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Abstract

In the past few years, on-shell analytic methods have played a pivotal

role in gauge theory calculations. Since the initial success of these methods

in Standard Model physics, considerable activity has led to development and

application in supersymmetric gauge theories.

In particular, the maximally supersymmetric super Yang-Mills theory re-

ceived much attention after the discovery of holographic dualities. Here, the

spinor helicity formalism and on-shell superspace is described initially for four

dimensions. The framework of general unitarity is shown to be a useful tool

for calculating loop corrections of scattering amplitudes.

Once the foundation is laid, application in three and six dimensions is

explored. In six dimensions the case of interest is a theory with (1,1) su-

persymmetry which captures the dynamics of five-branes in string theory. In

this setup the one-loop superamplitude with four and five external particles is

calculated and checked for consistency.

In three dimensions, the supersymmetric gauge theory that is supposed to

describe the dynamics of M2-branes is considered. This particular theory is

also related to M-theory via the holographic duality. The goal was to explore

and determine the infra-red divergences of the theory. This was achieved by

calculating the Sudakov form factor at two loops.
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1 Introduction

Quantum Electrodynamics (QED) turned out to be the most accurate scientific

theory∗ of the 20th century. This was inextricably linked to the development of

the path integral and ‘Feynman diagrams’. It served as a model for constructing

the theoretical framework that describes two additional fundamental interactions,

the weak and the strong. Excluding gravity, electromagnetism and the two other

forces have been successfully put under one framework: the Standard Model. The

underlying principle is that each force is the consequence of an internal symmetry of

nature. The different particles and the way they interact is described by quantum

field theory, which is the only way quantum principles can be reconciled with that

of special relativity.

The ramifications of the Standard Model have been approached experimentally

by scattering particles and observing the products of these interactions and their

behavior. The physical quantity that describes these interactions is the scattering

cross section. It specifies the area within which one particle must hit the other for a

specific process to take place; the product of the area where the particles collide times

the quantum mechanical probability (density) that the given process will occur if the

particles do collide. Such quantum mechanical probability densities always appear

as the absolute value of a quantum mechanical amplitude squared, which in this case

is referred to as a scattering amplitude.

Scattering amplitudes are conventionally calculated by means of perturbation

theory using Feynman rules and diagrams. This has been studied so extensively
∗The agreement with experiment found this way is to within one part in a billion (10−8).
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Introduction 2

that we now have a very good understanding of both the physical and mathematical

details of this process. Despite being an extremely powerful method of performing

calculations, Feynman diagrams are not panacea! Since the idea behind them is to

sum over all possible diagrams of certain kinds (which correspond to possible inter-

actions that might occur in a scattering process) the complexity of the calculation

factorially increases with the number of particles. Moreover, when increased preci-

sion is required then the perturbative effects produce integrals whose complexities

are also factorial in the number of particles. Apart from these complexities, there

is also another non-trivial problem related to the general framework of Feynman’s

diagrams. Unphysical singularities were for many years an embarrassing feature of

quantum field theories. Fortunately, this has been resolved in way that is not merely

a computational trick but has a rather deep physical meaning in the spirit of Wilson’s

renormalization process.

In spite of the universality and the power of the remedy Feynman put forward

in performing calculations for quantum field theories, we are forced to ignore infor-

mation in exchange for more mechanical calculations. The best example of this is

non-Abelian gauge theories. In these theories gauge invariance enforces a particular

structure of three and four-point interactions. When following the standard method

for calculating these, gauge invariance is ignored throughout the computation as the

Feynman rules guarantee that the amplitude is going to be gauge invariant. However,

this is something that can be used to bypass several steps and obtain amplitudes

faster and more efficiently, in more compact forms and with fewer unphysical singu-

larities.

Fortunately, there is a framework (or formalism) that enables us to represent

on-shell scattering amplitudes of massless particles in in a more natural way: the

spinor-helicity formalism. This framework enables us to take advantage of the fact

that asymptotic states of zero mass are completely determined by their momentum

and helicity. Thus, the basic ingredient (the S-matrix) of scattering amplitudes

should be function of these variables alone. This redundancy in gauge field theory
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formalism stems from the choice to make Lorentz invariance manifest resulting in a

gauge redundancy that must be introduced to eliminate extra propagating degrees

of freedom. This implies that external states are redundantly labeled by polarization

vectors and the amplitudes obey non-trivial Ward identities.

The spinor-helicity formalism relieves us from having to mention anything about

gauge symmetry and polarization vectors when writing down scattering amplitudes.

Moreover, group covariance strongly constrains or even determines the form of the

on-shell scattering amplitudes [1, 2]. Further motivation for this formalism is the

perturbative expansion of a Yang-Mills theory, which has remarkable properties that

are not manifest in terms of Feynman diagrams. The maximally helicity violating

(MHV) amplitudes can be written in terms of a simple holomorphic or antiholomor-

phic function. This was first conjectured by Parke and Taylor, materialized in their

celebrated formula [3, 4] and later proved by Berends and Giele [5]. In his semi-

nal paper [6], Witten gave an interesting and fresh perspective on explaining these

features of this class of amplitudes. It is now well established that the spinor helic-

ity formalism is not simply a computational trick, but rather a way of representing

amplitudes in their elementary, most physical form.

The efficiency of this formalism in four dimensions posed the obvious question of

whether it is possible to benefit from such a description of physical observables in

theories away from four dimensions. This lead to the development and application

of this language in a variety of interesting theories including the ones that are the

main focus of this thesis, namely N = (1, 1) six-dimensional gauge theory and ABJM

theory that lives in three dimensions.

In more recent years, a rekindled interest in the structure of scattering amplitudes

has produced a plethora of advancements in the field. The spinor helicity formalism

combined with unitarity has brought forth an extremely useful framework to perform

calculations but also played an integral part in unravelling new dualities and even

trialities. In particular, the dual conformal symmetry that is non-manifest in the

Lagrangian formulation of a theory yields constraints that can be used to determine
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the structure of amplitudes and opened the way to integrability methods through the

Yangian symmetry. It also plays an indispensable role in understanding the duality

between amplitudes and Wilson loops [7, 8]. The Wilson loop-amplitude duality is

also that is currently explored in the context of ABJM theory (for example see [9] and

references therein). Moreover, the recently discovered duality between amplitudes

and correlation functions [10,11] established the triality between amplitudes, Wilson

loops and correlation functions.

Many of the aforementioned developments were made possible or at least better

understood through the spinor-helicity language combined with unitarity. Working

with unitarity means that only on-shell gauge invariant objects enter the calculations.

Factorization of amplitudes linked to unitarity is a general feature regardless of the

theory specifics and the dimensionality of spacetime, allowing for recursion relations

and loop calculations to be treated efficiently in a variety of cases. The recursion

relation that was proved by Britto, Cachazo, Feng and Witten [12] allow for a simpler

way to calculate tree amplitudes regardless of the number of external particles. By

now it has been implemented to a wide variety of theories including string theory [13]

but also in the theories that will be of interest in the present work; more specifically,

in the N = (1, 1) six-dimensional theory that will be considered in Chapter 3 [13] as

well as in ABJM theory [14] that will be the subject of Chapter 4. These recursion

relations can be viewed as an application of unitarity at tree level.

Unitarity however is perhaps mostly appreciated as a tool to perform loop cal-

culations. Via the optical theory (Section 2.4.1) one immediately simplifies the task

of approaching a loop calculation. Substantial progress was made however when

generalized unitarity matured. Under generalized unitarity, the loop calculation is

broken down to a completely algebraic procedure of determining the coefficients of

known integrals in terms of tree amplitudes. This, again, is a procedure applicable

in theories beyond the well studied cases of four dimensional theories.

The fact that this set of modern tools have provided the means to gain new

insights as well as effective ways of performing otherwise out-of-reach calculations
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motivated the present body of work. Fascinating contemporary theories seem the

perfect candidates to apply modern methods to study their properties and gain a bet-

ter understanding. The outline of the thesis is the following. Chapter 2 presents the

spinor helicity formalism and unitarity methods in the context of four-dimensioanal

Yang-Mills theory and maximally supersymmetric Yang-Mills theory. These provide

the foundation for later chapters. In Chapter 3 we venture to six dimensions and

develop the one-loop calculation for up to a five-point amplitude and is based on [15].

Next, in Chapter 4 we approach three dimensions and in particular ABJM theory by

calculating the two-loop Sudakov form factor as done in [16]. Finally, the concluding

remarks offer an overview and summarize the findings in support of the idea that

state-of-the-art calculational methods are applicable in a wide variety of areas and

provide a framework capable of answering physically interesting questions.



2 Foundations

This chapter focuses on the foundations of modern methods for calculating scattering

amplitudes. Based on their properties, efficient ways of capturing the physics of a

scattering process are developed. The goal is to describe a formalism that reduces

the intricacy of computations. This is motivated by the fact that the end results can

be strikingly simple whereas the underlying diagramatic calculations using Feynman

diagrams can become rapidly complicated. What follows is formally developed in

four dimensions of spacetime and will be involved with pure Yang-Mills theory as

well as the maximally supersymmetric case. The tools that will be presented in

this chapter have been extensively discussed an used in the literature. It is however

important to note that especially the unitarity framework (Section 2.4) is valid in

any number of spacetime dimensions. It is therefore directly applicable to theories

in three and six dimensions that preoccupy the following chapters.

In a nutshell, what will be introduced here can be described as a set of strategies

to dissect complicated amplitudes into simpler forms at both tree and loop level. The

unitarity based deconstruction enables us to use on-shell tree amplitudes as building

blocks for amplitudes of rather invovled processes. The properties of these on-shell

amplitudes provide further restrictions and as a result calculations tend to simplify.

A vital component for the success of this program is an uncluttered formalism that

enables us to express amplitudes in their most minimal form. This is provided by the

spinor-helicity formalism and the on-shell superspace for the supersymmetric case in

four dimensions and will provide the basis for what follows.

6



2.1. Structure of Amplitudes 7

2.1 Structure of Amplitudes

In the present section all the necessary tools are developed in order to describe the

amplitudes in the simplest possible form. This starts by the color decomposition of

the amplitude and then by applying the spinor-helicity formalism it is possible to

write down the Parke-Taylor formula [3, 4] for the MHV amplitudes. The develop-

ment of this formalism is the blueprint for further applications in the more exotic

theories of the subsequent chapters.

2.1.1 Color ordering

The color decomposition of amplitudes is based on the idea that it should be possible

to deconstruct the amplitudes into smaller gauge invariant objects by taking advan-

tage of the group theory structure. These are then composed of Feynman diagrams

with a fixed cyclic ordering of external legs (colored ordered Feynamn rules). Since

their poles and cuts can only appear in kinematic invariants which are made out of

cyclically adjacent sums of momenta these new objects are inherently simpler. A

concise exposition of this aspect of amplitudes which is followed here, can be found

in [17].

The first interesting implementation of this strategy would be on Quantum Chro-

modynamics (QCD). The group in this case is SU(3) but may be generalized in this

discussion by considering SU(Nc). The particles of QCD can be divided to gluons and

quarks, and each variety carry different types of indices. Quarks (and antiquarks)

carry a color index Nc (and N̄c) taking values i(, j̄) = 1, 2, . . . , Nc. Gluons on the

other hand carry an adjoint index a = 1, 2, . . . , N2
c − 1. The generators of SU(Nc)

are traceless hermitian Nc×Nc matrices ((T a)i
j̄) in the fundamental representation.

The Feynman rules require a factor of (T a)i
j̄ for each gluon-quark-antiquark vertex

and a group theory structure constant for each pure gluon three-vertex and a con-

tracted product of two structure constants for a pure gluon four-vertex. Structure
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constants encapsulate the group structure and can be expressed as

fabc = − i√
2

Tr
[[
T a, T b

]
, T c
]

(2.1.1)

where the T a’s are normalized as

[
T a, T b

]
= i
√

2fabcT c, Tr
[
T aT b

]
= δab. (2.1.2)

Propagators are realized in color space as Kroenecker deltas that contract indices

together. In other words there is a δab for each gluon propagator and a δi
j̄ for

each quark propagator. Uncontracted adjoint indices correspond to external gluons

and uncontracted (un)barred indices correspond to (anti)quarks. By replacing all

structure constants with the corresponding traces we end up with a long string

of trace factors of the form Tr (. . . T a . . .) Tr (. . . T a . . .) . . .Tr (. . .) . To reduce the

number of traces we can use the completeness relation

(T a)i1
j̄1 (T a)i2

j̄2 = δi1
j̄2δi2

j̄1 − 1

Nc

δi1
j̄1δi2

j̄2 (2.1.3)

where summation over the gluon color index is understood. By applying the com-

pleteness relation (2.1.3) all the structure constants can be recast in terms of sums

of single traces of generators. This process is colloquially known as “Fierzing”. For

the scattering of gluons a general amplitude may be written as

Atree
n = gn−2

∑
σi∈Sn/Zn

Tr[T aσ1T aσ2 . . . T aσn ]Atree
n (σ1, σ2, . . . , σn) (2.1.4)

where now An(1, 2, . . . , n) is a color-ordered partial amplitude that contains all the

kinematic information and g is the gauge coupling constant (g2 = 4παs). The per-

mutation of n objects is represented as a set in the form of the permutation group

Sn and excluding the subset of cyclic permutations Zn which leaves the trace un-

changed. Thus, the full amplitude is obtained by summing over Sn/Zn, the set of all

non-cyclic permutations of the indices [1, 2, . . . , n].

Yet by performing this manipulation the hard work is merely postponed for later

on. However, what is gained is that the partial amplitudes are simpler than the
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full amplitude. This is due to An being a colored ordered object: it only receives

contributions from diagrams with a particular cyclic ordering of the gluons∗. For

example the simplest case of three gluons is

Atree
3 = g

{
Tr [T a1T a2T a3 ]Atree

3 (1, 2, 3) + Tr [T a1T a3T a2 ]Atree
3 (1, 3, 2)

}
(2.1.5)

while for the four-point amplitude this is:

Atree
4 = g

{
Tr [T a1T a2T a3T a4 ]Atree

4 (1, 2, 3, 4) + Tr [T a1T a2T a4T a3 ]Atree
4 (1, 2, 4, 3)

+ Tr [T a1T a3T a2T a4 ]Atree
4 (1, 3, 2, 4) + Tr [T a1T a4T a2T a3 ]Atree

4 (1, 4, 2, 3)

+ Tr [T a1T a3T a4T a2 ]Atree
4 (1, 3, 4, 2) + Tr [T a1T a4T a3T a2 ]Atree

4 (1, 4, 3, 2)
}
.

(2.1.6)

If a U (Nc) theory is considered then we can take advantage of the fact that

U (Nc) = SU(Nc)× U(1). The U(1) generator is given by

(
T aU(1)

)
i

j̄ =
1√
Nc

δi
j̄ (2.1.7)

which should be added to the completeness relation (2.1.3) and thus canceling the

−1/Nc term. The U(1) gauge field (the photon) is colorless (i.e. it commutes with

SU(Nc); faU(1)bc = 0, ∀b, c) and therefore does not couple directly to gluons. Of

course, quarks are charged under U(1). Physically, this means that at each vertex

the contribution coming from the U(1) gauge boson is subtracted.

2.1.2 Spinor Helicity formalism

In the previous section the richness of information, due to the color structure of an

SU(Nc) theory, was traded to more (simple) diagrams. Now the number of diagrams

will be increased once more, but this time the trade-off will be between diagrams

and polarization vectors. This entails writing down amplitudes in terms of massless

Weyl spinors which will lead to a better notation for the kinematics of massless
∗Specifically, they only depend on adjacent momenta.
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particles. More information on spinors can be found in [18], while for the details of

the formalism one may refer to [6, 17].

Consider the massless Dirac equation†:

pµγ
µu(p) = /pu(p) = 0 (2.1.8)

where u(p) is a four component spinor and γµ, µ = 0, . . . , 3 are the Dirac matrices

that in the chiral representation take the form

γ0 =

 0 1

−1 0

 , γi =

 0 σi

σi 0

 , γ5 =

 0 1

1 0

 (2.1.9)

with σi being the standard Pauli matrices. The Dirac spinors can be written as

two-component spinors (in the van der Waerden notation)

u(p) =

 uα(p)

ūα̇(p)

 . (2.1.10)

The two-component spinors are called Weyl spinors and transform independently

under Lorentz transformations. In other words, they are irreducible, massless rep-

resentations of the Lorentz group. Thus, from a mathematical point of view, Weyl

spinors may be considered as more “fundamental” than Dirac spinors.

Setting either of the Weyl spinors to zero in a Dirac spinor yields the eigenstates

of γ5:

γ5

 uα

0

 = +

 uα

0

 (2.1.11)

γ5

 0

ūα̇

 = −

 0

ūα̇

 (2.1.12)

which defines the positive and negative chirality spinors. In the massless case this

can also be expressed as [20]:

~σ · ~p
|~p|

uα = uα (2.1.13)

~σ · ~p
|~p|

ūα̇ = −ūα̇, (2.1.14)

†Here the focus is clearly in four dimensions. The spinor heliciy formalism is described in full
generality in higher dimensions in [19].
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known as the Weyl equations. Making ~ explicit then gives

~S · p̂ uα =
~
2
uα (2.1.15)

~S · p̂ ūα̇ = −~
2
ūα̇ (2.1.16)

where ~S(= ~~σ/2) is the spin operator and ~S ·p̂ is the helicity operator. The eigenvalue

is the helicity of the state and corresponds to the component of the spin along the

direction of the motion of the particle. In the massless limit, Weyl spinors are

eigenstates of the helicity operators. For a massive particle helicity depends on the

frame of reference, since one can always boost to a frame in which its momentum is

in the opposite direction (but its spin is unchanged) [20]. Thus, Weyl spinors only

have well-defined helicities in the massless limit.

As will be discussed in Section 2.1.3, in order to obtain non-zero MHV amplitudes

we need to work with complex momenta. Therefore, it is useful to know that the

complexified Lorentz group in four dimensions is locally isomorphic to SO(3, 1,C) ∼=

SL(2,C) × SL(2,C) [6]. As will be discussed in later chapters the Lorentz group in

six dimensions is SO(1, 5) and allows one to write vectors as SU∗(4) matrices [21].

In three dimensions the Lorentz group is simply SL(2,R). The little group in four

dimensions is a rather trivial U(1) not yielding any useful restricitive conditions.

Similarly trivial is the little group in three dimensions, a simple Z2 reflection. In six

dimensions however, as will become apparent in Chapter 3, the little group is a more

interesting [13] SL(2,C)× SL(2,C).

Conventionally, we write a generic negative helicity spinor λα (or positive helicity

λ̃α̇) and we can raise (lower) the indices with εαβ
(
εα̇β̇
)
[6]. Antisymmetric Lorentz-

invariant scalar products are defined as

〈λη〉 = εαβλαηβ = εαβλ
αηβ = λαηα , (2.1.17)

[λ̃η̃] = εα̇β̇λ̃
α̇η̃β̇ = εα̇β̇λ̃α̇η̃β̇ = λ̃α̇η̃

α̇. (2.1.18)

This gives 〈λη〉 = −〈ηλ〉. A momentum vector pµ can be written as a bi-spinor pαα̇

using one spinor index for each chirality. Using σµ = (1, ~σ), σ̄µ = (1,−~σ) Dirac
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matrices can be written as

γµ =

 0 σµ

σ̄µ 0

 (2.1.19)

and for any spinor pµ it is possible to define [6]

pαα̇ = σµαα̇pµ (2.1.20)

giving

pαα̇ = p01 + ~p · ~σ (2.1.21)

=

 p0 + p3 p1 − ip2

p1 + ip2 p0 − p3

 (2.1.22)

which leads to pµpµ = det(pαα̇) = εαβεα̇β̇pαα̇pββ̇ and in the case of a lightlike particle

det(pαα̇) = 0. However, for any 2 × 2 matrix the rank is at most two, and in this

case this means pαα̇ = λαλ̃α̇ + µαµ̃α̇. Given that the determinant is zero for lightlike

vectors makes it viable to write

pαα̇ = λαλ̃α̇ . (2.1.23)

For two given Weyl spinors, λ and λ̃ there is a corresponding lightlike vector p but

the opposite is not true since for a given complex p, λ and λ̃ are determined modulo

the rescaling

(λ, λ̃)→
(
zλ, z−1λ̃

)
, z ∈ C∗ . (2.1.24)

The formula pµpµ = det(pαα̇) generalizes for any two vectors p and q as p · q =

εαβεα̇β̇pαα̇qββ̇. In the case of lightlike vectors which we can write as pαα̇ = λαλ̃α̇ and

qββ̇ = µβµ̃β̇ gives‡

2 p · q = 〈λµ〉[λ̃µ̃] . (2.1.25)
‡We could also write: (p+q)2 = p2 +q2 +2p ·q and since we are dealing with lightlike momenta

(p+ q)2 = 2p · q. Therefore, the product is often defined as 2p · q = 〈λµ〉[λ̃µ̃].
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It is interesting to consider other spacetime signatures and the behavior of spinors

as done in [6]. In a mostly minus Minkowski signature, demanding real momenta

forces the spinors λ and λ̃ to be complex conjugates of each other:

λ̃α̇ = ±λ̄α (2.1.26)

where the sign depends on whether pµ has positive or negative energy. For complex

momenta the spinors λ and λ̃ are independent complex variables. In a (+ +−−)

signature, the spinors are real, independent two-component objects. The Lorentz

group (SO(2, 2)) in this case is locally isomorphic to SL(2,R)× SL(2,R) [6].

For a given momentum pµ additional information is needed to specify λ and

consequently λ̃ in complexified Minkowski space with real pαα̇. This is equivalent to

a choice of wavefunction for a spin 1/2 particle of momentum pµ. The Dirac equation

can also be written in the following form [6]

iσµαα̇
∂ψα

∂xµ
= 0 . (2.1.27)

A plane wave ψα = ραeip·x with a constant ρα obeys (2.1.27) if and only if pαα̇ρα = 0

which directly implies that ρα = cλα. By the same reasoning for the positive-helicity

spinors we can end up with the fermions wavefunctions of helicity ±1/2 as

ψα̇ = λ̃α̇eixββ̇λ
β λ̃β̇ , ψα = λαeixββ̇λ

β λ̃β̇ . (2.1.28)

Since massless particles of spin ±1 are being considered the usual method is to

specify a polarization vector εµ in addition to their momentum and together with

the constraint pµεµ = 0. The polarization vector is subject to gauge invariance

εµ → εµ + ωpµ for constant ω. Up to a gauge transformation the constraint which is

equivalent to the Lorentz gauge condition, is still satisfied.

In the case of a lightlike vector with momentum pαα̇ = λαλ̃α̇ the polarization

vectors can be written as [6]:

ε+αα̇ =
µαλ̃α̇
〈µλ〉

, ε−αα̇ =
λαµ̃α̇

[µ̃λ̃]
. (2.1.29)
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These obey the constraint pµεµ = 0 since 〈λλ〉 = 0. The spinors µ and µ̃ are arbitrary

negative and positive chirality spinors respectively and the vectors εµ do not depend

on them up to a gauge transformation. As long as gauge invariant quantities are

being considered there is a freedom in choosing any reference spinor µ (or µ̃). In fact,

a clever choice of reference spinor can make many terms and diagrams vanish [17].

The structure of the polarization vectors also indicates how they rescale under the

rescaling of the spinors (2.1.24):

ε−αα̇ → z+2ε−αα̇ , ε+αα̇ → z−2ε+αα̇ . (2.1.30)

Finally, the following identities are simply presented, which are extremely useful

when performing calculations with scattering amplitudes and can be proved using

standard Dirac algebra [17]:

〈p|γµ|q]〈r|γµ|s] = −2〈pr〉[qs] (Fierz rearrangement) (2.1.31)

〈pq〉〈rs〉 = 〈pr〉〈qs〉+ 〈ps〉〈rq〉 (Schouten identity). (2.1.32)

2.1.3 MHV amplitudes

This section presents the form of amplitudes as those emerge when complex momen-

tum is considered. Interestingly, real momenta would deliver a zero but the formula

presented by Parke and Taylor [3] yields a non-zero result for complex momenta.

All the work done in the previous section allows us to unambiguously label each

particle state by its momentum pi, helicity hi and color index ai, as |pi, hi, ai〉. The

color decomposition of the amplitudes further reduces the explicit dependence of the

amplitude to less external data. Remarkably, the idea can be summarized in the

following relations (for n > 3):

A(1+, . . . , n+) = 0,

A(1+, . . . , i−, . . . , n+) = 0,

A(1+, . . . , i−, . . . , j−, . . . , n+) = i
〈ij〉4

〈12〉〈23〉 . . . 〈n1〉
(2.1.33)
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with . . . denoting any number of positive helicity gluons. The last amplitude is

known as “Maximally Helicity Violating” (MHV) amplitude.

n− 1

n

1j−

i−

Figure 2.1 Generic MHV amplitude where only two particles have negative helicity.

The amplitudes with two negative helicity gluons are referred to as mostly plus

MHV amplitudes or simply MHV and by applying parity we obtain the mostly plus

MHV amplitudes or anti-MHV (MHV) amplitudes and we write

A(1−, . . . , i+, . . . , j+, . . . , n−) = (−1)n i
[ij]4

[12][23] . . . [n1]
. (2.1.34)

The case for n = 3 is quite exceptional. Since we have p1 + p2 + p3 = 0 and

p2
i = 0, ∀ i, it is true that (p1 + p2)2/2 = p1 · p2 = p2

3/2 = 0. When considering

a Lorentz signature, pi · pj = 0 implies that all momenta are collinear and as a

consequence the amplitude vanishes. Interestingly, when considering other signatures

or simply complex momenta then the three point tree level amplitude is no longer

a degenerate case. Thus, it is possible to write 2 pi · pj = 〈λiλj〉[λ̃iλ̃j] and for each

pair either 〈λiλj〉 = 0 or [λ̃iλ̃j] = 0. Each condition is in effect a proportionality

condition and at least one of them must be satisfied. This means that either all λi

or all λ̃i are proportional. Therefore either the MHV or the MHV amplitudes are

zero. The three-point amplitude is then given by

A3(1−, 2−, 3+) = i
〈12〉4

〈12〉〈23〉〈31〉
. (2.1.35)
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In Section 2.3 a recursive relation is presented, which prescribes a possible way to

construct an arbitrarily complicated tree level amplitude. The main building block

will turn out to be exactly the three-point MHV (or anti-MHV) amplitude.

In full generality, the Parke Taylor formula should be complemented with some

more information about the amplitudes. First of all there is a prefactor of the cou-

pling constant and there should also be a momentum conservation δ-function. The

complete expression for a physical tree-level MHV amplitude with external particles

r and s having negative helicity has the form [6]:

An = gn−2(2π)4δ4

(
n∑
i

λαi λ̃
α̇
i

)
〈λrλs〉4∏n
i=1〈λiλi+1〉

. (2.1.36)

This expression of the amplitude is manifestly Lorentz invariant as it depends only

Lorentz scalars and momentum is automatically conserved by the δ-function. Since

the amplitude is linear in each polarization vector εj, it obeys the auxiliary condition

for each j [6, 22]:(
λαj

∂

∂λαj
− λ̃α̇j

∂

∂λ̃α̇j

)
A(λj, λ̃j, hj) = −2hjA(λj, λ̃j, hj) , (2.1.37)

which is a consequence of the scaling of polarization vectors (2.1.30). This con-

dition, along with Lorentz invariance fixes the structure of the amplitudes. It is

also straightforward to check that for the massless case, the amplitude is exactly

conformally invariant once the generators are expressed using spinors [6].

2.2 Superamplitudes in N = 4 super Yang-Mills

Theories with maximal supersymmetry provide an arena for testing new ideas and

developing computational tools. Due to the extended supersymmetry, and the con-

straints that it leads to, several steps of otherwise cumbersome calculations tend to

simplify. Furthermore, the N = 4 super Yang-Mills theory (sYM) is exceptional

since it provides the first concrete example of a super-conformal theory that admits

a holographic dual [23]. As a result, this theory has been extensively studied and
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many of the tools and methods now employed for amplitudes calculations were first

developed or refined within the context of N = 4 sYM.

The N = 4 on-shell supermultiplet is a convenient and compact way to repre-

sent all the particle content of the theory in a single object and applies for all the

on-shell states. This is practically useful, as in such a setup the particle content is

the largest possible compared to other four-dimensional supersymmetric theories. It

will serve as a useful bookkeeping device of all the possible scattering amplitudes.

To this end one introduces Grassmann variables ηA (where A ∈ {1, . . . , 4}),

which belong to the fundamental representation of the R-symmetry group SU(4).

The super-wavefunction Φ(p, η) has the following form [22]:

Φ(p, η) = G+(p) + ηAΓA(p) +
1

2
ηAηBSAB(p) +

1

3!
ηAηBηCεABCDΓ̄D(p)

+
1

4!
ηAηBηCηDG−(p) . (2.2.1)

The first term of the super-wavefunction (2.2.1) has helicity +1 with the obvious

notation. Therefore the entire right-hand side must have the same total helicity,

whereas each state has decreasing helicity by a step of −1/2 so that G− has helicity

−1. Consequently, the variables ηA must carry a helicity of +1/2 to balance the total

helicity of each term. The upper indices correspond to the fundamental representa-

tion of the R-symmetry group whereas the lower indices to the anti-fundamental.

The algebra for the supersymmetry generators and massless momentum pαα̇ =

λαλ̃α̇ becomes [22] {
qα

A, q̄α̇B
}

= δABλαλ̃α̇ . (2.2.2)

As usual A, B are the SU(4) R-symmetry indices and as before α, α̇ are the SU(2)

spinor indices in four dimensions. It is possible to decompose the supercharge qAα
along two independent directions λ and µ in spinor space:

qα
A = λαq(1)

A + µαq(2)
A (2.2.3)
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provided that 〈λµ〉 6= 0. It is also possible to provide an analogous decomposition

for q̄α̇A. Using the above decomposition to rewrite the non-trivial anticommutator of

the supersymmetry algebra (2.2.2) one concludes that the charges q(2) and q̃(2) anti-

commute among themselves and the other generators in this massless representation.

They can therefore be set to zero. Thus, the supersymmetry algebra simplifies to

{
q(1)

A, q̄(1)B

}
= δAB . (2.2.4)

This is just a Clifford algebra for a space of 2N dimensions and signature (N ,N ).

Now we can drop the lower indices and realize the algebra in terms of the Grassmann

variables

qA = ηA , q̄B =
∂

∂ηB
. (2.2.5)

Using this, the supercharges can now be written as qαA = λαη
A and q̄α̇A = λ̃α̇

∂
∂ηA

[22]. In these conventions the Grassmann variables ηA carry helicity of +1/2 and

similarly η̄A have helicity −1/2, which agree with the helicities construed from the

structure of super-wavefunction (2.2.1) This representation of the algebra is chiral.

It is completely equivalent to choose an anti-chiral representation, in which case the

roles of q and q̄ with respect to the Grassmann variables are interchanged.

The irreducible representations of such Clifford algebras are already known.

Starting with the Clifford vacuum |Ω〉 which satisfies [24]

qA|Ω〉 = 0 , ∀A ∈ {1, . . . ,N} , (2.2.6)

we can repeatedly act with q̄A. The Clifford vacuum carries quantum numbers corre-

sponding to the momentum p and the helicity h, i.e. |Ω〉 = |p, h〉. It is now straight-

forward to understand and deduce the matter content of the N = 4 supermultiplet

(2.2.1) which is summarized in Table 2.1.

The superamplitude An for n external particles is defined as [22]

An(λ, λ̃, η) = An (Φ1 . . .Φn) (2.2.7)
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Particle type States Helicity Multiplicity

Gauge Bosons G+ +1 1

G− -1 1

Fermions ΓA +1/2 4

Γ̄A −1/2 4

Scalars SAB 0 6

Table 2.1 The matter content of N = 4 sYM and the respective helicities and mul-
tiplicities. The scalars SAB in particular are subject to the reality condition SAB =
1
2εABCDS̄

CD. A similar presentation of the matter content can be found in [25].

The reasoning behind this is simple: the super-wavefunction Φ(p, η) combines all

the particles of the N = 4 sYM into a single object. It is therefore a suitable

object to construct amplitudes of all kinds of processes. The expression (2.2.7)

is rather formal but the dependence of the amplitude on the super-wavefunctions

implies a dependence on the spinors λi and λ̃i as well as the Grassmann variables

ηi of all the external states. In this sense the scattering amplitudes of different

particle types appear as component amplitudes An of An. The strategy is to expand

the superamplitude in powers of the Grassmann variables. Each term/component

represents a scattering process involving the external states that correspond to the

powers of η. For instance the expansion will contain terms like:

An = (η1)4An
(
G−G+ . . . G+

)
+ . . .+ (η1)4(η2)4(η3)4An(G−G−G−G+ . . . G+)

+
1

3!
(η1)4ηA2 η

B
2 η

C
2 η

E
3 εABCDAn

(
G−Γ̄D2 Γ3E G

+ . . . G+
)

(2.2.8)

where we used the shorthand (ηi)
4 = 1

4!
ηAi η

B
i η

C
i η

D
i εABCD. In this case the first term

is the gluon component amplitude with one negative helicity gauge boson and n− 1

positive helicity gauge bosons. This amplitude is of course zero for n > 3 but formally

it is still a subamplitude in the Grassmann variable expansion.

Furthermore, the generic superamplitude An needs to be invariant under both the

R-symmetry group transformations and supersymmetry transformations. The SU(4)

invariance requirement restricts the form of the expansion to an inhomogeneous

polynomial of degree 4n in the ηAi ’s. Practically, the supersymmetry invariance is
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enforced as a requirement that the superamplitude vanishes when acted upon with

an infinitesimal supersymmetry generator. This automatically restricts the form of

the superamplitude even further.

When dealing with a scattering process with n external particles the we denote

the total momentum Pαα̇, and the supersymmetry generators (often called super-

momenta) as

Pαα̇ =
n∑
i=1

λiαλ̃iα̇ , Qα
A =

n∑
i=1

λiαη
A
i , Q̄α̇A =

n∑
i=1

λ̃iα̇
∂

∂ηAi
. (2.2.9)

Supersymmetry invariance under qαA is translated to supermomentum conservation:

Qα
AAn =

n∑
i=1

λiαη
A
i An = 0 . (2.2.10)

In the non-supersymmetric case, momentum conservation is implemented by a

δ-function. Similarly, here, it can also be implemented by the introduction of a

fermionic δ-function, hence the name supermomentum, defined as a product of the

individual supercharge components [25],

δ(8)
(
Qα

A
)

=
4∏

A=1

2∏
α=1

(
n∑
i=1

λiαη
A
i

)
(2.2.11)

Now the superamplitude takes a form which conveys more information and is mani-

festly invariant under Qα
A supersymmetry transformations:

An(λ, λ̃, η) = δ(4) (Pαα̇) δ(8)
(
Qα

A
)
Pn(λ, λ̃, η). (2.2.12)

Here, Pn is a polynomial in the Grassmann variables ηi. This generic form of the

superamplitude is valid when n ≥ 4. The three-point amplitude is exceptional again

and demands complexification of momenta.

Requiring supersymmetry invariance of the superamplitude, actually restricts the

structure of the polynomial, Pn. Upon acting with the supersymmetry generators

on the full superamplitude one gets

Q̄α̇AAn =

(
n∑
i=1

λ̃iα̇
∂

∂ηAi
δ(8)

(
λiαη

A
i

))
Pn + δ(8)(Qα

A)

(
n∑
i=1

λ̃iα̇
∂

∂ηAi
Pn

)
(2.2.13)

= 0 . (2.2.14)
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Momentum conservation automatically eliminates the first term whereas the second

term imposes the constraint

Q̄α̇APn = 0 (2.2.15)

Given the fact that the amplitudeAn(λ, λ̃, η) is a singlet under the SU(4)R-symmetry,

the same must be true for the polynomial Pn. A manifest way of ensuring that is

true is by writing the polynomial as an expansion of terms that are of degree 4k in

the Grassmann parameters ηAi . This way, each term in the expansion is unavoidably

invariant under the global SU(4). The expansion given in [22] is of the form

Pn = P(0)
n + P(4)

n + P(8)
n + · · ·+ P(4n−16)

n . (2.2.16)

The upper indices of the terms in the expansion of the polynomial label the degree

of Grassmann variables.

