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Abstract

The Lorentz group Lor1,3 = SO0(1, 3) has two point fixgroups, namely SO(3) for time-

like translations and SO0(1, 1) × IR2 for light-like translations. However, for light-like

translations, it is reasonable to consider a line fixgroup that leads to the Borel structure of

the Lorentz group and provides appropriate helicities for massless particles. Therefore,

whether a particle is massless or massive is not so much a physical question but rather a

question of the underlying Lie group symmetry.

Keywords: solvable Lie group; Borel subgroup; massless particle states; chirality states

PACS: 02.20.Qs; 03.65.Ge

1. Introduction

The basic structure of physics is defined via the representations of Lie groups and Lie

algebras. Symmetry arises via both the external or space-like and internal or charge-like

degrees of freedom and is represented in complex vector spaces regarding the noncompact–

compact dichotomy of the relevant groups. The groups appear in two different varieties,

semisimple and solvable, serving as the building blocks for all other Lie groups. Simple

Lie groups regenerate themselves under commutation and generate semisimple groups

via direct products. Solvable Lie groups do not regenerate themselves under commutation

but are constructed in a stepwise way out of Abelian subgroups. Non-semisimple Lie

groups are semidirect products of semisimple and solvable subgroups. Note that there

is no complete classification for solvable Lie groups and, therefore, for non-semisimple

Lie groups.

The subgroup structure of the symmetry group plays a basic role in Wigner’s definition

of particles in the electroweak standard model, e.g., the isotropy subgroups of the Lorentz

group and their corresponding coset manifolds. In particular, for massive particles, the

point fixgroup SO(3) is the maximal connected compact simple subgroup of the Lorentz

group Lor1,3 ≡ SO0(1, 3), and the corresponding time-like energy–momentum hyperboloid

is Y3 = SO3(1, 3)/ SO(3). In this paper, we show that, in contrast to this, for massless

particles, one obtains the line fixgroup Bor1,3 as being the maximal connected noncompact

solvable subgroup of the Lorentz group,

m ̸= 0 maximal connected compact simple point fixgroup SO3

↕ ↕ × ×
m = 0 maximal connected noncompact solvable line fixgroup Bor1,3

Here, Bor1,3 ⊂ Lor1,3 is the Borel subgroup of the Lorentz group, and at least one of the

manifolds Lor1,3 / Bor1,3 is projective (= S2).
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Scanning the recent literature concerning Lie groups for massless particles, few articles

are found. Massless particles are considered within the Poincaré group [1–5] but without

any reference to the possible solvability (solubility) of the corresponding stabilizer subgroup.

Therefore, our work in this field, in previous publications [6,7] and in this publication, is

pioneering and is based mainly on handbooks. As the basis for a deeper understanding,

we suggest Refs. [8–11], from which many of the ideas that led to the research described

in this paper were derived. At this point, it is worth emphasizing that, as physicists, we

do not apply any rigorous mathematical formalism, consisting of definitions, lemmata,

prepositions, theorems, and corollaries, together with the corresponding proofs. Instead,

we mention the components of our considerations in these mathematical terms, without

providing proofs in most instances; these, instead, can be found in the references that

we cite at various points, which also mark the ends of the corresponding theorems. An

exception is Lemma 1, which is new and the main outcome of our analysis. This lemma

on the SL2 reconstruction of the proper Lorentz group can be considered as a corollary of

what has previously been discussed.

This publication is organized as follows. In Section 2, we present basic facts about

the proper Lorentz group, and we present three theorems that are the foundations of

our work: the Chevalley theorem, the Lie–Kolchin theorem, and a theorem related to

Borel. Having explained Wigner’s concept of a little group, in Section 3, we first deal

with Wigner’s result for this, given by the Euclidean group E(2). However, the character

equation has an additional solution that leads to the Borel subgroup, dealt with in Section 4.

In fact, there are a couple of these subgroups, with the union giving the proper Lorentz

group, while the cut is the maximal torus. We show explicitly that each of these groups is

generated by two elements of the minimal solvable algebra sol2, spanning the algebra of

the Borel subgroup as a Kronecker sum. Turning to topology, in Section 5, we show that

the quotient of the Lorentz group and the Borel subgroup is a projective variety. Section 6

deals with representations, presenting also our Lemma 1, focused on reconstructing the

proper Lorentz group by two copies of the simplest noncompact group SL2(IR). Via the

Weinberg ansatz, in Section 7, we describe a connection back to physics. In Section 8, we

present our conclusions.

2. Basics

Here, we give a brief description of the basic theorems and constructions of the

theory of semisimple groups with applications to the proper Lorentz group [12–17].

The Minkowski representation SO0(1, 3) preserves the indefinite symmetric metric η =

diag(1,−1,−1,−1) in the real spacetime IR4 ∋ x, y,

x · y = xµηµνyν = xTηy.

As the defining representation of the causality-compatible Lorentz group,

Lor1,3 = {ΛTηΛ = η, det Λ = 1, Λ0
0 ≥ 1, Λ ≡ (Λµ

ν) ∈ GL4(IR)}

is parametrizable by six real parameters ωµν = −ωνµ,

Λ(ω) = exp(−1

2
ωµνeµν) = exp

(
1

2
ωpϵ0pjkejk + ∑ ω0pe0p

)

,

where the first part is compact and the second part noncompact, and the domain of these

six parameters is given by

D = {ω0p, ωp ∈ IR, −π < ωp ≤ π, p = 1, 2, 3}
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which is homeomorphic to IR3 ×P3, where P3 is the three-dimensional projective space.

The generators have the form

ejk =

(

0 0⃗T

0⃗ e⃗ j⃗e
T
k − e⃗k⃗eT

j

)

, e0j =

(

0 e⃗T
j

e⃗j 03

)

, (1)

where, in general, [eµν, eρσ] = ηµρeνσ + ηνσeµρ − ηµσeνρ − ηνρeµσ.

