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Abstract

The Lorentz group Lor; 3 = SOy(1,3) has two point fixgroups, namely SO(3) for time-
like translations and SOp(1,1) x IR? for light-like translations. However, for light-like
translations, it is reasonable to consider a line fixgroup that leads to the Borel structure of
the Lorentz group and provides appropriate helicities for massless particles. Therefore,
whether a particle is massless or massive is not so much a physical question but rather a
question of the underlying Lie group symmetry.

Keywords: solvable Lie group; Borel subgroup; massless particle states; chirality states

PACS: 02.20.Qs; 03.65.Ge

1. Introduction

The basic structure of physics is defined via the representations of Lie groups and Lie
algebras. Symmetry arises via both the external or space-like and internal or charge-like
degrees of freedom and is represented in complex vector spaces regarding the noncompact—
compact dichotomy of the relevant groups. The groups appear in two different varieties,
semisimple and solvable, serving as the building blocks for all other Lie groups. Simple
Lie groups regenerate themselves under commutation and generate semisimple groups
via direct products. Solvable Lie groups do not regenerate themselves under commutation
but are constructed in a stepwise way out of Abelian subgroups. Non-semisimple Lie
groups are semidirect products of semisimple and solvable subgroups. Note that there
is no complete classification for solvable Lie groups and, therefore, for non-semisimple
Lie groups.

The subgroup structure of the symmetry group plays a basic role in Wigner’s definition
of particles in the electroweak standard model, e.g., the isotropy subgroups of the Lorentz
group and their corresponding coset manifolds. In particular, for massive particles, the
point fixgroup SO(3) is the maximal connected compact simple subgroup of the Lorentz
group Lorj 3 = SOp(1,3), and the corresponding time-like energy-momentum hyperboloid
is Y3 = SO3(1,3)/SO(3). In this paper, we show that, in contrast to this, for massless
particles, one obtains the line fixgroup Bor; 3 as being the maximal connected noncompact
solvable subgroup of the Lorentz group,

m#0  maximal connected compact simple  point fixgroup SO3
) ) X X
m=0  maximal connected noncompact solvable line fixgroup Bor;

Here, Bory 3 C Lory 3 is the Borel subgroup of the Lorentz group, and at least one of the
manifolds Lor; 3 / Borj 3 is projective (= S2).
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Scanning the recent literature concerning Lie groups for massless particles, few articles
are found. Massless particles are considered within the Poincaré group [1-5] but without
any reference to the possible solvability (solubility) of the corresponding stabilizer subgroup.
Therefore, our work in this field, in previous publications [6,7] and in this publication, is
pioneering and is based mainly on handbooks. As the basis for a deeper understanding,
we suggest Refs. [8-11], from which many of the ideas that led to the research described
in this paper were derived. At this point, it is worth emphasizing that, as physicists, we
do not apply any rigorous mathematical formalism, consisting of definitions, lemmata,
prepositions, theorems, and corollaries, together with the corresponding proofs. Instead,
we mention the components of our considerations in these mathematical terms, without
providing proofs in most instances; these, instead, can be found in the references that
we cite at various points, which also mark the ends of the corresponding theorems. An
exception is Lemma 1, which is new and the main outcome of our analysis. This lemma
on the SL, reconstruction of the proper Lorentz group can be considered as a corollary of
what has previously been discussed.

This publication is organized as follows. In Section 2, we present basic facts about
the proper Lorentz group, and we present three theorems that are the foundations of
our work: the Chevalley theorem, the Lie-Kolchin theorem, and a theorem related to
Borel. Having explained Wigner’s concept of a little group, in Section 3, we first deal
with Wigner’s result for this, given by the Euclidean group E(2). However, the character
equation has an additional solution that leads to the Borel subgroup, dealt with in Section 4.
In fact, there are a couple of these subgroups, with the union giving the proper Lorentz
group, while the cut is the maximal torus. We show explicitly that each of these groups is
generated by two elements of the minimal solvable algebra sol,, spanning the algebra of
the Borel subgroup as a Kronecker sum. Turning to topology, in Section 5, we show that
the quotient of the Lorentz group and the Borel subgroup is a projective variety. Section 6
deals with representations, presenting also our Lemma 1, focused on reconstructing the
proper Lorentz group by two copies of the simplest noncompact group SL,(IR). Via the
Weinberg ansatz, in Section 7, we describe a connection back to physics. In Section 8, we
present our conclusions.

