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Abstract

Structure functions in lepton-nucleon deep inelastic scattering (DIS) are the well-

established observables exploring Quantum Chromodynamics (QCD), the theory of

the strong interaction, and they provide exclusive information about the deep struc-

ture of hadrons. Predominantly, the structure functions form the foundation of our

knowledge of the parton densities, which are indispensable for analysis of hard scat-

tering processes at proton-(anti-)proton colliders like the TEVATRON and the Large

Hadron Collider (LHC). Parton distributions are the vital ingredients for most of the

theoretical calculations at hadron colliders and they provide the number densities

of the colliding partons (quarks and gluons) inside their parent hadrons at a given

momentum fraction x, where x is the Bjorken scaling variable, and scale Q2.

The small-x behavior of parton densities is one of the challenging issues of QCD.

The chief and most salient phenomena in the region of small-x which determine

the physical picture of the parton evolution are the increase of the parton density

at x → 0, the growth of the mean transverse momentum of a parton inside the

parton cascade at small-x, and the saturation of the parton density. Therefore the

determination of parton densities or to a great degree the gluon densities in the small-

x region is particularly important because the gluon distribution function controls

the physics at high energy or small-x in DIS. Moreover, precise knowledge of gluon

distribution functions at small-x is useful to estimate backgrounds and explore new

physics at the LHC. That being so, the dynamics of the the high density QCD, the

regime of large gluon densities, is one of the present-day highly demanding undecided

issues in the area of high energy or small-x physics.

The standard and the key tools for theoretical investigation of DIS structure func-

tions are the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equa-

tions. These equations can delineate the available experimental data in a decent

manner considering a large domain of x and Q2 with appropriate parameterizations.

Consequently, the solutions of the DGLAP evolution equations have been reported

in recent years with significant phenomenological success. The DGLAP evolution

equation at the twist-2 level prognosticates a sharp growth of the gluon densities as

x grows smaller which is clearly observed in the DIS experiments at HERA as well.

In consequence, this generates cross sections which in the high-energy or small-x
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limit fail to comply with the Froissart bound. Subsequently, the growing number of

gluon densities, so as to approach small-x, demands a formulation of the QCD at

high partonic density incorporating the unitarity corrections in a suitable manner.

Gluon recombination is usually assumed to be accountable for the unitarization

of the cross section at high energies or a possible saturation of the gluon density at

small-x. At small-x the likelihood of interaction between two gluons can no longer

be neglected and sooner or later, the individual gluons necessarily start to overlap

or shadow each other. Consequently, nonlinear phenomena are expected to arise

which eventually bring about a taming of the maximum gluon density per unit of

phase-space. Moreover, the pioneering finding of the geometrical scaling in HERA

data as well as the existence of geometrical scaling in the production of inclusive jets

in the LHC data provides strong experimental evidences of the saturation effects.

The multiple gluon interactions towards small-x induce nonlinear corrections in the

conventional linear DGLAP equation and accordingly the corrections of the higher

order QCD effects have become the focus of in-depth studies in the last few years.

Gribov, Levin and Ryskin, at the onset, investigated the shadowing corrections

of gluon recombination to the parton distributions. Following that Mueller and Qiu

completed the equation numerically using a perturbative calculation of the recombi-

nation probabilities in the DLLA, and also formulated the equation for the change

of gluons to sea-quarks. This is a great achievement as it authorises the GLR-MQ

equation to be applied phenomenologically and thus provides the connection to ex-

periments. This equation predicts a critical line separating the perturbative regime

from the saturation regime, and it is legitimate just in the edge of this critical line.

The study of the GLR-MQ equation is extremely important for the interpretation

of the non-linear effects of gluon-gluon recombination due to high gluon density

at sufficiently small-x as well as for the determination of the saturation momen-

tum. Moreover, the Balitsky-Kovchegov (BK), Modified-DGLAP (MD-DGLAP),

Modified-Balitsky-Fadin-Kuraev-Lipatov (MD-DGLAP) and Jalilian-Marian-Iancu-

McLerran-Weigert-Leonidov-Kovner (JIMWLK) are some of other widely studied

nonlinear evolution equations relevant at high gluon densities.

The work presented in this thesis is focused on the study of the small-x and Q2

behaviours of the singlet and nonsinglet structure functions and gluon distribution
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functions in the context of linear DGLAP and nonlinear GLR-MQ evolution. The

first part of this thesis is concerned with the study of the linear DGLAP equation upto

next-to-next-to-leading order (NNLO); the second part is more specifically dedicated

to the higher order QCD corrections in small-x physics where we address the issue

of gluon-gluon recombination or shadowing corrections at very small values of x. In

this work, we intend to check whether at very small-x the DGLAP equations can be

ruled out in favour of the GLR-MQ equations which would mean evidence for gluon

recombination. The structure of the thesis is organized as follows:

Chapter 1 is a general introduction of the elementary particles with a brief

account of QCD, DIS, structure functions and parton distribution functions (PDFs).

The importance of small-x physics and gluon shadowing are also concisely described

here. Various high energy experiments as well as parametrization groups extracting

PDFs from global data analyses are also briefly summarized.

Chapter 2 is an overview of the different QCD linear and nonlinear evolution

equations with a more or less detailed description of the DGLAP and the GLR-MQ

equations. The numerical as well as analytical solutions of the evolution equations,

widely available in the literature are also outlined very briefly in this chapter.

It is always very alluring to explore the prospect of obtaining analytical solutions

of DGLAP equations somewhat in the restricted domain of small-x. In chapter 3,

we solve the DGLAP equations for the singlet and non-singlet structure functions

analytically at LO, NLO and NNLO by using a Taylor series expansion valid at small-

x and obtain the Q2 and x-evolutions of deuteron structure function, F d
2 (x,Q

2),

along with the Q2-evolution of proton structure function, F p
2 (x,Q

2), upto NNLO.

We compare our predictions with NMC, E665 and H1 experimental data as well

as with the NNPDF parametrizations. The results obtained are in agreement with

perturbative QCD fits at small-x and can explain the general trend of data in a decent

manner. Moreover the inclusion of NNLO contributions provide excellent consistency

with the experimental data and parametrizations.

In chapter 4, we find analytical expressions for gluon distribution function,

G(x,Q2), at LO, NLO and NNLO by solving the corresponding DGLAP evolution

equations using a Taylor series expansion as in chapter 3 and evaluate the Q2 and

x-evolutions of G(x,Q2) upto NNLO. We note that the NNLO approximation has
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appreciable contribution in the particular range of x and Q2 under study. The ob-

tained results can be described within the framework of perturbative QCD. We check

the compatibility of our predicted gluon distributions and find satisfactory agreement

with the GRV1998, MRST2004, MSTW2008 and JR09 global analysis as well as with

the BDM model.

Although, the linear DGLAP equations can delineate the available experimental

data, as far as HERA data are concerned, in a decent manner covering a large do-

main of x and Q2 with appropriate parameterizations, however, in the very small-x

region, due to the nonlinear corrections of gluon-gluon interactions, the conventional

linear DGLAP evolution equation is expected to breakdown. We, therefore, turn our

attention to the gluon recombination processes in chapter 5 and estimate the impor-

tance of the corrections of these higher order QCD effects, which eventually saturate

the growth of the gluon densities in the framework of nonlinear GLR-MQ equation.

We investigate the effect of shadowing corrections on the small-x and moderate Q2

behavior of gluon distribution by solving the nonlinear GLR-MQ equation in leading

twist approximation incorporating the well known Regge ansatz in the kinematic

region 10−5 ≤ x ≤ 10−2 and 1 ≤ Q2 ≤ 30 GeV2. We also derive the condition of

compatibility of the LO solution of linear DGLAP equation for gluon with the DLA

solution in a finite range of x and Q2. The predicted gluon distributions from GLR-

MQ equation are compared with the GRV1998, GJR2008, MRST2001, MSTW2008,

NNPDF, HERAPDF0.1 and CT10 parametrizations as well as with the H1 data.

Our predictions are also compared with the EHKQS and BZ models respectively.

We further analyse the ratio of the prediction of nonlinear GLR-MQ equation to

that of linear DGLAP equation for G(x,Q2) and observe that the ratio decreases as

x grows smaller signifying that the effect of nonlinearity increases towards small-x.

It is enticing to note that, the rapid growth of gluon densities towards small-x is

tamed by the gluon recombination processes. Results also indicate significant effect

of shadowing corrections at R = 2 GeV−1 when the gluons are concentrated at the

hot spots.

In chapter 6, we solve the nonlinear GLR-MQ equation for sea quark distribu-

tion in leading twist approximation incorporating the well known Regge like ansatz

and investigate the effect of shadowing corrections to the small-x and Q2 behaviour
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of singlet structure function F S
2 (x,Q

2) in the kinematic region 10−4 ≤ x ≤ 10−1

and 0.6 ≤ Q2 ≤ 30 GeV2. Our predictions are compared with NMC and E665 data

as well as with the results of NNPDF collaboration. Results show that F S
2 (x,Q

2)

increases with increasing Q2 and decreasing x, but this behaviour is slowed down

towards small-x with the inclusion of the nonlinear terms. The logarithmic deriva-

tive, of singlet structure function with shadowing corrections is also calculated and

compared with the H1 data. The behaviour of ∂F S
2 (x,Q

2)/∂lnQ2 is seen to be tamed

due to gluon recombination at small-x.

Chapter 7 concerns with the comparative analysis of the GLR-MQ equation

with the more precise and more complicated BK equation as well as with the MD-

DGLAP equation. It is interesting to note that the predictions of nonlinear gluon

density obtained from the GLR-MQ equation are in very good agreement with the

results of the BK equation. Our predictions are also observed to be almost compa-

rable with those of the MD-DGLAP equation, however a flatter gluon distribution is

observed in our predictions due to significant shadowing corrections at small-x.

Finally, the conclusions and the future outlooks of this work are drawn in chapter

8.
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Abstract

Structure functions in lepton-nucleon deep inelastic scattering (DIS) are the

well-established observables exploring Quantum Chromodynamics (QCD), the theory

of the strong interaction, and they provide exclusive information about the deep

structure of hadrons. Predominantly, the structure functions form the foundation

of our knowledge of the parton densities, which are indispensable for analysis of

hard scattering processes at proton-(anti-)proton colliders like the TEVATRON and

the Large Hadron Collider (LHC). Parton distributions are the vital ingredients for

most of the theoretical calculations at hadron colliders and they provide the number

densities of the colliding partons (quarks and gluons) inside their parent hadrons at

a given momentum fraction x, where x is the Bjorken scaling variable, and scale Q2.

The small-x behavior of parton densities is one of the challenging issues of QCD.

The chief and most salient phenomena in the region of small-x which determine

the physical picture of the parton evolution are the increase of the parton density

at x → 0, the growth of the mean transverse momentum of a parton inside the

parton cascade at small-x, and the saturation of the parton density. Therefore the

determination of parton densities or to a great degree the gluon densities in the small-

x region is particularly important because the gluon distribution function controls

the physics at high energy or small-x in DIS. Moreover, precise knowledge of gluon

distribution functions at small-x is useful to estimate backgrounds and explore new

physics at the LHC. That being so, the dynamics of the the high density QCD, the

regime of large gluon densities, is one of the present-day highly demanding undecided

issues in the area of high energy or small-x physics.

The standard and the key tools for theoretical investigation of DIS structure func-

tions are the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equa-

tions. These equations can delineate the available experimental data in a decent

manner considering a large domain of x and Q2 with appropriate parameterizations.

Consequently, the solutions of the DGLAP evolution equations have been reported

in recent years with significant phenomenological success. The DGLAP evolution

equation at the twist-2 level prognosticates a sharp growth of the gluon densities as

x grows smaller which is clearly observed in the DIS experiments at HERA as well.

In consequence, this generates cross sections which in the high-energy or small-x
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limit fail to comply with the Froissart bound. Subsequently, the growing number of

gluon densities, so as to approach small-x, demands a formulation of the QCD at

high partonic density incorporating the unitarity corrections in a suitable manner.

Gluon recombination is usually assumed to be accountable for the unitarization

of the cross section at high energies or a possible saturation of the gluon density at

small-x. At small-x the likelihood of interaction between two gluons can no longer

be neglected and sooner or later, the individual gluons necessarily start to overlap

or shadow each other. Consequently, nonlinear phenomena are expected to arise

which eventually bring about a taming of the maximum gluon density per unit of

phase-space. Moreover, the pioneering finding of the geometrical scaling in HERA

data as well as the existence of geometrical scaling in the production of inclusive jets

in the LHC data provides strong experimental evidences of the saturation effects.

The multiple gluon interactions towards small-x induce nonlinear corrections in the

conventional linear DGLAP equation and accordingly the corrections of the higher

order QCD effects have become the focus of in-depth studies in the last few years.

Gribov, Levin and Ryskin, at the onset, investigated the shadowing corrections

of gluon recombination to the parton distributions. Following that Mueller and Qiu

completed the equation numerically using a perturbative calculation of the recombi-

nation probabilities in the DLLA, and also formulated the equation for the change

of gluons to sea-quarks. This is a great achievement as it authorises the GLR-MQ

equation to be applied phenomenologically and thus provides the connection to ex-

periments. This equation predicts a critical line separating the perturbative regime

from the saturation regime, and it is legitimate just in the edge of this critical line.

The study of the GLR-MQ equation is extremely important for the interpretation

of the non-linear effects of gluon-gluon recombination due to high gluon density

at sufficiently small-x as well as for the determination of the saturation momen-

tum. Moreover, the Balitsky-Kovchegov (BK), Modified-DGLAP (MD-DGLAP),

Modified-Balitsky-Fadin-Kuraev-Lipatov (MD-BFKL) and Jalilian-Marian-Iancu-

McLerran-Weigert-Leonidov-Kovner (JIMWLK) are some of the widely studied

nonlinear evolution equations relevant at high gluon densities.

The work presented in this thesis is focused on the study of the small-x and Q2

behaviours of the singlet and nonsinglet structure functions and gluon distribution
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functions in the context of linear DGLAP and nonlinear GLR-MQ evolution. The

first part of this thesis is concerned with the study of the linear DGLAP equation upto

next-to-next-to-leading order (NNLO); the second part is more specifically dedicated

to the higher order QCD corrections in small-x physics where we address the issue

of gluon-gluon recombination or shadowing corrections at very small values of x. In

this work, we intend to check whether at very small-x the DGLAP equations can be

ruled out in favour of the GLR-MQ equations which would mean evidence for gluon

recombination. The structure of the thesis is organized as follows:

Chapter 1 is a general introduction of the elementary particles with a brief

account of QCD, DIS, structure functions and parton distribution functions (PDFs).

The importance of small-x physics and gluon shadowing are also concisely described

here. Various high energy experiments as well as parametrization groups extracting

PDFs from global data analyses are also briefly summarized.

Chapter 2 is an overview of the different QCD linear and nonlinear evolution

equations with a more or less detailed description of the DGLAP and the GLR-MQ

equations. The numerical as well as analytical solutions of the evolution equations,

widely available in the literature are also outlined very briefly in this chapter.

It is always very alluring to explore the prospect of obtaining analytical solutions

of DGLAP equations somewhat in the restricted domain of small-x. In chapter 3,

we solve the DGLAP equations for the singlet and non-singlet structure functions

analytically at LO, NLO and NNLO by using a Taylor series expansion valid at small-

x and obtain the Q2 and x-evolutions of deuteron structure function, F d
2 (x,Q

2),

along with the Q2-evolution of proton structure function, F p
2 (x,Q

2), upto NNLO.

We compare our predictions with NMC, E665 and H1 experimental data as well

as with the NNPDF parametrizations. The results obtained are in agreement with

perturbative QCD fits at small-x and can explain the general trend of data in a decent

manner. Moreover the inclusion of NNLO contributions provide excellent consistency

with the experimental data and parametrizations.

In chapter 4, we find analytical expressions for gluon distribution function,

G(x,Q2), at LO, NLO and NNLO by solving the corresponding DGLAP evolution

equations using a Taylor series expansion as in chapter 3 and evaluate the Q2 and

x-evolutions of G(x,Q2) upto NNLO. We note that the NNLO approximation has
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appreciable contribution in the particular range of x and Q2 under study. The ob-

tained results can be described within the framework of perturbative QCD. We check

the compatibility of our predicted gluon distributions and find satisfactory agreement

with the GRV1998, MRST2004, MSTW2008 and JR09 global analysis as well as with

the BDM model.

Although, the linear DGLAP equations can delineate the available experimental

data, as far as HERA data are concerned, in a decent manner covering a large do-

main of x and Q2 with appropriate parameterizations, however, in the very small-x

region, due to the nonlinear corrections of gluon-gluon interactions, the conventional

linear DGLAP evolution equation is expected to breakdown. We, therefore, turn our

attention to the gluon recombination processes in chapter 5 and estimate the impor-

tance of the corrections of these higher order QCD effects, which eventually saturate

the growth of the gluon densities in the framework of nonlinear GLR-MQ equation.

We investigate the effect of shadowing corrections on the small-x and moderate Q2

behavior of gluon distribution by solving the nonlinear GLR-MQ equation in leading

twist approximation incorporating the well known Regge ansatz in the kinematic

region 10−5 ≤ x ≤ 10−2 and 1 ≤ Q2 ≤ 30 GeV2. We also derive the condition of

compatibility of the LO solution of linear DGLAP equation for gluon with the DLA

solution in a finite range of x and Q2. The predicted gluon distributions from GLR-

MQ equation are compared with the GRV1998, GJR2008, MRST2001, MSTW2008,

NNPDF, HERAPDF0.1 and CT10 parametrizations as well as with the H1 data.

Our predictions are also compared with the EHKQS and BZ models respectively.

We further analyse the ratio of the prediction of nonlinear GLR-MQ equation to

that of linear DGLAP equation for G(x,Q2) and observe that the ratio decreases as

x grows smaller signifying that the effect of nonlinearity increases towards small-x.

It is enticing to note that, the rapid growth of gluon densities towards small-x is

tamed by the gluon recombination processes. Results also indicate significant effect

of shadowing corrections at R = 2 GeV−1 when the gluons are concentrated at the

hot spots.

In chapter 6, we solve the nonlinear GLR-MQ equation for sea quark distribu-

tion in leading twist approximation incorporating the well known Regge like ansatz

and investigate the effect of shadowing corrections to the small-x and Q2 behaviour
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of singlet structure function F S
2 (x,Q

2) in the kinematic region 10−4 ≤ x ≤ 10−1

and 0.6 ≤ Q2 ≤ 30 GeV2. Our predictions are compared with NMC and E665 data

as well as with the results of NNPDF collaboration. Results show that F S
2 (x,Q

2)

increases with increasing Q2 and decreasing x, but this behaviour is slowed down

towards small-x with the inclusion of the nonlinear terms. The logarithmic deriva-

tive, of singlet structure function with shadowing corrections is also calculated and

compared with the H1 data. The behaviour of ∂F S
2 (x,Q

2)/∂lnQ2 is seen to be tamed

due to gluon recombination at small-x.

Chapter 7 concerns with the comparative analysis of the GLR-MQ equation

with the more precise and more complicated BK equation as well as with the MD-

DGLAP equation. It is interesting to note that the predictions of nonlinear gluon

density obtained from the GLR-MQ equation are in very good agreement with the

results of the BK equation. Our predictions are also observed to be almost compa-

rable with those of the MD-DGLAP equation, however a flatter gluon distribution is

observed in our predictions due to significant shadowing corrections at small-x.

Finally, the conclusions and the future outlooks of this work are drawn in chapter

8.
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Chapter 1

Introduction

1.1 Fundamental structure of matter

The fundamental research in physics evolves the understanding of mankind at a great

rate in the last century. The everlasting hunt to determine what are we made of or

what is the fundamental structure of matter has led to a broadly adopted classification

of fundamental particles. In the course of time, physicists become triumphant in

portraying matter to be made up of some smaller entities. The origin of today’s

world is supposed to be the so called big bang, during which time, space, matter

and energy emerged as reality. In ancient time it was believed that there were

four set of classical elements: earth, water, air, and fire; sometimes including a

fifth element called aether in ancient Greece and akasha in India [1]. The idea

of the five elements established a background of analysis in both Hinduism and

Buddhism. This theory of classical elements prevailed to the seventeenth century

until the beginning of the modern chemistry when the great chemist Robert Boyle

gave the new definition for an element. About a hundred years later the British

chemist John Dalton proposed the modern atomic theory in 1809 and gave a list

of elements that is a clear outrider to today’s tabulation of the hundred and more

elements. In 1897, the first subatomic particle called the electron was discovered by

Joseph John Thomson. The discovery of proton by Ernest Rutherford in 1911 in

his famous scattering experiment superseded Thomsons plum pudding model of the

atom. Later in 1932 Rutherford’s student James Chadwick discovered the neutron

following which the detailed picture of atomic nuclei was undocked.
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Figure 1.1: The structure within the atom

By the 1960s more and more new particles like proton and neutron, called

hadrons, were discovered and it was justifiable to admit that the strongly bound

hadrons were not truly fundamental particles, but were composed of some further

anonymous elementary entities. In 1964 Murray Gell-mann and George Zweig in-

dependently proposed that these entities were a family of spin 1/2 particles which

they named quarks [2, 4] and according to their theory each hadron was consisted

of either three quarks, known as baryons, or a quark and anti-quark pair, known as

mesons. Then, in 1968, the high energy electron-proton scattering experiments at

the Stanford Linear Accelerator Center (SLAC) revealed the existence of hard scat-

tering centers inside the proton, thus confirming, undoubtedly, that it surely was a

composite particle. Richard Feynman in 1969 proposed the parton model in which

the hadrons were supposed to be composite objects of some more fundamental par-

ticles, the so-called partons [5]. Later it was identified that these partons represent

the same objects nowadays usually referred to as ‘quarks’ and ‘gluons’. The main

difference between Rutherford’s experiment and the electron-proton scattering ex-

periments comes from the fact that, the dimension of an atom is typically 10−10 m

whereas that of a proton is about 1 fm = 10−15 m (Figure 1.1). From the uncer-

tainty principle ∆E.∆x ≥ hc ≈ 0.2 GeVfm, it is clear that the smaller the distance

to be probed the higher must be the beam energy. The probing inside the proton

(x << 1 fm) requires a beam energy E >> 1 GeV. The requirement of this high

energy acceleration technique is responsible for more than 50 years gap between the

two experiments.

The quark model possessed various puzzling features regardless of its achievement

that included the probable absence of isolated quarks as well as two quark (qq) or
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four quark combinations (qqqq). Over the past decade, however, particle-accelerator

activities all over the world have assembled some indication that a few different kinds

of four-quark particles might exist. Very recently using the most powerful particle

collider in the world, the Large Hadron Collider (LHC), a research group at CERN

has produced a particle made of four quarks go by the name Z(4430)− [6]. They

exist only in exceedingly high-energy ambiance for an extremely short period of time.

Moreover the presence of pentaquark states was announced by various experiments

in the middle of the year 2000, but subsequent experiments and reanalysis of the data

revealed them to be statistical effects instead of true resonances. A further problem

was associated with the ∆++ baryon as the quantum numbers of this particle turned

out to violate the Pauli exclusion principle. These enigmas were sooner or later

resolved by the addition of another degree of freedom referred to as color and to

that end along with all other quantum numbers quarks also carry a color charge.

Nevertheless due to color confinement all particles observed in nature must be color

singlet, and so the only permissible quark combinations appear to be simply the three

quarks or three antiquarks as well as a quark and an antiquark compositions.

Our current understanding of the basic building blocks of matter and how do they

interact with each other can be explained by a theory, known as the Standard Model

(SM) [6-9]. Over time and through many experiments, physicists have successfully

developed the SM into a well-tested theory of particle physics that marks a milestone

in our present knowledge on what the world is and what holds it together. It was

flourished during the latter half of the 20th century, as a joint endeavor of scientists

throughout the world. The present formulation was established in the middle of

1970s consequent to the experimental evidence for the existence of quarks. Ever

since the discoveries of the W and Z bosons in 1981 [10], the top quark in 1995 [11],

the tau neutrino in 2000 [12], and more recently the Higgs boson with spin 0, the

first elementary scalar particle ever discovered in nature, in 2012 [13] at the worlds

largest particle accelerator, the CERN’s Large Hadron Collider (LHC) have added

further credibility to the already established SM. According to this theory, the most

fundamental building blocks of all matter in the universe are quarks and leptons along

with their antiparticles. Nonetheless, the experiments colliding beam of protons at

the highest LHC energies will be awaiting to see whether quarks themselves contain
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more fundamental constituents. Each of these particles comes in six distinct types

and their interactions are mediated by the force carrier particles. The particles that

make up ordinary matter i.e. leptons and quarks are fermions, whereas the force

carriers are bosons. The six quarks form three doublets of the electroweak symmetry

group SU(2).

The SM organizes the elementary particles into three generations, including

two quarks and two leptons in each generation as shown in Figure 1.2. Particles

in generation I are less massive than those in generation II, which are less massive

than those in generation III. The up quark, the down quark, the electron and the

electron neutrino are placed in the first generation; the second generation includes

the charm quark, the strange quarks, the muon and the muon neutrino; while the

third generation consists of the top and bottom quarks and the tau and tau neutrino.

The ordinary matter, for example the stable atoms made of electrons, protons, and

neutrons with effectively infinite life spans, is exclusively made up of first-generation

particles. Being heavier higher generations particles quickly disintegrate into first-

generation particles, and thus are not usually experienced. The hadron with longest

life time containing a second generation quark is the lambda particle, made of an

up, down, and strange quark. It has a mean lifetime less than a billionth of a

second, which is comparatively long-lasting for an unstable hadron. Particles of

third generation are divided according to their behavior. The bottom quark does not

differ much from a strange quark. On the other hand the top quark is very short-lived

and breaks down before anything realizes its existence. They can only be recognized

from their decay products.

There are four fundamental forces in the universe: the strong force, the elec-

tromagnetic force, the weak force and the gravitational force. The SM includes the

electromagnetic, strong and weak forces and all their carrier particles, and explains

well how these forces act on all of the matter particles. However, the most familiar

force in our everyday lives, gravity, is not a part of the SM. The weak and strong forces

are effective only over a very short range and dominate only at the level of subatomic

particles whereas the electromagnetic force acts over an infinite range. Gravity is

the weakest of the four fundamental forces and appears to have infinite range unlike

the strong or weak force. It is speculated that the gravitational force is mediated
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Figure 1.2: Standard model of elementary particles

by a massless spin-2 particle called the graviton, yet to be discovered. The LHC ex-

periments could give indication for extra dimensions apart from the four dimensions

we experience and allow the study of higher-dimensional gravitons. Nevertheless,

some theories predict that high-energy experiments at LHC could create gravitons

escaping into the extra dimensions. Quantum electrodynamics (QED), a quantum

field theory, mathematically describes all phenomena involving electrically charged

particles, interacting by means of exchange of photon, the massless, uncharged, spin

1 gauge boson. The weak interaction is accountable for both the radioactive de-

cay and nuclear fusion of subatomic particles. The weak interaction affects all the

fermions of the SM, as well as the Higgs boson and is mediated by two massive gauge

bosons: the chargedW± or the neutral Z0, also known as intermediate vector bosons.

Neutrinos are the only particles to feel just one of the fundamental forces, the weak

interaction, which is what makes them so hard to investigate. The weak interaction

is best understood in terms of Glashow, Salam, and Weinbergs electro-weak theory

(EWT) which unifies both the weak and electromagnetic forces into one at higher

energies [7-9].

The strong force, as the name implies, is the strongest of all four fundamental
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interactions. Quarks and gluons are the only fundamental particles that carry color

charge, and hence participate in strong interactions. The quantum field theory that

describes strong interactions is named as Quantum Chromodynamics (QCD) for this

property of color. The strong interactions among the quarks are exchanged by glu-

ons, the massless gauge boson with spin 1, like photons. However, unlike photons,

which are not electrically charged and therefore do not feel the electromagnetic force,

gluons do take part in strong interaction and can interact among themselves. But

the behavior of this crucial, prevalent binding force is exceptionally difficult to under-

stand. A new electron-ion collider (EIC) [14] could successfully unfold the enigmas

of the glue. Within short range about 10−15 metre, approximately the diameter of

a proton or a neutron, the strong force becomes stronger with distance, unlike the

other forces. However, the strong force between quarks becomes weaker at short

distances. That is Quarks behave independently when they are close, but they can

not be pulled apart. Due to this property, known as the asymptotic freedom [15-17],

the various interactions between the quarks can possibly be neglected when probing

the hadron with a high energy particle. Consequently free quarks are not observed

in nature but rather they are permanently confined within colorless hadrons.

So far so good, but there are many shortcomings in the SM as it fails to explain

the complete picture, such as the strong CP problem, neutrino oscillations, matter-

antimatter asymmetry, and the dark matter and dark energy etc. Another problem

with SM is that it incorporates only three out of the four fundamental forces, omitting

gravity. The model is also unsuccessful in explaining why gravity is so much weaker

than the electromagnetic or strong forces. Moreover it cannot provide justification

for the three generations of quarks and leptons with such a diverse mass scale. The

hierarchy problem is also associated with the Higgs boson mass. Last but not the

least, the SM only describes visible matter, but it cannot explain the nature of the

dark matter and dark energy. Many attempts in the theoretical and experimental

physics are going on to extend the SM through supersymmetry or to discard it in

favor of new theories like Minimal Supersymmetric Standard Model (MSSM), string

theory and extra dimensions. Regardless of the deficiencies, the SM is the most

successful theory of particle physics to date.
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1.2 Quantum chromodynamics

QCD is the theory that describes the dynamics of the strong interactions between

quarks and gluons. Its phenomenological utilizations to a large extent, concerning

which people go on learning, are still very interesting topics of active research. QCD

is a special case of a non-abelian Yang-Mills theory with the gauge group SU(3), the

Special Unitary group in 3 dimensions [18]. This gauge group involves the additional

degree of freedom known as color, completely unrelated to the everyday familiar

phenomenon of color, which plays an essential part in the dynamics of the theory.

The concept of color first originated from the discovery of the ∆++ baryon composed

of three strange quarks with parallel spins when its quantum numbers seemed to

violate the Pauli exclusion principle. The idea of color as the origin of a strong field

was evolved into the theory of QCD in the 1970s by the physicists Harald Fritzsch and

Heinrich Leutwyler, together with Murray Gell-Mann [19]. According to QCD quarks

carry a color charge of red (R), green (G) or blue (B) and antiquarks have a color

charge of antired (cyan), antigreen (megenta) and antiblue (yellow) i.e. R̄, Ḡ, B̄ [18].

Especially, it is of great importance that the gauge bosons of QCD, the gluons, carry

color as well and therefore can interact among themselves. In this way apart from the

well known fermion-boson vertex, the QCD Lagrangian further involves three-gluon

and four-gluon vertices. Figure 1.3 shows the schematic representation of the basic

QCD Feynman diagrams. Due to the specific characteristic of gluon self coupling

in QCD it is feasible to have a convincing theory including only the gauge fields

without any fermion, and so in some situations the contributions arising from only the

gauge part are likely to be separated from the fermionic contributions. Moreover the

existence of jets in QCD is subjected to these gluon-gluon interactions. Gluons have a

combination of a color and an anticolor of a different kind in a superposition of states

which are equivalent to the Gell-Mann matrices. Unlike the single photon of QED or

the three W± and Z0 bosons of the weak interaction, there are evidently eight kinds

of gluons in QCD listed as follows [18]: RḠ, RB̄, GR̄, GB̄, BR̄, BḠ, (RR̄−GḠ)/
√
2

and (RR̄+GḠ−2BB̄)/
√
6. In other words, the gluons belong to a SU(3) color octet.

The remaining combination, the SU(3) color singlet, (RR̄+GḠ+BB̄)/
√
3 does not

take part in the interaction.

Two outstanding features of QCD are confinement and asymptotic freedom [15-
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Figure 1.3: Basic QCD Feynmann diagrams

17]. The perturbative analysis of QCD is well grounded based on the fact that the

theory is asymptotically free, that is, at short distance the quarks and gluons behave

as quasi-free particles whereas at longer distance the force of attraction between

quarks and gluons becomes stronger and stronger. Therefore no free color charge

has ever been observed in nature, rather they are confined within the experimentally

observed color neutral composite states of hadrons. The coupling constant which is a

measure of the effectiveness of the strong force that holds quarks and gluons together

into composite particles introduces a dependence on the absolute scale, implying

more radiation at low scales than at high ones and it is usually referred to as running

coupling constant [20]. The running is logarithmic with energy, and is governed by

the so-called beta function,

∂αs

∂ln (Q2)
= β(αs), (1.1)

where

β(αs) ≡
∂αs(Q)2

∂ln (Q2)
= −β0

4π
α2
s −

β1

16π2
α3
s −

β2

64π2
α4
S +O(α5

s) (1.2)

with one-loop, two-loop and three-loop coefficients

β0 =
11

3
Nc −

4

3
Tf = 11− 2

3
Nf ,

β1 =
34

3
N2

c − 10

3
NcNf − 2CFNf = 102− 38

3
Nf ,

and

β2 =
2857

54
N3

c + 2C2
FTf −

205

9
CFNcTf −

1415

27
N2

c Tf +
44

9
CFT

2
f +

158

27
NcT

2
f

=
2857

2
− 6673

18
Nf +

325

54
N2

f .

Here Nf is the number of active fermion flavors and Nc is the number of colors. We

use Nf = 4, Nc = 3, Tf = 1
2
Nf and CF = N2

c−1
2Nc

, CF being the color factor associated
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with the color group SU(3). Numerically, the value of the strong coupling is usually

specified by two parameters, the renormalization scale (µ) and the corresponding

value of the coupling at that point, from which we can obtain its value at any other

scale from Eq.1.1,

αs(Q
2) =

αs(µ
2)

1 + αs(µ2)β0ln(Q2/µ2) +O(α2
s)
. (1.3)

These two parameters can be replaced for a single parameter Λ so that the running

coupling can be expressed as

αs(Q
2) =

1

β0 ln(Q2/Λ2)
. (1.4)

The coupling would clearly diverge at the scale Λ, called the Landau pole, which

specifies the energy scale at which the perturbative coupling would nominally become

infinite. Its value is experimentally found to be Λ ≈ 200 GeV. This implies that

the perturbation calculations are allowed only at energy scales of or higher than 1

GeV. Moreover, the structure of hadrons cannot be determined applying perturbation

theory as a result of confinement. Alternatively, the quark and gluon content of

hadrons are computed by parametrizations of the distribution functions obtained

from high energy scattering experiments. Being universal these distribution functions

are very useful to make prognostications for other experiments.

1.3 Deep inelastic scattering and structure func-

tions

Deep inelastic scattering (DIS) [21, 22] has long been an excellent tool of exploring

the inner structure of a hadron, say proton. DIS provides the first conceivable in-

dication of the reality of quarks which so far had been considered by many to be

merely a mathematical fact. In lepton-nucleon DIS for example, electrons and pro-

tons are accelerated to very high energies and then allowed them to collide. The

four-momentum squared (Q2) of the exchanged virtual photon in this process deter-

mines the resolving power. The spatial resolution with which structure of the proton

is probed is roughly the De Broglie wavelength of the virtual photon λ ∼ 1/Q. At

large Q2, the wavelength associated with the electron are much smaller than the size

of a proton, thereby resolving smaller distances within the proton, i.e. a single quark
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inside the proton scatters off the photon. Thus DIS assist us to extract information

on the the parton dynamics and the momentum distributions of quarks and gluons

inside the proton to a great extent. Over and above that DIS is solicitous to the

discovery and interpretation of new physics which could be observed in extreme con-

ditions of high parton densities at very small Bjorken-x. The first DIS experiments

were performed at SLAC in California in 1968 following which a lot of other DIS

experiments exploring the proton structure have been carried out until 2007 with the

high energy HERA electron-proton collider at DESY in Hamburg. Most recently a

new colliding beam facility, the Large Hadron Electron Collider (LHeC) [23], is pro-

posed at CERN for lepton-nucleon scattering which will produce an unprecedented

kinematic domain for lepton-nucleon scattering with the centre of mass energy of 1.3

TeV being four times larger than the previous highest attainable energy at HERA.

In lepton-nucleon neutral-current (NC) DIS, a neutral boson, i.e. a photon or a Z0,

Figure 1.4: Schematic representation of DIS

is exchanged between the electron (or positron) and the quark, in contrast to the

charged-current (CC) DIS where a charged W± boson is exchanged when a neutrino

interacts with a nucleon. The resulting process of DIS is inclusive when this hadronic

final state remains undetected, or semi-inclusive when apart from the lepton some

10



produced hadrons are detected or exclusive when all final products are identified.

The basic process of NC DIS where the lepton with four momentum k interacts with

the proton with four momentum p through the exchange of a virtual photon whose

momentum is q is depicted in Figure1.4. The cross section of the process can be

described by the following Lorentz invariant kinematic variables [18]:

Exchanged four momentum squared or virtuality of photon:

Q2 ≡ −q2 = (k − k′);

Square of the invariant mass of the final state hadronic jet:

W 2 = (p+ q)2 = M2 + 2p.q + q2;

Center of mass energy squared:

s = (p+ k)2;

Energy transfer from the lepton to the proton:

ν = p.q;

Bjorken scaling variable representing the fracton of proton’s four momentum carried

by a parton:

x =
Q2

2ν
and

Fraction of energy lost by the electron in the proton rest frame (inelasticity):

y =
p.q

p.k
= 1− E ′/E.

