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Abstract

Structure functions in lepton-nucleon deep inelastic scattering (DIS) are the well-
established observables exploring Quantum Chromodynamics (QCD), the theory of
the strong interaction, and they provide exclusive information about the deep struc-
ture of hadrons. Predominantly, the structure functions form the foundation of our
knowledge of the parton densities, which are indispensable for analysis of hard scat-
tering processes at proton-(anti-)proton colliders like the TEVATRON and the Large
Hadron Collider (LHC). Parton distributions are the vital ingredients for most of the
theoretical calculations at hadron colliders and they provide the number densities
of the colliding partons (quarks and gluons) inside their parent hadrons at a given
momentum fraction z, where x is the Bjorken scaling variable, and scale (2.

The small-x behavior of parton densities is one of the challenging issues of QCD.
The chief and most salient phenomena in the region of small-z which determine
the physical picture of the parton evolution are the increase of the parton density
at x — 0, the growth of the mean transverse momentum of a parton inside the
parton cascade at small-z, and the saturation of the parton density. Therefore the
determination of parton densities or to a great degree the gluon densities in the small-
x region is particularly important because the gluon distribution function controls
the physics at high energy or small-z in DIS. Moreover, precise knowledge of gluon
distribution functions at small-x is useful to estimate backgrounds and explore new
physics at the LHC. That being so, the dynamics of the the high density QCD, the
regime of large gluon densities, is one of the present-day highly demanding undecided
issues in the area of high energy or small-x physics.

The standard and the key tools for theoretical investigation of DIS structure func-
tions are the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equa-
tions. These equations can delineate the available experimental data in a decent
manner considering a large domain of z and ? with appropriate parameterizations.
Consequently, the solutions of the DGLAP evolution equations have been reported
in recent years with significant phenomenological success. The DGLAP evolution
equation at the twist-2 level prognosticates a sharp growth of the gluon densities as
x grows smaller which is clearly observed in the DIS experiments at HERA as well.

In consequence, this generates cross sections which in the high-energy or small-z



limit fail to comply with the Froissart bound. Subsequently, the growing number of
gluon densities, so as to approach small-x, demands a formulation of the QCD at
high partonic density incorporating the unitarity corrections in a suitable manner.

Gluon recombination is usually assumed to be accountable for the unitarization
of the cross section at high energies or a possible saturation of the gluon density at
small-z. At small-z the likelihood of interaction between two gluons can no longer
be neglected and sooner or later, the individual gluons necessarily start to overlap
or shadow each other. Consequently, nonlinear phenomena are expected to arise
which eventually bring about a taming of the maximum gluon density per unit of
phase-space. Moreover, the pioneering finding of the geometrical scaling in HERA
data as well as the existence of geometrical scaling in the production of inclusive jets
in the LHC data provides strong experimental evidences of the saturation effects.
The multiple gluon interactions towards small-z induce nonlinear corrections in the
conventional linear DGLAP equation and accordingly the corrections of the higher
order QCD effects have become the focus of in-depth studies in the last few years.

Gribov, Levin and Ryskin, at the onset, investigated the shadowing corrections
of gluon recombination to the parton distributions. Following that Mueller and Qiu
completed the equation numerically using a perturbative calculation of the recombi-
nation probabilities in the DLLA, and also formulated the equation for the change
of gluons to sea-quarks. This is a great achievement as it authorises the GLR-MQ
equation to be applied phenomenologically and thus provides the connection to ex-
periments. This equation predicts a critical line separating the perturbative regime
from the saturation regime, and it is legitimate just in the edge of this critical line.
The study of the GLR-MQ equation is extremely important for the interpretation
of the non-linear effects of gluon-gluon recombination due to high gluon density
at sufficiently small-z as well as for the determination of the saturation momen-
tum. Moreover, the Balitsky-Kovchegov (BK), Modified-DGLAP (MD-DGLAP),
Modified-Balitsky-Fadin-Kuraev-Lipatov (MD-DGLAP) and Jalilian-Marian-Iancu-
McLerran-Weigert-Leonidov-Kovner  (JIMWLK) are some of other widely studied
nonlinear evolution equations relevant at high gluon densities.

The work presented in this thesis is focused on the study of the small-z and Q?

behaviours of the singlet and nonsinglet structure functions and gluon distribution
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functions in the context of linear DGLAP and nonlinear GLR-MQ evolution. The
first part of this thesis is concerned with the study of the linear DGLAP equation upto
next-to-next-to-leading order (NNLO); the second part is more specifically dedicated
to the higher order QCD corrections in small-z physics where we address the issue
of gluon-gluon recombination or shadowing corrections at very small values of z. In
this work, we intend to check whether at very small-x the DGLAP equations can be
ruled out in favour of the GLR-MQ equations which would mean evidence for gluon
recombination. The structure of the thesis is organized as follows:

Chapter 1 is a general introduction of the elementary particles with a brief
account of QCD, DIS, structure functions and parton distribution functions (PDFs).
The importance of small-x physics and gluon shadowing are also concisely described
here. Various high energy experiments as well as parametrization groups extracting
PDF's from global data analyses are also briefly summarized.

Chapter 2 is an overview of the different QCD linear and nonlinear evolution
equations with a more or less detailed description of the DGLAP and the GLR-MQ
equations. The numerical as well as analytical solutions of the evolution equations,
widely available in the literature are also outlined very briefly in this chapter.

It is always very alluring to explore the prospect of obtaining analytical solutions
of DGLAP equations somewhat in the restricted domain of small-x. In chapter 3,
we solve the DGLAP equations for the singlet and non-singlet structure functions
analytically at LO, NLO and NNLO by using a Taylor series expansion valid at small-
r and obtain the @? and z-evolutions of deuteron structure function, F¢(x,Q?),
along with the Q*-evolution of proton structure function, F¥(z,Q?), upto NNLO.
We compare our predictions with NMC, E665 and H1 experimental data as well
as with the NNPDF parametrizations. The results obtained are in agreement with
perturbative QCD fits at small-z and can explain the general trend of data in a decent
manner. Moreover the inclusion of NNLO contributions provide excellent consistency
with the experimental data and parametrizations.

In chapter 4, we find analytical expressions for gluon distribution function,
G(z,Q?%), at LO, NLO and NNLO by solving the corresponding DGLAP evolution
equations using a Taylor series expansion as in chapter 3 and evaluate the Q% and

z-evolutions of G(z,Q?%) upto NNLO. We note that the NNLO approximation has
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appreciable contribution in the particular range of x and Q% under study. The ob-
tained results can be described within the framework of perturbative QCD. We check
the compatibility of our predicted gluon distributions and find satisfactory agreement
with the GRV1998, MRST2004, MSTW2008 and JR09 global analysis as well as with
the BDM model.

Although, the linear DGLAP equations can delineate the available experimental
data, as far as HERA data are concerned, in a decent manner covering a large do-
main of z and Q? with appropriate parameterizations, however, in the very small-z
region, due to the nonlinear corrections of gluon-gluon interactions, the conventional
linear DGLAP evolution equation is expected to breakdown. We, therefore, turn our
attention to the gluon recombination processes in chapter 5 and estimate the impor-
tance of the corrections of these higher order QCD effects, which eventually saturate
the growth of the gluon densities in the framework of nonlinear GLR-MQ equation.
We investigate the effect of shadowing corrections on the small-x and moderate Q>
behavior of gluon distribution by solving the nonlinear GLR-MQ equation in leading
twist approximation incorporating the well known Regge ansatz in the kinematic
region 107 < 2 < 1072 and 1 < Q? < 30 GeV2. We also derive the condition of
compatibility of the LO solution of linear DGLAP equation for gluon with the DLA
solution in a finite range of  and Q2. The predicted gluon distributions from GLR-
MQ equation are compared with the GRV1998, GJR2008, MRST2001, MSTW2008,
NNPDF, HERAPDFO0.1 and CT10 parametrizations as well as with the H1 data.
Our predictions are also compared with the EHKQS and BZ models respectively.
We further analyse the ratio of the prediction of nonlinear GLR-MQ equation to
that of linear DGLAP equation for G(z, Q?) and observe that the ratio decreases as
x grows smaller signifying that the effect of nonlinearity increases towards small-z.
It is enticing to note that, the rapid growth of gluon densities towards small-z is
tamed by the gluon recombination processes. Results also indicate significant effect
of shadowing corrections at R = 2 GeV~! when the gluons are concentrated at the
hot spots.

In chapter 6, we solve the nonlinear GLR-MQ equation for sea quark distribu-
tion in leading twist approximation incorporating the well known Regge like ansatz

and investigate the effect of shadowing corrections to the small-z and Q? behaviour
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of singlet structure function F3(x,Q?) in the kinematic region 107% < z < 107!
and 0.6 < Q% < 30 GeV2. Our predictions are compared with NMC and E665 data
as well as with the results of NNPDF collaboration. Results show that FJ(z,Q?)
increases with increasing Q% and decreasing z, but this behaviour is slowed down
towards small-z with the inclusion of the nonlinear terms. The logarithmic deriva-
tive, of singlet structure function with shadowing corrections is also calculated and
compared with the H1 data. The behaviour of OFy (x, Q%)/0In Q? is seen to be tamed
due to gluon recombination at small-z.

Chapter 7 concerns with the comparative analysis of the GLR-MQ equation
with the more precise and more complicated BK equation as well as with the MD-
DGLAP equation. It is interesting to note that the predictions of nonlinear gluon
density obtained from the GLR-MQ equation are in very good agreement with the
results of the BK equation. Our predictions are also observed to be almost compa-
rable with those of the MD-DGLAP equation, however a flatter gluon distribution is
observed in our predictions due to significant shadowing corrections at small-z.

Finally, the conclusions and the future outlooks of this work are drawn in chapter
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Abstract

Structure functions in lepton-nucleon deep inelastic scattering (DIS) are the
well-established observables exploring Quantum Chromodynamics (QCD), the theory
of the strong interaction, and they provide exclusive information about the deep
structure of hadrons. Predominantly, the structure functions form the foundation
of our knowledge of the parton densities, which are indispensable for analysis of
hard scattering processes at proton-(anti-)proton colliders like the TEVATRON and
the Large Hadron Collider (LHC). Parton distributions are the vital ingredients for
most of the theoretical calculations at hadron colliders and they provide the number
densities of the colliding partons (quarks and gluons) inside their parent hadrons at
a given momentum fraction x, where z is the Bjorken scaling variable, and scale Q2.

The small-x behavior of parton densities is one of the challenging issues of QCD.
The chief and most salient phenomena in the region of small-z which determine
the physical picture of the parton evolution are the increase of the parton density
at x — 0, the growth of the mean transverse momentum of a parton inside the
parton cascade at small-z, and the saturation of the parton density. Therefore the
determination of parton densities or to a great degree the gluon densities in the small-
x region is particularly important because the gluon distribution function controls
the physics at high energy or small-z in DIS. Moreover, precise knowledge of gluon
distribution functions at small-x is useful to estimate backgrounds and explore new
physics at the LHC. That being so, the dynamics of the the high density QCD, the
regime of large gluon densities, is one of the present-day highly demanding undecided
issues in the area of high energy or small-x physics.

The standard and the key tools for theoretical investigation of DIS structure func-
tions are the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equa-
tions. These equations can delineate the available experimental data in a decent
manner considering a large domain of z and Q? with appropriate parameterizations.
Consequently, the solutions of the DGLAP evolution equations have been reported
in recent years with significant phenomenological success. The DGLAP evolution
equation at the twist-2 level prognosticates a sharp growth of the gluon densities as
x grows smaller which is clearly observed in the DIS experiments at HERA as well.

In consequence, this generates cross sections which in the high-energy or small-z
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limit fail to comply with the Froissart bound. Subsequently, the growing number of
gluon densities, so as to approach small-x, demands a formulation of the QCD at
high partonic density incorporating the unitarity corrections in a suitable manner.

Gluon recombination is usually assumed to be accountable for the unitarization
of the cross section at high energies or a possible saturation of the gluon density at
small-z. At small-z the likelihood of interaction between two gluons can no longer
be neglected and sooner or later, the individual gluons necessarily start to overlap
or shadow each other. Consequently, nonlinear phenomena are expected to arise
which eventually bring about a taming of the maximum gluon density per unit of
phase-space. Moreover, the pioneering finding of the geometrical scaling in HERA
data as well as the existence of geometrical scaling in the production of inclusive jets
in the LHC data provides strong experimental evidences of the saturation effects.
The multiple gluon interactions towards small-z induce nonlinear corrections in the
conventional linear DGLAP equation and accordingly the corrections of the higher
order QCD effects have become the focus of in-depth studies in the last few years.

Gribov, Levin and Ryskin, at the onset, investigated the shadowing corrections
of gluon recombination to the parton distributions. Following that Mueller and Qiu
completed the equation numerically using a perturbative calculation of the recombi-
nation probabilities in the DLLA, and also formulated the equation for the change
of gluons to sea-quarks. This is a great achievement as it authorises the GLR-MQ
equation to be applied phenomenologically and thus provides the connection to ex-
periments. This equation predicts a critical line separating the perturbative regime
from the saturation regime, and it is legitimate just in the edge of this critical line.
The study of the GLR-MQ equation is extremely important for the interpretation
of the non-linear effects of gluon-gluon recombination due to high gluon density
at sufficiently small-z as well as for the determination of the saturation momen-
tum. Moreover, the Balitsky-Kovchegov (BK), Modified-DGLAP (MD-DGLAP),
Modified-Balitsky-Fadin-Kuraev-Lipatov (MD-BFKL) and Jalilian-Marian-Tancu-
McLerran-Weigert-Leonidov-Kovner  (JIMWLK) are some of the widely studied
nonlinear evolution equations relevant at high gluon densities.

The work presented in this thesis is focused on the study of the small-z and Q?

behaviours of the singlet and nonsinglet structure functions and gluon distribution
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functions in the context of linear DGLAP and nonlinear GLR-MQ evolution. The
first part of this thesis is concerned with the study of the linear DGLAP equation upto
next-to-next-to-leading order (NNLO); the second part is more specifically dedicated
to the higher order QCD corrections in small-z physics where we address the issue
of gluon-gluon recombination or shadowing corrections at very small values of z. In
this work, we intend to check whether at very small-x the DGLAP equations can be
ruled out in favour of the GLR-MQ equations which would mean evidence for gluon
recombination. The structure of the thesis is organized as follows:

Chapter 1 is a general introduction of the elementary particles with a brief
account of QCD, DIS, structure functions and parton distribution functions (PDFs).
The importance of small-x physics and gluon shadowing are also concisely described
here. Various high energy experiments as well as parametrization groups extracting
PDF's from global data analyses are also briefly summarized.

Chapter 2 is an overview of the different QCD linear and nonlinear evolution
equations with a more or less detailed description of the DGLAP and the GLR-MQ
equations. The numerical as well as analytical solutions of the evolution equations,
widely available in the literature are also outlined very briefly in this chapter.

It is always very alluring to explore the prospect of obtaining analytical solutions
of DGLAP equations somewhat in the restricted domain of small-x. In chapter 3,
we solve the DGLAP equations for the singlet and non-singlet structure functions
analytically at LO, NLO and NNLO by using a Taylor series expansion valid at small-
r and obtain the @? and z-evolutions of deuteron structure function, F¢(x,Q?),
along with the Q*-evolution of proton structure function, F¥(z,Q?), upto NNLO.
We compare our predictions with NMC, E665 and H1 experimental data as well
as with the NNPDF parametrizations. The results obtained are in agreement with
perturbative QCD fits at small-z and can explain the general trend of data in a decent
manner. Moreover the inclusion of NNLO contributions provide excellent consistency
with the experimental data and parametrizations.

In chapter 4, we find analytical expressions for gluon distribution function,
G(z,Q?%), at LO, NLO and NNLO by solving the corresponding DGLAP evolution
equations using a Taylor series expansion as in chapter 3 and evaluate the Q% and

z-evolutions of G(z,Q?%) upto NNLO. We note that the NNLO approximation has
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appreciable contribution in the particular range of x and Q% under study. The ob-
tained results can be described within the framework of perturbative QCD. We check
the compatibility of our predicted gluon distributions and find satisfactory agreement
with the GRV1998, MRST2004, MSTW2008 and JR09 global analysis as well as with
the BDM model.

Although, the linear DGLAP equations can delineate the available experimental
data, as far as HERA data are concerned, in a decent manner covering a large do-
main of z and Q? with appropriate parameterizations, however, in the very small-z
region, due to the nonlinear corrections of gluon-gluon interactions, the conventional
linear DGLAP evolution equation is expected to breakdown. We, therefore, turn our
attention to the gluon recombination processes in chapter 5 and estimate the impor-
tance of the corrections of these higher order QCD effects, which eventually saturate
the growth of the gluon densities in the framework of nonlinear GLR-MQ equation.
We investigate the effect of shadowing corrections on the small-x and moderate Q>
behavior of gluon distribution by solving the nonlinear GLR-MQ equation in leading
twist approximation incorporating the well known Regge ansatz in the kinematic
region 107 < 2 < 1072 and 1 < Q? < 30 GeV2. We also derive the condition of
compatibility of the LO solution of linear DGLAP equation for gluon with the DLA
solution in a finite range of  and Q2. The predicted gluon distributions from GLR-
MQ equation are compared with the GRV1998, GJR2008, MRST2001, MSTW2008,
NNPDF, HERAPDFO0.1 and CT10 parametrizations as well as with the H1 data.
Our predictions are also compared with the EHKQS and BZ models respectively.
We further analyse the ratio of the prediction of nonlinear GLR-MQ equation to
that of linear DGLAP equation for G(z, Q?) and observe that the ratio decreases as
x grows smaller signifying that the effect of nonlinearity increases towards small-z.
It is enticing to note that, the rapid growth of gluon densities towards small-z is
tamed by the gluon recombination processes. Results also indicate significant effect
of shadowing corrections at R = 2 GeV~! when the gluons are concentrated at the
hot spots.

In chapter 6, we solve the nonlinear GLR-MQ equation for sea quark distribu-
tion in leading twist approximation incorporating the well known Regge like ansatz

and investigate the effect of shadowing corrections to the small-z and Q? behaviour



of singlet structure function F3(x,Q?) in the kinematic region 107% < z < 107!
and 0.6 < Q% < 30 GeV2. Our predictions are compared with NMC and E665 data
as well as with the results of NNPDF collaboration. Results show that FJ(z,Q?)
increases with increasing Q% and decreasing z, but this behaviour is slowed down
towards small-z with the inclusion of the nonlinear terms. The logarithmic deriva-
tive, of singlet structure function with shadowing corrections is also calculated and
compared with the H1 data. The behaviour of OFy (x, Q%)/0In Q? is seen to be tamed
due to gluon recombination at small-z.

Chapter 7 concerns with the comparative analysis of the GLR-MQ equation
with the more precise and more complicated BK equation as well as with the MD-
DGLAP equation. It is interesting to note that the predictions of nonlinear gluon
density obtained from the GLR-MQ equation are in very good agreement with the
results of the BK equation. Our predictions are also observed to be almost compa-
rable with those of the MD-DGLAP equation, however a flatter gluon distribution is
observed in our predictions due to significant shadowing corrections at small-z.

Finally, the conclusions and the future outlooks of this work are drawn in chapter

vi
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Chapter 1

Introduction

1.1 Fundamental structure of matter

The fundamental research in physics evolves the understanding of mankind at a great
rate in the last century. The everlasting hunt to determine what are we made of or
what is the fundamental structure of matter has led to a broadly adopted classification
of fundamental particles. In the course of time, physicists become triumphant in
portraying matter to be made up of some smaller entities. The origin of today’s
world is supposed to be the so called big bang, during which time, space, matter
and energy emerged as reality. In ancient time it was believed that there were
four set of classical elements: earth, water, air, and fire; sometimes including a
fifth element called aether in ancient Greece and akasha in India [1]. The idea
of the five elements established a background of analysis in both Hinduism and
Buddhism. This theory of classical elements prevailed to the seventeenth century
until the beginning of the modern chemistry when the great chemist Robert Boyle
gave the new definition for an element. About a hundred years later the British
chemist John Dalton proposed the modern atomic theory in 1809 and gave a list
of elements that is a clear outrider to today’s tabulation of the hundred and more
elements. In 1897, the first subatomic particle called the electron was discovered by
Joseph John Thomson. The discovery of proton by Ernest Rutherford in 1911 in
his famous scattering experiment superseded Thomsons plum pudding model of the
atom. Later in 1932 Rutherford’s student James Chadwick discovered the neutron

following which the detailed picture of atomic nuclei was undocked.



Figure 1.1: The structure within the atom

By the 1960s more and more new particles like proton and neutron, called
hadrons, were discovered and it was justifiable to admit that the strongly bound
hadrons were not truly fundamental particles, but were composed of some further
anonymous elementary entities. In 1964 Murray Gell-mann and George Zweig in-
dependently proposed that these entities were a family of spin 1/2 particles which
they named quarks [2, 4] and according to their theory each hadron was consisted
of either three quarks, known as baryons, or a quark and anti-quark pair, known as
mesons. Then, in 1968, the high energy electron-proton scattering experiments at
the Stanford Linear Accelerator Center (SLAC) revealed the existence of hard scat-
tering centers inside the proton, thus confirming, undoubtedly, that it surely was a
composite particle. Richard Feynman in 1969 proposed the parton model in which
the hadrons were supposed to be composite objects of some more fundamental par-
ticles, the so-called partons [5]. Later it was identified that these partons represent
the same objects nowadays usually referred to as ‘quarks’ and ‘gluons’. The main
difference between Rutherford’s experiment and the electron-proton scattering ex-
periments comes from the fact that, the dimension of an atom is typically 107!° m
whereas that of a proton is about 1 fm = 107" m (Figure 1.1). From the uncer-
tainty principle AE.Axz > he &~ 0.2 GeVfm, it is clear that the smaller the distance
to be probed the higher must be the beam energy. The probing inside the proton
(r << 1 fm) requires a beam energy F >> 1 GeV. The requirement of this high
energy acceleration technique is responsible for more than 50 years gap between the
two experiments.

The quark model possessed various puzzling features regardless of its achievement

that included the probable absence of isolated quarks as well as two quark (qq) or



four quark combinations (qqqq). Over the past decade, however, particle-accelerator
activities all over the world have assembled some indication that a few different kinds
of four-quark particles might exist. Very recently using the most powerful particle
collider in the world, the Large Hadron Collider (LHC), a research group at CERN
has produced a particle made of four quarks go by the name Z(4430)~ [6]. They
exist only in exceedingly high-energy ambiance for an extremely short period of time.
Moreover the presence of pentaquark states was announced by various experiments
in the middle of the year 2000, but subsequent experiments and reanalysis of the data
revealed them to be statistical effects instead of true resonances. A further problem
was associated with the AT+ baryon as the quantum numbers of this particle turned
out to violate the Pauli exclusion principle. These enigmas were sooner or later
resolved by the addition of another degree of freedom referred to as color and to
that end along with all other quantum numbers quarks also carry a color charge.
Nevertheless due to color confinement all particles observed in nature must be color
singlet, and so the only permissible quark combinations appear to be simply the three
quarks or three antiquarks as well as a quark and an antiquark compositions.

Our current understanding of the basic building blocks of matter and how do they
interact with each other can be explained by a theory, known as the Standard Model
(SM) [6-9]. Over time and through many experiments, physicists have successfully
developed the SM into a well-tested theory of particle physics that marks a milestone
in our present knowledge on what the world is and what holds it together. It was
flourished during the latter half of the 20th century, as a joint endeavor of scientists
throughout the world. The present formulation was established in the middle of
1970s consequent to the experimental evidence for the existence of quarks. Ever
since the discoveries of the W and Z bosons in 1981 [10], the top quark in 1995 [11],
the tau neutrino in 2000 [12], and more recently the Higgs boson with spin 0, the
first elementary scalar particle ever discovered in nature, in 2012 [13] at the worlds
largest particle accelerator, the CERN’s Large Hadron Collider (LHC) have added
further credibility to the already established SM. According to this theory, the most
fundamental building blocks of all matter in the universe are quarks and leptons along
with their antiparticles. Nonetheless, the experiments colliding beam of protons at

the highest LHC energies will be awaiting to see whether quarks themselves contain



more fundamental constituents. Each of these particles comes in six distinct types
and their interactions are mediated by the force carrier particles. The particles that
make up ordinary matter i.e. leptons and quarks are fermions, whereas the force
carriers are bosons. The six quarks form three doublets of the electroweak symmetry
group SU(2).

The SM organizes the elementary particles into three generations, including
two quarks and two leptons in each generation as shown in Figure 1.2. Particles
in generation I are less massive than those in generation II, which are less massive
than those in generation III. The up quark, the down quark, the electron and the
electron neutrino are placed in the first generation; the second generation includes
the charm quark, the strange quarks, the muon and the muon neutrino; while the
third generation consists of the top and bottom quarks and the tau and tau neutrino.
The ordinary matter, for example the stable atoms made of electrons, protons, and
neutrons with effectively infinite life spans, is exclusively made up of first-generation
particles. Being heavier higher generations particles quickly disintegrate into first-
generation particles, and thus are not usually experienced. The hadron with longest
life time containing a second generation quark is the lambda particle, made of an
up, down, and strange quark. It has a mean lifetime less than a billionth of a
second, which is comparatively long-lasting for an unstable hadron. Particles of
third generation are divided according to their behavior. The bottom quark does not
differ much from a strange quark. On the other hand the top quark is very short-lived
and breaks down before anything realizes its existence. They can only be recognized
from their decay products.

There are four fundamental forces in the universe: the strong force, the elec-
tromagnetic force, the weak force and the gravitational force. The SM includes the
electromagnetic, strong and weak forces and all their carrier particles, and explains
well how these forces act on all of the matter particles. However, the most familiar
force in our everyday lives, gravity, is not a part of the SM. The weak and strong forces
are effective only over a very short range and dominate only at the level of subatomic
particles whereas the electromagnetic force acts over an infinite range. Gravity is
the weakest of the four fundamental forces and appears to have infinite range unlike

the strong or weak force. It is speculated that the gravitational force is mediated
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Figure 1.2: Standard model of elementary particles

by a massless spin-2 particle called the graviton, yet to be discovered. The LHC ex-
periments could give indication for extra dimensions apart from the four dimensions
we experience and allow the study of higher-dimensional gravitons. Nevertheless,
some theories predict that high-energy experiments at LHC could create gravitons
escaping into the extra dimensions. Quantum electrodynamics (QED), a quantum
field theory, mathematically describes all phenomena involving electrically charged
particles, interacting by means of exchange of photon, the massless, uncharged, spin
1 gauge boson. The weak interaction is accountable for both the radioactive de-
cay and nuclear fusion of subatomic particles. The weak interaction affects all the
fermions of the SM, as well as the Higgs boson and is mediated by two massive gauge
bosons: the charged W+ or the neutral Z°, also known as intermediate vector bosons.
Neutrinos are the only particles to feel just one of the fundamental forces, the weak
interaction, which is what makes them so hard to investigate. The weak interaction
is best understood in terms of Glashow, Salam, and Weinbergs electro-weak theory
(EWT) which unifies both the weak and electromagnetic forces into one at higher
energies [7-9)].

The strong force, as the name implies, is the strongest of all four fundamental



interactions. Quarks and gluons are the only fundamental particles that carry color
charge, and hence participate in strong interactions. The quantum field theory that
describes strong interactions is named as Quantum Chromodynamics (QCD) for this
property of color. The strong interactions among the quarks are exchanged by glu-
ons, the massless gauge boson with spin 1, like photons. However, unlike photons,
which are not electrically charged and therefore do not feel the electromagnetic force,
gluons do take part in strong interaction and can interact among themselves. But
the behavior of this crucial, prevalent binding force is exceptionally difficult to under-
stand. A new electron-ion collider (EIC) [14] could successfully unfold the enigmas
of the glue. Within short range about 107! metre, approximately the diameter of
a proton or a neutron, the strong force becomes stronger with distance, unlike the
other forces. However, the strong force between quarks becomes weaker at short
distances. That is Quarks behave independently when they are close, but they can
not be pulled apart. Due to this property, known as the asymptotic freedom [15-17],
the various interactions between the quarks can possibly be neglected when probing
the hadron with a high energy particle. Consequently free quarks are not observed
in nature but rather they are permanently confined within colorless hadrons.

So far so good, but there are many shortcomings in the SM as it fails to explain
the complete picture, such as the strong CP problem, neutrino oscillations, matter-
antimatter asymmetry, and the dark matter and dark energy etc. Another problem
with SM is that it incorporates only three out of the four fundamental forces, omitting
gravity. The model is also unsuccessful in explaining why gravity is so much weaker
than the electromagnetic or strong forces. Moreover it cannot provide justification
for the three generations of quarks and leptons with such a diverse mass scale. The
hierarchy problem is also associated with the Higgs boson mass. Last but not the
least, the SM only describes visible matter, but it cannot explain the nature of the
dark matter and dark energy. Many attempts in the theoretical and experimental
physics are going on to extend the SM through supersymmetry or to discard it in
favor of new theories like Minimal Supersymmetric Standard Model (MSSM), string
theory and extra dimensions. Regardless of the deficiencies, the SM is the most

successful theory of particle physics to date.



1.2 Quantum chromodynamics

QCD is the theory that describes the dynamics of the strong interactions between
quarks and gluons. Its phenomenological utilizations to a large extent, concerning
which people go on learning, are still very interesting topics of active research. QCD
is a special case of a non-abelian Yang-Mills theory with the gauge group SU(3), the
Special Unitary group in 3 dimensions [18]. This gauge group involves the additional
degree of freedom known as color, completely unrelated to the everyday familiar
phenomenon of color, which plays an essential part in the dynamics of the theory.
The concept of color first originated from the discovery of the A™* baryon composed
of three strange quarks with parallel spins when its quantum numbers seemed to
violate the Pauli exclusion principle. The idea of color as the origin of a strong field
was evolved into the theory of QCD in the 1970s by the physicists Harald Fritzsch and
Heinrich Leutwyler, together with Murray Gell-Mann [19]. According to QCD quarks
carry a color charge of red (R), green (G) or blue (B) and antiquarks have a color
charge of antired (cyan), antigreen (megenta) and antiblue (yellow) i.e. R, G, B [18].
Especially, it is of great importance that the gauge bosons of QCD, the gluons, carry
color as well and therefore can interact among themselves. In this way apart from the
well known fermion-boson vertex, the QCD Lagrangian further involves three-gluon
and four-gluon vertices. Figure 1.3 shows the schematic representation of the basic
QCD Feynman diagrams. Due to the specific characteristic of gluon self coupling
in QCD it is feasible to have a convincing theory including only the gauge fields
without any fermion, and so in some situations the contributions arising from only the
gauge part are likely to be separated from the fermionic contributions. Moreover the
existence of jets in QCD is subjected to these gluon-gluon interactions. Gluons have a
combination of a color and an anticolor of a different kind in a superposition of states
which are equivalent to the Gell-Mann matrices. Unlike the single photon of QED or
the three W+ and Z° bosons of the weak interaction, there are evidently eight kinds
of gluons in QCD listed as follows [18]: RG, RB, GR, GB, BR, BG, (RR—GG)/V2
and (RR+GG—2BB)/v/6. In other words, the gluons belong to a SU(3) color octet.
The remaining combination, the SU(3) color singlet, (RR + GG + BB)/v/3 does not
take part in the interaction.

Two outstanding features of QCD are confinement and asymptotic freedom [15-



Figure 1.3: Basic QCD Feynmann diagrams

17]. The perturbative analysis of QCD is well grounded based on the fact that the
theory is asymptotically free, that is, at short distance the quarks and gluons behave
as quasi-free particles whereas at longer distance the force of attraction between
quarks and gluons becomes stronger and stronger. Therefore no free color charge
has ever been observed in nature, rather they are confined within the experimentally
observed color neutral composite states of hadrons. The coupling constant which is a
measure of the effectiveness of the strong force that holds quarks and gluons together
into composite particles introduces a dependence on the absolute scale, implying
more radiation at low scales than at high ones and it is usually referred to as running
coupling constant [20]. The running is logarithmic with energy, and is governed by

the so-called beta function,

dag N
where
Blag = 20@ _ Boo B s B a9 (1.2)

Oln (Q?)  4r® 16727 Gan?

with one-loop, two-loop and three-loop coefficients
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B = EN2 = 3 NNy = 20Ny =102 — =Ny,
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By = ﬂN3 27Ty — —5 O NTy — —= ——NZTy L4 CFTf o ——N.T7}
2857 6673 325
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Here Ny is the number of active fermion flavors and N, is the number of colors. We

use Ny =4, N. =3, Ty = —Nf and Cp = CF being the color factor associated

2N’
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with the color group SU(3). Numerically, the value of the strong coupling is usually
specified by two parameters, the renormalization scale () and the corresponding
value of the coupling at that point, from which we can obtain its value at any other

scale from Eq.1.1,

2y as(,uQ)
Q) = o ) Rm(QY) + O (13)

These two parameters can be replaced for a single parameter A so that the running

coupling can be expressed as

1
~ Goln(Q?/A2)

The coupling would clearly diverge at the scale A, called the Landau pole, which

as(Q?) (1.4)

specifies the energy scale at which the perturbative coupling would nominally become
infinite. Its value is experimentally found to be A ~ 200 GeV. This implies that
the perturbation calculations are allowed only at energy scales of or higher than 1
GeV. Moreover, the structure of hadrons cannot be determined applying perturbation
theory as a result of confinement. Alternatively, the quark and gluon content of
hadrons are computed by parametrizations of the distribution functions obtained
from high energy scattering experiments. Being universal these distribution functions

are very useful to make prognostications for other experiments.

1.3 Deep inelastic scattering and structure func-
tions

Deep inelastic scattering (DIS) [21, 22] has long been an excellent tool of exploring
the inner structure of a hadron, say proton. DIS provides the first conceivable in-
dication of the reality of quarks which so far had been considered by many to be
merely a mathematical fact. In lepton-nucleon DIS for example, electrons and pro-
tons are accelerated to very high energies and then allowed them to collide. The
four-momentum squared (Q?) of the exchanged virtual photon in this process deter-
mines the resolving power. The spatial resolution with which structure of the proton
is probed is roughly the De Broglie wavelength of the virtual photon A ~ 1/Q. At
large %, the wavelength associated with the electron are much smaller than the size

of a proton, thereby resolving smaller distances within the proton, i.e. a single quark



inside the proton scatters off the photon. Thus DIS assist us to extract information
on the the parton dynamics and the momentum distributions of quarks and gluons
inside the proton to a great extent. Over and above that DIS is solicitous to the
discovery and interpretation of new physics which could be observed in extreme con-
ditions of high parton densities at very small Bjorken-x. The first DIS experiments
were performed at SLAC in California in 1968 following which a lot of other DIS
experiments exploring the proton structure have been carried out until 2007 with the
high energy HERA electron-proton collider at DESY in Hamburg. Most recently a
new colliding beam facility, the Large Hadron Electron Collider (LHeC) [23], is pro-
posed at CERN for lepton-nucleon scattering which will produce an unprecedented
kinematic domain for lepton-nucleon scattering with the centre of mass energy of 1.3
TeV being four times larger than the previous highest attainable energy at HERA.

