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Abstract

After 10 years from its discovery, the Higgs boson is still one of the most investigated particles. The
Higgs decay in two b-quarks is very interesting and the most probable decay, but, due to the large
QCD background, it is not straightforward to study. For this reason, the LHC community is investing
in the direction of Xbb taggers (X=Z or Higgs boson), which aims at finding an optimal Higgs-tagger
using jet substructure information. In this document, colour-sensitive variables will be studied as Xbb
tagger, exploiting the different colour configuration of a colour-singlet and a colour-octect. Observable
performances are tested on the VHbb channel in the boosted limit.

1 Introduction

The Higgs boson was discovered in 2012 at LHC by the ATLAS and CMS Collaborations 1) 2). Since

then, the high energy physics community has been involved in the measurements of its proprieties. The

Higgs boson gives the opportunity to test the Standard Model (SM) predictions and discover new physics.

In particular, the coupling of the Higgs particle is the only interaction that can feel the difference between

fermion generations.

At a Higgs boson mass of 125 GeV, the most probable decay is in two b quarks, with a branching

ratio of about 58%. The direct measurement of the bb̄ channel provides a test of the Yukawa coupling to a

down-type quark and constrains the overall Higgs decay width. While this decay is the most frequent, it is

a real experimental challenge to observe it. This is due to the overwhelming large QCD background that

can mimic the signal signature. For these reasons it took six years until ATLAS and CMS obtained the

necessary 5σ significance for the evidence of this decay channel 3) 4). The production mode used in these

analyses is Higgs-boson (H) production in association with a vector boson V (W or Z), with V decaying
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leptonically and the Higgs hadronically into a pair of b-quarks, which provides a clean experimental

signature. The hard b-quarks produced by the Higgs boson decay are usually detected as two separate

b-jets. When the momentum of the jets is higher than their invariant mass, the regime is called boosted.

In such a situation, the two b-jets are close in angle and hence reconstructed as a single jet, also known

as a large-radius jet.

In order to better discriminate the H(bb̄) process over the production of b-jets from a gluon collinear

splitting (g → bb̄), many strategies have been developed. Several jet substructure techniques have been

designed, which aim at improving the discrimination performance by finding hard prongs inside the large-

radius jet. Specifically, the different radiation pattern of signal and background can be exploited. In the

signal case, the b-jets originate from a colour singlet and the radiation is more constrained inside the two

b-quark system. In the background case, the radiation is more diffuse, due to the colour connection with

the initial state, as shown in Figure 1.

In this paper, observables sensitive to the different colour configuration will be exploited, referring

to this recent article 7). The idea is build a tagger that can be applied to the decay products of a generic

colour singlet X. In this regards, the Xbb tagger group in ATLAS aims at providing recommendations

for H → bb̄ tagging and tools for its use within analysis. It is an activity which involves the investigation

of both jet substructure and b-tagging performance in boosted H → bb̄ topologies 8). The identified

tagger with colour-sensitive variables is matter of interest of this group.

Figure 1: Possible colour connections for the signal on the left (pp → H → bb̄) and for the background

on the right (pp → g → bb̄) 5).

2 Observables

In the following, a selection of high-level colour-sensitive variables are presented. They were introduced

in the literature in the past few years.

2.1 Jet Pull

Let us consider a hard jet Ja. The pull vector ~t is the jet shape observable defined as: 5)

~t =
1

pTa

∑

i∈Ja

pTi|~ri|
2r̂i, (1)

where pTa
is the transverse momentum of the jet, and the sum runs over all the the jet constituents. y

and φ represent rapidity and azimuthal angle and ~ri is the distance vector between the jet axis and its
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i-th constituent in the y-φ plane

~ri = (yi − ya, φi − φa). (2)

The pull vector is sensitive to the different colour connections of the event and points toward the direction

of emitted radiation.

We can introduce the projections of the pull vector along the direction between the two jets t‖ and

in the perpendicular direction t⊥
10, 11). We also consider the pull angle θp defined as 9):

θp = arccos
t‖

|~t|
. (3)

2.2 Jet colour ring

The jet colour ring 11) is defined from the ratio of the squared matrix elements of signal and background,

where the signal is considered as the decay of a colour singlet and the color octect is the background. In

the soft-collinear limit approximation, such a ratio becomes:

O =
∆2

ak +∆2
bk

∆2
ab

, (4)

where ∆ij are the distances between jets (or subjets) in the azimuth-rapidity plane, a is the leading jet, b

the subleading jet and k a soft emission. The observable name originates from its geometric interpretation:

radiation from colour singlets will tend to fall between the two jets, leading to values of O < 1, while in

the case of colour octets, one will tend to have O > 1.

2.3 D2

The variable D2
12) is defined as the ratio of two normalized N -point energy correlation functions

(ECFs) 6), eβk :

D
(β)
2 =

e
(β)
3

(e
(β)
2 )3

. (5)

β is a parameter which we have set to β = 2. The variable is usually calculated on a large radius jet, and

is useful to discriminate 2-prong jets from 1-prong jets.