2. Basics

Here, we give a brief description of the basic theorems and constructions of the
theory of semisimple groups with applications to the proper Lorentz group [12-17].
The Minkowski representation SOy (1,3) preserves the indefinite symmetric metric n =
diag(1, —1, —1, —1) in the real spacetime R* > x,,

x -y =My’ = xy.
As the defining representation of the causality-compatible Lorentz group,
Lor;z = {ATyA =17, detA =1, A% > 1, A = (A¥)) € GL4(R)}

is parametrizable by six real parameters wy, = —wyy,

1 1 ;
Alw) = exp(—iwy,,ew) = exp <2wp607’]kejk + Zwopeop),

where the first part is compact and the second part noncompact, and the domain of these
six parameters is given by

D= {wop,wp €ER, —m<wp <m p=12,3}
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which is homeomorphic to IR® x P3, where PP3 is the three-dimensional projective space.
The generators have the form

0 07 0 e O
Cir == o o , ep; = . ,
ik 0 eje,? - ekejT 0 g 03

where, in general, [e,, eor] = Hypvo + Nvolup — Nuctup — NupCpo-

Here, é’j, j = 1,2,3 is the Euclidean basis in IR3. Therefore, Lor; 3 is a locally com-

pact and doubly connected, path-connected, simple and reductive group with universal
coverage SL,(C), i.e.,
LOI‘1[3 = SLZ(@)/ZZ = SO(?), (D)

The last isomorphism means that the representations of Lor; 3 may be seen as representa-
tions of the complex rotation group SO(3, C). For completeness, note that the Lie algebra
lor; 3 = log Lor 3 is the noncompact real form of

s0(4,C) = sly(C) & sl (T).

To motivate what follows, it is instructive to look at Chevalley’s theorem in the context of
the defining representation of the Lorentz group, according to which Lory 3 acts on the flat
spacetime or its dual energy-momentum space by a linear transformation,

LOI‘1,3 SA: Ei3> = A Y € [Eq 3.

Theorem 1 (Chevalley). Let G be a linear algebraic group and H C G a closed algebraic subgroup.
Then, there is a rational representation ¢ : G — GL(V') and a one-dimensional subspace L C 'V
such that

H={geG:¢(g)L=L} 2)
Otherwise, if ¢ € L spans the line L, i.e., L = C¥, then the equation
¢p(h)l=xh)t el he H 3)

defines a character x € X (H) of H. This character is called the weight to the semi-invariant ¢,
and X (H) = Mor(H,GLy). Note that, if [H, H| = H, then X (H) = {0}, i.e., SLp(C) has no
nontrivial characters and therefore the Lorentz group has no nontrivial characters [18].

Theorem 2 (Lie-Kolchin). Let G be a connected solvable linear algebraic group, and let (¢, V') be
a reqular representation of G. Then, there exist characters x; € X(G),i =1,2,...,nand a flag

V=V1D>DW>...0V, DV, ={0}

such that
(9(g) — xi(8))Vi C Vipa

forall g € G. Tnking i = n, one obtains the characteristic equation
P(&) Vi = xu(8) Vi, (4)
i.e., every solvable group has a common one-dimensional subspace L C 'V [19,20].

Wigner’s Little Group

What follows was proposed by Eugene Paul Wigner in 1939: for massive particles
(m # 0), the point fixgroup (or little group) of the momentum ;3 = (1, 0, 0, 0), and
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lg(ﬁ) = SO(3) C Lorj 3 is maximal connected, compact and simple [4,5,13,14,16]. Pro-
ceeding purely mathematically, one finds that, for massless particles (m = 0), the little
group is maximal connected, noncompact and solvable, resulting in a Borel subgroup
Bor, 3. By definition, a Borel subgroup of an algebraic group G is a maximal connected
solvable subgroup.

Theorem 3. Let G be a connected linear algebraic group. Then,

1. G contains a Borel subgroup B;

2. All other Borel subgroups of G are conjugate to B;

3. The homogeneous manifold G/ B is a projective variety;

4 G=Ugec ¢Bg ™!, where B is a fixed Borel subgroup of G.

(see Theorem 11.4.7 in Ref. [21], p. 524).

Thus, every element g € G is contained in a Borel subgroup. As mentioned before,
a solvable group has a semidirect structure. For the connected solvable group G, the set
G, of unipotent elements is a closed connected nilpotent subgroup of G. There exists a
maximal torus Tg C G and, for this, an exact sequence

ec > Gy, > Gy XxTg =G — Tg — eg.

Since the maximal torus T and the maximal connected unipotent subgroup G, of G are
those for the Borel subgroup, one has the exact sequence

eg —+ By = By, xTg =B — Tg — ep. (5)

and B = Ng(By). Here, G, = {g € G : ¢ = gu}, where g, is the unipotent component in
the Jordan decomposition § = gsgu-

3. The Role of Mass

Before discussing the Borel subgroup in further mathematical detail, let us note some
physical considerations regarding the kinematics. Taking the momentum four-vector to
be p, with p2 =m? > 0 the squared mass, for massive particles, one can move to the rest
frame, where p = (m,0,0,0)T. The stabilizer subgroup or fixgroup is given by SO(3), the
three-dimensional rotations. However, if the particle is massless, such a move to the rest
frame is no longer possible. According to Wigner’s classification, the fixgroup is E(2). This
is the little group that Wigner indicates for massless particles like photons and (massless)
neutrinos. For instance, for a momentum vector p = (po, 0,0, pg)” pointing in z direction,
E(2) consists of rotations about the z axis, translations orthogonal to it and reflections.
However, what is not taken into account by this is the interchange of time and space
components, which is obviously an additional symmetry transformation. Together with
this additional transformation, the fixed point group is given by the Borel subgroup Borj 3.