In lepton-nucleon neutral-current (NC) DIS, a neutral boson, i.e. a photon or a Z°,
L kr _ (Erp'l;r)
Lepton k= (E.k) Hy v
e

™ =0 9

- w
Nucleon P =(E,,p)

- ___Invariant mass
\

Figure 1.4: Schematic representation of DIS

is exchanged between the electron (or positron) and the quark, in contrast to the
charged-current (CC) DIS where a charged W= boson is exchanged when a neutrino
interacts with a nucleon. The resulting process of DIS is inclusive when this hadronic

final state remains undetected, or semi-inclusive when apart from the lepton some
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produced hadrons are detected or exclusive when all final products are identified.
The basic process of NC DIS where the lepton with four momentum k interacts with
the proton with four momentum p through the exchange of a virtual photon whose
momentum is ¢ is depicted in Figurel.4. The cross section of the process can be
described by the following Lorentz invariant kinematic variables [18]:

Exchanged four momentum squared or virtuality of photon:
Q*=—¢* = (k—F);

Square of the invariant mass of the final state hadronic jet:
W? = (p+q)* = M+ 2p.q + ¢*

Center of mass energy squared:
s=(p+k)%

Energy transfer from the lepton to the proton:

vV =Dpq;

Bjorken scaling variable representing the fracton of proton’s four momentum carried

by a parton:

= “ and
X 2Van

Fraction of energy lost by the electron in the proton rest frame (inelasticity):
y = ]% —1-FE/E.

Here k denotes the four momentum of the incoming electron and &’ the four momen-
tum of the scattered electron, E and E’ are the initial and final electron energies
in the rest frame of the target proton and M is the mass of the proton. Q2 and
v are the two independent variables in DIS. The dimensionless x is related to the
variables y, Q2 and s via the approximate relation Q? = xys. Since the proton is the
lightest baryon, therefore W > M. It is necessary to measure F, £’ and the scatter-
ing angle # in the laboratory reference frame to determine the full kinematics. The
aforementioned kinematic variables have a finite range of allowed values: 0 < z < 1;

0<y<1;0<@Q?<sand M <W < /s.
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The scattering cross section can be splitted into a leptonic part describing the
emission of the virtual photon by the lepton and a hadronic part describing the

interaction of the virtual photon with the proton,
do ~ L, WH". (1.5)

The most general form of the tensor W, can be constructed out of g"” and indepen-
dent momenta p and ¢ as

1V 1 1
W = (g - %)m(az, Q)+ (0 + 5-0) (1 + o0 ) Wal@, QD). (16)

The proton structure function is characterised by two measurable functions W, and

W5 or equivalently the so-called structure functions F} and Fj:
Fl(ZE, QQ) = Wl(l’, Q2)7

Fy(x,Q%) = vWy(x, Q). (1.7)

Structure functions are the established observables in DIS providing unique in-
formation about the deep structure of hadrons as well as their interactions. They
allow perturbative QCD to be precisely tested and and to a great degree, they form
the backbone of our understanding concerning the parton densities which are indis-
pensable to investigate the hard scattering processes. In terms of F} and F, the
unpolarized DIS cross section can be expressed as

d*o Amad(Q?)
dxd@® Q4

where the first term F; corresponds to the absorption of a transversely polarized

oy Fil, Q1) + (1= y) Ba(e,Q%)|. (18)

photon, while the longitudinally polarized component of the cross section is given
by Fr(x, Q%) = Fy(z,Q?) — 2xFi(z,@Q*). Further in the limit Q* — oo and fixed z,
any strong interactions among the partons can be neglected and the proton structure
functions can be estimated from an incoherent sum of the partons. Then F; and
F, become independent of @Q? and are functions of the dimensionless kinematical
variable z only. This is known as the so-called Bjorken scaling [24]. The well-known
SLAC-MIT experiment on DIS observed that the measured DIS cross section exhibit
approximate scaling behavior [25]. In the Bjorken limit the quarks in the proton

can absorb only the transversely polarized photons, whereas the the longitudinally
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polarized photons can not be absorbed due to halicity conservation and therefore the
longitudinal part of the cross section turns out to vanish. In that case F} and F, are
related through the famous Callan-Gross relation 2z F)(z) = Fy(z) which is a direct
consequence of the existence of point like quarks with spin 1/2 within proton.

QCD extends the naive quark parton model by allowing interactions between
the partons via the exchange of gluons. The processes that generate the parton
interactions to first order in «; are gluon radiation (¢ — qg), gluon splitting (g — gg)
and quark pair production (g — ¢q). In DIS, at smaller values of Q? the photon can
resolve only the valence quarks with relatively large values of x with a finite resolution
proportional to 1/Q. On the other hand, at higher values of Q? the photon, having
a smaller wavelength, can resolve the quarks at smaller distance scales. Thus in the
high Q? region gluon radiation leads to the creation of quark-antiquark pairs with
relatively small values of x. The parton densities will thus increase with increasing
Q?. Analysis of the cross section shows that this increase mainly occurs at small-
x. Therefore, QCD persuades the requirement of an additional scale Q? for the
representation of the parton densities. Accordingly beyond the bounds of parton
model approximation the PDFs and therefore the structure functions come to have
a % dependence through higher order corrections in a,(Q?) resulting in sizeable
scaling violations [26]. The HERA experiments, H1 and ZEUS [27-30] measured
the proton structure function F, extensively and perfectly established its scaling
violations anticipated by QCD over a wide kinematic region. The predicted scale
dependence further enables the factual estimation of a,(Q?) as well as provides an

explicit verification of QCD.

1.4 Parton distribution functions

Perturbative QCD or any other cross sections involving initial-state hadrons can
not provide first-hand appraisal of structure functions owing to the fact that the
initial-state particles in the experiments of different high energy collider viz. HERA,
Tevatron as well as LHC are not quarks and gluons, but the composite hadrons.
Therefore, it is a prerequisite to know the momentum distributions of the partons
(quarks and gluons) inside the colliding hadrons in order to correlate theoretical QCD

calculations with experimental data. To zeroth order in «y, the structure functions
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are precisely measured in respect of parton distribution functions (PDFs). In the
parton model approximation, the proton is composed of a number of free constituents,
each of which carry a fraction = of the protons total momentum. In this framework
the structure functions are usually identified by the summation over the incoherent
sum of the parton’s momentum distributions ¢;(z) for each quark flavor ¢,

Fy(x) =2zF(x) = Ze?xqi(x), (1.9)

i

where the sum implies summation over all flavours of quarks and antiquarks. e; is
the electric charge of a parton of type i. The functions ¢;(x) are known as the PDF's
describing the probability of finding a parton of flavor ¢ inside the proton with a
longitudinal momentum fraction z at resolution scale Q2. The proton consists of
three valence quark flavors uud along with the many quark-antiquark flavors ua, dd,
ss and so on, known as the ‘sea’ quarks. As a first approximation, we may assume
the three lightest quark flavors u,d and s, having roughly the same fequency and
momentum distribution, to occur in the sea and neglect the possibility of sizeable
presence of heavier quark flavors. To recover the quantum numbers of proton, the

net numbers of quarks need to satisfy the following sum rule:

/O (u(z) — G(x))dz = 2;/0 (d(z) — d(x))dz = 1;/0 (s(z) — 5(x))dz = 0, (1.10)

resulting charge=-+1, baryon no.=1, strangeness=0. Another important sum rule is
the momentum sum rule which demands that the sum of the momenta of all partons

must be equal to the momentum of the proton, i.e.

Z/Ol xq;(x)dxr = 1. (1.11)

The PDFs, being non-perturbative, cannot be fully obtained by perturbative
QCD. These are rather derived by fitting observables to experimental data. Never-
theless, within QCD one can study the rate of change of the PDF's with the resolution
scale Q% and it is controlled by the QCD evolution equations for parton densities. As
mentioned earlier, QCD predicts a dependence of the structure function on the scale
Q? induced by corrections in a,(Q?) arises from diagrams with real gluon emission.
So QCD modifies the F; structure function as

Fy(z,Q%) =) _ela(q(z. Q). (1.12)

(2
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Thus the structure function as well as the parton distributions now have a Q2 de-
pendence resulting in scaling violation. The general strategy to determine PDFs is
comprised of parametrizing the dependence of the parton distributions on the vari-
able z at some small value of Q? = Q2 either by constructing a rough presumption
on their analytical forms or by employing the neural-net technology, and evolving
these input distributions to high (Q? via the evolution equations. Be that as it may,
there is still not a particular set of PDFs commonly acknowledged. Presently the
parametrizations of PDFs are accomplished by several groups, mainly the GRV/GJR
(31, 32], MRST/MSTW [33-35], NNPDF [36, 37], HERAPDF [38, 39] and CTEQ [40,
41]. We will further discuss these PDFs groups in more detail in section 1.6.2 of this
chapter. These groups differ mainly in the input data, the methods of parametriza-
tions, the treatment of heavy quarks and the value of the coupling constant oy as
well the methods of analysis. To comprehend the common features and ambiguity
as well as the discrepancies between the predictions of the PDF groups an active

association has been set up at CERN in recent times.

1.5 Gluon shadowing at small-x

One of the present most fascinating issues of QCD is the growth of hadronic cross
sections at high energies or in other words at small-z. At very high energies hadronic
interactions have been manifested to be impelled by states with high partonic densi-
ties and accordingly many phenomenological and theoretical efforts have been made
to explain it. A vital finding of the past years is the prepotent role of gluons with
very small fractional momentum x in nucleons when observed by a high energy probe.
Thus increase of energy causes a rapid growth of the gluon density in the limit z — 0
eventually leading to the saturation effects [42-44]. That being so, the study of
lepton-nucleon DIS or most importantly the determination of the gluon density in
the region of small-x is considerably relevant as it could be a measure of perturba-
tive QCD or a probe of novel effects and further because it is the primary factor
in numerous other analysis of different high energy hadronic processes. There have
been enormous phenomenological and experimental activities for decades regarding
the interpretation of small-z QCD from DIS at HERA to heavy ions collisions at

RHIC. Moreover the study of this kinematic regime is of uttermost importance to
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compute particle production in the proton-proton collisions at LHC.

The small-z demeanor of structure functions for fixed Q% exhibits the high-energy
nature of the total cross section with growing total center of mass energy squared s
since s ~ Q?(1 — 1) [44]. At very high energies, one can therefore access the region of
smaller and smaller values of x. At small-x, the likelihood for the photon of detecting
a small-x parton increases and for sufficiently small values of z the virtual photon no
longer interacts with each parton deliriously, rather there may be multiple scattering
off various partons. However the sharp growth of the gluon density towards small-z
will eventually have to slow down in order to restore the Froissart bound [45, 46] on
physical cross sections. This bound controls the upper limit for the increase of the
cross section at asymptotically large values of s and is established on analyticity and
unitarity constraints. The Froissart bound indicates that the total cross section does
not grow faster than the logarithm squared of the energy as s — oo or, equivalently,
asx — 0, i.e., Ot = mi%(ln 5)?, where m, measures the range of the strong force.
It seems that there should be some process which restricts the growth of the gluon
distribution at small-xz and subsequently prohibits the cross section from growing
very rapidly. Gluon recombination is generally regarded as the mechanism liable
for this taming or a potential saturation of the gluon distribution function at very
small-x.

As x decreases for fixed (Q?, the number of gluons increases, and at some value of
T = X4 the entire transverse area inhabited by gluons turns out to be comparable
to or larger than the transverse area of a proton. In consequence, at sufficiently
high energy the semi-hard processes, which complements the interactions of gluons
with a very small fraction of the proton’s momentum, may affluently contend the soft
processes [42]. In other words, at very small values of x the number densities of gluons
will be so high that the probability of interaction between two gluons can no longer be
overlooked. That is to say, at very small-z (z < x..;;) gluons start to overlap spatially
and so the processes of recombination of gluons will be as essential as their emission.
In this way the increase in the number of small-z gluons becomes limited by gluon
recombination (gg — g) processes which eventually leads to gluon saturation [42, 43,
47]. The phenomena of gluon recombination is also known as absorptive corrections,

shadowing, nonlinear effects, screening or unitarity corrections. The gluon saturation
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is one of the most fascinating problems of the small-x physics, which is presumed on
theoretical basis and there is emerging indications of its existence. The pioneering
finding of the geometrical scaling in HERA data [48] as well as the existance of
geometrical scaling in the production of comprehensive jets in the LHC data [49]

provides strong experimental evidences of the saturation effects.
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Figure 1.5: Schematic picture of parton saturation

In conjunction with energy the inception of saturation also depends on the size of
the gluons, defined as r ~ 1/@Q in DIS. With larger sized gluons the available hadron
area will be teemed earlier and the gluons start to re-interact whereas, when the
size is small the saturation will be deferred to larger energies. The process of gluon
saturation is schematically portrayed in Figure 1.5. There is a typical transverse
momentum scale () related to saturation which separates the dilute regime from the
saturated regime. It is known as the saturation scale and it signifies the scale at
which the nonlinear effects become important. (), is proportional to the density of
gluons per unit area [50]:

Qi (z) ~ @ 29(, Q) ~ A

1.1
N iR 7 (1.13)
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where R is the radius of the hadron where gluons populate. The saturation scale is
the key parameter in saturation physics [47-54] and grows with 1/z. Therefore, for
sufficiently small-z, Q? >> A? with A being the QCD cut off parameter and thus
the small coupling approach is legitimate. Below the saturation scale the nonlinear
effects begins to decelerate and ultimately saturate the rapid growth of the gluon
densities.

The conventional perturbative QCD methods cannot be pertained in the kine-
matic region of small-z and large-Q?, where o, continues to be small but the density
of gluons becomes high enough. The interactions among the gluons in this dense sys-
tem disagree with the fundamental presumption of the QCD improved parton model
where the partons are considered to be noninteracting. The physics that controls this
high density region is non-perturbative, but of a nature unlike the one analogous to
large distances [47, 55]. Nevertheless there is a transition region between perturbative
QCD and high density QCD where some aspects of the aforementioned dense system
of gluons can be studied and this transition region is likely to analyse through pertur-
bative approach. The linear QCD evolution equations, such as the DGLAP [56-58]
and the Balitsky-Fadin-Kuraev-Lipatov (BFKL) [59-61], are therefore expected to
breakdown in the kinematic region of very small-z where the gluon recombination
processes give rise to nonlinear corrections. A comprehensive study of this region was
first performed by Gribov, Levin and Ryskin, and by Mueller and Qiu (GLR-MQ) in
their pioneering papers [42, 43| and they suggested that the higher twist phenomena
of gluon recombination or shadowing corrections could be expressed in a new evolu-
tion equation which is nonlinear in gluon density. This nonlinear evolution equation
is nowadays referred to as the GLR-MQ equation. In the recent years various alter-
native nonlinear evolution equations admissible at high gluon densities have been de-
rived and analysed widely and subsequently the structure functions from DIS or more
particularly the PDFs have been investigated in the framework of saturation models.
These are the Modified-DGLAP (MD-DGLAP) [62], Balitsky-Kovchegov (BK) [63,
64], Modified-BFKL (MD-BFKL) [65] and Jalilian-Marian-Iancu-McLerran-Weigert-
Leonidov-Kovner (JIMWLK) [66, 67]. We present a brief account of these linear and
nonlinear QCD evolution equations in Chapter 2 of this thesis.

The picture of high gluon density in QCD can be quantitatively executed by a
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crucial parameter [55]

17 QS(Q2)

W = o p(x, Q%), (1.14)
which represents the probability of gluon recombination throughout the cascade.
Here p = %jgrz) is the the density of gluons in the transverse plane, zg(x,Q?)

number of gluons per unit of rapidity (Y = In(1/x)) which interacts with the probe
and as/Q* ~ 045, represents the cross section of gluon-gluon interaction. This
parameter controls the precision of calculations involving gluon-gluon interactions.
The unitarity constraint on physical cross sections can be expressed as wW<1 [55]. In
the region of  and Q* where W << 1, the interaction of gluons is negligible and we
may proceed with the evolution equations linear in gluon density. However, at small-
x the gluon density becomes so large that W can become appreciable in which case
higher twist effects of gluon-gluon interactions can no longer be ignored and in that
case the evolution is governed by the nonlinear evolution equations. The correlation
radius of two interacting gluons is characterized by R and its value depends on how
the gluons ladders couple to different partons. If the gluons originate from sources
which occupy distinct regions in longitudinal coordinate space then R is of the order
of proton radius, i.e. R =5 GeV~! [42]. In that case recombination probability is
very negligible. On the other hand, if the gluon ladders couple to the same quark
or gluon then the gluons are expected to be concentrated in small areas inside the
proton, the so-called hot-spots [43, 68]. Such hot spots of high gluon density can
enumerate the rapid onset of gluon-gluon interactions in the environs of the emitting
parton and so uplift the recombination effect or shadowing corrections. In such hot
spots R is considered to be of the order of the transverse size of a valence quark, i.e.
R =2 GeV~L

Gluon saturation as well as the high parton density regime within hadronic and
nuclear wave functions at small-x are properly described in the effective theory of
Color Glass Condensate (CGC) [69-71] and related formalisms. It is predicted by
the theorists that, when Q2 is large the interactions among the individual gluons
are feeble but they jointly form a very strong coherent classical color field analogous
to Bose-Einstein condensates and glassy materials, and is therefore marked as the
CGC. The CGC is expected to be the universal restrain for the constituents of a

comprehensible hadron wave function which is, as a whole, high density of gluons
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and for resolving momenta below the saturation scale.

As a general comment, we note that exploring the dynamics of the high den-
sity QCD at small-z is one of the current most demanding problems in high energy
physics and there has been significant breakthrough formulated to comprehend gluon
recombination or shadowing. Numerous theoretical and phenomenological endeav-
ours have been done in the recent years to investigate the saturation phenomena

based on perturbative QCD [72-79].

1.6 Experiments and parametrizations
1.6.1 Experiments

The structure functions measurements have been accomplished by several high en-
ergy experiments over the past years. The DIS experiments utilizing charged and
neutral lepton beams have steadily enhanced the understanding of the structure
functions in recent years. The first electron-proton DIS experiments were performed
at SLAC in 1968 in California [80]. Following this the progress of the E26 [81],
CHIO [82], Bologna-CERN-Dubna-Munich-Saclay (BCDMS) [83], European Muon
Collaboration (EMC) [84], New Muon Collaboration (NMC) [85] and E665 [86] muon
scattering experiments at Fermilab and CERN, and the HERA [27-30, 87] at DESY
have been established in the past years. These muon scattering experiments were
improved by a course of high energy neutrino scattering experiments as well at Fer-
milab and CERN. The most recent high energy experiments of p-p collisions are the
Large Hadron Collider (LHC) [88, 89] which is the latest addition to CERN’s acceler-
ator complex. The LHC is the biggest and most complicated experimental facilities
ever constructed and is likely to confront some of the unanswered queries of physics,
promoting knowledge of physical laws. A brief account of some of these experiments

are given below.

SLAC

The SLAC experiments were fixed target experiments operated during the time pe-
riod from 1968 to 1985 using 21 GeV electrons scattered off hydrogen and deu-
terium targets. The first DIS experiments exploring the proton structure were per-

formed at SLAC in 1968. The SLAC measurements [80] covered a kinematic range
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0.06 < 2 < 0.9 and 0.6 < Q? < 30 GeV2. The overall normalization error of the
experiments is about 2.1%. The structure function F» was obtained using Rgrac,
where R is the ratio of the longitudinally polarized virtual photon absorption cross

section to that of transversely polarized.

BCDMS

The BCDMS experiment (NA4) at CERN ran parallel to EMC from 1978 up to
1985 and included a DIS of muons on a hydrogen target using beams of 100, 120,
200 and 280 GeV. The the kinematic range covered in these measurements is [83]
0.06 <z < 0.8 and 7 < Q% < 260 GeV?2. The structure function F, was extracted

using Rocp and an overall normalization error is around 3% was reported.
QC

EMC

The EMC experiment (NA28) at CERN was performed using a beam of 280 GeV
muons on a deuterium as well as heavier elements target. The kinematic range
0.0025 < x < 0.14 and 0.25 < Q? < 7.2 GeV? provided a good description of the
measurements [84] whereas the rest of their measurements is superseded by the more
precise measurements of NMC described below. There is an overall normalization
error of 7%. The Fy structure function was obtained using Rcrro of CHIO collabo-

ration.

NMC

The NMC-NA37 experiment was an extension of the EMC experiment with an up-
graded apparatus performed by the new muon collaboration at the M2 muon beam
line of the CERN SPS. This experiment measured simultaneously the proton and
deuteron differential cross sections using two similar pairs of 3 m long targets ex-
posed off and on to the muon beam and these measurements considerably reduced
the uncertainty of the relative normalization between the proton and deuteron struc-
ture functions. An overall normalization error of 2% is claimed. An iterative method
based on a Monte Carlo simulation of the experiment was applied to determine the
structure functions. For each period of data taking individual simulations were per-
formed to allow changes in the beam and the detector to be considered. The values of

Fy(z,Q?) were obtained performing a comparison of the normalized outputs of data
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and accepted Monte Carlo events. The structure functions were computed from an
initial selection of F;, and a fixed parametrization of the ratio, R(z, @?), obtained from
a global analysis of SLAC data [80]. The proton and deuteron structure functions
F? and Fy were measured in the kinematic range 0.006 < x < 0.6 and 0.5 < Q% < 75
GeV?, by inclusive DIS with beams of 90, 120, 200 and 280 GeV muons on hydrogen

and deuterium targets [85].
E665

The E665 experiment at Fermilab is a fixed-target muon scattering experiment, with
the highest energy of about 490 GeV muon beams. The E665 experiment took data
using liquid hydrogen and deuterium targets, as well as heavy targets and measured
the structure functions and their ratios as well as investigated the hadronic final
states produced in the muon interaction. The F, measurements are reported in the
kinematic range 8.9 x 107 < 2 < 0.39 and 0.2 < Q* < 75 GeV? [86]. The overall
normalization error is of 1.8%. There is a significant overlap in = and Q? of the E665
measurements with those of NMC and the two measurements are accorded well in the
region of overlap. The E665 data being at lower Q? at fixed x, these measurements
overlap in x with the HERA data as well. Like NMC, the E665 analysis of F, also
use the parametrization of R obtained from a global analysis of SLAC data [80].

H1 and ZEUS

H1 and ZEUS are the two major experiments at the particular lepton-proton collider
HERA, hosted by DESY in Hamburg, Germany to investigate the DIS processes.
H1 is an international collaboration involving about 250 scientists from 20 institutes
and 12 countries whereas ZEUS collaboration is handled by 450 physicists from 12
countries, forming it a genuinely international scientific collaboration. The outset of
operation of the HERA collider provides an important landmark for the measure-
ments of the proton structure. Both the H1 and ZEUS experiments at HERA have
measured the inclusive etp NC and CC DIS cross sections. HERA collides 920 GeV
protons off 27.5 GeV electrons inducing a large center of mass energy of the collisions
Vs = 320 GeV. The maximum value of Q? at H1 and ZEUS experiments measures
to 90,200 GeV? whereas the calibrated x-range have been remarkably extended to a
smaller value of z ~ 107 [27-30, 87]. The operation of HERA have been carried out
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in two stages, HERA-I, from 1992-2000, and HERA-II, from 2002-2007. The utmost
precise determination of the proton structure is measured by the H1 and ZEUS col-
laborations using the HERA-I data. During the HERA-I period, HERA was mostly
operating with positrons due to restrictions of the electron beam life time. How-
ever this problem has been resolved for HERA-II and during the period from 2004
to 2006 HERA operated with electron beams allowing a more precise measurement
of the zFj structure function. In the year 2007, HERA performed a series of runs
with lowered proton beam energies of 460 and 575 GeV producing data sets essential
for the first direct measurement of Fy. The H1-ZEUS combined results [87] have
reduced the uncertainties to a large extent compared to the individual experiments
and act as a basis for a precise fit of the proton PDFs. In both experiments the
structure function F, was extracted using Rgep. The kinematic range of the NC
data is 6 x 1077 < z < 0.65 and 0.045 < Q? < 30000 GeV?, for values of inelasticity
y between 0.005 and 0.95. On the other hand, the kinematic range of the CC data
is 1.3 x 1072 < 2 < 0.40 and 300 < Q? < 30000 GeV?, for values of y between 0.037
and 0.76. The total uncertainty of the combined data set is 1% for NC scattering
in the region 20 < Q% < 100 GeV?. Even though HERA ended its 15 years of op-
eration in 2007, dynamic analyses of full data sets are continuing and outstanding

improvements are being generated.

LHC

The LHC is the world’s largest and most powerful particle accelerator, built by CERN
in collaboration with over 10,000 scientists and engineers from over 100 countries, as
well as hundreds of universities and laboratories. The LHC weighs more than 38,000
tonnes and runs for 27 km in a circular tunnel 100 metres beneath the Swiss-French
border at Geneva, Switzerland. The LHC started up on 2008 successfully circulat-
ing the proton beams in the main ring of the LHC for the first time, but stopped
operating due to a faulty electrical connection. However in 2009 LHC successfully
circulated the proton beams with the first reported p-p collisions at the injection
energy of 450 GeV per beam. In 2010 two 3.5 TeV proton beams were made to
collide, which is a world history for the highest-energy artifial particle collisions. In

2013 LHC went into shutdown and planned to reopen in early 2015 upgrading the
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beam energy to 13 TeV, which is almost double its current maximum energy and
more than seven times any predecessor collider. As of 2012 data from over 3 x 10
LHC proton-proton collisions had been analyzed LHC and the LHC Computing Grid,
which provide global computing resources to store, distribute and analyse the ~ 30
Petabytes of data annually generated by the LHC, had become the world’s largest
computing grid. There are seven experiments at the LHC analysing the innumerable
particles produced in the accelerator. The biggest of these experiments, A Toroidal
LHC Apparatus (ATLAS) and the Compact Muon Solenoid (CMS), use two indepen-
dently designed general-purpose detectors to explore a vast range, from the search for
the Higgs boson to extra dimensions and dark matter. ALICE (A Large Ion Collider
Experiment) is a heavy-ion detector on the LHC ring designed to investigate the
formation of the quark-gluon plasma. The purpose of LHC beauty (LHCb) experi-
ment is to study the differences between matter and antimatter. The Total Elastic
and diffractive cross section Measurement (TOTEM) and LHC forward (LHCY) ex-
periments study forward particles, protons or heavy ions, and focus on physics that
cannot be accessed in the general-purpose experiments. The Monopole and Exotics
Detector at the LHC (MOEDAL) approved in 2010 uses detectors to search directly
for the magnetic monopole. In 2012, the ATLAS and CMS experiments at LHC
announced the observation of a new particle in the mass region around 126 GeV |88,
89]. Later the new particle is confirmed to be the Higgs boson [13] which physicists
have been looking for since its prediction about 50 years ago. It is one of the greatest
discoveries of the present-day and the Nobel Prize in Physics 2013 was undoubtedly
awarded jointly to F. Englert and P. W. Higgs for the theoretical prediction of the

Higgs mechanism.

1.6.2 Parametrizations

The PDFs are one of the basic ingredients for the calculation of any observable in-
volving hadrons. The evolution of PDFs is a sensitive test of our understanding of
QCD dynamics, which is expressed in the form of PDF evolution equations. Pre-
cise knowledge of these PDF's is an essential prerequisite for the identification of
any possible signature from physics beyond the SM. On the other hand an accurate

evaluation of the errors associated with the PDF's is crucial to generate reliable phe-
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nomenological predictions at hadronic colliders, such as the LHC. In Recent times,
a substantial amount of theoretical and experimental endeavour has been devoted
in the accurate determination of the parton distributions of the nucleon. Particu-
lar interests are given in the calculation of the uncertainties associated with various
experimental and theoretical inputs, for the sake of precise measurement of collider
processes as well as determination of QCD parameters. At present, the preeminent
inclusive PDF sets are acquired from a global analysis of hard-scattering data from
various processes like DIS, DrellYan, weak vector boson production as well as collider
jet production. In global analysis the PDF's are determined unfolding the experimen-
tally measurable structure functions in terms of their parton content, by using the
QCD factorization and DGLAP evolution equations. Modern PDFs are constantly
developed to incorporate looming theoretical improvement and the most recent data
from hadronic experiments. There are various groups extracting PDFs from global
data analyses. The LHAPDF [90] library provides a merged and simple computing
to all the major PDF sets. The following is a brief description of the major PDF sets

available.

GRV/GJR

The GRV global parametrization is a dynamically generated PDF's set advocated by
M. Gluck, E. Reya and A. Vogt. defined upto NLO in the MS scheme. The GRV
group systematically analyze hard scattering data within the framework of pertur-
bative QCD and is very successful in predicting the rapid rise of proton structure
function F5 at small-z, observed at HERA. The GRV1992 PDFs include u, d, s, ¢
and b quarks whereas the GRV1994 include only u, d and s quarks. These PDFs
are used in the calculations involving heavier quarks, with non-zero quark masses, in
the partonic hard scattering cross section. The GRV1998 global parametrization [31]
used H1 and ZEUS high precision data and presents an updated, more accurate, ver-
sion of valence-like dynamical input distributions. The GRV1998 PDF's compute the
light-parton distributions, charm and bottom contributions to F5 and the scale de-
pendence of g in NLO and LO. The parton densities and the Fj structure functions
are determined from interpolation networks covering the regions 0.8 < Q% < 10°

GeV? and 107 < o < 1. Moreover, perturbatively fixed parameter-free dynam-
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ical prognostications for parton distributions are unfolded to the very small-x re-
gion, 107® < x < 107° [31], enabling fairly decent evaluations of ultra high energy
neutrino-nucleon cross section concerning neutrino astronomy. The LO results cor-
responds to A(L]gf:4):175 MeV which leads to the value of af9(M2)=0.125. The
resulting LO input distributions at Q% = p3, = 0.26 GeV? for gluon is given by
rg(z, Q%) = 17.4721°(1 — 2)3>8. On the other hand the NLO results correspond to
AEéVL"O:4):246 MeV giving rise to the value of a9 (M2)=0.114. The input distribu-
tions have been established employing the 1994 and 1995 HERA FY results [27-30]
as well as the fixed target F¥ data of SLAC, BCDMS, NMC and E665.

The GJR parametrization [32], recommended by M. Gluck, P. Jimenez-Delgado
and E. Reya, is the upgraded version of GRV1998 parton distributions. The GJR
dynamical distributions generated the small-z (z < 1072) structure of dynamical
parton distributions from valence-like initial distributions considered at input scale
Qo < 1 GeV. It provides assurance in the trustworthy prediction of the cross sections
for heavy quark, W¥*, Z,, and high p, jet production at the the hadron colliders
such as Tevatron and LHC. On the other hand, in the JR09 parametrization [91] the
previous LO and NLO global fit analyses for the dynamical parton distributions of
the nucleon are extended to NNLO of perturbative QCD utilizing the DIS structure

function measurements as well as the hadronic Drell-Yan dilepton production data.
MRST/MSTW

The MRST is a global analysis of parton distributions of the proton recommended
by A. D. Martin, R. G. Roberts, W. J. Stirling and Robert Thorne in the MS
renormalization scheme. MRST2001 PDFs [33] execute a global parton analysis up
to NNLO incorporating all the convenient explicit data from DIS and similar hard
scattering processes viz. H1, ZEUS, BCDMS, NMC, E665, SLAC and CCFR. This
PDFs set is ordinarily suitable to DIS data with Q? > 2 GeV? and W2 > 10 GeV?,
however it concedes the HERA data for Q* down to 1.5 GeV? to cover the very
small-x calculations of F5. The initial parametrization of the gluon for LO is xg =
3.082%19(1 — 2)%49(1 — 2.962%° + 9.26x), for as(M2)=0.130 and Agrg(N; = 4)=220
MeV [33]. The best global NLO fit is achieved with the initial distribution of the gluon
at Q3= 1 GeV? and it complements to ag(M2)=0.119, i.e. Agrg(Ny =4) = 323 MeV.
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These data sets permits the developement of negative input gluon parametrization at
small-z. The optimum global NNLO fit is acquired considering the input distribution
of the gluon at Q3=1 GeV? conforming to as(M2) = 0.1155, i.e. Agg(Ny =4) = 235
MeV. The MRST2004 parton sets [34] provide an additional physical parametrization
of the gluon distribution for global parton analysis at both NLO and NNLO thereby
producing an improved illustration of the W and Z production cross sections at the
Tevatron and the LHC in contrast to the earlier set. The complete kinematic domain
covered by this PDF sets, where fixed-order DGLAP analysis is convenient, including
the corresponding sets of traditional partons, is found to be W2 > 15 GeV?, Q? > 10
GeV? and z > 0.005 at NLO, whereas at NNLO it is given by W? > 15 GeV?, Q? > 7
GeV? and z > 0.005.

The MSTW2008 [35] is an updated LO, NLO and NNLO PDFs calculated from
global analysis of hard scattering data in the MS scheme. The MSTW2008 global
analysis supersedes all the previous MRST sets and is very convenient in forecasting
the accuracy of cross sections and related theoretical calculations of W and Z bosons,
Higgs boson and inclusive jet production at the Tevatron and uncertainties at the
LHC. This PDFs fit include CCFR/NuTeV di-muon cross sections and Tevatron
Run II data on inclusive jet production. Together with a, there are 30 free PDF
parameters in the fit. The MSTW analysis, fits ~ 2700 data points as a whole and the
comprehensive nature of the NLO and NNLO fits is identical and perfectly admissible,
with x?/Npys ~ 1 for nearly all data sets [35]. This fit furthermore determines the
uncertainty on the strong coupling a,, owing to the experimental errors on the data,
which is found to be a,(M2) = 0.120275:9012 at NLO and a,(M2) = 0.117175:0011 at
NNLO.

NNPDF

The NNPDF approach is based on the application of neural networks as primary
interpolating mechanisms. The neural networks can yield an impartial interpolation
which produces the measure for all points, in some ways within a finite range of x
and Q? where the data sampling is excellent. The NNPDF approach bypasses all the
problems present in the usual approach to the determination of the PDFs. These

PDF fits determine the probability density in the arena of structure functions for the
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proton, deuteron and nonsinglet structure functions calculated from experimental
data of the NMC, BCDMS, E665, ZEUS and H1 collaborations. Their results adopt
the form of a set of 1000 neural nets, each providing a calculation of F, for given
x and Q?. The central value and the statistical moments of the structure functions
determined in the NNPDF fit can be computed out of the 1000 nets in accordance
with the standard Monte Carlo techniques. NNPDF1.0 [36] is a set of parton distri-
butions of the nucleon, at NLO, from a global set of DIS data employed to estimate
the standard W and Z cross sections at the LHC. Including the recent neutrino
dimuon production data in combination with a global deep inelastic parton fit, the
NNPDF'1.2 parton set is constructed and it provides a determination of the strange
and antistrange distributions of the nucleon. Apart from being a transitional step
towards a fully global fit including hadronic data, this set ia an interesting test of
the NNPDF methodology and for the determination of electroweak parameters.
NNPDF2.0 [37] global set of PDFs include DIS with the combined HERA-I
dataset, fixed target Drell-Yan production, collider weak boson production and in-
clusive jet production. It also determines the impact of recent high luminosity DO
Run IT lepton asymmetry data and the DO inclusive muon and electron data. These
PDFs sets are very advantageous to the experimentalists in all kinds of circumstances,
for example, examining the accuracy of preliminary datasets and their uncertainties,
evaluating the validity of viable evidences of new physics, or in improving the design
of new experiments using pseudo data. This fit is upgraded to NNPDF2.1 set to
including the heavy quark mass effects. These data sets take care of the small-z

gluon and are sensitive to the value of the charm mass m,. as well.