Here, e⃗j, j = 1, 2, 3 is the Euclidean basis in IR3. Therefore, Lor1,3 is a locally com-

pact and doubly connected, path-connected, simple and reductive group with universal

coverage SL2(❈), i.e.,

Lor1,3
∼= SL2(❈)/❩2

∼= SO(3,❈).

The last isomorphism means that the representations of Lor1,3 may be seen as representa-

tions of the complex rotation group SO(3,❈). For completeness, note that the Lie algebra

lor1,3 ≡ log Lor1,3 is the noncompact real form of

so(4,❈) = sl2(❈)⊕ sl2(❈).

To motivate what follows, it is instructive to look at Chevalley’s theorem in the context of

the defining representation of the Lorentz group, according to which Lor1,3 acts on the flat

spacetime or its dual energy–momentum space by a linear transformation,

Lor1,3 ∋ Λ : ❊1,3 ∋ xµ 7→ Λµ
νxν ∈ ❊1,3.

Theorem 1 (Chevalley). Let G be a linear algebraic group and H ⊂ G a closed algebraic subgroup.

Then, there is a rational representation ϕ : G → GL(V) and a one-dimensional subspace L ⊂ V

such that

H = {g ∈ G : ϕ(g)L = L}. (2)

Otherwise, if ℓ ∈ L spans the line L, i.e., L = ❈ℓ, then the equation

ϕ(h)ℓ = χ(h)ℓ ∈ L, h ∈ H (3)

defines a character χ ∈ X (H) of H. This character is called the weight to the semi-invariant ℓ,

and X (H) = Mor(H, GL1). Note that, if [H, H] = H, then X (H) = {0}, i.e., SL2(❈) has no

nontrivial characters and therefore the Lorentz group has no nontrivial characters [18].

Theorem 2 (Lie–Kolchin). Let G be a connected solvable linear algebraic group, and let (ϕ, V) be

a regular representation of G. Then, there exist characters χi ∈ X (G), i = 1, 2, . . . , n and a flag

V = V1 ⊃ V2 ⊃ . . . ⊃ Vn ⊃ Vn+1 = {0}

such that

(ϕ(g)− χi(g))Vi ⊂ Vi+1

for all g ∈ G. Taking i = n, one obtains the characteristic equation

ϕ(g)Vn = χn(g)Vn, (4)

i.e., every solvable group has a common one-dimensional subspace L ⊂ V [19,20].

Wigner’s Little Group

What follows was proposed by Eugene Paul Wigner in 1939: for massive particles

(m ̸= 0), the point fixgroup (or little group) of the momentum
◦
p = (1, 0, 0, 0), and
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lg(
◦
p) = SO(3) ⊂ Lor1,3 is maximal connected, compact and simple [4,5,13,14,16]. Pro-

ceeding purely mathematically, one finds that, for massless particles (m = 0), the little

group is maximal connected, noncompact and solvable, resulting in a Borel subgroup

Bor1,3. By definition, a Borel subgroup of an algebraic group G is a maximal connected

solvable subgroup.

Theorem 3. Let G be a connected linear algebraic group. Then,

1. G contains a Borel subgroup B;

2. All other Borel subgroups of G are conjugate to B;

3. The homogeneous manifold G/B is a projective variety;

4. G =
⋃

g∈G gBg−1, where B is a fixed Borel subgroup of G.

(see Theorem 11.4.7 in Ref. [21], p. 524).

Thus, every element g ∈ G is contained in a Borel subgroup. As mentioned before,

a solvable group has a semidirect structure. For the connected solvable group G, the set

Gu of unipotent elements is a closed connected nilpotent subgroup of G. There exists a

maximal torus TG ⊂ G and, for this, an exact sequence

eG → Gu → Gu ⋊ TG = G → TG → eG.

Since the maximal torus TG and the maximal connected unipotent subgroup Gu of G are

those for the Borel subgroup, one has the exact sequence

eB → Bu → Bu ⋊ TG = B → TG → eB. (5)

and B = NG(Bu). Here, Gu = {g ∈ G : g = gu}, where gu is the unipotent component in

the Jordan decomposition g = gsgu.

3. The Role of Mass

Before discussing the Borel subgroup in further mathematical detail, let us note some

physical considerations regarding the kinematics. Taking the momentum four-vector to

be p, with p2 = m2 > 0 the squared mass, for massive particles, one can move to the rest

frame, where p = (m, 0, 0, 0)T . The stabilizer subgroup or fixgroup is given by SO(3), the

three-dimensional rotations. However, if the particle is massless, such a move to the rest

frame is no longer possible. According to Wigner’s classification, the fixgroup is E(2). This

is the little group that Wigner indicates for massless particles like photons and (massless)

neutrinos. For instance, for a momentum vector p = (p0, 0, 0, p0)
T pointing in z direction,

E(2) consists of rotations about the z axis, translations orthogonal to it and reflections.

However, what is not taken into account by this is the interchange of time and space

components, which is obviously an additional symmetry transformation. Together with

this additional transformation, the fixed point group is given by the Borel subgroup Bor1,3.

Returning to mathematics, let B ⊂ G be a Borel subgroup of G and V a finite-

dimensional rational G-module. Then, the fixed points of B in V coincide with the fixed

points of G. As the Lorentz group has no fixed points, for B, the character Equation (3)

is the only one that can be solved. In contrast, for SO(3), one has the commutant

[SO(3), SO(3)] = SO(3). Therefore, the character group X (SO(3)) is trivial. The rota-

tion group has no nontrivial characters, and the character Equation (3) is impossible to

solve. Moreover, if V is an irreducible rotational G-module (let G be semisimple), then

there is a unique Borel-stable one-dimensional subspace spanned by a maximal vector of

some weight/character χ with multiplicity one.
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The little group of Wigner is E(2) is nonmaximal, connected, solvable and noncom-

pact [13,14,22,23]. The nonmaximality is explained (or determined) by the requirement to

be a point fixgroup of (1, 0, 0, 1)T ,

E(2) ∼= IR2
⋊ SO(2).

