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Abstract

Cosmology is famously an observational rather than an 
experimental science. No experimentalists were pres-
ent in the early Universe, and the birth and subsequent 
evolution of the Universe cannot be repeated. Instead, 
we can only measure the spatial correlations between 
cosmological structures at late times. A central challenge 
of modern cosmology is to construct a consistent “history” 
of the Universe that explains these correlations. In the 
last few years, a new bootstrap approach was developed 
to understand this history using only physical consistency 
conditions. In this article, we will describe the basic idea 
behind this “cosmological bootstrap” and explain why it 
promises new insights into the physics of the very early 
Universe.

Introduction

A remarkable fact about our Universe is that the struc-
tures we see around us are not distributed randomly but 
rather display interesting spatial correlations. By tracing 
these correlations across cosmic time, we can infer the 
contents and evolutionary history of the Universe. The 
earliest measurement of the cosmological correlations 
comes from observations of the temperature anisotro-
pies in the cosmic microwave background (CMB), the 
afterglow of the hot Big Bang. A striking feature of the 
observed correlations is that they are present over dis-
tances that exceed the maximal distance traveled by light 
since the Big Bang. These superhorizon correlations, 
therefore, require that our cosmological history extends 
to earlier times, before the Universe reached a state of 
thermal equilibrium. A key goal of modern cosmology 
is to discover what really happened in this period and to 

understand how this physics generated the seeds for the 
formation of structure in the Universe.

An important clue lies in the fact that the observed 
fluctuations are scale-invariant, meaning that they have 
equal power on all scales. This suggests that the dy-
namics that created the fluctuations were nearly time-
translation invariant. In particular, the energy density 
was nearly constant, sourcing an exponential expansion 
of the spacetime that we call inflation [1]. If inflation 
really occurred, it was a rather dramatic event in the his-
tory of the Universe. In just 10–33 seconds, the Universe 
doubled in size about 80 times. A region of space the size 
of a mosquito was stretched to the size of a galaxy, al-
lowing the entire observable Universe to originate from 
a microscopic, causally connected region of space. The 
correlations observed in the afterglow of the Big Bang 
were then inherited from correlations in the quantum-
mechanical fluctuations during inflation.
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Fig. 1: A pair of inflaton particles is created by quantum fluctuations and the 
particles are then stretched apart by the rapid expansion of the spacetime. Since 
these particles have a common origin, the density fluctuations associated to 
them are correlated. 
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While this picture provides an elegant explanation for 
the initial conditions of the primordial Universe, it must 
be emphasized that inflation is not yet a fact at the same 
level that, for example, the formation of the light ele-
ments in Big Bang nucleosynthesis is a fact. Further tests 
of inflation will come from more precise measurements 
of the cosmological correlations, which we hope will pro-
vide new clues about the physics of the primordial Uni-
verse.

Inflationary correlations
The mechanism by which inflation created the initial 
correlations is rather beautiful. A way to think about it 
is illustrated in Figure 1. We believe that the inflation-
ary expansion was sourced by the nearly constant energy 
density of the so-called inflaton field. Quantum mechan-
ics then allows pairs of inflaton particles to be spontane-
ously produced out of the vacuum. This increases the 
energy density in that region of space, so that the infla-
tionary period lasts for a slightly longer time, resulting 
in fluctuations in the density after inflation. The reason 
that these density fluctuations are correlated can also be 
seen from the illustration in Figure 1. As soon as a par-
ticle pair is created, the particles are stretched apart by 
the rapid expansion of the spacetime, creating density 
perturbations at separated points. Because the particles 
originated from a common source, pairs of points in the 
density after inflation are correlated, with the details 
of the correlations depending on the dynamics during 
inflation. Inflation has turned microscopic quantum fluc-
tuations into the macroscopic cosmological correlations 
that we observe in the sky.

An important feature of the observed correlations is their 
“Gaussianity.” This refers to the fact that the size of the 
correlations between two points in the sky is larger than 
the size of the correlations between three or more points. 
Such Gaussianity arises because the physics during infla-
tion was very “weakly coupled,” so that the probability to 
create pairs of particles was larger than the probability 
to produce three or more particles. Nevertheless, there 
can be subtle imprints in higher-order correlations (non-
Gaussianity), which would contain vital information 
about the detailed physics of the inflationary period, and 
there is an active experimental effort to measure these 
correlations. 