HERAPDF

The HERAPDF project determines the quark and gluon distribution functions of
the proton from experimental data and has established a statistical combination
procedure enhancing the estimation of the average of H1 and ZEUS measurements
in a model independent way. The HERAPDEF analysis also elucidates the correlated
systematic ambiguities enabling cross calibration to lessen the total systematic uncer-
tainty on the combined data. Thereupon the averaged data are utilized in a QCD fit

to determine the proton PDFs with an exhaustive interpretation of the experimental
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and theoretical uncertainties. HERAPDFO0.1 [38] set is a NLO QCD analysis of par-
ton distributions and covers the combined data set of the inclusive deep inelastic cross
sections measured by the H1 and ZEUS Collaborations in NC and CC unpolarised
e*p scattering at HERA. In this analysis the PDFs are parametrized at the starting
scale of Q2 = 4 GeV? and are evolved using the DGLAP evolution equations.The
HERAPDF1.0 [39, 92] analysis employs a uniform data set with small associated
systematic uncertainties and applies the conventional y? tolerance, Ay? = 1 to de-
termine the experimental uncertainties on the PDFs. On account of the precision of
the combined data set, the total uncertainties of the HERAPDF1.0 parametrization
is of the order of a few percent at small-z, which is much improved compared to the
earlier extractions of the PDFs using the individual H1 or ZEUS data. The gluon
distribution functions are parametrized by the universal form zg(z) = A28 (1—x)%
at the input scale Q2 = 1.9 GeV?, so that Q3 < m? [38]. A, is the normalization
parameter, B, represents the small-z behaviour whereas C; represents the high-x
behaviour.

The HERAPDF1.0 set has been amended to HERAPDF1.5 by incorporating
initial all-inclusive cross section data from HERA-II running. On the other hand the
HERAPDF1.6 analysis involves the H1 and ZEUS jet data whereas HERAPDF1.7
fit comprises of all the data sets from HERA-I and II, charm data, low energy data
and jet data. Moreover the NLO fits have been continued to NNLO for both HER-
APDF1.0 and HERAPDF1.5 [39, 92]. The HERAPDF1.0 NNLO parton set was
introduced in 2010 but this has been upgraded to HERAPDF1.5NNLO fit which
has an essentially vigorous high-x gluon and provides thorough description of the
experimental, model and parametrization uncertainties. The prescribed value for
as(Myz) at NNLO is ags(Myz) = 0.1176 [39]. These HERAPDF's have been affluently
encountered both the Tevatron and LHC data on W, Z and jet production.

CTEQ

The CTEQ global QCD analyses of PDFs have been developed over decades. The
CTEQ series include CTEQ1, CTEQ2, CTEQ3, CTEQ4, CTEQ5 presented during
the period from 1993 to 2000, followed by sets of CTEQG6 published in the period
from 2002 to 2006 as well as the ensuing PDF sets CT09 [40, 93-95]. Recently in 2010
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CTEQ group presented NLO PDFs named as CT10 and CT10W [40]. These two
new PDF sets are built on the contemporary knowledge of the PDFs obtained from
global hadronic experiments, mainly the DIS combined data set of HERA-1 cross
sections, which supersedes 11 separate HERA-1 data sets, considered in CTEQ6.6
and preceding fits. These PDF's sets have been used in a broad way in phenomeno-
logical predictions for the Tevatron, LHC, and other experiments. The CT10 global
QCD fits involve a combination of DIS cross sections by the H1 and ZEUS collabora-
tions in HERA-1, measurements of the charge asymmetry of leptons from W boson, Z
rapidity distributions, single-inclusive jet cross sections by CDF as well as DO collab-
orations at the Tevatron. The CT10 PDFs are derived at NLO in a4, incorporating
the general-mass analysis of charm and bottom quark contributions to hadronic ob-
servables. The CT10 NLO QCD analysis is in general compatible with the HERA
experiments in the region ) > 2 GeV. The net consistency of the CT10 fit with the
combined H1 data is somewhat poor than with the separate H1 data sets, due to
some increase in x*/d.o.f. for the NC DIS data at x < 0.001 and x > 0.1 [40]. Both
CT10 and CT10W PDF sets contain 26 independent parameters and thus there are
26 eigenvector directions and a total of 52 error sets. These PDF error sets, together
with the following «; error sets, admit a thorough computation of the combined
PDF+a; uncertainties for any observable. Both CT10 and CT10W predict a minor
PDF inspired uncertainty in the total cross section for the top-quark pair production
at the Tevatron Run-II in contrast to the CTEQG6.6 prediction. The difference be-
tween the CT10 and CT10W PDF sets for LHC predictions is very negligible, other
than in those observables that are responsive to the ratio of down-quark to up-quark
PDFs.

The CT10NNLO [41] global PDF fit is the NNLO analysis of the PDF's recently
published by the CTEQ group. It includes basically the same global data sets used
in the CT10 and CT10W NLO PDF fits excluding the Tevatron Run-1 inclusive jet
data and a subset of the Tevatron Run-2 lepton charged asymmetry data from W
boson decays. This fit produces numerous predictions at NNLO precision for both
current and upcoming precision measurements from the LHC at CERN. It further
analyzes the extent of variations in the gluon distributions initiated by corresponding

systematic effects in inclusive jet production.
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1.7 Outline of the thesis

This thesis is concerned with the linear DGLAP and nonlinear GLR-MQ evolution
equations in the small-z kinematical region and the saturation of gluon density at
very small-z due to nonlinear or shadowing corrections to the QCD evolution at
very small-z. We present a review of different QCD evolution equations both linear
and nonlinear in Chapter 2. Part I of this thesis details the study of the linear
DGLAP equation. In chapter 3 we report the semi-numerical solution of the DGLAP
equation in the small-x limit for singlet structure functions at LO, NLO and NNLO.
The ? and z-dependence of the singlet structure functions have been examined
from these solutions and the results are compared with different experimental data
and parametrizations. Following this in chapter 4 we extend the study for gluon
distribution function by solving the linear DGLAP equation for gluon distribution
analytically. The Q% and z-dependence of the gluon distribution functions have been
obtained upto NNLO.

In part II we turn our attention to the gluon recombination processes which lead
to nonlinear corrections to the linear DGLAP evolution equations due to multiple
gluon interactions at very small-x. We estimate the importance of the corrections of
these higher order QCD effects, which suppress or shadow and eventually saturate
the growth of the parton densities in the framework of nonlinear GLR-MQ evolution
equation. We solve this equation for both singlet structure and gluon distribution
functions in the vicinity of saturation employing the well-known Regge-like ansatz.
In chapter 5 we make a deliberate attempt to explore the effect of shadowing cor-
rections to the behaviour of gluon distribution function in the kinematic region of
small-z and Q? using the nonlinear GLRMQ evolution equation with the shadowing
term incorporated. Our predictions are compared with those obtained by the global
QCD fits to the parton distribution functions. Moreover we estimate the effect of
nonlinearity in our predictions by comparing the results obtained from nonlinear
GLR-MQ equation with those obtained from linear DGLAP equation. Chapter 6 is
devoted to the study of the singlet structure function with nonlinear or shadowing
corrections in the small-x region based on GLR-MQ equation. The obtained results
are compared with different experimental data and parametrizations. A comparative

study of our results of nonlinear gluon density with those of other nonlinear equations
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is accomplished in chapter 7.

Finally, in chapter 8 we give a brief summary and an outlook for future work.
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Chapter 2

Linear and Nonlinear QCD
Evolution Equations

2.1 Linear evolution equations

QCD induces higher order corrections to the naive parton model which eventually
lead to a breaking of scaling violations. Thus QCD enables the explicit estimation of
the dependence of the structure function on Q?, however, it does not reveal the spe-
cific value of F, for a given Q?, but preferably portrays in what manner F; varies with
Q? from a given input. The Q? dependence of the PDFs can be computed perturba-
tively as long as Q? is adequately large so that o continues to be small. The standard
and the basic theoretical frameworks employed to study the scale dependence of the
PDFs and eventually the DIS structure functions are the linear Dokshitzer-Gribov-
Lipatov-Altarelli-Parisi (DGLAP) [1-4] evolution equations. One can calculate the
PDFs for any value of Q? making use of the DGLAP equations considering that an
initial condition for the PDF's is indeed available at a given initial scale Q2 and then
evolving to higher Q%. The DGLAP approach sums up higher-order o contributions
enhanced by the logarithm of photon virtuality, i.e. ”In(Q?)" in the perturbative
expansion. Nevertheless, at small-z contributions enhanced by the logarithm of a
small momentum fraction, x, carried by gluons, turns out to be essential. Accord-
ingly a different approach is needed to explain the situation of high-energy or in other
words small-z scattering. The leading logarithm (LL) contributions of (agIn(1/z))"
are summed up by the Balitsky-Fadin-Kuraev-Lipatov (BFKL) evolution equation
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[5-7]. Another evolution equation to study the linear evolution of PDFs in the small-z
regime is the so called Catani-Ciafaloni-Fiorani-Marchesini (CCFM) equation [8-10).
The CCFM approach retains the components of both the DGLAP and BFKL realms
in the LL approximation. All the aforementioned evolution equations are linear in
parton density which have to be modified in a suitable way to add the higher twist
approximations at very small-x. A brief account of the linear evolution equations is

given below.

2.1.1 DGLAP equation

The evolution of the structure functions or more precisely the quark and gluon distri-
bution functions with @? can be described by the DGLAP evolution equations [1-4].
These equations sum all leading Feynman diagrams that give rise to the logarithmi-
cally enhanced In(Q?) contributions to the cross section in order to neglect any kind
of higher twist corrections. The associated perturbative resummation is organized
in powers a”In(Q?)". They are the conventional and the fundamental theoretical
frameworks for all of the phenomenological perspectives used to interpret hadron
interactions at short distances. The DGLAP equations for quark and gluon density

can be written as

2Ny

e (S )= 2[5 (50 25 (5608,

i=1

where the sum runs over all flavors of quarks and anti-quarks. Here ¢;(x, Q?) stands
for quark density whereas g(z, Q?) represents gluon density. P,,, Py, Py, and P,, are
the splitting functions whose interpretations are graphically displayed in Fig.2.1. The
splitting functions are elucidated as the probability for finding a parton (quark or
gluon) of type i having momentum fraction x arising from a parton (quark or gluon)
j with larger momentum fraction y > x. They are independent of the quark flavors
and are identical for quarks and antiquarks. The leading order splitting functions

are given by [11]

PO = O+ o 2),
PG = L2 =), P06 = o () g
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Figure 2.1: Splitting functions
0 B z 1—z¢ 11 N
PO(z) = 2NC<(1 ot e 2) + (7 = %)5(1 —2), (2.2)
with Cp = % The “4” distribution is defined by the property [11]
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where (1 — 2)y =1 — z for z < 1 but is infinite for z = 1. The discrepancy at z = 1
complements the radiation of soft gluons and is balanced out by the virtual gluon
loop contributions.

In perturbation theory, the splitting functions can be expressed as a power series

of a,(Q?) [11, 12]

Pu(2.@) = P9 + (SN Py 4 (SO P2y 4 2

with z = % These functions are at present working up to next-to-next-to-leading

order (NNLO) accuracy. The leading order (LO) expressions P are the well-known
Altarelli-Parisi splitting functions [4, 11]. On the other hand, the next-to-leading
order (NLO) functions P have been estimated during the time 1977-1980 [13-
16], whereas the NNLO terms P®) are calculated in the period 2004 [17, 18]. The
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LO DGLAP evolution sums up the leading log contributions (o, In(Q?))", the NLO
evolution incorporates the sum of the a,(a,In(Q?))"~! terms and so on.

The derivation of the DGLAP equation is founded on the QCD collinear factor-
ization in gluon emission to legitimize the resummation of logarithms in the trans-
verse scale. In consonance with the traditional collinear factorization approach the
hadronic observables can be expressed as the convolution of the PDFs with partonic
hard-scattering coefficients. The partonic coefficients are computed with the assump-
tion that the hard scattering is originated by a parton collinear to its parent hadron.

Customarily the large logarithms are obtained from the region in phase space where

2 '
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Figure 2.2: Ladder-diagram in LLQ? application of DIS

the multiple emissions are strongly set in order in transverse momenta with succeed-
ing emissions having larger momenta, i.e. Q* >> k2 >> .- >> k2 >> k?. Fig.2.2
exhibits a schematic ladder diagram of the quark and gluon emissions in LL(Q?)

application of DIS.
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The non-singlet and singlet combinations of the quark flavor group can be defined

as [11]

qNs = qi — 45, (2.5)

gs = Zqz (2.6)

The DGLAP equations for non-singlet and singlet quark distributions are

due D) _ 0@ [ e lasiy @), 2.7

T

2N

Zqu x/y)q(y, Q )—I—qu(x/y) (Y, QQ)) (2.8)

5(]5(1‘,622)_%(@2)/ dy
om@z  2r J, vy

As an illustration, the first term of Eq.(2.8) mathematically articulates the fact that
a quark with momentum fraction = characterized by ¢(x, Q?) (on the left hand side)
could have originated form a parent quark with a momentum fraction y > x depicted
by q(y,@?) (on the right-hand side) which has radiated a gluon. The probability of
occurrence of this process is proportional to asP,,(z/y). The second term deals with
the prospect that a quark with momentum fraction x is the consequence of ¢¢ pair
creation by a parent gluon with momentum fraction y > = and the probability that
it happens is proportional to o,P4(z/y). The integration appears because of the
consideration that the secondary quark with momentum z can come from a parent
quark with any momentum fraction y > z [11].

On the other hand, since the gluon distribution does not carry any flavor quantum
numbers, it is a flavor singlet and the DGLAP equation for gluon distribution is given
by

2NNy

8?1:16182) - QS(Q / dy (Z x/y (Y, QQ) + ng<x/y)9(?/a Q2)> (2.9)

As soon as the x dependence of quark or gluon distributions are known at some
initial scale Q2 then they can be determined for any higher value of Q2 by using the
DGLAP equations. The initial distributions are at present have to be computed from
experiment presuming an input form in x which complies with the QCD sum rules.
This strategy is adopted in the global analyses of PDFs [19, 20]. As an alternative,

one may produce the parton distributions dynamically originating from an input

45



distribution for the valence quarks and a valence-like input for the sea quarks and
gluons [21].

The DGLAP equations neglect higher order contributions of the form a; In(1/z).
However, at finite order, the large logarithms in 1/x become important in the pertur-
bative expansion at small vales of z, where the evolution is dominated by the gluon
cascade and accordingly these leading In(1/z) terms have to be resummed. For large-
(? this is achieved by the double leading logarithmic approximation (DLLA), which
resums the terms that include the leading In(1/z) and the leading In(Q?) simultane-
ously. As a result at small-z one may consider the DLLA of the DGLAP evolution to
choose the major contribution to the gluon density growth, analogous to the contribu-
tion of the (as In(Q?) In(1/x))™ terms. The DLLA is valid when o, In(1/z) In(Q?) ~ 1
but o, In(1/z) and o, In(Q?) individually are small. But if Q? is not extremely large,
then as we move towards smaller values of z the DGLAP equation no longer has its
legitimacy. In that case alternative evolution equations, described below, which are

appropriate in different regions may be taken into account

2.1.2 BFKL equation

The BFKL equation [5-7] was initially suggested by Balitsky, Fadin, Kuraev, and
Lipatov to delineate the high-energy behaviour of processes involving hadrons. Re-
calling that z ~ Q?/s, where Q? is the hard scale of the process and s is c.m.s.
energy squared, at small-z, it is essential to sum the terms of the perturbation series
enhanced by powers of In(1/z). This equation sums up all the leading logarithm con-
tributions of the type (asIn(1/z))™ on the basis of gluon Reggeization. The BFKL
approach is usually associated with the evolution equation for the unintegrated gluon
distribution, f(x,k;), which depends on two independent variables, the proton mo-
mentum fraction x carried by a gluon and its transverse momentum k;. An important
characteristic of this evolution is distribution of the gluon density in in(k;) space. The

general form of BFKL evolution equation in LO is

3065 (k2) dz dk’2 f(x)z, k? x/z, k?
f(l’, kt2) — fO( k?) k?/ / L / /3 f2( / t)
ki | k" — K |

S
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where the function f°(z, k?) is a suitably defined inhomogeneous term and k/*, k? are
the transverse momenta squared of the gluon in the initial and final states respec-
tively. In comparison to the DGLAP equation, this is a more intricate problem on
the grounds that the BFKL equation literally involves contributions from operators
of higher twists. The BFKL equation, in its ordinary form, not only represents the
high-energy behaviour of cross-sections but also describes the amplitudes at non-zero

momentum transfer.

2.1.3 CCFM equation

The CCFM equation [8-10] is a theoretical framework proposed by Catani, Ciafaloni,
Fiorani and Marchesini (CCFM) which effectively interpolates between the the BFKL
evolution and the more familiar DGLAP evolution equations. The primary objective
of the CCFM approach is to provide accurate description of both the large-x region,
where the summation of In(Q?) dominates, as well as the small-x region, where the
large logarithms In(1/z) are important. It depends on the comprehensible emission
of gluons, that gives rise to an angular arrangement of the gluons along a series
of multiple emissions. Similar to the BFKL equation, the CCFM equation is also
defined in respect of a unintegrated gluon density f, which determines the possibility
of finding a gluon with longitudinal momentum fraction x and transverse momentum
k;. Nonetheless, this distribution has a further dependance on some external scale

Q. The CCFM equation is

1 2 ~
+ / - / j—q‘i@(@—zq)As@,z,q>P<z,kt,q>f<x/z,kf,q2>. (2.11)

The inhomogeneous contribution f%(z, k?, Q?) is of non-perturbative origin and
is assumed to contribute only for k? < ¢2. The remaining terms contribute in the

region k? > 2. The function P is the gluon-gluon splitting function

P:3Q5< 1

1
Ap=—2+42(1— ) 2.12
T \1—z2 * R + 2 2 ( )
where the factors Ag and Ag are the Sudakov and Regge form factors respectively.
The multiplicative factors Ag and Ag counteract the singularities which are apparent

as z — 1 and z — 0 respectively. Unlike Ag, the Regee form factor Ar not only
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depends on the branching variables, but also on the history of the cascade. At large-x
one can get the usual DGLAP equation for gluon evolution by fixing AA = 1 and
evolving Ag. On the other hand, at small-z keeping only the 1/z piece of P, and
by setting Ag = 1 and evolving AA one can obtain the BFKL equation.

2.2 Nonlinear evolution equations

It is very fascinating to observe that the linear QCD evolution equations for parton
densities , both the DGLAP and BFKL equations, prognosticate a steep rise of quark
and gluon densities in the small-x region which is perceived in the DIS experiments at
HERA as well. This sharp growth generates cross sections which in the high-energy
limit fail to comply with the unitarity bound or in particular the Froissart bound
22, 23] on and so it will have to eventually slow down in order to restore unitarity.
It is a known fact that the hadronic cross sections should obey the Froissart bound
which derives from the general assumptions of the analyticity and unitarity of the
scattering amplitude. Accordingly, the increasing number of gluon densities, so as to
approach small-z, demands a formulation of the QCD at high density, where unitarity
corrections are suitably taken into account.

Following DGLAP, the growing number of small-x gluons graphically conforms
to higher density of individuals in the same approved region and thus differs from
a diluted system at moderate values of z. As a result, at very small values of x
the likelihood of interaction between two gluons can no longer be overlooked and it
sooner or later engenders a situation in which individual partons inevitably overlap or
shadow each other. We recall that, at very high energies, one can get into the region of
smaller and smaller values of x and, under these situations, the gluon recombination
being more effectual balances gluons splitting at some point. As a result, the abrupt
growth of gluon distribution is eventually subdued due to the correlative interactions
between gluons. This process is normally referred to as saturation of gluon density
and it occurs when the possibility of gluon recombination, i.e. the process gg — ¢, is
as significant as that for a gluon to split into two gluons i.e. ¢ — gg. In deriving the
linear DGLAP equations, the correlations among the initial gluons in the physical
process of interaction and recombination of gluons are not taken into account. It

is indispensable to point out that the linear DGLAP dynamics consider only the
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splitting processes in the partonic evolution, i.e. the processes ¢ — ¢qg, ¢ — qq and
g — gg. However at small-x, the modifications due to the correlations among initial
gluons to the evolutionary amplitude should be treated accordingly. The multiple
gluon interactions induce nonlinear or shadowing corrections in the linear evolution
equation and so the standard linear DGLAP evolution equation will have to be
modified in order to include the contributions of recombination mechanism in the
small-x regime.

The DGLAP evolution equations can delineate the available experimental data
in a decent manner covering a large domain of x and Q? with appropriate parame-
terizations. But despite the remarkable achievement of the DGLAP approach, some
issues come into sight when trying to generate the best possible global fits to the
H1 data [24] concurrently in the region of large-Q? (Q? > 4 GeV?) as well as in the
region of small-Q? (1.5 < Q? < 4 GeV?) [25]. In the NLO analysis of MRST2001 [26]
an overall good fit is obtained including both the regions but resulting a negative
gluon distribution at Q9 = 1 GeV , thus creating an ambiguity in the interpretation
of the PDFs as probability or number density distributions. On the other hand, in
the CTEQ collaboration [27], where a slightly higher input scale of @y = 1.3 GeV
is considered, a very good compatibility with the data are observed in the large-
Q? region whereas, the consistency with data in the small-Q? region becomes poor.
The matter of negative gluon distributions also arises in the NLO set of CTEQ6M
when evolving backwards to 1 GeV. Nevertheless, the negative gluon distributions
are not empowered in LO. These emerging enigmas are really very appealing as they
can provide a signal of gluon recombination towards smaller values of x and Q?. In
Ref.[25] the effects of including nonlinear GLRMQ corrections to the LO DGLAP
evolution equations are studied by using the HERA data for the structure function
Fy(z,Q?) of the free proton and the PDF sets CTEQ5L and CTEQG6L as a baseline.
With the inclusion of the nonlinear corrections, the agreement with the Fy(x, Q?)
data is exhibited to be improved in the region of x < 3 x 107° and Q? < 1.5 GeV?,
but managing the good fit to the data obtained in the global analyses at large-x and
Q*. Moreover, in Ref.[28] an analysis of HERA Fy(x, Q?) data is presented adding
the effect of absorptive corrections due to parton recombination on the parton dis-

tributions. The small-z gluon distribution is found to be enhanced at small scales
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due to the absorptive effects, which may possibly avoid the need of a negative gluon
distribution at 1 GeV. The gluon recombination effects lead to the nonlinear cor-
rections to the linear DGLAP evolution equations due to multiple gluon interactions
and as a result, in the very small-x region the conventional linear evolution equations
are likely to breakdown. The nonlinear terms tame the abrupt growth of the gluon
distribution in the kinematic region where o continues to be small but the density of
gluons becomes very high so that a perturbative treatment is possible. Accordingly,
the corrections of the higher order QCD effects, which suppress or shadow the growth
of the parton densities, turns out to be the center of rigorous studies in the last few
years.

The first perturbative QCD calculations reporting the recombination of two gluon
ladders into one were carried out by Gribov, Levin and Ryskin (GLR), and Mueller
and Qiu (MQ). They suggested that the nonlinear or shadowing corrections due to
gluon recombination could be depicted in a new evolution equation with an addi-
tional nonlinear term quadratic in the gluon density. This equation, widely known
as the GLR-MQ equation [29, 30|, can be regarded as the updated version of the
usual DGLAP equations with the corrections for gluon recombination. There are
several other nonlinear evolution equations reporting the corrections of gluon re-
combination to the DGLAP and BFKL evolutions. They are the Modified-DGLAP
(MD-DGLAP) [31, 32|, Balitsky-Kovchegov (BK) [33, 34], Modified-BFKL (MD-
BFKL) [35], Jalilian-Marian-Iancu-McLerran-Weigert-Leonidov-Kovner (JIMWLK)
[36-38] equations. The BK equation is the most widely studied among these. The
nonlinear equations viz. Modified-BFKL (MD-BFKL), BK and JIMWLK are based
on BFKL evolution, whereas the MD-DGLAP equation is based on DGLAP evolu-
tion. A concise description of all the above mentioned nonlinear evolution equations

is given below.

2.2.1 GLR-MQ equation

The shadowing corrections of gluon recombination to the parton distributions were
first investigated by Gribov, Levin and Ryskin and then by Mueller and Qiu at the
twist-4 level in their pioneering papers [29, 30]. They provided the idea that the non-

linear corrections due to gluon recombination could be portrayed in a new evolution
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equation with an additional nonlinear term quadratic in gluon density. This equation,
widely known as the GLR-MQ equation, can be considered as the improved version of
the usual DGLAP equations with the corrections for gluon recombination. The pic-
torial representation of the corrections arising from gluon recombination processes is

shown in Fig.2.3. Gribov et al. first suggested qualitative modification of the DGLAP

Gluon splitting Corrections of gluon recombination

Figure 2.3: Corrections of gluon recombination

gluon evolution equation in order to include the gluon recombination effects based
on the Abramovsky-Gribov-Kancheli (AGK) cutting rules [39]. Afterwards Mueller
and Qiu completed the equation numerically using a perturbative calculation of the
recombination probabilities in the DLLA, which is a significant achievement as it
enables the GLR-MQ equation to be applied phenomenologically. This equation was
generalized to incorporate the contributions from more higher order corrections in
the Glauber-Mueller formula [40].

The GLR-MQ equation is based on two processes in the parton cascade:
(i) The splitting of gluons generated by the QCD vertex : g—g + ¢;

(ii) The recombination of gluons promoted by the same vertex : g + g—g.

For splitting process 1 — 2, the probability is proportional to a,p, whereas the prob-
ability for recombination process 2 — 1 is in proportion to a,r?p?. Here, p:%
is the gluon density in the transverse plane, mR? is the target area, and R is the
correlation radius between two interacting gluons [40]. It is worthwhile to mention

that R is non-perturbative in nature and therefore all phenomena that occur at dis-

tance scales larger than R is non-perturbative [41]. Here, r is the size of the gluon

1
Q

of gluons is influential since p<1. At x—0, on the other hand, the density of gluons

induced in the recombination process and for DIS r~=. For, x ~ 1 only the emission
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p happens to be so high that the recombination of gluons should also be taken into
account. Considering a cell of volume Aln Q?Aln(1/z) in the phase space, number
of gluons increases through splitting and decreases through recombination and this
picture allows one to write the modification of the gluonic density as [41, 42]

Oxg(x, Q%)  axN,

2
oln(1/2)0In Q2 “zg(r, Q%) — ngéz [zg(z, Q%)) (2.13)

which is known as the GLR-MQ equation. The factor « is found to be v = 81/16

for N. = 3, as evaluated by Mueller and Qiu [30]. Here the gluon distribution
is represented by G(z,Q?) = zg(x,Q?), where g(z,Q?) is the gluon density. The
quark-gluon emission diagrams are ignored because of their negligible influence in the
gluon-dominated small-z domain. The first term in the right hand side of Eq.(2.15)
represents the usual DGLAP term in the DLLA and hence linear in gluon field. The
second term, having a negative sign controls the growth of the gluon distribution
generated by the linear term at small-z and consequently delineates shadowing cor-
rections emerging from recombination of two gluons into one. Likewise, the GLR-MQ

equation for sea quark distribution can be written as

Orq(z,Q*)  0G(z,Q?) 27 aZ(@%)
dn(1/z)dInQ?  9lnQ? |pgrar 160 R2Q?

[G(% QQ)T +HT, (2.14)

where HT denotes a higher-dimensional gluon distribution term suggested by Mueller
and Qiu [30].

In the linear QCD evolution of DIS structure functions like the DGLAP or BFKL
only the splitting of quarks and gluons is considered. This leads to a constant increase
of the parton densities at small-z eventually violating the unitarity bound and are
therefore expected to be tamed by the inverse recombination processes. Therefore,
in order to account for gluon recombination processes, apart from the production
diagrams, the GLR-MQ equations also include the dominant non-ladder contributions
denoted as the fan diagrams. The fan diagrams take into consideration some of the
gluon recombination processes that turn significant at small-z and therefore plays
the key role in the restoration of unitarity. These diagrams are depicted in Fig.2.4.

The gluon recombination term in the GLR-MQ equation contains a factor 1/Q?,
whose dimension is balanced by the parameter R representing the size of the region
containing the recombining gluons. The size of the nonlinear term varies as 1/R?.

The value of R depends on how the gluons are distributed within the proton or how
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Figure 2.4: Fan-diagrams contributing to the GLR-MQ equation

the gluon ladders couple to each other. The gluon ladders may emerge from different
constituents of the proton or from the same constituent. The gluons are supposed to
be distributed uniformly across the whole of the proton if the gluon ladders emerge off
distinct valence quarks. In that case R is of the order of proton radius Rj, that is to
say R ~ 5 GeV~! and recombination or shadowing correction is negligibly small [29)].
On the other hand, if the gluon ladders couple to the same parton then it leads to a
higher gluon density in the parton’s vicinity. Such smaller regions within the proton
where the gluon density is higher than the average are known as the so-called ‘hot
spots’ [43, 44]. The hot spots could specify the fast onset of gluon-gluon interactions
in the environs of the emitting parton and so boost the recombination effect. The
value of R for such hot spot, is considered to be of the order of the transverse size of
a valence quark i.e R ~ 2 GeV~!.

A remarkable feature of the GLR-MQ equation is that it predicts the saturation
momentum in the asymptotic region x — 0. Moreover, it predicts a critical line
separating the perturbative regime from saturation regime and it is valid only in
the vicinity of this critical line [42]. The general benchmark of this equation is that
the nonlinear corrections should be small as compared to the linear term, otherwise
further corrections must be taken into account and non-perturbative effects could be

of significance. As the GLR-MQ equation only includes the first nonlinear term, so
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this equation is not legitimate in very high density region where the contributions

from the higher order terms become crucial.

2.2.2 MD-DGLAP equation

The MD-DGLAP equation [31, 32] sums up all possible twist-4 cut diagrams in the
LL(Q?) approximation and describes the corrections of parton recombination to the
QCD evolution equation. These equations are advocated by Zhu and Ruan. This
equation is obtained by aggregating the Feynman diagrams in the framework of the
time-ordered perturbation theory (TOPT) [45] instead of the AGK cutting rule [39].
The MD-DGLAP equation for gluon distribution is [31, 32]

d:cg(x, QQ) o 2 2
TAn(Q?) Pag ® G(7,Q7) + Pyq ® S(z,Q°)
O‘zk ‘ 2 2 gg—g
+ L dr1x21G*(21, Q) )ZR (21, )
o2k 12
S [ dnan G e, @) Y P wa) (2.15)
and for sea quark distribution is [31, 32]
dzq(z, Q)
“an(Qy -~ Fw ® G(7,Q) + Pog ® S(,Q%)
Oégk ’ 2 2 gg—rq
0 , dryzm G2 (21, Q%) Y PP 7wy, )
o2k 12
— 652 / dr vz, G? (21, Q%) Zﬂgg_}q(xl,x), (2.16)

where P are the evolution kernels of the linear DGLAP equation. The recombination

functions are

99 27 (2x1 — x)(—136x23 — 64z,2% + 1322322 + 9927 + 1627)
Zpl (21, 2) = 64 s} ’
i 1

(2.17)

1 (221 — 2) (3623 + 492,22 — 1423 — 6022
ZP;].‘]—HZ<$1’$> — E( T .’,U)( x]_ + 551‘,’1: T T .CU) (218)
1

)

The nonlinear coefficient k£ depends on the definition of the double parton dis-
tribution and the geometric distributions of partons inside the target. The positive
third terms on the right-hand side of both Eq.(2.17) and Eq.(2.18) represent the
anti-shadowing effect, whereas the negative fourth term is the result of the shad-

owing correction. The concurrence of shadowing and anti-shadowing in the QCD
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evolution of the parton densities is a usual demand for the local momentum conser-
vation. The shadowing and anti-shadowing terms are defined on distinct kinematic
regions [x,1/2] and [x/2, z] respectively. Hence, the overall recombination effects in
Eq.(2.17) are not only associated to the value of gluon density, but also depend on
the slope of the gluon distribution in the space [x/2,z]. This implies that a steeper
gluon distribution has an intense antishadowing effect as compared to a lower gluon

distribution.

2.2.3 BK equation

The BK evolution equation [33, 34] is based on the BFKL equation and was de-
rived by Balitsky and Kovchegov in the large-N, limit, with V. being the number
of colors. The BK equation is an upgraded form of the GLR-MQ equation and it
determines the saturation of parton densities at very small-z. This equation is writ-
ten for the scattering amplitude N. It provides an explanation of the more specific
triple-pomeron vertex [46, 47| and can be utilized for the non-forward amplitude.
The BK equation is obtained in the leading In(1/x) approximation of perturbative
QCD, i.e. it sums all contributions of the order (aIn(1/z))™. The contributions of
the orders a,(a,In(1/x))" and a, In Q?(a, In(1/2))™ are not included in this equation.
The phenomenological analysis of this equation is performed in the dipole model [48,
49| approximation, where the nonlinear terms are supposed to be formed by the
dipole splitting and the screening or shadowing effects are emerged from the double

scattering of the probe on the final states. The BK equation reads

ON(r,Y;b)  a d*r'r?
oY o2 ) (r— )22
1
x [QN(r’, Yib+5(r—1)) = N(r,Y;b)
1 1
—N(r’,Y;b—é(r—r/))N(r—T/,Y;b—57”,)]7 (2.19)

where @y = (asN.)/m, N(r,Y;b) is the scattering amplitude of interaction for the
dipole with the size r and rapidity Y = In(1/x), at impact parameter b. In the large
N, limit Cp = N,./2, where N, is the number of colors.

Eq.(2.21) is an integro-differential equation and it presents the scattering am-
plitude N(r,Y;b) at all rapidities Y > 0 provided the initial condition at ¥ = 0 is

known. The physical significance of Eq.(2.21) is that the dipole of size r decays in
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two dipoles of sizes ' and r — r’ which interact with the target. The linear part
of Eq.(2.21) is the usual LO BFKL equation [5-7], which accounts for the evolution
of the multiplicity of the color dipoles of fixed size in respect of the rapidity Y.
The nonlinear term considers a coexisting interaction of two produced dipoles with
the target and it sums the high twist contributions. An outstanding feature of the
BK equation is that its solution predicts a limiting form of the scattering amplitude

resulting in parton saturation.

