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A B S T R A C T 

We present a formulation of special relativistic dissipative hydrodynamics (SRDHD) derived from the well-established M ̈uller–
Israel–Stewart (MIS) formalism using an expansion in deviations from ideal behaviour. By re-summing the non-ideal terms, 
our approach extends the Euler equations of motion for an ideal fluid through a series of additional source terms that capture 
the effects of bulk viscosity, shear viscosity, and heat flux. For efficiency these additional terms are built from purely spatial 
deri v ati ves of the primitive fluid variables. The series expansion is parametrized by the dissipation strength and time-scale 
coefficients, and is therefore rapidly convergent near the ideal limit. We show, using numerical simulations, that our model 
reproduces the dissipative fluid behaviour of other formulations. As our formulation is designed to a v oid the numerical stiffness 
issues that arise in the traditional MIS formalism for fast relaxation time-scales, it is roughly an order of magnitude faster than 

standard methods near the ideal limit. 

Key words: hydrodynamics – relativistic processes – methods: numerical – software: simulations – stars: neutron – neutron star 
mergers. 
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 MOTIVATION  

inary neutron star mergers represent complex astrophysical labora- 
ories that probe supernuclear -density matter, strong-gra vity space–
ime and the origin of the heavy elements in our universe. Merging
eutron stars produce multimessenger signals comprised of ex- 
raordinary electromagnetic and gravitational wave components, as 
onfirmed by their detection in the GW170817 merger event by the 
IGO–VIRGO–Kagra collaboration (Abbott et al. 2017 ). Since then, 
bservations by these ground-based detectors have been used to put 
onstraints on the mass, radius, and tidal deformability of neutron 
tars, informing us in turn about their equation of state (Abbott et al.
018 , 2019 ). 
To simulate these events, we require a highly non-linear, general 

elativistic magnetohydrodynamic (GRMHD) model. This is then 
oupled to a space–time evolution procedure using numerical rela- 
ivity, with neutrino transport and cooling schemes often added as 
ell. For simplicity , the fluid of the neutron star is often treated as

ideal’, in that fluid stresses are purely isotropic. 
Recently, ho we ver, more attention has been paid to effects resulting 

rom non-ideal fluid behaviour, for example by Shibata, Kiuchi 
 Sekiguchi ( 2017 ), Rezzolla et al. ( 2018 ), Bemfica, Disconzi &
oronha ( 2019 ), Chabanov, Rezzolla & Rischke ( 2021 ), Pandya,
ost & Pretorius ( 2022 ), and Yang et al. ( 2024 ). These dissi-

ati ve ef fects arise due to out-of-equilibrium processes that are 
articularly important shortly after the neutron stars merge. When 
ext-generation, ground-based gravitational wave detectors such 
s Cosmic Explorer (Reitze et al. 2019 ), NEMO (Ackley et al.
020 ), LIGO-voyager (Berti et al. 2022 ), and the Einstein Telescope
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Punturo et al. 2010 ) come online, accurately modelling this next-to-
eading-order behaviour will be essential to make precise physical 
nferences from observations. 

Theoretical work (Chugunov & Yakovlev 2005 ; Manuel & Tolos 
011 ; Schmitt & Shternin 2018 ) and numerical investigations (Ham-
ond, Hawke & Andersson 2021 ) have been undertaken into the out-

f-equilibrium state of matter and its transport properties in neutron 
tars. F or e xample, Urca and rev erse-Urca nuclear reactions operate
t an atomic scale and may give rise to an effective bulk viscosity at
he fluid scale that quantitatively affects the gravitational wave signal 
e obtain from the merger and its remnant’s ringdown (Alford et al.
018 ; Most et al. 2021 , 2022 ; Hammond, Hawke & Andersson 2023 ).
imilarly, work has been done to investigate the possible effects of
oth shear viscosity (Duez et al. 2004 ) and heat transport (Alford et al.
018 ) in binary neutron star mergers, particularly for modulating 
he turbulence that ensues post-merger, both in the remnant itself 
nd its associated accretion disc. Viscous braking redistributes 
omentum in a differentially rotating remnant, removing centrifugal 

upport that can aid in the collapse of the core into a black hole.
his produces delayed gravitational wave emission. It is also able 

o provide thermal support from viscous heating, negating this 
ffect. 

One well-established model of non-ideal hydrodynamics is that of 
 ̈uller–Israel–Stewart (MIS; Israel 1976 ; Israel & Stewart 1979 ). Its

heoretical properties have received thorough investigations (Moln ́ar, 
iemi & Rischke 2010 ; Biswas et al. 2020 ; Bemfica et al. 2021 ;
emfica, Disconzi & Noronha 2022 ; Wagner & Gavassino 2024 )
nd it has been used e xtensiv ely in the context of high-energy,
uark-gluon-plasma (QGP) physics to model post-collision fluid 
volution (Del Zanna et al. 2013 ; Du & Heinz 2020 ), as well as
n the astrophysical community for modelling viscous black hole 
ccretion (Chabanov et al. 2021 ), for example. 
is is an Open Access article distributed under the terms of the Creative 
h permits unrestricted reuse, distribution, and reproduction in any medium, 
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The MIS model includes viscous and heat-conductive effects
n the evolved conserved and flux vectors, as well as relaxation-
ype sources that drive the non-ideal terms to relativistic analogues
f their Navier–Stokes forms. A numerical issue arises when the
issipative relaxation time-scales become small and the sources
ecome ‘stiff’. The relaxation time-scales tend to zero in the ideal
imit, which is rele v ant for the majority of the lifecycle of a binary
eutron star merger. One must either reduce the time-step of the
imulation drastically or adopt implicit time-integrator methods to
nsure accurate and stable numerical evolution. See Palenzuela et al.
 2009 ), Dionysopoulou et al. ( 2013 ), Miranda-Aranguren, Aloy &
embiasz ( 2018 ), Ripperda et al. ( 2019 ), Wright ( 2020 ), Wright &
awke ( 2020 ), and Dash et al. ( 2023 ) for examples of approaches

aken to evolve stiff numerical systems. Both options increase the
omputational cost of simulations greatly. Sometimes, ‘best-of-both’
mplicit–explicit methods (Pareschi & Russo 2005 ) may be used but
n any case, the computational cost increases, potentially by orders
f magnitude, when source terms become stiff near the ideal limit. 
This in turn limits the spatial resolution of simulations that are

erformed, leading to coarse numerical grids that represent fluid
lements with sizes well abo v e those that ‘should’ be used to satisfy
he fluid approximation. That is to say, there is significant variation
n fluid properties occurring o v er length-scales well below that of
he grid cells’ size. Estimates of the dissipation length-scale abo v e
hich structure can form through turbulence suggest that simulations
ay need to resolve scales below the cm level (Thompson &
uncan 1993 ; Radice & Hawke 2024 ). Ho we ver, the current highest-

esolution simulations have fluid elements with sizes ≈ 10 m (Kiuchi
t al. 2018 ). To bridge this gap computationally is impractical for the
oreseeable future. 

Instead, to address this ‘sub-grid’ behaviour, extensions to existing
ydrodynamic models have recently begun being employed. These
dditions to the model aim to capture, at least in a statistical sense,
ither genuine sub-grid microphysics or mathematical artefacts
esulting from the implicit filtering process introduced by coarse
imulations. 

Sub-grid models are beginning to see a number of applications in
odelling astrophysical systems. The general principle behind these

xtensions is to include additional terms into the equations of motion,
imed at capturing the effects of unresolved fluid behaviour at scales
elow that which can be directly resolved in a numerical simulation.
he benefit of these models lies in their ability to, without greatly

ncreased computational cost, capture the influence of unresolvable
icrophysics or fluctuations, at least in a statistical sense. 
A common application of sub-grid sources is in the modelling of

urbulence. In large-eddy simulations, the equations of motion are
xplicitly redefined in terms of resolved and unresolved quantities.
 closure relation is then applied that allows the sub-grid fields to
e formulated in terms of the resolved ones. Using this technique, it
s possible to replicate the behaviour that would result, on average,
rom using more fine-scale numerical grids. 

For instance, Radice ( 2017 ) first applied an analogue of the clas-
ical Smagorinsky closure (Smagorinsky 1963 ) to the equations of
eneral relativistic hydrodynamics for a merger simulation, showing
hat by modelling the sub-grid scale turbulence, the collapse of
he hypermassive neutron star remnant is altered. Other work by
arrasco, Vigan ̀o & Palenzuela ( 2020 ) and Vigan ̀o et al. ( 2020 ) uses
 gradient expansion approach to prescribe the unresolved fields in
he MHD equations. See Radice & Hawke ( 2024 ) for a modern
e vie w of the field. 

One might ask why these sub-grid models are rele v ant to the
on-ideal hydrodynamic formulation presented here. In Celora et al.
NRAS 535, 47–64 (2024) 
 2021 ), it is shown that when a linear, covariant filtering operation
s applied to an ideal fluid formulation, the fine-scale variation that
s spatially averaged over may be described on the coarse scale
y algebraic terms that mimic those present in a non-ideal fluid
ormulation. The corollary of this is that we may use our models of
on-ideal hydrodynamics to describe a fluid that does not genuinely
 xhibit dissipativ e effects, at least not on the coarse scale at which we
imulate it, but instead to capture unresolved effects due to resolution
imitations. In effect, our sub-grid closure relation is given by the
odel’s prescription for the non-ideal dissipation terms within it. Of

ourse, the meaning of the ‘dissipative’ terms changes when we do
his. Instead, they now capture the effects of filtering, and follow-up
ork will be published investigating this. 
In this paper, we develop an extension to the special relativistic,

deal hydrodynamic equations that captures the dissipative effects
resent in full non-ideal fluid descriptions. This extension, dubbed
 dissipativ e e xtension to ideal fluid dynamics (DEIFY), is derived
rom first principles arguments and, as such, requires no fine tuning
f parameters for different astrophysical scenarios. The rest of
he paper is laid out as follows. In Section 2 , we introduce the
ydrodynamic models we are concerned with: first, zero’th-order
deal hydrodynamics; then, second-order, non-ideal hydrodynamics
n the MIS formulation. Section 3 introduces the Chapman–Enskog
 CE ) expansion we use here and derives a number of simple models to
emonstrate the pertinent points. Section 4 presents the full ‘MISCE’
odel with its source derived from applying the CE expansion to the
IS model. In Section 5, we show results of simulations that use

he MISCE formulation of dissipative hydrodynamics. In particular,
e quantitatively compare results and performance with the MIS
odel. Our appendices co v er considerations about initial data and

tability for the MISCE model, as well as how one may calculate time
eri v ati ves of primiti ve fluid variables without using lagged updates.
inally, in Section 7, we summarize the findings of the previous
ections, discuss how they fit into current astrophysical simulations,
nd propose the future direction of the project. 

 H Y D RO DY NA M I C  M O D E L S  

n this section, we outline two models of hydrodynamics that are used
n relativistic astrophysics. In order to simplify the numerics in later
ections and to test the validity of the method, we will limit ourselves
o special relativity. In moving to a general relativistic description,
nly the form of the equations should change, and so the analysis
e perform here should still apply. We will also adopt the Einstein

ummation conv ention o v er repeated indices, where Greek letters
un o v er 4 indices (1 temporal and 3 spatial) and Roman letters run
 v er 3 (spatial) indices. δi 

j is the Kronecker delta (3,3)-tensor. We
se units where c = 1 throughout. 

.1 Ideal hydrodynamics 

he first model we present is that of ideal, non-dissipative hydrody-
amics. This is the simplest relativistic model of fluids that one can
rite down. The stress-energy tensor for such a fluid is 

 

μν = ( ρ + p) u 

μu 

ν + pg μν, (1) 

here ρ is the energy density of the fluid, p is its pressure, u 

μ is
ts 4-velocity, and g μν is the metric tensor defining the space–time
eometry. In this paper, we only work in flat space–time such that
he metric is Minkowski and g μν → ημν = diag( −1 , + 1 , + 1 , + 1).