2.4 Lund jet plane

The Lund jet plane is defined in reference 13). It is formed by parsing backwards the Cambridge–

Aachen (C/A) clustering history of the jet. The procedure starts by undoing the final clustering step

and by recording the kinematics of the splitting. The primary Lund jet plane is obtained by iterating

the above procedure, always following the hardest branching in each splitting and recording the azimuth-

rapidity separation of the branchings involved in the splitting and the relative transverse momentum of

the emission.

3 Observable performances on VHbb channel

3.1 Event simulation and selection

In order to test the observable discrimination performance, 300k events for pp → H(bb)Z(νℓνℓ) signal

and 4M events for the pp → bbνℓνℓ background processes are generated. Number of events are chosen

in order to have 50k events for both signal and background, accounting for the efficiency after applying

22



Table 1: Percentage of events which pass the analysis selections.

Truth Reco

Signal 20% 17%
Background 1.6% 1.3%

Table 2: Area under the ROC curves for different combination of observables.

Truth Reco

CS observables 0.826 0.788
D2+CR 0.817 0.787
LPCNN 0.876 0.828
CS + LPCNN 0.893 0.846

the selection cuts, shown in Table 1. Hard events are generated with MG5 aMC@NLO v2.8.3.2 14) in a

boosted regime and parton-level events are then showered in Pythia v8.305 15). Detector effects are

considered with a fast detector simulation of Delphes v3.5.0 16). From Delphes , the Monte Carlo

truth is extracted, containing the particle-level information. Reference 7) gives a complete description

of analysis selection and simulation used here.

3.2 Discrimination performance

In Fig. 2 the normalised distributions for eight colour sensitive variables (CS) are shown, both for signal

and background, and at truth and reco level. Looking at the plots, the discrimination power of D2

and O can be appreciated and the detector effects, in particular on pull variables, can be observed. In

Fig. 2 the average Lund images for the signal and background processes in the truth and reco case are

presented. From the plot, it is possible to appreciate the detector effect on the images, which adds in

the reco case a radiation for the middle values of ∆ and kt. After having determined the distributions

of the CS observables and the Lund jet images, these are used as inputs to ML algorithms in order to

build combined classifiers. Specifically, a Boosted Decision Tree (BDT) is trained on the CS observables,

whereas Lund images are classified using a Convolutional Neural Network (CNN). The output distribution

of CNN Lund jet plane classifier is shown in Figure 2. More details about these methods and architectures

are provided in 7). Different combinations of variables are also considered in order to improve the total

discrimination power. In this case the procedure is in two steps and uses the CNN Lund jet plane classifier

as an additional input to the BDT.

In Fig. 3 the receiver operating characteristic (ROC) curves for several combinations of observables

are shown. The background rejection (1/ǫb) vs the signal efficiency (ǫs) is presented: the higher the curve,

the better the discriminant power. Namely, we have considered: all the colour-sensitive observables (CS)

or just the D2 and the colour ring (D2+CR), combined through a BDT; the CNN Lund jet plane classifier

(LPCNN); the combination of all the CS observables with the (CS+LPCNN), by means of the two-step

procedure explained above. For each curve in Fig. 3, the value of the area under the ROC curve (AUC)

is reported in Table 2.
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Figure 2: Observables for signal and background, truth and reco cases, as defined in Section 2 7).

3.3 Results

As expected, the performances are worse in the reco case, due to detector resolution. However, discrimi-

nation is still good for most combinations, close to 0.85 for CS + LPCNN. It is evident that most of the

discriminating power of CS is due to D2+CR alone, both in AUC values and in distributions. It is clear

that pull variables are not as powerful in discrimination as the other variables. Moving to combination

with Lund jet plane, Lund jet plane alone performs better than the whole set of CS observables. When

LPCNN is combined with CS observables, there is a noticeable improvement of the overall classification

power, with a value of AUC equal to 0.893 in the truth case and 0.846 in the reco case.

4 Conclusions

In this paper, the problem of finding a Xbb tagger, namely how to distinguish the b-jets originating from

a colour singlet, such as Higgs boson, from those originating from the QCD background is investigated.

Colour-sensitive observables present in literature are exploited in combination in order to perform a

powerful discriminator. These observables are tested on the signal process pp → H(bb)Z(νℓνℓ), but the

strategy can be valid in a more general context. The discrimination performance is estimated using

ML techniques, namely BDT and CNN architecture. The BDT is trained with the colour-sensitive

variables, including the Lund jet plane CNN discriminator. The results are encouraging, with a power in

discrimination of 0.893 AUC for the combination of CS + LPCNN.
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Figure 3: Averaged primary Lund jet plane images for ZH(bb̄) and Zbb̄ in the truth and reco case 7).
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Figure 4: The ROC curves showing background rejection as a function of signal efficiency for the truth

(left) and reco case (right) for CS variables, LPCNN and the combined cases 7).

In the end, this tagger, which is a combination of several theory-driven single-variable observables

with a representation of the radiation pattern within a jet, is not only effective in theory, but also shows

promising prospects for application to experimental analyses.
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