2.2.4 MD-BFKL equation

The nonlinear MD-BFKL [35] equation was suggested by Zhu, Shen and Ruan to
describes the corrections of the gluon recombination to the BFKL equation, but it
differs from the BK equation. The MD-BFKL equation forecasts an intense shadow-
ing effect, which subdues the gluon density. Surprisingly, it generates the extinction
of gluons below the saturation region. This unforeseen effect of gluon extinction be-

low the saturation region is induced by an apparent chaotic solution of the equation

as suggested in [35]. The MD-BFKL is defined as
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The nonlinear part of the MD-BFKL equation has an infra red (IR) divergence
very much alike the BFKL kernel and as a matter of course, it requires the regu-
larization scheme alike the BFKL equation. The evolution kernels in the linear and
nonlinear parts of the MD-BFKL equation are fixed by using the same procedure
of summations of the real and virtual processes. This equation is derived on the
basis of the TOPT cutting rules just as the MD-DGLAP equation to include the
contributions from the virtual processes in the linear and nonlinear parts of the MD-
BFKL equation. The MD-BFKL and BK equations differ from each other in their
assumptions of regularization schemes. In MD-BFKL equation the singularities in
the nonlinear real part are aborted by the contributions from the complementary vir-
tual processes, whereas such singularities are assimilated into the double amplitude

NN in BK equation.
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2.2.5 JIMWLK equation

The JIMWLK evolution equation [36-38], advocated by Jalilian-Marian, lancu, McLer-
ran, Weigert, Leonidov and Kovner, is the renormalization group equation (RGE)
for the Color Glass Condenstate and describes the small-z hadronic physics in the
regime of very high gluon density. This is a functional Fokker-Planck equation re-
garding a classical random color source, which defines the color charge density of the
partons with large-z [38]. This equation controls the evolution with rapidity of the
statistical weight function for the color glass field.

The JIMWLK equation in the compact form is [50]

. 1
orZ.[U] = —5iVs WiV Z:[U], (2.21)

achcy

where Z,[U] is the weight functional and it governs the correlators O[U] of U fields
conforming to (O[U]). = [ D[U]O[U]Z.[U], with D[U] being a functional Haar mea-
sure [50]. V2 are functional form of the left-invariant vector fields affecting U, in

accordance with

iVeU, = Ut (2.22)

Yy

where U, are the Wilson line variables representing the kinematically enhanced de-

grees of freedom. Again

a Qs rrt T St a
=G [ el - im0 - 0o,
and

(z = 2)-(z =)
(x—22(z—¢?)

The deduction of the JIMWLK equation demands an analytic estimation to all

Ky = (2.23)

orders in the environment of a classical gluon field for a random light cone source. The
solution of the JIMWLK equation is normally anticipated to enable the saturation
momentum to raise constantly as y — oo. Moreover its solution is supposed to be
universal. In the restrain of weak field the JIMWLK equation scales down to the
BFKL equation, whereas in the large N, limit, it grows to be equivalent to the BK

equation.
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2.3 Solutions of evolution equations

The QCD evolution equations are the underlying theoretical tools to compute the
quark and gluon distributions and eventually the DIS structure functions. On that
account the solutions of the evolution equations are drawing attention substantially.
The solutions of the DGLAP equation for the QCD evolution of PDFs have been dis-
cussed considerably over the past years. There exist two main classes of approaches:
those that solve the equation directly in z-space, and those that solve it for Mellin
transforms of the parton densities and subsequently invert the transforms back to
x-space. Some available programs that deal with DGLAP evolution are CANDIA
[51] based on the logarithmic expansions in z-space, QCD PEGASUS [52], which is
based on the use of Mellin moments, HOPPET [53] and QCDNUM [54]. HOPPET
is a Fortran package for carrying out QCD DGLAP evolution and other common
manipulations of PDFs. The Fortran package QCD PEGASUS provides fast, flexi-
ble and accurate solutions of the evolution equations for unpolarized and polarized
parton distributions of hadrons in perturbative QCD. Similarly QCDNUM is a For-
tran program that numerically evolves parton densities or fragmentation functions
up to NNLO in perturbative QCD. Most of the methods used for the solution of
DGLAP equation are numerical. Laguerre polynomials [55, 56], Brute-Force method
[57], Matrix method [58], Mellin transformation [59, 60] etc. are different methods
used to solve DGLAP evolution equations. The shortcomings common to all are the
computer time required and decreasing accuracy for x — 0. More precise approach
to the solution of the DGLAP evolution equations is the matrix approach, but it is
also a numerical solution. A numerical solution does not provide the full control on
the employed phenomenological parameters, and the transparency and simplicity of
physical interpretation are lost if one relies only on the numerical solutions.

As an alternative to the numerical solution, one can study the behavior of quarks
and gluons via analytic solutions of the evolution equations. Even though exact
analytic solutions of the DGLAP equations cannot be obtained in the whole range of
x and Q?, such solutions are possible under definite conditions and are fairly successful
as far as the HERA small-z data are concerned. In recent years, such a scheme in
the analytic study of the DGLAP equations has been reported with considerable

phenomenological success [61-67]. The Taylor series expansion method, the method
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of characteristic and the Regge theory methods are some of the very simple and frugal
analytical methods that have been utilized widely to obtain the solutions of DGLAP
equations. Part I of this thesis also reports the analytical solutions of the DGLAP
equations for DIS structure functions upto NNLO with significant phenomenological
triumph.

In contrast to the DGLAP equation, it is very difficult to the solve the BFKL
and CCFM equations. Although the solution of the LO BFKL evolution is known,
but regardless of a number of attempts, it seems that an exact analytical solution
of the NLO BFKL equation, or a general all-order BFKL equation in QCD is still
unavailable. Nevertheless, in a conformal field theory without the running of the
coupling, i.e. in the N = 4 super Yang-Mills theory, the form of the solution of the
BFKL equation to all-order has been identified [68, 69]. The numerical solution of
CCFM equation can be obtained by monte-carlo approach CASCADE to study the
small-x regime. Although in the single loop approximation the CCFM equatiion can
be solved analytically [70], but due the non Sudakov form-factor the solution beyond
the single-loop approximation is less apparent.

The solutions of the nonlinear evolution equations, on the other hand, are par-
ticularly important for understanding the nonlinear effects of gluon-gluon interaction
due to the high gluon density at small-z. The solution of nonlinear evolution equa-
tions also provide the determination of the saturation momentum, which incorporates
physics in addition to that of the linear evolution equations commonly used to fit the
DIS data. It is very difficult to solve the nonlinear equations analytically, unlike the
linear DGLAP equations. However the studies on the solutions and viable general-
izations of the GLR-MQ type equations in different approaches have been revealed
in the last few years [25, 28, 29, 71-80]. In Refs. [29, 71-74] the solutions of GLR-MQ
type nonlinear equations are reported in semi classical approach using characteris-
tics method which leads to existence of a critical line separating the perturbative
regime from the nonperturbative one. Here it is shown that all characteristics in the
region of small-x cannot cross this line but can approach it. Again a new equation
is proposed in Ref.[75] which generalizes the GLR equation and allows to probing
into smaller distance in the dense parton system considering the shadowing effects

more exclusively by including multigluon correlations. The general solution to the
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new equation is obtained in in an eikonal approach and fixed a,. A new approach for
searching a solution of the nonlinear GLR-MQ evolution equation in the nonpertur-
bative part of the small-z region is discussed in Ref [76]. Here it is justified that the
suggested solution satisfies all physics restrictions and there is only one solution that
complements the perturbative DGLAP evolution. A color dipole approach to the
solution to the nonlinear GLR-MQ like equation for high parton density is suggested
in the full kinematic region including x — 0 in Ref.[77]. The solution replicates the
saturation of the gluon density. However due to moderate dependence on the impact
parameter, the saturation gives rises to the dipole-target total cross section propor-
tional to In(1/z) in the region of very small-z. A numerical analysis of the GLR-MQ
equation is presented in Ref. [78] where the signatures of gluon recombination are
discussed. They also provide a simple and qualitative idea to explore the H1 [79] ex-
perimental data for evidence of gluon recombination. Similarly, a numerical solution
of GLR-MQ equation is suggested in Ref.[25], where the effects of the first nonlin-
ear corrections to the DGLAP evolution equations are studied by using the recent
HERA data for the structure function Fy(z,Q?). It is argued in this paper that the
nonlinear corrections become important at < 1072 and Q? < 10 GeV?, but become
negligible at large-z and large-Q?. In Ref.[28] The effect of absorptive corrections
due to parton recombination on the parton distributions of the proton is discussed at
small-z in a more precise version of the GLRMQ equations using a truncated version
of the MRST2001 NLO analysis [26]. Moreover the approximate analytical solutions
of the nonlinear GLR-MQ evolution equation have also been reported in recent years
(80, 81]. In part II of this thesis we present a semi-analytical approach to solve the
GLR-MQ equation in the vicinity of saturation and make a deliberate attempt to
explore the effect of nonlinear or shadowing corrections in the kinematic region of
small-z and moderate Q2.

Unlike GLR-MQ the other nonlinear equations are comparatively complicated to
solve. The numerical solutions to BK or JIMWLK nonlinear equations in the presence
of the impact parameter is very challenging. The JIMWLK equation is difficult to
solve, even numerically as it consist of an infinite hierarchy of coupled evolution
equations. The BK hierarchy is a special case of the JIMWLK equation where

the primary projectile is set and captured by a quark-antiquark pair. For practical
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calculations one may use the average field approximation and thereby diminish a
full infinite hierarchy to a single closed equation. Even if the full analytical solution
of the BK equation is not known, a number of its general properties, such as the
existence and shape of limiting solutions, have been determined in both analytical
[82-84] and numerical [85-89] approaches in recent years. On the other hand, in
Ref.[90] numerical solutions to the MD-DGLAP equation are reported in the small-z
region using a with GRV like input distributions. Here the the small-x behavior
parton distributions in the nucleus and free proton are predicted numerically and it
is seen that gluon recombination at the twist-4 level suppresses the rapid increase of
parton densities towards small-x. It is further claimed that saturation and partial

saturation occur sooner than the saturation scale Q? is reached.
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Chapter 3

NNLO Analysis of Singlet and
Non-singlet Structure Functions in
the DGLAP Approach

3.1 Introduction

Structure functions in lepton-nucleon DIS are the entrenched observables exploring
QCD. They are defined as convolution of the universal parton momentum distribu-
tions and coefficient functions, which contain information about the boson-parton
interaction. Therefore the structure functions provide exclusive information about
the deep structure of hadrons and most importantly, they form the backbone of
our knowledge of the parton densities, which are indispensable for analyses of hard
scattering processes. Thus the measurements of the structure functions allow pertur-
bative QCD to be precisely tested. The standard and the basic tool for theoretical
investigation of DIS structure functions are the DGLAP evolution equations [1-4].
Therefore the solutions of DGLAP evolution equations give quark and gluon distri-
bution functions which ultimately produce proton, neutron and deuteron structure
functions.

The solutions of the unpolarized DGLAP equation for the QCD evolution of
structure functions have been discussed considerably over the past years. The stan-
dard and the most extensively used procedure of studying the hadron structure func-
tions is via the numerical solution of these equations [5-10], with excellent agreement

with the DIS data over a wide kinematic region in x and Q?. However, apart from the
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numerical solution, there is the alternative approach of studying analytically these
equations at small-x. Although exact analytic solutions of the DGLAP equations
cannot be obtained in the entire range of 2 and (2, such solutions are possible under
certain conditions [11, 12] and many approximated analytical solutions of DGLAP
evolution equations suitable at small-z, have been reported in recent years [13-22]
with considerable phenomenological success.

The singlet and non-singlet structure functions in DIS i.e. the flavor indepen-
dent and flavor dependent contributions to the structure functions play the key role
for accurate determination of the quark and gluon densities and therefore they can
be considered as the basis for the analysis of other structure functions. In this
chapter, by using a Taylor series expansion valid at small-x, we first transform the
DGLAP equation, which is an integro-differential equation, into a partial differential
equation in the two variables (z,Q?) and the resulting equation is then solved at
LO, NLO and NNLO respectively by the Lagrange’s auxiliary method. Inclusion of
the NNLO contributions considerably reduces the theoretical uncertainty of deter-
minations of the quark and gluon densities from DIS structure functions. Here, we
investigate the impact of the NNLO contributions on the evolution of the singlet and
non-singlet structure function respectively considering the corresponding DGLAP
evolution equations. The singlet distribution is comparatively complicated to com-
pute as it is coupled to the the gluon densities. We also calculate the Q% evolution
of deuteron and proton structure functions upto NNLO from the solutions of singlet
and non-singlet structure functions. Moreover the z-evolution of deuteron structure
function is calculated upto NNLO. We compare our predictions with NMC [23], E665
[24], and H1 [25] experimental data as well as with the NNPDF [26] parametrization
based on the NMC and BCDMS data.

3.2 Formalism
3.2.1 General framework

The singlet and non-singlet quark density of a hadron is given by [27]

Ny

gs(7, Q%) = _[ai(z, Q%) + Tilz, @), (3.1)

=1
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Ny

ans(2,Q%) =) _lai(e, Q%) — Gilz, Q*)], (3.2)

i=1
where ¢;(z, Q%) and g;(z, Q?) represent the number distribution of quarks and anti-
quarks, respectively, in the fractional hadron momentum z. The corresponding gluon
distribution is denoted by g(z, @?). The subscript 7 indicates the flavour of the quarks
or anti-quarks and Ny is the number of effectively massless flavours.

The DGLAP evolution equation in the singlet sector in the standard form is

given by [28§]

3 qs) (qu qu) (qs)
_ , 3.3
alncg?( g P, B, ) C\ g (3.3)

where Py, Py, Pyq, Pye are splitting functions. The singlet structure function in-
volves the quark-quark splitting function F,, and gluon-quark splitting function P,
whereas non-singlet structure function involves only the quark-quark splitting func-

tion P,,. The quark-quark splitting function P,, can be expressed as a power series

of a,(Q?) [10]

Pu(r.@) = 1) p0e) 4 (P9DY P 4 (DY p )
+ OPY (), (3.4)

where Pq(g) (x), Pq%)(x) and Pq(g)(m) are LO, NLO and NNLO quark-quark splitting
functions respectively. Other splitting functions can be expressed in a similar way.
The symbol ® stands for the standard Mellin Convolution in the momentum variable

defined as

a(z) ® b(x) = / 1 d—“’a(w)b(f). (3.5)

e W w

Thus, using Eq. (3.5), Eq. (3.3) can be written as

e (e ) =[5 (G 70 (edhl) e

which implies

aq;l(jgg ) :/x %(qu(w>93(x/w,Q2) + qu(w)g(x/w,Q2)), (3.7)
0g(z,Q%) _ /1 dw

Lt = | Z(Pulstaf, @) + Prlwlglafe, ). 39
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On the other hand, the DGLAP evolution equation in the non-singlet sector in
the standard form is given by [29]

ans(fL', QQ) _
olnQ?

where Pyg(r,Q?) is the non-singlet kernel known perturbatively up to the first few

Prs(z,Q%) ® qns(z, Q?), (3.9)

orders in a,(Q?) [30]. Using equation (3.5), equations (3.9) can be expressed as

2)
aqgﬁﬂ%? / ® Pys(w)as(@/w, Q%) (3.10)

The quark-quark splitting function P, in equation (3.6) can be expressed as
Py = Pys + Ny(Pj, + P.) = Pys + Ppg. Py, and P; are the flavor-independent
contributions to the quark-quark and quark-antiquark splitting functions respectively.
The non-singlet contribution Pyg dominates FP,, at large-z whereas at very small-
x the pure singlet term Ppg dominates over Pyg [31]. The quark-gluon (P,,) and
gluon-quark (P,,) entries in equation (3.6) are given by P,, = NyF,., and Py, = P,
where P, and P, are the flavor-independent splitting functions.

The running coupling constant ag(Q?) has the form [14, 32]

as(Q*) 2

o [oln(Q2/A2)’ (3.11)
a,(Q?*) 2 1l (In(Q/A?))

o BOIH(QQ/A2) |:1 ﬁo ID(QQ/AQ) i|; (312)
o(@%) S PR o (n(Q*/A%) 1

2 Boln(Q?/A?) B2 In(Q?/A2) 3 n(Q2/A2)

{gl (1n* (1n(Q/A%)) — In (n(Q*/A%) — 1) + 5 }] (3.13)

at LO, NLO and NNLO respectively. Here

11 4 2
= —N,— Ty =11— =Ny,
fo=3 3 37/
34 10 38
B = ?]\ﬂ — 5 NeNy = 2CpNy =102 — =Ny,
2857 205 1415 44 158
= T N}420%Ty — ——CpN/; — ——N>T; + —CpT? + —NT?
& sy Ve + 205 Ty = == CrNeTy = =2 1+ g Crly + 5o NIy
2857 6673 325
D) 18 I T gt

are the one-loop, two-loop and three-loop corrections to the QCD S-function and Ny

being the number of quark flavours. Here we use Ny = 4, N, = 3. The Casimir
NP1 4 ]

= — an = —Ny.
9N, 3 T

operators of the color SU(3) are defined as Cr =
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3.2.2 LO analysis of singlet and non-singlet structure func-
tions

Substituting the explicit form of the LO splitting functions [4, 11] in Eqgs. (3.7) and
(3.10) and simplifying, the DGLAP evolution equations for singlet and non-singlet

structure functions at LO can be written as

OFy (z,t)  as(t) 2 5 ;

ot or [5{3 +4ln(l = 2)}FF (o, t) + I (1)), (3.14)
OFNS(z,t)  as(t) 2 Ve s

ot on [§{S+4ln<1 — o)} () + 1 (:c,t)}, (3.15)

whete F (z,1) = 0% efalas + @, and F'¥(z,1) = 52 efalg: — 7. The integral

functions are given by

I’(z,t) = é/; d—w[(l —|—w2)F2S(g,t> — 2F2S(:c,t)]

3 1—w
+ fo{w? r(1- w)Q}G<§,t>dw, (3.16)
INS(z ) = g/l 1d_—°"w [+ EYS (2 0) = 2R (1)) (3.17)

2
Here we use a more convenient variable ¢ defined by ¢ = In <—) with A being the

A2

QCD cut off parameter, the scale at which partons turn themselves into hadrons.
To simplify and reduce the integro-differential equation to a partial differential

equation we introduce a variable u = 1—w so that the argument x /w can be expressed

as

T T n TU
— = =z .
w 1—u 1—u

(3.18)

Since r < w < 1, so we have 0 < u < 1 — x. This implies that the above series is
convergent for |u| < 1. Now using Eq. (3.18), we can expand Fy (z/w,t) by Taylor
expansion series as
x Tu
() = (e
2 wv 2\ T + 1 — U’
U )0F25(1',t) N 1< Tu )282F23(x,t)

ox 2 0%z

= FQS(x,t)—i-(

1—u 1—u

(3.19)
As x is small in our region of discussion, the terms containing x? and higher powers

of z can be neglected and therefore Eq. (3.19) takes the form

zu OFY(z,t)
l—u Ox

Ff(gt) = FS(z,t) + . (3.20)
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Similarly,

x ru OG(x,t
G(;,t) = o)+ 7= u%, (3.21)
NS
FNS (g t> = FNS(2,t) + ﬂ“bu or, a;x’t). (3.22)

Putting Eqgs. (3.20) and (3.21) in Eq. (3.16) and carrying out the integrations

in u we get from Eq. (3.14)

Wza_(:,t) - O‘g—s) [Al(:c)FQS(x,t) + Az(x)w%—(;’ﬂ + As(x)G(x, 1)
+A4(w)%], (3.23)

where A;(z) (i=1,2,3,4) are functions of = (see Appendix A). Eq.(3.23) is a first order
partial differential equation for the singlet structure function Fy(z,t) with respect to
the variables x and t. Beyond its traditional use in ¢ or Q?-evolution (¢ = In(Q?/A?)),
it also provides x-evolution at small-x. There are various methods for solving the
partial differential equations in two variables. We here adopt the Lagrange’s auxiliary
method as mentioned in the introduction.

The @Q?-evolution of the proton structure function Fy(x, Q?) is related to the
gluon parton densities in the proton G(z,@?) and to the strong interaction cou-
pling constant ag. The gluon parton densities cannot be measured directly through
experiments. It is, therefore, important to measure the G(z,@?) indirectly using
Fy(z,Q?). Hence the direct relations between Fy(z,Q?) and the G(z,Q?) are ex-
tremely important because using those relations the experimental values of G(z, Q?)
can be extracted using the data on Fy(x,Q?). Therefore, in the analytical solutions
of DGLAP evolution equations for singlet structure functions or gluon parton den-
sities, a relation between singlet structure function and gluon parton densities has
to be assumed. The commonly used relation is G(z,t) = K (z)Fs (x,t) [15, 16, 19],
where K () is a parameter to be determined from phenomenological analysis. We
can consider this form as the evolution equations of gluon parton densities and singlet
structure functions are in the same forms of derivative with respect to t. Moreover
the input singlet and gluon parameterizations, taken from global analysis of PDFs,
in particular from the MSTWOS8 parton set, to incorporate different high precision
data, are also functions of z at fixed Q? [33]. So the relation between singlet structure

function and gluon parton densities will come out in terms of x at fixed-Q?. However,
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the actual functional form of K (x) can be determined by simultaneous solutions of
coupled equations of singlet structure functions and gluon parton densities. Further
discussions on K (z) are presented in Appendix G.

Hence Eq.(3.23) takes the form

_tans(x, t) OFY (z,1)

T L3 (x) s M2 (x)Fy (z,t) = 0, (3.24)

where
L5 (@) = As | Ax() + K (@) Au(a)] (3.25)
M?(z) = Ay [Al(x) + K(z)As(x) + 3}555)144(@ : (3.26)

with Af:%. Now the general solution of the Eq.(3.24) is
F(U,V)=0, (3.27)

where F(U,V) is an arbitrary function of U and V. Here, U(z,t, Fy) =k, and

V(z,t,Fy) = ko are two independent solutions of the Lagrange’s equation

or Ot OFy (x,t)

U 2 . 2
L) 1 M@ E ) 22
Then by solving Eq. (3.28) we obtain
1

Sy — . PR

Uz, t, Fy) =t exp[/ Lf(m)dx]’ (3.29)
M7 ()

Sy _ S ) 1

Vix,t, Fy) = Fy (z,t) exp[ Lo (o) dx]. (3.30)

Thus we see that it has no unique solution. In this approach we attempt to
extract a particular solution that obeys some physical constraints on the structure
function. The simplest possibility to get a solution is that a linear combination of U

and V should obey the Eq. (3.27) so that
a-U+B-V=0, (3.31)

where a and 3 are arbitrary constants to be determined from the boundary conditions
on Fy. Putting the values of U and V from Eq.(3.29) and Eq.(3.30) in this equation

we get

at - exp[/ %dm} + BES () - exp[/ j\[/:[?(f)) d:z:] =0, (3.32)
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which implies

1 MP(z)
Fy(x,t) = —7t - — —12)d :
2
where v = % is a constant. Now at ¢ = ty, where {; = In (A—g> for any lower value
Q? = Q?, we define
1 M7 (z)
Fy(z,t0) = —7to - — " 2)dx|. 3.34
2 (%:%0) = = eXp[b/a(Lf<x> L(o)) d .
Then Egs. (3.33) and (3.34) lead us to
t
FS(2,t) = FS(x.,to) (t—) (3.35)
0

This gives the t-evolution for singlet structure function at LO at small-z. Again

defining at a higher value of x = =z,

S X
FS(zg,t) = —t - exp[ / ( L;(x) - ]\L{; <(x)))dx] - (3.36)
we obtain
T S T
FS(x,t) = F (w0, 1) - exp[/ (L;(x) - ]\g%((x)))dx] (3.37)

This gives the xz-evolutions of singlet structure functions at LO.

Now substituting the approximated form of Taylor expansion of non-singlet struc-
ture function from Eq.(3.22) in Eq.(3.17) and performing u-integrations we obtain
from Eq.(3.15)

OFNS(x,t)  ag(t) OFNS (1)

_ NS
5 = o @ (@t) + Ax(e)— : (3.38)
which we can rewrite as
NS NS
O ) sy OF ) sy NS () = 0 (3.39)
ot ox
Here
LS (2) = Ay Ay(), (3.40)
MNS(z) = A Ay (z). (3.41)

Proceeding in the same way as the singlet case we solve Eq. (3.39) for non-singlet

structure function and obtain

F (1) = F3" (2, 1) (%) (3.42)
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and

T NS T
FNS(2,1) = FVS (20, 1) - exp[ / ( L{V; ch ]‘élvs ((x)))dz}, (3.43)

which give the ¢ and z-evolutions of non-singlet structure functions respectively at

LO respectively.
For phenomenological analysis, we compare our results with various experimental
structure functions. The deuteron structure function measured in DIS can be written

in terms of the singlet structure function respectively as [11]

Fi(a ) — gFQS(x, ). (3.44)

Again the proton structure function measured in DIS can be expressed in terms of

the singlet and non-singlet structure function as [11]

) 3
FP(x,t) = 1—8F25(a:,t) + 1—8F2NS(37, t). (3.45)

Substituting Eqs. (3.35) and (3.37) in Eq. (3.44), the t and z-evolutions of deuteron

structure function at LO can be obtained as

Fi(a, 6) = F(, to) (%) (3.46)
and
Fi(x,t) = F(xy, 1) -exp[ / (%@ — ]\é((x)))dx]. (3.47)

Here the input functions are F'(x,to) = 2F5 (2, to) and Fy(wo,t) = 3F5 (w0, 1).
On the other hand, substituting Eqs. (3.35) and (3.42) in Eq. (3.45), we get the
t-evolutions of proton structure function at LO

Fy(z,t) = Fé’(w,to)(%>, (3.48)

with the input function is F} (z,t0) = % F5 (2, t0)+ 5 F5 ° (2, to). It is to be noted that
the determination of z-evolution of proton structure function like that of deuteron
structure function is not suitable by the method adopted here. The reason is that in
order to calculate the x-evolution of proton structure function, we have to put Egs.
(3.37) and (3.43) in Eq. (3.45). But the functions inside the integral sign of Egs.
(3.37) and (3.43) are different and so the the input functions Fy (x,t) and F'¥(zg,t)
have to be separated from the data points to extract the z-evolution of the proton

function, which may contain large errors.
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3.2.3 NLO analysis of singlet and non-singlet structure func-
tions

Considering the splitting functions at NLO [12, 34, 35], the DGLAP equations for

singlet and non-singlet structure functions at NLO in standard form can be written

S(y N
8F28(t S ;7(:) E{g Al — o)} FS (2, 6) + I5(x, t)]
N (a;f:)>215(x,t), (3.49)
NS T o
8F2a—t(’t) _ ;(Tf) [g{g +41In(1 — g;)}FQNS(x’t) 4 [{Vs(x’t)}
+ (Qg—?)zgs(“"t)' (3.50)

The integral functions I7 (x,t) and IV5(x,t) are defined in Egs. (3.16) and (3.17),

whereas
5(z,t) = (x—1)F25(x,t)/01f(w)dw+[E1f(w)F§<§,t)dw
+ /1 Fqsq(w)Ff(g,t)dw+/l Fq@(w)a(g,t)dw, (3.51)

1 1
I¥S(,t) = (z — 1)F2Ns(x,t)/ f(w)dw+/ f(w)szVS(f,t)dw. (3.52)
0 T w
The explicit forms of the functions f(w), F;(w) and F; (w) are given in Appendix
B.
Following the same procedure as in LO, the Egs. (3.49) and (3.50) can be

simplified as

—t% + Lg(x)% + M3 (z)Fy (x,t) = 0, (3.53)
—t% + LQVS(:U)% + MY (2)FNS(x,t) = 0. (3.54)
Here
L5(z) = A; [(Ag(x) + K(ac)A4(x)> T (Bg(yc) + K(a:)B4(x)>] , (3.55)
MS(z) = A [(Al(x) + K (2)As(z) + 8};;‘”) A4(x)>
+ Ty <31 () + K (2)Bs(z) + af;:(f) B4(:U))] , (3.56)
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LYS(z) = A; [Ag(x) + TOBQ(:I;)], (3.57)

with B;(z) (i=1,2,3,4) being the functions of = (see Appendix A). Here we consider
the numerical parameter Ty such that T2(t) = ToT(t) where T(t):ag—frt) and the

value of Tj is determined by phenomenological analysis. This numerical parameter
is obtained from a particular range of @2 under study and by a suitable choice of
Ty we can reduce the difference between T?(t) and TyT(t) to a minimum. Thus the
consideration of the parameter 7, does not give any abrupt change in our result.
Solving Eq. (3.53) we obtain the ¢ and z-evolutions of singlet structure function

at NLO as

1+b/t b b
S _ S
Fy(z,t) = Fy (%to)(W) 'eXP(z - %> (3.59)
and
SR | M3 (z)
Fy(z,t) = Fy (20,t) - / ——22d 3.60
2 (ZL‘, ) 2 (x()» ) exp[ - (Lg(x) Lg(x) ) $:|’ ( )
where b = % The input functions are defined as
0
b 1 M3 (z)
FS (. ty) = —t0H/0) g (2 / R ACY 3.61
Pasto) = ™ exp () o] [ (g5 — Tagy) ) (3.61)
b 1 M3 (z)
FS(20.1) = — 1t e (P - / e G N X
> (T0,1) = =7 eXp(t) eXp[ (Lg(l’) Lf(az)) x:|90=900 (362)
Now substituting Egs. (3.59) and (3.60) in Eq. (3.44) we get
t1+b/t b b
d _ d
Fi(x,t) = Fi(x, o) <t(1)+b ) e (5 - %> (3.63)
and
T o1 M3 (z)
F(z,t) = Fy(xo,t) - / ——22)d 3.64
2(x7 ) Q(x()? ) exp[ - (Lg(a:) Lg(x)) $]7 ( )

which lead us to the ¢ and x-evolutions of deuteron structure function at NLO.
Similarly the ¢ and z-evolutions of the non-singlet structure function at NLO are

calculated from Eq. (3.54) and given by

NS NS t1+b/t b b
F2 (ZL’, t) = F2 (ZE, to)(té_i_m) . eXp(Z — %> (365)
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and

x NS T
FNS(x,t) = ENS(z,1) - exp[/ (Lgi(x) — ]\gz\,s((x)))dx} (3.66)

Thus putting Egs. (3.59) and (3.65) in Eq. (3.45) we get

t1+b/t b b

FY(x,t) = F¥(x,to) (—tler/to) : exp(; — t_>’ (3.67)
0 0

which lead us to the t-evolution of proton structure function at NLO. It is not possible

to evaluate the z-evolution of proton structure function with the present method for

the same reason mentioned earlier.

3.2.4 NNLO analysis of singlet and non-singlet structure
functions

Using the splitting functions upto NNLO and simplifying [28-31], we get the DGLAP

equations for singlet and non-singlet structure functions at NNLO as

OF(x.t) _ SO 54 a1~ )} F 1) + 1)

ot 2m
+ (O‘;(T)) I5(x,t) + (O‘;(T)) 15(x, 1), (3.68)
OF”@1) ;t(“"’t) - O‘;(f) [ {3+ 4In(1 = )} Sz, 8) + 15z, 1)
+ (O‘;(f)) Y52, ) + (04;(;5)) I¥S(x,1). (3.69)
The integral functions I3 and IS are given by
5z, t)—/lcf:u[P (x )Fs(g,t) +qu(x)c:(§,t)}, (3.70)
I¥S(x, 1) / —vas )FNS (5 t) (3.71)

The explicit forms of the functions P, (), P,y(z) and P¥4(x) are given in Appendix
C.

Here we consider the numerical parameter 7y such that T3(¢t) = T,T(t) where
T(t):a‘;—ff). The value of 77 is determined by phenomenological analysis, like Tp,
from a particular range of Q? under study and by an appropriate choice of T} we can
reduce the error to a minimum. Thus Eqs. (3.68) and (3.69) can be simplified as

_tﬁFzs(x, t)
ot

OFY (z,1)

+ Lg(x) e

+ M (x)F5 (z,t) = 0, (3.72)
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L OF(x,)
ot

OFNS ()

+ L3 ()=

+ MY (2)FN5(x,t) = 0. (3.73)
Here

@) = Ag|(Aa(e) + K@) Ai(@)) + Ty Ba() + K(2)Ba(w))
T (cg(x) + K(x)@(x))] , (3.74)

0K (x)
ox

MS(x) = Af[<A1(x) + K () As(z) + A4(x)> +T0<Bl(x)

+ K (2)Bs(x) + agf) 34(x)) T (cl () + K(2)Cy ()

+ agf)@(x))}, (3.75)
L5(2) = Ag [ Ao(2) + Ty Ba() + T Ca(a)] (3.76)
MY5(z) = A, [Al(:c) + TyBi(z) + TlOl(:c)} (3.77)

with C;(z) (i=1,2,3,4) being the functions of x (see Appendix A).
We solve Eq. (3.72) following the same procedure as earlier and obtain the ¢ and

x-evolutions of singlet structure function at NNLO given by

FLH(b-b2) /8 b—c—bInt b—c—bIn’t
s _ s S :
Fy(z,t) = Fy(z,to) <té+(bb2)/to> ’ exp( - )

t ()
(3.78)
and
R | M3 (z)
FS(2,t) = F (z0,1) - [/ - =) da 3.79
2 (0] = Fylo, 1) - oxp 20 (Lég(x) Lg(x)) ! (379
respectively. The input functions are defined as
- b—c—bIn*t 1
s ) 0Y . /
2 (l‘, tO) 7 0 exp( to > eXp|: (Lg(l')
Mg (@)
_ d } .
Lg(x)) x|, (3.80)
2 b—c—b*In’t 1
Fz‘g(x(],t) = _’Yt(lﬂb b/ -exp( : ) : exp[/ (Lg(l’)
Mg ()
- .81
L5(x) )dx} _— (3:81)
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with b = 6—%, =12 Accordingly substituting Egs. (3.78) and (3.79) in Eq. (3.44)

=3
0 BO

we get

AHb—0?)/t ) (b —c—bIn’t b—c—bn? to)
- exp —

Fd 7t — Fd 7t <—
2(1’ ) 2($ 0) té-{—(b—bz)/to t to

(3.82)

and

T S T
Fi(z,t) = Fd(wo, 1) -exp[ / ( Lgl(@ . ]‘Lig (;)))dx], (3.83)

which provide us the ¢ and z-evolutions of deuteron structure functions at NNLO.

Thus using Eq.(3.82) we can calculate the evolution of deuteron structure function
with ¢t or Q? at fixed x at NNLO by choosing an appropriate input distribution
Fd(z,to) at Q? = Q3. Similarly Eq.(3.83) helps us to estimate the z-evolution
of deuteron structure function at fixed ¢ or Q® with a suitable input distribution
Fi(zo,t) at a given value z = .

Similarly, the solution of (3.73) provide us the ¢ and z-evolutions of the non-

singlet structure function given by

L 0-b)/t b—c—bIn%t b—c—bln’t
FY'S(a,1) = FYS(a,to) ) exp(FE s - 2

t[1)+(b—62)/to t to
(3.84)
and
x 1 MNS(LE)
FNS(x,t) = ENS(z0,t) - exp[/ -3 dm} (3.85)
: : P T Iw)
respectively. The input functions are defined as
_ b—c—b*In*t 1
F¥S(ats) =t e ) -exp /
5 (@, t0) Tto €xp o eXp (Lévs(a:)
M5 (x)
_ d } 3.86
L5 (350
ENS(uo.t) = 0020 exp<b—c——b21f12t> exp] / (—h
M5 (x)
_ d } . 3.87
Lévs(l') ) o T=x0 ( )

Thus putting Eq.(3.78) and Eq. (3.84) in Eq.(3.45) we obtain

FLH b))t b—c—02In*t b—c— b1t
) -exp( - >,

FY(,t) = B3 (0, t0) (St
2 (w,1) = Fy (2, 10) [l t to

(3.88)
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which gives the t-evolution of proton structure function. By considering a suitable
input distribution F¥(z,ty) at a given value Q? = Q2, we can determine the evolution
of proton structure function with ¢ or Q% at some fixed z from Eq.(3.88). The x
evolution of proton structure function is not possible at NNLO for the same reason
discussed earlier.