We enforce conservation of energy, momentum, and conserved
urrent(s) by demanding that the covariant derivative of the stress-
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nergy tensor and of a conserved number-current N 

μ = nu 

μ both 
anish. Mathematically, the equations 

∇ μT μν = 0 , (2a) 

∇ μN 

μ = 0 (2b) 

ead to the ideal fluid equations of motion. In conserv ati ve form,
hese are 

 t 

⎛ 

⎝ 

D 

S j 
τ

⎞ 

⎠ + ∂ i 

⎛ 

⎝ 

D v i 

S j v 
i + pδi 

j 

τv i + pv i 

⎞ 

⎠ = 0 , (3) 

here the three conserved quantities, { D, S j , τ} , correspond to
he fluid density, specific momentum in the j th -direction, and 
inetic energy density , respectively , and are related to the primitive
uantities, { n, v j , p} , namely the baryon number density, fluid 3-
elocity and hydrodynamic pressure via 

 = nW , (4a) 

 j = ( ρ + p) W 

2 v j , (4b) 

= ( ρ + p) W 

2 − D. (4c) 

dditionally, we have that ρ = mn (1 + ε), where m is the mass per
aryon and ε the specific internal energy. The hydrodynamic pressure 
 is given by an equation of state to close the system: numerically,
e often write p ≡ p( n, ε) but here it is more convenient to use
 ≡ p( n, ρ). Specifically, we will use a Gamma-law equation of
tate throughout this paper of the form p = ( 	 − 1)( ρ − mn ), which
ypically describes an ideal relativistic gas. 

Two more important thermodynamic quantities of interest are 
pecific enthalpy h = 1 + ε + p/ ( mn ) = ( ρ + p) / ( mn ) and temper-
ture T = p/n (as well as its inverse β = m/T ). Note that we assume
 uniform baryon mass so scale it out of the equations such that
 = 1 throughout this paper. Finally, the spatial three-velocity v j 

nd the Lorentz factor W = (1 − v j v 
j ) −1 / 2 make up the four-velocity

 μ = W (1 , v j ). 

.2 Dissipati v e hydrodynamics within M ̈uller–Israel–Stewart 
ormalism 

he second model we present is that describing a non-ideal fluid with
 stress-energy tensor given by 

 

μν = ( ρ + p + � ) u 

μu 

ν + ( p + � ) g μν + q μu 

ν + q νu 

μ + πμν, 

(5) 

here the new dissipative terms are the bulk viscosity pressure � , the
eat flux vector q μ, and the shear viscosity tensor πμν . The first of
hese encapsulates isotropic stresses (compression and expansion). 
he second, momentum transport orthogonal to fluid’s velocity. And 

he third, anisotropic stresses within the fluid. To set their form,
nd derive the equations of motion of the fluid, we follow the MIS
Israel 1976 ; Israel & Stewart 1979 ) formalism. Their approach, in
ords, involves first performing a gradient expansion of entropy- 
enerating terms to second-order. Then, applying the second law 

f thermodynamics such that the entropy-generation rate is al w ays 
on-ne gativ e and using this condition to set the form of the non-
deal, dissipative terms. Finally, the additional degrees of freedom 

his introduces are wrapped-up into six non-ideal coefficients (three 
issipation ‘strengths’ and three time-scales). This gives us the model 
hat is our starting point and the one to which we will apply a CE type
 xpansion, ev entually gi ving us our ne w ‘MISCE’ model. 
The entire MIS equations, in balance-law form, are given as 

 t U + ∂ i F 

i ( U ) = S , (6) 

here 

 = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

D 

S j 
τ

X 

Y j 
Z jk 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

= 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

nW 

( ρ + p + � ) W 

2 v j + W ( q 0 v j + q j ) + π0 j 

( ρ + p + � ) W 

2 + 2 q 0 W − ( p + � − π00 ) − D 

nW� 

nWq j 
nWπjk 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, 

(7a) 

F 

( i) = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

D v i 

S i j 
S i − D v i 

Xv i 

Y j v 
i 

Z jk v 
i 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, (7b) 

S = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

0 
0 
0 

n 
τ� 

( � NS − � ) 
n 
τq 

( q j, NS − q j ) 
n 
τπ

( πjk, NS − πjk ) , 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

(7c) 

nd 

 

i 
j = ( ρ + p + � ) W 

2 v i v j + W ( q i v j + q j v 
i ) + ( p + � ) δi 

j + πi 
j . 

(8) 

he heat flux and shear viscosity are orthogonal to the four velocity
n all indices, and the shear viscosity is trace free, implying 

 0 = v k q k , (9a) 

0 j = v k πkj , (9b) 

j0 = v k πjk , (9c) 

00 = −πk 
k . (9d) 

he first-order, relativistic ‘Navier–Stokes’ terms to which the 
issipative system relaxes are 

 NS = −ζ�, (10a) 

 j, NS = −κT ( ∂ j log T + a j ) , (10b) 

jk, NS = −2 ησjk , (10c) 

here the non-ideal coefficients of bulk viscosity, heat conductivity, 
nd shear viscosity are ζ, κ , and η, respectively, which we may
ollectively represent as ξ . The following quantities: 

 = ∂ μu 

μ, (11a) 

 μ = u 

ν∂ νu μ, (11b) 

μν = 

(
∂ μu ν + ∂ νu μ − 2 

3 ημν� 

)
(11c) 

re the expansion, acceleration, and shear of the 4-velocity, respec- 
ively. 

The first three conserved quantities ( { D, S j , τ} ), and their asso-
iated equations of motion, form the non-stiff subsystem, labelled 
 , which reduces to the Euler equations (in the form of equation 3 )
MNRAS 535, 47–64 (2024) 
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n the ideal limit of zero dissipation ( ξ → 0). The remaining three
onserved quantities, { X, Y j , Z jk } are labelled q̄ . These quantities
re evolved with a source that is proportional to the reciprocal
f a possibly small time-scale and may therefore represent a stiff
ubsystem. Note that the terms q , ̄q should not be confused with the
eat flux, which will intentionally be written in component form, q j ,
or clarity. 

.2.1 Asymptotic behaviour 

ne major difference between the two models of hydrodynamics
hat are presented here lies in the form of their source terms.

hilst the ideal model’s source vector is entirely zero, the Israel–
tewart model’s source vector has non-zero sources for the dissi-
ati ve e volution components. These terms are proportional to the
eciprocal of the relaxation time-scales, τ . In the limit as τ → 0, any
eviation of the dissipative variables from their equilibrium Navier–
tokes form will be instantaneously quenched. This represents a
eduction to a first-order theory, essentially a relativistic version of
he classical, dissipative Navier–Stokes equations. However, we may
ink the dissipation time-scales and strengths, for example through
hermodynamic relations for a Boltzmann gas as in Israel ( 1976 )
here 

� 

= ζβ0 , (12a) 

q = κβ1 T , (12b) 

π = 2 ηβ2 (12c) 

nd the β terms are non-ne gativ e thermodynamic functions of the
nthalpy, temperature, and pressure given therein. Alternatively, there
re analytical bounds on the ratio of dissipation strengths: time-scales
rom enforcing causality due to recent work by Heller et al. ( 2023 ).
ne can see this practically from the fact that dissipation modifies

he characteristic propagation speeds of waves travelling in the fluid
sound speeds). For instance, by a factor ∝ 

√ 

ζ/τ� 

for bulk viscosity
s seen in Chabanov et al. ( 2021 ). This, of course leads to a divergence
hen we take the τ → 0 limit without taking the ξ → 0 limit along
ith it. In reality of course, there are no instantaneous processes.
o we ver, there are physically and mathematically moti v ated reasons
hy taking the instantaneous-relaxation limit also implies taking

he zero-dissipation limit, in which case one reco v ers ‘zeroth-order’
ideal) hydrodynamics as in Section 2.1 . 

.2.2 Numerical difficulties 

hen the time-scales that the source acts on are shorter than the
ime-step of the simulation, τ � �t , the system is said to be stiff . In
rder to maintain a stable evolution, one may either reduce the size
f the time-step used in the simulation, or employ a set of implicit
r semi-implicit time integrators such as those seen in Pareschi &
usso ( 2005 ). In the first case where the time-step, the e x ecution

ime will increase by a factor ≈ �t/τ , making it impractical for
issipation acting well below the hydrodynamic time-scale. In the
atter case where (semi-) implicit methods are used, the time-
ntegrator algorithm is considerably, maybe orders of magnitude,

ore costly. 
Hence, our moti v ation is to find a source term that captures

issipative beha viour b ut a v oids the numerical difficulties of the stiff
IS system of equations. The following section will derive such a

ource term using a CE-type analysis. 
NRAS 535, 47–64 (2024) 
First we introduce the notation that will be used. We can re-write
he conserv ati ve form of the MIS equations, equation (7) in the
ollowing, more compact way 

 t q + ∂ i f i ( q , q ) = s ( q , q ) = 0 , (13a) 

 t q + ∂ i f 
i 
( q , q ) = 

s ( q , q ) 
τ

, (13b) 

here we indicate equations that become stiff as τ → 0 with an
 v er-bar. This means that q = { U, Y j , Z jk } with the corresponding
uxes, f i ( q , q ), and sources, s ( q , q ), taken from equation (7). The
emaining conserved variables are non-stiff in the ideal limit, and
enoted q = { D, S j , τ } . We will also denote the vector of primitive
ariables present in ideal hydrodynamics as w = { p, ρ, n, v x , v y , v z }
nd the dissipative primitive variables as w = { q j , �, πjk } . 

 C H A P M A N – E N S KO G  EXPA NSI ON  

n this section, we will use a type of CE method of expansion to
erive the form of the DEIFY source term. Let us first give a brief
ntroduction to the historical use of the CE expansion for solving the
oltzmann equation. 
The Boltzmann equation provides a statistical description of

tomic-scale particle kinetics for a thermodynamic system in a state
f non-equilibrium. It describes the evolution of the one-particle
istribution function, f , and may be written as 

 

μ∂ μf ( x , p ) = C[ f ] , (14) 

here p 

μ is the 4-momentum of the particle and f ( x , p ) is the
D distribution function which depends on the particle’s 4-position
nd 4-momentum. Finally, C[ f ] is the collision term, an integral
perator (in momentum space) whose precise form depends on the
nteractions and statistics of the particle ensemble being considered.
he distribution function counts the particles and is normalized such

hat the number density n ( x ) is given by 

 ( x ) = 

∫ 
d 3 p 

(2 π ) 3 
f ( x , p ) (15) 

hilst familiar quantities such as the number current and stress-
nergy tensor are given by 

 

μ = 

∫ 
p 

p 

μf ( x , p ) , (16a) 

 

μν = 

∫ 
p 

p 

μp 

νf ( x , p ) , (16b) 

here 
∫ 

p 
· · · ≡ ∫ 

d 3 p / [(2 π ) 3 p 

0 ] is the Lorentz-invariant integration
easure. 
In the early 20th century, Sydney Chapman and David Enskog

ntroduced a method for solving the Boltzmann equation (for f ),
s seen in Chapman & Cowling ( 1990 ) and Kumar ( 1967 ). Their
pproach allows one to derive macroscopic descriptions of fluids,
ncluding the familiar Euler and Navier–Stokes equations (Cercig-
ani & Kremer 2002 ), and obtain expressions for various transport
oefficients such as thermal conductivity and bulk viscosity in the
rocess. 
One of the central assumptions of the CE analysis is that the

article collision duration time is not only far less than the time
etween collisions, but also far smaller than extrinsic time-scales:
he time-scales associated with macroscopic fluid behaviour. The
olution is in fact obtained as an asymptotic expansion in the
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Figure 1. The widening of a top-hat temperature profile through dissipation 
by the heat flux within our toy model, both with (dotted lines) and without 
(continuous lines) the CE expansion. There is an excellent agreement between 
the two, with the small numerical errors being O( τq ). 
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losely related Knudsen number 1 , where at zero’th order we have 
he equilibrium solution. 