Returning to mathematics, let B C G be a Borel subgroup of G and V a finite-
dimensional rational G-module. Then, the fixed points of B in V coincide with the fixed
points of G. As the Lorentz group has no fixed points, for B, the character Equation (3)
is the only one that can be solved. In contrast, for SO(3), one has the commutant
[SO(3),S0O(3)] = SO(3). Therefore, the character group X' (SO(3)) is trivial. The rota-
tion group has no nontrivial characters, and the character Equation (3) is impossible to
solve. Moreover, if V is an irreducible rotational G-module (let G be semisimple), then
there is a unique Borel-stable one-dimensional subspace spanned by a maximal vector of
some weight/character y with multiplicity one.
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The little group of Wigner is E(2) is nonmaximal, connected, solvable and noncom-
pact [13,14,22,23]. The nonmaximality is explained (or determined) by the requirement to
be a point fixgroup of (1, 0, 0, 1)7,

E(2) = R? % SO(2).

In this semidirect product, the compact group SO(2) acts on the abelian locally compact
group exp R? by the multiplication rule

(x1,Rq)(x2,R2) = (x1 + Ryx2, R1Rp).

Every irreducible representation of E(2) is equivalent either to a character of SO(2) lifted
E(2
’
R%. To avoid a continuum of helicity states, one has to require that, for physical states,

to E(2) or to an induced representation ind ;" x, where yx is the nontrivial character of

the noncompact part of E(2) is trivial in all representations, so the little group reduces to

SO(2). There are topological considerations that restrict the allowed values of the helicity
to integers or half-integers. Thus, the helicity

1
=0,£-,%£1,...
7 2/ 7

=

)\:

=

is Lorentz-invariant for massless particles with the total angular momentum J.

As for any abelian group, the reducible representations of SO(2) are one-dimensional.
Therefore, according to Wigner s classification, the free massless particles have only a single
degree of freedom and are characterized by the value A of their helicity.

In nature, there are two classes of particles. The first class consists of particles that
can exist in two helicity states +A. Such a particle is defined as a representation of the
parity-extended Poincaré group [1]. Since the electromagnetic interaction conserves parity,
the photon is defined as the SO(2)-doublet

(;;) 00 (D@ (—D @2 x (0) ™ (1) @2 x (0).

The second class contains particles for which the parity is not defined, as the interactions
that they are involved in violate parity. Such particles are the neutrinos that exist only with
helicity —% and antineutrinos with helicity —|—%.

4. The Borel Subgroup

The key observation in the preceding sections was the character Equation (3). Solving
the character equation

Bp = x(B)p (6)
for the light-like standard vector ;3 = (1, 0, 0, 1) with B € Lor, 3, one obtains [6,7]

B (B0, w) = (é f;) @)
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A = coshf+ %|ﬁ |?e~°,
B = (sinh@ — %\B |2€9> & + rotz wp,
C = (sinh()—i— ;B|2€9>€3 +e79B,
D = (cosh() -1- %|/§ |2e_9) &85 — e 9Bel + (13 + &p7) rotz w. (8)

Here, BT = (B1,B2,0) = Y24 Batl, & = (0,0,1),

cosw —sinw 0
rot3w = | sinw cosw O
0 0 1

As a consequence, the character is given by

x(B(H)) = % Yy BM, = v,
uv=0,3

The composition rule is
B (1601, w1)B™) (Ba; 02, w2) = BUY (By + efirotaw: fo; 01 + 02, wy + wn) )

and therefore

B (B;6,w) = B (B) % T(6,w). (10)

All such transformations B(*) (§; 6, w) with a noncompact parameter space for helicity and
gauge, given by {f € R?, § > 0, 0 < w < 7}, form the Borel subgroup

Borgg) = (Borgjg))u x Tor; 3 C Lory 3. (11)

Here, Tor; 3 = SOp(1,1) x SO(2) is the maximal torus in Lor; 3, and (Borgg))u is the
(+)

unipotent radical of Bor; 5.

