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ABSTRACT

The Standard Model (SM) of particle physics provides an excellent description of the ele-
mentary particle interactions observed in particle collider experiments, but the model does
less well when it is applied to cosmology. Recent measurements of the Universe over very
large distances indicate the existence of non-luminous dark matter and an excess of baryons
over anti-baryons. The SM is unable to account for either of these results, implying that an
extension of the SM description is needed. One such extension is supersymmetry. Within
the minimal supersymmetric version of the SM, the MSSM, the lightest superpartner par-
ticle can make up the dark matter, and the baryon asymmetry can be generated by the
mechanism of electroweak baryogenesis (EWBG). In this work, we examine these issues to-
gether in order to find out whether the MSSM can account for both of them simultaneously.
We find that the MSSM can explain both the baryon asymmetry and the dark matter, but
only over a very constrained region of the model parameter space. The strongest constraints
on this scenario come from the lower bound on the Higgs boson mass, and the upper bound
on the electric dipole moment of the electron. Moreover, upcoming experiments will probe
the remaining allowed parameter space in the near future. Some of these constraints may
be relaxed by going beyond the MSSM. With this in mind, we also investigate the nMSSM,
a minimal singlet extension of the MSSM. We find that this model can also explain both
the dark matter and the baryon asymmetry.
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CHAPTER 1

INTRODUCTION

The goal of particle physics is to describe the workings of the very small. Indeed, the study
of Nature at ever tinier scales has revealed a set of seemingly fundamental building blocks.
These elementary particles interact with each other to give rise to the world we see. For the
past century, the primary way that elementary particles have been studied is through their
scattering with each other. As the particle collision energy is increased, shorter and shorter
distances can be probed. This had led to the construction of large particle collider machines
such as the Tevatron at Fermilab, and the soon-to-be-finished Large Hadron Collider (LHC)
at CERN. These gigantic microscopes accelerate particles to energies in excess of 1 TeV
(1012 electron Volts) before smashing them into each other. The resulting debris provides
clues about what kinds of particles were involved in the collision, and how these particles
interacted with each other.

Based on the results of a great number of particle collider experiments, as well as
the data from many smaller scale experiments, a model of elementary particles has been
devised. This model, the Standard Model (SM) of particle physics, is remarkably successful.
It accounts for all known elementary particles, and provides an excellent description of the
forces by which they interact. The SM is a gauge field theory based on the symmetry group
SU(3)c × SU(2)L × U(1)Y . In gauge theories, forces between the elementary particles are
dictated by the symmetry group. In the SM, the SU(3)c part of the group corresponds to
the strong force that holds nuclei together, while the SU(2)L×U(1)Y part of the symmetry
group describes electroweak interactions. These include the weak force responsible for beta-
decay, as well as the more familiar electromagnetic force.

Recent developments in cosmology, the study of the Universe over the very largest of
scales, have provided new tools with which to study elementary particles. Even though the
connections between these two fields have long been important, the very rapid improve-
ment in many cosmological measurements over the past decade has strengthened these
bonds even further. In several cases, these measurements have provided information about
elementary particles beyond what has been deduced from collider experiments. Two of the
most important examples of this are the existence of dark matter and the baryon-antibaryon
asymmetry. Both of these results suggest that there is more to particle physics than what
is described by the SM.

Dark matter is matter that doesn’t give off light, so it can’t be observed directly with
telescopes. Instead, its presence has been deduced indirectly in several ways such as by
measuring the rotational velocities of galaxies and by studying the Cosmic Microwave
Background Radiation (CMB). These experiments indicate that dark matter makes up
about one-quarter of the energy density of the Universe. The best candidate for the dark
matter is a stable, massive, neutral, weakly-interacting particle. The nature of the dark
matter is therefore a question of particle physics. Unfortunately, no such particle has yet
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been observed in a collider experiment, and none of the species in the SM have the necessary
properties.

Of the visible matter in the Universe, nearly all of it (by mass) consists of baryons,
in the form of protons and neutrons. The total density of baryons has been measured
by studying the CMB, and by comparing the light element abundances to the theoretical
predictions of Big Bang Nucleosynthesis (BBN). In both cases, baryons are found to make
up about five percent of the total energy density of the Universe. However, only baryons,
not anti-baryons, are observed in large quantities. This imbalance is called the baryon
asymmetry of the Universe. Within the SM, this asymmetry is curious; the model treats
matter and anti-matter on a nearly equal footing, with CP -violation being the only thing
that distinguishes between them, and there doesn’t seem to be enough CP -violation in the
SM to generate such a large matter/anti-matter asymmetry.

There are also good theoretical reasons to extend the Standard Model description of
particle physics. Most importantly, the SM has nothing to say about how gravity works,
and a consistent quantum theory of gravity has yet to be found. Even so, the effects of
gravity are generally believed to be negligible at the energies probed by modern collider
experiments. A second more pressing theoretical puzzle is the gauge hierarchy problem. This
problem arises if we try to extrapolate the SM to energies E above the electroweak scale, of
about 100 GeV. At these energies, the model becomes unstable under quantum corrections
which tend to push the electroweak scale up to the value E/4π unless the parameters of
the model are very carefully adjusted. In general, the amount of fine-tuning needed is of
order (4π×100 GeV/E)2. While there is nothing wrong with this in principle, it is difficult
to understand why it should be the case.

One way to resolve the cosmological and gauge hierarchy problems is to add supersym-
metry to the Standard Model. Supersymmetry is an extension of the Poincaré symmetries
of spacetime that exchanges bosons and fermions. With this symmetry, extensions of the
SM can be extrapolated to energies well above the electroweak scale without the need for
fine-tuning because of cancellations between the quantum corrections induced by fermions
and bosons. Remarkably, the minimal supersymmetric extension of the Standard Model,
the MSSM, can also explain the baryon asymmetry, and contains an excellent dark matter
candidate. In the MSSM, each type of particle in the SM gets a corresponding superpartner
particle differing in spin by half a unit. The lightest superpartner particle is stable, and can
account for the dark matter provided it is neutral. The MSSM also contains new sources
of CP -violation compared to the SM, and these can help generate the baryon asymmetry
of the Universe.

In this thesis, we shall investigate the dark matter and the baryon asymmetry within
supersymmetric extensions of the Standard Model. The first few chapters contain introduc-
tory material relevant to the original work described in the later chapters. In particular,
Chapter 2 deals with the main theoretical tools used in particle physics side of this endeav-
our, and contains a description of the Standard Model and its minimal supersymmetric
extension, the MSSM. In Chapter 3, we review some aspects of cosmology. Chapter 4 deals
with dark matter, and describes the techniques used to calculate dark matter densities.
Baryogenesis is the subject of Chapter 5. Here, we describe the requirements and some
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of the mechanisms for generating the baryon asymmetry. We pay special attention to the
mechanism of electroweak baryogenesis, in which the baryon asymmetry is created during
the electroweak phase transition since this is the mechanism that is relevant to the MSSM.
The sixth and seventh chapters describe the original research upon which this thesis is
based. Chapter 6 consists of an investigation of baryogenesis and dark matter within the
MSSM. It is based on the work in reference [1]. In Chapter 7, we investigate the same issues
in the nMSSM, an extension of the MSSM containing an additional singlet superfield. This
chapter is based on the paper of [2].



CHAPTER 2

PARTICLE PHYSICS AND SUPERSYMMETRY

The language of the SM is quantum field theory (QFT), which combines quantum mechanics
and special relativity within a single self-consistent framework. It is precisely what its name
suggests: the quantum mechanical theory of a system whose physical degrees of freedom are
those of a field. Within QFT, each elementary particle is represented by a quantum field.
At first glance, this seems strange. Particles are point-like and discrete, while fields tend to
be smooth. But this is only a figment of our intuition about classical fields. When quantum
mechanics is included, particles emerge as the quanta of their corresponding fields.

The Standard Model is based on a particular type of QFT, a gauge field theory [3]. Gauge
theories are intimately linked with symmetry groups. The defining property of a gauge field
theory is that it is invariant under spacetime-dependent transformations of a corresponding
symmetry group. The requirement of gauge invariance almost completely determines the
structure of the field theory, and in particular, fixes the possible interactions between the
fields. As a result, the nature of the fundamental forces is dictated by the underlying
gauge symmetry. Even though the SM agrees quite well with experiment, there are good
reasons to look at theories that extend the SM description. Supersymmetry is a particularly
interesting way to do so. By enlarging the SM to include supersymmetry, one obtains a
quantum field theory which can be consistently extrapolated to very high energies in a
natural way.

In this chapter we will discuss some of the ideas behind and features of the Standard
Model and its supersymmetric extensions. Section 2.1 contains a brief outline of gauge
field theories, which are the foundation upon which the SM is built. In Section 2.2, we will
describe the Standard Model itself. Supersymmetry, and its application to particle physics,
including the minimal supersymmetric extension of the SM, will be covered in Section 2.3.
More details about the general aspects of quantum field theory can be found in the excellent
textbooks [4–8], as well as the review article [9]. An additional discussion of some topics in
QFT that we will use later on, as well as a list of our notational conventions, is contained
in Appendix A.
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2.1 Gauge Field Theories

Gauge field theories have proven to be an invaluable tool for describing the fundamental
forces of nature. Indeed, all four of the known forces emerge, at least classically, from gauge
theories. A gauge theory is a field theory that is invariant under the action of a spacetime-
dependent symmetry group. To maintain invariance under the local gauge transformations,
it is necessary to introduce a vector gauge field that transforms inhomogeneously under
the group. These gauge fields are a generalization of the electric and magnetic potentials
encountered in electromagnetism. The invariance of the theory under the gauge transforma-
tions then fixes (or at least severely restricts) the form of the possible interactions between
the fields in the theory.

To construct a field theory with the desired invariance property, it is convenient to define
the theory in terms of a Lagrangian. (See Appendix A for more details.) The reason why is
that if the Lagrangian is invariant under a given symmetry group, it is often the case that the
corresponding QFT will be invariant as well. Thus, the first step in constructing gauge field
theories is to find a gauge invariant Lagrangian. This will be the subject of Section 2.1.1.
Section 2.1.2 will briefly describe a few of the subtleties that arise in formulating a quantum
field theory based on a gauge invariant Lagrangian. Finally, in Section 2.1.3 we will cover
some of the interesting features of the vacuum structure of gauge theories.

2.1.1 Gauge Invariance

We wish to construct a field theory Lagrangian that is invariant under the spacetime-
dependent transformations of a symmetry group G. The most important class of symmetry
groups (for particle physics) are the compact Lie groups, so we will focus on these [10]. We
will also assume that the fields in the theory transform linearly under finite-dimensional,
unitary representations of G. Thus, if ψ is a field multiplet transforming under the repre-
sentation r of the group, the action of the group on this multiplet is

ψ → U(x)ψ, (2.1)

with
U(x) = eiα

atar , and U † = U−1, (2.2)

where αa(x) is a spacetime-dependent group parameter, and tar denote the generators of
the corresponding representation. Note that the tar must be Hermitian and the αa(x) real
for the representation to be unitary. Since G is a Lie group, these generators satisfy

[tar , t
b
r] = i f abctcr, (2.3)

where the f abc are the completely anti-symmetric structure constants of the group. We will
choose a normalization for the generators such that

tr(tar t
b
r) = C(r)δab, (2.4)
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with C(r) = 1/2 for the fundamental representation.
The kinetic term in the Lagrangian for a free fermion field is

�
kin−ψ = iψ̄γµ∂µψ. (2.5)

This term is invariant under the group action only when αa is independent of x. When the
αa do vary with x, the derivative of the fermion field transforms as

∂µψ → ∂µ(Uψ)

= (∂µU)ψ + U(∂µψ). (2.6)

The first term is the problematic one that doesn’t cancel. Instead, to obtain invariance un-
der local group transformations, we need a derivative operator that transforms covariantly,
Dµψ → U(Dµψ). This is not too hard to construct. Consider the ansatz Dµ = ∂µ + Bµ.
This operator, acting on ψ, will be covariant provided

Bµ → B′
µ = U BµU

† − (∂µU)U †. (2.7)

It is sufficient for Bµ to take on values in the group representation, so we can write (choosing
an arbitrary normalization)

Bµ = i g Aaµ t
a
r . (2.8)

The factor g is called the gauge coupling.
Now, if we are to avoid breaking Lorentz invariance by introducing a fixed four-vector,

the quantities Aa
µ must be interpreted as a set of quantum fields. These are the gauge fields

we alluded to above. For them to be dynamical, they need a kinetic term which should
also be gauge-invariant. One way to construct such a kinetic term is to note that, as an
operator, Dµ goes to U DµU

† under the group action. Thus, so too does the commutator
of two Dµ’s,

[Dµ, Dν] → U [Dµ, Dν]U
†. (2.9)

On the other hand, this commutator depends only on the gauge fields,

[Dµ, Dν] = [∂µ + i g tarA
a
µ, ∂ν + i g tarA

a
ν]

= i g tar (∂µA
a
ν − ∂νA

a
µ − g f abcAbµA

c
ν)

:= i g tar F
a
µν . (2.10)

In the last line, we have introduced the field strength F a
µν . It transforms in the same way

as the commutator [Dµ, Dν] under gauge transformations, and is an obvious generalization
of the field strength tensor encountered in classical electrodynamics. Continuing with this
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analogy, a sensible gauge-invariant kinetic term for the Aa
µ gauge fields is

�
kin−A = − 1

4C(r)
tr(tarF

a
µν t

b
rF

µν b)

= −1

4
F a
µν F

µν a. (2.11)

Notice that since F → UFU †, the trace tr(FF ) is gauge invariant.
Putting the pieces together, the full Lagrangian is

�
= −1

4
F a
µν F

µν a + i ψ̄γµDµψ, (2.12)

where

Dµψ = (∂µ + ig Aaut
a
r)ψ, (2.13)

F a
µν = ∂µA

a
ν − ∂νA

a
µ − g f abcAbµA

c
ν .

With only the fermion and the gauge boson fields, these are the only possible operators
with dimension less than or equal to four that respect both Lorentz and gauge invariance.1

In particular, we see that the interactions between ψ and the gauge fields are fixed by the
symmetries. A complex boson field could also be included by adding the kinetic term

�
φ = (Dµφ)†Dµφ, (2.14)

with a similar expression for the covariant derivative as above. There can also be additional
Yukawa interactions between the fermions and bosons, of the form ψ̄ψ′φ, provided they are
gauge-invariant as well.

2.1.2 The Quantum Gauge Theory

The Lagrangian of Eq. (2.12) defines a classical, gauge invariant field theory. If the gauge
group is U(1)em and the ψ field represents the electron, it is simply the Lagrangian for
classical electrodynamics (up to a mass term for the electron). However, when it comes to
formulating the quantum field theory based on this Lagrangian, one encounters a number
related difficulties having to do with gauge invariance. Due to the gauge invariance, it is
not possible to write a mass term for the gauge fields, and as a result, the vector boson
gauge field corresponds to a massless spin-1 particle. Such a particle has two independent
(polarization) degrees of freedom. On the other hand, the gauge field seems to have four
Lorentz components. This mismatch causes trouble when one tries to construct the gauge
field propagator. To do so, one inverts the portion of the Lagrangian that is quadratic in

1Or almost. There’s also a term of the form F̃ F . This possibility will be discussed below.
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the gauge fields. After integrating by parts in the action, this is given by

� ⊇ −1

2
Aaµ(−ηµν∂2 + ∂µ∂ν)Aaν. (2.15)

Unfortunately, this operator has no inverse since it annihilates any gauge field of the form
Aaµ = ∂µΛ

a.
Since these problems were the result of gauge invariance, it is perhaps not surprising

that gauge invariance also provides a solution. Recall that in (classical) electrodynamics
the scalar and vector potentials are not regarded as physical degrees of freedom because
they depend on the choice of gauge. Instead, the components of the field strength, the
electric and magnetic fields, are the quantities observed experimentally. This suggests that
for gauge theories in general, gauge fields that are related by a local gauge transformation
should be interpreted as being physically equivalent configurations.

To avoid dealing with this redundancy in the description, it is convenient to work in a
particular gauge. A popular choice is the Lorentz gauge,

∂µAaµ = 0. (2.16)

This condition doesn’t completely fix the gauge, but it is enough to allow us to find a
propagator for the gauge fields. Applying the condition to Eq. (2.15), the quadratic operator
becomes −ηµν∂2, which is invertible. The most convenient way to accommodate a gauge
fixing constraint is to formulate the quantum theory in terms of the path integral formalism.
In this formalism, the constraint is incorporated by the Faddeev-Popov procedure [11].
From this procedure one obtains an effective gauge-fixed Lagrangian containing additional
gauge-fixing terms, as well as new ghost fields. The gauge fixing terms enforce the particular
gauge condition chosen, while the ghost fields contribute in loop diagrams to maintain gauge
invariance [8].

A further bump in the road to construct a quantum gauge theory is the issue of anoma-
lies. In most cases, if the Lagrangian defining a field theory is invariant under a particular
symmetry group, the full quantum theory based on this Lagrangian will be invariant under
that symmetry as well. But this is not always the case, and when the quantum theory
doesn’t respect a symmetry of the Lagrangian that symmetry group is said to be anoma-
lous. For regular symmetries, this just means that the apparent symmetry isn’t really a
symmetry at all. For gauge theories, the situation is much more serious because gauge field
configurations related by the gauge symmetry are taken to be physically equivalent. If the
symmetry is broken by an anomaly, this interpretation is no longer possible, and the whole
structure of the gauge theory falls apart. Therefore, the gauge symmetries in a gauge field
theory must be anomaly-free for the theory to be self-consistent.

2.1.3 Gauge Theory Vacua and Instantons

Another interesting feature of gauge theories is their vacuum structure. Gauge theories
based on non-Abelian gauge groups have many physically distinct, degenerate vacua [12].
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These vacua are separated by energy barriers of finite height [13–15], which means that
in the quantum mechanical theory, a system prepared in one vacuum can pass to another
vacuum by tunnelling [16]. The gauge field configurations that describe this tunnelling are
called instantons. These will be important to us later on because, as we shall see, they
provide a means to violate baryon number, an essential ingredient for baryogenesis.

A vacuum state of a field theory is a static field configuration with minimal energy.
Consider a pure gauge theory in the gauge Aa

0 = 0. The energy functional in this gauge is
given by [7, 17]

E[A] =

∫

d3x
1

4
F a
ijF

a ij. (2.17)

Since this expression is positive-definite in F , any vacuum solution (in this gauge) must
satisfy

F a
ij = 0. (2.18)

One obvious solution is Aa
i = 0, but it is not the only one. Suppose we make a time-

independent gauge transformation of the vacuum solution. This will preserve both the
gauge, and the F a

ij = 0 condition. Using Eqs. (2.7) and (2.8), we obtain

Aµ = 0 → UAµU
† +

i

g
(∂µU)U †, (2.19)

where U(~x) is an element of the gauge group, and Aµ = Aaµt
a
r for some representation r.

Thus, any gauge field configuration of the form

A0 = 0, (2.20)

Ai =
i

g
(∂iU)U †.

is a vacuum state. It may be shown that this is the most general solution of Eq. (2.18).
Note that these configurations are determined entirely by the position-dependent group
element U(~x) ∈ G.

For consistency, U(~x) must have the same limit in all directions as ||~x|| → ∞ [15]. As a
result, we may identify all points at spatial infinity. The gauge theory vacua of Eq. (2.20)
therefore define maps from position-space to group space,

S3 → G; ~x 7→ U(~x), (2.21)

where S3 denotes the three-sphere.2

Now suppose the gauge group G is SU(2). Since this group is topologically equivalent
to S3, the map corresponding to Eq. (2.21) also defines a map S3 → S3. Such maps can
be grouped into distinct topological classes characterized by the number of times the map
wraps S3 about itself. This integer-valued wrapping number is called the Pontryagin index

2Note that R
3 with points at infinity identified is equivalent to the three-sphere S3.
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or Chern-Simons number, and is given in terms of U(~x) by the expression [13]

Ncs =
1

24π2

∫

d3x εijk Tr
[

(∂iU)U† (∂jU)U† (∂kU)U†] ∈ Z. (2.22)

Since Ncs is an integer, it is not possible to change this number by continuously deforming
the group-valued function U(~x). This will be the reason why the gauge theory has many
degenerate vacua.

So far, Eq. (2.20) is just a gauge-transformed version of the trivial vacuum. Since
gauge field configurations related by a gauge transformation are physically equivalent, it is
not immediately obvious that there exists more than one vacuum. To see that there are
many vacua, consider two vacuum configurations defined by U ’s with different topological
indices, and suppose that the first vacuum configuration, U−, describes the system at time
t→ −∞, while the second, U+, describes the system as t→ +∞. Now, if these two vacua
are physically equivalent, it follows that it is possible to pass from one vacuum state to
the other while maintaining both the vacuum condition, F a

ij = 0, and the choice of gauge,
A0 = 0. To do so, there must exist a gauge group valued function U(t, ~x) such that

U(t → −∞, ~x) → U−(~x),

U(t→ +∞, ~x) → U+(~x). (2.23)

This function must also vary adiabatically with t in order to maintain the A0 = 0 gauge,
and so U(t) must pass smoothly from U− to U+. But this is impossible because these
configurations belong to different topological classes. Therefore, the configurations U− and
U+ describe physically distinct vacuum states.

Two more points are worth making. The first is that if U+ and U− lie in the same
topological class, it is possible to construct a U(t) of the form described above. The second
point is that by making a time-independent gauge transformation with U−1

− , the t → −∞
vacuum becomes the trivial one, U− → I for which Ai = 0, while the t → ∞ vacuum
becomes U+ → (U−)−1U+. This vacuum has topological index (n+ −n−), where n+ and n−
are the topological indices of U+ and U−. Thus, the topological index of a single vacuum
is unphysical because it depends on the gauge, but the difference in the topological indices
of two vacua is gauge-invariant and physical.

In the discussion above we have concentrated on the G = SU(2) case. Things go through
in exactly the same way if G is any non-Abelian Lie group because any such group is built
of SU(2) subgroups, and it is always possible to reparametrize the group such that the map
S3 → G is confined completely to one these SU(2) subgroups [14]. On the other hand, if
G is an Abelian group it can be shown that all maps S3 → G are topologically equivalent.
The vacuum of an Abelian gauge theory is therefore unique.

The distinct gauge vacua in non-Abelian gauge theories are separated by energy barriers
of finite height [13]. This is illustrated in Fig. 2.1. Because the energy barriers are finite,
in the quantum version of the gauge theory a system prepared in one vacuum state can
pass to another vacuum state by tunnelling. The gauge field configurations that describe
this tunnelling are called instantons. These are particularly interesting when the gauge
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N cs

E

Figure 2.1: Vacuum structure in a non-Abelian gauge theory.

theory includes fermions because each instanton transition is accompanied by the creation
or destruction of fermions. This feature will be discussed in more detail in Section 5.2, and
will play an essential role in models of baryogenesis.

Even though the degenerate vacua found above have minimal energy, they can’t be the
true ground states of the theory because they depend on the gauge. In general, if Um is a
gauge transformation with topological index m ∈ Z, and |n〉 is a vacuum state with index
n, then under the action of the gauge transformation,

Um |n〉 = |m + n〉 . (2.24)

Instead, the true ground states should be invariant up to a possible phase. They are
therefore given by

|θ〉 =

+∞
∑

n=−∞
e−iθ n |n〉 , (2.25)

with 0 ≤ θ < 2π. Each value of θ defines a distinct θ-vacuum. For a system with vacuum
|θ〉, the effect of summing over the different topological sectors leads to an additional term
in the effective Lagrangian [13],

� → � − θ

32π2
F a
µνF̃

µν a, (2.26)

where

F̃ µν a =
1

2
εµναβF a

αβ. (2.27)

This term can be shown to be a total divergence which implies that it does not alter the
perturbative expansion of theory. As a result, we will (mostly) neglect it in what follows.
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2.2 The Standard Model

The Standard Model (SM) is a gauge theory based on the gauge group SU(3)c×SU(2)L×
U(1)Y . (See Ref. [18] and references therein.) The SU(3)c part of the group describes
the strong interactions, while the SU(2)L × U(1)Y part corresponds to the electroweak
interactions. The latter subgroup is reduced to U(1)em by spontaneous symmetry breaking.

2.2.1 Field Content

For each simple subgroup of the gauge group there is a set of gauge bosons:

Ga
µ ↔ SU(3)c

W a
µ ↔ SU(2)L (2.28)

Bµ ↔ U(1)Y .

We will denote the corresponding field strengths by Ga
µν , W

a
µν, and Bµν , and the gauge

couplings as g3, g2, and g1.
3 The other fields in the model are the three generations of

chiral fermions and a single complex boson doublet. They are listed in Table 2.1, in four-
component notation, along with their quantum numbers under the gauge groups. We
also list the baryon and lepton numbers of each species. The chiral fermions all carry
a generational index, i = 1, 2, 3. For the leptons, these represent ei = (e, µ, τ) and
νi = (νe, νµ, ντ ), while for the quarks, ui = (u, c, t) and di = (d, s, b) respectively. Φ is the
Higgs boson doublet.

SU(3)c × SU(2)L × U(1)Y B L

Qi =
(ui

L

di
L

)

(3, 2, 1/6) 1/3 0

uiR (3, 1, 2/3) 1/3 0

diR (3, 1, -1/3) 1/3 0

Li =
(νi

L

ei
L

)

(1, 2, -1/2) 0 1

eiR (1, 1, -1) 0 1

Φ =
(

φ+

φ0

)

(1, 2, 1/2) 0 0

Table 2.1: Quantum numbers of the SM fields.

The Lagrangian for these fields can be split into three distinct parts:

�
=

�
gauge +

�
yuk +

�
higgs. (2.29)

3We will also sometimes write αi = g2

i /4π.



13

The first piece,
�
gauge contains the gauge boson and matter field kinetic terms. These

have the form of Eqs. (2.12) and (2.14), and are completely fixed by gauge invariance. For
example, the part involving the Q field reads

�
gauge ⊇ i Q̄γµDµQ (2.30)

= i Q̄γµ(∂µ + i g3 t
a
SU(3)G

a
µ + i g2t

d
SU(2)W

d
µ + i g1

1

6
Bµ)Q.

The second piece,
�
yuk, describes the Yukawa interactions between the fermion fields and

the Higgs bosons. Explicitly,

�
yuk = −yiju Q̄iΦ̃ujR − yijd Q̄

iΦdjR − yije L̄
iΦ ejR + h.c., (2.31)

where (h.c.) denotes the Hermitian conjugate, and we have defined

Φ̃ = iσ2Φ =

(

φ0∗

−φ−

)

. (2.32)

�
yuk contains all possible terms consistent with gauge invariance, and in particular, the

Yukawa couplings in this expression, yijf , may be complex. The last piece,
�
higgs, is a

potential for the Higgs boson,

�
higgs = −Vhiggs = µ2Φ†Φ − λ

4
(Φ†Φ)2. (2.33)

2.2.2 Spontaneous Symmetry Breaking and Mass Eigenstates

Even though the SM Lagrangian is invariant under SU(3)c×SU(2)L×U(1)Y , only a subset
of this symmetry is manifest at low energies. This is due to the phenomenon of spontaneous
symmetry breaking (SSB), in which the vacuum state does not respect the full symmetry of
the theory [19]. SSB plays a crucial role in the SM, and among other things, is responsible
for generating the masses of all the fermions.

Within the SM, SSB is induced by the Higgs boson. From Eq. (2.33), we see that the
potential for the Higgs boson is minimum when

Φ†Φ = v2 =
2µ2

λ
. (2.34)

This condition defines a set of vacuum states which may be transformed into each other
by SU(2)L × U(1)Y gauge transformations. To make sense of the model in perturbation
theory, it is necessary to expand about a particular vacuum. By an astute choice of the
SU(2)L × U(1)Y gauge, we may choose this vacuum configuration of the Higgs doublet to
be

〈Φ〉 =

(

0

v

)

. (2.35)

Since the configuration is not invariant under SU(2)L×U(1)Y , this symmetry will be hidden
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in the low-energy theory. However, not all of the electroweak symmetry is lost. Note that
the U(1)em subgroup of SU(2)L × U(1)Y generated by

Q = t3 + Y (2.36)

leaves the vacuum invariant. This unbroken subgroup is precisely the symmetry group of
electromagnetism, for which the effective coupling constant is

e =
g1g2

√

g2
1 + g2

2

. (2.37)

The effects of expanding about the vacuum of Eq. (2.35) are most obvious in the unitarity
gauge. Within this gauge,

Φ =

(

0

v + h/
√

2

)

. (2.38)

with h a real scalar field describing quantum fluctuations about the vacuum. The corre-
sponding particle is the Higgs boson. Using this expansion in

�
higgs, the Higgs boson mass

is
mh =

√
λ v. (2.39)

Similarly, inserting the expansion for Φ into
�
gauge, the kinetic term for the Higgs field

generates mass terms for the SU(2)L and U(1)Y gauge bosons. Upon diagonalizing the
resulting mass matrices, the mass eigenstates are found to be

Aµ = sin θwW
3
µ + cos θw B

0; M2
A = 0

Z0
µ = cos θwW

3
µ − sin θw B

0; M2
Z =

g2
1 + g2

2

2
v2 (2.40)

W±
µ =

1√
2
(W 1

µ ∓ iW 2
µ ); M2

W =
g2
2

2
v2.

where we have defined the weak mixing angles

cos θw =
g2

√

g2
1 + g2

2

, sin θw =
g1

√

g2
1 + g2

2

. (2.41)

The massless Aµ field is the photon, while the Z0
µ and W±

µ states are the massive gauge
bosons.

Mass terms for the fermions are generated when the Higgs expansion is inserted in
�
yuk.

If the Yukawa couplings in Eq. (2.32) were real and diagonal, the masses would be given by

mf = yf v (2.42)

where yf is the relevant Yukawa coupling. In practice, the Yukawa couplings turn out to
be both non-diagonal and complex. Upon diagonalizing the resulting flavor-space mass
matrix, one obtains mass terms of the form of Eq. (2.42), as well as a flavor-changing
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coupling between the quarks and the W boson, given by

g2√
2
V ij
CKM ūiLγ

µW+
µ d

j
L + (h.c.), (2.43)

where VCKM is the Cabbibo-Kobayashi-Maskawa mixing matrix [20, 21]. This matrix is
unitary, and can be parametrized by three real mixing angle and one complex phase, which
provides the only source of CP violation in the SM.4

2.3 Supersymmetry

Supersymmetry (SUSY) is a symmetry that relates bosons and fermions. It is the maximal
extension of the Poincaré symmetries of spacetime that still produces interesting dynamics
[23–25]. In quantum field theory, particles emerge as the quanta of fields, with the spin
of the particle corresponding to the particular representation of the Poincaré group under
which the field transforms. SUSY extends this idea, combining fields with different spins
within a single representation of the symmetry. The particles related to the fields in each of
these representations have the same masses and coupling and constants [26]. Moreover, the
total number of bosonic degrees of freedom is equal to the net number of fermionic degrees
of freedom within each supermultiplet.

