the number of absorbed and emitted photons of the wave, the resonant cross-section
decreases, and the maximum angular distribution of the resonant cross-section shifts to-
wards large angles. At the same time, the magnitude of the resonant cross-section depends
very much on the ratio of the energies of the initial particles to the characteristic energy
of the Compton effect (parameters εiC and ε′iC). Therefore, for r1 = r2 = 1 and the ener-
gies of the initial particles Ei = 100 GeV, ωi = 10 MeV, (see cases (a)) in Figures 4–6)
at parameter values

(

εiC, ε′iC
)

≈
(

7.66 × 102, 0.08
)

,
(

3.83 × 103, 0.34
)

,
(

1.52 × 104, 1.53
)

,
the maximum resonant differential cross-sections and the corresponding gamma quan-
tum energies take the following values, respectively: Rmax

B(1,1)
≈ 2.68 × 102, 2.09 × 103,

1.76 × 104
(

r2
e

)

and ωB(1) ≈ 99.87, 99, 97, 99.99 (GeV). In this case, the function c′B (67)

takes the following values, respectively: c′B = 1.78 × 102, 2.96 × 103, 3.53 × 104. Thus, the
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resonant differential cross-section increases with increasing parameter εiC, and in order of
magnitude in accordance with the change in function c′B.

Figure 4. Dependence of the maximum resonant cross-section (57) on the ultrarelativistic parameter

δ2
f i for various energies of the initial particles, as well as the numbers of emitted and absorbed photons

of the X-ray wave. Case (a) corresponds to the values of the parameters εiC ≈ 7.66 × 102, ε′iC ≈ 0.08;

case (b)—εiC ≈ 7.66, ε′iC ≈ 0.08; case (c)—εiC ≈ 7.66 × 102, ε′iC ≈ 0.8.
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Figure 5. Dependence of the maximum resonant cross-section (57) on the ultrarelativistic parameter

δ2
f i for various energies of the initial particles, as well as the numbers of emitted and absorbed photons

of the X-ray wave. Case (a) corresponds to the values of the parameters εiC ≈ 3.83 × 103, ε′iC ≈ 0.34;

case (b)—εiC ≈ 3.83 × 103, ε′iC ≈ 3.4; case (c)—εiC ≈ 38, ε′iC ≈ 0.34; case (d)—εiC ≈ 38, ε′iC ≈ 3.4.



Photonics 2024, 11, 597 13 of 29

Table 1. ωC= 130.56 MeV, ω = 1 keV, I = 1.86 × 1024 Wcm−2.

(GeV) r1, r2 δ
2(∗)
f i

ωB

(GeV)
δ
′2(∗)
f i

EB

(GeV)
R

max(∗)
B(r1r2)
(

r2
e

)

c′B

Ei = 100
ωi = 0.01

1, 1 0 99.87 0.069 0.14 2.68 × 102

1.78 × 1022, 1 0.28 99.92 0.063 0.09 0.93 × 102

3, 1 0.54 99.93 0.058 0.08 54.22

Ei = 1
ωi = 0.01

1, 1 0 0.88 0.067 0.13 22.91
17.82, 1 0.27 0.92 0.061 0.09 7.15

3, 1 0.52 0.94 0.056 0.07 4.05

Ei = 100
ωi = 0.1

1, 1 0 99.87 0.339 0.23 8.86
14.171, 2 0 99.87 0.773 0.23 3.66

2, 2 0.21 99.92 0.520 0.18 1.52
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0

1

2

3
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Figure 6. Dependence of the maximum resonant cross section (57) on the ultrarelativistic parameter

δ2
f i for various energies of the initial particles, as well as the numbers of emitted and absorbed photons

of the X-ray wave. Case (a) corresponds to the values of the parameters εiC ≈ 1.52 × 104, ε′iC ≈ 1.53;

case (b)—εiC ≈ 1.52 × 104, ε′iC ≈ 15; case (c)—εiC ≈ 1.52 × 102, ε′iC ≈ 1.53; case (d)—εiC ≈ 1.52 × 102,

ε′iC ≈ 15.
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Table 2. ωC= 26.112 MeV, ω = 5 keV, I = 4.65 · 1025 Wcm−2.

(GeV) r1, r2 δ
2(∗)
f i

ωB

(GeV)
δ
′2(∗)
f i

EB

(GeV)
R

max(∗)
B(r1r2)
(

r2
e

)

c′B

Ei = 100
ωi = 0.01

1, 1 0 99.974 0.24 0.036 2.09 × 103

2.96 × 1032, 1 0.13 99.985 0.15 0.025 0.87 × 103

1, 2 0 99.974 0.52 0.036 6.32 × 102

Ei = 100
ωi = 0.1

1, 1 0 99.974 0.48 0.126 1.97 × 102

2.96 × 1021, 2 0 99.974 1.27 0.126 54.82
2, 2 0.21 99.984 0.67 0.116 28.11

Ei = 1
ωi = 0.01

1, 1 0 0.975 0.24 0.035 94.10
134.012, 1 0.13 0.985 0.14 0.025 41.22

1, 2 0 0.975 0.51 0.035 29.65

Ei = 1
ωi = 0.1

1, 1 0 0.974 0.46 0.126 9.58
13.401, 2 0 0.974 1.24 0.126 2.54

2, 2 0.21 0.984 0.66 0.116 1.28

Table 3. ωC= 6.528 MeV, ω = 20 keV, I = 7.44 · 1026 Wcm−2.