For phenomenological analysis of ¢t-evolution, we take the input distributions
Fd(z,to) and FY(x,ty) from experimental data corresponding to the lowest value
of the Q? range considered in our study. Similarly the input functions Fy(zo,t)
for phenomenological analysis of z-evolution are taken from the experimental data

corresponding to the highest value of the x range under consideration.

3.3 Result and discussion

In this chapter, we calculate the Q% or ¢ (t = In(Q?/A?)) and z-evolutions of singlet
and non-singlet structure functions. The deuteron and proton structure functions
are related to the singlet and non-singlet structure functions as given by the Egs.
(3.48) and (3.49). We calculate the ¢ and z-evolutions of deuteron stucture function
at LO, NLO and NNLO respectively. The t-evolution of proton structure function is
also obtained up to NNLO. We test the validity of the solutions, by comparing them
directly with the available data on deuteron and proton structure function. For our
analysis we use the data from the fixed target experiments viz. the NMC [23] in
muon-deuteron DIS from the merged data sets at incident momenta 90, 120, 200 and
280 GeV?, the Fermilab E665 [24] collaboration in muon-deuteron DIS at an average
beam energy of 470 GeV? and the H1 collaboration of HERA experiment data [25]
taken with a 26.7 GeV electron beam in collision with a 820 GeV proton beam. We
consider the H1 1995 data because these data sets are available in the range of our
consideration. Moreover, we compare our results with those obtained by the fit to
F¢ produced by the NNPDF parametrization [26]. The NNPDF parametrization
presents a determination of the probability density in the space of F; structure func-
tions for the proton, deuteron and non-singlet structure function, as determined from
experimental data of NMC [23], E665 [24], BCDMS [36] and H1 [37] collaborations.
Their results take the form of a set of 1000 neural nets, for each of the three structure

functions, which give a determination of F for given x and Q2. The central value and
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the errors of the structure functions determined in the NNPDF fit can be computed
out of the ensemble of 1000 nets according to standard Monte Carlo techniques.
We consider the range 0.0045 < z < 0.19 and 0.75 < Q? < 27 GeV? for NMC data,
0.0052 < 2 < 0.18 and 1.094 < Q? < 26 GeV? for E665 data and 0.004 < z < 0.03
and 5.5 < Q% < 38 GeV? for H1 data for our phenomenological analysis. Similarly
we use the range 0.0045 < z < 0.095 and 1.25 < Q% < 26 GeV? to compare our
results with the NNPDF parametrization. For the fit we consider Aj;g = 323 MeV
for a,(M?) = 0.11940.002. The vertical error bars represent the total combined
statistical and systematic uncertainties of the experimental data. To compute the
dependence of structure functions on Q% or in other words for t-evolution, we take
the input distributions from the data point corresponding to the lowest value of 2
for a particular range of Q2 under study. Similarly the data point corresponding to
the highest value of x of a particular range of x under consideration are taken as

input distribution to determine the x dependence of the structure functions.

0.020 T T T T T

— T%(t)+0.011

0.016 - - -T,T(t)+0.011

/

0.012 |- -

0.008 |- .

T(t), T,T(t) and T'(t), T,T(t)

0.004 |-

0.001 i 1 i 1 i 1 i 1 i 1 i
0 5 10 15 20 25 30

Figure 3.1: Comparison of T2 and Ty.T'(t) as well as T and T1.T'(t) versus Q2.

As mentioned earlier for the analytical solution of DGLAP evolution equation for
singlet structure function we consider a function K (x) which relates the singlet struc-
ture function and gluon densities. For simplicity we consider the function K (z) = K,
where K is an arbitrary constant parameter. We examine the dependence of our pre-

dictions on the values of the arbitrary constant K and find that the best fit results
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are obtained in the range 0.45 < K < 1.6 for our entire region of discussion.

As discussed in section 3.2 the numerical parameters T and 77, considered for
the solutions of the DGLAP equations at NLO and NNLO respectively, are obtained
for a particular domain of Q2 under study. To this end in Figure 3.1 we plot T?(t) and
ToT(t) as well as T3(t) and T1T(t) as a function of Q*. We find that for Ty = 0.048 the
difference between T?(t) and TyT'(t) is reduced to a minimum and for 77 = 0.008 the
difference between T3(t) and TyT'(t) becomes negligible in the range 0.75 < Q* < 50
GeV2. Therefore the consideration of the parameters Ty and T does not induce any
unexpected change in our results.

In Figure 3.2 we plot the predictions of the deuteron structure function ob-
tained from Eqgs.(3.46), (3.63) and (3.82) for LO, NLO and NNLO respectively as
functions of Q% at four representative values x = 0.0045,0.0125,0.0175 and 0.025
respectively. Here we compare our results with the NMC experimental data in the
range 0.75 < Q% < 27 GeV2.

In Figure 3.3 we plot our our set of solutions Eqs. (3.47), (3.64) and (3.83) for
deuteron structure function at LO, NLO and NNLO respectively as functions of x for
four fixed Q% = 7,11.5,20 and 27 GeV? respectively. Our predictions are compared
with the NMC experimental data in the range 0.0045 < x < 0.19.

Figure 3.4 represent the comparison of our results of ¢ or () evolution of deuteron
structure function calculated from Egs.(3.46), (3.63) and (3.82) for LO, NLO and
NNLO respectively with the E665 experimental data. Here we plot our predictions of
deuteron structure function as functions of Q? considering the range 1.094 < ) < 26
GeV? at fixed values of z, viz. x = 0.0052,0.00893,0.0125 and 0.0173 respectively.

In Figure 3.5 we plot our computed results of deuteron structure function ob-
tained from Eqgs.(3.47), (3.64) and (3.83) for LO, NLO and NNLO respectively as
functions of x and compare with the E665 experimental data considering the range
0.0052 < 2 < 0.18. The comparison is shown for four fixed Q? = 5.236,9.795, 18.323
and 25.061 GeV? respectively.

Figure 3.6 shows the Q% evolution of deuteron structure function obtained from
Eqgs.(3.46), (3.63) and (3.82) at LO, NLO and NNLO respectively compared with
the NNPDF parametrization in the range 1.25 < Q% < 26 GeV2. We perform
the comparison for four different values of x, x=0.0045, 0.008, 0.0125 and 0.0175
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Figure 3.2: Comparison of Q? evolution of deuteron structure functions at LO, NLO and NNLO
with the NMC data for four fixed values x. The dot lines represent the LO results (Eq.3.46), dash-
dot lines represent the NLO results (Eq.3.63) and solid lines represent the NNLO results Eq.(3.82).

respectively.

In Figure 3.7 show the comparison of our results of x-evolutions of deuteron
structure function obtained from Eqs.(3.47), (3.64) and (3.83) at LO, NLO and NNLO
with those obtained by the NNPDF parametrization in the range 0.0045 < z < 0.095.
The comparison is done for four fixed values of Q2 viz. Q? = 5,9,15 and 25 GeV?
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Figure 3.3: Plots of x evolution of deuteron structure function at LO, NLO and NNLO compared
with the NMC data for four fixed Q2. The dot lines represent the LO results (Eq.3.47), dash-dot
lines represent the NLO results (Eq.3.64) and solid lines represent the NNLO results Eq.(3.83).

respectively.

We also calculate the t or Q?-evolution of proton structure function at LO, NLO

and NNLO from Eq. (3.48), (3.67) and (3.88). Figure 3.8 show the comparison of

our results of proton structure function with those measured at NMC as functions

of Q% in the range 0.75 < Q? < 27 GeV2. We show the comparison for four fixed

x = 0.008,0.0125,0.025 and 0.035 respectively.
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Figure 3.9 show the comparison of our solution of proton structure function given

by Egs.(3.48), (3.67) and (3.88) for LO, NLO and NNLO respectively with the E665

experimental data in the range 1.094 < Q? < 26 GeV2. Here we plot the computed

values of proton structure function as functions of Q? at four representative values

of z, namely x = 0.00693,0.01225,0.0173 and 0.02449 respectively.

In Figure 3.10 we plot our computed results of proton structure function ob-
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tained from Eqs.(3.48), (3.67) and (3.88) for LO, NLO and NNLO respectively as
functions of Q% and compare with the H1 1995 data in the range 5.5 < Q? < 38
GeV?2. The comparison is done for for four fixed x = 0.00421,0.0075,0.0133 and
0.0237 respectively.

From the figures we observe that our results of Q? and z-evolutions of deuteron
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Figure 3.6: Comparison of Q? evolution of deuteron structure functions at LO, NLO and NNLO
with the NNPDF data for four fixed values . The dot lines represent the LO results (Eq.3.46),
dash-dot lines represent the NLO results (Eq.3.63) and solid lines represent the NNLO results
Eq.(3.82).

and proton structure functions are in good consistency with the experimental data
and parametrizations. Our predictions at NNLO provide better agreement than LO
and NLO results, nevertheless, the difference between the LO, NLO and NNLO re-

sults is small. From our analysis in can be anticipated that the region of validity

of our method is approximately in the range 1073 < 2 < 107! and 0.5 < Q? < 40
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GeV2. But this method may also applicable for other ranges of z and Q2. Though
various methods like Laguerre polynomials [38, 39], Brute-Force method [40], Matrix
method [41], Mellin transformation [42, 43] etc. are available in order to obtain a
numerical solution of DGLAP evolution equations, our method to solve these equa-

tions analytically is also a workable alternative. Here we consider a parameter K (z)
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in assuming a relation between singlet structure function and gluon parton densities.
We have also used two other parameters like Ty and 7. However the number of
parameters used here are less in comparison to the numerical methods where several
parameters have been used mainly in input functions [55, 56]. Moreover, with this

method we can calculate the z-evolutions of deuteron structure function in addition
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results Eq.(3.88).

to the t-evolutions.

For a quantitative estimate of the goodness of fit of our results with the experi-
mental data and parametrizations, we perform a x? test. In table 1 we present the y?
values for the solutions of deuteron structure function at LO, NLO and NNLO respec-

tively. We observe that our analtical solutions of the deuteron structure function at
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Figure 3.10: Comparison of Q? evolution of proton structure function at LO, NLO and NNLO
with the H1 1995 data for four fixed . The dot lines represent the LO results (Eq.3.48), dash-dot
lines represent the NLO results (Eq.3.67) and solid lines represent the NNLO results Eq.(3.88).

Table 3.1: x? values for Fg(x, Q%)

Order NMC E665 NNPDF
LO 3.943 2.215 1.396
NLO 1.733 1.873 0.783
NNLO 1.142 2.07 0.656
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LO, NLO and NNLO respectively are in good agreement with the experimental data

and parametrizations. However the NNLO results are found to be more compatible.

Table 3.2: x? values for F}(z, Q?)

Order NMC E665 H1
LO 2.235 2477 0.226
NLO 1.097 2.62 0.141
NNLO 0.824 1.92 0.361

Similarly table 2 shows the y? values for the solutions of the proton structure
function at LO, NLO and NNLO. Here also we find that our results of proton structure
function at LO, NLO and NNLO are almost comparable with the experimental data

and parametrizations, nevertheless the NNLO results are more consistent.

3.4 Summary

The Taylor approximated DGLAP equations for the singlet and non-singlet struc-
ture functions are solved analytically at LO, NLO and NNLO by the Lagrange’s
auxilliary method. We also calculate the Q? and z-evolutions of deuteron structure
function as well as the Q2-evolution of proton structure function from the solutions
of singlet and non-singlet structure functions. The Taylor series expansion changes
the integro-differential DGLAP equations into first order partial differential equa-
tions which are much easier to solve. This method is comparatively simple and less
time consuming for the numerical calculations. We adopt two numerical parameters
Ty and T to evaluate the Q? and x-evolutions of singlet and non-singlet structure
functions. We also consider the function K(x) = K, where K is a constant parame-
ter to relate the singlet and gluon distribution functions and find that K lies in the
range 0.45 < K < 1.6, for our results to be comparable with experimental data and
parametrizations. Nevertheless the number of parameters are very few compared to
the numerical methods where several parameters are included mainly in the input
function. Moreover, with this approch we can calculate the xz-evolution of deuteron
structure function in addition to the t-evolution. Thus, although various numerical
methods are available in order to obtain a numerical solution of DGLAP evolution

equations, our approach to solve these equations analytically is also a viable alterna-
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tive.

We compare our predictions with the NMC data, E665 data, H1 data as well
as with the results of NNPDF parametrization. From our phenomenological analysis
we observe that our predicted solutions can explain the general trend of data in a
decent manner. Moreover, the inclusion of NNLO contributions provides excellent
consistency with the experimental data and parametrizations. Our results show
that at fixed z the structure functions increase with increasing 9, whereas at fixed
Q? the structure functions increase with decreasing x which is in agreement with
perturbative QCD fits at small-xz. By analysing our results we can anticipate that
our solutions are valid vis-a-vis the data and parametrizations in the small-z region,
roughly in the region 1072 < x < 10~!. However, our method may loose its validity
at very small-x where recombination of gluons have to be taken into account, since
these higher order corrections are not included in the derivation of linear DGLAP

equations.
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Chapter 4

NNLO Analysis of Gluon
Distribution Function in the
DGLAP Approach

4.1 Introduction

The gluon distribution function is one of the extremely indispensable physical observ-
ables that controls the physics at high energy or small-z in DIS, where x is the Bjorken
variable. Especially, precise knowledge of gluon distribution functions at small-z is
of utmost importance in estimating backgrounds and exploring new physics at the
Large Hadron Collider. The gluon distribution G(z, @*) does not come into sight in
the experimentally available proton structure function Fh(z,Q?). Tt is determined
only via the quark distributions together with the evolution equations. More direct
approach to determine the gluon distribution is based on the reconstruction of the
kinematics of the interacting partons from the measurement of the hadronic final
state in gluon induced processes. They are controlled by different systematic effects
and provide a substantive test of perturbative QCD. The proton structure function
is measured by the H1 and ZEUS collaboration at HERA [1-3] over a wide kinematic
region which makes it possible to know about the gluon distribution in the previously
unexplored region of z and Q2. The fast growth of the proton structure function at
small-x observed at HERA brings about much attention because perturbative QCD
in conjunction with the DGLAP equation [4-7] attributes this sharp growth to a

similar rise of gluon density towards small-z. In the DGLAP formalism the gluon
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distribution turns out to be very large at small-z and so it contributes crucially to
the evolution of the parton distribution. Subsequently, the gluon distribution gov-
erns the structure function Fy(z,Q?) through the evolution g — ¢ in the small-z
region. In this situation it is very important to explore the possibility of obtaining
analytical solutions of DGLAP equations at least in the restricted domain of small-z
and many approximated analytical solutions of the gluon distribution function in the
framework of DGLAP equation have been reported in recent years with significant
phenomenological success [8-14].

In this chapter, we derive an explicit expression for the gluon distribution func-
tion upto NNLO by solving the DGLAP evolution equation for gluon distribution
function analytically. In such an approach, we use a Taylor series expansion valid
at small-z and reframes the DGLAP equations as partial differential equations in
the variables x and ? as discussed in chapter 3. The resulting equations at LO,
NLO and NNLO are then solved by the Lagrange’s auxiliary method to obtain the
Q? and x-evolutions of the gluon distribution function. The obtained results can be
described within the framework of perturbative QCD. To illustrate the method and
check the compatibility of our predicted gluon distributions, we use the published
values of the gluon distributions from the GRV1998NLO [15], MRST2004NNLO [16],
MSTW2008NNLO [17] and JROINNLO [18] global analyses. We find that the ana-
lytic gluon distributions from our solution are consistent with these parametrizations.
We also compare our results with the Block-Durand-McKay (BDM) model [14] and

observe that our results depict almost the same behaviour as that of BDM model.
4.2 Formalism

4.2.1 General framework

The DGLAP evolution equation for gluon distribution function in the standard form

is given by [19]

dg(x, Q Ld
WD) [ Prhastafen @) + Brfelgtef, ). (1)
where the splitting function Py, is defined as
s(Q? S(Q)\2 S(@Q%)\3
Pu(e.@?) = D p0) 1 (ALY pa) 4 (1LY P )
+OPY (). (4.2)
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where P\ (z), Piy)(z) and P (z) are LO, NLO and NNLO quark-gluon splitting
functions respectively. The gluon-gluon splitting function P,, can be defined in a
Similar fashion. Here gg is the singlet quark density and g is the gluon density. The

representation G(x, Q%) = xg(x, Q?) is used here.

4.2.2 LO analysis of gluon distribution function

Substituting the explicit form of the LO splitting functions [7, 21] in Eq.(4.1) and
simplifying, the LO DGLAP evolution equation for the gluon distribution function

can be written as

8Gg§,t) o;(rt)[ <11 Ny

6( 55— 7o +n(l— :c))G(x,t) + 6[{’(9:,15)], (4.3)

where G(z, Q%) = zg(z, Q?) is the gluon distribution function. The integral function
I} (z,t) is defined as

(1) = /; o [“’G(f’t) —G@h) | (v —w)+ e (Z0)

+ g(—l +(1- w)Q) Ff(gt).] ) (4.4)

Here the variable ¢ is used where ¢ = In(Q?/A?). Now, using Taylor expansion method

and neglecting higher order terms of z, since we consider the small-z (x < 0.1) domain

in our analysis, as discussed in the Chapter-3, we can write G(x/w,t) as

x zu O0G(x,t)
—.t) = t . 4.
G(w’ ) Gz, )+1—u ox (4.5)
Similarly, Fy (%, t) can be approximated as
s(® )\ _ ps zu OF(z,1)
F (w,t> = Bi(at) + 75 (4.6)

Substituting these values of G(%,¢) and Fy(%,t) in Eq.(4.4) and carrying out the

integrations in u we get from Eq.(4.3)

0G(x,t)  G6Afr g, 1 0G(z,1) g s
o = L A@)G(@ 1) + AYfa) g+ A B ()
OFy (x,t)
Af(z) 2 A7
+ Af () =T, (47)
where A?(z) (i=1,2,3,4) are functions of = (see Appendix D). AT :a;(Tt) where
Aj :% and (y is the one-loop correction to the QCD beta function. Eq.(4.7) is

a partial differential equation for gluon distribution function with respect to the

104



variables x and ¢. Thus using a Taylor expansion valid at small-x we reframe the
DGLAP equation for gluon distribution, which is an integro-differential equation, as
partial differential equation in two variables x and t or Q2.

The gluon distribution is coupled to the singlet structure function and therefore to
obtain an analytical solution of the DGLAP evolution equation for gluon distribution
function a relation between gluon distribution function and singlet structure function
has to be assumed. As discussed in chapter 3, here also we assume the relation
G(z,t) = K(x)Fy (x,t) [22-24] to solve Eq.(4.7) where K (x) is a parameter to be
determined from phenomenological analysis. From this relation we get Fj (x,t) =

K, (z)G(z,t), where Ky(z) = 1/K(x). Using this relation Eq.(4.7) takes the form

0G(z,t) 0G(z,t)

—t 5 + L{(z) 5 + M{(x)G(x,t) =0, (4.8)
with

LY(x) = 6A; | Af(x) + Ka () AY(x) |, (4.9)

M) = 1[40 + K ) 480 + T o) (1.10)

Now the general solution of the equation (4.8) is
F(U,V) =0, (4.11)

where F'(U, V) is an arbitrary function of U and V. Here, U(z,t,G(x,t)) = k1 and

V(x,t,G(x,t)) = ky are two independent solutions of the Lagrange’s equation

Solving Eq. (4.12) we obtain

U, 1.G(a.1)) = t-exp / fmdaﬂ} (4.13)
and

Vix,t,G(z,1)) :G(x,t)-exp[ Aﬁg x} (4.14)

Thus we see that it has no unique solution. In this approach we attempt to

extract a particular solution that obeys some physical constraints on the structure
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function. The simplest possibility to get a solution is that a linear combination of U

and V' should obey the Eq.(4.11) so that
a-U+B-V=0, (4.15)

where a and 3 are arbitrary constants to be determined from the boundary conditions
on singlet structure function. Putting the values of U and V' from Eq.(4.13) and
Eq.(4.14) respectively in Eq.(4.15) we get

at - exp[/ %dx} + BG(z,t) - exp[/ ]\L/[;(m)dm] =0, (4.16)

which implies,

G(z,t) = —~t - exp[/ (L‘{l(x) - Aféf(%>>d$] (4.17)

2
where ~y :% is another constant. Now at ¢t = ty, where t; = In —2 for any lower value

A2
Q? = Q?, we define

G(z,to) = —7to - exp[/ (Lﬁ’l(q:) — ]\ggiq((;)))dx} (4.18)
Then Eqgs.(4.17) and (4.18) lead us to
Gla,t) = Gz, to) (%) (4.19)

This gives the ¢t or Q%-evolution (¢ = In(Q?/A?)) for gluon distribution function at

LO at a particular value small-z. Again we define

1 Mi(z)
— —~t. — 4.2
at a higher value of x = xy. Then from Eq.(4.17) and Eq.(4.20) we get
v 1 M{(x)
= . — . 4.21
G(x,t) = G(xo,1) exp[ / 0 ( e Lo )dx] (4.21)

which gives the z-evolutions of gluon distribution function at LO for a given value of

Q.
4.2.3 NLO analysis of gluon distribution function

Substituting the NLO splitting functions [25-27] in Eq.(4.1) and simplifying, we get
the DGLAP equation for gluon distribution function at NLO in standard form as

OG(x,t)  au(t) [6(11 Ny

N 1218

ot 21
+ (O‘;—?)2I§(x,t), (4.22)

(1 — x))G(a:, £) + 619(z, )
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where the integral function I3 (z,t) is defined as

19(x, 1) = / o [Pglg(w)G(g,t) + A(w)Ff(%,tﬂ (4.23)

xT

The explicit forms of P, (w) and A(w) are given in Appendix E.
Following the same procedure as in LO, the Eq.(4.22) can be simplified as

~(; —tljlnt> aGéf’ D Lg(az)% + M(2)G(, 1) = 0. (4.24)
Here
If(e) = 5 [6(A3(0) + B (@) 4%(@) + To(Bi(a) + Kal0)BY(0)) |, (425)
Mi(x) = ;0 6(Af(@) + Ky (@) A3() + afgf) A())
+ T (B{’(:v) + Ky (2)BY(z) + 8!2196@) Bﬁ(x)ﬂ , (4.26)

where BY(z), (i=1,2,3,4) are functions of z (see Appendix D). Here we consider the
numerical parameter Ty such that T2(t) = T,T(t) where T'(t)="23 (t) As discussed in
chapter 3, this parameter is chosen in such a way that the difference between T2(t)
and TyT'(t) is negligible in the specified range under study.

Thus proceeding in the same way we solve Eq.(4.24) we obtain the ¢ or Q? and

x-evolutions of gluon distribution function at NLO as

G(z,t) = G(x, 1) <::—bb/z)> ~exp(§ - %) (4.27)
and
G(z,t) = G(xg, 1) ~exp[/: (Lgl(x) — ]\gg(%>)dx] (4.28)

with b = ﬁ 5. The input functions G(z, tg) and G(zg, t) can be determined by applying

the 1n1t1a1 condltlons at t =ty as well as at x = z( as in the previous case.

4.2.4 NNLO analysis of gluon distribution function

Using the splitting functions upto NNLO [28-30] and simplifying, we get the DGLAP
equations for gluon distribution function at NNLO as

OG(x,t)  au(t) [6(2 Ny

— g
ot 27 12 18 +In(1 x)>G(37,t) + 617 (x,t)

" (Oés( )) I(x,t) + (045_@))313?(%15)’ (4.29)

21 2
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where, the integral functions I§ is given by

() = /; ao P2 we( 1)) (4.30)

The explicit forms of the function szg is given in Appendix F. In this case we over-
look the quark contribution to the gluon distribution function. The reason behind
this approximation is that at very small values of x, the gluons, being the most
abundant parton, dominate over the quarks. Moreover, it simplifies the calculations
involving the NNLO splitting functions which otherwise are very complicated to solve
analytically.

To obtain an analytical solution of Eq.(4.29) we consider the numerical parameter

Ty such that T3(t) = T1T(t), where T(t)za;(f)-

The value of T} is determined by
phenomenological analysis, like T, from a particular range of Q? under study and
by an appropriate choice of T7 the error can be reduced to a minimum. Thus Eq.

(4.29) can be simplified as

t? g, \OG(z,t) g _
N (t “bInt+ (It —Int— 1)+ c) T Lale) =5, + Mi(@)Gla, 1) = 0. (4.31)
Here
g — 2 g g g g
L) = o |6(A8) + Ka@)Af(@) + To(Br) + K (@) B (x) )
+ Tlcg@;)} , (4.32)
Mi(x,t) = %[6 (A9(2) + K (2) A4 () + af;f)Ag@)) + T (Bi(x)
+ Ky (2) BY(x) + 3[2 (@) Bi(x)) + TC{(x)], (4.33)

where CY(z), (i=1,2) are functions of = (see Appendix D).
Following the same procedure as earlier, we solve Eq.(4.31) and obtain the ¢ or

Q? and z-evolutions of gluon distribution function at NNLO as

FHb—b%)/t > (b —c—In’t b—c—bIn’t
- exp -

G(z,t) = G(z, t0)< ) (4.34)

t(1)+(b—b2)/to t to
and
| MY (x)
G(x,t) = G(xp,t ~exp[/ -3 dx], 4.35
() = Glaot)-exp| | (7305~ Tatw)) 439
where b :5—5 and ¢ :%. The input functions G(z, ty) and G(xg,t) can be determined
0 0

by applying the initial conditions at t = t; as well as at ©* = xg as earlier.
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4.3 Result and discussion

In this chapter, obtain the Q? or ¢ (¢ = In(Q?/A?)) and x-evolutions of the gluon
distribution function solving the DGLAP evolution equation for gluon density up to
NNLO approximation. The analysis is performed in the range 5 < Q? < 110 GeV?
and 107 < 2 < 0.1. The computed results of gluon distribution function at LO, NLO
and NNLO are compared with the available GRV1998NLO [15], MRST2004NNLO
[16], MSTW2008NNLO [17] and JROINNLO [18] global QCD analysis. We also com-
pare our results with the results of the BDM model [14]. The BDM model obtains
an analytic solution for the LO gluon distribution function directly from the proton
structure function using the accurate Froissart-bound [31] type parametrization of
proton structure function. In this model, it is shown that using an analytic expres-
sion that successfully reproduces the known experimental data for proton structure
function in a domain 2, (Q?) < = < Tme(Q?) and @2, < @Q* < Q?,,. in DIS,
the gluon distribution G(x, Q?) can be uniquely determined in the same domain of x

and Q2. In all the graphs, the lowest-Q? and highest-z points are taken as input for

0.015

0.012 | — T*(t)+0.001
— = T T(t)+0.001

0.009 -

0.006 |-

TA(t), T, T(t) and T(t), T,.T(t)

0.003 |-

0.000 L L L L
0 24 48 72 96 120

Figure 4.1: Comparison of T2 and Ty.T'(t) as well as T° and T1.T'(t) versus Q2.

G(z,to) and G(x,t) respectively. As mentioned earlier for the analytical solution of
DGLAP equation for gluon distribution function we consider a function K (x) which
relates the gluon distribution and the singlet structure function. For simplicity we

consider the function K;(x) = Kj, where K7 is a constant parameter. The acceptable
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range of the arbitrary constant K is found to be 0.14 < K; < 0.85. In each figure
the dot lines represent our LO results, the dash-dot lines represent our NLO results
whereas the solid lines represent the NNLO results. As expected the improvement is
found to be better at NNLO than at NLO and LO.

In the calculation of gluon distribution function at NLO and NNLO, we consider
two numerical parameters Ty and 1) to linearise the equations in «y as discussed in
section 4.2. These numerical parameters are obtained for a particular range of Q?
under study. Figure 4.1 shows the plot of T?(t) and TyT'(t) as well as T3(t) and
TiT(t) versus Q* in the range 2 < Q% < 110 GeV?. Tt is observed that for T, = 0.035
and T} = 0.0042 the differences between T?(t) and TyT(t) as well as T2(t) and TyT'(t)
becomes negligible in the % range under study. Therefore, the consideration of the

parameters Ty and 77 does not induce any unexpected change in our results.

8 T T T T 60 T T T T

(b) x=0.0001

Ot S s}
X &3
o o
sp £ = — GRVI9NLO 24t — — GRVI998NLO 1
- Lo --- L0
—-—=NLO ——NLO
——NNLO o
4 L L L L 12 L L L L
5 27 54 81 108 5 27 54 81 108
Q’ (GeV) Q (GeV)

Figure 4.2: Q? evolution of gluon distribution functions at LO, NLO and NNLO compared with
GRV1998NLO for two fixed values x. The dot lines represent the LO results (Eq.4.19), dash-dot
lines represent the NLO results (Eq.4.27) and solid lines represent the NNLO results Eq.(4.34).

Figure 4.2 and Figure 4.3 show the comparison of the analytical gluon distribu-
tions obtained by solving the DGLAP equation for gluon distribution at LO, NLO
and NNLO with the published results of GRV1998NLO. In Figure 4.2 we plot the
computed values of G(z,Q?) from Eqs.(4.19), (4.27) and (4.34) for LO, NLO and
NNLO respectively vs. Q% at x = 0.01 and = 0.0001 respectively in the range
10 < Q? < 105 Gev?. It is seen from the figures that the predictions at NNLO
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Figure 4.3: z evolution of gluon distribution functions at LO, NLO and NNLO compared with
GRV1998NLO data for two fixed @?. The dot lines represent the LO results (Eq.4.21), dash-dot
lines represent the NLO results (Eq.4.28) and solid lines represent the NNLO results Eq.(4.35).

approximation show better agreement with the GRV results at x = 0.01. On the
other hand in Figure 4.3 the computed values of G(z, Q?) obtained from Eqs.(4.21),
(4.28) and (4.35) for LO, NLO and NNLO respectively are plotted against x for two
representative Q?, viz. Q? = 20 GeV? and Q? = 80 GeV? respectively in the range
1074 < 2 <0.1.

Figure 4.4 represent the comparison of our results of Q2 or t (¢ = In(Q?*/A?))
evolution of gluon distribution function G(z,Q?) calculated from Eqs.(4.19), (4.27)
and (4.34) for LO, NLO and NNLO respectively with the MRST2004NNLO global
analysis. Here we plot our predictions of G(z,Q?) as functions of Q? for some fixed
values of z, viz. at x = 0.01,0.001,0.0005 and 0.0001 considering the Q? domain
5 < Q? <100 GeV2 The NNLO predictions show the better compatibility with
MRST2004 result particularly at x = 0.001.

In Figure 4.5 we plot our computed results of gluon distribution G(z,Q?%) ob-
tained from Eqgs.(4.21), (4.28) and (4.35) for LO, NLO and NNLO respectively as
functions of x for Q? = 20,40, 60 and 80 GeV? respectively. Here we compare our
results with the MRST2004NNLO predictions in the x range 107* < x < 0.1. The
NNLO approximation improves the agreement of the predicted values of G(z,Q?)
with MRST2004NNLO global analysis.
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Figure 4.4: Comparison of Q? evolution of gluon distribution functions at LO, NLO and NNLO
with MRST2004NNLO parametrization for four fixed values z. The dot lines represent the LO
results (Eq.4.19), dash-dot lines represent the NLO results (Eq.4.27) and solid lines represent the
NNLO results Eq.(4.34).

Figure 4.6 depict the @Q*-evolution of G(x,Q?) at LO, NLO and NNLO ob-
tained from Eqs. (4.19), (4.27) and (4.34) respectively in the range 5 < Q% < 105
GeV?2. Here our predictions are compared with the MSTW2008NNLO parametriza-
tion and the comparison is performed for four fixed x values, namely x=0.01, 0.005,

0.001 and 0.0001. For each x, the NNLO result show good consistency with the
MSTW2008NNLO predictions.
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Figure 4.5: Comparison of the values of gluon distribution function at LO, NLO and NNLO
plotted against x with the MRST2004NNLO parametrization for four representative Q2. The dot
lines represent the LO results (Eq.4.21), dash-dot lines represent the NLO results (Eq.4.28) and
solid lines represent the NNLO results Eq.(4.35).

Figure 4.7 shows the comparison of our results of z-evolutions of G(z, @?) at LO,
NLO and NNLO obtained from Eqgs.(4.21), (4.28) and (4.35) with those obtained by
the MSTW200SNNLO parametrization in the range 10~* < 2 < 0.1. The comparison
is done for four representative Q? = 30, 50, 80 and 100 GeV?. It can be seen that the
NNLO result for each Q? agrees well with the MSTW2008NNLO parametrization.

We also compare the predicted results of x dependence of gluon distribution
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Figure 4.6: Q? evolution of gluon distribution function at LO, NLO and NNLO compared with
MSTW2008NNLO parametrization for four fixed x values. The dot lines represent the LO results
(Eq.4.19), dash-dot lines represent the NLO results (Eq.4.27) and solid lines represent the NNLO
results Eq.(4.34).

function G(x, Q?) with the JROINNLO global parton analysis [18] as well as with the
results of BDM model [14]. This comparison is portrayed in Figure 4.8 where we plot
the computed values of G(z, Q?) at LO, NLO and NNLO using Eqgs. (4.26), (4.33) and
(4.40) versus z in the range 107* < x < 0.1 for Q* = 5 GeV? and Q* = 20 GeVZ2. Our
predictions of G(x,Q?) at NNLO show very good agreement with the JROINNLO.

Our results also show similar behaviour with those of BDM model, however the BDM
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Figure 4.7: Comparison of the values of gluon distribution function at LO, NLO and NNLO
plotted against = with the MSTW2008NNLO parametrization for four representative Q2. The dot
lines represent the LO results (Eq.4.21), dash-dot lines represent the NLO results (Eq.4.28) and
solid lines represent the NNLO results Eq.(4.35).

model gives much larger gluon distribution towards small x. Figures indicate that the
compatibility of our predictions with the JROINNLO parametrization much better
that that of BDM model.

To check the compatibility of our results of gluon distribution function at LO,
NLO and NNLO respectively with different parametrizations, we perform a y? test

shown in Table 4.1. From this we observe that our results are almost comparable
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Figure 4.8: Comparison of our predictions of gluon distribution function at LO, NLO and NNLO
with JROONNLO global fit as well as with the BDM model for two representative Q2. The dot
lines are the LO results of obtained from Eq.(4.21), dash-dot lines are NLO results from Eq.(4.28)
and solid lines are the NNLO results from Eq.(4.35). The dash curves are from the JROINNLO
parametrization and dash-dot-dot curves are the results of BDM model.

Table 4.1: x? text for G(z, Q%)

Order | GRV1998 | MRST2004 | MSTW2008 JRO09
LO 4.03 2.34 3.18 2.38
NLO 3.16 1.63 2.16 1.24
NNLO 2.96 0.85 1.72 0.61

with different parametrizations and the inclusion of NNLO contributions improve the

consistency.

