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Abstract

The AdS/CFT correspondence is a far-reaching equivalence between theo-

ries of quantum gravity in spacetimes with negative cosmological constant,

such as anti-de Sitter (AdS) space, and lower-dimensional, non-gravitational

quantum systems, such as conformal field theories (CFTs). In this thesis, we

will use a version of AdS/CFT applicable to boundary conformal field the-

ories (BCFTs) to investigate the physics of supersymmetric gauge theories,

and to develop holographic models for cosmology and black hole physics. We

make frequent use of an ansatz for holographic BCFT wherein AdS space-

time ends on a surface called an end-of-the-world (ETW) brane, and of the

Ryu-Takayanagi (RT) formula for holographic entanglement entropy.

We first study the N = 4 supersymmetric Yang-Mills (SYM) theory on

a half-space, with boundary conditions preserving scale invariance and half

of the original supersymmetry. We calculate a conjectured renormalization

group (RG) monotone called boundary F for the most general such bound-

ary conditions using the RT formula. In some cases, we perform an exact

calculation using supersymmetric localization, and find exact agreement for

the leading large N term as a function of the ’t Hooft coupling.

Next, we introduce a toy model for cosmological physics in the framework

of AdS/CFT, wherein a 4D cosmology resides on an ETW brane propagating

behind the horizon in a black hole microstate. We study the time-dependent

physics of the behind-the-horizon region in such microstates, finding that

it can often be probed by the time-dependence of entanglement entropy

for sufficiently large CFT subsystems. We investigate the plausibility of

obtaining localized 4D gravity on the ETW brane in both effective and

microscopic versions of this model.

Last, we consider a doubly-holographic model of a radiating black hole,
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Abstract

and apply the RT formula to analyze the time-dependence of the fine-grained

entropy of its radiation. We obtain an analogue of the Page curve consistent

with unitarity due to a phase transition between RT surfaces, after which

the radiation system encodes part of the black hole interior.
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Lay Summary

Some quantum mechanical systems have the surprising property that, when

the interactions between particles in these systems are tuned to be very

strong, they appear to encode gravitational physics in a space with more

dimensions. We use this fact to learn about an important quantum system

that exhibits this “holographic” property, calculating a quantity which can

help to map the space of possible boundary conditions for this system. We

also consider the possibility that special high-energy states of such quantum

systems may encode the physics of a universe broadly similar to our own,

beginning with a “big bang” and recollapsing to a “big crunch”. Lastly,

we study a holographic quantum system describing a black hole emitting

radiation, demonstrating that information which fell into such a black hole

will eventually find its way out.
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Preface

This is a manuscript-style thesis, whose main content consists of previously

published work which is reproduced here verbatim.

Chapters 1 and 2 of this work are an original synthesis of the relevant

literature, providing the necessary context and technical prerequisites for

later chapters. Section 1.7, which states the objectives of this thesis, is a

paraphrasis of the abstracts of the works appearing in this thesis, which

were largely written with or by my co-authors in these works.

A version of Chapter 3 was published in [1], in collaboration with Mark

Van Raamsdonk. We jointly carried out the holographic calculation found in

Section 3.4, and collaborated in writing the material appearing in Sections

3.1, 3.2, 3.3, 3.4, and 3.7. I was solely responsible for the exact calculation

using supersymmetric localization found in Section 3.5 and Appendix B.6,

as well as the analysis of Section 3.4.3 and 3.6, and Appendices B.4, B.5, and

B.7. I am the author of these sections and appendices (with the exception

of the finite N comparison appearing in Section 3.5).

A version of Chapter 4 was published in [2], in collaboration with Sean

Cooper, Moshe Rozali, Brian Swingle, Mark Van Raamsdonk, and David

Wakeham. I was resonsible for the analysis of Ryu-Takayanagi surfaces in

dimension d+ 1 = 5 found in Section 4.3.2, as well as the argument for the

cosmological interpretation discussed in Section 4.7; I am the author of the

material found in both of these sections.

A version of Chapter 5 was published in [3]; I am the sole author of this

material, though I thank Mark Van Raamsdonk for collaboration at an early

stage of this work.