Work has been done in the field of resistive MHD (Wright &
awke 2019 , 2020 ) by applying this method to describe a system
here a source acts rapidly to relax the solution towards equilibrium 

in that case, ideal MHD). A simple but general application of this
ype of expansion is presented in LeVeque ( 2002 ), in which LeVeque
emonstrates how a coupled system of balance law equations may 
e reduced to a single, modified system. One of the coupled 
quations contains a potentially stiff source term, whilst the other 
s an advection equation. The reduced system is a balance law 

ith a deri v ati ve source term that is non-stiff. Hence, this example
epresents a simplified version of the system we have here, seen 
n equation (13). Next, we will show how this method works for a
eat-flux model obtained from the MIS equations. 

.1 A simple heat model 

o demonstrate the approach, we first apply it to a simple model
o v erning two variables: the temperature, T and the spatial heat flux,
 i . To obtain this model, which will be familiar once derived, we
pply a number of simplifying assumptions to the MIS model. 

We work with a static fluid such that the 3-velocity and, hence,
he bulk and shear viscosity all vanish. All Lorentz factors become 
nity and the orthogonality relation v μq μ = 0 means that q 0 = 0.
e treat our particle number current, n , and hydrostatic pressure, p,

s constants and hence the density, ρ, is now purely a function of the
emperature i.e. ρ ≡ ρ( T ) and may be scaled out of the equations.
fter setting any remaining constant terms to one, we arrive at 

 t T + ∂ i q 
i = 0 , (17a) 

 t q j = 

1 

τq 

( q j, NS − q j ) . (17b) 

e note that the acceleration term usually present in the heat-flux’s 
ource will vanish so that q j, NS → −κ∂ j T and we obtain a rather
imple pair of equations where the first has no source and the second,
he ‘Maxwell–Cattaneo’ equation (Cattaneo 1948 ), has no flux: 

 t T + ∂ i q 
i = 0 , (18a) 

 t q j = − 1 

τq 

( κ∂ j T + q j ) . (18b) 

When τq is small, the heat flux, q j , will relax to its equilibrium
alue, q j, NS , rapidly, with small deviations being modulated by the 
ize of τq . Hence, we first write the non-ideal variable q j that we
ish to eliminate from the system in terms of its equilibrium value
 j, NS = −κ∂ j T and a (small) correction term of order τq , so 

 j = q j, NS + τq q 
(1) 
j , (19) 

here q (1) 
j is to be determined. We can then write the pair of

quations, to first order in τq , as 

 t T + ∂ i q 
i 
NS = −∂ i 

(
τq q 

(1) 
i 

)
, (20a) 

 t q j, NS = −q 
(1) 
j . (20b) 
 The Knudsen number (Kn) is a dimensionless number defined as the ratio of 
he molecular mean free path length to a representative physical length-scale. 
his length-scale could be, for example, the radius of a rigid body emersed 

n a fluid. 

c
G

 

t  

W
i

y using the explicit form for the equilibrium value q j, NS = −κ∂ j T ,
e can write this as 

 t T = ∂ i ( κ∂ i T ) − ∂ i 
(
τq q 

(1) 
i 

)
, (21a) 

 t 

(−κ∂ j T 
) = −q 

(1) 
j (21b) 

o obtain an expression for q (1) 
j , but one which includes a temporal

eri v ati ve. 
For simplicity, we will assume that κ and τq are constants in 

ime and space. By commuting the temporal and spatial deri v ati ves
n equation ( 21b ), we can now substitute the leading order form
zero’th order in τq ) of the equation of motion for T , equation ( 21a ),
nto the relaxation equation ( 21b ), to determine the correction q (1) 

j =
2 ∂ 

(3) 
j T as purely spatial deri v ati ves. Inserting this result back into

quation ( 21a ) and writing the result in one spatial dimension, we
nally have the CE form 

 t T = κ∂ (2) 
x T − κ2 τq ∂ 

(4) 
x T + O( τ 2 

q ) . (22) 

ote that this result is an evolution equation written purely in terms of
he temperature, T , and is half the size of the original system given by
quation (18). This reduced model is non-stiff (as the source term is
ultiplied by the small time-scale τq , not by its reciprocal), but may

ead to other numerical problems due to the higher deri v ati ves. These
eatures will hold true when we apply the CE expansion method to
he full MIS equations, whereby dissipation will be modelled using 
nly the primiti ve v ariables and their deri v ati ves, and the system size
ill be reduced significantly. 
Equation ( 22 ) is essentially a power series expansion in { κ, τ }

here the leading term alone ( O( κ)) gives us the 1D heat equation.
ith the next-to-leading order term, ( O( τq κ

2 )) we have a linear,
iffusion-retention equation. That is to say, the second-order deriva- 
i ves represent dif fusi ve ef fects that spread heat isotropically and the
ourth-order deri v ati ves retain heat locally. The numerical signifi-
ance of these higher-order terms are described well in (Bevilacqua, 
ale ̃ ao & Costa 2011 ). 
In Fig. 1 , we use a ‘top-hat’ initial temperature profile to compare

he CE model equation ( 22 ) to its originating equations (equation 18).
e see excellent agreement between the two. The performance 

mpro v ement will be quantified below. 
MNRAS 535, 47–64 (2024) 
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M

Figure 2. The velocity and bulk viscosity for a 1D test using the model given 
by equation ( 24 ) (with and without the ‘right-hand side’ terms) and an initially 
discontinuous velocity profile. One can see that bulk viscosity can be both 
positiv e and ne gativ e and in general acts to smooth gradients in the velocity, 
as well as accelerating the leading edge of the shock. t final = 0 . 2 and the 
non-ideal simulation ran with parameters ζ = 1 × 10 −2 and τ� 

= 1 × 10 −3 . 
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Figure 3. The evolution of the y-directed component of the velocity plotted 
across the x-domain at times t = 0 . 0 , 2 . 0 , 10 . 0. The initial data for the veloc- 
ity form a step function and the viscous parameter values are η = 2 × 10 −4 

and τπ = 2 × 10 −4 . In the left panel, two models’ results are plotted: first, 
the MIS-derived simple shear model given by equations (equation 25; solid 
lines); secondly, the model obtained applying the CE-expansion to it, given 
by equation ( 26 ) (dotted lines). In the right panel, the difference between the 
two results is plotted. The shear viscosity damps the initial step function, 
causing the velocity to develop approximately according to the analytical 
error-function. There is no visual difference seen between the two models. 
The numerical difference is an order of magnitude smaller than even the value 
of O( τπ ) and is decreasing in time. 

Table 1. Code run-times for our simple bulk viscosity model in one 
dimension, simulating the initial data seen in Fig. 3 . The expected scaling 
of the run-time, t run ∝ N 

2 
x , can be seen for both the full model and the CE 

expansion (the latter in parentheses). Crucially, a nearly three-fold speed-up is 
achieved by using the CE expansion, even with identical numerical methods. 

Model Runtimes [s] 
Grid N x t final Full CE Scaling Speed-up 

2048 1.0 5 .40 1 .60 – (–) 3.4 
4096 1.0 21 .92 7 .77 4.1 (4.9) 2.8 
8192 1.0 92 .07 33 .17 4.2 (4.3) 2.9 
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.2 Simple viscosity models 

imilar ‘toy’ models that go v ern the evolution of bulk and shear
iscosity may be derived from the MIS equations. For the bulk
iscosity, in one dimension the rele v ant equations are 

 t v j + ∂ i 
(
v i v j + �δi 

j 

) = 0 , (23a) 

 t � + ∂ i ( �v i ) = − 1 

τ� 

( ζ∂ k v 
k + � ) , (23b) 

hich reduces to the single 1D equation 

 t v + ∂ x ( v 
2 ) = ζ∂ xx v + τ� 

ζ ( ∂ x v ∂ xx v − v ∂ x x x v ) (24) 

hen the CE expansion is performed. At leading order ( τ� 

= 0) this is
ssentially the viscous Burgers equation, only missing a factor of one
alf in the flux compared to its canonical form. In Fig. 2 , we test this
odel (at next-to-leaing order). The initial velocity profile is given

y a top-hat function with v x = 0 . 7 for 0 . 3 ≤ x ≤ 0 . 7 and v x =
 otherwise. The bulk viscosity is calculated by its CE-expanded
orm as � = � 0 + τ� 

� 1 , where � 0 = � NS = −ζ∂ x v x and � 1 =[
∂ x ( v ∂ x v ) − ∂ xx v 

2 
]
. 

For the shear viscous case, if we work in two spatial dimensions
ut consider a purely y-directed flow ( v x = 0) we have 

 t v y + ∂ x πxy = 0 , (25a) 

 t πxy = − 1 

τπ

(2 ησxy + πxy ) . (25b) 

iven that σxy reduces to ∂ x v y , we have 

 t v y = 2 η∂ (2) 
x v y − 4 η2 τπ∂ 

(4) 
x v y (26) 

s the CE form that go v erns the shear damping of the fluid velocity.
his has an analytical solution in the limit τπ → 0 given by
 y ( t, x) ∼ v y (0 , x)erf( x 

ηt ), which allows us to test convergence of the
E expression as the dissipation time-scale vanishes. In Fig. 3 , this
NRAS 535, 47–64 (2024) 
est case is plotted, and again excellent agreement is seen between
he original relaxation model, the CE-expanded one. 

Finally, Table 1 gives a comparison of run-times that indicates
 significant speed-up is achie v able using the CE form without
ompromising on accuracy. This speed-up of a factor between 2
nd 3 comes purely from the reduced system size – both models are
volved with the same, explicit time-integrators. This is possible for
imple systems like this one, but is often not in the case of the MIS
odel, depending on the chosen parameter values. For the full MIS
odel where more e xpensiv e time inte grators would be needed, the

peed-up will be larger, as investigated below. 