4.4 Summary

To summarise the evolution of gluon distribution function with respect to x and Q>
at LO, NLO and NNLO are presented by solving the DGLAP evolution equation for
gluon distribution analytically. Here the DGLAP equation is first transformed into a
partial differential equation in the two variables x and Q? by using the Taylor series
expansion valid at small-x. Following this the resulting equation is solved at LO, NLO
and NNLO respectively by the Lagrange’s auxiliary method to obtain the Q2 and z
evolutions of the gluon distribution function. We compare our predictions with the

GRV1998NLO, MRST2004NNLO, MSTW2008NNLO and JROINNLO global QCD
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analysis as well as with the BDM model. The obtained results of gluon distribution
can be described within the framework of perturbative QCD. Our results show that
at fixed = the gluon distribution function increases with increasing Q?, whereas at
fixed Q? it increases as = decreases which is in agreement with perturbative QCD
fits at small-z. We perform our analysis in the Q? and x range, viz. 5 < Q? < 110
GeV? and 107% < 2 < 0.1 and note that in this domain our predicted solutions are
comparable with different global analysis of parton distributions. We consider the
function K;(x) = K, where K is a constant parameter, in defining the relation
between gluon and singlet structure functions and obtain our best fitted results in
the range 0.14 < K; < 0.85. Moreover we consider the numerical parameters Ty
and 77 to linearise the equations at NLO and NNLO in a,. These parameters are
chosen from phenomenological analysis for a particular range of @? under study and
therefore, the use of the parameters Ty and 77 does not produce any abrupt change
in our results. From our phenomenological analysis we observe that our computed
results of gluon distribution function at NNLO show significantly better agreement
with different parameterizations than those of LO and NLO. Thus we can say that the
NNLO approximation has appreciable contribution to the gluon distribution function
in the particular range of x and Q% under study. However, in the very small-z region,
where the number density of gluons become very high, the gluon recombination
processes may take place inducing nonlinear corrections to the QCD evolution and
in that case the solution suggested in this chapter may not be sufficient to explain
the available data at very small-z. The nonlinear GLR-MQ evolution equation may
provide a good description of the high density QCD at very small-x, which we will

discuss in the next chapter.
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Chapter 5

Shadowing Corrections to the
Small-2 Behaviour of Gluon
Distribution Function

5.1 Introduction

The dynamics of the the high density QCD, the regime of large gluon densities, is one
of the present-day extremely demanding undecided issues in the area of high energy
or small-z physics, where x is the small fraction of proton’s momentum conveyed
by the struck parton. Enormous theoretical and experimental endeavours towards
the perception of hadron structure in the high density regime at small-z occurs from
DIS at HERA to the proton-(anti)proton collisions at LHC. The gluon saturation
is one of the most fascinating problems of the small-z physics, which is presumed
on theoretical basis and there is emerging indications of its existence [1-3]. The
linear QCD evolution equations at the twist-2 level like DGLAP [4-6] predicts an
abrupt rise of the gluon densities towards small-z which is also perceived in the DIS
experiments at HERA. This sharp growth of gluon density generates cross sections
which in the high-energy limit violate the Froissart bound [7, 8] on physical cross
sections. Accordingly a new formulation of the QCD at high partonic density is
essential, in the very small-x region, to incorporate the unitarity corrections in a
suitable way. In general it is anticipated that, the gluon recombination processes
provide the mechanism responsible for the unitarization of the cross section at high

energies. As we move towards small-z at fixed Q? the number of gluons of fixed size
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~ 1/Q increases and at some critical value of x, the entire transverse area inhabited
by gluons turns out to be analogous to or larger than the transverse area of a proton.
Thus, the likelihood of interaction between two gluons can no longer be overlooked
and it sooner or later engenders a situation in which individual partons inevitably
overlap or shadow each other. In the derivation of the linear DGLAP equation
the correlations among the initial gluons in the physical process of interaction and
recombination of gluons are not usually taken into account. But at small-z the
corrections of the correlations among the initial gluons to the evolutionary amplitude
should be considered which eventually leads to a control of the maximum gluon
density per unit of phase-space. The conventional linear DGLAP evolution equation
will have to be modified accordingly in order to take these into effect. The multiple
gluon interactions take part in the evolution nonlinearly, taming the growth of the
gluon density in the kinematic domain where a, remains small but the density of
gluons evolves into very high. The pioneering perturbative QCD studies reporting
the recombination of two gluon ladders into one were performed by Gribov, Levin and
Ryskin [9], and by Mueller and Qiu [10, 11]. They insinuated that the shadowing
or nonlinear corrections due to gluon recombination could be expressed in a new
evolution equation with an additional nonlinear term quadratic in gluon density. This
equation, widely known as the GLR-MQ equation, can be regarded as the upgraded
version of the linear DGLAP equation.

The GLR-MQ equation incorporates all fan diagrams, that is, all workable 2 — 1
ladder recombinations, in the double leading logarithmic approximation (DLLA) in
order to deal with the gluon recombination processes. The fan diagrams portrays
the decisive role in the restoration of unitarity by taking into consideration some
of the gluon recombination processes that become vital at small-z. Gribov, Levin
and Ryskin at the outset introduced the concept of shadowing, arising from gluon
recombination, based on the Abramovsky-Gribov-Kancheli (AGK) cutting rule [12] in
the DLLA. Later Mueller and Qiu successfully carried out a perturbative calculation
of the recombination probabilities in the DLLA which empowers the equation to be
applied phenomenologically [10]. The GLR-MQ equation prognosticate a critical line
separating the perturbative regime from the saturation regime and it is legitimate

only in the vicinity of this critical line. Moreover it predicts a saturation of the gluon

122



density at very small-x. Therefore the study of the GLR-MQ equation is extremely
important for understanding the nonlinear effects of gluon recombination at small
enough = as well as for the determination of the saturation momentum (Qg) that
incorporates physics in addition to that of the linear evolution equations commonly
used to fit DIS data.

Until now the majority of our knowledge on the modifications of the higher order
QCD effects is established on the semi-classical approach [9, 13-15] and on numeri-
cal studies [16-21]. The approximate analytical solutions of the nonlinear GLR-MQ
evolution equation have also been reported in recent years [22, 23]. In this thesis we
attempt to use, to a feasible extent, semi-analytic methods to solve this equation.
We report, in this chapter, the approximate semi-analytical solution of the nonlin-
ear GLR-MQ equation as well as the validity of the well known Regge-like ansatz
in the region of small-x and moderate virtuality of photon. The aim of this work
is to check the evidence for gluon recombination at very small-xz. We investigate
the effect of shadowing corrections on the small-z behavior of gluon distribution at
fixed virtuality of photon from the solution of GLR-MQ equation in LO with consid-
erable phenomenological success. Moreover, we obtain the Q2-dependence of gluon
distribution with shadowing corrections at fixed small-z. Our resulting gluon distri-
butions are compared with different experimental data and parametrizations. Our
predictions for nonlinear gluon density are further compared with different models
based on GLR-MQ equation. Moreover, we examine the extent of nonlinearity in our
predictions by comparing the gluon distributions obtained from nonlinear GLR-MQ

equation with those obtained from linear DGLAP equation.

5.2 Formalism
5.2.1 General framework

The GLR-MQ equation depends on two processes in the parton cascade, namely
the gluon emission generated by the QCD vertex g—¢g + g as well as the gluon
recombination by the same vertex g + g—¢. The probability that a gluon splits into
two gluons is proportional to a,p whereas the probability of gluon recombination is
proportional to a?r?p?. Here, p is the density of gluons in the transverse plane and

r is the size of the gluon produced in the recombination process and for DIS, roc%.
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It is very clear that, at  ~ 1 only the production of new partons (quarks or gluons)
is essential because p<1 , however at z—0 the value of p becomes so large that
the recombination of gluons turns into crucial. The number of partons in a phase
space cell (Aln(1/x)AlnQ?), thus, increases through gluon splitting and decreases
through gluon recombination and correspondingly the balance equation for emission

and recombination of partons can be written as [9-11]

82,0<33', Q2) as(QQ)Nc 2 062(Q2)’)/ 2\12
_ _ sy 1
2
which is referred to as the GLR-MQ equation. Here p:%, where mR? is the

target area and R is the correlation radius between two interacting gluons i.e. the
size of the relevant region for the gluon recombination processes. The factor v is
found to be v = % for N, = 3, as evaluated by Mueller and Qiu [10]. In terms of
gluon distribution function the above equation can be expressed as

82Ig(l’, Q2> o O‘s(QQ)chg(x’ QQ) _ O‘E(Q%W

oln(1/z)0mQ2 = wORRe 9 Q)P (5.2)

The first term in the r.h.s. is the usual DGLAP term in the DLLA and and is therefore
linear in the gluon field. The second term carries a negative sign and it reduces
the growth of the gluon distribution once the fan diagrams become admissible. It
expresses the nonlinearity in respect of the square of the gluon distribution. Here, the
representation for the gluon distribution G(z, Q%) = xg(z, Q?) is used, where g(x, Q?)
is the gluon density. The quark-gluon emission diagrams are not given attention here
due to their little importance in the gluon-rich small-z region. A general criterion
for the validity of Eq.(5.2) is that the nonlinear correction term should not be larger
than the first term since in that case further corrections must be considered and
non-perturbative effects could be of importance [24].

The parameter R does not become operative as long as one uses the DGLAP
evolution equation, which is linear in gluon density. Nonetheless, this size parameter
becomes relevant in the GLR-MQ equation where one takes into account the first
nonlinear term in the evolution and therefore it is essential to define it precisely.
Since the size parameter R in the denominator and the gluon distribution G in the
numerator appear in the second term of Eq.(5.2) as squared, so they are extremely

decisive for the magnitude of the recombination effect. R is of the order of proton
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radius Ry, that is R ~ 5 GeV ™! if the gluons are distributed uniformly across the
whole of the proton and in that case recombination or shadowing corrections can be
negligibly small [10, 25]. On the other hand, R is of the order of the transverse size of
a valence quark i.e. R ~ 2 GeV~! if the gluons are condensed in the hot spots [10, 25,
26] inside the proton. The hot spots can enumerate rapid commencement of gluon-
gluon interactions in the environs of the parton and and so uplift the recombination
effect. Accordingly in such hot-spots the shadowing corrections are expected to be

large.

5.2.2 Solution of GLR-MQ equation for gluon distribution
function and effect of gluon shadowing

In order to study the effect of nonlinear or shadowing corrections on the behaviour
of gluon density we rewrite the GLR-MQ equation given by Eq.(5.2) in a convenient
form

0G(z, Q%)  0G(z,Q?) 81a%(Q?) [!dw T 5\12
on@Q? ~ 0lnQ? |pcrar 16 R2Q? / U[G<_’Q)] ’ (5.3)

w

We perform the analysis in the leading twist approximation and therefore have taken
the strong coupling constant a,(Q?) :W, where 8y = 11—§Nf. At small-z
gluons essentially turn out to be the most abundant partons and therefore, the quark
contributions to the gluon distribution function can be overlooked in the small-x
region. Accordingly the first term in the r.h.s. of Eq. (5.3) can be expressed as [27]

0G(z, Q) L 3al(@) |11 Ny
onQ? |perar T[(E_E+ln(1—$)>G(z’Q2)

- ufo6:@) o

1 —-w
(et 15262 )| 5.1

To obtain an analytical solution of the GLR-MQ equation in the small-x region
we incorporate a Regge-like behavior of gluon distribution function. The behaviour
of structure functions at small-z can be described effectively in terms of Regge-like
ansatz [28]. The Regge theory is a highly ingenuous parameterization of all total cross
sections and supposed to be applicable at large-Q? values if z is small enough < 0.01

[29]. Moreover, as advocated in Refs.[30, 31], the Regee behavior is anticipated to
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be valid at small-z and some intermediate Q?, where Q? must be small but not so
small that a,(Q?) is too large. Since the total center of mass energy squared is
defined as s? = Q? (% — 1), therefore the small-x behaviour of structure functions for
fixed Q2 emulates the high energy behaviour of total cross section with increasing
s? [32]. For this reason the Regge pole exchange picture [28] sounds convenient for
the theoretical description of this behaviour. Again, as the structure functions are
proportional to the total virtual photon-nucleon cross section, therefore they are
expected to have Regge behaviour corresponding to pomeron or reggeon exchange
[30]. According to the Donnachie-Landshoff (DL) model, the high energy attitude
of hadronic cross sections as well as structure functions will be governed by two
contributions, especially by a pomeron proliferating the rise of structure function at
small-z and by reggeons related with meson trajectories. The high energy i.e. small-z
behaviour of both gluons and sea quarks are conducted by the same singularity factor
in the complex angular momentum plane [31] in accordance with Regge theory. The
Regge behavior of the sea-quark distribution for small-z is given by @seq(z) ~ 277
corresponding to a pomeron exchange with an intercept of ap = 1. But the valence-
quark distribution for small = given by q,u(z) ~ x~*F corresponds to a reggeon
exchange with an intercept of ag = 0.5. The = dependence of the parton densities
is often estimated at moderate Q* and thus the leading order calculations in In(1/z)
with fixed o, predict a steep power-law behavior of xg(x, Q%) ~ 27*¢, where \g =
(4asN./m)In2 ~ 0.5 for a, ~ 0.2, as relevant for Q* ~ 4 GeV?2.

Furthermore, the Regge theory is presumed to be applicable if W2, the mass
invariant squared in a DIS process, is much greater than all the other variables [33]
and so, models based upon this idea have been fruitful in explaining the DIS cross-
section when x is small enough (z < 0.7), whatsoever be the value of Q? [33-35]. The
small-z limit of DIS corresponds to the case when 2Mv >> @Q?, where x = Q?/2Mv,
but Q? is still maintained large i.e. Q* > A2, with A being the QCD cut off parameter.
The limit 2Mv >> @Q? is equivalent to s >> Q2 and is therefore the Regge limit of
DIS. Moreover, as () remains greater than the QCD cut off parameter A so it enables
us to use perturbative QCD calculations and therefore Regge theory is applicable in
the region of large s, i.e. in the region of small-z [28, 29]. Hence it is feasible to use

Regge theory for the study of the GLR-MQ equation which is an improved version
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of DGLAP equation in the very small-x region. The Regge pole model gives the
parametrization of the DIS structure function Fy(z, Q?) at small-z as Fy oc = with
A > 0 being a constant or depending on Q? or x [29, 33].

On that account, we employ the Regee like ansatz of gluon distribution function
to solve the nonlinear GLR-MQ equation at small-x. We assume a simple form of

Regge ansatz for gluon distribution function given as
Gz, Q%) = H(Q*)z e, (5.5)

where H(Q?) is a function of Q? and A\g is the Regge intercept for gluon distribution
function. This form of Regge behaviour is extensively used by many authors with
considerable success [33, 36, 37]. With this ansatz the term G(£,Q?) can be written

as

G(% Q2> — Gz, Q). (5.6)

One of the applications of the Regge behaviour is the DL two pomeron model where
the rise of structure function is described by powers of 1/x. In the DL model it is
assumed that the exchange of two pomerons contribute to the amplitude, however, at
small-z the gluon distribution function is dominated exclusively by the hard pomeron
exchange [33]. In the DL two pomerons exchange model, the hard pomeron has an
intercept €, = 0.418. Moreover, as the values of Regge intercepts for all the spin-
independent singlet, non-singlet and gluon structure functions should be close to 0.5
in quite a broad range of small-z [37], so we also consider the value of A\ to be 0.5
in our analysis and expect to obtain our best fit results with this value of 4.

To simplify our calculations we consider a variable ¢, such that ¢ = ln(%). Then
using the Egs.(5.5) and (5.6) together with the Eq.(5.4), Eq.(5.3) can be simplified

as

OG(z,t) 3ot 11 Ny ! whetl — 1
o WCWﬁKﬁ‘E+WL”D#l“%T:T

l1—w 81 (1) ! _
(ot =+ 50} - e [P

(5.7)

Now rearranging the terms Eq. (5.7) can be expressed as

A e R LA 5:5)
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where the = dependent functions v (x) and y2(x) are defined as

m(z) = 3A; [E—&+ln(1—x)+/:dw{&+ (w(l—w)+1_—w>w)‘GH,

12 18 1—w w
(5.9)
]1 A27T2 1
Y2 () =1 }22 / w*e L, (5.10)

where Aj :%.

Eq.(5.8) is a partial differential equation for the gluon distribution function with
respect to the variables x and Q? (¢ = In(Q?/A?)). Thus apart from its conventional
use in Q%-evolution, Eq.(5.8) can also be used to examine the z-dependence of gluon
distribution. Solution of Eq.(5.8) then leads us to a solution for the nonlinear gluon
density as given below

()

G(x,t) =
(@0 = @) e e

(5.11)

where C is a constant to be determined from initial boundary conditions. Thus we
solve Eq.(5.3) by employing the Regge ansatz for gluon distribution given by Eq.(5.5)
and obtain a solution of the nonlinear gluon density. As the Regge behaviour is
supposed to be legitimate at small-z and some intermediate Q?, therefore the solution
of the GLR-MQ equation in the form of Eq.(5.11) is expected to be worthwhile.
We believe that our solution is correct in the vicinity of the saturation where all
our assumptions look natural. Now to determine the Q* (t = In(Q?/A?)) and z-
dependence of the gluon distribution we apply the following two physically plausible

boundary conditions

G(z,t) = G(x,tp) (5.12)
at some lower value Q% = Q32, where to = In(Q3/A?) and

G(z,t) = G(xg,1), (5.13)

at some high r = x.
The boundary condition (5.12) gives us
tgl (z)

C + () [t 2et0dty’

G([I),to) = (514)

128



From this equation the constant C' can be evaluated by considering an appropriate
input distribution G(z,ty) at a given value of Q3. Now Eq.(5.11) and Eq.(5.14) lead
us to the @Q%-evolution of gluon distribution function for fixed x given as
@ G(z, t)

Gla,t) = '
t'gl(a)) + /}/2(&7) |:ftfyl(g;)—26—tdt _ fto'yl($)_2€—t0dt0 G(I,to)

(5.15)

Thus we have obtained an expression for the Q?-evolution of nonlinear gluon density
at LO by solving the nonlinear GLR-MQ evolution equation semi-analytically. From
this expression we can easily compute the dependence of gluon distribution function
on @? for a particular value of # by choosing an appropriate input distribution at a
given value of Q3. Eq.(5.15) also assist us to investigate the nonlinear or shadowing
corrections to the gluon distribution functions at moderate values of Q2.

Similarly, the boundary condition (5.13) yields

G £ 5.16
t) = .
(o t) = G o) J 2t (516)

so that using Egs. (5.11) and (5.16) we obtain
@G t
Gla,t) = (%0, 1) . (5.17)

{71 (zo) 4 [’m(m) [ i@ =2e—tdt — y5(xp) fﬂl(wo)*ze*tdt] G (o, t)

Thus Eq. (5.17) provides the solution of the GLR-MQ equation for gluon distribution
at small-z for fixed Q2. Accordingly from Eq. (5.17) we can easily predict the small-x
dependence of nonlinear gluon distribution function for a particular value of Q? by
picking out a suitable input distribution at an initial value of x = xy. The effect of
nonlinear or shadowing corrections to the gluon distribution functions at small-z can
be studied as well by employing Eq. (5.17).

We analyze the region of validity of our solution given by Eq.(5.11) and we
expect that the solution is only valid in the region of small-x and intermediate values
of Q% Tt is clear from Eq.(5.11) that at large Q* (¢ = In(Q?/A?)), we can neglect the
nonlinear corrections and our solution takes the form

(@)
C + yo(z) [tn@)-2e-tdt

G(x,t) = 2L ) e, (5.18)

However, in the region where Q? is not very large, the corrections for the nonlinear
term in Eq.(5.11) can not be neglected and in that case Eq.(5.11) does not reduce

to Eq.(5.18). In our analysis we consider intermediate values of Q? (1 < Q? < 30

129



GeV?) to calculate the gluon distribution function. In this region the corrections
for the nonlinear term o(z) [ #1@~2¢~tdt cannot be neglected in comparison to C,
where C' is defined by Eq.(5.14), and so our solution given by Eq.(5.11) does not
reduce to Eq.(5.18).

On the other hand we observe that in the region 107° < x < 1072 Eq.(5.11)
predicts an increase of gluon distribution with decreasing-z, which is in accordance
with the Regge ansatz of Eq.(5.5). Nevertheless Eq.(5.11) yields a slower growth
of gluon density towards small-z in comparison to the solution of linear DGLAP
equation, since the nonlinear effects due to gluon-gluon interactions play a significant
role in the small-x (z < 1072) region. However in the region of very small-z (z <
1075) but fixed Q?, we can neglect the dependence of the functions v;(x) and ~o(x)
on z. Accordingly the solution suggested in Eq.(5.11) does not depend on z taking

the form

{1
C + 720 fﬂloe‘tdt’

Goso(,1) = (5.19)

where the r.h.s is a constant. In that case the solution to the nonlinear equation given
by Eq.(5.11) contradicts the ansatz of Eq.(5.5). So we can conclude that Eq.(5.11)
is not a valid solution at very small-z (x < 107°). It is to note that in the region of
x > 1072 the process of gluon-recombination does not play an important role on the
QCD evolution and therefore nonlinear corrections to the DGLAP equation is not
essential. In other words in the region of x > 1072 DGLAP equation is sufficient to
explain the available experimental data. So we can interpret that the solution given
by Eq.(5.11) may not be applicable in the region of z < 107 as well as z > 1072.
But in the kinematic region 107° < z < 1072 the x-dependence of the functions v, (z)
and 72(x) can not be neglected and under this situation Eq.(5.11) does not reduce to
Eq.(5.19) and thus it does not contradict the ansatz given by Eq.(5.5). Hence we can
conclude that the solution suggested in Eq.(5.11) is expected to be a valid solution
of the nonlinear GLR-MQ equation in the kinematic region 1 < Q? < 30 GeV? and
107° < x < 1072 and it can delineate the small-z dependence of nonlinear gluon

density in a satisfactory manner.
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5.2.3 Comparative analysis of DGLAP and GLRMQ equa-
tions

To estimate the effect of shadowing corrections for the gluon distribution function
in our predictions we make a comparative study of the nonlinear GLR-MQ equation
with the linear DGLAP approach. For this purpose we solve the linear DGLAP
equation at small-xz at LO defined by Eq.(5.4) by employing the Regge ansatz of
gluon distribution function and compare it with the solution of the GLR-MQ equation
discussed above. Using the Regge ansatz of Eq.(5.5), Eq.(5.4) can be simplified as

0G(z,t) G(z,t)
—_— = -2
ot Ipgrap ! (z) t (5:20)
which can be easily solved to have
G(z,t) = An@), (5.21)

Here A is a constant to be fixed by initial boundary conditions. The x dependent

function v;(z) is defined in Eq.(5.9). Now defining
g10 = Gz, ty) = At (5.22)
at some lower value Q% = Q3, we get from Eq.(5.21)

t\ =)
)7 . (5.23)

G(z,t) = g1o <t_

0

Eq.(5.23) provides the solution of the linear DGLAP equation at LO for gluon dis-
tribution with the ansatz of Eq.(5.5) and it describes the Q? dependence of linear
gluon density for a fixed value of x, provided a suitable input distribution g¢;o has
been chosen from the initial boundary condition.

Again, defining
920 = Gz, 1) = A0 (5.24)
at some initial higher value = o, Eq.(5.21) can be expressed as
G(x,t) = gyot@ (0], (5.25)

Eq.(5.25) is the solution of the linear DGLAP equation at LO for gluon distribu-

tion at small-z with the ansatz of Eq.(5.5) and it describes the small-z behavior of
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linear gluon density for a particular value of Q? by choosing an appropriate input
distribution gy from the initial boundary condition.

The effect of shadowing corrections to the gluon distribution function can be ex-
amined considering the solutions of the DGLAP and GLR-MQ equations respectively.
To do this we calculate the ratio R of the predicted values of gluon distribution func-
tion obtained from the solution of nonlinear GLR-MQ equation given by Eq. (5.17)
to that obtained using the linear DGLAP equation given by Eq.(5.25)

GGLR—MQ(x7 t)

Re = GDGLAP (g ¢) (5.26)

as a function of variable z for different values of Q?. By evaluating this ratio we
have observed a taming behavior of gluon distribution in the HERA kinematic re-
gion (3 < In(1/z) < 12) due to shadowing corrections to the linear evolution. Thus
employing the expression (5.26) we can interpret the influence of nonlinear or shad-
owing corrections as a consequence of gluon recombinations on the behavior of gluon
distribution at small-z. It also assists us to understand whether Froissart bound can
be restored at small-x. We have explored the phenomenological aspect of Eq.(5.26)

n section 3.

5.2.4 Compatibility of Regge like solutions of gluon density
with the DLA solution

The DGLAP evolution equation predicts that the gluon distribution function rises
steeply as a power of x toward small-z which is observed at HERA too. This is
in accordance with the Double Logarithmic Approximation (DLA) at small-z and
large photon virtualities Q2. The DLA accounts for only the leading double loga-
rithmic contributions (o, In(Q?/Q32)In(1/z)) to multiparton cross sections. In DLA
it is considered that %<< 1, %ln Q? < 1, %1112 Q? ~ 1 [38]. DLA analysis man-
ifests the structure of intrajet parton cascades and as a matter of fact, the DLA
predictions provide an assumption for the parton picture. The parton cascade is an
excellent replica in consideration of DLA ladder diagrams. The DLA is applicable
to perturbative QCD evolution in the asymptotic regime characterized by Q* > Q2
and r < xg, ro < 0.1, [39]. The proton structure function data explored at HERA
have been demonstrated to evolve in consonance with DLA as suggested in Ref. [30].

The DLA asymptotics of the structure function derived by the addition of diagrams
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corresponding to (asIn(Q?/Q2))" and of those (a,In(1/x))™ occur simultaneously
and produce the solution of the DGLAP equation in the form ~ exp ( In % In %)
[9]. The gluon distribution produced by the DLA DGLAP evolution naturally por-
trays the data in a satisfactory manner exclusively in a somewhat confined kinematic
domain of small-z and large-Q?.

Any LO solution of DGLAP equation is presumed to be consistent with the DLA
result. That being so, it is worthwhile to investigate the prospect of compatibility of
our Regge type solution of DGLAP equation with the DLA one. Even though Regge
behavior is not in agreement with the DLA in general, but, when x is small enough
(r < 0.7) the Regge theory is assumed to be applicable, whatsoever the value of @Q?
(34, 35]. Accordingly the Regge type solution of DGLAP equation is expected to be

valid. The conventional DLA formula [38] for gluon distribution function is

GPLA(2,t) = G(x, 1) exp ( \/— In (%)), (5.27)

11N.—2N;
127

with the function b = . Here N, = 3 is the number of color. Our solution
of linear DGLAP equation given by Eq. (5.25) is in agreement with DLA formula of

Eq. (5.27) as long as the following condition is satisfied,

i (o) 2y n () n (2)
(v1(2) = (x0))t (v (2) = 3 (x0))t

An analysis of the phenomenological aspects of Eq.(5.28) is presented in section 3

where we denote the Lh.s. of Eq.(5.28) as P(x, Q?).

~ 1. (5.28)

5.3 Result and discussion

We solve the nonlinear GLR-MQ evolution equation by considering the Regge like
behavior of gluon distribution function and examine the effects of adding the non-
linear GLR-MQ corrections due to gluon recombination processes at small-x to the
LO DGLAP evolution equations. We investigate the behavior of gluon distribution
function at small-z and moderate ? from the predicted solution of the GLR-MQ
equation. The solutions suggested in Egs.(5.15) and (5.17) are directly related to
the initial conditions. Our predictions of x and Q? dependence of gluon distribu-

tion function G(z,Q?) are compared with with those obtained by the global QCD

133



fits to the parton distribution functions, viz. GRV1998LO [40], GJR2008LO [41],
MRST2001LO [42], MSTW2008LO [43], NNPDF [44], HERAPDFO0.1 [45, 46] and
CT10 [47, 48] parametrizations respectively. To evolve our solutions, we use the
GRV1998LO input and MRST2001LO input for two different representations of our
solutions.

Furthermore, we present a comparative analysis of our computed results with the
results of the EHKQS [20] and BZ models [23]. In the EHKQS model the effects of
the first nonlinear corrections to the DGLAP evolution equations are studied by using
the recent HERA data for the structure function Fy(z, Q?) of the free proton and the
parton distributions from CTEQ5L and CTEQ6L as a baseline [49]. The EHKQS
model shows that the nonlinear corrections improve the agreement with the Fy(x, Q?)
data in the region of  ~ 3 x 107° and Q? ~ 1.5 GeV2. On the other hand in BZ
model using a Laplace-transform technique, the behavior of the gluon distribution is
obtained by solving the GLR-MQ evolution equation with the nonlinear shadowing
term incorporated.

Figure 5.1 represent our predictions of the gluon distribution function with the ef-
fect of nonlinear or shadowing corrections obtained from Eq.(5.15), plotted against
for four fixed values of z, viz. = 1072,1073,10~% and 107 respectively. We compare
our predictions with GRV1998LO, GJR2008LO, MRST1001LO and MSTW2008LO
global parton analysis as well as with the EHKQS model. The input distribution is
taken from the GRV1998LO. The red solid curve represents the effect of the shad-
owing correction of gluon distribution function predicted by using Eq.(5.15) for the
hot spots with R = 2 GeV~! whereas the results for R = 5 GeV~! is shown by the
blue solid line.

Similarly, in Figure 5.2 we plot our computed results of the gluon distribution
function obtained from Eq.(5.15) vs. @2, considering the MRST2001LO input gluon
distribution, for = 1072,1073,10~* and 1075 respectively as before. Here also the
red and blue solid lines represent our predictions of nonlinear gluon density for R = 2
GeV~!and R =5 GeV~! respectively. We perform a comparison of our results with
different parametrizations namely, HERAPDF0.1, CT10 and NNPDF.

Figure 5.3 represent the small-z behavior of the gluon distribution with the effect

shadowing corrections to the gluon distribution function determined from Eq.(5.17)
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Figure 5.1: Q2 dependence of gluon distribution with shadowing corrections obtained from
Eq.(5.15) for four fixed values of x at R = 2 GeV ~! (red solid curves) and R = 5 GeV ~! (blue solid
curves) respectively. Our predictions are compared with GRV1998LO (dash), GJR2008LO (dash-
dot), MRST2001LO (short-dash) and MSTW2008LO (dash-dot-dot) parametrizations as well as
with the EHKQS model (dot). The input gluon distribution is taken from GRV1998LO.

as a function of  for four fixed values of Q?, viz. Q* = 5,10, 15 and 20 GeV?2. Here
the input gluon distribution is taken from GRV1998LO to evolve our solutions and
our predictions of the small-x behaviour of nonlinear gluon density are compared
with the global QCD analysis namely GRV1998LO, GJR2008LO, MRST2001LO,
MSTW2008LO as well as with the H1 data. The red and blue solid lines represent
our best fit results of nonlinear gluon density for R = 2 GeV~! and R = 5 GeV~!
respectively.

On the other hand, our predictions of gluon distribution function with the shad-
owing corrections evaluated from Eq. (5.17) using the MRST2001LO input are plot-
ted in Figure 5.4 as a function of z for four fixed Q?, viz. Q% = 5,10,15 and and
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Figure 5.2: Q? dependence of gluon distribution function incorporating shadowing corrections
computed from Eq.(5.15) for four fixed values of x at R = 2 GeV ™! (red solid curves) and R =
5 GeV ! (blue solid curves) respectively. Our predictions are compared with HERAPDF0.1 (short-
dot), CT10 (dash-dot) and NNPDF (dash-dot-dot) parametrizations. The input gluon distribution
is taken from MRST2001LO.

20 GeV? as in the previous case. We make a comparison of our computed results of
nonlinear gluon density with the HERAPDFO0.1, CT10, NNPDF parametrizations as
well as with the results of BZ model. Here too the computed results of the small-x
behaviour of nonlinear gluon density corresponding to R = 2 GeV~! and R = 5
GeV~! are represented by the red and blue solid lines respectively.

From Figure 5.1 to Figure 5.4 we have observed that our results are in good
agreement with different experimental data, global parametrizations and also with
different models. The gluon distribution increases with increasing Q? and decreasing
x, which complements the perturbative QCD fits at small-z, but this behaviour is

tamed with respect to the nonlinear terms in GLR-MQ equation. It is very interesting

to observe that our predictions for the x and Q* dependence of nonlinear gluon
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Figure 5.3: Small-z behaviour of gluon distribution with shadowing corrections obtained from
Eq.(5.17) for four fixed values of Q2 at R = 2 GeV ! (red solid curves) and R = 5 GeV ! (blue
solid curves) respectively. Our results are compared with GRV1998LO (dash), GJR2008LO (dash-
dot), MRST2001LO (short-dash), MSTW2008LO (dash-dot-dot) parametrizations as well as with
H1 data (up-triangle). The input gluon distribution is taken from GRV1998LO.

density are in excellent agreement with the gluon density function obtained from
HERAPDFO0.1 and CT10 parametrizations. Moreover, we observe from Figure 5.2
that our results of the effect of shadowing corrections to the moderate-Q? behaviour of
gluon distribution function are comparable with those obtained in a similar analysis
by the EHKQS model. We further note that, our results follow the general trend of
H1 data but they get saturated towards very small-x due to shadowing corrections.
Similarly, we see that the shapes of the curves in Figure 5.4 representing the small-z
behaviour of nonlinear gluon density are almost similar to the results of BZ model.
Therefore we can say that the Regge type solution of the GLR-MQ equation for the

nonlinear gluon distribution suggested in Eq.(5.11) can describe the available data in
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Figure 5.4: Small-x behaviour of gluon distribution considering shadowing corrections calculated
from Eq.(5.17) for four fixed values of Q2 at R = 2 GeV ~! (red solid curves) and R = 5 GeV ! (blue
solid curves) respectively. Our results are compared with HERAPDFO0.1 (dot), CT10 (dash-dot-dot)
and NNPDF (dash-dot) parametrizations and BZ model (dash). The input gluon distribution is
taken from MRST2001LO.
a satisfactory manner. We perform our analysis in the kinematic region 1 < Q% < 30
GeV? and 107° < 2 < 1072 and our solution of the nonlinear gluon density is found
to be legitimate in this kinematic domain. The effect of shadowing corrections as a
consequence of gluon recombination processes in our predictions is observed to be
very high at the hot-spots with R = 2 GeV~! when the gluons are centered within the
proton, compared to at R =5 GeV~! when the gluons are disseminated throughout
the entire proton.

Moreover, to examine the effects of nonlinear or shadowing corrections to the
gluon distributions in our prediction, we have plotted the ratio R of the gluon distri-

bution function obtained from the solution of nonlinear GLR-MQ equation for R = 2

GeV~! to that obtained from the solution of linear DGLAP equation using Eq.(5.26)
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in Figure 5.5. This comparison helps us to estimate the shadowing corrections for
the gluon distribution function. We plot the ratio Rg for gluon distribution as a
function of the variable = for six representative values Q? = 2,5,10, 15,20 and 30
GeV? respectively. We observe that as z grows smaller the GLR-MQ/DGLAP ratios
decrease which implies that the effect of nonlinearity increases towards small-z due
to gloun recombination. The fall of the ratio at small-z (z < 1072) is a consequence
of the gluon recombination or shadowing corrections. Results also clearly indicates
that towards smaller values of Q? the value of the ratio between nonlinear gluon den-
sity and linear gluon density also goes smaller. In other words, gluon recombination
plays an important role in the region of small-z and Q* whereas, with the evolution
to large-Q? (Q* > 30 GeV?) and large-x (z > 1072), gluon recombinations play less
of a role, and as a consequence the nonlinear effects have a very little impact.