Cosmological collider physics
Any particles with masses below the energy scale set by 
the inflationary expansion rate—which may be as high 

as 1014 GeV—will experience the same quantum fluctua-
tions as the inflaton. Such particles would then also be 
pair-produced during inflation (see Fig. 2). However, be-
cause these particles are massive, they are unstable and 
can decay into pairs of inflaton particles. This produces 
higher-order correlations in the density after inflation, 
which later get imprinted in the large-scale structure of 
the Universe. What makes these particular correlations 
so interesting is that they are tracers of the underlying 
inflationary dynamics (they depend sensitively on the 
evolution during inflation) and are key signatures of the 
high-energy completion of inflation (which requires the 
existence of these massive particles). 

Fig. 2: Massive particles can be produced by inflationary expansion. These 
particles then decay into inflaton particles, which leads to density fluctuations 
that can be measured. The imprint of these massive particles can be seen in 
subtle correlations between the resulting density fluctuations. 

The fact that all sufficiently light particles are produced 
during inflation provides the opportunity to perform a 
kind of “cosmological collider physics” [2]. Like in ordi-
nary collider physics, the presence of the new particles 
can reveal itself through resonances. In the cosmological 
case, instead of an excess of events at the energy corre-
sponding to the mass of the particle, one finds that the 
higher-order correlations oscillate when the distance be-
tween correlated points varies, and they do so with a fre-
quency given by the mass of the new particle. Moreover, 
the dependence of the signal on the relative orientation 
of the correlated points gives information about the 
spin of the new particle; this is akin to a particle collider, 
where the spin of the new particle is encoded in the an-
gular distribution of the outcoming particles.

 While the cosmological collider provides the tantalizing 
prospect of probing physics at energies far exceeding 
those accessible to any terrestrial experiment, the signals 
are small and can only be extracted from the data if they 
can be predicted very precisely. Unfortunately, the stan-
dard way of computing the signals is rather complicated 
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[3]. The coupled fluctuations in the fields and the spa-
cetime geometry have to be evolved in time, giving rise 
to convoluted time integrals that usually involve non-
elementary functions. Moreover, local evolution requires 
keeping track of additional (gauge) degrees of freedom 
whose effects must cancel out of the final answers. The 
complexity of the calculations motivates a fresh look at 
the problem of inflationary correlators, through a new 
approach that avoids explicitly computing the time evo-
lution and instead focuses directly on the physical obser-
vations at the end of inflation.

Back to the future
All cosmological correlations that we observe in the late 
Universe can be traced back to the origin of the hot Big 
Bang, where they reside on the spatial “boundary” at 
the end of an inflationary spacetime, also known as the 
reheating surface (see Figure 3). Although we have ac-
cumulated a substantial amount of evidence for the pre-
ceding inflationary period, it is important to stress that 
we don’t have direct observational access to this epoch. 
Instead, we infer its existence and its properties from the 
detailed structure of the spatial correlations measured 
on the reheating surface. These “boundary correlators” 
serve as the final observable output of inflation, and are 
usually computed by following the production and decay 
of particles as a function of time. 

Fig. 3: The dynamics of particles in the inflationary spacetime are encoded on 
the future boundary of the spacetime (the reheating surface). These correlations 
provide the initial conditions for the subsequent evolution of the Universe. By 
measuring these correlations, we hope to infer the physics of the inflationary 
epoch.

Given that only the spatial correlations on the final 
boundary of the inflationary spacetime are important for 
the subsequent dynamics of the Universe, it is natural 
to ask whether we can understand these boundary cor-
relators directly, without having to follow the detailed 

time evolution during inflation. There are two reasons to 
be optimistic that this might be possible: first, the final 
answers obtained from explicit time evolution are often 
simpler than the complexity of the calculations would 
suggest. Secondly, the final boundary observables must 
be consistent with cherished principles of modern phys-
ics such as unitarity, locality, and causality, which will 
impose strong constraints on the allowed correlators. In 
the usual computations these properties arise as outputs, 
guaranteed by the way the calculations are performed. 
The goal is to reverse the logic and view these principles 
as the fundamental input. The allure of this approach 
is that it focuses directly on the observable output of the 
inflationary process—boundary correlators—without get-
ting mired in complex intermediate technicalities that do 
not have a physical interpretation. The hope is that the 
final answers are so constrained by physical consistency 
requirements that they can be reconstructed—or “boot-
strapped”—from these inputs alone.