 G E N E R A L  BA LANCE-LAW  D E R I VAT I O N  

e begin with the full MIS model in balance law form, equation (13),
ecalling that the non-stiff and stiff conserved variables are labelled

q and q , respectively. In order to maintain finite solutions in the
deal limit, we require that lim τ→ 0 s ( q , q ) = 0 . This moti v ates an
xpansion of the stiff variables in powers of τ , with each increasing
rder providing a further deviation from the ideal limit. 
In fact, because of the mathematical and physical links between

he dissipation time-scales ( τ ) and strengths ( ξ ) discussed earlier, we
hoose to perform the expansion in powers of ε where both τ and
are O( ε). This reflects that in practice these parameters often take

n similar (small) values in numerical simulations. This choice also
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eans that O( ε0 ) corresponds to ideal behaviour with no dissipation.
e could equally well perform the expansion in powers of τ and 

rrive at the same result, simply with a shifted series definition. 
oving on, we now have 

 = q 0 + q 1 + q 2 + O( ε3 ) , (27) 

here q 0 is O( ε0 ), q 1 is O( ε), q 2 is O( ε2 ), and so on. To identify the
erms in this expansion, we take the form of the stiff source: 

 ( q , q ) = 

1 

ε
( q − q NS ) (28) 

nd simply rewrite it as 

s ( q , q ) = q − q NS . (29) 

oting that q NS is O( ε), we have that at zeroth order (the ideal case)
 = q 0 = 0 . At first order we have q = q 1 = q NS and at second
rder we have q = q 2 where q 2 is yet to be determined. 
At zeroth order, the non-stiff subsystem of equations is given by 

 t q 0 ( w ) + ∂ i f i 0 ( w ) = 0 , (30) 

here 

 0 ( w ) = 

⎛ 

⎝ 

D 

S j 
τ

⎞ 

⎠ = 

⎛ 

⎝ 

nW 

( ρ + p) W 

2 v j 
( ρ + p) W 

2 − p − nW 

⎞ 

⎠ (31) 

nd 

f i 0 ( w ) = 

⎛ 

⎝ 

nW v i 

( ρ + p) W 

2 v i v j + pδi 
j 

( ρ + p) W 

2 v i − nW v i 

⎞ 

⎠ . (32) 

These are simply the relativistic Euler equations. At first order, it
an be written as 

 t 

[
q 0 ( w ) + H (1) ( w , ∂ t w , ∂ i w ) 

]
+ ∂ i 

[
f i 0 ( w ) + F 

i 
(1) ( w , ∂ t w , ∂ i w ) 

] = 0 , (33) 

here 

H (1) ( w ) = 

⎛ 

⎝ 

0 
W ( q 0 ,NS v j + q j,NS ) + π0 j,NS 

2 q 0 ,NS W − � NS + π00 ,NS ) 

⎞ 

⎠ (34) 

nd 

F i (1) ( w ) = 

⎛ 

⎝ 

0 
� NS ( v i v j + δi 

j ) W 

2 + W ( q i NS v j + q j,NS v 
i ) + πi 

j,NS 

W ( q 0 ,NS v 
i + q i NS ) + πi 

0 ,NS 

⎞ 

⎠ . (35) 

ere, we have separated the dissipative parts of the state and flux
ectors and can view H (1) and F (1) as O( ε) perturbations on-top of
he ideal O( ε0 ) state and flux vectors, q 0 and f 0 . In general, we can
ewrite the expanded system as 

 t q 0 + ∂ i f i 0 = 

∑ 

p= 0 

˜ R ( p) ≡
∑ 

p= 0 

(−∂ t H ( p) − ∂ i F 

i 
( p) 

)
, (36) 

here each additional term in the series on the RHS of equation ( 36 )
epresents a source correction of order εp . Hence, ˜ R (0) = 0 , ˜ R (1) = 

∂ t H (1) − ∂ i F 

i 
(1) , and ˜ R (2) = −∂ t H (2) − ∂ i F 

i 
(2) and so on. 

Using symbolic Python, we have fully derived the first-order 
 O( ε)) source terms in ˜ R (1) such that they contain only spatial
radients. At second order, we have derived the flux contribution 
o ˜ R (2) that is −∂ i F 

i 
(2) . The presence of high order time deri v ati ves

n −∂ t H (2) , which in turn introduce even higher order spatial 
eri v ati ves, leads to algebraic terms that rapidly scale in number
nd complexity, making it impractical to derive and implement, even 
sing computer algebra packages. 
Note that one cannot al w ays directly align powers of ε ( { ζ, κ, η} or

 τ� 

, τq , τπ} ) with the order of spatial deri v ati ves appearing in these
ource terms. To see this, consider the simple ( CE ) bulk viscosity and
eat flux models from earlier given by equations ( 22 ) and ( 24 ). In the
ormer, the next-to-leading order correction is O( κ2 τq ) and contains 
 fourth-order deri v ati ve, whilst in the latter it is O( ζ τ� 

) and contains
 mixture of first-, second-, and third-order deri v ati ves. Ho we ver, the
eading order correction in each case, ˜ R (1) , contains mostly second- 
rder gradients in the primiti ve v ariables ( ∂ i ∂ j w ) with some products
f two first-order deri v ati ves ( ∂ i w ∂ j w ). To see this, consider that the
issipati ve v ariables we mo v e from the state and flux vectors to the
ew sources contain first-order gradients. If mo v ed from the flux
ector, becoming −∂ i F 

i 
(1) , they pick up another spatial deri v ati ve

rom the flux-gradient. If mo v ed from the state vector, becoming
∂ t H (1) , they pick up a first-order temporal deri v ati ve, which we
ill show can be swapped for a first-order spatial deri v ati ve. Hence,

hey are al w ays dif fusi ve, second-order gradients as one would expect
or dissipation. This can also be seen in equations ( 22 ) and ( 24 ) at
eading order. 

We choose to perform the series expansion and truncation such 
hat terms O( ε) contain no time-scales and are first-order in the
issipation strengths { ζ, κ, η} . Terms considered to be O( ε2 ) are
rst-order in the time-scales { τ� 

, τq , τπ} and the strengths. We often
hoose to work with the first-order ( O( ε)) source terms only as
e find that including higher orders generally only makes small 
uantitati ve dif ferences. Ho we ver, using the O( ε2 ) source, the effect
f varying time-scales for both the MIS and MISCE models will be
hown. Finally, despite the inherent instability of first-order theories 
f relativistic dissipation in fluids (Hiscock & Lindblom 1983 ), we do
ot find any instabilities arising with our first-order MISCE model, 
t least for the test problems and parameter space explored so far. 

In order to make it practical to implement the system numerically,
e need to replace the time deri v ati ves present in ˜ R (1) and ˜ R (2) 

ith spatial ones. We have two potentially problematic sources of 
ime-deri v ati ves. First, the Navier–Stokes forms of the dissipative
ariables themselves contain time derivatives. Secondly, the entire 
issipative state vector H ( w ) is time-differentiated in the equations of
otion. Because both H and F can be expressed entirely as functions 

f primiti ve, non-stif f v ariables, we need expressions for the time
eri v ati ves of the primitive variables. Making use of the chain rule
nd equation ( 30 ), which contains the time deri v ati ve of the ideal
tate vector and hence the primitive variables that constitute it, we
ave 

∂ w 

∂ t 
= 

∂ w 

∂ q 0 

∂ q 0 
∂ t 

+ 

∂ w 

∂ q 1 

∂ q 1 
∂ t 

+ .. . = −
(
∂ q 0 
∂ w 

)−1 

∂ i f i 0 + O( ε) , 

(37) 

here we again note that w is the vector of primitives. This means the
erm 

∂ w 
∂ q 0 

has a matrix form that is far more easily obtained through

n inversion of the matrix ∂ q 0 
∂ w 

. We can use this result to substitute
herever a time-derivative appears in our source such that we then
ave 

˜ R (1) = −∂ t H NS ( w , ∂ i w ) − ∂ i F 

i 
NS ( w , ∂ i w ) (38) 

nd our source contains solely first- and second-order spatial 
eri v ati v es. F or a deri v ation of higher order approximations to time
eri v ati ves of primitive variables, see Appendix A . 
We will dub this new formulation DEIFY (Dissipative Extension 

o Ideal Fluid dYnamics) so that ˜ R (1) is the first-order DEIFY source
MNRAS 535, 47–64 (2024) 
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erm. Also observe how the source term for DEIFY is proportional
o ε whereas the MIS formulation source terms scale as 1 /τ ∝ ε−1 .
his means that the two forms become stiff in opposing limits –
ear the ideal regime (small ε) DEIFY will be stable as a result
f a small source term, and will only become stiff, and potentially
nstable, as ε grows large. The big benefit of this behaviour is that
ear the ideal regime we can confidently evolve DEIFY with explicit
ime integrators, knowing that source contributions will remain
mall. 

In contrast, in the event of very slow-acting (large τ ) and large-
n-magnitude (large { κ, ζ, η} ) viscosities and heat fluxes, it will
ot be sensible or accurate to evolve DEIFY, even using implicit
chemes. Instead, we may revert to an implementation of the MIS
ormulation in this regime, which is likely to be stable with explicit
ntegrators and therefore less costly. Future work will extend the
pproach of Wright ( 2020 ), where an adaptive model of resistive
nd ideal MHD was implemented. Ours will be able to switch
etween different dissipative formulations of hydrodynamics during
volution, ensuring stability, efficiency, and accuracy. 

In summary, both the ideal and highly non-ideal limits, we should
e able to use explicit integration schemes, which have been shown
o provide a speed-up of up to an order of magnitude o v er implicit
chemes in comparable models of resistive/ideal MHD (Wright &
awke 2020 ). In Section 5.3 , we will pro v e the validity of this claim,

nd further explore the intermediate region of non-ideal behaviour
etween these two extremes. 

.1 First-order source 

n order to compute the DEIFY source term(s), we will need to
alculate matrices and, crucially, their inv erses. F or instance, we
ill need to know the inverse matrix that appears on the RHS of

quation ( 37 ), which represents the Jacobian of the primitive vector
ith respect to the non-stiff conserved vector. 
Here, we have a choice of how to compute the matrices of interest
that is we can invert them numerically, or try to get the form

f the inverted matrix symbolically. Inverting matrices numerically,
specially when densely populated, can require a large amount of
omputation, reducing accuracy as well as slo wing do wn simulations.
f the algebraic form of the matrices were at hand, this would lead
o a far more efficient simulation, and as we are trying to build a
ource term to extend ideal hydrodynamics with the intention of being
aster to evolve than other forms of dissipative hydrodynamics, it is
ensible to adopt the performance gains of a purely symbolic source
erm. 

On this note, let us turn to computing (algebraically) the matrices
∂ q 0 
∂ w 

)
and, hence, 

(
∂ q 0 
∂ w 

)−1 
. Here, we will make a simplification

o that the terms appearing in these matrices are human readable:
e take the low-velocity limit, neglecting terms O( v 2 ) and hence

etting the Lorentz factor, W = 1. This assumption is not made for
he numerical implementation. We also have a choice to make over
hich two thermodynamic variables are present in our primitive
ariable vector w . The equation of state, which relates p, ρ, and n ,
ives us this choice, and we opt to work with w = { p, ρ, v } . Thus,
ur ideal conserved vector is now given by 

q 0 ( w ) = 

⎛ 

⎝ 

D 

S j 
E = τ + D 

⎞ 

⎠ = 

⎛ 

⎝ 

ρ + p/ (1 − 	) 
( ρ + p) v j 

ρ

⎞ 

⎠ , (39) 

here we have used our equation of state to replace n in the
xpression for D and chosen to work with the conserved variable
 for now instead of τ as it takes a simpler form. 
NRAS 535, 47–64 (2024) 
This gives us the matrix 

(
∂ q 0 
∂ w 

)
= 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

∂ p n ∂ ρn 0 0 0 
v 1 v 1 p + ρ 0 0 
v 2 v 2 0 p + ρ 0 
v 3 v 3 0 0 p + ρ

0 1 0 0 0 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

(40) 

nd, hence, 
(
∂ q 0 
∂ w 

)−1 
is 

 p + ρ) −1 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

( p + ρ) / ∂ p n 0 0 0 −( p + ρ) ∂ ρn/ ∂ p n 

0 0 0 0 ( p + ρ) 
−v 1 / ∂ p n 1 0 0 −v 1 ( ∂ p n + ∂ ρn ) / ∂ p n 
−v 2 / ∂ p n 0 1 0 −v 2 ( ∂ p n + ∂ ρn ) / ∂ p n 
−v 3 / ∂ p n 0 0 1 −v 3 ( ∂ p n + ∂ ρn ) / ∂ p n 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