Here k denotes the four momentum of the incoming electron and k′ the four momen-

tum of the scattered electron, E and E ′ are the initial and final electron energies

in the rest frame of the target proton and M is the mass of the proton. Q2 and

ν are the two independent variables in DIS. The dimensionless x is related to the

variables y, Q2 and s via the approximate relation Q2 = xys. Since the proton is the

lightest baryon, therefore W > M . It is necessary to measure E, E ′ and the scatter-

ing angle θ in the laboratory reference frame to determine the full kinematics. The

aforementioned kinematic variables have a finite range of allowed values: 0 < x < 1;

0 < y < 1; 0 < Q2 < s and M < W <
√
s.
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The scattering cross section can be splitted into a leptonic part describing the

emission of the virtual photon by the lepton and a hadronic part describing the

interaction of the virtual photon with the proton,

dσ ∼ LµνW
µν . (1.5)

The most general form of the tensor Wµν can be constructed out of gµν and indepen-

dent momenta p and q as

W µν =
(
gµν − qµqν

q2

)
W1(x,Q

2) +
(
pµ +

1

2x
qµ
)(

pν +
1

2x
qν
)
W2(x,Q

2). (1.6)

The proton structure function is characterised by two measurable functions W1 and

W2 or equivalently the so-called structure functions F1 and F2:

F1(x,Q
2) = W1(x,Q

2),

F2(x,Q
2) = νW2(x,Q

2). (1.7)

Structure functions are the established observables in DIS providing unique in-

formation about the deep structure of hadrons as well as their interactions. They

allow perturbative QCD to be precisely tested and and to a great degree, they form

the backbone of our understanding concerning the parton densities which are indis-

pensable to investigate the hard scattering processes. In terms of F1 and F2 the

unpolarized DIS cross section can be expressed as

d2σ

dxdQ2
=

4πα2
S(Q

2)

Q4

[
xy2F1(x,Q

2) + (1− y)F2(x,Q
2)
]
, (1.8)

where the first term F1 corresponds to the absorption of a transversely polarized

photon, while the longitudinally polarized component of the cross section is given

by FL(x,Q
2) = F2(x,Q

2) − 2xF1(x,Q
2). Further in the limit Q2 → ∞ and fixed x,

any strong interactions among the partons can be neglected and the proton structure

functions can be estimated from an incoherent sum of the partons. Then F1 and

F2 become independent of Q2 and are functions of the dimensionless kinematical

variable x only. This is known as the so-called Bjorken scaling [24]. The well-known

SLAC-MIT experiment on DIS observed that the measured DIS cross section exhibit

approximate scaling behavior [25]. In the Bjorken limit the quarks in the proton

can absorb only the transversely polarized photons, whereas the the longitudinally
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polarized photons can not be absorbed due to halicity conservation and therefore the

longitudinal part of the cross section turns out to vanish. In that case F1 and F2 are

related through the famous Callan-Gross relation 2xF1(x) = F2(x) which is a direct

consequence of the existence of point like quarks with spin 1/2 within proton.

QCD extends the naive quark parton model by allowing interactions between

the partons via the exchange of gluons. The processes that generate the parton

interactions to first order in αs are gluon radiation (q → qg), gluon splitting (g → gg)

and quark pair production (g → qq̄). In DIS, at smaller values of Q2 the photon can

resolve only the valence quarks with relatively large values of x with a finite resolution

proportional to 1/Q. On the other hand, at higher values of Q2 the photon, having

a smaller wavelength, can resolve the quarks at smaller distance scales. Thus in the

high Q2 region gluon radiation leads to the creation of quark-antiquark pairs with

relatively small values of x. The parton densities will thus increase with increasing

Q2. Analysis of the cross section shows that this increase mainly occurs at small-

x. Therefore, QCD persuades the requirement of an additional scale Q2 for the

representation of the parton densities. Accordingly beyond the bounds of parton

model approximation the PDFs and therefore the structure functions come to have

a Q2 dependence through higher order corrections in αs(Q
2) resulting in sizeable

scaling violations [26]. The HERA experiments, H1 and ZEUS [27-30] measured

the proton structure function F2 extensively and perfectly established its scaling

violations anticipated by QCD over a wide kinematic region. The predicted scale

dependence further enables the factual estimation of αs(Q
2) as well as provides an

explicit verification of QCD.

1.4 Parton distribution functions

Perturbative QCD or any other cross sections involving initial-state hadrons can

not provide first-hand appraisal of structure functions owing to the fact that the

initial-state particles in the experiments of different high energy collider viz. HERA,

Tevatron as well as LHC are not quarks and gluons, but the composite hadrons.

Therefore, it is a prerequisite to know the momentum distributions of the partons

(quarks and gluons) inside the colliding hadrons in order to correlate theoretical QCD

calculations with experimental data. To zeroth order in αs, the structure functions
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are precisely measured in respect of parton distribution functions (PDFs). In the

parton model approximation, the proton is composed of a number of free constituents,

each of which carry a fraction x of the protons total momentum. In this framework

the structure functions are usually identified by the summation over the incoherent

sum of the parton’s momentum distributions qi(x) for each quark flavor i,

F2(x) = 2xF1(x) =
∑
i

e2ixqi(x), (1.9)

where the sum implies summation over all flavours of quarks and antiquarks. ei is

the electric charge of a parton of type i. The functions qi(x) are known as the PDFs

describing the probability of finding a parton of flavor i inside the proton with a

longitudinal momentum fraction x at resolution scale Q2. The proton consists of

three valence quark flavors uud along with the many quark-antiquark flavors uū, dd̄,

ss̄ and so on, known as the ‘sea’ quarks. As a first approximation, we may assume

the three lightest quark flavors u, d and s, having roughly the same fequency and

momentum distribution, to occur in the sea and neglect the possibility of sizeable

presence of heavier quark flavors. To recover the quantum numbers of proton, the

net numbers of quarks need to satisfy the following sum rule:∫ 1

0

(u(x)− ū(x))dx = 2;

∫ 1

0

(d(x)− d̄(x))dx = 1;

∫ 1

0

(s(x)− s̄(x))dx = 0, (1.10)

resulting charge=+1, baryon no.=1, strangeness=0. Another important sum rule is

the momentum sum rule which demands that the sum of the momenta of all partons

must be equal to the momentum of the proton, i.e.∑
i

∫ 1

0

xqi(x)dx = 1. (1.11)

The PDFs, being non-perturbative, cannot be fully obtained by perturbative

QCD. These are rather derived by fitting observables to experimental data. Never-

theless, within QCD one can study the rate of change of the PDFs with the resolution

scale Q2 and it is controlled by the QCD evolution equations for parton densities. As

mentioned earlier, QCD predicts a dependence of the structure function on the scale

Q2 induced by corrections in αs(Q
2) arises from diagrams with real gluon emission.

So QCD modifies the F2 structure function as

F2(x,Q
2) =

∑
i

e2ix(qi(x,Q
2)). (1.12)
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Thus the structure function as well as the parton distributions now have a Q2 de-

pendence resulting in scaling violation. The general strategy to determine PDFs is

comprised of parametrizing the dependence of the parton distributions on the vari-

able x at some small value of Q2 = Q2
0, either by constructing a rough presumption

on their analytical forms or by employing the neural-net technology, and evolving

these input distributions to high Q2 via the evolution equations. Be that as it may,

there is still not a particular set of PDFs commonly acknowledged. Presently the

parametrizations of PDFs are accomplished by several groups, mainly the GRV/GJR

[31, 32], MRST/MSTW [33-35], NNPDF [36, 37], HERAPDF [38, 39] and CTEQ [40,

41]. We will further discuss these PDFs groups in more detail in section 1.6.2 of this

chapter. These groups differ mainly in the input data, the methods of parametriza-

tions, the treatment of heavy quarks and the value of the coupling constant αs as

well the methods of analysis. To comprehend the common features and ambiguity

as well as the discrepancies between the predictions of the PDF groups an active

association has been set up at CERN in recent times.

1.5 Gluon shadowing at small-x

One of the present most fascinating issues of QCD is the growth of hadronic cross

sections at high energies or in other words at small-x. At very high energies hadronic

interactions have been manifested to be impelled by states with high partonic densi-

ties and accordingly many phenomenological and theoretical efforts have been made

to explain it. A vital finding of the past years is the prepotent role of gluons with

very small fractional momentum x in nucleons when observed by a high energy probe.

Thus increase of energy causes a rapid growth of the gluon density in the limit x → 0

eventually leading to the saturation effects [42-44]. That being so, the study of

lepton-nucleon DIS or most importantly the determination of the gluon density in

the region of small-x is considerably relevant as it could be a measure of perturba-

tive QCD or a probe of novel effects and further because it is the primary factor

in numerous other analysis of different high energy hadronic processes. There have

been enormous phenomenological and experimental activities for decades regarding

the interpretation of small-x QCD from DIS at HERA to heavy ions collisions at

RHIC. Moreover the study of this kinematic regime is of uttermost importance to
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compute particle production in the proton-proton collisions at LHC.

The small-x demeanor of structure functions for fixed Q2 exhibits the high-energy

nature of the total cross section with growing total center of mass energy squared s

since s ≃ Q2( 1
x
− 1) [44]. At very high energies, one can therefore access the region of

smaller and smaller values of x. At small-x, the likelihood for the photon of detecting

a small-x parton increases and for sufficiently small values of x the virtual photon no

longer interacts with each parton deliriously, rather there may be multiple scattering

off various partons. However the sharp growth of the gluon density towards small-x

will eventually have to slow down in order to restore the Froissart bound [45, 46] on

physical cross sections. This bound controls the upper limit for the increase of the

cross section at asymptotically large values of s and is established on analyticity and

unitarity constraints. The Froissart bound indicates that the total cross section does

not grow faster than the logarithm squared of the energy as s → ∞ or, equivalently,

as x → 0, i.e., σtotal =
π
m2

π
(ln s)2, where mπ measures the range of the strong force.

It seems that there should be some process which restricts the growth of the gluon

distribution at small-x and subsequently prohibits the cross section from growing

very rapidly. Gluon recombination is generally regarded as the mechanism liable

for this taming or a potential saturation of the gluon distribution function at very

small-x.

As x decreases for fixed Q2, the number of gluons increases, and at some value of

x = xcrit the entire transverse area inhabited by gluons turns out to be comparable

to or larger than the transverse area of a proton. In consequence, at sufficiently

high energy the semi-hard processes, which complements the interactions of gluons

with a very small fraction of the proton’s momentum, may affluently contend the soft

processes [42]. In other words, at very small values of x the number densities of gluons

will be so high that the probability of interaction between two gluons can no longer be

overlooked. That is to say, at very small-x (x < xcrit) gluons start to overlap spatially

and so the processes of recombination of gluons will be as essential as their emission.

In this way the increase in the number of small-x gluons becomes limited by gluon

recombination (gg → g) processes which eventually leads to gluon saturation [42, 43,

47]. The phenomena of gluon recombination is also known as absorptive corrections,

shadowing, nonlinear effects, screening or unitarity corrections. The gluon saturation
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is one of the most fascinating problems of the small-x physics, which is presumed on

theoretical basis and there is emerging indications of its existence. The pioneering

finding of the geometrical scaling in HERA data [48] as well as the existance of

geometrical scaling in the production of comprehensive jets in the LHC data [49]

provides strong experimental evidences of the saturation effects.

Figure 1.5: Schematic picture of parton saturation

In conjunction with energy the inception of saturation also depends on the size of

the gluons, defined as r ∼ 1/Q in DIS. With larger sized gluons the available hadron

area will be teemed earlier and the gluons start to re-interact whereas, when the

size is small the saturation will be deferred to larger energies. The process of gluon

saturation is schematically portrayed in Figure 1.5. There is a typical transverse

momentum scale Qs related to saturation which separates the dilute regime from the

saturated regime. It is known as the saturation scale and it signifies the scale at

which the nonlinear effects become important. Qs is proportional to the density of

gluons per unit area [50]:

Q2
s(x) ≃

αs

Nc

xg(x,Q2)

πR2
∼ x−λ, (1.13)
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where R is the radius of the hadron where gluons populate. The saturation scale is

the key parameter in saturation physics [47-54] and grows with 1/x. Therefore, for

sufficiently small-x, Q2
s >> Λ2 with Λ being the QCD cut off parameter and thus

the small coupling approach is legitimate. Below the saturation scale the nonlinear

effects begins to decelerate and ultimately saturate the rapid growth of the gluon

densities.

The conventional perturbative QCD methods cannot be pertained in the kine-

matic region of small-x and large-Q2, where αs continues to be small but the density

of gluons becomes high enough. The interactions among the gluons in this dense sys-

tem disagree with the fundamental presumption of the QCD improved parton model

where the partons are considered to be noninteracting. The physics that controls this

high density region is non-perturbative, but of a nature unlike the one analogous to

large distances [47, 55]. Nevertheless there is a transition region between perturbative

QCD and high density QCD where some aspects of the aforementioned dense system

of gluons can be studied and this transition region is likely to analyse through pertur-

bative approach. The linear QCD evolution equations, such as the DGLAP [56-58]

and the Balitsky-Fadin-Kuraev-Lipatov (BFKL) [59-61], are therefore expected to

breakdown in the kinematic region of very small-x where the gluon recombination

processes give rise to nonlinear corrections. A comprehensive study of this region was

first performed by Gribov, Levin and Ryskin, and by Mueller and Qiu (GLR-MQ) in

their pioneering papers [42, 43] and they suggested that the higher twist phenomena

of gluon recombination or shadowing corrections could be expressed in a new evolu-

tion equation which is nonlinear in gluon density. This nonlinear evolution equation

is nowadays referred to as the GLR-MQ equation. In the recent years various alter-

native nonlinear evolution equations admissible at high gluon densities have been de-

rived and analysed widely and subsequently the structure functions from DIS or more

particularly the PDFs have been investigated in the framework of saturation models.

These are the Modified-DGLAP (MD-DGLAP) [62], Balitsky-Kovchegov (BK) [63,

64], Modified-BFKL (MD-BFKL) [65] and Jalilian-Marian-Iancu-McLerran-Weigert-

Leonidov-Kovner (JIMWLK) [66, 67]. We present a brief account of these linear and

nonlinear QCD evolution equations in Chapter 2 of this thesis.

The picture of high gluon density in QCD can be quantitatively executed by a
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crucial parameter [55]

W̃ =
αs(Q

2)

Q2
ρ(x,Q2), (1.14)

which represents the probability of gluon recombination throughout the cascade.

Here ρ = xg(x,Q2)
πR2 is the the density of gluons in the transverse plane, xg(x,Q2)

number of gluons per unit of rapidity (Y = ln(1/x)) which interacts with the probe

and αs/Q
2 ∼ σgg→g represents the cross section of gluon-gluon interaction. This

parameter controls the precision of calculations involving gluon-gluon interactions.

The unitarity constraint on physical cross sections can be expressed as W̃ ≤ 1 [55]. In

the region of x and Q2 where W̃ << 1, the interaction of gluons is negligible and we

may proceed with the evolution equations linear in gluon density. However, at small-

x the gluon density becomes so large that W̃ can become appreciable in which case

higher twist effects of gluon-gluon interactions can no longer be ignored and in that

case the evolution is governed by the nonlinear evolution equations. The correlation

radius of two interacting gluons is characterized by R and its value depends on how

the gluons ladders couple to different partons. If the gluons originate from sources

which occupy distinct regions in longitudinal coordinate space then R is of the order

of proton radius, i.e. R = 5 GeV−1 [42]. In that case recombination probability is

very negligible. On the other hand, if the gluon ladders couple to the same quark

or gluon then the gluons are expected to be concentrated in small areas inside the

proton, the so-called hot-spots [43, 68]. Such hot spots of high gluon density can

enumerate the rapid onset of gluon-gluon interactions in the environs of the emitting

parton and so uplift the recombination effect or shadowing corrections. In such hot

spots R is considered to be of the order of the transverse size of a valence quark, i.e.

R = 2 GeV−1.

Gluon saturation as well as the high parton density regime within hadronic and

nuclear wave functions at small-x are properly described in the effective theory of

Color Glass Condensate (CGC) [69-71] and related formalisms. It is predicted by

the theorists that, when Q2
s is large the interactions among the individual gluons

are feeble but they jointly form a very strong coherent classical color field analogous

to Bose-Einstein condensates and glassy materials, and is therefore marked as the

CGC. The CGC is expected to be the universal restrain for the constituents of a

comprehensible hadron wave function which is, as a whole, high density of gluons
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and for resolving momenta below the saturation scale.

As a general comment, we note that exploring the dynamics of the high den-

sity QCD at small-x is one of the current most demanding problems in high energy

physics and there has been significant breakthrough formulated to comprehend gluon

recombination or shadowing. Numerous theoretical and phenomenological endeav-

ours have been done in the recent years to investigate the saturation phenomena

based on perturbative QCD [72-79].

1.6 Experiments and parametrizations

1.6.1 Experiments

The structure functions measurements have been accomplished by several high en-

ergy experiments over the past years. The DIS experiments utilizing charged and

neutral lepton beams have steadily enhanced the understanding of the structure

functions in recent years. The first electron-proton DIS experiments were performed

at SLAC in 1968 in California [80]. Following this the progress of the E26 [81],

CHIO [82], Bologna-CERN-Dubna-Munich-Saclay (BCDMS) [83], European Muon

Collaboration (EMC) [84], New Muon Collaboration (NMC) [85] and E665 [86] muon

scattering experiments at Fermilab and CERN, and the HERA [27-30, 87] at DESY

have been established in the past years. These muon scattering experiments were

improved by a course of high energy neutrino scattering experiments as well at Fer-

milab and CERN. The most recent high energy experiments of p-p collisions are the

Large Hadron Collider (LHC) [88, 89] which is the latest addition to CERN’s acceler-

ator complex. The LHC is the biggest and most complicated experimental facilities

ever constructed and is likely to confront some of the unanswered queries of physics,

promoting knowledge of physical laws. A brief account of some of these experiments

are given below.

SLAC

The SLAC experiments were fixed target experiments operated during the time pe-

riod from 1968 to 1985 using 21 GeV electrons scattered off hydrogen and deu-

terium targets. The first DIS experiments exploring the proton structure were per-

formed at SLAC in 1968. The SLAC measurements [80] covered a kinematic range
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0.06 ≤ x ≤ 0.9 and 0.6 ≤ Q2 ≤ 30 GeV2. The overall normalization error of the

experiments is about 2.1%. The structure function F2 was obtained using RSLAC ,

where R is the ratio of the longitudinally polarized virtual photon absorption cross

section to that of transversely polarized.

BCDMS

The BCDMS experiment (NA4) at CERN ran parallel to EMC from 1978 up to

1985 and included a DIS of muons on a hydrogen target using beams of 100, 120,

200 and 280 GeV. The the kinematic range covered in these measurements is [83]

0.06 ≤ x ≤ 0.8 and 7 ≤ Q2 ≤ 260 GeV2. The structure function F2 was extracted

using RQCD and an overall normalization error is around 3% was reported.

EMC

The EMC experiment (NA28) at CERN was performed using a beam of 280 GeV

muons on a deuterium as well as heavier elements target. The kinematic range

0.0025 ≤ x ≤ 0.14 and 0.25 ≤ Q2 ≤ 7.2 GeV2 provided a good description of the

measurements [84] whereas the rest of their measurements is superseded by the more

precise measurements of NMC described below. There is an overall normalization

error of 7%. The F2 structure function was obtained using RCHIO of CHIO collabo-

ration.

NMC

The NMC-NA37 experiment was an extension of the EMC experiment with an up-

graded apparatus performed by the new muon collaboration at the M2 muon beam

line of the CERN SPS. This experiment measured simultaneously the proton and

deuteron differential cross sections using two similar pairs of 3 m long targets ex-

posed off and on to the muon beam and these measurements considerably reduced

the uncertainty of the relative normalization between the proton and deuteron struc-

ture functions. An overall normalization error of 2% is claimed. An iterative method

based on a Monte Carlo simulation of the experiment was applied to determine the

structure functions. For each period of data taking individual simulations were per-

formed to allow changes in the beam and the detector to be considered. The values of

F2(x,Q
2) were obtained performing a comparison of the normalized outputs of data
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and accepted Monte Carlo events. The structure functions were computed from an

initial selection of F2 and a fixed parametrization of the ratio, R(x,Q2), obtained from

a global analysis of SLAC data [80]. The proton and deuteron structure functions

F p
2 and F d

2 were measured in the kinematic range 0.006 < x < 0.6 and 0.5 < Q2 < 75

GeV2, by inclusive DIS with beams of 90, 120, 200 and 280 GeV muons on hydrogen

and deuterium targets [85].

E665

The E665 experiment at Fermilab is a fixed-target muon scattering experiment, with

the highest energy of about 490 GeV muon beams. The E665 experiment took data

using liquid hydrogen and deuterium targets, as well as heavy targets and measured

the structure functions and their ratios as well as investigated the hadronic final

states produced in the muon interaction. The F2 measurements are reported in the

kinematic range 8.9 × 10−4 ≤ x ≤ 0.39 and 0.2 ≤ Q2 ≤ 75 GeV2 [86]. The overall

normalization error is of 1.8%. There is a significant overlap in x and Q2 of the E665

measurements with those of NMC and the two measurements are accorded well in the

region of overlap. The E665 data being at lower Q2 at fixed x, these measurements

overlap in x with the HERA data as well. Like NMC, the E665 analysis of F2 also

use the parametrization of R obtained from a global analysis of SLAC data [80].

H1 and ZEUS

H1 and ZEUS are the two major experiments at the particular lepton-proton collider

HERA, hosted by DESY in Hamburg, Germany to investigate the DIS processes.

H1 is an international collaboration involving about 250 scientists from 20 institutes

and 12 countries whereas ZEUS collaboration is handled by 450 physicists from 12

countries, forming it a genuinely international scientific collaboration. The outset of

operation of the HERA collider provides an important landmark for the measure-

ments of the proton structure. Both the H1 and ZEUS experiments at HERA have

measured the inclusive e±p NC and CC DIS cross sections. HERA collides 920 GeV

protons off 27.5 GeV electrons inducing a large center of mass energy of the collisions
√
s ≈ 320 GeV. The maximum value of Q2 at H1 and ZEUS experiments measures

to 90, 200 GeV2 whereas the calibrated x-range have been remarkably extended to a

smaller value of x ∼ 10−5 [27-30, 87]. The operation of HERA have been carried out
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in two stages, HERA-I, from 1992-2000, and HERA-II, from 2002-2007. The utmost

precise determination of the proton structure is measured by the H1 and ZEUS col-

laborations using the HERA-I data. During the HERA-I period, HERA was mostly

operating with positrons due to restrictions of the electron beam life time. How-

ever this problem has been resolved for HERA-II and during the period from 2004

to 2006 HERA operated with electron beams allowing a more precise measurement

of the xF3 structure function. In the year 2007, HERA performed a series of runs

with lowered proton beam energies of 460 and 575 GeV producing data sets essential

for the first direct measurement of FL. The H1-ZEUS combined results [87] have

reduced the uncertainties to a large extent compared to the individual experiments

and act as a basis for a precise fit of the proton PDFs. In both experiments the

structure function F2 was extracted using RQCD. The kinematic range of the NC

data is 6× 10−7 ≤ x ≤ 0.65 and 0.045 ≤ Q2 ≤ 30000 GeV2, for values of inelasticity

y between 0.005 and 0.95. On the other hand, the kinematic range of the CC data

is 1.3× 10−2 ≤ x ≤ 0.40 and 300 ≤ Q2 ≤ 30000 GeV2, for values of y between 0.037

and 0.76. The total uncertainty of the combined data set is 1% for NC scattering

in the region 20 < Q2 < 100 GeV2. Even though HERA ended its 15 years of op-

eration in 2007, dynamic analyses of full data sets are continuing and outstanding

improvements are being generated.

LHC

The LHC is the world’s largest and most powerful particle accelerator, built by CERN

in collaboration with over 10,000 scientists and engineers from over 100 countries, as

well as hundreds of universities and laboratories. The LHC weighs more than 38,000

tonnes and runs for 27 km in a circular tunnel 100 metres beneath the Swiss-French

border at Geneva, Switzerland. The LHC started up on 2008 successfully circulat-

ing the proton beams in the main ring of the LHC for the first time, but stopped

operating due to a faulty electrical connection. However in 2009 LHC successfully

circulated the proton beams with the first reported p-p collisions at the injection

energy of 450 GeV per beam. In 2010 two 3.5 TeV proton beams were made to

collide, which is a world history for the highest-energy artifial particle collisions. In

2013 LHC went into shutdown and planned to reopen in early 2015 upgrading the
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beam energy to 13 TeV, which is almost double its current maximum energy and

more than seven times any predecessor collider. As of 2012 data from over 3× 1014

LHC proton-proton collisions had been analyzed LHC and the LHC Computing Grid,

which provide global computing resources to store, distribute and analyse the ∼ 30

Petabytes of data annually generated by the LHC, had become the world’s largest

computing grid. There are seven experiments at the LHC analysing the innumerable

particles produced in the accelerator. The biggest of these experiments, A Toroidal

LHC Apparatus (ATLAS) and the Compact Muon Solenoid (CMS), use two indepen-

dently designed general-purpose detectors to explore a vast range, from the search for

the Higgs boson to extra dimensions and dark matter. ALICE (A Large Ion Collider

Experiment) is a heavy-ion detector on the LHC ring designed to investigate the

formation of the quark-gluon plasma. The purpose of LHC beauty (LHCb) experi-

ment is to study the differences between matter and antimatter. The Total Elastic

and diffractive cross section Measurement (TOTEM) and LHC forward (LHCf) ex-

periments study forward particles, protons or heavy ions, and focus on physics that

cannot be accessed in the general-purpose experiments. The Monopole and Exotics

Detector at the LHC (MOEDAL) approved in 2010 uses detectors to search directly

for the magnetic monopole. In 2012, the ATLAS and CMS experiments at LHC

announced the observation of a new particle in the mass region around 126 GeV [88,

89]. Later the new particle is confirmed to be the Higgs boson [13] which physicists

have been looking for since its prediction about 50 years ago. It is one of the greatest

discoveries of the present-day and the Nobel Prize in Physics 2013 was undoubtedly

awarded jointly to F. Englert and P. W. Higgs for the theoretical prediction of the

Higgs mechanism.

1.6.2 Parametrizations

The PDFs are one of the basic ingredients for the calculation of any observable in-

volving hadrons. The evolution of PDFs is a sensitive test of our understanding of

QCD dynamics, which is expressed in the form of PDF evolution equations. Pre-

cise knowledge of these PDFs is an essential prerequisite for the identification of

any possible signature from physics beyond the SM. On the other hand an accurate

evaluation of the errors associated with the PDFs is crucial to generate reliable phe-
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nomenological predictions at hadronic colliders, such as the LHC. In Recent times,

a substantial amount of theoretical and experimental endeavour has been devoted

in the accurate determination of the parton distributions of the nucleon. Particu-

lar interests are given in the calculation of the uncertainties associated with various

experimental and theoretical inputs, for the sake of precise measurement of collider

processes as well as determination of QCD parameters. At present, the preeminent

inclusive PDF sets are acquired from a global analysis of hard-scattering data from

various processes like DIS, DrellYan, weak vector boson production as well as collider

jet production. In global analysis the PDFs are determined unfolding the experimen-

tally measurable structure functions in terms of their parton content, by using the

QCD factorization and DGLAP evolution equations. Modern PDFs are constantly

developed to incorporate looming theoretical improvement and the most recent data

from hadronic experiments. There are various groups extracting PDFs from global

data analyses. The LHAPDF [90] library provides a merged and simple computing

to all the major PDF sets. The following is a brief description of the major PDF sets

available.

GRV/GJR

The GRV global parametrization is a dynamically generated PDFs set advocated by

M. Gluck, E. Reya and A. Vogt. defined upto NLO in the MS scheme. The GRV

group systematically analyze hard scattering data within the framework of pertur-

bative QCD and is very successful in predicting the rapid rise of proton structure

function F2 at small-x, observed at HERA. The GRV1992 PDFs include u, d, s, c

and b quarks whereas the GRV1994 include only u, d and s quarks. These PDFs

are used in the calculations involving heavier quarks, with non-zero quark masses, in

the partonic hard scattering cross section. The GRV1998 global parametrization [31]

used H1 and ZEUS high precision data and presents an updated, more accurate, ver-

sion of valence-like dynamical input distributions. The GRV1998 PDFs compute the

light-parton distributions, charm and bottom contributions to F2 and the scale de-

pendence of αs in NLO and LO. The parton densities and the F2 structure functions

are determined from interpolation networks covering the regions 0.8 < Q2 < 106

GeV2 and 10−9 < x < 1. Moreover, perturbatively fixed parameter-free dynam-
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ical prognostications for parton distributions are unfolded to the very small-x re-

gion, 10−8 ≤ x ≤ 10−5 [31], enabling fairly decent evaluations of ultra high energy

neutrino-nucleon cross section concerning neutrino astronomy. The LO results cor-

responds to Λ
(Nf=4)
LO =175 MeV which leads to the value of αLO

s (M2
Z)=0.125. The

resulting LO input distributions at Q2 = µ2
LO = 0.26 GeV2 for gluon is given by

xg(x,Q2) = 17.47x1.6(1 − x)3.8. On the other hand the NLO results correspond to

Λ
(Nf=4)
NLO =246 MeV giving rise to the value of αNLO

s (M2
Z)=0.114. The input distribu-

tions have been established employing the 1994 and 1995 HERA F p
2 results [27-30]

as well as the fixed target F p
2 data of SLAC, BCDMS, NMC and E665.

The GJR parametrization [32], recommended by M. Gluck, P. Jimenez-Delgado

and E. Reya, is the upgraded version of GRV1998 parton distributions. The GJR

dynamical distributions generated the small-x (x ≤ 10−2) structure of dynamical

parton distributions from valence-like initial distributions considered at input scale

Q0 < 1 GeV. It provides assurance in the trustworthy prediction of the cross sections

for heavy quark, W±, Z0, and high pt jet production at the the hadron colliders

such as Tevatron and LHC. On the other hand, in the JR09 parametrization [91] the

previous LO and NLO global fit analyses for the dynamical parton distributions of

the nucleon are extended to NNLO of perturbative QCD utilizing the DIS structure

function measurements as well as the hadronic Drell-Yan dilepton production data.

MRST/MSTW

The MRST is a global analysis of parton distributions of the proton recommended

by A. D. Martin, R. G. Roberts, W. J. Stirling and Robert Thorne in the MS

renormalization scheme. MRST2001 PDFs [33] execute a global parton analysis up

to NNLO incorporating all the convenient explicit data from DIS and similar hard

scattering processes viz. H1, ZEUS, BCDMS, NMC, E665, SLAC and CCFR. This

PDFs set is ordinarily suitable to DIS data with Q2 > 2 GeV2 and W 2 > 10 GeV2,

however it concedes the HERA data for Q2 down to 1.5 GeV2 to cover the very

small-x calculations of F2. The initial parametrization of the gluon for LO is xg =

3.08x0.10(1 − x)6.49(1 − 2.96x0.5 + 9.26x), for αs(M
2
Z)=0.130 and ΛMS(Nf = 4)=220

MeV [33]. The best global NLO fit is achieved with the initial distribution of the gluon

at Q2
0= 1 GeV2 and it complements to αs(M

2
Z)=0.119, i.e. ΛMS(Nf = 4) = 323 MeV.
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These data sets permits the developement of negative input gluon parametrization at

small-x. The optimum global NNLO fit is acquired considering the input distribution

of the gluon at Q2
0=1 GeV2 conforming to αs(M

2
Z) = 0.1155, i.e. ΛMS(Nf = 4) = 235

MeV. The MRST2004 parton sets [34] provide an additional physical parametrization

of the gluon distribution for global parton analysis at both NLO and NNLO thereby

producing an improved illustration of the W and Z production cross sections at the

Tevatron and the LHC in contrast to the earlier set. The complete kinematic domain

covered by this PDF sets, where fixed-order DGLAP analysis is convenient, including

the corresponding sets of traditional partons, is found to be W 2 > 15 GeV2, Q2 > 10

GeV2 and x > 0.005 at NLO, whereas at NNLO it is given by W 2 > 15 GeV2, Q2 > 7

GeV2 and x > 0.005.

The MSTW2008 [35] is an updated LO, NLO and NNLO PDFs calculated from

global analysis of hard scattering data in the MS scheme. The MSTW2008 global

analysis supersedes all the previous MRST sets and is very convenient in forecasting

the accuracy of cross sections and related theoretical calculations of W and Z bosons,

Higgs boson and inclusive jet production at the Tevatron and uncertainties at the

LHC. This PDFs fit include CCFR/NuTeV di-muon cross sections and Tevatron

Run II data on inclusive jet production. Together with αs there are 30 free PDF

parameters in the fit. The MSTW analysis, fits ∼ 2700 data points as a whole and the

comprehensive nature of the NLO and NNLO fits is identical and perfectly admissible,

with χ2/Npts ∼ 1 for nearly all data sets [35]. This fit furthermore determines the

uncertainty on the strong coupling αs, owing to the experimental errors on the data,

which is found to be αs(M
2
Z) = 0.1202+0.0012

−0.0015 at NLO and αs(M
2
Z) = 0.1171+0.0014

−0.0014 at

NNLO.

NNPDF

The NNPDF approach is based on the application of neural networks as primary

interpolating mechanisms. The neural networks can yield an impartial interpolation

which produces the measure for all points, in some ways within a finite range of x

and Q2 where the data sampling is excellent. The NNPDF approach bypasses all the

problems present in the usual approach to the determination of the PDFs. These

PDF fits determine the probability density in the arena of structure functions for the
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proton, deuteron and nonsinglet structure functions calculated from experimental

data of the NMC, BCDMS, E665, ZEUS and H1 collaborations. Their results adopt

the form of a set of 1000 neural nets, each providing a calculation of F2 for given

x and Q2. The central value and the statistical moments of the structure functions

determined in the NNPDF fit can be computed out of the 1000 nets in accordance

with the standard Monte Carlo techniques. NNPDF1.0 [36] is a set of parton distri-

butions of the nucleon, at NLO, from a global set of DIS data employed to estimate

the standard W and Z cross sections at the LHC. Including the recent neutrino

dimuon production data in combination with a global deep inelastic parton fit, the

NNPDF1.2 parton set is constructed and it provides a determination of the strange

and antistrange distributions of the nucleon. Apart from being a transitional step

towards a fully global fit including hadronic data, this set ia an interesting test of

the NNPDF methodology and for the determination of electroweak parameters.

NNPDF2.0 [37] global set of PDFs include DIS with the combined HERA-I

dataset, fixed target Drell-Yan production, collider weak boson production and in-

clusive jet production. It also determines the impact of recent high luminosity D0

Run II lepton asymmetry data and the D0 inclusive muon and electron data. These

PDFs sets are very advantageous to the experimentalists in all kinds of circumstances,

for example, examining the accuracy of preliminary datasets and their uncertainties,

evaluating the validity of viable evidences of new physics, or in improving the design

of new experiments using pseudo data. This fit is upgraded to NNPDF2.1 set to

including the heavy quark mass effects. These data sets take care of the small-x

gluon and are sensitive to the value of the charm mass mc as well.

HERAPDF

The HERAPDF project determines the quark and gluon distribution functions of

the proton from experimental data and has established a statistical combination

procedure enhancing the estimation of the average of H1 and ZEUS measurements

in a model independent way. The HERAPDF analysis also elucidates the correlated

systematic ambiguities enabling cross calibration to lessen the total systematic uncer-

tainty on the combined data. Thereupon the averaged data are utilized in a QCD fit

to determine the proton PDFs with an exhaustive interpretation of the experimental
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and theoretical uncertainties. HERAPDF0.1 [38] set is a NLO QCD analysis of par-

ton distributions and covers the combined data set of the inclusive deep inelastic cross

sections measured by the H1 and ZEUS Collaborations in NC and CC unpolarised

e±p scattering at HERA. In this analysis the PDFs are parametrized at the starting

scale of Q2
0 = 4 GeV2 and are evolved using the DGLAP evolution equations.The

HERAPDF1.0 [39, 92] analysis employs a uniform data set with small associated

systematic uncertainties and applies the conventional χ2 tolerance, ∆χ2 = 1 to de-

termine the experimental uncertainties on the PDFs. On account of the precision of

the combined data set, the total uncertainties of the HERAPDF1.0 parametrization

is of the order of a few percent at small-x, which is much improved compared to the

earlier extractions of the PDFs using the individual H1 or ZEUS data. The gluon

distribution functions are parametrized by the universal form xg(x) = Agx
Bg(1−x)Cg

at the input scale Q2
0 = 1.9 GeV2, so that Q2

0 < m2
c [38]. Ag is the normalization

parameter, Bg represents the small-x behaviour whereas Cg represents the high-x

behaviour.

The HERAPDF1.0 set has been amended to HERAPDF1.5 by incorporating

initial all-inclusive cross section data from HERA-II running. On the other hand the

HERAPDF1.6 analysis involves the H1 and ZEUS jet data whereas HERAPDF1.7

fit comprises of all the data sets from HERA-I and II, charm data, low energy data

and jet data. Moreover the NLO fits have been continued to NNLO for both HER-

APDF1.0 and HERAPDF1.5 [39, 92]. The HERAPDF1.0 NNLO parton set was

introduced in 2010 but this has been upgraded to HERAPDF1.5NNLO fit which

has an essentially vigorous high-x gluon and provides thorough description of the

experimental, model and parametrization uncertainties. The prescribed value for

αs(MZ) at NNLO is αs(MZ) = 0.1176 [39]. These HERAPDFs have been affluently

encountered both the Tevatron and LHC data on W , Z and jet production.

CTEQ

The CTEQ global QCD analyses of PDFs have been developed over decades. The

CTEQ series include CTEQ1, CTEQ2, CTEQ3, CTEQ4, CTEQ5 presented during

the period from 1993 to 2000, followed by sets of CTEQ6 published in the period

from 2002 to 2006 as well as the ensuing PDF sets CT09 [40, 93-95]. Recently in 2010
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CTEQ group presented NLO PDFs named as CT10 and CT10W [40]. These two

new PDF sets are built on the contemporary knowledge of the PDFs obtained from

global hadronic experiments, mainly the DIS combined data set of HERA-1 cross

sections, which supersedes 11 separate HERA-1 data sets, considered in CTEQ6.6

and preceding fits. These PDFs sets have been used in a broad way in phenomeno-

logical predictions for the Tevatron, LHC, and other experiments. The CT10 global

QCD fits involve a combination of DIS cross sections by the H1 and ZEUS collabora-

tions in HERA-1, measurements of the charge asymmetry of leptons from W boson, Z

rapidity distributions, single-inclusive jet cross sections by CDF as well as DØ collab-

orations at the Tevatron. The CT10 PDFs are derived at NLO in αs, incorporating

the general-mass analysis of charm and bottom quark contributions to hadronic ob-

servables. The CT10 NLO QCD analysis is in general compatible with the HERA

experiments in the region Q > 2 GeV. The net consistency of the CT10 fit with the

combined H1 data is somewhat poor than with the separate H1 data sets, due to

some increase in χ2/d.o.f. for the NC DIS data at x < 0.001 and x > 0.1 [40]. Both

CT10 and CT10W PDF sets contain 26 independent parameters and thus there are

26 eigenvector directions and a total of 52 error sets. These PDF error sets, together

with the following αs error sets, admit a thorough computation of the combined

PDF+αs uncertainties for any observable. Both CT10 and CT10W predict a minor

PDF inspired uncertainty in the total cross section for the top-quark pair production

at the Tevatron Run-II in contrast to the CTEQ6.6 prediction. The difference be-

tween the CT10 and CT10W PDF sets for LHC predictions is very negligible, other

than in those observables that are responsive to the ratio of down-quark to up-quark

PDFs.