(GeV) r1, r2 δ
2(∗)
f i

ωB

(GeV)
δ
′2(∗)
f i

EB

(GeV)
R

max(∗)
B(r1r2)
(

r2
e

)

c′B

Ei = 100
ωi = 0.01

1, 1 0 99.993 0.422 0.016528 1.76 × 104

3.53 × 1041, 2 0 99.993 1.027 0.016528 0.66 × 104

2, 2 0.19 99.996 0.5971 0.013881 3.14 × 103

Ei = 100
ωi = 0.1

1, 1 0 99.993 0.4981 0.107 3.13 × 103

3.53 × 1031, 2 0 99.993 1.4367 0.107 0.71 × 103

2, 2 0.25 99.996 0.7413 0.104 3.33 × 102

Ei = 1
ωi = 0.01

1, 1 0 0.99351 0.4187 0.016486 5.98 × 102

1.19 × 1031, 2 0 0.99351 1.0213 0.016486 2.24 × 102

2, 2 0.19 0.99614 0.5935 0.013863 1.06 × 102

Ei = 1
ωi = 0.1

1, 1 0 0.993 0.4921 0.107 1.08 × 102

1.19 × 1021, 2 0 0.993 1.4251 0.107 24.05
2, 2 0.25 0.996 0.7384 0.104 11.25

4. Resonant Compton Effect in a Strong Field: Channel D

For channel D, the intermediate electron becomes a positron. Therefore, in the ra-
tios (36) and (37), it is necessary to make a replacement:

q̃− → −q̃+, r1 → −r1, r2 → −r2. (70)

Taking this into account, as well as the resonant condition (28), we obtain the following
laws of conservation of energy-momentum at the first and second vertices of the Feynman
diagram (see channel D in Figure 2):

q̃+ + p̃i = k f + r1k, r1 ≥ 1, (71)

ki + r2k = p̃ f + q̃+, r2 ≥ 1. (72)

Thus, at the second vertex (72), the external field-stimulated Breit–Wheeler process takes
place (the generation of an intermediate positron and a final electron by the initial gamma
quantum and r2-photons). At the same time, at the first vertex (71), the reverse external field-
stimulated Breit–Wheeler process takes place (annihilation of the intermediate positron
and the initial electron into the final gamma quantum and r1-photons of the wave). Given
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the relations (28) and (71), it is possible to obtain an expression for the energy of a final
gamma quantum ωD(r1)

:

ωD(r1)
=

Ei

ξ f i(r1)
> Ei. (73)

It is indicated here:

ξ f i(r1)
= 1 −

(

1 + δ2
f i

)

r1εiC
,
(

0 < ξ f i(r1)
< 1

)

. (74)

Here, the values δ2
f i and εiC are determined by expressions (39) and (2). It is important to

emphasize that the resonant energy of the final gamma quantum for channel D exceeds
the energy of the initial electron. In addition, unlike channel B (see expression (38)),
expression (73) implies restrictions on the values of parameters δ2

f i and r1εiC:

0 ≤ δ2
f i < δ2

max(r1)
, δ2

max(r1)
= (r1εiC − 1) > 0, (75)

At the same time, the inequality must be fulfilled

r1εiC > 1. (76)

Let us note that conditions (75) and (76) are necessary, but insufficient. As will be
shown below, the coordination of resonant processes in the first and second vertices
of channel D will lead to more stringent conditions for the interval of change in the
ultrarelativistic parameter δ2

f i and the number of emitted photons of the wave at the first

vertex (see relations (89) and (88)).
Consider the case when the quantum parameter

r1εiC >> 1, (77)

then, for not very large values of the ultrarelativistic parameter δ2
f i

(

δ2
f i << r1εiC

)

, the

expression for the energy of the final gamma quantum (73) tends to the energy of the initial
electron from above (compare with the corresponding expression for the energy of the final
gamma quantum for channel B (45)):

ωD(r1)
≈ Ei

[

1 +
1 + δ2

f i

εiC(r1)

]

= Ei +
1

r1

(

1 + δ2
f i

)

ωC ≈ Ei, (Ei >> ωC). (78)

Using the relations (27) and (72), it is possible to obtain an expression for the res-
onant energy of an electron in the external field-stimulated Breit–Wheeler process (see
also [55,58]):

ED(r2) = ωi

r2ε′iBW ±
√

r2ε′iBW

(

r2ε′iBW − 1
)

− δ̃2
f i

2
(

r2ε′iBW + δ̃2
f i

) < ωi. (79)

Here, the quantum parameter ε′iBW is determined by the expression (2) and (3), and the

ultrarelativistic parameter δ̃′
2
f i, which determines the outgoing angle of the final electron

relative to the momentum of the initial gamma quantum, is equal to

δ̃2
f i =

1

4
δ
′2
f i =

ω2
i θ

′2
f i

4m2
∗

. (80)

It can be seen from expression (79) that the resonant energy of a final electron depends

on its outgoing angle
(

δ̃′
2
f i

)

, the number of absorbed photons of the wave (r2) and the

quantum parameter ε′iBW . Thus, for channel D, the energy of the final gamma quantum is
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determined by the characteristic energy of the Compton effect, and the electron’s energy is
determined by the characteristic Breit–Wheeler energy.