There is more than one type of supersymmetry. The types differ in the number N of
supersymmetry generators. We will focus on the minimal N = 1 variety since this is the
only kind of supersymmetry that allows for chiral fermions in four dimensions, an essential
ingredient in the SM. The (N = 1, d = 4) supersymmetry algebra consists of the usual
Poincaré generators along with the Grassmann-valued supersymmetry generators Qα, and
Q†
β̇
, where the subscripts are Weyl spinor indices. These obey the anticommutation relations

{Qα, Qβ} = {Q†
α̇, Q

†
β̇
} = 0,

{Qα, Q
†
β̇
} = 2 σµ

αβ̇
Pµ, (2.44)

where Pµ is the 4-momentum generator.
As for the Poincaré group, it is possible to represent the supersymmetry algebra on

quantum fields. The particular representations are called supermultiplets, and are made
up of component fields with different spins. Only two kinds of superfields are needed to
reproduce the particle content of the SM. The fermions and Higgs bosons of the SM can be
embedded in chiral multiplets, which consist particles with spins s = 0 and s = 1/2. The
gauge bosons must be placed in vector multiplets, which have components of spin s = 1/2
and s = 1. In both types of multiplets, the component fields transform under the same
representation of the gauge group, and have the same mass.

4The θ term for the SU(3)c group provides a second source of CP violation. However, it is constrained
to be very small, θ . 10−9 by the experimental limit on the electric dipole moment of the neutron [22] We
will therefore neglect its effects here. (See also Section 2.1.3)
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Since degenerate particles with different spins have not been observed, SUSY can’t be
an exact symmetry. Even so, supersymmetry could still be realized in Nature as a softly
broken symmetry; one that is hidden at low energies, but present at high energies. The great
difficulty in constructing models with broken supersymmetry is that it is not known how
the supersymmetry breaking should be induced. The minimal supersymmetric extension
of the Standard Model is the MSSM. It contains all the particles of the SM as well as the
smallest possible number of superpartners. Supersymmetry breaking is accounted for in
the MSSM by including the most general possible set of soft SUSY breaking couplings.
Unfortunately, this introduces many undetermined parameters into the model.

In this section, we will give a brief description of those aspects of supersymmetry that
we will use later on. For a more detailed account of these topics the reader should consult
the many excellent reviews [27–30], as well as the standard textbooks [25, 26].

2.3.1 Chiral Multiplets

Each chiral multiplet can be described by a chiral superfield, Φi, where i is a flavor index [26,
27]. The components of such a superfield are

Φi = (φi, ψi, Fi), (2.45)

with φi a complex scalar, ψi a Weyl fermion, and Fi an auxiliary complex scalar field with
mass dimension 2. As will be seen below, the auxiliary fields are non-dynamical, and do
not correspond to any particle. The most general (renormalizable) SUSY-invariant kinetic
term for the components of the chiral multiplet is

�
χ−kin = (∂µφi)

∗(∂µφi) + iψ†
i σ̄

µ∂µψi + F ∗
i Fi. (2.46)

Since Fi does not have any derivative terms, its equation of motion will be an algebraic
constraint. It is in this sense that the Fi are auxiliary; they could be removed from the
beginning by imposing the appropriate constraints.

All supersymmetric interactions between chiral superfields, including mass terms, can
be encoded in the superpotential W (Φi). It must be a holomorphic function of the Φi (i.e.
depending on Φ but not Φ∗). Given a superpotential W (Φ), the corresponding interaction
terms in the Lagrangian are

�
χ−int =

∂W

∂φi

∣

∣

∣

∣

φ

Fi −
1

2

∂2W

∂ΦiΦj

∣

∣

∣

∣

φ

ψiψj + (h.c.), (2.47)

where |φ implies the replacement Φi → φ in the resulting function.
The total supersymmetric Lagrangian for the chiral superfield components is the sum

of the kinetic and the interaction terms. The equation of motion for F ∗
i is therefore

F ∗
i =

∂W

∂Φi

∣

∣

∣

∣

φ

. (2.48)
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Applying this constraint to the Lagrangian, the terms involving the Fi fields become

F ∗
i Fi +

∂W

∂Φi

∣

∣

∣

∣

φ

Fi + h.c. →
∑

i

∣

∣

∣

∣

∂W

∂Φi

∣

∣

∣

∣

2

φ

. (2.49)

This is a positive-definite potential for the scalars φi.

2.3.2 Vector Multiplets and Gauge Invariance

A vector multiplet can be represented by a vector superfield V satisfying the constraint
V † = V . When V includes a gauge field, its components are [26, 27]

V = (λa, Aaµ, D
a) (2.50)

with λa a Weyl fermion, Aa
µ the gauge field, and Da a real scalar auxiliary field of dimension

two. The superscript a denotes the adjoint index of the gauge group, and all the components
of the supermultiplet transform under this representation. The most general renormalizable,
gauge and SUSY invariant Lagrangian involving these component fields is [26] 5

�
vec = −1

4
F a
µνF

µν a + iλa†σ̄µ(Dµλ)a +
1

2
DaDa. (2.51)

Here, Dµ denotes the gauge-covariant derivative. Its action on the λ field is

(Dµλ)a = ∂µλ
a − gf abcAbµλ

c, (2.52)

for a gauge coupling g, and structure constants f abc. Note that for this Lagrangian, the
equation of motion for the auxiliary field is just Da = 0.

To reproduce the SM matter fields, we need chiral multiplets that transform under
the gauge group. It is easy to modify the chiral superfield Lagrangian,

�
χ, so that it is

invariant under gauge transformations. This is done by allowing only gauge-invariant terms
in the superpotential and by replacing the ordinary derivatives of the component fields with
gauge-covariant derivatives,

∂µ → Dµ = ∂µ + ig Aaµ t
a, (2.53)

where ta is the generator of the gauge group representation of the field upon which the
derivative operator acts. This modification alone produces a Lagrangian that is not in-
variant under supersymmetry. Supersymmetry can be restored by including additional
cross-terms that couple the chiral and vector multiplets. These are [26, 27]

�
cross = −

√
2g
[

(φ∗
i t
a
ijψj)λ

a + λa†(ψ†
i t
a
ijφj)

]

+ g (φ∗
i t
a
ijφj)D

a. (2.54)

5As in the non-supersymmetric case, we could also add a θ-term here. See Section 2.1.3.
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With these cross-terms, the equation of motion for the auxiliary field Da becomes

Da = −g (φ∗
i t
a
ijφj). (2.55)

Plugging this in for Da and including the corresponding F-terms, the bosonic potential
becomes

Vbosons = VF + VD (2.56)

= F ∗
i Fi +

1

2
DaDa

=
∑

i

∣

∣

∣

∣

∂W

∂Φi

∣

∣

∣

∣

2

φ

+
1

2
g2 (φ∗

i t
a
ijφj)

2.

Again, this is positive definite.

2.3.3 Supersymmetry Breaking

Using the supersymmetric Lagrangian
�
SUSY presented above, one finds that the Weyl

fermion gauginos, λa, are massless, and the chiral field components φi and ψi are degenerate
in mass. These features must be avoided in order to construct realistic models, and the only
way to do so is to break supersymmetry. Unfortunately, breaking SUSY usually ruins the
attractive properties that motivated this symmetry in the first place. However, if the only
relevant supersymmetry breaking terms have dimension less than four, and therefore come
with a dimensionful coupling of size MSUSY , the nice features of SUSY will be regained
at energies above this scale [31]. In particular, if MSUSY ∼ 1 TeV, supersymmetry will
ensure the stability of the electroweak scale. Supersymmetry breaking of this sort is said
to be soft. Following this rule, the most general set of soft supersymmetry breaking terms
is [27, 31] 6

�
soft = −1

2
(Mλλ

aλa + h.c.) −m2
φ ijφ

∗
iφj − (bijφiφj + aijkφiφjφk + h.c.). (2.57)

The origin of the SUSY breaking terms is a mystery, and while there are many models
for how they might emerge, none of them are entirely compelling. Most of them fall into
the categories of gravity mediation or gauge mediation [27, 32]. In both types, the models
consist of a visible sector containing the particles of the SM, along with a hidden sector
in which the supersymmetry breaking actually takes place. The hidden and visible sectors
only couple weakly with each other, and as a result, the low-energy theory of the visible
sector is fairly insensitive to the details of SUSY breaking. Unfortunately, this property
also limits the predictivity of these models.

Before describing the gauge and gravity mediation mechanisms, it is worthwhile to point

6In addition to those quoted here, terms of the form φ∗φφ are soft in the absence of gauge singlet fields.
However, they are conventionally neglected, and we will follow this trend here [27].
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out a couple of general facts about supersymmetry breaking. From the supersymmetry
algebra, Eq. (2.44), we see that {Q,Q†} ∼ P 0. Now, if a state is invariant under SUSY, it
must be annihilated by the SUSY generators, Q |ψ〉 = 0. It follows that

〈ψ|P 0 |ψ〉 = ‖Q |ψ〉 ‖2 ≥ 0. (2.58)

In particular, a non-zero vacuum energy implies that (global) supersymmetry is broken.
The tree-level vacuum energy is determined by the bosonic potential, and for a theory built
from chiral and vector superfields, it is given by

Vtree = F ∗
i Fi +

1

2
DaDa, (2.59)

which is positive-definite in both Fi and Da, and shows that SUSY is broken if and only if

〈Fi〉 6= 0, or 〈Da〉 6= 0. (2.60)

These two possibilities are called F - and D-term breaking, respectively. Most phenomeno-
logically viable models rely on F -term breaking.

Gravity mediated models are based on supergravity, the supersymmetric generalization
of general relativity. Supergravity emerges automatically if one promotes global supersym-
metry to a local (gauge) symmetry [26,29,33]. The corresponding gauge field is the spin-2
graviton, and is accompanied by a spin-3/2 superpartner, the gravitino. The supergrav-
ity Lagrangian for the graviton and gravitino is necessarily non-renormalizable, involving
operators of dimension greater than four suppressed by powers of the Planck mass, MPl.
Thus, there is no reason not to include higher dimensional (d > 4) operators, also sup-
pressed by powers of MPl, for the visible and hidden sector fields as well. The key feature
of gravity mediated models is that the visible and hidden sectors interact with each other
only through these higher dimensional, MP l-suppressed operators. If SUSY is broken in the
hidden sector by an F -term VEV, soft (and only soft) supersymmetry breaking interactions
of order

msoft ∼
〈F 〉
MP l

(2.61)

are generated in the visible sector. This SUSY breaking also generates a gravitino mass of
the same size,

m3/2 ∼
〈F 〉
MP l

. (2.62)

To get msoft ∼ 1000 GeV,
√

〈F 〉 should be of order 1010 GeV.
Due to the large number of possible operators connecting the visible and hidden sectors,

gravity mediation models do not give very definite predictions for the soft breaking terms.
A much more predictive variant of gravity-mediated models is anomaly mediation [34,35] in
which the visible and hidden sectors are completely separated from each other, at least to a
very high order. SUSY breaking in the hidden sector is communicated to the visible sector
through the superconformal anomaly of supergravity. This contribution is already present
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in gravity-mediated models, but its effects are usually suppressed relative to the others.
Unfortunately, one of the definite predictions of anomaly mediation is negative masses for
the scalar superpartners of the lepton fields, which tend to induce the breaking of U(1)em.

In gauge mediated models of SUSY breaking, the visible and hidden sectors interact
through ordinary gauge interactions [36, 37]. In this case, SUSY breaking in the hidden
sector is transferred to the visible sector by loop diagrams that connect the two sectors.
If the hidden sector masses are at scale Mh, the soft masses in the visible sector are of
order [27]

msoft ∼
g2

16π

〈F 〉
Mh

. (2.63)

For 〈F 〉 ∼ Mh, we need
√

〈F 〉 ∼ 105 GeV to get msoft ∼ 1000 GeV. Models with gauge
mediation tend to be somewhat more predictive than gravity mediated models, but there
is still a considerable freedom in specifying the hidden sector. Furthermore, if we assume
that supergravity is present at high energies, these lower values for 〈F 〉 lead to very light
gravitinos, whose masses are still given by Eq. (2.62), which can be problematic phenomeno-
logically.

2.4 The MSSM

Given the success of the Standard Model, it is expected that any extension of the SM
should reproduce the particle content and the gauge structure of the model at low energies.
The simplest supersymmetric model that accomplishes this is the Minimal Supersymmetric
Standard Model (MSSM). This model is also consistent with the current experimental data.

In the MSSM, the Standard Model fermions are embedded in chiral multiplets, while
the gauge bosons become members of vector multiplets. As a result, the MSSM contains
bosonic sfermion superpartners of the fermions, and Weyl fermion gaugino superpartners
for the gauge bosons. The Higgs sector can’t be extended quite so easily. Instead, the single
Higgs doublet of the SM must be replaced by a pair of Higgs doublets with Y = ±1/2. Each
of these are members of a chiral superfield, and are therefore accompanied by Weyl fermion
higgsinos. There are two reasons why a pair of Higgs doublets are needed. First, if there was
only a single Higgs doublet, the corresponding higgsino would generate a gauge anomaly.
Second, the Yukawa interactions in the MSSM are determined by the superpotential, which
must be holomorphic in the superfields. Consequently, it is no longer possible to use a
single Higgs doublet to give masses to both the up and down type quarks since this would
require complex conjugating the Higgs field, as in Eq. (2.32).

2.4.1 Field Content

The chiral superfield content of the MSSM is shown in Table 2.2. We have omitted the flavor
indices, but just like the SM there are three generations of fermions, and now sfermions as
well. This table also shows the notation used for the component fermions and sfermions,
and for the Higgs bosons and higgsinos. Here, the c superscript and the L and R subscripts
are a part of the names of the particles. For instance, the U c is a superfield whose Weyl



21

fermion component is the left-handed spinor u†
R, and whose complex boson component is

ũ∗R. However, since (u†R)† := uR is a right-handed spinor, this name is apt. Table 2.3 shows
the vector superfield content of the MSSM, as well as the notation used for the component
gauge bosons and Weyl fermion gauginos.

SU(3)c × SU(2)L × U(1)Y Fermions Bosons B L

Q =
(

UL

DL

)

(3, 2, 1/6) uL, dL ũL, d̃L 1/3 0

U c (3̄, 1, -2/3) u†R ũ∗R -1/3 0

Dc (3̄, 1, 1/3) d†R d̃∗R -1/3 0

L =
(

νL

EL

)

(1, 2, -1/2) νL, eL ν̃L, ẽL 0 1

Ec (1, 1, 1) e†R ẽ∗R 0 -1

H2 =
(H+

2

H0
2

)

(1, 2, 1/2) h̃+
2 , h̃

0
2 h+

2 , h
0
2 0 0

H1 =
(H0

1

H−

1

)

(1, 2, -1/2) h̃0
1, h̃

−
1 h0

1, h
−
1 0 0

Table 2.2: Chiral superfields in the MSSM.

SU(3)c × SU(2)L × U(1)Y Fermions Bosons B L

Ga (8, 1, 0) G̃a Ga
µ 0 0

W d (1, 3, 0) W̃ d W d
µ 0 0

B (0, 0, 1) B̃ Bµ 0 0

Table 2.3: Vector superfields in the MSSM.

Because of the joint requirements of gauge invariance and supersymmetry, the supersym-
metric part of the Lagrangian is completely determined once we specify the superpotential.7

It is given by

WMSSM = −yijuH2 ·Qi U
c
j + yijd H1 ·QiD

c
j + yije H1 ·LiEc

j − µH1 ·H2, (2.64)

where i, j = 1, 2, 3 are generational indices, and A·B = εabAaBb denotes the antisymmetric
contraction of SU(2)L indices.8

7We are implicitly neglecting non-renormalizable terms.

8εab is the completely antisymmetric tensor with ε12 = 1.
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Unlike the SM Lagrangian, the MSSM superpotential of Eq. (2.64) does not contain
every possible operator consistent with gauge invariance. The gauge invariant operators
that are not included in the superpotential, such as L·QU c, are omitted because they would
be inconsistent with experimental observations. All of these dangerous operators can be
formally forbidden in the MSSM by imposing an additional symmetry on the Lagrangian,
called R-parity [38]. This is a Z2 symmetry under which each species has charge

R = (−1)(3B−L)+2s, (2.65)

where s is the spin of the particle. Thus, the fermions of the SM as well as the gauge and
Higgs bosons all have R = +1, while the sfermions, higgsinos, and gauginos have R = −1.
Because of R-parity, the R = −1 superpartner particles can only be created or destroyed in
pairs. This implies that the lightest superpartner, the LSP, is absolutely stable if R-parity
is an exact symmetry.

Since supersymmetry must be broken, soft-supersymmetry-breaking terms have to be
included in the Lagrangian. These are

�
soft = −m2

1H
†
1H1 −m2

2H
†
2H2 − (BµH1 ·H2 + h.c.)

− (m2
Q)ij Q̃†

i Q̃j − (m2
U )ij Ũ c†

i Ũ
c
j − (m2

D)ij D̃c†
i D̃

c
j

− (m2
L)
ij L̃†

i L̃j − (m2
E)ij Ẽc†

i Ẽ
c
j (2.66)

− (−aijU H2 ·Q̃i Ũ
c
j + aijDH1 ·Q̃i D̃

c
j + aijE H1 ·L̃i Ẽc

j + h.c.)

− 1

2
(M3 G̃

aG̃a +M2 W̃
dW̃ d +M1 B̃B̃).

The terms in the first line of this equation contribute to the potential for the Higgs bosons.
The squared masses in the second line and the trilinear couplings on the third and fourth
lines generate masses and mixings for the sfermions. The final line contains mass terms for
the gauginos.

As they stand, the soft terms can be problematic. Without a concrete model of super-
symmetry breaking, they must be regarded as (a large number of) new unknown parameters
in the model. The soft breaking terms are also dangerous for phenomenology because they
can generate unacceptably large amounts of flavor mixing and CP-violation. Because of
these difficulties, several simplifying assumptions are often made about the soft parameters.
To reduce the amount of flavor mixing, it is common to take

(m2
Q)ij = (m2

Q)iδij, (m2
U)ij = (m2

U)iδij, etc . . . (2.67)

aijU = yijUA
i
U , aijD = yijDA

i
D, aijE = yijEA

i
E.

CP-violation can be avoided by requiring that the potentially complex couplings µ,B,Af ,
and Mi, be real. We shall assume the flavor structure of Eq. (2.67) in our subsequent
analysis, although we will allow for complex phases in the µ-term and the soft-breaking
parameters.
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2.4.2 Electroweak Symmetry Breaking and Particle Masses

As in the SM, the SU(2)L × U(1)Y electroweak symmetry is spontaneously broken to its
U(1)em subgroup by the vacuum expectation value of a Higgs boson field. In this case, both
Higgs doublets develop VEV’s,

〈H1〉 =

(

v1

0

)

, 〈H2〉 =

(

0

v2

)

. (2.68)

These VEV’s can also be taken to be real and positive. It is conventional to define

v =
√

v2
1 + v2

2, tan β =
v2

v1

. (2.69)

In terms of v, the gauge boson masses are given by the same expressions as in the SM, Eq.
(2.40). The SM fermion masses are given by

mu = yu v sin β, md = yd v cos β, me = ye v cos β, (2.70)

for the up-type quarks, the down-type quarks, and the charged leptons. The mass matrices
of the corresponding sfermions are complicated by the appearance of soft-breaking param-
eters. With the simplifying assumptions in Eq. (2.67), the mass matrix for the up-type
sfermions (ũL, ũ

∗
R)t is given by

M2
ũ =

(

m2
Q +m2

u +DL mu(Au − µ∗ cot β)
mu(A

∗
u − µ cotβ) m2

U +m2
u +DR

)

, (2.71)

where mu is the fermion mass, m2
Q, m

2
U , and Au are the soft-breaking terms corresponding

to each appropriate generation, and DL and DR are given by

DL = (t3SU(2) −Q sin2 θw)M2
Z cos 2β,

DR = Q sin2 θwM
2
Z cos 2β. (2.72)

For a down-type sfermion, the mass matrix is

M2
d̃

=

(

m2
Q +m2

d +DL md(Ad − µ∗ tan β)
md(A

∗
d − µ tanβ) m2

D +m2
d +DR

)

, (2.73)

with a similar expression for the slepton masses.
The physical Higgs bosons of the MSSM consist of two real CP-even states, one real

CP-odd state, and one complex charged state. Their tree-level masses can be expressed in
terms of v, β, µ and M 2

a , where M2
a is a function of the soft parameters. For the CP-odd

Higgs boson, A0, and the charged Higgs boson, H±, the tree-level masses are [39]

A0 : m2
A = M2

a , (2.74)

H± : mH± = M2
a +M2

W .
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The mass matrix for the two CP-even states is given by [39]

M2
0 =

(

M2
a sin2 β +M2

Z cos2 β −(M2
a +M2

Z) sin β cos β
−(M2

a +M2
Z) sinβ cos β M2

a cos2 β +M2
Z sin2 β

)

. (2.75)

The lighter and heavier states are denoted h0 and H0, respectively.
In addition to the SM fermions, sfermions, and Higgs bosons, the MSSM also contains

gauginos and higgsinos. The SU(3)c gaugino is the gluino. It transforms as an adjoint
under the gauge group, and has mass M3. The SU(2)L and U(1)Y gauginos, the Wino and
the Bino, mix with the higgsinos once these symmetries are broken. The resulting mass
eigenstates then consist of four neutral Majorana fermion neutralinos, and two Dirac fermion
charginos. The chargino mass matrix, in the (Weyl fermion) basis (W̃+, H̃+

2 , W̃
−, H̃−

1 ), 9 is

Mχ± =

(

0 X t

X 0

)

, (2.76)

where

X =

(

M2

√
2sβMW√

2cβMW µ

)

. (2.77)

For the neutralinos, the mass matrix in the (Weyl fermion) basis
ψ0
i = (B̃, W̃ 3, H̃0

1 , H̃
0
2) reads

MÑ =









M1 0 −cβswMZ sβswMZ

0 M2 cβcwMZ −sβcwMZ

−cβswMZ cβcwMZ 0 −µ
sβswMZ −sβcwMZ −µ 0









. (2.78)

2.4.3 Predictions of the MSSM

Like the Standard Model, the MSSM agrees fairly well with the results of particle collider
experiments. But, in addition to the SM, the MSSM stabilizes the electroweak scale, and
as we shall discuss below, can also account for the dark matter and the baryon asymmetry
of the Universe. Another attractive feature of the MSSM is that it leads to an excellent
unification of gauge couplings [40]. This suggests that MSSM could be the low energy limit
of a grand unified theory, in which the gauge groups of the SM are embedded in a larger
and possibly simple gauge group.

The downside of the MSSM compared to the SM is that it contains a much larger
number of undetermined parameters. They arise from our lack of understanding of how
supersymmetry is broken, and they limit the predictivity of the model. At the same time,
many of these parameters are very constrained by limits on the amount of flavor mixing
and CP violation seen in experiments. In fact, for a generic set of soft supersymmetry
breaking terms of order mSUSY ∼ 1 TeV, as required to solve the gauge hierarchy problem,

9We have implicitly defined W̃± = (W̃ 1 ∓ iW̃ 2)/
√

2 in analogy with the gauge bosons.
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one would expect much more flavor mixing and CP violation than is seen.
Despite our ignorance of the soft breaking terms, the MSSM does make a definite pre-

diction for the mass of the lightest CP-even Higgs boson, h0. From Eq. (2.75) it follows
that the tree-level mass of the h0 state is bounded by

m2
h ≤M2

Z cos2 2β. (2.79)

When this bound is saturated, the h0 state behaves nearly identically to the Higgs boson
of the SM. However, the current LEP II limit on a SM-like Higgs is [41]

mh & 114 GeV, (2.80)

which exceeds the tree-level upper bound. This limit does not rule out the MSSM because
the h0 mass receives large radiative corrections from the top squarks, and for stop masses
below 2 TeV, the h0 mass can be as high as 130 GeV [42]. Upcoming particle collider
experiments will probe this this Higgs boson mass range.



CHAPTER 3

COSMOLOGY

Just as there exists a standard model of particle physics, there is also a standard model
of cosmology that provides a very good description of what has been observed over the
very largest scales [43]. The model is based on two assumptions, namely, that gravity is
described by classical general relativity, and that the contents of the Universe obey the
rules of statistical mechanics and particle physics. In both cases this is an extrapolation
from small to large. General relativity has been experimentally tested only within the
solar system [44], while the laws of particle physics have been deduced from laboratory
experiments. Even so, the many successful predictions of the model indicate that these
assumptions are reasonable.

Having made these assumptions, much of the standard cosmological model then follows
directly from three observational results: the Universe is homogeneous and isotropic over
very large scales [45]; distant points in the Universe are moving away from each other [46];
the Universe is uniformly filled with photons obeying a thermal distribution with a tem-
perature of about 2.75 K [45, 47]. The collection of these photons is called the cosmic
microwave background (CMB) radiation.

Since distant points are receding, the Universe must be expanding. As we’ll show below,
the energy of a free particle decreases with time in an expanding Universe. For a thermal
distribution of particles, this implies that their temperature also decreases with the expan-
sion. Starting with the present CMB temperature and extrapolating backwards in time,
the early Universe must therefore have been much more hotter and denser in its youth. At
very high temperatures, the early Universe would have consisted of a plasma of elemen-
tary particles. The standard model of cosmology describes how this plasma subsequently
evolved as it cooled to form the Universe we see today.

In the model, the Universe begins with a brief but violent period of inflation, in which
a small but causally connected region of space rapidly expands to a size large enough to
encompass all of the presently observed Universe [48]. Inflation seems to be the only way
to explain why the CMB is as uniform as it is, and it makes several other predictions that
all remarkably consistent with the measured CMB spectrum as well [45]. Following the
inflationary expansion, the Universe reheated to a thermal plasma of elementary particles
with temperature TRH , which in many models is of order 108−1012 GeV [49]. This reheating
can be identified with the “Big Bang” [50].

After reheating, the Universe steadily expanded and cooled, with unstable massive par-
ticles decaying into lighter species. This smooth expansion was punctuated by phase tran-
sitions along the way. At temperatures of order 102 GeV, the SU(2)L×U(1)Y electroweak
symmetry of the SM was broken to the U(1)em symmetry of electromagnetism [51]. When
the temperature cooled below about 1 GeV, the QCD phase transition took place, in which
free quarks and gluons in the plasma combined into baryons and mesons. At a temperature

26
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close to 10−3 GeV, the remaining long-lived baryons, protons and neutrons, combined to
form light elements in a process called Big Bang Nucleosynthesis (BBN). The predictions
of BBN agree very well with the primordial light element abundances seen today [52]. At
still lower temperatures, of order 10−6 GeV, free nuclei and electrons combined to form
atoms. Once this reionization took place, the rate of photon scattering dropped sharply,
and the Universe effectively became transparent since photons could now propagate freely.
The photons observed in the CMB are those that have not scattered since, so the CMB
gives an excellent way to probe this epoch. The stars and galaxies were formed much later
and over much longer time scales. In this work, we will primarily be interested in the very
early Universe, when the temperature was in excess of 1 GeV.

In this chapter, we will outline the basic tools used to describe these phenomena. In
Section 3.1, we shall outline how the expansion of the Universe emerges from general rela-
tivity. Section 3.2 deals with the contents of the Universe, and how for much of its history,
they can be well described in terms of equilibrium statistical mechanics. Finally, departures
from equilibrium, and their description in terms of the Boltzmann equation, are the subject
of Section 3.3. More detailed accounts of cosmology can be found in the textbooks [43,54],
as well as the review articles [55, 56].

3.1 An Expanding Universe

Gravity is the most important force over the very large distances encountered in cosmology.
The evolution of the Universe is therefore determined by Einstein’s equations which relate
the spacetime metric to the local energy-momentum density. Because of the observed
isotropy and homogeneity of the Universe the form of the metric is highly constrained. The
most general form of the metric consistent with these two requirements is [57]

ds2 = gµνdx
µdxν

= dt2 − a2(t)

[

dr2

1 − kr2
+ r2dΩ2

]

. (3.1)

Here, a(t) is a dimensionless scale factor, and k describes the spatial curvature. Following
the usual convention, we will use the subscript 0 to denote quantities evaluated at the
present time, and choose spatial coordinates such that the current scale factor is equal to
unity, a(t = t0 = now) = a0 = 1. With this normalization, the CMB data [45] indicates that
the spatial curvature k is negligibly small, and so the spatial geometry is locally identical
to R

3. We will therefore neglect k in most of what follows.
To find the functional form of a(t), it is necessary to solve Einstein’s equations [57]

Rµν − 1

2
gµνR = T µν, (3.2)

where R and Rµν are curvature terms constructed from the metric, and T µν is the energy
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momentum tensor. Because of isotropy and homogeneity, it must have the form

T µν = diag(ρ,−p,−p,−p), (3.3)

which is that of a perfect fluid with energy density ρ and pressure p. The relationship
between these is given by the equation of state, which usually takes the form

p = w(t)ρ. (3.4)

For Einstein’s equations to be self-consistent, the energy momentum must be covariantly
conserved, ∇µT

µν = 0. In terms of the metric of Eq. (3.1), this will be true if and only if

0 =
d

dt
(ρ a3) + p

d

dt
(a3)

=

[

ρ̇+ (ρ + p)
ȧ

a

]

. (3.5)

Here, the overdot implies differentiation with respect to the time coordinate t. The Einstein
equations themselves give the relations

(

ȧ

a

)2

+
k

a2
=

8π G

3
ρ, (3.6)

and
ä

a
= −4π G

3
(ρ+ 3p). (3.7)

Only two of these three equations are independent, but it is useful to have them all written
out explicitly.

Since the universe is currently expanding, we know that ȧ(t = t0) > 0. Furthermore,
provided w(t) > −1/3 in the past, the Universe has been decelerating, ä < 0. Together,
these imply that there must have been a time t∗ in the finite past at which a(t∗) = 0, usually
called the “Big Bang”. However, we hasten to point out that the description of gravity by
classical Einstein relativity is expected to break down before this happens. Even so, we
should still be able to trust our picture of an expanding Universe well into the distant past.