In order for the degree in η’s to be determined it is necessary to consider the full

structure of the superamplitude. Supersymmetry invariance has already introduced

the fermionic δ-function of degree eight (8) in η’s (but vanishing helicity). This

is naturally the minimum degree in the fermionic variables of a superamplitude

and accordingly corresponds to the first term of the expansion (2.2.16), P(0)
n which

unambiguously has zero degree in η. Recall, that when the super-wavefunction (2.2.1)

was introduced in order to systematize the construction of any superamplitude, the

helicity of η’s was found to be 1/2. It thus follows that P(0)
n represents a subamplitude

with a total helicity of n − 4. The next term then represents a NMHV amplitude

with helicity n−6 and so on. Thus, the last term organically corresponds to a MHV

amplitude of total helicity −(n − 4). The degree is 4n − 16 in η as the degree of

the amplitude has to be 4n − 8 when the fermionic δ(8)-function is accounted for.

Therefore the total degree of the superamplitude will be 4n−8 rather than 4n [22,25].

The fermionic degree of the polynomial is however not enough to fully resolve

the form of each term in its expansion. Focusing on the MHV case, we should be

able to exactly deduce the structure of the term. After the necessary integration

over the Grassmann variables, the well known MHV tree-level amplitude should
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surface. In full generality, simply by choosing only two gauge bosons (i and j) to

be of negative helicity the factors (ηi)
4 and (ηj)

4 need to be extracted from the

fermionic δ(8)-function, as clearly P(0)
n simply cannot contribute any powers of η.

The Grassmannian integrations will introduce a factor of 〈ij〉4. Then, one simply

has to compare with the known result of the Parke-Taylor (2.1.33) formula to extract

P(0)
n = (〈12〉〈23〉 . . . 〈n1〉)−1 , (2.2.17)

which suggests that the MHV, n-point superamplitude for n ≥ 4 is given by

AMHV
n (λ, λ̃, η) = δ(4)

(
n∑
i=1

λiαλ̃iα̇

)
δ(8)

(∑n
i=1 λiαη

A
i

)
〈12〉〈23〉 . . . 〈n1〉

, (2.2.18)

a result first presented by Nair [26] in this form.

However, as will become evident in the following discussions about recursion rela-

tions and unitarity, the above formula cannot provide the fundamental building block

for loop calculations. It will be necessary to deal with three-point superamplitudes

which so far have not been determined.

The kinematic constraints for the tree-level amplitudes lead to vanishing three-

point (super)amplitudes for real momenta (see Section 2.1.3). Switching to complex

momenta, the solutions lead to either a MHV or an MHV amplitude. By choosing

[ij] = 0, the MHV n = 3 superamplitude takes the form:

AMHV
3 (λ, λ̃, η) = δ(4)

(
3∑
i=1

λiαλ̃iα̇

)
δ(8)

(∑3
i=1 λiαη

A
i

)
〈12〉〈23〉〈31〉

, (2.2.19)

which is purely holomorphic in spinor variables and follows the form of the general

case.

However, when choosing the product 〈ij〉 = 0 to vanish, the result should be the

n = 3 MHV superamplitude. The reasoning of the n-point case would suggest that

it should be given by the last term in the expansion (2.2.16) of the polynomial Pn.

This would lead to the term P(−4)
3 of negative degree in η. For the n = 3 case the

MHV is given by [2, 27]

AMHV
3 (λ, λ̃, η) = δ(4)

(
3∑
i=1

λiαλ̃iα̇

)
δ(4) (η1[23] + η2[31] + η3[12])

[12][23][31]
. (2.2.20)
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It is worth mentioning that now there is no fermionic δ(8)-function of the previous

form which imposed supersymmetry invariance. The current fermionic δ(4)-function

produces the correct total degree of η of a MHV amplitude which is 4n − 8. This

expression does nonetheless respect supersymmetry. In order to see this use the

fermionic δ-function of (2.2.20) to solve for the fermionic variable η1

ηA1 λ1α =
−ηA2 [31]− ηA3 [12]

[23]
λ1α . (2.2.21)

These constraints affect the supersymmetry generator Qα
A which now takes the form

Qα
A =

3∑
i=3

λiαη
A
i = ηA2

λ1α[13] + λ2α[23]

[23]
+ ηA3

λ1α[21] + λ3α[23]

[23]
. (2.2.22)

Fortunately, due to momentum conservation enforced by the corresponding δ-function

the supersymmetry generator vanishes and thus the MHV is invariant. In a similar

fashion the Q̄Aα̇ supersymmetry generator produces the following expression when

acting on AMHV
3

Q̄Aα̇AMHV
3 →

3∑
i=3

λ̃i
∂

∂ηi
(η1[23] + η2[31] + η3[12]) = λ̃1[23] + λ̃2[31] + λ̃3[12] (2.2.23)

which now vanishes due to the Schouten identity (2.1.32). Hence, both the MHV

and MHV three-point superamplitudes as given above, are supersymmetry invariant

in the N = 4 case. It is now possible to use these expressions as fundamental

blocks, either when trying to determine a tree amplitude recursively or when unitarity

methods are applied for loop corrections.

2.3 Recursion relation - BCFW

In 2004 Britto, Cachazo, Feng [28] introduced, and then proved with Witten [29],

a modus operandi for recursively calculating multi-gluon tree-level amplitudes. The

aim of their procedure is to reproduce any tree-level amplitude as a sum over simpler

terms. These terms are constructed from products of amplitudes of fewer particles

‘connected’ by a Feynman propagator. This factorization procedure can be reiter-

ated until the amplitude is reduced to calculating three-point amplitudes connected
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by the propagators. The nature of this procedure is such that a complex number

is introduced as a parameter, making the use of Cauchy’s theorem on Yang-Mills

amplitudes possible. It is worth mentioning here that this work in other theories

that are not restricted to four dimensions as this factorization is a general feature of

scattering amplitudes.

The main idea behind the recursion relation is to shift the null momenta pi and

pj of two external particles in an amplitude by shifting their spinors with a complex

parameter z [29],

λj → λj − zλi , λ̃i → λ̃i + zλ̃j . (2.3.1)

This makes the amplitude a rational function of z and we write it as A(z). The

particles i and j may have any helicity and respect momentum conservation for

complex momenta:

p′i + p′j = λiλ̃
′
i + λ′jλ̃j = λiλ̃i + zλiλ̃j + λjλ̃j − zλiλ̃j = pi + pj (2.3.2)

such that A(z) is a well defined amplitude in C4. Therefore, Cauchy’s theorem can

be directly applied , and by assuming for now that A(z)
z→∞−→ 0:

0 =
1

2πi

˛
C∞

dz

z
A(z) = A(0) +

∑
poles zp

RespA(z)

zp
. (2.3.3)

The poles of A(z) appear exactly when a Feynman propagator of internal momenta

goes on-shell and the residue is given by

lim
P 2
k,m→0

[
P 2
k,mA

]
=
∑
h=±1

A(k, . . . ,m,−P−hk,m)A(P h
k,m,m+ 1, . . . , k − 1) . (2.3.4)

This splits the amplitude into the two physical subamplitudes. For i ∈ {k, . . . ,m}

and j /∈ {k, . . . ,m} (or vice versa) the propagator will be shifted and there will be a

pole in z because

P
′2
k,m(z) =

(
Pk,m + zλiλ̃j

)2

= P 2
k,m + z〈i|Pk,m|j] (2.3.5)

which yields

zk,m = −
P 2
k,m

〈i|Pk,m|j]
. (2.3.6)



2.3. Recursion relation - BCFW 25

Then the residue for this pole is

lim
z→zk,m

(zA) =
1

〈i|Pk,m|j]
lim

P 2
k,m→0

(
P 2
k,mA

)
=
∑
h=±1

A(k, . . . ,m,−P−hk,m(zk,m))A(P h
k,m(zk,m),m+ 1, . . . , k − 1)

〈i|Pk,m|j]
,

(2.3.7)

which, combined with (2.3.3) gives

A =
∑
h=±1
k,m∈P

A(k, . . . ,m,−P−hk,m(zk,m))A(P h
k,m(zk,m),m+ 1, . . . , k − 1)

P 2
k,m

, (2.3.8)

where P is the set of all partitions such that k ∈ {j + 1, . . . , i}, m ∈ {i, . . . , j − 1}

and k 6= m,m+ 2.

i

j

=
∑

all diagrams

± ∓

j′

i′

1
P ′2k,m

Figure 2.2 Representation of the BCFW equation (2.3.8).

In other words, we must sum over all internal momenta that are affected by the

deformation (2.3.1). In [29] it is proved that A(z) is indeed well behaved (i.e. goes

to zero) as z →∞.

These relations provide powerful tools for calculations due to their recursive na-

ture. Using the basic amplitude in any theory (in the case of Yang-Mills the three

point amplitude) it is possible to derive any n-point amplitude.

Given the computational power that comes with the recursion relation for ampli-

tudes in Yang-Mills theory it seems as a rather appealing endeavor to try and develop

similar techniques for other theories as well. Of particular interest of course is the

maximally supersymmetric sYM in four dimensions. Indeed, in [27] and then [2] the
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supersymmetric version of the recursion relation (2.3.8) is discussed in a systematic

way. What follows is a brief description of the construction.

Similarly to the non-supersymmetric case the method is based in shifting two

external momenta by a complex variable z according to

λj → λj − zλi , λ̃i → λ̃i + zλ̃j , (2.3.9)

which as discussed earlier respects momentum conservation. The supersymmetric

Yang-Mills of course also requires some treatment of the supermomentum. The shift

of the holomorphic spinor λj induces the following change in the supermomentum

qj → qj − zηjλi . (2.3.10)

The Grassmannian spinor with label i shifts according to

ηi → ηi + zηj , (2.3.11)

automatically preserving momentum conservation. The remaining steps of the con-

struction of the recursion relation are essentially unchanged. The shifted tree-level

superamplitude is again a rational function of the spinor variables and now a poly-

nomial in the Grassmann parameters ηAi . The superamplitude A(z) is an analytic

function in z and once more only contains poles but no cuts over the complex plane.

This renders the amplitudes suitable for the application of Cauchy’s theorem.

The supersymmetric version of the recursion relation is

An =
∑

poles zP

ˆ
d4ηP̂ AL(zP )

i

P 2
AR(zP ) . (2.3.12)

The sum is over all simple poles and both subamplitudes are evaluated at these

poles. The interesting difference compared to the non-supersymmetric version of

BCFW is the assignment of helicities. The sum over all helicity configurations of

the subamplitudes in (2.3.8) is now replaced by the integration over the Grassmann

variable ηP̂ which is assigned to the internal propagator. Physically this stems from

the fact that the superamplitude already contains all possible particle and helicity

configurations for a given number of external states.
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Since the subamplitudes AL and AR are themselves supersymmetric they can be

expanded in terms of the fermionic variables ηi just as in the expression (2.2.12).

The Grassmann integration reduces the total power of η’s on the RHS of the super-

symmetric version of BCFW (2.3.12) by four. However, the helicity assignments of

the full superamplitude is constrained by the fact that the superamplitude is com-

pletely determined and defined by the number of external states and its total helicity.

Therefore, the sum of the total helicities of the two subamplitudes reduced by four

should equal the total helicity of the recursively determined superamplitude An.

There is one important point that is a requirement in the derivation and validity of

the any version of the BCFW recursion relation that has not been carefully discussed

so far. That is the vanishing of the (super)amplitude when z →∞, i.e. A(z)
z→∞−→ 0.

In the papers that proposed and proved the recursion relation [28,29] the checks were

on specific helicity configurations. However, an amplitude with an arbitrary helicity

assignment will not generally vanish for large complex momenta. In fact, in [30] it

is shown that the pure Yang-Mills amplitudes only vanish for large z under specific

shifts. In particular, a choice of both the holomorphic (λj) and anti-holomorphic

(λ̃i) spinors to be of positive helicities then the amplitude scales as ∝ 1/z and the

entire bosonic amplitude vanishes at z →∞.

In a supersymmetric theory however a distinction between different helicity as-

signments for the superamplitudes is no longer necessary. Indeed in the original pa-

pers that discussed the behavior of superamplitudes in large complex momenta [2,27]

it was shown that both in maximal sYM and maximal supergravity the ampli-

tudes vanish for z → ∞. Specifically, the superamplitudes in N = 4 sYM scale

as A(z) ∝ 1/z and in N = 8 supergravity asM(z) ∝ 1/z2.

2.4 Unitarity

The next step in calculations in a quantum field theory is to consider quantum

corrections to scattering processes. These manifest themselves as loop corrections
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which we have ignored so far. In this section, on-shell methods which are related to

the tree-level constructions will be considered. In particular, we will see how it is

possible to reconstruct a scattering amplitude from its properties as a function over

the complex plane.

2.4.1 The Optical Theorem

In any interacting quantum (field) theory a fundamental physical requirement is that

probability must be conserved. This means that the S-matrix describing a scattering

process must be unitary. The scattering amplitudes are interpreted as the transition

matrix elements and therefore unitarity can be directly applied at the amplitude

level. This leads to the optical theorem which mathematically relates the imaginary

part of the amplitude to a sum over contributions from all intermediate particle

states. Comprehensive treatment of this subject is offered in many quantum field

theory textbooks (this section loosely follows [18]). For a more general discussion

about analyticity in physics [31] is a rather pedagogical reference.

It is possible to “split” the S-matrix into a part that is physically uninteresting and

represents the possibility of no interaction occurring and a part that captures all the

details of possible interactions. This can be achieved simply by writing S = 1 + iT .

Then, unitarity of the S-matrix implies the following for the part that captures

interactions T ,

S†S = 1 ⇔ −i(T − T †) = T †T . (2.4.1)

Now, by considering the transition matrix elements between initial and final states

the left hand side of (2.4.1) is twice the imaginary part of the T-matrix element. The

T-matrix elements should represent the transition from an initial to a final particle

state. By inserting a complete set of on-shell multiparticle states (
∑

f |f〉〈f | = 1) in

the right hand side, the optical theorem assumes the form

− i[A(a→ b)− A∗(b→ a)] =
∑
f

ˆ
dLIPS[A∗(b→ f)A(a→ f)] , (2.4.2)
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where dLIPS is the n-particle Lorentz invariant phase space measure,

dLIPS =
n∏
i=1

d4qi
(2π)4

δ(+)(q2
i −m2

i )(2π)4δ(4)(pa + pb −
∑
i

qi) (2.4.3)

and the sum on the RHS runs over all possible intermediate states f .

The optical theorem in the form (2.4.2) states that the imaginary part of the

amplitude can be obtained from the sum of phase space integrals of intermediate

multi-particle states. The integrals are over products of scattering amplitudes which

individually transform either the initial or the final particle states into the inter-

mediate states. This may simplify the calculation of a scattering amplitude in the

following way. It is possible to expand both sides in perturbation theory and then

match the powers of the coupling constant. In the case of the full one-loop amplitude

the RHS of (2.4.2) simplifies to the integrated product of two tree-level amplitudes.

The Feynman diagrams of a theory provide a better understanding of the imagi-

nary part of an amplitude. As the Feynman rules dictate for the theory at hand, each

diagrammatic contribution to the S-matrix element is purely real unless an internal

propagator goes on shell. If this is the case, the iε prescription for the virtual particle

propagator generates an imaginary part. In order to demonstrate how this might

appear, it is possible to allow for the amplitude A(s) an analytic function of the vari-

able s = E2
cm, although s is physically a real variable. Now, let s0 be the threshold

energy for production of the lightest multiparticle state. If s is real and below s0 the

intermediate state cannot go on-shell, therefore A(s) is real. Consequently, for real

s < s0 the following identity is true

A(s) = [A(s∗)]∗. (2.4.4)

Since each side of this equation is an analytic function of s it can be analytically

continued to the entire complex s plane. Considering the real and imaginary parts

of A(s) separately for s > s0 near the real axis one gets

ReA(s+ iε) = ReA(s− iε) , (2.4.5)

ImA(s+ iε) = −ImA(s− iε). (2.4.6)
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The key observation here is that the imaginary part of the amplitude is different

above and below the real axis., having a branch cut which starts at the threshold

energy s0. The discontinuity of the analytic function A(s) is given by

DiscA(s) = 2i ImA(s+ iε) . (2.4.7)

This demonstrates that the appearance of an imaginary part of A(s) always requires

a branch cut singularity. The iε prescription indicates that the physical scattering

amplitudes should be evaluated above the cut, i.e. at s + iε. The optical theorem

then shows that the discontinuity of an amplitude is related to the sum of phase

space integrals as in (2.4.2).

The entire procedure of calculating the discontinuity of an amplitude has been

formalized in full generality by Cutkosky [32]. It is possible, by following the so-called

Cutkosky rules to reconstruct the discontinuity. This has the form of a three-step

procedure summarized as follows [18]:

1. Cut through the diagram in all possible ways such that the cut propagators

can simultaneously be put on shell.

2. For each cut, replace 1/(p2−m2+iε)→ −2πiδ(p2−m2) in each cut propagator,

then perform the loop integrals.

3. Perfom the integration over the two-particle phase space integral.

This algorithm is the result of a series of papers [33–35] which finally lead to

Cutkosky’s generalization to multi-loop diagrams [32]. In the next section it will

be argued that the cumbersome phase space integrals need not be performed and

Feynman integrals can take their place.

2.4.2 Integral Basis

The optical theorem relates the discontinuity of an amplitude with a sum of phase-

space integrals. The problem is that, in general, phase-space integrals can result
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in rather involved calculations. There is however a way to avoid them using the

approach of Bern, Dixon, Dunbar and Kosower (BDDK) [36,37]. Following this pro-

cedure, unitarity can be applied directly at the level of amplitudes and completely

bypass the use of Feynman diagrams. Now, instead of integrating over phase-space,

the two δ-functions that force loop momenta to be on shell (cut) are replaced by

propagators. This reconstructs Feynman integrals instead of producing phase-space

integrals. This method, known as unitarity at the integrand level, allowed the au-

thors of [36,37] to construct many one-loop amplitudes in supersymmetric theories,

including the n-point MHV amplitude for N = 1, 4 sYM theories.

The analysis suggested by BDDK [36, 37] allows the identification of which in-

tegral functions can appear in the one-loop amplitude. In general, at one loop, all

amplitudes in massless gauge theories can be written using a basis of certain integral

functions

A1-loop
n =

∑
Ii

ciIi + rational terms . (2.4.8)

The summation is over scalar integral-functions Ii which, in d = 4 are often denoted

as boxes, triangles or bubbles, depending on the number of vertices (four for a box,

etc.). It is also possible to obtain integrals with products of loop momenta in the

numerator leading to tensor integrals. A further classification of the integrals is based

on the clusters of external momenta. This depends on whether external momenta

associated with each vertex is massless or not. Thus the boxes without entirely

massless external momenta are of four types. One can similarly distinguish between

three-mass, two-mass and one-mass triangles.

For the full amplitude, the unitarity-cut approach requires careful consideration

of double cuts for each kinematic channel. However, this procedure will only produce

only the so-called cut-constructible part of the amplitude§. This is exactly the part

of the full amplitude that contains the discontinuities like (poly)logarithms. All

the cut-free terms are unaccounted for. Thus, the BDDK double-cuts are ideal for
§The supersymmetric Yang-Mills theories withN = 1, 4 are cut constructible [36]. The criterion

is that the degree of the loop-momentum in the numerator polynomial of an n-point one-loop
amplitude must be less than n.
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Box type vertex configuration

four-mass box I4m K2
i 6= 0,∀i

three-mass box I3m K2
i = 0 for one i

two-mass easy I2me K2
i = K2

i+2 = 0

two-mass hard I2mh K2
i = K2

i+1 = 0

one-mass I1m K2
i = 0 for three i’s

Table 2.2 Box integrals.

constructing the full amplitude for supersymmetric theories where all rational terms

are uniquely linked to the terms with discontinuities [36,37]. In non-supersymmetric

theories however, the rational terms, to order O(ε0), in the expansion (2.4.8) are not

linked to terms with discontinuities. Thus, two-particle cuts cannot be easily used

for non-supersymmetric theories.

K1 K2

K3K4

(a) A box.

P1

P2P3

(b) A triangle.

Q1 Q2

(c) A bubble.

Figure 2.3 Integral functions that may appear in a massless gauge theory in four dimen-
sions in a pictorial representation.

The aforementioned technical manipulations are in principle enough to compute

amplitudes in various theories although the procedure requires tedious calculations.

It is necessary to consider the cuts in all the different kinematic channels in order to

obtain the full amplitude. Therein lies a non-trivial subtlety. The resulting integral

function will have in principle, additional discontinuities of other channels. In other

words, it is not straightforward to simply sum up all the contributions from the

different channels to obtain the final expansion as this may lead to an over-counting
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of some discontinuities. Moreover, upon the reconstruction of the Feynman integral,

one is often left with tensor integrals. These require further manipulations in order

to reduce them to scalar ones (such as the Passarino Veltman reduction [38]).

2.4.3 d = 4 Unitarity Cuts

The starting point for our considerations will be the fact that in N = 4 super Yang-

Mills theory, amplitudes contain only boxes [36,37]

A1-loop
MHV (i−, j−) =

∑
a∈boxes

caIa . (2.4.9)

On both sides we can pick the discontinuity in P 2
m1,m2

by replacing the loop propa-

gators between m1 and m1 + 1 and between m2− 1 and m2 by delta functions in the

square of the loop momenta. The left hand side of (2.4.9) produces an integral over

the product of two tree amplitudes

−iDiscA1-loop
n =

∑
h,h′

ˆ
dD`1d

D`2 δ(`
2
1) δ(`2

2)δ(D)(`1 − `2 − Pm1,m2) (2.4.10)

×A(m2 + 1, . . . ,m1 − 1, `h1 , (−`2)−h
′
)A(m1, . . . ,m2, `

h′

2 , (−`1)−h)

(2.4.11)

as can be seen in Figure 2.4. To generate the Feynman integrals and avoid performing

the phase space integrals one should replace the δ-functions associated with the cuts

with propagators δ(`2
i )→ 1/`2

i in the above expression.

In order to have two non-vanishing tree amplitudes they must both be MHV. If i

and j are both on the same side then (h, h′) = (1,−1)LHS or (h, h′) = (−1, 1)RHS. If

they are in the opposite sides, h = h′ can take any value that respects the structure

of the N = 4 supermultiplet and an extra summation is required. Interestingly, the

summation over the N = 4 multiplet gives the same result as if i and j are on the

same side. Meaning that the integrand is written as

Atree(i−, j−)
〈(m1 − 1)m1〉〈`1`2〉〈m2(m2 + 1)〉〈`2`1〉
〈(m1 − 1)`1〉〈`1m1〉〈m2`2〉〈`2(m2 + 1)〉

(2.4.12)
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−Pm1,m2 Pm1,m2

m1 − 1 m1

m2m2 + 1

`1

`2

Figure 2.4 Double cut of the one-loop amplitude. Here, the dashed line is used to denote
the cut of the two internal propagators.

The next step is to transform the denominator to scalar propagators by rewriting

1

〈`imj〉
=

[mj`i]

2`i ·mj

=
[mj`i]

(`i −mj)2
. (2.4.13)

In Yang-Mills theory, a generic n-point amplitude may give an up to n-loop propa-

gators and up to rank n tensor integrals

In[P (`µ)] = −i(4π)2

ˆ
dD`

(2π)D
P (`µ)

`2(`−K1)2(`−K1 −K2)2 . . . (`+Kn)2
. (2.4.14)

These integrals are usually reduced to a lower order tensor integral via a Passarino-

Veltman reduction [38]. In the case of the N = 4 sYM the box integrals can be

reduced all the way to scalar integrals. An explicit result for the PV reduction of

the linear pentagon integral that appears in six dimensions is given in Section 3.5.3

while more details are given in Appendix A.4.

2.4.4 Generalized Unitarity

In essence, the computation of a discontinuity across a cut in an amplitude has

been computed by putting two propagators on shell. By sewing together two tree

amplitudes to form the cut in a given channel only those integrals which have both

propagators cut are obtained. This yields the coefficients only for those integrals.

In order to obtain the full amplitude a careful consideration of cuts in all the other

channels is required. However, if cuts on more propagators were allowed then fewer



2.4. Unitarity 35

terms would survive, and the calculation is immediately simplified by reducing loop

amplitudes to tree amplitudes with fewer legs. This is what goes under the name of

generalized unitarity. This procedure was first used in [12] to compute amplitudes

in N = 4 although the general idea was known since [39]. The best way to apply

generalized unitarity is by having the right number of cuts as to isolate a single

integral and a single coefficient.

It is natural to assume that there must be a better way to perform the calcula-

tion given that the final results are quite often of a simple form which is not obvious

by the double-cut construction. Using the simple idea of cutting more propagators

one finds a more direct way of calculating the coefficients in the integral basis ex-

pansion reducing the procedure to a purely algebraic excercise of manipulating tree

amplitudes.

In the case of N = 4 sYM where the only possible integrals are boxes, the

quadruple cuts prove to be especially convenient. These cuts freeze the integrated

momenta completely, reducing the calculation of the amplitude to a purely algebraic

procedure. Moreover, it reduces the overlap between the different possible cuts and

therefore simplifies the procedure of finding the integral coefficients. The extra on-

shell conditions reduce the complexity of the PV reduction since fewer terms survive

the procedure. The price for all this is the requirement of working with complex

momenta. By cutting all loop momenta one is effectively sewing tree amplitudes.

The tree-level amplitudes will often be three-point amplitudes (with the exception of

the four-mass box I4m). On the one hand the number of tree amplitudes increases

but especially the form of the three-point amplitude is suitably simple. As was

discussed in Section 2.1.3 three-point amplitudes are non-zero when momentum is

complexified.

2.4.5 Quadruple Cuts

The idea now is the simple, logical step of applying more cuts to freeze the loop

momenta in four dimensions and obtain solutions. However, it is often the case that
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real solutions are not allowed and the cut gives zero as a result thereby rendering

the information useless. When turning to a (− − ++) signature (or in complexi-

fied Minkowski space) this changes and the problem is indeed reduced to a purely

algebraic one.

Considering a one-loop amplitude for which four internal lines are taken to go

on-shell yields a box with a coefficient ci is

ci

ˆ
d4L

(2π)4

1

(L2 + iε)[(L+K1)2 + iε][(L+K1 +K2)2 + iε][(L−K4)2 + iε]
(2.4.15)

which can be cut to

ci
∑

solutions

ˆ
d4L δ(L2) δ[(L+K1)2] δ[(L+K2)2] δ[(L−K4)2]. (2.4.16)

The momenta Ki are the clusters of momenta of Figure 2.3. The ε’s are there to

tame the infrared divergences that are inherent in the box integral. The clusters of

momenta represent color-ordered momenta. In full generality, as already discussed

the full one-loop amplitude may be decomposed in four different types of scalar box

integrals. By adding the contributions from all the Feynman diagrams that cut the

four internal lines the result is
ˆ
d4L

∑
solutions,

states

A(. . . ,−L,L+K1)A(. . . ,−L−K1, L+K1 +K2) (2.4.17)

×A(. . . ,−L−K1 −K2, L−K4)A(. . . ,−L+K4, L) (2.4.18)

×δ(L2)δ[(L+K1)2]δ[(L+K2)2]δ[(L−K4)2] (2.4.19)

where by “states” we refer to the possibilities of different particles that may have

those momenta, implying:

ci =
1

2

∑
solutions,

states

AAABACAD . (2.4.20)

This means that the coefficient is given by products of four on-shell tree amplitudes

in four dimensions. Physically, the quadruple cut can be depicted as a box with four

tree amplitudes at the corners connected by loop propagators. Since this is the only



2.4. Unitarity 37

type of integral one may obtain, each quadruple cut singles out a unique box-function.

Essentially the quadruple cut is just a specific choice of how the external states are

distributed among the momenta clusters Ki. The four δ-functions have completely

localized the integrand on the solutions of the on-shell conditions. It is then possible

to remove the dependence of the loop momenta by algebraic manipulations and

applying on-shell conditions. The remaining δ-functions can then be uplifted to the

full Feynman propagators and produce the box integral function associated to the

specific cut. The corresponding coefficient turns out to be simply the product of the

tree-level amplitudes.

In more detail, the scalar box function must be purely kinematic object where all

the helicity information of the external states is carried by the integral coefficients

ci. Thus, in the present setup, the coefficients are functions of the spinor variables λi

and λ̃i. The two relevant constraints that determine the coefficients are the on-shell

conditions imposed by the cut and momentum conservation at each corner of the

box. This reduces the loop integration to a discrete sum over two solutions:

S± : `2
i = 0 , `µi+1 = `µi +Kµ

i . (2.4.21)

The details of the explicit solutions can be found in [12]. Fortunately, in the ap-

plication of quadruple cuts considered below the specific form of the solution is not

needed. The constraints on momentum conservation are enough to simplify the loop

momentum dependence at the level of the product of the tree-level amplitudes.

Consider the box coefficient of the one-loop four-point amplitude with a par-

ticular helicity configuration A1-loop
4 (1−, 2−, 3+, 4+) as depicted in Figure 2.5. The

constraints imposed by cutting the loop momenta read:

`2
1 = 0 , `2

2 = (`1 − p1)2 = 0 , (2.4.22)

`2
3 = (`1 − p1 − p2)2 = 0 , `2

4 = (`1 + p4)2 = 0 . (2.4.23)

Now, take the loop momentum `1 to be of the form `1 = zλ`1λ̃`1 where z is a constant

to be fixed. Then by using the cut constraints one may choose a possible solution
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for the loop momenta

`1 = |4〉〈21〉
〈24〉

[1| , `2 = |2〉〈41〉
〈24〉

[1| , (2.4.24)

`3 = |2〉〈43〉
〈42〉

[3|, `4 = |4〉〈23〉
〈42〉

[3| . (2.4.25)

Choosing the particular helicity configuration the upper left and the bottom right

corners nest zero MHV amplitudes whereas the bottom left and upper right corners

nest zero MHV amplitudes.

`4

`3

`1

`2

2− 3+

4+1−

++ −−

+−+−

Figure 2.5 Four-point one-loop box. The darker corners represent MHV three-point
subamplitudes.

A further comment is in order here. A complication arises in general when two

adjacent amplitudes are both three-point amplitudes of the same type. The MHV

and MHV amplitudes are defined for different kinematic configurations as discussed

in Section 2.1.3. If they are both MHV then the kinematic configuration required is

λ̃i ∝ λ̃` ∝ λ̃i+1, or if they are both MHV it is necessary that λi ∝ λ` ∝ λi+1. This

leads to spinor products [i, i + 1] = 0 or 〈i, i + 1〉 = 0, which renders the invariant

sii+1 = (pi + pi+1)2 = [i, i+ 1]〈i, i+ 1〉 = 0. Fortunately, for general kinematics¶ this

is never fulfilled. Therefore, this configuration cannot exist and only MHV −MHV

pairs of three-point amplitudes can be appear in adjacent corners.
¶This is also true for the supersymmetric cases.
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In the present case the non-vanishing arrangement of internal states is shown in

Figure 2.5 which gives the contribution:

1

2

〈1`2〉3

〈`2(−`1)〉〈(−`1) 1〉
[`3(−`2)]3

[(−`2)2][2 `3]

〈`4(−`3)〉3

〈(−`3) 3〉〈3 `4〉
[(−`4) 4]3

[4`1][`1(−`4)]

=
1

2

〈1`2〉3

〈1 `1〉〈`1`2〉
[`2`3]3

[2 `2][2 `3]

〈`3`4〉3

〈3 `3〉〈3 `4〉
[4 `4]3

[`4`1][4`1]

=
1

2

〈4 1〉2〈4 3〉2〈2 3〉2

〈2 4〉6
〈1 2〉2

〈1 `1〉〈`1 2〉
[1 3]3

[1 2][2 3]

〈2 4〉3

〈2 3〉〈2 3〉
[3 4]3

[3 `1][`14]

= −1

2
stAtree,

with s and t being the standard Mandelstam variables, and the last step occurs

after repeated use of momentum conservation. Another solution can be obtained

by exchanging | 〉 → | ] and rearranging the helicities in the diagram such that

A1-loop = −stAtreeI4(1, 2, 3). Of course, in practice in the maximally supersymmetric

one needs to sum over the full N = 4 multiplet running in the loop and possibly

more complicated amplitudes in the corners.

Generalized Unitarity for N = 4 sYM

The first treatment of scattering amplitudes combining generalized unitarity and the

superspace formalism was in [22, 27]. There the n-point MHV and NMHV super-

amplitudes were calculated at one loop. Their results agreed with and confirmed

previously obtained answers in [40,41].

The anticipated expansion in the integral basis is

A1-loop
n = δ(4)(Pαα̇)

∑(
c1mI1m + c2meI2me + c2mhI2mh + c3mI3m + c4mI4m) .

(2.4.26)

Since now the focus is on the superamplitudes the (super)coefficients ci consist of

spinor variables and are also polynomials in the Grassmann variables η that “label”

the different subamplitudes [22].

This approach takes advantage of the fact that the same integral functions ap-

pear as in the previous section, making the application of quadruple cuts rather
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straightforward. Each cut singles out a specific box function and determines the cor-

responding supercoefficient. The exceptional n = 4 case requires a single quadruple

cut producing the zero-mass coefficient c0m. This procedure determines the superco-

efficients as a product of four tree-level superamplitudes.

`3

`1

`4

`2

2

3
4

51

Figure 2.6 Five-point one-loop MHV superamplitude. Now there is only one gray corner
that nests an MHV three-point amplitude whereas the remaining ones are all MHV.

In order to illustrate the procedure let us apply the method to the five-point MHV

(or equivalently NMHV) one-loop superamplitude, employing Nair’s formalism [26]

and calculate the coefficient of one box integral. Firstly, it is useful to settle the

kinematic conditions that are dictated by the delta functions that are imposed by

the cut. Now, one cut solution is

`1 = λ`1λ̃1 , `2 = λ`2λ̃1 , (2.4.27)

`3 = λ`3λ̃4 , `4 = λ`4λ̃4 . (2.4.28)

Moreover, it is also true that `1 + p5 = `4 and `3 + (p2 + p3) = `2 from momentum

conservation. From now on the momenta of the second corner will be collectively

referred to as P = p2 + p3 and p5 = λ5λ̃5 = Q. The solutions now for this diagram
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can be written as

λ`1 = −Q|4]

[14]
, λ`4 = −Q|1]

[41]
(2.4.29)

λ`3 = −P |1]

[41]
, λ`2 =

P |4]

[14]
. (2.4.30)

In the maximally supersymmetric case then we have

A =

ˆ 4∏
i=1

dηiA(3)(−`1, 1, `2)A(4)(−`2, 2, 3, `3)A(3)(−`3, 4, `4)A(3)(−`4, Q, `1)

(2.4.31)

where η are the usual Grassmann variables and an implicit averaging of the two

solutions
(

1
2

∑
S±

)
is assumed. Expanding the numerator of (2.4.31) and ignoring

the overall momentum conservation δ-function for now gives

N =

ˆ 4∏
i=1

dηi
[
δ(8)(−η`1λ`1 + η1λ1 + η`2λ`2) (2.4.32)

× δ(8)(−η`2λ`2 + η2λ2 + η3λ3 + η`3λ`3) (2.4.33)

× δ(8)(−η`3λ`3 + η4λ4 + η`4λ`4) (2.4.34)

× δ(4)(−η`4 [5`1] + η5[`1`4] + η`1 [`45])
]
. (2.4.35)

Formally, the fermionic δ-function is defined in (2.2.11) as

δ(8)
(
Qα

A
)

:=
4∏

A=1

1,2∏
α

(
n∑
i=1

λiαη
A
i

)
=

4∏
A=1

∑
i,j

ηAi η
A
j 〈ij〉 (2.4.36)

where in general, the index A depends on the number of supersymmetries.