In this semidirect product, the compact group SO(2) acts on the abelian locally compact

group exp IR2 by the multiplication rule

(x1, R1)(x2, R2) = (x1 + R1x2, R1R2).

Every irreducible representation of E(2) is equivalent either to a character of SO(2) lifted

to E(2) or to an induced representation ind
E(2)

IR2 χ, where χ is the nontrivial character of

IR2. To avoid a continuum of helicity states, one has to require that, for physical states,

the noncompact part of E(2) is trivial in all representations, so the little group reduces to

SO(2). There are topological considerations that restrict the allowed values of the helicity

to integers or half-integers. Thus, the helicity

λ =
J⃗⃗k

|⃗k |
= 0,±1

2
,±1, . . .

is Lorentz-invariant for massless particles with the total angular momentum J⃗.

As for any abelian group, the reducible representations of SO(2) are one-dimensional.

Therefore, according to Wigner’s classification, the free massless particles have only a single

degree of freedom and are characterized by the value λ of their helicity.

In nature, there are two classes of particles. The first class consists of particles that

can exist in two helicity states ±λ. Such a particle is defined as a representation of the

parity-extended Poincaré group [1]. Since the electromagnetic interaction conserves parity,

the photon is defined as the SO(2)-doublet

(
1

2
,

1

2

)
SO(2)−→ (+1)⊕ (−1)⊕ 2 × (0)

parity−→ (±1)⊕ 2 × (0).

The second class contains particles for which the parity is not defined, as the interactions

that they are involved in violate parity. Such particles are the neutrinos that exist only with

helicity − 1
2 and antineutrinos with helicity + 1

2 .

4. The Borel Subgroup

The key observation in the preceding sections was the character Equation (3). Solving

the character equation

B
◦
p = χ(B)

◦
p (6)

for the light-like standard vector
◦
p = (1, 0, 0, 1) with B ∈ Lor1,3, one obtains [6,7]

B(+)(β⃗; θ, ω) =

(

A BT

C⃗ D

)

(7)
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with

A = cosh θ +
1

2
|β⃗ |2e−θ ,

B⃗ =

(

sinh θ − 1

2
|β⃗ |2e−θ

)

e⃗3 + rot3 ωβ⃗,

C⃗ =

(

sinh θ +
1

2
|β⃗ |2e−θ

)

e⃗3 + e−θ β⃗,

D =

(

cosh θ − 1 − 1

2
|β⃗ |2e−θ

)

e⃗3⃗eT
3 − e−θ β⃗⃗eT

3 + (✶3 + e⃗3 β⃗T) rot3 ω. (8)

Here, β⃗T = (β1, β2, 0) = ∑
2
a=1 β a⃗eT

a , e⃗T
3 = (0, 0, 1),

rot3 ω =






cos ω − sin ω 0

sin ω cos ω 0

0 0 1




.

As a consequence, the character is given by

χ(B(+)) =
1

2 ∑
µ,ν=0,3

Bµ
ν = eθ .

The composition rule is

B(+)(β⃗1; θ1, ω1)B(+)(β⃗2; θ2, ω2) = B(+)(β⃗1 + eθ1 rot3ω1 β⃗2; θ1 + θ2, ω1 + ω2) (9)

and therefore

B(+)(β⃗; θ, ω) = B
(+)
u (β⃗)⋊ T (θ, ω). (10)

All such transformations B(+)(β⃗; θ, ω) with a noncompact parameter space for helicity and

gauge, given by {β⃗ ∈ IR2, θ > 0, 0 < ω ≤ π}, form the Borel subgroup

Bor
(+)
1,3 = (Bor

(+)
1,3 )u ⋊ Tor1,3 ⊂ Lor1,3 . (11)

Here, Tor1,3 = SO0(1, 1) × SO(2) is the maximal torus in Lor1,3, and (Bor
(+)
1,3 )u is the

unipotent radical of Bor
(+)
1,3 .

The linearization of Bor
(+)
1,3 in the neighborhood of the identity

B(+)(β⃗; θ, ω) = ✶4 + β1b1 + β2b2 + θb0 + ωb3 = ✶4 −
1

2
ωµνeµν (12)

results in the Lie algebra bor
(+)
1,3 = log Bor

(+)
1,3 , with

b0 = e03, b1 = e01 + e31, b2 = e02 + e32, b3 = e21. (13)

As a vector space spanIR{bµ}3
0 endowed with commutation relations

[b0, ba] = ba, [b3, ba] = −ϵ3abbb, a = 1, 2 (14)

the Borel algebra reads

bor
(+)
1,3 = (bor

(+)
1,3 )u ⋊ tor1,3 = so(1, 1)⊕ so(2)⊕ IR2, (15)

where (bor
(+)
1,3 )u = rad

(+)
u is the Lie algebra corresponding to the unipotent radical.
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Since the semisimple rank is rankss SO(1, 3) = 2, there exists a unique Borel subgroup

Bor
(−)
1,3 ⊂ Lor1,3, called opposite Bor1,3, such that [18,24–26]

Bor
(−)
1,3 ∩Bor

(+)
1,3 = Tor1,3 = SO0(1, 1)× SO(2)

and Lor1,3 = Bor
(−)
1,3 ∪Bor

(+)
1,3 .