A version of Chapter 6 was published in [4], in collaboration with Mark

Van Raamsdonk, much of the analysis and the writing of the main body of
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this paper (found here in Sections 6.1, 6.2, 6.3 and 6.4) being shared. The

elements of this work for which I am solely responsible include the analysis

of families of boundary conditions corresponding to arbitrarily large AdS

regions (Section 6.4.3 and Appendix E.4), perturbations to these families

(Section 6.4.4 and Appendix E.5), the analysis of wedge and multi-wedge

holography (Section 6.6 and Appendix E.6), and the proof that the scale

of the internal space cannot be suppressed relative to the AdS scale (Ap-

pendix E.1), as well as the writing of Sections 6.4.3, 6.4.4, 6.6, 6.7, and all

appendices for this chapter.

A version of Chapter 7 was published in [5], in collaboration with Moshe

Rozali, James Sully, Mark Van Raamsdonk, and David Wakeham. In addi-

tion to participating in the conceptual discussions which lead to this work,

I was involved in the gravitational calculation for the static case found in

Section 7.3, and am the sole author of Section 7.4.2.

The works [6–8], also completed during the course of my PhD program,

will not appear in this thesis.
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Chapter 1

Introduction

This is a thesis about quantum gravity and its applications. Some of these

applications will be commonsense, as in our investigations of black holes and

cosmological spacetimes: both entail strong gravitational fields varying on

microscopic scales, so it is sensible that quantum gravitational phenomena

will come into play. Other applications are perhaps surprising; through

holography, we will be able to use gravitational physics to study quantum

mechanical systems with no explicit gravitational degrees of freedom at all.

Since we are interested in quantum gravity, we should clarify what this

phrase means, and why it is worth studying; this chapter will provide a

user-friendly overview of our motivation and some of the relevant concepts,

while the following chapter will cover some more technical preliminaries.

Rather than attempting to make our coverage systematic, we emphasize

material which will be most relevant for later chapters.

1.1 Why quantize gravity?

In the pursuit of a theory describing gravitational phenomena in a quantum

mechanical framework, the most näıve approach one might consider is to

simply quantize small fluctuations of spacetime, along with whatever other

quantum fields may be present, on a fixed background, utilizing the standard

techniques of quantum field theory; we might refer to such a gestalt as semi-

classical. This perturbative approach, while entirely consistent (see e.g.

[10, 11]), is incomplete, in the sense that it is unable to make predictions

about the outcome of certain experiments, which may involve high-energy

particles or strong gravitational fields.

To preview why this might be the case, one need only observe that
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the gravitational coupling governing graviton-graviton interactions is New-

ton’s gravitational constant G, which has mass dimension [G] = −(D − 2)

in D spacetime dimensions. In the machinery of perturbative quantum

field theory, this suggests that Einstein gravity is (perturbatively) non-

renormalizable;1 a graviton scattering amplitude with centre of mass energy

E may be computed as a power series in the ratio of the energy to the

Planck mass E/mp, and therefore breaks down at the Planck scale. Such

considerations suggest that gravity is best understood from the Wilsonian

viewpoint, as an effective field theory with a cutoff at or somewhat below

the Planck scale. Following this philosophy, we should start by positing a

symmetry group that should be present in the theory (here diffeomorphism

and Lorentz invariance), and write down the most general Lagrangian con-

sistent with these symmetries, with coefficients fixed by dimensional analysis

up to O(1) factors.2 This procedure allows one to make predictions for the

outcome of low-energy experiments; to understand high-energy experiments,

where new physics is expected to play an important role, one requires an

ultraviolet (UV) completion of the effective field theory.

1.2 String theory

The above discussion motivates the pursuit of a UV complete quantum me-

chanical theory which reproduces ordinary Einstein gravity at low energies.

At present, perhaps the most promising candidate for such a theory is string

theory, which is believed to be UV finite (see e.g. [14–17]) and which has

long been understood to naturally incorporate a graviton in its spectrum

[18–20].

While modern string theory is a vast and rich discipline, encompassing

a variety of physical objects and phenomena, a natural starting point for

the study of string theory is the quantization of the classical theory of a

1It is a logical possibility that Einstein gravity, while being perturbatively non-
renormalizable, secretly corresponds to an RG flow with a UV fixed point; this paradigm
is referred to as asymptotic safety [12].