The δ(4)-function gives

[5`1]4δ(4)

(
η`4 + η5

[`1`4]

[5`1]
+ η`1

[`45]

[5`1]

)
(2.4.37)

where the factor [5`1]4 is the Jacobian. The constraint

η`4 = −η5
[`1`4]

[5`1]
− η`1

[`45]

[5`1]
(2.4.38)
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is applied in the remaining δ(8)-functions. Thus, starting with (2.4.34), its argument

becomes

−η`3λ`3 + η4λ4 +

(
−η5

[`1`4]

[5`1]
− η`1

[`45]

[5`1]

)
λ`4 (2.4.39)

= −η`3λ`3 + η4λ4 − η5
[`1|〈`4`4]

[5`1]
− η`1

[`4`4〉|5]

[5`1]
(2.4.40)

but since `4 = `1 +Q,

−η`3λ`3 + η4λ4 −
η5[`1|`5 + η`1`1|5]

[5`1]
(2.4.41)

= −η`3λ`3 + η4λ4 + η5λ5 + η`1`1 (2.4.42)

such that δ(8)(−η`3λ`3 + η4λ4 + η5λ5 + η`1`1). The first three δ-functions impose the

following constraints on the supermomenta:

−η`1λ`1 +η`2λ`2 + . . . = 0

. . .+ −η`2λ`2 +η`3λ`3 = 0

. . .+ −η`3λ`3 +η`1λ`1 = 0

(2.4.43)

which can be plugged back into the δ-function (2.4.34) to isolate the external super-

momenta

δ(8)(−η`1λ`1 + η1λ1 + η`2λ`2)δ
(8)(−η`2λ`2 + η2λ2 + η3λ3 + η`3λ`3)δ

(8)

(∑
j∈ext.

ηjλj

)
.

(2.4.44)

By doing so the ` dependence is eliminated from that particular δ-function and is no

longer integrated over. Upon formal expansions the δ-functions can be written as

4∏
A=1

1,2∏
α

(−η`1λ`1 + η1λ1 + η`2λ`2) →
4∏

A=1

ηA`1
(
ηA1 λ`1λ1 + ηA`2λ`1λ`2

)
(2.4.45)

=
4∏

A=1

ηA`1
(
ηA1 〈`11〉+ ηA`2〈`1`2〉

)
(2.4.46)

for (2.4.32) and similarly for (2.4.33) we obtain

4∏
B=1

ηB`3
(
ηB`2〈`3`2〉+ ηB2 〈`32〉+ ηB3 〈`33〉

)
. (2.4.47)
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Integrating over η`3 and η`1 gives

4∏
A=1

(
ηA1 λ`1λ1 + ηA`2λ`1λ`2

)
→ δ(4)

(
ηA1 λ`1λ1 + ηA`2λ`1λ`2

)
(2.4.48)

and
4∏

B=1

(
ηB`2〈`3`2〉+ ηB2 〈`32〉+ ηB3 〈`33〉

)
→ δ(4)

(
ηB`2〈`3`2〉+ ηB2 〈`32〉+ ηB3 〈`33〉

)
(2.4.49)

respectively. It is now possible to use the constraint from (2.4.48)

〈`2`1〉4δ(4)

(
η`2 + η1

〈`11〉
〈`2`1〉

)
(2.4.50)

which plugged in (2.4.49) yields

δ(4)

(
−η1
〈`11〉
〈`2`1〉

〈`3`2〉+ η2〈`32〉+ η3〈`33〉
)
. (2.4.51)

Returning to the solutions (2.4.30) in order to obtain the results of the contractions

that appear in the δ-functions gives

−〈1`1〉 =
〈1|Q|4]

[41]
=
〈1|5〉[54]

[41]
(2.4.52)

−〈2`3〉 =
〈2|P |1]

[41]
=
〈2|(2 + 3)|1]

[41]
=
〈23〉[21]

[41]
(2.4.53)

−〈3`3〉 =
〈3|(2 + 3)|1]

[41]
=
〈32〉[31]

[41]
(2.4.54)

and
〈`3`2〉
〈`2`1〉

=

[1|PP |4]
[41]2

[4|PQ|4]
[41]2

(2.4.55)

for which

[1|PP |4] = [1|〈23〉[23]|4] = 〈23〉[23][14] (2.4.56)

and

[4|PQ|4] = [4|(−4− 1 +Q)Q|4] = −[41]〈1Q〉[Q4] . (2.4.57)

Using what has been calculated for the delta function (2.4.51) gives(
〈23〉
[41]

)4

δ(4) (+η1[23] + η2[31] + η3[21]) . (2.4.58)
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finally producing expression

[5`1]4〈`2`1〉4
(
〈23〉
[41]

)4

δ(4) (+η1[23] + η2[31] + η3[21]) δ(8)

(∑
j∈ext.

ηjλj

)
. (2.4.59)

The solutions (2.4.30) are used to further simplify the expression to(
[51]〈15〉[54]〈23〉

[41]

)4

δ(4) (η1[23] + η2[31] + η3[21]) δ(8)

(∑
j∈ext.

ηjλj

)
. (2.4.60)

The next step is to focus on the denominator of (2.4.31) which is again determined

by the form of the tree amplitudes that reside at each corner of the box. The

denominator D has the form

D =〈−`11〉〈1`2〉〈`2(−`1)〉 〈−`22〉〈23〉〈3`3〉〈`3(−`2)〉 (2.4.61)

〈−`34〉〈4`4〉〈`4(−`3)〉 [`45][5`1][`1`4] . (2.4.62)

Using similar manipulations as before, it is possible to eliminate the dependence of

the loop momenta. This basically involves applying momentum conservation in the

brackets and employing the solutions (2.4.30). The denominator can therefore be

rewritten as

D = (〈15〉[45])3 ([15]〈45〉)3 〈23〉4 [12][23][34][45][51][14]

[14]8
(2.4.63)

= [12][23][34][45][51]
(〈15〉[51]〈45〉[45])3 〈23〉4

[14]8
(2.4.64)

It is now straightforward to combine it with the numerator (2.4.60) to yield the total

prefactor

N× D = δ(4) (η1[23] + η2[31] + η3[21]) δ(8)

(∑
j∈ext.

ηjλj

)
s15t45

[12][23][34][45][51]〈45〉4

(2.4.65)

which is the correct coefficient for the box integral of the five-point one-loop MHV

amplitude while the others are obtained by a cyclical permutation of the external

states‖.
‖It is also necessary to average over the two possible solutions, i.e. 1

2

∑
S± (· · · ).
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The full one-loop n-point MHV superamplitude has been calculated, first in [22],

following an analogous procedure. A slightly different derivation with more detailed

calculations can also be found in [42]. The final expression for a specific cut has a

rather compact form:

AMHV
n;1-loop = δ(4) (Pαα̇)

δ(8) (
∑n

i=1 ηiλi)

〈12〉〈23〉 · · · 〈n1〉

n−1∑
s=3

I1,2,s,s+1
1

2

∑
S±

(
P 2Q2 − st

)
+ cyclic


(2.4.66)

where S± are the two solutions (2.4.21).

`′3 `3

`1 `′1

`′4

`4`′2

`2

2 P

s− 1
s

s+ 1Q

n
1

Figure 2.7 The n-point one-loop MHV superamplitude. The configuration allowed alter-
nates between gray and white corners, that represent MHV multi-point and three-point
MHV subamplitudes .

This concludes the introduction to the methods used in the following chapters for

calculating amplitudes in more “exotic” theories than N = 4 sYM in four dimensions.

The spinor helicity formalism for six dimensions, relevant for the next chapter, is

developed in Section 3.2.1 with further details and conventions given in Appendix

A.1. The three dimensional spinor helicity formalism used in Chapter 4 is presented

in Appendix B.1



3 One-loop Amplitudes in

Six-Dimensional (1,1) Theories

This chapter marks the departure from four dimensions. The focus now is on the

(1, 1) supersymmetric theory in six dimensions. It will present our first example

where the spinor helicity formalism and unitarity methods are applied in a theory

other than the well studied N = 4 sYM case. The findings of this chapter were first

presented in [15].

3.1 Introduction

Several recent advancements in the study of scattering amplitudes in four dimen-

sions have been made possible through the use of the spinor-helicity formalism. New

dualities have been discovered and understood largely due to the structures that

emerge when the amplitudes are expressed in their most physical form. Applying

this strategy and employing unitarity methods in theories away from four dimen-

sions is interesting in its own right. Furthermore, it is natural to assume that this

may provide a framework that would promote advancements similar to those in four

dimensions. To this end, the authors of [13] introduced a spinor helicity formalism in

six dimensions while a discussion in arbitrary dimensions can be found in [19]. This,

not only provides compact expressions of amplitudes but also allows the applica-

tion of calculational tools developed for four-dimensional theories such as recursion

relations [28, 29].

Similarly to four dimensions, maximally supersymmetric theories in six dimen-

46
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sions are especially interesting. These arise as low-energy effective field theories on

fivebranes in string theory or M-theory and come in two flavors: one with (1, 1) and

one with (2, 0) supersymmetry. This embedding guarantees their UV completion. In

particular, it is known that the (1,1) supersymmetric gauge theory in six dimensions

is finite up to two loops [43]. Upon dimensional reduction on a two-torus both give

rise to N = 4 supersymmetry, but only (2, 0) supersymmetric theories can give rise

to superconformal symmetry [44].

Scattering superamplitudes in the (1, 1) theory have been studied in [21,45]. More

specifically, the tree-level three-, four- and five-point superamplitudes have been de-

rived, as well as the one-loop four-point superamplitude, using the unitarity-based

approach of [36, 37]. The description of the (2, 0) theory in this framework is per-

haps the most intriguing as it would illuminate the dynamics of M5-branes. The

advantage of working with S-matrix elements is that it is possible to probe interac-

tions even if the action is not available, as is the case for M-theory. Interestingly,

the authors of [45] found that, under certain assumptions, the tree-level amplitudes

identically vanish. This suggests that a superconformal interacting Lagrangian can-

not be formulated using only (2, 0) tensor multiplets, although additional degrees of

freedom might resolve this problem [45].

An additional motivation to study higher-dimensional theories stems from the

fact that QCD amplitudes in dimensional regularization naturally give rise to inte-

gral functions in higher dimensions, specifically in six and eight dimensions [46, 47].

A direct application of this formalism for the study of QCD one-loop amplitudes was

performed in [48], where the six-dimensional spinors are expressed as four dimen-

sional spinors with mass parameters.

This chapter presents the calculation of four- and five-point superamplitudes, in

the maximally supersymmetric (1,1) theory, using two-particle as well as quadruple

cuts at one loop. In particular, it is shown that the five-point superamplitude can be

expressed solely in terms of a linear pentagon integral in six dimensions, which can

be further reduced in terms of scalar pentagon and box functions. Because of the
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non-chiral nature of the (1,1) on-shell superspace, this superamplitude contains all

possible component amplitudes with five particles; in contradistinction with the four-

dimensional case where one has to distinguish MHV and MHV helicity configurations.

The rest of this chapter is organized as follows. Section 3.2, provides a review

of the spinor helicity formalism in six dimensions, and the on-shell (1,1) superspace,

which is used to describe superamplitudes in the (1,1) theory. The expressions for the

simplest tree-level amplitudes can be found in Section 3.3. These are used in Sections

3.4 and 3.5 for our calculations of one-loop amplitudes using (generalized) unitarity.

In Section 3.4 the method is illustrated by re-deriving the four-point superamplitude

using two-particle cuts as well as quadruple cuts. Next, Section 3.5 contains a

detailed presentation of the derivation of the five-point superamplitude in the (1,1)

theory from quadruple cuts. Finally, our result is subjected to several consistency

checks using dimensional reduction to four dimensions in order to compare with the

corresponding amplitudes in N = 4 sYM. We also test some of the soft limits.

3.2 Background

This section begins with a brief review of the six-dimensional spinor helicity formal-

ism developed in [13], which is required to present Yang-Mills scattering amplitudes

in a compact form. It is then followed by a discussion of the on-shell (1,1) super-

space description of amplitudes in maximally supersymmetric Yang-Mills which was

introduced in [21].

3.2.1 Spinor helicity formalism in six dimensions

The key observation for a compact formulation of amplitudes in six-dimensional

gauge and gravity theories is that, similarly to four dimensions, null momenta in six

dimensions can be conveniently presented in a spinor helicity formalism, introduced

in [13]. Firstly, one rewrites vectors of the Lorentz group SO(1, 5) as antisymmetric
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SU∗(4) matrices

pAB := pµσ̃ABµ , (3.2.1)

using the appropriate Clebsch-Gordan symbols σ̃ABµ , where A,B = 1, . . . , 4 are fun-

damental indices of SU(4). Strictly speaking the SO(1, 5) Lorentz group is isomorphic

to the non-compact group SU∗(4). However, what is of practical interest here is the

antisymmetric nature of the fundamental indices of SU∗(4). In what follows the ∗

indicator will be dropped for simplicity. A detailed discussion of how the reality con-

dition is imposed in six dimensional spinors can be found in [42] and in references

therein.

One can similarly introduce∗

pAB :=
1

2
εABCDp

CD := pµσµ,AB , (3.2.2)

with σµ,AB := (1/2)εABCDσ̃
CD
µ . When p2 = 0, it is natural to recast pAB and pAB as

the product of two spinors as [13]

pAB = λAaλBa , (3.2.3)

pAB = λ̃ȧAλ̃Bȧ .

Here a = 1, 2 and ȧ = 1, 2 are indices of the little group† SO(4) ' SU(2) × SU(2),

which are contracted with the usual invariant tensors εab and εȧḃ. The expression for

p given in (3.2.3) automatically ensures that p is a null vector, since

p2 = −1

8
εABCDλ

A
a λ

B
b λ

C
c λ

D
d ε

abεcd = 0 . (3.2.4)

This can be understood as follows: due to the antisymmetric contraction of the SU(2)

indices, the bi-spinors are automatically antisymmetric in the SU(4) indices A and

B. By equations (3.2.3), the 4 × 4 matrix pABi has rank 2, so p2
i ∼ εABCDp

AB
i pCDi

is zero, which satisfies the massless on-shell condition. The dot product of two null

vectors pi and pj can also be conveniently written using spinors as

pi · pj = −1

4
pABi pj;AB . (3.2.5)

∗Our notation and conventions are outlined in Appendix A.1.
†Or SL(2,C)× SL(2,C), if we complexify spacetime.
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Lorentz invariant contractions of two spinors are expressed as

〈ia|jȧ] := λAi,aλ̃j,Aȧ = λ̃j,Aȧλ
A
i,a =: [jȧ|ia〉 . (3.2.6)

Further Lorentz-invariant combinations can be constructed from four spinors using

the SU(4) invariant ε tensor, as

〈1a 2b 3c 4d〉 := εABCDλ
A
1,aλ

B
2,bλ

C
3,cλ

D
4,d , (3.2.7)

[1ȧ 2ḃ 3ċ 4ḋ] := εABCDλ1,Aȧλ2,Bḃλ3,Cċλ4,Dḋ .

This notation may be used to express compactly strings of six-dimensional momenta

contracted with Dirac matrices, such as

〈ia|p̂1p̂2 . . . p̂2n+1|jb〉 := λA1
i,a p1,A1A2 p

A2A3
2 . . . p2n+1,A2n+1A2n+2 λ

A2n+2

j,b , (3.2.8)

〈ia|p̂1p̂2 . . . p̂2n|jȧ] := λA1
i,a p1,A1A2 p

A2A3
2 . . . p

A2nA2n+1

2n λ̃j,A2n+1ḃ
.

Having discussed momenta, we now consider polarization states of particles. In four

dimensions, these are associated to the notion of helicity. In six dimensions, physical

states, and hence their wavefunctions, transform according to representations of the

little group, and therefore carry SU(2)× SU(2) indices [13]. In particular, for gluons

of momentum p defined as in (3.2.3) one has

εABaȧ := λ[A
a η

B]
b 〈ηb|λ

ȧ]−1 , (3.2.9)

or alternatively

εaȧ;AB := 〈λa|η̃ḃ]
−1η̃ḃ[AλȧB] . (3.2.10)

Here, η and η̃ are reference spinors, and the denominator is defined to be the inverse

of the matrices 〈qb|pȧ] and 〈pa|qḃ], respectively.‡

It is amusing to make contact between six-dimensional spinors and momentum

twistors [49], employed recently to describe amplitudes in four-dimensional confor-

mal theories. There, one describes a point in (conformally compactified) Minkowski

space as a six-dimensional null vector X, i.e. one satisfying ηijX
iXj = 0, with

‡The reference spinors are chosen such that the matrices 〈qb|pȧ] and 〈pa|qḃ] are nonsingular.
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η = diag(+ − −−; +−). The conformal group SO(2, 4) acts linearly on the X vari-

ables, and plays the role of the Lorentz group SO(1, 5) acting on our six-dimensional

momenta p. Furthermore, in contradistinction with the null six-dimensional mo-

menta, the coordinate X are defined only up to non-vanishing rescalings. For (cycli-

cally ordered) four-dimensional region momenta xi, one defines the corresponding six-

dimensional null Xi as Xi = λi∧λi+1 , Xj = λj∧λj+1, and Xi ·Xj = 〈i i+1 j j+1〉.

3.2.2 (1,1) on-shell superspace

We will now review the on-shell superspace description of (1, 1) theories introduced

in [21]. This construction is inspired by the covariant on-shell superspace formalism

for four-dimensional N = 4 sYM introduced by Nair in [26]. In the latter case, the

N = 4 algebra can be represented on shell as

{qAα , q̃Bα̇} = δABλαλ̃α̇ , (3.2.11)

where A,B are SU(4) R-symmetry indices and α, α̇ are the usual SU(2) spinor indices

in four dimensions. The supercharge q can be decomposed along two independent

directions λ and µ as

qAα = λαq
A
(1) + µαq

A
(2) , (3.2.12)

where 〈λµ〉 6= 0. A similar decomposition is performed for q̃. One can then easily

see that the charges q(2) and q̃(2) anticommute among themselves and with the other

generators, and can therefore be set to zero. The supersymmetry algebra becomes

{qA(1), q̃(1)B} = δAB . (3.2.13)

Setting qA(1) = qA and q̃(1)B = q̃B, the Clifford algebra can be naturally realized in

terms of Grassmann variables ηA, as

qA = ηA , q̃A =
∂

∂ηA
. (3.2.14)

Note that this representation of the algebra is chiral. One could have chosen an

anti-chiral representation, where the roles of q and q̃ in (3.2.14) are interchanged.
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One can apply similar ideas to the case of the N = (1, 1) superspace of the six-

dimensional sYM theory. However, for this on-shell space the chiral and anti-chiral

components do not decouple. To see this we start with the algebra

{qAI , qBJ} = pABεIJ , (3.2.15)

{q̃AI′ , q̃BJ ′} = pABεI′J ′ ,

where A,B are the SU(4) Lorentz index and I, J and I ′, J ′ are indices of the R-

symmetry group SU(2)× SU(2). As before, we decompose the supercharges as

qAI = λAaqI(1)a + µAaqI(2)a , (3.2.16)

q̃BI′ = λ̃ḃB q̃(1)ḃI′ + µ̃ḃB q̃(2)ḃI′ ,

with det(λAaµ̃ȧA) 6= 0 and det(µAaλ̃ȧA) 6= 0. Multiplying the supercharges in (3.2.16)

by λ̃Aȧ and λBb , respectively, and summing over the SU(4) indices, one finds that

{qI(2)a, q
J
(2)b} = 0 , (3.2.17)

{q̃(2)ȧI′ , q̃(2)ḃJ ′} = 0 .

One can thus set all the q(2) and q̃(2) charges equal to zero, so that qAI = λAaqI(1)a.

The supersymmetry algebra then yields,

{qI(1)a, q
J
(1)b} = εabε

IJ ,

{q̃(1)I′ȧ, q̃(1)J ′ḃ} = εȧḃεI′J ′ . (3.2.18)

The realization of (3.2.18) in terms of anticommuting Grassmann variables is

qAI = λAaηIa , q̃AI′ = λ̃ȧAη̃I′ȧ . (3.2.19)

In contrast to the four-dimensional N = 4 sYM theory, the N = (1, 1) on-shell

superspace in six dimensions carries chiral and anti-chiral components. The field

strength of the six-dimensional sYM theory transforms under the little group SU(2)×

SU(2) and therefore carries both indices a and ȧ. Hence, one needs both ηa and η̃ȧ

to describe all helicity states in this theory.
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η

η̃

φ(1) ψ(1) φ(2)

ψ̃(1)

φ(3)

A

ψ(2) φ(4)

ψ̃(2)

Figure 3.1 The component fields of the (1,1) superfield given in (3.2.21).

In order to describe only the physical components of the full six-dimensional

sYM theory, one needs to truncate half of the superspace charges in (3.2.19) [21].

This is performed by contracting the R-symmetry indices with fixed two-component

(harmonic) vectors, which effectively reduce the number of supercharges by a factor

of two. The resulting truncated supersymmetry generators are then [21]

qA = λAaηa , q̃A = λ̃ȧAη̃ȧ . (3.2.20)

Using this on-shell superspace, one can neatly package all states of the theory into a

six-dimensional analogue of Nair’s superfield [26],

Φ(p; η, η̃) = φ(1) + ψ(1)
a ηa + ψ̃

(1)
ȧ η̃ȧ + φ(2)ηaηa + Aaȧη

aη̃ȧ + φ(3)η̃ȧη̃ȧ

+ ψ(2)
a ηaη̃ȧη̃ȧ + ψ̃

(2)
ȧ η̃ȧηaηa + φ(4)ηaηaη̃

ȧη̃ȧ . (3.2.21)

Here φ(i)(p), i = 1, . . . , 4 are four scalar fields, ψ(l)(p) and ψ̃(l)(p), l = 1, 2 are fermion

fields and finally Aaȧ(p) contains the gluons. Upon reduction to four dimensions, Aaȧ

provides, in addition to gluons of positive and negative (four-dimensional) helicity,

the two remaining scalar fields needed to obtain the matter content of N = 4 super
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Yang-Mills.§ A pictorial representation of the states in the (1,1) supermultiplet is

given in Figure 3.1.

3.3 Tree-level amplitudes and their properties

3.3.1 Three-point amplitude

The smallest amplitude one encounters is the three-point amplitude. In four dimen-

sions, and for real kinematics, three-point amplitudes vanish because pi · pj = 0 for

any of the three particles’ momenta, but are non-vanishing upon spacetime com-

plexification [28, 29]. In the six-dimensional spinor helicity formalism, the special

three-point kinematics induces the constraint det〈ia|jȧ] = 0, i, j = 1, 2, 3. This

allows one to write (see Appendix (A.1.7))

〈ia|jḃ] = (−)Pijuiaũjḃ , (3.3.1)

where we choose (−)Pij = +1 for (i, j) = (1, 2), (2, 3), (3, 1) and −1 for (i, j) =

(2, 1), (3, 2), (1, 3). One can also introduce the spinors wa and w̃ȧ [13], defined as the

inverse of ua and ũȧ,

uawb − ubwa := εab ⇔ uawa := −uawa := 1 . (3.3.2)

As stressed in [13] the wi spinors are not uniquely specified since the choice w′i =

wi + biui is equally good. Momentum conservation suggests a further constraint

that may be imposed in order to reduce this redundancy. This is used in various

calculations throughout the present work. Specifically, for a generic three-point

amplitude it is assumed that

|w1 · 1〉+ |w2 · 2〉+ |w3 · 3〉 = 0 . (3.3.3)

This is derived as follows. Starting from momentum conservation,

|1ȧ][1ȧ|+ |2ḃ][2ḃ|+ |3
ċ][3ċ| = 0 = |1a〉〈1a|+ |2b〉〈2b|+ |3c〉〈3c| (3.3.4)

§More details on reduction to four dimensions are provided in Section 3.5.5.
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one may contract recursively with 〈ia|. This will yield the identity uȧi [iȧ| = uȧj [jȧ|, ∀ i, j

and similarly for the angle brackets. Now using the definition (3.3.2) it is possible

to recast momentum conservation in the following form

|1 · u1〉 (〈w1 · 1|+ 〈w2 · 2|+ 〈w3 · 3|)− (|w1 · 1〉+ |w2 · 2〉+ |w3 · 3〉) 〈u1 · 1| = 0 .

(3.3.5)

The authors of [13] choose the more stringent constraint (3.3.3) which still allows

for a residual redundancy: it is possible to make the shift wi → wi + biui where∑
i bi = 0. Since the b redundancy cannot be fully eliminated in this manner it

is natural to ask what tensors can be constructed that remain invariant under a b

change.

These are the so-called Γ and Γ̃ tenors that are given by

Γabc = u1au2bw3c + u1aw2bu3c + w1au2bu3c, (3.3.6)

Γ̃ȧḃċ = ũ1ȧũ2ḃw̃3ċ + ũ1ȧw̃2ḃũ3ċ + w̃1ȧũ2ḃũ3ċ .

One may then express the three-point tree-level amplitude for six-dimensional Yang-

Mills theory as [13]

A3;0(1aȧ, 2bḃ, 3cċ) = iΓabcΓ̃ȧḃċ . (3.3.7)

As shown in [21], this result can be combined with the N = (1, 1) on-shell superspace

in six dimensions. The corresponding three-point tree-level superamplitude takes the

simple form [21]

A3;0(1aȧ, 2bḃ, 3cċ) = i δ(QA)δ(Q̃A)δ(QB)δ(Q̃B)δ(W )δ(W̃ ) . (3.3.8)

Here we have introduced the N = (1, 1) supercharges for the external states,

QA :=
n∑
i=1

qAi =
n∑
i=1

λAai ηia , Q̃A :=
n∑
i=1

q̃iA =
n∑
i=1

λ̃ȧiAη̃iȧ (3.3.9)

(with n = 3 in the three-point amplitude we are considering in this section). The

quantitiesW, W̃ appear only in the special three-point kinematics case, and are given

by

W :=
3∑
i=1

wai ηia , W̃ :=
3∑
i=1

w̃ȧi η̃iȧ . (3.3.10)
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Appendix A.2 presents an explicit proof of the (non manifest) invariance of the three-

point superamplitude under supersymmetry transformations, and hence of the fact

that the total supermomentum QA =
∑

i q
A
i is conserved.

3.3.2 Four-point amplitude

The four-point tree-level amplitude in six dimensions is given by

A4;0(1aȧ, 2bḃ, 3cċ, 4dḋ) = − i

st
〈1a2b3c4d〉[1ȧ2ḃ3ċ4ḋ] , (3.3.11)

and was derived by using a six-dimensional version [13] of the BCFW recursion

relations [28, 29]. The corresponding N = (1, 1) superamplitude is [21]

A4;0(1, . . . , 4) = − i

st
δ4(Q)δ4(Q̃) , (3.3.12)

where the (1, 1) supercharges are defined in (3.3.9). In (3.3.12) we follow [21] and

introduce the fermionic δ-functions which enforce supermomentum conservation as

δ4(Q)δ4(Q̃) =
1

4!
εABCDδ(Q

A)δ(QB)δ(QC)δ(QD)

× 1

4!
εA
′B′C′D′δ(Q̃A′)δ(Q̃B′)δ(Q̃C′)δ(Q̃D′)

:= δ8(Q) . (3.3.13)

Hence, a δ4(Q) sets QA = 0 whereas the δ4(Q̃) sets Q̃A = 0.

3.3.3 Five-point amplitude

The five-point tree-level amplitude was derived in [13] using recursion relations, and

is equal to¶

A5;0(1aȧ, 2bḃ, 3cċ, 4dḋ, 5eė) =
i

s12s23s34s45s51

(Aaȧbḃcċdḋeė +Daȧbḃcċdḋeė) (3.3.14)

where the two tensors A and D are given by

Aaȧbḃcċdḋeė = 〈1a|p̂2p̂3p̂4p̂5|1ȧ]〈2b3c4d5e〉[2ḃ3ċ4ḋ5ė] + cyclic permutations , (3.3.15)
¶ In Appendix A.5 the five-point amplitude (3.3.14) is reduced to four dimensions and found

to be in agreement with the expected Parke-Taylor expression.
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and

2Daȧbḃcċdḋeė = 〈1a|(2 · ∆̃2)ḃ]〈2b3c4d5e〉[1ȧ3ċ4ḋ5ė] + 〈3c|(4 · ∆̃4)ḋ]〈1a2b4d5e〉[1ȧ2ḃ3ċ5ė]

+ 〈4d|(5 · ∆̃5)ė]〈1a2b3c4d〉[1ȧ2ḃ3ċ4ḋ]− 〈3c|(5 · ∆̃5)ė]〈1a2b4d5e〉[1ȧ2ḃ3ċ4ḋ]

− [1ȧ|(2 ·∆2)b〉〈1a3c4d5e〉[2ḃ3ċ4ḋ5ė]− [3ċ|(4 ·∆4)d〉〈1a2b3c5e〉[1ȧ2ḃ4ḋ5ė]

− [4ḋ|(5 ·∆5)e〉〈1a2b3c4d〉[1ȧ2ḃ3ċ5ė] + [3ċ|(5 ·∆5)e〉〈1a2b3c4d〉[1ȧ2ḃ4ḋ5ė] .

(3.3.16)

Here, the spinor matrices ∆ and ∆̃ are defined by

∆1 = 〈1|p̂2p̂3p̂4 − p̂4p̂3p̂2|1〉, ∆̃1 = [1|p̂2p̂3p̂4 − p̂4p̂3p̂2|1] , (3.3.17)

where the other quantities ∆i, ∆̃i are generated by taking cyclic permutations on

(3.3.17). The contraction between a ∆i and the corresponding spinor λAai is given

by 〈1a|(2 · ∆̃2)ḃ] = λA1aλ̃
ȧ′
2A[2ȧ′|p̂3p̂4p̂5 − p̂5p̂4p̂3|2ḃ].

The five-point superamplitude in the N = (1, 1) on-shell superspace can also be

calculated in a recursive fashion. It takes the form [21]

A5;0 = i
δ4(Q)δ4(Q̃)

s12s23s34s45s51

[
(3.3.18)

+
3

10
qA1
[
(p̂2p̂3p̂4p̂5)− (p̂2p̂5p̂4p̂3)

]B
A
q̃2B +

3

10
q̃1A

[
(p̂2p̂3p̂4p̂5)− (p̂2p̂5p̂4p̂3)

]A
B
qB2

+
1

10
qA3
[
(p̂5p̂1p̂2p̂3)− (p̂5p̂3p̂2p̂1)

]B
A
q̃5B +

1

10
q̃3A

[
(p̂5p̂1p̂2p̂3)− (p̂5p̂3p̂2p̂1)

]A
B
qB5

+ qA1 (p̂2p̂3p̂4p̂5)BA q̃1B + cyclic permutations
]
,

where the supercharges Q and Q̃ are defined in (3.3.9).

3.4 One-loop four-point amplitude

In this section we calculate the four-point one-loop amplitude using two-particle

and four-particle cuts. As expected, the one-loop amplitude is proportional to the

four-point tree-level superamplitude times the corresponding integral function.
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1 3

42

`2

`1

Figure 3.2 Double cut in the s-channel. The two internal cut-propagators, carrying
momenta `1 and `2 set the two four-point subamplitudes on-shell. We identify `1 = `
and `2 = `+ p1 + p2.

3.4.1 The superamplitude from two-particle cuts

As a warm-up exercise, we start by re-deriving the one-loop four-point superampli-

tude in six dimensions using two-particle cuts. This calculation was first sketched

in [21]. Here, we will perform it in some detail while setting up our notations. We

will then show how to reproduce this result using quadruple cuts.

We begin by considering the one-loop amplitude with external momenta p1, . . . , p4,

and perform a unitarity cut in the s-channel, see Figure 3.2. The s-cut of the one-loop

amplitude is given by‖

A4;1

∣∣
s-cut =

ˆ
d6`

(2π)6
δ+(`2

1)δ+(`2
2)

[ 2∏
i=1

ˆ
d2η`id

2η̃`i A
(L)
4;0 (`1, 1, 2,−`2)A

(R)
4;0 (`2, 3, 4,−`1)

]
.

(3.4.1)

Plugging the expression (3.3.12) of the four-point superamplitude into (3.4.1), we

get the following fermionic integral,

2∏
i=1

ˆ
d2ηlid

2η̃li

(
−i
sLtL

δ4(
∑
L

qi)δ
4(
∑
L

q̃i)

)(
−i
sRtR

δ4(
∑
R

qi)δ
4(
∑
R

q̃i)

)
, (3.4.2)

‖See Appendix A for our definitions of fermionic integrals.
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where the sums are over the external states of the left and right subamplitude in the

cut diagram and the kinematical invariants are given by

tL = (`1 + p1)2 , tR = (`2 + p3)2 , (3.4.3)

and

sL = (p1 + p2)2 = (p3 + p4)2 = sR = s . (3.4.4)

Using supermomentum conservation it is possible remove the dependence of the loop-

supermomenta on one side of the cut. For instance a δ4(QR) sets qA`1 = qA`2 + qA3 + qA4 ,

which can be used in the remaining δ4(QL) to write

δ4(
∑
L

qi)→ δ4(
∑
ext

qi) ≡ δ4(Qext) ,

δ4(
∑
L

q̃i)→ δ4(
∑
ext

q̃i) ≡ δ4(Q̃ext) . (3.4.5)

Hence, (3.4.2) becomes

δ4(Qext)δ
4(Q̃ext)

2∏
i=1

ˆ
d2ηlid

2η̃liδ
4(
∑
R

qi)δ
4(
∑
R

q̃i) . (3.4.6)

To perform the integration, we need to pick two powers of ηli and two powers of

η̃ȧli . Expanding the fermionic δ-functions, we find one possible term with the right

powers of Grassmann variables to be

η`1aη`1bη`2cη`2dη̃`1ȧη̃`1ḃη̃`2ċη̃`2ḋ

[
εABCDλ

Aa
`1
λBb`1 λ

Cc
`2
λDd`2 εEFGH λ̃ȧ`1Eλ̃

ḃ
`1F
λ̃ċ`2Gλ̃

ḋ
`2H

]
.

(3.4.7)

Other combinations can be brought into that form by rearranging and relabeling

indices. Integrating out the Grassmann variables gives

(
εABCDλ

Aa
`1
λB`1a λ

Cb
`2
λD`2b
) (

εEFGH λ̃ȧ`1Eλ̃`1F ȧ λ̃
ḃ
`2G
λ̃`2Hḃ

)
. (3.4.8)

Hence, the two-particle cut reduces to

A4;1

∣∣
s-cut ∝(−1)

ˆ
d6`

(2π)6
δ+(`2

1)δ+(`2
2)

[
δ4(Qext)δ

4(Q̃ext)
εABCD`

AB
1 `CD2 εEFGH`1EF `2GH

s2(`1 + p1)2(`2 + p3)2

]
.

(3.4.9)
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Next, we use (A.1.5) to rewrite

εABCD pAB`1 p
CD
`2

εEFGHp`1EFp`2GH = 64 (`1 · `2)2 . (3.4.10)

Thus we obtain, for the one-loop superamplitude,

A4;1

∣∣
s-cut ∝− δ

4(Qext)δ
4(Q̃ext)

ˆ
d6`

(2π)6
δ+(`2

1)δ+(`2
2)

[
64 (`1 · `2)2

s2(`1 + p1)2(`2 + p3)2

]
=− 16 δ4(Qext)δ

4(Q̃ext)

ˆ
d6`

(2π)6
δ+(`2

1)δ+(`2
2)

[
1

(`1 + p1)2(`2 + p3)2

]
=− 16 istA4;0(1, . . . , 4) I4(s, t)

∣∣
s-cut , (3.4.11)

where A4;0(1, . . . , 4) is the tree-level four-point amplitude in (3.3.12), and

I4(s, t) =

ˆ
d6`

(2π)6

[
1

`2
1`

2
2(`+ p1)2(`− p4)2

]
. (3.4.12)

The t-channel cut is performed in the same fashion and after inspecting it we conclude

that

A4;1(1, . . . , 4) = stA4;0(1, . . . , 4) I4(s, t) , (3.4.13)

in agreement with the result of [21].