It follows from expression (79) that the ultrarelativistic parameter δ̃2
f i determining the

square of the outgoing angle of the final electron relative to the momentum of the initial
gamma quantum can vary in the interval:

0 ≤ δ̃2
f i ≤ δ̃2

max(r2)
, δ̃2

max(r2)
= r2ε′iBW

(

r2ε′iBW − 1
)

. (81)

Hence the inequality follows:
r2ε′iBW ≥ 1. (82)

Due to condition (82), depending on the ratio between the energy of the initial gamma
quantum and the characteristic Breit–Wheeler energy, the resonant process through channel
D can take place with a different number of absorbed photons of the wave:

r2 ≥ rmin
2D =

⌈

ε
′−1
iBW

⌉

> 1, if ωi < ωBW , (83)

r2 ≥ 1, if ωi ≥ ωBW . (84)

The expression for the energy of the final electron (79) for each value of the ultrarel-
ativistic parameter δ̃2

f i in the range (81) takes two possible values. At the same time, for

δ̃2
f i = 0 the electron energy can take both maximum E+

D(r2)
and minimum E−

D(r2)
values:

E±
D(r2)

=
ωi

2

[

1 ±

√

1 −
1

r2ε′iBW

]

. (85)

Considering the ratios (73) and (79), as well as the law of conservation of energy

ED(r2) + ωD(r1)
≈ E0, (86)

it is possible to obtain a connection between the outgoing angles of an electron and a
gamma quantum:

δ2
f i = (r1εiC − 1)−

r1εiCEi

E0 − ED(r2)
. (87)

We emphasize that the ultrarelativistic parameter δ2
f i must be positive

(

δ2
f i ≥ 0

)

.

Because of this, from expression (87), we obtain a more stringent condition than ratio (76)
for the number of emitted photons of the wave at the first vertex:

r1 ≥ rmin
1D =

⌈

rD(r2)

⌉

,

rD(r2) =
1

εiC
+ 2

ε′iC

[

1 −
√

1 − 1
r2ε′iBW

]−1
.

(88)

The ratio (88) is a condition for matching the number of emitted and absorbed pho-
tons of the wave at the first and second vertices of channel D so that the general law of
conservation of energy in the Breit–Wheeler process is fulfilled. At fixed initial energies of
the electron and gamma quantum, as well as quantum parameters εiC and ε′iBW ratios (87)
and (88) uniquely determine the dependence of the outgoing angles of the gamma quan-
tum and the electron (see Figure 7). At the same time, the values of the electron energy
E∓

D(r2)
(85) determine the interval of change in the outgoing angles for the final gamma

quantum (compare with the ratio (75)):

δ2
− ≤ δ2

f i ≤ δ2
+, (89)
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where

δ2
∓ = (r1εiC − 1)−

r1εiCEi

E0 − E±
D(r2)

. (90)

Thus, the ratios (89) and (90) determine the interval of change of the ultrarelativistic
parameter δ2

f i (the outgoing angle of the gamma quantum) in the ratio for the energy of the

gamma quantum (73). Please note that under conditions based on the energy of the initial
particles (25), taking into account the ratios (78) and (86), we obtain the resonant energy of
the final electron expressed in terms of the outgoing angle of the final gamma quantum
and the number of emitted photons of the wave at the first vertex (88):

ED(r1)
≈ ωi −

1

r1

(

1 + δ2
f i

)

ωC. (91)

It is important to note that the energies of the final particles for channels B and D lie
in different energy regions. Therefore, for channel B, the relations take place: ωB(r1)

< Ei,
EB(r2) > ωi (see expressions (38) and (40)). On the other hand, for channel D we have
opposite inequalities: ωD(r1)

> Ei, ED(r2) < ωi (see relations (73) and (79)). Thus, channels
B and D are distinguishable and do not interfere.
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Figure 7. Dependence of ultrarelativistic parameters (87), (79), (81) and (89) determining the outgoing

angles of the gamma quantum and the electron, with a fixed characteristic energy of the Compton

effect, the intensity of the X-ray wave and the energy of the initial electron, as well as for a different

number of emitted and absorbed photons of the wave and different energies the initial gamma

quantum. Solid (dashed) curves correspond to the “plus” (“minus”) sign in front of the square root in

the ratio (79). Case (a) responds rmin
2D = rmin

1D = 3, case (b)—rmin
2D = rmin

1D = 1.

The resonant differential cross-section for channel D can be obtained from expres-
sion (47) if in the latter we make reinterpretations (70) and take into account that at the first
vertex we have an external field-stimulated inverse Breit–Wheeler process (Kr1

→ −4Pr1),
and at the second vertex we have an external field-stimulated Breit–Wheeler process

(Kr2 → −4Pr2). After simple transformations, we obtain:

dσD(r1r2)
= r2

e

2m6Ei

π2ωiω f E f m2
∗

(

1 + δ2
i

)

Pr1(u1D, v1D)Pr2(u2D, v2D)
[

(

q̃2
+ − m2

∗

)2
+ 4m2

∗Γ2
(

η, ε′iBW

)

] δ(4)
[

p̃ f + k f − p̃i − ki − (r2 − r1)k
]

d3 p̃ f d3k f . (92)
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Here, the functions Pr1(u1D, v1D) and Pr2(u2D, v2D) determining the probability of the
external field-stimulated Breit–Wheeler process are determined by the expression [19]:

Prj

(

ujD, vjD

)

= J2
rj

(

γjD

)

+ η2
(

2ujD − 1
)

[(

r2
j

γ2
jD

− 1

)

J2
rj
+ J

′2
rj

]

, j = 1, 2. (93)

At the same time, the arguments of the Bessel functions and the corresponding relativisti-
cally invariant parameters are defined by expressions:

γjD = 2rj
η

√

1 + η2

√

√

√

√

ujD

vjD

(

1 −
ujD

vjD

)

, j = 1, 2, (94)

u1D =

(

kk f

)2

4(kq+)(kpi)
≈

ω2
f

4Ei

(

ω f − Ei

) , v1D = r1

(

kk f

)

2m2
∗

≈ r1

ω f

ωBW
, (95)

u2D =
(kki)

2

4(kq+)
(

kp f

) ≈
ω2

i

4E f

(

ωi − E f

) , v2D = r2
(kki)

2m2
∗

≈ r2ε′BW . (96)