To visualize the algebraic structure of bor
(+)
1,3 , it is convenient to transform the basis to

t0 =
1

2
(b0 + ib3), t+ =

1

2
(ib1 − b2), [t0, t+] = t+ (16)

u0 =
1

2
(b0 − ib3), u+ =

1

2
(−ib1 − b2), [u0, u+] = u+ (17)

with [t0,+, u0,+] = 0. This leads to the Kronecker sum decomposition

bor
(+)
1,3 = sol2(e)⊞ sol2( f ) := sol2(e)⊗ ✶2 + ✶2 ⊗ sol2( f ). (18)

The Kronecker sum decomposition is easily seen after applying the splitting map

t0 =
1

2
h ⊗ ✶2, t+ = (ie)⊗ ✶2 for sol2(e),

u0 = ✶2 ⊗ (−1

2
h), u+ = ✶2 ⊗ (i f ) for sol2( f ). (19)

Here,

h =

(

1 0

0 −1

)

, e =

(

0 1

0 0

)

, f =

(

0 0

1 0

)

is the natural Chevalley basis of sl2(❈).

Again, the linearization of Bor
(−)
1,3 generates the basis of the underlying vector space as

k0 = −e03, k3 = e21, ka = −e0a + e3a, a = 1, 2 (20)

with nonzero commutation relations

[k0, ka] = ka, [k3, ka] = −ϵ3abkb. (21)

Thus,

lor1,3 = bor
(−)
1,3 + bor

(+)
1,3 = (bor

(−)
1,3 )u ⊕ (bor

(+)
1,3 )u + tor1,3,

where tor1,3 = log Tor1,3 = log SO0(1, 1)⊕ log SO(2).

The Kronecker sum decomposition of bor
(+)
1,3 into two fundamental solvable groups

sol2 is easily extended to an sl2(IR) decomposition for the whole lor1,3,

lor1,3
∼= sl2(IR)e ⊞ sl2(R) f .

Using the splitting map, for sl2(IR)e, one obtains

t0 =
1

2
(b0 + ib3) →

(
1

2
h

)

⊗ ✶2

t+ =
1

2
(ib1 − b2) → (ie)⊗ ✶2 (22)

t− =
1

2
(−ik1 − k2) → (i f )⊗ ✶2
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with commutation relations

[t+, t−] = −2t0, [t0, tε] = εtε, ε = ±

For sl2(IR) f , one obtains

u0 =
1

2
(b0 − ib3) → ✶2 ⊗

(

−1

2
h

)

u+ =
1

2
(−ib1 − b2) → ✶2 ⊗ (i f ) (23)

u− =
1

2
(ik1 − k2) → ✶2 ⊗ (ie)

with commutation relations

[u+, u−] = −2t0, [u0, uε] = εtε, ε = ±

and [sl2(IR)e, sl2(IR) f ] = 0.

Returning from the defining matrix representation of the Borel algebra to the group

matrix representation, by exponentiation, one obtains

tor1,3 ∋ ϑb0 + ωb3
exp−→ exp(ϑb0 + ωb3) ∈ Tor1,3

with

exp(ϑb0 + ωb3) =
(

✶4 + sinh ϑb0 + (cosh ϑ − 1)b2
0

)(

✶4 + sin ωb3 + (1 − cos ω)b2
3

)

=

=

(√
1 + x⃗T x⃗ x⃗T

x⃗ rot3 ω
√

✶3 + x⃗x⃗T

)

, x⃗ = sinh ϑ⃗e3.

The Cartan–Killing form in the defining representation is indefinite,

(ϑb0 + ωb3, ϑb0 + ωb3) = 2(ϑ2 − ω2)

and

(exp(ϑb0 + ωb3), exp(ϑb0 + ωb3)) = 2(cosh ϑ + cos ω) ≥ 0.

For the unipotent radical, one has

rad
(+)
u ∋ b = β1b1 + β2b2

exp−→ exp b = −✶4 + exp(β1b1) + exp(β2b2).

Since the algebra bor
(+)
1,3 is solvable, and its derived algebra is given by

Der bor
(+)
1,3 = rad

(+)
u ,

the Cartan–Killing form is identically zero, (rad
(+)
u , rad

(+)
u ) ≡ 0. For Rad

(+)
u , one obtains

(exp b, exp b) = 4, so, obviously, b ∈ rad
(+)
u nilponent and exp b ∈ Rad

(+)
u unipotent.

5. The Quotients

Given a closed subgroup H of an algebraic group G, there is a smooth projection

π : G → G/H, where the fibers are precisely the cosets gH, g ∈ G. The projection π has a

smooth local injection, given by the compatible section
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γ : G/H → G

id ↘ ↓ π

G/H

such that π ◦ γ = idG/H .

As an example, we consider the Cartan decomposition g = log G = log K ⊕ p, where

log K is the maximal compact subalgebra of g, and the subspace p = g mod log K consists

of the noncompact generators of g. Exponentiating the Lie algebra decomposition into the

Lie group,

g = log K ⊕ p

compact noncompact

exp ↓ ↓ ↓
G = K ⊗ exp p

compact coset

subgroup representatives

one obtains the parametrization of the algebraic manifold G/K = exp p.

The map of K × p onto G

K × p ∋ (k, X) → k exp X ∈ G

is a diffeomorphism into G, i.e., G = K × exp p.

Different choices of the section γ give different formulae for the coset representatives.

For the Borel subgroup B ⊂ G, the factor set G/B is the largest homogeneous space for G,

having the structure of a projective variety. Since G/B is complete, the Borel subgroup B

has a fixed point in G/B.

5.1. The SO(3) Parametrization

The Borel decomposition of the Lorentz group Lor1,3 = SO0(1, 3) is generated by the

decomposition of the algebra lor1,3 = log SO0(1, 3) in a natural way by reordering the usual

parametrization

lor1,3 ∋ − 1
2 ωµνeµν = ω1e31 + ω2e32

︸ ︷︷ ︸
+ β1b1 + β2b2 + ϑe03 + ωe21

︸ ︷︷ ︸

coset representatives bor1,3

exp ↓ ↓
Lor1,3 ∋ exp ∑

2
a=1 ωae3a × Bor

(+)
1,3 (β1, β2; ϑ, ω)

More precisely,

P(2) ≡
2

∑
a=1

ωae3a =

(

0 0⃗T

0⃗ e⃗3ω⃗T
(3) − ω⃗(3)⃗e

T
3

)

→ expP(2) =







1 0⃗T 0

0⃗
√

✶2 − x⃗(2) x⃗
T
(2)

−x⃗(2)

0 x⃗T
(2)

√

1 − x⃗T
(2)

x⃗(2)







.