. (41) 

ext, using equation ( 37 ), this gives us 

 t 

⎛ 

⎝ 

p 

ρ

v j 

⎞ 

⎠ = ( ρ + p) −1 

⎛ 

⎝ 

( p + ρ)((1 / ∂ p n ) − ( ∂ ρn/ ∂ p n ) ∂ t E) 
( p + ρ) ∂ t E 

−v j ((1 + ∂ ρn/ ∂ p n ) ∂ t E + (1 / ∂ p n ) ∂ t D) + ∂ t S j 

⎞ 

⎠ 

, (42) 

here we can exchange the time-deri v ati ves of the conserved
ariables for spatial derivatives of the fluxes using equation ( 30 ).
oing this, and using our equation of state p = ( 	 − 1)( ρ − n ) to

eplace the partial deri v ati ves of primitive variables, we arrive at 

 t 

⎛ 

⎝ 

p 

ρ

v j 

⎞ 

⎠ = 

⎛ 

⎜ ⎝ 

(1 − 	)(1 + ∂ i S 
i ) 

−∂ i S 
i 

( ρ + p) −1 
[ 
v j ((2 − 	) ∂ i S i + (1 − 	) ∂ i ( Dv i )) − ∂ i S 

i 
j 

] 

⎞ 

⎟ ⎠ 

(43) 

hich represents expressions for the partial time deri v ati ves of the
rimiti ve v ariables in terms of purely spatial-deri v ati ves. 
Let us now demonstrate what the MISCE sources look like. These

re too complex to write in full, so we consider the case of bulk
iscosity only, restrict to one spatial dimension and again work in
he low-velocity approximation such that W = 1 (but not neglecting
erms O( v 2 )). Then, � NS = −ζ∂ x v 

x . The leading order source term,
˜ R (1) = −∂ t H (1) − ∂ x F 

x 
(1) in full is 

˜ R (1) = −∂ t 

⎛ 

⎝ 

0 
0 

−� NS 

⎞ 

⎠ − ∂ x 

⎛ 

⎝ 

0 
� NS v 

2 
x 

0 

⎞ 

⎠ (44a) 

= ζ

⎡ 

⎣ 

⎛ 

⎝ 

0 
0 

−∂ t ∂ x v 
x 

⎞ 

⎠ + ∂ x 

⎛ 

⎝ 

0 
v 2 x ∂ xx v 

x + 2 v x ( ∂ x v x ) 2 

0 

⎞ 

⎠ 

⎤ 

⎦ , (44b) 

here from equation ( 43 ) we have 

 t ∂ x v 
x = ( ρ + p) −1 [((2 − 	)( v x ∂ xx S 

x + ( ∂ x S 
x )( ∂ x v x )) 

+ (1 − 	 ) ∂ xx ( D v x )) − ∂ xx ( S 
x v x + p)] (45a) 

= [((2 − 	)(2 v x ∂ xx v x + 3 v x ( ∂ x v x ) ∂ x ( ρ + p) + ( ∂ x v x ) 
2 ) 

+ ( ρ + p) −1 (1 − 	)( v x ∂ xx n + n ∂ xx v x ) 

−∂ xx v x − v x ∂ x ( ρ + p) − ( ρ + p ) −1 ∂ xx p )] (45b) 

nd, finally, we have an expression for ˜ R (1) that is expressed purely
n (second-order) spatial gradients of the primiti ve v ariables. The
ull expressions (without simplification) are not human-readable, but
re attached as additional material with this submission. The code to
erive them can be found at https:// www.github.com/ MarcusHatton/
omputerAlgebra , whilst their implementation can be seen at https:

/ www.github.com/ MarcusHatton/ METHOD . 

https://www.github.com/MarcusHatton/ComputerAlgebra
https://www.github.com/MarcusHatton/METHOD
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.2 Second-order source 

 similar but more complex calculation can be made to derive the
ext order (second) of dissipative correction to ideal hydrodynamics. 
eginning again with the conservation law 

 t 

[
q 0 ( w ) + H (1) + H (2) 

] + ∂ i 
[

f i 0 ( w ) + F 

i 
(1) + F 

i 
(2) 

] = 0 (46) 

t follows that 

˜ R (2) = −∂ t H (2) − ∂ i F 

( i) 
2 . (47) 

t first order, the form of H , F and hence ˜ R (1) followed simply
rom the definition of the Navier–Stokes terms which are of O( ε).
t second order, we use the stiff subsystem 

 t ( nW w ) + ∂ i 
(
nW v i w 

) = 

n 

τ
( w − w NS ) (48a) 

 t q + ∂ i f 
i 
( q , q ) = 

1 

ε
( q − q NS ) (48b) 

nd make the substitution q = q 0 + q 1 + q 2 ≡ 0 + q NS + q 2 to 
btain, at order O( ε2 ), [ 
∂ t q NS + ∂ i f 

i 
( q , q NS ) 

] 
= q 2 . (49) 

Because the NS forms of the stiff variables can be defined entirely
n terms of the non-stiff primitive variables 

(
q NS ≡ q NS ( q ) 

)
, so too 

an q 2 . The vectors H (2) , F (2) are given by 

H (2) ( w ) = 

⎛ 

⎝ 

0 
W ( q 0 , (2) v j + q j, (2) ) + π0 j, (2) 

2 q 0 , (2) W − � (2) + π00 , (2) ) 

⎞ 

⎠ 

nd 

F 

i 
(2) ( w ) = 

⎛ 

⎝ 

0 
� (2) ( v i v j + δi 

j ) W 

2 + W ( q i (2) v j + q j, (2) v 
i ) + πi 

j, (2) 

W ( q 0 , (2) v 
i + q i (2) ) + πi 

0 , (2) 

⎞ 

⎠ . 

Putting these results together and making substitutions wherever 
e find time-deri v ati ves of the primitive variables (as before) allows
s to arrive at a purely spatial form for ˜ R (2) . 

 RESULTS  

ext, we will perform numerical tests of our implementation of the 
ISCE model, with comparison primarily to the established MIS 

odel from which it has been derived. A code named Multifluid
lectromagneto-HydroDynamics (METHOD) was used to perform 

hese simulations, which may be found at https://www.github.com/ 
arcusHatton/METHOD , having been forked and extended from its 

reator’s repository at https:// www.github.com/ AlexJamesWright/ 
ETHOD . Instructions on how to run the simulations and reproduce 

he results of this chapter are to be found on the ‘MISCE Paper’
ranch. 
F or e xplicit time-inte gration, we mostly use a second-order, 

perator-split Runge–Kutta (RK) scheme and occasionally a fourth- 
rder RK scheme for comparison (Gottlieb & Shu 1998 ). For semi-
mplicit time-integration, we use a Strong Stability Preserving (SSP) 
cheme from Pareschi & Russo ( 2005 ) that uses two explicit and
wo implicit sub-steps and gives second-order convergence in time- 
tep �t . To calculate the fluxes, we use a flux-vector splitting
pproach paired with third- or fifth-order Weighted Essentially Non- 
scillatory (WENO) reconstruction (Shu 1998 ). Our numerical grid 

s a static Cartesian one. For further details on the numerical scheme
mployed, see Wright & Hawke ( 2019 ). 

These will be standard tests such that we may compare results
gainst the literature and check for agreement. These tests are also 
hosen to reflect the physics we are interested in capturing for actual
eutron star mergers. 

.1 Shocktubes 

hocktubes are simple, 1D tests useful for closely analysing the 
ehaviour of the fluid model and its numerical implementation. They 
re designed to produce a set of forward- and backward-travelling 
aves, and in particular, discontinuities in the fluid’s properties. 
hese waves (contact, rarefaction, and shock) are the fundamental 
ropagation modes of the fluid and will certainly be produced at the
oint of merger, and thereafter whenever a sharp jump in density,
ressure, or temperature occurs such as between different phases of 
atter within the neutron star. They also involve advection of the
uid, which will be important for the inspiral phase of the merger as

idal forces will drag fluid around the star as they orbit their mutual
entre of mass. 

The initial data for these tests are similar to those of Takamoto &
nutsuka ( 2011 ) but with zero initial velocity. We also share the same
quation of state, allowing for a fa v ourable quantitative comparison
o be made. A domain of one spatial dimension is initially split into
ordering left and right states [ L, R] where the primitive variables
n the two states are 

 : 

⎛ 

⎝ 

p 

n 

ρ

⎞ 

⎠ = 

⎛ 

⎝ 

10 
8 
23 

⎞ 

⎠ (50) 

or the left state and 

 : 

⎛ 

⎝ 

p 

n 

ρ

⎞ 

⎠ = 

⎛ 

⎝ 

1 
2 

2 . 5 

⎞ 

⎠ (51) 

or the right state. The pressure, p, and number density, n , are set
n the initial data and the equation of state, p = ( 	 − 1)( ρ − n ),
etermines the energy density, ρ. We set a value of 	 = 5 / 3 for the
diabatic index. 

In Fig. 4 , we see the expected production of the three travelling
av es: the left-mo ving rarefaction; right-mo ving contact-wav e; and

f aster) right-moving shockw ave. These are most easily seen in the
nergy density plot in the top-left. The bulk viscosity has a smoothing
ffect on these waves, particularly on the shockwave, where it also
ignificantly increases the propagation speed of the shock-front –
his can also be seen directly in the velocity plot (top-right). The bulk
iscosity itself (bottom-right) spikes at the shock where the velocity 
radients are highest. Its positivity there indicates a resistance to the
apid compression of the fluid by the shockwave, with the reverse
eing true for the rarefaction. 
In Fig. 5 , we take a closer look at a shocktube profile for the

uid’s number density with bulk viscosity and heat flux present. 
hree results from the MIS model are plotted for differing dissipative

ime-scales τ (the same for both types of dissipation), and one for
he MISCE model (at leading order, so the time-scale does not enter
nto the EoM). In particular, we see convergence of the MIS result
o the MISCE result as τ is decreased. This is expected given that
or the MIS model, in the τ → 0 limit, any off-shell deviations from
elativistic Na vier–Stokes beha viour are instantaneously quenched. 
his means that the MIS model’s behaviour should match that of

he leading-order MISCE model in this limit, where terms O( τ ) and
igher are neglected. 
MNRAS 535, 47–64 (2024) 

https://www.github.com/MarcusHatton/METHOD
https://www.github.com/AlexJamesWright/METHOD
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Figure 4. A shocktube simulation comparing results of an ideal fluid with a viscous one using the MISCE formulation at leading order. A bulk viscosity parameter 
of ζ = 1 × 10 −2 and ζ = 5 × 10 −2 is used in each of the two viscous cases. The energy density , velocity , Na vier–Stokes b ulk viscosity and temperature are 
plotted. The increase in shock propagation speed and smearing of discontinuities due to the inclusion of bulk viscosity are both visible physical effects. 

Figure 5. The evolution of the number density for a ‘stillshock’ test – a shocktube with zero initial velocity. There is bulk viscosity and heat flux present with 
coefficients ζ = 5 × 10 −2 and κ = 5 × 10 −3 . The three panels show the entire domain (left), the raref action w ave (centre) and the shockw ave (right). The tw o 
models (MIS, MISCE) are compared in all three panels, with the dissipative time-scale τ varying for the MIS model but held constant at zero for the MISCE 

model (making it the leading-order version). One can see the approach of the MIS solution towards the MISCE solution as τ → 0. For the rarefaction wave 
the y hav e conv erged in the fastest case, but for the shock there are still differences. In particular, one can see the increase in speed of the shock as the ratio ζ/τπ

increases for the MIS model. It is catching up to the MISCE solution, which can be thought of as its limiting case. 
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Figure 6. The short-term development of a Kelvin–Helmholtz unstable fluid 
with negligible viscosity until t = 6 . 25. This uses the MISCE model that 
reduces to the ideal Euler equations in the inviscid limit. The number density 
is shown in colour, as is the case for all KHI plots here. The initial perturbation 
grows rapidly until the interface breaks and large-scaling mixing occurs, 
followed by the onset of turbulent behaviour which produces shocks and 
smaller -scale v ortices. 