S-matrix bootstrap
A success story of the bootstrap philosophy—and an in-
spiration for the application to cosmology— comes from 
the study of scattering amplitudes in flat space. Scatter-
ing amplitudes are the fundamental observables associ-
ated with the interactions of particles in quantum field 
theory. Much like boundary correlators in cosmology, 
scattering amplitudes can be thought of as “asymptotic” 
observables, residing on the boundary of flat Minkowski 
space.

Much of the apparatus of quantum field theory was de-
veloped to compute scattering amplitudes in a way that 
makes locality manifest. However, this comes at a cost, 
as the calculations can become fearsomely complicated, 
especially for gravity and gauge theories. The number 
of Feynman diagrams contributing to a given physical 
process can grow factorially: for example, to compute the 
simplest (tree-level) scattering process involving 10 glu-
ons would already require over 10 million diagrams [4]. 
Even more importantly, none of the individual terms in 
this expansion is by itself meaningful, and they must all 
be added up with precise relative coefficients to obtain 
the physical final answer. Needless to say, computing 10 
gluon scattering using standard techniques is far out of 
reach. Nevertheless, heroic computations of gluon and 
graviton scattering were done with fewer particles [5, 6] 
and, shockingly, the final answers are far simpler than 
any of the intermediate steps. The sharpest example is 
the so-called Parke–Taylor formula, which describes the 
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scattering of an arbitrary number of gluons, with particu-
lar polarizations, in a single term [7]. This unexpected 
simplicity, first guessed and then later proven, was the 
first hint of hidden structures in scattering amplitudes 
that would enable more complicated computations to be 
done using totally new techniques.

The modern amplitudes program fully embraces the 
bootstrap philosophy. By focusing on the final scattering 
output, remarkable techniques have been developed to 
bypass Feynman diagram calculations. An important fact 
enabling this progress is that our understanding of how 
physical properties are encoded in scattering amplitudes 
is substantially more mature than in the cosmological 
context. In particular, we have an ever-improving under-
standing of how locality and unitarity of particle scatter-
ing are reflected in the analytic properties of the observ-
ables. For example, at tree level, scattering amplitudes 
have singularities when an intermediate particle go “on-
shell,” meaning that its momentum pI satisfies pI

2 = m2, 
with m the mass of the particle. Since the particle then 
propagates a long distance in spacetime before decaying, 
the coefficient of this singularity becomes a product of 
simpler lower-point amplitudes:

In many cases, these factorization constraints are enough 
to uniquely reconstruct tree-level amplitudes [8–10] and 
rule out many inconsistent theories [11].

The last few decades have seen enormous progress in 
our understanding of scattering amplitudes in gauge 
theory and gravity through the S-matrix bootstrap (for 
an overview, see [12, 13]). One of the advantages of this 
formalism is that only physical degrees of freedom ap-
pear in computations, so there is no need for them to 
decouple at the end. These on-shell techniques have 
revealed hidden symmetries and mathematical structures 
that are completely invisible in the standard approach of 
Lagrangians and Feynman diagrams. Indeed, we have 
come to realize that the Lagrangian approach obscures 
important physics. The bootstrap method has enabled a 
wealth of new calculations (including powerful recursive 
formulas for scattering [14]), has revealed relations be-
tween seemingly distinct theories (like QCD and gravity 
[15]), and has led to a steadily improving understanding 

of loop processes [16]. Moreover, aside from their util-
ity in making predictions for collider experiments, these 
calculations have generated an ocean of new “theoretical 
data” from which the outlines of more radical theories 
can be seen, replacing locality and unitarity with new 
mathematical and physical structures [17].

Cosmological bootstrap
Implementing a bootstrap approach in cosmology re-
quires a bit of detective work, since we don’t yet know the 
precise rules that the cosmological correlators have to 
satisfy, and how these rules are enforced on the bound-
ary. However, even studying a subset of the possible con-
sistency conditions has already led to interesting simpli-
fications and new insights into the structure of boundary 
correlations [18] (see also [19–23]). 

As we have seen above, the production and decay of mas-
sive particles naturally leads to four-point correlations 
in the inflaton fluctuations. Connecting the four points 
on the boundary forms a quadrilateral and the strength 
of the correlations changes as we vary the shape of this 
quadrilateral (see Fig. 4). This is how the history of the 
inflationary dynamics is imprinted in the boundary cor-
relations. It turns out to be simpler to Fourier transform 
the coordinates on the spatial slice and consider cosmo-
logical correlators in momentum space, where the ener-
gies of the particles in the inflationary spacetime get rep-
resented as the lengths of the sides of the quadrilateral 
on the boundary.