The linearization of Borgg) in the neighborhood of the identity

. 1
B (B;0,w) = 14 + B1b1 + Baby + 0by + whs = 14 — Ewwew (12)

results in the Lie algebra borgg) = log Borgg), with
bo =eo3, b1 =eo1+es, by =enptes, bz=en. (13)
As a vector space spang{b, }3 endowed with commutation relations
(Do, ba] = ba,  [b3,ba] = —€3apby, @ =1,2 (14)
the Borel algebra reads

borgg) = (borgg))u X tory 3 =so(1,1) @so(2) ® R?, (15)

( (+)

where (borlz) Ju =rad,, ’ is the Lie algebra corresponding to the unipotent radical.
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Since the semisimple rank is rankss SO(1,3) = 2, there exists a unique Borel subgroup
Borgg) C Lory 3, called opposite Bory 3, such that [18,24-26]
(-) (+) _ —
Bor, ' NBory ;° = Tory 3 = SOp(1,1) x SO(2)

and Lory 3 = Borg,_a) U Borgg).

To visualize the algebraic structure of borg), it is convenient to transform the basis to
1 . 1.
to = E(bo +ib3), ty = E(lbl —ba), [to,t4] = £+ (16)
1 , 1, .
up = E(bo —ib3), uy = 5(—1171 —ba), [wo,uy] = uy (17)

with [tg 4, uo+] = 0. This leads to the Kronecker sum decomposition
bor ) = soly () Bsoly(f) := sola(¢) ® 1y + 1, @ sola(f). (18)
The Kronecker sum decomposition is easily seen after applying the splitting map
1 4
to = Eh ® 1o, ty = (ie) ® 1 for soly(e),

w=1a®(—3h), ur=1@(f) for soh(f). (19)

R A (O A

is the natural Chevalley basis of sl,(C).

Here,

Again, the linearization of Borg:o,) generates the basis of the underlying vector space as
ko = —ens, ks=-ep1, ko= —egg+es, a=12 (20)

with nonzero commutation relations
ko, ka] = ko, [k3, ka] = —€30pk- (21)

Thus,
lor 3 = borgj) ~|—b0rgg) = (borgg))u & (bor%))u + tory 3,

where tor; 3 = log Tor; 3 = log SOy (1,1) & 1logSO(2).

(+)

3

The Kronecker sum decomposition of bor; 5" into two fundamental solvable groups

soly is easily extended to an sl (IR) decomposition for the whole lor; 3,
lory 3 = sl (R)e B sly(R)y

Using the splitting map, for sl (IR),, one obtains

1 . 1
ty = (bo + lbg) — (2]’1) ® 1y
ty = (iby — by) — (ie) @ 1y (22)

(—iki1 —ko) — (if)® 12

NI~ NI~ NI
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with commutation relations

[t t] = —2ty,  [tote] =cte, €=+
For slp(IR) ¢, one obtains
1 . 1
Uy = E(bg—lbg,) —+ 1Lh® <—2h>
1, . )
Uy = E(—lbl —by) — 1, ® (if) (23)
- %(iklsz) S 1, (ie)

with commutation relations
[y, u_] = —2t, [Ug, ue] = et;, €=+

and [sly(R)e, sl (R)¢] = 0.
Returning from the defining matrix representation of the Borel algebra to the group
matrix representation, by exponentiation, one obtains

tory 3 3 Obg + whs — exp(8by + whs) € Tory 3
with

exp(0by + wbs) = (14 + sinh ¥bg + (cosh ¥ — 1)b%> (114 + sinwbs + (1 — cos w)b%) =

(V1+XT% xT
X roty w+/ 13 + ZXT

The Cartan-Killing form in the defining representation is indefinite,

>, X= sinhﬂé'g.

(l9b0 + wbs, ¥by + wbsz) = 2(192 — wz)

and
(exp(0by + wbs3), exp(¥by + wbsz)) = 2(cosh ® + cosw) > 0

For the unipotent radical, one has
(+) — P —
rady, ' 3 b = B1b1 + Boby — expb = —14 +exp(B1b1) + exp(Babz).

(,Jg) is solvable, and its derived algebra is given by

Since the algebra bor;
Derborgg) = rad£,+),

the Cartan-Killing form is identically zero, (radgf), rad£,+)) = 0. For RadE,Jr), one obtains

(expb,expb) = 4, so, obviously, b € rad|” nilponent and exp b € Rad," unipotent.

5. The Quotients

Given a closed subgroup H of an algebraic group G, there is a smooth projection
7t : G = G/ H, where the fibers are precisely the cosets gH, ¢ € G. The projection 7r has a
smooth local injection, given by the compatible section
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v:G/H — G

d\, |«
G/H

such that oy = idg /.

As an example, we consider the Cartan decomposition g = log G = log K & p, where
log K is the maximal compact subalgebra of g, and the subspace p = g mod log K consists
of the noncompact generators of g. Exponentiating the Lie algebra decomposition into the

Lie group,
g= log K S~ p
compact noncompact
exp | ! !
G = K ® expp
compact coset
subgroup representatives

one obtains the parametrization of the algebraic manifold G/K = exp p.
The map of K x p onto G

Kxp>s (kX)—kexpXeG

is a diffeomorphism into G, i.e.,, G = K x expp.