Here,

x⃗(2) =
sin ω(2)

ω(2)
ω⃗(2), ω⃗(2) =

(

ω1

ω2

)

, ω2
(2) = ω2

1 + ω2
2, ω⃗(3) =

(

ω⃗(2)

0

)

.
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The Cartan–Killing inner product for representatives

(P(2),P(2)) = trP2
(2) = −2ω2

(2) < 0

is negative, i.e., the representatives are compact operators. For the representatives of the

group coset, one has

(expP(2), expP(2)) = 4 cos2 ω(2) > 0.

Therefore, the geometric manifold for the respresentatives of the group coset is compact.

Moreover, the parametrization of the Bor1,3-classes can be given by the three-point x⃗ =

(x1, x2, x3)
T in IR3 as

x⃗(2) =
sin ω(2)

ω(2)
ω⃗(2) =

(

x1

x2

)

and x3 = cos ω(2). Then,

expP(2) =







1 0⃗T 0

0⃗T ✶2 −
1

1 + x3
x⃗(2) x⃗

T
(2) −x⃗(2)

0 x⃗T
(2) x3







with det expP(2) = x2
1 + x2

2 + x2
3 = 1. Therefore, the SO-type coset representatives generate

a compact factor set, the two-sphere in IR3 [27],

Lor1,3 / Bor
(+)
1,3 = SO(3)/ SO(2) = S2.

Using the Iwasawa decomposition

Lor1,3 = SO(3)× SO0(1, 1)× exp IR2

= (SO(3)/ SO(2))× SO(2)× SO0(1, 1)× exp IR2

︸ ︷︷ ︸

Bor1,3

and Bor
(+)
1,3 = (SO(2)× SO0(1, 1))⋉ exp IR2, one obtains the same result.

The projective coordinates for this parametrization are

−∞ < za =
xa

√

1 − x2
1 − x2

2

=
xa

x3
< ∞, a = 1, 2.

As mentioned, different choices for the section γ provide different parametrizations.

5.2. The SO(1, 2) Parametrization

Let

lor1,3 ∋ − 1
2 ωµνeµν = ϑ1e01 + ϑ2e02 + β1b1 + β2b2 + ϑe03 + ωe21

coset representatives bor
(+)
1,3

exp ↓ ↓
Lor1,3 ∋ exp ϑ(2) × Bor

(+)
1,3

Here, ϑ(2) = ∑
2
a=1 ϑae0a is noncompact, as the Cartan–Killing form is positive,

(ϑ(2), ϑ(2)) = 2ϑ2
(2) = 2(ϑ2

1 + ϑ2
2) > 0.
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The group representatives exp ϑ(2) are noncompact,

SO0(1, 2) ∋ exp ϑ(2) =





√

1 + y⃗T
(3)

y⃗(3) y⃗T
(3)

y⃗(3)

√

✶3 + y⃗(3)y⃗
T
(3)



, y⃗(3) =
sinh ϑ(2)

ϑ(2)






ϑ1

ϑ2

0




,

as the Cartan–Killing form is positive,

(exp ϑ(2), exp ϑ(2)) = 4 cosh2 ϑ(2) > 0.

The parametrization of the coset representations for the group can be chosen as the point

y = (y0, y1, y2) in IR3 or as the projective coordinates za = ya/y0, a = 1, 2 in the interior of

the unit circle of the y0 = 1 plane. In the first case, we have

y0 = cosh ϑ(2), ya =
sinh ϑ(2)

ϑ(2)
ϑa, a = 1, 2,

so that y2
0 − y2

1 − y2
2 = 1, and the representatives are

Q(y0, y1, y2) =





y0 y⃗T
(3)

y⃗(3) ✶3 +
1

1 + y0
y⃗(3)y⃗

T
(3)





with det Q = (y2
0 − y2

1 − y2
2)/(1 + y0) = 1 and (Q, Q) = 4y2

0 > 0. As a consequence, the

representatives are found on the noncompact on-shell hyperboloid

Y2 = Lor1,3 / Bor
(+)
1,3 = SO0(1, 2)/ SO(2).

The projective coordinates (q1, q2) are

−1 < qa =
ya

√

1 + y2
1 + y2

2

=
ya

y0
< 1, a = 1, 2.

Therefore, the two examples for the coset representatives considered up to now are

the time-like on-shell hyperboloid Y2 and (as a compact partner) the sphere S2 with the

common compact subgroup given by SO(2) ⊂ Tor1,3.

5.3. The Borel Parametrization

Finally, to be systematic, the Borel structure of the Lorentz group provides a construc-

tive procedure to determine representatives of different cosets. To begin with, we recall the

Borel decomposition

lor1,3 = bor
(−)
1,3 ∪ bor

(+)
1,3 = rad

(−)
u ⊕(rad

(+)
u ⋊ tor1,3) = rad

(+)
u ⊕(rad

(−)
u ⋊ tor1,3).

As underlying vector spaces, one has

l⃗or1,3 = spanIR{eµν = −eνµ}3
0 = spanIR{b0, b3, ba, ka}2

a=1 = spanIR{t0, tε; u0, uε}ε=±1.

It is convenient to choose the basis of rad
(−)
u as

ka =

(

0 −e⃗T
a

−e⃗a e⃗3⃗eT
a − e⃗a⃗eT

3

)

.
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Then,

rad
(−)
u ∋ k = κ1k1 + κ2k2 =

(

0 −κ⃗T
(3)

−κ⃗(3) e⃗3⃗κT
(3) − κ⃗(3)⃗e

T
3

)

,

where

κ⃗(3) =






κ1

κ2

0




, κ2

(3) = κ2
1 + κ2

2,

and the Cartan–Killing product (k, k) = tr k2 = 0. This is the second criterion for the

solvability of bor
(−)
1,3 : an algebra g is solvable if and only if its Cartan–Killing metric tensor

is identically zero on its derived algebra D1g.