 

Fig. 4: The strength of the correlations varies as the shape of the quadrilateral is 
changed. This dependence encodes time-dependent physics during inflation, 
which on the boundary becomes a differential equation in the side lengths.

An important insight from the S-matrix bootstrap is 
that the behavior of asymptotic observables is largely 
controlled by their singularities. As a first step, we would 
therefore like to understand the possible singularities 
of the boundary correlators—particular configurations 
where the strength of the correlations formally becomes 
infinite. An important fact about correlation functions in 
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cosmology is that, while they depend on the energies of 
the particles involved, the energy of a process does not 
need to be conserved, due to the time dependence of 
the cosmological background. This also means that the 
total energy of a boundary correlator—corresponding 
to the total length of the perimeter of the quadrilateral,  
E ≡ E1 + E2 + E3 + E4 and EI does not have to add up to 
zero. Nevertheless, we can ask what happens if the total 
energy does happen to sum to zero. Importantly, this 
cannot occur in any physically realizable process (as 
some of the energies would have to be negative), but if 
we allow ourselves the freedom to think of the correla-
tor as an abstract function, we can reach this point by 
analytic continuation. As we approach this limit, the cor-
relator diverges, and, remarkably, the coefficient of this 
singularity is the scattering amplitude associated to the 
particular process in the bulk spacetime [24, 25]. Pictori-
ally, we have 

 
.

The fact that amplitudes are contained inside correlators 
provides a beautiful bridge to the scattering amplitudes 
program.

We can also ask what happens when only a subset of the 
energies adds up to zero. We can think of reaching this 
limit by triangulating the quadrilateral and then analyti-
cally continuing the side lengths so that the length of the 
perimeter of one of the triangles vanishes.

 
.

From the viewpoint of the bulk process shown in Figure 
3, this limit corresponds to energy conservation on the 
left vertex so that EL ≡ E1 + E2 + EI adds up to zero, where 
EI is the energy of the intermediate particle. In this case, 
the correlator is again singular, but the coefficient is 
slightly different: it is a product of a three-point scatter-
ing amplitude associated to the particles whose energies 
add up to zero times the three-point correlation function 
associated to the other particles, corresponding to the 
triangle whose side lengths we did not make add up to 

zero. These “partial energy” singularities encode the par-
ticle production in the bulk spacetime. The fact that the 
coefficients of the partial energy singularities consist of 
lower-point objects is a hint that we can iteratively build 
up more complicated correlators from simpler processes. 
The singularities of the boundary correlator are special 
kinematic configurations, at which the structure of the 
correlator is completely fixed. However, to obtain the 
full correlator, we have to understand how to extend the 
solution away from these points. This extension captures 
the dynamics associated to bulk time evolution, precisely 
because changing the shape of the quadrilateral corre-
sponds to evolving through time in the inflationary spa-
cetime. In fact, this connection to time evolution implies 
that the boundary correlation functions satisfy a differen-
tial equation as a function of the energies (side lengths of 
the quadrilateral; see Fig. 4). The singularities then serve 
as boundary conditions for this differential equation, se-
lecting the physical correlators as solutions [18].

For certain models of inflation, the dynamics of the in-
flaton and other particles are strongly constrained by 
symmetry and we can understand this differential equa-
tion as a consequence of these symmetries. In particular, 
if the inflaton energy density evolves sufficiently slowly, 
then the inflationary spacetime will be approximately de 
Sitter space—which is highly symmetric—and all of the 
interactions will respect the symmetries of this spacet-
ime. On the late-time future boundary of de Sitter space, 

Fig. 5: In the limit where one of the diagonals of the quadrilateral shrinks to zero 
(EI → 0), correlations display a characteristic oscillatory feature, which is a 
signature of the production and decay of a massive particle.
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these symmetries act as conformal transformations 
(transformations preserving angles but not distances). 
Boundary correlation functions must therefore be in-
variant under these conformal symmetries. The precise 
statement is that the boundary observables satisfy Ward 
identities, which are differential equations expressing the 
invariance of the dynamics under the conformal trans-
formations. 

The natural next step is to solve the differential equa-
tion. An interesting feature of the solutions is that the 
boundary conditions enforced by the singularities in un-
physical configurations of the quadrilateral require that 
certain features appear in physically realizable configu-
rations. The most striking signature is a characteristic 
oscillation of the strength of correlations as one of the 
diagonals of the quadrilateral shrinks to zero (see Fig. 5). 
These oscillations are the characteristic signatures of par-
ticle production in the inflationary spacetime: indeed, 
the frequency is set by the mass of the produced particle. 
Remarkably, a time-dependent dynamical signature (the 
effect of particle production and decay) appears in this 
language as an inevitable consequence of singularities 
and symmetries of a completely time-independent, static 
object: the boundary correlator.