3.4.2 The superamplitude from quadruple cuts

We now move on to studying the quadruple cut of the one-loop four-point superam-

plitude, depicted in Figure 3.3. The loop momenta are defined as

`1 = `, `2 = `+ p1, `3 = `+ p1 + p2, `4 = `− p4 , (3.4.14)

and all primed momenta `′i in Figure 3.3 are understood to flow in opposite direction

to the `i’s.

Four three-point tree-level superamplitudes enter the quadruple cut expression.

Uplifting the cut by replacing cut with uncut propagators, we obtain, for the one-loop

superamplitude,

A4;1 =

ˆ
d6`

(2π)6

[ 4∏
i=1

ˆ
d2ηlid

2η̃li
1

`2
1

A3;0(`1, 1, `
′
2)

1

`2
2

A3;0(`2, 2, `
′
3)

× 1

`2
3

A3;0(`3, 3, `
′
4)

1

`2
4

A3;0(`4, 4, `
′
1)

]
. (3.4.15)
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`′3 `3

`1 `′1

`′4

`4`′2

`2

2 3

41

Figure 3.3 The quadruple cut of a four-point superamplitude. The primed momenta `′i
are defined as `′i := −`i.

In the following we will discuss two different but equivalent approaches to evaluate

the Grassmann integrals in (3.4.15).

Quadruple cut as reduced two-particle cuts

To begin with, we proceed in way similar to the case of a double cut. The idea is

to integrate over two of the internal momenta, say `1 and `3 first, and treat `2 and

`4 as fixed, i.e. external lines. In doing so the quadruple cut splits into two four-

point tree-level superamplitudes, having the same structure as in case of the BCFW

construction for the four-point tree-level superamplitude [21].

Let us start by focusing on the ‘lower’ part of the diagram first. Here we have

two three-point superamplitudes connected by an internal (cut) propagator carrying

momentum `1. Treating `′2 and `4 as external momenta (they are on-shell due to the

cut) we can follow the procedure of a four-point BCFW construction. This involves

rewriting fermionic δ-functions of both three-point amplitudes and integrating over

d2η`1d
2η̃`1 , leading to the result

δ4(q1 + q`′2 + q`4 + q4)δ4(q̃1 + q̃`′2 + q̃`4 + q̃4) wa`1w`′1a w̃
ȧ
`1
w̃`′1ȧ . (3.4.16)
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Note that the δ-functions are ensuring supermomentum conservation of the ‘external

momenta’ and that we do not have an internal propagator with momentum `1 as

in the recursive construction. Here, we get this propagator from uplifting the cut-

expression for the one-loop amplitude. Furthermore, note that we do not have to

shift any legs in order to use the BCFW prescription since the internal propagator

is already on-shell due to the cut.

We may now perform the Grassmann integration over η`1 and η̃`1 in (3.4.16).

Since the w-spinors are contracted we can simply use the spinor identity

wa`1w`′1aw̃
ȧ
`1
w̃`′1ȧ = −s−1

`4`′2
= −s−1

14 , (3.4.17)

which is a direct generalization of the corresponding result from the BCFW con-

struction (see also appendix A.3).

We can now turn to the ‘upper’ half of the cut-diagram. Following the description

we derived above we get in a similar fashion after integrating over η`3 and η̃`3

δ4(q`2 + q2 + q3 + q`′4)δ
4(q̃`2 + q̃2 + q̃3 + q̃`′4)w

a
`′3
w`3aw̃

ȧ
`′3
w̃`3ȧ . (3.4.18)

We also have

wa`1w`′1aw̃
ȧ
`1
w̃`′1ȧ = −s−1

`2`′4
= −s−1

23 . (3.4.19)

Uplifting the quadruple cut, we get

A4;1 =

ˆ
d6`

(2π)6

ˆ
d2η`2d

2η̃`2d
2η`4d

2η̃`4

[
1

`2
1`

2
2`

2
3`

2
4

1

s14s23

× δ4(q1 + q`′2 + q`4 + q4)δ4(q̃1 + q̃`′2 + q̃`4 + q̃4)

× δ4(q`2 + q2 + q3 + q`′4)δ
4(q̃`2 + q̃2 + q̃3 + q̃`′4)

]
. (3.4.20)

Since `′i = −`i we can use the constraints given by the δ4(qi) to eliminate the de-

pendence of the remaining loop momenta in one of the sets of fermionic δ-functions

and write it as a sum over external momenta only. The same argument holds for the

Grassmann functions δ4(q̃i), and we find

A4;1 =

ˆ
d6`

(2π)6

ˆ
d2η`2d

2η̃`2d
2η`4d

2η̃`4

[
δ4(Qext)δ

4(Q̃ext)
1

`2
1`

2
2`

2
3`

2
4

1

s14s24

× δ4(q`2 + q2 + q3 − q`4)δ4(q̃`2 + q̃2 + q̃3 − q̃`4)
]
, (3.4.21)
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where as before the QA
ext and Q̃A ext are the sums of all external supermomenta

in η and η̃ respectively. The remaining integrations over η`2 and η`4 and their η̃-

counterparts yield just as in the case of the two-particle cut

εABCD `2
AB`4

CD εEFGHp`2EFp`4GH = 64 (`2 · `4)2 . (3.4.22)

The product of the two loop momenta cancels with the factor

s14s23 = 2(p1 · p4)2(p2 · p3) = 4(`′2 · `4)(`2 · `′4) = (−1)24(`2 · `4)2. (3.4.23)

so that our final result for the quadruple cut of the four-point superamplitude is

A4;1 ∝ istA4;0(1, . . . , 4)

ˆ
d6`

(2π)6

[
16

`2(`+ p1)2(`+ p1 + p2)2(`− p4)2

]
. (3.4.24)

Hence we have shown that the quadruple cut gives the same structure as the two-

particle cut discussed in Section 3.4.1.

Quadruple cut by Grassmann decomposition

In this section we will calculate the quadruple cut of the one-loop four-point su-

peramplitude in an alternative fashion. Whereas in the last section we used the

structure of the cut-expression to simplify the fermionic integrations, here we will

explicitly perform the integrals by using constraints given by the δ-functions.

To perform the Grassmann integrations we work directly at the level of the three-

point superamplitudes. The quadruple cut results in the following four on-shell tree-

level amplitudes (see Figure 3.3)

A3(`1, 1, `
′
2), A3(`2, 2, `

′
3), A3(`3, 3, `

′
4), A3(`4, 4, `

′
1) . (3.4.25)

Each of the three-point superamplitudes has the usual form [21]

A3,i = i
[
δ(QA

i )δ(Q̃iA)
]2

δ(Wi)δ(W̃i) , (3.4.26)

where i = 1, . . . , 4 labels the corners. The arguments of the δ-functions are

QA
i = qA`i + qAi + qA`′i+1

, Wi = wa`iη`ia + wai ηia + wa`′i+1
η`′i+1a

, (3.4.27)
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with the identification `5 ≡ `1. Similar expressions hold for for Q̃iA and W̃i. Note

that since `′i = −`i we find it convenient to define spinors with primed momenta `′i
as

λA`′i = iλA`i , λ̃`′iA = λ̃`iA , η`′i = iη`i , η̃`′i = iη̃`i , (3.4.28)

which we will frequently use in the following manipulations.

We can use supermomentum conservation at each corner to reduce the number of

δ-functions depending on the loop variables η`i and η̃`i . There is a choice involved and

we choose to remove the dependence of η`i (η̃`i) from one copy of each [δ(QA
i )δ(Q̃iA)]2.

This yields for the Grassmann integrations

δ4(Qext )δ4(Q̃ext )

ˆ 4∏
i=1

d2η`id
2η̃`i

[
δ(QA

i )δ(Q̃iA)δ(Wi)δ(W̃i)

]
. (3.4.29)

We can simplify the calculation by noticing that we have to integrate over 16 powers

of Grassmann variables (8 powers of η and η̃ each) while at the same time we have

16 δ-functions in total. Therefore, when expanding the fermionic functions, each of

them must contribute a power of Grassmann variables we are going to integrate over.

Unless this is so, the result is zero. In other words, we can only pick the terms in the

δ-functions that contribute an η`i or η̃`i . This simplifies the structure considerably

as we can drop all terms depending on external variables.

Equation (3.4.29) now becomes

δ4(Qext )δ4(Q̃ext)

ˆ 4∏
i=1

d2η`id
2η̃`i

[
δ(qA`i − q

A
`i+1

) δ(q̃`iA − q̃`i+1A)

× δ(wa`iη`ia + iwa`′i+1
η`i+1a)δ(w̃

ȧ
`i
η̃`iȧ + iw̃ȧ`′i+1

η̃`i+1ȧ)

]
. (3.4.30)

Notice that the w-spinors wa`′i+1
are not identical to wa`i+1

.

Since the δ-functions only depend on the η`i and η̃`i , we find convenient to de-

compose the integration variables as

ηa`i = ua`iη
‖
`i

+ wa`iη
⊥
`i
, η̃ȧ`i = ũȧ`i η̃

‖
`i

+ w̃ȧ`i η̃
⊥
`i
, (3.4.31)

which implies

w`iaη
a
`i

= η
‖
`i
, ua`iη`ia = η⊥`i . (3.4.32)
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Hence, we can rewrite the arguments of the δ-functions in the w-spinors as

iwa`′i+1
η`i+1a = iwa`′i+1

(
u`i+1aη

‖
`i+1

+ w`i+1aη
⊥
`i+1

)
=

i
√−si,i+1

ua`i+1
w`i+1aη

⊥
`i+1

=
i

√−si,i+1

η⊥`i+1
, (3.4.33)

and similarly we have iw̃ȧ`′i+1
η̃`i+1ȧ = i√

−si,i+1
η̃⊥`i+1

. Notice that we have used the

fact that the w′`i+1
can be normalized such that they are proportional to the u`i+1

if

the momenta fulfill the condition `′i+1 = −`i+1. We give some more detail on such

relations in Appendix A.3.2.

Using this, the δ-functions in the w-spinors become

δ
(
− η‖`i +

i
√−si,i+1

η⊥`i+1

)
δ
(
− η̃‖`i +

i
√−si,i+1

η̃⊥`i+1

)
. (3.4.34)

Next we proceed by integrating first over the η‖`i variables. This sets

η
‖
`i

=
−i

√−si,i+1

η⊥`i+1
, (3.4.35)

with similar expressions for the η̃‖`i . We then plug this into the remaining δ-functions

of (3.4.30). First we notice that

δ
(
λAa`i η`ia + λAa`′i+1

η`′i+1a

)
δ
(
λ̃ȧ`iAη̃`iȧ + λ̃ȧ`′i+1A

η̃`′i+1ȧ

)
=〈`ai |`′

ȧ
i+1]η`iaη̃`′i+1ȧ

+ 〈`′ai+1|`ȧi ]η`′i+1a
η̃`iȧ = −ua`iũ

ȧ
`′i+1

η`iaη̃`′i+1ȧ
+ ua`′i+1

ũȧ`iη`′i+1a
η̃`iȧ .

(3.4.36)

The decomposition of the Grassmann spinors then yields

ua`′i+1
η`′i+1a

= i
√
−si,i+1w

a
`i+1

u`i+1aη
‖
`i+1

= −i
√
−si,i+1 η

‖
`i+1

(3.4.37)

and

ũȧ`′i+1
η̃`′i+1ȧ

= −i
√
−si,i+1 η̃

‖
`i+1

. (3.4.38)
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The remaining Grassmann integrations give

ˆ 4∏
i=1

dη⊥`idη̃
⊥
`i

[
δ
(
λAa`i η`ia + λAa`′i+1

η`′i+1a

)
δ
(
λ̃ȧ`iAη̃`iȧ + λ̃ȧ`′i+1A

η̃`′i+1ȧ

)]

=

ˆ 4∏
i=1

dη⊥`idη̃
⊥
`i

[
i
√
−si,i+1 η

⊥
`i
η̃
‖
`i+1
− i
√
−si,i+1 η

‖
`i+1

η̃⊥`i

]

=

ˆ 4∏
i=1

dη⊥`idη̃
⊥
`i

[
η⊥`i η̃

⊥
`i+2
− η⊥`i+2

η̃⊥`i

]
, (3.4.39)

where we have used the solutions for η‖`i and η̃
‖
`i
following (3.4.35). The integration

is now straightforward, since the integrand is simply given by

(
η⊥`1 η̃

⊥
`3
− η⊥`3 η̃

⊥
`1

)(
η⊥`2 η̃

⊥
`4
− η⊥`4 η̃

⊥
`2

)(
η⊥`3 η̃

⊥
`1
− η⊥`1 η̃

⊥
`3

)(
η⊥`4 η̃

⊥
`2
− η⊥`2 η̃

⊥
`4

)
= 4η⊥`1 η̃

⊥
`3
η⊥`2 η̃

⊥
`4
η⊥`3 η̃

⊥
`1
η⊥`4 η̃

⊥
`2
. (3.4.40)

This yields

A4;1 ∝ −4istA4;0(1, . . . , 4)

ˆ
d6`

(2π)6

[
1

`2(`+ p1)2(`+ p1 + p2)2(`− p4)2

]
, (3.4.41)

recovering the expected result of [21] from two-particle cuts.

3.5 One-loop five-point superamplitude

We now move on to the one-loop five-point superamplitude and calculate its quadru-

ple cuts. These cuts will reveal the presence of a linear pentagon integral, which

will be reduced using standard Passarino-Veltman (PV) techniques [38] to a scalar

pentagon plus scalar box integrals. Since the one-loop amplitude is in the maximally

supersymmetric theory in six dimensions it is free of IR and UV divergences. There-

fore, bubbles and triangles which would be UV divergent in six dimensions must

be absent. It is for this reason that it will be enough to consider quadruple cuts,

without having to inspect also triple and double cuts, which would be required if

triangle and bubble functions were present.
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`′3 `3

`1 `′1

`′4

`4`′2

`2

2
3

4

51
Figure 3.4 A specific quadruple cut of a five-point superamplitude. We choose to cut
the legs such that we have the massive corner for momenta p3, p4.

3.5.1 Quadruple cuts

The quadruple cut has the structure

A5;1

∣∣
(3,4)-cut =

ˆ
d6`

(2π)6
δ+(`2

1) δ+(`2
2) δ+(`2

3) δ+(`2
4) (3.5.1)

A3(`1, p1,−`2)A3(`2, p2,−`3)A4(`3, p3, p4,−`4)A3(`4, p5,−`1) ,

where the subscript (3, 4) indicates where the massive corner is located, see Figure

3.4. In the following we will discuss this specific cut and all other cuts can be treated

in an identical way.

From the three three-point superamplitudes and the four-point superamplitude,

we have the following fermionic δ-functions,[
δ(QA

1 )δ(Q̃1A)
]2

δ(W1)δ(W̃1)
[
δ(QB

2 )δ(Q̃2B)
]2

δ(W2)δ(W̃2)

× δ4(QC
3 )δ4(Q̃3C)

[
δ(QD

4 )δ(Q̃4D)
]2

δ(W4)δ(W̃4) , (3.5.2)

where the QA
i and the Wi are defined as sums over the supermomenta and products

of w- and η-spinors respectively at a given corner (including internal legs). We may
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now use the supermomentum constraints QA
i = 0 at all four corners and rewrite the

δ4(Q3)δ4(Q̃3) as a total δ8 in the external momenta only,

δ4(Q3) = δ4(Q3 +Q1 +Q2 +Q4) = δ4(Qext). (3.5.3)

One is then left with the Grassmann integrations

ˆ 4∏
i=1

d2η`id
2η̃`i

{[
δ(qA`1 + qA1 − qA`2)δ(q̃`1A + q̃1A − q̃`2A)

]2
δ(wa`1η`1a + wa1η1a + iwa`′2η`2a)δ(w̃

ȧ
`1
η̃`1ȧ + w̃ȧ1 η̃1ȧ + iw̃ȧ`′2 η̃`2ȧ)[

δ(qB`2 + qB2 − qB`3)δ(q̃`2B + q̃2B − q̃`3B)
]2

δ(wb`2η`2b + wb2η2b + iwb`′3η`3b)δ(w̃
ḃ
`2
η̃`2ḃ + w̃ḃ2η̃2ḃ + iw̃ḃ`′3 η̃`3ḃ)[

δ(qD`4 + qD5 − qD`1)δ(q̃`4D + q̃5D − q̃`1D)
]2

δ(wc`4η`4c + wc5η5c + iwc`′1η`1c)δ(w̃
ċ
`4
η̃`4ċ + w̃ċ5η̃5ċ + iw̃ċ`′1 η̃`1ċ)

}
.

(3.5.4)

Unfortunately, a decomposition as used for the quadruple cut of the four-point one-

loop superamplitude is not immediately useful here. However, we notice that, due to

the particular dependence of the δ-functions on the loop momenta `i, by removing a

total δ8 from the integrand one can restrict the dependence on the Grassmann vari-

ables η`3 and η`4 to six δ-functions each for this specific cut. This allows us to narrow

the possible combinations of coefficients for, say, two powers of η`4a and two powers of

η̃`4ȧ. For example, two powers of η`4a can either come both from δ(QA
4 )δ(QB

4 ) or one

from δ(QA
4 ) and one from∗∗ δ(W4), and both possibilities needs to be appropriately

contracted with the possible combinations from δ(Q̃4A)δ(Q̃4B)δ(W̃4). If we choose

both powers of η`4a from δ(QA
4 )δ(QB

4 ) we have a coefficient

λAa`4 η`4aλ
Bb
`4
η`4b , (3.5.5)

which will be contracted at least by a λ̃ȧ`4A or λ̃ȧ`4B coming from the possible combi-

nations for η̃`4ȧ. As λAiaλ̃iAȧ = 0, these terms vanish as shown in (3.2.4).
∗∗ This is similar to the recursive calculation of the five-point tree-level superamplitude in six

dimensions, see also [21].
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In conclusion, the only non-vanishing combination is

λAa`4 η`4aδ(q̃5A − q̃`1A)δ(qB5 − qB`1)λ̃
ȧ
`4B
η̃`4ȧw

b
`4
η`4bw̃

ḃ
`4
η̃`4ḃ . (3.5.6)

The same argument holds for the expansion of the δ-functions depending on η`3a and

η̃`3ȧ. Here, we only have to deal with additional signs and factors of i. We get for

the expansion

(−1)λAa`3 η`3aδ(q̃`2A + q̃2A)δ(qB`2 + qB2 )(−1)λ̃ȧ`3B η̃`3ȧiw
b
`′3
η`3biw̃

ḃ
`′3
η̃`3ḃ . (3.5.7)

This leads to the structureˆ 4∏
i=1

d2η`id
2η̃`i

{[
δ(qA`1 + qA1 − qA`2)δ(q̃`1A + q̃1A − q̃`2A)

]2
δ(wa`1η`1a + wa1η1a + iwa`′2η`2a)δ(w̃

ȧ
`1
η̃`1ȧ + w̃ȧ1 η̃1ȧ + iw̃ȧ`′2 η̃`2ȧ)

λCc`3 η`3cδ(q̃`2C + q̃2C)δ(qD`2 + qD2 )λ̃ċ`3Dη̃`3ċ(i)
2wc`′3η`3cw̃

ċ
`′3
η̃`3ċ

λEd`4 η`4dδ(q̃5E − q̃`1E)δ(qF5 − qF`1)λ̃
ḋ
`4F
η̃`4ḋw

d
`4
η`4dw̃

ḋ
`4
η̃`4ḋ

}
. (3.5.8)

Notice that the six δ-functions of the first corner has not been expanded yet, therefore

supermomentum conservation QA
1 = 0, Q̃A

1 = 0 is still present. This constraint can

be used to remove the dependence on η`2a in the third line of the above integrand,

using qA`2 = qA`1 + qA1 . The fermionic integral then becomes
ˆ 4∏

i=1

d2η`id
2η̃`i

{[
δ(qA`1 + qA1 − qA`2)δ(q̃`1A + q̃1A − q̃`2A)

]2
δ(wa`1η`1a + wa1η1a + iwa`′2η`2a)δ(w̃

ȧ
`1
η̃`1ȧ + w̃ȧ1 η̃1ȧ + iw̃ȧ`′2 η̃`2ȧ)

(i)2η`3cη̃`3ċη`3c′ η̃`3ċ′λ
Cc
`3
λ̃ċ`3Dw

c′

`′3
w̃ċ
′

`′3
δ(q̃`1C + q̃1C + q̃2C)δ(qD`1 + qD1 + qD2 )

η`4dη̃`4ḋη`4d′ η̃`4ḋ′λ
Ed
`4
λ̃ḋ`4Fw

d′

`4
w̃ḋ
′

`4
δ(q̃5E − q̃`1E)δ(qF5 − qF`1)

}
. (3.5.9)

Just as before, only the first six δ-functions depend on η`2a and η̃`2ȧ so we can expand

straight away (noticing that this expansion yields yet another factor of (i)2)
ˆ 4∏

i=1

d2η`id
2η̃`i

{
(i)2η`2bη̃`2ḃη`2b′ η̃`2ḃ′λ

Ab
`2
λ̃ḃ`2Bw

b′

`′2
w̃ḃ
′

`′2
δ(q̃`1A + q̃1A)δ(qB`1 + qB1 )

(i)2η`3cη̃`3ċη`3c′ η̃`3ċ′λ
Cc
`3
λ̃ċ`3Dw

c′

`′3
w̃ċ
′

`′3
δ(q̃`1C + q̃1C + q̃2C)δ(qD`1 + qD1 + qD2 )

η`4dη̃`4ḋη`4d′ η̃`4ḋ′λ
Ed
`4
λ̃ḋ`4Fw

d′

`4
w̃ḋ
′

`4
δ(q̃5E − q̃`1E)δ(qF5 − qF`1)

}
. (3.5.10)
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One notes that, by expanding the fermionic δ-functions, the dependence on the

Grassmann parameters η`1a and η̃`1ȧ has reduced to

δ(q̃`1A + q̃1A)δ(qB`1 + qB1 )δ(q̃`1C + q̃1C + q̃2C)δ(qD`1 + qD1 + qD2 )δ(q̃5E − q̃`1E)δ(qF5 − qF`1)

(3.5.11)

only. Expanding this further gives the sought-after coefficient of η`1aη`1bη̃`1ȧη̃`1ḃ. The

result (in an appropriate order of the Grassmann spinors) of the expansion of the six

δ-functions in (3.5.11) is then given by

η̃`1ȧη̃`1ḃ

(
− η̃1ċλ̃

ȧ
`1A
λ̃ċ1C λ̃

ḃ
`1E
− η̃2ċλ̃

ȧ
`1A
λ̃ċ2C λ̃

ḃ
`1E
− η̃5ċλ̃

ȧ
`1A
λ̃ḃ`1C λ̃

ċ
5E + η̃1ċλ̃

ċ
1Aλ̃

ȧ
`1C
λ̃ḃ`1E

)
× η`1aη`1b

(
η5cλ

Ba
`1
λDb`1 λ

Fc
5 + η1cλ

Ba
`1
λDc1 λFb`1 + η2cλ

Ba
`1
λDc2 λFb`1 − η1cλ

Bc
1 λDa`1 λ

Fb
`1

)
.

(3.5.12)

Having extracted the right powers of the Grassmann variables from all fermionic

δ-functions, we can now integrate over the ηli and η̃`i . The integration is straight-

forward and yields,(
η̃1ċ[1

ċ|`3〉 · w`′3 w`′2 · 〈`2|ˆ̀1|`4〉 · w`4 − η̃1ċ[1
ċ|`2〉 · w`′2 w`′3 · 〈`3|ˆ̀1|`4〉 · w`4

+ η̃2ċ[2
ċ|`3〉 · w`′3 w`′2 · 〈`2|ˆ̀1|`4〉 · w`4 + η̃5ċ[5

ċ|`4〉 · w`4 w`′2 · 〈`2|ˆ̀1|`3〉 · w`′3

)
×
(
η1c〈1c|`3] · w̃`′3 w̃`′2 · [`2|ˆ̀1|`4] · w̃`4 − η1c〈1c|`2] · w̃`′2 w̃`′3 · [`3|ˆ̀1|`4] · w̃`4

+ η2c〈2c|`3] · w̃`′3 w̃`′2 · [`2|ˆ̀1|`4] · w̃`4 + η5c〈5c|`4] · w̃`4 w̃`′2 · [`2|ˆ̀1|`3] · w̃`′3

)
.

(3.5.13)

Here we introduced the notation that w`i · 〈`i| := wa`i〈`i,a|, and the ˆ̀
i are slashed

momenta, with e.g.

w`′2 · 〈`2|ˆ̀1|`3〉 · w`′3 = wa`′2λ
A
`2,a
`1,ABλ

B
`3,b
wb`′3 . (3.5.14)

Next, one rewrites the spinor expressions in (3.5.13) in terms of six-dimensional

momenta, thereby removing any dependence on u- and w-spinors. An important

observation to do so is the fact that the expressions depending on η̃1 and/or η1
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antisymmetrize among themselves††. The result of these manipulations is

η̃1ċη1c
1

s12

[1ċ|p̂2
ˆ̀
1p̂5p̂2|1c〉 − η̃1ċη2c

1

s12

[1ċ|p̂2p̂5
ˆ̀
1p̂1|2c〉+ η̃2ċη1c

1

s12

[2ċ|p̂1
ˆ̀
1p̂5p̂2|1c〉

+η̃1ċη5c[1
ċ|p̂2

ˆ̀
1|5c〉 − η̃5ċη1c[5

ċ|ˆ̀1p̂2|1c〉+ η̃2ċη2c
1

s12

[2ċ|p̂1
ˆ̀
1p̂5p̂1|2c〉

+η̃5ċη5c
1

s15

[5ċ|p̂1
ˆ̀
1p̂2p̂1|5c〉+ η̃5ċη2c[5

ċ|ˆ̀1p̂1|2c〉 − η̃2ċη5c[2
ċ|p̂1

ˆ̀
1|5c〉 . (3.5.15)

3.5.2 Final result (before PV reduction)

3

2

1 5

4
`4

`5

`1

`2

`3

Figure 3.5 A generic pentagon loop integral.

Including all appropriate prefactors, our result for the five-point one-loop super-

amplitude is expressed in terms of a single integral function, namely a linear pentagon

integral. Explicitly,

A5;1 = Cµ Iµ5,`1 , (3.5.16)

where

Iµ5,`1(1, . . . , 5) :=

ˆ
dD`

(2π)D
`µ1

`2
1`

2
2`

2
3(p3 + `3)2`2

5

, (3.5.17)

††We give more details on these manipulations in Appendix A.3.2.
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is the linear pentagon, and the coefficient Cµ is given by

Cµ =
1

s34

{
η̃1ċη1c

1

s12

[1ċ|p̂2σ̂µp̂5p̂2|1c〉 − η̃1ċη2c
1

s12

[1ċ|p̂2p̂5σ̂µp̂1|2c〉+ η̃2ċη1c
1

s12

[2ċ|p̂1σ̂µp̂5p̂2|1c〉

+ η̃1ċη5c[1
ċ|p̂2σ̂µ|5c〉 − η̃5ċη1c[5

ċ|σ̂µp̂2|1c〉+ η̃2ċη2c
1

s12

[2ċ|p̂1σ̂µp̂5p̂1|2c〉

+ η̃5ċη5c
1

s15

[5ċ|p̂1σ̂µp̂2p̂1|5c〉+ η̃5ċη2c[5
ċ|σ̂µp̂1|2c〉 − η̃2ċη5c[2

ċ|σ̂µp̂1|5c〉
}
. (3.5.18)

The factor of 1/s34 and the additional propagator in the pentagon appearing in

(3.5.16), are due to the prefactor of the four-point tree-level superamplitude entering

the cut. We now proceed and summarize the result of the PV reduction of (3.5.17)

in the next section.

3.5.3 Final result (after PV reduction)

In order to reduce the linear pentagon integral (3.5.17) to scalar integrals we use

the Passarino-Velrman reduction method which is discussed in Appendix A.4. The

linear pentagon can be decomposed on a basis of four independent momenta, as

Iµ5,`1(1, . . . , 5) = Apµ1 +Bpµ2 + Cpµ3 +Dpµ5 . (3.5.19)

The choice of {p1, p2, p3, p5} as the basis vectors is the most convenient one due to

the kinematical structure of the cut expression in (3.5.15). Contracting the linear

pentagon with the basis momenta yields

2p1 · I5,`1 =

ˆ
dD`

(2π)D
2p1 · `1∏5
i=1 `

2
i

= I4,1 − I4,5
!

= Bs12 + Cs13 +Ds15 ,

2p2 · I5,`1 =

ˆ
dD`

(2π)D
2p2 · `1∏5
i=1 `

2
i

= I4,2 − I4,1 − s12I5
!

= As12 + Cs23 +Ds25 ,

2p3 · I5,`1 =

ˆ
dD`

(2π)D
2p3 · `1∏5
i=1 `

2
i

= I4,3 − I4,2 − (s12 + s23)I5
!

= As13 +Bs23 +Ds35 ,

2p5 · I5,`1 =

ˆ
dD`

(2π)D
2p5 · `1∏5
i=1 `

2
i

= I4,4 − I4,4
!

= As15 +Bs25 + Cs35 , (3.5.20)

where we introduced the scalar integral functions I5 for the pentagon and I4,i for

the boxes. Here, the index i in I4,i labels the first leg of the massive corner for a
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clockwise ordering of the external states as shown in Figure 3.6. In particular, the

integral I4,3 has the form

I4,3 :=

ˆ
dD`

(2π)D
1

`2
1(`1 + p1)2(`1 + p1 + p2)2(`1 + p1 + p2 + p3 + p4)2

(3.5.21)

The set of linear equations (3.5.20) can be solved to obtain the desired coefficients

A,B,C and D:

A = ∆−1 {(s15s23 − s13s25) [−I4,4s23 + I4,5s23 + [I4,2 − I4,3 + I5(s13 + s23)] s25]

+ [(I4,4s12s23 + (I4,1 − I4,2 + I5s12)s15s23

+ (I4,2s12 − I4,3s12 + I4,1s13 − I4,2s13 + 2I5s12s13 + 2I4,1s23 + I5s12s23)s25

−I4,5s23(s12 + 2s25)] s35 − s12(I4,1 − I4,2 + I5s12)s2
35)
}

(3.5.22)

B = ∆−1 {− [I4,4s13 − I4,5s13 − s15(I4,2 − I4,3 + I5(s13 + s23))] (−s15s23 + s13s25)

+ [I4,4s12s13 + s15 [I4,2(s12 + 2s13)− I4,1(2s13 + s23)− s12(I43 + I5s13 − I5s23)]

−I41s13s25 + I45(−s12s13 + s15s23 + s13s25)] s35

+ (I41 − I45)s12s
2
35

}
(3.5.23)

C = ∆−1
{
−I41s

2
15s23 + I4,2s

2
15s23 − I5s12s

2
15s23 − 2I4,2s12s15s25

+ 2I4,3s12s15s25 + I4,1s13s15s25 − I4,2s13s15s25 − I5s12s13s15s25 − I4,1s15s23s25

− 2I5s12s15s23s25 + I4,1s13s
2
25 − I4,5(s12s15s23 + s12s13s25 − s15s23s25 + s13s

2
25)

+ I4,5s12(s12 + s25)s35 + s12 ((I4,1 − I4,2 + I5s12)s15 − I4,1s25) s35

+ I4,4s12(s15s23 + s13s25 − s12s35)} (3.5.24)

D = −I5 + ∆−1 {−2I4,4s12s13s23 + I4,2s12s15s23 − I4,3s12s15s23 + I4,1s13s15s23

− I4,2s13s15s23 + 2I5s12s13s15s23 + I4,1s15s
2
23 + I5s12s15s

2
23 + I4,2s12s13s25

− I4,3s12s13s25 − I4,1s
2
13s25 + I4,2s

2
13s25 − I4,1s13s23s25 + I5s12s13s23s25

− s12(−I4,3s12 − I4,1s13 + I4,2(s12 + s13) + I4,1s23 + I5s12s23)s35

+ I4,5s23 (−s15s23 + s13s25 + s12(2s13 + s35))} , (3.5.25)

where ∆ is the determinant of the “Gram” matrix (as defined in Appendix A.4)

explicitly given by

∆ = s2
15s

2
23 + (s13s25 − s12s35)2 − 2s15s23(s13s25 + s12s35) . (3.5.26)
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It will however be more convenient to cast the one-loop five-point amplitude in

the following form

A5;1 = C(5)I5(1, . . . , 5) +
5∑
i=1

C(4,i)I4,i(1, . . . , 5) , (3.5.27)

prioritizing the expansion over the integral basis.

`3

`1

`5`2

2
3

4

51

Figure 3.6 The five-point scalar integral I4,3. It can be thought of as the result of
“pinching out” the propagator between legs 3 and 4 of the pentagon.

Explicitly, the coefficients for the specific cut discussed in the previous section

are given by

C(5)/(4,3) = η̃1ċη1c
1

s12

(
s12[1ċ|p̂5p̂2|1c〉A(5)/(4,3) + [1ċ|p̂2p̂3p̂5p̂2|1c〉C(5)/(4,3)

)
+ η̃2ċη2c

1

s12

(
s12[2ċ|p̂5p̂1|2c〉B(5)/(4,3) + [2ċ|p̂1p̂3p̂5p̂1|2c〉C(5)/(4,3)

)
+ η̃5ċη5c

1

s15

(
[5ċ|p̂1p̂3p̂2p̂1|5c〉C(5)/(4,3) + s15[5ċ|p̂2p̂1|5c〉D(5)/(4,3)

)
− η̃1ċη2c

1

s12

(
s12[1ċ|p̂2p̂5|2c〉B(5)/(4,3) + [1ċ|p̂2p̂5p̂3p̂1|2c〉C(5)/(4,3)

)
+ η̃2ċη1c

1

s12

(
s12[2ċ|p̂5p̂2|1c〉B(5)/(4,3) + [2ċ|p̂1p̂3p̂5p̂2|1c〉C(5)/(4,3)

)
+ η̃1ċη5c

(
[1ċ|p̂2p̂1|5c〉A(5)/(4,3) + [1ċ|p̂2p̂3|5c〉C(5)/(4,3)

)
− η̃5ċη1c

(
[5ċ|p̂1p̂2|1c〉A(5)/(4,3) + [5ċ|p̂3p̂2|1c〉C(5)/(4,3)

)
+ η̃5ċη2c

(
[5ċ|p̂2p̂1|2c〉B(5)/(4,3) + [5ċ|p̂3p̂1|2c〉C(5)/(4,3)

)
− η̃2ċη5c

(
[2ċ|p̂1p̂2|5c〉B(5)/(4,3) + [2ċ|p̂1p̂3|5c〉C(5)/(4,3)

)
. (3.5.28)
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Here, the variables A(5)/(4,3), B(5)/(4,3), C(5)/(4,3) and D(5)/(4,3) are the coefficients from

the PV reduction of the scalar pentagon I5 or box function I4,3 respectively. For the

scalar pentagon, we have

A(5) = ∆−1(s15s13s23s25 + s15s25s
2
23 − s13s23s

2
25 − s2

13s
2
25 + 2s12s13s25s35

+ s12s23s35s15 + s12s23s25s35 − s2
12s

2
35)

B(5) = ∆−1s15(s12s23s35 + s13s23s25 − s12s13s35 − s13s23s15 + s2
13s25 − s15s

2
23)

C(5) = ∆−1s12s15(s12s35 − s15s23 − s13s25 − 2s23s25)

D(5) = ∆−1s12s23(s15s23 + s13s25 − s12s35 + 2s15s13) (3.5.29)

whereas for the coefficients of the box integral I4,3 we find

A(4,3) = ∆−1s25(s13s25 − s15s23 − s12s35)

B(4,3) = ∆−1s15(s15s23 − s13s25 − s12s35)

C(4,3) = ∆−12s12s15s25

D(4,3) = ∆−1s12(s12s35 − s15s23 − s13s25) . (3.5.30)

Notice that for the final expression for the amplitude we have to collect the five

box integrals I4,i with their respective coefficients which can be obtained by cyclic

permutation of the states (1, . . . , 5). Furthermore, we have to include one copy of

the pentagon integral with its coefficient. The pentagon coefficient does not possess

manifest cyclic symmetry, and each of the five quadruple cuts produces a different

looking expression. However, the tests provided in the following section confirm that

the pentagon coefficients have the expected cyclic symmetry.