The expression for the representatives of the group coset is obtained by exponentiation:

lor1,3 ⊃ rad
(−)
u ⊕ bor

(+)
1,3

exp ↓ ↓
Lor1,3 ⊃ Rad

(−)
u × Bor

(+)
1,3

From this, the representations of the group coset can be read as

Rad
(−)
u ∋ exp k = ✶4 + k +

1

2
k2 =








1 + t −x −y t

−x 1 0 −x

−y 0 1 −y

−t x y 1 − t








,

where t = 1
2 κ2

(3), x = κ1, y = x2 and 2t − (x2 + y2) = 0. One observes that the real

parameters (t, x, y) describe the subspace of the noncompact elliptic paraboloid. The

projective coordinates of this parametrization are

(p1, p2) =
( x

t
,

y

t

)

=

(
x

x2 + y2
,

y

x2 + y2

)

, p2
1 + p2

2 > 0.

The Cartan–Killing form for the representatives of the group coset is positive:

(exp k, exp k) = 4 > 0.

As a consequence, one has the following:

• m ̸= 0: a rest frame exists for massive particles ⇒
stabilizer subgroup is the point fixgroup SO(3) ⇒ leading to spin;

• m = 0: no rest frame exists for massless particles ⇒
stabilizer subgroup is the line fixgroup Bor1,3 ⇒ leading to helicity.

Indeed, accepting the undulatory theory of light, the plane wave, as the most elementary

type of wave, cannot be localized in space. Moreover, the characteristic Equation (3)

suggests that the massless particle can be enclosed on a line. Therefore, the question of

how a massless particle with energy E differs from the same particle with energy λE is

a quantum-mechanical problem in the form of Planck’s formula E = hν, rather than a

problem of symmetry. In fact, the difference is a mathematical one:

• m ̸= 0: semisimple compact;

• m = 0: solvable noncompact.
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6. The Representations

In general, Lie algebras play their role in physics not as abstract algebras but through

their representations that act on suitable representation spaces. For example, spin and

helicity are determined by the stabilizer subgroups of Lor1,3. For mathematical conve-

nience, it is reasonable to consider representations in vector spaces over complex number

fields. This is because, in physics, the concept of reducibility is of fundamental impor-

tance, and the mathematical structure of quantum mechanics works with complex Hilbert

spaces [13–16,22,28–31].

A representation D of a real algebra g can be extended to a unique linear complex

representation D̂ by the holomorphic extension

D̂(A + iB) = D(A) + iD(B), A, B ∈ g.

Although Lor1,3
∼= SO(3,❈), the process of holomorphic extension for lor1,3 arises from the

fact that lor1,3 is the real form of so4(❈),

lor1,3 → ❈⊗IR lor1,3
∼= so4(❈) = sl2(❈)⊕ sl2(❈) = ❈⊗IR su(2)⊕❈⊗IR su(2).

This complexification of lor1,3 provides the link between the real-valued Lorentz algebra

lor1,3 and the real-valued algebra su(2), and, using this link, one can construct all the

representations of lor1,3.

Since a representation τm of so(3) comes from a representation D(m) of SO(3) ⊂ Lor1,3,

the diagram

τm : so3 ∈ x −→ τm(x)

exp ↓ ↓
T(m) : SO(3) ∈ exp x −→ D(m)(exp x) = exp τm(x)

has to be commutative. However, for odd m, there is no such representation D(m). In

order to overcome this problem, one needs su(2) to generate all the finite-dimensional

representations of lor1,3. The complex representations T(k,l) (k, l = 0, 1
2 , 1, . . .) may be

obtained by holomorphic extension and Weyl’s unitary trick,

{eµν}3
0

Weyl′s−−−−−−−→
unitary trick

{
1

2

(

−1

2
ϵpnqenq ± ie0p

)}3

1

(24)

splitting−−−−→
map

{
Dp = mp ⊞ mp, Bp = −i(mp ⊞ (−mp))

}3
1

T(k,l)

−−→
{

T(k,l)(Dp) = D(k)(mp)⊞ D(l)(mp), T(k,l)(Bp) = −i
(

D(k)(mp)⊞ (−D(l)(mp))
)}3

1
.

Here, {mp}3
1 generate the algebra su(2) and D(k), k = 0, 1

2 , 1, . . . are the common represen-

tations of su(2).

Any irreducible finite-dimensional representation of lor1,3 is isomorphic to T(k,l) for

some (k, l). As a special case, there are two inequivalent fundamental representations from

which all others can be obtained by reducing the tensor products. The two-dimensional

spinor representation ( 1
2 , 0) is defined by the commutative diagram

Lor1,3 ∋ Λ: E1,3 ∋ p =⇒ Λp

T(1/2,0) ↓ σ ↓ σ ↓
SL2(❈) ∋ T(1/2,0)(Λ) ≡ AΛ: ❍2 ∋ σ(p) −→ AΛσ(p)A†

Λ = σ(Λp)
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The representation (0, 1
2 ) is defined as

Lor1,3 ∋ Λ: E1,3 ∋ p =⇒ Λp

T(0,1/2) ↓ σ̃ ↓ σ̃ ↓
SL2(❈) ∋ T(0,1/2)(Λ) ≡ ÃΛ: ❍2 ∋ σ̃(p) −→ ÃΛσ̃(p)Ã†

Λ = σ̃(Λp)

Here, σ̃(p) = pµσ̃µ, σ(p) = pµσµ, with σ̃0 = σ0 = ✶2 and σ̃p = −σp (p = 1, 2, 3) being

the Pauli matrices. Since the finite-dimensional representations of su(2) are in one-to-

one correspondence with those of sl2(IR), and the Lie algebra lor1,3 is noncompact, it is

reasonable to define the representations of lor1,3 in terms of the algebra sl2(IR). Moreover,

the most important technique by which to study the representations of linear noncompact

groups is to reduce the problem to the subgroups isomorphic to the simplest noncompact

group SL2(IR). For example, lor1,3 contains three such sl-isomorphic subalgebras but only

one su-isomorphic subalgebra. The following lemma gives the sl-structure for lor1,3.