The radiation width Γ
(

η, ε′iBW

)

is determined by the expression (35) and (32). By
performing the corresponding integrations in expression (92), the resonant differential
cross-section for channel D under conditions (20)–(23) will take the following form:

RD(r1r2) =
dσD(r1r2)

dδ2
f i

=
2r2

e

π
(

1 + δ2
i

)

(

m4

m4
∗

)

m2Ei

ωiω f

(

E0 − ω f

)

Pr1(u1D, v1D)Pr2(u2D, v2D)
[

(

δ2
f i(0)

− δ2
f i

)2
+ Υ

′2
f i

] . (97)

Here, δ2
f i(0) is the ultrarelativistic parameter, which determines the outgoing angle of the

final gamma quantum relative to the momentum of the initial electron, changes inde-
pendently of the resonant frequency of the gamma quantum, and the ultrarelativistic
parameter δ2

f i is related to the resonant frequency by the ratio (73). The value Υ′
f i is the

angular resonant width of channel D, equal to

Υ′
f i =

αm2

4πm2
∗

(

Ei

ω f

)

K
(

η, ε′iBW

)

. (98)

When the condition is met

(

δ2
f i(0) − δ2

f i

)2
<< Υ

′2
f i, (99)

after simple transformations, we obtain the maximum resonant cross-section:

Rmax
D(r1r2)

=
dσmax

D(r1r2)

dδ2
f i

= r2
e cDΨD(r1r2). (100)

Here, the function cD is determined by the initial installation parameters

cD =
8π

α2
(

1 + δ2
i

)

K2
(

η, ε′iBW

)

(

m

ωC

)2

, (101)

and the functions ΨD(rr′) determine the spectral-angular distribution of the resonant scat-
tering cross-section for channel D:
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ΨD(r1r2) =
r1Pr1(u1D, v1D)Pr2(u2D, v2D)

ε′iBW

[

r1ε′iC −

(

1 + δ2
f i

)

(E0/Ei)
] . (102)

Here, the relativistically invariant parameters (95), as well as the argument of the Bessel
functionsγ1D (94) for ω f = ωD(r1)

(73) take the following form:

u1D ≈
r1εiC

4
(

1 + δ2
f i

)

ξ f i(r1)

, v1D ≈
r1εiC

4ξ f i(r1)
, (103)

γ1D = 2r1
η

√

1 + η2

δ f i
(

1 + δ2
f i

) . (104)

The function ξ f i(r1)
in the ratio (103) has the form (74). The relativistically invariant pa-

rameters (96), as well as the argument of the Bessel functions γ2D (94) for E f ≈ ED(r2) ≈

E0 − ωD(r1)
take the following form:

u2D ≈
r1ε′iBWξ f i(r1)
(

1 + δ2
f i

)



1 −

(

1 + δ2
f i

)

r1ε′iCξ f i(r1)





−1

, v2D ≈ r2ε′iBW . (105)

Consider the case when the energy of the initial electron significantly exceeds the
characteristic energy of the Compton effect (25). Then, the quantum parameter εiC >> 1
and the resonant frequency of the final gamma quantum will be close to the energy of the
initial electron (see expression (78)). At the same time, the parameters u1D and v1D (103)
will be much larger than one:

u1D ≈
r1εiC

4
(

1 + δ2
f i

) >> 1, v1D ≈
1

4
r1εiC >> 1, (106)

and the parameters u2D and v2D (105) take the form:

u2D ≈
r1ε′iBW

α2D
, v2D ≈ r2ε′iBW . (107)

It is indicated here:

α2D =
(

1 + δ2
f i

)



1 −

(

1 + δ2
f i

)

r1ε′iC



. (108)

As a result, the expression for the function Pr1(u1D, v1D) is significantly simplified and
takes the form:

Pr1(u1D, v1D) ≈
r1η2εiC

4
(

1 + δ2
f i

)

[

J2
r1+1 + J2

r1−1 − 2J2
r1
(γ1D)

]

. (109)

Here, the argument of the Bessel functions γ1D has the form (104). In this case, the argument
of the Bessel function γ2D (94) in expression Pr2(u2D, v2D) (93) takes the form:

γ2D ≈ 2r1
η

α2D

√

1 + η2

√

r2

r1
α2D − 1. (110)

Considering this, after simple transformations, the expression for the maximum resonant
section (100) will take the form:

R
′ max
D(r1r2)

= r2
e c′DΨ′

D(r1r2)
, (Ei >> ωC), (111)
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where the functions c′D and Ψ′
D(r1r2)

have the following form:

c′D =
2πη2

α2
(

1 + δ2
i

)

(

m

ωC

)2 εiC

ε′iBWK2
(

η, ε′iBW

) , (112)

Ψ′
D(r1r2)

=
r2

1Pr2(u2D, v2D)
(

1 + δ2
f i

)[

r1ε′iC −

(

1 + δ2
f i

)]

[

J2
r1+1 + J2

r1−1 − 2J2
r1
(γ1D)

]

. (113)