3.5.4 Gluon component amplitude

In this section we extract from the one-loop five-point superamplitude its component

where all external particles are six-dimensional gluons. This is useful since, dimen-

sionally reducing this component amplitude to four dimensions, one can access the

gluon MHV and MHV amplitudes of N = 4 sYM.
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In order to extract this component we have to integrate one power of ηi and η̃i

for each external state, here denoted by 1aȧ, 2bḃ, 3cċ, 4dḋ, and 5eė. Doing this, one

arrives at

A5;1

∣∣
(3,4)-cut ∝

ˆ
d6`

(2π)6

1

s34

δ+(`2
1)δ+(`2

2)δ+(`2
3)δ+(`2

5)
1

(p3 + `3)2

×
{

1

s12

[1ȧ|p̂2
ˆ̀
1p̂5p̂2|1a〉〈2b3c4d5e〉[2ḃ3ċ4ḋ5ė] +

1

s12

[2ḃ|p̂1
ˆ̀
1p̂5p̂1|2b〉〈1a3c4d5e〉[1ȧ3ċ4ḋ5ė]

+
1

s15

[5ė|p̂1
ˆ̀
1p̂2p̂1|5e〉〈1a2b3c4d〉[1ȧ2ḃ3ċ4ḋ]

− 1

s12

[2ḃ|p̂1
ˆ̀
1p̂5p̂2|1a〉〈2b3c4d5e〉[1ȧ3ċ4ḋ5ė] +

1

s12

[1ȧ|p̂2p̂5
ˆ̀
1p̂1|2b〉〈1a3c4d5e〉[2ḃ3ċ4ḋ5ė]

−[1ȧ|p̂2
ˆ̀
1|5e〉〈1a2b3c4d〉[2ḃ3ċ4ḋ5ė] + [5ė|ˆ̀1p̂2|1a〉〈2b3c4d5e〉[1ȧ2ḃ3ċ4ḋ]

−[5ė|ˆ̀1p̂1|2b〉〈1a3c4d5e〉[1ȧ2ḃ3ċ4ḋ] + [2ḃ|p̂1
ˆ̀
1|5e〉〈1a2b3c4d〉[1ȧ3ċ4ḋ5ė]

}
, (3.5.31)

where `i, i = 1, . . . , 5 are the five propagators in Figure 3.5. In the next section we

perform the reduction to four dimension of (3.5.31), which will give us important

checks on our result.

3.5.5 4D limit of the one-loop five-point amplitude

A series of nontrivial consistency checks on our six-dimensional five-point amplitude

at one loop can be obtained by performing its reduction to four dimensions, and

comparing it to the one-loop (MHV or MHV) amplitude(s) directly calculated in

four-dimensional N = 4 sYM theory. In performing this reduction, we restrict

any six-dimensional spinorial expression to four dimensions. As for the integral

functions, we formally evaluate them in 6 − 2ε dimensions. The four-dimensional

limit is then obtained by simply replacing ε → 1 + ε. Then, in order to perform

the reduction to four dimensions of various six-dimensional spinorial quantities, we

employ the results of [19] (see also [21]). There, it was found that the solutions to

the Dirac equation with the external momenta living in a four-dimensional subspace,
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i.e. p = (p0, p1, p2, p3, 0, 0), can be written as

λAa =

 0 λα

λ̃α̇ 0

 , λ̃Aȧ =

 0 λα

−λ̃α̇ 0

 , (3.5.32)

where λα and λ̃α̇ are the usual four-dimensional spinor variables. Hence, the Lorentz

invariant, little group covariant quantities 〈ia|jȧ], [iȧ|ja〉 become

〈ia|jȧ] =

 [ij] 0

0 −〈ij〉

 , [iȧ|ja〉 =

 −[ij] 0

0 〈ij〉

 . (3.5.33)

Here, we follow the standard convention of writing the four-dimensional spinor con-

tractions as λαi λjα = 〈ij〉 and λ̃iα̇λ̃α̇j = [ij].

The four-dimensional helicity group is a U(1) subgroup of the six-dimensional

little group which preserves the structure of (3.5.32) and (3.5.33). In order to deter-

mine the (four-dimensional) helicity of a certain state in (3.2.21), a practical way to

proceed is as follows. Each appearance of a dotted or undotted index equal to 1 (2)

contributes an amount of +1/2 (−1/2) to the total four-dimensional helicity. As an

example, consider the term Aaȧ in (3.2.21). States with (a, ȧ) = (1, 1) correspond,

upon reduction, to gluons with positive helicity and states with (a, ȧ) = (2, 2) to

gluons of negative helicity.

In the four-dimensional limit, the six-dimensional spinor brackets become‡‡ [21]

−〈i+|j+] = [ij] = [i+|j+〉 , 〈i−|j−] = 〈ij〉 = −[i−|j−〉 , (3.5.34)

〈i−j−k+l+〉 = −〈ij〉[kl] , [i−j−k+l+] = −〈ij〉[kl] ,

〈i−j+k−l+〉 = +〈ik〉[jl] , [i−j+k−l+] = +〈ik〉[jl] .

In the following we will use these identifications to check the four-dimensional limits

of (3.5.31) for all MHV helicity assignments of the external gluons. As expected, we

will always obtain the expected N = 4 sYM result, i.e. the appropriate Parke-Taylor

MHV prefactor multiplied by a four-dimensional one-loop box function.
‡‡Note that our definition of spinors of positive and negative helicities in four dimensions is

opposite to that in [21], i.e. the spinor bracket 〈· , ·〉 represents a product between spinors of
negative helicity.
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To begin with, we recall that upon four-dimensional reduction, a six-dimensional

scalar pentagon reduces to five different box functions (plus terms vanishing in four

dimensions) [50–52], and hence contributes to the coefficients of the relevant box

functions. Schematically,

C(5)I5 + C(4,3)I4,3
4D−→
[
C(5) P (4,3)

2s12s23s34s45s51

+ C(4,3)

]
I4,3 (3.5.35)

where

P (4,3) = s12s51(s12s23 − s12s51 − s23s34 − s34s45 + s45s51) , (3.5.36)

when going to four dimensions. The authors of [50–52] show that the pentagon

integral can be calculated using the recursive formula:

ID=6−2ε
5 → 1

2

5∑
i=1

ciI
(i)
4 , (3.5.37)

where

ci =
5∑
j=1

S−1
ij (3.5.38)

and the I(i)
4 boxes have a single massive external leg. The invariants Sij are defined

as

Sij ≡ m2 − 1

2
p2
ij , with pii ≡ 0 , and pij = ki + ki+1 + · · ·+ kj−1, for i < j ,

(3.5.39)

where they define ki to be external momenta. In the present case all the masses are

set to zero. The kinematic invariants Sij are related to ours as

S13 → s12 , S24 → s23 , S35 → s34 , S41 → s45 , S52 → s51 . (3.5.40)

Finally, we re-express invariants using only adjacent momenta, i.e.

s13 = s45 − s12 − s23 (3.5.41)

s25 = s34 − s15 − s12 (3.5.42)

s35 = s12 − s34 − s45 . (3.5.43)
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After some algebra one arrives at (3.5.35). Hence, upon dimensional reduction the

coefficients of the PV reduction (3.5.29), (3.5.30) become (suppressing the box inte-

gral factor)

A → A(5) P (4,3)

2s12s23s34s45s51
+ A(4,3) = −s12s15 − s15s45 + s34s45

2s23s34s45

, (3.5.44)

B → B(5) P (4,3)

2s12s23s34s45s51
+B(4,3) = −s15s12 − s15s45

2s23s34s45

,

C → C(5) P (4,3)

2s12s23s34s45s51
+ C(4,3) = − s12s15

2s23s34s45

,

D → D(5) P (4,3)

2s12s23s34s45s51
+D(4,3) = − s12

2s34s45

.

Let us now discuss specific helicity assignments by considering the configuration

(1−, 2−, 3+, 4+, 5+) for the prefactor AMHV|4D of the integral function. In this case,

after the PV reduction only the third term in (3.5.31) is non-vanishing. Hence, we

have to consider the four-dimensional limit of

1

s34s15

([5ė|p̂1p̂3p̂2p̂1|5e〉C + [5ė|p̂1p̂5p̂2p̂1|5e〉D) 〈1a2b3c4d〉[1ȧ2ḃ3ċ4ḋ] . (3.5.45)

Upon dimensional reduction, and using (3.5.34) the resulting contribution is

AMHV|4D = (s34s15)−1
(
[51]2〈13〉[23]〈12〉C + [51]2〈15〉[52]〈12〉D

)
〈12〉2[34]2

=
[51]2〈12〉2[23]〈15〉[21]

2〈23〉[32]〈34〉2[43]2〈45〉[54]〈15〉[51]
(〈13〉[51] + [52]〈23〉) 〈12〉2[34]2

=
[51]〈12〉4[21]

2〈23〉〈34〉2〈45〉[54]
(−〈23〉[52]− [54]〈43〉+ [52]〈23〉)

=
〈12〉4[51][21]

2〈23〉〈34〉〈45〉

=
s15s12

2

〈12〉3

〈23〉〈34〉〈45〉〈51〉
, (3.5.46)

where momentum conservation was used to write 〈13〉[51] = −〈23〉[52] − [54]〈43〉.

Given the relation between the scalar box functions F4 and the corresponding box

integrals, I4 = 2F/(s12s15), it is immediate to see that the kinematic factors in

(3.5.46) cancel and the final result for the integral factor is the anticipated one:

A(1−, 2−, 3+, 4+, 5+)4D =
〈12〉4

〈12〉〈23〉〈34〉〈45〉〈51〉
. (3.5.47)
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The fact that the form of the one-loop five-point amplitude upon reduction to four

dimensions is precisely the well-known result is an expected, though highly non-

trivial, outcome.

As mentioned above, we have performed checks for all external helicity config-

urations, finding in all cases agreement with the expected four-dimensional result.

Further examples are presented in the Appendix A.5. We would like to highlight a

particularly stringent test, namely that corresponding to the helicity configuration

(1+, 2+, 3−, 4−, 5+), where all terms in (3.5.31) contribute to the four-dimensional

reduction.

A final comment is in order here. It is known that collinear and soft limits put

important constraints on tree-level and loop amplitudes in any gauge theory and

in gravity [36]. In six dimensions, the lack of infrared divergences makes loop level

factorization trivial, similarly to what happens to four-dimensional gravity because

of its improved infrared behavior compared to four-dimensional Yang-Mills theory

amplitudes. Therefore, the factorization properties we derive below from tree-level

amplitudes will apply unmodified to one-loop amplitudes.

We now consider again the five-point amplitude (3.3.14) derived in [13], and take

the soft limit where p1 → 0. A short calculation shows that

A
(0)
5;aȧ... → Saȧ(5, 1, 2)A

(0)
4;... , (3.5.48)

where we find, for the six-dimensional soft function,

Saȧ(i, s, j) =
〈sa|p̂j p̂i|sȧ]
sisssj

. (3.5.49)

In (3.5.48) the dots stand for the little group indices of the remaining particles in

the amplitude. Using the results in this section, it is also immediate to check that

(3.5.49) reduces, in the four-dimensional limit, to the expected soft functions of [4].

As a final test on our five-point amplitude we have checked that the soft limits where

legs 1, 2 or 5 become soft are all correct.

This provides an exhaustive set of checks of our result for the six-dimensional

five-point superamplitude at one-loop.



4 Two-loop Sudakov Form

Factor in ABJM

This chapter focuses on amplitudes and form factors in three-dimensional N = 6

Chern-Simons matter theory, also known as ABJM [53] and is based on [16]. This

theory is closely related to the maximally supersymmetric theories constructed in [54,

55], and provides an interesting example of holographic duality in three dimensions.

4.1 Introduction

The interest in superconformal Chern-Simons theories was rekindled after the re-

alization that it provided a description of the fundamental objects of the poorly

understood M-theory [56]. A superconformal Chern-Simons theory with maximal su-

persymmetry was discovered by Bagger, Lambert and Gustavsson (BLG) [54,55,57]

with the understanding that it described the dynamics of two interacting M2-branes

[58,59]. In order to generalize the descriptive power of the BLG theory to more than

two interacting M2-branes, Aharony, Bergman, Jafferis and Maldacena (ABJM) [53]

found a theory that is no longer maximally supersymmetric.

Besides the obvious physical motivation for studying ABJM theory, recent progress

has revealed interesting structural similarities to the extensively studiedN = 4 super

Yang-Mills (sYM). More specifically, the following have been discovered and studied

in both theories:

• Dual Conformal Symmetry [60]

81
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• Integrability [61–63]

• Duality with Wilson loops at four points [64–66]

• Uniform transcendentality of the two-loop four-point [67, 68]

• Six-point amplitude [69], color-kinematics duality [70].

Apart from the structural resemblance there is also interchangeability in comput-

ing methods between sYM and ABJM. The tools for computing amplitudes in four

dimensions have been successfully modified to accommodate calculations in three

dimensions. This has extended the usability of BCFW-type recursions relations [14],

generalized unitarity [60,71–73] and Grassmannian formulations [74] to address com-

putational challenges in three dimensions.

With the broad aim of further exploring these similarities between ABJM and

N = 4 sYM, the present chapter focuses on the study of form factors in ABJM.

Form factors are essentially an interpolation between fully on-shell quantities, i.e.

scattering amplitudes, and correlation functions, which are inherently off shell. Re-

markably, on-shell methods can be successfully applied in order to compute such

quantities [75]. In general, form factors are obtained by acting with a local opera-

tor O(x) to the vacuum |0〉 and considering the overlap with a multi-particle state

〈1, . . . , n|.

In what follows we consider the Sudakov form factor of half-BPS operators, i.e.

the overlap of a state created by an operator built from two scalars and a two-particle

on-shell state. The study of the Sudakov form factor in N = 4 sYM at one and two

loops, was initiated by van Neerven in [76]. Recent studies of these quantities have

produced a multitude of generalizations and extensions to one loop with more than

two external on-shell particles [75, 77–79], and BPS operators with more than two

scalars [77]. Applying generalized unitarity proved fruitful in calculating the two-

loop, three-point form factor [80], as did the use of the symbol [81]. Both approaches

provide examples that conform to the principle of maximal transcendentality that
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was first observed in [82] for anomalous dimensions of composite operators. The cal-

culation of the Sudakov form factor at three [83] and four [84] loops also showed that

the result can be expressed in terms of uniformly transcendental integral functions.

The above examples verify that much of the technology developed for the study of

amplitudes also applies to the study of form factors. Interestingly, there are two

important differences in the structures that appear in form factors. In particular,

the absence of dual conformal symmetry and the appearance of non-planar integral

topologies.

Massless gauge theories suffer from infrared singularities arising from soft and

collinear loop momenta [85]. As explained in [85, 86] and summarized in [87] these

singularities can be represented in terms of universal operators which in turn are

related to the soft anomalous dimension entering the Sudakov form factor. In par-

ticular, in dimensional regularization, the Sudakov form factor obeys a differential

equation, whose source term is the cusp anomalous dimension γK . Along with the

constant of integration, these two functions control the infrared divergences to all

orders for any amplitude in any massless gauge theory [87]. This provides a tool to

predict the infrared divergent structure of loop amplitudes [85]. In the planar limit

of N = 4 sYM, the authors of [85] provide a general formula, which schematically

reads:

Mn =
∏
i

(F (si,i+1, as, ε))
1/2 × hn(ki, as, ε) , (4.1.1)

where hn is a hard remainder function. This formula captures the fact that IR

divergences are universal and that are expressed through the Sudakov form factor

F (si,i+1). A thorough treatment of Sudakov form factors can be found in [88]. In [89],

Ashoke Sen provided a method to compute the on-shell Sudakov form factor in a

non-Abelian theory to all orders of logarithms. Weinberg provides a diagrammatic

treatment of the IR singulatities using form factors where he concludes that the

anticipated cancellations in QCD are going to be complicated [90]. An outline of

Weinberg’s method to treat IR divergences using form factors can also be found

in [18]. This property of the Sudakov form factor is expected to hold in other



4.1. Introduction 84

dimensions, and in particular the relevant similarities between ABJM and N = 4

sYM suggest that it is also valid in the present case of interest (a thorough discussion

can be found in [67]).

The present chapter describes the calculation of the two-loop Sudakov form fac-

tor in ABJM, which is found to have a uniform degree of transcendentality and

correctly captures the infrared divergences of two-loop amplitudes (also presented

in [16]). Contrary to N = 4 sYM the result is expressed as a single non-planar inte-

gral function with an untypical numerator. In N = 4 sYM the two-loop form factor

is split into a planar and a non-planar integral function with trivial numerators that

are separately transcendental [76]. However, in ABJM the numerator of the integral

function ensures two important properties: internal three-particle vertices cannot re-

sult in unphysical infrared divergences and the result is automatically transcendental.

In fact, investigating several planar two-loop topologies shows that numerators that

remove unphysical infrared divergences render the integrals transcendental. These

planar topologies do not appear in the ABJM form factor but are ingredients of the

form factors in ABJ which is also transcendental. The aforementioned properties are

studied in detail in subsequent sections.

In [69], the calculation of two-loop amplitudes in ABJM, revealed constraints

that are imposed on the integral functions stemming from the vanishing of the triple

cuts which isolate three- and five-particle amplitudes. Here the vanishing triple

cuts that involve only three-particle amplitudes guarantee the absence of unphysical

infrared divergences. Simultaneously, they eliminate terms that would spoil the

uniform transcendentality of the result. On a practical level, the vanishing triple

cuts provide stringent constraints that one can use to check the consistency of the

integral functions. This observation points to a familiar circle of questions about the

choice of integral basis, based on physical as well as practical criteria. Demanding

that the expansion coefficients are ε-independent, and that the integral functions

are individually transcendental, seems to ensure desirable features. However, the

underlying physical and mathematical criteria are not well understood. Form factors
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in ABJ(M) provide a suitable setting to approach these issues.

After reviewing some general properties of ABJM amplitudes in Section 4.2, the

calculation of the non-planar part of the one-loop four-point amplitude in this theory

is presented in Section 4.3. Section 4.4 discusses the complete – planar plus non-

planar – integrand of the four-point amplitude, which is a key ingredient in the

construction of the Sudakov form factor. This quantity is derived firstly at one and

then at two loops, using two- and three-particle cuts at the level of the integrand.

As mentioned earlier, the result is expressed in terms of a single non-planar integral

topology with a special numerator, whose properties are discussed in detail. In

particular, certain three-vertex cuts are considered, which put strong constraints on

the form of these numerators. Our result is then compared to the known infrared

divergences of ABJM amplitude at two loops, where we find complete agreement.

Finally, Section 4.5 presents three planar integral topologies which contribute to the

ABJ form factor. Their properties are discussed and their maximally transcendental

result is presented. Appendix B contains details and conventions on: spinors in

three dimensions; half-BPS operators in ABJM; the one-loop box function in terms

of which the four-point amplitude is expressed; and, on the reduction to master

integrals of the integral topologies.

4.2 Scattering amplitudes in ABJM theory

The following provides a brief review of some key facts of the ABJM theory, and in

particular of its tree amplitudes, which appear in the construction of loop amplitudes

and form factors using unitarity [12,36,37,91].∗

4.2.1 Superamplitudes

Three-dimensional N = 6 Chern-Simons matter theory [53] (or, in short, ABJM)

is a quiver theory with gauge group Uk(N) × U−k(N), where k and −k are the
∗In this paper we follow the conventions of Section 2 and Appendix A of [72] for the ABJM

superamplitudes and the three-dimensional spinor helicity formalism, respectively.
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Chern-Simons levels of the gauge fields Aµ and Âµ, respectively. The matter fields

comprise four complex scalars φA and four fermions ψαA, where A = 1, . . . , 4 is a

SU(4) R-symmetry index and α = 1, 2 is a spin index. The fields (φA)ij̄ and (ψαA)ij̄

transform in the bifundamental representation (N, N̄) of the gauge group, while (φ̄A)īj

and (ψ̄Aα )īj transform in the (N̄ ,N), with i, j̄ = 1, . . . , N . An interesting variant of

ABJM is the so-called ABJ theory, i.e. N = 6 Chern-Simons theory with gauge

group Uk(N) × U−k(N
′). In this case i = 1, . . . , N , j̄ = 1, . . . , N ′. Note that in the

ABJ(M) theory the gauge fields are non-dynamical because of the topological nature

of the Chern-Simons action, and hence they cannot appear as external states.

The momenta of the particles can be written efficiently in the three-dimensional

spinor helicity formalism as

pαβ := λαλβ , (4.2.1)

where λα are commuting spinors (Appendix B.1 provides further details on spinors

in the present setup). The states of the ABJM theory can be packaged into two Nair

superfields [26,45],

Φ(λ, η) = φ4(λ) + ηAψA(λ) +
1

2
εABCη

AηBφC(λ) +
1

3!
εABCη

AηBηCψ4(λ) , (4.2.2)

Φ̄(λ, η) = ψ̄4(λ) + ηAφ̄A(λ) +
1

2
εABCη

AηBψ̄C(λ) +
1

3!
εABCη

AηBηC φ̄4(λ) , (4.2.3)

where ηA, A = 1, 2, 3 are Grassmann coordinates parameterizing an N = 3 super-

space. The superfields Φ and Φ̄ carry color indices Φi
j̄ and Φ̄ī

j. Note that Φ is bosonic

while Φ̄ is fermionic. This description breaks the SU(4) R-symmetry of the theory

down to a manifest U(3).

Color-ordered partial amplitudes were introduced in [92], and we denote them as

A(Φ̄1,Φ2, . . . ,Φn). An important feature of ABJ(M) is that any amplitude with an

odd number of particles vanishes, as a simple consequence of gauge invariance. Invari-

ance under translations and supersymmetry transformations ensures that amplitudes

are proportional to δ(3)(P )δ(6)(Q), where QA
α and Pαβ are the total momentum and

supermomentum of n particles, respectively:

Pαβ :=
n∑
i=1

λi,αλi,β , QA
α :=

n∑
i=1

λi,αη
A
i . (4.2.4)
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`1

p1

p2p3

p4

Figure 4.1 The one-loop box function in (4.2.7).

The first non-vanishing amplitude of the theory occurs at four points, and is the basic

building block of higher-point amplitudes. At tree level it is given by the following

compact expression [93],

A(0)
4

(
1̄, 2, 3̄, 4

)
= i

δ(6)(Q)δ(3)(P )

〈1 2〉 〈2 3〉
. (4.2.5)

As usual, component amplitudes can be obtained by extracting the coefficient of the

appropriate monomial in the ηi variables. For instance, in order to pick the com-

ponent amplitude A
(
φ̄A(p1), φ4(p2), φ̄4(p3), φA(p4)

)
we need to expand the fermionic

delta function δ(6)(Q) and keep the term (η1)1(η2)0(η3)3(η4)2〈1 3〉〈3 4〉2.

The one-loop color-ordered four-point superamplitude† was constructed in [67],

and is equal to‡

A(1)(1̄, 2, 3̄, 4) = iA(0)(1̄, 2, 3̄, 4)N I(1, 2, 3, 4) , (4.2.6)

where sij = (pi + pj)
2. The one-loop integral I(1, 2, 3, 4) is defined by

I(1, 2, 3, 4) :=

ˆ
dD`

iπD/2
s12 Tr(` p1 p4) + `2 Tr(p1 p2 p4)

`2(`− p1)2(`− p1 − p2)2(`+ p4)2
, (4.2.7)

with D = 3− 2ε. Note that Tr(abc) = 2ε(a, b, c) := 2εµνρa
µbνcρ.

Explicit evaluation of the right-hand side of (4.2.6) shows that A(1)(1̄, 2, 3̄, 4) is

of O(ε), and hence vanishes in three dimensions [67]. This is consistent with the fact

that all one-loop amplitudes in ABJM can be expanded in terms of one-loop triangle
† Here, and in what follows, we use the normalization 1/(iπD/2) per loop. In [67], the normal-

ization is 1/(2π)D.
‡We suppress the Chern-Simons level k, which will be reinstated at the end of our two-loop

calculation.
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functions [71], as expected from dual conformal invariance. The vanishing of the

four-point amplitude then follows since one-mass (and two-mass) triangles vanish in

three dimensions. Very interestingly, the box function with the particular numerator

in (4.2.7) is also dual conformal invariant, as was demonstrated in [67] using a five-

dimensional embedding formalism. Furthermore, the expression for A(1)(1̄, 2, 3̄, 4)

given in (4.2.6) is correct to all orders in the dimensional regularization parameter

ε. In the following, the integrand of (4.2.7) will be a crucial ingredient in applying

unitarity at the integrand level.

4.2.2 Color ordering at tree level

As is well known from experience in N = 4 sYM, starting from two loops, cuts of

form factors receive contributions from non-planar amplitudes which are as leading

as those arising from the planar amplitudes (see for example [80,83]). For our present

purposes, we will need the complete (planar and non-planar) one-loop amplitude in

ABJM at four points. The complete tree amplitudes, denoted here by Ã, are given

by [63,92]

Ã(1̄, 2, . . . , n) =
∑
Pn

sgn(σ)A(0)
(
σ(1̄), σ(2), σ(3̄), . . . , σ(n)

) [
σ(1̄), σ(2), σ(3̄), . . . , σ(n)

]
,

(4.2.8)

where Pn := (Sn/2 × Sn/2)/Cn/2 are permutations of n sites that only mix even

(bosonic) and odd (fermionic) particles among themselves, modulo cyclic permuta-

tions by two sites. The function sgn(σ) is equal to −1 if σ involves an odd per-

mutation of the odd (fermionic) sites, and +1 otherwise. A(0)(1̄, 2, 3̄, . . . , n) are

color-ordered tree amplitudes, and we have also defined

[
1̄, 2, 3̄, . . . , n

]
:= δ ī1

ī2
δi2i3δ

ī3
ī4
· · · δini1 . (4.2.9)

For example, the n-point color-ordered amplitude under a cyclic permutation of their

arguments by two sites is

A(0)(3̄, . . . , n, 1̄, 2) = (−1)(n−2)/2A(0)(1̄, 2, 3̄, . . . , n) , (4.2.10)
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which reflects the fact that odd sides are fermionic and even sites are bosonic. This

marks another difference to the four dimensional color-ordered amplitude where the

amplitude (2.2.18) has a manifest cyclic symmetry. Furthermore, in all tree-level

Feynman diagrams, each external particle is connected to an antiparticle (and vice

versa) by a fundamental color line and to another by an anti-fundamental color line

as can be seen in Figure 4.2 [92]. This implies that a scattering process is non-

vanishing only if there is a matching number of particles and anti-particles, i.e. only

amplitudes with an even number of external particles are non-vanishing. This is

another difference compared to the four dimensional case where there is no such

constraint. For the superamplitude (4.2.5) the two-site cyclic property (4.2.10) is

ensured by momentum conservation. For example, in the 4-point case

A(0)
4

(
1̄, 2, 3̄, 4

)
= i

δ(6)(Q)δ(3)(P )

〈3 2〉 〈2 1〉

= i
δ(6)(Q)δ(3)(P )

−〈3 4〉 〈4 1〉

= −A(0)
4

(
3̄, 4, 1̄, 2

)
.

(4.2.11)

In the following we will just write
[
1, 2, · · · , n] without specifying if a particle is

barred (i.e. fermionic) or un-barred (bosonic), with the understanding that the first

entry in the bracket always represents a fermionic field.

As an example, consider the complete four-point amplitude at tree level. It

includes the two color structures [1, 2, 3, 4] and [1, 4, 3, 2] (see Figure 4.2) and is

given by the following expression:

Ã(0)(1̄, 2, 3̄, 4) = A(0)(1̄, 2, 3̄, 4)
([

1, 2, 3, 4
]
−
[
1, 4, 3, 2]

)
. (4.2.12)

We have also used that

A(0)(1̄, 2, 3̄, 4) = A(0)(3̄, 2, 1̄, 4) , (4.2.13)

a fact that follows from (4.2.5).
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1̄ 2

3̄4

1̄ 2

3̄4

Figure 4.2 The two possible color orderings [1, 2, 3, 4] and [1, 4, 3, 2] appearing in the
four-point tree-level amplitude (4.2.12).

4.2.3 Symmetry properties of amplitudes

It is useful to recall the following general relations for color-ordered amplitudes [71]:

A(l)(1̄, 2, 3̄ · · · , n) = (−)
n
2
−1A(l)(3̄, 4, · · · , 1̄, 2) , (4.2.14)

and

A(l)(1̄, 2, 3̄ · · · , n) = (−)
n(n−2)

8
+lA(l)(1̄, n, n− 1, n− 2, · · · , 3̄, 2) . (4.2.15)

It should be noted that complete amplitudes should behave under exchange of any

two particles as the spin-statistics theorem requires. In particular it is expected that

Ã(l)(1̄, 2, 3̄, 4) = −Ã(l)(3̄, 2, 1̄, 4) , (4.2.16)

at any loop order. This explains the presence of the crucial minus sign between the

two possible color structures in (4.2.12).

4.2.4 Dual Conformal Symmetry

The structure of the color ordered amplitude revealed some differences between the

three dimensional ABJM theory and the four dimensionalN = 4 sYM. An important

similarity however, is the dual conformal symmetry is a symmetry of both theories.

This was exploited in particular in [67] to construct an integral basis and calculate

the two-loop four-point amplitude. As a result, the authors were able to construct

the one-loop box function (4.2.7) which provides a starting point for the present

calculation.
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Dual conformal invariance was first studied in [94]. The first step is to define the

dual variables

xabi − xabi+1 = pabi , and θaiA − θai+1,A = qaiA , (4.2.17)

where q is supermomentum and x is not a coordinate in spacetime but in the so-

called dual space. Then, momentum and supermomentum δ-functions for a four-

point superamplitude become

δ(3)(P )δ(N )(Q)→ δ(3)(x1 − x5)δ(N )(θa1 − θa5). (4.2.18)

Next, in any spacetime dimension, the dual conformal inversion I[ ] is defined as

I[xµi ] =
xµi
x2
i

, I
[
|θiA〉ȧ

]
= 〈θiA|ḃ

xḃai
x2i
, (4.2.19)

I
[
[i|a
]

=
xȧbi
x2
i

|i]b I
[
|i〉ȧ
]

= 〈i|ḃ
xḃai+1

x2i+1
. (4.2.20)

These dual coordinates can be used directly to denote known quantities and invari-

ants, such as

x2
i,i+2 = si,i+1 = 〈i|i+ 1〉2 . (4.2.21)

Therefore the inversion of a three-dimensional angle bracket is

I[〈i|i+ 1〉] =
〈i|i+ 1〉√
x2
ix

2
i+2

. (4.2.22)

This can be applied directly to the four-point superamplitude (4.2.5) to give

I
[
A(0)

4

(
1̄, 2, 3̄, 4

)]
=
√
x2

1x
2
2x

2
3x

2
4 A

(0)
4

(
1̄, 2, 3̄, 4

)
. (4.2.23)

The structure for the n-point amplitude is actually the same [14]

I [An] =

(
n∏
i=1

√
x2
i

)
An , (4.2.24)

which shows that the tree-level superamplitudes in ABJM are dual conformal covari-

ant with a uniform inversion weight of 1/2 for each leg. Similarly in N = 4 sYM the

superamplitudes also transform covariantly albeit with a different inversion weight
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of 1 for each leg [94]. The combination of dual and ordinary superconformal sym-

metries forms an infinite dimensional Yangian algebra [92] which is similar to the

Yangian symmetry of the planar N = 4 sYM, a key feature of integrability.

Following the strategy of [95] of constructing dual conformal integrands in four

dimensions by using a six-dimensional formalism, the authors of [67] constructed

the one-loop box (4.2.7) now using a five-dimensional embedding formalism. The

authors show that although a scalar numerator would not allow for a dual conformal

integral of a four-point amplitude, it is possible to write a tensorial numerator that

satisfies this symmetry. In particular they write it a five-dimensional notation [67]

as

I1−L
4 =

ˆ
D3X5

4 ε(5, 1, 2, 3, 4)

X2
51X

2
52X

2
53X

2
54

, (4.2.25)

which in three dimensions is reduced to

I1−L
4 =

ˆ
d3x5

(2π)3

2x2
51εµνρx

µ
21x

ν
31x

ρ
41 + 2x2

31εµνρx
µ
51x

ν
21x

ρ
41

x2
15x

2
25x

2
35x

2
45

. (4.2.26)

This can be re-written in terms of momenta producing the box function (4.2.7).

4.3 One Loop Amplitude

4.3.1 Results

In this section we present our result for the complete four-point amplitude at one loop

in ABJM. As mentioned earlier, this amplitude will be needed in order to construct

the two-particle cuts of the two-loop form factor. The one-loop four-point amplitude

is given by the sum of a planar and non-planar contribution:

Ã(1)(1̄, 2, 3̄, 4) = A(1)
P (1̄, 2, 3̄, 4) + A(1)

NP(1̄, 2, 3̄, 4) , (4.3.1)

where

A(1)
P (1̄, 2, 3̄, 4) = iN A(0)(1̄, 2, 3̄, 4) I(1, 2, 3, 4)

([
1, 2, 3, 4] +

[
1, 4, 3, 2]

)
, (4.3.2)
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and

A(1)
NP(1̄, 2, 3̄, 4) =− 2 iA(0)(1̄, 2, 3̄, 4)

[(
I(1, 2, 3, 4)− I(4, 2, 3, 1)

)
[1, 2][3, 4]

−
(
I(2, 3, 4, 1)− I(1, 3, 4, 2)

)
[1, 4][3, 2]

]
.

(4.3.3)

Note that the double-trace structure [1, 2] is

[1, 2] = δ ī1
ī2
δi2i1 . (4.3.4)

The complete one-loop amplitude can also be written in the following way,

Ã(1)(1̄, 2, 3̄, 4)

A(0)(1̄, 2, 3̄, 4)
= i
{
I(1, 2, 3, 4)

[
N
(
[1, 2, 3, 4] + [1, 4, 3, 2]

)
− 2[1, 2][3, 4]− 2[1, 4][3, 2]

]
+ 2
[
I(4, 2, 3, 1)[1, 2][3, 4]− I(1, 3, 4, 2)[1, 4][3, 2]

]}
. (4.3.5)

4.3.2 Symmetry properties of the one-loop amplitude

Before discussing the derivation of (4.3.1), it is instructive to prove that A(1)
P and

A(1)
NP are antisymmetric under the swap 1̄ ↔ 3̄ (see (4.2.16)). In order to show this

one needs to use (4.2.13) and the following relations satisfied by the one-loop box

(4.2.7):

I(a, b, c, d) = − I(b, c, d, a) , I(a, b, c, d) = −I(c, b, a, d) . (4.3.6)

These relations state that by cyclically shifting the labels of the external legs of

the box function (4.2.7) by one unit one picks a minus sign; and similarly if one

swaps two non-adjacent legs. Both relations are straightforward to prove using the

definition (4.2.7) of the box function. One then finds,

I(3, 2, 1, 4)− I(4, 2, 1, 3) = I(2, 3, 4, 1)− I(1, 3, 4, 2) ,

I(2, 1, 4, 3)− I(3, 1, 4, 2) = I(1, 2, 3, 4)− I(4, 2, 3, 1) . (4.3.7)

Using (4.3.7) we get

A(1)
P (1̄, 2, 3̄, 4) = −A(1)

P (3̄, 2, 1̄, 4) ,

A(1)
NP(1̄, 2, 3̄, 4) = −A(1)

NP(3̄, 2, 1̄, 4) . (4.3.8)
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Notice the presence of a minus sign between the two non-planar color structure

[1, 2][3, 4] and [1, 4][3, 2] appearing in the non-planar one-loop amplitude (4.3.3).

