

S-wave resonance analysis of ^{139}La and ^{109}Ag in the compound nuclear process towards T-violation search

Hiromoto YOSHIKAWA¹, Shunsuke ENDO^{2,3}, Hiroyuki FUJIOKA⁴, Katsuya HIROTA³, Kohei ISHIZAKI³, Atsushi KIMURA², Masaaki KITAGUCHI⁵, Jun KOGA⁶, So MAKISE⁶, Yudai NIINOMI³, Takuya OKUDAIRA⁷, Kenji SAKAI⁷, Tatsushi SHIMA¹, Hirohiko M. SHIMIZU³, Shusuke TAKADA⁶, Yuika TANI⁴, Tomoki YAMAMOTO³ and Tamaki YOSHIOKA⁸

¹*Research Center for Nuclear Physics, Osaka University, 10-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan*

²*Nuclear Science and Engineering Directorate, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Naka, Ibaraki 319-1195, Japan*

³*Department of Physics, Nagoya University, Furocho, Chikusa, Nagoya 464-8601, Japan*

⁴*Department of Physics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8550, Japan*

⁵*Kobayashi-Maskawa Institute, Nagoya University, Furocho, Chikusa, Nagoya 464-8602, Japan*

⁶*Department of Physics, Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395, Japan*

⁷*J-PARC Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Naka, Ibaraki 319-1195, Japan*

⁸*Research Center of Advanced Particle Physics, Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395, Japan*

E-mail: yoshikaw@rcnp.osaka-u.ac.jp

(Received January 10, 2020)

The interference between the p-wave and s-wave resonance in neutron-induced nuclear reactions is expected to provide a useful tool to search for the violation of the time-reversal symmetry (T-violation). To improve the current upper limit of the T-violation effect, it is necessary to measure the asymmetry of the spin dependence of the p-wave resonance cross section with an accuracy better than $O(10^{-5})$. In order to study the systematic effects in the measurement, we made precise analyses of the s-wave resonances of ^{139}La and ^{109}Ag whose asymmetries are expected to be negligible small. In this paper, the detail of the experiments performed at the J-PARC/MLF/BL04 beam line and the experimental results are presented.

KEYWORDS: Symmetry violation, Neutron physics, Nuclear reaction

1. Introduction

In the neutron compound nuclear resonance reaction, it has been discovered that the violation of the parity symmetry (P-violation) is amplified up to about 10^6 times compared to nucleon-nucleon scatterings. This phenomenon is explained as an interference effect between the p-wave resonance and the tail of the s-wave resonance with different parities and the same total angular momenta [1]. It has been suggested that the similar mechanism may also amplify the violation of the time-reversal symmetry (T-violation) [2]. The forward amplitude f of the slow neutron scattering is given as

$$f = A + B\sigma \cdot \mathbf{I} + C\sigma \cdot \mathbf{k} + D\sigma \cdot (\mathbf{I} \times \mathbf{k}), \quad (1)$$

where σ , \mathbf{I} and \mathbf{k} are the incident neutron spin, the target nuclear spin and the neutron momentum, respectively. A , B , C and D are correlation coefficients, and only the D term in Eq. (1) changes the sign