Different choices of the section -y give different formulae for the coset representatives.
For the Borel subgroup B C G, the factor set G/ B is the largest homogeneous space for G,
having the structure of a projective variety. Since G/ B is complete, the Borel subgroup B
has a fixed point in G/B.

5.1. The SO(3) Parametrization

The Borel decomposition of the Lorentz group Lor; 3 = SOg(1, 3) is generated by the
decomposition of the algebra lor; 3 = log SOg(1, 3) in a natural way by reordering the usual

parametrization
lory 3 3 —fwet’ = w1e3) + wrez +  Bib1 + Baby + Begs + wey
—_————
coset representatives bory 3
exp | !
Loriz > exp Y2 wae3, X Borgg) (B1, B2; 0, w)
More precisely,
2 0 or
P 2y = Z Wwpl3; = <—* - ST - —‘T>
) a=1 0 8305 — @363
1 07 0
- p— .
= expPp = [0 /12— X)Xy —X(2)
0 X 1-— X2)%(2)

Here,
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The Cartan—Killing inner product for representatives
— 2 2

is negative, i.e., the representatives are compact operators. For the representatives of the
group coset, one has
(expP(y),expP(y)) =4 cos? w(z) > 0.

Therefore, the geometric manifold for the respresentatives of the group coset is compact.
Moreover, the parametrization of the Borj 3-classes can be given by the three-point ¥ =

2 o sinw(z)aj B X1
®= Ty Y07 4

(x1,x2,%3)T in R® as

and x3 = cos w(y). Then,

1 i 0

. T
expPp) = |00 L= -3o)¥p) —To)

0 .‘)_C'{z) X3

with detexp P 5) = x7 + x5 + x5 = 1. Therefore, the SO-type coset representatives generate
a compact factor set, the two-sphere in R® [27],

Lory3 / Bor{ ;) =S0(3)/50(2) = S2.
Using the Iwasawa decomposition

Lor;s = SO(3) x SOy(1,1) x exp R?
(SO(3)/S0(2)) x SO(2) x SOy(1,1) x exp R?

BOI‘l/g
and Borgg) = (SO(2) x SOy(1,1)) x exp R?, one obtains the same result.
The projective coordinates for this parametrization are

X X
—o<zpg=m =" <00, a=1,2.

42 42 X3
1 XT — X3

As mentioned, different choices for the section <y provide different parametrizations.

5.2. The SO(1, 2) Parametrization

Let
lori 3 3 —jwue!” = dreo1 + Baenn +  Biby + Baby + Begs + weny
coset representatives borfg)
exp | 1
Lor1/3 > exp 1.9(2) X Borgg)

Here, 19(2) = 25:1 8,60, is noncompact, as the Cartan—Killing form is positive,

(82),8(2)) = 219%2) =2(03+93) > 0.
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The group representatives exp 19(2) are noncompact,
=T = = . 1%
1+7573) 7l sinh @ [ 1
S00(1,2) 3 exp ¥(g) = o e N RO el YT
Y(3) 13 +§3)¥ 3 () 0

as the Cartan—Killing form is positive,
(exp B (p), expb(y)) =4 cosh? ¥y > 0.

The parametrization of the coset representations for the group can be chosen as the point
v = (v0,v1,y2) in R? or as the projective coordinates z, = ,/vo, a = 1,2 in the interior of
the unit circle of the yy = 1 plane. In the first case, we have

sinh 19(2)

Yo = cosh 19(2), Yo = %, a=1,2,

(2)

so that y3 — y2 — y3 = 1, and the representatives are

o ) Yo 3?{3)
Yo, Y1, Y2) = - 1 o T
Vo) Bt 1, Y0Y0)

withdetQ = (v3 — 12 —y3)/(1 +yo) = 1 and (Q, Q) = 4y3 > 0. As a consequence, the
representatives are found on the noncompact on-shell hyperboloid

Y? = Lor; 3 / Bor| ;) = 50y(1,2)/ SO(2).

The projective coordinates (g1, 42) are

Py [ E— S TR )

Vityi+tyy W

Therefore, the two examples for the coset representatives considered up to now are
the time-like on-shell hyperboloid Y? and (as a compact partner) the sphere S? with the
common compact subgroup given by SO(2) C Tor 3.

5.3. The Borel Parametrization

Finally, to be systematic, the Borel structure of the Lorentz group provides a construc-
tive procedure to determine representatives of different cosets. To begin with, we recall the
Borel decomposition

lor; 3 = borgg) U borfg) = radi,_) @(radl(f) X tory3) = rad£¢+) @(rad£_> X torg 3).
As underlying vector spaces, one has

181‘1,3 = spanpg{e = —ew}g = spang{bo, b3, bu,kﬂ}g:1 = spang{to, te; 1o, Ue =41

It is convenient to choose the basis of rad£f> as

0 A
ka = e e
—8; €€, — C¢;
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Then,
0 —&/,
rad\”) Sk=mk +rokp=| . T ) |
—K3) K3y TK@3)6

where

K1

fo = (| By=ded
0

and the Cartan—Killing product (k,k) = trk? = 0. This is the second criterion for the
solvability of borgg): an algebra g is solvable if and only if its Cartan—Killing metric tensor
is identically zero on its derived algebra D'g.