The CT10NNLO [41] global PDF fit is the NNLO analysis of the PDFs recently

published by the CTEQ group. It includes basically the same global data sets used

in the CT10 and CT10W NLO PDF fits excluding the Tevatron Run-1 inclusive jet

data and a subset of the Tevatron Run-2 lepton charged asymmetry data from W

boson decays. This fit produces numerous predictions at NNLO precision for both

current and upcoming precision measurements from the LHC at CERN. It further

analyzes the extent of variations in the gluon distributions initiated by corresponding

systematic effects in inclusive jet production.
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1.7 Outline of the thesis

This thesis is concerned with the linear DGLAP and nonlinear GLR-MQ evolution

equations in the small-x kinematical region and the saturation of gluon density at

very small-x due to nonlinear or shadowing corrections to the QCD evolution at

very small-x. We present a review of different QCD evolution equations both linear

and nonlinear in Chapter 2. Part I of this thesis details the study of the linear

DGLAP equation. In chapter 3 we report the semi-numerical solution of the DGLAP

equation in the small-x limit for singlet structure functions at LO, NLO and NNLO.

The Q2 and x-dependence of the singlet structure functions have been examined

from these solutions and the results are compared with different experimental data

and parametrizations. Following this in chapter 4 we extend the study for gluon

distribution function by solving the linear DGLAP equation for gluon distribution

analytically. The Q2 and x-dependence of the gluon distribution functions have been

obtained upto NNLO.

In part II we turn our attention to the gluon recombination processes which lead

to nonlinear corrections to the linear DGLAP evolution equations due to multiple

gluon interactions at very small-x. We estimate the importance of the corrections of

these higher order QCD effects, which suppress or shadow and eventually saturate

the growth of the parton densities in the framework of nonlinear GLR-MQ evolution

equation. We solve this equation for both singlet structure and gluon distribution

functions in the vicinity of saturation employing the well-known Regge-like ansatz.

In chapter 5 we make a deliberate attempt to explore the effect of shadowing cor-

rections to the behaviour of gluon distribution function in the kinematic region of

small-x and Q2 using the nonlinear GLRMQ evolution equation with the shadowing

term incorporated. Our predictions are compared with those obtained by the global

QCD fits to the parton distribution functions. Moreover we estimate the effect of

nonlinearity in our predictions by comparing the results obtained from nonlinear

GLR-MQ equation with those obtained from linear DGLAP equation. Chapter 6 is

devoted to the study of the singlet structure function with nonlinear or shadowing

corrections in the small-x region based on GLR-MQ equation. The obtained results

are compared with different experimental data and parametrizations. A comparative

study of our results of nonlinear gluon density with those of other nonlinear equations
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is accomplished in chapter 7.

Finally, in chapter 8 we give a brief summary and an outlook for future work.
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Chapter 2

Linear and Nonlinear QCD
Evolution Equations

2.1 Linear evolution equations

QCD induces higher order corrections to the naive parton model which eventually

lead to a breaking of scaling violations. Thus QCD enables the explicit estimation of

the dependence of the structure function on Q2, however, it does not reveal the spe-

cific value of F2 for a given Q2, but preferably portrays in what manner F2 varies with

Q2 from a given input. The Q2 dependence of the PDFs can be computed perturba-

tively as long as Q2 is adequately large so that αs continues to be small. The standard

and the basic theoretical frameworks employed to study the scale dependence of the

PDFs and eventually the DIS structure functions are the linear Dokshitzer-Gribov-

Lipatov-Altarelli-Parisi (DGLAP) [1-4] evolution equations. One can calculate the

PDFs for any value of Q2 making use of the DGLAP equations considering that an

initial condition for the PDFs is indeed available at a given initial scale Q2
0 and then

evolving to higher Q2. The DGLAP approach sums up higher-order αs contributions

enhanced by the logarithm of photon virtuality, i.e. αn
s ln(Q

2)n in the perturbative

expansion. Nevertheless, at small-x contributions enhanced by the logarithm of a

small momentum fraction, x, carried by gluons, turns out to be essential. Accord-

ingly a different approach is needed to explain the situation of high-energy or in other

words small-x scattering. The leading logarithm (LL) contributions of (αs ln(1/x))
n

are summed up by the Balitsky-Fadin-Kuraev-Lipatov (BFKL) evolution equation
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[5-7]. Another evolution equation to study the linear evolution of PDFs in the small-x

regime is the so called Catani-Ciafaloni-Fiorani-Marchesini (CCFM) equation [8-10].

The CCFM approach retains the components of both the DGLAP and BFKL realms

in the LL approximation. All the aforementioned evolution equations are linear in

parton density which have to be modified in a suitable way to add the higher twist

approximations at very small-x. A brief account of the linear evolution equations is

given below.

2.1.1 DGLAP equation

The evolution of the structure functions or more precisely the quark and gluon distri-

bution functions with Q2 can be described by the DGLAP evolution equations [1-4].

These equations sum all leading Feynman diagrams that give rise to the logarithmi-

cally enhanced ln(Q2) contributions to the cross section in order to neglect any kind

of higher twist corrections. The associated perturbative resummation is organized

in powers αn
s ln(Q

2)n. They are the conventional and the fundamental theoretical

frameworks for all of the phenomenological perspectives used to interpret hadron

interactions at short distances. The DGLAP equations for quark and gluon density

can be written as

∂

∂ lnQ2

(
qi(x,Q

2)
g(x,Q2)

)
=

αs(Q
2)

2π

2Nf∑
i=1

∫ 1

x

dy

y

(
Pqq(

x
y
) Pqg(

x
y
)

Pgq(
x
y
) Pgg(

x
y
)

)(
qi(y,Q

2)
g(y,Q2)

)
,

(2.1)

where the sum runs over all flavors of quarks and anti-quarks. Here qi(x,Q
2) stands

for quark density whereas g(x,Q2) represents gluon density. Pqq, Pqg, Pgq and Pgg are

the splitting functions whose interpretations are graphically displayed in Fig.2.1. The

splitting functions are elucidated as the probability for finding a parton (quark or

gluon) of type i having momentum fraction x arising from a parton (quark or gluon)

j with larger momentum fraction y > x. They are independent of the quark flavors

and are identical for quarks and antiquarks. The leading order splitting functions

are given by [11]

P (0)
qq (z) = CF

( 1 + z2

(1− z)+
+

3

2
δ(1− z)

)
,

P (0)
qg (z) =

1

2

(
z2 + (1− z)2

)
, P (0)

gq (z) = CF

(1 + (1− z)2

z

)
and
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Figure 2.1: Splitting functions

P (0)
gg (z) = 2Nc

( z

(1− z)+
+

1− z

z
+ z(1− z)

)
+
(11
2

− Nf

3

)
δ(1− z), (2.2)

with CF = (N2
c−1)
2Nc

. The “+” distribution is defined by the property [11]∫ 1

0

dz
f(z)

(1− z)+
=

∫ 1

0

dz
f(z)− f(1)

(1− z)
, (2.3)

where (1− z)+ = 1− z for z < 1 but is infinite for z = 1. The discrepancy at z = 1

complements the radiation of soft gluons and is balanced out by the virtual gluon

loop contributions.

In perturbation theory, the splitting functions can be expressed as a power series

of αs(Q
2) [11, 12]

Pab

(
z,Q2

)
= P

(0)
ab (z) +

(αs(Q
2)

2π

)
P

(1)
ab (z) +

(αs(Q
2)

2π

)2
P

(2)
ab (z) + · · · , (2.4)

with z = x
y
. These functions are at present working up to next-to-next-to-leading

order (NNLO) accuracy. The leading order (LO) expressions P (0) are the well-known

Altarelli-Parisi splitting functions [4, 11]. On the other hand, the next-to-leading

order (NLO) functions P (1) have been estimated during the time 1977-1980 [13-

16], whereas the NNLO terms P (2) are calculated in the period 2004 [17, 18]. The
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LO DGLAP evolution sums up the leading log contributions (αs ln(Q
2))n, the NLO

evolution incorporates the sum of the αs(αs ln(Q
2))n−1 terms and so on.

The derivation of the DGLAP equation is founded on the QCD collinear factor-

ization in gluon emission to legitimize the resummation of logarithms in the trans-

verse scale. In consonance with the traditional collinear factorization approach the

hadronic observables can be expressed as the convolution of the PDFs with partonic

hard-scattering coefficients. The partonic coefficients are computed with the assump-

tion that the hard scattering is originated by a parton collinear to its parent hadron.

Customarily the large logarithms are obtained from the region in phase space where

Figure 2.2: Ladder-diagram in LLQ2 application of DIS

the multiple emissions are strongly set in order in transverse momenta with succeed-

ing emissions having larger momenta, i.e. Q2 >> k2
n >> · · · >> k2

2 >> k2
1. Fig.2.2

exhibits a schematic ladder diagram of the quark and gluon emissions in LL(Q2)

application of DIS.
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The non-singlet and singlet combinations of the quark flavor group can be defined

as [11]

qNS ≡ qi − qj, (2.5)

qS ≡
∑
i

qi. (2.6)

The DGLAP equations for non-singlet and singlet quark distributions are

∂qNS(x,Q
2)

∂ lnQ2
=

αs(Q
2)

2π

∫ 1

x

dy

y
Pqq(x/y)qNS(y,Q

2), (2.7)

∂qS(x,Q
2)

∂ lnQ2
=

αs(Q
2)

2π

∫ 1

x

dy

y

( 2Nf∑
i=1

Pqq(x/y)qi(y,Q
2) + Pqg(x/y)g(y,Q

2)
)
. (2.8)

As an illustration, the first term of Eq.(2.8) mathematically articulates the fact that

a quark with momentum fraction x characterized by q(x,Q2) (on the left hand side)

could have originated form a parent quark with a momentum fraction y > x depicted

by q(y,Q2) (on the right-hand side) which has radiated a gluon. The probability of

occurrence of this process is proportional to αsPqq(x/y). The second term deals with

the prospect that a quark with momentum fraction x is the consequence of qq̄ pair

creation by a parent gluon with momentum fraction y > x and the probability that

it happens is proportional to αsPqg(x/y). The integration appears because of the

consideration that the secondary quark with momentum x can come from a parent

quark with any momentum fraction y > x [11].

On the other hand, since the gluon distribution does not carry any flavor quantum

numbers, it is a flavor singlet and the DGLAP equation for gluon distribution is given

by

∂g(x,Q2)

∂ lnQ2
=

αs(Q
2)

2π

∫ 1

x

dy

y

( 2Nf∑
i=1

Pgq(x/y)qi(y,Q
2) + Pgg(x/y)g(y,Q

2)
)
. (2.9)

As soon as the x dependence of quark or gluon distributions are known at some

initial scale Q2
0 then they can be determined for any higher value of Q2 by using the

DGLAP equations. The initial distributions are at present have to be computed from

experiment presuming an input form in x which complies with the QCD sum rules.

This strategy is adopted in the global analyses of PDFs [19, 20]. As an alternative,

one may produce the parton distributions dynamically originating from an input
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distribution for the valence quarks and a valence-like input for the sea quarks and

gluons [21].

The DGLAP equations neglect higher order contributions of the form αs ln(1/x).

However, at finite order, the large logarithms in 1/x become important in the pertur-

bative expansion at small vales of x, where the evolution is dominated by the gluon

cascade and accordingly these leading ln(1/x) terms have to be resummed. For large-

Q2 this is achieved by the double leading logarithmic approximation (DLLA), which

resums the terms that include the leading ln(1/x) and the leading ln(Q2) simultane-

ously. As a result at small-x one may consider the DLLA of the DGLAP evolution to

choose the major contribution to the gluon density growth, analogous to the contribu-

tion of the (αs ln(Q
2) ln(1/x))n terms. The DLLA is valid when αs ln(1/x) ln(Q

2) ∼ 1

but αs ln(1/x) and αs ln(Q
2) individually are small. But if Q2 is not extremely large,

then as we move towards smaller values of x the DGLAP equation no longer has its

legitimacy. In that case alternative evolution equations, described below, which are

appropriate in different regions may be taken into account

2.1.2 BFKL equation

The BFKL equation [5-7] was initially suggested by Balitsky, Fadin, Kuraev, and

Lipatov to delineate the high-energy behaviour of processes involving hadrons. Re-

calling that x ∼ Q2/s, where Q2 is the hard scale of the process and s is c.m.s.

energy squared, at small-x, it is essential to sum the terms of the perturbation series

enhanced by powers of ln(1/x). This equation sums up all the leading logarithm con-

tributions of the type (αs ln(1/x))
n on the basis of gluon Reggeization. The BFKL

approach is usually associated with the evolution equation for the unintegrated gluon

distribution, f(x, kt), which depends on two independent variables, the proton mo-

mentum fraction x carried by a gluon and its transverse momentum kt. An important

characteristic of this evolution is distribution of the gluon density in ln(kt) space. The

general form of BFKL evolution equation in LO is

f(x, k2
t ) = f 0(x, k2

t ) +
3αs(k

2
t )

π
k2
t

∫ 1

x

dz

z

∫ ∞

0

dk′
t
2

k′
t
2

[f(x/z, k′
t
2)− f(x/z, k2

t )

| k′
t
2 − k2

t |

+
f(x/z, k2

t )√
4k′

t
4 + k4

t

]
, (2.10)
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where the function f 0(x, k2
t ) is a suitably defined inhomogeneous term and k′

t
2, k2

t are

the transverse momenta squared of the gluon in the initial and final states respec-

tively. In comparison to the DGLAP equation, this is a more intricate problem on

the grounds that the BFKL equation literally involves contributions from operators

of higher twists. The BFKL equation, in its ordinary form, not only represents the

high-energy behaviour of cross-sections but also describes the amplitudes at non-zero

momentum transfer.

2.1.3 CCFM equation

The CCFM equation [8-10] is a theoretical framework proposed by Catani, Ciafaloni,

Fiorani and Marchesini (CCFM) which effectively interpolates between the the BFKL

evolution and the more familiar DGLAP evolution equations. The primary objective

of the CCFM approach is to provide accurate description of both the large-x region,

where the summation of ln(Q2) dominates, as well as the small-x region, where the

large logarithms ln(1/x) are important. It depends on the comprehensible emission

of gluons, that gives rise to an angular arrangement of the gluons along a series

of multiple emissions. Similar to the BFKL equation, the CCFM equation is also

defined in respect of a unintegrated gluon density f , which determines the possibility

of finding a gluon with longitudinal momentum fraction x and transverse momentum

kt. Nonetheless, this distribution has a further dependance on some external scale

Q. The CCFM equation is

f(x, k2
t , Q

2) = f 0(x, k2
t , Q

2)

+

∫ 1

x

dz

∫
d2q

πq2
Θ(Q− zq)∆S(Q, z, q)P̃ (z, kt, q)f(x/z, k

′
t
2
, q2). (2.11)

The inhomogeneous contribution f 0(x, k2
t , Q

2) is of non-perturbative origin and

is assumed to contribute only for k2
t < q20. The remaining terms contribute in the

region k2
t > q20. The function P̃ is the gluon-gluon splitting function

P̃ =
3αs

π

( 1

1− z
+∆R

1

z
− 2 + z(1− z)

)
, (2.12)

where the factors ∆S and ∆R are the Sudakov and Regge form factors respectively.

The multiplicative factors ∆S and ∆R counteract the singularities which are apparent

as z → 1 and z → 0 respectively. Unlike ∆S, the Regee form factor ∆R not only
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depends on the branching variables, but also on the history of the cascade. At large-x

one can get the usual DGLAP equation for gluon evolution by fixing ∆∆ = 1 and

evolving ∆S. On the other hand, at small-x keeping only the 1/z piece of Pgg and

by setting ∆S = 1 and evolving ∆∆ one can obtain the BFKL equation.

2.2 Nonlinear evolution equations

It is very fascinating to observe that the linear QCD evolution equations for parton

densities , both the DGLAP and BFKL equations, prognosticate a steep rise of quark

and gluon densities in the small-x region which is perceived in the DIS experiments at

HERA as well. This sharp growth generates cross sections which in the high-energy

limit fail to comply with the unitarity bound or in particular the Froissart bound

[22, 23] on and so it will have to eventually slow down in order to restore unitarity.

It is a known fact that the hadronic cross sections should obey the Froissart bound

which derives from the general assumptions of the analyticity and unitarity of the

scattering amplitude. Accordingly, the increasing number of gluon densities, so as to

approach small-x, demands a formulation of the QCD at high density, where unitarity

corrections are suitably taken into account.

Following DGLAP, the growing number of small-x gluons graphically conforms

to higher density of individuals in the same approved region and thus differs from

a diluted system at moderate values of x. As a result, at very small values of x

the likelihood of interaction between two gluons can no longer be overlooked and it

sooner or later engenders a situation in which individual partons inevitably overlap or

shadow each other. We recall that, at very high energies, one can get into the region of

smaller and smaller values of x and, under these situations, the gluon recombination

being more effectual balances gluons splitting at some point. As a result, the abrupt

growth of gluon distribution is eventually subdued due to the correlative interactions

between gluons. This process is normally referred to as saturation of gluon density

and it occurs when the possibility of gluon recombination, i.e. the process gg → g, is

as significant as that for a gluon to split into two gluons i.e. g → gg. In deriving the

linear DGLAP equations, the correlations among the initial gluons in the physical

process of interaction and recombination of gluons are not taken into account. It

is indispensable to point out that the linear DGLAP dynamics consider only the
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splitting processes in the partonic evolution, i.e. the processes q → qg, g → qq̄ and

g → gg. However at small-x, the modifications due to the correlations among initial

gluons to the evolutionary amplitude should be treated accordingly. The multiple

gluon interactions induce nonlinear or shadowing corrections in the linear evolution

equation and so the standard linear DGLAP evolution equation will have to be

modified in order to include the contributions of recombination mechanism in the

small-x regime.

The DGLAP evolution equations can delineate the available experimental data

in a decent manner covering a large domain of x and Q2 with appropriate parame-

terizations. But despite the remarkable achievement of the DGLAP approach, some

issues come into sight when trying to generate the best possible global fits to the

H1 data [24] concurrently in the region of large-Q2 (Q2 > 4 GeV2) as well as in the

region of small-Q2 (1.5 < Q2 < 4 GeV2) [25]. In the NLO analysis of MRST2001 [26]

an overall good fit is obtained including both the regions but resulting a negative

gluon distribution at Q0 = 1 GeV , thus creating an ambiguity in the interpretation

of the PDFs as probability or number density distributions. On the other hand, in

the CTEQ collaboration [27], where a slightly higher input scale of Q0 = 1.3 GeV

is considered, a very good compatibility with the data are observed in the large-

Q2 region whereas, the consistency with data in the small-Q2 region becomes poor.

The matter of negative gluon distributions also arises in the NLO set of CTEQ6M

when evolving backwards to 1 GeV. Nevertheless, the negative gluon distributions

are not empowered in LO. These emerging enigmas are really very appealing as they

can provide a signal of gluon recombination towards smaller values of x and Q2. In

Ref.[25] the effects of including nonlinear GLRMQ corrections to the LO DGLAP

evolution equations are studied by using the HERA data for the structure function

F2(x,Q
2) of the free proton and the PDF sets CTEQ5L and CTEQ6L as a baseline.

With the inclusion of the nonlinear corrections, the agreement with the F2(x,Q
2)

data is exhibited to be improved in the region of x ≤ 3× 10−5 and Q2 ≤ 1.5 GeV2,

but managing the good fit to the data obtained in the global analyses at large-x and

Q2. Moreover, in Ref.[28] an analysis of HERA F2(x,Q
2) data is presented adding

the effect of absorptive corrections due to parton recombination on the parton dis-

tributions. The small-x gluon distribution is found to be enhanced at small scales
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due to the absorptive effects, which may possibly avoid the need of a negative gluon

distribution at 1 GeV. The gluon recombination effects lead to the nonlinear cor-

rections to the linear DGLAP evolution equations due to multiple gluon interactions

and as a result, in the very small-x region the conventional linear evolution equations

are likely to breakdown. The nonlinear terms tame the abrupt growth of the gluon

distribution in the kinematic region where αs continues to be small but the density of

gluons becomes very high so that a perturbative treatment is possible. Accordingly,

the corrections of the higher order QCD effects, which suppress or shadow the growth

of the parton densities, turns out to be the center of rigorous studies in the last few

years.

The first perturbative QCD calculations reporting the recombination of two gluon

ladders into one were carried out by Gribov, Levin and Ryskin (GLR), and Mueller

and Qiu (MQ). They suggested that the nonlinear or shadowing corrections due to

gluon recombination could be depicted in a new evolution equation with an addi-

tional nonlinear term quadratic in the gluon density. This equation, widely known

as the GLR-MQ equation [29, 30], can be regarded as the updated version of the

usual DGLAP equations with the corrections for gluon recombination. There are

several other nonlinear evolution equations reporting the corrections of gluon re-

combination to the DGLAP and BFKL evolutions. They are the Modified-DGLAP

(MD-DGLAP) [31, 32], Balitsky-Kovchegov (BK) [33, 34], Modified-BFKL (MD-

BFKL) [35], Jalilian-Marian-Iancu-McLerran-Weigert-Leonidov-Kovner (JIMWLK)

[36-38] equations. The BK equation is the most widely studied among these. The

nonlinear equations viz. Modified-BFKL (MD-BFKL), BK and JIMWLK are based

on BFKL evolution, whereas the MD-DGLAP equation is based on DGLAP evolu-

tion. A concise description of all the above mentioned nonlinear evolution equations

is given below.

2.2.1 GLR-MQ equation

The shadowing corrections of gluon recombination to the parton distributions were

first investigated by Gribov, Levin and Ryskin and then by Mueller and Qiu at the

twist-4 level in their pioneering papers [29, 30]. They provided the idea that the non-

linear corrections due to gluon recombination could be portrayed in a new evolution
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equation with an additional nonlinear term quadratic in gluon density. This equation,

widely known as the GLR-MQ equation, can be considered as the improved version of

the usual DGLAP equations with the corrections for gluon recombination. The pic-

torial representation of the corrections arising from gluon recombination processes is

shown in Fig.2.3. Gribov et al. first suggested qualitative modification of the DGLAP

Figure 2.3: Corrections of gluon recombination

gluon evolution equation in order to include the gluon recombination effects based

on the Abramovsky-Gribov-Kancheli (AGK) cutting rules [39]. Afterwards Mueller

and Qiu completed the equation numerically using a perturbative calculation of the

recombination probabilities in the DLLA, which is a significant achievement as it

enables the GLR-MQ equation to be applied phenomenologically. This equation was

generalized to incorporate the contributions from more higher order corrections in

the Glauber-Mueller formula [40].

The GLR-MQ equation is based on two processes in the parton cascade:

(i) The splitting of gluons generated by the QCD vertex : g→g + g;

(ii)The recombination of gluons promoted by the same vertex : g + g→g.

For splitting process 1 → 2, the probability is proportional to αsρ, whereas the prob-

ability for recombination process 2 → 1 is in proportion to αsr
2ρ2. Here, ρ=

xg(x,Q2)
πR2

is the gluon density in the transverse plane, πR2 is the target area, and R is the

correlation radius between two interacting gluons [40]. It is worthwhile to mention

that R is non-perturbative in nature and therefore all phenomena that occur at dis-

tance scales larger than R is non-perturbative [41]. Here, r is the size of the gluon

induced in the recombination process and for DIS r∼ 1
Q
. For, x ∼ 1 only the emission

of gluons is influential since ρ≪1. At x→0, on the other hand, the density of gluons
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ρ happens to be so high that the recombination of gluons should also be taken into

account. Considering a cell of volume ∆lnQ2∆ln(1/x) in the phase space, number

of gluons increases through splitting and decreases through recombination and this

picture allows one to write the modification of the gluonic density as [41, 42]

∂2xg(x,Q2)

∂ln(1/x)∂ lnQ2
=

αsNc

π
xg(x,Q2)− α2

sγ

πQ2R2
[xg(x,Q2)]2, (2.13)

which is known as the GLR-MQ equation. The factor γ is found to be γ = 81/16

for Nc = 3, as evaluated by Mueller and Qiu [30]. Here the gluon distribution

is represented by G(x,Q2) = xg(x,Q2), where g(x,Q2) is the gluon density. The

quark-gluon emission diagrams are ignored because of their negligible influence in the

gluon-dominated small-x domain. The first term in the right hand side of Eq.(2.15)

represents the usual DGLAP term in the DLLA and hence linear in gluon field. The

second term, having a negative sign controls the growth of the gluon distribution

generated by the linear term at small-x and consequently delineates shadowing cor-

rections emerging from recombination of two gluons into one. Likewise, the GLR-MQ

equation for sea quark distribution can be written as

∂xq(x,Q2)

∂ln(1/x)∂ lnQ2
=

∂G(x,Q2)

∂ lnQ2

∣∣∣
DGLAP

− 27

160

α2
s(Q

2)

R2Q2

[
G
(x
ω
,Q2

)]2
+HT, (2.14)

where HT denotes a higher-dimensional gluon distribution term suggested by Mueller

and Qiu [30].

In the linear QCD evolution of DIS structure functions like the DGLAP or BFKL

only the splitting of quarks and gluons is considered. This leads to a constant increase

of the parton densities at small-x eventually violating the unitarity bound and are

therefore expected to be tamed by the inverse recombination processes. Therefore,

in order to account for gluon recombination processes, apart from the production

diagrams, the GLR-MQ equations also include the dominant non-ladder contributions

denoted as the fan diagrams. The fan diagrams take into consideration some of the

gluon recombination processes that turn significant at small-x and therefore plays

the key role in the restoration of unitarity. These diagrams are depicted in Fig.2.4.

The gluon recombination term in the GLR-MQ equation contains a factor 1/Q2,

whose dimension is balanced by the parameter R representing the size of the region

containing the recombining gluons. The size of the nonlinear term varies as 1/R2.

The value of R depends on how the gluons are distributed within the proton or how
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Figure 2.4: Fan-diagrams contributing to the GLR-MQ equation

the gluon ladders couple to each other. The gluon ladders may emerge from different

constituents of the proton or from the same constituent. The gluons are supposed to

be distributed uniformly across the whole of the proton if the gluon ladders emerge off

distinct valence quarks. In that case R is of the order of proton radius Rh, that is to

say R ∼ 5 GeV−1 and recombination or shadowing correction is negligibly small [29].

On the other hand, if the gluon ladders couple to the same parton then it leads to a

higher gluon density in the parton’s vicinity. Such smaller regions within the proton

where the gluon density is higher than the average are known as the so-called ‘hot

spots’ [43, 44]. The hot spots could specify the fast onset of gluon-gluon interactions

in the environs of the emitting parton and so boost the recombination effect. The

value of R for such hot spot, is considered to be of the order of the transverse size of

a valence quark i.e R ∼ 2 GeV−1.

A remarkable feature of the GLR-MQ equation is that it predicts the saturation

momentum in the asymptotic region x → 0. Moreover, it predicts a critical line

separating the perturbative regime from saturation regime and it is valid only in

the vicinity of this critical line [42]. The general benchmark of this equation is that

the nonlinear corrections should be small as compared to the linear term, otherwise

further corrections must be taken into account and non-perturbative effects could be

of significance. As the GLR-MQ equation only includes the first nonlinear term, so
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this equation is not legitimate in very high density region where the contributions

from the higher order terms become crucial.

2.2.2 MD-DGLAP equation

The MD-DGLAP equation [31, 32] sums up all possible twist-4 cut diagrams in the

LL(Q2) approximation and describes the corrections of parton recombination to the

QCD evolution equation. These equations are advocated by Zhu and Ruan. This

equation is obtained by aggregating the Feynman diagrams in the framework of the

time-ordered perturbation theory (TOPT) [45] instead of the AGK cutting rule [39].

The MD-DGLAP equation for gluon distribution is [31, 32]

dxg(x,Q2)

dln(Q2)
= Pgg ⊗G(x,Q2) + Pgq ⊗ S(x,Q2)

+
α2
sk

Q2

∫ x

x/2

dx1xx1G
2(x1, Q

2)
∑
i

P gg→g
i (x1, x)

−α2
sk

Q2

∫ 1/2

x

dx1xx1G
2(x1, Q

2)
∑
i

P gg→g
i (x1, x) (2.15)

and for sea quark distribution is [31, 32]

dxq(x,Q2)

dln(Q2)
= Pqg ⊗G(x,Q2) + Pqq ⊗ S(x,Q2)

+
α2
sk

Q2

∫ x

x/2

dx1xx1G
2(x1, Q

2)
∑
i

P gg→q
i (x1, x)

−α2
sk

Q2

∫ 1/2

x

dx1xx1G
2(x1, Q

2)
∑
i

P gg→q
i (x1, x), (2.16)

where P are the evolution kernels of the linear DGLAP equation. The recombination

functions are∑
i

P gg→g
i (x1, x) =

27

64

(2x1 − x)(−136xx3
1 − 64x1x

3 + 132x2
1x

2 + 99x4
1 + 16x4)

xx5
1

,

(2.17)∑
i

P gg→q
i (x1, x) =

1

48

(2x1 − x)(36x3
1 + 49x1x

2 − 14x3 − 60x2x)

x5
1

. (2.18)

The nonlinear coefficient k depends on the definition of the double parton dis-

tribution and the geometric distributions of partons inside the target. The positive

third terms on the right-hand side of both Eq.(2.17) and Eq.(2.18) represent the

anti-shadowing effect, whereas the negative fourth term is the result of the shad-

owing correction. The concurrence of shadowing and anti-shadowing in the QCD
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evolution of the parton densities is a usual demand for the local momentum conser-

vation. The shadowing and anti-shadowing terms are defined on distinct kinematic

regions [x, 1/2] and [x/2, x] respectively. Hence, the overall recombination effects in

Eq.(2.17) are not only associated to the value of gluon density, but also depend on

the slope of the gluon distribution in the space [x/2, x]. This implies that a steeper

gluon distribution has an intense antishadowing effect as compared to a lower gluon

distribution.

2.2.3 BK equation

The BK evolution equation [33, 34] is based on the BFKL equation and was de-

rived by Balitsky and Kovchegov in the large-Nc limit, with Nc being the number

of colors. The BK equation is an upgraded form of the GLR-MQ equation and it

determines the saturation of parton densities at very small-x. This equation is writ-

ten for the scattering amplitude N . It provides an explanation of the more specific

triple-pomeron vertex [46, 47] and can be utilized for the non-forward amplitude.

The BK equation is obtained in the leading ln(1/x) approximation of perturbative

QCD, i.e. it sums all contributions of the order (αs ln(1/x))
n. The contributions of

the orders αs(αs ln(1/x))
n and αs lnQ

2(αs ln(1/x))
n are not included in this equation.

The phenomenological analysis of this equation is performed in the dipole model [48,

49] approximation, where the nonlinear terms are supposed to be formed by the

dipole splitting and the screening or shadowing effects are emerged from the double

scattering of the probe on the final states. The BK equation reads

∂N(r, Y ; b)

∂Y
=

ᾱs

2π

∫
d2r′r2

(r − r′)2r′2

×
[
2N
(
r′, Y ; b+

1

2
(r − r′)

)
−N(r, Y ; b)

−N
(
r′, Y ; b− 1

2
(r − r′)

)
N
(
r − r′, Y ; b− 1

2
r′
)]
, (2.19)

where ᾱs = (αsNc)/π, N(r, Y ; b) is the scattering amplitude of interaction for the

dipole with the size r and rapidity Y = ln(1/x), at impact parameter b. In the large

Nc limit CF = Nc/2, where Nc is the number of colors.

Eq.(2.21) is an integro-differential equation and it presents the scattering am-

plitude N(r, Y ; b) at all rapidities Y > 0 provided the initial condition at Y = 0 is

known. The physical significance of Eq.(2.21) is that the dipole of size r decays in
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two dipoles of sizes r′ and r − r′ which interact with the target. The linear part

of Eq.(2.21) is the usual LO BFKL equation [5-7], which accounts for the evolution

of the multiplicity of the color dipoles of fixed size in respect of the rapidity Y .

The nonlinear term considers a coexisting interaction of two produced dipoles with

the target and it sums the high twist contributions. An outstanding feature of the

BK equation is that its solution predicts a limiting form of the scattering amplitude

resulting in parton saturation.

2.2.4 MD-BFKL equation

The nonlinear MD-BFKL [35] equation was suggested by Zhu, Shen and Ruan to

describes the corrections of the gluon recombination to the BFKL equation, but it

differs from the BK equation. The MD-BFKL equation forecasts an intense shadow-

ing effect, which subdues the gluon density. Surprisingly, it generates the extinction

of gluons below the saturation region. This unforeseen effect of gluon extinction be-

low the saturation region is induced by an apparent chaotic solution of the equation

as suggested in [35]. The MD-BFKL is defined as

−x
∂f(x, kb0)

∂x
=

αsNc

2π2

∫
d2kbc

k2
b0

k2
bck

2
c0

2f(x, kbc)−
αsNc

2π2
f(x, kb0)

∫
d2kbc

k2
b0

k2
bck

2
c0

− 18α2
s

π2R2

N2
c

N2
c − 1

∫
d2kbc

1

k2
bc

k2
b0

k2
bck

2
c0

f 2(x, kbc)

+
9α2

s

π2R2

N2
c

N2
c − 1

f 2(x, kb0)

∫
d2kbc

1

k2
b0

k2
b0

k2
bck

2
c0

. (2.20)

The nonlinear part of the MD-BFKL equation has an infra red (IR) divergence

very much alike the BFKL kernel and as a matter of course, it requires the regu-

larization scheme alike the BFKL equation. The evolution kernels in the linear and

nonlinear parts of the MD-BFKL equation are fixed by using the same procedure

of summations of the real and virtual processes. This equation is derived on the

basis of the TOPT cutting rules just as the MD-DGLAP equation to include the

contributions from the virtual processes in the linear and nonlinear parts of the MD-

BFKL equation. The MD-BFKL and BK equations differ from each other in their

assumptions of regularization schemes. In MD-BFKL equation the singularities in

the nonlinear real part are aborted by the contributions from the complementary vir-

tual processes, whereas such singularities are assimilated into the double amplitude

NN in BK equation.
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2.2.5 JIMWLK equation

The JIMWLK evolution equation [36-38], advocated by Jalilian-Marian, Iancu, McLer-

ran, Weigert, Leonidov and Kovner, is the renormalization group equation (RGE)

for the Color Glass Condenstate and describes the small-x hadronic physics in the

regime of very high gluon density. This is a functional Fokker-Planck equation re-

garding a classical random color source, which defines the color charge density of the

partons with large-x [38]. This equation controls the evolution with rapidity of the

statistical weight function for the color glass field.

The JIMWLK equation in the compact form is [50]

∂τẐτ [U ] = −1

2
i∇a

xχ
ab
xyi∇b

yZτ [U ], (2.21)

where Ẑτ [U ] is the weight functional and it governs the correlators O[U ] of U fields

conforming to ⟨O[U ]⟩τ =
∫
D̂[U ]O[U ]Zτ [U ], with D̂[U ] being a functional Haar mea-

sure [50]. ∇a
x are functional form of the left-invariant vector fields affecting Uy in

accordance with

i∇a
xUy = Uxt

aδ(2)xy , (2.22)

where Ux are the Wilson line variables representing the kinematically enhanced de-

grees of freedom. Again

χab
xy =

αs

π2

∫
d2zKxyz[(1− Ũ †

xŨz)(1− Ũ †
z Ũx)]

ab,

and

Kxyz =
(x− z).(z − y)

(x− z)2(z − y2)
. (2.23)

The deduction of the JIMWLK equation demands an analytic estimation to all

orders in the environment of a classical gluon field for a random light cone source. The

solution of the JIMWLK equation is normally anticipated to enable the saturation

momentum to raise constantly as y → ∞. Moreover its solution is supposed to be

universal. In the restrain of weak field the JIMWLK equation scales down to the

BFKL equation, whereas in the large Nc limit, it grows to be equivalent to the BK

equation.
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2.3 Solutions of evolution equations

The QCD evolution equations are the underlying theoretical tools to compute the

quark and gluon distributions and eventually the DIS structure functions. On that

account the solutions of the evolution equations are drawing attention substantially.

The solutions of the DGLAP equation for the QCD evolution of PDFs have been dis-

cussed considerably over the past years. There exist two main classes of approaches:

those that solve the equation directly in x-space, and those that solve it for Mellin

transforms of the parton densities and subsequently invert the transforms back to

x-space. Some available programs that deal with DGLAP evolution are CANDIA

[51] based on the logarithmic expansions in x-space, QCD PEGASUS [52], which is

based on the use of Mellin moments, HOPPET [53] and QCDNUM [54]. HOPPET

is a Fortran package for carrying out QCD DGLAP evolution and other common

manipulations of PDFs. The Fortran package QCD PEGASUS provides fast, flexi-

ble and accurate solutions of the evolution equations for unpolarized and polarized

parton distributions of hadrons in perturbative QCD. Similarly QCDNUM is a For-

tran program that numerically evolves parton densities or fragmentation functions

up to NNLO in perturbative QCD. Most of the methods used for the solution of

DGLAP equation are numerical. Laguerre polynomials [55, 56], Brute-Force method

[57], Matrix method [58], Mellin transformation [59, 60] etc. are different methods

used to solve DGLAP evolution equations. The shortcomings common to all are the

computer time required and decreasing accuracy for x → 0. More precise approach

to the solution of the DGLAP evolution equations is the matrix approach, but it is

also a numerical solution. A numerical solution does not provide the full control on

the employed phenomenological parameters, and the transparency and simplicity of

physical interpretation are lost if one relies only on the numerical solutions.

As an alternative to the numerical solution, one can study the behavior of quarks

and gluons via analytic solutions of the evolution equations. Even though exact

analytic solutions of the DGLAP equations cannot be obtained in the whole range of

x andQ2, such solutions are possible under definite conditions and are fairly successful

as far as the HERA small-x data are concerned. In recent years, such a scheme in

the analytic study of the DGLAP equations has been reported with considerable

phenomenological success [61-67]. The Taylor series expansion method, the method
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of characteristic and the Regge theory methods are some of the very simple and frugal

analytical methods that have been utilized widely to obtain the solutions of DGLAP

equations. Part I of this thesis also reports the analytical solutions of the DGLAP

equations for DIS structure functions upto NNLO with significant phenomenological

triumph.

In contrast to the DGLAP equation, it is very difficult to the solve the BFKL

and CCFM equations. Although the solution of the LO BFKL evolution is known,

but regardless of a number of attempts, it seems that an exact analytical solution

of the NLO BFKL equation, or a general all-order BFKL equation in QCD is still

unavailable. Nevertheless, in a conformal field theory without the running of the

coupling, i.e. in the N = 4 super Yang-Mills theory, the form of the solution of the

BFKL equation to all-order has been identified [68, 69]. The numerical solution of

CCFM equation can be obtained by monte-carlo approach CASCADE to study the

small-x regime. Although in the single loop approximation the CCFM equatiion can

be solved analytically [70], but due the non Sudakov form-factor the solution beyond

the single-loop approximation is less apparent.