Here, the number of photons of the wave at the first vertex is determined by the expres-
sion (88), and at the second vertex by the expression (83). A comparison of the resonant
sections (100)–(102) and (111)–(113) shows that the resonant differential cross-section for
the energies of the initial electron significantly exceeding the characteristic energy of the
Compton effect (25) significantly (by a factor of εiC >> 1) exceeds the corresponding
resonant cross-section when the energy of the initial electron is of the order of the char-
acteristic energy of the Compton effect (εiC ∼ 1). At the same time, the parameter ε′iBW
must be greater than one (ωi > ωBW). In the opposite case, when ωi < ωBW the resonant
cross-section (111)–(113) is suppressed (see the conditions for the number of absorbed
and emitted photons of the wave (83) and (88)). Therefore, the estimate of the maximum
resonant cross-section (r1 = r2 = 1) by function c′D (112) is valid only for ε′iBW ≥ 1 (for
channel B, the corresponding estimate is valid for any parameter values ε′iC). Please note
that at the first vertex, a final gamma quantum is produced, and the process is characterized
by the characteristic energy of the Compton effect ωC, and at the second vertex, a final
electron is produced and the process is characterized by the characteristic Breit–Wheeler
energy ωBW = 4ωC. Therefore, for ωC = 130.56 MeV now we have ωBW = 522.24 MeV.
Then, for the energies of the initial gamma quantum ωi = 10 MeV and ωi = 100 MeV,
we obtain that the number of photons of the external field at the second vertex can take
the following values: r2 ≥ rmin

2D = 53 and r2 ≥ rmin
2D = 6, respectively (see ratio (83)) At

the same time, the number of photons in the first vertex is determined by the ratio (88).
Therefore, for a given characteristic Breit–Wheeler energy, the resonant process will be

suppressed
(

R
′ max
D(r1r2)

<< r2
e

)

. For the same reason, the case should be excluded when

ωC = 26.112 MeV, ωBW = 104.448 MeV, and ωi = 10 MeV. Figures 8 and 9 show the
dependences of the resonant cross section (111)–(113) on the square of the outgoing angle
of the final gamma quantum for various energies of the initial particles, as well as various
characteristic energies of the Compton effect and Breit–Wheeler, and the numbers of ab-
sorbed (r2) and emitted (r1) photons of the wave. Tables 4 and 5 show the values of the
maximum resonant cross-section corresponding to the peaks in Figures 8 and 9, as well
as the corresponding values of the resonant energies of final gamma quanta and electrons.
It can be seen from Figures 8 and 9 that under conditions where the parameter εiC >> 1,
the angular distribution of the resonant cross-section significantly depends on the value
of the parameter ε′iBW . At the same time, the energy of the final gamma quantum always

exceeds the energy of the initial electron
(

ωD(1,1) > 100 GeV
)

. Therefore, if ε′iBW ≥ 1, then

rmin
2D = rmin

1D = 1 (see relations (83) and (88)). In this case, the resonant cross-section has a
maximum value for the numbers of absorbed and emitted photons of the wave r1 = r2 = 1

(see Figure 8b) and is equal to R
max(∗)
D(1,1)

=1.39 × 105r2
e . Moreover, there are two symmetric

maxima for the outgoing angles of the final gamma quantum at the ends of the scattering
angle interval (89): δ2

f i = δ2
− = 0.07 and δ2

f i = δ2
+ = 13.23. With an increase in the number

of emitted photons of the wave at the first vertex (r1 = 2, 3), the resonant cross-section
decreases sharply, and the symmetry of the two maxima at the boundaries of the scattering
angle interval disappears. At the same time, the value of the first resonant maximum
(

δ2
f i = δ2

− = 1.15
)

3.4 times exceeds the value of the second maximum
(

δ2
f i = δ2

+ = 27.46
)

(see Table 4). If it is a parameter ε′iBW < 1, then the angular distribution of the resonant
cross-section changes significantly (see Figures 8a and 9). Therefore, if rmin

2D = rmin
1D = 2
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(see Figure 9), then the maxima of the angular distribution shift from the edges into the
interval of the outgoing angles of the final gamma quantum. At the same time, the value of
the resonant cross-section for the second maximum (for a larger outgoing angle) is always
less than the value of the first maximum (for a smaller outgoing angle). The maximum

resonant cross-section takes place for r1 = r2 = 2 and is the value R
max(∗)
D(2,2)

=1.62 × 103r2
e

for δ
2(∗)
f i = 0.51 and R

max(∗)
D(2,2)

=1.36 × 103r2
e for δ

2(∗)
f i = 5.14. With an increase in the number

of emitted photons of the wave r1 = 3, 4, the resonant cross-section decreases sharply,
and the second maximum decreases most strongly (see Figure 9 and Table 5). If we re-
duce the characteristic energy of the Compton effect and the energy of the initial gamma
quantum (increase the parameter εiC and decrease the parameter ε′iBW , see Figure 8a), then
rmin

2D = rmin
1D = 3. In this case, the angular distribution curves of the resonant cross-section

have one maximum (the second maximum disappears), which decreases with an increase
in the number of emitted photons of the wave r1 = 3, 4, 5. Therefore, for r1 = r2 = 3 the

resonant cross-section is the value R
max(∗)
D(3,3)

=8.99 × 104r2
e for δ

2(∗)
f i = 1.27. If r1 = 5, r2 = 3,

then we obtain R
max(∗)
D(5,3)

=5.93 × 103r2
e for δ

2(∗)
f i = 2.43 (see Table 4).
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Figure 8. Dependence of the maximum resonant cross-section (111) on the ultrarelativistic parameter

δ2
f i determining the outgoing angle of the gamma quantum for different energies of the initial gamma

quantum and electron and the numbers of emitted and absorbed photons of the wave at fixed

parameters of a strong X-ray wave. Case (a) responds rmin
2D = rmin

1D = 3, case (b)—rmin
2D = rmin

1D = 1.

Table 4. ωC= 6.528 MeV, ω = 20 keV, I = 7.44 × 1026 Wcm−2.