Consider now the Einstein equations for the simple case of w(t) = constant and k = 0.
Energy-momentum conservation, in the form of Eq. (3.5), then implies

ρ = ρo

(

a

a0

)−r
, (3.8)

where r = 3(1 + w). Putting this result into Eq. (3.6), we find

a(t) =
(r

2

)2/r
(

8π Gρ0

3

)1/r

t2/r. (3.9)
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For future use, it will be convenient to rewrite Eq. (3.6) in terms of the Hubble parameter
H. This parameter provides a measure of the expansion rate of the Universe, and is defined
by the relation

H(t) :=
ȧ(t)

a(t)
. (3.10)

The measured value of H in the present is [45]

H(t = t0) := H0 = 100 h km s−1Mpc−1 = 2.1332 h × 10−42 GeV, (3.11)

with h in the range
h = 0.71 ± 0.06. (3.12)

In terms of H, Eq. (3.6) becomes

Ω = 1 − k

a2H2
, (3.13)

where we have defined
Ω =

ρ

(3H2/8π G)
. (3.14)

The denominator is sometimes called the critical density, ρc = (3H2/8π G). The energy
density, ρ in the numerator, receives contributions from many sources including massive
particles and radiation. For each contribution ρi to the energy density, we will write Ωi =
ρi/ρc. Thus,

Ω =
∑

i

Ωi = 1 − k

a2H2
. (3.15)

A crucial property of an expanding Universe is that both the momentum of a particle
and the wavelength of radiation decrease with the expansion. This follows from the geodesic
equation, which describes the motion of free particles in a curved background. If xµ(ξ) is
the trajectory of a particle parametrized by the affine parameter ξ, this equation reads

d2xµ

dξ
+ Γµαβ

dxα

dξ

dxβ

dξ
= 0. (3.16)

Putting the Christoffel symbols for the RW metric into the zero component of this equation,
and identifying dxµ/dξ with the momentum (up to a proportionality factor), one obtains
that the magnitude of the three momentum scales as

‖~p‖ ∝ a−1. (3.17)

For radiation, this momentum is inversely proportional to the wavelength, and so photons
get red-shifted by the expansion of the Universe.

This redshifting effect is of great importance to observational cosmology since it allows
one to determine the age of distant objects. In fact, it was the observation of the redshift of
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light from distant galaxies by Hubble that gave the first evidence for an expanding Universe.
The amount by which an object is redshifted is usually expressed in terms of the quantity
z, given by [43]

z =
λi − λ0

λi
= 1 − a0

ai
, (3.18)

where λi and ai are the initial wavelength and scale factor, and λ0 and a0 are at present.
Very old, distant objects correspond to large z.

3.2 Equilibrium Thermodynamics in the Early Universe

For much of the evolution of the Universe, the rate of Hubble expansion was much less than
the rate at which elementary particles interacted with each other. Because of this, these
particles are very well described by equilibrium statistical mechanics, and we may assign a
temperature T to the Universe. At a given temperature, those particles with masses well
below T are called radiation, while those with masses greater than T are referred to as
matter.

The grand canonical ensemble is the most convenient way to describe this system of
particles. In this ensemble, all thermodynamic quantities of interest can be obtained from
the free-energy (really the grand canonical potential) defined by [58, 59]

F = −T ln ZGCE, (3.19)

with ZGCE the grand canonical partition function,

ZGCE = tr[e−β( � −µaQa)], (3.20)

where β = 1/T ,
�

is the Hamiltonian for the system, and {Qa} are a set of conserved
charges. In terms of F , the expectation values of these are

E = 〈 � 〉 =
∂F

∂β

∣

∣

∣

∣

µa

Qa =
∂F

∂µa

∣

∣

∣

∣

β

p = − ∂F

∂V

∣

∣

∣

∣

µa,β

(3.21)

Using elementary thermodynamics, we also have

F = −pV = E − TS − µaQa. (3.22)

It is usually a good approximation to treat the particles in the early Universe as a weakly-
interacting dilute gas consisting of several species. Recall that particles are described by
quantum fields. This approximation then amounts to neglecting interactions between the
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fields, and introducing a chemical potential for each particle species when computing its
contribution to the free energy. The effect of interactions is included in two ways. First, in
writing Eq. (3.20), we have implicitly assumed that elastic collisions are sufficiently fast to
ensure kinetic equilibrium. Second, the effects of rapid inelastic interactions are included by
assuming chemical equilibrium. This implies that if the reaction (a+b+ . . .) ↔ (x+y+ . . .)
goes, then the chemical potentials add:

µa + µb + . . . = µx + µy + . . . . (3.23)

The dilute gas picture works well provided the mean free-paths of the constituent particles
are large compared to the time-scale over which they interact (so that a particle picture
makes sense). On the other hand, kinetic and chemical equilibrium only hold provided
the corresponding reaction rates are fast compared to the expansion rate of the Universe.
Corrections to this picture can be computed in perturbation theory.

At lowest order in the dilute-gas approximation, the contribution of a single species to
the free-energy is

F ⊇ V T g

∫

d3p

(2π)3
η
(

ln[1 + η e−(E−µ)/T ] + ln[1 + η e−(E+µ)/T ]
)

, (3.24)

where E =
√

~p 2 +m2, η = ±1 for fermions and bosons respectively, and g is the total
number of internal degrees of freedom. The first term is interpreted as being due to particles,
and the second from anti-particles. Using this result in Eq. (3.21), the number density,
energy density, and pressure due to a given species can be written as

n = g

∫

d3p

(2π)3
f(E, t)

ρ = g

∫

d3p

(2π)3
E f(E, t) (3.25)

p = g

∫

d3p

(2π)3

~p 2

3E
f(E, t)

where the distribution function f(E, t) is given by

f(E, t) =
[

e−(E−µ)/T ± 1
]−1

, (3.26)

and the (±) corresponds to fermions and bosons respectively. This description in terms
of distribution functions is also useful when there are deviations from the thermodynamic
equilibrium.

Particles whose masses are much smaller than T are called radiation. If µ� T as well,
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the number density, energy density, and pressure of radiation are given by

n =

{

7/8

1

}

π2

30
g T 4,

ρ =

{

3/4

1

}

ζ(3)

π2
gT 4, (3.27)

p = ρ/3.

Here, ζ(3)
.
= 1.202 is the Riemann zeta-function, g is the degeneracy of the species (spins, in-

ternal quantum numbers), and the upper (lower) bracketed values are for fermions (bosons).
Heavy particles, with m� T , are called matter. The corresponding expressions in this

case are

n = g

(

mT

2π

)3/2

e−(m−µ)/T ,

ρ = mn,

p = nT � ρ. (3.28)

These expressions show that, except in the case of degenerate particles with large µ,
the relativistic species tend to give a much larger contribution to the energy density due to
the Boltzmann suppression of heavy particles. The total energy density due to all species
is therefore well approximated by

ρtot =
π2

30
g∗T

4, (3.29)

with g∗ defined to be

g∗ =
∑

b

gb

(

Tb
T

)4

θ(Tb −mb) +
7

8

∑

f

gf

(

Tf
T

)4

θ(Tf −mf ), (3.30)

where the first sum runs over bosons and the second over fermions. In this expression we
have allowed for the possibility that not all particles have the same temperature. This is
a slight generalization of the situation discussed above in which all particles interact with
each other, to the case in which there are several subsets of particles which interact only
with members of their subset. In this more general situation, equilibrium will be maintained
within each subset but not between different subsets, and so each subset can have a different
temperature. The system temperature T is then taken to be the temperature of that subset
which includes the photon.

For much of the early Universe, and at the temperatures relevant for the creation of
dark matter and the generation of the baryon asymmetry in particular, radiation provides
the dominant component of the energy density. Inserting w = 1/3 into Eqs. (3.8) and (3.9),
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we obtain

ρ ∝ a−4, (3.31)

a(t) = a0

(

t

t0

)1/2

.

If g∗ remains constant, this implies that the Universe cools as it expands according to
T ∝ a−1. Putting the energy density into Eq. (3.6) we find

H(T ) =

√

4π3

45
g1/2
∗

T 2

MPl
, (3.32)

t =
1

2
H−1 =

√

45

16π3
g−1/2
∗

MPl

T 2
.

Entropy is another useful quantity with which to describe the early Universe because it
is conserved. From the usual thermodynamic relations, we have

S =
(ρ+ p)V

T
(3.33)

as well as the First Law of thermodynamics,

T dS = dE + p dV. (3.34)

Applying these relations to a volume of unit coordinate size (and thus a physical size a3),
and using Eq. (3.5), we find

dS

dt
=

1

T

[

d

dt
(ρ a3) + p

d

dt
(a3)

]

= 0, (3.35)

Entropy is therefore conserved as the Universe expands. An important exception to this
occurs when there are departures from thermodynamic equilibrium.

The entropy density is taken to be

s = S/V =
ρ + p

T
. (3.36)

It decreases like a−3 with the expansion. As for the energy density, the entropy density is
dominated by the relativistic species in the thermal bath. Thus, to an excellent approxi-
mation, we can write

s =
2π2

45
g∗S

T 3, (3.37)

where

g∗S
=
∑

b

gb

(

Tb
T

)3

θ(Tb −mb) +
7

8

∑

f

gf

(

Tf
T

)3

θ(Tf −mf). (3.38)
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Eq. (3.37) implies that, when relativistic species give the largest contribution to the energy
and entropy densities, the temperature decreases as

T ∝ g−1/3
∗S

a−1. (3.39)

This confirms our previous estimate when g∗S
is constant. When g∗S

decreases, due to the
temperature cooling below the mass of a particular species, the temperature decreases less
quickly than it would otherwise.

3.3 Departures from Equilibrium: the Boltzmann Equation

While equilibrium thermodynamics describes much of the evolution of the Universe, the
most interesting events usually involve a departure from equilibrium. This is the case both
for the generation of the dark matter and the baryon asymmetry. Such departures can
be described by the Boltzmann equation [43], a differential equation relating the rate of
change of the distribution function for a given species, x1 say, to the scattering and decay
processes that change the number of x1 particles. It has the form

L[f1] = C[f1], (3.40)

where the Liouville operator L[f ] is essentially the total time derivative of the distribution
function f1(~x, ~p, t), and the collision operator C[f ] accounts for processes that change the
number of the given particle. More precisely, the (covariantly generalized) Liouville operator
is [43]

L[f ] =

(

pµ
∂

∂xµ
− Γµαβ p

αpβ
∂

∂pµ

)

f(~x, ~p, t). (3.41)

Here, Γµαβ p
αpβ is the Christoffel symbol derived from the metric. In the case of a Robertson-

Walker metric and f1 = f1(E, t), this simplifies to

L[f1] = E1
∂f1

∂t
−H ‖~p1‖E1

∂f1

∂‖~p1‖
. (3.42)

Dividing by E1, integrating over momentum space, and finally integrating the last term by
parts, the Boltzmann equation becomes

dn1

dt
+ 3H n1 = g1

∫

d3p1

(2π)3

1

E1
C[f1]. (3.43)

When considering baryogenesis, we will need to generalize these equations to include local
(position-dependent) fluctuations of the distribution functions. However, the simplified
form presented here is sufficient for most cases of interest, including the decoupling of dark
matter.

The collision term on the right hand side of Eq. (3.43) receives contributions from all
processes that change the number of x1 particles. For the reaction (x1 +x2 ↔ ya+yb+ . . .),
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it is given by

g1

∫

d3p1

(2π)3

1

E1

C[f1] ⊇ −
∫

d̃p1d̃p2d̃ka . . . (2π)4 δ(4)(p1 + p2 − ka − . . .) ·

·
[

(g1g2)|M12→ab...|2 f1f2(1 ± fa)(1 ± fb) . . . (3.44)

− (gagb . . .)|Mab...→ 12|2fafb . . . (1 ± f1)(1 ± f2)
]

,

where d̃p = d3p/2E(2π)3, and |M|2 is the squared matrix element, averaged over initial
states and summed over final states. The total collision operator will be the sum of all such
contributions. Note that the contribution from elastic scattering processes vanishes.

Eq. (3.44) can usually be simplified considerably. It is often the case that fi(E, t) � 1,
and (1±f) ' 1. If the i-th species is in thermal equilibrium, fi(E, t) ' e−E/T as well. This is
usually true for the decay products (yi’s). If so, and using conservation of energy, we also get
fafb . . . ' f eq1 f

eq
2 . . ., where the subscripts denote the equilibrium distributions. Since CP-

violating effects are generally small, we have (g1g2) |M12→ ab...|2 ' (gagb . . . ) |Mab...→ 12...|2
as well.1

If these approximations are valid, the contribution to the collision operator becomes

−
∫

d̃p1d̃p2

[
∫

d̃ka . . . d̃kb . . . (2π)4 δ(4)(p1 + p2 − ka + kb + . . .)·

· (g1g2 . . .)|M12→ab...|2
]

(f1f2 − f eq1 f
eq
2 ) . (3.45)

The term within the square brackets is just the scattering cross-section times
(p1 · p2) = (2E1)(2E2) vrel. The factors of 2E cancel with those in d̃p1d̃p2, and we obtain a
thermal average of σ12→ ab...vrel. The final contribution to the collision operator is therefore

〈σ12→ ab...v〉 (n1n2 − neq1 n
eq
2 ) , (3.46)

where the thermal average of the operator A(p1, . . . , pN) is defined to be

〈A〉 =
1

n1 . . . nN

∫

g1
d3p1

(2π)3
. . . gN

d3pN
(2π)3

A(p1, . . . , pN) f1 . . . fN . (3.47)

It is straightforward to generalize Eq. (3.46) to decays of the x1 particle. The decay
contribution to the collision operator is simply

Γ1→ab... (n1 − neq1 ) . (3.48)

Our final form for the Boltzmann equation for a species x1 is therefore

dn1

dt
+ 3H n1 = −Γeff(n1 − neq1 ), (3.49)

1The additional g factors cancel those due to averaging over initial states.
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where Γeff ∼ n 〈σ v〉 or Γdecay is the net effective rate of processes that change x1 number.
Eq. (3.49) indicates the necessary condition for a particle species to remain in thermody-

namic equilibrium; the interaction rate be much larger than the rate of Hubble expansion.
If so, the number density relaxes to its equilibrium value. On the other hand, if Γ � H,
the number density decreases as a−3, simply being diluted by the expansion of space. The
momentum distribution of a species after it has decoupled may also be deduced from this
result. For a massless particle that has decoupled, the energy of a given momentum mode
is E = p, and redshifts as a−1. Thus, the momentum space distribution function for such
a particle keeps the same form as in equilibrium, but with an effective temperature

Teff(t) = TD

(

aD
a(t)

)

, (3.50)

where TD and aD are the values of the temperature and the scale factor at decoupling. For
a massive particle we can play a similar game, but it is less useful. The important point in
this case is that the number density of the decoupled massive species decreases as a−3.



CHAPTER 4

DARK MATTER

There seems to be much more matter in the Universe than what we can see. The best
determination of the total matter density in the Universe comes from measurements of the
CMB spectrum, in which the relative height of the peaks is sensitive to this density. These
indicate a total matter density of [45]

Ωmh
2 = 0.14 ± 0.02. (4.1)

On the other hand, the density of luminous matter in the Universe is much smaller than
this. Recent estimates give [60]

Ωlumh
2 ' 0.003. (4.2)

By mass, the luminous matter consists mostly of baryons. Some of the non-luminous
matter also contains baryons, but baryons can’t account for it all since a baryon density
approaching the total matter density would be wildly at odds with the both the predictions
of BBN, as well as the CMB spectrum [45]. Most of the non-luminous matter must therefore
be non-baryonic. We shall reserve the term dark matter for the non-baryonic component
of the non-luminous matter.

The evidence for dark matter comes from a number of different sources [61, 62]. For
example, the measured rotational velocities of galaxies indicate that the matter density
associated with the galaxy extends well beyond the light-emitting part [63]. The gravi-
tational lensing of galaxy clusters points towards the presence of dark matter over much
larger scales, and suggests a value Ωm ∼ 0.3 [64]. Furthermore, simulations of structure
formation require a significant density of non-baryonic matter to reproduce the amount of
small scale structure we see today.

Many explanations have been proposed for the dark matter. For the most part, attempts
to explain the dark matter by astrophysical mechanisms fail. Indeed, the evidence for dark
matter comes from many different length scales, from that of galaxies to the much larger
scales probed by measurements of the CMB, making such explanations implausible. A
much more successful explanation for the dark matter is given by the existence of a stable,
massive particle. Since a stable species can’t decay, it can only change its number by
inelastic scattering processes. When the temperature falls below the mass of the particle,
the number density of the particle will decrease exponentially, as described by Eq. (3.28),
provided it is still in equilibrium. Since the scattering rate is proportional to this number
density, Eq. (3.49), it will fall quickly as well. Eventually, the scattering rate becomes so
small that Γeff < H, and the species falls out of equilibrium. Thus, massive stable particles
tend to freeze out shortly after the temperature falls below their mass. After freezing out,
the number density of the massive species will fall off as a−3 due to the expansion of the
Universe. Since this is much slower than the exponential drop that would occur if the
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particle were in equilibrium, the number density of a relic particle that has frozen out can
be a great deal larger than its equilibrium value. The contribution of such a particle to the
energy density of the Universe is

ρrelic = m1 n1, (4.3)

where m1 is the mass of the particle, and n1 is its number density.
For the relic particle density to be significant, the species must be weakly-interacting (i.e.

uncharged). It must also be non-relativistic at decoupling to avoid washing out structure
over small scales [61]. which usually requires that the particle mass be greater than about
1 keV.1 The SM has no particle with these properties. On the other hand, many extensions
of the Standard Model contain new particles of this sort. Very often, these extensions
contain a new sector of particles all carrying a conserved quantum number. The lightest
particle in this sector will therefore be stable because of the conservation law. A well
known example of this is the lightest superpartner particle in supersymmetric models with
conserved R-parity.

In this chapter we will describe the methods used to calculate the relic density of a stable
massive particle. The primary tool for this will be the Boltzmann equation introduced in
the previous chapter. In Sections 4.1 and 4.2 we will apply this equation to the freeze-out
of a massive stable particle. Section 4.3 describes a generalization of these techniques to
coannihilation, in which the light stable particle also annihilates with other heavy particles
in the thermal bath.

4.1 Solutions to the Boltzmann Equation

Let us now apply the Boltzmann equation, in the form of Eq. (3.46), to the freeze out of
a massive stable particle. The inelastic cross-section is usually dominated by annihilations
between the particle and its antiparticle, so we’ll focus on this process. It is convenient to
make a change of variables and replace time by the variable

x = m1/T, (4.4)

and rewrite the number density in terms of

Y1 =
n1

s
, (4.5)

where s is the entropy density. In terms of these new variables, the Boltzmann equation
becomes

dY1

dx
= −2π2

45

m3
1

H(m1)
g∗S

〈σ v〉 x−2
(

Y 2
1 − Y eq

1
2
)

, (4.6)

1An important exception to this occurs when the particle species was produced non-thermally and was
never in equilibrium. This is the case for axion dark matter.
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where we have used Eq. (3.33) to relate time and temperature. This change of variables
is useful because Y (x) remains constant in the absence of collisions. The function Y eq

1 (x)
follows from the equilibrium expressions for s and n:

Y eq
1 (x) =

45

4π4

g

g∗S

x2K2(x) (4.7)

' 45

2π2

(

1

2π

)3/2
g

g∗S

x3/2 e−x, for x� 1.

On the other hand, 〈σ v〉 is usually a complicated function of x.
Eq. (4.6) can’t be solved exactly, but it is possible to obtain a very accurate approximate

solution. The method is outlined in [43, 65], and involves solving the differential equations
in the limits x� xf and x� xf , where xf is the freeze-out temperature, the temperature
at which the species falls out of equilibrium. The two solutions are matched at x ∼ xf , and
then used to find Y1(x→ ∞), the value at the present time where T = T0 ' 0.

The freeze-out temperature is defined by the relation

[Y (xf ) − Y eq(xf )] = C Y eq(xf ), (4.8)

for C a constant of order unity. (The value C ∼ (1+
√

2) appears to optimize the approxi-
mation compared to numerical evaluations.) It then follows that

xf = ln

[

C(C + 2)

√

45

32π6

g

g
1/2
∗
m1MPl x

−1/2 〈σ v(xf)〉
]

. (4.9)

This equation can be solved iteratively. In terms of xf , the approximate solution to the
Boltzmann equation is

Y1(x→ ∞) =

√

45

π

1

m1MPl

[

∫ ∞

xf

dx
g∗S

g
1/2
∗

〈σ v〉
x2

]−1

. (4.10)

This result is usually re-expressed as the contribution of the relic particle density to Ω h2,
which is just a matter of multiplying Y1(x → ∞) by the constant conversion factor of Eq.
(3.14). The final result is

Ω1h
2 ' (1.07 × 109 GeV−1)

1

MPl

[

∫ ∞

xf

dx
g∗S

g
1/2
∗

〈σ v〉
x2

]−1

. (4.11)

4.2 The Thermally Averaged Cross-Section

In order to evaluate the relic density, we need an explicit expression for the thermally
averaged cross-section, 〈σ v〉, as a function of x. This function is usually very complicated,
but can be reduced to a much simpler form by expanding the cross section in powers of
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the relative velocity, v, which is a small quantity for a massive particle that decouples
when it is non-relativistic. Upon performing the thermal average, v2 → 3/2x, one obtains
an expansion in inverse powers of x. However, this expansion becomes unreliable in many
cases of interest such as when the annihilation cross-section is enhanced by a resonance [65].
Thus, it is safer and usually more accurate to stick with the exact expression for 〈σ v〉.

Recall that for the process 1 + 2 → a + b + . . ., the thermally averaged cross-section is
given by

〈σ v〉 =

∫

d3p1d
3p2 σv e

−E1/T e−E2/T
/

∫

d3p1d
3p2 e

−E1/T e−E2/T (4.12)

with

σ v =
1

4E1E2
W̃ (s), (4.13)

where

W̃ (s) =

∫

d̃kad̃kb . . . (2π)4 δ(4)(p1 + p2 − ka − kb − . . . ) |M|2. (4.14)

Again, |M|2 is the corresponding squared matrix element, averaged over initial states and
summed over final states. It also includes the appropriate 1/n! symmetry factors for iden-
tical particles in the final state. The dominant contribution to 〈σ v〉 usually comes from
2 → 2 processes. In this case W̃ (s) simplifies to

W̃2→2(s) =
pab

16π2
√
s

∫

dΩ |M|2, (4.15)

with s = (p1 + p2)
2, and pab given by

pab =
1

2

√

[s− (ma −mb)2][s− (ma +mb)2]

s
(4.16)

for final state masses ma and mb. The quantity dΩ is the solid angle for the outgoing
particle direction.

The integrations in the thermal average can be rewritten as a single integral over the
center-of-mass invariant, s. The denominator of Eq. (4.12) becomes [66]

(neq1 )2 =

[

T

2π2
g1m

2
1K2(x)

]2

, (4.17)

where K2(x) is the modified Bessel function of degree two. Similarly, the numerator becomes

T

32π2

∫ ∞

4m2
1

ds
1

2

√

s− 4m2
1W̃ (s)K1(

√
s/T ). (4.18)
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Putting these together and changing the integration variable to ŝ = s/4m2
1, we find

〈σ v〉 (x) =
x

2m2
1

∫ ∞

1

dŝ
√
ŝ− 1 W̃ K1(2x

√
ŝ)
/

K2
2(x). (4.19)

4.3 Coannihilations

In the previous sections we only considered the annihilation of a massive stable particle with
itself or its antiparticle. This is usually the most important mode since other more massive
particles will have already decoupled from the plasma or decayed away. However, in some
cases the annihilations of the lightest particle with the heavier ones can be very important,
especially when the next-to-lightest particle carrying a conserved charge is close in mass
to the lightest one, but has much stronger annihilation couplings. This coannihilation of
particles is what we consider here.

Consider the SM along with a set of heavy “X” particles, each with conserved charge
−1 under a global Z2 symmetry. The SM particles will be assumed to have charge +1.
Charge conservation implies that the product of the initial state charges must be equal to
those of final state. Thus, the lightest of the X particles will be stable, and will contribute
to the dark matter density. An example of this situation is supersymmetry with conserved
R-symmetry in which case the X sector consists of the superpartner particles. We’ll label
the X sector species by i = 1, . . . , N , such that m1 < m2 < . . . ,mN . Particle X1 is therefore
our dark matter candidate.

Besides annihilation processes, there will be elastic and inelastic scatterings between the
X sector particles and the SM, such as

Xi + a↔ Xj + b. (4.20)

These scatterings will be much faster than the annihilation reactions because the SM par-
ticles are much more abundant in the plasma than the X particles at temperatures below
m1. The standard assumption for treating coannihilations is that this scattering with SM
species is sufficiently fast to maintain the equilibrium ratio of the X sector number densities:

ni
n

=
neqi
neq

, (4.21)

where

n =
N
∑

i

ni (4.22)

is the total number density of X sector particles. Notice that if m1 � m2, Eq. (3.28)
implies that the number density of the heavier X particles will be exponentially small.
Thus, coannihilation is only important when the lightest and the next-to-lightest X sector
species are close in mass.

Since all the X particles will eventually decay into particle X1 and SM particles (by
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assumption), it suffices to calculate the total X sector number density after freeze out. By
generalizing the previous result and using Eq. (4.21), the Boltzmann equation for n becomes

dn

dt
+ 3H n = 〈σ v〉eff (n2 − neq2), (4.23)

where

〈σ v〉eff =
N
∑

i,j=1

〈σijvij〉
(

neqi n
eq
j

neq2

)

(4.24)

The cross-section σij corresponds to the reaction Xi +Xj → (SM particles). Contributions
from scatterings of the form Xi + a↔ Xj + b cancel out in the sum over the X species.

The calculation of 〈σ v〉eff goes through in nearly the same way as in the simpler case
without coannihilations. The final result is [67]

〈σ v〉eff =
x

2m2
1

[

∫ ∞

1

dŝ
√
ŝ− 1 K1(2x1

√
ŝ)

N
∑

i,j=1

pij
p2

11

gigj
g2
1

W̃ij

]

/

[

N
∑

i=1

gi
g1

m2
i

m2
1

K2(
mi

m1
x)

]2

, (4.25)

where ŝ = s/4m2
1, and

pij =
1

2

√

[s− (mi −mj)2][s− (mi +mj)2]

s
. (4.26)

The quantity W̃ij corresponds to W̃ in Eq. (4.14) for the reaction Xi + Xj → SM. Using
Eqs. (4.25) and (4.11), the solution for the final relic density follows as before.



CHAPTER 5

BARYOGENESIS: ELECTROWEAK AND OTHERWISE

About five percent of the energy density of the Universe consists of baryons. These take the
form of atomic nuclei, mostly hydrogen and helium, and account for nearly all the visible
mass in the Universe. The most accurate determination of the density of baryons comes
from measurements of the CMB, which find [45]

Ωbh
2 = 0.024 ± 0.001. (5.1)

This value is consistent with the one obtained by comparing the primordial abundances of
light elements with the predictions of Big Bang Nucleosynthesis (BBN) [52]. The baryon
density is often re-expressed in terms of a baryon-to-photon ratio,

η =
nb
nγ

= (6.5+ 0.4
− 0.3) × 10−10. (5.2)

The baryon density is made up almost entirely of baryons, not anti-baryons. This is
curious because the Standard Model (of particle physics) treats baryons and anti-baryons
in nearly the same way. Only CP violation, whose effects tend to be weak, distinguishes
between them, and so one would näıvely expect roughly equal numbers of baryons and
anti-baryons. This baryon asymmetry of the Universe therefore presents an interesting
puzzle. To explain the asymmetry, we need a mechanism to generate an excess of baryons.
Such a mechanism must operate below the reheating scale of inflation since any initial state
asymmetry would be completely diluted by the inflation.

Several mechanisms for such a baryogenesis have been proposed [68]. In Section 5.1 we
will briefly describe a few of the most popular ones. All of these mechanisms are affected by
baryon-number changing sphaleron transitions associated with the SU(2)L part of the SM
gauge group which we will discuss in Section 5.2. In Section 5.3, we will focus on a particular
mechanism, electroweak baryogenesis, in which the baryon asymmetry is generated during
the electroweak phase transition in the early Universe. This mechanism is the only known
way to generate the baryon asymmetry within the SM or the MSSM.

5.1 Mechanisms for Baryogenesis

While there are many proposals for how the baryon asymmetry was created, nearly all of
them share three common features. They were pointed out in 1967 by Sakharov [69], and
are called the Sakharov Conditions:

1. Baryon number violation.
2. C and CP violation.

43



44

3. Departure from thermal equilibrium.
By baryon number (B), we mean the total number of baryons minus the total number of
anti-baryons. The first condition is therefore fairly obvious. The second Sakharov condition
is a bit less so. C and CP violation are essential because without them, baryon number
violating processes that increase the baryon number would be just as probable as those
that decrease it. This follows from baryon number being odd under both of these charges.
Finally, a departure from equilibrium is needed to provide an arrow of time, since otherwise,
the net baryon number will remain constant.

The three Sakharov conditions are met by the SM in an expanding Universe. Baryon
number is violated in the SM by topology-changing transitions between different SU(2)L
gauge vacua. These sphaleron transitions violate B+L, and in the absence of other conserved
charges, they tend to cause any net B+L charge to relax to zero. C and CP violation
are also present; C is violated because of the chiral fermion structure of the SM, and CP
is violated by the CKM phase present in the Yukawa couplings. The third condition, a
departure from equilibrium, is induced by the expansion of the Universe, and even larger
departures can arise during first-order phase transitions. Even though the SM has all
the essential ingredients for baryogenesis, it doesn’t seem to be possible to generate a
large enough baryon asymmetry within the model. To understand why, we must examine
particular mechanisms for baryogenesis. Of the numerous mechanisms proposed, the three
most popular and best-motivated are electroweak baryogenesis, GUT baryogenesis, and
leptogenesis.

In electroweak baryogenesis, the baryon asymmetry is generated during the electroweak
phase transition. At high temperatures, as are expected to arise in the very early Universe,
the full SU(2)L × U(1)Y symmetry of the Standard Model is restored. This symmetry is
broken to U(1)em as the Universe cools below about T ' 100 GeV. If this phase transition is
first-order, it proceeds by the nucleation of bubbles of broken phase within the surrounding
symmetric phase. As the bubbles expand, CP -violating reactions in and around the bubble
walls can generate an excess of chiral fermions in front of the walls. This net chiral fermion
charge then biases the B-violating sphaleron transitions towards producing more baryons
than anti-baryons.

GUT baryogenesis assumes that the Standard Model gauge structure becomes embedded
in a larger gauge group, such as SU(5) or SO(10), at very high energies [70,71]. A common
feature of many of these grand unified theories (GUT’s) is that baryons and leptons are
combined within the same representation. Because of this, the heavy gauge and Higgs
bosons in these models will mediate interactions that violate baryon and lepton number. In
GUT baryogenesis, the CP -violating, out-of-equilibrium decays of these heavy bosons can
generate a net baryon number [72]. Unfortunately, these models are constrained by the fact
that the reheating temperature in most inflationary models isn’t high enough to produce
enough of the heavy bosons to create the current baryon asymmetry. Furthermore, in many
GUT models the heavy boson decays only violate B+L. Since the sphaleron transitions
tend to drive the net B+L charge to zero, they will erase the baryon asymmetry produced
in this way. Instead, the GUT decays must violate B−L if the baryon asymmetry is to be
preserved.
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The leptogenesis mechanism of baryogenesis is very similar to the GUT mechanism [73–
75] In this scenario, the CP-violating out-of-equilibrium decays of a heavy right-handed
Majorana neutrino generate a net lepton number (L), and therefore a net B−L. Some
of this lepton number is subsequently converted to a non-zero baryon number by the
sphaleron transitions. Leptogenesis is attractive because a heavy right-handed neutrino
can also explain, through the seesaw mechanism, the very small neutrino masses seen in
experiments [75].