The solutions of the nonlinear evolution equations, on the other hand, are par-

ticularly important for understanding the nonlinear effects of gluon-gluon interaction

due to the high gluon density at small-x. The solution of nonlinear evolution equa-

tions also provide the determination of the saturation momentum, which incorporates

physics in addition to that of the linear evolution equations commonly used to fit the

DIS data. It is very difficult to solve the nonlinear equations analytically, unlike the

linear DGLAP equations. However the studies on the solutions and viable general-

izations of the GLR-MQ type equations in different approaches have been revealed

in the last few years [25, 28, 29, 71-80]. In Refs. [29, 71-74] the solutions of GLR-MQ

type nonlinear equations are reported in semi classical approach using characteris-

tics method which leads to existence of a critical line separating the perturbative

regime from the nonperturbative one. Here it is shown that all characteristics in the

region of small-x cannot cross this line but can approach it. Again a new equation

is proposed in Ref.[75] which generalizes the GLR equation and allows to probing

into smaller distance in the dense parton system considering the shadowing effects

more exclusively by including multigluon correlations. The general solution to the
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new equation is obtained in in an eikonal approach and fixed αs. A new approach for

searching a solution of the nonlinear GLR-MQ evolution equation in the nonpertur-

bative part of the small-x region is discussed in Ref [76]. Here it is justified that the

suggested solution satisfies all physics restrictions and there is only one solution that

complements the perturbative DGLAP evolution. A color dipole approach to the

solution to the nonlinear GLR-MQ like equation for high parton density is suggested

in the full kinematic region including x → 0 in Ref.[77]. The solution replicates the

saturation of the gluon density. However due to moderate dependence on the impact

parameter, the saturation gives rises to the dipole-target total cross section propor-

tional to ln(1/x) in the region of very small-x. A numerical analysis of the GLR-MQ

equation is presented in Ref. [78] where the signatures of gluon recombination are

discussed. They also provide a simple and qualitative idea to explore the H1 [79] ex-

perimental data for evidence of gluon recombination. Similarly, a numerical solution

of GLR-MQ equation is suggested in Ref.[25], where the effects of the first nonlin-

ear corrections to the DGLAP evolution equations are studied by using the recent

HERA data for the structure function F2(x,Q
2). It is argued in this paper that the

nonlinear corrections become important at x ≤ 10−3 and Q2 ≤ 10 GeV2, but become

negligible at large-x and large-Q2. In Ref.[28] The effect of absorptive corrections

due to parton recombination on the parton distributions of the proton is discussed at

small-x in a more precise version of the GLRMQ equations using a truncated version

of the MRST2001 NLO analysis [26]. Moreover the approximate analytical solutions

of the nonlinear GLR-MQ evolution equation have also been reported in recent years

[80, 81]. In part II of this thesis we present a semi-analytical approach to solve the

GLR-MQ equation in the vicinity of saturation and make a deliberate attempt to

explore the effect of nonlinear or shadowing corrections in the kinematic region of

small-x and moderate Q2.

Unlike GLR-MQ the other nonlinear equations are comparatively complicated to

solve. The numerical solutions to BK or JIMWLK nonlinear equations in the presence

of the impact parameter is very challenging. The JIMWLK equation is difficult to

solve, even numerically as it consist of an infinite hierarchy of coupled evolution

equations. The BK hierarchy is a special case of the JIMWLK equation where

the primary projectile is set and captured by a quark-antiquark pair. For practical
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calculations one may use the average field approximation and thereby diminish a

full infinite hierarchy to a single closed equation. Even if the full analytical solution

of the BK equation is not known, a number of its general properties, such as the

existence and shape of limiting solutions, have been determined in both analytical

[82-84] and numerical [85-89] approaches in recent years. On the other hand, in

Ref.[90] numerical solutions to the MD-DGLAP equation are reported in the small-x

region using a with GRV like input distributions. Here the the small-x behavior

parton distributions in the nucleus and free proton are predicted numerically and it

is seen that gluon recombination at the twist-4 level suppresses the rapid increase of

parton densities towards small-x. It is further claimed that saturation and partial

saturation occur sooner than the saturation scale Q2
s is reached.
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Chapter 3

NNLO Analysis of Singlet and
Non-singlet Structure Functions in
the DGLAP Approach

3.1 Introduction

Structure functions in lepton-nucleon DIS are the entrenched observables exploring

QCD. They are defined as convolution of the universal parton momentum distribu-

tions and coefficient functions, which contain information about the boson-parton

interaction. Therefore the structure functions provide exclusive information about

the deep structure of hadrons and most importantly, they form the backbone of

our knowledge of the parton densities, which are indispensable for analyses of hard

scattering processes. Thus the measurements of the structure functions allow pertur-

bative QCD to be precisely tested. The standard and the basic tool for theoretical

investigation of DIS structure functions are the DGLAP evolution equations [1-4].

Therefore the solutions of DGLAP evolution equations give quark and gluon distri-

bution functions which ultimately produce proton, neutron and deuteron structure

functions.

The solutions of the unpolarized DGLAP equation for the QCD evolution of

structure functions have been discussed considerably over the past years. The stan-

dard and the most extensively used procedure of studying the hadron structure func-

tions is via the numerical solution of these equations [5-10], with excellent agreement

with the DIS data over a wide kinematic region in x and Q2. However, apart from the

70



numerical solution, there is the alternative approach of studying analytically these

equations at small-x. Although exact analytic solutions of the DGLAP equations

cannot be obtained in the entire range of x and Q2, such solutions are possible under

certain conditions [11, 12] and many approximated analytical solutions of DGLAP

evolution equations suitable at small-x, have been reported in recent years [13-22]

with considerable phenomenological success.

The singlet and non-singlet structure functions in DIS i.e. the flavor indepen-

dent and flavor dependent contributions to the structure functions play the key role

for accurate determination of the quark and gluon densities and therefore they can

be considered as the basis for the analysis of other structure functions. In this

chapter, by using a Taylor series expansion valid at small-x, we first transform the

DGLAP equation, which is an integro-differential equation, into a partial differential

equation in the two variables (x,Q2) and the resulting equation is then solved at

LO, NLO and NNLO respectively by the Lagrange’s auxiliary method. Inclusion of

the NNLO contributions considerably reduces the theoretical uncertainty of deter-

minations of the quark and gluon densities from DIS structure functions. Here, we

investigate the impact of the NNLO contributions on the evolution of the singlet and

non-singlet structure function respectively considering the corresponding DGLAP

evolution equations. The singlet distribution is comparatively complicated to com-

pute as it is coupled to the the gluon densities. We also calculate the Q2-evolution

of deuteron and proton structure functions upto NNLO from the solutions of singlet

and non-singlet structure functions. Moreover the x-evolution of deuteron structure

function is calculated upto NNLO. We compare our predictions with NMC [23], E665

[24], and H1 [25] experimental data as well as with the NNPDF [26] parametrization

based on the NMC and BCDMS data.

3.2 Formalism

3.2.1 General framework

The singlet and non-singlet quark density of a hadron is given by [27]

qS(x,Q
2) =

Nf∑
i=1

[qi(x,Q
2) + qi(x,Q

2)], (3.1)
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qNS(x,Q
2) =

Nf∑
i=1

[qi(x,Q
2)− qi(x,Q

2)], (3.2)

where qi(x,Q
2) and qi(x,Q

2) represent the number distribution of quarks and anti-

quarks, respectively, in the fractional hadron momentum x. The corresponding gluon

distribution is denoted by g(x,Q2). The subscript i indicates the flavour of the quarks

or anti-quarks and Nf is the number of effectively massless flavours.

The DGLAP evolution equation in the singlet sector in the standard form is

given by [28]

∂

∂ lnQ2

(
qS
g

)
=

(
Pqq Pqg

Pgq Pgg

)
⊗
(

qS
g

)
, (3.3)

where Pqq, Pqg, Pgq, Pgg are splitting functions. The singlet structure function in-

volves the quark-quark splitting function Pqq and gluon-quark splitting function Pqg,

whereas non-singlet structure function involves only the quark-quark splitting func-

tion Pqq. The quark-quark splitting function Pqq can be expressed as a power series

of αs(Q
2) [10]

Pqq(x,Q
2) =

αs(Q
2)

2π
P (0)
qq (x) +

(αs(Q
2)

2π

)2
P (1)
qq (x) +

(αs(Q
2)

2π

)3
P (2)
qq (x)

+OP (3)
qq (x), (3.4)

where P
(0)
qq (x), P

(1)
qq (x) and P

(2)
qq (x) are LO, NLO and NNLO quark-quark splitting

functions respectively. Other splitting functions can be expressed in a similar way.

The symbol ⊗ stands for the standard Mellin Convolution in the momentum variable

defined as

a(x)⊗ b(x) ≡
∫ 1

x

dω

ω
a(ω)b

(x
ω

)
. (3.5)

Thus, using Eq. (3.5), Eq. (3.3) can be written as

∂

∂ lnQ2

(
qS(x,Q

2)
g(x,Q2)

)
=

∫ 1

x

dω

ω

(
Pqq(ω) Pqg(ω)
Pgq(ω) Pgg(ω)

)(
qS(x/ω,Q

2)
g(x/ω,Q2),

)
(3.6)

which implies

∂qS(x,Q
2)

∂ lnQ2
=

∫ 1

x

dω

ω

(
Pqq(ω)qS(x/ω,Q

2) + Pqg(ω)g(x/ω,Q
2)
)
, (3.7)

∂g(x,Q2)

∂ lnQ2
=

∫ 1

x

dω

ω

(
Pgq(ω)qS(x/ω,Q

2) + Pgg(ω)g(x/ω,Q
2)
)
. (3.8)
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On the other hand, the DGLAP evolution equation in the non-singlet sector in

the standard form is given by [29]

∂qNS(x,Q
2)

∂ lnQ2
= PNS(x,Q

2)⊗ qNS(x,Q
2), (3.9)

where PNS(x,Q
2) is the non-singlet kernel known perturbatively up to the first few

orders in αs(Q
2) [30]. Using equation (3.5), equations (3.9) can be expressed as

∂qNS(x,Q
2)

∂ lnQ2
=

∫ 1

x

dω

ω
PNS(ω)qNS(x/ω,Q

2). (3.10)

The quark-quark splitting function Pqq in equation (3.6) can be expressed as

Pqq = PNS + Nf (P
S
qq + P S

qq) = PNS + PPS. P S
qq and P S

qq are the flavor-independent

contributions to the quark-quark and quark-antiquark splitting functions respectively.

The non-singlet contribution PNS dominates Pqq at large-x whereas at very small-

x the pure singlet term PPS dominates over PNS [31]. The quark-gluon (Pqg) and

gluon-quark (Pgq) entries in equation (3.6) are given by Pqg = NfPqig and Pgq = Pgqi ,

where Pqig and Pgqi are the flavor-independent splitting functions.

The running coupling constant αS(Q
2) has the form [14, 32]

αs(Q
2)

2π
=

2

β0ln(Q2/Λ2)
, (3.11)

αs(Q
2)

2π
=

2

β0ln(Q2/Λ2)

[
1− β1

β2
0

ln
(
ln(Q2/Λ2)

)
ln(Q2/Λ2)

]
, (3.12)

αs(Q
2)

2π
=

2

β0ln(Q2/Λ2)

[
1− β1

β2
0

ln
(
ln(Q2/Λ2)

)
ln(Q2/Λ2)

+
1

β3
0 ln(Q

2/Λ2)

×
{β2

1

β0

(ln2
(
ln(Q2/Λ2)

)
− ln

(
ln(Q2/Λ2)

)
− 1) + β2

}]
(3.13)

at LO, NLO and NNLO respectively. Here

β0 =
11

3
Nc −

4

3
Tf = 11− 2

3
Nf ,

β1 =
34

3
N2

c − 10

3
NcNf − 2CFNf = 102− 38

3
Nf ,

β2 =
2857

54
N3

c + 2C2
FTf −

205

9
CFNcTf −

1415

27
N2

c Tf +
44

9
CFT

2
f +

158

27
NcT

2
f

=
2857

2
− 6673

18
Nf +

325

54
N2

f

are the one-loop, two-loop and three-loop corrections to the QCD β-function and Nf

being the number of quark flavours. Here we use Nf = 4, Nc = 3. The Casimir

operators of the color SU(3) are defined as CF =
N2

c − 1

2Nc

=
4

3
and Tf =

1

2
Nf .
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3.2.2 LO analysis of singlet and non-singlet structure func-
tions

Substituting the explicit form of the LO splitting functions [4, 11] in Eqs. (3.7) and

(3.10) and simplifying, the DGLAP evolution equations for singlet and non-singlet

structure functions at LO can be written as

∂F S
2 (x, t)

∂t
=

αS(t)

2π

[2
3
{3 + 4 ln(1− x)}F S

2 (x, t) + IS1 (x, t)
]
, (3.14)

∂FNS
2 (x, t)

∂t
=

αS(t)

2π

[2
3
{3 + 4 ln(1− x)}FNS

2 (x, t) + INS
1 (x, t)

]
, (3.15)

where F S
2 (x, t) =

∑Nf

i=1 e
2
ix[qi + qi], and FNS

2 (x, t) =
∑Nf

i=1 e
2
ix[qi − qi]]. The integral

functions are given by

IS1 (x, t) =
4

3

∫ 1

x

dω

1− ω

[
(1 + ω2)F S

2

(x
ω
, t
)
− 2F S

2 (x, t)
]

+Nf

∫ 1

x

{ω2 + (1− ω)2}G
(x
ω
, t
)
dω, (3.16)

INS
1 (x, t) =

4

3

∫ 1

x

dω

1− ω

[
(1 + ω2)FNS

2

(x
ω
, t
)
− 2FNS

2 (x, t)
]
. (3.17)

Here we use a more convenient variable t defined by t = ln
(Q2

Λ2

)
with Λ being the

QCD cut off parameter, the scale at which partons turn themselves into hadrons.

To simplify and reduce the integro-differential equation to a partial differential

equation we introduce a variable u = 1−ω so that the argument x/ω can be expressed

as

x

ω
=

x

1− u
= x+

xu

1− u
. (3.18)

Since x < ω < 1, so we have 0 < u < 1 − x. This implies that the above series is

convergent for |u| < 1. Now using Eq. (3.18), we can expand F S
2 (x/ω, t) by Taylor

expansion series as

F S
2

(x
ω
, t
)

= F S
2

(
x+

xu

1− u
, t
)

= F S
2 (x, t) +

( xu

1− u

)∂F S
2 (x, t)

∂x
+

1

2

( xu

1− u

)2∂2F S
2 (x, t)

∂2x
+ · · · .

(3.19)

As x is small in our region of discussion, the terms containing x2 and higher powers

of x can be neglected and therefore Eq. (3.19) takes the form

F S
2

(x
ω
, t
)
= F S

2 (x, t) +
xu

1− u

∂F S
2 (x, t)

∂x
. (3.20)
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Similarly,

G
(x
ω
, t
)
= G(x, t) +

xu

1− u

∂G(x, t)

∂x
, (3.21)

FNS
2

(x
ω
, t
)
= FNS

2 (x, t) +
xu

1− u

∂FNS
2 (x, t)

∂x
. (3.22)

Putting Eqs. (3.20) and (3.21) in Eq. (3.16) and carrying out the integrations

in u we get from Eq. (3.14)

∂F S
2 (x, t)

∂t
=

αS(t)

2π

[
A1(x)F

S
2 (x, t) + A2(x)

∂F S
2 (x, t)

∂x
+ A3(x)G(x, t)

+ A4(x)
∂G(x, t)

∂x

]
, (3.23)

where Ai(x) (i=1,2,3,4) are functions of x (see Appendix A). Eq.(3.23) is a first order

partial differential equation for the singlet structure function F S
2 (x, t) with respect to

the variables x and t. Beyond its traditional use in t or Q2-evolution (t = ln(Q2/Λ2)),

it also provides x-evolution at small-x. There are various methods for solving the

partial differential equations in two variables. We here adopt the Lagrange’s auxiliary

method as mentioned in the introduction.

The Q2-evolution of the proton structure function F2(x,Q
2) is related to the

gluon parton densities in the proton G(x,Q2) and to the strong interaction cou-

pling constant αS. The gluon parton densities cannot be measured directly through

experiments. It is, therefore, important to measure the G(x,Q2) indirectly using

F2(x,Q
2). Hence the direct relations between F2(x,Q

2) and the G(x,Q2) are ex-

tremely important because using those relations the experimental values of G(x,Q2)

can be extracted using the data on F2(x,Q
2). Therefore, in the analytical solutions

of DGLAP evolution equations for singlet structure functions or gluon parton den-

sities, a relation between singlet structure function and gluon parton densities has

to be assumed. The commonly used relation is G(x, t) = K(x)F S
2 (x, t) [15, 16, 19],

where K(x) is a parameter to be determined from phenomenological analysis. We

can consider this form as the evolution equations of gluon parton densities and singlet

structure functions are in the same forms of derivative with respect to t. Moreover

the input singlet and gluon parameterizations, taken from global analysis of PDFs,

in particular from the MSTW08 parton set, to incorporate different high precision

data, are also functions of x at fixed Q2 [33]. So the relation between singlet structure

function and gluon parton densities will come out in terms of x at fixed-Q2. However,
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the actual functional form of K(x) can be determined by simultaneous solutions of

coupled equations of singlet structure functions and gluon parton densities. Further

discussions on K(x) are presented in Appendix G.

Hence Eq.(3.23) takes the form

−t
∂F S

2 (x, t)

∂t
+ LS

1 (x)
∂F S

2 (x, t)

∂x
+MS

1 (x)F
S
2 (x, t) = 0, (3.24)

where

LS
1 (x) = Af

[
A2(x) +K(x)A4(x)

]
, (3.25)

MS
1 (x) = Af

[
A1(x) +K(x)A3(x) +

∂K(x)

∂x
A4(x)

]
, (3.26)

with Af=
2
β0
. Now the general solution of the Eq.(3.24) is

F (U, V ) = 0, (3.27)

where F (U, V ) is an arbitrary function of U and V . Here, U(x, t, F S
2 ) = k1 and

V (x, t, F S
2 ) = k2 are two independent solutions of the Lagrange’s equation

∂x

LS
1 (x)

=
∂t

−t
=

∂F S
2 (x, t)

−MS
1 (x)F

S
2 (x, t)

. (3.28)

Then by solving Eq. (3.28) we obtain

U(x, t, F S
2 ) = t · exp

[ ∫ 1

LS
1 (x)

dx
]
, (3.29)

V (x, t, F S
2 ) = F S

2 (x, t) · exp
[ ∫ MS

1 (x)

LS
1 (x)

dx
]
. (3.30)

Thus we see that it has no unique solution. In this approach we attempt to

extract a particular solution that obeys some physical constraints on the structure

function. The simplest possibility to get a solution is that a linear combination of U

and V should obey the Eq. (3.27) so that

α · U + β · V = 0, (3.31)

where α and β are arbitrary constants to be determined from the boundary conditions

on F S
2 . Putting the values of U and V from Eq.(3.29) and Eq.(3.30) in this equation

we get

αt · exp
[ ∫ 1

LS
1 (x)

dx
]
+ βF S

2 (x, t) · exp
[ ∫ MS

1 (x)

LS
1 (x)

dx
]
= 0, (3.32)
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which implies

F S
2 (x, t) = −γt · exp

[ ∫ ( 1

LS
1 (x)

− MS
1 (x)

LS
1 (x)

)
dx
]
, (3.33)

where γ = α
β
is a constant. Now at t = t0, where t0 = ln

(Q2
0

Λ2

)
for any lower value

Q2 = Q2
0, we define

F S
2 (x, t0) = −γt0 · exp

[ ∫ ( 1

LS
1 (x)

− MS
1 (x)

LS
1 (x)

)
dx
]
. (3.34)

Then Eqs. (3.33) and (3.34) lead us to

F S
2 (x, t) = F S

2 (x, t0)
( t

t0

)
. (3.35)

This gives the t-evolution for singlet structure function at LO at small-x. Again

defining at a higher value of x = x0,

F S
2 (x0, t) = −γt · exp

[ ∫ ( 1

LS
1 (x)

− MS
1 (x)

LS
1 (x)

)
dx
]
x=x0

, (3.36)

we obtain

F S
2 (x, t) = F S

2 (x0, t) · exp
[ ∫ x

x0

( 1

LS
1 (x)

− MS
1 (x)

LS
1 (x)

)
dx
]
. (3.37)

This gives the x-evolutions of singlet structure functions at LO.

Now substituting the approximated form of Taylor expansion of non-singlet struc-

ture function from Eq.(3.22) in Eq.(3.17) and performing u-integrations we obtain

from Eq.(3.15)

∂FNS
2 (x, t)

∂t
=

αS(t)

2π

[
A1(x)F

NS
2 (x, t) + A2(x)

∂FNS
2 (x, t)

∂x

]
, (3.38)

which we can rewrite as

−t
∂FNS

2 (x, t)

∂t
+ LNS

1 (x)
∂FNS

2 (x, t)

∂x
+MNS

1 (x)FNS
2 (x, t) = 0. (3.39)

Here

LNS
1 (x) = AfA2(x), (3.40)

MNS
1 (x) = AfA1(x). (3.41)

Proceeding in the same way as the singlet case we solve Eq. (3.39) for non-singlet

structure function and obtain

FNS
2 (x, t) = FNS

2 (x, t0)
( t

t0

)
(3.42)
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and

FNS
2 (x, t) = FNS

2 (x0, t) · exp
[ ∫ x

x0

( 1

LNS
1 (x)

− MNS
1 (x)

LNS
1 (x)

)
dx
]
, (3.43)

which give the t and x-evolutions of non-singlet structure functions respectively at

LO respectively.

For phenomenological analysis, we compare our results with various experimental

structure functions. The deuteron structure function measured in DIS can be written

in terms of the singlet structure function respectively as [11]

F d
2 (x, t) =

5

9
F S
2 (x, t). (3.44)

Again the proton structure function measured in DIS can be expressed in terms of

the singlet and non-singlet structure function as [11]

F p
2 (x, t) =

5

18
F S
2 (x, t) +

3

18
FNS
2 (x, t). (3.45)

Substituting Eqs. (3.35) and (3.37) in Eq. (3.44), the t and x-evolutions of deuteron

structure function at LO can be obtained as

F d
2 (x, t) = F d

2 (x, t0)
( t

t0

)
(3.46)

and

F d
2 (x, t) = F d

2 (x0, t) · exp
[ ∫ x

x0

( 1

LS
1 (x)

− MS
1 (x)

LS
1 (x)

)
dx
]
. (3.47)

Here the input functions are F d
2 (x, t0) =

5
9
F S
2 (x, t0) and F d

2 (x0, t) =
5
9
F S
2 (x0, t).

On the other hand, substituting Eqs. (3.35) and (3.42) in Eq. (3.45), we get the

t-evolutions of proton structure function at LO

F p
2 (x, t) = F p

2 (x, t0)
( t

t0

)
, (3.48)

with the input function is F p
2 (x, t0) =

5
18
F S
2 (x, t0)+

3
18
FNS
2 (x, t0). It is to be noted that

the determination of x-evolution of proton structure function like that of deuteron

structure function is not suitable by the method adopted here. The reason is that in

order to calculate the x-evolution of proton structure function, we have to put Eqs.

(3.37) and (3.43) in Eq. (3.45). But the functions inside the integral sign of Eqs.

(3.37) and (3.43) are different and so the the input functions F S
2 (x0, t) and FNS

2 (x0, t)

have to be separated from the data points to extract the x-evolution of the proton

function, which may contain large errors.
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3.2.3 NLO analysis of singlet and non-singlet structure func-
tions

Considering the splitting functions at NLO [12, 34, 35], the DGLAP equations for

singlet and non-singlet structure functions at NLO in standard form can be written

as

∂F S
2 (x, t)

∂t
=

αS(t)

2π

[2
3
{3 + 4 ln(1− x)}F S

2 (x, t) + IS1 (x, t)
]

+
(αS(t)

2π

)2
IS2 (x, t), (3.49)

∂FNS
2 (x, t)

∂t
=

αS(t)

2π

[2
3
{3 + 4 ln(1− x)}FNS

2 (x, t) + INS
1 (x, t)

]
+
(αS(t)

2π

)2
INS
2 (x, t). (3.50)

The integral functions IS1 (x, t) and INS
1 (x, t) are defined in Eqs. (3.16) and (3.17),

whereas

IS2 (x, t) = (x− 1)F S
2 (x, t)

∫ 1

0

f(ω)dω +

∫ 1

x

f(ω)F S
2

(x
ω
, t
)
dω

+

∫ 1

x

F S
qq(ω)F

S
2

(x
ω
, t
)
dω +

∫ 1

x

F S
qg(ω)G

(x
ω
, t
)
dω, (3.51)

INS
2 (x, t) = (x− 1)FNS

2 (x, t)

∫ 1

0

f(ω)dω +

∫ 1

x

f(ω)FNS
2

(x
ω
, t
)
dω. (3.52)

The explicit forms of the functions f(ω), F S
qq(ω) and F S

qg(ω) are given in Appendix

B.

Following the same procedure as in LO, the Eqs. (3.49) and (3.50) can be

simplified as

−t
∂F S

2 (x, t)

∂t
+ LS

2 (x)
∂F S

2 (x, t)

∂x
+MS

2 (x)F
S
2 (x, t) = 0, (3.53)

−t
∂FNS

2 (x, t)

∂t
+ LNS

2 (x)
∂FNS

2 (x, t)

∂x
+MNS

2 (x)FNS
2 (x, t) = 0. (3.54)

Here

LS
2 (x) = Af

[(
A2(x) +K(x)A4(x)

)
+ T0

(
B2(x) +K(x)B4(x)

)]
, (3.55)

MS
2 (x) = Af

[(
A1(x) +K(x)A3(x) +

∂K(x)

∂x
A4(x)

)
+ T0

(
B1(x) +K(x)B3(x) +

∂K(x)

∂x
B4(x)

)]
, (3.56)
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LNS
2 (x) = Af

[
A2(x) + T0B2(x)

]
, (3.57)

MNS
2 (x) = Af

[
A1(x) + T0B1(x)

]
, (3.58)

with Bi(x) (i=1,2,3,4) being the functions of x (see Appendix A). Here we consider

the numerical parameter T0 such that T 2(t) = T0T (t) where T (t)=
αS(t)
2π and the

value of T0 is determined by phenomenological analysis. This numerical parameter

is obtained from a particular range of Q2 under study and by a suitable choice of

T0 we can reduce the difference between T 2(t) and T0T (t) to a minimum. Thus the

consideration of the parameter T0 does not give any abrupt change in our result.

Solving Eq. (3.53) we obtain the t and x-evolutions of singlet structure function

at NLO as

F S
2 (x, t) = F S

2 (x, t0)
( t1+b/t

t
1+b/t0
0

)
· exp

(b
t
− b

t0

)
(3.59)

and

F S
2 (x, t) = F S

2 (x0, t) · exp
[ ∫ x

x0

( 1

LS
2 (x)

− MS
2 (x)

LS
2 (x)

)
dx
]
, (3.60)

where b = β1

β2
0
. The input functions are defined as

F S
2 (x, t0) = −γt

(1+b/t0)
0 · exp

( b

t0

)
· exp

[ ∫ ( 1

LS
2 (x)

− MS
2 (x)

LS
2 (x)

)
dx
]
, (3.61)

F S
2 (x0, t) = −γt(1+b/t) · exp

(b
t

)
· exp

[ ∫ ( 1

LS
2 (x)

− MS
2 (x)

LS
2 (x)

)
dx
]
x=x0

. (3.62)

Now substituting Eqs. (3.59) and (3.60) in Eq. (3.44) we get

F d
2 (x, t) = F d

2 (x, t0)
( t1+b/t

t
1+b/t0
0

)
· exp

(b
t
− b

t0

)
(3.63)

and

F d
2 (x, t) = F d

2 (x0, t) · exp
[ ∫ x

x0

( 1

LS
2 (x)

− MS
2 (x)

LS
2 (x)

)
dx
]
, (3.64)

which lead us to the t and x-evolutions of deuteron structure function at NLO.

Similarly the t and x-evolutions of the non-singlet structure function at NLO are

calculated from Eq. (3.54) and given by

FNS
2 (x, t) = FNS

2 (x, t0)
( t1+b/t

t
1+b/t0
0

)
· exp

(b
t
− b

t0

)
(3.65)
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and

FNS
2 (x, t) = FNS

2 (x0, t) · exp
[ ∫ x

x0

( 1

LNS
2 (x)

− MNS
2 (x)

LNS
2 (x)

)
dx
]
. (3.66)

Thus putting Eqs. (3.59) and (3.65) in Eq. (3.45) we get

F p
2 (x, t) = F p

2 (x, t0)
( t1+b/t

t
1+b/t0
0

)
· exp

(b
t
− b

t0

)
, (3.67)

which lead us to the t-evolution of proton structure function at NLO. It is not possible

to evaluate the x-evolution of proton structure function with the present method for

the same reason mentioned earlier.

3.2.4 NNLO analysis of singlet and non-singlet structure
functions

Using the splitting functions upto NNLO and simplifying [28-31], we get the DGLAP

equations for singlet and non-singlet structure functions at NNLO as

∂F S
2 (x, t)

∂t
=

αS(t)

2π

[2
3
{3 + 4 ln(1− x)}F S

2 (x, t) + IS1 (x, t)
]

+
(αS(t)

2π

)2
IS2 (x, t) +

(αS(t)

2π

)3
IS3 (x, t), (3.68)

∂FNS
2 (x, t)

∂t
=

αS(t)

2π

[2
3
{3 + 4 ln(1− x)}FNS

2 (x, t) + INS
1 (x, t)

]
+
(αS(t)

2π

)2
INS
2 (x, t) +

(αS(t)

2π

)3
INS
3 (x, t). (3.69)

The integral functions IS3 and INS
3 are given by

IS3 (x, t) =

∫ 1

x

dω

ω

[
Pqq(x)F

S
2

(x
ω
, t
)
+ Pqg(x)G

(x
ω
, t
)]

, (3.70)

INS
3 (x, t) =

∫ 1

x

dω

ω
P 2
NS(x)F

NS
2

(x
ω
, t
)
. (3.71)

The explicit forms of the functions Pqq(x), Pqg(x) and P 2
NS(x) are given in Appendix

C.

Here we consider the numerical parameter T1 such that T 3(t) = T1T (t) where

T (t)=
αS(t)
2π . The value of T1 is determined by phenomenological analysis, like T0,

from a particular range of Q2 under study and by an appropriate choice of T1 we can

reduce the error to a minimum. Thus Eqs. (3.68) and (3.69) can be simplified as

−t
∂F S

2 (x, t)

∂t
+ LS

3 (x)
∂F S

2 (x, t)

∂x
+MS

3 (x)F
S
2 (x, t) = 0, (3.72)
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−t
∂FNS

2 (x, t)

∂t
+ LNS

3 (x)
∂FNS

2 (x, t)

∂x
+MNS

3 (x)FNS
2 (x, t) = 0. (3.73)

Here

LS
3 (x) = Af

[(
A2(x) +K(x)A4(x)

)
+ T0

(
B2(x) +K(x)B4(x)

)
+ T1

(
C2(x) +K(x)C4(x)

)]
, (3.74)

MS
3 (x) = Af

[(
A1(x) +K(x)A3(x) +

∂K(x)

∂x
A4(x)

)
+ T0

(
B1(x)

+K(x)B3(x) +
∂K(x)

∂x
B4(x)

)
+ T1

(
C1(x) +K(x)C3(x)

+
∂K(x)

∂x
C4(x)

)]
, (3.75)

LNS
3 (x) = Af

[
A2(x) + T0B2(x) + T1C2(x)

]
, (3.76)

MNS
2 (x) = Af

[
A1(x) + T0B1(x) + T1C1(x)

]
(3.77)

with Ci(x) (i=1,2,3,4) being the functions of x (see Appendix A).

We solve Eq. (3.72) following the same procedure as earlier and obtain the t and

x-evolutions of singlet structure function at NNLO given by

F S
2 (x, t) = F S

2 (x, t0)
( t1+(b−b2)/t

t
1+(b−b2)/t0
0

)
· exp

(b− c− b2 ln2 t

t
− b− c− b2 ln2 t0

t0

)
(3.78)

and

F S
2 (x, t) = F S

2 (x0, t) · exp
[ ∫ x

x0

( 1

LS
3 (x)

− MS
3 (x)

LS
3 (x)

)
dx
]

(3.79)

respectively. The input functions are defined as

F S
2 (x, t0) = −γt

(1+(b−b2)/t0)
0 · exp

(b− c− b2 ln2 t0
t0

)
· exp

[ ∫ ( 1

LS
3 (x)

− MS
3 (x)

LS
3 (x)

)
dx
]
, (3.80)

F S
2 (x0, t) = −γt(1+(b−b2)/t) · exp

(b− c− b2 ln2 t

t

)
· exp

[ ∫ ( 1

LS
3 (x)

− MS
3 (x)

LS
3 (x)

)
dx
]
x=x0

(3.81)
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with b = β1

β2
0
, c = β2

β3
0
. Accordingly substituting Eqs. (3.78) and (3.79) in Eq. (3.44)

we get

F d
2 (x, t) = F d

2 (x, t0)
( t1+(b−b2)/t

t
1+(b−b2)/t0
0

)
· exp

(b− c− b2 ln2 t

t
− b− c− b2 ln2 t0

t0

)
(3.82)

and

F d
2 (x, t) = F d

2 (x0, t) · exp
[ ∫ x

x0

( 1

LS
3 (x)

− MS
3 (x)

LS
3 (x)

)
dx
]
, (3.83)

which provide us the t and x-evolutions of deuteron structure functions at NNLO.

Thus using Eq.(3.82) we can calculate the evolution of deuteron structure function

with t or Q2 at fixed x at NNLO by choosing an appropriate input distribution

F d
2 (x, t0) at Q2 = Q2

0. Similarly Eq.(3.83) helps us to estimate the x-evolution

of deuteron structure function at fixed t or Q2 with a suitable input distribution

F d
2 (x0, t) at a given value x = x0.

Similarly, the solution of (3.73) provide us the t and x-evolutions of the non-

singlet structure function given by

FNS
2 (x, t) = FNS

2 (x, t0)
( t1+(b−b2)/t

t
1+(b−b2)/t0
0

)
· exp

(b− c− b2 ln2 t

t
− b− c− b2 ln2 t0

t0

)
(3.84)

and

FNS
2 (x, t) = FNS

2 (x0, t) · exp
[ ∫ x

x0

( 1

LNS
3 (x)

− MNS
3 (x)

LNS
3 (x)

)
dx
]

(3.85)

respectively. The input functions are defined as

FNS
2 (x, t0) = −γt

(1+(b−b2)/t0)
0 · exp

(b− c− b2 ln2 t0
t0

)
· exp

[ ∫ ( 1

LNS
3 (x)

− MNS
3 (x)

LNS
3 (x)

)
dx
]
, (3.86)

FNS
2 (x0, t) = −γt(1+(b−b2)/t) · exp

(b− c− b2 ln2 t

t

)
· exp

[ ∫ ( 1

LNS
3 (x)

− MNS
3 (x)

LNS
3 (x)

)
dx
]
x=x0

. (3.87)

Thus putting Eq.(3.78) and Eq. (3.84) in Eq.(3.45) we obtain

F p
2 (x, t) = F p

2 (x, t0)
( t1+(b−b2)/t

t
1+(b−b2)/t0
0

)
· exp

(b− c− b2 ln2 t

t
− b− c− b2 ln2 t0

t0

)
,

(3.88)
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which gives the t-evolution of proton structure function. By considering a suitable

input distribution F p
2 (x, t0) at a given value Q2 = Q2

0, we can determine the evolution

of proton structure function with t or Q2 at some fixed x from Eq.(3.88). The x

evolution of proton structure function is not possible at NNLO for the same reason

discussed earlier.

For phenomenological analysis of t-evolution, we take the input distributions

F d
2 (x, t0) and F p

2 (x, t0) from experimental data corresponding to the lowest value

of the Q2 range considered in our study. Similarly the input functions F d
2 (x0, t)

for phenomenological analysis of x-evolution are taken from the experimental data

corresponding to the highest value of the x range under consideration.

3.3 Result and discussion

In this chapter, we calculate the Q2 or t (t = ln(Q2/Λ2)) and x-evolutions of singlet

and non-singlet structure functions. The deuteron and proton structure functions

are related to the singlet and non-singlet structure functions as given by the Eqs.

(3.48) and (3.49). We calculate the t and x-evolutions of deuteron stucture function

at LO, NLO and NNLO respectively. The t-evolution of proton structure function is

also obtained up to NNLO. We test the validity of the solutions, by comparing them

directly with the available data on deuteron and proton structure function. For our

analysis we use the data from the fixed target experiments viz. the NMC [23] in

muon-deuteron DIS from the merged data sets at incident momenta 90, 120, 200 and

280 GeV2, the Fermilab E665 [24] collaboration in muon-deuteron DIS at an average

beam energy of 470 GeV2 and the H1 collaboration of HERA experiment data [25]

taken with a 26.7 GeV electron beam in collision with a 820 GeV proton beam. We

consider the H1 1995 data because these data sets are available in the range of our

consideration. Moreover, we compare our results with those obtained by the fit to

F d
2 produced by the NNPDF parametrization [26]. The NNPDF parametrization

presents a determination of the probability density in the space of F2 structure func-

tions for the proton, deuteron and non-singlet structure function, as determined from

experimental data of NMC [23], E665 [24], BCDMS [36] and H1 [37] collaborations.

Their results take the form of a set of 1000 neural nets, for each of the three structure

functions, which give a determination of F2 for given x and Q2. The central value and
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the errors of the structure functions determined in the NNPDF fit can be computed

out of the ensemble of 1000 nets according to standard Monte Carlo techniques.

We consider the range 0.0045 ≤ x ≤ 0.19 and 0.75 ≤ Q2 ≤ 27 GeV2 for NMC data,

0.0052 ≤ x ≤ 0.18 and 1.094 ≤ Q2 ≤ 26 GeV2 for E665 data and 0.004 ≤ x ≤ 0.03

and 5.5 ≤ Q2 ≤ 38 GeV2 for H1 data for our phenomenological analysis. Similarly

we use the range 0.0045 ≤ x ≤ 0.095 and 1.25 ≤ Q2 ≤ 26 GeV2 to compare our

results with the NNPDF parametrization. For the fit we consider ΛMS = 323 MeV

for αs(M
2
z ) = 0.119±0.002. The vertical error bars represent the total combined

statistical and systematic uncertainties of the experimental data. To compute the

dependence of structure functions on Q2 or in other words for t-evolution, we take

the input distributions from the data point corresponding to the lowest value of Q2

for a particular range of Q2 under study. Similarly the data point corresponding to

the highest value of x of a particular range of x under consideration are taken as

input distribution to determine the x dependence of the structure functions.
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Figure 3.1: Comparison of T 2 and T0.T (t) as well as T
3 and T1.T (t) versus Q

2.

As mentioned earlier for the analytical solution of DGLAP evolution equation for

singlet structure function we consider a function K(x) which relates the singlet struc-

ture function and gluon densities. For simplicity we consider the function K(x) = K,

where K is an arbitrary constant parameter. We examine the dependence of our pre-

dictions on the values of the arbitrary constant K and find that the best fit results
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are obtained in the range 0.45 < K < 1.6 for our entire region of discussion.