4.3.3 One-loop Amplitude

We now briefly outline the strategy for the derivation of the complete one-loop am-

plitude (4.3.1), which is very similar to that in N = 4 sYM, see for example [96].

We consider the two-particle cuts of the complete one-loop amplitude, which are

obtained by merging two tree-level amplitudes summed over all possible color struc-

tures and internal particle species. We will see that each cut can be re-expressed

in terms of cuts of sums of box functions (4.2.7). The sum over internal species is

(partially) performed via an integration over the Grassmann variables η`1 and η`2

associated to the cut momenta. If one of the particles crossing is bosonic and the

other is fermionic we also have to add to this the same expression with `1 ↔ `2 –

this is necessary only for the s- and t-cuts. For instance, the s-cut integrand of the

one-loop amplitude is§

Ã(1)(1̄, 2, 3̄, 4)|s−cut =
1

2

ˆ
d3η`1d

3η`2Ã(0)(1̄, 2,−¯̀
2,−`1)× Ã(0)(3̄, 4, ¯̀

1, `2) + `1 ↔ `2 .

(4.3.9)

The one-loop amplitude has cuts in the s-, t- and u-channels, for which we find the

following integrands:

Ã(1)(1̄, 2, 3̄, 4)|s−cut =
i

2
A(0)(1̄, 2, 3̄, 4) cs S12I(1, 2, 3, 4)|s−cut ,

Ã(1)(1̄, 2, 3̄, 4)|t−cut =
i

2
A(0)(1̄, 2, 3̄, 4) ct S23I(1, 2, 3, 4)|t−cut ,

Ã(1)(1̄, 2, 3̄, 4)|u−cut =
i

2
A(0)(1̄, 2, 3̄, 4) cu S13I(3, 1, 2, 4)|u−cut , (4.3.10)

§For convenience we include here a factor of 1
2 in the definition of the (symmetrized) cuts.

In practice it means that we take the average of the two contributions in the s- and t-cuts, and
multiply the u-cut with a symmetry factor as two identical (super)particles cross the cut.
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where the color factors cs, ct, cu are

cs = N [1, 2, 3, 4] +N [1, 4, 3, 2]− 2[1, 2][3, 4] ,

ct = N [1, 2, 3, 4] +N [1, 4, 3, 2]− 2[1, 4][3, 2] ,

cu = 2[1, 2][3, 4]− 2[1, 4][3, 2] , (4.3.11)

which are the result of the contractions of the color factors of the tree subamplitudes

written in the form of (4.2.12). Recall that by A(0)(1̄, 2, 3̄, 4) we denote the color-

ordered four-point amplitude. Furthermore, by SabI(a, b, c, d)|sab−cut, we indicate the

sab-cut of the one-loop box function I(a, b, c, d) in (4.2.7), symmetrized in the cut

loop momenta `1 and `2, which are defined such that `1 + `2 = pa + pb,

S12I(1, 2, 3, 4)|s−cut =
sTr(`1p1p4)

(`1 − p1)2(`1 + p4)2
+ `1 ↔ `2 ,

S23I(1, 2, 3, 4)|t−cut =
(−t)Tr(`1p1p2)

(`1 − p1)2(`1 + p2)2
+ `1 ↔ `2 ,

S13I(3, 1, 2, 4)|u−cut =
uTr(`2p3p4)

(`2 − p3)2(`2 + p4)2
+ `1 ↔ `2 . (4.3.12)

It is important to stress here that despite the simplified notation, the cut momenta

`1 and `2 are different for the three distinct channels under considerations. For

instance, `1 + `2 = p1 + p2 for the s-cut, while `1 + `2 = p2 + p3 in the t-cut and

`1 + `2 = p1 +p3 in the u-cut. Recall that the symmetrization in the cut momenta in

the s- and t-channel coefficients originates from summing over all possible particle

species that can propagate on the cut legs, while in the u cut there is a single

configuration allowed, and the result turns out to be automatically symmetric in `1

and `2. Explicit derivations of the cuts for each kinematic channel can be found in

Appendix B.3.

Next the cuts are merged into box functions. For the planar structures [1, 2, 3, 4]

and [1, 4, 3, 2] this is immediate as the only function consistent with the s- and t-

cuts in (4.3.10) and vanishing u-cut is I(1, 2, 3, 4). Hence, the corresponding planar

amplitude is

iA(0)(1̄, 2, 3̄, 4) N
(
[1, 2, 3, 4] + [1, 4, 3, 2]

)
I(1, 2, 3, 4) , (4.3.13)
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thus arriving at the expression (4.3.2) for the planar part of the full one-loop ampli-

tude.¶ For the non-planar terms [1, 2][3, 4] and [1, 4][3, 2] it is necessary to use the

results of Appendix B.4.2 and in particular (B.4.13), which is reproduced here,

SabI(a, b, c, d)|sab−cut = SabI(a, b, d, c)|sab−cut . (4.3.14)

Firstly, note that an immediate consequence of this result is that

S23I(2, 3, 4, 1)|t−cut − S23I(2, 3, 1, 4)|t−cut = 0 , (4.3.15)

in other words the combination I(2, 3, 4, 1) − I(2, 3, 1, 4), symmetrized in the loop

momenta `1 and `2, with `1 + `2 = p2 + p3, has a vanishing t-channel cut as ex-

pected for the coefficient of the [1, 2][3, 4] color structure (see (4.3.11)). For the same

combination we find, using I(2, 3, 4, 1) = −I(1, 2, 3, 4), the symmetrized s-cut

− S12I(1, 2, 3, 4)|s−cut , (4.3.16)

and similarly, for the symmetrized u-cut we obtain

S13I(3, 1, 4, 2)|u−cut = S13I(3, 1, 2, 4)|u−cut , (4.3.17)

where we have used I(2, 3, 1, 4) = −I(3, 1, 4, 2) and (B.4.13), which allows us to swap

the last two legs on the symmetrized u-cut. Comparing with (4.3.10) and (4.3.11)

we can uniquely fix the coefficient of the non-planar structure [1, 2][3, 4]:

2 iA(0)(1̄, 2, 3̄, 4) [1, 2][3, 4]
[
I(2, 3, 4, 1)− I(2, 3, 1, 4)

]
, (4.3.18)

or, using the first relation of (4.3.6),

− 2 iA(0)(1̄, 2, 3̄, 4) [1, 2][3, 4]
[
I(1, 2, 3, 4)− I(4, 2, 3, 1)

]
. (4.3.19)

One can proceed similarly for the coefficient of the other non-planar structure [1, 4][3, 2],

arriving at the result quoted earlier in (4.3.3). Note that in that result we use the

freedom to rename loop momenta in order to eliminate the various symmetrizations

introduced by the operation Sab above.
¶Note that at the level of the integral we can simply replace S12I(1, 2, 3, 4) by 2 I(1, 2, 3, 4).
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4.4 The Sudakov form factor at one and two loops

We now move on to the form factors of gauge-invariant, single-trace scalar operators

O = Tr
(
φA1φ̄B1φ

A2φ̄B2 . . . φ
ALφ̄BL

)
χB1...BL
A1...AL

, (4.4.1)

where A and B are indices of the 4 and 4̄ representation of the R-symmetry group

SU(4). The operators (4.4.1) are half BPS if χ is a symmetric traceless tensor in all

the Ai and Bi indices separately (see for example [61, 62]). For L = 2, the relevant

operator is‖

OAB = Tr

(
φAφ̄B −

δAB
4
φK φ̄K

)
. (4.4.2)

In the rest of the paper we will focus on the Sudakov form factor

〈(φ̄A)ī1i1(p1) (φ4)i2
ī2

(p2)|Tr(φ̄Aφ
4)(0)|0〉 := [1, 2] F (q2) , (4.4.3)

where q := p1 + p2 and A 6= 4, and we recall that [1, 2] := δ ī1
ī2
δi2i1 . At tree level,

F (0)(q2) = 1 . (4.4.4)

We will now derive this quantity at one and two loops.

4.4.1 One-loop form factor in ABJM

At one loop it is possible to determine the integrand of the form factor from a single

unitarity cut in the q2 channel. As shown in Figure 4.3, on one side of the cut there

is the Sudakov form factor and on the other side the complete four-point amplitude,

both at tree level. The color-ordered tree amplitude is given in (4.2.5). Let us work

out the color factor first. It is given by

δ
ī`2
ī`1
δ
i`1
i`2

(δ ī1
ī2
δi2i`1

δ
ī`1
ī`2
δ
i`2
i1
− δ ī1

ī`2
δi2i1δ

ī`1
ī2
δ
i`2
i`1

) = (N ′ −N)δ ī1
ī2
δi2i1 . (4.4.5)

Obviously, the one-loop form factor vanishes identically in ABJM theory, because in

this case N ′ = N .
‖More details on half-BPS operators, as well as conventions are discussed in Appendix B.2.



4.4. The Sudakov form factor at one and two loops 98

F
q

φ4(p2)

φ̄A(p1)

`1

`2

Figure 4.3 The q2 cut of the Sudakov form factor. Note that the amplitude on the
right-hand side of the cut is summed over all possible color orderings.

We now consider the kinematic part. Since the operator is built solely out of

scalars, only the four-point scalar amplitude can appear in the cut. To match the

particles of the tree amplitude in Figure 4.3, we pick the (η1)1(η`1)
3(η`2)

2(η2)0 com-

ponent from the δ6(Q) to write the q2 cut of the one-loop form factor as:

δ(6)(Q)
∣∣
(η1)1(η`1 )3(η`2 )2(η2)0

〈1 2〉〈2 `1〉
=
〈`1 `2〉2〈1 `1〉
〈1 2〉〈2 `1〉

=
〈1 2〉〈1 `1〉
〈2 `1〉

= −Tr(`1p1p2)

2(`1 · p2)
, (4.4.6)

which can be immediately lifted to a full integral as it is the only possible cut of the

form factor. Thus we get,

F (1)(q2) = (N ′ −N)

ˆ
dD`1

iπD/2
Tr(`1p1p2)

`2
1 (`1 − p2)2(`1 − p1 − p2)2

. (4.4.7)

The integral in (4.4.7) is a linear triangle and is of O(ε). Hence, we conclude that the

one-loop Sudakov form factor in ABJ theory vanishes in strictly three dimensions.

Moreover, the three-dimensional integrand vanishes in ABJM theory but is non-

vanishing for N 6= N ′ and can (and does) participate in unitarity cuts at two loops

in ABJ theory. Note, that the vanishing of the one-loop form factors in ABJ(M) is

consistent with the infrared finiteness of one-loop amplitudes in ABJ(M).

4.4.2 Two-loop form factor in ABJM

Next, we come to the computation of the two-loop Sudakov form factor. In order to

construct an ansatz for its integrand we will make use of two-particle cuts, and fix

potential remaining ambiguities with various three-particle cuts described in detail

in this section.
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Three-particle cuts are very useful because they receive contributions from planar

as well as non-planar integral functions at the same time, and thus are particularly

constraining. A special feature of ABJM theory is that all amplitudes with an odd

number of external particles vanish and, as a consequence, all cuts involving such

amplitudes are identically zero [69]. In our case this observation will be important

for triple cuts, where three- and five-particle amplitudes would appear.

A particular type of such cuts, first considered in [69] in the context of loop

amplitudes in ABJM, involves three adjacent cut loop momenta meeting at a three-

point vertex. The vanishing of these cuts imposes strong constraints on the form of

the loop integrands. This will discussed and exploited later in this section, where

we will also make the intriguing observation that integral functions with numerators

satisfying such constraints are transcendental and free of certain unwanted infrared

divergences.

Two-particle cuts

We begin by considering the cut shown in Figure 4.4, which contains a tree-level

Sudakov form factor merged with the integrand of the complete one-loop, four-point

amplitude. The internal particle assignment is fixed and is determined by the par-

ticular operator we consider. The integrand of this cut is schematically given by

F (0)(¯̀
2, `1)[`2, `1] Ã(1)

(
φ̄A(p1), φ4(p2), φ̄4(−`1), φA(−`2)

)
, (4.4.8)

where we picked the relevant component amplitude of the complete one-loop am-

plitude Ã(1), given in (4.3.1), and we recall that the color factor [a, b] is defined in

(4.3.4).

The first step is to work out the color structures that will appear in the result.

Firstly consider the planar amplitude (4.3.2) and combine it with the part of the non-

planar amplitude (4.3.3) containing I(1, 2,−`1,−`2). Intriguingly, by contracting

this with the tree-level form factor (given in (4.4.3) and (4.4.4)) we obtain a vanishing
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result: (
N
(
[1, 2, `1, `2] + [1, `2, `1, 2]

)
− 2[1, 2][`1, `2]

)
[`2, `1] = (4.4.9)

N
(
δ ī1
ī2
δi2i`1

δ
ī`1
ī`2
δ
i`2
i1

+ δ ī1
ī`2
δ
i`2
i`1
δ
ī`1
ī2
δi2i1

)
δ
i`1
i`2
δ
ī`2
ī`1
− 2δ ī1

ī2
δi2i1δ

ī`1
ī`2
δ
i`2
i`1
δ
ī`1
ī`2
δ
i`2
i`1

= (4.4.10)

N2δ ī1
ī2
δi2i1 +N2δ ī1

ī2
δi2i1 − 2N2δ ī1

ī2
δi2i1 = 0 (4.4.11)

We now consider the remaining contributions arising from the non-planar one-loop

amplitude (4.3.3). There are two possible color contractions to consider,

c
(1)
NP := 2 [1, 2][`1, `2][`2, `1] = 2N2[1, 2] , (4.4.12)

and

c
(2)
NP := 2 [`1, 2][1, `2][`2, `1] = 2 [1, 2] . (4.4.13)

Note that (4.4.13) is subleading in the large N limit, and can be discarded in the

large-N limit.

F
q

φ4(p2)

φ̄A(p1)

`1

`2

Figure 4.4 Tree-level form factor glued to the complete one-loop amplitude.

We now need to determine the coefficient of c(1)
NP. On the two-particle cut `2

1 =

`2
2 = 0 its integrand is given by the appropriate component tree-level amplitude

(4.4.6) times a particular box integral (4.3.3):

C(NP)
1 |s−cut :=

1

2

〈12〉〈1`1〉
〈2`1〉

I(−`2, 2,−`1, 1) + `1 ↔ `2 . (4.4.14)

Recall that the expression must be symmetrized in order to include all particle species

in the sum over intermediate on-shell states. Since I(−`2, 2,−`1, 1) is antisymmetric



4.4. The Sudakov form factor at one and two loops 101

under `1 ↔ `2 the complete cut-integrand can be written as∗∗

C(NP)
1 |s−cut :=

1

2

(
〈12〉〈1`1〉
〈2`1〉

− 〈12〉〈1`2〉
〈2`2〉

)
I(−`2, 2,−`1, 1) (4.4.15)

= −1

2

ˆ
dD`3

iπD/2
q2
[
Tr (p1p2`1`3)− q2`2

3

]
`2

3 (`1 − `3)2(p1 − `3)2(`3 − `1 + p2)2
.

Summarizing, the two-particle cut indicates that the two-loop form factor is ex-

pressed in terms of a single crossed triangle with a particular numerator, represented

in Figure 4.5,

XT(q2) =

ˆ
dD`1d

D`3

(iπD/2)2

q2
[
Tr (p1p2`1`3)− q2`2

3

]
`2

1 `
2
2 `

2
3 (`1 − `3)2(p1 − `3)2(`3 − `1 + p2)2

, (4.4.16)

so that

C(NP)
1 = −1

2
XT(q2) . (4.4.17)

For future convenience we will define

xt :=
q2
[
Tr (p1p2`1`3)− q2`2

3

]
`2

1 `
2
2 `

2
3 (`1 − `3)2(p1 − `3)2(`3 − `1 + p2)2

. (4.4.18)

The result of the evaluation of XT(q2) is quoted in (4.4.27) and shows that this

quantity has maximal degree of transcendentality. Before evaluating XT(q2), we use

triple cuts in order to confirm the correctness of the ansatz obtained from two-particle

cuts.

`4

`3

`6

`1

`2

q

p1 p2

Figure 4.5 The crossed triangle integral arising from gluing a tree form factor with the
complete one-loop four-point amplitude. The arrow in the middle denotes the location
where the momentum q = p1 + p2 is injected. We call these integrals “crossed triangles”
because they have the topology of the master integral (B.5.28). Note however that the
latter integral is non-transcendental, while the particular numerator in (4.4.16) makes
this integral transcendental.

∗∗Similarly as done earlier for the complete one-loop amplitude, we include a factor of 1/2 in
the symmetrization.
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Three-vertex cuts

To confirm the uplift of the two-particle cut to the integral (4.4.16), we will study

additional cuts. We begin by focusing on three-point vertex cuts involving three

adjacent legs meeting at a three-point vertex. These cuts were first examined in

[69], where it was observed that they must vanish since there are no three-particle

amplitudes in ABJM theory. Calling k1, k2 and k3 the momenta meeting at the

vertex, we have

k1 + k2 + k3 = 0 , k2
1 = k2

2 = k2
3 = 0 . (4.4.19)

The conditions (4.4.19) imply that all spinors associated to these momenta are pro-

portional, thus

〈k1 k2〉 = 〈k2 k3〉 = 〈k3 k1〉 = 0 . (4.4.20)

As an example consider the three-point vertex cut of XT(q2) with momenta `2, `4

and `6 := `2 − `4 (see Figure 4.5 for the labeling of the momenta). Importantly, the

form factor is expected to vanish as the three momenta belonging to a three-point

vertex become null. By rewriting the numerator of (4.4.16) using only cut momenta,

it is immediately seen that it vanishes, since

Tr
[
p1p2(p1 − `2)(p1 − `6)

]
− q2(p1 − `6)2 = −Tr

[
p1p2(p1 − `2)`6

]
− q2(p1 − `6)2

= −Tr(p1p2p1`6) + 4(p1 · p2)(p1 · `6) = 0 , (4.4.21)

where the fact that 〈`2`6〉 = 0 was used to set Tr(p1p2`2`6) = 0. It is easy to see that

all other three-vertex cuts of the integral (4.4.16) vanish in a similar fashion because

of the particular form of its numerator.

Important consequences of these specific properties of the numerator of the in-

tegral function (4.4.16) are that the result is transcendental as we will show below

and is free of unphysical infrared divergences related to internal three-point ver-

tices. These divergences appear generically in three-dimensional two-loop integrals

with internal three-vertices even if the external kinematics is massive (unlike in four

dimensions) and it appears that master integrals with appropriate numerators to

cancel these peculiar infrared divergences are a preferred basis for amplitudes and
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form factors in ABJM. Related discussions in the context of ABJM amplitudes have

appeared in [69,97]. Note that for form factors we do not have dual conformal sym-

metry, which gives further constraints on the structure of the numerators of integral

functions appearing in amplitudes.

Three-particle cuts

The remaining cut we will study is a triple cut of the type illustrated in Figure 4.6.

These cuts may potentially detect additional integral functions which have no two-

particle cuts at all, and are thus very important. Moreover, such cuts are sensitive

to both planar and non-planar topologies. In this triple cut, a tree-level amplitude is

connected to a tree-level form factor by three cut propagators. Due to the vanishing

of amplitudes with an odd number of external legs in the ABJM theory, the triple cut

in question vanishes. We will now check that the triple cut of the two-loop crossed

triangle XT of (4.4.16), which we have detected using two-particle cuts, is indeed

equal to zero.

F
q

φA(p2)

φ̄4(p1)

= 0

Figure 4.6 The (vanishing) three-particle cut of the two-loop Sudakov form factor.

To this end, we note that there are two possible ways to perform a triple-cut on

XT, shown in Figures 4.7a and 4.7b. The cut loop momenta are called `2, `5 and `3

and satisfy

`2 + `5 + `3 = p1 + p2 , `2
2 = `2

5 = `2
3 = 0 . (4.4.22)

We observe that these two cuts cannot be converted into one another by a simple

relabeling of the cut momenta because of the non-trivial numerators. The A-cut
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depicted in Figure 4.7a of the non-planar integrand is:

XT
∣∣
3-p cut A = −q2 〈1 2〉

〈`3 `5〉〈`5 2〉〈1 `3〉
. (4.4.23)

After a similar calculation, the B-cut of this integral, depicted in Figure 4.7b, turns

out to be identical to the A-cut:

XT
∣∣
3-p cut B = XT

∣∣
3-p cut A = −q2 〈1 2〉

〈`3 `5〉〈`5 2〉〈1 `3〉
. (4.4.24)

A quick way to establish the vanishing of the triple cuts consists in symmetrizing in

the particle momenta p1 and p2, which is allowed since the Sudakov form factor is a

function of q2. This symmetrization gives

− q2〈1 2〉
〈`3 `5〉

[
1

〈`5 2〉〈1 `3〉
− 1

〈`5 1〉〈2 `3〉

]
= − q4

〈1|`5|2〉 〈1|`3|2〉
. (4.4.25)

This expression is symmetric in `5 and `3. In evaluating the triple cut one has to

introduce a Jacobian proportional to ε(`2, `3, `5) [69] which effectively makes this

triple cut vanish upon integration. This implies that the complete answer for the

two-loop form factor in ABJM is proportional XT(q2) and no additional integral

functions have to be introduced.

`3 `5

`2

q

p1 p2

(a) The A-cut.

`5`3

`2

qp1 p2

(b) The B-cut.

Figure 4.7 The two triple cuts of the crossed triangle, with `2 +`3 +`5 = q. In the second
figure we have relabeled the loop momenta in order to merge the two contributions.

Results and comparison to the two-loop amplitudes

Combining the information from the unitarity cuts discussed above, we conclude that

the two-loop Sudakov form factor in ABJM is given by a single non-planar integral

FABJM(q2) = −2

(
N

k

)2(
−1

2

)
XT(q2) , (4.4.26)



4.4. The Sudakov form factor at one and two loops 105

where XT(q2) is defined in (4.4.16) and we have reintroduced the dependence on the

Chern-Simons level k. The integral XT(q2) can be computed by reduction to mas-

ter integrals using integration by parts identities. The details of the reductions are

provided in Appendix B.5. The expansion of the result in the dimensional regular-

ization parameter ε can then be found using the expressions for the master integrals

(B.5.25)–(B.5.28). Plugging these masters into the reduction (B.5.29), we arrive at

XT(q2) =

(
−q2eγE

µ2

)−2ε [
π

ε2
+

2π log 2

ε
− 4π log2 2− 2π3

3
+O(ε)

]
, (4.4.27)

where γE is the Euler-Mascheroni constant. One comment is in order here. We have

derived (4.4.27) in a normalization where the loop integration measure is written as

dD`(iπD/2). This should be converted to the standard one dD`(2π)D. At two loops,

this implies that (4.4.27) has to be multiplied by a factor of −1/(4π)D. The result

in the standard normalization is then

FABJM(q2) = − 1

(4π)3

(
N

k

)2(−q2eγE

4πµ2

)−2ε [
π

ε2
+

2π log 2

ε
− 4π log2 2− 2π3

3
+O(ε)

]
.

(4.4.28)

We note that F(q2) can be expressed more compactly by introducing a new scale

µ′
2

:= 8π e−γEµ2 , (4.4.29)

in terms of which we get

FABJM(q2) =
1

64π2

(
N

k

)2(−q2

µ′2

)−2ε [
− 1

ε2
+ 6 log2 2 +

2π2

3
+ O(ε)

]
, (4.4.30)

which is our final result.

We now discuss two consistency checks that confirm the correctness of (4.4.30).

Firstly, we recall that the Sudakov form factor captures the infrared divergences of

scattering amplitudes. We now check that (4.4.30) matches the infrared poles of

the four-point amplitude evaluated in [67,68]. Here we quote its expression as given

in [68]:

A(2)
4 = − 1

16π2
A(0)

4

[
(−s/µ′2)−2ε

4ε2
+

(−t/µ′2)−2ε

4ε2
− 1

2
log2

(
−s
−t

)
− 4ζ2 − 3 log2 2

]
,

(4.4.31)



4.5. Maximally transcendental integrals in 3d 106

where µ′ is related to µ in the same way as in (4.4.29). Hence, the Sudakov form

factor (4.4.30) is in perfect agreement with the form of the infrared divergences of

(4.4.31). Secondly, we have also checked that the expansion of our result in terms of

master integrals (i.e. the expansion of the two-loop non-planar triangle XT defined

in (4.4.16)) is identical to that obtained from the Feynman diagram based result

of [98]. This implies that the cut-based calculation of this paper and the Feynman

diagram calculation of [98] agree to all orders in ε – even though we have been using

cuts in strictly three dimensions.

4.5 Maximally transcendental integrals in 3d

As discussed in Section 4.4.2, the integrand xt – that appears in the Sudakov form

factor in ABJM – has a particular numerator such that all the cuts which isolate a

three-point vertex vanish. This property ensures that the integral XT has a uniform

(and maximal) degree of transcendentality††. Failure to obey the triple-cut condition,

for instance by altering the form of the numerator, would result in the appearance

of new terms with lower degree of transcendentality. An extreme case is when the

numerator is set to one, resulting in a scalar double triangle integral sLT. Clearly,

this numerator cannot satisfy the vanishing of the three-vertex cut condition. The

pole structure of this integral takes the form:

sLT(q2) ∼ −3π

2ε
+ π(−8− 9γE + 6 log 2) +O(ε) , (4.5.1)

which has neither a uniform nor maximal degree of transcendentality. Further details

on the evaluation of Mellin-Barnes integrals are provided in Section B.5.3.

In this section, we present further integrals that vanish in these three-particle

cuts and have maximal degree of transcendentality. These integrals are expected to

appear in the form factor of ABJ theory where cancellations between color factors

such as that in (4.4.9), do not occur.
††It is noted here that π and the logarithm have a transcendental degree of 1 while ε has an

assigned degree of −1.
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Thus, when color factors are ignored, the cut that will provide the planar contri-

bution contains the tree level Sudakov form factor and the integrand of the one-loop,

four-point scattering amplitude as shown in Figure 4.4. There is a fixed internal par-

ticle configuration due to the operator inside the form factor. Using the relevant

component of the one-loop superamplitude integrand (as derived in [67]):

A
(
(p1)φ̄A , (p2)φ4 , (−`1)φ̄4 , (−`2)φA

)
=

〈1`1〉〈`1`2〉
〈1`2〉

2(`3 − p2)2ε(p1, `2, p2) + 2s2`1ε(`3, 1, 2)

(`3 − p2)2(`3 − p2 − p1)2(`3 − `1)2`2
3

(4.5.2)

where `3 is the loop momentum for the one-loop amplitude and as before ε(a, b, c) :=

εµνρa
µbνcρ. The tree-level Sudakov form factor is normalized to 1, therefore the

amplitude integrand alone constitutes the cut of the form factor.

In order to promote the cut expression to an integrand, the spinor-index traces are

rearranged in the numerator to cancel the factor of 〈1`2〉. Then, the cut propagators
1
`21

and 1
`22

are introduced, with `2 = q − `1, to get:

−Tr(p1`3p2`1) + (`1 − p1)2(`3 − p2)2

`2
1 (p1 + p2 − `1)2 `2

3 (p1 + p2 − `3)2(`1 − `3)2(`3 − p2)2
. (4.5.3)

This yields the following planar integral function

LT(q2) =

ˆ
dD`1d

D`3

(iπD/2)2

−q2 [ Tr(p1 `3 p2 `1)− (`1 − p1)2(`3 − p2)2]

`2
1 (p1 + p2 − `1)2 `2

3 (p1 + p2 − `3)2(`1 − `3)2(`3 − p2)2

=

(
−q2eγE

µ2

)−2ε [
− π

4ε2
− π log 2

ε
+ 2π log2 2− 5π3

8
+O(ε)

]
,

(4.5.4)

which is shown in Figure 4.8a. It is easy to see that the three vertex cut {`1, `3, `5}

vanishes, since on this cut the numerator can be placed in the form

〈`1 1〉〈`3 2〉〈1 2〉〈`3 `1〉 , (4.5.5)

after using a Schouten identity. The numerator (4.5.5) vanishes because 〈`3 `1〉 = 0

on this cut.

A further property of (4.5.4) emerges when we consider particular triple cuts

involving two adjacent massless legs, which in three dimensions are associated with
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q

`1

`4 `3

`5

`6
p1 p2

(a) The LT topology

q

`1

`3

`5

p1 p2

(b) The CT topology

q

`1 `3

`5
p1 p2

(c) The FAN topology

Figure 4.8 The three maximally transcendental integrals considered in (4.5.4), (4.5.9)
and (4.5.11).

soft gluon exchange [69]. With reference to Figure 4.8a, we cut the three momenta

`3, `6 and `4. The cut conditions `2
3 = `2

6 = `2
4 = 0 together with the masslessness of

p1 and p2 can only be satisfied if `6 becomes soft, that is

`6 → 0 , `4 → p1 , `3 → p2 . (4.5.6)

In this limit, the second term of (4.5.4) vanishes since `3 − p2 = `6 → 0. The first

term becomes

−q2 Tr(p1 `3 p2 `1)

8ε(`3, p1, p2)
→ −q2 〈2|`1|1〉

4〈12〉
, (4.5.7)

where 8ε(`3, p1, p2) is the Jacobian‡‡. After restoring the remaining propagators we

are left with

2ε(`1, p1, p2)

`2
1(`1 − p2)2(q − `1)2

, (4.5.8)

which reproduces the one-loop integrand of the one-loop form factor, given earlier in

(4.4.7).

Other examples of integrals with different topologies that satisfy the three-particle

cut condition are depicted in Figures 4.8b and 4.8c. The definitions of the integrals
‡‡This Jacobian arises from re-writing the δ-functions of the cut momenta, `23 = `24 = `26 = 0, in

terms of p1, p2 and `6.
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as well as their values are listed below:

CT(q2) =

ˆ
dD`1d

D`3

(iπD/2)2

Tr(p1, p2, `3, `1)

`2
1 (p1 + p2 − `1)2 `2

3 (`1 − `3)2 (`3 − p2)2
(4.5.9)

=

(
−q2eγE

µ2

)−2ε [
− π

4ε2
+

7π3

24
+O(ε)

]
, (4.5.10)

FAN(q2) =

ˆ
dD`1d

D`3

(iπD/2)2

Tr(p1, p2, `3, `1)

`2
1 `

2
3 (p1 + p2 − `1 − `3)2 (`1 − p1)2 (`3 − p2)2

(4.5.11)

=

(
−q2eγE

µ2

)−2ε [
− π

4ε2
+

7π3

24
+O(ε)

]
. (4.5.12)

Note that the ε expansion of (4.5.9) and (4.5.11) agree up to O(1). It is simple

to show that these integrals satisfy the properties discussed earlier, for example by

setting {`1, `3, `5} on shell in CT and {`1, p1, `5} in FAN and similarly for all other

possible three-vertex cuts.

The reductions of the integrals considered in this section in terms of scalar master

integrals through IBP identities can be found in Appendix B.5.



5 Concluding remarks

This thesis demonstrates how a spinor helicity formalism combined with unitarity

can be used as an effective framework for performing calculations in various super-

symmetric theories. The examples used are based on [15, 16] where unitarity was

employed to perform calculations at one and two loops.

While standard field theory provides a recipe for safely performing blind calcula-

tions, when the inherent properties of amplitudes are ignored by the Feynman rules,

the benefit of immense simplifications of the calculations is relinquished. In order to

depart from the standard field theory routine of describing fundamental interactions,

the thesis also investigates how group theory structure alone affects the form of the

amplitudes. This is presented in Chapter 2 for the well studied N = 4 case in the

literature and also in six dimensions in Chapter 3 which relies on the study of [13].

A few of the most essential tools for performing calculations, such as recursion

relations and generalized unitarity are thoroughly reviewed in Chapter 2. The scope

was to present the techniques that have proved fruitful in attacking calculations as

well as unraveling new structures in perturbative field theory in four dimensions.

Along these lines, the results presented support the notion that the spinor-helicity

formalism combined with supersymmetry and unitarity are not merely a computa-

tional trick, but indeed a way of representing and describing certain physical prop-

erties in the most natural available form. This is amplified by developments over the

recent years, which suggest that this framework is indeed exceptional in discovering

new dualities, symmetries and structures (for example: [6, 7, 25,99]).

After the ground is laid, Chapters 3 and 4 focus on the application of unitarity
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methods for performing calculations in six and three dimensions respectively. In

particular, in Chapter 3, following a review on the spinor helicity formalism in six

dimensions, superamplitudes with three, four and five external states are constructed

and calculated at one loop. An intriguing fact is that the concepts and strategies

already developed in four dimensions were successfully applied in the maximally

supersymmetric N = (1, 1) six-dimensional theory. An intrinsic difference between

the two cases is the fact that the N = (1, 1) sYM theory has non-chiral superspace.

This immediately complicates the construction of superamplitudes. However, the

explicit transformation of the particle states under the SU(2) × SU(2) little group

reinstates some appealing structure in the form of the superamplitudes. Then, double

and quadruple cuts are considered for one-loop superamplitudes with four and five

external states. The most interesting case is the five-point one since it is expressed

in terms of a linear pentagon integral function in six dimensions.

Finally, in Chapter 4 the calculation of Sudakov form factors in ABJM theory

at two loops [16] is presented. Here, a similar pattern emerges. The structure of

superamplitudes is strikingly similar to that of the N = 4 sYM case. In particular,

dual conformal symmetry [60], integrability, [61–63], duality with Wilson loops at

four points [64–66], uniform transcendentality of the two-loop four-point [67,68] and

six-point amplitude [69], color-kinematics duality [70] have made their appearance

in both theories. The broad aim of this study was to further explore the similarities

between ABJM and N = 4 sYM. The result of the two-loop calculation captures the

infrared divergences of scattering amplitudes and yields perfect agreement with the

form of divergences of the two-loop four-point amplitude.
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A Calculations for

Six-Dimensional

Superamplitudes

In the present appendix there are several details concerning derivations and calcu-

lations used in several steps in the context of six-dimensional unitarity application.

The first part lays the conventions and then an explicit proof of supersymmetry

invariance of the three-point superamplitude for the six-dimensional (1, 1) sYM the-

ory is presented. Several spinor manipulations in six dimensions are discussed as

the PV reduction of the linear pentagon that appeared in the one-loop five-point

superamplitude.

A.1 Notation and conventions

In this appendix we collect some details on our normalizations and conventions.

The total antisymmetric SU(2)-invariant tensors are given by

εab =

 0 −1

1 0

 , εab =

 0 1

−1 0

 . (A.1.1)

The Grassmann integration measure is defined as d2η = (1/2)dηadηa = dη2dη1, such

that
ˆ
d2η

[
λAaηa λ

Bbηb
]

= −
(
λAaλBa

)
. (A.1.2)
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The Clebsch-Gordan symbols are normalized as

σ̃ABµ :=
1

2
εABCD σµ,CD , (A.1.3)

with

Tr(σµσ̃ν) = 4 ηµν . (A.1.4)

Using these relations, the scalar product of two vectors p and q can equivalently be

expressed as

p · q = −1

4
pABqAB = −1

8
εABCDp

ABqCD , (A.1.5)

where pAB := pµσ̃ABµ and pAB := pµσµ,AB.