5.2 Electroweak Baryon Number Violation

An essential feature in all three of the baryogenesis mechanisms presented above is the
baryon number violation induced by sphalerons. At first glance, it is surprising that baryon
number is violated in the SM. B appears to be conserved in collider experiments, and is
a classical symmetry of the Lagrangian defining the SM, as well as those of many SM
extensions including the MSSM. However, this apparent symmetry is anomalous because
it is broken by quantum corrections. The way in which B this violation occurs is a bit
subtle. The only B violating processes in the SM are transitions between different SU(2)L
vacuum states, as discussed in Section 2.1.3). Each transition violates both B and L
by ng units, where ng is the number of fermion generations. At zero temperature these
transitions proceed by tunnelling, the rate for which is unobservably small. This explains
why B appears to be conserved in laboratory and collider experiments. The situation is
very different at high temperatures. Here, the rate is much larger because the transitions
are induced by classical thermal fluctuations. These thermal vacuum transitions are often
called sphaleron transitions. The purpose of this section is to examine them in more detail.

We will formally define baryon number, B, as the charge that generates the U(1) sym-
metry under which all SM quark fields are assigned B = +1/3, while leptons and Higgs
bosons have B = 0. (See Table 2.1.) In other words,

ψi → eiQiψi (5.3)

under the U(1)B transformation. In the same way, lepton number, L, is the charge gener-
ating the U(1)L under which the lepton fields are assigned L = +1, and quarks and Higgs
bosons have L = 0. Like baryon number, lepton number is a classical symmetry of the Stan-
dard Model, but is violated by quantum corrections. The Noether currents corresponding
to these symmetries are given by

JµQ =
∑

i

(ψ̄iγ
µψi) Qi, (5.4)

where the sum runs over all SM Dirac fermions, and Qi = Bi or Li is the charge of fermion
i. If we were to add Weyl fermions to the model, they would contribute to the sum with
terms identical to these but with the appropriate insertion of PL or PR. If there were
complex bosons charged under B or L as well, such as in the MSSM, their contribution to
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the current would be
JµQ ⊇

∑

i

i(φ∗
i

↔
∂ φi) Qi. (5.5)

The time and space components of these currents correspond to the charge density and the
spatial current for Q. In particular, ψ̄γ0ψ is the net number density (number of fermions
minus number of anti-fermions) for the Dirac fermion ψ. Thus, our formal definition of B
coincides with our previous definition of the baryon number as being the number of baryons
minus the number of anti-baryons.

The classical Lagrangian of the SM is invariant under both U(1)B and U(1)L transfor-
mations. In fact, with only the fields present in the SM there are no possible renormalizable
operators operators that violate these symmetries. For this reason, B and L are said to be
accidental symmetries of the SM. The violation of these symmetries by quantum corrections
can be seen in a couple of ways. Either by calculating the expectation value of the current
at one-loop order between two SU(2)L or U(1)Y gauge boson states [76], or by carefully
computing the change in the path integral measure due to a B or L transformation [77],
one obtains

∂µJ
µ
B = ∂µJ

µ
L =

ng
32π2

(

g2
2W̃

a
µνW

a µν − g2
1B̃µνB

µν
)

, (5.6)

where W a
µν and Bµν are the SU(2)L and U(1)Y field strengths, and F̃µν = 1

2
εµναβF

αβ. Recall
that ∂µJ

µ
Q 6= 0 signals the non-conservation of the charge Q.

t = 

t = − τ/2

τ/2

Figure 5.1: Integration region used in the analysis.

While Eq. (5.6) shows that baryon and lepton number are not conserved in the SM, it
says nothing about how these charges are violated. To see how, consider integrating both
sides of the equation over the spacetime cylinder depicted in Fig. 5.1, with symmetry axis
along the time direction, height τ , and infinite spatial radius. We will assume that the
system is in a vacuum state on the boundary of the cylinder. The left-hand side of Eq.
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(5.6) then gives

L.S. =

∫

V

d4x ∂µJ
µ
Q

=

∫ τ/2

τ/2

dt

∫

d3x (∂0J
0
Q + ~∇ · ~JQ) (5.7)

=

∫ τ/2

τ/2

dt

(

d

dt

∫

d3xJ0
Q +

∫

sides

d~a · ~JQ
)

= Q(τ/2) −Q(−τ/2),

where in the last line we’ve used Q(t) =
∫

d3x J0
Q(t, ~x), the total charge at time t, and the

fact that ψ(‖~x‖→∞) = 0 to eliminate the spatial term. For the right-hand side of Eq.
(5.6) we can rewrite these terms as total divergences,

W̃ a
µνW

a µν = ∂µK
µ
2 ,

B̃a
µνB

a µν = ∂µK
µ
1 , (5.8)

with

Kµ
2 = 2εµναβ

(

∂νW
a
α W

a
β − g

3
fabcW a

νW
b
αW

c
γ

)

,

Kµ
1 = 2εµναβ∂νBα Bβ. (5.9)

It is now convenient to choose a gauge in which W a
0 = B0 = 0. Inserting the general gauge

theory vacuum solutions given in Eq. (2.20), and integrating these terms over the cylinder
(and using the divergence theorem), we get

R.S. =
ng

32π2

∫

V

d4x ∂µ(K
µ
2 +Kµ

1 )

=
ng

32π2

∫

∂V

dSµ(K
µ
2 +Kµ

1 ) (5.10)

=
ng

32π2

∫

t=τ/2

d3xK0
2 +

ng
32π2

∫

t=−τ/2
d3xK0

2 + 0,

where in the last line we’ve made use of the fact that the integral over the sides of the
cylinder vanishes for the vacuum solution in our choice of gauge, and that K0

1 = 0 in the
vacuum. Now, using Eq. (2.20) in Eq. (5.9) we find

Ncs(t) =
1

32π2

∫

t

d3x K0
2 , (5.11)

where Ncs is the Chern-Simons number of the SU(2)L vacuum configuration at time t, as
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defined in Eq. (2.22). Combining Eqs. (5.6), (5.10), and (5.11), we obtain

Q(τ/2) −Q(−τ/2) = ng (Ncs(τ/2) −Ncs(−τ/2)) , (5.12)

where Q = B or L. Therefore a change in baryon or lepton number requires a transition
between different SU(2)L gauge vacua, and in each transition, both B and L are violated
by ng units.

Since the SU(2)L gauge vacua are separated from each other by energy barriers (of
finite height), the only way to change the Chern-Simons index at zero temperature is
by instanton tunnelling. The tunnelling rate was computed in [16], and is proportional
to e−2Sinst = e−16π2/g2

2 ∼ 10−160. Because of this enormous suppression, the instanton
transitions are much too slow to be observed. At non-zero temperature, on the other hand,
the system can pass from one vacuum to another by classical thermal fluctuations, which
bump the system over the barrier. For very large temperatures, approaching the height of
the energy barrier, these transitions occur very quickly.

The precise rate for the B and L violating thermal transitions depends on whether
the electroweak symmetry is broken or not. In both cases, the rate is determined by a
Boltzmann factor, e−Esp/T , where Esp corresponds to the height of the smallest energy
barrier separating distinct vacua. When the electroweak symmetry is broken, the static
field configuration corresponding to this barrier is called the sphaleron. It has energy [78]

Esp(T ) =
4π 〈φ(T )〉

g2
B(λ/g2), (5.13)

where 〈φ(T )〉 is the symmetry breaking VEV (or their orthogonal sum if there are several,
as in the MSSM), λ is the effective scalar quartic self-coupling, and B(x) is complicated
function which ranges between B(x = 0) ' 1.52 and B(x → ∞) ' 2.72. A careful
calculation of the transition rate yields [79]

Γsp = κ (2.8 × 105)T 4
(α2

4π

)4
(

Esp(T )

B

)7

e−Esp(T )/T . (5.14)

Here, κ is a constant estimated to be of order κ ' 10−1 [80].
For temperatures above the electroweak phase transition, where the Higgs VEV vanishes,

the barrier for classical transitions goes to zero and the analysis must be modified. In this
case the rate is dominated by nearly static, non-perturbative field configurations. From Eq.
(5.9), it follows that in order to produce an order one change in the Chern-Simons number, a
gauge field configuration of spatial extent R must be of size 1/g2R, which corresponds to an
energy of order 1/g2

2R. The total rate should be dominated by the smallest configurations
that aren’t overly Boltzmann suppressed since they are the most numerous. By these rough
arguments the rate per unit volume is expected to be of order (α2T )4. This crude estimate
is modified by screening effects, and a more careful calculation for the rate gives [81]

Γsp = κ′α5
2T

4, (5.15)
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with κ′ ' 20 [82]. These thermal transitions are called sphaleron transitions as well, even
though, strictly speaking, the sphaleron configuration no longer exists when the electroweak
symmetry is unbroken.

Compared to the expansion rate of the Universe, the sphaleron transitions occur rapidly
for a wide range of temperatures. In Chapter 3 we found that when the Universe is radiation-
dominated, the Hubble rate is of order

H 'MPl/T
2. (5.16)

This is smaller than the sphaleron rate in the electroweak symmetric phase provided T .

1012 GeV. In the electroweak broken phase, the sphaleron rate is much smaller. Even so,
this rate exceeds the Hubble rate provided [83]

v/T . 1. (5.17)

Thus, the sphaleron transitions cease to occur shortly after the electroweak phase transition.
Even though the sphaleron transitions violate both B and L, they do not create a

baryon asymmetry on their own. This is because, in the absence of CP violating charge
asymmetries, transitions that increase B are just as likely as those that decrease B. Even
worse, if the only CP violating charge asymmetry is B + L, the sphaleron transitions will
tend to drive the value of this asymmetry to zero. As a result, several models of GUT
baryogenesis based on SU(5) in which a B+L asymmetry is created by heavy boson decays
have been ruled out. On the other hand, sphaleron transitions do not erase a B−L charge,
but they can alter the ratio of B to L. This is essential for leptogenesis, in which an initial
L charge is converted to B by the sphalerons. The sphalerons can also be induced to create
a baryon asymmetry in the presence of a net chiral fermion charge, which is the source of
baryon production during electroweak baryogenesis.

So far we have only considered SU(2)L sphalerons. In addition to these, there are
sphaleron transitions associated with the SU(3)c colour group. These strong sphalerons
don’t violate B or L, but they do violate some of the (classical) chiral symmetries of QCD,
and as we shall see, play an important role in electroweak baryogenesis. The rate for the
strong sphaleron transitions is given by [82]

Γss = κss
8

3
α3 T

4 (5.18)

with κss = O(1).

5.3 Electroweak Baryogenesis

Electroweak baryogenesis (EWBG) is a mechanism for creating the baryon asymmetry
during the electroweak phase transition. The mechanism relies only on electroweak-scale
physics, and for this reason, it will be tested directly in future particle collider experiments.
This feature is not shared by the GUT and leptogenesis models. There are in fact sev-
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eral related mechanisms by which the baryon asymmetry could be produced during the
electroweak phase transition. We will focus on the particular version that applies to the
SM and the MSSM. However, the techniques described here are generally applicable to the
other cases as well.

At very high temperatures, the full SU(2)L × U(1)Y electroweak symmetry is restored
by thermal corrections to the Higgs boson potential. As the Universe expands and the
temperature falls, these corrections become less important and the Higgs boson develops a
non-vanishing vacuum expectation value breaking the electroweak symmetry to its U(1)em
subgroup. Successful EWBG requires that this electroweak phase transition be first order.
If so, the transition proceeds by the nucleation of bubbles of broken phase, in which the
Higgs expectation value is non-zero, within the surrounding symmetric phase where the
Higgs expectation value vanishes. As the bubbles expand in size, CP violating interactions
between the plasma and the bubble walls can generate a net chiral asymmetry in front of
the bubble wall. This asymmetry tends to bias the sphaleron transitions towards producing
more baryons than anti-baryons. Once produced, these baryons are swept up by the passage
of the bubble or diffuse, into the broken phase. It is essential that the electroweak phase
transition be strongly first order. Quantitatively, the necessary condition from Eq. (5.17)
is

vc
Tc

& 1, (5.19)

where Tc is the critical temperature, and vc is the electroweak symmetry breaking VEV at
temperature Tc. If this condition holds, the sphaleron transitions are effectively turned off
within the broken phase and the net baryon number that has diffused into the bubble is
conserved. On the other hand, for a less strongly first-order phase transition, vc/Tc . 1,
the baryon number inside the broken phase will be washed out by the sphalerons. If the
phase transition is strongly first order, and if there is enough CP violation in the bubble
walls, this mechanism can generate the observed baryon asymmetry.

5.3.1 Dynamics of the EWPT

The details of the electroweak phase transition are essential to electroweak baryogenesis.
As described above, the phase transition must be strongly first order. The subsequent
formation and evolution of bubbles of broken phase within the surrounding symmetric
phase determines how much of a baryon asymmetry is actually generated. Nearly all of this
information is encoded in the finite-temperature effective potential, which is a generalization
of the zero-temperature effective potential discussed in Appendix A.

For a theory with the scalars {ϕi}, i = 1, 2, . . ., this potential has the form

V (ϕi, T ) = V0(ϕi) + V1(ϕi, T ) + Vdaisy(ϕi, T ) + . . . (5.20)

where Vn is the n-loop contribution, and the additional term, Vdaisy, will be discussed below.
In particular, V0 is just the potential appearing in the Lagrangian used to define the theory.
We will confine ourselves to one-loop order in this analysis.

The precise form of the loop terms depends on how the theory is renormalized. In
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the DR renormalization scheme, appropriate for supersymmetric theories, the one-loop
contribution reads

V1(ϕi, T ) =
∑

b

gb fB(m2
b , T ) +

∑

f

gf fF (m2
f , T ), (5.21)

where b runs over bosons, f runs over Weyl fermions, and gi is the number of (on-shell)
degrees of freedom. To a very good approximation, the functions fB, fF are given by
[84, 85]

fB(m2, T ) =







−π2

90
T 4 + 1

24
m2 T 2 − 1

12π
(m2)3/2 T − m4

64π2 ln( Q2

ãBT 2 ) ;m/T . 2.2

m4

64π2

[

ln(m
2

Q2 ) − 3
2

]

− ( m
2πT

)3/2T 4e−m/T ;m/T & 2.2

(5.22)

fF (m2, T ) =







−7π2

720
T 4 + 1

48
m2T 2 + m4

64π2 ln( Q2

ãFT 2 ) ;m/T . 1.9

− m4

64π2

[

ln(m
2

Q2 ) − 3
2

]

− ( m
2πT

)3/2T 4e−m/T ;m/T & 1.9

Here, ãB = (4πe−γE)2, ãF = (πe−γE)2, m2 is the field-dependent mass at zero temperature.
We neglect V2 and terms of higher order. The third contribution to the potential, Vdaisy,
is a finite-temperature effect [58, 85, 86]. To extend the validity of the perturbative loop
expansion to high temperatures, it is necessary to resum the temperature-dependent cor-
rections to the bosonic self-energies. These generate a thermal mass m2 → m2 = m2 +αT 2

for the bosons in theory. The effect of this resummation is to modify the effective potential
by the amount

Vdaisy = − 1

12π

∑

b

gb
(

m2
b −m2

b

)3/2
, (5.23)

where m2
b is the thermal mass. This sum includes gauge bosons, although only the longi-

tudinal modes of these develop a thermal contribution to their mass at leading order.
As in the zero-temperature case, the vacuum states at finite temperature are determined

by the minima of the effective potential. The location of these minima depend on the
temperature, and at very high temperatures the absolute minimum is usually located at
the origin of the background field space. This is true in the SM and the MSSM, and is the
reason why the electroweak symmetry is restored at high temperature. In both models,
as the temperature decreases, a second symmetry breaking minimum develops away from
the origin. The phase transition, from symmetric phase to broken phase, will be first order
provided the second minimum is separated from the minimum at the origin by a potential
barrier. This is illustrated in Fig. 5.2. If there is no barrier, the transition will be second
order. For both a first or a second order phase transition, we define the critical temperature,
Tc, to be temperature at which the symmetry-breaking minimum becomes degenerate with
the broken phase one.

To illustrate how the order of the PT is determined, consider the effective potential for
the SM with a small scalar quartic coupling. Because the quartic is small we can neglect
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T < T c

V eff

T = T c

T > T c

φ

tunnel

Figure 5.2: The effective potential for a first order phase transition.

the Higgs contribution to Veff . Similarly, we can ignore all the fermions except for the top
quarks since they couple very weakly to the scalar background on account of their small
Yukawa couplings. The relevant degrees of freedom are therefore

W± : m2
W =

g2
2

2
ϕ2 gW = 6

Z0 : m2
Z =

g21+g22
2

ϕ2 gZ = 3

t : m2
t = y2

tϕ
2 gt = 12.

The tree-level (zeroth order) part of the potential is

V0 = −µ2ϕ2 +
λ

4
ϕ4. (5.24)

Combining this with the high-temperature form of the loop corrections, we can write the
one-loop effective potential in the generic form

Veff ' (−µ̃2 + AT 2)ϕ2 − E T ϕ3 +
λ̃

4
ϕ4, (5.25)

where λ̃ and µ̃2 are the loop-corrected versions of λ and µ2. They are related to the Higgs
boson mass by

v2 =
2µ̃2

λ̃
,

m2
h = λ̃ v2. (5.26)

For simplicity, we will also ignore the corrections due to resumming the thermal propagator,
the Vdaisy term of Eq. (5.23), in this example.

It is now a matter of straightforward algebra to find the critical temperature and the
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value of the symmetry breaking minimum. At T = Tc the necessary conditions are

∂Veff

∂ϕ
(ϕc, Tc) = 0,

Veff(ϕc, Tc) = 0. (5.27)

The first condition is that ϕc be a minimum, while the second comes from demanding that
the minimum at ϕc and the one at the origin are degenerate. Together, these equations
imply

ϕc
Tc

=
2E

λ̃
. (5.28)

In the SM, the cubic coefficient E is generated at one-loop order by the electroweak gauge
bosons. Comparing with equation (5.23), we see that

ESM =
3

12π

[

2

(

g2
2

2

)3/2

+

(

g2
1 + g2

2

2

)3/2
]

. (5.29)

When the daisy contribution is included, it turns out that only the transverse modes con-
tribute, and this result picks up a factor of 2/3.

To avoid washing out the baryon asymmetry after the phase transition, the condition
ϕc/Tc > 1 must be satisfied. Within the SM, with E given by Eq. (5.29), this requires
the Higgs boson mass to be smaller than about 45 GeV. A more careful analysis including
two-loop corrections increases this upper bound to 60 GeV. Either way, these values are well
below the current LEP II Higgs mass lower bound of 114 GeV [41]. Things are better in the
MSSM because this model has additional bosonic degrees of freedom. Specifically, a light
scalar top quark can give a large contribution to the cubic coefficient. This contribution
will be considered in more detail in Section 6. For appropriate values of the stop mass
parameters, it is enough to make the EWPT strongly first order for Higgs boson masses up
to about 120 GeV [87–95].

If the phase transition is first order, it proceeds by the formation of bubbles of broken
phase within the surrounding symmetric phase. These arise because of the potential barrier
separating the phases. As the temperature falls below Tc the system becomes trapped in the
symmetric phase, even though the broken phase minimum is thermodynamically favoured.
This situation is disrupted by tunnelling, which allows small regions to spontaneously pass
to the broken phase. The result of each tunnelling event is the nucleation of a bubble of
broken phase. At some temperature Tn < Tc, the tunnelling rate overcomes the Hubble
expansion rate, and the Universe fills with expanding bubbles. In the SM and MSSM, Tn
is very close to Tc [96].

Once these bubbles are formed, they expand and grow. This growth is rapid at first,
but is very quickly slowed by interactions with the surrounding plasma, and as a result it is
a good approximation to treat the bubbles as expanding with constant radial velocity vw.
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In this steady state, the width w of the bubbles in the MSSM is approximately [96]

w ' 20 − 30/T, (5.30)

while typical values for the wall velocity are

vw ' 0.01 − 0.1. (5.31)

5.3.2 Baryon Number Generation

As the bubbles sweep through the plasma, they disturb the local thermodynamic equilib-
rium. The passage of a bubble is characterized by a rapid change in the local expectation
values of the Higgs fields, which go from zero in the symmetric phase to non-zero values
in the broken phase. This change is communicated to the other particles in the plasma by
their couplings to the Higgs fields. Since the particle mass matrices generally depend on
the Higgs expectation values, both the masses and the mass eigenstates will vary across the
wall. These mass matrices typically also depend on CP violating phases. If so, the passage
of the bubble wall will affect particles and anti-particles differently, which can lead to the
generation of (CP violating) charge asymmetries in front of the bubble wall.

If the charge created in this way is approximately conserved in the symmetric phase,
it will persist long enough to diffuse away from the bubble wall into the symmetric phase
where the sphaleron transitions are active. The presence of this CP violating charge then
biases the sphaleron transitions towards producing more baryons than antibaryons. Shortly
after these baryons are produced, they are swept up by the passage of the bubble wall.
Once inside the bubbles, the baryons are stable provided the phase transition is strongly
first order, with the precise condition being Eq. (5.17). Since the baryon number violating
interactions are spread over an extended region, this mechanism is sometimes called non-
local electroweak baryogenesis. The diffusion of the charges enhances the amount of baryon
number produced because the sphaleron transitions are induced to create baryons over a
much larger volume [97].

To describe the time evolution of the charge densities, nX , due to the passage of the
bubble wall, we need a slightly more complicated form of the Boltzmann equation than was
treated in Section 3.3. Consider a reaction that changes the charge X by ∆X units. Let
Γ+ be the forward rate per unit volume, and Γ− be the backward rate. The time rate of
change of the charge density nX (assuming spatial homogeneity) is thus

ṅX = ∆X (Γ+ − Γ−). (5.32)

The ratio of the rates Γ± is given by [98]

Γ+/Γ− = e−(F+−F−)/T , (5.33)

where F± are the free-energies corresponding to the initial states of each reaction. If the
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free energy difference between the initial and final states is small, it follows that

ṅX ' −∆X

(

∆F

T

)

Γ+. (5.34)

Now suppose the initial and final states differ only in the number of particles which they
contain. In this case,

∆F = F+ − F− =
∑

i

ξi µi, (5.35)

where ξ is the change in the number of particle species i in each transition.
From Eq. (3.21), the net particle number density (number of particles minus antiparti-

cles) for the species i is given by

ni = gi

∫

d3p

(2π)3

[

1

e−(E−µi)/T + η
− (µi → −µi)

]

. (5.36)

If µi � T , this simplifies to

ni = ki(m/T )
T 2

6
µi. (5.37)

Here, ki(x) is function that vanishes as e−x for x� 1, and has ki(0) = gi.
1 Combining this

with our previous results, we obtain

ṅX = −∆X

(

∑

i

ξi
ni
ki

)

Γ̃, (5.38)

where

Γ̃ =
6Γ+

T 3
. (5.39)

If there are several processes that change the X charge density, the expression for ṅX would
involve a sum of terms of this form.

The second extension of the Boltzmann equations that we need to make is the inclusion
of spatial inhomogeneities. These are induced by the passage of the bubble wall, which, in
the presence of CP violation, generates charge asymmetries as it goes. This effect can be
accounted for by adding position-dependent source terms for these charges in the Boltzmann
equations. Once produced, the inhomogeneities in the charge densities get smoothed out
by elastic scattering, the net effect of which can be modelled by adding a diffusion term
to the Boltzmann equations. For the special case where the charge X corresponds to a

1This applies to Weyl fermions or real scalars. For Dirac fermions and complex scalars, a factor of two
should be included in gi.
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particle number asymmetry, the Boltzmann equation becomes [99, 100]

ṅX = DX∇2nX − ∆X

(

∑

i

ξi
ni
ki

)

Γ̃ + γX(x), (5.40)

where γX is the source term, and DX is the diffusion constant for the species.
The source term in Eq. (5.40) is related to the net X charge current, jµX , computed in

the position-dependent Higgs background, but in the absence of particle number changing
reactions like those in Eq. (5.38). The expression for this current in terms of quantum fields
is given by Eqs. (5.4) or (5.5). In terms of the current, the source is given by [101]

γX = ∂0j
0
X −DX∇2j0

X . (5.41)

With this source, the actual number density reduces to j0
X as Γ̃ → 0, which is the correct

boundary condition.
Because of diffusion, the charge density created by the source will move away from the

bubble wall. The typical distance travelled is the diffusion length, which after a time t is
approximately

√
DXt. In the same time interval the bubble wall will have advanced by an

amount vw t, where vw is the wall velocity. Equating these two distances, we see that the
charge density will persist in front of the bubble wall for a time

tD ' DX/v
2
w, (5.42)

before getting swept up by the bubble. This persistence time ignores the effects of particle
number changing reactions. These will be relevant only if the reaction time scale, Γ−1, is
less than tD. If so, the actual persistence time of the charge can be much smaller than tD
since the charge is destroyed before the bubble arrives.

Consider Eq. (5.40) applied to the baryon number asymmetry, nB. The only pro-
cesses that change nB are the weak sphaleron transitions. Each transition alters B by
three units and produces three quarks and one lepton for each generation. The relevant
Boltzmann equation, assuming all baryons have roughly the same diffusion constant Dq, is
therefore [100–103]

ṅB = Dq∇2nB − Θ(−x− vwt)

[

ngT
2

6

∑

i

(3µqi + µli) + R nB+L

]

Γ̃ws, (5.43)

where ng is the number of generations, and µqi and µli are the chemical potentials for the
left-handed quark and lepton doublets. We have also assumed that the weak sphalerons are
active only in the symmetric phase, which we take to be x < −vw t for a bubble moving in
the −x direction. This is illustrated in Fig. 5.3. The second term in this equation was not
present in Eq. (5.38), and is the result of the change in topological number in the sphaleron
transition [83,104]. For the SM and MSSM, the corresponding relaxation coefficient R has



57

value [102]

R =
9

4

(

1 +
nq̃
6

)−1

+
3

2
, (5.44)

where nq̃ is the number of light squark flavors. (nq̃ = 0 gives the SM.)

<φ> = 0
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Figure 5.3: Expansion of a bubble wall. The wall has width w and is moving to the left
with speed vw. The region to left of the wall is the symmetric phase, while the region to
the right is the broken phase.

Compared to the persistence time tD over which the the bubble disturbs the particle
number asymmetries, the weak sphaleron rate is quite slow. As a result, we can ignore
the weak sphalerons when calculating the asymmetries that generate non-zero values of µqi
and µli, and treat them as specified background sources in Eq. (5.43). The evolution of the
baryon asymmetry is then simple to see. In the absence of a chiral asymmetry, µqi = µli = 0,
and any initial baryon number in the symmetric phase relaxes to zero as e−Γwst. On the
other hand, a non-zero chiral asymmetry acts as a source for baryon number. This is what
drives electroweak baryogenesis.

Let us now give an example of how the non-zero chiral asymmetry is generated. We will
specialize to the case of the MSSM, and assume that the only CP violating sources arise
from the charginos and the third generation squarks. This treatment follows that of [100].
The bubble-wall timescale is given in Eq. (5.42), and is fast relative to the weak sphalerons,
but quite slow compared to the SU(3)c and SU(2)L gauge interactions in the symmetric
phase. It is also slow compared to the top Yukawa interactions, the supersymmetric gauge
and Higgs interactions, but fast relative to the other Yukawas. The reactions that are fast
relative to the wall timescale can be treated as being in chemical equilibrium allowing us
to relate many of the chemical potentials. In particular, we have

• SU(3)c ⇒ µq is the same for all colours.

• SU(2)L ⇒ µtL = µbL.

• SUSY Higgs ⇒ µh0
2

= µh+

2
= µh0

1
= µh−

1
.
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• SUSY Gauge ⇒ µq = µq̃, µh = µh̃.

• Top Yukawa ⇒ µtL − µh0
2
− µtR = 0.

• Strong Sphaleron ⇒ ∑

i(µui
L

+ µdi
L
− µui

R
− µdi

R
).

Here, h0
2, h

+
2 , . . . are the components of the Higgs bosons, q̃ are squarks, and h̃ are higgsinos.

The other interactions that we will consider in computing the chiral asymmetry are the top
mass and the Higgs VEV interactions. If these were in equilibrium they would imply
µtL = µtR, and µh = 0 respectively. Both reaction rates are fast in the broken phase, but
being proportional to the Higgs vacuum expectation value, they vanish in the symmetric
phase. We will therefore include them explicitly in the relevant Boltzmann equations.
We will also include reactions due to the strong sphalerons, Γ̃ss, and the top Yukawa
interactions, Γ̃y. All other reactions will be treated as being too slow to be relevant.

By assumption, only the higgsinos and the third generation squarks are sourced by the
bubble wall. Since the only reaction that produces first and second generation particles are
the strong sphalerons, we can relate their number densities to those of the third generation.
The effect of the strong sphalerons can be represented by the effective operator [105]

Oss ∼
ng
∏

i=1

(uiLd
i
Lu

c
Rd

c
R). (5.45)

Thus, one uL is always produced with one anti-uR so that

q1
L = q2

L = −2uR = −2dR = −2cR = −2sR = −2bR, (5.46)

where fL,R is the number asymmetry for fermion f , qiL = (uiL + diL), and the superscript i
labels generations. Barring an initial asymmetry, we also have B+L ' B ' 0. Applying
this constraint and using Eq. (5.46), we get

bR + b̃R = −(q3
L + q̃3

L + tR + t̃R) (5.47)

Putting these constraints together, we see that there are only three independent particle
densities:

Q = tL + bL + t̃L + b̃L = µQ(ktL + kbL + kt̃L + kb̃L)
T 2

6
:= µQkQ

T 2

6
;

T = tR + t̃R := µT (ktR + kt̃R)
T 2

6
:= µTkT

T 2

6
; (5.48)

H = h + h̃ = µH (kh + kh̃)
T 2

6
:= µHkH

T 2

6
.

For EWBG within the MSSM, it is usually the case that the one Higgs boson and the all
Higgsinos are light, but the squarks other than a mostly right-handed stop are heavy. If
so, then

kQ = 3 + 3 = 6, kT = 3 + 3 · 2 = 9, kH = 4 + 2 · 4 = 12. (5.49)
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Also, kB = kU = . . . = 3 for the corresponding right-handed quark/squark densities, and
kQ1

= kQ2
= 6 for the left-handed first and second generation quark/squark doublets.