(GeV) r1, r2 δ
2(∗)
f i

ωD

(GeV)
δ̃

2(∗)
f i

ED

(MeV)
R

max(∗)
D(r1r2)
(

r2
e

)

Ei = 100
ωi = 0.1

1, 1 0.07 100.007021 0 92.979 1.39 × 105

1, 1 13.23 100.092979 0 7.021 1.39 × 105

2, 1 1.15 100.007021 0 92.979 8.40 × 103

2, 1 27.46 100.092979 0 7.021 2.46 × 103

3, 1 2.22 100.007021 0 92.979 1.58 × 103

3, 1 41.69 100.092980 0 7.020 42.93

Ei = 100
ωi = 0.01

3, 3 1.27 100.004943 0.15 5.057 8.99 × 104

4, 3 1.89 100.004720 0.13 5.280 2.31 × 104

5, 3 2.43 100.004481 0.11 5.519 5.93 × 103
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Table 5. ωC= 26.112 MeV, ω = 5 keV, I = 4.65 × 1025 Wcm−2.

(GeV) r1, r2 δ
2(∗)
f i

ωD

(GeV)
δ̃

2(∗)
f i

ED

(MeV)
R

max(∗)
D(r1r2)
(

r2
e

)

Ei = 100
ωi = 0.1

2, 2 0.51 100.01975 0.08 80.250 1.62 × 103

2, 2 5.14 100.080273 1.37 19.727 1.36 × 103

3, 2 1.23 100.019393 0.08 80.607 3.46 × 102

3, 2 8.16 100.079815 1.44 20.185 1.09 × 102

4, 2 1.87 100.018752 0.06 81.248 8.97 × 101

4, 2 11.11 100.079117 1.52 20.883 7.93
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Figure 9. Dependence of the maximum resonant cross-section (111) on the ultrarelativistic parameter

δ2
f i determining the outgoing angle of the gamma quantum for various numbers of emitted and

absorbed photons of the wave and at fixed values of the initial energies of the gamma quantum and

electron, as well as the parameters of a strong X-ray wave. Here, rmin
2D = rmin

1D = 2.

5. Suppression of Channel A for High Energies of Initial Electrons

For channel A, the laws of conservation of the 4-momentum at the first and second
vertices can be represented as follows:

p̃i + ki = q̃− + r1k, (114)

q̃− + r2k = p̃ f + k f . (115)

Since p̃2
i, f = q̃2

− = m2
∗ than Equations (114) and (115) are valid only for r1 ≥ 1 and r2 ≥ 1.

Hence, it follows from the type of amplitude (6)–(8) (see also Figure 2) that under resonant
conditions, the second-order process by the fine structure constant is effectively reduced
to two first-order processes of the external field-stimulated Compton effect. At the first
vertex, we have the scattering of the initial gamma quantum on the initial electron with the
emission of an intermediate electron and r1-photons of the wave. At the second vertex, we
have the absorption by an intermediate electron r2-photons of a wave with the emission of
a final gamma quantum and an electron.

From the ratios (27) and (114), taking into account expressions (20)–(23), after simple
transformations, we obtain a condition for the angle of solution between the momenta of
the initial particles:

δ2
i = δ2

res(r1)
, δ2

res(r1)
= (r1ε∗C − 1) ≥ 0, (116)
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where is indicated

ε∗C =
E∗

ωC
, δ2

i =
E2

i θ2
i

m2
∗

, (117)

E∗ =
E0Ei

ωi
, E0 = Ei + ωi. (118)

Here, E∗ and E0 are the combination energy and the total energy of the initial particles.
The inequality follows from the ratio (116):

r1ε∗C ≥ 1. (119)

Because of this, for the resonant process of channel A, the number of emitted photons of the
wave r1 significantly depends on the magnitude of the quantum parameter ε∗C. Therefore,
if the combinational energy of the initial particles is less than the characteristic energy

(E∗ < ωC), then the quantum parameter ε∗C < 1. In this case, there is a minimum number
of emitted photons of the wave r1 min, starting from which the resonant process takes place:

r1 ≥ rmin
1A =

⌈

ε−1
∗C

⌉

, (E∗ < ωC). (120)

If the combinational energy of the initial particles is greater than or equal to the characteristic
energy (E∗ ≥ ωC), then the quantum parameter ε∗C ≥ 1. Therefore, in this case, the
resonance of channel A takes place when studying one or more photons of the wave

r1 ≥ 1, (E∗ ≥ ωC). (121)

Thus, for channel A, unlike channels B and D, the resonant condition at the first vertex
imposes a strict condition on the ultrarelativistic parameter δ2

i that determines the initial
angle of the solution between the momenta of the initial particles.

Please note that the resonant condition for the second vertex of channel A (27), (115)
allows us to obtain a cubic equation for the resonant frequency of a final gamma quan-
tum [56]. The resonant differential cross-section for channel A is easy to obtain using
the corresponding results for channels B and D. After simple calculations, we obtain an
estimate of the order of magnitude of the maximum resonant differential cross-section for
channel A:

Rmax
A(r1r2)

=
dσmax

A(r1r2)

dδ2
f

<
∼

cAr2
e . (122)

Here, the function cA is determined by the initial installation parameters

cA =
2π

α2K2(η, ε0C)

(

m

E0

)2

<
∼

105

(

m

E0

)2

. (123)

Expressions (122) and (123) denote:

δ2
f =

E2
0θ2

f

m2
∗

, ε0C =
E0

ωC
. (124)

In this case, the resonant width K(η, ε0C) is determined by the expression (32). Let us
estimate the order of magnitude of the resonant cross-section (122) and (123). For the
energies of the initial particles (24), we obtain

Rmax
A(r1r2)

<
∼

10−2r2
e . (125)

Thus, for the energies of the initial particles studied in this article, channel A is suppressed
relative to channels B and D. In addition, in this article, we studied the resonance of
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channels B and D under conditions when the resonant condition at the first vertex for the
initial particles (116) was not fulfilled. Thus, the resonance of channel A did not take place.