As discussed in section 3.2 the numerical parameters T0 and T1, considered for

the solutions of the DGLAP equations at NLO and NNLO respectively, are obtained

for a particular domain of Q2 under study. To this end in Figure 3.1 we plot T 2(t) and

T0T (t) as well as T
3(t) and T1T (t) as a function of Q2. We find that for T0 = 0.048 the

difference between T 2(t) and T0T (t) is reduced to a minimum and for T1 = 0.008 the

difference between T 3(t) and T1T (t) becomes negligible in the range 0.75 < Q2 < 50

GeV2. Therefore the consideration of the parameters T0 and T1 does not induce any

unexpected change in our results.

In Figure 3.2 we plot the predictions of the deuteron structure function ob-

tained from Eqs.(3.46), (3.63) and (3.82) for LO, NLO and NNLO respectively as

functions of Q2 at four representative values x = 0.0045, 0.0125, 0.0175 and 0.025

respectively. Here we compare our results with the NMC experimental data in the

range 0.75 ≤ Q2 ≤ 27 GeV2.

In Figure 3.3 we plot our our set of solutions Eqs. (3.47), (3.64) and (3.83) for

deuteron structure function at LO, NLO and NNLO respectively as functions of x for

four fixed Q2 = 7, 11.5, 20 and 27 GeV2 respectively. Our predictions are compared

with the NMC experimental data in the range 0.0045 ≤ x ≤ 0.19.

Figure 3.4 represent the comparison of our results of t or Q2 evolution of deuteron

structure function calculated from Eqs.(3.46), (3.63) and (3.82) for LO, NLO and

NNLO respectively with the E665 experimental data. Here we plot our predictions of

deuteron structure function as functions of Q2 considering the range 1.094 ≤ Q2 ≤ 26

GeV2 at fixed values of x, viz. x = 0.0052, 0.00893, 0.0125 and 0.0173 respectively.

In Figure 3.5 we plot our computed results of deuteron structure function ob-

tained from Eqs.(3.47), (3.64) and (3.83) for LO, NLO and NNLO respectively as

functions of x and compare with the E665 experimental data considering the range

0.0052 ≤ x ≤ 0.18. The comparison is shown for four fixed Q2 = 5.236, 9.795, 18.323

and 25.061 GeV2 respectively.

Figure 3.6 shows the Q2 evolution of deuteron structure function obtained from

Eqs.(3.46), (3.63) and (3.82) at LO, NLO and NNLO respectively compared with

the NNPDF parametrization in the range 1.25 ≤ Q2 ≤ 26 GeV2. We perform

the comparison for four different values of x, x=0.0045, 0.008, 0.0125 and 0.0175
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Figure 3.2: Comparison of Q2 evolution of deuteron structure functions at LO, NLO and NNLO
with the NMC data for four fixed values x. The dot lines represent the LO results (Eq.3.46), dash-
dot lines represent the NLO results (Eq.3.63) and solid lines represent the NNLO results Eq.(3.82).

respectively.

In Figure 3.7 show the comparison of our results of x-evolutions of deuteron

structure function obtained from Eqs.(3.47), (3.64) and (3.83) at LO, NLO and NNLO

with those obtained by the NNPDF parametrization in the range 0.0045 ≤ x ≤ 0.095.

The comparison is done for four fixed values of Q2 viz. Q2 = 5, 9, 15 and 25 GeV2
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Figure 3.3: Plots of x evolution of deuteron structure function at LO, NLO and NNLO compared
with the NMC data for four fixed Q2. The dot lines represent the LO results (Eq.3.47), dash-dot
lines represent the NLO results (Eq.3.64) and solid lines represent the NNLO results Eq.(3.83).

respectively.

We also calculate the t or Q2-evolution of proton structure function at LO, NLO

and NNLO from Eq. (3.48), (3.67) and (3.88). Figure 3.8 show the comparison of

our results of proton structure function with those measured at NMC as functions

of Q2 in the range 0.75 ≤ Q2 ≤ 27 GeV2. We show the comparison for four fixed

x = 0.008, 0.0125, 0.025 and 0.035 respectively.
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Figure 3.4: Plots ofQ2 evolution of deuteron structure functions at LO, NLO and NNLO compared
with the E665 data for four representative x. The dot lines are the LO results (Eq.3.46), dash-dot
lines are the NLO results (Eq.3.63) and solid lines are the NNLO results (Eq.3.82).

Figure 3.9 show the comparison of our solution of proton structure function given

by Eqs.(3.48), (3.67) and (3.88) for LO, NLO and NNLO respectively with the E665

experimental data in the range 1.094 ≤ Q2 ≤ 26 GeV2. Here we plot the computed

values of proton structure function as functions of Q2 at four representative values

of x, namely x = 0.00693, 0.01225, 0.0173 and 0.02449 respectively.

In Figure 3.10 we plot our computed results of proton structure function ob-
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Figure 3.5: Comparison of x evolution of deuteron structure function at LO, NLO and NNLO

with the E665 data for four representative values of Q2 . The dot lines represent the LO results

(Eq.3.47), dash-dot lines represent the NLO results (Eq.3.64) and solid lines represent the NNLO

results Eq.(3.83).

tained from Eqs.(3.48), (3.67) and (3.88) for LO, NLO and NNLO respectively as

functions of Q2 and compare with the H1 1995 data in the range 5.5 ≤ Q2 ≤ 38

GeV2. The comparison is done for for four fixed x = 0.00421, 0.0075, 0.0133 and

0.0237 respectively.

From the figures we observe that our results of Q2 and x-evolutions of deuteron
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Figure 3.6: Comparison of Q2 evolution of deuteron structure functions at LO, NLO and NNLO
with the NNPDF data for four fixed values x. The dot lines represent the LO results (Eq.3.46),
dash-dot lines represent the NLO results (Eq.3.63) and solid lines represent the NNLO results
Eq.(3.82).

and proton structure functions are in good consistency with the experimental data

and parametrizations. Our predictions at NNLO provide better agreement than LO

and NLO results, nevertheless, the difference between the LO, NLO and NNLO re-

sults is small. From our analysis in can be anticipated that the region of validity

of our method is approximately in the range 10−3 ≤ x ≤ 10−1 and 0.5 ≤ Q2 ≤ 40
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Figure 3.7: Plots showing the comparison of x evolution of deuteron structure function at LO,
NLO and NNLO with the NNPDF data for four fixed values of Q2. The dot lines represent the LO
results (Eq.3.47), dash-dot lines represent the NLO results (Eq.3.64) and solid lines represent the
NNLO results Eq.(3.83).

GeV2. But this method may also applicable for other ranges of x and Q2. Though

various methods like Laguerre polynomials [38, 39], Brute-Force method [40], Matrix

method [41], Mellin transformation [42, 43] etc. are available in order to obtain a

numerical solution of DGLAP evolution equations, our method to solve these equa-

tions analytically is also a workable alternative. Here we consider a parameter K(x)
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Figure 3.8: Plots of proton structure function at LO, NLO and NNLO vs. Q2 compared with the
NMC data for four particular values of x. The dot lines represent the LO results (Eq.3.48), dash-dot
lines represent the NLO results (Eq.3.67) and solid lines represent the NNLO results Eq.(3.88).

in assuming a relation between singlet structure function and gluon parton densities.

We have also used two other parameters like T0 and T1. However the number of

parameters used here are less in comparison to the numerical methods where several

parameters have been used mainly in input functions [55, 56]. Moreover, with this

method we can calculate the x-evolutions of deuteron structure function in addition
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Figure 3.9: Plots showing the comparison of Q2 evolution of proton structure function at LO,
NLO and NNLO with the E665 data for four fixed x. The dot lines represent the LO results
(Eq.3.48), dash-dot lines represent the NLO results (Eq.3.67) and solid lines represent the NNLO
results Eq.(3.88).

to the t-evolutions.

For a quantitative estimate of the goodness of fit of our results with the experi-

mental data and parametrizations, we perform a χ2 test. In table 1 we present the χ2

values for the solutions of deuteron structure function at LO, NLO and NNLO respec-

tively. We observe that our analtical solutions of the deuteron structure function at
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Figure 3.10: Comparison of Q2 evolution of proton structure function at LO, NLO and NNLO
with the H1 1995 data for four fixed x. The dot lines represent the LO results (Eq.3.48), dash-dot
lines represent the NLO results (Eq.3.67) and solid lines represent the NNLO results Eq.(3.88).

Table 3.1: χ2 values for F d
2 (x,Q

2)

Order NMC E665 NNPDF

LO 3.943 2.215 1.396

NLO 1.733 1.873 0.783

NNLO 1.142 2.07 0.656
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LO, NLO and NNLO respectively are in good agreement with the experimental data

and parametrizations. However the NNLO results are found to be more compatible.

Table 3.2: χ2 values for F p
2 (x,Q

2)

Order NMC E665 H1

LO 2.235 2.477 0.226

NLO 1.097 2.62 0.141

NNLO 0.824 1.92 0.361

Similarly table 2 shows the χ2 values for the solutions of the proton structure

function at LO, NLO and NNLO. Here also we find that our results of proton structure

function at LO, NLO and NNLO are almost comparable with the experimental data

and parametrizations, nevertheless the NNLO results are more consistent.

3.4 Summary

The Taylor approximated DGLAP equations for the singlet and non-singlet struc-

ture functions are solved analytically at LO, NLO and NNLO by the Lagrange’s

auxilliary method. We also calculate the Q2 and x-evolutions of deuteron structure

function as well as the Q2-evolution of proton structure function from the solutions

of singlet and non-singlet structure functions. The Taylor series expansion changes

the integro-differential DGLAP equations into first order partial differential equa-

tions which are much easier to solve. This method is comparatively simple and less

time consuming for the numerical calculations. We adopt two numerical parameters

T0 and T1 to evaluate the Q2 and x-evolutions of singlet and non-singlet structure

functions. We also consider the function K(x) = K, where K is a constant parame-

ter to relate the singlet and gluon distribution functions and find that K lies in the

range 0.45 < K < 1.6, for our results to be comparable with experimental data and

parametrizations. Nevertheless the number of parameters are very few compared to

the numerical methods where several parameters are included mainly in the input

function. Moreover, with this approch we can calculate the x-evolution of deuteron

structure function in addition to the t-evolution. Thus, although various numerical

methods are available in order to obtain a numerical solution of DGLAP evolution

equations, our approach to solve these equations analytically is also a viable alterna-
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tive.

We compare our predictions with the NMC data, E665 data, H1 data as well

as with the results of NNPDF parametrization. From our phenomenological analysis

we observe that our predicted solutions can explain the general trend of data in a

decent manner. Moreover, the inclusion of NNLO contributions provides excellent

consistency with the experimental data and parametrizations. Our results show

that at fixed x the structure functions increase with increasing Q2, whereas at fixed

Q2 the structure functions increase with decreasing x which is in agreement with

perturbative QCD fits at small-x. By analysing our results we can anticipate that

our solutions are valid vis-a-vis the data and parametrizations in the small-x region,

roughly in the region 10−3 < x < 10−1. However, our method may loose its validity

at very small-x where recombination of gluons have to be taken into account, since

these higher order corrections are not included in the derivation of linear DGLAP

equations.

97



Bibliography

[1] Gribov, V. N., Lipatov, L. N. Deep inelastic ep scattering in perturbation theory,

Sov. J. Nucl. Phys. 15(4), 438−−450, 1972.

[2] Gribov, V. N., Lipatov, L. N. e+e− pair annihilation and deep-inelastic ep scat-

tering in perturbation theory, Sov. J. Nucl. Phys. 15(4), 675−−684, 1972.

[3] Dokshitzer, Y. L. Calculation of structure functions of deep-inelastic scattering

and e+e− annihilation by perturbation theory in quantum chromodynamics, Sov.

Phys. JETP 46(4), 641−−652, 1977.

[4] Altarelli, G., Parisi, G. Asymptotic freedom in parton language, Nucl. Phys. B

126(2), 298−−318, 1977.

[5] Pascaud, C., Zomer, F. A Fast and precise method to solve the Altarelli-Parisi

equations in x space, arXiv:hep-ph/0104013v1.

[6] Hirai, M., Kumano, S. and Miyama, M. Numerical solution of Q2 evolution

equations for polarized structure functions, Comput. Phys. Commun. 108(1),

38−−55, 1998.

[7] Coriano, C., Savkli, C. QCD evolution equations: Numerical algorithms from

the Laguerre expansion, Comput. Phys. Commun. 118,(2-3), 236−−258, 1999.

[8] Botje, M. A QCD analysis of HERA and fixed target structure function data,

Eur. Phys. J. C 14(2), 285−−297, 2000.

[9] Ratcliffe, P. G. Matrix Approach to a numerical solution of the Dokshitzer-

Gribov-Lipatov-Altarelli-Parisi evolution equations, Phys.Rev. D 63(11),

116004, 2001.

98



[10] Cafarella, A., Coriano, C. and Guzzi, M. NNLO logarithmic expansions and

exact solutions of the DGLAP equations from x-space: New algorithms for pre-

cision studies at the LHC, Nucl. Phys. B 748(1-2), 253−−308, 2006.

[11] Abbott, L. F., Atwood, W. B. and Barnett, R. M. Quantum-chromodynamic

analysis of eN deep-inelastic scattering data, Phys. Rev. D 22(3), 582−−593,

1980.

[12] Furmanski, W., Petronzio, R. Lepton-hadron processes beyond leading order in

quantum chromodynamics, Z. Phys. C 11(4), 293−−314, 1982.

[13] Ball, R. D., Forte, S. A direct test of perturbative QCD at small x, Phys. Lett.,

B 336(1), 77−−79, 1994.

[14] Kotikov, A. V., Parente, G. Small x behavior of parton distributions with soft

initial conditions, Nucl. Phys. B 549(1-2), 242−−262, 1999.

[15] Sarma, J. K., Choudhury, D. K. and Medhi, G. K. x-distribution of deuteron

structure function at low-x, Phys.Lett. B 403(1-2), 139−−144, 1997.

[16] Sarma,J. K., Das, B. t evolutions of structure functions at low-x, Phys. Lett. B

304(3-4), 323−−328, 1993

[17] Choudhury, D. K., Deka, Ranjita and Saikia, A. Gluon distribution and dF2

d lnQ2

at small x in the next-to-leading order, Eur. Phys. J. C 2(2), 301−−305, 1998.

[18] Choudhury, D. K., Sahariah, P. K. A solution of the DGLAP equation for gluon

at low x, Pramana J. Phys. 58(4), 599−−610, 2002.

[19] Baishya, R., Sarma, J. K. Method of characteristics and solution of DGLAP

evolution equation in leading and next to leading order at small x, Phys. Rev.

D 74(10), 107702, 2006.

[20] Baishya, R., Sarma, J. K. Semi numerical solution of non-singlet Dokshitzer-

Gribov-Lipatov-Altarelli-Parisi evolution equation up to next-to-next-to-leading

order at small x, Eur. Phys. J. C 60(4), 585−−591, 2009.

99



[21] Baishya, R., Jamil, U. and Sarma, J. K. Evolution of spin-dependent structure

functions from DGLAP equations in leading order and next to leading order,

Phys. Rev. D 79, 034030, 2009.

[22] Choudhury, D. K., Islam, S. An analysis of non-singlet structure function in next-

to-next-to-leading order at small-x, Indian J. Phys. 85(2), 319−−328, 2011.

[23] Arneodo, M. et al., Measurement of the proton and deuteron structure functions,

F p
2 and F d

2 , and of the ratio σL/σT , Nucl. Phys. B 483,(1-2), 3−−43, 1997.

[24] Adams, M. R. et al., Proton and deuteron structure functions in muon scattering

at 470 GeV, Phys. Rev. D 54(5), 3006−3056, 1996.

[25] Ahmed, T. et al., A measurement of the proton structure function F2(x,Q
2),

Nucl. Phys. B 439(3), 471−−502, 1995.

[26] Forte, S. et al., Neural network parametrization of deep inelastic structure func-

tions, JHEP 2002(JHEP05), 062, 2002.

[27] Halzen, F., Martin, A. D. Quarks and Leptons: An Introductory Course in

Modern Particle Physics, John Wiley and Sons, Canada, 1984.

[28] Van Neerven, W. L., Vogt, A. NNLO evolution of deep-inelastic structure func-

tions: the singlet case, Nucl. Phys. B 588(1-2), 345−−373, 2000.

[29] Van Neerven, W. L., Vogt, A. NNLO evolution of deep-inelastic structure func-

tions: the non-singlet case, Nucl. Phys. B 568(1-2), 263−−286, 2000.

[30] Moch, S., Vermaseren, J. A. M. and Vogt, A. The three-loop splitting functions

in QCD: the non-singlet case, Nucl. Phys. B 688(1-2), 101−−134, 2004.

[31] Vogt, A., Moch, S. and Vermaseren, J. A. M. The three-loop splitting functions

in QCD: the singlet case, Nucl. Phys. B 691(1-2), 129−−181, 2004.

[32] Shaikhatdenov, B. G. et al., QCD coupling constant at next-to-next-to-leading

order from DIS data, Phys. Rev. D 81(3), 034008, 2010.

[33] Martin, A. D. et al., Parton distributions for the LHC, Eur. Phys. J. C 63(2),

189−−285, 2009.

100



[34] Furmanski, W., Petronzio, R. Singlet parton densities beyond leading order,

Phys. Lett. B 97(3-4), 437−−442, 1980.

[35] Curci, G., Furmanski, W. and Petronzio, R. Evolution of parton densities beyond

leading order: The non-singlet case, Nucl. Phys. B 175(1), 27−−92, 1981.

[36] Benvenuti, A. C. et al., A high statistics measurement of the deuteron structure

functions F2(x,Q
2) and R from deep inelastic muon scattering at high Q2, Phys.

Lett. B 237(3-4), 592−−598, 1990.

[37] Adloff, C. et al., Measurement and QCD analysis of neutral and charged current

cross sections at HERA, Eur. Phys. J. C 30(1), 1−−32, 2003.

[38] Coriano, C., Savkli, C. QCD evolution equations: Numerical algorithms from

the Laguerre expansion, Comput. Phys. Commun. 118(2-3), 236−−258, 1999.

[39] Schoeffel, L. An elegant and fast method to solve QCD evolution equations.

Application to the determination of the gluon content of the Pomeron, Nucl.

Instrum. Methods A 423(2-3), 439−−445, 1999.

[40] Hirai, M., Kumano, S. and Miyama, M. Numerical solution of Q2 evolution

equations for polarized structure functions, Comput. Phys. Commun. 108(1),

38−−55, 1998.

[41] Ratcliffe, P. G., A matrix approach to numerical solution of the DGLAP evolu-

tion equations, Phys. Rev. D,63(11), 116004, 2001.

[42] Kosower, D. A., Evolution of parton distributions, Nucl. Phys. B 506(1-2),

439−−467, 1997.

[43] Weinzierl, S., Fast evolution of parton distributions, Comput. Phys. Commun.

148(3), 314−−326, 2002.

101



Chapter 4

NNLO Analysis of Gluon
Distribution Function in the
DGLAP Approach

4.1 Introduction

The gluon distribution function is one of the extremely indispensable physical observ-

ables that controls the physics at high energy or small-x in DIS, where x is the Bjorken

variable. Especially, precise knowledge of gluon distribution functions at small-x is

of utmost importance in estimating backgrounds and exploring new physics at the

Large Hadron Collider. The gluon distribution G(x,Q2) does not come into sight in

the experimentally available proton structure function F2(x,Q
2). It is determined

only via the quark distributions together with the evolution equations. More direct

approach to determine the gluon distribution is based on the reconstruction of the

kinematics of the interacting partons from the measurement of the hadronic final

state in gluon induced processes. They are controlled by different systematic effects

and provide a substantive test of perturbative QCD. The proton structure function

is measured by the H1 and ZEUS collaboration at HERA [1-3] over a wide kinematic

region which makes it possible to know about the gluon distribution in the previously

unexplored region of x and Q2. The fast growth of the proton structure function at

small-x observed at HERA brings about much attention because perturbative QCD

in conjunction with the DGLAP equation [4-7] attributes this sharp growth to a

similar rise of gluon density towards small-x. In the DGLAP formalism the gluon

102



distribution turns out to be very large at small-x and so it contributes crucially to

the evolution of the parton distribution. Subsequently, the gluon distribution gov-

erns the structure function F2(x,Q
2) through the evolution g → qq̄ in the small-x

region. In this situation it is very important to explore the possibility of obtaining

analytical solutions of DGLAP equations at least in the restricted domain of small-x

and many approximated analytical solutions of the gluon distribution function in the

framework of DGLAP equation have been reported in recent years with significant

phenomenological success [8-14].

In this chapter, we derive an explicit expression for the gluon distribution func-

tion upto NNLO by solving the DGLAP evolution equation for gluon distribution

function analytically. In such an approach, we use a Taylor series expansion valid

at small-x and reframes the DGLAP equations as partial differential equations in

the variables x and Q2 as discussed in chapter 3. The resulting equations at LO,

NLO and NNLO are then solved by the Lagrange’s auxiliary method to obtain the

Q2 and x-evolutions of the gluon distribution function. The obtained results can be

described within the framework of perturbative QCD. To illustrate the method and

check the compatibility of our predicted gluon distributions, we use the published

values of the gluon distributions from the GRV1998NLO [15], MRST2004NNLO [16],

MSTW2008NNLO [17] and JR09NNLO [18] global analyses. We find that the ana-

lytic gluon distributions from our solution are consistent with these parametrizations.

We also compare our results with the Block-Durand-McKay (BDM) model [14] and

observe that our results depict almost the same behaviour as that of BDM model.

4.2 Formalism

4.2.1 General framework

The DGLAP evolution equation for gluon distribution function in the standard form

is given by [19]

∂g(x,Q2)

∂ lnQ2
=

∫ 1

x

dω

ω

(
Pgq(ω)qS(x/ω,Q

2) + Pgg(ω)g(x/ω,Q
2)
)
, (4.1)

where the splitting function Pgq is defined as

Pgq(x,Q
2) =

αs(Q
2)

2π
P (0)
gq (x) +

(αs(Q
2)

2π

)2
P (1)
gq (x) +

(αs(Q
2)

2π

)3
P (2)
gq (x)

+OP (3)
gq (x). (4.2)

103



where P
(0)
gq (x), P

(1)
gq (x) and P

(2)
gq (x) are LO, NLO and NNLO quark-gluon splitting

functions respectively. The gluon-gluon splitting function Pgg can be defined in a

Similar fashion. Here qS is the singlet quark density and g is the gluon density. The

representation G(x,Q2) = xg(x,Q2) is used here.

4.2.2 LO analysis of gluon distribution function

Substituting the explicit form of the LO splitting functions [7, 21] in Eq.(4.1) and

simplifying, the LO DGLAP evolution equation for the gluon distribution function

can be written as

∂G(x, t)

∂t
=

αs(t)

2π

[
6
(11
12

− Nf

18
+ ln(1− x)

)
G(x, t) + 6Ig1 (x, t)

]
, (4.3)

where G(x,Q2) = xg(x,Q2) is the gluon distribution function. The integral function

Ig1 (x, t) is defined as

Ig1 (x, t) =

∫ 1

x

dω

[
ωG
(
x
ω
, t
)
−G(x, t)

1− ω
+
(
ω(1− ω) +

1− ω

ω

)
G
(x
ω
, t
)

+
2

9

(
1 + (1− ω)2

ω

)
F S
2 (

x

ω
t).

]
(4.4)

Here the variable t is used where t = ln(Q2/Λ2). Now, using Taylor expansion method

and neglecting higher order terms of x, since we consider the small-x (x < 0.1) domain

in our analysis, as discussed in the Chapter-3, we can write G(x/ω, t) as

G
(x
ω
, t
)
= G(x, t) +

xu

1− u

∂G(x, t)

∂x
. (4.5)

Similarly, F S
2 (

x
ω
, t) can be approximated as

F S
2

(x
ω
, t
)
= F S

2 (x, t) +
xu

1− u

∂F S
2 (x, t)

∂x
. (4.6)

Substituting these values of G( x
ω
, t) and F S

2 (
x
ω
, t) in Eq.(4.4) and carrying out the

integrations in u we get from Eq.(4.3)

∂G(x, t)

∂t
=

6Af

t

[
Ag

1(x)G(x, t) + Ag
2(x)

∂G(x, t)

∂x
+ Ag

3(x)F
S
2 (x, t)

+ Ag
4(x)

∂F S
2 (x, t)

∂x

]
, (4.7)

where Ag
i (x) (i=1,2,3,4) are functions of x (see Appendix D).

Af

t =αs(t)
2π where

Af = 2
β0

and β0 is the one-loop correction to the QCD beta function. Eq.(4.7) is

a partial differential equation for gluon distribution function with respect to the
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variables x and t. Thus using a Taylor expansion valid at small-x we reframe the

DGLAP equation for gluon distribution, which is an integro-differential equation, as

partial differential equation in two variables x and t or Q2.

The gluon distribution is coupled to the singlet structure function and therefore to

obtain an analytical solution of the DGLAP evolution equation for gluon distribution

function a relation between gluon distribution function and singlet structure function

has to be assumed. As discussed in chapter 3, here also we assume the relation

G(x, t) = K(x)F S
2 (x, t) [22-24] to solve Eq.(4.7) where K(x) is a parameter to be

determined from phenomenological analysis. From this relation we get F S
2 (x, t) =

K1(x)G(x, t), where K1(x) = 1/K(x). Using this relation Eq.(4.7) takes the form

−t
∂G(x, t)

∂t
+ Lg

1(x)
∂G(x, t)

∂x
+M g

1 (x)G(x, t) = 0, (4.8)

with

Lg
1(x) = 6Af

[
Ag

2(x) +K1(x)A
g
4(x)

]
, (4.9)

M g
1 (x) =

12

β0

[
Ag

1(x) +K1(x)A
g
3(x) +

∂K1(x)

∂x
Ag

4(x)
]
, (4.10)

Now the general solution of the equation (4.8) is

F (U, V ) = 0, (4.11)

where F (U, V ) is an arbitrary function of U and V . Here, U(x, t, G(x, t)) = k1 and

V (x, t, G(x, t)) = k2 are two independent solutions of the Lagrange’s equation

∂x

Lg
1(x)

=
∂t

−t
=

∂G(x, t)

−M g
1 (x)G(x, t)

. (4.12)

Solving Eq. (4.12) we obtain

U(x, t, G(x, t)) = t · exp
[ ∫ 1

Lg
1(x)

dx
]

(4.13)

and

V (x, t, G(x, t)) = G(x, t) · exp
[ ∫ M g

1 (x)

Lg
1(x)

dx
]
. (4.14)

Thus we see that it has no unique solution. In this approach we attempt to

extract a particular solution that obeys some physical constraints on the structure
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function. The simplest possibility to get a solution is that a linear combination of U

and V should obey the Eq.(4.11) so that

α · U + β · V = 0, (4.15)

where α and β are arbitrary constants to be determined from the boundary conditions

on singlet structure function. Putting the values of U and V from Eq.(4.13) and

Eq.(4.14) respectively in Eq.(4.15) we get

αt · exp
[ ∫ 1

Lg
1(x)

dx
]
+ βG(x, t) · exp

[ ∫ M g
1 (x)

Lg
1(x)

dx
]
= 0, (4.16)

which implies,

G(x, t) = −γt · exp
[ ∫ ( 1

Lg
1(x)

− M g
1 (x)

Lg
1(x)

)
dx
]

(4.17)

where γ =α
β is another constant. Now at t = t0, where t0 = ln

Q2
0

Λ2
for any lower value

Q2 = Q2
0, we define

G(x, t0) = −γt0 · exp
[ ∫ ( 1

Lg
1(x)

− M g
1 (x)

Lg
1(x)

)
dx
]
. (4.18)

Then Eqs.(4.17) and (4.18) lead us to

G(x, t) = G(x, t0)
( t

t0

)
. (4.19)

This gives the t or Q2-evolution (t = ln(Q2/Λ2)) for gluon distribution function at

LO at a particular value small-x. Again we define

G(x0, t) = −γt · exp
[ ∫ ( 1

Lg
1(x)

− M g
1 (x)

Lg
1(x)

)
dx
]
x=x0

, (4.20)

at a higher value of x = x0. Then from Eq.(4.17) and Eq.(4.20) we get

G(x, t) = G(x0, t) · exp
[ ∫ x

x0

( 1

Lg
1(x)

− M g
1 (x)

Lg
1(x)

)
dx
]
. (4.21)

which gives the x-evolutions of gluon distribution function at LO for a given value of

Q2.

4.2.3 NLO analysis of gluon distribution function

Substituting the NLO splitting functions [25-27] in Eq.(4.1) and simplifying, we get

the DGLAP equation for gluon distribution function at NLO in standard form as

∂G(x, t)

∂t
=

αs(t)

2π

[
6
(11
12

− Nf

18
+ ln(1− x)

)
G(x, t) + 6Ig1 (x, t)

]
+
(αS(t)

2π

)2
Ig2 (x, t), (4.22)
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where the integral function Ig2 (x, t) is defined as

Ig2 (x, t) =

∫ 1

x

dω
[
P 1
gg(ω)G

(x
ω
, t
)
+ A(ω)F S

2

(x
ω
, t
)]

(4.23)

The explicit forms of P 1
gg(ω) and A(ω) are given in Appendix E.

Following the same procedure as in LO, the Eq.(4.22) can be simplified as

−
( t2

t− b ln t

)∂G(x, t)

∂t
+ Lg

2(x)
∂G(x, t)

∂x
+M g

2 (x)G(x, t) = 0. (4.24)

Here

Lg
2(x) =

2

β0

[
6
(
Ag

2(x) +K1(x)A
g
4(x)

)
+ T0

(
Bg

2(x) +K1(x)B
g
4(x)

)]
, (4.25)

M g
2 (x) =

2

β0

[
6
(
Ag

1(x) +K1(x)A
g
3(x) +

∂K1(x)

∂x
Ag

4(x)
)

+ T0

(
Bg

1(x) +K1(x)B
g
3(x) +

∂K1(x)

∂x
Bg

4(x)
)]

, (4.26)

where Bg
i (x), (i=1,2,3,4) are functions of x (see Appendix D). Here we consider the

numerical parameter T0 such that T 2(t) = T0T (t) where T (t)=αS(t)
2π

. As discussed in

chapter 3, this parameter is chosen in such a way that the difference between T 2(t)

and T0T (t) is negligible in the specified range under study.

Thus proceeding in the same way we solve Eq.(4.24) we obtain the t or Q2 and

x-evolutions of gluon distribution function at NLO as

G(x, t) = G(x, t0)
( t1+b/t

t
1+b/t0
0

)
· exp

(b
t
− b

t0

)
(4.27)

and

G(x, t) = G(x0, t) · exp
[ ∫ x

x0

( 1

Lg
2(x)

− M g
2 (x)

Lg
2(x)

)
dx
]

(4.28)

with b = β1

β2
0
. The input functions G(x, t0) and G(x0, t) can be determined by applying

the initial conditions at t = t0 as well as at x = x0 as in the previous case.

4.2.4 NNLO analysis of gluon distribution function

Using the splitting functions upto NNLO [28-30] and simplifying, we get the DGLAP

equations for gluon distribution function at NNLO as

∂G(x, t)

∂t
=

αs(t)

2π

[
6
(11
12

− Nf

18
+ ln(1− x)

)
G(x, t) + 6Ig1 (x, t)

]
+
(αS(t)

2π

)2
Ig2 (x, t) +

(αS(t)

2π

)3
Ig3 (x, t), (4.29)
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where, the integral functions Ig3 is given by

Ig3 (x, t) =

∫ 1

x

dω
[
P 2
gg(ω)G

(x
ω
, t
)]

. (4.30)

The explicit forms of the function P 2
gg is given in Appendix F. In this case we over-

look the quark contribution to the gluon distribution function. The reason behind

this approximation is that at very small values of x, the gluons, being the most

abundant parton, dominate over the quarks. Moreover, it simplifies the calculations

involving the NNLO splitting functions which otherwise are very complicated to solve

analytically.

To obtain an analytical solution of Eq.(4.29) we consider the numerical parameter

T1 such that T 3(t) = T1T (t), where T (t)=
αS(t)
2π . The value of T1 is determined by

phenomenological analysis, like T0, from a particular range of Q2 under study and

by an appropriate choice of T1 the error can be reduced to a minimum. Thus Eq.

(4.29) can be simplified as

−
(

t2

t− b ln t+ b2(ln2 t− ln t− 1) + c

)
+ Lg

3(x)
∂G(x, t)

∂x
+M g

3 (x)G(x, t) = 0. (4.31)

Here

Lg
3(x) =

2

β0

[
6
(
Ag

2(x) +K1(x)A
g
4(x)

)
+ T0

(
Bg

2(x) +K1(x)B
g
4(x)

)
+ T1C

g
2 (x)

]
, (4.32)

M g
3 (x, t) =

2

β0

[
6
(
Ag

1(x) +K1(x)A
g
3(x) +

∂K1(x)

∂x
Ag

4(x)
)
+ T0

(
Bg

1(x)

+K1(x)B
g
3(x) +

∂K1(x)

∂x
Bg

4(x)
)
+ T1C

g
1 (x)

]
, (4.33)

where Cg
i (x), (i=1,2) are functions of x (see Appendix D).

Following the same procedure as earlier, we solve Eq.(4.31) and obtain the t or

Q2 and x-evolutions of gluon distribution function at NNLO as

G(x, t) = G(x, t0)
( t1+(b−b2)/t

t
1+(b−b2)/t0
0

)
· exp

(b− c− b2 ln2 t

t
− b− c− b2 ln2 t0

t0

)
(4.34)

and

G(x, t) = G(x0, t) · exp
[ ∫ x

x0

( 1

Lg
3(x)

− M g
3 (x)

Lg
3(x)

)
dx
]
, (4.35)

where b =
β1

β2
0
and c =

β2

β3
0
. The input functions G(x, t0) and G(x0, t) can be determined

by applying the initial conditions at t = t0 as well as at x = x0 as earlier.
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4.3 Result and discussion

In this chapter, obtain the Q2 or t (t = ln(Q2/Λ2)) and x-evolutions of the gluon

distribution function solving the DGLAP evolution equation for gluon density up to

NNLO approximation. The analysis is performed in the range 5 ≤ Q2 ≤ 110 GeV2

and 10−4 ≤ x ≤ 0.1. The computed results of gluon distribution function at LO, NLO

and NNLO are compared with the available GRV1998NLO [15], MRST2004NNLO

[16], MSTW2008NNLO [17] and JR09NNLO [18] global QCD analysis. We also com-

pare our results with the results of the BDM model [14]. The BDM model obtains

an analytic solution for the LO gluon distribution function directly from the proton

structure function using the accurate Froissart-bound [31] type parametrization of

proton structure function. In this model, it is shown that using an analytic expres-

sion that successfully reproduces the known experimental data for proton structure

function in a domain xmin(Q
2) ≤ x ≤ xmax(Q

2) and Q2
min ≤ Q2 ≤ Q2

max in DIS,

the gluon distribution G(x,Q2) can be uniquely determined in the same domain of x

and Q2. In all the graphs, the lowest-Q2 and highest-x points are taken as input for
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Figure 4.1: Comparison of T 2 and T0.T (t) as well as T
3 and T1.T (t) versus Q

2.

G(x, t0) and G(x0, t) respectively. As mentioned earlier for the analytical solution of

DGLAP equation for gluon distribution function we consider a function K1(x) which

relates the gluon distribution and the singlet structure function. For simplicity we

consider the function K1(x) = K1, where K1 is a constant parameter. The acceptable

109



range of the arbitrary constant K1 is found to be 0.14 ≤ K1 ≤ 0.85. In each figure

the dot lines represent our LO results, the dash-dot lines represent our NLO results

whereas the solid lines represent the NNLO results. As expected the improvement is

found to be better at NNLO than at NLO and LO.

In the calculation of gluon distribution function at NLO and NNLO, we consider

two numerical parameters T0 and T1 to linearise the equations in αs as discussed in

section 4.2. These numerical parameters are obtained for a particular range of Q2

under study. Figure 4.1 shows the plot of T 2(t) and T0T (t) as well as T 3(t) and

T1T (t) versus Q
2 in the range 2 < Q2 < 110 GeV2. It is observed that for T0 = 0.035

and T1 = 0.0042 the differences between T 2(t) and T0T (t) as well as T
3(t) and T1T (t)

becomes negligible in the Q2 range under study. Therefore, the consideration of the

parameters T0 and T1 does not induce any unexpected change in our results.
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Figure 4.2: Q2 evolution of gluon distribution functions at LO, NLO and NNLO compared with
GRV1998NLO for two fixed values x. The dot lines represent the LO results (Eq.4.19), dash-dot
lines represent the NLO results (Eq.4.27) and solid lines represent the NNLO results Eq.(4.34).

Figure 4.2 and Figure 4.3 show the comparison of the analytical gluon distribu-

tions obtained by solving the DGLAP equation for gluon distribution at LO, NLO

and NNLO with the published results of GRV1998NLO. In Figure 4.2 we plot the

computed values of G(x,Q2) from Eqs.(4.19), (4.27) and (4.34) for LO, NLO and

NNLO respectively vs. Q2 at x = 0.01 and x = 0.0001 respectively in the range

10 ≤ Q2 ≤ 105 Gev2. It is seen from the figures that the predictions at NNLO
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Figure 4.3: x evolution of gluon distribution functions at LO, NLO and NNLO compared with
GRV1998NLO data for two fixed Q2. The dot lines represent the LO results (Eq.4.21), dash-dot
lines represent the NLO results (Eq.4.28) and solid lines represent the NNLO results Eq.(4.35).

approximation show better agreement with the GRV results at x = 0.01. On the

other hand in Figure 4.3 the computed values of G(x,Q2) obtained from Eqs.(4.21),

(4.28) and (4.35) for LO, NLO and NNLO respectively are plotted against x for two

representative Q2, viz. Q2 = 20 GeV 2 and Q2 = 80 GeV 2 respectively in the range

10−4 ≤ x ≤ 0.1.

Figure 4.4 represent the comparison of our results of Q2 or t (t = ln(Q2/Λ2))

evolution of gluon distribution function G(x,Q2) calculated from Eqs.(4.19), (4.27)

and (4.34) for LO, NLO and NNLO respectively with the MRST2004NNLO global

analysis. Here we plot our predictions of G(x,Q2) as functions of Q2 for some fixed

values of x, viz. at x = 0.01, 0.001, 0.0005 and 0.0001 considering the Q2 domain

5 ≤ Q2 ≤ 100 GeV2. The NNLO predictions show the better compatibility with

MRST2004 result particularly at x = 0.001.