2Conspicuously, this philosophy is in dramatic contradiction to the observed value of
the cosmological constant; this is the cosmological constant problem, see e.g. [13].

3



1.2. String theory

propagating string. The fundamental degrees of freedom in this theory de-

scribe the embedding of a two-dimensional surface, the string worldsheet,

into a D-dimensional spacetime, the target space; the action principle then

requires that the area of the resultant embedding should be extremized. To

fully define the classical theory, we must also specify boundary conditions

for the embedding functions; these can correspond to either open or closed

strings. In the former case, the possibility of a fixed boundary condition

for some coordinates, implying that the string endpoint is constrained to

lie in some (p+ 1)-dimensional surface in spacetime, presages the existence

of extended objects known as Dp-branes on which fundamental strings can

end.

Canonically quantizing the classical theory, one finds an infinite tower of

states, with masses separated by a large energy scale (the string scale), with

a finite number of particles at each mass level. In the versions of this theory

enjoying supersymmetry, a symmetry relating bosonic and fermionic degrees

of freedom, the lowest mass level consists of massless states, which include

a vector boson for the open string and a graviton for the closed string.

It can be shown that the low-energy effective field theories describing the

tree-level physics of the massless spectrum of various supersymmetric string

theories are ten-dimensional supersymmetric theories of gravity, known as

supergravity theories.

For superstring theory to be well-defined at the quantum level, it tran-

spires that the number of spacetime dimensions must be equal to D = 10.

This suggests that, if string theory were to describe a universe like our own,

some of the spatial dimensions must be compactified to microscopic scales,

an idea we will return to shortly. Beyond ensuring the theory’s consis-

tency, the introduction of compactified extra dimensions leads to interesting

phenomenological consequences, given that the geometry of these extra di-

mensions plays a role in determining the particle spectrum as seen by a 4D

observer via the Kaluza-Klein (KK) mechanism [21, 22].

One of the most important developments in the study of string theory

has been the elucidation of the central role played by D-branes [23]; rather

than the rigid surfaces appearing in the classical theory, D-branes have been
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understood to correspond to dynamical, fluctuating objects on which addi-

tional fields may reside. A particularly interesting example is the D3-brane

appearing in the superstring theory known as type IIB string theory ; the

low-energy effective action of a stack of D3-branes, capturing the physics

of massless open string modes, is a special gauge theory known as N = 4

supersymmetric Yang-Mills (SYM) theory. This fact plays a crucial role in

motivating the AdS/CFT correspondence, elaborated on in the following

section.

1.3 Holography

There have long been intimations that the fundamental quantum descrip-

tion of gravity should be holographic, in the sense that the physics of a

gravitating region may be best described in terms of degrees of freedom as-

sociated to the region’s boundary. In 1972, Bekenstein argued on the basis

of a simple thought experiment that, to avoid violations of the second law of

thermodynamics, one should associate a thermodynamic entropy to a black

hole proportional to its horizon area in Planck units [24, 25]. Taking this

idea seriously suggests a holographic entropy bound which must be satisfied

by any quantum mechanical theory which contains black holes: thermody-

namic entropy that can be put into a gravitating region cannot exceed the

area of that region, since otherwise one could create a black hole within the

region by adding enough additional matter, violating a generalized version

of the second law of thermodynamics [26]. The surprising implication is

that the number of degrees of freedom required to describe a gravitating

region quantum mechanically scales with the area of the region’s boundary,

in stark contrast to the volume-extensive entropy scaling of typical quan-

tum mechanical systems. This type of reasoning led ’t Hooft, and later

Susskind, to argue for a “holographic principle” governing quantum gravity

[27, 28]. Only a few years later, this principle received beautiful microscopic

incarnation, in the form of the AdS/CFT correspondence [29].

5



1.3. Holography

The AdS/CFT correspondence

An interesting observation in physics is that different regimes of a physical

theory may be most naturally described in terms of different degrees of

freedom; for example, Yang-Mills theory can be thought of as a theory

of glueballs at strong coupling. A remarkable and surprising fact is that,

when we consider certain conventional quantum systems in a strong coupling

limit, the natural degrees of freedom in which to formulate the theory are

inherently geometrical. In some cases, the dynamics of these degrees of

freedom may even be governed by Einstein gravity.