In conclusion, we note that the corresponding nonresonant differential cross-section of
the Compton effect in this geometry (20)–(22) has the following order of magnitude [29,83]

Rnonres =
dσnonres

dδ2
f

∼ r2
e . (126)

6. Results and Discussions

The study of the resonant inverse Compton effect in the field of a strong electromag-
netic wave in the region of high energies of the initial electrons (24) and (25) showed that
in this energy region, the main reaction channels are the scattering channel B and the
annihilation channel D. In this case, the resonant channel A is suppressed.

The resonant process is characterized by two quantum parameters: the characteristic
energy of the Compton effect ωC and the characteristic Breit–Wheeler energy ωBW (3),
which is four times higher than the characteristic energy of the Compton effect. These
quantum energies characterize the corresponding first-order QED process stimulated by an
external field [19].

The resonant process is characterized by an unambiguous dependence of the outgoing
angles of the final particles (see ratios (43) for channel B and (87) for channel D, as well
as Figures 3 and 7). This dependence is a distinctive feature of the resonant process, in
contrast to the nonresonant process, for which the outgoing angles of the final particles are
independent of each other.

The energies of the final particles and the magnitude of the resonant differential cross-
section are determined by the outgoing angle of the final gamma quantum and quantum
parameters equal to the ratio of the initial energy of the particle to the corresponding
characteristic energy (2). Thus, the scattering channel B is characterized by quantum
parameters εiC (at the first vertex) and ε′iC (in the second vertex). The annihilation channel
D is characterized by quantum parameters εiC (at the first vertex) and ε′iBW (in the second
vertex). It is the magnitude of these quantum parameters that determines which resonant
channel will prevail.

A final gamma quantum is generated at the first vertex of channels B and D, and a
final electron is generated at the second vertex. At the same time, for channel B the energy
of final particles, the following relations are satisfied: ωB(r1)

< Ei, EB(r2) > ωi; and for
channel D we have the opposite inequalities: ωD(r1)

> Ei, ED(r2) < ωi. Thus, the B and D
channels are energetically distinguishable and do not interfere.

The resonant energy of a final gamma quantum depends significantly on the magni-
tude of the quantum parameter εiC. If the parameter εiC >> 1 (the energy of the initial
electron significantly exceeds the characteristic energy of the Compton effect), then the
energy of the final gamma quantum tends to the energy of the initial electron, and for chan-

nel B from below
(

Ei − ωB(r1)

)

<< 1, and for channel D from above
(

ωD(r1)
− Ei

)

<< 1.

Thus, in this case, we have the inverse Compton effect, i.e., the energy of the initial high-
energy electrons is converted into the energy of the final gamma quanta (see Tables 1–5).

The magnitude of the resonant cross-section is significantly affected by the number of
photons absorbed and emitted at the first and second vertices of the wave. At the same
time, for the scattering channel, the number of absorbed photons of the wave at the first
vertex can be arbitrary (r1 ≥ 1), and the number of emitted photons at the second vertex is
limited from below by the condition (63). This limitation on the number of emitted photons
is due to the coordination of resonant processes in the first and second vertices of channel B
by virtue of the general law of conservation of energy. For the annihilation channel D, the
number of absorbed photons of the wave at the second vertex is limited by the ratios (83)
and (84). This is due to the fact that the external field-stimulated Breit–Wheeler process
has a reaction threshold. The number of emitted photons of the wave at the first vertex is
limited by the ratio (88). This limitation on the number of emitted photons is due to the
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coordination of resonant processes in the first and second vertices of channel D by virtue of
the general law of conservation of energy.

For an X-ray wave (ω = 1 keV) with intensity I = 1.86 · 1024 Wcm−2 and character-
istic energies ωC ≈ 130.56 MeV and ωWC ≈ 522.24 MeV the annihilation channel D is
suppressed (Rmax

D(r1r2)
<< r2

e ) for the initial energies of the gamma quantum ωi = 10 MeV

and ωi = 100 MeV. In this case, high-energy gamma quanta
(

ωB(r1)
≈ Ei >> ωC

)

are

most likely generated through channel B, and most likely when the energy of the initial
gamma quantum is much less than the characteristic energy of the Compton effect. At
the same time, the resonant cross-section takes the maximum value for the number of
absorbed and emitted photons of the wave r1 = r2 = 1. Therefore, for the initial energies
of the electron Ei = 100 GeV and gamma quanta ωi = 10 MeV, and ωi = 100 MeV the

maximum resonant cross-section takes the following values R
max(∗)
B(1,1)

≈ 2.68 × 102 r2
e and

R
max(∗)
B(1,1)

≈ 8.86 r2
e , respectively. In this case, the final gamma quantum is emitted along

the momentum of the initial electron
(

δ
2(∗)
f i = 0

)

with energy ωB(1) ≈ 99.87 GeV (see

Figure 4 and Table 1). If the initial energies of the particles are equal to Ei = 1 GeV and

ωi = 10 MeV, then the resonant cross-section takes on a value R
max(∗)
B(1,1)

≈ 22.91 r2
e and the

gamma quantum is emitted with energy ωB(1) ≈ 0.88 GeV.
If we increase the intensity of the X-ray wave (ω = 5 keV) to a value I = 4.65 ·

1025 Wcm−2 (reduce the characteristic energies to values ωC ≈ 26.112 MeV, ωBW ≈

104.448 MeV ), then along with channel B, at energies of the initial gamma quantum com-
parable to the characteristic Breit–Wheeler energy, channel D begins to appear. However,
for the initial energies of the particles Ei = 100 GeV, ωi = 10 MeV, the D channel will be
suppressed (Rmax

D(r1r2)
<< r2

e ), since in this case the quantum parameter ε′iBW ≈ 0.096 << 1.