Lemma 1. If eµν = −eνµ, µ, ν = 0, 1, 2, 3 are defined by

e01 = e2 ⊞ (−e2)

e02 = −i(e1 ⊞ (−e1))

e03 = e3 ⊞ (−e3)

e31 = e1 ⊞ e1

e32 = −i(e2 ⊞ e2)

e21 = −i(e3 ⊞ e3),

where {ek}3
1 are the generators of the algebra sl2(IR),

[e3, e1] = e2, [e3, e2] = e1, [e1, e2] = −e3,

then eµν generate the Lorentz algebra lor1,3,

[eµν, eρσ] = ηµρeνσ + ηνσeµρ − ηµσeνρ − ηνρeµσ.

Applying this lemma, one can define the representations of lor1,3 in terms of the

holomorphic extensions of the irreducible representations π(n) of sl2(IR) [24–26,32],

π(k,l)(e01) = π(k)(e2)⊞
(

−π(l)(e2)
)

π(k,l)(e31) = π(k)(e1)⊞ π(l)(e1) (25)

π(k,l)(e21) = −i
(

π(k)(e3)⊞ π(l)(e3)
)

(k, l = 0, 1
2 , 1, . . .). Here, π(k) is the standard representation of sl2(IR),

π(k)(e1)|k, m⟩ =
1

2
ρ
(k)
m |k, m + 1⟩ − 1

2
ρ
(k)
m−1|k, m − 1⟩,

π(k)(e2)|k, m⟩ =
1

2
ρ
(k)
m |k, m + 1⟩+ 1

2
ρ
(k)
m−1|k, m − 1⟩,

π(k)(e3)|k, m⟩ = m|k, m⟩, (26)

with ρ
(k)
m =

√

(k + m + 1)(k − m), m = −k,−k + 1, . . . , k.
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In some contexts, it is more convenient to work with the sl-basis e = e1 + e2, f =

−e1 + e2, and h = 2e3. Via the lemma, the Borel algebras have the form

b0 =
1

2
(h ⊞ (−h))

b1 = e ⊞ (− f )

b2 = −i(e ⊞ f )

b3 = − i

2
(h ⊞ h) (27)

for bor
(+)
1,3 and

k0 = −1

2
(h ⊞ (−h))

k1 = (− f )⊞ e

k2 = −i( f ⊞ e)

k3 = − i

2
(h ⊞ h) (28)

for the opposite bor
(−)
1,3 .

The (2k + 1)-dimensional representation π(k) of sl2(❈) is

π(k)(h)|k, m⟩ = 2m|k, m⟩
π(k)(e)|k, m⟩ = ρ

(k)
m |k, m + 1⟩

π(k)( f )|k, m⟩ = ρ
(k)
m−1|k, m − 1⟩ (29)

with ρ and k as in Equation (26).

Theorem 4. Let 2k ∈ ◆ and let (π, V) be a simple representation of sl2(❈) of dimension 2k + 1.

Then,

1. π is equivalent to π(k) for some k;

2. the eigenvalues of π(k)(h) are {−2k,−2k − 2, . . . , 2k} = Spec π(k)(h);

3. if 0 ̸= v ∈ V satisfies π(k)(e)v = 0, then π(k)(h)v = 2kv, i.e., π(k)(h) and π(k)(e) have the

common eigenvector |k, k⟩;
4. if 0 ̸= v ∈ V satisfies π(k)( f )v = 0, then π(k)(h)v = −2kv, i.e., π(k)(h) and π(k)( f ) have

the common eigenvector |k,−k⟩.
(Theorem 19.2.5 in Ref. [33], p. 281).

As a matter of fact, points 3 and 4 generate/define the eigenvectors of the representa-

tion π(k,l), called the helicity states for bor1,3. Using the sl-decomposition (27) of bor1,3, one

obtains

π(k,l)(t0) =
1

2
π(k)(h)⊗ ✶2l+1

π(k,l)(t+) = iπ(k)(e)⊗ ✶2l+1

π(k,l)(u0) = ✶2k+1 ⊗
1

2
π(l)(h)

π(k,l)(u+) = ✶2k+1 ⊗ iπ(l)( f )
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and, with respect to the direct product basis |k, l; mk, ml⟩ = |k, mk⟩ ⊗ |l, ml⟩, where −k ≤
mk ≤ k and −l ≤ ml ≤ l, one obtains the 2l + 1 common eigenvectors for sol2(e), given by

π(k,l)(t0)|k, l; k, ml⟩ = k|k, l; k, ml⟩, π(k,l)(t+)|k, l; k, ml⟩ = 0 (30)

for ml = −l,−l + 1, . . . , l. The 2k + 1 common eigenvectors for sol2( f ) are given by

π(k,l)(u0)|k, l; mk,−l⟩ = l|k, l; mk,−l⟩, π(k,l)(u+)|k, l; mk,−l⟩ = 0 (31)

for mk = −k,−k + 1, . . . , k. Thus, the sol2-invariant subspaces of the representations of

the proper Lorentz group, represented by the two components of the Kronecker sum as

“left-handed” and “right-handed” states, lead to the concept of helicity. Accordingly, the

(group-theoretical version of the) “Weinberg ansatz” is based on the concept of helicity.