We have further investigated the effect of nonlinearity in our results by performing
an analysis to check the sensitivity of the correlation radius R between two interacting
gluons. For this analysis our computed values of G(z, Q?) from Eq. (5.15) for R = 2,4
and 5 GeV~! respectively are plotted against Q? in Figure 5.6 for four fixed values of
x,r =1072,1073,10"* and 10~°. For this analysis we take the input distribution from
MRST2001LO global parametrization for a given value of Q3. The gluon distribution
function is observed to be more tamed at R = 2 GeV!, where gluons are supposed to
be condensed in the hot-spots within the proton, compared to at R = 4 GeV~! and
R =5 GeV~! where gluons are almost scattered over the entire proton. Moreover, we
note that that the differences between the data as we approach from R = 2 GeV ™!
to R =5 GeV ! increase with decreasing x as anticipated.

Figure 5.7 represents the plot of P(z,Q?) vs. x for different values of Q?, where
P(x,Q?) represents the Lh.s of Eq.(5.28) which represents the condition of compat-
ibility of the Regge like solution of DGLAP equation to the DLA one. This figure
illustrates that our Regge type solution of linear DGLAP equation given by Eq.(5.23)
is comparable with the DLA result of Eq.(5.27) in a finite domain of z and Q? as
long as the constraint given by Eq.(5.28) is fulfilled. It is obvious from the figure
that for each value of QQ?, there is a corresponding value of x for which the L.h.s and
r.h.s. of Eq.(5.28) are identical and the value of x, where this happens, switches to

lower limit as Q% increases. We observe that for the Q? values 5 < Q? < 500 GeV?,
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considered in our analysis, the condition of compatibility is satisfied in the region of
x between 10~* and 1073. Accordingly the Regge like solution of the linear DGLAP
equation in LO is expected to be applicable in the region of 107* < z < 1072 and
high-Q? if it is appealed to be consistent with the DLA one.

5.4 Summary

In summary, the behavior of gluon distributions in the region of small-z and moderate-
(Q)? are semi-analytically predicted by solving the nonlinear GLR-MQ equation in
leading twist approximation incorporating the well known Regge ansatz. We make a
deliberate attempt to explore the effect of nonlinear or shadowing corrections arises
due to the gluon recombination processes on the behavior of gluon distribution at
small-z and moderate-Q?. We observe that the gluon distribution function increases
with increasing @ and decreasing x, but with the inclusion of the nonlinear terms,
this behaviour of gluon density is slowed down relative to DGLAP gluon distribu-
tion. We investigate how the inclusion of nonlinear effects changes the behavior of
gluon density and it is interesting to observe that although the gluon distribution in-
creases with increasing Q% and decreasing x as usual, which is in agreement with the
perturbative QCD fits at small-z, however the gluon recombination processes tame
the rapid growth of gluon densities towards small-z. This suggests that the gluon
distributions unitarize leading to the restoration of Froissart bound in the small-z
region where density of gluons becomes very high. For the gluon distribution the
nonlinear effects are found to play an increasingly important role at x < 1073, The
nonlinearities, however, vanish rapidly at larger values of x. Furthermore, our results
manifest that the nonlinearity increases with decreasing value of correlation radius
R as expected which is very fascinating.

Our results indicates that the nonlinear effects or shadowing corrections, emerged
as a consequence of recombination of two gluon ladders, play a significant role on QCD
evolution for gluon distribution in the kinematic region of small-z and moderate-Q?.
Accordingly the suggested solution of the GLR-MQ equation for gluon distribution
function is anticipated to be legitimate only in the vicinity of saturation i.e. in the
kinematic region 1 < Q? < 30 GeV? and 107° < 2 < 1072, Our phenomenological

analysis also supports this as the obtained results of nonlinear gluon density using
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the Regge ansatz are in accordance with different parametrization as well as models.

Finally, we derive the condition of compatibility of the LO solution of linear
DGLAP equation for gluon, obtained by employing the Regge ansatz, with the DLA
solution in a finite range of the variables  and Q?. From our phenomenological
analysis we understand that in the Q? region 5 < Q? < 500 GeV2, considered in
our study, the condition of compatibilty is satisfied in the region of x between 10~4
and 1073, Accordingly we can expect the Regge type solution of the linear DGLAP
equation in LO to be applicable in the region of 107* < 2 < 1073 and high-Q? if we
demand it to be consistent with the DLA one.
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Chapter 6

Shadowing Corrections to the
Singlet Structure Function and
Behaviour of F5 Slope

6.1 Introduction

Perturbative QCD manifests that the sea quark distributions, in a hadron evolves
rapidly with In(1/z) at fixed Q? in the same manner as the gluon distribution
rg(x,Q?). However in the region of very small-z the sharp growth of the sea quark
density is expected to slow down eventually in order to restore the Froissart bound
[1, 2] on physical cross sections. In general the gluon recombination processes, which
lead to the nonlinear or shadowing corrections to the linear QCD evolution, is consid-
ered to be responsible for this taming behaviour. The sea quark distribution, which
overshadows the valence quarks at small x, is supposed to be generated through glu-
ons and therefore it is extensively believed that the gluon and sea quark distribution
functions almost feel the same effect of shadowing. The nonlinear or shadowing cor-
rections in DIS arise due to two processes, one is the taming of the gluon density as a
result of gluon recombination gg — ¢ and the other is the Glauber-like rescattering of
the ¢g fluctuations off gluons [3]. The second process can also be regarded as a parton
recombination, particularly as a recombination of gluons into a quark-antiquark pair,
g9 — qq. Gribov, Levin and Ryskin (GLR-MQ) [4], at the onset, investigated the
shadowing corrections of gluon recombination to the parton distributions i.e quark

and gluon distribution. Following that Mueller and Qiu (MQ) [3, 5] completed the
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equation numerically using a perturbative calculation of the recombination probabili-
ties in the DLLA, and also formulated the equation for the conversion of gluons to sea
quarks. This is a triumph of great significance as it empowers the GLR-MQ equation
to be applied phenomenologically and thus provides the connection to experiments.
This equation was made widely applicable in order to include the contributions from
more higher order corrections in the Glauber-Mueller formula [3].

In this chapter, we solve the GLR-MQ equation for sea quark distribution in-
corporating the well known Regge like ansatz and investigate the effect of shadowing
corrections on the small-z and moderate-Q? behaviour of singlet structure function.
Our predictions of z and Q? dependence of singlet structure function with shadowing
corrections are compared with NMC [6] and E665 [7] experimental data as well with
the NNPDF collaboration [8]. Moreover, we perform a comparison of our predictions
of singlet structure function obtained from nonlinear GLR-MQ equation with those
obtained from linear DGLAP equation to examine the effect of nonlinear or shad-
owing corrections on the behaviour of singlet structure function. We further predict
the logarithmic derivative of the singlet structure function and compare the results

with H1 data [9, 10].

6.2 Formalism
6.2.1 General framework

The nonlinear corrections arising from the recombination of two gluon ladders into
one gluon or a ¢q pair, modify the evolution equations of sea qurak distribution as
[11]

Oxq(x, Q%) _ Owq(x, Q%) 27 a(Q?)

— 2\12
Q2 a2 Iperar 160 ReqE 9@+ HT. (6.1)

This equation is known as the GLR-MQ evolution equation for sea quark distribution.
Here q(x,Q?) is the quark density and g(x,Q?) is the gluon density. The represen-
tation for the gluon distribution G(z, Q%) = zg(z,Q?) is used. The first term on
the right-hand side is given by standard linear DGLAP equation whereas the term
quadratic in G is the result of gluon recombination into quarks. The negative sign
in front of the non-linear term tames the strong growth of sea quark distribution

generated by the linear term at very small-z and it describes the shadowing correc-
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tions. HT stands for an additional term revealed by Mueller and Qiu but it is not
given in all respects. Therefore this term is not taken into account in our analysis
presented below. The parameter v is calculated by Mueller and Qiu in perturba-
tion theory and is found to be v = % for N. = 3. The size of the nonlinear term
crucially depends on the value of the correlation radius R between two interacting
gluons. mR? is the target area occupied by the gluons. If the gluons originate from
sources which occupy distinct regions in longitudinal coordinate space then R is of
the order of proton radius, i.e. R =5 GeV~!. In that case recombination probability
is very negligible [12, 13]. On the other hand, a considerable effect of recombination
or shadowing corrections is expected if the gluons are condensed in hot spots [14]
inside the proton, where R is considered to be of the order of the transverse size of
a valence quark, i.e. R =2 GeV™L.

In the QCD improved parton model approximation, the structure functions are
usually identified by summing quark distributions weighted by squared charges as

usual
Fy(z,Q%) = 26’?1'%‘(% Q%) (6.2)

where the sum implies summation over all flavours of quarks and anti-quarks and e;
is the electric charge of a quark of type i. The F;, structure functions measured in
DIS can be written in terms of singlet and non-singlet quark distribution functions
as [15]

_ o S 3 NS
F = 18F2 + 18F2 (6.3)

As the structure function in the small-z region is mainly dominated by the gluon
and sea quark distributions, therefore at small-x the non-singlet contribution can be
neglected. It is reasonable to consider this from the experimental point of view as
well. The H1 Collaboration presents a global fit of their data of the singlet quark
distribution, g = u + % + d + d + s + 5, which determines practically the Fy(z, Q?)
behaviour at small-z in the form zqg(z) = Az®(1 — 2)¢(1 + Dx) where A, B, C and
D are numerical constants at Q* = 4 GeV? and z > 2 x 107*. At x < 1072, one
can rewrite this expression as zqg(r) = Ax? and one may neglect the non-singlet
contribution within a few percent accuracy. Similarly ZEUS Collaboration presented

their data for singlet quark distribution in a similar form zqg(z) = Az?(1 —2)°(1 +
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D+/z + Ex) with the numerical constants A, B,C, D and F at Q* = 7 GeV? and
x > 0.67 x 1071 Also in this case one can rewrite the expression in the form
rqs(r) = AzB.

Thus the contribution of the non-singlet part of the structure function can be
ignored in the small-z region and in that situation Eq.(6.1) can be approximated as

0Fy (v,Q%) _ 5 0Fy(x,Q?)
onQ@? 18 JlnQ?

5 27 a2(Q?)

pcrap 18160 R2(Q)?

G*(2,Q%), (6.4)

Again the first term of Eq.(6.4), which is the linear DGLAP equation for singlet

structure function, in the leading twist approximation is given by [28]

Or &) - =2) [g (3+4ln(1 _a:)>F25(~’E,Q2)

Oln QQ? Ipcrap 21

by [ i {0 rm (Le7) - 2rstea)

+ Np /m1 (w2 +(1- w)2>G(§, Q2>dw} . (6.5)

6.2.2 Solution of GLR-MQ equation for singlet structure
function and effects of gluon shadowing

Now to solve the GLR-MQ equation for singlet structure function we employ a Regge
like behaviour of singlet structure function As discussed in chapter 5, the Regge
ansatz can successfully describe the behaviour of structure functions at small-z [16].
The Regge theory is supposed to be applicable if x is small enough [17, 18] as long
as Q? is sufficiently large that a perturbative treatment is possible. The Regge pole
model gives the parametrization of the DIS structure function Fy(z,Q?) at small-z
as Fy oc 27 with A > 0 [15]. To this end, we take into account a simple form of

Regge like behaviour of singlet structure function as

Fy(2,Q%) = J(Q%)a™, (6.6)

where J(Q?) is a function of Q? and \g is the Regge intercepts for singlet structure
function. According to Regge viewpoint, the high energy or small-z behaviour of both
gluons and sea quarks are controlled by the same singularity factor in the complex
angular momentum plane [16] since the same power is expected for sea quarks and
gluons. Therefore likewise the value of the Regge intercept Ag for gluon distribution

function, the values of Ag in our analysis is also taken to be 0.5 .
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Again to obtain a solution of the GLR-MQ equation for singlet structure function,
we have to assume a relation between singlet structure function and gluon distribution
function as discussed in chapter 3 and chapter 4. The frequently used relation is [19-

21]
G(z,Q%) = K(2)Fy (z,Q%), (6.7)

with the ad hoc parameter K (z) to be determined from phenomenological analysis.
Now employing the Regge ansatz of Eq.(6.6) for singlet structure function and
using the relation defined by Eq.(6.7) in Eq.(6.4) we arrive at
OF; (x, Q%) Bz, Q) (75 (@, Q)]
0Q? In(Q?/A?) Q*In(Q?/A?)°

The explicit forms of the functions p;(x) and ps(zx) are

= p1(x) — p2() (6.8)

bt

pi(r) = 9—50

§<3+4ln(1 —:1:)) +§/:1d_—“w({(1+w2)w _2)

+ Ny / 1 (w4 (1~ w)2>wASK(:v)dw] | (6.9)

_ 2w (K @)’
) =3 e

Here we consider the leading twist approximation of the strong coupling constant

(6.10)

as(Q?) :W with Gy = 11—§Nf and Ny being the number of active quark
flavours. Eq.(6.8) is a partial differential equation for the singlet structure function
FJ(z,Q?) with respect to the variables z and Q2. This equation can be used to
examine the z-evolution of singlet structure function apart from its conventional use
in @Q?-evolution. Solving of Eq.(6.8) we get

pi(x)
C + po(x) [tn@)—2e~tdt’

F(x,t) = (6.11)

which leads us to the solution for the singlet structure function with nonlinear or
shadowing corrections. Here we have use the variables t = ln(%) for convenience
and C is a constant to be determined from initial boundary conditions. We note
that in the kinematic region 0.6 < Q% < 30 GeV? and 107* < 2 < 10! the solution
given by Eq.(6.11) is in good agreement with the Regge ansatz of Eq.(6.6) and and

satisfactorily describes the shadowing corrections to the singlet structure function.
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So we restrict our analysis in this kinematic region and observe that the solution
of singlet structure function with the inclusion of shadowing corrections given by
Eq.(6.11) is valid in the region of small-z and moderate values of Q*. However the
solution suggested in Eq.(6.11) loose its validity at large-z and large-Q* where the
effect of gluon recombination on the QCD evolution is very trivial.

Now we can determine the Q? and small-z dependence of singlet structure func-
tion from Eq.(6.11) using the appropriate boundary conditions. The physically plau-

sible boundary conditions are
FY (x,t) = Fy(x,t0) (6.12)

at t =ty where tg = In ((;\2—5%) for some lower value of Q% = Q2 and

FY (x,t) = Fy (w0, 1), (6.13)

at some high r = x.

The boundary condition (6.12) leads us to

; i
Fy(x,ty) = , 6.14
2 ( 0) C + pg(:z:) ftopl(ft)*Qeftodto ( )
where t; = In ((;\2—;2’) From this equation the constant C' can be determined by

choosing a suitable input distribution Fy'(z,t0) at a given value of Q2. Now from
Egs.(6.11) and (6.14) we get the @?-evolution of shadowing singlet structure function
for fixed x given as

(@) F5 (2, 1)
1) —i—pg(:v)[ [ @ =2e-tdt — [ 1@ =2e=todty| F (x,to)

Y (x,t) = (6.15)
This expression gives the Q2-evolution of shadowing singlet structure function at
LO. We can easily compute the dependence of singlet structure function on Q? for a
particular value of x by choosing an appropriate input distribution at a given value
of Q% using Eq.(6.15). The effect of nonlinear or shadowing corrections to the singlet
structure functions for a set of Q2 can also be studied from this equation.

Similarly, the boundary condition (6.13) yields

p1(zo)

T C + palwo) [t @0 2etdt’

FS (x0,t) (6.16)
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so that using Eqgs. (6.11) and (6.16) we obtain
tpl(w)F2S (z0,1)
tp(zo) + [pg(x) [ trr@=2e=tdt — po(z) ftpl(xo)—Qe—tdt] F3(xo,t)

Fy(x,t) = . (6.17)

Thus Eq.(6.17) provides us the solution of the GLR-MQ equation for singlet struc-
ture function at small-z for fixed Q2. Using this equation the small-z dependence
of nonlinear singlet structure function can be predicted for a particular value of Q?
taking a convenient input distribution at an initial value of x = xy. Eq.(6.17) fur-
ther helps us to examine the effect of shadowing corrections to the singlet structure

functions at small-z.

6.2.3 Comparative analysis of DGLAP and GLR-MQ equa-
tions for singlet structure function

In this section we find a solution of the linear DGLAP equation (Eq.(6.5)) for singlet
structure function at LO employing the Regge ansatz of Eq.(6.6) and compare it
with the solution of the GLR-MQ equation for singlet structure function discussed
above. This comparison assists us to estimate the effect of shadowing corrections
in our predictions of singlet structure function. Now employing the Regge ansatz of

Eq.(6.6) the solution of Eq.(6.5) is obtained as
Fy (x,t) = Dtr@), (6.18)

where D is a constant to be fixed by initial boundary condition. The x dependent

function p;(z) is defined in Eq.(6.9). We define
fio = (x,10) = Dig' (6.19)
at t =t at some lowe value Q% = Q3. Then Eq.(6.18) and Eq.(6.19) leads us to
Bt = ()" (6:20)

which provides the solution of the linear DGLAP equation for singlet structure func-
tion with the ansatz of Eq.(6.6) and it describes the Q?-evolution of linear singlet
structure function for a fixed value of x provided a suitable input distribution fjy has
been chosen from the initial boundary condition.

Again, defining
fao = F5 (x0,t) = DtPr(@0) (6.21)
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at some initial higher value z = xo, Eq.(6.18) can be expressed as
FQS(I,Q% — fQOtm(:v)—m(wo). (6.22)

Eq.(6.22) is the solution of the linear DGLAP equation for singlet structure function
at small-x with the ansatz of Eq.(6.6) and it describes the small-z behavior of linear
singlet structure function for a particular value of Q? by choosing an appropriate
input distribution foy from the initial boundary condition.

Now considering the solutions of the linear DGLAP and nonlinear GLR-MQ
equations respectively we can examine how the gluon recombination processes effect
the linear QCD evolution of singlet structure functions. For this purpose we calculate
the ratio of the solution of nonlinear GLR-MQ equation to that of linear DGLAP

equation for singlet structure function using the Eqs.(6.17) and (6.22)

()

Rps = (6.23)

as a function of variable x for different values of Q*. From this ratio we can investigate
the effect of shadowing corrections as a consequence of gluon recombination on the
behavior of singlet structure function at small-x. The phenomenological analysis of

Eq.(6.23) is presented in section 3.

6.2.4 Derivative of the singlet structure function with re-
spect to In Q>

It is very interesting to study the logarithmic derivative of the F, structure function
with a shadowing corrections interpretation which provides information pertinent to
the Regge analyses of I, in z and Q? kinematic domains. We make an attempt to
study the Q? dependence of OF; /0ln Q? at given fixed value of x and examine the
effect of shadowing corrections. There are several methods suggesting the relation
between the scaling violations of Fy(z,@?) to the gluon density at small-z [22-26].
These methods are based on the fact that at very small-x the structure function
becomes gluon dominated. We use the the following approximate relation between
the gluon density and the scaling violation of Fy(z, Q%) at some point z [26]

851952; _ 5042;@2) /: <w2+ (1 _w)2>G<§’Q2>dw7 (6.24)
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for four flavours. Since the non-singlet contributions of the structure function can
be neglected in the small-x region, therefore we have considered the F, structure
function as equivalent to Fy . The nonlinear gluon distribution function has a Regge

like behavior
G(z,Q%) = H(Q)z ", (6.25)

in the small-x region as discussed earlier in chapter 5. Thus the function G(z/w, Q?)

can be expressed as

G(g Q2> — Gz, QY), (6.26)

Using Eq.(6.24) along with the Eq.(6.26), we can express Eq.(6.4) in terms of gluon
distribution function as

8F25(x, QQ) B 5053(622)
on(Q?)  9r

302(Q%)
- 64R2()2

M (2)G(z,Q%) G*(2,Q%), (6.27)

M(z) = /: (& +(1- m?)&c. (6.28)

Thus from Eq.(6.27) we can determine the effect of shadowing corrections on the
behaviour of the logarithmic derivative of the singlet structure function. For phe-
nomenological analysis of Eq.(6.27) we take the results of the gluon distribution
function G(z, Q?) obtained in chapter 5 of this thesis. Due to the negative nonlinear
term as a result of gluon recombination Eq.(6.27) is expected to predict a slower

growth of OF; /0ln Q* towards small-z.

6.3 Result and discussion

We have solved the nonlinear GLR-MQ evolution equation by considering the Regge
like behavior of singlet and gluon structure function and examine the effects of shad-
owing corrections due to gluon recombination processes at small-z to the LO DGLAP
evolution equations. The behavior of singlet structure function at small-x and moder-
ate Q% is investigated for both at R = 2 GeV~! and R = 5 GeV~! from the predicted
solution of the GLR-MQ equation. Our computed values of singlet structure function

with shadowing corrections are compared with the CERN’s NMC [6], Fermilab E665
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Collaboration [7] as well as with those obtained in the NNPDF [8] collaboration. It
is worthwhile to mention here that the NMC and E665 experiments measured the
deuteron structure function F¢ from which F can be extracted using the relation

FQd = gFQS . We perform our analysis in the kinematic region 0.6 < Q? < 30 GeV?

0.64 T T
B NMC data

0561 = B NMC data 7
(a) x=0.0045 (b) x=0.008 Our result (R=2 GeV")

Our result (R=2 GeV")

— — Ourresult (R=5 GeV")
0.48 4 L 0.56 |-

0.404 { e
~ 0.324 I _____
,R=2 GeV"
R=5 GeV
0.244 4

0164 . . . 1 0.32 1 I N
0.8 1.2 1.6 2.0 24 1.2 1.8 24 3.0 3.6

Q’ (GeV)) Q’ (GeV?)

— — Ourresult (R=5 GeV")

°(x,Q°%
—

F

Figure 6.1: Q2 dependence of singlet structure function with shadowing corrections for R = 2
GeV~! (solid lines) and R = 5 GeV~! (dash lines) computed from Eq. (6.15) compared with the
NMC data [6].

and 107* < x < 107! where the suggested solution of the GLR-MQ equation for sin-
glet structure function given by Eq.(6.11) is found to be legitimate. We consider the
range 0.6 < Q% < 3.6 GeV? and 107* < 2 < 0.013 for NMC data, 1 < Q? < 4 GeV?
and 107 < 2 < 0.01 for E665 data and 1 < Q? <27 GeV? and 107* < 2 < 0.011
for NNPDF data in our phenomenological analysis. To compute the dependence of
structure functions on Q? we take the input distributions from the data point corre-
sponding to the lowest value of Q? for a particular range of Q% under study. On the
other hand, the data point corresponding to the highest value of x of a particular
range of x under consideration are taken as input distribution to determine the x de-
pendence of the structure functions. In the present analysis we consider the function
K(x) = K, where K is a constant parameter, to relate the singlet structure function
and gluon densities as a simplest assumption and find that the best fit results are
obtained in the range 0.28 < K < 1.2 for our entire region of discussion. The vertical
error bars represent the total combined statistical and systematic uncertainties of the
experimental data.

In Figure 6.1 we plot the Q? dependence of singlet structure function with shad-
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Figure 6.2: A plot showing the Q2 dependence of singlet structure function with shadowing
corrections for R = 2 GeV~! (solid lines) and R = 5 GeV~! (dash lines) computed from Eq. (6.15)
compared with the E665 data [7].

owing corrections computed from Eq.(6.15) for R =2 GeV~! and R =5 GeV~! and
check the compatibility of our predictions with the NMC data at two representative
x = 0.0045 and 0.008 respectively. The solid lines represent the predictions of singlet
structure function for the hot spots with R = 2 GeV~! whereas the results for R = 5
GeV~! is shown by the dash lines.

In Figure 6.2 we show the comparison of our predictions of the singlet structure
function for R = 2 GeV™! and R = 5 GeV~! obtained from Eq.(6.15) with the
E665 data. Here the predicted values of singlet structure function with shadowing
corrections are plotted against Q% at some fixed z = 0.0052,0.00693 and 0.00893
respectively. The solid lines represent the results for R = 2 GeV~! whereas the dash

158



0.90 0.96

(a) x=0.0045 B NNPDF data ) (b) x=0.008 B NNPDF data »1
Our result (R=2 GeV") Our result (R=2 GeV")
— — Ourresult (R=5 GeV") — — Our result (R=5 GeV")
0.75 - 0.80 |- -
- S - «g
O o060} I- 5 0.64 | 4
X “a
"’u_m [TH
l l ==l= GeV"'
/ R=5 GeV"
N R=2 GeV" J 0.48 | J
045 R=5 GeV"
0.30 R R R A 0.32 . . R )
1 6 12 18 24 1 6 12 18 24
Q’ (GeV)) Q* (GeV?)

Figure 6.3: Q2 dependence of singlet structure function with shadowing corrections for R = 2
GeV~! (solid lines) and R = 5 GeV~! (dash lines) obtained from Eq.(6.15) compared to NNPDF
data [8].

lines represent the results for R = 5 GeV~!.

Similarly, in Figure 6.3 the Q* dependence of the singlet structure function with
shadowing corrections obtained from Eq.(6.15) for R = 2 GeV~! and R = 5 GeV ™!
are compared with the NNPDF parametrizations. Here the plots are shown for two
values of z, viz. x = 0.0045 and 0.008. The results for R = 2 GeV~! are depicted by
the solid lines and the results for R = 5 GeV~! are shown by the dash lines.

On the other hand, Figure 6.4 represents the small-x behavior of singlet structure
function with shadowing corrections computed from Eq.(6.17) for R = 2 GeV~! and
R = 5 GeV~! respectively. The consistency of our results are examined with the
NMC data at fixed values of Q% = 1.25,1.75 and 2.5 GeV? respectively. The results
for R = 2 GeV~! are shown by the solid lines whose those for R = 5 GeV~! are
shown by the dash lines.

In Figure 6.5 we show the comparison of the small-z behavior of singlet structure
function with shadowing corrections computed from Eq.(6.17) for R = 2 GeV~! and
R =5 GeV~! with E665 data. The comparison is shown for four representative @2,
viz. Q? = 1.094, 1.496,2.046 and 2.799 GeV? respectively. The solid lines represent
the results for R = 2 GeV~! whereas the dash lines represent the results for R = 5
GeV L.

Figure 6.6 shows the plots of singlet structure function with shadowing corrections

computed from Eq.(6.17) for R =2 GeV~! and R =5 GeV~! vs. = compared with
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Figure 6.4: Small-z behavior of singlet structure function with shadowing corrections for R = 2
GeV~! (solid lines) and R =5 GeV~! (dash lines)from Eq.(6.17) compared to NMC data [6].

the NNPDF data at four representative Q?, viz. Q% = 4.03,8.958,12.242 and 18.808
GeV? respectively. The solid lines represent the results for R = 2 GeV~! whereas
the dash lines represent the results for R = 5 GeV !,

From Figure 6.1 to Figure 6.6 we observe that the obtained results of singlet
structure function with shadowing corrections show the general trend of experimental
data and parametrization. The singlet structure function increases with increasing
Q? and decreasing z, but this attitude is tamed with respect to the nonlinear terms in
the GLR-MQ equation. The effect of shadowing corrections as a consequence of gluon
recombination processes in our predictions is observed to be very high at the hot-spot
with R = 2 GeV~! when the gluons are centered within the proton, compared to at

R =5 GeV~! when the gluons are disseminated throughout the entire proton.
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Figure 6.5: Small-z behaviour of singlet structure function with shadowing corrections for R = 2
GeV~! (solid lines) and R = 5 GeV~! (dash lines) computed from Eq.(6. 17) compared to EG65
data [7].

Moreover, to examine the effect of nonlinear or shadowing corrections to the
singlet structure function in our prediction, we plot the ratio of the solution of
nonlinear GLR-MQ equation to that of the linear DGLAP equation for singlet
structure function in Figure 6.7. The ratio Rps defined in Eq.(6.22) is plotted
against the variable z in the range 107% < z < 1072 for five representative val-
ues Q% = 4.03,5.675,8.958, 12.242 and 18.808 GeV? respectively. We observe that as
x grows smaller the GLR-MQ/DGLAP ratio for singlet structure function decreases
which implies that the effect of nonlinearity increases towards small-z due to gluon
recombination. We also observe that towards smaller values of Q? the value of the

ratio goes smaller.
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Figure 6.6: Small-z behavior of singlet structure function with shadowing corrections for R = 2
GeV~! (solid lines) and R = 5 GeV—" (dash lines) computed from Eq.(6.17) compared to NNPDF
data [8].

In Figure 6.8 we show a plot of logarithmic derivative of the singlet structure
function obtained at the hot-spot point R = 2 GeV~! from Eq.(6.27) vs. Q? at three
fixed values of = = 0.0005,0.005 and 0.008 respectively. We compare our results
with the H1 [9, 10] data. The corresponding values of G(x,Q?) are obtained from
Eq.(5.15) of chapter 5 using the MRST2001LO [26] input gluon parametrization.
Similarly, we show a plot of logarithmic slop of the singlet structure function for a
set of x values in Figure 6.9 at two different bins in Q?, viz. Q* = 2.2 and 7.4 GeV?
respectively. Here also we check the consistency of our results with the H1 [9, 10]
data. The corresponding values of G(z, @?) are obtained from Eq.(5.17) of chapter
5 using the MRST2001LO [27] input gluon parametrization. We observe that the

derivative of the singlet structure function with respect to In Q? has a tamed behavior
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Figure 6.9: A plot of the derivative of the singlet structure function with respect to In(Q?) vs. x
compared with the H1 data [9, 10] at Q? = 2.2 and 7.4 GeVZ.

due to gluon recombination as z grows smaller. It can be easily seen from the figure
that the H1 data shows a steep rise of the logarithmic derivative of the structure
function towards small-x, however this steep behavior is observed to be tamed for
x < 107, This tamed behaviour is correlated with the shadowing corrections as a
result of gluon recombination at very small-z. It is very interesting to note that our
results obtained in the GLR-MQ framework are comparable with the H1 data in the

small-z region.

6.4 Summary

To summaries, we solve the nonlinear GLR-MQ equation for sea quark distribution
function in leading twist approximation incorporating the well known Regge ansatz
and investigate the effect of nonlinear or shadowing corrections arises due to the gluon
recombination processes on the behavior of singlet structure function at small-z and
moderate-Q?. We note that the solution of the GLR-MQ equation for singlet struc-
ture function with shadowing corrections suggested in this work is found to be valid
only in the kinematic domain 0.6 < Q% < 30 GeV? and 10~* < 2 < 107!, where the
gluon recombination processes play an important role on the QCD evolution. Our
predictions of singlet structure function is found to show the general trend of exper-
imental data and parametrization, nevertheless with the inclusion of the nonlinear

terms, this behaviour of singlet structure function is slowed down towards small-x
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leading to a restoration of the Froissart bound. Moreover the effect of shadowing
corrections on the behaviour of singlet structure function with decreasing x become
significant at the hot spot with R = 2 GeV~! when the gluons and the sea quarks
are assumed to condensed in a small region within the proton. The predictions of
the GLR-MQ/DGLAP ratio for Fy(x, Q%) also indicate that the gluon recombina-
tion processes become significant towards smaller values of x and Q? . Moreover our
results show that the behavior of the derivative of the singlet structure function with
respect to In (Q? is consistent with the H1 experimental data. Our results show that
in the small-z region the logarithmic derivative of the singlet structure function has

a tamed behavior related to shadowing corrections due to gluon recombination.

165



Bibliography

1]

[10]

Froissart, M. Asymptotic behavior and subtractions in the Mandelstam repre-

sentation, Phys. Rev. 123(3), 1053——1057, 1961.

Martin, A. Unitarity and high-energy behavior of scattering amplitudes, Phys.
Rev. 129(3), 1432——1436, 1963.

Mueller, A. H., Qiu, J. Gluon recombination and shadowing at small values of

x, Nucl. Phys. B 268(2), 427——452, 1986.

Gribov, L. N., Levin, E. M. and Ryskin, M. G. Semihard processes in QCD,
Phys. Rep. 100(1-2), 1——150, 1983.

Mueller, A. H. Small-z behavior and parton saturation: A QCD model, Nucl.
Phys. B 335(1), 115——137, 1990.

Arneodo, M. et al., Measurement of the proton and deuteron structure func-
tions, F} and FY, and of the ratio opop, Nucl. Phys. B 483(1-2), 3——43,
1997.

Adams, M. R. et al., Proton and deuteron structure functions in muon scatter-

ing at 470 GeV, Phys. Rev. D 54(5), 3006—3056, 1996.

Forte, S. et al., Neural network parametrization of deep inelastic structure

functions, JHEP 2002(JHEPO05), 062, 2002.

Adloff, C. et al., Measurement of neutral and charged current cross-sections in
positron-proton collisions at large momentum transfer, Fur. Phys. J. C 13(4),

609——639, 2000.

Adloff, C. et al., Deep-inelastic inclusive ep scattering at low x and a determi-

nation of oy, Eur. Phys. J. C'21(1), 33——61, 2001.

166



[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Prytz, K. Signals of gluon recombination in deep inelastic scattering, Fur. Phys.

J. C'22(2), 317—-321, 2001.

Laenen, E., Levin, E. A new evolution equation, Nucl. Phys. B 451(1-2),
207—-230, 1995.

Laenen, E., Levin, E. Parton densities at high energy, Annu. Rev. Nucl. Part.
Sci. 44, 199——246, 1994.

Levin, E. M., Ryskin, M. G. Low-z structure function and saturation of the

parton density, Nucl. Phys. B (Proc. Suppl.) 18(3), 92——124, 1991.

Abbott, L. F., Atwood, W. B. and Michael Barnett, R. Quantum-
chromodynamic analysis of eN deep-inelastic scattering data, Phys. Rev. D

22(3), 582——594, 1980.

Collins, P. D., An Introduction to Regge Theory and High-Energy Physics, Cam-
bridge University Press, Cambridge, 1997.

Donnachie, A., Landshoff, P. V. Total cross sections, Phys. Lett. B 296(1-2),
227—— 232, 1992.

Donnachie, A., Landshoff, P. V. Small z: two pomerons!, Phys. Lett. B 437(3-
4), 408——416, 1998.

Sarma, J. K., Choudhury, D. K. and Medhi, G. K. z-distribution of deuteron
structure function at low-x, Phys.Lett. B 403(1-2), 139——144, 1997.

Sarma, J. K., Das, B. t evolutions of structure functions at low-x, Phys. Lett.

B 304(3-4), 323——328, 1993.

Baishya, R., Sarma, J. K. Method of characteristics and solution of DGLAP
evolution equation in leading and next to leading order at small x, Phys. Rev.

D 74(10), 107702, 2006.

Prytz, K. Approximate determination of the gluon density at low-z from the

F; scaling violations, Physics Letters B 311(1-4), 286——290, 1993.