In Figure 4.5 we plot our computed results of gluon distribution G(x,Q2) ob-

tained from Eqs.(4.21), (4.28) and (4.35) for LO, NLO and NNLO respectively as

functions of x for Q2 = 20, 40, 60 and 80 GeV2 respectively. Here we compare our

results with the MRST2004NNLO predictions in the x range 10−4 ≤ x ≤ 0.1. The

NNLO approximation improves the agreement of the predicted values of G(x,Q2)

with MRST2004NNLO global analysis.
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Figure 4.4: Comparison of Q2 evolution of gluon distribution functions at LO, NLO and NNLO
with MRST2004NNLO parametrization for four fixed values x. The dot lines represent the LO
results (Eq.4.19), dash-dot lines represent the NLO results (Eq.4.27) and solid lines represent the
NNLO results Eq.(4.34).

Figure 4.6 depict the Q2-evolution of G(x,Q2) at LO, NLO and NNLO ob-

tained from Eqs. (4.19), (4.27) and (4.34) respectively in the range 5 ≤ Q2 ≤ 105

GeV2. Here our predictions are compared with the MSTW2008NNLO parametriza-

tion and the comparison is performed for four fixed x values, namely x=0.01, 0.005,

0.001 and 0.0001. For each x, the NNLO result show good consistency with the

MSTW2008NNLO predictions.
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Figure 4.5: Comparison of the values of gluon distribution function at LO, NLO and NNLO
plotted against x with the MRST2004NNLO parametrization for four representative Q2. The dot
lines represent the LO results (Eq.4.21), dash-dot lines represent the NLO results (Eq.4.28) and
solid lines represent the NNLO results Eq.(4.35).

Figure 4.7 shows the comparison of our results of x-evolutions of G(x,Q2) at LO,

NLO and NNLO obtained from Eqs.(4.21), (4.28) and (4.35) with those obtained by

the MSTW2008NNLO parametrization in the range 10−4 ≤ x ≤ 0.1. The comparison

is done for four representative Q2 = 30, 50, 80 and 100 GeV2. It can be seen that the

NNLO result for each Q2 agrees well with the MSTW2008NNLO parametrization.

We also compare the predicted results of x dependence of gluon distribution
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Figure 4.6: Q2 evolution of gluon distribution function at LO, NLO and NNLO compared with
MSTW2008NNLO parametrization for four fixed x values. The dot lines represent the LO results
(Eq.4.19), dash-dot lines represent the NLO results (Eq.4.27) and solid lines represent the NNLO
results Eq.(4.34).

function G(x,Q2) with the JR09NNLO global parton analysis [18] as well as with the

results of BDM model [14]. This comparison is portrayed in Figure 4.8 where we plot

the computed values ofG(x,Q2) at LO, NLO and NNLO using Eqs. (4.26), (4.33) and

(4.40) versus x in the range 10−4 ≤ x ≤ 0.1 for Q2 = 5 GeV2 and Q2 = 20 GeV2. Our

predictions of G(x,Q2) at NNLO show very good agreement with the JR09NNLO.

Our results also show similar behaviour with those of BDM model, however the BDM
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Figure 4.7: Comparison of the values of gluon distribution function at LO, NLO and NNLO
plotted against x with the MSTW2008NNLO parametrization for four representative Q2. The dot
lines represent the LO results (Eq.4.21), dash-dot lines represent the NLO results (Eq.4.28) and
solid lines represent the NNLO results Eq.(4.35).

model gives much larger gluon distribution towards small x. Figures indicate that the

compatibility of our predictions with the JR09NNLO parametrization much better

that that of BDM model.

To check the compatibility of our results of gluon distribution function at LO,

NLO and NNLO respectively with different parametrizations, we perform a χ2 test

shown in Table 4.1. From this we observe that our results are almost comparable
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Figure 4.8: Comparison of our predictions of gluon distribution function at LO, NLO and NNLO
with JR09NNLO global fit as well as with the BDM model for two representative Q2. The dot
lines are the LO results of obtained from Eq.(4.21), dash-dot lines are NLO results from Eq.(4.28)
and solid lines are the NNLO results from Eq.(4.35). The dash curves are from the JR09NNLO
parametrization and dash-dot-dot curves are the results of BDM model.

Table 4.1: χ2 text for G(x,Q2)

Order GRV1998 MRST2004 MSTW2008 JR09

LO 4.03 2.34 3.18 2.38

NLO 3.16 1.63 2.16 1.24

NNLO 2.96 0.85 1.72 0.61

with different parametrizations and the inclusion of NNLO contributions improve the

consistency.

4.4 Summary

To summarise the evolution of gluon distribution function with respect to x and Q2

at LO, NLO and NNLO are presented by solving the DGLAP evolution equation for

gluon distribution analytically. Here the DGLAP equation is first transformed into a

partial differential equation in the two variables x and Q2 by using the Taylor series

expansion valid at small-x. Following this the resulting equation is solved at LO, NLO

and NNLO respectively by the Lagrange’s auxiliary method to obtain the Q2 and x

evolutions of the gluon distribution function. We compare our predictions with the

GRV1998NLO, MRST2004NNLO, MSTW2008NNLO and JR09NNLO global QCD
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analysis as well as with the BDM model. The obtained results of gluon distribution

can be described within the framework of perturbative QCD. Our results show that

at fixed x the gluon distribution function increases with increasing Q2, whereas at

fixed Q2 it increases as x decreases which is in agreement with perturbative QCD

fits at small-x. We perform our analysis in the Q2 and x range, viz. 5 ≤ Q2 ≤ 110

GeV2 and 10−4 ≤ x ≤ 0.1 and note that in this domain our predicted solutions are

comparable with different global analysis of parton distributions. We consider the

function K1(x) = K1, where K1 is a constant parameter, in defining the relation

between gluon and singlet structure functions and obtain our best fitted results in

the range 0.14 ≤ K1 ≤ 0.85. Moreover we consider the numerical parameters T0

and T1 to linearise the equations at NLO and NNLO in αs. These parameters are

chosen from phenomenological analysis for a particular range of Q2 under study and

therefore, the use of the parameters T0 and T1 does not produce any abrupt change

in our results. From our phenomenological analysis we observe that our computed

results of gluon distribution function at NNLO show significantly better agreement

with different parameterizations than those of LO and NLO. Thus we can say that the

NNLO approximation has appreciable contribution to the gluon distribution function

in the particular range of x and Q2 under study. However, in the very small-x region,

where the number density of gluons become very high, the gluon recombination

processes may take place inducing nonlinear corrections to the QCD evolution and

in that case the solution suggested in this chapter may not be sufficient to explain

the available data at very small-x. The nonlinear GLR-MQ evolution equation may

provide a good description of the high density QCD at very small-x, which we will

discuss in the next chapter.
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Chapter 5

Shadowing Corrections to the
Small-x Behaviour of Gluon
Distribution Function

5.1 Introduction

The dynamics of the the high density QCD, the regime of large gluon densities, is one

of the present-day extremely demanding undecided issues in the area of high energy

or small-x physics, where x is the small fraction of proton’s momentum conveyed

by the struck parton. Enormous theoretical and experimental endeavours towards

the perception of hadron structure in the high density regime at small-x occurs from

DIS at HERA to the proton-(anti)proton collisions at LHC. The gluon saturation

is one of the most fascinating problems of the small-x physics, which is presumed

on theoretical basis and there is emerging indications of its existence [1-3]. The

linear QCD evolution equations at the twist-2 level like DGLAP [4-6] predicts an

abrupt rise of the gluon densities towards small-x which is also perceived in the DIS

experiments at HERA. This sharp growth of gluon density generates cross sections

which in the high-energy limit violate the Froissart bound [7, 8] on physical cross

sections. Accordingly a new formulation of the QCD at high partonic density is

essential, in the very small-x region, to incorporate the unitarity corrections in a

suitable way. In general it is anticipated that, the gluon recombination processes

provide the mechanism responsible for the unitarization of the cross section at high

energies. As we move towards small-x at fixed Q2 the number of gluons of fixed size
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∼ 1/Q increases and at some critical value of x, the entire transverse area inhabited

by gluons turns out to be analogous to or larger than the transverse area of a proton.

Thus, the likelihood of interaction between two gluons can no longer be overlooked

and it sooner or later engenders a situation in which individual partons inevitably

overlap or shadow each other. In the derivation of the linear DGLAP equation

the correlations among the initial gluons in the physical process of interaction and

recombination of gluons are not usually taken into account. But at small-x the

corrections of the correlations among the initial gluons to the evolutionary amplitude

should be considered which eventually leads to a control of the maximum gluon

density per unit of phase-space. The conventional linear DGLAP evolution equation

will have to be modified accordingly in order to take these into effect. The multiple

gluon interactions take part in the evolution nonlinearly, taming the growth of the

gluon density in the kinematic domain where αs remains small but the density of

gluons evolves into very high. The pioneering perturbative QCD studies reporting

the recombination of two gluon ladders into one were performed by Gribov, Levin and

Ryskin [9], and by Mueller and Qiu [10, 11]. They insinuated that the shadowing

or nonlinear corrections due to gluon recombination could be expressed in a new

evolution equation with an additional nonlinear term quadratic in gluon density. This

equation, widely known as the GLR-MQ equation, can be regarded as the upgraded

version of the linear DGLAP equation.

The GLR-MQ equation incorporates all fan diagrams, that is, all workable 2 → 1

ladder recombinations, in the double leading logarithmic approximation (DLLA) in

order to deal with the gluon recombination processes. The fan diagrams portrays

the decisive role in the restoration of unitarity by taking into consideration some

of the gluon recombination processes that become vital at small-x. Gribov, Levin

and Ryskin at the outset introduced the concept of shadowing, arising from gluon

recombination, based on the Abramovsky-Gribov-Kancheli (AGK) cutting rule [12] in

the DLLA. Later Mueller and Qiu successfully carried out a perturbative calculation

of the recombination probabilities in the DLLA which empowers the equation to be

applied phenomenologically [10]. The GLR-MQ equation prognosticate a critical line

separating the perturbative regime from the saturation regime and it is legitimate

only in the vicinity of this critical line. Moreover it predicts a saturation of the gluon
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density at very small-x. Therefore the study of the GLR-MQ equation is extremely

important for understanding the nonlinear effects of gluon recombination at small

enough x as well as for the determination of the saturation momentum (QS) that

incorporates physics in addition to that of the linear evolution equations commonly

used to fit DIS data.

Until now the majority of our knowledge on the modifications of the higher order

QCD effects is established on the semi-classical approach [9, 13-15] and on numeri-

cal studies [16-21]. The approximate analytical solutions of the nonlinear GLR-MQ

evolution equation have also been reported in recent years [22, 23]. In this thesis we

attempt to use, to a feasible extent, semi-analytic methods to solve this equation.

We report, in this chapter, the approximate semi-analytical solution of the nonlin-

ear GLR-MQ equation as well as the validity of the well known Regge-like ansatz

in the region of small-x and moderate virtuality of photon. The aim of this work

is to check the evidence for gluon recombination at very small-x. We investigate

the effect of shadowing corrections on the small-x behavior of gluon distribution at

fixed virtuality of photon from the solution of GLR-MQ equation in LO with consid-

erable phenomenological success. Moreover, we obtain the Q2-dependence of gluon

distribution with shadowing corrections at fixed small-x. Our resulting gluon distri-

butions are compared with different experimental data and parametrizations. Our

predictions for nonlinear gluon density are further compared with different models

based on GLR-MQ equation. Moreover, we examine the extent of nonlinearity in our

predictions by comparing the gluon distributions obtained from nonlinear GLR-MQ

equation with those obtained from linear DGLAP equation.

5.2 Formalism

5.2.1 General framework

The GLR-MQ equation depends on two processes in the parton cascade, namely

the gluon emission generated by the QCD vertex g→g + g as well as the gluon

recombination by the same vertex g + g→g. The probability that a gluon splits into

two gluons is proportional to αsρ whereas the probability of gluon recombination is

proportional to α2
sr

2ρ2. Here, ρ is the density of gluons in the transverse plane and

r is the size of the gluon produced in the recombination process and for DIS, r∝ 1
Q
.
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It is very clear that, at x ∼ 1 only the production of new partons (quarks or gluons)

is essential because ρ≪1 , however at x→0 the value of ρ becomes so large that

the recombination of gluons turns into crucial. The number of partons in a phase

space cell (∆ln(1/x)∆lnQ2), thus, increases through gluon splitting and decreases

through gluon recombination and correspondingly the balance equation for emission

and recombination of partons can be written as [9-11]

∂2ρ(x,Q2)

∂ ln(1/x)∂ lnQ2
=

αs(Q
2)Nc

π
ρ(x,Q2)− α2

s(Q
2)γ

Q2
[ρ(x,Q2)]2, (5.1)

which is referred to as the GLR-MQ equation. Here ρ=
xg(x,Q2)

πR2 , where πR2 is the

target area and R is the correlation radius between two interacting gluons i.e. the

size of the relevant region for the gluon recombination processes. The factor γ is

found to be γ = 81
16

for Nc = 3, as evaluated by Mueller and Qiu [10]. In terms of

gluon distribution function the above equation can be expressed as

∂2xg(x,Q2)

∂ln(1/x)∂ lnQ2
=

αs(Q
2)Nc

π
xg(x,Q2)− α2

s(Q
2)γ

πQ2R2
[xg(x,Q2)]2, (5.2)

The first term in the r.h.s. is the usual DGLAP term in the DLLA and and is therefore

linear in the gluon field. The second term carries a negative sign and it reduces

the growth of the gluon distribution once the fan diagrams become admissible. It

expresses the nonlinearity in respect of the square of the gluon distribution. Here, the

representation for the gluon distribution G(x,Q2) = xg(x,Q2) is used, where g(x,Q2)

is the gluon density. The quark-gluon emission diagrams are not given attention here

due to their little importance in the gluon-rich small-x region. A general criterion

for the validity of Eq.(5.2) is that the nonlinear correction term should not be larger

than the first term since in that case further corrections must be considered and

non-perturbative effects could be of importance [24].

The parameter R does not become operative as long as one uses the DGLAP

evolution equation, which is linear in gluon density. Nonetheless, this size parameter

becomes relevant in the GLR-MQ equation where one takes into account the first

nonlinear term in the evolution and therefore it is essential to define it precisely.

Since the size parameter R in the denominator and the gluon distribution G in the

numerator appear in the second term of Eq.(5.2) as squared, so they are extremely

decisive for the magnitude of the recombination effect. R is of the order of proton
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radius Rh, that is R ∼ 5 GeV−1 if the gluons are distributed uniformly across the

whole of the proton and in that case recombination or shadowing corrections can be

negligibly small [10, 25]. On the other hand, R is of the order of the transverse size of

a valence quark i.e. R ∼ 2 GeV−1 if the gluons are condensed in the hot spots [10, 25,

26] inside the proton. The hot spots can enumerate rapid commencement of gluon-

gluon interactions in the environs of the parton and and so uplift the recombination

effect. Accordingly in such hot-spots the shadowing corrections are expected to be

large.

5.2.2 Solution of GLR-MQ equation for gluon distribution
function and effect of gluon shadowing

In order to study the effect of nonlinear or shadowing corrections on the behaviour

of gluon density we rewrite the GLR-MQ equation given by Eq.(5.2) in a convenient

form

∂G(x,Q2)

∂lnQ2
=

∂G(x,Q2)

∂lnQ2

∣∣∣
DGLAP

− 81

16

α2
s(Q

2)

R2Q2

∫ 1

x

dω

ω

[
G
(x
ω
,Q2

)]2
, (5.3)

We perform the analysis in the leading twist approximation and therefore have taken

the strong coupling constant αs(Q
2) = 4π

β0ln(Q2/Λ2) , where β0 = 11−2
3Nf . At small-x

gluons essentially turn out to be the most abundant partons and therefore, the quark

contributions to the gluon distribution function can be overlooked in the small-x

region. Accordingly the first term in the r.h.s. of Eq. (5.3) can be expressed as [27]

∂G(x,Q2)

∂lnQ2

∣∣∣
DGLAP

=
3αs(Q

2)

π

[(11
12

− Nf

18
+ ln(1− x)

)
G(x,Q2)

+

∫ 1

x

dω
{ωG( x

ω
, Q2

)
−G(x,Q2)

1− ω

+
(
ω(1− ω) +

1− ω

ω

)
G
(x
ω
,Q2

)}]
. (5.4)

To obtain an analytical solution of the GLR-MQ equation in the small-x region

we incorporate a Regge-like behavior of gluon distribution function. The behaviour

of structure functions at small-x can be described effectively in terms of Regge-like

ansatz [28]. The Regge theory is a highly ingenuous parameterization of all total cross

sections and supposed to be applicable at large-Q2 values if x is small enough x < 0.01

[29]. Moreover, as advocated in Refs.[30, 31], the Regee behavior is anticipated to
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be valid at small-x and some intermediate Q2, where Q2 must be small but not so

small that αs(Q
2) is too large. Since the total center of mass energy squared is

defined as s2 = Q2
(
1
x
− 1
)
, therefore the small-x behaviour of structure functions for

fixed Q2 emulates the high energy behaviour of total cross section with increasing

s2 [32]. For this reason the Regge pole exchange picture [28] sounds convenient for

the theoretical description of this behaviour. Again, as the structure functions are

proportional to the total virtual photon-nucleon cross section, therefore they are

expected to have Regge behaviour corresponding to pomeron or reggeon exchange

[30]. According to the Donnachie-Landshoff (DL) model, the high energy attitude

of hadronic cross sections as well as structure functions will be governed by two

contributions, especially by a pomeron proliferating the rise of structure function at

small-x and by reggeons related with meson trajectories. The high energy i.e. small-x

behaviour of both gluons and sea quarks are conducted by the same singularity factor

in the complex angular momentum plane [31] in accordance with Regge theory. The

Regge behavior of the sea-quark distribution for small-x is given by qsea(x) ∼ x−αP

corresponding to a pomeron exchange with an intercept of αP = 1. But the valence-

quark distribution for small x given by qval(x) ∼ x−αR corresponds to a reggeon

exchange with an intercept of αR = 0.5. The x dependence of the parton densities

is often estimated at moderate Q2 and thus the leading order calculations in ln(1/x)

with fixed αs predict a steep power-law behavior of xg(x,Q2) ∼ x−λG , where λG =

(4αsNc/π) ln 2 ≃ 0.5 for αs ≃ 0.2, as relevant for Q2 ∼ 4 GeV 2.

Furthermore, the Regge theory is presumed to be applicable if W 2, the mass

invariant squared in a DIS process, is much greater than all the other variables [33]

and so, models based upon this idea have been fruitful in explaining the DIS cross-

section when x is small enough (x < 0.7), whatsoever be the value of Q2 [33-35]. The

small-x limit of DIS corresponds to the case when 2Mν >> Q2, where x = Q2/2Mν,

butQ2 is still maintained large i.e. Q2 > Λ2, with Λ being the QCD cut off parameter.

The limit 2Mν >> Q2 is equivalent to s >> Q2 and is therefore the Regge limit of

DIS. Moreover, as Q remains greater than the QCD cut off parameter Λ so it enables

us to use perturbative QCD calculations and therefore Regge theory is applicable in

the region of large s, i.e. in the region of small-x [28, 29]. Hence it is feasible to use

Regge theory for the study of the GLR-MQ equation which is an improved version
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of DGLAP equation in the very small-x region. The Regge pole model gives the

parametrization of the DIS structure function F2(x,Q
2) at small-x as F2 ∝ x−λ with

λ > 0 being a constant or depending on Q2 or x [29, 33].

On that account, we employ the Regee like ansatz of gluon distribution function

to solve the nonlinear GLR-MQ equation at small-x. We assume a simple form of

Regge ansatz for gluon distribution function given as

G(x,Q2) = H(Q2)x−λG , (5.5)

where H(Q2) is a function of Q2 and λG is the Regge intercept for gluon distribution

function. This form of Regge behaviour is extensively used by many authors with

considerable success [33, 36, 37]. With this ansatz the term G( x
ω
, Q2) can be written

as

G
(x
ω
,Q2

)
= ωλGG(x,Q2). (5.6)

One of the applications of the Regge behaviour is the DL two pomeron model where

the rise of structure function is described by powers of 1/x. In the DL model it is

assumed that the exchange of two pomerons contribute to the amplitude, however, at

small-x the gluon distribution function is dominated exclusively by the hard pomeron

exchange [33]. In the DL two pomerons exchange model, the hard pomeron has an

intercept ϵh = 0.418. Moreover, as the values of Regge intercepts for all the spin-

independent singlet, non-singlet and gluon structure functions should be close to 0.5

in quite a broad range of small-x [37], so we also consider the value of λG to be 0.5

in our analysis and expect to obtain our best fit results with this value of λG.

To simplify our calculations we consider a variable t, such that t = ln(Q
2

Λ2 ). Then

using the Eqs.(5.5) and (5.6) together with the Eq.(5.4), Eq.(5.3) can be simplified

as

∂G(x, t)

∂t
=

3αs(t)

π
G(x, t)

[(11
12

− Nf

18
+ ln(1− x)

)
+

∫ 1

x

dω
{ωλG+1 − 1

1− ω

+
(
ω(1− ω) +

1− ω

ω

)
ωλG

}]
− 81

16

α2
s(t)

R2Λ2et
G2(x, t)

∫ 1

x

ω2λG−1dω.

(5.7)

Now rearranging the terms Eq. (5.7) can be expressed as

∂G(x, t)

∂t
= γ1(x)

G(x, t)

t
− γ2(x)

G2(x, t)

t2et
, (5.8)
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where the x dependent functions γ1(x) and γ2(x) are defined as

γ1(x) = 3Af

[11
12

−Nf

18
+ln(1−x)+

∫ 1

x

dω
{ωλG+1 − 1

1− ω
+
(
ω(1−ω)+

1− ω

ω

)
ωλG

}]
,

(5.9)

γ2(x) =
81

16

A2
fπ

2

R2

∫ 1

x

ω2λG−1dω. (5.10)

where Af = 4
β0
.

Eq.(5.8) is a partial differential equation for the gluon distribution function with

respect to the variables x and Q2 (t = ln(Q2/Λ2)). Thus apart from its conventional

use in Q2-evolution, Eq.(5.8) can also be used to examine the x-dependence of gluon

distribution. Solution of Eq.(5.8) then leads us to a solution for the nonlinear gluon

density as given below

G(x, t) =
tγ1(x)

C + γ2(x)
∫
tγ1(x)−2e−tdt

, (5.11)

where C is a constant to be determined from initial boundary conditions. Thus we

solve Eq.(5.3) by employing the Regge ansatz for gluon distribution given by Eq.(5.5)

and obtain a solution of the nonlinear gluon density. As the Regge behaviour is

supposed to be legitimate at small-x and some intermediate Q2, therefore the solution

of the GLR-MQ equation in the form of Eq.(5.11) is expected to be worthwhile.

We believe that our solution is correct in the vicinity of the saturation where all

our assumptions look natural. Now to determine the Q2 (t = ln(Q2/Λ2)) and x-

dependence of the gluon distribution we apply the following two physically plausible

boundary conditions

G(x, t) = G(x, t0) (5.12)

at some lower value Q2 = Q2
0, where t0 = ln(Q2

0/Λ
2) and

G(x, t) = G(x0, t), (5.13)

at some high x = x0.

The boundary condition (5.12) gives us

G(x, t0) =
t
γ1(x)
0

C + γ2(x)
∫
t0

γ1(x)−2e−t0dt0
, (5.14)
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From this equation the constant C can be evaluated by considering an appropriate

input distribution G(x, t0) at a given value of Q2
0. Now Eq.(5.11) and Eq.(5.14) lead

us to the Q2-evolution of gluon distribution function for fixed x given as

G(x, t) =
tγ1(x)G(x, t0)

t
γ1(x)
0 + γ2(x)

[ ∫
tγ1(x)−2e−tdt−

∫
t0

γ1(x)−2e−t0dt0

]
G(x, t0)

. (5.15)

Thus we have obtained an expression for the Q2-evolution of nonlinear gluon density

at LO by solving the nonlinear GLR-MQ evolution equation semi-analytically. From

this expression we can easily compute the dependence of gluon distribution function

on Q2 for a particular value of x by choosing an appropriate input distribution at a

given value of Q2
0. Eq.(5.15) also assist us to investigate the nonlinear or shadowing

corrections to the gluon distribution functions at moderate values of Q2.

Similarly, the boundary condition (5.13) yields

G(x0, t) =
tγ1(x0)

C + γ2(x0)
∫
tγ1(x0)−2e−tdt

, (5.16)

so that using Eqs. (5.11) and (5.16) we obtain

G(x, t) =
tγ1(x)G(x0, t)

tγ1(x0) +
[
γ2(x)

∫
tγ1(x)−2e−tdt− γ2(x0)

∫
tγ1(x0)−2e−tdt

]
G(x0, t)

. (5.17)

Thus Eq. (5.17) provides the solution of the GLR-MQ equation for gluon distribution

at small-x for fixed Q2. Accordingly from Eq. (5.17) we can easily predict the small-x

dependence of nonlinear gluon distribution function for a particular value of Q2 by

picking out a suitable input distribution at an initial value of x = x0. The effect of

nonlinear or shadowing corrections to the gluon distribution functions at small-x can

be studied as well by employing Eq. (5.17).

We analyze the region of validity of our solution given by Eq.(5.11) and we

expect that the solution is only valid in the region of small-x and intermediate values

of Q2. It is clear from Eq.(5.11) that at large Q2 (t = ln(Q2/Λ2)), we can neglect the

nonlinear corrections and our solution takes the form

G(x, t) =
tγ1(x)

C + γ2(x)
∫
tγ1(x)−2e−tdt

t≫1−→ tγ1(x)/C, (5.18)

However, in the region where Q2 is not very large, the corrections for the nonlinear

term in Eq.(5.11) can not be neglected and in that case Eq.(5.11) does not reduce

to Eq.(5.18). In our analysis we consider intermediate values of Q2 (1 ≤ Q2 ≤ 30
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GeV2) to calculate the gluon distribution function. In this region the corrections

for the nonlinear term γ2(x)
∫
tγ1(x)−2e−tdt cannot be neglected in comparison to C,

where C is defined by Eq.(5.14), and so our solution given by Eq.(5.11) does not

reduce to Eq.(5.18).

On the other hand we observe that in the region 10−5 ≤ x ≤ 10−2 Eq.(5.11)

predicts an increase of gluon distribution with decreasing-x, which is in accordance

with the Regge ansatz of Eq.(5.5). Nevertheless Eq.(5.11) yields a slower growth

of gluon density towards small-x in comparison to the solution of linear DGLAP

equation, since the nonlinear effects due to gluon-gluon interactions play a significant

role in the small-x (x ≤ 10−2) region. However in the region of very small-x (x <

10−5) but fixed Q2, we can neglect the dependence of the functions γ1(x) and γ2(x)

on x. Accordingly the solution suggested in Eq.(5.11) does not depend on x taking

the form

Gx→0(x, t) =
tγ10

C + γ20
∫
tγ10e−tdt

, (5.19)

where the r.h.s is a constant. In that case the solution to the nonlinear equation given

by Eq.(5.11) contradicts the ansatz of Eq.(5.5). So we can conclude that Eq.(5.11)

is not a valid solution at very small-x (x < 10−5). It is to note that in the region of

x > 10−2 the process of gluon-recombination does not play an important role on the

QCD evolution and therefore nonlinear corrections to the DGLAP equation is not

essential. In other words in the region of x > 10−2 DGLAP equation is sufficient to

explain the available experimental data. So we can interpret that the solution given

by Eq.(5.11) may not be applicable in the region of x < 10−5 as well as x > 10−2.

But in the kinematic region 10−5 ≤ x ≤ 10−2 the x-dependence of the functions γ1(x)

and γ2(x) can not be neglected and under this situation Eq.(5.11) does not reduce to

Eq.(5.19) and thus it does not contradict the ansatz given by Eq.(5.5). Hence we can

conclude that the solution suggested in Eq.(5.11) is expected to be a valid solution

of the nonlinear GLR-MQ equation in the kinematic region 1 ≤ Q2 ≤ 30 GeV2 and

10−5 ≤ x ≤ 10−2 and it can delineate the small-x dependence of nonlinear gluon

density in a satisfactory manner.
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5.2.3 Comparative analysis of DGLAP and GLRMQ equa-
tions

To estimate the effect of shadowing corrections for the gluon distribution function

in our predictions we make a comparative study of the nonlinear GLR-MQ equation

with the linear DGLAP approach. For this purpose we solve the linear DGLAP

equation at small-x at LO defined by Eq.(5.4) by employing the Regge ansatz of

gluon distribution function and compare it with the solution of the GLR-MQ equation

discussed above. Using the Regge ansatz of Eq.(5.5), Eq.(5.4) can be simplified as

∂G(x, t)

∂t

∣∣∣
DGLAP

= γ1(x)
G(x, t)

t
, (5.20)

which can be easily solved to have

G(x, t) = Atγ1(x). (5.21)

Here A is a constant to be fixed by initial boundary conditions. The x dependent

function γ1(x) is defined in Eq.(5.9). Now defining

g10 = G(x, t0) = At
γ1(x)
0 (5.22)

at some lower value Q2 = Q2
0, we get from Eq.(5.21)

G(x, t) = g10

( t

t0

)γ1(x)
. (5.23)

Eq.(5.23) provides the solution of the linear DGLAP equation at LO for gluon dis-

tribution with the ansatz of Eq.(5.5) and it describes the Q2 dependence of linear

gluon density for a fixed value of x, provided a suitable input distribution g10 has

been chosen from the initial boundary condition.

Again, defining

g20 = G(x0, t) = Atγ1(x0) (5.24)

at some initial higher value x = x0, Eq.(5.21) can be expressed as

G(x, t) = g20t
γ1(x)−γ1(x0). (5.25)

Eq.(5.25) is the solution of the linear DGLAP equation at LO for gluon distribu-

tion at small-x with the ansatz of Eq.(5.5) and it describes the small-x behavior of
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linear gluon density for a particular value of Q2 by choosing an appropriate input

distribution g20 from the initial boundary condition.

The effect of shadowing corrections to the gluon distribution function can be ex-

amined considering the solutions of the DGLAP and GLR-MQ equations respectively.

To do this we calculate the ratio RG of the predicted values of gluon distribution func-

tion obtained from the solution of nonlinear GLR-MQ equation given by Eq. (5.17)

to that obtained using the linear DGLAP equation given by Eq.(5.25)

RG =
GGLR−MQ(x, t)

GDGLAP (x, t)
, (5.26)

as a function of variable x for different values of Q2. By evaluating this ratio we

have observed a taming behavior of gluon distribution in the HERA kinematic re-

gion (3 ≤ ln(1/x) ≤ 12) due to shadowing corrections to the linear evolution. Thus

employing the expression (5.26) we can interpret the influence of nonlinear or shad-

owing corrections as a consequence of gluon recombinations on the behavior of gluon

distribution at small-x. It also assists us to understand whether Froissart bound can

be restored at small-x. We have explored the phenomenological aspect of Eq.(5.26)

in section 3.

5.2.4 Compatibility of Regge like solutions of gluon density
with the DLA solution

The DGLAP evolution equation predicts that the gluon distribution function rises

steeply as a power of x toward small-x which is observed at HERA too. This is

in accordance with the Double Logarithmic Approximation (DLA) at small-x and

large photon virtualities Q2. The DLA accounts for only the leading double loga-

rithmic contributions (αs ln(Q
2/Q2

0) ln(1/x)) to multiparton cross sections. In DLA

it is considered that αs

π ≪ 1, αs

π lnQ2 ≪ 1, αs

π ln2Q2 ∼ 1 [38]. DLA analysis man-

ifests the structure of intrajet parton cascades and as a matter of fact, the DLA

predictions provide an assumption for the parton picture. The parton cascade is an

excellent replica in consideration of DLA ladder diagrams. The DLA is applicable

to perturbative QCD evolution in the asymptotic regime characterized by Q2 ≫ Q2
0

and x ≪ x0, x0 ≤ 0.1, [39]. The proton structure function data explored at HERA

have been demonstrated to evolve in consonance with DLA as suggested in Ref. [30].

The DLA asymptotics of the structure function derived by the addition of diagrams
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corresponding to (αs ln(Q
2/Q2

0))
n and of those (αs ln(1/x))

n occur simultaneously

and produce the solution of the DGLAP equation in the form ∼ exp

(√
ln t

t0
ln x0

x

)
[9]. The gluon distribution produced by the DLA DGLAP evolution naturally por-

trays the data in a satisfactory manner exclusively in a somewhat confined kinematic

domain of small-x and large-Q2.

Any LO solution of DGLAP equation is presumed to be consistent with the DLA

result. That being so, it is worthwhile to investigate the prospect of compatibility of

our Regge type solution of DGLAP equation with the DLA one. Even though Regge

behavior is not in agreement with the DLA in general, but, when x is small enough

(x < 0.7) the Regge theory is assumed to be applicable, whatsoever the value of Q2

[34, 35]. Accordingly the Regge type solution of DGLAP equation is expected to be

valid. The conventional DLA formula [38] for gluon distribution function is

GDLA(x, t) = G(x, t0) exp

(
2

√
Nc

πb
ln
( t

t0

)
ln
(x0

x

))
, (5.27)

with the function b =
11Nc−2Nf

12π
. Here Nc = 3 is the number of color. Our solution

of linear DGLAP equation given by Eq. (5.25) is in agreement with DLA formula of

Eq. (5.27) as long as the following condition is satisfied,

ln
(

GDLA(x,t0)
GDGLAP (x0,t)

)
(
γ1(x)− γ1(x0)

)
t
+

2

√
12Nc

11Nc−2Nf
ln
(

t
t0

)
ln
(

x0

x

)
(
γ1(x)− γ1(x0)

)
t

= 1. (5.28)

An analysis of the phenomenological aspects of Eq.(5.28) is presented in section 3

where we denote the l.h.s. of Eq.(5.28) as P (x,Q2).

5.3 Result and discussion

We solve the nonlinear GLR-MQ evolution equation by considering the Regge like

behavior of gluon distribution function and examine the effects of adding the non-

linear GLR-MQ corrections due to gluon recombination processes at small-x to the

LO DGLAP evolution equations. We investigate the behavior of gluon distribution

function at small-x and moderate Q2 from the predicted solution of the GLR-MQ

equation. The solutions suggested in Eqs.(5.15) and (5.17) are directly related to

the initial conditions. Our predictions of x and Q2 dependence of gluon distribu-

tion function G(x,Q2) are compared with with those obtained by the global QCD
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fits to the parton distribution functions, viz. GRV1998LO [40], GJR2008LO [41],

MRST2001LO [42], MSTW2008LO [43], NNPDF [44], HERAPDF0.1 [45, 46] and

CT10 [47, 48] parametrizations respectively. To evolve our solutions, we use the

GRV1998LO input and MRST2001LO input for two different representations of our

solutions.

Furthermore, we present a comparative analysis of our computed results with the

results of the EHKQS [20] and BZ models [23]. In the EHKQS model the effects of

the first nonlinear corrections to the DGLAP evolution equations are studied by using

the recent HERA data for the structure function F2(x,Q
2) of the free proton and the

parton distributions from CTEQ5L and CTEQ6L as a baseline [49]. The EHKQS

model shows that the nonlinear corrections improve the agreement with the F2(x,Q
2)

data in the region of x ∼ 3 × 10−5 and Q2 ∼ 1.5 GeV2. On the other hand in BZ

model using a Laplace-transform technique, the behavior of the gluon distribution is

obtained by solving the GLR-MQ evolution equation with the nonlinear shadowing

term incorporated.

Figure 5.1 represent our predictions of the gluon distribution function with the ef-

fect of nonlinear or shadowing corrections obtained from Eq.(5.15), plotted againstQ2

for four fixed values of x, viz. x = 10−2, 10−3, 10−4 and 10−5 respectively. We compare

our predictions with GRV1998LO, GJR2008LO, MRST1001LO and MSTW2008LO

global parton analysis as well as with the EHKQS model. The input distribution is

taken from the GRV1998LO. The red solid curve represents the effect of the shad-

owing correction of gluon distribution function predicted by using Eq.(5.15) for the

hot spots with R = 2 GeV−1 whereas the results for R = 5 GeV−1 is shown by the

blue solid line.

Similarly, in Figure 5.2 we plot our computed results of the gluon distribution

function obtained from Eq.(5.15) vs. Q2, considering the MRST2001LO input gluon

distribution, for x = 10−2, 10−3, 10−4 and 10−5 respectively as before. Here also the

red and blue solid lines represent our predictions of nonlinear gluon density for R = 2

GeV−1 and R = 5 GeV−1 respectively. We perform a comparison of our results with

different parametrizations namely, HERAPDF0.1, CT10 and NNPDF.

Figure 5.3 represent the small-x behavior of the gluon distribution with the effect

shadowing corrections to the gluon distribution function determined from Eq.(5.17)
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Figure 5.1: Q2 dependence of gluon distribution with shadowing corrections obtained from
Eq.(5.15) for four fixed values of x at R = 2 GeV −1 (red solid curves) and R = 5 GeV −1 (blue solid
curves) respectively. Our predictions are compared with GRV1998LO (dash), GJR2008LO (dash-
dot), MRST2001LO (short-dash) and MSTW2008LO (dash-dot-dot) parametrizations as well as
with the EHKQS model (dot). The input gluon distribution is taken from GRV1998LO.

as a function of x for four fixed values of Q2, viz. Q2 = 5, 10, 15 and 20 GeV2. Here

the input gluon distribution is taken from GRV1998LO to evolve our solutions and

our predictions of the small-x behaviour of nonlinear gluon density are compared

with the global QCD analysis namely GRV1998LO, GJR2008LO, MRST2001LO,

MSTW2008LO as well as with the H1 data. The red and blue solid lines represent

our best fit results of nonlinear gluon density for R = 2 GeV−1 and R = 5 GeV−1

respectively.

On the other hand, our predictions of gluon distribution function with the shad-

owing corrections evaluated from Eq. (5.17) using the MRST2001LO input are plot-

ted in Figure 5.4 as a function of x for four fixed Q2, viz. Q2 = 5, 10, 15 and and
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Figure 5.2: Q2 dependence of gluon distribution function incorporating shadowing corrections
computed from Eq.(5.15) for four fixed values of x at R = 2 GeV −1 (red solid curves) and R =
5 GeV −1 (blue solid curves) respectively. Our predictions are compared with HERAPDF0.1 (short-
dot), CT10 (dash-dot) and NNPDF (dash-dot-dot) parametrizations. The input gluon distribution
is taken from MRST2001LO.

20 GeV2 as in the previous case. We make a comparison of our computed results of

nonlinear gluon density with the HERAPDF0.1, CT10, NNPDF parametrizations as

well as with the results of BZ model. Here too the computed results of the small-x

behaviour of nonlinear gluon density corresponding to R = 2 GeV−1 and R = 5

GeV−1 are represented by the red and blue solid lines respectively.