7. The Weinberg Ansatz

Considering the states (mk, ml) as points on a lattice of dimension (2k + 1)× (2l + 1),

according to Equations (30) and (31), the eigenstates of sol2 are found with the values

mk = k and ml = −l, i.e., at the boundary of this lattice. This can be interpreted physically

as a constraint on the spin degrees of freedom of the massless particle to only one of the

helicity states. It is even possible to show that, for particles, this is the left-handed helicity

state [7]. If, however, the particle is equal to its antiparticle, the full spectrum of helicity

states is available. In general terms, this is formulated in Refs. [15,16] in the following way:

1. If a massless particle is equal to its antiparticle, it is described by the irreducible

representation (k, k) of the proper orthochroneous Lorentz group (Majorana case);

2. If a massless particle is not equal to its antiparticle, the particle is described by the

irreducible representation (k, 0) of the proper orthochroneous Lorentz group, while

the antiparticle is described by the irreducible representation (0, k) of the proper

orthochroneous Lorentz group (Dirac case).

Note that the massless particle is defined via the Borel subgroup by the irreducible rep-

resentation of the proper orthochroneous Lorentz group, without the need to introduce

space inversion.

7.1. The Majorana Case

For the representation (k, k), the ansatz yields 2k + 1 helicity states associated with

sol2(e),

|k, k; k,−k + p⟩, p = 0, 1, . . . , 2k,

and 2k + 1 helicity states associated with sol2( f ),

|k, k;−k + p,−k⟩, p = 0, 1, . . . , 2k.

Since the state |k, k; k,−k⟩ is twice and at the same time excluded by the condition

D
(k,k)
3 |k, k; k,−k⟩ = 0, B

(k,k)
3 |k, k; k,−k⟩ = 2k|k, k; k,−k⟩,

the particle with zero mass and helicity λ = 2k has 4k helicity states. In particular, the defin-

ing representation ( 1
2 , 1

2 ) describes a massless particle with helicity 1 and two helicity states,

| 1
2 , 1

2 ; 1
2 , 1

2 ⟩ and | 1
2 , 1

2 ;− 1
2 ,− 1

2 ⟩.
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7.2. The Dirac Case

According to Weinberg, the Dirac case (k, 0)⊕ (0, k) is a particular case of the general

situation (k, l) with l = 0 or k = 0, respectively. For the representation (k, 0), there exists

only a single eigenvector |k, 0; k, 0⟩ of the Borel algebra bor1,3(k, 0), i.e., only a single helicity

state |k, 0; k, 0⟩ with

t0|k, 0; k, 0⟩ = k|k, 0; k, 0⟩, t+|k, 0; k, 0⟩ = u0|k, 0; k, 0⟩ = u+|k, 0; k, 0⟩ = 0.

Similarly, the only helicity state for the representation (0, k) is |0, k; 0,−k⟩ with

u0|0, k; 0,−k⟩ = k|0, k; 0,−k⟩, u+|0, k; 0,−k⟩ = t0|0, k; 0,−k⟩ = t+|0, k; 0,−k⟩ = 0.

For example, the fundamental representation bor1,3(
1
2 , 0) can be expressed as

b0(
1
2 , 0) = 1

2 h, b1(
1
2 , 0) = e, b2(

1
2 , 0) = −ie b3(

1
2 , 0)− 1

2 ih.

The corresponding representation of the algebra sol2(e) has the form

t0(
1
2 , 0) = 1

2 h, t+(
1
2 , 0) = ie

with sol2( f ) being trivial. Therefore, in the case of the irreducible representation ( 1
2 , 0),

there exists only a single solution e1 = (1, 0)T , i.e., a helicity state λ = 1/2, and this helicity

state is equal to the solution of the Weyl equation

σ̃µ pµψ(p) = 0.

In case of the representation (0, 1
2 ), sol2(e) is trivial, and the nontrivial algebra sol2( f ) is of

the form

u0(0, 1
2 ) = − 1

2 h, u+(0, 1
2 ) = −i f

with only a single common eigenvector e1 = (0, 1)T .

8. Conclusions

With this work, we have delved into the rich solvable structure of the proper Lorentz

group. As for a massless particle, the stabilizer subgroup of the momentum four-vector

is given by the Borel subgroup as the maximal noncompact subgroup of the Lorentz

group, of which the Lorentz group contains two copies. Thus, we can generate the Borel

subgroup as a Kronecker sum of two copies of the simplest solvable algebra sol2 ⊂ sl2 and,

correpondingly, the proper Lorentz group as a Kronecker sum of two copies of the simplest

noncompact algebra sl2. This is formulated in Lemma 1. From our investigation in this

paper, we conclude that, if there is a particle state with pure helicity or spin, the mass of

this particle is zero and the stabilizer subgroup is the Borel subgroup, fixing the line of

the light-like propagation. Therefore, at least for the electromagnetic field, the symmetry

determines the dynamics.
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Abbreviations

The following abbreviations are used in this manuscript:

Lor1,3 proper Lorentz group SO0(1, 3)

lor1,3 proper Lorentz algebra so0(1, 3)

Bor1,3 Borel subgroup of the Lorentz group SO0(1, 3)

bor1,3 Borel subalgebra of the Lorentz algebra so0(1, 3)

(Bor1,3)u unipotent radical of Bor1,3

Der g derived Lie algebra of the Lie algebra g

rad
(±)
u Lie algebra of the unipotent radical (bor1,3)u = Der bor

(±)
1,3

Rad
(±)
u exponential of rad

(±)
u

Tor1,3 maximal torus group of the Lorentz group SO0(1, 3)

tor1,3 maximal torus algebra of the Lorentz algebra so0(1, 3)

lg Wigner’s little group (point fixgroup)

T translational group

GLn(❑) general linear group of dimension n over the field❑

SLn(❑) special linear group of dimension n over the field❑

sln(❑) Lie algebra corresponding to SLn(❑)

sol2 two-dimensional solvable Lie algebra
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