167



[23]

[24]

[25]

[26]

[27]

Prytz, K. An approximate next-to-leading order relation between the low-x F5
scaling violations and the gluon density, Phys. Lett. B 332(3-4), 393——397,
1994.

Bora, K., Choudhury, D. K. Finding the gluon distribution of the proton at
low x from F,, Phys. Lett. B 354(1-2), 151——154, 1995.

Gay Ducati, M. B., Goncalves, P. B. Analysis of low-z gluon density from the
F; scaling violations, Phys. Lett. B 390(1-4), 401——404, 1997.

Boroun, G. R. Analysis of the Logarithmic Slope of F, from the Regge Gluon
Density Behavior at Small x, J. of Fzpt. and Theor. Phys. 111(4), 567——569,
2010.

Martin, A. D. et al., MRST2001: partons and «, from precise deep inelastic
scattering and Tevatron jet data, Fur. Phys. J. C'23(1), 73——87, 2002.

168



Chapter 7

Comparative Analysis of Various
Nonlinear Evolution Equations

7.1 Introduction

The growth of total hadronic cross sections at very high energies is one of the most
challenging problems of QCD and accordingly the study of the high density QCD
turns out to be the center of intensive studies in the last few years. The attempts
to understand the aspects of the higher twist phenomena led to many different kinds
of model in the past times. The corrections of the higher order QCD effects, which
suppress or shadow the growth of the parton densities, leading to a possible restora-
tion of the Froissart bound on physical cross-section in the very small-z region are
at the onset accounted for by Gribov, Levin and Ryskin, and Mueller and Qiu in
the GLR-MQ [1-3] equations. Several other nonlinear evolution equations are pro-
posed in later times reporting the corrections of the gluon recombination to the
linear DGLAP [4-6] and BFKL [7-9] evolutions, viz. the Modified-DGLAP (MD-
DGLAP) [10, 11], Balitsky-Kovchegov (BK) [12, 13], Modified-BFKL (MD-BFKL)
[14] and Jalilian-Marian-Tancu-McLerran-Weigert-Leonidov-Kovner (JIMWLK) [15-
17] equations. The nonlinear equations viz. Modified-BFKL (MD-BFKL), BK and
JIMWLK are based on BFKL evolution, whereas, the MD-DGLAP equation is based
on DGLAP evolution. The BK and the MD-DGLAP equations are the most widely
studied among these . The GLR-MQ equation takes the double leading logarithmic
approximation (DLLA) for both Q? and 1/, keeping only the In(Q?/A?)In(1/z) fac-
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tor in the solutions of the evolution equation, whereas, the MD-DGLAP equation is
derived under the leading logarithmic LL(Q?) approximation. Unlike the GLR-MQ
equation, the MD-DGLAP equation sums the Feynman diagrams in the framework of
the time-ordered perturbation theory (TOPT) [18] instead of using the AGK cutting
rule [19]. Moreover, apart from the shadowing corrections, the MD-DGLAP equation
also takes into account the antishadowing effects which balance the momentum lost in
the shadowing process. The antishadowing corrections may change the predictions of
the GLR-MQ equations. On the other hand, the BK equation is an upgraded version
of the GLR-MQ equation and it determines the saturation of parton densities at very
small-z. The BK equation considers the more precise triple-pomeron vertex [20, 21]
and can be used for the non-forward amplitude. The BK equation is obtained in the
leading In(1/x) approximation of perturbative QCD, i.e. it sums all contributions of
the order (agIn(1/x))™.

In this chapter we present a comparative analysis of the GLR-MQ equation with
the MD-DGLAP and BK equations. Here the gluon distribution function obtained
from the semi analytical solution of the GLR-MQ equation discussed in chapter 5 are
compared with the results of MD-DGLAP and BK equations in the region of small-z.
To compare our predictions in the GLR-MQ approach with those of MD-DGLAP and
BK equations we have used the results of Ref.[22] and Ref.[23] respectively where the

numerical analysis of these equations are presented.

7.2 Formalism

The GLR-MQ equation for the gluon distribution function can be expressed as [1-3,
24]

0G(z, Q%)  0G(z,Q?) 81a2(Q%) [ dw x 2
onQ?  OlnQ? |pcrar 16 R2Q? / U[G<_’Q2)] ’ (7.1)

w
In chapter 5 we have solved this equation semi analytically and investigated the effect
of shadowing corrections on the behaviour of small-z and Q*-dependence of gluon
distribution function using a simple form of Regge like ansatz. Here we have used
these results to perform a comparative analysis of the small-z dependence of gluon

distribution function obtained in the GLR-MQ approach with the results of MD-

DGLAP and BK equations respectively. For convenience, we rewrite here some of
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the important results of chapter 5.

By incorporating the Regge like behaviour of the gluon distribution function,
ie., G(r,Q% = H(Q?*)x ¢ with the Regge intercept \g, the solution of Eq.(7.1) is
obtained as

(@)

t) = .
G(«Ty ) C_i_,.)/Z(:L.)ft'yl(x)erftdt

(7.2)

Here t = In(Q?/A?) and the constant C' is determined from initial boundary condi-
tions. So we use the physically plausible boundary condition at some high x = x4 in
Eq.(7.2) and obtain the x dependence of the gluon distribution function as
@Gz, t)

G(z,t) =
(@) 4 [72 ) [ @ 2emtdt — () [ (o) "2etdt| G (20, )

. (7.3)

This equation helps us to predict the effect of shadowing corrections to small-x be-
haviour of nonlinear gluon distribution function by picking out suitable input dis-
tribution at an initial value of x = xy. The Regge type solution of the GLR-MQ
equation is found to be valid in the kinematic region 1 < Q? < 30 GeV? as well as
1075 < 2 < 1072 as discussed in chapter 5.

The MD-DGLAP equation [10, 11] derived by Zhu and Ruan sums up all possible
twist-4 cut diagrams in the LL(Q?) approximation and describes the corrections of
parton recombination to the QCD evolution equation. For gluon distribution the

MD-DGLAP equation is given by [22]

dzG 2
% = Loy @G, Q%)+ Py @ 5, Q°)
o’k
QQ/ dﬁlmﬁlGQ(thQ)Zpigg_)g(xl,x)
1/2
_anf/ dxlxx1G2(x1,Q2)Zf’igg%g(xl,x) (7.4)

where P, and P, are the evolution kernels of the linear DGLAP equation. The

explicit form of the recombination function is

Z PoT9 g 27 (22, — x)(—136xx} — 64x12® + 132072 + 9921 + 162*)
b =6 xxd

. (7.5)

The nonlinear coefficient £ is based on the definition of the double parton distribution

and the geometric distributions of partons inside the target. The positive third term
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on the right-hand side represents the anti-shadowing effect, whereas the negative
fourth term is the result of the shadowing correction.

In Ref.[22] an analysis of MD-DGLAP equation is presented by W. Zhu et al.,
where the parton distributions in the small-z region in the nucleus and free pro-
ton are numerically predicted considering the GRV-like input distributions with and
without anti-shadowing corrections. Here the Q? and z behaviour of the parton
distributions at high gluon density are studied in LL(Q?) approximation using the
MD-DGLAP equation. The initial gluon density in the GRVISLO set is used as the
input distribution at Q2 = 0.34 GeV? i.e.,

xg(z,Qf) = 17.472"%(1 — 2)3%, (7.6)

with the representation G(x, Q?) = zg(x,Q?). The results obtained in Ref.[22] show
that the growth of the predicted gluon distribution in the proton toward small-x
is slower than In(1/x) for < 107% which implies that the gluon recombination at
twist 4 level suppresses the rapid growth of gluon densities with decrease in x. We
consider the results of Ref.[22] for a comparative analysis of our predictions of gluon
distribution obtained from the solution of GLR-MQ equation with the MD-DGLAP
results.

The BK equation [12, 13] is derived by Balitsky and Kovchegov in the LL(1/x)
approximation of perturbative QCD, i.e. it sums all contributions of the order
(asIn(1/z))™. This equation is written in coordinate space in terms of the dipole
scattering amplitude N. This equation provides the basic indication of the fact that
the correct degrees of freedom at high energies in QCD are colour dipoles. It provides
an explanation of the more specific triple-pomeron vertex [20, 21] and can be utilized
for the non-forward amplitude. The BK equation reads

ON(r,Y;b) _ as d*r'r?
Y o2n ) (=)
X [2N(r’,Y;b+ %(T —1r)) = N(r,Y;b)

—N(r',Y;b—%(r—'r’))N(r—'r’/,Y;b—%7”/)], (7.7)

where a; = (asN.)/m, N(r,Y;b) is the scattering amplitude of interaction for the
dipole with the size r and rapidity ¥ = In(1/x), at impact parameter b. In the
large N, limit Cr = N./2, where N, is the number of colors. Eq.(7.7) implies
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that the dipole of size r decays in two dipoles of sizes ' and r — ' which interact
with the target. The linear part of Eq.(7.7) represents the conventional LO BFKL
equation [7-9]. The non-linear term accounts for the simultaneous interaction of two
produced dipoles with the target and the high twist contributions. A fascinating
characteristics of the BK equation is that its solution predicts a limiting form of the
scattering amplitude resulting in parton saturation. For small dipole densities N the
quadratic term in the brackets is negligible and Eq.(7.7) reduces to the conventional
BFKL equation, whereas, sauration is reached when N = 1.

In Ref.[23] the solution of the LO BK equation is reported where the authors
include the impact parameter dependence of the amplitude at initial values of rapidity
Y = In(1/x) and find the amplitude in each point of impact parameter space. The
gluon density is related to the dipole amplitude as

1 3.0 oo
Gz, Q%) = % / ‘i—f”, /4 " dr—f / BN (r, 5 b), (7.8)
where the representation G(x,Q?) = zg(x,Q?) is used. The calculated results of
the gluon density function in Ref.[23] are found to be in good agreement with the
GRV parametrization. Here we use the results of Ref.[23] to perform a comparative
analysis of our results of gluon distribution obtained from the solution of GLR-MQ

equation with those of the BK equation.

7.3 Result and discussion

The = dependence of gluon distribution function with shadowing corrections calcu-
lated in the framework of GLR-MQ equation is compared with the results of MD-
DGLAP and BK equations taken from the Refs.[22] and [23] respectively. We perform
these comparisons in the kinematic region 1 < Q? < 30 GeV? and 107° < z < 1072
as our predicted solution of GLR-MQ equation is found to be valid only in this do-
main. In Figure 7.1 the gluon distribution function calculated from Eq.(7.3) at the
hot spots R = 2 GeV~! are plotted as a function of x for fixed values of Q?=2.2, 3, 5,
10 and 20 GeV? respectively. Our results manifest that the gluon density increases
with the decreasing x but this behavior is tamed as z grows smaller due to nonlinear
or shadowing corrections. For each ? our predictions obtained in the framework of

GLR-MQ equation are in very good agreement with the results of the BK equation.
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Moreover, concerning the shape of the curves we observe that the shapes of the curves
found in the GLR-MQ approach are very similar to the shape of the BK curves. On
the other hand, we note that our predictions do not match with the results of MD-
DGLAP equation, as the MD-DGLAP curves have opposite concavities in the region
of z > 1073. However in the region x < 1073 the shape of our results is almost
similar to that of the MD-DGLAP equation with a completely different slope. The
MD-DGLAP equation predicts a steeper gluon distribution towards small-z which
implies the presence of strong antishadowing effect in the results of MD-DGLAP
equation, whereas our predictions show significant effect of shadowing corrections as
a consequence of gluon recombination processes towards small-x which results in a

flatter gluon distribution.

7.4 Summary

To summarize, the gluon distribution function obtained in the framework of nonlinear
GLR-~-MQ equation in leading twist approximation is compared with the MD-DGLAP
and BK equations. We make the comparison in the kinematic domain 1 < Q? < 30
GeV? and 107° < 2 < 1072 as the predicted solution of GLR-MQ equation is found
to be valid only in this region. It is a very captivating finding that the predictions
of nonlinear gluon density obtained from the GLR-MQ equation are very compatible
with the results of the BK equation. Our results of nonlinear gluon density are
also found to almost comparable with those of the MD-DGLAP equation but with
a completely different slope. The MD-DGLAP equation predicts a steeper gluon
distribution due to a relatively stronger antishadowing effect, whereas a flatter gluon
distribution is observed in our predictions due to significant shadowing corrections at
small-x. In this work we have not considered other nonlinear equations such as the
JIMWLK equation for comparative analysis with the GLR-MQ equation, owing to
the fact that the JIMWLK equation deals with the process dependent unintegrated
parton distributions and the cross sections whereas the GLR-MQ equation considers

the shadowing in the process independent parton distributions.
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Figure 7.1: Comparison of the gluon distribution function obtained from Eq.(7.3) in the GLR-MQ
approach with the MD-DGLAP results [22] as well as the BK results [23].
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Chapter 8

Conclusion and Outlook

In this thesis we have examined the behaviour of DIS structure functions in the
framework of both linear DGLAP and non-linear GLR-MQ evolution equations at
small-x. The small-z behavior of quark and gluon densities, where x is the Bjorken
scaling variable, is one of the challenging issues of QCD. A key discovery of the
past years is the prevalent role of gluons with very small fractional momentum =z
in nucleons when observed by a high energy probe. On that account, the study of
lepton-nucleon DIS or in particular the determination of the gluon density in the
region of small-x is of great significance. The increase of energy generates a rapid
growth of the gluon density in the limit x — 0 which is eventually expected to
saturate in order to preserve unitarity. Accordingly, the corrections of the higher
order QCD effects, which suppress or shadow the growth of the parton densities,
have been rigorously studied in the last few years.

The linear DGLAP evolution equations are the standard and the basic theoretical
tools to explore the scale dependence of the PDFs and ultimately the DIS structure
functions are. In part I of this thesis we have solved the DGLAP equations for the sin-
glet and non-singlet structure functions, as well as the gluon distribution function at
LO, NLO and NNLO respectively in an analytical approach by using the Taylor series
expansion method. The Taylor series expansion transforms the integro-differential
DGLAP equations into first order partial differential equations which are much easier
to solve. The resulting equations are then solved by the Lagrange’s auxiliary method
to obtain Q2 and z evolutions of the singlet and non-singlet structure functions and

the gluon distribution functions. We have also calculated the Q% and z evolutions of
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deuteron structure function as well as the Q? evolution of proton structure function
from the solutions of the singlet and non-singlet structure functions. We compare
our predictions of deuteron and proton structure function with the NMC data, E665
data, H1 data as well as with the results of NNPDF parametrization. Our results
show that at fixed x the structure functions increase with increasing Q* whereas at
fixed Q% the structure functions decrease as x decreases which is in agreement with
perturbative QCD fits at small-z. We further observe that our computed results
can explain the general trend of data in a decent manner in the kinematic region
1073 <2 < 107! and 0.5 < Q? < 40 GeV?2. On the other hand, our results of gluon
distribution function obtained by solving DGLAP equation are compared with the
GRV1998NLO, MRST2004NNLO, MSTW2008NNLO and JROINNLO global QCD
analysis as well as with the BDM model. The obtained results can be described
within the framework of perturbative QCD. We perform our analysis in the x and
Q? range, viz. 1074 < 2 < 0.1 and 5 < Q? < 110 GeV? and find that in this domain
our predictions are comparable with different global analysis of parton distributions.
It is observed from our phenomenological analysis that the inclusion of the NNLO
contributions provides better agreement of our results with the experimental data
and parametrizations. The Taylor series expansion is a very feasible and convenient
method for analytical solution of DGLAP equations. We have considered some nu-
merical parameters to obtain the solution of DGLAP equations, however the number
of parameters are less compared to the numerical. Moreover, this approach also en-
ables us to calculate the z-evolution of deuteron structure function in addition to
the Q%-evolution. Even though various numerical methods are available in order to
obtain the solution of DGLAP evolution equations, but it is always interesting to
obtain an analytical solution and in this regard the Taylor series expansion method
is a good alternative.

In the very small-z region the growth of the gluon distribution is incredibly
enunciated. Accordingly at small-z the likelihood of interaction between two gluons
can no longer be overlooked and therefore, gluon recombination will be as important
as gluon splitting. So the standard linear DGLAP evolution equation will have to
be modified in order to include the the modifications due to the correlations among

initial gluons to the evolutionary amplitude. A traditional tool in this research is the
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GLR-MQ equation that takes into account the nonlinear corrections arising from the
recombination of two gluon ladders into one gluon. In part II of this thesis we have
made an deliberate attempt to explore the higher order QCD effects of the gluon
recombination processes at very small-z in the framework of nonlinear GLR-MQ
equation. We have solved the GLR-MQ equation in the leading twist approxima-
tion in a semi-analytical approach by employing the well-known Regge-like ansatz
with considerable phenomenological success. We have investigated the behavior of
the gluon distributions in the vicinity of saturation region. Our resulting gluon dis-
tributions are compared with different global QCD fits to the parton distribution
functions, viz. GRV1998LO, GJR2008LO, MRST2001LO, MSTW2008LO, NNPDF,
HERAPDFO0.1, CT10 as well as with the H1 experimental data, and are found to
be quite compatible. Furthermore, we present a comparative analysis of our com-
puted results with the results of the EHKQS and BZ models. We have examined
how the inclusion of nonlinear effects changes the behavior of gluon density and it
is interesting to observe that although the gluon distribution increases with increas-
ing Q* and decreasing x, but the rapid growth of gluon densities is tamed due to
shadowing corrections as x grows smaller. This indicates that the gluon distributions
unitarize leading to the restoration of Froissart bound in the small-x region. This
tamed behaviour of gluon density is observed to be more the the hot-spots when the
correlation radius between two interacting gluons is of the order of the transverse size
of a valance quark, i.e. R =2 GeV~1. We have further checked the effect of shadow-
ing corrections in our results by comparing the gluon distributions obtained in the
nonlinear GLR-MQ approach with those obtained in the linear DGLAP approach.
Careful investigation of our results indicates that the nonlinear effects or shadowing
corrections, emerged as a result of recombination of two gluon ladders, play a signifi-
cant role on QCD evolution for gluon distribution in the kinematic region of small-z
(107> < 2 < 1072) and moderate Q% (1 < Q* < 30 GeV?).

We have also obtained a semi analytical solution of the GLR-MQ equation for
sea quark distribution in leading twist approximation using the Regge like ansatz.
The solution of the GLR-MQ equation for singlet structure function with shadowing
corrections is found to be legitimate in the kinematic domain 107* < 2 < 107! and

0.6 < Q? < 30 GeV2. We have examined the effect of shadowing corrections on the
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small-z and moderate-Q? behaviour of singlet structure function and compared our
predictions with the NMC and E665 experimental data as well with the NNPDF
collaboration. Our predictions are found to show the general trend of experimental
data and parametrization, nevertheless with the inclusion of the nonlinear terms, the
behaviour of singlet structure function is slowed down towards small-x leading to a
restoration of the Froissart bound. Moreover we note that in the small-z region the
logarithmic derivative of the singlet structure function has a tamed behavior related
to shadowing corrections due to gluon recombination.

We have further made a comparative analysis of our predictions obtained in the
framework of GLR-MQ equation in a semi-analytical approach with the results of the
MD-DGLAP and BK equations. It is very fascinating to note that the predictions
of nonlinear gluon density obtained from the GLR-MQ equation are in a very good
agreement with the results of the BK equation. Our results are also found to almost
comparable with those of the MD-DGLAP equation but with a completely different
slope. The MD-DGLAP equation predicts a steeper gluon distribution caused by
strong antishadowing effect, whereas a flatter gluon distribution is observed in our
predictions due to significant shadowing corrections at small-z.

As a future prospect, this work encourages a more detailed study of the properties
of the high density parton system. The GLR-MQ equation only includes the first
non-linear term reporting the recombination of two gluon ladders into one. Therefore
although it predicts saturation in the asymptotic regime, but its validity does not
extend to very high density regime where significant contributions from the higher
twist effects should be taken into account. Moreover, the suggested Regge type
solution of the GLR-MQ equation has a limited range of validity. Nevertheless for
more reliable predictions beyond this range, towards much smaller-Q? or smaller-z,
further analysis is required incorporating the evolution dynamics at higher order.
It will be interesting to study the other nonlinear equations relevant at high gluon

density.
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Appendices

Appendix A
The explicit forms of the functions A;(z), B;(z) and C;(z) (where i=1,2,3,4) are

Ay(z) =22+ 2* +4In(1 — z), (1)

Ay(x) = 2 — 2° — 2z In(w), (2)
2 22 3

Ag(x):2Nf(§—x+x — 3% ), (3)

A (x)zZNf(—gx—l—ZSx 27° —I—gx — zIn(z)), (4)

—x/f o = [ o+ Nf/ Fpg()des, 5)

B =2 [ ) + 3y = Y )
Bg(x):/ Fi (w)dw, (7)
Bu(x) = 2 / “Twqu,(w)dw, (8)

where the functions f(w), Fy,(w) and Fj, (w) are defined in Appendix B. Again,

G =Ny [ R) )
=2 wrdw

Co(z) = Nf/(] le(w), (10)
= wrdw

Cs(z) = Nf/0 le(u}), (11)

Cy(z) = Ny /0 - (ffdsﬁ Ra(w), (12)
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with,

R1 (w)

{In(w) In(1 — w)[~173.1 + 46.18 In(1 — w)] + 178.04In(1 — w)
+6.8921In*(1 — w) + g‘—g[ln‘*u —w) = 2In*(1 — w)]} + w{ln(w)
(—=163.9(1 —w) ™" — 7.208(1 — w)) + 151.49 + 44.51(1 — w)
—43.12(1 — w)? +4.82(1 — w)*} + w*{—5.926In*(w)
—9.7511n*(w) — 72.11 In(w) + 177.4 4+ 392.9(1 — w)

—101.4(1 — w)? — 57.041n(1 — w) In(w) — 661.6In(1 — w)

4 1
13142 (1 — w) — % (1 — w) + 2170 (1 — o)
L, 3584 B )
—506.0(1 —w)™" — 2—7(1 —w) ' In(l —w)} + Nyw{1.778 In*(w)

+5.944 In(w) + 100.1 — 125.2(1 — w) + 49.26(1 — w)?

—12.59(1 — w)?® — 1.889In(1 — w) In(w) + 61.75In(1 — w)

2 2
HITSI2(1 ) + 2 (1 =) + 20 (1 - w)) (13)
27 81
{g In*(w) — ? In*(w) — 120.5In%(w) + 104.42 In(w) + 2522

—3316(1 — w) + 2126(1 — w)* — 252.5(1 — w) In*(1 — w)

+In(w) In(1 — w) (1823 — 25.221In(1 — w)) + 424.9In(1 — w)

44
+881.51n*(1 — w) — 3 In®(1 —w) + 52—376 In*(1 — w) — 1268.3
2 2
(1—w) - %(1 —w) 'In(1 —w)} + Nf{2—(7) In®(w) + 2£7O In?(w)

—5.496 In(w) — 252.0 + 158.0(1 — w) + 145.4(1 — w)?
—139.28(1 — w)® —98.07(1 — w) In*(1 — w) + 11.70(1 — w)

x In*(1 — w) — In(w) In(1 — w)(53.09 4 80.616 In(1 — w))

—254.0In(1 — w) — 90.80In*(1 — w) — % In*(1 — w)
16 1112

——1In*(1 - ——(1-w)! 14
9n( w)+243( w)"} (14)
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Appendix B
The functions involved in the DGLAP equations for singlet and non-singlet struc-

ture functions at NLO are

1
f(w) = CE[Pr(w) — Pa(w)] + §OFCA[PG + Pa(w)|+CrTrNs Py, (w), (15)
Fi(w) = 2CpTrNFye(w), (16)
Fi(w) = CpTrNfF, (w) + CcTrN Fo (W) (17)
where,
_ 20 _ 96 8 o B 2
F(w) = o0 2 4 6w e + <1 + 5w + ¥ > In(w)—(1 4+ w)In*(w), (18)

Flw) = 4—9w— (1 —4w)In(w) — (1 — 2w) In*(w) + 41In(1 — w)

1l —w 1l-w 2
+[2 In*(—=) — 4ln(—=) = Sr* + 10] PL(w), (19)
182 14 40 136 38
2 o — — — — —_— — — p—
Fo(w) = 5 + 9w+9w+< 7w 3>ln(w) 41n(1 — w)
44
—(2+ 8w) In?(w) + | — n(w) + = Infw) = 2n%(1 - w)
2 218
+41D(1 — (U) + % - Ti| qu(W)
o ody 11—
2P, (—w) / [t P (20)
w  Z z
1+w
Here, the Casimir operators of the color group SU(3) are defined as Cg = N¢ = 3,
N2—-1 4
CF:2—]VCZ§3HC1TR:%.
271 + w? 5
PNf(w)—5[1_w(—lnw—§)—2(1—w)], (21)
2(1 + w?) 3 1
Prp(w) = —mln(w) In(1 —w) — (m + Qw) lnw—§(1 +w)lhw
40
+§(1 — QJ), (22)
4w, 11 67 1
Ps(w) = =) <1n (w) + Eln(w) + n §> 5(1 +w)lnw
40
+§(1 —w), (23)
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W2) rGE) _
Py(w) = %/(IL) d—:ln (1 ? k) +2(1+w)In(w)+4(1 —w).  (24)

Appendix:C
The functions involved in the DGLAP equations for singlet and non-singlet struc-
ture functions at NNLO are given below.

The three-loop quark-quark splitting function is
Poy = PXs + P, (25)

The third-order pure-singlet contribution to the quark-quark splitting function

is

PO(z) ~ |Nyj(—5.92L3 —9.751L% — 72.11L, 4 177.4 + 392.92 — 101.4%°

400 160
—57.04LoL, — 661.61Ly + 131.4L2 — 7L3 + 2—7L§ — 506.027"
3584
—folLo) + N7(1.778L7 + 5.944Ly + 100.1 — 125.27 + 49.2627
) , 32 4 256 _,
(26)
with Ly = In(z), L; = In(1 — z).
The non-singlet splitting function calculated upto third order is given by
PO) = Ny [{Ll(—163.9x_1 — 7.208x) + 151.49 + 44.51z — 43.1227
+4.822°} (1 — x) + LoLy(—173.1 4 46.18L¢) + 178.04L,
40
+6.892L7 + 2—7(Lg —2L3)]. (27)
The three-loop quark-gluon splitting function is
P2 o Np(A s TV 00 512 4 104,420, + 2592 — 33161 + 212647
qg<x) - f(? 1_3 1 DLy + . 1+ - T+ X
44
+LoL1 (1823 — 25.22L¢) — 252.52 L) + 424.9Lo + 881.5L5 — ng
536 896 20 200
L} —12683z7' — —a'L N?(ZZL? + =—~L? — 5.496L
Torto v 30 Lo) + N (gp ka4 o I !
—252.0 + 158.02 + 145.42% — 98.07x L2 + 11.70xL3 — LoL,(53.09
376 16 1112
o . 2 YV r3_ ~Yr4 o= 1
+80.616Lg) — 254.0Lg — 90.80Lg 5 Ly o Lot 557 ).
(28)
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Appendix:D
The explicit forms of the functions AY(x), BY(z) (i=1,2,3,4) and C{(z) (i=1,2)

are

AY(z) = —% 42— %a: + ;ag ~ In(z). (29)
Ad(x) =1+ %m — 3% + 2% — iafl + 27 In(x). (30)
AY(z) = g(—; 2 — %ﬁ ~ 9n(a), (31)
A9(z) = 5(2 + 5w =324 30+ dein(e), (32)
Bi(x) =~ In(x), (33)
Bi(x) = —%(1—1;”111( ), (34)
B = [ A, )
BY(x) = a;/ L=wy (36)
ot = [ B, (37)
CY(z) = x/ l_—”P? (38)

Here, the functions A(w) and Py, (w) are defined in Appendices E and F respectively.

Appendix:E
The functions involved in the DGLAP equations for gluon distribution functions

at NLO are

20 4
Pl (w) = CpTp(—16+8z+ 322 + 3%~ (6 + 102) In(2) — (2 + 22)Inz?)

FOATR(2 = 25 + %(22 sy — %(1 4+ 2)In(z) — %ng(z))
+0A(227(1 ~ )+ 296(z 1)) - (% - %12 + 4—;,22) In(z)

+4(1 4 2) In(2?) 4 2P, (—2)S2(2) + (% —4In(2) In(1 — 2)
() - ;)ng(z)). (39)
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A(w) = C%Al ((U) + CpogAQ(CU) + CFTRNFA?,(W) (40)

where
Aj(w) = —g—gw+(2+gw)+(—1+%J)IHQw—Zw.ln(l—w)
1 1—w)?
(=3 In(1 — w) — (1 — @)L =W (41)
w
2 44
Ay(w) = §8+%.w+§w2+(—12—5w—ng)lnw+(4+w)ln2w
1 11
+H2win(l —w) + (—2lnwlin(l —w) + B In®w + Eln(l - w)
1 1.1+ (1—w)?
(1 —w) — on? 4 )= TS
+In*(1 — w) " +2) -
2 1/14w .
_1—|—(1+w)/ @Ml z), (49)
w w/l4w < z
4 20 4 14 (1 - w)?
As(w) = ——w — (2 4+ 2 (1 — w))(————2, 43
(@) = 5w (2 (1w HEE (43)
Appendix:F

The functions involved in the DGLAP equations for gluon distribution functions

at NNLO are

P?(w) = 2643.524Dq + 4425.8946(1 — z) + 3589L; — 20852 + 39682 — 336322

99

+48482° + Lo Ly (7305 + 8757Lg) + 274.4Lg — TATLL + 72L3 — 144L¢ +
142141  2675.81
_|_

zZ
—350.2 + 755.7z — T13.82% 4 559.32° + Lo L1(26.85 — 808.7L¢) + 1541L,
832 512 182.961 157.271

Lo + N(412.142D — 528.7235(1 — z) — 3201,

491.3L2 + —— Ly + —L; L
* ot gt grhot —— 1o
16
+NJ%(—§DO +6.46306(1 — 2) — 13.878 + 153.42 — 187.72% + 52.752"
32
LoLy(115.6 — 85.252 4+ 63.23L¢) — 3.422Lo + 9.680L5 — 2—7L;°;
680 (44)
24312)

where, Lo=In(z), L;=In(1 — z) and Doz(liz).
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Appendix G
To obtain the analytical solutions of DGLAP evolution equations for singlet struc-

ture function or gluon distribution function, we assume the following ansatz [a-c]
G(x,Q%) = K(x)Fy (z,Q%) (45)

which gives the possibility to extract the gluon distribution function directly from
the experimental data. Here K (x) is a function of x or may be a suitable parameter
which can be determined by phenomenological analysis.

In the DGLAP formalism the gluon distribution turns out to be very large at
small-x and so it contributes crucially to the evolution of the parton distribution.
Subsequently, the gluon distribution governs the structure function Fy(z, Q%) through
the evolution g — ¢q in the small-z region. For lower Q? (Q?* ~ A?), however, there
is no such clear cut distinction between the two. Thus for small-z and high @2,
the gluons are expected to more dominant than the sea quarks and therefore the
determination of gluon density in the small-z region is particularly interesting. But
the gluon distribution function G(x, Q?) cannot be measured directly through exper-
iments. It is determined only via the quark distributions together with the evolution
equations. The most precise determinations of the gluon momentum distribution
in the proton can be obtained from a measurement of the deep inelastic scattering
(DIS) proton structure function Fy(z, Q?) and its scaling violation. The Q*-evolution
of the proton structure function Fy(z,@?) is related to the gluon distribution func-
tion G(x,Q?) in the proton and to the strong interaction coupling constant ag. It
is, therefore, important to measure the G(x,Q?) indirectly using Fy(z,Q?). Hence
the direct relations between Fy(x, Q?) and G(x, Q?) are extremely important because
using those relations the experimental values of G(x, Q?) can be extracted using the
data on Fy(z,Q?). A plausible way of realizing this is through the above ansatz. The
evolution equations of gluon distribution function and singlet structure function are
in the same forms of derivative with respect to Q?. Moreover the input singlet and
gluon parameterizations, taken from global analysis of PDFs, in particular from the
GRV1998, MRST2001, MSTW2008 parton sets [d-f], to incorporate different high
precision data, are also functions of z at fixed Q. So the relation between sin-
glet structure function and gluon parton densities can be expressed in terms of x at

fixed-Q?%. Accordingly the above assumption is justifiable.
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The function K(x) may be assumed to have some standard functional form such
as K(z) = K, ax®, ce®™ where K, a, b, ¢, d are suitable parameters which can be
determined by phenomenological analysis, however we can not rule out the other
possibilities [a-c, g, h]. The actual functional form of K(z) can be determined by
simultaneous solutions of coupled equations of singlet structure functions and gluon
parton densities, nevertheless it is beyond the scope of thesis. In this thesis we per-
form our analysis considering the function K (z) as an arbitrary constant parameter
K for a particular range of x and Q? in defining the relation between gluon and sin-
glet structure functions as the simplest assumption. But, we need to adjust its value
for satisfactory description of different experiments. The best fit graphs are obtained
by choosing an appropriate value of K for a proper description of each experiment.

Our phenomenological analysis reveals that the best fit results of singlet structure
functions obtained from the solutions of linear DGLAP equations are in very good
agreement with NMC data in the range 0.0045 < 2 < 0.19 and 0.75 < Q? < 27 GeV?
for 0.92 < K < 1.2, E665 data in the range 0.0052 < z < 0.18 and 1.094 < Q? < 26
GeV? for 0.45 < K < 0.87 and NNPDF parametrizations in the range 0.0045 < x
<0.095 and 1.25 < Q? < 26 GeV? for 1.1 < K < 1.6 respectively. Thus the
parameter K lies in the range 0.45 < K < 1.6 to obtain the best fit results of singlet
structure functions compared with different experiments and parametrizations for
the entire domain of z and Q? under study. Similarly we perform our analysis for
gluon distribution functions obtained from the solutions of DGLAP equations in the
x and Q? domain, viz. 107* < 2 < 0.1 and 5 < Q? < 110 GeV? and obtain our
best fit results compared with different global analysis of parton distributions in
the range 0.14 < K; < 0.85, where K; = 1/K. We observe that our results show
excellent consistency with the global parametrizations namely GRV1998, MRST2004,
MSTW2008, JR09 and with the BDM model for 0.72 < K; < 0.85, 0.5 < K < 0.64,
0.14 < K1 <048, 0.56 < K < 0.68 and 0.62 < K < 0.78 respectively. On the other
hand from the phenomenological analysis of singlet structure functions obtained from
the solution of nonlinear GLR-MQ equation we note that the best fit results are
obtained in the range 0.28 < K < 1.2 for the entire domain of x and ) under study.
The computed values of singlet structure functions with shadowing corrections are

found to be quite compatible with NMC data in the range 0.6 < Q? < 3.6 GeV? and
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107* < 2 < 0.013 for 0.52 < K < 0.9, E665 data in the range 1 < Q? < 4 GeV? and
107 < 2 < 0.01 for 0.28 < K < 0.86 and with the NNPDF parametrization in the
range 1 < Q? <27 GeV? and 107 < 2 < 0.011 for 0.72 < K < 1.2 respectively.

To conclude, we examine the dependence of our predictions on the values of the
arbitrary parameters K and K; for different experimental data or parametrizations
and observe that the values of K or K lie in a very small range. Therefore it is

legitimate to take these parameters as constant parameters.
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