From Figure 5.1 to Figure 5.4 we have observed that our results are in good

agreement with different experimental data, global parametrizations and also with

different models. The gluon distribution increases with increasing Q2 and decreasing

x, which complements the perturbative QCD fits at small-x, but this behaviour is

tamed with respect to the nonlinear terms in GLR-MQ equation. It is very interesting

to observe that our predictions for the x and Q2 dependence of nonlinear gluon
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Figure 5.3: Small-x behaviour of gluon distribution with shadowing corrections obtained from
Eq.(5.17) for four fixed values of Q2 at R = 2 GeV −1 (red solid curves) and R = 5 GeV −1 (blue
solid curves) respectively. Our results are compared with GRV1998LO (dash), GJR2008LO (dash-
dot), MRST2001LO (short-dash), MSTW2008LO (dash-dot-dot) parametrizations as well as with
H1 data (up-triangle). The input gluon distribution is taken from GRV1998LO.

density are in excellent agreement with the gluon density function obtained from

HERAPDF0.1 and CT10 parametrizations. Moreover, we observe from Figure 5.2

that our results of the effect of shadowing corrections to the moderate-Q2 behaviour of

gluon distribution function are comparable with those obtained in a similar analysis

by the EHKQS model. We further note that, our results follow the general trend of

H1 data but they get saturated towards very small-x due to shadowing corrections.

Similarly, we see that the shapes of the curves in Figure 5.4 representing the small-x

behaviour of nonlinear gluon density are almost similar to the results of BZ model.

Therefore we can say that the Regge type solution of the GLR-MQ equation for the

nonlinear gluon distribution suggested in Eq.(5.11) can describe the available data in
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Figure 5.4: Small-x behaviour of gluon distribution considering shadowing corrections calculated
from Eq.(5.17) for four fixed values ofQ2 at R = 2 GeV −1 (red solid curves) and R = 5 GeV −1 (blue
solid curves) respectively. Our results are compared with HERAPDF0.1 (dot), CT10 (dash-dot-dot)
and NNPDF (dash-dot) parametrizations and BZ model (dash). The input gluon distribution is
taken from MRST2001LO.

a satisfactory manner. We perform our analysis in the kinematic region 1 ≤ Q2 ≤ 30

GeV2 and 10−5 ≤ x ≤ 10−2 and our solution of the nonlinear gluon density is found

to be legitimate in this kinematic domain. The effect of shadowing corrections as a

consequence of gluon recombination processes in our predictions is observed to be

very high at the hot-spots with R = 2 GeV−1 when the gluons are centered within the

proton, compared to at R = 5 GeV−1 when the gluons are disseminated throughout

the entire proton.

Moreover, to examine the effects of nonlinear or shadowing corrections to the

gluon distributions in our prediction, we have plotted the ratio RG of the gluon distri-

bution function obtained from the solution of nonlinear GLR-MQ equation for R = 2

GeV−1 to that obtained from the solution of linear DGLAP equation using Eq.(5.26)
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Figure 5.5: A comparison of the gluon distribution function in terms of RG defined in Eq.(5.26).
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Eq.(5.28).

139



in Figure 5.5. This comparison helps us to estimate the shadowing corrections for

the gluon distribution function. We plot the ratio RG for gluon distribution as a

function of the variable x for six representative values Q2 = 2, 5, 10, 15, 20 and 30

GeV2 respectively. We observe that as x grows smaller the GLR-MQ/DGLAP ratios

decrease which implies that the effect of nonlinearity increases towards small-x due

to gloun recombination. The fall of the ratio at small-x (x < 10−2) is a consequence

of the gluon recombination or shadowing corrections. Results also clearly indicates

that towards smaller values of Q2 the value of the ratio between nonlinear gluon den-

sity and linear gluon density also goes smaller. In other words, gluon recombination

plays an important role in the region of small-x and Q2 whereas, with the evolution

to large-Q2 (Q2 > 30 GeV 2) and large-x (x ≥ 10−2), gluon recombinations play less

of a role, and as a consequence the nonlinear effects have a very little impact.

We have further investigated the effect of nonlinearity in our results by performing

an analysis to check the sensitivity of the correlation radius R between two interacting

gluons. For this analysis our computed values ofG(x,Q2) from Eq. (5.15) for R = 2, 4

and 5 GeV−1 respectively are plotted against Q2 in Figure 5.6 for four fixed values of

x, x = 10−2, 10−3, 10−4 and 10−5. For this analysis we take the input distribution from

MRST2001LO global parametrization for a given value of Q2
0. The gluon distribution

function is observed to be more tamed at R = 2 GeV1, where gluons are supposed to

be condensed in the hot-spots within the proton, compared to at R = 4 GeV−1 and

R = 5 GeV−1 where gluons are almost scattered over the entire proton. Moreover, we

note that that the differences between the data as we approach from R = 2 GeV−1

to R = 5 GeV−1 increase with decreasing x as anticipated.

Figure 5.7 represents the plot of P (x,Q2) vs. x for different values of Q2, where

P (x,Q2) represents the l.h.s of Eq.(5.28) which represents the condition of compat-

ibility of the Regge like solution of DGLAP equation to the DLA one. This figure

illustrates that our Regge type solution of linear DGLAP equation given by Eq.(5.23)

is comparable with the DLA result of Eq.(5.27) in a finite domain of x and Q2 as

long as the constraint given by Eq.(5.28) is fulfilled. It is obvious from the figure

that for each value of Q2, there is a corresponding value of x for which the l.h.s and

r.h.s. of Eq.(5.28) are identical and the value of x, where this happens, switches to

lower limit as Q2 increases. We observe that for the Q2 values 5 ≤ Q2 ≤ 500 GeV2,
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considered in our analysis, the condition of compatibility is satisfied in the region of

x between 10−4 and 10−3. Accordingly the Regge like solution of the linear DGLAP

equation in LO is expected to be applicable in the region of 10−4 ≤ x ≤ 10−3 and

high-Q2 if it is appealed to be consistent with the DLA one.

5.4 Summary

In summary, the behavior of gluon distributions in the region of small-x and moderate-

Q2 are semi-analytically predicted by solving the nonlinear GLR-MQ equation in

leading twist approximation incorporating the well known Regge ansatz. We make a

deliberate attempt to explore the effect of nonlinear or shadowing corrections arises

due to the gluon recombination processes on the behavior of gluon distribution at

small-x and moderate-Q2. We observe that the gluon distribution function increases

with increasing Q2 and decreasing x, but with the inclusion of the nonlinear terms,

this behaviour of gluon density is slowed down relative to DGLAP gluon distribu-

tion. We investigate how the inclusion of nonlinear effects changes the behavior of

gluon density and it is interesting to observe that although the gluon distribution in-

creases with increasing Q2 and decreasing x as usual, which is in agreement with the

perturbative QCD fits at small-x, however the gluon recombination processes tame

the rapid growth of gluon densities towards small-x. This suggests that the gluon

distributions unitarize leading to the restoration of Froissart bound in the small-x

region where density of gluons becomes very high. For the gluon distribution the

nonlinear effects are found to play an increasingly important role at x ≤ 10−3. The

nonlinearities, however, vanish rapidly at larger values of x. Furthermore, our results

manifest that the nonlinearity increases with decreasing value of correlation radius

R as expected which is very fascinating.

Our results indicates that the nonlinear effects or shadowing corrections, emerged

as a consequence of recombination of two gluon ladders, play a significant role on QCD

evolution for gluon distribution in the kinematic region of small-x and moderate-Q2.

Accordingly the suggested solution of the GLR-MQ equation for gluon distribution

function is anticipated to be legitimate only in the vicinity of saturation i.e. in the

kinematic region 1 ≤ Q2 ≤ 30 GeV2 and 10−5 ≤ x ≤ 10−2. Our phenomenological

analysis also supports this as the obtained results of nonlinear gluon density using
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the Regge ansatz are in accordance with different parametrization as well as models.

Finally, we derive the condition of compatibility of the LO solution of linear

DGLAP equation for gluon, obtained by employing the Regge ansatz, with the DLA

solution in a finite range of the variables x and Q2. From our phenomenological

analysis we understand that in the Q2 region 5 ≤ Q2 ≤ 500 GeV 2, considered in

our study, the condition of compatibilty is satisfied in the region of x between 10−4

and 10−3. Accordingly we can expect the Regge type solution of the linear DGLAP

equation in LO to be applicable in the region of 10−4 ≤ x ≤ 10−3 and high-Q2 if we

demand it to be consistent with the DLA one.
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Chapter 6

Shadowing Corrections to the
Singlet Structure Function and
Behaviour of F2 Slope

6.1 Introduction

Perturbative QCD manifests that the sea quark distributions, in a hadron evolves

rapidly with ln (1/x) at fixed Q2 in the same manner as the gluon distribution

xg(x,Q2). However in the region of very small-x the sharp growth of the sea quark

density is expected to slow down eventually in order to restore the Froissart bound

[1, 2] on physical cross sections. In general the gluon recombination processes, which

lead to the nonlinear or shadowing corrections to the linear QCD evolution, is consid-

ered to be responsible for this taming behaviour. The sea quark distribution, which

overshadows the valence quarks at small x, is supposed to be generated through glu-

ons and therefore it is extensively believed that the gluon and sea quark distribution

functions almost feel the same effect of shadowing. The nonlinear or shadowing cor-

rections in DIS arise due to two processes, one is the taming of the gluon density as a

result of gluon recombination gg → g and the other is the Glauber-like rescattering of

the qq̄ fluctuations off gluons [3]. The second process can also be regarded as a parton

recombination, particularly as a recombination of gluons into a quark-antiquark pair,

gg → qq̄. Gribov, Levin and Ryskin (GLR-MQ) [4], at the onset, investigated the

shadowing corrections of gluon recombination to the parton distributions i.e quark

and gluon distribution. Following that Mueller and Qiu (MQ) [3, 5] completed the
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equation numerically using a perturbative calculation of the recombination probabili-

ties in the DLLA, and also formulated the equation for the conversion of gluons to sea

quarks. This is a triumph of great significance as it empowers the GLR-MQ equation

to be applied phenomenologically and thus provides the connection to experiments.

This equation was made widely applicable in order to include the contributions from

more higher order corrections in the Glauber-Mueller formula [3].

In this chapter, we solve the GLR-MQ equation for sea quark distribution in-

corporating the well known Regge like ansatz and investigate the effect of shadowing

corrections on the small-x and moderate-Q2 behaviour of singlet structure function.

Our predictions of x and Q2 dependence of singlet structure function with shadowing

corrections are compared with NMC [6] and E665 [7] experimental data as well with

the NNPDF collaboration [8]. Moreover, we perform a comparison of our predictions

of singlet structure function obtained from nonlinear GLR-MQ equation with those

obtained from linear DGLAP equation to examine the effect of nonlinear or shad-

owing corrections on the behaviour of singlet structure function. We further predict

the logarithmic derivative of the singlet structure function and compare the results

with H1 data [9, 10].

6.2 Formalism

6.2.1 General framework

The nonlinear corrections arising from the recombination of two gluon ladders into

one gluon or a qq̄ pair, modify the evolution equations of sea qurak distribution as

[11]

∂xq(x,Q2)

∂lnQ2
=

∂xq(x,Q2)

∂lnQ2

∣∣∣
DGLAP

− 27

160

α2
S(Q

2)

R2Q2
[xg(x,Q2)]2 +HT. (6.1)

This equation is known as the GLR-MQ evolution equation for sea quark distribution.

Here q(x,Q2) is the quark density and g(x,Q2) is the gluon density. The represen-

tation for the gluon distribution G(x,Q2) = xg(x,Q2) is used. The first term on

the right-hand side is given by standard linear DGLAP equation whereas the term

quadratic in G is the result of gluon recombination into quarks. The negative sign

in front of the non-linear term tames the strong growth of sea quark distribution

generated by the linear term at very small-x and it describes the shadowing correc-

149



tions. HT stands for an additional term revealed by Mueller and Qiu but it is not

given in all respects. Therefore this term is not taken into account in our analysis

presented below. The parameter γ is calculated by Mueller and Qiu in perturba-

tion theory and is found to be γ = 81
16

for Nc = 3. The size of the nonlinear term

crucially depends on the value of the correlation radius R between two interacting

gluons. πR2 is the target area occupied by the gluons. If the gluons originate from

sources which occupy distinct regions in longitudinal coordinate space then R is of

the order of proton radius, i.e. R = 5 GeV−1. In that case recombination probability

is very negligible [12, 13]. On the other hand, a considerable effect of recombination

or shadowing corrections is expected if the gluons are condensed in hot spots [14]

inside the proton, where R is considered to be of the order of the transverse size of

a valence quark, i.e. R = 2 GeV−1.

In the QCD improved parton model approximation, the structure functions are

usually identified by summing quark distributions weighted by squared charges as

usual

F2(x,Q
2) =

∑
i

e2ixqi(x,Q
2) (6.2)

where the sum implies summation over all flavours of quarks and anti-quarks and ei

is the electric charge of a quark of type i. The F2 structure functions measured in

DIS can be written in terms of singlet and non-singlet quark distribution functions

as [15]

F2 =
5

18
F S
2 +

3

18
FNS
2 (6.3)

As the structure function in the small-x region is mainly dominated by the gluon

and sea quark distributions, therefore at small-x the non-singlet contribution can be

neglected. It is reasonable to consider this from the experimental point of view as

well. The H1 Collaboration presents a global fit of their data of the singlet quark

distribution, qS = u + ū + d + d̄ + s + s̄, which determines practically the F2(x,Q
2)

behaviour at small-x in the form xqS(x) = AxB(1− x)C(1 +Dx) where A,B,C and

D are numerical constants at Q2 = 4 GeV2 and x > 2 × 10−4. At x ≤ 10−2, one

can rewrite this expression as xqS(x) = AxB and one may neglect the non-singlet

contribution within a few percent accuracy. Similarly ZEUS Collaboration presented

their data for singlet quark distribution in a similar form xqS(x) = AxB(1− x)C(1+
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D
√
x + Ex) with the numerical constants A,B,C,D and E at Q2 = 7 GeV2 and

x > 0.67 × 10−4. Also in this case one can rewrite the expression in the form

xqS(x) = AxB.

Thus the contribution of the non-singlet part of the structure function can be

ignored in the small-x region and in that situation Eq.(6.1) can be approximated as

∂F S
2 (x,Q

2)

∂lnQ2
=

5

18

∂F S
2 (x,Q

2)

∂lnQ2

∣∣∣
DGLAP

− 5

18

27

160

α2
S(Q

2)

R2Q2
G2(x,Q2), (6.4)

Again the first term of Eq.(6.4), which is the linear DGLAP equation for singlet

structure function, in the leading twist approximation is given by [28]

∂F S
2 (x,Q

2)

∂lnQ2

∣∣∣
DGLAP

=
αs(Q

2)

2π

[
2

3

(
3 + 4 ln(1− x)

)
F S
2 (x,Q

2)

+
4

3

∫ 1

x

dω

1− ω

{
(1 + ω2)F S

2

(x
ω
,Q2

)
− 2F S

2 (x,Q
2)
}

+NF

∫ 1

x

(
ω2 + (1− ω)2

)
G
(x
ω
,Q2

)
dω

]
. (6.5)

6.2.2 Solution of GLR-MQ equation for singlet structure
function and effects of gluon shadowing

Now to solve the GLR-MQ equation for singlet structure function we employ a Regge

like behaviour of singlet structure function As discussed in chapter 5, the Regge

ansatz can successfully describe the behaviour of structure functions at small-x [16].

The Regge theory is supposed to be applicable if x is small enough [17, 18] as long

as Q2 is sufficiently large that a perturbative treatment is possible. The Regge pole

model gives the parametrization of the DIS structure function F2(x,Q
2) at small-x

as F2 ∝ x−λ with λ > 0 [15]. To this end, we take into account a simple form of

Regge like behaviour of singlet structure function as

F S
2 (x,Q

2) = J(Q2)x−λS , (6.6)

where J(Q2) is a function of Q2 and λS is the Regge intercepts for singlet structure

function. According to Regge viewpoint, the high energy or small-x behaviour of both

gluons and sea quarks are controlled by the same singularity factor in the complex

angular momentum plane [16] since the same power is expected for sea quarks and

gluons. Therefore likewise the value of the Regge intercept λG for gluon distribution

function, the values of λS in our analysis is also taken to be 0.5 .
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Again to obtain a solution of the GLR-MQ equation for singlet structure function,

we have to assume a relation between singlet structure function and gluon distribution

function as discussed in chapter 3 and chapter 4. The frequently used relation is [19-

21]

G(x,Q2) = K(x)F S
2 (x,Q

2), (6.7)

with the ad hoc parameter K(x) to be determined from phenomenological analysis.

Now employing the Regge ansatz of Eq.(6.6) for singlet structure function and

using the relation defined by Eq.(6.7) in Eq.(6.4) we arrive at

∂F S
2 (x,Q

2)

∂Q2
= p1(x)

F S
2 (x,Q

2)

ln(Q2/Λ2)
− p2(x)

[
F S
2 (x,Q

2)
]2

Q2 ln(Q2/Λ2)
, (6.8)

The explicit forms of the functions p1(x) and p2(x) are

p1(x) =
5

9β0

[
2

3

(
3 + 4 ln(1− x)

)
+

4

3

∫ 1

x

dω

1− ω

(
{(1 + ω2)ωλS − 2

)
+NF

∫ 1

x

(
ω2 + (1− ω)2

)
ωλSK(x)dω

]
, (6.9)

p2(x) =
27

36

π2
(
K(x)

)2
β2
0R

2
. (6.10)

Here we consider the leading twist approximation of the strong coupling constant

αs(Q
2) = 4π

β0ln(Q2/Λ2) with β0 = 11−2
3
Nf and Nf being the number of active quark

flavours. Eq.(6.8) is a partial differential equation for the singlet structure function

F S
2 (x,Q

2) with respect to the variables x and Q2. This equation can be used to

examine the x-evolution of singlet structure function apart from its conventional use

in Q2-evolution. Solving of Eq.(6.8) we get

F S
2 (x, t) =

tp1(x)

C + p2(x)
∫
tp1(x)−2e−tdt

, (6.11)

which leads us to the solution for the singlet structure function with nonlinear or

shadowing corrections. Here we have use the variables t = ln(Q
2

Λ2 ) for convenience

and C is a constant to be determined from initial boundary conditions. We note

that in the kinematic region 0.6 ≤ Q2 ≤ 30 GeV2 and 10−4 ≤ x ≤ 10−1 the solution

given by Eq.(6.11) is in good agreement with the Regge ansatz of Eq.(6.6) and and

satisfactorily describes the shadowing corrections to the singlet structure function.
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So we restrict our analysis in this kinematic region and observe that the solution

of singlet structure function with the inclusion of shadowing corrections given by

Eq.(6.11) is valid in the region of small-x and moderate values of Q2. However the

solution suggested in Eq.(6.11) loose its validity at large-x and large-Q2 where the

effect of gluon recombination on the QCD evolution is very trivial.

Now we can determine the Q2 and small-x dependence of singlet structure func-

tion from Eq.(6.11) using the appropriate boundary conditions. The physically plau-

sible boundary conditions are

F S
2 (x, t) = F S

2 (x, t0) (6.12)

at t = t0 where t0 = ln
(

Q2
0

Λ2

)
for some lower value of Q2 = Q2

0 and

F S
2 (x, t) = F S

2 (x0, t), (6.13)

at some high x = x0.

The boundary condition (6.12) leads us to

F S
2 (x, t0) =

t
p1(x)
0

C + p2(x)
∫
t0

p1(x)−2e−t0dt0
, (6.14)

where t0 = ln
(

Q2
0

Λ2

)
. From this equation the constant C can be determined by

choosing a suitable input distribution F S
2 (x, t0) at a given value of Q2

0. Now from

Eqs.(6.11) and (6.14) we get the Q2-evolution of shadowing singlet structure function

for fixed x given as

F S
2 (x, t) =

tp1(x)F S
2 (x, t0)

t
p1(x)
0 + p2(x)

[ ∫
tp1(x)−2e−tdt−

∫
t0

p1(x)−2e−t0dt0

]
F S
2 (x, t0)

. (6.15)

This expression gives the Q2-evolution of shadowing singlet structure function at

LO. We can easily compute the dependence of singlet structure function on Q2 for a

particular value of x by choosing an appropriate input distribution at a given value

of Q2
0 using Eq.(6.15). The effect of nonlinear or shadowing corrections to the singlet

structure functions for a set of Q2 can also be studied from this equation.

Similarly, the boundary condition (6.13) yields

F S
2 (x0, t) =

tp1(x0)

C + p2(x0)
∫
tp1(x0)−2e−tdt

, (6.16)
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so that using Eqs. (6.11) and (6.16) we obtain

F S
2 (x, t) =

tp1(x)F S
2 (x0, t)

tp1(x0) +
[
p2(x)

∫
tp1(x)−2e−tdt− p2(x0)

∫
tp1(x0)−2e−tdt

]
F S
2 (x0, t)

. (6.17)

Thus Eq.(6.17) provides us the solution of the GLR-MQ equation for singlet struc-

ture function at small-x for fixed Q2. Using this equation the small-x dependence

of nonlinear singlet structure function can be predicted for a particular value of Q2

taking a convenient input distribution at an initial value of x = x0. Eq.(6.17) fur-

ther helps us to examine the effect of shadowing corrections to the singlet structure

functions at small-x.

6.2.3 Comparative analysis of DGLAP and GLR-MQ equa-
tions for singlet structure function

In this section we find a solution of the linear DGLAP equation (Eq.(6.5)) for singlet

structure function at LO employing the Regge ansatz of Eq.(6.6) and compare it

with the solution of the GLR-MQ equation for singlet structure function discussed

above. This comparison assists us to estimate the effect of shadowing corrections

in our predictions of singlet structure function. Now employing the Regge ansatz of

Eq.(6.6) the solution of Eq.(6.5) is obtained as

F S
2 (x, t) = Dtp1(x), (6.18)

where D is a constant to be fixed by initial boundary condition. The x dependent

function p1(x) is defined in Eq.(6.9). We define

f10 = F S
2 (x, t0) = Dt

p1(x)
0 (6.19)

at t = t0 at some lowe value Q2 = Q2
0. Then Eq.(6.18) and Eq.(6.19) leads us to

F S
2 (x, t) = f10

( t

t0

)p1(x)
. (6.20)

which provides the solution of the linear DGLAP equation for singlet structure func-

tion with the ansatz of Eq.(6.6) and it describes the Q2-evolution of linear singlet

structure function for a fixed value of x provided a suitable input distribution f10 has

been chosen from the initial boundary condition.

Again, defining

f20 = F S
2 (x0, t) = Dtp1(x0) (6.21)
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at some initial higher value x = x0, Eq.(6.18) can be expressed as

F S
2 (x,Q

2) = f20t
p1(x)−p1(x0). (6.22)

Eq.(6.22) is the solution of the linear DGLAP equation for singlet structure function

at small-x with the ansatz of Eq.(6.6) and it describes the small-x behavior of linear

singlet structure function for a particular value of Q2 by choosing an appropriate

input distribution f20 from the initial boundary condition.

Now considering the solutions of the linear DGLAP and nonlinear GLR-MQ

equations respectively we can examine how the gluon recombination processes effect

the linear QCD evolution of singlet structure functions. For this purpose we calculate

the ratio of the solution of nonlinear GLR-MQ equation to that of linear DGLAP

equation for singlet structure function using the Eqs.(6.17) and (6.22)

RFS
2
=

F S
2
GLR−MQ

(x, t)

F S
2
DGLAP

(x, t)
, (6.23)

as a function of variable x for different values ofQ2. From this ratio we can investigate

the effect of shadowing corrections as a consequence of gluon recombination on the

behavior of singlet structure function at small-x. The phenomenological analysis of

Eq.(6.23) is presented in section 3.

6.2.4 Derivative of the singlet structure function with re-
spect to lnQ2

It is very interesting to study the logarithmic derivative of the F2 structure function

with a shadowing corrections interpretation which provides information pertinent to

the Regge analyses of F2 in x and Q2 kinematic domains. We make an attempt to

study the Q2 dependence of ∂F s
2 /∂lnQ

2 at given fixed value of x and examine the

effect of shadowing corrections. There are several methods suggesting the relation

between the scaling violations of F2(x,Q
2) to the gluon density at small-x [22-26].

These methods are based on the fact that at very small-x the structure function

becomes gluon dominated. We use the the following approximate relation between

the gluon density and the scaling violation of F2(x,Q
2) at some point x [26]

∂F S
2

∂lnQ2
=

5αS(Q
2)

9π

∫ 1

x

(
ω2 + (1− ω)2

)
G
(x
ω
,Q2

)
dω, (6.24)
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for four flavours. Since the non-singlet contributions of the structure function can

be neglected in the small-x region, therefore we have considered the F2 structure

function as equivalent to F S
2 . The nonlinear gluon distribution function has a Regge

like behavior

G(x,Q2) = H(Q2)x−λG , (6.25)

in the small-x region as discussed earlier in chapter 5. Thus the function G(x/ω,Q2)

can be expressed as

G
(x
ω
,Q2

)
= ωλGG(x,Q2), (6.26)

Using Eq.(6.24) along with the Eq.(6.26), we can express Eq.(6.4) in terms of gluon

distribution function as

∂F S
2 (x,Q

2)

∂ln(Q2)
=

5αs(Q
2)

9π
M(x)G(x,Q2)− 3α2

s(Q
2)

64R2Q2
G2(x,Q2), (6.27)

with,

M(x) =

∫ 1

x

(
ω2 + (1− ω)2

)
ωλG . (6.28)

Thus from Eq.(6.27) we can determine the effect of shadowing corrections on the

behaviour of the logarithmic derivative of the singlet structure function. For phe-

nomenological analysis of Eq.(6.27) we take the results of the gluon distribution

function G(x,Q2) obtained in chapter 5 of this thesis. Due to the negative nonlinear

term as a result of gluon recombination Eq.(6.27) is expected to predict a slower

growth of ∂F s
2 /∂lnQ

2 towards small-x.

6.3 Result and discussion

We have solved the nonlinear GLR-MQ evolution equation by considering the Regge

like behavior of singlet and gluon structure function and examine the effects of shad-

owing corrections due to gluon recombination processes at small-x to the LO DGLAP

evolution equations. The behavior of singlet structure function at small-x and moder-

ate Q2 is investigated for both at R = 2 GeV−1 and R = 5 GeV−1 from the predicted

solution of the GLR-MQ equation. Our computed values of singlet structure function

with shadowing corrections are compared with the CERN’s NMC [6], Fermilab E665
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Collaboration [7] as well as with those obtained in the NNPDF [8] collaboration. It

is worthwhile to mention here that the NMC and E665 experiments measured the

deuteron structure function F d
2 from which F S

2 can be extracted using the relation

F d
2 = 5

9
F S
2 . We perform our analysis in the kinematic region 0.6 ≤ Q2 ≤ 30 GeV2
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(b) x=0.008
 NMC data
 Our result (R=2 GeV-1)
 Our result (R=5 GeV-1)

Q2 (GeV2)

Figure 6.1: Q2 dependence of singlet structure function with shadowing corrections for R = 2
GeV−1 (solid lines) and R = 5 GeV−1 (dash lines) computed from Eq. (6.15) compared with the
NMC data [6].

and 10−4 ≤ x ≤ 10−1 where the suggested solution of the GLR-MQ equation for sin-

glet structure function given by Eq.(6.11) is found to be legitimate. We consider the

range 0.6 < Q2 < 3.6 GeV2 and 10−4 < x < 0.013 for NMC data, 1 < Q2 < 4 GeV2

and 10−4 < x < 0.01 for E665 data and 1 < Q2 < 27 GeV2 and 10−4 < x < 0.011

for NNPDF data in our phenomenological analysis. To compute the dependence of

structure functions on Q2 we take the input distributions from the data point corre-

sponding to the lowest value of Q2 for a particular range of Q2 under study. On the

other hand, the data point corresponding to the highest value of x of a particular

range of x under consideration are taken as input distribution to determine the x de-

pendence of the structure functions. In the present analysis we consider the function

K(x) = K, where K is a constant parameter, to relate the singlet structure function

and gluon densities as a simplest assumption and find that the best fit results are

obtained in the range 0.28 < K < 1.2 for our entire region of discussion. The vertical

error bars represent the total combined statistical and systematic uncertainties of the

experimental data.

In Figure 6.1 we plot the Q2 dependence of singlet structure function with shad-
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Figure 6.2: A plot showing the Q2 dependence of singlet structure function with shadowing

corrections for R = 2 GeV−1 (solid lines) and R = 5 GeV−1 (dash lines) computed from Eq. (6.15)

compared with the E665 data [7].

owing corrections computed from Eq.(6.15) for R = 2 GeV−1 and R = 5 GeV−1 and

check the compatibility of our predictions with the NMC data at two representative

x = 0.0045 and 0.008 respectively. The solid lines represent the predictions of singlet

structure function for the hot spots with R = 2 GeV−1 whereas the results for R = 5

GeV−1 is shown by the dash lines.

In Figure 6.2 we show the comparison of our predictions of the singlet structure

function for R = 2 GeV−1 and R = 5 GeV−1 obtained from Eq.(6.15) with the

E665 data. Here the predicted values of singlet structure function with shadowing

corrections are plotted against Q2 at some fixed x = 0.0052, 0.00693 and 0.00893

respectively. The solid lines represent the results for R = 2 GeV−1 whereas the dash
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Figure 6.3: Q2 dependence of singlet structure function with shadowing corrections for R = 2
GeV−1 (solid lines) and R = 5 GeV−1 (dash lines) obtained from Eq.(6.15) compared to NNPDF
data [8].

lines represent the results for R = 5 GeV−1.

Similarly, in Figure 6.3 the Q2 dependence of the singlet structure function with

shadowing corrections obtained from Eq.(6.15) for R = 2 GeV−1 and R = 5 GeV−1

are compared with the NNPDF parametrizations. Here the plots are shown for two

values of x, viz. x = 0.0045 and 0.008. The results for R = 2 GeV−1 are depicted by

the solid lines and the results for R = 5 GeV−1 are shown by the dash lines.

On the other hand, Figure 6.4 represents the small-x behavior of singlet structure

function with shadowing corrections computed from Eq.(6.17) for R = 2 GeV−1 and

R = 5 GeV−1 respectively. The consistency of our results are examined with the

NMC data at fixed values of Q2 = 1.25, 1.75 and 2.5 GeV2 respectively. The results

for R = 2 GeV−1 are shown by the solid lines whose those for R = 5 GeV−1 are

shown by the dash lines.

In Figure 6.5 we show the comparison of the small-x behavior of singlet structure

function with shadowing corrections computed from Eq.(6.17) for R = 2 GeV−1 and

R = 5 GeV−1 with E665 data. The comparison is shown for four representative Q2,

viz. Q2 = 1.094, 1.496, 2.046 and 2.799 GeV2 respectively. The solid lines represent

the results for R = 2 GeV−1 whereas the dash lines represent the results for R = 5

GeV−1.

Figure 6.6 shows the plots of singlet structure function with shadowing corrections

computed from Eq.(6.17) for R = 2 GeV−1 and R = 5 GeV−1 vs. x compared with
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Figure 6.4: Small-x behavior of singlet structure function with shadowing corrections for R = 2
GeV−1 (solid lines) and R = 5 GeV−1 (dash lines)from Eq.(6.17) compared to NMC data [6].

the NNPDF data at four representative Q2, viz. Q2 = 4.03, 8.958, 12.242 and 18.808

GeV2 respectively. The solid lines represent the results for R = 2 GeV−1 whereas

the dash lines represent the results for R = 5 GeV−1.

From Figure 6.1 to Figure 6.6 we observe that the obtained results of singlet

structure function with shadowing corrections show the general trend of experimental

data and parametrization. The singlet structure function increases with increasing

Q2 and decreasing x, but this attitude is tamed with respect to the nonlinear terms in

the GLR-MQ equation. The effect of shadowing corrections as a consequence of gluon

recombination processes in our predictions is observed to be very high at the hot-spot

with R = 2 GeV−1 when the gluons are centered within the proton, compared to at

R = 5 GeV−1 when the gluons are disseminated throughout the entire proton.

160



0.000
 0.002
 0.004
 0.006
 0.008


0.25


0.30


0.35


0.40


0.45


0.50


R=2 Gev
-1


R= 5 Gev
-1


 


 


 (a) Q
2
=1.094 GeV
2
  E665 data


 Our Result (R=2 GeV
-1
)


 Our Result (R=5 GeV
-1
)


x


F

 2
S


 (x
,Q


2
 )


 


 


0.000 0.002 0.004 0.006 0.008 0.010
0.25

0.32

0.40

0.48

0.56

  

 

 

R=5 GeV-1

R=2 GeV-1

 E665 data
 Our result (R=2 GeV-1)
 Our result (R=5 GeV-1)

(b) Q2=1.496 GeV2

x

F 2S (x
,Q

2 )

0.000 0.002 0.004 0.006 0.008 0.010
0.32

0.40

0.48

0.56

0.64

  

 

 

R=5 GeV-1

R=2 GeV-1

 E665 data
 Our result (R=2 GeV-1)
 Our result (R=5 GeV-1)

(c) Q2=2.046 GeV2

x

F 2S (x
,Q

2 )

0.000 0.002 0.004 0.006 0.008 0.010
0.28

0.35

0.42

0.49

0.56

0.63

 

 

 

 

R=2 GeV-1

R=5 GeV-1

 E665 data
 Our result (R=2 GeV-1)
 Our result (R=5 GeV-1)

(d) Q2=2.799 GeV2

x

F 2S (x
,Q

2 )

Figure 6.5: Small-x behaviour of singlet structure function with shadowing corrections for R = 2
GeV−1 (solid lines) and R = 5 GeV−1 (dash lines) computed from Eq.(6. 17) compared to E665
data [7].

Moreover, to examine the effect of nonlinear or shadowing corrections to the

singlet structure function in our prediction, we plot the ratio of the solution of

nonlinear GLR-MQ equation to that of the linear DGLAP equation for singlet

structure function in Figure 6.7. The ratio RFS
2

defined in Eq.(6.22) is plotted

against the variable x in the range 10−4 ≤ x ≤ 10−2 for five representative val-

ues Q2 = 4.03, 5.675, 8.958, 12.242 and 18.808 GeV2 respectively. We observe that as

x grows smaller the GLR-MQ/DGLAP ratio for singlet structure function decreases

which implies that the effect of nonlinearity increases towards small-x due to gluon

recombination. We also observe that towards smaller values of Q2 the value of the

ratio goes smaller.
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Figure 6.6: Small-x behavior of singlet structure function with shadowing corrections for R = 2
GeV−1 (solid lines) and R = 5 GeV−1 (dash lines) computed from Eq.(6.17) compared to NNPDF
data [8].

In Figure 6.8 we show a plot of logarithmic derivative of the singlet structure

function obtained at the hot-spot point R = 2 GeV−1 from Eq.(6.27) vs. Q2 at three

fixed values of x = 0.0005, 0.005 and 0.008 respectively. We compare our results

with the H1 [9, 10] data. The corresponding values of G(x,Q2) are obtained from

Eq.(5.15) of chapter 5 using the MRST2001LO [26] input gluon parametrization.

Similarly, we show a plot of logarithmic slop of the singlet structure function for a

set of x values in Figure 6.9 at two different bins in Q2, viz. Q2 = 2.2 and 7.4 GeV2

respectively. Here also we check the consistency of our results with the H1 [9, 10]

data. The corresponding values of G(x,Q2) are obtained from Eq.(5.17) of chapter

5 using the MRST2001LO [27] input gluon parametrization. We observe that the

derivative of the singlet structure function with respect to lnQ2 has a tamed behavior
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Figure 6.8: A plot of the derivative of the singlet structure function with respect to ln(Q2) vs.
Q2 compared with the H1 data [9, 10] at x = 0.0005, 0.005 and 0.008 respectively.
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Figure 6.9: A plot of the derivative of the singlet structure function with respect to ln(Q2) vs. x
compared with the H1 data [9, 10] at Q2 = 2.2 and 7.4 GeV2.

due to gluon recombination as x grows smaller. It can be easily seen from the figure

that the H1 data shows a steep rise of the logarithmic derivative of the structure

function towards small-x, however this steep behavior is observed to be tamed for

x ≤ 10−4. This tamed behaviour is correlated with the shadowing corrections as a

result of gluon recombination at very small-x. It is very interesting to note that our

results obtained in the GLR-MQ framework are comparable with the H1 data in the

small-x region.

6.4 Summary

To summaries, we solve the nonlinear GLR-MQ equation for sea quark distribution

function in leading twist approximation incorporating the well known Regge ansatz

and investigate the effect of nonlinear or shadowing corrections arises due to the gluon

recombination processes on the behavior of singlet structure function at small-x and

moderate-Q2. We note that the solution of the GLR-MQ equation for singlet struc-

ture function with shadowing corrections suggested in this work is found to be valid

only in the kinematic domain 0.6 ≤ Q2 ≤ 30 GeV2 and 10−4 ≤ x ≤ 10−1, where the

gluon recombination processes play an important role on the QCD evolution. Our

predictions of singlet structure function is found to show the general trend of exper-

imental data and parametrization, nevertheless with the inclusion of the nonlinear

terms, this behaviour of singlet structure function is slowed down towards small-x
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leading to a restoration of the Froissart bound. Moreover the effect of shadowing

corrections on the behaviour of singlet structure function with decreasing x become

significant at the hot spot with R = 2 GeV−1 when the gluons and the sea quarks

are assumed to condensed in a small region within the proton. The predictions of

the GLR-MQ/DGLAP ratio for F S
2 (x,Q

2) also indicate that the gluon recombina-

tion processes become significant towards smaller values of x and Q2 . Moreover our

results show that the behavior of the derivative of the singlet structure function with

respect to lnQ2 is consistent with the H1 experimental data. Our results show that

in the small-x region the logarithmic derivative of the singlet structure function has

a tamed behavior related to shadowing corrections due to gluon recombination.
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Chapter 7

Comparative Analysis of Various
Nonlinear Evolution Equations

7.1 Introduction

The growth of total hadronic cross sections at very high energies is one of the most

challenging problems of QCD and accordingly the study of the high density QCD

turns out to be the center of intensive studies in the last few years. The attempts

to understand the aspects of the higher twist phenomena led to many different kinds

of model in the past times. The corrections of the higher order QCD effects, which

suppress or shadow the growth of the parton densities, leading to a possible restora-

tion of the Froissart bound on physical cross-section in the very small-x region are

at the onset accounted for by Gribov, Levin and Ryskin, and Mueller and Qiu in

the GLR-MQ [1-3] equations. Several other nonlinear evolution equations are pro-

posed in later times reporting the corrections of the gluon recombination to the

linear DGLAP [4-6] and BFKL [7-9] evolutions, viz. the Modified-DGLAP (MD-

DGLAP) [10, 11], Balitsky-Kovchegov (BK) [12, 13], Modified-BFKL (MD-BFKL)

[14] and Jalilian-Marian-Iancu-McLerran-Weigert-Leonidov-Kovner (JIMWLK) [15-

17] equations. The nonlinear equations viz. Modified-BFKL (MD-BFKL), BK and

JIMWLK are based on BFKL evolution, whereas, the MD-DGLAP equation is based

on DGLAP evolution. The BK and the MD-DGLAP equations are the most widely

studied among these . The GLR-MQ equation takes the double leading logarithmic

approximation (DLLA) for both Q2 and 1/x, keeping only the ln(Q2/Λ2) ln(1/x) fac-
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tor in the solutions of the evolution equation, whereas, the MD-DGLAP equation is

derived under the leading logarithmic LL(Q2) approximation. Unlike the GLR-MQ

equation, the MD-DGLAP equation sums the Feynman diagrams in the framework of

the time-ordered perturbation theory (TOPT) [18] instead of using the AGK cutting

rule [19]. Moreover, apart from the shadowing corrections, the MD-DGLAP equation

also takes into account the antishadowing effects which balance the momentum lost in

the shadowing process. The antishadowing corrections may change the predictions of

the GLR-MQ equations. On the other hand, the BK equation is an upgraded version

of the GLR-MQ equation and it determines the saturation of parton densities at very

small-x. The BK equation considers the more precise triple-pomeron vertex [20, 21]

and can be used for the non-forward amplitude. The BK equation is obtained in the

leading ln(1/x) approximation of perturbative QCD, i.e. it sums all contributions of

the order (αs ln(1/x))
n.