The Boltzmann equations for these particle asymmetries can be simplified somewhat by
making two well-motivated approximations. The first is that the bubble walls are nearly
planar, so that we need only concentrate on the spatial coordinate normal to the wall.
The second approximation is that all the quarks and squarks have nearly equal diffusion
constants, Dq, as do the Higgs bosons and Higgsinos, Dh. Calculations of these quantities
find Dq ' 10/T , Dh ' 100/T [99]. On top of these approximations, it helps to work in
the bubble wall frame and re-express all of the equations in terms of the distance from the
bubble wall, z = x + vwt. In doing so, we will implicitly assume that the particle densities
depend only on this coordinate. In the bubble wall frame, the Boltzmann equations for the
relevant particle asymmetries then read

vwQ
′ = DqQ

′′ − Γ̃y (Q/kQ −H/kH − T/kT ) − Γ̃m (Q/kQ − T/kT )

− 2Γ̃ss [2Q/kQ − T/kT + 9(Q+ T )/kB] + γQ,

(5.50)

vwT
′ = Dq T

′′ + Γ̃y (Q/kQ −H/kH − T/kT ) + Γ̃m (Q/kQ − T/kT ),

+ Γ̃ss [2Q/kQ − T/kT + 9(Q+ T )/kB] + γT

vwH
′ = DqH

′′ + Γ̃y (Q/kQ −H/kH − T/kT ) + Γ̃hH/kH + γh.

Here, the prime denotes differentiation with respect to the bubble wall coordinate, z, and
Eq. (5.46) was used to simplify the form of the strong sphaleron terms.

Since Γ̃m and Γ̃h are proportional to the Higgs VEV’s, they tend to be much smaller
than Γ̃ss and Γ̃y. Thus, we may use these to further relate the particle densities. Together,
they imply

T = − kT
kH

(

2kB + 9kQ
kB + 9kQ + 9kT

)

H,

Q =
kQ
kH

(

9kT − kB
kB + 9kQ + 9kT

)

H. (5.51)

Corrections to these values will be O(1/Γ̃ss) or O(1/Γ̃y). Taking the linear combination
of Eqs. (5.50) that is independent of Γ̃s and Γ̃y, we obtain the following reduced diffusion
equation:

0 = −vwH ′ + D̄H ′′ − Γ̄H + γ̄, (5.52)

where the barred coefficients are given by

γ̄ = (γh − 2γT − γQ)kH(kB + 9kQ + 9kT )/
�

Γ̄ = (Γ̃h + Γ̃m) (9kQ + 9kT + kB)/
�

(5.53)

D̄ = [kH(kB + 9kQ + 9kT )Dh + (kTkB + 9dTkQ + kQkB)Dq]/
�



60

with the denominator
�

= [kH(kB + 9kQ + 9kT ) + 9kTkQ + 4kTkB + kQkB].
In general, ki, D̄, γ̄, and Γ̄ all depend on z due to the varying Higgs background.

Once a Higgs profile is specified, these functions are determined, and it is straightforward
to integrate Eq. (5.52) numerically to obtain the particle asymmetries, H(z), Q(z), and
T (z). However, in order to be able to show an analytic solution we will make the following
approximations:

ki, D̄ = constant

γ̄ =

{

γ̄0; 0 < z < w
0; otherwise

(5.54)

Γ̄ =

{

Γ̄0; z > 0
0; z < 0

In other words, we fix D̄, ki which depend only weakly on the Higgs background, take the
CP-violating sources to be non-zero only within a finite bubble wall width, and assume the
Higgs and top mass interactions are active only in the broken phase. Compared to a more
precise numerical evaluation, these approximations work well except for the CP-violating
source term, which depends sensitively on the Higgs VEV profile in the bubble wall. The
solution for H(z) in the symmetric phase (z < 0) is then

H(z) = � ezvw/D̄, (5.55)

with the constant � given by

� =

(

γ0

Γ0

)

(

1 − e−2w
√

Γ0/D̄
)

. (5.56)

Using Eqs. (5.46), (5.51), and the above expression for the Higgs density, we solve for
the quark densities. These provide the chiral fermion source term for the weak sphalerons,
Eq. (5.43):

T 2

6

3
∑

i=1

(3µqi + µli) = 3

(

Q

kQ
+
Q1

kQ1

+
Q2

kQ2

)

,

=
1

2
(5Q+ 4T ) (5.57)

:=
1

2
nL(z),

The quantity nL(z) represents the net chiral fermion charge created by the bubble wall.
We can now solve for the baryon asymmetry generated by this mechanism. In the broken

phase, the asymmetry is independent of position, and equal to [103]

nB = −ngΓ̃ws
2 vw

∫ 0

−∞
dz nL(z) e

zR/vw . (5.58)
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This equation exhibits all three Sakharov conditions. The weak sphaleron rate corresponds
to B violation, the appearance of the chiral fermion asymmetry nL(z) indicates C and CP
violations, and the presence of vw implies departure from equilibrium. We should also point
out that this result relies on the inequalities D/v2

w � Γ̃−1
ws , as well as D/v2

w � Γ̃−1
ss , Γ̃−1

y .
As a result, it no longer holds if these inequalities are violated.



CHAPTER 6

EWBG AND DM IN THE MSSM

The Standard Model of particle physics fails to explain both the baryon asymmetry of the
Universe, and the nature of the dark matter. Thus, despite its great success in collider
experiments, an extension of the SM description is needed. Both shortcomings of the SM
can be overcome if the model is extended to include supersymmetry. For example, within
the minimal supersymmetric extension of the SM, the MSSM, the baryon asymmetry can
be generated by electroweak baryogenesis, and the dark matter can be made up of the
lightest neutralino.

In this section we will investigate whether the MSSM is able to account for both the dark
matter and the baryon asymmetry simultaneously. Compared to previous work along these
lines [106], we include the effect of CP violating phases, which are essential to electroweak
baryogenesis. In Section 6.1 we will discuss the conditions that must be fulfilled within the
MSSM for EWBG to generate the baryon asymmetry. The constraints on these conditions,
especially those on CP violating phases, will be discussed in Section 6.2. Section 6.3 deals
with the neutralino dark matter relic density subject to conditions needed for EWBG. In
particular, we shall consider the effect of CP violating phases and a light stop. Section 6.4
examines the prospects for direct detection of the neutralino dark matter in laboratory
experiments, again including CP violating phases. Finally, Section 6.5 is reserved for our
conclusions. The material in this section is based on Ref. [1].

6.1 Electroweak Baryogenesis in the MSSM

The MSSM has two crucial ingredients compared to the SM that allow electroweak baryo-
genesis to be successful: additional bosonic degrees of freedom; and new sources of CP-
violation. The extra bosons in the model, a light stop in particular, can make the elec-
troweak phase transition strongly first-order. Furthermore, the model has many CP violat-
ing phases in addition to the CKM phase of the SM. These phases originate from the soft
supersymmetry breaking terms, and the µ parameter.

6.1.1 A First-Order Electroweak Phase Transition

As far as the electroweak phase transition is concerned, the most important new contribu-
tion in the MSSM comes from a light stop. This particle interacts with the Higgs field with
a coupling equal to the top-quark Yukawa, and its six degrees of freedom further enhances
the effect on the Higgs potential. While there are two stop mass eigenstates in the MSSM,
only one of the two can be light. There are two reasons for this. First, one stop must be
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heavy in order to raise the mass of the lightest CP-even Higgs boson above the current ex-
perimental limit. And second, a light state with a large left-handed component (t̃L) would
generate too large of a correction to the electroweak observables such as ∆ρ [107].

The mass matrix for the stop quarks in the MSSM is given by

M2
t̃ =

(

m2
Q3

+m2
t +DL mtXt

mtX
∗
t m2

U3
+m2

t +DR

)

, (6.1)

where mt = ytϕ sin β, DL = (t3 − Q sin2 θw)M2
Z cos 2β, DR = Q sin2 θwM

2
Z cos 2β, and

Xt = (At − µ∗ cot β). Since the mostly left-handed state must be fairly heavy, we consider
the limit m2

Q3
� |m2

U3
|, |Xt|2, DL, DR. The mass of the mostly right-handed state in this

limit is then

m2
t̃1
' m2

U3
+D2

R +m2
t

(

1 − |Xt|2
m2
Q3

)

. (6.2)

Studies of the EWPT within the MSSM indicate that the ratio of the vacuum expecta-
tion values, tanβ = ϕ2/ϕ1, remains relatively constant over the course of the phase transi-
tion. As a result, we may treat β as being fixed and focus on the potential as a function of
ϕ =

√

ϕ2
2 + ϕ1

2 for the purposes of finding the order of the phase transition. The one-loop
effective potential therefore has the generic form of Eq. (5.25), with λ = (g2

1 + g2
2) cos2 2β/2

at tree-level, but with a significant one-loop correction [108]. The effective cubic coefficient,
E, is greatly enhanced relative to the MSSM due to the light stop states. Using Eqs. (5.21)
and (5.23), the portion that gives rise to this cubic term is

(cubic) ' T ESMϕ
3 (6.3)

+ T
6

12π

[

m2
U3

+DR + y2
t sin2 β

(

1 − |Xt|2
m2
Q3

)

ϕ2 + Πt̃1(T )

]3/2

,

where Πt̃1(T ) is the thermal correction to the mass from Eq. (5.23). If the gluino and all
the squarks are except for the light stop are heavy (compared to the temperature), it is
given by [109]

Πt̃1(T ) =
4

9
g2
3 T

2 +
1

6
y2
t

[

1 + sin2 β(1 − |Xt|2
m2
Q3

)

]

T 2 +
1

18
(6 + cos 2β)T 2. (6.4)

The effect of the term in Eq. (6.4) will be greatest if it is exactly cubic. This is the case
only for a negative soft mass-squared equal to

m2
U3

= −
(

DR + Πt̃1

)

. (6.5)

However, if m2
U3

is too negative it will induce a vacuum expectation value for the right-
handed stop field. This vacuum state is ruled out experimentally because in it, the Higgs
fields do not get a VEV and the SU(3)c gauge symmetry is broken. To avoid this situation
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altogether, the necessary condition is [109]

m2
U3

& −(80 GeV)2. (6.6)

This condition can be relaxed somewhat if one allows for the usual MSSM vacuum state to
be metastable with a lifetime much longer than the age of the Universe..

With the enhancement of the cubic term due to a light stop, the electroweak phase
transition can be made strongly first order. However, more detailed calculations show that
this is only possible if the Higgs boson involved in breaking the electroweak symmetry is
lighter than 120 GeV [87–95], only slightly above the present experimental bound [41],

mh & 114 GeV, (6.7)

which is valid for a Higgs boson with SM-like couplings to the gauge bosons.1

The combined requirements of a first-order electroweak phase transition, strong enough
for EWBG, and a Higgs boson mass above the experimental limit severely restrict the
allowed values of the stop parameters. Since the stops generate the most important radiative
contribution to the Higgs boson mass in the MSSM [42], the other stop must be considerably
heavier in order to raise the Higgs mass above the experimental bound (Eq. (6.7)). For the
stop soft supersymmetry-breaking masses, this implies [91]

m2
U3

. 0 , (6.8)

m2
Q3

& (1 TeV)2 .

A similar tension exists for the combination of soft SUSY breaking parameters defining
the stop mixing, |At − µ∗ cot β|/mQ3

, and tanβ. Large values of these quantities tend to
increase the Higgs mass at the expense of weakening the phase transition or the amount of
baryon number produced. The allowed ranges have been found to be [91]

5 . tan β . 10 , (6.9)

0.3 . |At − µ∗/ tanβ|/mQ3
. 0.5 .

6.1.2 CP Violation

In addition to a strongly first-order EWPT, new sources of CP violation beyond the CKM
phase of the SM are needed to generate the baryon asymmetry. These sources induce a net
chiral fermion charge that causes the sphaleron transitions to produce baryons. Within the
MSSM, the most efficient source for generating a chiral fermion charged is generated by the
charginos, and to a lesser extent the neutralinos [120].

1The requirements of a light stop and a light Higgs boson may be relaxed in non-minimal supersymmetric
extensions. See, for instance, Refs. [113]– [119].
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Recall that the chargino mass matrix is given by

Mχ± =

(

0 X t

X 0

)

, (6.10)

where

X =

(

M2 g2 v2

g2 v1 µ

)

. (6.11)

During the passage of the bubble wall, both v1 and v2 become functions of position. Fur-
thermore, each of M2 and µ can have CP violating phases. Together, these properties give
rise to a source term for the (charged) Higgsino density [Eq. (5.49)]. This source is obtained
from the Higgsino current computed in the position-dependent background using Eq. (5.41).
The value of the resulting source term is proportional to Im(µM2) [101, 120, 121].

In order for the source to be significant, this phase must be fairly large, and the charginos
must be abundant in the plasma which requires that they not be too much heavier than
the temperature of the plasma, T ∼ Tc. In the recent analysis of Ref. [101], the authors
found the bounds

|Arg(µM2)| & 0.1 , (6.12)

µ, M2 . 500 GeV .

The need for a large CP violating phase implies that there is a danger of violating the
experimental bounds on the electric dipole moments (EDM) of the electron, neutron, and
199Hg atom since such phases generate new contributions to these EDM’s. Similarly, the
branching ratio for b → sγ decays is also sensitive to this phase, and therefore imposes a
further constraint on the EWBG mechanism. These constraints will be investigated below.

6.2 Constraints on CP Violating Phases

The only phase that we consider in this work is the one directly related to EWBG, namely
Arg(µM2). We will assume further that this phase is the result of a common phase for the
electroweak gaugino soft mass parameters. With this assumption, all CP violating effects
are confined to the chargino and neutralino sectors, or the loop corrections induced by
them.2 By means of a U(1)R transformation, we may transfer the gaugino phase into the
µ parameter and the trilinear Af terms. Under this transformation, the effective values of
these parameters are shifted according to

Mλ → Mλ e
−i ϕ, (6.13)

µ → µ ei ϕ,

Af → Af e
−i ϕ,

2We do not consider the effects of a gluino phase. For the parameters considered in the present work,
we expect that such a phase would only have a very small effect.
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with the remaining MSSM parameters left unchanged. For consistency of notation with Ref.
[101], we will implicitly make a U(1)R rotation such that the gaugino masses are all real
and positive, and the µ parameter and the Af terms have equal and opposite phases, up to
a possible relative sign.

As a further simplification, we will neglect the mixing between CP-even and CP-odd
Higgs bosons due to these phases. While this mixing can be significant in some regions
of the MSSM parameter space, especially for large values of tanβ, we have checked that
the mixing induced by chargino and neutralino loop corrections is small (. 3%) for the
parameters considered here, where tan β takes only moderate values. We also note that
in Ref. [122] the effect of Higgs mixing [123] on the neutralino relic density was found to
be small, even in the large tan β regime. The supersymmetric corrections to the bottom
mass [124] are also suppressed in the region of parameter space considered here, and thus
all relevant CP violating effects are associated with the tree-level effect on the neutralino
masses and couplings.

6.2.1 Electron EDM Constraints

The MSSM can accommodate many new CP violating phases in addition to the CKM phase
present in the SM. Such phases, however, are very highly constrained by the experimental
limits on the electric dipole moments (EDM) of the electron, neutron, and 199Hg atom.
Of these, we will focus our attention on the electron EDM since it is the best measured,
the least plagued by theoretical uncertainties, and for the phases relevant to the model
under study gives the strongest constraint. The upper bound on the electron EDM comes
from measurements of the EDM of the 205Tl atom. For the phases considered here and in
the absence of Higgs mixing, the CP-odd electron-neutron operator studied in Ref. [125]
vanishes, and the 205Tl EDM is due almost entirely to the electron EDM. This translates
into a limit on the electron EDM of [126]

|de| < 1.6 × 10−27 e cm, (6.14)

at 90% CL.
In the MSSM, the leading order contributions to the electron EDM come from one-loop

diagrams containing an intermediate selectron or sneutrino. For O(1) phases, these loops
generate an EDM well above the experimental limit unless these sfermions are taken to be
quite heavy, mf̃ & 10 TeV [127]. The neutron and 199Hg EDM constraints require that
the other first and second generation sfermions be very heavy as well. This feature arises
in several models considered in the literature [119, 128–130]. Such large first and second
generation sfermion masses present no problem for EWBG since they couple very weakly
to the Higgs bosons, and have only a minor effect on the final CP asymmetry [120]. With
respect to EWBG, a much more dangerous contribution arises at two loops.

At the two-loop order, there are contributions to the electron EDM from loops containing
intermediate charginos and Higgs bosons. Since EWBG demands that the charginos be
fairly light, mχ . 500 GeV, these contributions cannot be suppressed by taking large
chargino masses. On the other hand, these terms can be reduced by taking large Ma or
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small tanβ. The phase associated with this contribution comes primarily from the chargino
mass matrix, which is the same phase that generates the baryon asymmetry. Consequently,
the electron EDM bound presents a particularly severe constraint on EWBG within the
MSSM.

We have examined whether it is possible for EWBG to generate the observed baryon
asymmetry while obeying the electron EDM bounds. The two-loop contributions to the
electron EDM due to loops with charginos and Higgs bosons were calculated following
Refs. [125, 131]. The method of Ref. [101] was used to calculate the baryon asymmetry
generated by EWBG. In our analysis, we have fixed M2 = 200 GeV, and have varied µ,
Arg(µ), tan β, and Ma. We have also assumed a bubble wall velocity of vw = 0.05 and a
wall width of Lw = 20/T . Both of these values are fairly typical, and tend to maximize the
baryon asymmetry generated in the phase transition.

The dependence of the baryon asymmetry relative to the value needed for big-bang
nucleosynthesis (BBN), η/ηBBN , on |µ| andMa is illustrated in Fig. 6.1. In this plot, we have
taken the phase to be maximal, sin(Arg(µ)) = 1, and have set tanβ = 5. For other values
of these parameters, the baryon asymmetry scales with sin(Arg(µ)) and (approximately)
with sin 2β. There are two main contributions from the CP violating currents of charginos
and neutralinos to the baryon asymmetry in the MSSM. The first is proportional to the
change in β going from the symmetric phase to the broken phase and exhibits a resonance
at M2 = |µ|, but is highly suppressed for large values of Ma. The second contribution is
independent of Ma, and falls off smoothly as |µ| becomes large. Both contributions go to
zero as M2 becomes large.
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Figure 6.1: Baryon asymmetry generated by EWBG relative to that required by big-bang
nucleosynthesis for M2 = 200, tan β = 5, and sin(Arg(µ)) = 1.

Fig. 6.2 shows the regions in the |µ|−Ma and Ma−tan β planes consistent with both
EWBG and the experimental bound on the electron EDM. Here, we have scanned over the
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ranges

3 < tanβ < 10, 100 GeV < Ma < 1000 GeV, 100 GeV < |µ| < 1000 GeV, (6.15)

with M2 = 200 GeV and the rest of the parameters as in Section 2. We find that in
the allowed region, |µ| is confined to the range 110 . |µ| . 550 GeV, while Ma must be
greater than about 200 GeV. The limits on |µ| are due to the effect of this parameter on the
chargino mass. For |µ| . 110 GeV, the lighter chargino has mass below the experimental
bound, mχ1

& 103.5 GeV [132], while for large |µ|, EWBG becomes less efficient. The
lower bound on Ma arises for two reasons. For small Ma the two-loop contribution to the
electron EDM is enhanced, while the mass of the lightest Higgs boson is suppressed. The
effect of the Higgs mass constraint can also be seen in Fig. 6.2, and results in a lower limit
on tan β. The allowed region is cut off for larger values of tanβ since such values tend to
increase the two-loop contributions to the electron EDM.
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Figure 6.2: Parameter regions consistent with EWBG and the electron EDM limit. In these
plots, we have taken M2 = 200 GeV and varied Arg(µ) over the interval [0, π].

From Fig. 6.2, we also see that it is possible to generate the baryon asymmetry via
EWBG in the MSSM while satisfying the experimental constraints on the electron EDM and
the mass of the lightest Higgs boson. Although this is reassuring, the EWBG scenario is still
very strongly constrained by the electron EDM. This can be seen in Fig. 6.3, which shows
the range of values of de obtained in our scan that are consistent with EWBG, the current
electron EDM bound, and the Higgs mass limit. ForMa < 1000 GeV, an order of magnitude
improvement of the electron EDM bound, |de| < 0.2 × 10−27 e cm, will be sufficient to test
this baryogenesis mechanism within the MSSM. However, we should also point out that
the calculation of the baryon asymmetry from EWBG has O(1) uncertainties associated
with the values of the bubble parameters, the wall velocity, and the various approximations
used to derive the diffusion equations and the CP violating sources. Therefore the limits
on EWBG presented here may be somewhat more (or less) severe than they really are.
Furthermore, we have not considered the possibility of fortuitous cancellations between
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different EDM contributions, for instance between the one-loop and two-loop terms (for
lighter sfermions), which could further reduce the value of the electron EDM.
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Figure 6.3: Range of values of the electron EDM for parameter sets consistent with EWBG.

6.2.2 Constraints from BR(b→ sγ)

The presence of a light stop, light charginos, and a light charged Higgs boson may induce
significant effects on the flavor-changing neutral currents associated with the bottom quark
[133]. One of the most sensitive experimental measurements of such effects is the branching
ratio of the decay of a bottom quark into a strange quark and a photon [134–138]. A realistic
calculation of these effects, however, cannot be performed without knowing the flavor sector
of the theory. Even for the large values of the bottom squark masses we consider in this
work, of order a few TeV, the contributions coming from the interchange of gluinos and
down squarks may be as large as the ones coming from the stop–chargino loops if there is
additional flavour mixing beyond what is present in the SM [139].

The experimental value of the branching ratio, BR(b→ sγ), is given by [140]

BR(b→ sγ) = (3.54+0.30
−0.28) × 10−4. (6.16)

In the present work we will assume minimal flavour violation. The dominant contributions
to BR(b→ sγ), in addition to those already present in the SM, therefore come from loops
involving the charged Higgs or charginos, and the light stop. While the loops involving the
charged Higgs boson tend to increase the branching compared to the SM, the loops with
charginos have a non-trivial dependence on the CP violating phase.

In Fig. 6.4 we display the value of BR(b → sγ) as a function of the phase of the Higgsino
mass parameter, µ, for Ma = 200, 1000 GeV and tanβ = 7. The stop sector parameters
have been chosen so as to be consistent with EWBG, and their precise values are listed in
Eq. (6.18) in the following section. The sample chargino and neutralino mass parameters
are taken to be (|µ|,M1) =(300, 60) GeV (solid lines), (350,110) GeV (dashed lines), and
(175,110) GeV (dotted lines), with M1 = (g2

1/g
2
2)M2.
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Figure 6.4: BR(b → sγ) as a function of Arg(µ) for values of the CP-odd Higgs mass
Ma = 200 GeV (left), and Ma = 1000 GeV (right). The stop parameters were chosen as in
section 2, and the chargino and neutralino mass parameters are given by (|µ|,M1) = (350,
110) GeV (solid lines), (175, 110) GeV (dashed lines), and (300, 60) GeV (dotted lines).
The dot-dashed bands represent the present experimental range at the 2 σ level.

As is apparent from the figure, in the absence of other sources of flavor violation a light
CP-odd Higgs scalar with mass of about 200 GeV is highly restricted by BR(b → sγ).
Negative values of µXt, where Xt = (At − µ∗/ tanβ), are necessary to keep the predicted
branching ratio close to the experimentally allowed range.3 This is due to a cancellation
between the charged Higgs and the squark–chargino contributions to the branching ratio
when µXt is negative. Otherwise these contributions interfere constructively with each
other and with the SM contribution. For both signs of µXt, the branching ratio is largest
when Arg(µ) = π and smallest for Arg(µ) = 0. Since the branching ratio tends to be
somewhat high for Ma ∼ 200 GeV, even with µXt < 0, small values of Arg(µ) are preferred
in this case.

Larger values of the CP-odd Higgs mass are consistent with the measured value of
BR(b→ sγ) over a wide range of values of M1, µ, and Arg(µ). For moderately large values,
Ma . 1000 GeV, negative µXt < 0 is preferred. For Ma & 1000 GeV, the charged Higgs
contribution decouples leaving only the stop-chargino corrections. These corrections tend
to give a branching ratio that is near the upper part (µXt > 0) or lower part (µXt < 0) of
the experimentally allowed range for |Xt| = 700 GeV, as we have considered here. Thus,
smaller values of Arg(µ) are preferred for µXt > 0, while Arg(µ) ∼ π is preferred for
µXt < 0. The chargino corrections can be reduced in size by taking slightly smaller values
of |Xt|, or by invoking small flavor violation effects in the down squark sector.

3Recall that if the phases originate from a common gaugino phase and a U(1)R transformation is used
to transfer this phase to µ and At, the product µ At remains real but can have either sign. See Eq. (6.14).
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6.3 Neutralino Dark Matter

The dual requirements of successful EWBG and a lightest Higgs boson with mass greater
than the LEP II bounds strongly constrain the parameter space of the MSSM. One of
the stops must be light, with mass less than that of the top, and mostly right-handed.
Furthermore, the charginos must not be too heavy, and the combination µM2 must have
a non-negligible phase. These conditions have important implications for neutralino dark
matter.

First of all, if the lightest neutralino is to be the source of the observed dark matter, it
must be lighter than the light stop so that it be stable. Secondly, in much of the parameter
space of interest the light stop is only slightly heavier than the neutralino LSP implying
that stop-neutralino coannihilation is significant. Finally, a phase for µM2 modifies the
masses of the neutralinos and their couplings to other particles, and can also affect the
relative phase between the various contributions to the annihilation cross-section. The
effect of CP violating phases on neutralino dark matter has been considered previously by
several groups [141–143]. However, in all of these analyses the regions of MSSM parameter
space considered were much different from the restricted subset required for EWBG, and
in particular, none of them included a light stop.

To simplify the analysis, we shall assume throughout this work that the gaugino mass pa-
rameters, M1 and M2, are related by the standard unification relation, M2 = (g2

2/g
2
1)M1 '

2M1, and have a common phase. The stop soft parameters are largely fixed by the EWBG
and Higgs mass conditions. We take them to be

m2
U3

≈ 0

mQ3
= 1.5 TeV (6.17)

|Xt| = |At − µ∗/ tanβ| = 0.7 TeV.

We have set mD3
= mL3

= mE3
= 1 TeV as well. EWBG and the Higgs mass constraint

also require 5 . tan β . 10 and Ma & 200 GeV. For concreteness, we shall consider the
values

tanβ = 7 (6.18)

Ma = 200, 1000 GeV.

The first and second generation sfermion soft masses are taken to be very large, mf̃ &

10 TeV. As was discussed in Section 6.2, this is necessary to avoid the electron, neutron,
and 199Hg EDM constraints in the presence of large phases.

6.3.1 Relic Density

We compute the relic abundance of neutralinos following the methods described in Chap-
ter 4. In our calculation, all relevant annihilation and coannihilation processes are included
as described in Ref. [144]. Besides neutralino self-annihilations, coannihilations of the light-
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est neutralino with the lightest stop and the lighter chargino significantly affect our results.
The complex phases enter our relic density calculation directly through the couplings and
indirectly through the masses of the neutralinos and charginos. After diagonalizing of the
gaugino and sfermion complex mass matrices, we calculate the annihilation cross-sections
with complex couplings using the techniques outlined in Refs. [145, 146].

mt1 < mZ1Ωh2 > 0.129

mW1 < 103.5 GeVΩh2 < 0.095

0.095 < Ωh2 < 0.129

mZ1  =  120       100       80 GeV

σsi   =  300       30         3 x10-10pb

mZ1  =  120       100       80 GeV

σsi   =  300       30         3 x10-10pb

Figure 6.5: Neutralino relic density for Ma = 200 GeV (left) and Ma = 1000 GeV (right),
and Arg(µ) = 0.

Figs. 6.5-6.7 show the dependence of the neutralino relic density on |µ| and M1 for
tan β = 7, Ma = 200 GeV (left) and Ma = 1000 GeV (right), and three values of the µ
phase: Arg(µ) = 0, π/2, π. Values of the phase equal to 0 or π are representative of
what happens for small phases, like the ones consistent with the generation of the baryon
asymmetry when |µ| ' M2 and Ma . 300 GeV where there is a resonance in the amount
of baryon number produced [101]. On the other hand, large values of the phase, close to
π/2, tend to be necessary to generate the baryon asymmetry outside of the resonant region,
particularly for large values of Ma for which the EDM constraints become less severe.

The medium gray bands in Figs. 6.5-6.7 show the region of parameter space where
the neutralino relic density is consistent with the 95% CL limits set by WMAP data. The
regions in which the relic density exceeds the experimental bound, and is therefore excluded
by more than two standard deviations, are indicated by the dark gray areas. The light gray
areas show the regions of parameter space in which the neutralino relic density is less than
the WMAP value. An additional source of dark matter, unrelated to the neutralino relic
density, would be needed in these regions. Finally, in the medium-light gray region at the
upper right of the plots, the lightest stop becomes the LSP, while in the hatched area at
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the lower left corner the mass of the lightest chargino is lower than is allowed by LEP
data [132].
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de    =  1           1.2         1.4 x10-27ecm

Figure 6.6: Neutralino relic density for Ma = 200 GeV (left) and Ma = 1000 GeV (right),
and Arg(µ) = π/2.

Figs. 6.5-6.7 are qualitatively similar, but do show some differences due to the change
in the phase of µ. Before discussing the effect of the phase, we will examine their gen-
eral features. For Ma = 1000 GeV and for all three phase values, the region where the
relic density is too high consists of a wide band in which the lightest neutralino has mass
between about 60 and 105 GeV and is predominantly Bino. Above this band, the mass
difference between the neutralino LSP and the light stop is less than about 20 GeV, and
stop-neutralino coannihilation as well as stop-stop annihilation very efficiently reduce the
neutralino abundance. For Ma = 200 GeV, instead, the contribution to neutralino annihila-
tion from s-channel exchange of heavy CP-even and CP-odd Higgs bosons is enhanced by a
resonance around mÑ1

' 100 GeV. This restricts the band in which the relic density is too
high to the region where the lightest neutralino has mass between about 60 and 85 GeV,
and is also mostly Bino. For both values of Ma, there is an area below the disallowed band
in which the neutralino mass lies in the range 40-60 GeV, and the neutralino annihilation
cross-section is enhanced by resonances from s-channel h0 and Z0 exchanges.

The relic density is also quite low for smaller values of |µ|. In these regions, the neutralino
LSP acquires a significant Higgsino component allowing it to couple more strongly to the
Higgs bosons and the Z0. For Ma = 1000 GeV, this is particularly important in the region
near (|µ|,M1) = (175, 110) GeV where the neutralino mass becomes large enough that
annihilation into pairs of gauge bosons through s-channel Higgs and Z0 exchange and t-
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Figure 6.7: Neutralino relic density for Ma = 200 GeV (left) and Ma = 1000 GeV (right),
and Arg(µ) = π.

channel neutralino and chargino exchange is allowed, and is the reason for the dip in the
relic density near this point. Since the corresponding couplings to the gauge bosons depend
on the Higgsino content of the neutralino, these decay channels turn off as |µ| increases.
For higher M1 values, the lightest neutralino and chargino masses are also close enough
that chargino-neutralino coannihilation and chargino-chargino annihilation substantially
increase the effective total annihilation cross section.

In Figs. 6.5-6.7, we have taken M2 = (g2
2/g

2
1)M1, as suggested by universality and gauge

unification. With this relation, smaller values of M1 and µ are excluded by the lower bound
on the chargino mass from LEP data [132], as indicated by the hatched regions in the
figures. This constraint becomes much less severe for larger values of the ratio M2/M1. We
also find that increasing this ratio of gaugino masses (with M1 held fixed) has only a very
small effect on the neutralino relic density.