One of the key insights from the bootstrap approach is 
that there is a hidden unity amongst cosmological cor-
relations. One might imagine that correlations due to 
particles of different masses or spins would be totally dif-
ferent and would have to be computed anew by solving 
the differential equation that governs them, with differ-
ent boundary conditions. However, in reality there is an 
intricate web of relations between these solutions: they 
can be transmuted into each other by certain elementary 
operations, and all can be derived from simple “seed” 
correlations that capture the essence of particle produc-
tion in the inflationary spacetime [19]. This unifying 
simplicity is invisible in the standard approach and is 
practically useful: it provides a natural basis of structures 
to search for in analyses of cosmological data.

Outlook

The adventure of studying cosmological correlators from 
the boundary has just begun, and there are still many 
challenges to overcome. So far, the bootstrap has only 
been applied to the simplest situations with a large de-
gree of symmetry [18–20]. While this makes the analysis 
very clean, it also suppresses the strength of the interac-

tions and hence the size of the non-Gaussian signals. To 
describe larger signals, the bootstrap method needs to be 
extended to situations with less symmetry. It is in those 
situations that the bootstrap approach would have im-
mediate observational relevance, producing signals that 
can be searched for with future galaxy surveys [26–28]. 
Some tools to study these less symmetric cases have al-
ready begun to be developed. For example, it was shown 
that singularities still control much of the structure of the 
correlations [20] and that constraints from unitarity may 
help to extend them away from these singularities [23]. 
Beyond this, the fact that boundary correlations obey a 
differential equation is a robust feature of time evolution 
in the inflationary spacetime, and there are indications 
that these differential equations are connected to some 
interesting mathematical structures.

Aside from these observationally relevant applications, 
the cosmological bootstrap could also lead to new con-
ceptual insights into the structure of cosmological cor-
relations. One of the major advances of the S-matrix 
bootstrap program was to go beyond the notion of Feyn-
man diagrams. The standard approach involves a de-
composition into individual diagrams—also called chan-
nels—that do not individually have a physical meaning, 
which then sum up to the physical answer. The S-matrix 
bootstrap bundles all of the information together and 
constructs the final answer directly, bypassing this (un-
physical) intermediate step. This is an advance yet to be 
made in the cosmological context: the outputs arising 
from boundary consistency considerations, so far, still re-
semble the outputs of Feynman diagrams. An important 
goal is to understand how to construct the full correlators 
directly without a decomposition into channels. Said in 
another way, cosmological correlators have not yet had 
their “Parke–Taylor moment”—by which we mean the 
discovery of a radically simple formula for correlations 
that points to an underlying structure of extreme hid-
den simplicity. However, the insights already uncovered 
provide reason to be optimistic that such structures are 
there, waiting to be discovered. 

A beautiful feature of inflation is that it provides a bridge 
between the very large and the very small. Since the 
large-scale structures that we see distributed throughout 
the Universe began as microscopic quantum fluctuations 
stretched to macroscopic size by the inflationary expan-
sion, studying the largest scales today can give us insight 
into physics at very small distances. Making the connec-
tion between long-distance (IR) observables and short-
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distance (UV) physics precise remains an important open 
problem. In the case of scattering amplitudes, the ana-
lytic structure is understood well enough to use complex 
analysis to relate the IR limit of the amplitude to its UV 
completion [29], leading to so-called dispersion relations 
that are similar to Kramers–Kronig relations, familiar 
from electromagnetism. These UV-IR relations provide 
interesting constraints on the parameters of low-energy 
effective field theories. Conversely, they relate measure-
ments of the low-energy parameters to properties of the 
high-energy theory. A long-term goal of the cosmologi-
cal bootstrap is to understand the analytic structure of 
cosmological correlators well enough to derive similar 
UV-IR relations. Such results would provide a direct link 
between observations of the largest structures in the Uni-
verse and their microscopic origin.

Although we are just uncovering the first threads, it is 
clear that there is a beautiful tapestry of interconnections 
between cosmological correlations, scattering amplitudes, 
and the physics of the early Universe. We are optimistic 
that understanding more of this underlying structure will 
provide new insights into the evolution of the Universe 
in its earliest moments.
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