The AdS/CFT correspondence, more inclusively referred to as holog-

raphy or gauge/gravity duality, describes a precise equivalence between two

quantum mechanical theories [29–31]. In the canonical version of AdS/CFT,

one of these two theories, sometimes referred to as the bulk theory, is a

(d + 1)-dimensional theory of quantum gravity in a negatively curved, or

anti-de Sitter (AdS), spacetime. The other, equivalent theory, often re-

ferred to as the boundary theory, is a conventional, non-gravitational, d-

dimensional theory known as a conformal field theory (CFT); this name

refers to the presence of a collection of symmetries of the theory, known

as conformal symmetries, which includes scale invariance in addition to the

standard Poincaré invariance of local quantum field theory. The boundary

theory is so-named because it can be thought of as residing on the (con-

formal) boundary of the bulk AdS spacetime, thereby providing a precise

realization of the holographic principle. As this boundary theory becomes

increasingly strongly coupled, the corresponding bulk theory becomes in-

creasingly well-approximated by classical supergravity.

Though its earliest and most precise manifestations provide a relation-

ship between specific, microscopic supersymmetric gauge theories and su-

perstring theories, the AdS/CFT correspondence has long been understood

to apply much more broadly; effective field theories in AdS are believed to

give rise to approximate conformal field theories on very general grounds,

and conditions under which a conformal field theory should admit such a

bulk description, namely for a conformal field theory to be holographic, have
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been proposed [32] and extensively studied (see e.g. [33–38]).

The development of an increasingly detailed understanding of the map-

ping between theories related by AdS/CFT duality, colloquially referred to

as the holographic dictionary, has permitted unprecedented computational

control in understanding both quantum gravitational systems and strongly

coupled quantum field theories. One of the most important entries in this

dictionary, the GKPW dictionary [30, 31], can be used to make explicit the

relationship between a variety of physical data appearing in theories related

by holographic duality, from correlation functions of local operators to in-

formation theoretic quantities. As such, the AdS/CFT dictionary has led to

a variety of revolutionary insights, from properties of quantum mechanical

black holes to the emergence of spacetime, and even to applications well

beyond the traditional purview of quantum gravity (see e.g. the reviews

[39, 40]).

It from qubit

One of most elegant and exciting programs in the study of AdS/CFT has

been guided by the realization that, even without detailed input regarding

the structure of a holographic CFT, certain basic properties of information

processing in quantum mechanical systems may be responsible, via the du-

ality, for basic properties of gravitational physics. An early suggestion of

the role played by quantum entanglement in the state of a holographic CFT

was the observation that a particular highly entangled state of such a theory

could encode the physics of a two-sided black hole, whose two asymptotic

regions are connected by a spatial wormhole [41]. Further progress was per-

mitted by a groundbreaking result of Ryu and Takayanagi [42], who conjec-

tured a powerful generalization of Bekenstein’s formula for the entropy of a

black hole in the context of AdS/CFT. The Ryu-Takayanagi (RT) formula

equates the von Neumann entropy of spatial subregions of the boundary

CFT, which can be used to characterize the amount of entanglement be-

tween degrees of freedom inside and outside of these subregions, to the area

of certain extremal surfaces in the bulk theory, thereby “geometrizing” the
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entanglement structure of holographic states.

A particularly influential application of the Ryu-Takayanagi formula has

been to argue more broadly that the connectivity of spacetime may arise

from the entanglement structure of the underlying holographic degrees of

freedom [43–45]. This philosophy represents a fundamental reversal of the

puzzle of reconciling gravity and quantum mechanics, suggesting that the

geometrical structure so central to Einstein’s theory of gravity is precisely a

manifestation of the fundamentally quantum property of entanglement.

1.4 Black holes

Black holes are among the most fundamental objects in any theory of quan-

tum gravity; indeed, the effort to establish a theoretical framework capable

of describing the quantum physics of black holes has been an important

engine driving the pursuit of a UV completion for gravity. In spite of this

motivation, a key theme of quantum gravity research in recent years has

been the surprising extent to which foundational and previously inexplica-

ble features of quantum black holes, from their unitary dynamics to a precise

accounting of their microstates, appear to be recoverable from semi-classical

methods.