6.3.2 Effects of CP Violating Phases

For the parameters considered in the previous section, relevant for EWBG within the
MSSM, CP violating phases modify the values of the neutralino relic density but have
only a mild effect on the general qualitative features of the allowed parameter space. This
is somewhat misleading, however, since the value of the relic density at a given point in the
|µ|−M1 plane can vary markedly with Arg(µ).

The most important effect of varying Arg(µ) is to shift the mass of the neutralino
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LSP. The dependence of the lightest neutralino mass on this phase is shown in Fig. 6.8 for
tan β = 7 and three sample values of (|µ|,M1): (|µ|,M1) = (350, 110) GeV, (300, 60) GeV,
and (175, 110) GeV. For Ma = 1000 GeV, these three points are representative of the
regions where the annihilation cross section is dominated by stop-neutralino coannihila-
tion [(350, 110) GeV], Higgs boson s-channel annihilation [(300, 60) GeV], and annihilation
into pairs of gauge bosons [(175, 110) GeV]. In each of the three cases, the neutralino
mass increases with Arg(µ), by about 3%, 7%, and 11%, respectively. Such a mass shift
can significantly modify the relic density at a single point where neutralino annihilation
is enhanced by a resonance or coannihilation with another species. The effect on the net
distribution of relic densities, on the other hand, is fairly small; shifting the phase tends to
translate this distribution down and to the left in the |µ|-M1 plane.
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Figure 6.8: Mass of the lightest neutralino as a function Arg(µ) for tanβ = 7 and three
sample values of (|µ|,M1).

The neutralino-Higgs couplings are also quite sensitive to Arg(µ). The couplings of the
Higgs bosons to a pair of neutralinos are given in [147], and have the form

Ñ1Ñ1 h
0/H0 ∼ −i(F PL + F ∗PR)

Ñ1Ñ1A
0 ∼ −i(G PL −G∗PR) (6.19)

where PL,R = (1 ∓ γ5)/2 are the usual chiral projectors. Using these couplings, the spin-
summed and squared matrix elements for Ñ1Ñ1 → f̄ f annihilation via s-channel Higgs
exchange are proportional to

|M|2 ∝
{

Re(F)2 (s − 4 m2
Ñ1

) + Im(F)2 s ; h0, H0

Re(G)2 s + Im(G)2 (s − 4 m2
Ñ1

) ; A0 (6.20)

In calculating the thermal average, one integrates these matrix elements over s through
the range [4m2

Ñ
,∞) with a Boltzmann factor. The Boltzmann suppression is strong for

a non-relativistic relic particle, so the integral is dominated by the region s ∼ 4m2
Ñ

. In
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particular, this means that the terms in Eq. (6.20) proportional to s have the potential to
give a much larger contribution to the annihilation cross-section than those proportional to
(s− 4m2

Ñ
).
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Figure 6.9: Variation of the real and imaginary parts of the Ñ1Ñ1h
0 coupling with Arg(µ)

for (|µ|,M1) = (300, 60) GeV (solid and dotted), and (|µ|,M1) = (175, 110) GeV (dashed
and dash-dotted).

The dependence of the Ñ1Ñ1 h
0 coupling on Arg(µ) for Ma = 1000 GeV, and (|µ|,M1) =

(300, 60) GeV and (|µ|,M1) = (175, 110) GeV is shown in Fig. 6.9. Both the real and
imaginary parts of the couplings are larger in the (|µ|,M1) = (175, 110) GeV case since for
these values of the parameters, the neutralino LSP has a much larger Higgsino component
than for (|µ|,M1) = (300, 60) GeV, when the neutralino is mostly Bino. The couplings for
(|µ|,M1) = (350, 110) GeV, where the LSP is also mostly Bino, are very similar to those
for (|µ|,M1) = (300, 60) GeV. Setting Ma = 200 GeV has only a small effect on these
couplings. For both points shown in Fig. 6.10, the imaginary part of the coupling vanishes
when µ is real, and is largest when µ is pure imaginary, Arg(µ) = π/2. The real part of
the coupling also tends to decrease with Arg(µ) due to an accidental cancellation of terms.
This behavior may be seen by comparing the region M1 . 60 GeV in Figs. 6.5, 6.6, and
6.7, where s-channel h0 exchange tends to be dominant. The relic density in this region is
lowest when Arg(µ) = π/2, Fig. 6.6, while in Fig. 6.7, corresponding to Arg(µ) = π, the
contribution from h0 exchange is much smaller than for other values of this phase.

The couplings of the H0 and A0 bosons to pairs of the lightest neutralino are shown in
Fig. 6.10 forMa = 1000 GeV, and (|µ|,M1) = (300, 60) GeV and (|µ|,M1) = (175, 110) GeV.
As for the h0 coupling, these couplings are nearly unchanged when Ma = 200 GeV. The cou-
plings for (|µ|,M1) = (350, 110) GeV are very similar to those for (|µ|,M1) = (300, 60) GeV
as well. The imaginary part of the H0 and A0 couplings vanishes for Arg(µ) = 0, π
and is largest near Arg(µ) = π/2, while the real parts of these couplings are largest for
Arg(µ) = 0, π and nearly zero when Arg(µ) = π/2. From Eqs. (6.19, 6.20), this implies
that the contribution of s-channel H0 exchange to neutralino annihilation is largest when
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Figure 6.10: Variation of the real and imaginary parts of the Ñ1Ñ1H
0 (left) and

Ñ1Ñ1A
0 (right) couplings with Arg(µ) for (|µ|,M1) = (300, 60) GeV (solid and dotted),

and (|µ|,M1) = (175, 110) GeV (dashed and dash-dotted).

Arg(µ) = π/2, and smallest for Arg(µ) = 0, π, and that the opposite is true for s-channel
A0 exchange. Interestingly, the sum of the A0 and H0 contributions is nearly independent
of the phase. We expect this to be the case whenever M 2

a � M2
Z , and the heavy CP-even

and CP-odd Higgs states are nearly degenerate. The same effect was found in Ref. [122].
We have also investigated the phase dependence of the Ñ1 t t̃ coupling which generates

the most important contributions to stop-neutralino coannihilation. While this coupling
does vary somewhat with the phase, the effect of the phase on the neutralino mass is
much more important. This is because the coannihilation contribution to the relic density
is suppressed by a factor approximately equal to e−(mt̃−mÑ1

)/Tf [Eq. (4.21)], where Tf '
mÑ1

/20 is the neutralino freeze-out temperature, making it very sensitive to the neutralino
mass.

6.4 Direct Detection of Dark Matter

If relic neutralinos make up the dark matter, then they should be present in the space
around us, and it might be possible to observe them directly. Indeed, the search for weakly
interacting massive particles is underway by looking for their elastic scattering off nuclei,
the signature for which is the recoil of the target nucleus. Several existing and future
experiments are engaged in this search. These include solid-state germanium based ion-
ization detectors such as IGEX [148], HDMS [149], CDMS [150], EDELWEISS [151] and
GENIUS [152], as well as the solid crystal or liquid NaI based scintillator detectors used for
example by DAMA [153] and ZEPLIN [154–157]. Other types of detection methods include
xenon based detectors as used in XENON [158] and UKDMC [159], gas target projection
chambers such as those used in DRIFT [160], and metastable particle detectors such as
SIMPLE [161] and PICASSO [162].

The elastic scattering of neutralinos with nuclei can be described by the sum of a spin
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Figure 6.11: Spin-independent neutralino-proton scattering cross section as the function of
Arg(µ), for |µ| = 350 GeV and M1 = 110 GeV, and for Ma= 200 (1000) GeV for the upper
(lower) curve.

independent (SI) cross section, and a spin dependent (SD) cross section. The SI cross
section is roughly proportional to the square of the atomic number of the target nucleus,
whereas the SD cross section is proportional to the square of the net spin of the nucleus.
Thus, for heavy nuclei, the SI term is greatly enhanced compared to the spin dependent
one. For a target containing the isotope 127I, the enhancement factor is more than 104. As
a result, the experimental limits on the spin independent neutralino-nucleon cross sections
are considerably stronger than the spin dependent ones.

In what follows, we will focus on the spin independent interactions. At the parton level,
they are mediated by t-channel Higgs and s-channel squark exchanges. (Here, we only
consider the leading scalar contribution and neglect the higher order tensor contributions
originating from loop diagrams.) The differential scattering rate of a neutralino off the
nucleus XA

Z with mass mX takes the form [163]:

dσSI
d|~q|2 =

1

πv2
[Zfp + (A− Z)fn]

2F 2(Qr), (6.21)

where ~q =
mXm �

N1

mX+m �
N1

~v is the three-momentum transfer, Qr = |~q|2
2mN

, F 2(Qr) is the scalar

nuclear form factors, ~v is the velocity of the incident neutralino, and fp and fn are effective
neutralino couplings to protons and neutrons respectively. The same formalism was used
in Ref. [163], and the reader is directed there for further details. Since modern experiments
express their limits in terms of the neutralino-proton cross section, we shall calculate and
plot this quantity.
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Figure 6.12: Same as Fig. 6.11, but for |µ| = 300 GeV and M1 = 60 GeV.

To study the dependence of the neutralino-proton cross section on the complex phases
of various supersymmetric parameters, we selected three sample points in the parameter
region in which the constraints from EWBG, the electron EDM and WMAP are simulta-
neously satisfied. Specifically, we examined values of Ma = 200, 1000 GeV and the same
Higgsino and neutralino mass parameters chosen before, namely (|µ|,M1) = (175, 110) GeV,
(350,110) GeV, and (300,60) GeV. As emphasized above, for Ma = 1000 GeV these points
correspond to regions where the annihilation cross section is dominated by weak processes,
coannihilation with the light stop, and s-channel Higgs exchange, respectively.

Figs. 6.11–6.13 show the neutralino-proton cross section versus the phase of µ for the
three sample parameter points. The most striking feature of these plots is that the cross sec-
tion is suppressed for non-vanishing phases and, except for (|µ|,M1) = (175, 110) GeV with
Ma = 1000 GeV, nearly vanishes for a given value of Arg(µ). This behaviour follows from
the phase dependence of the Higgs-neutralino couplings. In the present case, t-channel
h0 and H0 exchange diagrams generate the most important contributions to the spin-
independent neutralino-nucleon elastic scattering cross section.4 Furthermore, these contri-
butions depend only on the real (scalar) part of the Higgs-neutralino couplings [164, 165];
Re(F) in the notation of Eq. (6.19). The large suppression of the cross section for particular
values of Arg(µ) is the result of zeroes in Re(F).

Consider first the Ma = 1000 GeV lines in Figs. 6.11–6.13. Since Ma ' MH � mh,
the contribution of the heavier scalar Higgs is suppressed relative to the lighter state, and
neutralino-proton scattering is dominated by t-channel h0 exchange. Comparing the real

4We checked that the lone relatively light squark, the light stop, contributes only at the percent level
via its s-channel diagram.
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Figure 6.13: Same as Fig. 6.11, but for |µ| = 175 GeV and M1 = 110 GeV.

part of the h0-neutralino coupling for (|µ|,M1) = (300, 60) GeV, shown in Fig. 6.9, to the
plot of σSI in Fig. 6.12 for Ma = 1000 GeV, we see that the minimum in σSI nearly coincides
with the zero of the coupling. The minimum (not a zero value) in Figure 6.12 does not
exactly coincide with the zero of the coupling, but is shifted closer to Arg(µ) = π/2 because
the zero value of the real part of the H0-neutralino coupling occurs close to Arg(µ) = π/2,
as shown in Fig. 6.10.5 When (|µ|,M1) = (175, 110) GeV, the coupling of the lightest Higgs
to the lightest neutralino has no zero, and σSI has no deep minimum, as shown by Fig. 6.9.
For Ma = 200 GeV, the H0 state is much lighter and produces a much larger contribution to
σSI . In this case, the minimum of σSI is closer to π/2, near the zeroes of the H0-neutralino
coupling, as can be seen in Fig. 6.10.

The values of the electron EDM are also indicated in Figs. 6.11–6.13. Among the di-
rect detection experiments, CDMS excludes the region above the line labeled as CDMS
2004 [166]. The lower lines indicate the projected sensitivities of future experiments:
CDMS [167]; ZEPLIN [168]; and XENON [169].

In Fig. 6.14, we show the dependence of the direct dark matter detection on the phase of
µ. To do this, we conducted a random scan over the following range of MSSM parameters:

−(80 GeV)2 < m2
Ũ3
< 0, 100 GeV < |µ| < 500 GeV, 50 GeV < M1 < 150 GeV,

200 GeV < Ma < 1000 GeV, 5 < tanβ < 10. (6.22)

The parameters that were not scanned over were fixed as in Section 6.1. The result of the
scan, projected on the stop mass versus neutralino mass plane, is shown in Fig. 6.14, where

5If the heavy Higgs state is decoupled completely, we find that the minimum of the scattering cross
section coincides exactly with the zero of the h0-neutralino coupling.
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Figure 6.14: Spin independent neutralino-proton elastic scattering cross sections as a func-
tion of the neutralino mass for Arg(µ) = 0 (left) and Arg(µ) = π/2 (right). Dark gray,
medium gray, and light gray dots represent parameter sets in which the neutralino density
exceeds, is consistent with, or lies below the 2σ WMAP bounds. The hatching indicates
the region excluded by chargino searches at LEP. The top solid line represents the 2004
exclusion limit by CDMS. The lower solid lines indicate the projected sensitivity of CDMS,
ZEPLIN and XENON, respectively.

we plot fσSI as a function of the lightest neutralino mass. The factor f is given by

f =

{

ΩCDMh
2/0.095 if 0.095 ≥ ΩCDMh

2

1 if 0.095 < ΩCDMh
2 , (6.23)

and accounts for the diminishing flux of neutralinos with their decreasing density [170].6

For models marked by light gray dots the neutralino relic density lies below the 2σ WMAP
bound, while models represented by medium gray dots comply with WMAP to within 2σ.
Models that exceed the WMAP value by more than 2 σ are indicated by dark gray dots.
The area indicated by hatching is excluded by the LEP chargino mass limit of 103.5 GeV.
The solid horizontal lines in the figure indicate the current and projected future sensitivities
of several direct-detection experiments.

The structure of this scatter plot can be understood by examining Figs. 6.5–6.7. As
indicated in these plots by the gray direct detection contours, the spin-independent cross

6The experimental limits for dark matter detection rely on the standard assumptions of a dark matter
flux incident on the earth, based on the observational evidence that points to a roughly spherical distribution
of dark matter distribution in the galaxy, and a local dark matter velocity comparable to the speed of the
sun within the galaxy.
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section, σSI , decreases for increasing values of |µ|. Therefore the low σSI region in Fig.
6.14 is in one-to-one correspondence with the large |µ| region in Figs. 6.5-6.7. For these
large values of |µ|, the lightest neutralino mass is approximately equal to M1. Hence,
increasing values of M1 in Figs. 6.5-6.7 correspond to increasing values of m �

N1
in Fig. 6.14.

The same regions of enhanced annihilation, either via h0 or A0/H0 resonances, or by stop
coannihilation, can also be identified between these figures. In the same way, the LEP
excluded, hatched area of m �

χ1
< 103.5 GeV, preserves its hyperbolic shape for m �

N1
< 85

GeV.
At present, the region above the top solid line is excluded by CDMS. In the near future,

for Arg(µ) ' 0, CDMS will probe part of the region of the parameter space where the
WMAP dark matter bound is satisfied. In this region, due to their enhanced Higgsino com-
ponents, neutralinos mainly annihilate to gauge bosons or, due to the small mass gap, they
coannihilate with charginos. The ZEPLIN experiment will start probing the stop-neutralino
coannihilation region together with the annihilation region enhanced by s-channel A0 reso-
nances, and XENON will cover most of the relevant parameter space. Prospects for direct
detection of dark matter tend to be worse for large values of the phase of µ, Arg(µ) ' π/2.
As seen from Figs. 6.11-6.13, this phase can lead to cancellations that suppress the direct
detection cross section. In the event of such a cancellation, a detector with the sensitivity
of ZEPLIN is needed to start probing the parameter space, and not even XENON will be
capable of fully exploring this model.

6.5 Conclusions for the MSSM

Electroweak baryogenesis provides a mechanism to generate the baryon asymmetry that
relies only on physics at the weak scale. It is therefore testable at high energy physics
facilities in the near future. In this work we have examined the possibility of EWBG within
the MSSM, and the implications that this on the possibility of dark matter within the
model. Specifically, we have analyzed the effects of CP violating phases, as required for
EWBG, in conjunction with a light stop, with mass below the top quark mass, and a light
Higgs with mass below 120 GeV [94, 95]. We have shown that these phases have only a
minor impact on the neutralino parameter space leading to a relic density consistent with
experiment. Large phases, however, do have an important effect on direct dark matter
detection rates, and induce large corrections to the electron electric dipole moment.

We have also shown that, for the phases necessary to obtain an acceptable baryon
asymmetry and in the limit of heavy squarks, of order a few TeV, the predicted values
of the electron electric dipole moment tend to lie within an order of magnitude below
present experimental bounds. The most dangerous contribution, in the limit of very heavy
squarks and sleptons, comes from two loop graphs involving charginos and Higgs bosons.
Assuming no cancellations between one- and two-loop corrections, one can obtain strong
bounds on the allowed parameter space. Small values of tan β are excluded since they lead
to unacceptably small values of the Higgs mass, and large values of tanβ tend to lead to
overly large values of the electron EDM or small values of the baryon asymmetry. On the
other hand, for moderate values of tan β ' 7, the Higgs boson mass may be large enough
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to evade the LEP bounds, even for values of Ma as small as 200 GeV.
In our analysis, we have not examined the prospects of light stop searches at hadron

and lepton colliders. As discussed in Ref. [106], these become very challenging in the region
where stop-neutralino coannihilation becomes relevant, both at the LHC and the Tevatron
collider [171] due to the small mass difference between the stop and the neutralino. An
acceptable dark matter density may be obtained for mass differences as small as 20 GeV,
for which the charm particles proceeding from the stop decay are soft making the stop
detection difficult.

The linear collider signatures of MSSM Baryogenesis have been discussed in Ref. [133].
A linear collider represents the best possibility for confirming this scenario since it provides
the opportunity of performing precise measurements on the chargino system and hence the
possibility of observing a non-zero phase of the µ parameter [172]. Precise measurements
of the stop system also become easier at a linear electron-positron collider [173]. For
example, the LEP collider was able to set limits on the stops even for a mass difference
with the neutralino of about 1 GeV. Preliminary studies of stop searches at the linear
collider [174] show that a 500 GeV ILC may be able to detect a light stop for mass differences
as small as a few GeV. As we found above, in the region of parameters where stop-neutralino
coannihilation leads to a value of the relic density consistent with experimental results, the
stop-neutralino mass difference is never much smaller than 20 GeV, and thus an ILC will
be able to explore this region efficiently.

In summary, the requirement of a consistent generation of baryonic and dark matter in
the MSSM leads to a well-defined scenario, where, apart from a light stop and a light Higgs
boson, one has light neutralinos and charginos, sizeable CP violating phases, and moderate
values of 5 <∼ tanβ <∼ 10. All these properties will be tested by the Tevatron, the LHC and
a prospective ILC, as well as through direct dark-matter detection experiments in the near
future. The first tests of this scenario will come from electron EDM measurements, stop
searches at the Tevatron and Higgs searches at the LHC within the next few years.



CHAPTER 7

EWBG AND DM IN THE NMSSM

The MSSM can explain both the baryon asymmetry and the dark matter, in addition to
stabilizing the gauge hierarchy and providing a unification of the gauge couplings near the
Planck scale. Even so, the model has some unattractive features as well. As we discussed
in Section 2.4, the LEP-II lower bound on the Higgs boson mass, of about 114 GeV, gives a
strong constraint on the MSSM. Large stop masses are needed to avoid this bound, but this
forces the fine-tuning of other parameters in the model to the order of 1%. The same LEP-II
Higgs mass bound also constrains EWBG within the MSSM. In this case, the electroweak
phase transition is strongly first order only for mh . 120 GeV, only slightly above the
experimental limit. On a more technical level, the MSSM also faces the µ-problem. Namely,
the µ term, µH1 ·H2, must be included in the superpotential, with |µ| of order of the weak
scale, if the electroweak symmetry is to be broken. While the µ parameter is stable under
quantum corrections as a result of supersymmetry, it is difficult (although possible [175])
to explain why this dimensionful quantity should be so much smaller than MP or MGUT .

A simple way to address all three difficulties is to add a gauge singlet chiral superfield to
the model. The singlet can solve the µ-problem if the µ-term is replaced by the singlet field,
and the singlet field gets a VEV. Such a coupling between the Higgs fields and the singlet
also generates an additional contribution to the lightest CP-even Higgs boson mass. The
LEP-II Higgs mass bound becomes much easier to avoid, even without heavy stops. The
bosonic component of the singlet also seems to help make the electroweak phase transition
more strongly first-order [113–117], even for heavier Higgs boson masses.

In this chapter, we consider a particular singlet extension of the MSSM, the nearly min-
imal supersymmetry standard model (nMSSM). This model retains the attractive features
of singlet extensions of the MSSM, but also manages to avoid some of the cosmological
problems faced by many of these models. In Section 7.1 we will motivate this particular
singlet extension, and describe its general features. Section 7.2 contains a more detailed
description of the nMSSM, including an analysis of the mass spectrum at zero temperature.
In Section 7.3, we examine the issue of electroweak baryogenesis in the model, and in par-
ticular, examine whether the singlet can help make the EWPT more strongly first-order.
Dark matter in the model is the subject of Section 7.4, while Section 7.5 describes some
of the phenomenological features of the scenario. Finally, Section 7.6 is reserved for our
conclusions. The material in this chapter is based on the work [2].

7.1 A Minimal Extension of the MSSM with a Singlet Superfield

When a singlet superfield is added to the MSSM, many new dimensionful couplings be-
come possible. To avoid re-introducing the µ problem, such terms must be forbidden by a
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symmetry under which the singlet superfield is charged. In the most common formulation,
the Next-to-Minimal Supersymmetric SM (NMSSM) [176], one imposes a Z3 symmetry
under which the fields transform as Φi → exp(2πiqi/3) Φi, where the charges qi are given
in Table 7.1. The most general renormalizable superpotential is then

Wren = λS H1 ·H2 + κS3

+ yuQ·H2 U
c − ydQ·H1 D

c − ye L·H1 E
c, (7.1)

where S is the singlet superfield and the other fields are the same as in the MSSM. Ex-
cept for the cubic singlet self-coupling, this is just the MSSM superpotential with a field
dependent µ-term proportional to the singlet field. Without this additional cubic term,
the superpotential is invariant under an anomalous U(1)PQ, whose charges are listed in
Table 7.1, that gives rise to an unacceptable axion [177]. The cubic term explicitly breaks
U(1)PQ down to its maximal Z3 subgroup, thereby removing the axion while still forbidding
all dimensionful couplings. Unfortunately, this generates new difficulties. When the sin-
glet acquires a VEV, necessarily near the electroweak scale, the Z3 symmetry is broken as
well producing cosmologically unacceptable domain walls [178]. The domain wall problem
can be avoided if Z3 violating non-renormalizable operators are included. However, such
operators generate a large singlet tadpole that destabilizes the hierarchy [179].

H1 H2 S Q L U c Dc Ec W
U(1)Y -1/2 1/2 0 1/6 -1/2 -2/3 1/3 1 0

Z3 ⊂U(1)PQ 1 1 -2 -1 -1 0 0 0 0
U(1)R 0 0 2 1 1 1 1 1 2

Z
R
5 ,Z

R
7 ⊂U(1)R′ 1 1 4 2 2 3 3 3 6

Table 7.1: Charges of fields under the Abelian symmetries discussed in the text.

As shown in [180–182], both problems can be avoided in the context of an N=1 super-
gravity scenario. In the absence of the cubic singlet term, the superpotential of Eq. (7.1)
obeys the U(1)PQ, and U(1)R symmetries listed in Table 7.1, and so is also invariant under
the group U(1)R′ with charges R′ = 3R + PQ. This symmetry alone is enough to give the
superpotential of Eq. (7.1) with no cubic term, as are the maximal Z

R
5 and Z

R
7 subgroups of

U(1)R′ . If we now demand that both the superpotential and the Kähler potential obey one
of these discrete R-symmetries instead of the Z3 symmetry of the NMSSM, the superpoten-
tial will be of the desired form up to a possible singlet tadpole term. Using power counting
arguments it may be shown that a singlet tadpole does arise, but only at the six (ZR

5 ) or
seven (ZR

7 ) loop level. The loop suppression in both cases is large enough that the induced
tadpole does not destabilize the hierarchy [180, 181]. Therefore, this mechanism very ele-
gantly solves three problems: it prevents the appearance of dimensionful couplings (other
than the tadpole) in the renormalizable part of the superpotential; the induced singlet
tadpole explicitly breaks U(1)PQ and its discrete subgroups, thereby avoiding unacceptable
axions and domain walls; and the loop suppression of the tadpole leads naturally to a sin-
glet VEV of the order of MSUSY . Following [182], we shall refer to this model as the nearly
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Minimal Supersymmetric Standard Model (nMSSM).
Another interesting feature of the model is that something like R-Parity arises from the

imposed R-symmetries. These symmetries forbid the appearance of all d = 4 B- and L-
violating operators as well as the dominant higher dimensional B-violating operators that
contribute to proton decay. While proton stability is ensured, there are non-renormalizable
operators that make the LSP unstable. As will be shown in Section 7.2.1, the LSP of the
model under study is nearly always the lightest neutralino. In the Z

R
7 symmetric case, this

symmetry forbids all d ≤ 6 operators that could lead to the decay of such an LSP, and
näıve dimensional analysis shows that it has a lifetime in excess of the age of the universe.
The issue is a bit more delicate in the Z

R
5 case since the L-violating d = 5 operator SSH2L

is allowed by the symmetry. We find that the lifetime of the neutralino LSP induced by
this operator is greater than the age of the Universe provided the cutoff scale (by which
non-renormalizable operators are suppressed) exceeds Λ & 3 × 1014 GeV. The details of
our estimate are presented in Appendix B.2. Therefore, the same symmetries that ensure a
natural solution to the µ-problem stabilize the LSP, and provide the means for a sufficiently
large proton lifetime.

Finally, we note that the superpotential and soft-breaking terms of the nMSSM also
arise as the low-energy effective theory of minimal supersymmetric models with dynamical
electroweak symmetry breaking, the so-called “Fat-Higgs ”models [183]. In these models,
the value of the Higgs-singlet coupling λ is not restricted by the requirement of perturbative
consistency up to the grand-unification scale. Instead, the precise value of λ depends on
the scale of dynamical symmetry breaking, λ being larger for smaller values of this scale.
In our work, we shall focus on the case in which perturbative consistency holds up to very
high energies, but we will also comment on how our results are modified if we ignore the
perturbativity constraint on λ.

7.2 The nMSSM at Zero Temperature

Much of the analysis and notation in this section follows that of [181]. For simplicity,
we will include only the Higgs, singlet, and third generation quark/squark fields in the
superpotential. The superpotential, including the loop-generated tadpole term, is then

WnMSSM = λSH1 ·H2 +
m2

12

λ
S + ytQ·H2U

c + . . . (7.2)

where H t
1 =

(

H0
1 , H

−
1

)

, H t
2 =

(

H+
2 , H

0
2

)

denote the two Higgs superfields, S is the singlet
superfield, and A·B = εabAaBb with ε12 = 1.
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The tree-level potential is then V0 = VF + VD + Vsoft:

VF = |λH1 ·H2 +
m2

12

λ
|2 +

∣

∣λSH0
1 + ytt̃Lt̃

∗
R

∣

∣

2

+ |λSH−
1 + ytb̃Lt̃

∗
R|2 + |λS|2H†

2H2

+ |ytt̃∗R|2H†
2H2 + |ytQ̃·H2|2,

VD =
ḡ2

8
(H†

2H2 −H†
1H1)

2 +
g2
2

2
|H†

1H2|2 (7.3)

Vsoft = m2
1H

†
1H1 + m2

2H
†
2H2 + m2

s|S|2
+ (ts S + h.c.) + (aλS H1 ·H2 + h.c.)

+m2
Q3
Q̃†Q̃+m2

U |t̃R|2 + (at Q̃·H2 t̃
∗
R + h.c.).

In writing VD we have defined ḡ =
√

g2
1 + g2

2 = g/ cos θW .
The couplings aλ, ts, λ,m

2
12, yt, at can all be complex, but not all their phases are physical.

By suitable redefinitions of S,H1, and H2, the parameters λ and m2
12 can both be made

real [184]. To simplify the analysis and to avoid spontaneous CP violation, we shall assume
that the soft-breaking parameters aλ, ts, at and the Yukawa yt are also real.1 Moreover, we
may take aλ and ts to be positive provided we allow λ and m2

12 to have either sign. Real
parameters are not sufficient to exclude spontaneous CP violation, however, so we must
check this explicitly. We must also verify that the potential does not generate a VEV for
either of the charged Higgs fields.

If none of the squark fields get VEV’s, the tree-level Higgs potential becomes

V0 = m2
1H

†
1H1 + m2

2H
†
2H2 + m2

s|S|2 + λ2|H1 ·H2|2

+ λ2|S|2(H†
1H1 + H†

2H2) +
ḡ2

8
(H†

2H2 −H†
1H1)

2 +
g2
2

2
|H†

1H2|2

+ ts(S + h.c.) + aλ(S H1 ·H2 + h.c.) + m2
12(H1 ·H2 + h.c.). (7.4)

We may choose an SU(2)L × U(1)Y gauge such that
〈

H−
1

〉

= 0 and 〈H0
1 〉 ∈ R

≥ at the
minimum of the potential. Taking the derivative of V0 with respect to H+

2 and evaluating
the result at the minimum, we find

∂V0

∂H+
2

∣

∣

∣

∣

Hi=vi

= v+
∗
[

m2
2 + λ2|vs|2 +

ḡ2

4
(|v2|2 − v2

1) +
g2
2

2
v2
1 +

ḡ2

8
|v+|2

]

, (7.5)

where we have defined 〈H0
2 〉 = v2,

〈

H+
2

〉

= v+, and 〈S〉 = vs. It follows that
〈

H+
2

〉

vanishes

at the minimum provided m2
2 + λ2|vs|2 + ḡ2

4
(|v2|2 − v2

1) +
g2
2

2
v2
1 > 0.