In this case, the main resonant channel is channel B. Through this channel, high-energy

gamma quanta
(

ωB(1) ≈ 99.974 GeV
)

with a resonant cross-section R
max(∗)
B(1,1)

≈ 2.09× 103 r2
e

will be generated along the momentum of the initial electron
(

δ
2(∗)
f i = 0

)

(see Figure 5

and Table 2). However, if the energy of the initial gamma quantum is increased ten-fold

(ωi = 100 MeV), the annihilation channel D becomes the main one, the resonant cross-
section of which exceeds the corresponding cross-section of channel B by an order of
magnitude. Indeed, if the energies of the initial particles are equal to Ei = 100 GeV and
ωi = 100 MeV, then channel D for a fixed number of absorbed and emitted photons of the
wave has two maxima (see Figure 9). At the same time, the maximum resonant sections

(r1 = r2 = 2), their corresponding outgoing angles and the energy of the gamma quantum

take the following values: R
max(∗)
D(2,2)

≈ 1.62 × 103 r2
e , δ

2(∗)
f i = 0.51, ωD(2,2) ≈ 100.02 GeV and

R
max(∗)
D(2,2)

≈ 1.36 × 103 r2
e ,δ

2(∗)
f i = 5.14, ωD(2,2) ≈ 100.08 GeV. At the same time, through

channel B, the maximum resonant cross-section takes place at r1 = r2 = 1 and is the value

of R
max(∗)
B(1,1)

≈ 1.97 × 102 r2
e . In this case, the gamma quantum flies out along the momentum

of the initial electron
(

δ
2(∗)
f i = 0

)

with energy ωB(1,1) ≈ 99.97 GeV.

When the intensity of the X-ray wave (ω = 20 keV) increases to a value I = 7.44 ·

1026 Wcm−2 (a corresponding decrease in the characteristic energies to values ωC ≈

6.528 MeV, ωBW ≈ 26.112 MeV), the annihilation channel D becomes predominant. The
resonant cross-section for this channel significantly exceeds the corresponding resonant
cross-section for channel B (see Figures 6 and 8 and Tables 3 and 4). Thus, for the initial
energies of particles Ei = 100 GeV, ωi = 10 MeV, for channels D and B, the maximum
resonant cross-sections, their corresponding outgoing angles and gamma-ray energies take

the following values are: R
max(∗)
D(3,3)

≈ 8.99 × 104 r2
e , δ

2(∗)
f i = 1.27, ωD(3,3) ≈ 100.005 GeV

and R
max(∗)
B(1,1)

≈ 1.76 × 104 r2
e , δ

2(∗)
f i = 0, ωB(1,1) ≈ 99.993 GeV. At the same time, for the

initial energies of the particles Ei = 100 GeV, ωi = 100 MeV, the resonant cross-section
for channel D is two orders of magnitude higher than the corresponding cross-section
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of channel B. Therefore, for channels D (here there are two maxima for different outgo-
ing angles) and B, the maximum resonant cross-sections, their corresponding outgoing

angles, and gamma quantum energy take the following values: R
max(∗)
D(1,1)

≈ 1.39 × 105 r2
e ,

δ
2(∗)
f i = 0.07(13.23), ωD(1,1) ≈ 100.007(100.09) GeV and R

max(∗)
B(1,1)

≈ 3.13 × 103 r2
e , δ

2(∗)
f i = 0,

ωB(1,1) ≈ 99.993 GeV.
It is important to note that Oleinik resonances occur not only in the field of a plane

monochromatic wave but also in the field of a plane pulse wave, provided that the pulse
time τ significantly exceeds the period of wave oscillations τ >> ω−1 [24,30,31]. However,
for very short pulses, when τ ∼ ω−1 Oleinik resonances may not manifest. In this article,
an idealized case of a plane monochromatic electromagnetic wave is considered. In a
real experiment, as well as near pulsars and magnetars, the electromagnetic wave is
inhomogeneous in space and time. The study of Oleinik resonances in such fields is a
rather complex independent task that can be performed only by numerical solution of the
corresponding mathematical problem. The solution of the resonant problem in the field of
a plane monochromatic wave nevertheless allows for solving several important problems.
First, to identify the main physical parameters of the problem (the characteristic energy
of the process (3), the quantum parameters (2)), which determine the resonant energy
of the final particles, as well as the magnitude of the resonant differential cross-section.
Second, it allowed us to obtain analytical expressions for the resonant differential scattering
cross-section. Please note that all this is very important for the subsequent numerical
analysis of the corresponding process in an inhomogeneous electromagnetic field.

Note also that we are considering sufficiently large energies of the initial electrons.
Currently, obtaining narrow beams of ultrarelativistic electrons of such high energies at
modern experimental facilities is problematic. However, in the Universe, in particular, near
pulsars and magnetars, such energies of high-energy electrons and gamma quanta are pos-
sible. At the same time, near such objects in strong X-ray fields, cascades of resonant QED
processes are possible, such as resonant spontaneous bremsstrahlung during scattering of
ultrarelativistic electrons on nuclei [56,59], the Bethe-Heitler resonant process [54,55,58], the
Breit–Wheeler resonant process [59], the resonant Compton effect, etc. These processes are
interconnected and can generate streams of high-energy gamma quanta and ultrarelativistic
electrons and positrons. Thus, the results obtained can be used to explain narrow fluxes of
high-energy gamma quanta near neutron stars, such as double X-ray systems operating
on accretion [87,88], X-ray/gamma pulsars operating on rotation [89,90] and magnetars
operating on a magnetic field [91,92].
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