As mentioned above, reconciling the existence of black holes with the

laws of thermodynamics appears to require one to associate a thermody-

namic entropy to a black hole which is proportional to its area in Planck units

[24]. Circumstantial evidence for this proposal was granted by the discovery

of the laws of black hole mechanics [46], theorems governing the behaviour

of black holes in classical gravity which suggest an analogy with typical ther-

modynamic systems. In the context of statistical mechanics, thermodynamic

entropy admits an interpretation as counting the microstates of a theory cor-

responding to some collection of fixed macroscopic observables. However, in

classical gravity, the interpretation of a putative thermodynamic entropy is

mysterious, as classical black holes satisfy no-hair theorems [47–49] which

imply that they are completely characterized by a small number of charges,

and therefore appear to permit no distinct microstates. This observation
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1.4. Black holes

indicates that a statistical interpretation of the black hole entropy should

necessarily invoke quantum mechanics.

Indeed, stronger support for understanding black holes as genuine ther-

modynamic systems came from Hawking’s calculation of the spectrum of

radiation emitted by a quantum mechanical black hole [50], based on a

semi-classical treatment of quantum fields propagating on a black hole back-

ground. This analysis suggested that black holes radiate with a perfect

blackbody spectrum, with an associated entropy given precisely by the afore-

mentioned area law, often referred to as the Bekenstein-Hawking formula for

the entropy. An alternative derivation of the Bekenstein-Hawking entropy

formula was later given by Gibbons and Hawking [51], making use of a

Euclidean version of Feynman’s path integral formalism applied to semi-

classical gravity. These results invite an interpretation of black hole physics

which is now sometimes referred to as the central dogma of black hole me-

chanics [52]: we should think of a black hole as a regular quantum me-

chanical system interacting with its environment, with roughly one degree

of freedom per unit area in Planck units.

This understanding of black hole microphysics has found explicit real-

ization in string theory and AdS/CFT. An important result of Strominger

and Vafa [53] provided a precise microstate-counting interpretation of the

Bekenstein-Hawking formula for a particular class of supersymmetric black

holes in string theory; this result has since been substantially generalized,

including to account for subleading corrections to the black hole entropy

formula (see [54] for a review). In AdS/CFT, black holes may be under-

stood as corresponding to thermal states of a holographic CFT [55], and

the Bekenstein-Hawking entropy formula appears as a special case of the

Ryu-Takayanagi formula applied to these states.

Despite these advances, a long outstanding question regarding black hole

physics follows from a disquieting consequence of Hawking’s calculation,

namely a tension between effective field theory and unitarity, sometimes

termed the black hole information problem: given that the radiation emit-

ted by an evaporating black hole is thermal, its evolution appears to trans-

form a pure state prior to black hole formation into a mixed state after its
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1.4. Black holes

complete evaporation, violating unitarity [56]. A useful diagnostic for the

deviation from unitarity is the von Neumann entropy of the radiation, which

here can be thought of as measuring the amount of entanglement between

the radiation and the black hole, or more generally, as characterizing the

degree of uncertainty in the underlying quantum state of the radiation. In

unitary quantum mechanics, the von Neumann entropy would rise with the

early emission of Hawking radiation, saturate at the value of the Bekenstein-

Hawking entropy, and decrease to zero when the black hole evaporates, fol-

lowing a profile known as the Page curve [57, 58]. The inflection point of

this curve, occurring at a time referred to as the Page time, must demarcate

the onset of physics not accounted for in Hawking’s analysis.