Figure 7. The long-term evolution of the KHI using the MISCE model at 
leading order with a shear viscosity parameter of η = 1 × 10 −3 . The shear 
viscosity has an intermediate value here: it suppresses large-scale mixing of 
the two fluids but vortices still form in a narrow shearing layer that is stable 
even at late times. The asymmetry is again visible here, but obscured for 
similar reasons. 

Figure 8. The long-term development of the Kelvin–Helmholtz instability 
until t = 30 . 0, for an ideal fluid with negligible viscosity, again using the 
MISCE model. The longer simulation time allows the asymmetric initial 
perturbation at the interface to give rise to large-scale asymmetric vortex 
formation. 
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.2 Kelvin–Helmholtz instabilities 

he Kelvin–Helmholtz instability (KHI) is a shearing instability that 
esults when two (or more) fluid regions flow in opposite directions 
ast each other, each usually differing in density. A wide range of
uid behaviours can be observed depending on the precise initial 
ata, but here we will be varying the shear viscosity only, to focus
n its effect. In the most interesting cases, there is an initial linear
rowth phase of the instability at the interface, followed by a non-
inear phase where the creation of vortices and a complex network 
f shocks typically precedes the onset of smaller-scale turbulence. 
Neutron star matter in mergers is likely to be Kelvin–Helmholtz 

nstable as the two objects collide and shearing flows develop. The 
HI is known to play an important role in post-merger dynamics 
here it moderates the cascade of energy between macroscopic and 
icroscopic scales through the action of shear viscosity in the fluid. 
his is important in the spin-down of the remnant where the rotational
nergy of the fluid is converted to small-scale turbulence and then 
o either magnetic energy through the dynamo effect or dissipated 
hrough viscous heating. We will also analyse the integrated power 
pectrum of kinetic energy resulting from turbulence induced by 
he KHI. This has famously been shown by Kolmogorov to have a
niversal scaling relation with wavenumber for at least part of its
pectrum, a result which was generalized by Qian ( 1994 ). 

To investigate this process, we use the initial conditions from 

eckwith & Stone ( 2011 ), as well as the spectral analysis laid
ut by them. The data are defined within a 2D domain where
 ∈ [ −1 . 0 , 1 . 0] and y ∈ [ −0 . 5 , 0 . 5]. The domain is then divided
nto two-fluid regions, with the inner region contained roughly within 
 ∈ [ −0 . 5 , 0 . 5] and the outer elsewhere. The two-fluid regions have
iffering densities and flow past each other with velocities directed 
n the positive and negative y-directions. There is a narrow transition
ayer between the two where a small, spatially varying perturbation 
o the x-directed velocity is also introduced to induce mixing. The 
rimiti ve v ariables are 

 

 

v y 
ρ

v x 

⎞ 

⎠ = 

⎛ 

⎜ ⎜ ⎝ 

v sh tanh 
(

x−0 . 5 
a 

)
ρ0 + ρ1 tanh 

(
x−0 . 5 

a 

)
A 0 v sh sin (2 πy) exp 

(
−( x−0 . 5) 2 

l 2 

)
⎞ 

⎟ ⎟ ⎠ 

; x > 0 . 0 (52a) 

nd 

 

 

v y 
ρ

v x 

⎞ 

⎠ = 

⎛ 

⎜ ⎜ ⎝ 

−v sh tanh 
(

x+ 0 . 5 
a 

)
ρ0 − ρ1 tanh 

(
x+ 0 . 5 

a 

)
−A 0 v sh sin (2 πy) exp 

(
−( x+ 0 . 5) 2 

l 2 

)
⎞ 

⎟ ⎟ ⎠ 

; x ≤ 0 . 0 , (52b) 

here the shear velocity is v sh = 0 . 5, the boundary layer thickness is
 = 0 . 01, the densities are given by ( ρ0 , ρ1 ) = (0 . 55 , 0 . 45), and the
erturbation has an amplitude A 0 = 0 . 1 o v er a characteristic length
 = 0 . 1. The initial pressure is uniform, p = 1 . 0, and the adiabatic
ndex is set to 	 = 4 / 3. We use periodic boundaries in the both the
 and y directions. 
Figs 6 to 7 show the development of the KHI for the fluid’s number

ensity. Figs 6 and 8 show its development for an ideal (inviscid)
uid. For the former, the early-time behaviour is the focus, with 

he initial growth of the interface instability visible, followed by 
arge-scale mixing and finally the formation of small-scale structure 
s energy cascades from longer to shorter scales. In the latter, the
symmetry of the initial perturbation has had time to grow into a
acroscopic asymmetry. One can also see vortices forming and the 

nset of turbulence in the wide mixing layer. 
MNRAS 535, 47–64 (2024) 
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Figure 9. The power spectra for the kinetic energy density in the KHI 
at medium and long times, for an inviscid fluid (top) and one with weak 
shear viscosity, η = 1 × 10 −4 (bottom). This uses the MISCE formulation at 
leading order with a grid of size N x = N y = 800. The expected Kolmogorov 
scaling of the power spectrum is seen in the inertial regime at earlier times. In 
the inviscid case, the numerical viscosity has a minor damping effect on the 
power spectrum at late times and high wavenumbers (short length-scales). A 

greater damping effect is seen in the viscous case, as well as a ‘ringing’ at 
high wavenumbers due to coupled action of fluid element discretization and 
local viscosity: these wavenumbers correspond to length-scales of a few, or 
even a single, cell(s). 
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model at second order) used to assess numerical convergence with resolution. 
Shear viscosity causes the flattening of features in the y-direction velocity 
across the x-domain here. This simulation was performed using 3200 cells in 
one dimension up to a code time of 50.0. 
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In Fig. 7 , the long-term behaviour for a viscous fluid is shown.
iscosity suppresses the perturbation’s growth and stabilizes the
ixing at the interface. Vortices do form, still, but they are confined

o a smaller corridor between the two bulk fluid regions, and in
eneral the behaviour is less chaotic. We observe similar qualitative
ehaviour to Takamoto & Inutsuka ( 2011 ), who performed compara-
le simulations. Fig. 9 shows the power spectra for the kinetic energy
n our KHI simulations. Two comparisons are made: one between
arly ( t = 12 . 0, blue curve) and late ( t = 30 . 0, orange curve) times;
nd one between an inviscid (top panel) and viscous (bottom panel)
uid. In both cases, the system loses energy o v er time. F or the

nviscid case, this is due to numerical dissipation. For the viscous
ase, there is the additional effect of viscous dissipation, which
auses the steeper drop-off for the orange versus the blue curve.
he expected Kolomogorov scaling for the inertial range is plotted
nd matches well with the data for all but the late-time viscous case,
here dissipation has more efficiently mo v ed energy to the shorter

ength-scales, giving a steeper dependence on wavenumber. Finally,
he ‘ringing’ effect seen for the highest wavenumbers in the late-
ime, viscous case is, we believe, a numerical artefact. Dissipative
ehaviour in the MISCE model is captured using a complex mixture
f spatial gradients of the primitive variables, generally calculated
sing simple central differencing rather than, for example, a WENO
cheme which is designed to be non-oscillatory. For the highest
avenumbers here, corresponding to a few or even a single cell(s),

hese deri v ati ves may be causing small-scale oscillations in fluid
ariables that have no qualitative significance. 

.3 Code performance 

here are a few key metrics of code performance we must now
onsider. First, how the runtime of simulations scales with resolution.
NRAS 535, 47–64 (2024) 
econdly, the convergence of the simulation output, which is assessed
n two ways: the self-convergence of the MISCE results to a very high
esolution simulation output; the asymptotic approach of the MISCE
esults to either leading-order or ideal fluid behaviour as the non-
deal coefficients approach zero. Finally, we present a comparison of
untimes, showing the significant speed-up achieved by the MISCE
odel. 

.3.1 Scaling and convergence 

y evolving smooth ‘SineWave’ initial data (Fig. 10 ), we are able
o assess the convergence of our MIS and MISCE implementations
ith resolution. Considering the error due to finite resolution, we
efine it as the difference between ‘true’ solution (the one obtained
t infinite resolution) and the finite-resolution solutions our code
ctually produces: E = Q true − Q num 

. 
Then we make the usual assumption that this error follows a

ower-law scaling in the grid-size: E ∝ �x n . Different approaches
xist for extracting the value of n in this expression, and we choose
ere to use self-convergence, where each resolution’s solution is
ompared to its neighbours to produce a set of convergence powers at
ifferent resolutions. We do this because different components of our
umerical scheme (the time-integrator, cell-interface reconstruction
ethod etcetera) each have individual expected convergence rates

hat blend together to give an overall convergence. This means that
ifferent components can dominate the error at different resolutions,
nd we are able to assess the transition between them using this
pproach. 

We show in Table 2 , a summary of convergence orders for
ifferent models and resolutions. In Fig. 11 we plot convergence rate
gainst resolution for our MISCE model, and in Fig. 12 we plot the
onvergence rate over time for a simulations at different resolutions,
gain using our MISCE model. In summary, we see a transition from
igh-order convergence at low resolutions to lower order convergence
t higher resolutions. For both models, the error at low resolutions
s dominated by the time integrator and reconstruction algorithm,
hich are high-order schemes and hence their error converges away
uickly. 
At high resolutions, we see a drop in the o v erall conv ergence order.

or the MISCE model, this is because there are many spatial deri v a-
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Table 2. The self-convergence of a smooth sin-wave evolution using different 
models of non-ideal hydrodynamics and different numerical schemes. The 
expected orders of convergence are seen. At very high resolution, the 
first-order central differencing used in the MISCE model source’s spatial 
deri v ati ves causes the convergence order to drop to 2 nd . For the MIS 
model, we use lagged-updates to calculate the required time deri v ati ves. This 
similarly caps the order of convergence at first when very high resolutions 
are used and error from other components of the numerical scheme are tiny. 

Self-conv er gence 
Model Integrator Reconstruction Resolution Order 

MISCE RK2 WENO3 100 2 .45 
MISCE RK4 WENO5 50 4 .5 
MISCE RK4 WENO5 100 4 .7 
MISCE RK4 WENO5 200 3 .9 
MISCE RK4 WENO5 400 2 .6 
MISCE RK4 WENO5 800 2 .1 
MISCE RK4 WENO5 1600 2 .0 
MIS SSP2 WENO5 400 4 .0 
MIS SSP2 WENO5 800 5 .7 
MIS SSP2 WENO5 1600 1 .0 

Table 3. A comparison of computational time required for different hydro- 
dynamic models and time-integrators. These results are for KHI simulations 
using 40 CPU nodes and MPI memory management on the Iridis5 super- 
computer. The MISCE model gives about an order of magnitude speed-up 
compared to the MIS model (when evolved with explicit methods instead of 
implicit ones). RK2 refers to an operator-split, second-order RK scheme and 
SSP2(222) refers to a second-order implicit-explicit scheme. 

Average runtime 
Model Integrator Resolution Endtime Runtime (Speed-up) 

MIS SSP2 200x400 6 .25 1h22m 

MISCE RK2 200x400 6 .25 6m ( ×14) 
MIS SSP2 400x800 6 .25 3h22m 

MISCE RK2 400x800 6 .25 29m ( ×7) 
MIS SSP2 800x1600 6 .25 26h10m 

MISCE RK2 800x1600 6 .25 3h7m ( ×8.4) 
MIS RK2 800x1600 18 .0 15h45m 

MISCE RK2 800x1600 18 .0 9h8m ( ×1.7) 
MIS SSP2 800x1600 3 .75 22h3m 

MISCE RK2 800x1600 3 .75 1h54m ( ×11.6) 
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ives of the primitive variables in the complex source terms, which 
re e v aluated using second-order central dif ferencing. Increasing the 
rder of this central differencing does increase the convergence rate, 
ut makes negligible difference to quantitativ e results. F or the MIS
odel, we require temporal deri v ati ves of the primitive variables.
hese are e v aluated using backwards-dif ferencing on the primiti ves’
alues at the current and previous time-step. This introduces a first-
rder error due to these lagging updates that does not converge away
ith resolution, and hence appears as the dominant error at high 

esolutions. 