Momentum conservation for three-point amplitudes implies that pi · pj = 0, i, j =

1, 2, 3. In six dimensions, this condition is equivalent to [13]

det〈i|j]aȧ = 0 (A.1.6)

where λAiaλ̃jAȧ := 〈ia|jȧ] and we used pABi = λAiaλ
Ba
i and piAB = λ̃ȧiAλ̃iBȧ. Hence,

(A.1.6) allows to recast the matrix 〈ia|jȧ] as a product of two spinors, as [13]

〈ia|jḃ] = (−)Pijuiaũjḃ , (A.1.7)

where we choose (−)Pij = +1 for (i, j) = (1, 2), (2, 3), (3, 1), and −1 for (i, j) =

(2, 1), (3, 2), (1, 3).

A.2 Supersymmetry invariance of the three-point

superamplitudes

Here we provide an explicit proof of the fact that the three-point superamplitude

(3.3.8) is supersymmetric. We choose to decompose each variable ηi as

ηai = uai η
‖
i + wai η

⊥
i , (A.2.1)

which is a convenient choice since uaiwia = 1. We also notice that, using this de-

composition, we can recast the quantities W and W̃ defined in (3.3.10) entering the
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expression of the three-point superamplitude, as

W =
3∑
i=1

η
‖
i , W̃ =

3∑
i=1

η̃
‖
i . (A.2.2)

The supersymmetry generators can then be written as

QA =
∑
i

λAai uiaη
‖
i +

∑
i

λAai wiaη
⊥
i . (A.2.3)

A direct consequence of six-dimensional momentum conservation is the fact that

the quantities λAai uia are i-independent, therefore we can rewrite (A.2.3) in several

equivalent ways, one of which is

QA = (λAa1 u1a)W + (λAa1 w1a)(η
⊥
2 − η⊥1 ) + (λAa2 w2a)(η

⊥
3 − η⊥1 ) , (A.2.4)

where W is given in (A.2.2), and the constraint on the w’s (3.3.3) is used. Using

the decomposition (A.2.4) it is very easy to prove that QAA3 = 0. To this end, we

first observe that the presence of a factor δ(W )δ(W̃ ) in (3.3.8) effectively removes

the first term from the expression of (A.2.4), and we are left to prove that QA
⊥ :=

(λAa1 w1a)(η
⊥
2 − η⊥1 ) + (λAa2 w2a)(η

⊥
3 − η⊥1 ) annihilates the amplitude. Specifically, we

will show that

QA
⊥

[
δ(QA)δ(Q̃A)

]2

= 0 . (A.2.5)

To begin with, we observe that

δ(QA)δ(Q̃A) =
3∑

i,j=1

〈ia|jȧ]ηai η̃ȧj =
3∑

i,j=1

(−)Pijuiaũjȧ(1− δij)ηai η̃ȧj

=
3∑

i,j=1

(−)Pij(1− δij)η⊥i η̃⊥j

= η⊥1 η̃
⊥
2 − η⊥1 η̃⊥3 − η⊥2 η̃⊥1 + η⊥2 η̃

⊥
3 + η⊥3 η̃

⊥
1 − η⊥3 η̃⊥2 , (A.2.6)

where we have used (A.1.7). Using (A.2.6), one then finds (we drop the superscript

⊥ in the following)[
δ(QA)δ(Q̃A)

]2

=− η1η̃2η2η̃1 + η1η̃2η2η̃3 + η1η̃2η3η̃1 + η1η̃3η2η̃1 − η1η̃3η3η̃1 + η1η̃3η3η̃2

− η2η̃1η1η̃2 + η2η̃1η1η̃3 + η2η̃1η3η̃2 + η2η̃3η1η̃2 + η2η̃3η3η̃1 − η2η̃3η3η̃2

+ η3η̃1η1η̃2 − η3η̃1η1η̃3 + η3η̃1η2η̃3 + η3η̃2η1η̃3 + η3η̃2η2η̃1 − η3η̃2η2η̃3 .

(A.2.7)
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Next, we calculate

η1

[
δ(QA)δ(Q̃A)

]2

= 2η1η2η3(η̃1η̃3 − η̃1η̃2 − η̃2η̃3) , (A.2.8)

and furthermore we find that

η2

[
δ(QA)δ(Q̃A)

]2

= η3

[
δ(QA)δ(Q̃A)

]2

= η1

[
δ(QA)δ(Q̃A)

]2

. (A.2.9)

Inspecting the form of QA in (A.2.4) and using (A.2.9), we conclude that (A.2.5)

holds, and therefore the three-point superamplitude is invariant under supersymme-

try.

A.3 Useful spinor identities in six dimensions

In this appendix we collect identities between six-dimensional spinor variables that

we have frequently used in the calculations presented in this paper.

We begin by quickly stating two basic relations for three-point spinors ui,a and

wi,a. For a general three-point amplitude in six dimensions we have [13]

uai |ia〉 = ubj|jb〉 , ũȧi |iȧ] = ũḃj|jḃ] . (A.3.1)

We also have the constraints (3.3.3) on the w’s and their w̃ counterparts, which are

essentially a consequence of momentum conservation.

Next, we make use of relations between two three-point amplitudes, connected

by an internal propagator, just as in the BCFW construction of the four-point am-

plitude. We give a pictorial representation of this in Figure A.1. We have defined

the internal momenta ` and `′ to be incoming for the three-point amplitudes, giving

the relation `′ = −`. Since six-dimensional momenta are products of two spinors we

can define

|`′i〉 = i|`i〉 , |`i〉 = (−i)|`′i〉 , (A.3.2)

and similarly for λ̃-spinors. Also note that we can normalize the spinors ua, wb of one

three-point subamplitudes in Figure A.1 such that they are related to the spinors of
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1̂

4 3

2̂

`′ `

Figure A.1 The recursive construction of a four-point tree-level amplitude. The shifted
legs are 1 and 2 and we have `′ = −` for the internal propagator.

the other subamplitude, yielding (see Appendix A.3.2)

w`′ia =
u`ia√
−s

, w`ia = −
u`′ia√
−s

. (A.3.3)

Similar expressions hold for the spinors ũȧ, w̃ḃ. In the following we will be discussing

several relations in the cases of the four- and five-point amplitudes.

A.3.1 Product of two u-spinors

In the calculation of the five-point cut-expression we encounter u-spinors belonging

to the same external state and would like to remove them from the expression.

Consider the object uiaũiȧ with states pi and pj belonging to the same three-point

amplitude. We can write [21]

uiaũiȧ = uiaũiḃδ
ḃ
ȧ = uiaũiḃ

〈Pb|iḃ]
〈Pb|iȧ]

= uiaũiḃ〈Pb|i
ḃ]〈Pb|iȧ]−1 = uiaũiḃ[i

ḃ|Pb〉〈P b|iȧ]
1

siP

= uiaũjḃ[j
ḃ|Pb〉〈P b|iȧ]

1

siP
= (−)Pij〈ia|jḃ][j

ḃ|Pb〉〈P b|iȧ]
1

siP

=
(−)Pij

siP
〈ia|p̂j p̂P |iȧ] , (A.3.4)

where we have (−)Pij = +1 for clockwise ordering of the states (i, j) for the three-

point amplitude. Also, P is an arbitrary momentum. By the same series of manip-
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ulations we can show that

uiaũiȧ = uibũiȧδ
b
a =

(−)Pji

siP
〈ia|p̂P p̂j|iȧ] . (A.3.5)

Note that the difference between (A.3.4) and (A.3.5) is just a sign since (−)Pji =

−(−)Pji .

A.3.2 The relation w` · w`′ w̃` · w̃`′ = −s−1
ij

Here we provide an expression for the contraction between w- and w̃-spinors of two

three-point amplitudes, connected by an internal propagator, originally encountered

in the recursive calculation of the four-point tree amplitude in [13].

We start with expression A.3.4 and choose i = 1, j = 4 and P = 2, following

Figure A.1. This yields

u1aũ1ȧs1̂2̂ = −〈1̂a|p̂4p̂2̂|1̂ȧ] . (A.3.6)

However, we can also write

〈1̂a|p̂4p̂2̂|1̂ȧ] = −u1̂aũ
ḋ
4[4ḋ|2̂

b〉〈2̂b|1̂ȧ] = −u1̂aũ
ḋ
`′ [l
′
ḋ
|2̂b〉〈2̂b|1̂ȧ]

= (−i)u1̂aũ
ḋ
`′ [`ḋ|2̂

b〉〈2̂b|1̂ȧ] = iu1̂aũ
ḋ
`′ũ`ḋu

b
2̂
〈2̂b|1̂ȧ]

= iu1̂aũ
ḋ
`′ũ`ḋu

b
`〈`b|1̂ȧ] = u1̂aũ

ḋ
`′ũ`ḋu

b
`〈`′b|1̂ȧ]

= −u1̂aũ
ḋ
`′ũ`ḋu

b
`u`′bũ1̂ȧ = −u1̂aũ1̂ȧũ`′ · ũ` u` · u`′ . (A.3.7)

Comparing (A.3.6) and (A.3.7) we conclude

ũ`′ · ũ` u`′ · u` = −s12 , (A.3.8)

since s1̂2̂ = s12. Now we express the contractions of u-spinors in terms of w-spinors.

As discussed in [13] we can deduce from (A.3.8) that

u` · w`′ = ũ` · w̃`′ = w` · u`′ = w̃` · ũ`′ = 0 , (A.3.9)

by using the redundancy of the w-spinors under a shift wla → w`a+b`u`a. Exploiting

the defining relation between a spinor u` and its inverse w` and multiplying by u`′,a

and w`′,b we have

ua`u`′,aw
b
`w`′,b − ub`w`′,bwa`w`′,a = u`′,aw`′,bε

ab . (A.3.10)
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Now, the second term on the RHS vanishes as stated in (A.3.9). Since u` · u`′ 6= 0,

we have the relation

u` · u`′ w` · w`′ = 1 ⇔ u` · u`′ =
1

w` · w`′
. (A.3.11)

From this we can deduce that a spinor w`a/w`′b is related to the spinor u`′a/u`b,

respectively, and we can choose to normalize as in (A.3.3)

w`′ia =
u`ia√−sij

, w`ia = −
u`′ia√−sij

. (A.3.12)

A.3.3 Spinor identities for the one-loop five-point calculation

Here we would like to outline some steps of the calculation which takes us from

(3.5.13) to (3.5.15).

The basic idea is to express the result of the Grassmann integration as a sum of

coefficients of factors η̃iċηjc with i, j = 1, 2, 5 for the (3, 4)-cut. It is then a matter

of algebra to rewrite the coefficient of η̃iċηjc in such a way that any dependence on

the three-point quantities w`i , w`′i and their counterparts in η̃`i is removed. In the

following we provide some explicit terms as examples.

Let us consider one of the terms of the product in (3.5.15), e.g.

η̃1ċη1c

{
〈1c|`3] · w̃`′3w̃`′2 · [`2|ˆ̀1|`4] · w̃`4 − 〈1c|`2] · w̃`′2w̃`′3 · [`3|ˆ̀1|`4] · w̃`4

}
×
{

[1ċ|`3〉 · w`′3w`′2 · 〈`2|ˆ̀1|`4〉 · w`4 − [1ċ|`2〉 · w`′2w`′3 · 〈`3|ˆ̀1|`4〉 · w`4
}
. (A.3.13)

The first thing one realizes is that the two factors in the brackets antisymmetrize

among themselves. This can be seen by applying the normalization relations for the

w-spinors related to the internal momenta

[1ċ|`3〉 · w`′3w`′2 · 〈`2|ˆ̀1|`4〉 · w`4 = [1ċ|`3〉 · w`′3
ua`2√
−s12

〈`2a|ˆ̀1|`4〉 · w`4

=
1√
−s12

ual′3w
b
l′3

[1ċ|l3b〉〈l′3a|ˆ̀1|l4〉 · wl4 (A.3.14)

where a similar relation is used for the second term of each bracket factor. Since

ua`′3w
b
`′3
− ub`′3w

a
`′3

= εab , (A.3.15)
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we can write (A.3.13) as

η̃1ċη1c

( 1√
−s12

)2
[1ċ|`3b〉εab〈`′3a|ˆ̀1|`4〉 · w`4 〈1c|`3ḃ]ε

ȧḃ[`′3ȧ|ˆ̀1|`4] · w̃`4

= η̃1ċη1c
i2

−s12

[1ċ|`a3〉〈`3a|ˆ̀1|`4〉 · w`4 〈1c|`ȧ3][`3ȧ|ˆ̀1|`4] · w̃`4

= η̃1ċη1c
(−1)

−s12

[1ċ|ˆ̀3
ˆ̀
1|`4〉 · w`4 〈1c|ˆ̀3

ˆ̀
1|`4] · w̃`4

= η̃1ċη1c
1

s12

[1ċ|p̂2
ˆ̀
1|`4〉 · w`4 w̃`4 · [`4|ˆ̀1p̂2|1c〉 , (A.3.16)

where we have used momentum conservation at the second corner, `3 = `2 + p2 =

`1 + p1 + p2, in the last line.

The next step is to remove the dependence on the w-spinors. The following

relation holds:

ˆ̀
1|`4a〉wa`4w̃

ȧ
`4

[`4ȧ|ˆ̀1 = p̂5|`4a〉wa`4w̃
ȧ
`4

[`4ȧ|p̂5 = p̂5|`′1a〉wa`′1(−1)2w̃ȧ`′1 [`
′
1ȧ|p̂5

=
( 1√
−s15

)2
p̂5|`′1a〉ua`1ũ

ȧ
`1

[`′1ȧ|p̂5 =
1

s15

p̂5|1a〉ua1ũȧ1[1ȧ|p̂5 .

(A.3.17)

Using the result of (A.3.4) we arrive at the following string of momenta,

η̃1ċη1c
1

s12s15s1P

[1ċ|p̂2p̂5p̂1
ˆ̀
1P̂ p̂1p̂5p̂2|1c〉 . (A.3.18)

Choosing now P = p5, after some rearrangement of the momenta we arrive at

η̃1ċη1c
1

s12s15

[1ċ|p̂2p̂5p̂1
ˆ̀
1p̂5p̂2|1c〉 . (A.3.19)

This expression can be further simplified as follows: Since `1 = p5 + `4 we have

ˆ̀
1p̂5 = ˆ̀

1(ˆ̀
1 − ˆ̀

4) = −(ˆ̀
4 + p̂5)ˆ̀

4 = −p̂5
ˆ̀
1 . (A.3.20)

Permuting now the string of external momenta the final result for the coefficient

becomes

− η̃1ċη1c
1

s12

[1ċ|p̂2p̂5
ˆ̀
1p̂2|1c〉 = η̃1ċη1c

1

s12

[1ċ|p̂2
ˆ̀
1p̂5p̂2|1c〉 (A.3.21)

by rearranging the order of p̂5 and ˆ̀
1 again.

This algebraic procedure can then be similarly repeated to simplify all the other

coefficients in the cut expression (3.5.13).
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A.4 Passarino –Veltman reduction

This section will provide a more general discussion of the PV reduction which is

used to reduce the linear pentagon integral of the one-loop five-point superamplitude

(3.5.17). The general manipulations of reducing linear integrals will be presented,

followed by an application using a linear triangle as an example.

Tensor integrals may generically appear in one-loop amplitude calculations in

well known theories like QCD, gravity or N < 4 YM. These are efficiently reduced

to scalar integrals (i.e. no powers of loop-momenta in the numerator) using the so-

called Passarino-Veltman reduction [38]. This approach is based on the fact that at

one-loop, scalar products of loop momenta with external momenta can always be

expressed as combinations of propagators.

(`+ q1)

p1

pj

(`+ qj−1)

(`+ qj)

p2

pj+1

−→ (`+ q1)

p1

p2

pj(`+ qj−1)

(`+ qj+1)
pj+1

pj+2

Figure A.2 This is the general form of the one-loop n-point integral that may have a
numerator with non-zero powers of momenta. After the PV reduction the propagator
(`+ pj)

−2 is “pinched out”.

In general this method applies to an integral of n external particles with r powers

of loop momenta in the numerator, and has the form

In ∼
ˆ

dD`

(2π)D
f (r)(`)

(`2 −m2
0)((`+ q1)2 −m2

1) . . . ((`+ qn−1)2 −m2
n−1)

, (A.4.1)

where

qk =
k∑
i=1

pi . (A.4.2)
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In the present discussion, the external momenta pi will be considered as incoming

and the loop integration is in D = 4 − 2ε dimensions. However, external momenta

will be strictly in four dimensions. In this notation, the integral with f (0) = 1 is the

scalar integral.

A linear integral has the following structure:

In(`µ) ∼
ˆ

dD`

(2π)D
`µ

(`2 −m2
0)((`+ q1)2 −m2

1) . . . ((`+ qn−1)2 −m2
n−1)

. (A.4.3)

The key step of the PV reduction method is identifying that the linear integral (A.4.3)

can only be equal to a linear combination of the independent external momenta∗.

This can be written as

In(`µ) =
n−1∑
i=1

Cn;i p
µ
i . (A.4.4)

The next step is to contract both sides of (A.4.4) with pµj :

ˆ
dD`

(2π)D
` · pj

(`2 −m2
0)((`+ q1)2 −m2

1) . . . ((`+ qn−1)2 −m2
n−1)

=
n−1∑
i=1

Cn;i∆
ij ,

(A.4.5)

where ∆ij = pi · pj is the “Gram” matrix. Using the fact that pj = qj − qj−1, the

inner product ` · pj can be recast to what is also known as the Passarino-Veltman

reduction formula:

2` · pj =
(
(`+ qj)

2 −m2
j

)
−
(
(`+ qj−1)2 −m2

j−1

)
+m2

j −m2
j−1 − q2

j + q2
j−1 . (A.4.6)

This form of the numerator provides terms that cancel with the propagators labeled

with the indices j and j−1. This eliminates any loop momentum dependence of the

numerator and the integral is reduced to a scalar one. What is left is a set of n− 1

linear equations (one for each pj) that can be used to solve for the coefficients Cn;i:

2
n−1∑
i=1

Cn;i∆
ij = I

(j)
n−1 − I

(j−1)
n−1 + (m2

j −m2
j−1 + q2

j + q2
j−1)In . (A.4.7)

Now, the integrals that appear in the system of equations (A.4.7) are scalar integrals

with n and n − 1 internal propagators. I
(j)
n−1 denotes an integral that has the jth

propagator canceled (or “pinched out”).
∗Momentum conservation ensures that only n− 1 momenta are independent as

∑n−1
i=1 pi = pn.
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The coefficients Cn;i are therefore

Cn;i =
1

2

∑
j

∆−1
ij

(
I

(j)
n−1 − I

(j−1)
n−1 + (m2

j −m2
j−1 + q2

j + q2
j−1)In

)
. (A.4.8)

One potential problem arises in kinematic regions where the determinant of the Gram

matrix, det(∆ij) = ∆ is equal to zero but this will not be considered here.

This concludes the general treatment of reducing linear integrals. It was shown

that they can be written as

In(`µ) =
n−1∑
i=1

Cn;i p
µ
i (A.4.9)

using the coefficients (A.4.8) that consist of kinematic invariants and scalar integrals

of n or n − 1 internal momenta. This is also the case for the linear pentagon that

appears in Section 3.5. The PV reduction method can also be used for integrals with

numerators of higher rank tensors. This further increases the degree of complexity

and is not relevant to the examples considered here.

p

p1

p2

`

`+ q1

`+ q2

∼
´

dD`
(2π)D

`µ

`2(`+q1)2(`+q2)2

Figure A.3 A linear triangle.

As a concrete example we shall perform the PV reduction for a linear triangle

integral (three-point function). The masses will be set to zero, as this is similar

to the case of the linear pentagon of Section 3.5 and simplifies the calculations.

However, external momentum are not considered to be on shell for now, i.e. p2
i 6= 0.
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Momentum conservation dictates

p1 + p2 + p3 = 0 . (A.4.10)

The linear integral has the form
ˆ

dD`

(2π)D
`µ

`2(`+ q1)2(`+ q2)2
= C3;1 p

µ
1 + C3;2 p

µ
2 , (A.4.11)

where, as defined in (A.4.2), q1 = p1 and q2 = p1 + p2. Following the procedure

outlined above, we contract both sides with pµ1 to obtain

ˆ
dD`

(2π)D
` · p1

`2(`+ q1)2(`+ q2)2
= C3;1 p

2
1 + C3,2 p1 · p2 . (A.4.12)

The inner product of the loop momenta with p1 is

2 ` · p1 = (`+ p1)2 − `2 − p2
1 , (A.4.13)

which when plugged in (A.4.12) yields

C3;1 p
2
1 + C3;2 p1 · p2 =

1

2

(
I

(1)
2 − I

(0)
2 − p2

1I3

)
. (A.4.14)

The scalar integrals that appear in (A.4.14) are defined, up to an overall factor, as:

I
(1)
2 =

ˆ
dD`

(2π)D
1

`2 (`+ q2)2
(A.4.15)

I
(0)
2 =

ˆ
dD`

(2π)D
1

(`+ q1)2 (`+ q2)2
. (A.4.16)

Next, contract both sides of (A.4.11) with pµ2 to obtain
ˆ

dD`

(2π)D
` · p2

`2(`+ q1)2(`+ q2)2
= C3;1 p2 · p1 + C3;2 p

2
2 . (A.4.17)

The inner product of the loop momenta with p2 is now

2 ` · p2 = (`+ p2)2 − `2 − p2
2 , (A.4.18)
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which can be used in (A.4.17) to write it as

C3;1 p2 · p1 + C3;2 p
2
2 =

1

2

(
I

(1)
2 − I

(1)
2 − (2 p1 · p2 + p2

2)I3

)
(A.4.19)

and the integral I(2)
2 is defined as

I
(2)
2 =

ˆ
dD`

(2π)D
1

`2 (`+ q1)2
. (A.4.20)

The Gram determinant is ∆ = p2
1 p

2
2 − (p1 · p2)2 and the solution for the coefficients

is

C3,1 = ∆−1
[
(p2

2 + p1 · p2)I
(1)
2 − p2

2I
(0)
2 − p1 · p2I

(2)
2

−
(
p2

1 p
2
2 − 2(p1 · p2)2 − p2

2 (p1 · p2)
)
I3

]
(A.4.21)

C3;2 = ∆−1
[
(p2

1 + p1 · p2)I
(1)
2 + p2

1I
(2)
2 − p1 · p2I

(0)
2

−
(
p2

1 p
2
2 + p2

1 (p1 · p2)
)
I3

]
. (A.4.22)

If external momenta are taken on shell, the result simplifies significantly:

C3,1 = (p1 · p2)−1
(
I

(2)
2 − I

(1)
2 − 2 (p1 · p2)I3

)
(A.4.23)

C3;2 = (p1 · p2)−1
(
I

(0)
2 − I

(1)
2

)
. (A.4.24)

A.5 Reduction to four dimensions of

six-dimensional Yang-Mills amplitudes

In this appendix we consider the four-dimensional limit of the four- and five-point

tree-level amplitudes in pure Yang Mills theory, and provide detailed information of

how the calculations of Section 3.5.5 are carried out.

We begin with the four-point amplitude of [13], given by (3.3.11). This can be also

thought of as the extraction of G−1 , G
−
2 , G

+
3 , G

+
4 from the superamplitude (3.3.12) by

integrating over the measure dη1−dη̃1−dη2−dη̃2−dη3+dη̃3+dη4+dη̃4+. This will reduce

down to a four-dimensional amplitude with helicities (1−, 2−, 3+, 4+). Using (3.5.34),
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the four-dimensional reduction of (3.3.11) yields

A
(4d)
4 = − i

st
〈12〉2[34]2 = i

〈12〉3

〈23〉〈34〉〈41〉
. (A.5.1)

Next, we consider the five-point amplitude (3.3.14) and reduce to a four-dimensional

helicity configuration (1+, 2+, 3+, 4−, 5−). For this case, only a few terms in (3.3.14)

survive. The A-tensor becomes

Aaȧbḃcċdḋeė = 〈1a|p̂2p̂3p̂4p̂5|1ȧ]〈2b3c4d5e〉[2ḃ3ċ4ḋ5ė]

+〈2b|p̂3p̂4p̂5p̂1|2ḃ]〈3c4d5e1a〉[3ċ4ḋ5ė1ȧ]

+〈3c|p̂4p̂5p̂1p̂2|3ċ]〈4d5e1a2b〉[4ḋ5ė1ȧ2ḃ] , (A.5.2)

which in the four-dimensional limit takes the form

Aaȧbḃcċdḋeė
4d−→ −[12]〈23〉[34]〈45〉[51]× [23]2〈45〉2

−[23]〈34〉[45]〈51〉[12]× [31]2〈45〉2

−[34]〈45〉[51]〈12〉[23]× [12]2〈45〉2 . (A.5.3)

For our specific helicity choice, the non-zero parts of the D-tensor are those involving

the Lorentz invariant brackets

〈2b3c4d5e〉[1ȧ3ċ4ḋ5ė] and [2ḃ3ċ4ḋ5ė]〈1a3c4d5e〉 , (A.5.4)

where both reduce to [23]〈45〉[13]〈45〉 in four dimensions, using (3.5.34). Each factor

multiplies 〈1a(2.∆̃2)ḃ] and [1ȧ(2.∆2)b〉. The quantities ∆i’s that are of interest here

take the form:

∆2 = 〈2|p̂3p̂4p̂5 − p̂5p̂4p̂3|2〉 , and ∆̃2 = [2|p̂3p̂4p̂5 − p̂5p̂4p̂3|2] . (A.5.5)

Expanding the expression of the first non-vanishing D-term yields

〈1a(2.∆̃2)ḃ] = 〈1a|2ḃ][2ḃ|3
c〉〈3c|4ḋ][4ḋ|5

e〉〈5e|2ḃ]− 〈1a|2
ḃ][2ḃ|5

e〉〈5e|4ḋ][4ḋ|3
c〉〈3c|2ḃ]

(A.5.6)

The helicities of spinors 〈1a| and |2ḃ] remain fixed (both positive in the present case),

whereas the string of spinors within 〈1a| and |2ḃ] is summed over. The indices should
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be lowered, and this determines the overall sign of each product. This is achieved

by using the antisymmetric ε tensor. Applying this to the first term of (A.5.6), and

using (3.5.34) gives:

εḃḃ
′
εcc
′
εḋḋ
′
εee
′〈1a|2ḃ′ ][2ḃ|3c′〉〈3c|4ḋ′ ][4ḋ|5e′〉〈5e|2ḃ] = (A.5.7)

ε−+ε+−ε−+ε+−〈1+|2+][2−|3−〉〈3+|4+][4−|5−〉〈5+|2+] = (A.5.8)

[12]〈23〉[34]〈45〉[52] (A.5.9)

By analogous manipulations it is possible to calculate the second term in (A.5.6)

and also the [1ȧ(2.∆2)b〉 term. The combined result is:

2Daȧbḃcċdḋeė
4d→ 2 ([12]〈23〉[34]〈45〉[52]− [12]〈25〉[54]〈43〉[32])×[13][23]〈45〉2. (A.5.10)

Now, the use of the Schouten identity and momentum conservation should reduce

the number of terms, eventually to one single fraction. For example, the first term

of the D-term and the (A.5.3) term of the A-term can be combined together and

using the Schouten identity (2.1.32), the result is

[12]〈23〉[34][23]〈45〉3 ([52][13]− [51][23]) = [12]〈23〉[34][23]〈45〉3[53][12] (A.5.11)

Similarly, adding the second D-term to the second (A.5.3) A-term and using mo-

mentum conservation gives:

− [12][23]〈34〉[45][13]〈45〉2 (〈52〉[23] + 〈51〉[13]) = [12][23]〈34〉[45][13]〈45〉2〈54〉[43]

(A.5.12)

It is now possible to combine (A.5.11) with the third of the A-term (A.5.3) and get

[12]2[34][23]〈45〉3 (−[53]〈32〉 − [51]〈12〉) = [12]2[34][23]〈45〉3[54]〈42〉 (A.5.13)

Expression (A.5.13) needs to be added to (A.5.12) to give

[12][23][34][45]〈45〉3 ([13]〈34〉 − 〈24〉[12]) = [12][23][34][45][51]〈45〉4, (A.5.14)

where momentum conservation was used. When (A.5.14) is divided by the string of

invariants as they appear in (3.3.14), it gives the correct four-dimensional result:

i
[12][23][34][45][51]〈45〉4

s12s23s34s45s51

= i
〈45〉4

〈12〉〈23〉〈34〉〈45〉〈51〉
. (A.5.15)
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A similar procedure can be followed in order to obtain the four dimensional limit

of the full one-loop five-point amplitude (3.5.31). In Section 3.5.5 the configuration

where only particles 1 and 2 had negative helicities and all other positive. Here we

will also consider the configuration where only the first and the fifth external particles

are of negative helicity, (1−, 2+, 3+, 4+, 5−). In this case the only non-vanishing term

is the second term in (3.5.31). Thus, we only need to focus on the four dimensional

limit of

1

s34

1

s12

(
[2ḃ|p̂1

ˆ̀
1p̂5p̂1|2b〉B + [2ḃ|p̂1p̂3p̂5p̂1|2b〉C

)
〈1a3c4d5e〉[1ȧ3ċ4ḋ5ė] , (A.5.16)

with

B = −s15(s12 − s45)

2s23s34s45

, C = − s12s15

2s23s34s45

. (A.5.17)

For this specific helicity choice, and due to momentum conservation, expression

(A.5.16) becomes

1

s34

1

s12

(
[12]2〈12〉[25]〈51〉B + [12]2〈13〉[35]〈51〉C

)
〈15〉2[34]2

=
[12]2〈15〉3s15[34]2

2 s34s12s23s34s45

(〈12〉[52]s12 − 〈12〉[52]s45 + 〈13〉[53]s12)

=
[12]2〈15〉3[34]2s15

2 s34s12s23s34s45

[45]〈12〉 ([21]〈14〉+ [25]〈54〉)

= − [12]2〈15〉3[34]2s15

2 s34s12s23s34s45

[45]〈12〉[23]〈34〉

= − [12]2〈15〉3[34]2s15[45]〈12〉[23]〈34〉
2〈34〉[43]〈12〉[21]〈23〉[32]〈34〉[43]〈45〉[54]

= −s12s15

2

〈15〉3

〈12〉〈23〉〈34〉〈45〉
. (A.5.18)

Recall, that the box integral is of the form I = 2F/s12s15, giving expected the

Parke-Taylor formula.



B Spinors in Three Dimensions

and Integral Properties

B.1 Spinor conventions in 3d

This section presents a stenographic summary of the spinor conventions used in

Chapter 4 and are in agreement with the those that appear in [72]. The signature

used is (+,−,−) and real Pauli matrices relate momenta in vector and double-spinor

notation

σ0
αβ =

1 0

0 1

 , σ1
αβ =

0 1

1 0

 , σ2
αβ =

1 0

0 −1

 , (B.1.1)

such that a generic, possibly off-shell momentum can be written as

Pαβ = pµσ
µ
αβ =

E − py −px
−px E + py

 . (B.1.2)

Note that this is a symmetric matrix and hence any off-shell momentum can be

written alternatively as the symmetrized product of two two-spinors ξ, µ as

Pαβ = ξ(αµβ) =
1

2
(ξαµβ + ξβµα) . (B.1.3)

Moreover, if we choose ξ and µ to be real then there is a rescaling invariance in

this representation ξ → rξ, µ → µ/r with r a non-zero real number. Alternatively

one can choose the spinor variables to be complex, but then they are related by

complex conjugation µ = ξ in order for the momenta to be real. This representation

is invariant under ξ → eiφξ, µ→ e−iφµ.
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For on-shell momenta pµpµ = det pαβ = 0, and we simply set µ = ξ = λ, which

reduces the rank of the two-by-two matrix defined above and removes the rescaling

invariance except for the reflection λ→ −λ. Therefore, we have

pαβ = λαλβ , (B.1.4)

and we note that for positive energy λ must be real, while for negative energy it is

purely imaginary.

Spinor variables can be contracted in an SL(2,R) (Lorentz-)invariant fashion using

the epsilon tensor εαβ = εαβ with ε12 = +1, which is also used to raise and lower

spinor indices. The fundamental invariant of two spinor variables λ and µ is defined

as

〈λµ〉 = εαβλ
αµβ , (B.1.5)

in terms of which it is possible to write any Lorentz-invariant momentum vector

contractions, two very common examples being

(p1 + p2)2 = 〈12〉2 ,

2εµνρp1µp2νp3ρ = Tr(σµσνσρ)p1µp2νp3ρ = 〈12〉〈23〉〈31〉 . (B.1.6)

Here we have also introduced the short-hand notation 〈λ1λ2〉 ≡ 〈12〉. Finally, we

note that for a generic momentum written as in (B.1.3), one has

P 2 = −1

4
〈ξ µ〉2 . (B.1.7)

Now, if P = p1+p2, then in the notation of (B.1.3) it is ξ = λ1+iλ2 and µ = λ1−iλ2,

where pi := λiλi, i = 1, 2.

B.2 Half-BPS operators

In this section we briefly recall how half-BPS operators are introduced in ABJM

theory. Consider the variation of operators of the form Tr
(
φI φ̄J

)
with I 6= J .

Setting for example I = 1 and J = 4, this expands to

δTr
(
φ1φ̄4

)
= Tr

(
δφ1φ̄4 + φ1δφ̄4

)
. (B.2.1)
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Following [100], we use the transformations:

δφI = i ωIJψJ , (B.2.2)

δφ̄I = i ψ̄JωIJ . (B.2.3)

The ωIJ ’s are given in terms of the (2 + 1)-dimensional Majorana spinors, εi (i =

1, . . . , 6) which are the supersymmetry generators:

ωIJ = εi(Γ
i)IJ , (B.2.4)

ωIJ = εi
(
(Γi)∗

)IJ
, (B.2.5)

that are antisymmetric in I, J . The 4× 4 matrices Γi are given by:

Γ1 = σ2 ⊗ 12 , Γ4 = −σ1 ⊗ σ2 , (B.2.6)

Γ2 = −iσ2 ⊗ σ3 , Γ5 = σ3 ⊗ σ2 , (B.2.7)

Γ3 = iσ2 ⊗ σ1 , Γ6 = −i12 ⊗ σ2 , (B.2.8)

and satisfy the following relations,

{
Γi,Γj†

}
= 2δij , (Γi)IJ = − (Γi)IJ , (B.2.9)

1

2
εIJKLΓiKL = −

(
Γj†
)IJ

=
(
(Γi)

∗)IJ
, (B.2.10)

leading to (
ωIJ
)
α

= ((ωIJ)∗)α , ωIJ =
1

2
εIJKLωKL . (B.2.11)

Explicitly, ωIJ is given by the following matrix:

ωIJ =


0 −iε5 − ε6 −iε1 − ε2 ε3 + iε4

iε5 + ε6 0 ε3 − iε4 −iε1 + ε2

iε1 + ε2 −ε3 + iε4 0 iε5 − ε6
−ε3 − iε4 iε1 − ε2 −iε5 + ε6 0

 . (B.2.12)

The term φ1δφ̄4 yields

φ1δφ̄4 = φ1
[
−ψ̄1(ε3 + iε4) + iψ̄2(ε1 + iε2)− iψ̄3(ε5 + iε6) + 0

]
. (B.2.13)
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Therefore, requiring φ1δφ̄4 = 0 the conditions are:

ε1 + iε2 = 0 ,

ε3 + iε4 = 0 ,

ε5 + iε6 = 0 ,

(B.2.14)

which relate half of the generators with the other half by constraining the components

ω4J = 0.

Note that because of the relations (B.2.11) which set components of the form

ω4L to zero, the entries ωIJ with I, J ∈ (1, 2, 3) automatically vanish implying that

δφI = 0 ⇐⇒ I ∈ (1, 2, 3). This procedure may be iterated to show that generally

the operators Tr
(
φ̄Iφ

J
)
for I 6= J are indeed half-BPS. In the present work the

operators under consideration are of the type

O = Tr (φAφ̄4) , (B.2.15)

where A 6= 4.

B.3 Box integral cuts

In Section 4.3.3 the different cuts of the box function (4.2.7) are used to construct

the full one-loop amplitude. Here, we present how the cuts produce the different

expressions for the box of Figure B.1. The color structure will be suppressed as it

doesn’t affect the results.