1This assumption is not completely ad hoc. Within a minimal supergravity scenario, the soft breaking
parameters are proportional to the corresponding terms in the superpotential.
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If the charged Higgs VEV’s vanish at the minimum, the only part of the potential that
depends on the phases of the Higgs fields are the last three terms in Eq. (7.4):

Vphase = ts (S + h.c.) + aλ(S H
0
1 H

0
2 + h.c.) +m2

12(H
0
1 H

0
2 + h.c.). (7.6)

Recalling that aλ and ts are both real and positive, the potential will have an absolute
minimum with 〈S〉 = vs ∈ R

≤ and 〈H0
2 〉 = v2 ∈ R

≥ provided m2
12 < 0. While this condition

is sufficient to avoid spontaneous CP violation, the result of [185] indicates that it is not
necessary. We will focus on the m2

12 < 0 case because it simplifies the analysis, and as
we shall see below, it is preferred by the constraints on the scalar Higgs boson masses.
However, we have also examined the m2

12 > 0 case, and find that once we impose the
experimental constraints described in following section, the parameter space with m2

12 > 0
is very restricted, and is not consistent with electroweak baryogenesis.

With m2
12 < 0, the field VEV’s are all real and have fixed sign:

〈S〉 = vs < 0 〈H0
1 〉 = v1 > 0, 〈H0

2 〉 = v2 > 0. (7.7)

We define the angle β as in the MSSM:

v1 = v cos β, v2 = v sin β, (7.8)

with v ' 174 GeV. We also define µ = −λvs, since this is the quantity that corresponds to
the µ parameter in the MSSM. Note that µ can have either sign, depending on the sign of
λ.

The minimization conditions for H0
1 , H0

2 , and S can be used to relate the scalar soft
masses to the other parameters in terms of the VEV’s. These give

m2
1 = −(m2

12 + aλvs)
v2

v1
− ḡ2

4
(v2

1 − v2
2) − λ2(v2

2 + v2
s) −

1

2v1

∂∆V

∂H0
1

∣

∣

∣

∣

H0
1
=v1

,

m2
2 = −(m2

12 + aλvs)
v1

v2
+
ḡ2

4
(v2

1 − v2
2) − λ2(v2

1 + v2
s) −

1

2v2

∂∆V

∂H0
2

∣

∣

∣

∣

H0
2
=v2

,

m2
s = −aλ

v1v2

vs
− ts
vs

− λ2 v2 − 1

2vs

∂∆V

∂S

∣

∣

∣

∣

S=vs

, (7.9)

where ∆V consists of contributions to the effective potential beyond tree-level. To one-loop
order

∆V =
1

(4π)2

[

∑

b

gb h(m
2
b) −

∑

f

gf h(m
2
f)

]

, (7.10)

where the first sum runs over all bosons, the second over all Weyl fermions, gi is the number
of (on-shell) degrees of freedom, mi is the field-dependent mass eigenvalue, and the function
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h(m2) is given by (in the DR scheme)

h(m2) =
m4

4

[

ln

(

m2

Q2

)

− 3

2

]

. (7.11)

The one-loop corrections are therefore given by

∆m2
i = − 2

64π2

(

∑

b

gbm
2
b

∂m2
b

∂Hi
2

[

ln(
m2
b

Q2
) − 1

]

−
∑

f

gfm
2
f

∂m2
f

∂Hi
2

[

ln(
m2
f

Q2
) − 1

]

)∣

∣

∣

∣

∣

Hi=vi

. (7.12)

7.2.1 Charginos and Neutralinos

The chargino and neutralino sectors provide important phenomenological constraints on
the model. The fermion component of the singlet superfield, the singlino, leads to a fifth
neutralino state. Assuming the sfermions to be heavy, with masses of order a few hundred
GeV, and values of λ that remain perturbative up to a grand unification scale of order
1016 GeV, the LSP of the model is always the lightest neutralino with a mass below about
60 GeV.

The chargino mass matrix, in the basis (W̃+, H̃+
2 , W̃

−, H̃−
1 ), is

Mχ± =

(

0 X t

X 0

)

, (7.13)

where

X =

(

M2

√
2sβMW√

2cβMW −λvs

)

. (7.14)

For the neutralinos, the mass matrix in basis ψ0
i = (B̃0, W̃ 0, H̃0

1 , H̃
0
2 , S̃) reads

MÑ =













M1 · · · ·
0 M2 · · ·

−cβswMZ cβcwMZ 0 · ·
sβswMZ −sβcwMZ λvs 0 ·

0 0 λv2 λv1 0













. (7.15)

In our analysis we take M1 = α1

α2
M2 ' 1

2
M2, which corresponds to what would be ex-

pected from universality at the GUT scale. With an eye towards electroweak baryogenesis,
we allow the gaugino masses to have a common phase: M2 = M eiφ with M real. This
phase also has a significant effect on the mass of the lightest neutralino. Since flipping the
sign of λ is equivalent to shifting the gaugino phase by φ → φ + π, we will consider only
the λ > 0 case.

To see how the light neutralino state arises, suppose M1 and M2 are very large and
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real so that the gaugino states decouple, leaving only the lower 3 × 3 Higgsino block. For
v1 � v2, vs, the smallest eigenvalue of this matrix is then

mÑ1
' 2λv1v2vs/(v

2
1 + v2

2 + v2
s), (7.16)

and the corresponding state is predominantly singlino. More generally, the mass eigenstates
are

Ñi = Nij ψ
0
i . (7.17)

where Nij is a unitary matrix such that N ∗MÑN
† is diagonal with non-negative entries [28].

We label the states in order of increasing mass so that Ñ1 is the lightest neutralino.
Measurements made at LEP II impose stringent constraints on the chargino and neu-

tralino mass spectra. Since the coupling of the charginos to gauge bosons is the same
as in the MSSM, the mass of the lightest chargino must satisfy mχ±

1
> 104 GeV [186].

The corresponding requirement for the neutralinos is either (mÑ1
+ mÑ2

) > 209 GeV, or

σ(e+e− → Ñ1Ñ2) . 10−2 fb. Finally, for mÑ1
< MZ/2, we must have BR(Z → Ñ1Ñ1) <

0.8 × 10−3 [187].
It is possible to satisfy all of these constraints in the limit of large tanβ, in which case

Ñ1 is a very light LSP; mÑ1
. 15 GeV for λ < 1.0, tanβ > 10, and M2 → ∞. This state

is mostly singlino, and couples only weakly to the gauge bosons. However, this limit also
leads to an unacceptably large neutralino relic density. As we will show in Section 7.4, for
heavy sfermions, the dominant annihilation channel for Ñ1 is s-channel Z-exchange.2 For
such a light, mostly singlino Ñ1, the ZÑ1Ñ1 coupling is too weak for this state to annihilate
efficiently.

We are thus led to consider values of tanβ of order unity. The Ñ1 state now has a
sizeable Higgsino component and correspondingly large couplings to the gauge bosons, so
there is a danger of producing too large a contribution to the Z-width. The branching ratio
of the Z to two Ñ1’s is given by

BR(Z → Ñ1Ñ1) =
g2
2

4π

(|N13|2 − |N14|2)2

24 cos2W

MZ

ΓZ

[

1 −
(

2mÑ1

MZ

)2
]3/2

. (7.18)

Combining the branching ratio constraint with that for the relic density, we find mÑ1
&

35 GeV is needed if both conditions are to be met.(See Section 7.4.) As this value depends
somewhat on parameters in the Higgs sector, we impose the weaker constraint mÑ1

>
25 GeV in our analysis.

The magnitude of λ must be fairly large, λ & 0.3, to raise the mass of the lightest
neutralino above 25 GeV. (|λ| & 0.5 for mÑ1

> 35 GeV.) On the other hand, if λ is too
large it encounters a Landau pole before the GUT scale. This is precisely what happens
in the recently proposed Fat Higgs model [183], in which the Landau pole corresponds to

2There are also contributions to the annihilation cross-section from s-channel Higgs exchange, but these
processes alone are not strong enough to produce an acceptable neutralino relic density unless the neutralino
mass is close to one half of the Higgs boson masses.
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the Higgs compositeness scale. We would like to maintain the property of perturbative
unification in the model (in the usual sense), so we will focus most of our attention on
values of λ that remain perturbative up to MGUT ∼ 1016 GeV. However, with the Fat Higgs
model in mind, we will also consider larger values of λ.

It is straightforward to derive the limit on λ at one-loop order. The relevant (one-loop)
beta functions are [181]

dgs
dt

= − 1

(4π)2

3

2
g3
s ,

dyt
dt

=
yt

(4π)2
(3y2

t +
1

2
λ2 − 8

3
g2
s),

dλ

dt
=

λ

(4π)2
(2λ2 +

3

2
y2
t ), (7.19)

where t = ln(Q2/M2
Z). Running these up to Q2 = (1016 GeV)2 and demanding λ2 < 4π,

we find the allowed region in the tan β-λ plane shown in Fig. 7.1. The lower limit on tanβ
comes about because small values of this quantity imply a large yt(mt), and this accelerates
the running of λ. The figure also shows the region in which the Ñ1 state has mass greater
than 25 GeV and satisfies the LEP II constraints listed above.

Fig. 7.2 shows the corresponding allowed region in the |µ|− |M2| plane. The lower
bounds on |M2| and |µ| are due to the chargino mass constraint. Interestingly, there is
also an upper bound on |µ|, which comes from the lower bound on the lightest neutralino
mass. From Eqs. (7.15) and (7.16) we see that for |vs| � v, the predominantly singlino
state becomes very light. Since µ = −λ vs and λ is bounded above by the perturbativity
constraint, this translates into an upper bound on |µ|. Both the phase and the magnitude of
the gaugino mass M2 have a significant impact on the mass of the light singlino state. The
largest masses are obtained for φ = π with |M2| ∼ λ v, as this maximizes the constructive
interference between the gaugino and Higgsino components. When φ = 0 the interference
is destructive, and |M2| → ∞ maximizes the mass.

Fig. 7.3 shows the range of masses of the lightest neutralino that are consistent with the
constraints listed above. (The relevant input parameter sets are those listed in Table 7.2).
For tan β and λ below the perturbative bound we see that the Ñ1 state has a mass below
about 60 GeV, making it the LSP in the absence of a light gravitino. For mÑ below 50 GeV,
this state is predominantly singlino, with a sizeable Higgsino component. This is because,
with the assumption of gaugino mass universality, the constraint on the chargino mass puts
a lower bound on |M1| that excludes a lighter predominantly Bino state. However, a mostly
Bino LSP is possible if the light singlino state has mass above about 50 GeV, although the
parameter space in which this can occur, consistent with perturbative unification, is severely
restricted. In this event, the LSP and NLSP must be very close in mass. If λ is allowed
to exceed the perturbativity bound, the situation is much less constrained; the parameter
space in which the LSP is mostly Bino becomes much larger, and a Bino LSP need no
longer be nearly degenerate with the NLSP.
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Figure 7.1: Allowed regions in the tanβ−λ plane. The region consistent with perturbative
unification lies below the thick solid line, while the regions consistent with the LEP II
constraints (and mÑ1

> 25 GeV) lie above the thinner lines. Among these, the solid line
corresponds to a gaugino phase of φ = π, while the dotted and dashed lines correspond to
φ = 0, π/2 respectively.

7.2.2 Higgs Spectrum

The LEP II lower bound on the mass of the lightest neutral CP-even Higgs boson of about
114 GeV is difficult to evade in the MSSM. This follows from the fact that, at tree-level,
the mass of this state is bounded by MZ ,

m2
h ≤M2

Z cos2 2β, (7.20)

which implies that large one-loop corrections are needed to increase the mass. The dominant
loop contribution comes from the stops. With tanβ � 1, stop masses of order 1 TeV, and
considerable fine-tuning of the stop mixing parameters, the mass of the lightest Higgs can
be brought up to mh ' 130 GeV [42].

The corresponding tree-level bound in the nMSSM is [182]

m2
h ≤M2

Z(cos2 2β +
2λ2

ḡ2
sin2 2β), (7.21)

which exceeds 100 GeV for |λ| ∼ 0.7 and tanβ ∼ 2. The same bound applies in the
NMSSM [188]. This makes it possible to avoid the LEP II constraint without fine-tuning
in the stop sector.

In order to discuss some of the constraints on the parameter space from the Higgs
sector, we list here the tree-level Higgs masses. We have also included the one-loop mass
corrections from the top and the stops given in [181] in our numerical analysis.

Since the tree-level Higgs VEV’s are real, and neglecting the small CP-violating effects
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Figure 7.2: Allowed regions in the |µ| − |M2| plane for a gaugino phase of φ = 0, π/2, π,
and (tanβ, λ) below the perturbativity bound. The allowed region lies in the central area.
Recall that µ = −λ vs in the model.
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Figure 7.3: Mass of the lightest neutralino. The region to the right of the solid line is
consistent with the LEP II constraints listed above. The region surrounded by the dotted
line is also consistent with perturbative unification.

associated with the one-loop chargino and neutralino contributions, the Higgs fields can be
expanded as

H1 =

(

v1 + 1√
2
(φ1 + ia1)

φ−
1

)

,

H2 =

(

φ+
2

v2 + 1√
2
(φ2 + ia2)

)

,

S = vs +
1√
2
(φs + ias). (7.22)

After electroweak symmetry breaking, the real and imaginary parts of the singlet mix with
those of H0

1 and H0
2 to produce two neutral scalar states in addition to those of the MSSM.
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In all, the physical Higgs states consist of one charged scalar, two neutral CP-odd scalars,
and three neutral CP-even scalars.

For the CP-odd scalars, the combination G0 = −a1 cβ+a2 sβ is absorbed by the Z0 while
the orthogonal linear combination A0 = a1 sβ + a2 cβ mixes with as to give two physical
scalars. The mass matrix in basis (A0, as) is

M2
P =

(

M2
a −aλv

−aλv − 1
vs

(ts + sβ cβ aλv
2)

)

, (7.23)

where

M2
a = − 1

sβ cβ
(m2

12 + aλ vs). (7.24)

Note that Eq. (7.9) implies m2
s + λ2 v2 = − 1

vs
(ts + sβ cβ aλv

2). Therefore the singlet soft

mass, m2
s, sets the mass scale of a predominantly singlet state.

Among the charged Higgs bosons, the combination G+ = φ+
2 sβ − φ−

1
∗
cβ is taken up by

the W+ leaving behind a single complex charged scalar mass eigenstate, H+, of mass

M2
± = M2

a +M2
W − λ2v2. (7.25)

It may be shown using the minimization conditions, Eq (7.9), that M 2
± > 0 is equivalent to

the condition needed to avoid a charged Higgs VEV, Eq. (7.5).
Finally, the mass matrix elements for the CP-even Higgs boson states are

M2
11 = s2

βM
2
a + c2βM

2
Z

M2
12 = −sβ cβ(M2

a +M2
Z − 2λ2 v2)

M2
13 = v(sβ aλ + 2cβλ

2 vs)

M2
22 = c2βM

2
a + s2

βM
2
Z

M2
23 = v (cβ aλ + 2sβλ

2 vs)

M2
33 = − 1

vs
(ts + sβ cβ aλ v

2) (7.26)

with the remaining elements related to these by symmetry. As for the CP-odd case, the
mass of a mostly singlet state is determined by the singlet soft mass.

Large values of M 2
a help to increase the mass of the Higgs states. This is most easily

obtained with m2
12 < 0 (see Eq. (7.24)), which is a sufficient condition to guarantee the

absence of spontaneous CP violation at tree-level. We also note that the MSSM limit of
the NMSSM is not possible in this model. In this limit one takes |vs| � v, while holding
λvs fixed, thereby decoupling the singlet states from the rest of the Higgs spectrum. As
discussed in Section 7.2.1, such large values of vs lead to an unacceptably light neutralino
state. On the other hand, the decoupling limit of the nMSSM discussed in [181], |ts| → ∞,
is still viable. Indeed, the upper bound on the lightest neutral Higgs mass, Eq. (7.21) is
saturated in this limit if M 2

a → ∞ as well.
The precise LEP II bounds on the Higgs masses depend on the couplings of the Higgs
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bosons to the gauge bosons. These couplings tend to be weakened somewhat from mixing
with the singlet. Let OS, OP be the orthogonal mixing matrices relating the gauge and
mass eigenstates:





S1

S2

S3



 = OS





φ1

φ2

φs



 ;

(

P1

P2

)

= OP

(

A0

as

)

. (7.27)

We label the mass eigenstates in order of increasing mass, so that S1 is the lightest CP-even
state and P1 the lightest CP-odd state. In terms of these mixing matrices, the SV V -type
couplings are

SZZ :
ḡ

2
MZ (cβ OS

k1 + sβ OS
k2) (Zµ)

2 Sk,

SWW :
g

2
MW (cβ OS

k1 + sβ OS
k2) (Wµ)

2 Sk. (7.28)

Also relevant are the SPZ-type couplings

SPZ :
ḡ

2

[

OP
`1(sβ OS

k1 − cβOS
k2)
]

Zµ Sk
↔
∂µP`. (7.29)

The couplings of the Higgs states to fermions and neutralinos are listed in Appendix B.3.
The LEP bound on the charged Higgs boson is given in Ref. [189]. Assuming BR(H+ →

τ+ν) ' 1 this bound reads, approximately,

MH± > 90 GeV. (7.30)

The bounds on the CP-odd Higgs bosons depend strongly on their coupling to the Z-
gauge boson and the CP-even scalars given in Eq. (7.29). If the lightest CP-odd Higgs
boson, P1, has a large singlet component this coupling can become very small, and the
bound on this particle is much weaker than the LEP bound of about 90 GeV present in
the MSSM [190]. This bound may be further weakened if the decay P1 → Ñ1Ñ1 is allowed
kinematically. If so, this mode tends to dominate the decay width leading to a large fraction
of invisible final states.

The same is true of the lightest CP-even state, S1. The limit found in [41] depends on
the strength of the SV V coupling relative to the corresponding Standard Model coupling.
From Eq. (7.28) this relative factor is |cβ OS

11 + sβ OS
12|, which can be considerably smaller

than unity if the S1 state has a large singlet component. Again, the limit is further weakened
if the S1 → Ñ1Ñ1 channel is open, as this tends to dominate the decay width below the
gauge boson threshold. In this case, the limit on invisible decay modes found in [191] is the
relevant one.
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7.3 Electroweak Baryogenesis

If Electroweak Baryogenesis (EWBG) is to generate the presently observed baryon asym-
metry, the electroweak phase transition must be strongly first order. In the most promis-
ing MSSM scenario, this phase transition is dominated by a light, mostly right-handed
stop [109]. Such a stop produces a large contribution to the cubic term in the one-loop
effective potential that is responsible for making the phase transition first order. Even so,
for Higgs masses above the LEP II bound, there is only a very small region of parameter
space in which the EW phase transition is strong enough for EWBG to work [95, 101].

The prospects for EWBG in the NMSSM are more promising. The NMSSM has an
additional tree-level contribution to the cubic term of the effective potential. This is suffi-
cient to make the electroweak phase transition strongly first order without relying on the
contribution of a light stop [113–117]. Since the nMSSM has a similar cubic term in the
tree-level potential, we expect EWBG to be possible in this model as well.

In this section we investigate the strength to the electroweak phase transition in the
nMSSM in order to find out whether a strongly first order transition is possible, and if so,
try to map out the relevant region of parameter space. To simplify our analysis, we neglect
the contributions from sfermions other than the stops since these are generally very small.
We also fix the stop SUSY-breaking parameters to be

m2
Q3

= m2
U3

= (500 GeV)2,

at = 100 GeV.

This choice of parameters leads to stops that are too heavy to have a relevant impact on the
strength of the first order phase transition. We have made this choice because it allows us
to emphasize the effects induced by terms in the tree-level effective potential that are not
present in the MSSM. These effects turn out to be sufficient to make the phase transition
strongly first order, even in the absence of light stops.

While a strongly first order electroweak phase transition is necessary for EWBG to
be successful in preserving the baryon asymmetry in the broken phase, based on previous
analyses of the MSSM it appears that this condition is also sufficient [102, 121]. In the
MSSM, the generation of baryon number proceeds from the CP-violating interactions of the
charginos with the Higgs field. The dominant source of CP violation, leading to the baryon
asymmetry, is proportional to the relative phase of the µ and the gaugino mass parameters,
Arg(µM2). The only difference in the model under study is that the µ parameter is replaced
by the quantity −λ vs, which is real, and CP violation is induced by the phase of the gaugino
masses. Therefore, in the presence of a sufficiently strong first order phase transition, we
expect a result for the baryon asymmetry generated from the chargino currents similar to
the one obtained in the MSSM.
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7.3.1 One-Loop Effective Potential

The finite temperature effective potential for the real Higgs scalars is

V (ϕi, T ) = V0(ϕi) + V1(ϕi, T ) + Vdaisy(ϕi, T ) + . . . (7.31)

where Vn is the n-loop contribution, and the additional term, Vdaisy is a finite-temperature
effect. Also, ϕi, i = 1, 2, s are the classical field variables corresponding to H0

1 , H
0
2 , and S.

(ϕi = vi at the T=0 minimum.) The tree-level part is

V0(ϕi) = m2
1 ϕ1

2 +m2
2 ϕ2

2 +m2
s ϕs

2 + 2m2
12 ϕ1ϕ2 + 2 tsϕs + 2 aλ ϕs ϕ1 ϕ2

+
ḡ2

8
(ϕ1

2 − ϕ2
2)2 + λ2 ϕs

2(ϕ1
2 + ϕ2

2) + λ2 ϕ1
2 ϕ2

2. (7.32)

Note the cubic term, aλ ϕs ϕ1 ϕ2, which has no counterpart in the MSSM.
In the DR scheme, the one-loop contribution reads

V1(ϕi, T ) =
∑

b

gb fB(m2
b , T ) +

∑

f

gf fF (m2
f , T ), (7.33)

where b runs over bosons, f runs over Weyl fermions, and gi is the number of (on-shell)
degrees of freedom. Explicit expressions for the functions fB and fF are given in Eq. (5.23).
The third contribution to the potential, Vdaisy, is a finite-temperature effect [58, 85, 86]
coming from a resummation of the bosonic self-energies. It modifies the effective potential
by the amount

Vdaisy = − 1

12π

∑

b

gb
(

m2
b −m2

b

)3/2
, (7.34)

where m2
b is the thermal mass. The sum includes gauge bosons, although only the longi-

tudinal modes of these develop a thermal contribution to their mass at leading order. The
field-dependent mass matrices relevant to our analysis (including thermal corrections) are
listed in Appendix B.1.

7.3.2 Tree-Level Analysis

To better understand the effect of the new cubic term, we have examined a simplified form
of the potential which allows us to obtain analytic expressions for the critical temperature,
Tc, and the field VEV’s. If the cubic term plays a dominant role in making the electroweak
phase transition first order, we expect this analysis to give a good qualitative description
of the transition.

Our first simplifying assumption is that the ratio of the field values at the broken
phase minimum remains constant up to Tc. That is, we fix tanβ, and consider variations
in ϕ =

√

ϕ1
2 + ϕ2

2. To make the one-loop part of the potential more manageable, we
keep only the leading ϕ2T 2 terms in the low-temperature expansion, and include only
the contributions of the gauge bosons and the top. Since the stops are assumed to be
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heavy, the leading temperature-dependent contribution comes from the top provided λ lies
below the perturbative bound, λ . 0.8. For larger values of λ the contributions from the
Higgs, charginos, and neutralinos become important. We shall restrict ourselves to the
perturbative regime in the present analysis.

In terms of ϕ, ϕs, and β, the effective potential becomes V = V0 + V1. The tree-level
part is

V0 = M2ϕ2 +m2
sϕs

2 + 2tsϕs + 2ãϕ2ϕs + λ2ϕ2ϕs
2 + λ̃2ϕ4, (7.35)

where we have defined

M2 = m2
1 cos2 β +m2

2 sin2 β +m2
12 sin 2β,

ã = aλ sin β cos β,

λ̃2 =
λ2

4
sin2 2β +

ḡ2

8
cos2 2β. (7.36)

Within our approximation, the one-loop part is

V1 =
1

8

(

g2
2 +

ḡ2

2
+ 2y2

t sin2 β

)

ϕ2T 2. (7.37)

To find the minimization conditions, we shall make use of the simple (quadratic) ϕs de-
pendence and consider only the field-space trajectory along ∂V

∂ϕs
= 0, at which the minimum

of the potential is found. This condition allows us to eliminate ϕs in terms of ϕ giving

ϕs = −
(

ts + ãϕ2

m2
s + λ2ϕ2

)

. (7.38)

Inserting this back into the effective potential, we find

V (ϕ, T ) = m2(T )ϕ2 − (ts + ãϕ2)2

m2
s + λ2ϕ2

+ λ̃2ϕ4, (7.39)

where m2(T ) = M2 + 1
8

(

g2
2 + ḡ2

2
+ 2y2

t sin2 β
)

.

The critical temperature, Tc , and the VEV at Tc , ϕc , are defined by the two conditions

V (ϕc, Tc) = V (ϕ = 0, Tc), (7.40)

∂V

∂ϕ

∣

∣

∣

∣

ϕ=ϕc

= 0.
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Solving for ϕc and Tc we find

ϕ2
c =

1

λ2

(

−m2
s +

1

λ̃
|ms ã−

λ2 ts
ms

|
)

,

(7.41)

T 2
c = 8

(

F (ϕ2
c) − F (v2)

)

/

(

g2
2 +

ḡ2

2
+ 2y2

t sin2 β

)

,

where

F (ϕ2) = 2ã

(

ts + ãϕ2

m2
s + λ2ϕ2

)

− λ2

(

ts + ãϕ2

m2
s + λ2ϕ2

)2

− 2λ̃2ϕ2.

Both ϕ2
c and T 2

c must of course be positive if a solution is to exist. For ϕ2
c > 0, we need

m2
s <

1

λ̃

∣

∣

∣

∣

λ2 ts
ms

−ms ã

∣

∣

∣

∣

. (7.42)

The positivity of T 2
c requires that F (ϕ2

c) > F (v2). Since increasing the temperature tends
to decrease the field VEV, this condition will be satisfied if F (ϕ2) is a decreasing function
which is the case provided

(ms ã−
λ2ts
ms

)2 < λ̃2(m2
s + λ2ϕ2)3. (7.43)

It is sufficient to demand that this hold for ϕ = ϕc, which gives

m3
s(m

2
sã− λ2ts)

2 <
1

λ̃
|m2

sã− λ2ts|3. (7.44)

This is equivalent to the inequality in Eq. (7.42). Thus, Eq. (7.42) is the necessary condition
for a first order phase transition. To satisfy this equation, m2

s must not be too large. This
can be also seen from Eq. (7.39), which has only positive quadratic and quartic terms in
the limit λ2ϕ2 � m2

s.

7.3.3 Numerical Analysis

The results of the previous section have been examined more carefully by means of a
numerical investigation of the one-loop effective potential. In this analysis, we consider
only the dominant contributions which are those of the top, the stops, the gauge bosons,
the Higgs bosons, the charginos, and the neutralinos. The corresponding field-dependent
mass matrices, both at zero and finite temperature, are listed in Appendix B.1. For the
purpose of calculating thermal masses, we assume that the remaining sfermions and the
gluino are heavy enough to be neglected. We find that a strongly first order electroweak
phase transition is possible within the nMSSM.

The procedure we use goes as follows. To begin, we specify the values of
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(β, vs, aλ, ts, Ma, λ, |M2|, φ), where M2 = |M2|eiφ is the complex Wino soft mass. These are
chosen randomly from the initial ranges listed in Table 7.2. As above, the Bino mass is taken
to be M1 = M2/2, and we fix the soft stop parameters to be m2

Q3
= m2

U3
= (500 GeV)2,

at = 100 GeV. The subtraction scale is set at Q2 = (150 GeV)2. For each parameter set we
calculate the mass spectrum at zero temperature and impose the experimental constraints
described in Section 7.2. At this point we do not impose any dark matter constraint other
than the necessary condition mÑ1

> 25 GeV. Since, for some parameter sets, the one-loop
correction can destabilize the potential in the ϕs direction, we also check that the minimum
at (ϕ1, ϕ2, ϕs) = (v1, v2, vs) is a global minimum at T = 0. Finally, we calculate ϕc and Tc
using the full potential, where Tc is taken to be the temperature at which the symmetric
and broken phase minima are equal in depth, and ϕc =

√

ϕ1
2 + ϕ2

2 is the broken phase
VEV at this temperature.

tan β λ vs aλ t
1/3
s Ma |M2| φ

(GeV) (GeV) (GeV) (GeV) (GeV)
1−5 0.3−2.0 −750−0 0−1000 0−1000 200-1000 0−1000 0−π

Table 7.2: Ranges of input parameters.

In this way we have found several parameter sets which satisfy all the constraints listed
above, and give ϕc/Tc > 0.9, which we take as our criterion for a strongly first order
transition [68, 109]. 3 Let us define

D =
1

λ̃m2
s

(

λ2 ts
ms

− ã ms

)

(7.45)

where m2
s = −aλ v1 v2/vs − ts/vs − λ2 v2 (see Eq. (7.9)), and ã and λ̃ are defined in Eq.

(7.36). D is crucial in determining whether or not a first order phase transition occurs.
The simplified analysis of Section 7.3.2, Eq. (7.42) in particular, suggests that |D| > 1 is a
necessary condition for a first order transition. Fig. 7.4 shows D plotted against ms for both
λ below the perturbative bound, and for general values in the range 0.7 < λ < 2.0. The
region surrounded by the solid lines in this figure corresponds to parameter sets consistent
with the experimental constraints. This figure shows that among the parameter sets for
which a strongly first order phase transition occurs, most satisfy |D| > 1. On the other
hand, we also find parameter sets with |D| > 1 that do not exhibit a strongly first order
phase transition, so this condition is not a sufficient one. The low ms region in these plots
is excluded since the potential tends to become unstable in the singlet direction for small
values of this quantity. This leads to the additional requirement of m2

s & (50 GeV)2.

3This corresponds to ϕc

Tc

> 1.3 for ϕ normalized to 246 GeV.
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Figure 7.4: Values of D for parameter sets leading to a strongly first order phase transition
for: (a) λ below the perturbative bound; (b) general values of λ in the range 0.7 < λ < 2.0.
The region consistent with the experimental constraints lies within the area enclosed by
the solid lines.

The critical temperature for the phase transition generally falls in the range Tc = 100−
150 GeV. Table 7.3 shows the parameter values and transition temperatures for three of
the successful parameter sets. The particle spectra corresponding to these are listed in
Appendix B.3. Parameter sets A and B, with |D| ' 1, both satisfy the perturbative
bound while C, for which D ' 6.7, exceeds it.

Sets A and B are typical of the (perturbative) parameter sets that give a strong phase
transition. As we found in Section 7.2.1, the constraints in the chargino/neutralino sector,
along with perturbative consistency, force λ ∼ 0.5− 0.8, tan β ∼ 1.5 − 5, and |vs| ∼
150− 500 GeV. For a given vs, the values of aλ and ts must then be adjusted so that
m2
s & (50 GeV)2 (Eq. (7.9)) and |D| & 1 (Eq. (7.45)) if the potential is to be stable and

the transition is to be strongly first order. These quantities are further constrained by the
Higgs sector. We find that these requirements may be satisfied for aλ ∼ 300−600 GeV and
ts ∼ (50−200 GeV)3. The value of Ma does not appear to have much effect on the phase
transition, but tends to be fairly large, Ma & 400 GeV, due to the Higgs mass constraints.
While large values of Ma help to increase the masses of the lightest Higgs states, they also
tend to make EWBG less efficient [101, 102, 121]. Even so, EWBG is still able to account
for the baryon asymmetry provided tan β . 2, as we tend to find here [101].