.3.2 Model comparison 

e show in Table 3 , a comparison of runtimes between the MIS and
ISCE models for the KHI. We primarily present results comparing 

he MIS model evolved with the SSP2(222) IMEX time-integrator 
Pareschi & Russo 2005 ) and the MISCE model evolved with an
perator-split RK2 time-integrator. Whilst this comparison may seem 

unfair’ at first, due to the costly nature of IMEX schemes compared
o explicit ones, it is justified. Whilst for much of a merger simulation
he neutron star fluid may be accurately treated as ideal or near-ideal,
hen dissipation does become significant its parameter space will 

ertainly extend into the region where the MIS model becomes stiff
nd IMEX schemes are needed to evolve it stably. 

In this case, a significant speed-up of about an order of magnitude
s achieved using the MISCE model. When the two models are
ompared using explicit time-integrators for both, a speed-up of 
early a factor of 2 occurs, owing to the reduced system size. 

 F U RTH E R  C O N S I D E R AT I O N S  

.1 Rapid evolution of reduced initial data 

he source terms in MIS models drive the dissipative variables 
owards their equilibrium values on time-scales τ . We therefore 
xpect that, when our initial data (or otherwise) put us significantly
ut-of-equilibrium, at times t � τ , there will be a systematic error in
he dissipative variables that decays roughly as e −t/τ . 

Ho we v er, a CE-e xpanded model does not possess this type of
ource term nor indeed any explicit dissipative variables at all. 
nstead, the primitive variables and their derivatives are used to 
roduce dissipati ve ef fects. We therefore expect that we will need to
ake modifications to the primitive variables’ initial values to reflect 

heir out-of-equilibrium status in lieu of having terms that explicitly 
efine our out-of-equilibrium state. 
Let us demonstrate the effect of not making appropriate adjust- 
ents to the primitive variables to reflect their out-of-equilibrium 

tate. We take the simple heat model presented earlier in equa-
ion (18), in one dimension: 

 t T + ∂ x q = 0 , (53a) 

 t q = − 1 

τq 

( κ∂ x T + q); (53b) 

nd its CE form, equation ( 22 ), 

 t T = κ
[
∂ (2) 

x T − κτq ∂ 
(4) 
x T 

]
. (54) 

y introducing a fast time variable T = t/τq on the scale of the
elaxation rate, we can perform a matched asymptotic expansion 
 alid e ven at small times. This transforms equation (53) into 

 T T + τq ∂ x q = 0 , (55a) 

 T q = −q − κ∂ x T . (55b) 

rom equation (55), the power series expansion now gives that the
emperature T is independent of T to leading order and 

 T q 0 = −q 0 (56) 

hich can be integrated directly to give 

 0 = C 0 e 
−T , (57) 

here C 0 is a constant of integration. We immediately see that this
xponential behaviour in fast time, T , cannot be captured by a power
eries expansion in the original time, t . 

Noting that C 0 = q( t = 0) + O( τq ), we relabel C 0 as �q 0 because
t represents an initial offset of the heat-flux at T → 0 + . To compare
his early time behaviour between the two models (equations 53 and
4 ), we can Taylor-expand each in terms of T to an arbitrary (small)
ime T = 1 about T = 0. This is equi v alent to considering the
volution up to time t = τq . From the relaxation model equation (53)
MNRAS 535, 47–64 (2024) 
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M

Figure 11. The self-convergence rate of the MISCE model (at second order) 
for different resolutions. For lower resolutions, the convergence order is 
between fourth and fifth due to the use of an RK4 time-integrator and 
a WENO5 reconstruction scheme. At higher resolutions, a transition to 
second-order convergence is seen due to the presence of first-order central 
differencing used for spatial derivatives in the MISCE source terms. 
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time for a range of resolutions. The simulation data can be seen in Fig. 10 , 
although this convergence test is carried out on the number density, n . For 
lower resolutions, the convergence order is between fourth and fifth due to 
the use of an RK4 time-integrator and a WENO5 reconstruction scheme. At 
higher resolutions a transition to second-order convergence is seen due to the 
presence of first-order central differencing used for spatial deri v ati ves in the 
MISCE source terms. 
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e have 

 ( T = 1) � T ( T = 0) + 

(
∂ T 0 

∂ T + τq 

∂ T 1 

∂ T + .. . 

)
( T = 0) + .. . 

(58a) 

= T ( T = 0) − τq 

∂ �q 0 

∂ x 
+ O( τ 2 

q ) (58b) 

hilst from the CE model equation ( 54 ), we have 

 ( T = 1) � T ( T = 0) + 

(
∂ T 0 

∂ T + τq 

∂ T 1 

∂ T + .. . 

)
( T = 0) + .. . 

(59a) 

= T ( T = 0) + O( τ 2 
q ) . (59b) 

omparing the two, we see that we can match the two temperatures
t small times by making an initial-data adjustment given by 

 ( t = 0 , x) → T ( t = 0 , x) − τq ∂ x �q 0 . (60) 

his accounts for the fast-relaxation behaviour and remo v es the
xponentially decaying, leading-order systematic error in the so-
ution. In words, we are taking into account the heat flux ( q) that
ould have produced our initial, out-of-equilibrium temperature ( T )
istribution. Otherwise, our reduced system does not have access to
his knowledge and will not equilibrate accordingly. 

This can be seen in Fig. 13 , where a 1D ‘top-hat’ temperature
rofile evolves up to t = 1 × 10 −3 , using non-ideal parameter values
= 1 × 10 −3 and τq = 1 × 10 −4 . Here, we are not interested in the

sual, long-term evolution where heat would slo wly dif fuse outwards
nd the temperature profile would adopt a decaying Gaussian shape.
nstead, we are interested in the very short-term evolution due to the
nclusion of an initial heat flux �q 0 = sin (6 πx) into the MIS-derived
eat model given by equation (53). 

In the left panel, the temperature of the MIS-derived relaxation
odel is shown with solid lines, whilst the initial temperature with the

ffset computed in equation ( 60 ) is shown with dotted lines. Excellent
greement is seen, indicating that this offset w ould w ork when
pplied to a reduced order model such as the MISCE approach. The
ight panel shows the heat flux of the MIS-derived relaxation model,
NRAS 535, 47–64 (2024) 
howing that the system has relaxed to equilibrium, illustrating that
his applied offset has the appropriate magnitude. 

In summary, injecting an initial heat-flux into a relaxation-type
ystem leads to an exponentially fast adjustment of the corresponding
onjugate primiti ve v ariable: the temperature, in this case. We are
ble to derive an analytical expression for this adjustment behaviour
hat depends on the spatial gradient of the injection and the non-
deal parameter controlling its time-scale, τq in this case. Even in the
educed system found using the CE-expansion, we are able to adjust
he sole remaining variable (the temperature) to capture the offset
hat is quickly arrived at by the original relaxation system. 

The same effect would be observed when using the full MIS model
f non-ideal hydrodynamics, where an initial bulk or shear viscosity
ould lead to an exponentially fast adjustment of the velocity, albeit

ikely small in magnitude. If one uses our MISCE model for capturing
ar out-of-equilibrium dissipation, the initial conditions of the non-
deal variables (viscosity, heat-flux) can and should still be taken
ccount of by adjustment of their conjugate primiti ve v ariables (such
s velocity and temperature). 

.2 Stability analysis 

t is important to consider the numerical stability of the CE systems
ntroduced here. Usually, conservation laws are evolved for hydro-
ynamic simulations of ideal fluids in special relativity of the form 

 t q + ∂ x f = 0 , (61) 

here we choose to write it in one spatial dimension for simplic-
ty. The Courant–Friedrichs–Lewy (CFL) condition sets a stability
riterion for these strongly hyperbolic systems given by 

 : = 

∣∣∣∣∂ f ∂ q 

∣∣∣∣ �t 

�x 
≤ C max (62) 

here �t is the time-step and �x is the spatial resolution. C is
he Courant number and C max is a constant that determines its

aximum stable value and depends on the particular numerical
cheme employed. Typically, C max = O(1) for explicit schemes. 
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Figure 13. The evolution of the temperature and heat flux for the initial data described in Section 6.1 using the relaxation model given by equation (53). 
The initial heat flux means the data is initially out-of-equilibrium. The non-ideal parameters are κ = 1 × 10 −3 and τq = 1 × 10 −4 , so the system relaxes to 
equilibrium on the time-scale shown here, as seen by the heat flux relaxing to nearly zero. The analytical result for the appropriate adjustment to the initial data, 
derived in Section 6.1 , is also plotted in the left-hand panel (dotted) and shows excellent agreement with the numerical evolution result. 
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For linear systems inv olving higher -order spatial deri v ati ves, such
s the heat equation given by 

 t T = κ∂ (2) 
x T , (63) 

 von Neumann stability analysis is usually performed, where the 
umerical errors are decomposed into a Fourier series. For a forward- 
ime, centre-spaced (explicit) numerical scheme this analysis finds 
hat 

�t 

�x 2 
≤ 1 

2 
(64) 

s the condition necessary for stability. For the CE heat system given
y equation ( 22 ) 

 t T = κ∂ (2) 
x T − κ2 τq ∂ 

(4) 
x T , (65) 

he conditions for stability are more complex. See Bevilacqua et al. 
 2011 ) for a treatment of higher-order differential terms rele v ant to
ur work here. The analysis gives us the inequality for stability of 

�t 

�x 2 
+ 4 τq κ

2 �t 

�x 4 
≤ 1 

2 
. (66) 

his clearly yields the previous heat-equation limit when the first 
erm is dominant. In the limit where �x → 0 and the second term
ecomes dominant, we instead obtain the condition �t ≤ 1 

8 
�x 4 

τq κ2 

hich is the stricter condition of the two in this limit. We expect
 cross-o v er of stability between the two criteria when �x 2 = 4 τq κ .
t this point, the o v erall stability condition given by equation ( 66 )

bo v e yields �t ≤ τq . See Fig. 14 for a visualisation of these stability
riteria. 

The stability criteria for the full, non-linear MISCE model we 
av e dev eloped will be more complex still, given the presence
f man y mix ed deri v ati v es. Hence, we primarily inv estigate its
table parameter space empirically. Ho we ver, we can first glean 
ome insight analytically, although the usual von Neumann stability 
nalysis is not applicable to the non-linear terms, and we therefore 
onsider the linear terms only here. 

We make the ansatz that the solution can be written as q n l =
 

n exp ( i lα�x ) where n and l index the time-step and a grid-point,
espectively, and α is a spatial frequency present in the data. Using 
entral finite differencing, the MISCE sources will produce a solution 
rowth rate per step, q, with the following form: 

 = 1 − ξ
A�t 

�x 2 
sin 2 

(
θ

2 

)
+ ξτ

B�t 

�x 3 
( sin (2 θ ) − 2 sin ( θ) ) 

+ ξ 2 τ
C�t 

�x 4 
sin 4 

(
θ

2 

)
, 

here θ = α�x/ 2, ξ ≡ { ζ, κ, η} and A , B, and C are functions of the
rimiti ve v ariables. We anticipate a cross-o v er between the various
tability criteria as resolution varies. 

First, we note that the validity of our expansion only applies when
� 1 and indeed we find that our simulations are unstable when
� 10 −2 . In Hiscock & Lindblom ( 1983 ), conditions are provided

or the stability (and causality) of MIS theory. There, the β coeffi-
ients given in equation (12), which represent the ratio of dissipation
trengths ( ξ ≡ { ζ, κ, η} ) to time-scales ( τ ≡ { τ� 

, τq , τπ } ), are used
MNRAS 535, 47–64 (2024) 
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o determine the stability of the theory. Unsurprisingly then, we find
he same is true here: a lower bound from causality appears on the
atio τ/ξ . 