The expression for the representatives of the group coset is obtained by exponentiation:

lor;3 D radEf) &) borgg)
exp | X

Lori3 D Radg,_) X Bor%)
From this, the representations of the group coset can be read as

1+t —x -y t

-x 1 0 —x
-y 0 1 -y
-t x vy 1t

_ 1
RadE, ) Sexpk=14+k+ Ekz =

where t = %Ké), x = 1,y = xp and 2t — (x> + y?) = 0. One observes that the real
parameters (f,x,y) describe the subspace of the noncompact elliptic paraboloid. The
projective coordinates of this parametrization are

Xy x y 2 .2
(p1.p2) = <?/;> = <XZ+y2’x2—|—y2>’ p1+p5 > 0.

The Cartan-Killing form for the representatives of the group coset is positive:
(expk,expk) =4 > 0.

As a consequence, one has the following:

e m # 0: arest frame exists for massive particles =

stabilizer subgroup is the point fixgroup SO(3) = leading to spin;
e m = 0: no rest frame exists for massless particles =

stabilizer subgroup is the line fixgroup Bor; 3 = leading to helicity.

Indeed, accepting the undulatory theory of light, the plane wave, as the most elementary
type of wave, cannot be localized in space. Moreover, the characteristic Equation (3)
suggests that the massless particle can be enclosed on a line. Therefore, the question of
how a massless particle with energy E differs from the same particle with energy AE is
a quantum-mechanical problem in the form of Planck’s formula E = hv, rather than a
problem of symmetry. In fact, the difference is a mathematical one:

e m # 0: semisimple compact;

e m = 0: solvable noncompact.
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6. The Representations

In general, Lie algebras play their role in physics not as abstract algebras but through
their representations that act on suitable representation spaces. For example, spin and
helicity are determined by the stabilizer subgroups of Lor; 3. For mathematical conve-
nience, it is reasonable to consider representations in vector spaces over complex number
fields. This is because, in physics, the concept of reducibility is of fundamental impor-
tance, and the mathematical structure of quantum mechanics works with complex Hilbert
spaces [13-16,22,28-31].

A representation D of a real algebra g can be extended to a unique linear complex
representation D by the holomorphic extension

D(A+iB)=D(A)+iD(B), AB¢€g.

Although Lor; 3 = SO(3, €), the process of holomorphic extension for lor; 3 arises from the
fact that lor; 3 is the real form of so4(C),

lor; 3 = € ®Rlor; 3 = 504(C) = slh(C) @sh(C) = C ®rsu(2) @ C @R su(2).

This complexification of lor; 3 provides the link between the real-valued Lorentz algebra
lor; 3 and the real-valued algebra su(2), and, using this link, one can construct all the
representations of lory 3.

Since a representation T, of s0(3) comes from a representation D("™) of SO(3) C Lor 3,
the diagram

Ty @ SO3 € X — T (%)

exp | L
T(m . SO(3) e expx — D (expx) = exp T (x)

has to be commutative. However, for odd m, there is no such representation D). In
order to overcome this problem, one needs su(2) to generate all the finite-dimensional
representations of lor; 3. The complex representations T (k,1 = 0, %, 1,...) may be
obtained by holomorphic extension and Weyl’s unitary trick,

(o) —ts [ (L e i ’ (24)
wio unitary trick 2 o PHITng Op .
splitting ' s
m—ap> {Dp =myBmp, By = —i(m, B (—mp)) .

T(KI) 3
RSN .

1
Here, {mpﬁ generate the algebra su(2) and D(k), k=0, %, 1,... are the common represen-
tations of su(2).

Any irreducible finite-dimensional representation of lor; 3 is isomorphic to Tk for
some (k, ). As a special case, there are two inequivalent fundamental representations from
which all others can be obtained by reducing the tensor products. The two-dimensional
spinor representation (,0) is defined by the commutative diagram

Lor;z 3 A: Eizap = Ap
T(1/2,O) i 0_\1/ Ul/
SLy(C) > TW/20(A) = Ap: Ha20(p) —  Aac(p)Al =ca(Ap)
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The representation (0, 1) is defined as

LOI‘1,3 S A: E1,3 o>p - Ap
T(O,l/Z) \L &\L ﬁi
SLy(C) > TOVA(A)=Ax: Ha2a(p) —  Apd(p)AL =5(Ap)

Here, 6(p) = p"0y, o(p) = p'oy, with &g = 09 = 1 and 5, = —0p (p = 1,2,3) being
the Pauli matrices. Since the finite-dimensional representations of su(2) are in one-to-
one correspondence with those of sl;(IR), and the Lie algebra lor; 3 is noncompact, it is
reasonable to define the representations of lor; 3 in terms of the algebra sl, (IR). Moreover,
the most important technique by which to study the representations of linear noncompact
groups is to reduce the problem to the subgroups isomorphic to the simplest noncompact
group SL;(IR). For example, lor; 3 contains three such sl-isomorphic subalgebras but only
one su-isomorphic subalgebra. The following lemma gives the sl-structure for lor 3.