In this chapter we present a comparative analysis of the GLR-MQ equation with

the MD-DGLAP and BK equations. Here the gluon distribution function obtained

from the semi analytical solution of the GLR-MQ equation discussed in chapter 5 are

compared with the results of MD-DGLAP and BK equations in the region of small-x.

To compare our predictions in the GLR-MQ approach with those of MD-DGLAP and

BK equations we have used the results of Ref.[22] and Ref.[23] respectively where the

numerical analysis of these equations are presented.

7.2 Formalism

The GLR-MQ equation for the gluon distribution function can be expressed as [1-3,

24]

∂G(x,Q2)

∂lnQ2
=

∂G(x,Q2)

∂lnQ2

∣∣∣
DGLAP

− 81

16

α2
s(Q

2)

R2Q2

∫ 1

x

dω

ω

[
G
(x
ω
,Q2

)]2
, (7.1)

In chapter 5 we have solved this equation semi analytically and investigated the effect

of shadowing corrections on the behaviour of small-x and Q2-dependence of gluon

distribution function using a simple form of Regge like ansatz. Here we have used

these results to perform a comparative analysis of the small-x dependence of gluon

distribution function obtained in the GLR-MQ approach with the results of MD-

DGLAP and BK equations respectively. For convenience, we rewrite here some of
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the important results of chapter 5.

By incorporating the Regge like behaviour of the gluon distribution function,

i.e., G(x,Q2) = H(Q2)x−λG with the Regge intercept λG, the solution of Eq.(7.1) is

obtained as

G(x, t) =
tγ1(x)

C + γ2(x)
∫
tγ1(x)−2e−tdt

. (7.2)

Here t = ln(Q2/Λ2) and the constant C is determined from initial boundary condi-

tions. So we use the physically plausible boundary condition at some high x = x0 in

Eq.(7.2) and obtain the x dependence of the gluon distribution function as

G(x, t) =
tγ1(x)G(x0, t)

tγ1(x0) +
[
γ2(x)

∫
tγ1(x)−2e−tdt− γ2(x0)

∫
tγ1(x0)−2e−tdt

]
G(x0, t)

. (7.3)

This equation helps us to predict the effect of shadowing corrections to small-x be-

haviour of nonlinear gluon distribution function by picking out suitable input dis-

tribution at an initial value of x = x0. The Regge type solution of the GLR-MQ

equation is found to be valid in the kinematic region 1 ≤ Q2 ≤ 30 GeV2 as well as

10−5 ≤ x ≤ 10−2 as discussed in chapter 5.

The MD-DGLAP equation [10, 11] derived by Zhu and Ruan sums up all possible

twist-4 cut diagrams in the LL(Q2) approximation and describes the corrections of

parton recombination to the QCD evolution equation. For gluon distribution the

MD-DGLAP equation is given by [22]

dxG(x,Q2)

d ln(Q2)
= Pgg ⊗G(x,Q2) + Pgq ⊗ S(x,Q2)

+
α2
sk

Q2

∫ x

x/2

dx1xx1G
2(x1, Q

2)
∑
i

P gg→g
i (x1, x)

−α2
sk

Q2

∫ 1/2

x

dx1xx1G
2(x1, Q

2)
∑
i

P gg→g
i (x1, x) (7.4)

where Pgg and Pgq are the evolution kernels of the linear DGLAP equation. The

explicit form of the recombination function is∑
i

P gg→g
i (x1, x) =

27

64

(2x1 − x)(−136xx3
1 − 64x1x

3 + 132x2
1x

2 + 99x4
1 + 16x4)

xx5
1

. (7.5)

The nonlinear coefficient k is based on the definition of the double parton distribution

and the geometric distributions of partons inside the target. The positive third term
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on the right-hand side represents the anti-shadowing effect, whereas the negative

fourth term is the result of the shadowing correction.

In Ref.[22] an analysis of MD-DGLAP equation is presented by W. Zhu et al.,

where the parton distributions in the small-x region in the nucleus and free pro-

ton are numerically predicted considering the GRV-like input distributions with and

without anti-shadowing corrections. Here the Q2 and x behaviour of the parton

distributions at high gluon density are studied in LL(Q2) approximation using the

MD-DGLAP equation. The initial gluon density in the GRV98LO set is used as the

input distribution at Q2
0 = 0.34 GeV2, i.e.,

xg(x,Q2
0) = 17.47x1.6(1− x)3.8, (7.6)

with the representation G(x,Q2) = xg(x,Q2). The results obtained in Ref.[22] show

that the growth of the predicted gluon distribution in the proton toward small-x

is slower than ln(1/x) for x < 10−6 which implies that the gluon recombination at

twist 4 level suppresses the rapid growth of gluon densities with decrease in x. We

consider the results of Ref.[22] for a comparative analysis of our predictions of gluon

distribution obtained from the solution of GLR-MQ equation with the MD-DGLAP

results.

The BK equation [12, 13] is derived by Balitsky and Kovchegov in the LL(1/x)

approximation of perturbative QCD, i.e. it sums all contributions of the order

(αs ln(1/x))
n. This equation is written in coordinate space in terms of the dipole

scattering amplitude N . This equation provides the basic indication of the fact that

the correct degrees of freedom at high energies in QCD are colour dipoles. It provides

an explanation of the more specific triple-pomeron vertex [20, 21] and can be utilized

for the non-forward amplitude. The BK equation reads

∂N(r, Y ; b)

∂Y
=

ᾱs

2π

∫
d2r′r2

(r − r′)2r′2

×
[
2N
(
r′, Y ; b+

1

2
(r − r′)

)
−N(r, Y ; b)

−N
(
r′, Y ; b− 1

2
(r − r′)

)
N
(
r − r′, Y ; b− 1

2
r′
)]
, (7.7)

where ᾱs = (αsNc)/π, N(r, Y ; b) is the scattering amplitude of interaction for the

dipole with the size r and rapidity Y = ln(1/x), at impact parameter b. In the

large Nc limit CF = Nc/2, where Nc is the number of colors. Eq.(7.7) implies
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that the dipole of size r decays in two dipoles of sizes r′ and r − r′ which interact

with the target. The linear part of Eq.(7.7) represents the conventional LO BFKL

equation [7-9]. The non-linear term accounts for the simultaneous interaction of two

produced dipoles with the target and the high twist contributions. A fascinating

characteristics of the BK equation is that its solution predicts a limiting form of the

scattering amplitude resulting in parton saturation. For small dipole densities N the

quadratic term in the brackets is negligible and Eq.(7.7) reduces to the conventional

BFKL equation, whereas, sauration is reached when N = 1.

In Ref.[23] the solution of the LO BK equation is reported where the authors

include the impact parameter dependence of the amplitude at initial values of rapidity

Y = ln(1/x) and find the amplitude in each point of impact parameter space. The

gluon density is related to the dipole amplitude as

G(x,Q2) =
4

π3

∫ 1

x

dx′

x′

∫ ∞

4/Q2

dr2

r2

∫
d2b2N(r, x′; b), (7.8)

where the representation G(x,Q2) = xg(x,Q2) is used. The calculated results of

the gluon density function in Ref.[23] are found to be in good agreement with the

GRV parametrization. Here we use the results of Ref.[23] to perform a comparative

analysis of our results of gluon distribution obtained from the solution of GLR-MQ

equation with those of the BK equation.

7.3 Result and discussion

The x dependence of gluon distribution function with shadowing corrections calcu-

lated in the framework of GLR-MQ equation is compared with the results of MD-

DGLAP and BK equations taken from the Refs.[22] and [23] respectively. We perform

these comparisons in the kinematic region 1 ≤ Q2 ≤ 30 GeV2 and 10−5 ≤ x ≤ 10−2

as our predicted solution of GLR-MQ equation is found to be valid only in this do-

main. In Figure 7.1 the gluon distribution function calculated from Eq.(7.3) at the

hot spots R = 2 GeV−1 are plotted as a function of x for fixed values of Q2=2.2, 3, 5,

10 and 20 GeV2 respectively. Our results manifest that the gluon density increases

with the decreasing x but this behavior is tamed as x grows smaller due to nonlinear

or shadowing corrections. For each Q2 our predictions obtained in the framework of

GLR-MQ equation are in very good agreement with the results of the BK equation.
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Moreover, concerning the shape of the curves we observe that the shapes of the curves

found in the GLR-MQ approach are very similar to the shape of the BK curves. On

the other hand, we note that our predictions do not match with the results of MD-

DGLAP equation, as the MD-DGLAP curves have opposite concavities in the region

of x > 10−3. However in the region x ≤ 10−3 the shape of our results is almost

similar to that of the MD-DGLAP equation with a completely different slope. The

MD-DGLAP equation predicts a steeper gluon distribution towards small-x which

implies the presence of strong antishadowing effect in the results of MD-DGLAP

equation, whereas our predictions show significant effect of shadowing corrections as

a consequence of gluon recombination processes towards small-x which results in a

flatter gluon distribution.

7.4 Summary

To summarize, the gluon distribution function obtained in the framework of nonlinear

GLR-MQ equation in leading twist approximation is compared with the MD-DGLAP

and BK equations. We make the comparison in the kinematic domain 1 ≤ Q2 ≤ 30

GeV2 and 10−5 ≤ x ≤ 10−2 as the predicted solution of GLR-MQ equation is found

to be valid only in this region. It is a very captivating finding that the predictions

of nonlinear gluon density obtained from the GLR-MQ equation are very compatible

with the results of the BK equation. Our results of nonlinear gluon density are

also found to almost comparable with those of the MD-DGLAP equation but with

a completely different slope. The MD-DGLAP equation predicts a steeper gluon

distribution due to a relatively stronger antishadowing effect, whereas a flatter gluon

distribution is observed in our predictions due to significant shadowing corrections at

small-x. In this work we have not considered other nonlinear equations such as the

JIMWLK equation for comparative analysis with the GLR-MQ equation, owing to

the fact that the JIMWLK equation deals with the process dependent unintegrated

parton distributions and the cross sections whereas the GLR-MQ equation considers

the shadowing in the process independent parton distributions.

174



1x10
-5
 1x10
-4
 10
-3
 10
-2

10
0


10
1


10
2


10
3


(a) Q
2
=2.5 GeV
2


 


 


G
(x

,Q

2
 )


x


 MD-DGLAP

 BK


 Our result (R=2 GeV
-1
)


1x10
-5
 1x10
-4
 10
-3
 10
-2

10
0


10
1


10
2


10
3


 


 
x


G
(x

,Q

2
 )


(b) Q
2
=5 GeV
2
  MD-DGLAP

 BK


 Our result (R=2 GeV
-1
)


 


 


1x10
-5
 1x10
-4
 10
-3
 10
-2

10
0


10
1


10
2


10
3


 
 


 


 


 MD-DGLAP

 BK


 Our result (R=2 GeV
-1
)


(c) Q
2
=10 GeV
2


x


G
(x

,Q

2
 )


1x10
-5
 1x10
-4
 10
-3
 10
-2

10
0


10
1


10
2


10
3


 

(d) Q
2
=12 GeV
2
  MD-DGLAP


 BK


 Our result (R=2 GeV
-1
)

G

(x
,Q


2
 )


 


 


x


1x10
-5
 1x10
-4
 10
-3
 10
-2

10
0


10
1


10
2


10
3


 


 


 


 


(e) Q
2
=15 GeV
2
  MD-DGLAP

 BK


 Our result (R=2 GeV
-1
)


x


G
(x

,Q

2
 )


1x10
-5
 1x10
-4
 10
-3
 10
-2

10
0


10
1


10
2


10
3


 


 


(f) Q
2
=20 GeV
2
  MD-DGLAP

 BK


 Our result (R=2 GeV
-1
)


x


G
(x

,Q

2
 )


 


 


Figure 7.1: Comparison of the gluon distribution function obtained from Eq.(7.3) in the GLR-MQ
approach with the MD-DGLAP results [22] as well as the BK results [23].
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Chapter 8

Conclusion and Outlook

In this thesis we have examined the behaviour of DIS structure functions in the

framework of both linear DGLAP and non-linear GLR-MQ evolution equations at

small-x. The small-x behavior of quark and gluon densities, where x is the Bjorken

scaling variable, is one of the challenging issues of QCD. A key discovery of the

past years is the prevalent role of gluons with very small fractional momentum x

in nucleons when observed by a high energy probe. On that account, the study of

lepton-nucleon DIS or in particular the determination of the gluon density in the

region of small-x is of great significance. The increase of energy generates a rapid

growth of the gluon density in the limit x → 0 which is eventually expected to

saturate in order to preserve unitarity. Accordingly, the corrections of the higher

order QCD effects, which suppress or shadow the growth of the parton densities,

have been rigorously studied in the last few years.

The linear DGLAP evolution equations are the standard and the basic theoretical

tools to explore the scale dependence of the PDFs and ultimately the DIS structure

functions are. In part I of this thesis we have solved the DGLAP equations for the sin-

glet and non-singlet structure functions, as well as the gluon distribution function at

LO, NLO and NNLO respectively in an analytical approach by using the Taylor series

expansion method. The Taylor series expansion transforms the integro-differential

DGLAP equations into first order partial differential equations which are much easier

to solve. The resulting equations are then solved by the Lagrange’s auxiliary method

to obtain Q2 and x evolutions of the singlet and non-singlet structure functions and

the gluon distribution functions. We have also calculated the Q2 and x evolutions of
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deuteron structure function as well as the Q2 evolution of proton structure function

from the solutions of the singlet and non-singlet structure functions. We compare

our predictions of deuteron and proton structure function with the NMC data, E665

data, H1 data as well as with the results of NNPDF parametrization. Our results

show that at fixed x the structure functions increase with increasing Q2 whereas at

fixed Q2 the structure functions decrease as x decreases which is in agreement with

perturbative QCD fits at small-x. We further observe that our computed results

can explain the general trend of data in a decent manner in the kinematic region

10−3 < x < 10−1 and 0.5 ≤ Q2 ≤ 40 GeV2. On the other hand, our results of gluon

distribution function obtained by solving DGLAP equation are compared with the

GRV1998NLO, MRST2004NNLO, MSTW2008NNLO and JR09NNLO global QCD

analysis as well as with the BDM model. The obtained results can be described

within the framework of perturbative QCD. We perform our analysis in the x and

Q2 range, viz. 10−4 ≤ x ≤ 0.1 and 5 ≤ Q2 ≤ 110 GeV2 and find that in this domain

our predictions are comparable with different global analysis of parton distributions.

It is observed from our phenomenological analysis that the inclusion of the NNLO

contributions provides better agreement of our results with the experimental data

and parametrizations. The Taylor series expansion is a very feasible and convenient

method for analytical solution of DGLAP equations. We have considered some nu-

merical parameters to obtain the solution of DGLAP equations, however the number

of parameters are less compared to the numerical. Moreover, this approach also en-

ables us to calculate the x-evolution of deuteron structure function in addition to

the Q2-evolution. Even though various numerical methods are available in order to

obtain the solution of DGLAP evolution equations, but it is always interesting to

obtain an analytical solution and in this regard the Taylor series expansion method

is a good alternative.

In the very small-x region the growth of the gluon distribution is incredibly

enunciated. Accordingly at small-x the likelihood of interaction between two gluons

can no longer be overlooked and therefore, gluon recombination will be as important

as gluon splitting. So the standard linear DGLAP evolution equation will have to

be modified in order to include the the modifications due to the correlations among

initial gluons to the evolutionary amplitude. A traditional tool in this research is the
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GLR-MQ equation that takes into account the nonlinear corrections arising from the

recombination of two gluon ladders into one gluon. In part II of this thesis we have

made an deliberate attempt to explore the higher order QCD effects of the gluon

recombination processes at very small-x in the framework of nonlinear GLR-MQ

equation. We have solved the GLR-MQ equation in the leading twist approxima-

tion in a semi-analytical approach by employing the well-known Regge-like ansatz

with considerable phenomenological success. We have investigated the behavior of

the gluon distributions in the vicinity of saturation region. Our resulting gluon dis-

tributions are compared with different global QCD fits to the parton distribution

functions, viz. GRV1998LO, GJR2008LO, MRST2001LO, MSTW2008LO, NNPDF,

HERAPDF0.1, CT10 as well as with the H1 experimental data, and are found to

be quite compatible. Furthermore, we present a comparative analysis of our com-

puted results with the results of the EHKQS and BZ models. We have examined

how the inclusion of nonlinear effects changes the behavior of gluon density and it

is interesting to observe that although the gluon distribution increases with increas-

ing Q2 and decreasing x, but the rapid growth of gluon densities is tamed due to

shadowing corrections as x grows smaller. This indicates that the gluon distributions

unitarize leading to the restoration of Froissart bound in the small-x region. This

tamed behaviour of gluon density is observed to be more the the hot-spots when the

correlation radius between two interacting gluons is of the order of the transverse size

of a valance quark, i.e. R = 2 GeV−1. We have further checked the effect of shadow-

ing corrections in our results by comparing the gluon distributions obtained in the

nonlinear GLR-MQ approach with those obtained in the linear DGLAP approach.

Careful investigation of our results indicates that the nonlinear effects or shadowing

corrections, emerged as a result of recombination of two gluon ladders, play a signifi-

cant role on QCD evolution for gluon distribution in the kinematic region of small-x

(10−5 ≤ x ≤ 10−2) and moderate Q2 (1 ≤ Q2 ≤ 30 GeV2).

We have also obtained a semi analytical solution of the GLR-MQ equation for

sea quark distribution in leading twist approximation using the Regge like ansatz.

The solution of the GLR-MQ equation for singlet structure function with shadowing

corrections is found to be legitimate in the kinematic domain 10−4 ≤ x ≤ 10−1 and

0.6 ≤ Q2 ≤ 30 GeV2. We have examined the effect of shadowing corrections on the
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small-x and moderate-Q2 behaviour of singlet structure function and compared our

predictions with the NMC and E665 experimental data as well with the NNPDF

collaboration. Our predictions are found to show the general trend of experimental

data and parametrization, nevertheless with the inclusion of the nonlinear terms, the

behaviour of singlet structure function is slowed down towards small-x leading to a

restoration of the Froissart bound. Moreover we note that in the small-x region the

logarithmic derivative of the singlet structure function has a tamed behavior related

to shadowing corrections due to gluon recombination.

We have further made a comparative analysis of our predictions obtained in the

framework of GLR-MQ equation in a semi-analytical approach with the results of the

MD-DGLAP and BK equations. It is very fascinating to note that the predictions

of nonlinear gluon density obtained from the GLR-MQ equation are in a very good

agreement with the results of the BK equation. Our results are also found to almost

comparable with those of the MD-DGLAP equation but with a completely different

slope. The MD-DGLAP equation predicts a steeper gluon distribution caused by

strong antishadowing effect, whereas a flatter gluon distribution is observed in our

predictions due to significant shadowing corrections at small-x.

As a future prospect, this work encourages a more detailed study of the properties

of the high density parton system. The GLR-MQ equation only includes the first

non-linear term reporting the recombination of two gluon ladders into one. Therefore

although it predicts saturation in the asymptotic regime, but its validity does not

extend to very high density regime where significant contributions from the higher

twist effects should be taken into account. Moreover, the suggested Regge type

solution of the GLR-MQ equation has a limited range of validity. Nevertheless for

more reliable predictions beyond this range, towards much smaller-Q2 or smaller-x,

further analysis is required incorporating the evolution dynamics at higher order.

It will be interesting to study the other nonlinear equations relevant at high gluon

density.
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Appendices

Appendix A

The explicit forms of the functions Ai(x), Bi(x) and Ci(x) (where i=1,2,3,4) are

A1(x) = 2x+ x2 + 4 ln(1− x), (1)

A2(x) = x− x3 − 2x ln(x), (2)

A3(x) = 2Nf

(2
3
− x+ x2 − 2

3
x3
)
, (3)

A4(x) = 2Nf

(
− 5

3
x+ 3x2 − 2x3 +

2

3
x4 − x ln(x)

)
, (4)

B1(x) = x

∫ 1

0

f(ω)dω −
∫ x

0

f(ω)dω +
4

3
Nf

∫ 1

x

Fqq(ω)dω, (5)

B2(x) = x

∫ 1

x

[
f(ω) +

4

3
NfF

s
qg(ω)

]1− ω

ω
dω, (6)

B3(x) =

∫ 1

x

F S
qg(ω)dω, (7)

B4(x) = x

∫ 1

x

1− ω

ω
F S
qg(ω)dω, (8)

where the functions f(ω), Fqq(ω) and F S
qg(ω) are defined in Appendix B. Again,

C1(x) = Nf

∫ 1−x

0

ωdω

1− ω
R1(ω), (9)

C2(x) = Nf

∫ 1−x

0

ωxdω

(1− ω)2
R1(ω), (10)

C3(x) = Nf

∫ 1−x

0

ωxdω

(1− ω)2
R1(ω), (11)

C4(x) = Nf

∫ 1−x

0

ωxdω

(1− ω)2
R2(ω), (12)
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with,

R1(ω) = {ln(ω) ln(1− ω)[−173.1 + 46.18 ln(1− ω)] + 178.04 ln(1− ω)

+ 6.892 ln2(1− ω) +
40

27
[ln4(1− ω)− 2 ln3(1− ω)]}+ ω{ln(ω)

(−163.9(1− ω)−1 − 7.208(1− ω)
)
+ 151.49 + 44.51(1− ω)

−43.12(1− ω)2 + 4.82(1− ω)3}+ ω2{−5.926 ln3(ω)

−9.751 ln2(ω)− 72.11 ln(ω) + 177.4 + 392.9(1− ω)

−101.4(1− ω)2 − 57.04 ln(1− ω) ln(ω)− 661.6 ln(1− ω)

+131.4 ln2(1− ω)− 400

9
ln3(1− ω) +

160

27
ln4(1− ω)

−506.0(1− ω)−1 − 3584

27
(1− ω)−1 ln(1− ω)}+Nfω{1.778 ln2(ω)

+5.944 ln(ω) + 100.1− 125.2(1− ω) + 49.26(1− ω)2

−12.59(1− ω)3 − 1.889 ln(1− ω) ln(ω) + 61.75 ln(1− ω)

+17.89 ln2(1− ω) +
32

27
ln3(1− ω) +

256

81
(1− ω)−1} (13)

R2(ω) = {100
27

ln4(ω)− 70

9
ln3(ω)− 120.5 ln2(ω) + 104.42 ln(ω) + 2522

−3316(1− ω) + 2126(1− ω)2 − 252.5(1− ω) ln3(1− ω)

+ ln(ω) ln(1− ω)
(
1823− 25.22 ln(1− ω)

)
+ 424.9 ln(1− ω)

+881.5 ln2(1− ω)− 44

3
ln3(1− ω) +

536

27
ln4(1− ω)− 1268.3

(1− ω)−1 − 896

3
(1− ω)−1 ln(1− ω)}+Nf{

20

27
ln3(ω) +

200

27
ln2(ω)

−5.496 ln(ω)− 252.0 + 158.0(1− ω) + 145.4(1− ω)2

−139.28(1− ω)3 − 98.07(1− ω) ln2(1− ω) + 11.70(1− ω)

× ln3(1− ω)− ln(ω) ln(1− ω)(53.09 + 80.616 ln(1− ω))

−254.0 ln(1− ω)− 90.80 ln2(1− ω)− 376

27
ln3(1− ω)

−16

9
ln4(1− ω) +

1112

243
(1− ω)−1} (14)

183



Appendix B

The functions involved in the DGLAP equations for singlet and non-singlet struc-

ture functions at NLO are

f(ω) = C2
F [PF (ω)− PA(ω)] +

1

2
CFCA[PG + PA(ω)]+CFTRNfPNf

(ω), (15)

F S
qq(ω) = 2CFTRNfFqq(ω), (16)

F S
qg(ω) = CFTRNfF

1
qg(ω) + CGTRNfF

2
qg(ω) (17)

where,

Fqq(ω) =
20

9ω
− 2 + 6ω − 56

9
ω2 +

(
1 + 5ω +

8

3
ω2
)
ln(ω)−(1 + ω) ln2(ω), (18)

F 1
qg(ω) = 4− 9ω − (1− 4ω) ln(ω)− (1− 2ω) ln2(ω) + 4 ln(1− ω)

+
[
2 ln2(

1− ω

ω
)− 4 ln(

1− ω

ω
)− 2

3
π2 + 10

]
P 1
qg(ω), (19)

F 2
qg(ω) =

182

9
+

14

9
ω +

40

9ω
+
(136

3
ω − 38

3

)
ln(ω)− 4 ln(1− ω)

−(2 + 8ω) ln2(ω) +
[
− ln2(ω) +

44

3
ln(ω)− 2 ln2(1− ω)

+4 ln(1− ω) +
π2

3
− 218

3

]
Pqg(ω)

+2Pqg(−ω)

∫ 1
1+ω

ω
1+ω

dz

z
ln

1− z

z
, (20)

Here, the Casimir operators of the color group SU(3) are defined as CG ≡ NC = 3,

CF =
N2

c − 1

2Nc

=
4

3
and TR = 1

2
.

PNf
(ω) =

2

3

[1 + ω2

1− ω
(− lnω − 5

3
)− 2(1− ω)

]
, (21)

PF (ω) = −2(1 + ω2)

(1− ω)
ln(ω) ln(1− ω)−

( 3

1− ω
+ 2ω

)
lnω−1

2
(1 + ω) lnω

+
40

3
(1− ω), (22)

PG(ω) =
(1 + ω2)

(1− ω)

(
ln2(ω) +

11

3
ln(ω) +

67

9
− π2

3

)
− 1

2
(1 + ω) lnω

+
40

3
(1− ω), (23)
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PA(ω) =
2(1 + ω2)

(1 + ω)

∫ ( 1
1+ω

)

( ω
1+ω

)

dk

k
ln
(1− k

k

)
+ 2(1 + ω) ln(ω)+4(1− ω). (24)

Appendix:C

The functions involved in the DGLAP equations for singlet and non-singlet struc-

ture functions at NNLO are given below.

The three-loop quark-quark splitting function is

P 2
qq = P 2

NS + P 2
PS, (25)

The third-order pure-singlet contribution to the quark-quark splitting function

is

P
(2)
PS(x) ≃

[
Nf (−5.92L3

1 − 9.751L2
1 − 72.11L1 + 177.4 + 392.9x− 101.4x2

−57.04L0L1 − 661.61L0 + 131.4L2
0 −

400

9
L3

0 +
160

27
L4
0 − 506.0x−1

−3584

27
x−1L0) +N2

f (1.778L
2
1 + 5.944L1 + 100.1− 125.2x+ 49.26x2

−12.59x3 − 1.889L0L1 + 61.75L0 + 17.89L2
0 +

32

27
L3
0 +

256

81
x−1)

]
(1− x),

(26)

with L0 = ln(x), L1 = ln(1− x).

The non-singlet splitting function calculated upto third order is given by

P
(2)
NS(x) = Nf

[
{L1(−163.9x−1 − 7.208x) + 151.49 + 44.51x− 43.12x2

+4.82x3}(1− x) + L0L1(−173.1 + 46.18L0) + 178.04L0

+6.892L2
0 +

40

27
(L4

0 − 2L3
0)
]
. (27)

The three-loop quark-gluon splitting function is

P (2)
qg (x) ≃ Nf

(100
27

L4
1 −

70

9
L3
1 − 120.5L2

1 + 104.42L1 + 2522− 3316x+ 2126x2

+L0L1(1823− 25.22L0)− 252.5xL3
0 + 424.9L0 + 881.5L2

0 −
44

3
L3
0

+
536

27
L4
0 − 1268.3x−1 − 896

3
x−1L0

)
+N2

f

(20
27

L3
1 +

200

27
L2
1 − 5.496L1

−252.0 + 158.0x+ 145.4x2 − 98.07xL2
0 + 11.70xL3

0 − L0L1(53.09

+80.616L0)− 254.0L0 − 90.80L2
0 −

376

27
L3
0 −

16

9
L4

0 +
1112

243
x−1
)
.

(28)
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Appendix:D

The explicit forms of the functions Ag
i (x), B

g
i (x) (i=1,2,3,4) and Cg

i (x) (i=1,2)

are

Ag
1(x) = −11

6
+ 2x− 1

2
x2 +

1

3
x3 − ln(x), (29)

Ag
2(x) = 1 +

4

3
x− 3x2 + x3 − 1

4
x4 + 2x ln(x). (30)

Ag
3(x) =

2

9
(−3

2
+ 2x− 1

2
x2 − 2 ln(x)), (31)

Ag
4(x) =

2

9
(2 +

1

2
x− 3x2 +

1

2
x3 + 4x ln(x), (32)

Bg
1(x) = −52

3
ln(x), (33)

Bg
2(x) = −52

3
(1− x+ x ln(x)), (34)

Bg
3(x) =

∫ 1

x

A(ω)dω, (35)

Bg
4(x) = x

∫ 1

x

1− ω

ω
A(ω)dω, (36)

Cg
1 (x) =

∫ 1

x

P 2
gg(ω)dω, (37)

Cg
2 (x) = x

∫ 1

x

1− ω

ω
P 2
gg(ω). (38)

Here, the functions A(ω) and P 2
gg(ω) are defined in Appendices E and F respectively.

Appendix:E

The functions involved in the DGLAP equations for gluon distribution functions

at NLO are

P 1
gg(ω) = CFTF (−16 + 8z +

20

3
z2 +

4

3
z − (6 + 10z) ln(z)− (2 + 2z)lnz2)

+CATF (2− 2z +
26

9
(z2 − 1/z)− 4

3
(1 + z) ln(z)− 20

9
Pgg(z))

+C2
A(

27

2
(1− z) +

26

9
(z2 − 1/z)− (

25

3
− 11

3
z +

44

3
z2) ln(z)

+4(1 + z) ln(z2) + 2Pgg(−z)S2(z) + (
67

9
− 4 ln(z) ln(1− z)

+ ln(z2)− π2

3
)Pgg(z)). (39)
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A(ω) = C2
FA1(ω) + CFCGA2(ω) + CFTRNFA3(ω) (40)

where

A1(ω) = −5

2
− 7

2
ω + (2 +

7

2
ω) + (−1 +

ω

2
) ln2 ω − 2ω. ln(1− ω)

+(−3 ln(1− ω)− ln2(1− ω))
1 + (1− ω)2

ω
, (41)

A2(ω) =
28

9
+

65

18
.ω +

44

9
ω2 + (−12− 5ω − 8

3
ω2) lnω + (4 + ω) ln2 ω

+2ω ln(1− ω) + (−2 lnω ln(1− ω) +
1

2
ln2 ω +

11

3
ln(1− ω)

+ ln2(1− ω)− 1

6
π2 +

1

2
)
1 + (1− ω)2

ω

−1 + (1 + ω)2

ω

∫ 1/1+ω

ω/1+ω

dz

z
ln(

1− z

z
), (42)

A3(ω) = −4

3
ω − (

20

9
+

4

3
ln(1− ω))(

1 + (1− ω)2

ω
). (43)

Appendix:F

The functions involved in the DGLAP equations for gluon distribution functions

at NNLO are

P 2
gg(ω) = 2643.524D0 + 4425.894δ(1− z) + 3589L1 − 20852 + 3968z − 3363z2

+4848z3 + L0L1(7305 + 8757L0) + 274.4L0 − 7471L2
0 + 72L3

0 − 144L4
0 +

142141

z
+

2675.81

z
L0 +Nf (412.142D0 − 528.723δ(1− z)− 320l1

−350.2 + 755.7z − 713.8z2 + 559.3z3 + L0L1(26.85− 808.7L0) + 1541L0

+491.3L2
0 +

832

9
L3

0 +
512

27
L4
0 +

182.961

z
+

157.271

z
L0)

+N2
f (−

16

9
D0 + 6.4630δ(1− z)− 13.878 + 153.4z − 187.7z2 + 52.75z3

L0L1(115.6− 85.25z + 63.23L0)− 3.422L0 + 9.680L2
0 −

32

27
L3

0

− 680

2431z)
(44)

where, L0=ln(z), L1=ln(1− z) and D0=
1

(1−z)
.
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Appendix G

To obtain the analytical solutions of DGLAP evolution equations for singlet struc-

ture function or gluon distribution function, we assume the following ansatz [a-c]

G(x,Q2) = K(x)F S
2 (x,Q

2) (45)

which gives the possibility to extract the gluon distribution function directly from

the experimental data. Here K(x) is a function of x or may be a suitable parameter

which can be determined by phenomenological analysis.

In the DGLAP formalism the gluon distribution turns out to be very large at

small-x and so it contributes crucially to the evolution of the parton distribution.

Subsequently, the gluon distribution governs the structure function F2(x,Q
2) through

the evolution g → qq̄ in the small-x region. For lower Q2 (Q2 ≈ Λ2), however, there

is no such clear cut distinction between the two. Thus for small-x and high Q2,

the gluons are expected to more dominant than the sea quarks and therefore the

determination of gluon density in the small-x region is particularly interesting. But

the gluon distribution function G(x,Q2) cannot be measured directly through exper-

iments. It is determined only via the quark distributions together with the evolution

equations. The most precise determinations of the gluon momentum distribution

in the proton can be obtained from a measurement of the deep inelastic scattering

(DIS) proton structure function F2(x,Q
2) and its scaling violation. The Q2-evolution

of the proton structure function F2(x,Q
2) is related to the gluon distribution func-

tion G(x,Q2) in the proton and to the strong interaction coupling constant αS. It

is, therefore, important to measure the G(x,Q2) indirectly using F2(x,Q
2). Hence

the direct relations between F2(x,Q
2) and G(x,Q2) are extremely important because

using those relations the experimental values of G(x,Q2) can be extracted using the

data on F2(x,Q
2). A plausible way of realizing this is through the above ansatz. The

evolution equations of gluon distribution function and singlet structure function are

in the same forms of derivative with respect to Q2. Moreover the input singlet and

gluon parameterizations, taken from global analysis of PDFs, in particular from the

GRV1998, MRST2001, MSTW2008 parton sets [d-f], to incorporate different high

precision data, are also functions of x at fixed Q2. So the relation between sin-

glet structure function and gluon parton densities can be expressed in terms of x at

fixed-Q2. Accordingly the above assumption is justifiable.
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The function K(x) may be assumed to have some standard functional form such

as K(x) = K, axb, cedx where K, a, b, c, d are suitable parameters which can be

determined by phenomenological analysis, however we can not rule out the other

possibilities [a-c, g, h]. The actual functional form of K(x) can be determined by

simultaneous solutions of coupled equations of singlet structure functions and gluon

parton densities, nevertheless it is beyond the scope of thesis. In this thesis we per-

form our analysis considering the function K(x) as an arbitrary constant parameter

K for a particular range of x and Q2 in defining the relation between gluon and sin-

glet structure functions as the simplest assumption. But, we need to adjust its value

for satisfactory description of different experiments. The best fit graphs are obtained

by choosing an appropriate value of K for a proper description of each experiment.

Our phenomenological analysis reveals that the best fit results of singlet structure

functions obtained from the solutions of linear DGLAP equations are in very good

agreement with NMC data in the range 0.0045 ≤ x ≤ 0.19 and 0.75 ≤ Q2 ≤ 27 GeV2

for 0.92 < K < 1.2, E665 data in the range 0.0052 ≤ x ≤ 0.18 and 1.094 ≤ Q2 ≤ 26

GeV2 for 0.45 < K < 0.87 and NNPDF parametrizations in the range 0.0045 ≤ x

≤ 0.095 and 1.25 ≤ Q2 ≤ 26 GeV2 for 1.1 < K < 1.6 respectively. Thus the

parameter K lies in the range 0.45 < K < 1.6 to obtain the best fit results of singlet

structure functions compared with different experiments and parametrizations for

the entire domain of x and Q2 under study. Similarly we perform our analysis for

gluon distribution functions obtained from the solutions of DGLAP equations in the

x and Q2 domain, viz. 10−4 ≤ x ≤ 0.1 and 5 ≤ Q2 ≤ 110 GeV2 and obtain our

best fit results compared with different global analysis of parton distributions in

the range 0.14 < K1 < 0.85, where K1 = 1/K. We observe that our results show

excellent consistency with the global parametrizations namely GRV1998, MRST2004,

MSTW2008, JR09 and with the BDM model for 0.72 < K1 < 0.85, 0.5 < K1 < 0.64,

0.14 < K1 < 0.48, 0.56 < K < 0.68 and 0.62 < K < 0.78 respectively. On the other

hand from the phenomenological analysis of singlet structure functions obtained from

the solution of nonlinear GLR-MQ equation we note that the best fit results are

obtained in the range 0.28 < K < 1.2 for the entire domain of x and Q2 under study.

The computed values of singlet structure functions with shadowing corrections are

found to be quite compatible with NMC data in the range 0.6 < Q2 < 3.6 GeV2 and
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10−4 < x < 0.013 for 0.52 < K < 0.9, E665 data in the range 1 < Q2 < 4 GeV2 and

10−4 < x < 0.01 for 0.28 < K < 0.86 and with the NNPDF parametrization in the

range 1 < Q2 < 27 GeV2 and 10−4 < x < 0.011 for 0.72 < K < 1.2 respectively.

To conclude, we examine the dependence of our predictions on the values of the

arbitrary parameters K and K1 for different experimental data or parametrizations

and observe that the values of K or K1 lie in a very small range. Therefore it is

legitimate to take these parameters as constant parameters.
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