In particular, we find that for shocktube tests, τq /κ = T β1 � 0 . 5
s well as τ� 

/ζ = β0 � 0 . 1 grants stability . Similarly , for KHI tests,
π/η = β2 � 0 . 2 gives stability. These ratio conditions coupled with
he small- τ requirement work together to create a stability region
ounded at either end, at least when next-to-leading order terms ∝ τ

re included in the MISCE source. 
For a Boltzmann gas, the β coefficients have thermodynamic forms

hat we can calculate analytically. We expect them to usually be
O(1). Indeed, we have implemented these thermodynamic forms

uch that the timescales used are dynamically adjusted during the
imulation—little difference is made to using preset values. 

.3 Extension to GR 

ere we briefly consider the form our model would take if we were
o extend it to General Relativity, in anticipation of future work. We
ollow the fairly standard numerical relativity definitions as laid out
n Chabanov et al. ( 2021 ). In particular, we introduce the unit time-
ike vector n that is normal to the spatial hypersurfaces, on which an
nduced spatial metric γμν

. = g μν + n μn ν is defined, where g μν is the
pace–time metric and g 

. = det ( g μν) = α
√ 

γ relates the determinants
f the two. The components of n are given by n μ = ( −α, 0 , 0 , 0) and
 

μ = α−1 (1 , −βi ) T where α is the lapse scalar and βi = γij β
j is the

hift-vector. 
The hydrodynamic equations in GR then become 

 t 

(√ 

γ U 

) + ∂ i 
(√ 

γ F 

i ( U ) 
) = 

√ 

γ S , (67) 

here 

U = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

D 

S j 
τ

X 

Y j 

Z 

jk 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

= 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

nW 

( ρ + p + � ) W 

2 v j + W ( q 0 v j + q j ) + π0 j 

( ρ + p + � ) W 

2 + 2 q 0 W − ( p + � − π00 ) − nW 

nW� 

nWq j 

nWπjk 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

 

i = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

DV 

i 

αS i j − βi S j 

αS i − βi E − DV 

i 

XV 

i 

Y j V 

i 

Z 

jk V 

i 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, (68) 

S = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

0 
1 
2 αS ik ∂ j γik + S i ∂ j β

i − E ∂ j α

αS ij K ij − S j ∂ j α
αn 
τ� 

( � NS − � + � � 

) 
αn 
τq 

( γ j 
μq 

μ
NS − q j + � 

j 
q + τq G j q + τq H 

j 
q ) 

αn 
τπ

( γ j 
μγ k 

ν π
μν
NS − πjk + � 

jk 
π + τπG jk 

π + τπH 

jk 
π ) 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

nd we have defined V 

i = αv i − βi , K μν = −∇ μn ν − n μa ( n ) ν as the
xtrinsic curvature and a μ( n ) = n ν∇ νn 

μ as the acceleration of the
ormal observer. The � terms represent the next-to-leading order
ontributions to the dissipative terms’ sources and the G and H
erms represent couplings between the dissipative variables and the
auge and curv ati ve v ariables. 

Let us consider how the MISCE derivation will work now: more
etails and an illustration in a different context are given in Wright
 2020 ). We consider the τ → 0 limit so that the source terms G 

nd H are irrele v ant for the expansion about this limit. We also
eglect higher-order corrections as usual so that the � terms vanish.
NRAS 535, 47–64 (2024) 
he perturbativ e e xpansion about the Navier–Stokes equilibrium is
onceptually the same, if algebraically more complex. The procedure
hat replaces time deri v ati ves of the perturbative quantities with
patial deri v ati ves of equilibrium quantities does, ho we ver , in volve
eri v ati ves of more terms that appear in equation ( 68 ). 
For instance, deri v ati ves of the (square root of the) spatial metric’s

eterminant ( 
√ 

γ ) appear in equation ( 67 ). The spatial deri v ati ves
re fairly straightforward to calculate using finite-differencing.
o we ver, we w ould lik e to a v oid using finite-differencing for the

emporal deri v ati ves, which requires additional memory allocation
nd is generally low-order accurate. To this end, we use the equa-
ion, ∇ μ

√ −g = 0, as well as the relation, 
√ −g = αγ , to arrive at

he identity 

∂ μ
√ 

γ + 

√ 

γ∂ μα = 0 (69) 

hich, with index μ = 0, gives 

 t 

√ 

γ = 

−√ 

γ

α
∂ t α, (70) 

here the time-deri v ati ve of α is usually calculated anyway as it is
eeded for the evolution of the gauge. 

 C O N C L U S I O N S  

e have presented a dissipative extension to the relativistic, ideal
ydrodynamic equations often used in astrophysical simulations.
oti v ated by the relaxation form of the MIS sources for the dissipa-

i ve v ariables, ne w source terms are derived by writing the dissipative
ariables as a series expansion in deviations from their equilibrium,
elati vistic Navier–Stokes v alues. The series is paramterized by the
issipation strength and time-scale coefficients, and its terms are
ound using an order-by-order comparison of the MIS equations of
otion. This leads to a rapidly convergent series in the case of fast-

cting, weak dissipation, which we term the MISCE formulation. 
This new system is numerically non-stiff in the exact limit where

he commonly used MIS equations of motion are stiff and inaccurate
n the opposing limit. Because much of the matter in a neutron star
ay be treated as a near-ideal fluid, the MISCE equations of motion
ay be evolved explicitly, giving accurate results with e x ecution

imes that are about an order of magnitude reduced. Even when both
odels are evolved with the same, explicit integrators, the MISCE

ormulation is nearly twice as fast, owing to its reduced system size.
t also converges to the Euler equations in the zero-dissipation limit,
llowing for the natural evolution of a fluid, which is mostly ideal
ith some areas of non-equilibrium behaviour. 
Within its domain of validity, we have demonstrated it to produce

ighly similar results to the MIS formulation for a range of initial
ata. It is able to capture dissipative effects near discontinuous data
ithout the onset of Gibbs oscillations and shows little error growth

compared to MIS results) for smooth solutions o v er dissipation
trengths and time-scales spanning many orders of magnitude. For
ore complex simulations of Kelvin–Helmholtz instabilities, the

xpected scaling laws are reproduced for the kinetic power spectrum
cross the inertial range of wavenumbers. 

The realm of stability for our new model is considered in
ection 6.2 and is dependent both upon the dissipation coefficients
in particular the ratio of strength to time-scale) and the simulation’s
pace–time resolution, with a sharper dependence on the spatial
esolution. The presence of man y mix ed-order deri v ati ves in the
ource terms can lead to instabilities when spatial resolutions are
ushed very high, though this effect may be mitigated somewhat
y using better numerical-deri v ati ve approximations (than simple
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nite-differences) such as slope-limiting ones. In Section 5.3.1 , we 
resented results showing the e xpected conv ergence for the fourth-
rder RK and fifth-order WENO schemes we use. One caveat is
hat at high resolutions, the MISCE formulation, which makes use 
f second-order central-differencing of the primitive variables, starts 
onverging at second-order in the grid-spacing. Similarly, the MIS 

ormulation starts converging at first-order for high resolutions, when 
he dominant error contribution is the first-order time deri v ati ves
alculated using lagged updates. 

In Section 4, to simplify the form of the matrices in the source that
e present, we made the assumption that terms of O( v 2 ) and higher
ere negligible, and hence that the Lorentz factor, W , could be set

o unity. Whilst for simulations we use the entire, non-simplified 
xpressions that we derived using computer algebra, the differences 
his made to results were small, and were generally eclipsed by 
esolution ef fects. Ho we ver, the dif ferences may be more significant
or fluid velocities approaching the speed of light, such as in the final
rbits of a binary neutron star pre-merger, or for the significantly 
ut-of-equilibrium matter created in the merger itself. 
Although all simulations have been performed in the special 

elativistic limit, the techniques we have used are not limited to 
his alone. A general relativistic extension to MISCE is (in principle, 
t least) straightforward and already underway – we have sketched 
he structure of this in Section 6.3 . In addition, we have developed
n adaptive code prototype that evolves different dissipative fluid 
ormulations in different physical regimes (e.g. MIS and MISCE) to 
inimize computational work and maximize accuracy and stability. 
ogether, this should allow for more efficient, dissipative simulations 
f neutron star mergers and accretion on to compact objects. 
The authors acknowledge the use of the IRIDIS High Performance 

omputing Facility, and associated support services at the University 
f Southampton, in the completion of this work. Open source 
oftware used includes SYMPY (Meurer et al. 2017 ), MATPLOTLIB 
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PPENDIX  A :  APPROX IMATING  TIME  

E RIVATIVES  

n Section 4 we showed that by making use of the fundamental
onservation-law equation 

 t q ( w ) + ∂ i f i ( w ) = 0 (A1) 

nd the simple chain-rule for deri v ati ves, we are able to arrive at
n approximation to time deri v ati ves of the primitive variables,
 , containing only spatial deri v ati ves of the fluxes (or primitive

ariables). 

∂ w 

∂ t 
= 

∂ w 

∂ q 
∂ q 
∂ t 

= −
(
∂ q 
∂ w 

)−1 

∂ i f i = −A B (A2) 

here 

 = 

(
∂ q 
∂ w 

)−1 

, B = ∂ i f i . (A3) 

In the case of BDNK models of dissipative fluids, and of our
ISCE model presented here (to first-order), we may write both
NRAS 535, 47–64 (2024) 

Published by Oxford University Press on behalf of Royal Astronomical Society. This is an 
( https://cr eativecommons.or g/licenses/by/4.0/), which permits unrestricted reus
he conserv ati v e and flux v ectors in an e xpanded form that separates
first-order) deri v ati ves in the primiti ve quantities: 

 t 

[
q (0) ( w ) + εq (1) ( w , ∂ t w , ∂ i w ) 

]
+ ∂ i 

[
f i (0) ( w ) + ε f i (1) ( w , ∂ t w , ∂ i w ) 

] = 0 (A4) 

here ε parametrizes the size of dissipation in the fluid model.
nder the assumption that dissipation is small compared to the bulk
ehaviour of the fluid, ε is small. This is the regime when using the
ISCE makes sense, anyway. 
Now we cannot only consider the contribution of the fluid variables

hemselves to the time-deri v ati ve of the state vector ( ∂ t w ), but also
he contribution of the temporal and spatial deri v ati ves ( ̇w , w 

′ ). We
rst rewrite A and B as 

 = 

[
∂ w q 0 + ε∂ w q 1 

]−1 
, B = 

[
∂ i f 

i 
0 + ε∂ i f 

i 
1 

]
. (A5) 

fter much manipulation, and using the assertion that ε is indeed
mall to expand a sum of matrices to leading order, we arrive at 

 = 

[ ( 

I − ε

(
∂ q 0 
∂ w 

)−1 
∂ q 1 
∂ w 

) (
∂ q 0 
∂ w 

)−1 
] 

, (A6a) 

 = 

[ 

∂ f i 0 
∂ w 

w 

′ + ε

( 

∂ f i 1 
∂ w 

w 

′ + 

∂ f i 1 
∂ ̇w 

ẇ 

′ + 

∂ f i 1 
∂ w 

′ w 

′′ 
) ] 

. (A6b) 

ote that we can choose to use the form of A in equation ( A3 ) and
nvert the sum of matrices, rather than using the approximate small- ε
rick that leads to A in equation ( A6a ). Similarly, we can choose
he expression for B from equation ( A3 ) which makes use of the
ux es themselv es directly, or we may use its form in equation ( A6a )
hich requires e v aluation of second-order spatial differences of the
rimitives. 
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