Lemma 1. Ifey, = —eyy, p,v = 0,1,2,3 are defined by

eor = exH(—en)

e = —i(erH(—e1))
ep3 = ezl (—e3)

es1 = e1He

e = —i(exHen)

1 = —i(esHes),

where {ey }3 are the generators of the algebra sl (IR),
e3,e1] =€z, [e3, 0] =1, [er,e2] = —es,
then ey, generate the Lorentz algebra lor 3,
ey, €po] = Mppevo + Huaeup — Mucevp — Nupeuo-

Applying this lemma, one can define the representations of lor; 3 in terms of the
holomorphic extensions of the irreducible representations 71(") of sl (R) [24-26,32],

() = 70(e) B (—n"(e2))
) (e31) = (61)53”1)(61) (25)
ntD(en) = —z( ) (e5) B 71 (e3) )

(k,1=0,1,1,...). Here, (¥ is the standard representation of sl,(R),

1 1
7 (er)k,m) = §p£f>|k,m+1>—fp,Si‘11|k,m—1>,
1
70 () |k, m) = Ep£,i‘)|k,m+1> me ) ke m—1),
") (e3)|k,m) = mlk,m), (26)

with pi¥) = /lk+m+1)(k—m), m = —k,—k+1,...,k.
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In some contexts, it is more convenient to work with the sl-basis e = e; + €3, f =

—e1 + ep, and h = 2e3. Via the lemma, the Borel algebras have the form

by = S(hE(-h))

b= eB(-f)

b2 = —l..(EBE‘f)

by = —%(hEEh) 27)

for borfg) and

K= —5 (B (=)

k1 = (*f)EHe’

ke = —i(fEe)

ks = —%(hEHh) (28)

(=)

for the opposite bor; ,’.

The (2k 4 1)-dimensional representation 77%) of sl (T) is

7 ® (n)|k,m) = 2m|k,m)

a®(e)km) = ol |k m+1)
7O ()lkm)y = o Jkm—1) (29)

with p and k as in Equation (26).

Theorem 4. Let 2k € N and let (71, V') be a simple representation of sl (C) of dimension 2k + 1.

Then,

1. mis equivalent to ) for some k;

2. the eigenvalues of 7) (h) are {2k, —2k — 2,...,2k} = Spec 1) (h);

3. if0# v e Vsatisfies 70 (e)v = 0, then %) (h)v = 2kv, i.e., 7®) (h) and 71%) (e) have the
common eigenvector |k, k);

4. if0 # v € V satisfies 70) (f)v = 0, then 7™ (h)o = —2kv, i.e., 78 (k) and 70 (f) have

the common eigenvector |k, —k).

(Theorem 19.2.5 in Ref. [33], p. 281).

As a matter of fact, points 3 and 4 generate/define the eigenvectors of the representa-

tion 77(k), called the helicity states for bor; 3. Using the sl-decomposition (27) of bor; 3, one

obtains

6D (1) %n(k)(h) @ Ly 41
akDi) = in®(e) ® 1y,
7D (ug) = 1y @ %n(l) (h)
Ak uy) = 1y @in?(f)
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and, with respect to the direct product basis |k, I; my, m;) = |k, my) ® |I, m;), where —k <
my < kand —I < m; <, one obtains the 2/ + 1 common eigenvectors for sol,(e), given by

7D (to) |k, 1k, my) = K|k, Lk, my), 7D (2| 1k my) = 0 (30)

formy = —1,—1+1,...,1. The 2k + 1 common eigenvectors for sol( f) are given by
& (uo) [k, 1y, —1) = 1)k, g, —1),  7®D (uy) |k, my, 1) = 0 (31)
for my = —k,—k+1,...,k. Thus, the sol-invariant subspaces of the representations of

the proper Lorentz group, represented by the two components of the Kronecker sum as
“left-handed” and “right-handed” states, lead to the concept of helicity. Accordingly, the
(group-theoretical version of the) “Weinberg ansatz” is based on the concept of helicity.