Set tan β λ vs aλ t
1/3
s Ma |M2| ϕc Tc

(GeV) (GeV) (GeV) (GeV) (GeV) (GeV) (GeV)
A 1.70 0.619 -384 373 157 923 245 120 125
B 1.99 0.676 -220 305 143 914 418 145 95
C 1.10 0.920 -276 386 140 514 462 145 130

Table 7.3: Sample parameter sets exhibiting a strongly first order electroweak phase tran-
sition.
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7.4 Neutralino Dark Matter

As discussed above, the LSP in this model (for λ below the perturbative bound) is always the
lightest neutralino, Ñ1, with a mass below about 60 GeV and a sizeable singlino component.
This can be dangerous since a light, stable particle with very weak gauge couplings may
produce a relic density much larger than is consistent with the observed cosmology. On the
other hand, if the Ñ1 is able to annihilate sufficiently well, this state makes a good dark
matter candidate [192].

For values of tan β and λ consistent with the perturbative limit, the LSP tends to be
mostly singlino, but has a sizeable higgsino component. Since mÑ1

. 60 GeV, s-channel Z0

exchange is the dominant annihilation mode. There are also contributions from s-channel
CP-even and CP-odd Higgs boson exchanges generated by the the λS H1 · H2 term in
the superpotential, although these tend to be very small except near the corresponding
mass poles. Since we have assumed that all sfermions are heavy, we consider only these
two channels in our analysis. The relevant couplings are listed in Appendix B.2. (The
matrix element for s-channel Z-exchange is given in [193].) We also neglect the possibility
of coannihilation between the LSP and the NLSP. Among the parameter sets found to be
consistent with the constraints, EWBG, and the perturbative bound, the NLSP is always
at least 15 % (and almost always more than 25%) heavier than the LSP, implying that the
coannihilation contribution is strongly Boltzmann-suppressed. Moreover, when the LSP
and NLSP are close in mass the NLSP is mostly Bino, so the annihilation cross-section
between the LSP and NLSP is less than or of the same order as that for the LSP with
itself.
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Figure 7.5: Neutralino relic density as a function of mass for two values of the mixing
parameter, | |N13|2 − |N14|2| = 0.1 (dotted), 0.5 (dashed) and typical values of the Higgs
mixing parameters. The region to the right of the thick solid line is consistent with the
observed Z width. The scattered points correspond to parameter sets that give a strong
first order phase transition, and are consistent with perturbative unification.
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Figure 7.6: Neutralino relic density as a function of mass for two values of the mixing
parameter, | |N13|2 − |N14|2| = 0.1 (dotted), 0.5 (dashed) and typical values of the Higgs
mixing parameters. The region to the right of the thick solid line is consistent with the
observed Z width. The scattered points correspond to parameter sets which give a strong
first order phase transition with 0.7 < λ < 1.2.

The neutralino LSP relic density was computed using the methods outlined in Chapter 4.
Figs. (7.5) and (7.6) show the relic densities obtained for parameter sets that satisfy the
above mentioned experimental constraints, and are consistent with EWBG. A relic density
consistent with the observed dark matter is obtained for neutralino masses in the range
mÑ1

' 30−40 GeV. For neutralino masses greater than this, it appears to be difficult to
generate a sufficiently large relic density to account for the dark matter. If we allow λ to
exceed the perturbativity bound, a realistic dark matter candidate may be obtained for
neutralino masses above about 65 GeV.

7.5 Phenomenological Discussion

The region of parameter space consistent with EWBG, neutralino dark matter, and the
experimental bounds is quite constrained, and leads to an interesting phenomenology. We
shall focus on values of tanβ and λ that satisfy the perturbativity bound.

The dark matter condition implies that the LSP of the model is the lightest neutralino
with a mass in the range mÑ1

' 30−40 GeV, and is mostly singlino. For smaller values
of |M2|, the next-to-lightest neutralino is predominantly bino. Otherwise it is a mostly
Higgsino state. In both cases, there are always two mostly Higgsino states with masses of
order |λ vs| . 350 GeV. The bound on the Higgsino masses comes from the bound on |µ|
found in Section 7.2.1. This bound also implies that the lightest chargino state has mass
below this value.

In the Higgs sector, since Ma tends to be fairly large, one CP-even Higgs state, one
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CP-odd Higgs state, and the charged Higgs end up with large masses of order Ma. The
remaining CP-odd state is relatively light, and is nearly a pure singlet. For Ma → ∞, the
tree-level mass of this state goes to mP →

√

−(ts + aλ v2 sβ cβ)/vs =
√

m2
s + λ2v2 , (Eq.

(7.23)), which is less than 250 GeV for the values of ts, vs and aλ consistent with EWBG.
The remaining pair of CP-even states also tend to be fairly light. In the Ma → ∞ limit,

the effective tree-level mass matrix for these states becomes

M2
S1,2

=

(

M2
Z cos2 2β + λ2 sin2 2β v2 v(aλ sin 2β + 2λ2vs)
v(aλ sin 2β + 2λ2vs) −(ts + aλ v

2 sβ cβ)/vs

)

. (7.46)

Among the parameter ranges consistent with EWBG, the off-diagonal element of this matrix
can be of the same order as the diagonal elements which leads to a strong mixing between
the gauge eigenstates, although too much mixing can produce an unacceptably light mass
eigenstate. The two terms in the off-diagonal matrix element tend to cancel each other.
If aλ ∼ −2λ2 vs/ sin 2β then the mixing goes to zero, and the mass eigenstates consist of
one SM-like state with mass below 150 GeV, and one mostly singlet state that is nearly
degenerate with the lightest CP-odd state. Otherwise, the mass eigenstates are a strong
admixture of S and the SM-Higgs-like linear combination (cos β H0

1 + sin β H0
2 ). For finite

Ma, the corrections to this picture are of order aλv
2/M2

a .
Figs. 7.7 and 7.8 show the mass and composition of the three light Higgs states (including

one-loop contributions from the top and the stops) for the representative parameter values
Ma = 900 GeV, ts = (150 GeV)3, vs = −300 GeV, aλ = 350 GeV, and λ = 0.7. These
values are typical of those consistent with the constraints and EWBG. The maximum of
the mass of the lightest CP-even state occurs when sin 2β = −2λ2 vs/aλ, at which point
the off-diagonal term in Eq. (7.46) vanishes. The splitting between the P1 and S2 states at
this point is due to the finite value of Ma.

S 2

S 1

P 1

tan β

m

 40

 60

 80

 100

 120

 140

 160

 180

 200

 1  1.5  2  2.5  3

Figure 7.7: Mass and of the light Higgs bosons for typical parameter values consistent with
EWBG.

The discovery of these light states is more challenging than the MSSM case for two
reasons. First, all three can have sizeable singlet components which reduce their couplings
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Figure 7.8: Composition of the two light CP-even Higgs bosons for typical parameter values
consistent with EWBG. The solid lines correspond to the components of S1, OS

1i, while
the dotted lines are those of S2, OS

2i, for i = 1, 2, S. The composition of the P1 state is not
shown because it is almost pure singlet.

to the gauge bosons and quarks, and therefore their production cross-sections. Second, these
states can decay invisibly into pairs of the neutralino LSP. For Higgs masses below the gauge
boson threshold this mode dominates the decay width: BR(h → Ñ1Ñ1) ∼ 0.60 − 0.95 for
the SM-like state; BR(h→ Ñ1Ñ1) ∼ 1 for the mostly singlet state.

Previous studies indicate that the most promising discovery mode for an invisibly decay-
ing CP-even Higgs at the LHC is vector boson fusion (VBF) [194–196]. In [196] the authors
find that, from the invisible modes alone, Higgs masses up to 150 GeV can be excluded at
95% CL with 10 fb−1 of integrated luminosity provided η & 0.35, where

η = BR(h→ inv)
σ(V BF )

σ(V BF )SM
. (7.47)

Rescaling these results by the luminosity, we have

L95% ' 1.2 fb−1

η2
, L5σ ' 8.0 fb−1

η2
, (7.48)

where L95% and L5σ are the luminosities needed for a 95% CL exclusion and a 5σ discovery
respectively. For the SM-like CP-even state, we find η ∼ 0.5−0.9 among the parameter sets
consistent with EWBG. This implies that, from the invisible channels alone, less than about
5 fb−1 of integrated luminosity is needed to exclude this state at 95% CL, while 10−30 fb−1

is sufficient for a 5σ discovery. Similarly, we find η = 0−0.35 for the mostly singlet CP-even
state if the mass lies below the gauge boson threshold. Thus, at least 10 fb−1 is needed
for a 95% CL exclusion and 65 fb−1 for a 5σ discovery using the invisible modes. On the
other hand, if this state has mass above the gauge boson threshold, the Higgs component
is usually large enough that gauge boson final states completely dominate the branching
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ratio. In this case, at least 8 fb−1 is needed for a 5σ discovery via WW and ZZ final states
(where we have rescaled the results of [197]). Lastly, the light CP-odd state is nearly pure
singlet and tends to decay invisibly, making it extremely difficult to observe.

7.6 Conclusions for the nMSSM

The nMSSM model elegantly solves the µ problem of the MSSM by adding a gauge singlet
superfield. This model also avoids the domain wall problem of the usual NMSSM, and leads
to the stability of the proton and a neutralino LSP over cosmological time scales. Like the
MSSM, this model is consistent with all current experimental constraints.

We have shown that a strongly first order phase transition, necessary to preserve the
baryon asymmetry produced by electroweak baryogenesis, may be naturally obtained within
this model. We have also shown that the lightest neutralino provides a viable dark matter
candidate and, if perturbative consistency is required up to the GUT scale, has a mass
below about 60 GeV. In the region of parameters that leads to a neutralino relic density
consistent with the observed one, the light CP-even and CP-odd Higgs bosons decay can
decay into neutralinos providing an interesting modification to the standard Higgs physics
processes.



APPENDIX A

ASPECTS OF FIELD THEORY

A.1 Notes on Notation

We list here our notational conventions for Lorentz indices, and in particular, our conven-
tions for two- and four-component spinors. These conventions follow those of [4,28,30]. For
the metric, ηµν , we use the mostly minus form,

ηµν = diag(+1,−1,−1,−1), (A.1)

where µ, ν = 0, 1, 2, 3.

A.1.1 Two-Component Spinors

The Lorentz group is SO(1, 3). Its irreducible representations may be put in direct corre-
spondence with those of SU(2) × SU(2). We can therefore label these irreps by a pair of
half-integers, (s1, s2), where s1 and s2 label the corresponding SU(2) reps. The two simplest
non-trivial representations are therefore (1/2, 0) and (0, 1/2). These turn out to be spinor
representations; they describe particles with half-integer spin. We denote the elements of
these irreps as:

(1/2, 0) : ψα ⇒ “left-handed spinor”, (A.2)

(0, 1/2) : χ† α̇ ⇒ “right-handed spinor”.

Here, α, α̇ = 1, 2 are the spinor indices. Also, the “dagger” on χ† is part of the name of
the spinor, and does not denote any sort of conjugation. Also, since these spinors describe
half-integer spin particles, they should be treated as anti-commuting Grassmann variables.

Under a Lorentz transformation, these spinors transform as [26]

ψα → U β
α ψβ,

χ† α̇ → χ† α̇ (U−1∗) β̇
α̇ . (A.3)

These are inequivalent representations. However, two more non-independent representa-
tions can be obtained by complex conjugation. We define

χα := (χ† α̇)† → χα(U−1) β
α ,

ψ†
α̇ := (ψα)

† → U β̇
α̇ ψ†

β̇
. (A.4)
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With these definitions, it follows that

χψ := χα ψα,

ψ†χ† := ψ†
α̇ χ

† α̇, (A.5)

are Lorentz invariant quantities. Now, using the fact that the two-index anti-symmetric
tensors

εαβ = −εβα = εα̇β̇ = −εβ̇α̇,
ε12 = +1, (A.6)

are SU(2) invariant tensors, it follows that

χα := εαβχ
β

ψ† α̇ = εα̇β̇ψ†
β̇
, (A.7)

are proper (1/2, 0) and (0, 1/2) spinors. In exactly the same way, we can use εαβ = −εαβ
and εα̇β̇ = −εα̇β̇ to raise and lower indices on ψα and χ†

α̇.
Using the explicit form for the transformation matrix U (which we do not exhibit), it

may be shown that the quantities

χ†
α̇(σ̄

µ)α̇αψα := χ†σ̄µψ,

ψα(σµ)αα̇χ
† α̇ := ψσµχ†, (A.8)

both transform as Lorentz vectors. In these expressions, the 2 × 2 matrices σ and σ̄ are
defined to be

σµ = (I, σi)

σ̄µ = (I,−σi), (A.9)

where the σi are the usual Pauli matrices. These matrices can also be related to each other
by the ε tensors.

A.1.2 Four-Component Notation

While the two-component notation is useful because it uses only irreducible rotations rep-
resentations of the Lorentz group, it becomes cumbersome when there are fermion mass
terms that mix different fermions. When such terms are present, it is often more convenient
to use the four-component notation.

Given the (1/2, 0) and (0, 1/2) spinors χα and ξ† α̇, we can form the four-component
spinor Ψ according to

Ψ =

(

χα
ξ† α̇

)

. (A.10)
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This corresponds to the chiral representation, which we shall use throughout. In terms of
the chiral projectors PL,R = (1 ∓ γ5)/2, with γ5 given by

γ5 =

(

−I 0
0 I

)

, (A.11)

we also define

ΨL := PLΨ =

(

χα
0

)

, ΨR := PRΨ =

(

0

ξ† α̇

)

. (A.12)

The four component analogues of the σ matrices are the Dirac γ matrices,

γµ =

(

0 σµ

σ̄µ 0

)

. (A.13)

Finally, we define the conjugate four-component spinor Ψ̄ by

Ψ̄ := Ψ†γ0 = (ξα, χ†
α̇). (A.14)

It is now straightforward to make the correspondence between the two- and four-
component notation conventions. For instance, the quantity Ψ̄Ψ is a Lorentz scalar, and
has the expansion

Ψ̄Ψ = ξχ+ χ†ξ = Ψ̄LΨR + Ψ̄RΨ. (A.15)

Similarly, Ψ̄γµΨ is a Lorentz vector, and has the expansion

Ψ̄γµΨ = Ψ̄Lγ
µΨL + Ψ̄RγµΨR = χ†σ̄ξ + ξσµξ† α̇. (A.16)

Notice that this term has no mixing between the different spinor representations. A more
complete list of these expansions can be found in [28].

A.2 Path Integrals and the Effective Potential

Throughout this work we will make use of quantum field theory based on Feynman’s path
integral formalism. This formulation is the most convenient way to deal with gauge theories
such as the Standard Model. To start, consider the Heisenberg picture field operator φ(x).
We assume that the eigenstates of the field operators in the theory form a complete set.
These eigenstates have the form

φ(t, ~x)
∣

∣

∣
φ̂(t, ·)

〉

= φ̂(t, ~x)
∣

∣

∣
φ̂(t, ·)

〉

, (A.17)

where φ̂(x) is a fixed (c-number) function on spacetime. In terms of these field states, the
fundamental relation for path integrals is then [6, 198]

〈φf tf |T{O} |φiti〉 = N
∫

[
�
φ]
φ(tf )=φf

φ(ti)=φi
O exp(i

∫

d4x
�

), (A.18)
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where O is a sum of products of field operators, T denotes time-ordering, and
�

is the
Lagrangian for the system. Also, N is a normalization factor that we will specify later. The
sub- and super-scripts on the measure indicate the boundary conditions for this integral.

To calculate particle scattering amplitudes, it is enough to know the expectation values
of operators evaluated between the vacuum states at t→ ±∞. We define the n-point Green
function by

Gn(x1, . . . , xn) = 〈0,+∞|T{φ(x1) . . . φ(xn)} |0,−∞〉 (A.19)

By the LSZ procedure [7, 199], the n-point function can be converted into the scattering
amplitude for a process with n incoming or outgoing φ particles.

The Green functions may be written in terms of a path integral using a trick. If the
t → ±∞ limit of the expectation value of the operator O is taken between any two field
eigenstates in a slightly imaginary direction, t → ∞(1 + iε), only the projection of these
eigenstates onto the vacuum survives [4]. As a result, we need not specify the boundary
conditions in calculating these vacuum expectation values. Choosing the normalization
factor such that the unit operator has expectation value equal to one, we find

〈0, t→ +∞|T{O} |0, t→ −∞〉 = (A.20)
∫

[
�
φ]O exp(i

∫

d4x
�

)

/
∫

[
�
φ] exp(i

∫

d4x
�

),

where no boundary conditions are specified, but the imaginary time rotation is implied.
In general, these Green functions can only be evaluated exactly when the Lagrangian is at
most quadratic in all the fields. On the other hand, these Green functions may be evaluated
approximately in perturbation theory using the standard Feynman diagram techniques.

A convenient way to obtain the n-point Green functions is to add a position dependent
source to the action. Define the generating functional Z[J ] by [59, 200]

Z[J ] =

∫

[
�
φ] exp

[

i

∫

d4x (
�

+ J(x)φ(x))

] /
∫

[
�
φ] exp(i

∫

d4x
�

). (A.21)

Here, the t→ ±∞ in a slightly imaginary direction limit is implied. The name for Z[J ] is
apt because of the fact

δnZ[J ]

δJ(x1) . . . δJ(xn)

∣

∣

∣

∣

J=0

= inGn(x1, . . . , xn). (A.22)

This relation follows directly by functionally differentiating Eq. (A.21). Making a functional
Taylor expansion of Z[J ] and using the relation above, we find

Z[J ] =

∞
∑

n=0

in

n!

∫

dx1 . . . d
x
nGn(x1, . . . , xn) J(x1) . . . J(xn). (A.23)
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It is also convenient to define the functional W [J ] by

W [J ] = −i ln(Z[J ]). (A.24)

It may be shown that W [J ] is the generating functional for connected Green functions
Gc
n(x1, . . . , xn), the subset of the usual Green functions which only contain connected dia-

grams [200]. In other words,

iW [J ] =

∞
∑

n=0

in

n!

∫

d4x1 . . . d
4xnG

c
n(x1, . . . , xn) J(x1) . . . J(xn). (A.25)

Another interesting quantity is the effective action, Γ[φc]. First, let us define the classical
background field by

φc(x) =
δW [J ]

δJ(x)
(A.26)

= 〈0,+∞|φ(x) |0,−∞〉J ,

where the subscript indicates that the expectation value has been taken in the presence
of the source J . The effective action is then defined to be the Legendre transformation of
W [J ],

Γ[φc] = W [J ] −
∫

d4y
δW [J ]

δJ(y)
J(y), (A.27)

where J is to be regarded as a functional of φc, defined implicitly through Eq. (A.26).
Differentiating Γ[φc] with respect to its argument, we obtain

δΓ

δφc(x)
= −J(x). (A.28)

Taking the source to zero,
δΓ

δφc(x)

∣

∣

∣

∣

J=0

= 0, (A.29)

which gives an equation for the vacuum expectation value of the field φ(x) in the vacuum.
Besides providing an equation for the vacuum expectation value of the field φ, it may

be shown that the effective action is also the generating functional for one-particle irre-
ducible (1-PI) Green functions,

Γ[φc] =
∞
∑

n=0

1

n!

∫

d4x1 . . . d
4xn Γn(x1, . . . , xn)φc(x1) . . . φc(xn). (A.30)

The 1-PI Γn’s are Green functions made up of Feynman diagrams that remain connected
even after cutting a single internal propagator leg. They correspond to the effective vertices
in the theory after quantum corrections have been included [200].
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In a theory that is translationally invariant, the vacuum expectation value for φ, φc,
must be constant in the J(x) → 0 limit. For φc = constant, independent of x, the effective
action can be put in a particularly simple form [59]:

Γ[φc] =

∞
∑

n=0

1

n!
φnc Γ̃n(pi = 0)

(
∫

d4x

)

(A.31)

:= −
(
∫

d4x

)

Veff(φc),

where Γ̃n(pi) is the Fourier-transform of Γn(xi). In the second line, we have defined the
effective potential. With φc a constant, the equation for the vacuum value of φ becomes

∂Veff

∂φc
= 0. (A.32)

Thus, the effective potential of great interest.



APPENDIX B

NOTES FOR THE NMSSM

B.1 Field-Dependent Masses

In this section we collect the field and temperature dependent mass matrices for those
particles relevant to the analysis in Section 7.3. The leading thermal mass corrections
were calculated following [108] for vanishing background field values; ϕ1 = ϕ2 = ϕs = 0.
Ignoring the singlet background is reasonable here since, in the parameter space of interest,
the singlet VEV is closely related to the other Higgs VEV’s. To leading order, only bosons
receive thermal mass corrections. These come from quadratically divergent (at T=0) loops
containing particles which are light compared to the temperature, m . 2π T for bosons
and m . π T for fermions. For the purpose of calculating thermal masses we have taken
the Higgs bosons, Higgsinos, electroweak gauginos, and the SM particles to be light, while
treating the rest of the particles in the spectrum as heavy. We do not expect that a different
choice of spectrum would change our phase transition results since the first order nature of
the transition is determined by the tree-level potential rather than the cubic one-loop term
in jB.

Gauge Bosons

At leading order, only the longitudinal components of the gauge bosons receive thermal
corrections. The masses are

m2
W =

1

2
g2
2(ϕ1

2 + ϕ2
2) + ΠW± (B.1)

M2
Zγ =

(

1
2
g2
2(ϕ1

2 + ϕ2
2) + ΠW 3 −1

2
g1g2(ϕ1

2 + ϕ2
2)

−1
2
g1g2(ϕ1

2 + ϕ2
2) 1

2
g1

2(ϕ1
2 + ϕ2

2) + ΠB

)

,

where Πi = 0 for the transverse modes, and

ΠW± =
5

2
g2
2T

2 (B.2)

ΠW 3 =
5

2
g2
2T

2

ΠB =
13

6
g2
1T

2

for the longitudinal modes.

Tops and Stops

113
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m2
t = y2

tϕ2
2 (B.3)

M2
t̃ =

(

m2
Q +m2

t +DL + Πt̃L atϕ2 + λϕsϕ1

atϕ2 + λϕsϕ1 m2
U +m2

t +DR + Πt̃R

)

,

where

DL =
1

4
(g2

2 −
1

3
g1

2)(ϕ1
2 − ϕ2

2)

DR =
1

3
g1

2(ϕ1
2 − ϕ2

2)

Πt̃L =
1

3
g2
3T

2 +
5

16
g2
2T

2 +
5

432
g2
1T

2 +
1

6
y2
t T

2 (B.4)

Πt̃R =
1

3
g2
3T

2 + +
5

27
g2
1T

2 +
1

3
y2
t T

2.

Higgs Bosons

The CP-even mass matrix elements are

M2
S11

= m2
1 + λ2(ϕ2

2 + ϕs
2) +

ḡ2

4
(3ϕ1

2 − ϕ2
2) + ΠH1

M2
S12

= m2
12 + 2ϕ1ϕ2(λ

2 − ḡ2

4
) + aλϕs

M2
S13

= aλϕ2 + 2λ2ϕ1ϕs (B.5)

M2
S22

= m2
2 + λ2(ϕ1

2 + ϕs
2) +

ḡ2

4
(3ϕ2

2 − ϕ1
2) + ΠH2

M2
S23

= aλϕ1 + 2λ2ϕ2ϕs

M2
S33

= m2
s + λ2(ϕ1

2 + ϕ2
2) + ΠS

where the leading thermal corrections are

ΠH1
=

1

8
g2
1T

2 +
3

8
g2
2T

2 +
1

12
λ2T 2

ΠH2
=

1

8
g2
1T

2 +
3

8
g2
2T

2 +
1

12
λ2T 2 +

1

4
y2
t (B.6)

ΠS =
1

6
λ2T 2.
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For the CP-odd states we have

M2
P11

= m2
1 + λ2(ϕ2

2 + ϕs
2) − ḡ2

4
(ϕ2

2 − ϕ1
2) + ΠH1

M2
P12

= −m2
12 − aλϕs

M2
P13

= −aλϕ2 (B.7)

M2
P22

= m2
2 + λ2(ϕ1

2 + ϕs
2) +

ḡ2

4
(ϕ2

2 − ϕ1
2) + ΠH2

M2
P23

= −aλϕ1

M2
P33

= m2
s + λ2(ϕ1

2 + ϕ2
2) + ΠS

where the thermal corrections are as above.
The charged Higgs mass matrix is

M2
H±

11

= m2
1 + λ2ϕs

2 − ḡ2

4
(ϕ2

2 − ϕ1
2) +

g2
2

2
ϕ2

2 + ΠH1

M2
H±

12

= −(λ2 − g2
2

2
)ϕ1ϕ2 −m2

12 − aλϕs (B.8)

M2
H±

22

= m2
2 + λ2ϕs

2 +
ḡ2

4
(ϕ2

2 − ϕ1
2) +

g2
2

2
ϕ1

2 + ΠH2
.

Charginos and Neutralinos

The chargino mass matrix reads

Mχ± =

(

0 X t

X 0

)

(B.9)

where

X =

(

M2 g2ϕ2

g2ϕ1 −λϕs

)

.

For the neutralinos we have

MÑ =













M1 · · · ·
0 M2 · · ·

− g1√
2
ϕ1

g2√
2
ϕ1 0 · ·

g1√
2
ϕ2 − g2√

2
ϕ2 λϕs 0 ·

0 0 λϕ2 λϕ1 0













. (B.10)

We have taken M1 = M2/2 and have allowed M2 to be complex in our analysis.

B.2 Higgs and Neutralino Couplings

We list here the Higgs and Neutralino couplings relevant to our analysis. All fermions are
written in terms of four-component spinors to facilitate the derivation of the Feynman
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rules. As above, Eq. (7.17), we define the unitary matrix Nij by

Ñi = Nij ψ
0
i

where (ψ0
i ) = (B̃0, W̃ 0, H̃0

1 , H̃
0
2 , S̃). Similarly, as in Eq. (7.27) we define the orthogonal

matrices OS and OP by





S1

S2

S3



 = OS





φ1

φ2

φs



 ;

(

P1

P2

)

= OP

(

A0

as

)

.

B.2.1 Neutralino Couplings

ZNN: [28]
�
ZNN =

g

2 cos θW
ZµÑ i γ

µ(ON
ijPL −ON∗

ij PR)Ñj (B.11)

where

ON
ij =

1

2

(

Ni4N
∗
j4 −Ni3N

∗
j3

)

.

For the Higgs-Neutralino couplings we consider only the contribution from the λSH1 ·H2

term in the superpotential.
SNN:

�
SNN = − λ√

2
SkÑ i

(

ĀkijPL + AkijPR
)

Ñj, (B.12)

where

Akij = OS
k1Q

45
ij + OS

k2Q
35
ij + OS

k3Q
34
ij ,

Qab
ij =

1

2

(

N∗
iaN

∗
jb +N∗

ibN
∗
ja

)

.

Ākij is related to Ak
ij by the replacement N ∗

ij → Nij.
PNN:

�
PNN = −i λ√

2
SkÑ i

(

B̄k
ijPL −Bk

ijPR
)

Ñj, (B.13)

where

Bk
ij = sβOP

k1Q
45
ij + cβ OP

k1Q
35
ij + OP

k2Q
34
ij ,

As with Ak
ij, B̄

k
ij is related to Bk

ij by the replacement N ∗
ij → Nij.

Finally we note that in converting these couplings into Feynman rules, one must insert an
additional factor of two since the neutralinos are written as Majorana spinors [28].
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B.2.2 Higgs Couplings

The relevant couplings of the Higgs scalars to the gauge bosons are given in Section 7.2.2
above. We list here the couplings of the Higgs to the third generation quarks.
Sf̄f :

�
Sf̄f = − 1√

2
ybOS

k1 Sk b̄b−
1√
2
ytOS

k2 Sk t̄t. (B.14)

P f̄f :
�

P f̄f =
i√
2
yb sβ OP

k1 Pk b̄γ
5b+

i√
2
yt cβOS

k1 Pk t̄γ
5t.

The couplings of the Higgs states to the other matter fermions follow the same pattern.

B.2.3 LSP Lifetime

Having listed the Higgs-Neutralino couplings, we may now present an estimate for the
lifetime of the LSP in the Z

R
5 symmetric scenario. This symmetry allows the d = 5

operator ŜŜĤ2L̂ in the superpotential, which can lead to the decay of the neutralino LSP.
This operator generates a coupling which allows the neutralino to decay into a neutrino
and a pair of off-shell neutral Higgs scalars, or an electron, a neutral Higgs scalar, and a
charged Higgs scalar. We shall focus on the first mode with intermediate neutral CP-even
states and a mostly singlino LSP. This gives a more stringent constraint than the charged
mode, and the analysis with intermediate neutral CP-odd states is analogous. We will
also assume that each of the neutral Higgs bosons subsequently decays into b̄b. With these
assumptions, we find

Γ(Ñ1 → ν b̄b b̄b) ∼ π

2(4π2)4

y4
b

∣

∣N∗
15OS

i3OS
j2OS

1iOS
1j

∣

∣

2

Λ2m8
H

(mÑ

5

)11

(B.15)

where Λ is the cutoff scale, mH is the Higgs mass in the intermediate propagators, and we
have set all final state momenta to mÑ/5. Setting the mixing factor to unity, taking
mÑ/mH ∼ 1 and tan β = 2, and demanding that Γ < H0, we find

Λ2 &
( mÑ

GeV

)3

1023 GeV2 (B.16)

which translates into Λ & 3 × 1014 GeV for mÑ = 100 GeV.

B.3 Sample Mass Spectra

We list here the mass spectra for the sample parameter sets A, B, and C listed in
Table 7.3.
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Set S1 S2 S3 P1 P2 H±

(GeV) (GeV) (GeV) (GeV) (GeV) (GeV)
A 115 158 925 135 927 922
B 116 182 914 164 917 911
C 121 219 504 115 534 498

Table B.1: Higgs scalar masses.

Set Ñ1 Ñ2 Ñ3 Ñ4 Ñ5 χ±
1 χ±

2

(GeV) (GeV) (GeV) (GeV) (GeV) (GeV) (GeV)
A 33.3 107 181 278 324 165 320
B 52.4 168 203 221 432 151 432
C 77.1 228 268 331 474 257 474

Table B.2: Neutralino and chargino masses.

Set |N11| |N12| |N13| |N14| |N15| OS
11 OS

12 OS
13 OP

11 OP
12

A 0.13 0.10 0.11 0.37 0.91 0.46 0.74 -0.50 0.08 0.99
B 0.07 0.07 0.16 0.52 0.84 0.42 0.80 -0.44 0.07 0.99
C 0.01 0.01 0.28 0.33 0.90 0.70 0.53 0.48 0.26 0.97

Table B.3: Composition of the lightest neutralino, Ñ1, the lightest CP-even Higgs boson,
S1, and the lightest CP-odd Higgs boson, P1.
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