The first cut under consideration will be the s-cut. This is computed by (4.3.9)

Ã(1)(1̄, 2, 3̄, 4)|s−cut =
1

2

ˆ
d3η`1d

3η`2Ã(0)(1̄, 2,−¯̀
2,−`1)× Ã(0)(3̄, 4, ¯̀

1, `2) + `1 ↔ `2 ,

(B.3.1)

using `1 + `2 = p1 + p2 and taking the loop momenta to be on shell, `2
1 = 0 = `2

2.

This yields

2 Ã(1)(1̄, 2, 3̄, 4)|s−cut = δ(3)(P )

ˆ
d3η`1d

3η`2
δ(6)(QL)

〈21〉〈1`1〉
δ(6)(QR)

〈`2`1〉〈`14〉
+ `1 ↔ `2 . (B.3.2)



B.3. Box integral cuts 135

The δ-functions are expanded as

δ(6)(QL) =
3∏

A=1

δ(qAα1 + qAα2 − qAα`1 + qAα`2 )δ(qA1α + qA2α − qA`1α + qA`2α) (B.3.3)

δ(6)(QR) =
3∏

A=1

δ(qAα3 + qAα4 + qAα`1 − q
Aα
`2

)δ(qA3α + qA4α + qA`1α − q
A
`2α

) . (B.3.4)

Doing the η-integrations gives
ˆ
d3η`1d

3η`2δ
(6)(QL)δ(6)(QR) = −δ(6)(Qext)〈`1`2〉3 . (B.3.5)

Therefore, the s-cut is equal to

2 Ã(1)(1̄, 2, 3̄, 4)|s−cut = δ(3)(P )δ(6)(Qext)
〈`1`2〉3

〈21〉〈1`1〉〈`2`1〉〈`14〉
+ `1 ↔ `2 (B.3.6)

which can be re-written as

2 Ã(1)(1̄, 2, 3̄, 4)|s−cut = δ(3)(P )δ(6)(Qext)
〈12〉2〈1`1〉〈`14〉〈14〉
〈21〉〈1`1〉2〈14〉〈`14〉2

+ `1 ↔ `2

= −iAtree
〈12〉2〈`11〉〈14〉〈4`1〉
(`1 + p4)2(`1 − p1)2

+ `1 ↔ `2

= iAtree
sTr(`1p1p4)

(`1 + p4)2(`1 − p1)2
+ `1 ↔ `2 ,

(B.3.7)

where again Tr(abc) = 2ε(a, b, c) := 2εµνρa
µbνcρ. Hence, the s-cut of the box is

indeed

I(1, 2, 3, 4)|s-cut =
sTr(`1p1p4)

(`1 + p4)2(`1 − p1)2
. (B.3.8)

Next we perform the same procedure for the t-cut. Now the cut loop momenta are

renamed as `1 + `2 = p1 + p4.

2 Ã(1)(1̄, 2, 3̄, 4)|t−cut =

ˆ
d3η`1d

3η`2Ã(0)(3̄, `2, ¯̀
1, 2)× Ã(0)(1̄,−`1,−¯̀

2, 4) + `1 ↔ `2

= δ(3)(P )

ˆ
d3η`1d

3η`2
δ(6)(QL)

〈`12〉〈23〉
δ(6)(QR)

〈1`1〉〈`1`2〉
+ `1 ↔ `2 . (B.3.9)
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After the η-integrations

2 Ã(1)(1̄, 2, 3̄, 4)|t−cut = δ(3)(P )δ(6)(Qext)
〈`1`2〉3

〈`12〉〈23〉〈1`1〉〈`1`2〉
+ `1 ↔ `2

= δ(3)(P )δ(6)(Qext)
〈14〉2

〈`12〉〈23〉〈1`1〉
+ `1 ↔ `2

= δ(3)(P )δ(6)(Qext)
〈14〉2〈12〉〈1`1〉〈`12〉
〈23〉〈12〉〈`12〉2〈1`1〉2

+ `1 ↔ `2

= iAtree
−tTr(`1p1p2)

(`1 − p1)2(`1 + p2)2
+ `1 ↔ `2

= iAtreeI(1, 2, 3, 4)|t-cut + `1 ↔ `2

(B.3.10)

Finally, we perform the u-channel cut. Now the loop momenta to be cut are con-

figured as `1 + `2 = p1 + p3. The starting point is similar but now there is a single

particle configuration and there is no need to take the average of `1 ↔ `2

Ã(1)(1̄, 2, 3̄, 4)|t−cut =

ˆ
d3η`1d

3η`2Ã(0)(1̄,−`1, 3̄,−`2)× Ã(0)(¯̀
2, 2, ¯̀

2, 4)

= δ(3)(P )

ˆ
d3η`1d

3η`2
δ(6)(QL)

〈1`2〉〈`23〉
δ(6)(QR)

〈`22〉〈2`1〉

= δ(3)(P )δ(6)(Qext)
−〈`1`2〉3

〈1`2〉〈`23〉〈`22〉〈2`1〉

= δ(3)(P )δ(6)(Qext)
−u2〈`1`2〉

〈13〉2〈1`2〉〈`23〉〈`22〉〈2`1〉

= δ(3)(P )δ(6)(Qext)
−u2〈`1`2〉

〈31〉〈3`1〉〈`1`2〉〈`23〉〈`24〉〈4`1〉

= δ(3)(P )δ(6)(Qext)
−u2

〈31〉〈3|`1|4〉〈3|`2|4〉

= δ(3)(P )δ(6)(Qext)
−u2

〈31〉〈3|`1 + `2|4〉

(
1

〈3|`2|4〉
+

1

〈3|`1|4〉

)
= δ(3)(P )δ(6)(Qext)

−u
〈14〉〈43〉

(
〈3`2〉〈`24〉〈43〉
〈3`2〉2〈`24〉2

+ `1 ↔ `2

)
= iAtree

−uTr(`2p3p4)

(`2 − p3)2(`2 + p4)2
+ `1 ↔ `2 .

(B.3.11)
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B.4 Properties of the box integral

`3

`2

`4

`1

1 2

34

Figure B.1 Four-point one-loop box.

The box integral function (4.2.7) was constructed and used in [67]. Beyond the dual

conformal symmetry presented in Section 4.2.4 it has several interesting properties

that have been exploited in the present work. This section presents and proves (some

of) these properties.

B.4.1 Rotation by 90◦

The first property we wish to discuss is what could be called a π/2 rotation symmetry.

Focusing on the numerator of the box integrand,

N = sTr(`1p1p4) + `2
1 Tr(p1p2p4), (B.4.1)

we can eliminate `1 in favor of `3 and arrange to have only the external legs p2, p3, p1

appear in the numerator. Using momentum conservation, we can re-write N as

N = (−t− u) Tr ((`3 + 1)p1(−p1 − p2 − p3)) + (`3 + p1) Tr (p1p2(−p1 − p2 − p3))

= −
[
tTr(`3p2p1) + `2

3 Tr(p2p3p4)
]

+R ,

(B.4.2)

where

R = sTr(`3p3p1)− uTr(`3p2p1)− 2(`3 · p1)Tr(p2p3p1) . (B.4.3)

In three dimensions the loop momentum `3 can be expressed as a function of the

external momenta p1, p2, p3 as

`3 = αp1 + βp2 + γp3 , (B.4.4)
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where α, β, γ are arbitrary coefficients. When this identity is used in the expression

for R, we find that R vanishes identically zero in three dimensions. Hence

sTr(`1p1p4) + `2
1 Tr(p1p2p4) = −t

(
Tr(`3p2p1) + `2

3 Tr(p2p3p4)
)
. (B.4.5)

It is also interesting to write down explicitly the s- and t-cut of the one-loop box.

Starting from the expression of the box integral

I(1, 2, 3, 4) :=

ˆ
dD`

iπD/2
N

`2(`− p1)2(`− p1 − p2)2(`+ p4)2
, (B.4.6)

with N given in (B.4.1), we first consider the s-cut of this function. This gives

I(1, 2, 3, 4)|s-cut =
sTr(`1p1p4)

`2
3 `

2
4

, (B.4.7)

which upon using `3 = `1 − p1 and `4 = −(`1 + p4) becomes

I(1, 2, 3, 4)|s-cut =
s〈41〉
〈4`1〉〈`11〉

. (B.4.8)

Similarly the t-channel expression of the full integrand is

I(1, 2, 3, 4) =
tTr(`3p2p1) + `2

3 Tr(p2p3p1)

`2
1 `

2
2 `

2
3 `

2
4

. (B.4.9)

The t-cut of I(1, 2, 3, 4) is immediately written using the three-dimensional identity

(B.4.5),

I(1, 2, 3, 4)|t-cut = −tTr(`3p2p1)

`2
1 `

2
2

(B.4.10)

=
t〈12〉

〈1`3〉〈`32〉
.

Finally, if we re-introduce the tree-level amplitude prefactorA(0)(1̄, 2, 3̄, 4) = 1/(〈12〉〈23〉),

we can write down the two cuts of the one-loop amplitude,

A(0)(1̄, 2, 3̄, 4)× I(1, 2, 3, 4)|s-cut = − 〈34〉
〈4`1〉〈`11〉

, (B.4.11)

A(0)(1̄, 2, 3̄, 4)× I(1, 2, 3, 4)|t-cut =
〈23〉

〈1`3〉〈`32〉
. (B.4.12)
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B.4.2 An identity for the s-channel cuts of I(1, 2, 3, 4) and

I(1, 2, 4, 3)

We consider the s-channel cut of I(1, 2, 3, 4) and will symmetrize it in the cut loop

momenta `1 and `2, where `1 + `2 = p1 + p2. The result we wish to show is that

the symmetrized three-dimensional cuts of I(1, 2, 3, 4) and I(1, 2, 4, 3) are in fact

identical:

I(1, 2, 3, 4)|s-cut + `1 ↔ `2 = I(1, 2, 4, 3)|s-cut + `1 ↔ `2 . (B.4.13)

In order to do so, we use (B.4.8) to write

I(1, 2, 3, 4)|s-cut = s
〈41〉
〈4|`1|1〉

(B.4.14)

Again using (B.4.8) this time for the s-cut of I(1, 2, 4, 3) one can write,

I(1, 2, 4, 3)|s-cut =
s〈31〉
〈3`1〉〈`11〉

. (B.4.15)

Next we compare (B.4.14) to (B.4.15):

I(1, 2, 3, 4)|s-cut − I(1, 2, 4, 3)|s-cut = s

(
〈41〉

〈4`1〉〈`11〉
− 〈31〉
〈3`1〉〈`11〉

)
= 〈`1`2〉

(
〈41〉〈`1`2〉
〈4`1〉〈`11〉

− 〈31〉〈`1`2〉
〈3`1〉〈`11〉

)
,

(B.4.16)

where we used the fact that s = 〈`1`2〉2. Now, use the Schouten identity (2.1.32) on

the numerators to obtain:

I(1, 2, 3, 4)|s-cut − I(1, 2, 4, 3)|s-cut = 〈`1`2〉
(
〈4`1〉〈1`2〉 − 〈4`2〉〈1`1〉

〈4`1〉〈`11〉

−〈3`1〉〈1`2〉 − 〈3`2〉〈1`1〉
〈3`1〉〈`11〉

)
= 〈`1`2〉

(
〈4`2〉
〈`14〉

− 〈3`2〉
〈`13〉

)
.

(B.4.17)

Next, we add the terms symmetrized in `1 ↔ `2:

I(1, 2, 3, 4)|s-cut − I(1, 2, 4, 3)|s-cut + `1 ↔ `2

= 〈`1`2〉
(
〈4`2〉
〈`14〉

− 〈4`1〉
〈`24〉

− 〈3`2〉
〈`13〉

+
〈3`1〉
〈`23〉

)
, (B.4.18)
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and consider the pairs

〈`1`2〉〈4`2〉
〈`14〉

+
〈`1`2〉〈3`1〉
〈`23〉

, and −〈`1`2〉〈4`1〉
〈`24〉

− 〈`1`2〉〈3`2〉
〈`13〉

. (B.4.19)

Starting with the first one and applying momentum conservation `1 + `2 = p3 + p4,

〈4`2〉〈`2`1〉
〈4`1〉

+
〈3`1〉〈`1`2〉
〈`23〉

=
〈43〉〈3`1〉
〈4`1〉

+
〈34〉〈4`2〉
〈`23〉

=
〈43〉〈`23〉〈3`1〉+ 〈34〉〈4`1〉〈4`2〉

〈4`1〉〈`23〉

=
〈43〉

〈4`1〉〈`23〉
(〈`2|3|`1〉+ 〈`2|4|`1〉)

=
〈43〉

〈4`1〉〈`23〉
(〈`2|3 + 4|`1〉)

=
〈43〉

〈4`1〉〈`23〉
(〈`2|`1 + `2|`1〉)

= 0 ,

(B.4.20)

and similarly for the pair

− 〈`1`2〉〈4`1〉
〈`24〉

− 〈`1`2〉〈3`2〉
〈`13〉

= 0 . (B.4.21)

This concludes the proof of (B.4.13).

B.5 Details on the evaluation of integrals

The integral in the result (4.4.26) can be reduced to a set of four scalar, single-scale,

master integrals using integration by parts identities and the FIRE package [101] for

Mathematica. In this appendix we present the details of this reduction as well as the

values of these master integrals. For an outline of the general ideas and methodology

of expressing Feynman multiloop integrals in terms of a basis of master integrals

see [102].

It is possible to classify Feynman integrals according to their topology and this

is determined by the number of propagators. For the maximal number of propaga-

tors each one is raised to a power ai. When certain propagators are absent, which

effectively means that the corresponding indices ai are set to zero, sub-topologies are
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being considered. The FIRE package applies a set of integration by parts (IBP) iden-

tities for each topology. These identities are a consequence of Poincaré invariance

and relate integrals with different values of ai. The integration by parts relations

stem from the derivatives of the integrands [103]:ˆ
. . .

ˆ
dD`1d

D`2 . . .
∂

∂`i

(
pj

1

Ea1
1 . . . Ean

n

)
= 0 , (B.5.1)

where pj can be either external or loop momentum. The integrand of the Feynman

integral F (a1, . . . , an) is a scalar integrand, a result of a tensor reduction. A numer-

ator that is an irreducible polynomial is expressed as a combination of propagators

Ei raised to a negative power. The derivatives of any scalar product of the form

ki · kj or ki · qj are expressed linearly in terms of the propagators. The IBP relations

assume the following form:∑
αiF (a1 + bi,1, . . . , an + bi,n) = 0 , (B.5.2)

where bi,j are fixed integers and αi’s are polynomials in aj. By substituting possible

combinations of (a1, a2, . . . , an) one obtains a potentially large number of relations.

The FIRE package systematizes this reduction procedure.

As a demonstration of the procedure we will apply it on the integral with the

topology of the one-loop triangle as in Figure A.3. Now the integral will be of the

general form

I{a1, a2, a3} =

ˆ
dD`

1

Ea1
1 E

a2
2 E

a3
3

. (B.5.3)

Similarly to Appendix A.4 external momenta will be denoted as p1 and p2 and now

will be taken to be on-shell, p2
i = 0, with zero masses. The choice for the propagators

is identical to that of Appendix A.4

E1 = `2 (B.5.4)

E2 = (`+ p1)2 (B.5.5)

E3 = (`+ p1 + p2)2 . (B.5.6)

The first identity that can be written down is simplyˆ
dD`

∂

∂`µ

p1;µ

Ea1
1 E

a2
2 E

a3
3

= 0 . (B.5.7)
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The derivatives of the propagators can be expressed in terms of the propagators

themselves

p1;µ
∂

∂`µ
E1 = 2p1 · ` = E2 − E1 (B.5.8)

p1;µ
∂

∂`µ
E2 = 2p1 · `+ 2p2

1 = E2 − E1 (B.5.9)

p1;µ
∂

∂`µ
E3 = 2p1 · `+ 2p2

1 + 2p1 · p2 = E2 − E1 + s , (B.5.10)

where s = 2p1 · p2 as usual. Now the first identity (B.5.7) reads
ˆ
dd`

1

Ea1
1 E

a2
2 E

a3
3

(
a1 − a2 − a1

E2

E1

+ a2
E1

E2

+ a3
E1

E3

− a3
E2

E3

− a3
s

E3

)
= 0 .

(B.5.11)

It is common to introduce operators i+ and i− such that

1+3−I{a1, a2, a3} = I{a1 + 1, a2, a3 − 1} . (B.5.12)

Then, the first IBP identity can be written as

(
a1 − a2 − a11

+2− + a22
+1− + a33

+1− − a33
+2− − a3s3

+
)
I{a1, a2, a3} = 0 .

(B.5.13)

The remaining identities are obtained by differentiating while taking pj = p2;µ and

pj = `µ respectively:

[
a2 − a3 + a1(1+2− − 1+3−)− a22

+3− + a33
+2− + a1s1

+
]
I{a1, a2, a3} = 0

(B.5.14)[
d− 2a1 − a2 − a3 − a22

+1− − a33
+1− + a3s3

+
]
I{a1, a2, a3} = 0 .

(B.5.15)

It is now possible to use the identities to reduce integrals of a certain topology to

a linear combination of simpler integrals. For example, taking a1 = a2 = a3 = 1

the integral I {2, 1, 1}, can be re-written in the following way using the second IBP

identity (B.5.14)

sI {2, 1, 1} = I {2, 1, 0}+ I {1, 2, 0} − I {2, 0, 1} − I {1, 0, 2} . (B.5.16)
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It is now useful to employ certain simple identities that are true for this topology.

For example, by letting ` → −` − p1 it is trivial to show that Ea1
1 E

a2
2 → Ea2

1 E
a1
2

proving that I {a1, a2, 0} = I {a2, a1, 0}. Similarly one can show that I {a1, 0, a3} =

I {a3, 0, a1}. In this way, the expression (B.5.16) becomes

s

2
I {2, 1, 1} = I {2, 1, 0} − I {2, 0, 1} . (B.5.17)

For {a1, a2, a3} = {2, 1, 0} in (B.5.13) and {a1, a2, a3} = {1, 0, 1} in (B.5.15) we get:

I {2, 1, 0} = I {3, 0, 0} (B.5.18)

−sI {2, 0, 1} = (D − 3) I {1, 0, 1} − I {2, 0, 0} . (B.5.19)

Since the theory under consideration is massless, the tadpole integrals I {3, 0, 0} and

I {2, 0, 0} are zero and the original integral is immediately reduced to

I {2, 1, 1} =
2 (D − 3)

s2
I {1, 0, 1} . (B.5.20)

The integral I {1, 0, 1} is irreducible and is called a Master Integral. For a massive

theory, master integrals would include tadpole integrals. The idea is that every

integral of this topology can be reduced to the master integrals that are simpler

than the original by a similar procedure.

The IBP method described above was used to simplify the integrals that appeared

in Section 4.5. It is this process that is systematized by the FIRE package. However,

before the package can be used, it is necessary to recast the integrals in a different

form. Consider first the LT(q2) integral (4.5.4). In order to express the integrand

entirely in terms of propagators (inverse or not), the set of propagators Ei in Table

B.1 are chosen:

E1 E2 E3 E4 E5 E6 E7

`2
1 (p1 + p2 − `1)2 `2

3 (p1 + p2 − `3)2 (`1 − `3)2 (`3 − p2)2 (`1 − p1)2

Table B.1 Propagator expressions that are used to express the integrals of maximal
transcendentality.
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Using the operators defined in (B.5.12) the integral LT(q2) is written as

LT(q2) =

(
−q

2

2
1−3−6+ +

q2

2
1− +

q4

2
1−6+ − q2

2
2−4−6+ +

q2

2
2− +

q4

2
2−6+

+
q2

2
3−6+7− +

q4

2
3−6+ +

q2

2
3−6+7− +

q4

2
4−6− − q4

2
5−6+

−q
4

2
− q4

2
6+7− − q6

2
6+

)
GP (1, 1, 1, 1, 1, 0, 0)

(B.5.21)

where GP (1, 1, 1, 1, 1, 0, 0) is the integral with the propagators of B.1. For the XT(q2)

integral (4.4.16) the procedure is similar. Now E4 = (p1−`1 +`3)2 and the rest of the

propagators are the same as for LT(q2) shown in Table B.1. The integral XT(q2)

assumes the form

XT(q2) =

(
q2

2
1−2−6+ +

q2

2
1−3−6+ − q2

2
1− − q2

2
1−6+7− +

q2

2
2−4−6+

− q2

2
2−5−6+ − q2

2
2−6+7− − q2

2
3−6+7− − q2

2
4−6+7− − q4

2
3−6+

− q4

2
4−6+7− +

q2

2
5−6+7− +

q2

2
7− +

q2

2
6+7−7−

+
q4

2
6+7−

)
GNP (1, 1, 1, 1, 1, 0, 0) .

(B.5.22)

The CT(q2) integral (4.5.9) can be expressed using the same propagators as LT(q2)

(Table B.1) and the same planar integral GP . It can be written as

CT(q2) =

(
1

2
1−2−3−6+ − 1

2
1−4− +

q2

2
1−4−6+ − q2

2
2−4−4−6+ +

1

2
2−4−

+
q2

2
2−4−6+ − 1

2
3−4−6+7− +

q2

2
2−3−6+ +

1

2
4−4−6+7− − q2

2
4−4−6+

−q
2

2
4−5−6+ − q2

2
4− − q2

2
4−6+7− − q2

2
4−6+

)
GP (1, 1, 1, 1, 1, 0, 0) .

(B.5.23)

Finally, for the FAN(q2) integral (4.5.11) we use a different set of propagators shown

in Table B.2.

E1 E2 E3 E4 E5 E6 E7

(`1 − p1)2 `2
1 `2

3 (`3 − p2)2 (p1 + p2 − `1 − `3)2 (`3 + `1)2 (`1 + p2)2

Table B.2 Propagator expressions for the FAN topology.
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The FAN(q2) integral is then written as

FAN(q2) =

(
1

2
1−2− − 1

2
1−3− +

1

2
1−4− − 1

2
1−7− − 1

2
2−5−

+
1

2
2−6− − 1

2
2−7− +

1

2
3−7− − q2

2
3− − 1

2
4−7−

+
1

2
7− − 1

2
6−7− +

q2

2
6− +

1

2
7−7− − q2

2
7−
)
GFAN(1, 1, 1, 1, 1, 0, 0) .

(B.5.24)

Using the above expressions of the integrals as input for FIRE , they are automat-

ically reduced by a recursive use IBP identities to combinations of master integrals.

The outcome of these manipulations is shown in Appendix B.5.2.

B.5.1 Two-loop master integrals in three dimensions

The master integrals that appear at two loops, in particular in the reduction of our

result (4.4.26), are given in D = 3− 2ε dimensions by the following expressions:

SUNSET(q2) = = −
(
−q2

µ2

)−2ε Γ
(

1
2
− ε
)3

Γ (2ε)

Γ
(

3
2
− 3ε

) (B.5.25)

TRI(q2) = = −(−q2)−1

(
−q2

µ2

)−2ε Γ
(

1
2
− ε
)2

Γ (−2ε) Γ
(

3
2

+ ε
)

Γ (2 + 2ε)

ε(1 + 2ε)2Γ
(

1
2
− 3ε

)
(B.5.26)

GLASS(q2) = = (−q2)−1

(
−q2

µ2

)−2ε Γ
(

1
2
− ε
)4

Γ
(

1
2

+ ε
)2

Γ (1− 2ε)2

(B.5.27)

TrianX(q2) = = (−q2)−3

(
−q2

µ2

)−2ε

e−2γEε

[
4π

ε2
+
π(3 + 8 log 2)

ε

− 2π

3

(
81 + 4π2 + 6 log 2 (4 log 2− 9)

)
+
π

6

(
−π2(7 + 40 log 2)

+ 8
(
69 + 6 log 2 + 2 log2 2(8 log 2− 27)− 113ζ3

))
ε+O(ε)

]
,

(B.5.28)
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where the conventions for the integration measure agree with those of [104] . The first

three of these integrals are planar and their expressions in all orders in ε can be easily

obtained by first computing their Mellin-Barnes representations most conveniently

using the AMBRE package [105] and then performing the Mellin-Barnes integrations

using the MB tools, in particular MB.m [104] and barnesroutines.m by David

Kosower. The expansion around ε = 0 of the TRI and GLASS topologies has

uniform degree of transcendentality, while this is not the case for the SUNSET and

TrianX topologies.

B.5.2 Reduction to master integrals

Here we present the reductions of the integral (4.4.16) that appears in our result

(4.4.26) in terms of the master integrals (B.5.25)–(B.5.28) of the previous section:

XT(q2) =
7(D − 3)(3D − 10)(3D − 8)

2(D − 4)2(2D − 7)
SUNSET(q2) (B.5.29)

+ (−q2)
5(D − 3)(3D − 10)

2(D − 4)(2D − 7)
TRI(q2) + (−q2)3 D − 4

4(2D − 7)
TrianX(q2) .

Note that the GLASS topology does not appear in XT(q2). Two other integrals we

have considered are:

LT(q2) =
8− 3D

D − 3
SUNSET(q2) + q2

(
GLASS(q2)−TRI(q2)

)
,(B.5.30)

CT(q2) = FAN(q2) =

(
1

4ε
− 3

2

)
SUNSET(q2) . (B.5.31)

B.5.3 Mellin-Barnes Integrals

This section provides further details on the Mellin-Barnes representation of integrals

as well as the method used to calculate them. The description of the method relies

on [104,106,107].

The key step in this procedure is to recast a Feynman integral into a Mellin-

Barnes representation. This relies on the following identity:

1

(A+B)ν
=

1

2πiΓ(ν)

ˆ i∞

−i∞
dz

Az

Bν+z
Γ(−z)Γ(ν + z) . (B.5.32)
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The contour needs to be chosen in such a way that the poles of Γ(ν+z) are separated

from the poles of Γ(−z) and should ensure that the arguments of the Γ-functions are

all positive [106]. This is required in order to apply Barnes’ lemmas that are valid

only under this condition [104]. Through Barnes’ lemmas, it is possible to simplify

the integrals to such an extent that would allow for an analytical result. These are

Lemma B.5.1 (Barnes’ first lemma).
ˆ i∞

−i∞
dz Γ(a+ z)Γ(b+ z)Γ(c− z)Γ(d− z) =

Γ(a+ c)Γ(a+ d)Γ(b+ c)Γ(b+ d)

Γ(a+ b+ c+ d)
(B.5.33)

Lemma B.5.2 (Barnes’ second lemma).

ˆ i∞

−i∞
dz Γ(a+ z)Γ(b+ z)Γ(c+ z)Γ(d− z)Γ(e− z) =

Γ(a+ d)Γ(a+ e)Γ(b+ d)Γ(b+ e)Γ(c+ d)Γ(c+ e)

Γ(a+ b+ d+ e)Γ(a+ c+ d+ e)Γ(b+ c+ d+ e)
(B.5.34)

In order to apply the identity (B.5.32), the integral is usually rewritten using

Feynman parameters. In the Mellin-Barnes representation the integration over Feyn-

man parameters is performed using

ˆ 1

0

N∏
i=1

dxix
qi−1
i δ

(
1−

∑
j

xj

)
=

Γ(q1) . . .Γ(qN)

Γ(q1 + q2 + · · ·+ qN)
(B.5.35)

This is best illustrated by an example. The steps of a Mellin-Barnes transformation

will be presented explicitly on the integral

LTµν =

ˆ
dD`1

ˆ
dD`3

(`1)µ(`3)ν
(`1 − `3)2(`1 − q)2`2

1(`3 − p1)2(`3 − q)2`2
3

. (B.5.36)

This integral could emerge from a form factor with the structure:

Fφ̄4φA = q2(2p
[µ
1 p

ν]
2 + q2gµν)LTµν(q

2, ε) (B.5.37)

The first step in order to evaluate this integral is to separate the `1 and `3 integrations:

LTµν =

ˆ
dD`3

(`3)ν
(`3 − p1)2(`3 − q)2`2

3

ˆ
dD`1

(`1)µ
(`1 − `3)2(`1 − q)2`2

1

(B.5.38)
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Following the examples on page 37 of [108] it is possible to conveniently express the

`1 integral in terms of D + 2-dimensional integrals:
ˆ
dD`1

(`1)µ
(`1 − `3)2(`1 − q)2`2

1

= (`3)µ

ˆ
dD+2`1

1

[(`1 − `3)2]2 (`1 − q)2`2
1

+ qµ

ˆ
dD+2`1

1

(`1 − `3)2 [(`1 − q)2]2 `2
1

(B.5.39)

The starting point will be the integrand of the five-dimensional integral which is

modified using Feynman parameters

1

(`1 − `3)4 (`1 − q)2 `2
1

=

ˆ 1

0

dx dy dz
(4− 1)!x δ (x+ y + z − 1)

D4
(B.5.40)

with

D = x (`1 − `3)2 + y (`1 − q)2 + z`2
1 = `2

1 − 2`1(x`3 + yq) + x`2
3 + yq2 . (B.5.41)

We perform the shift

`
′

1 = `1 − (x`3 + yq) (B.5.42)

and then D becomes

D = `2
1 − 2xy `3 · q −

(
x2 − x

)
`2

3 −
(
y2 − y

)
q2 . (B.5.43)

Now the D + 2 integral is explicitly

I`1 = 3!

ˆ
dD+2`1

ˆ 1

0

dx dy
x

(`2
1 − 2xy `3 · q − (x2 − x) `2

3 − (y2 − y) q2)
4 . (B.5.44)

The next step is to switch to a Mellin-Barnes representation which, converts the

integral (B.5.44) to∗.

I`1 =
1

(2πi)3

ˆ
dD+2`1

ˆ 1

0

dx dy

ˆ +i∞

−i∞
dz1dz2dz3Γ(−z1)Γ(−z2)Γ(−z3)Γ(z123 + 4)

× (−1)z1232z1 (`3 · q)z1 xz1+1 (x2 − x)
z2 yz1 (y2 − y)

z3 `2z2
3 q2z3

(`2
1)

4+z123
. (B.5.45)

∗With z123 = z1 + z2 + z3.
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Explicitly the Mellin-Barnes steps are:

Ĩ`1 = 3!

ˆ 1

0

dx dy
x

(`2
1 − 2xy `3 · q − (x2 − x) `2

3 − (y2 − y) q2)
4

=
1

2πi

3!

Γ(4)

ˆ 1

0

dx dy

ˆ +i∞

−i∞
dz1Γ(4 + z1)Γ(−z1)

x (−2xy `3 · q)z1

(`2
1 − (x2 − x) `2

3 − (y2 − y) q2)
4+z1

(B.5.46)

=
1

(2πi)2

ˆ 1

0

dx dy

ˆ +i∞

−i∞
dz1dz2

Γ(4 + z1)

Γ(4 + z1)
Γ(−z1)Γ(4 + z12)Γ(−z2)

× (−2xy `3 · q)z1 x [− (x2 − x) `2
3]
z2

(`2
1 − (y2 − y) q2)

4+z12
(B.5.47)

=
1

(2πi)3

ˆ 1

0

dx dy

ˆ +i∞

−i∞
dz1dz2dz3

Γ(4 + z1 + z2)

Γ(4 + z1 + z2)
Γ(−z1)Γ(−z2)Γ(−z3)Γ(4 + z123)

× (−2xy `3 · q)z1 x [− (x2 − x) `2
3]
z2 [− (y2 − y) q2]

z3

(`2
1)

4+z123
(B.5.48)

Now the integration over Feynman parameters gives:
ˆ 1

0

yz1
(
y2 − y

)z3 dy =
(−1)z3Γ (1 + z3) Γ (2 + z1 + z3)

Γ (3 + z1 + 2z3)
=

(−1)z3

B (1 + z3, 2 + z1 + z3)

(B.5.49)

while for x one gets

ˆ 1

0

xz1+1
(
x2 − x

)z2 dx =
(−1)z2Γ (1 + z2) Γ (2 + z1 + z2)

Γ (3 + z1 + 2z2)
=

(−1)z2

B (1 + z2, 2 + z1 + z2)

(B.5.50)

which can be substituted back in eq. (B.5.45). The B-function is related to the

Γ-functions as

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
. (B.5.51)

The procedure presented above is automated through the use of the AMBRE package.

The next step would be to find the integration contours and perform the analytic

continuation which involves several interesting subtleties (see for example [106]), that
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will not be discussed here. This procedure is also automated through the MB.m pack-

age [104]. The package finds the contours of integration. It is then possible to merge

the resulting integrals by linearly adding the integrals with the same contour, sup-

press the integrals that vanish at a user-defined order of expansion or simply expand

them. Once the contours are determined the user may perform the analytic continu-

ation through a single command. Simplifying the integrals using Barnes’ lemmas is

most conveniently done using barnesroutines.m by David Kosower. This may split

the answer in a part that is analytic and a part that requires numerical integration.

In cases when numerical integration is necessary it is still possible to reconstruct

the answer in terms of logarithms, polylogarithms etc. This can be achieved using

the PSLQ algorithm (available as a Mathematica package) which determines integer

relations between real numbers†.

As an application of this procedure, the maximally transcendental integrals in

Section 4.5 can be computed directly. This bypasses the expansion in terms of master

integrals and directly verifies that the structure of the numerators ensures maximal

and uniform transcendentality. When the numerators are expanded there are several

resulting integrals that need to be evaluated. Some of them produce results that

include terms that spoil the transcendentality requirements. However, these terms

always cancel out to produce the results presented in Section 4.5. Although this

procedure is more direct, it is uneconomical as the benefit of reusable master integrals

for each topology is lost and therefore requires the evaluation of more integrals. It

is however useful as a check and was performed for the LT (4.5.4) and CT (4.5.9)

integrals.

The numerator of the LT integral (4.5.4) produces a total of seven integrals that

need to be computed. Recall that 1
2
Tr(p1, `3, p2, `1) = (p1 · `3)(p2 · `1)− (p1 · p2)(`3 ·

`1) + (p1 · `1)(`3 · p2). The second term of the numerator (4.5.4) produces another

four integrals when the on-shell condition is applied to the external momenta. These

can be computed directly using the procedure outlined above. The result is (overall
†Details can be found here http://mathworld.wolfram.com/PSLQAlgorithm.html

http://mathworld.wolfram.com/PSLQAlgorithm.html
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normalization factors are suppressed):

(
−π +

π

2ε
− 2π log 2

)
+
(
π +

π

2ε

)
+

(
3π

2
+
π

4ε
− π log 2

)
+

(
−7π +

π

4ε2
+

5π3

8
− 2π log2 2

)
+

(
π

4ε
+ π

(
1

2
+ log 2

))
+ π

(
2 +

1

ε

)
+
(

2π − π

ε

)
→
(
− π

4ε2
− π log 2

ε
+ 2π log2 2− 5π3

8
+O(ε)

)
,

(B.5.52)

where each term in brackets is the result of an individual integral. It is noteworthy

that any terms of lower transcendentality that appear in some integrals cancel out

completely. This approach clearly demonstrates the cancellations occurring due to

each individual term of the numerator and further justifies the particular structure

that it has.

It is however possible to manipulate the integrals in a collective manner. For

the CT integral, the three terms of the numerator are now treated collectively by

the package. When the integrals with the same contour are merged and analyti-

cally continued it is possible to simplify the result further through Barnes’ lemmas.

This results in a purely analytical part A, and a part that needs to be numerically

integrated, N. The analytical part is

A =
1

24

(
− 6

ε2
+ 5π2 + 12

(
−8 + 4 log2 2 + 4γE log 2

))
(B.5.53)

while, with the help of PSLQ, the numerical part assumes the form

N = − 1

12
π
(
−48− π2 + 24γE log 2 + 24 log2 2

)
. (B.5.54)

When the analytical and numerical part are added together the result is the same

as in Section 4.5,

CT ∼ A + N = − π

4ε2
+

7π3

24
+O(ε) . (B.5.55)

This concludes the verification of the LT (4.5.4) and CT (4.5.9) integrals through a

different method of evaluation.
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