7. The Weinberg Ansatz

Considering the states (11, 11;) as points on a lattice of dimension (2k + 1) x (21 4+ 1),
according to Equations (30) and (31), the eigenstates of sol, are found with the values
my = k and m; = —I, i.e., at the boundary of this lattice. This can be interpreted physically
as a constraint on the spin degrees of freedom of the massless particle to only one of the
helicity states. It is even possible to show that, for particles, this is the left-handed helicity
state [7]. If, however, the particle is equal to its antiparticle, the full spectrum of helicity
states is available. In general terms, this is formulated in Refs. [15,16] in the following way:

1.  If a massless particle is equal to its antiparticle, it is described by the irreducible
representation (k, k) of the proper orthochroneous Lorentz group (Majorana case);

2. If a massless particle is not equal to its antiparticle, the particle is described by the
irreducible representation (k, 0) of the proper orthochroneous Lorentz group, while
the antiparticle is described by the irreducible representation (0, k) of the proper
orthochroneous Lorentz group (Dirac case).

Note that the massless particle is defined via the Borel subgroup by the irreducible rep-
resentation of the proper orthochroneous Lorentz group, without the need to introduce
space inversion.

7.1. The Majorana Case

For the representation (k, k), the ansatz yields 2k + 1 helicity states associated with

soly(e),
|k, k; k, —k + p), p=0,1,...,2k,

and 2k + 1 helicity states associated with soly(f),
|k, k; —k + p, —k), p=0,1,...,2k
Since the state |k, k; k, —k) is twice and at the same time excluded by the condition
DDk, Kk, —k) =0, Bk, ki k, —k) = 2k|k, k;k, —k),

the particle with zero mass and helicity A = 2k has 4k helicity states. In particular, the defin-
ing representation (%, %) describes a massless particle with helicity 1 and two helicity states,

).

NI—

BhLD and b d)-
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7.2. The Dirac Case

According to Weinberg, the Dirac case (k,0) @ (0, k) is a particular case of the general
situation (k,I) with I = 0 or k = 0, respectively. For the representation (k, 0), there exists
only a single eigenvector |k, 0; k, 0) of the Borel algebra bor; 3(k,0), i.e., only a single helicity
state |k, 0; k, 0) with

tolk,0;k,0) = k|k,0;k,0), ty|k,0;k,0) = ug|k,0;k,0) = uy|k,0;k,0) = 0.
Similarly, the only helicity state for the representation (0, k) is |0, k; 0, —k) with
upl0,k;0, —k) = k|0,k;0,—k), u[0,k;0, —k) = t0|0,k;0, —k) = t+|0,k;0, —k) = 0.
For example, the fundamental representation bor; 3( %, 0) can be expressed as

bo(3,0) = 3h, bi(3,0)=e¢, ba(3,0)=—ie bs(3,0)— jih.

NI—

The corresponding representation of the algebra sol; (e) has the form
to(3,0) = 5h, ti(3,0)=ie

with solp(f) being trivial. Therefore, in the case of the irreducible representation (3,0),
there exists only a single solution e; = (1,0)7, i.e., a helicity state A = 1/2, and this helicity
state is equal to the solution of the Weyl equation

oup'y(p) = 0.

In case of the representation (0, 1), sol(e) is trivial, and the nontrivial algebra sol(f) is of
the form

up(0,3) = —%h, uy(0,3) = —if

with only a single common eigenvector e; = (0,1)7.

8. Conclusions

With this work, we have delved into the rich solvable structure of the proper Lorentz
group. As for a massless particle, the stabilizer subgroup of the momentum four-vector
is given by the Borel subgroup as the maximal noncompact subgroup of the Lorentz
group, of which the Lorentz group contains two copies. Thus, we can generate the Borel
subgroup as a Kronecker sum of two copies of the simplest solvable algebra sol, C sl and,
correpondingly, the proper Lorentz group as a Kronecker sum of two copies of the simplest
noncompact algebra sly. This is formulated in Lemma 1. From our investigation in this
paper, we conclude that, if there is a particle state with pure helicity or spin, the mass of
this particle is zero and the stabilizer subgroup is the Borel subgroup, fixing the line of
the light-like propagation. Therefore, at least for the electromagnetic field, the symmetry
determines the dynamics.
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Abbreviations

The following abbreviations are used in this manuscript:

Lor; 3 proper Lorentz group SOy(1,3)

lory 3 proper Lorentz algebra sog(1, 3)

Bory 3 Borel subgroup of the Lorentz group SOy(1,3)

bor; 3 Borel subalgebra of the Lorentz algebra sog(1, 3)
(Bory3)y  unipotent radical of Bory 3

Der g derived Lie algebra of the Lie algebra g

rad*) Lie algebra of the unipotent radical (bor; 3), = Der bor%)
Rad&ﬂ exponential of rad,gi)

Tor 3 maximal torus group of the Lorentz group SOy(1,3)
tory 3 maximal torus algebra of the Lorentz algebra sog(1,3)
Ig Wigner’s little group (point fixgroup)

T translational group

GL,(K)  general linear group of dimension n over the field K
SL,(K)  special linear group of dimension n over the field K
sl (K) Lie algebra corresponding to SL, (K)

solp two-dimensional solvable Lie algebra
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