An especially striking statement of the black hole information problem is

known as the firewall paradox, which suggests that preserving both unitar-

ity and semi-classical physics in weakly-curved spacetime necessarily implies

the existence of extremely high-energy excitations at the horizon of an old

black hole [59, 60] (see also [61, 62]). This conclusion arises from a thought

experiment regarding the distribution of entanglement between a black hole

and its environment. To comply with unitarity, quantum information must

escape in the radiation emitted from a black hole after the Page time, im-

plying that a photon emitted at late times should be maximally entangled

with the early Hawking radiation. Basic quantum mechanical constraints

then imply that the entanglement between this photon and all modes in

the black hole interior must be completely severed, at the price of dramatic

consequences at the horizon. Refined versions of the firewall paradox remain

unresolved at the time of writing, though an intriguing principle for address-

ing this problem, the ER=EPR proposal of Maldacena and Susskind [45],

suggests a means for circumventing the paradox may be to posit that the

early radiation modes and the interior modes should be identified, with the

two seemingly disparate spacetime regions that these modes occupy being

connected by microscopic wormholes.

Recent developments have shed significant light on many of these issues,

suggesting that, in defiance of long-held expectations, a careful effective

field theory calculation can reproduce a unitary Page curve [9, 63–67]. In
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particular, a subtle modification of the formula used to compute the en-

tropy of Hawking radiation appears to be necessary when applied to grav-

itational systems; this alteration can be motivated by the observation that

the Euclidean gravitational path integrals which can be used to compute

these entropies must include additional, previously neglected saddle-point

configurations referred to as replica wormholes [65, 66]. A model for under-

standing the modified entropy formula without recourse to the Euclidean

gravitational path integral has also been provided by [67], which makes con-

crete the idea that exponentially small quantum overlaps in the näıvely or-

thogonal wavefunctions of effective field theory excitations in the black hole

interior can explain the need for a correction to Hawking’s calculation.3 A

counter-intuitive consequence of these findings has been the conclusion that

an experimenter acting only on the Hawking radiation of an old black hole

can in principle instantaneously manipulate objects in its interior.

1.5 Braneworlds

As mentioned previously, the consistency of string theory relies on the exis-

tence of extra spacetime dimensions; consequently, taking seriously the idea

that string theory could describe our universe, one seemingly requires some

of these dimensions to be compact in order to avoid conflict with observa-

tion. A näıve expectation is that these extra dimensions must be very small

to avoid detection in high-energy collider experiments.4 However, an inter-

esting alternative to compactification, often referred to as the RSII model,5

was offered by Randall and Sundrum [72]; in this model, one envisions low-

energy observers localized to a four-dimensional membrane which cuts off a

five-dimensional AdS spacetime near its conformal boundary. In contrast to

3Very recently, a careful treatment of these overlaps has apparently enabled a precise
accounting for the Bekenstein-Hawking entropy at the level of effective field theory [68, 69].

4An early challenge to this expectation was raised by Arkani-Hamed, Dimopoulous,
and Dvali, who proposed that a compactification manifold could have sizes up to 1 mm if
gravity is the only known force capable of probing the extra dimensions [70].

5An earlier instantiation of this model, the RSI model, involved a compact extra di-
mension, and was intended to solve the hierarchy problem regarding the large discrepancy
between the Planck scale and the electroweak scale [71].
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the simplest compactifications appearing in string theory, the RSII model is

what is known as a warped compactification, meaning that the local geome-

try in the full spacetime depends non-trivially on one’s location in the extra

dimensions.

Studying the classical gravitational fluctuations around the background

RSII geometry, one finds a massless graviton in the spectrum, whose wave-

function is localized to the brane. There is additionally a continuum of

Kaluza-Klein modes with arbitrarily small mass, but the suppression of the

wavefunctions of these modes at the brane ensures that corrections to 4D

gravity for brane-localized observers remain small. Given that the RSII

background corresponds to a piece of AdS, the physics of this model has

a natural interpretation in AdS/CFT [73–76]; one can think of cutting off

AdS by placing a Planck brane near its boundary as tantamount to intro-

ducing a UV cutoff in the dual CFT, and coupling this theory to dynamical

4D gravity. With the possibility of localizing gravity to a membrane in

a higher-dimensional theory arose a substantial industry of studying phe-

nomena like black holes, gravitational waves, and cosmology on Randall-

Sundrum branes, sometimes referred to as braneworlds in this context; see

[77] for a review.

A more precise proposal for embedding the RSII idea in string the-

ory came from Karch and Randall [78, 79], who considered putting an d-

dimensional AdS brane (rather than a flat brane) in (d + 1)-dimensional

AdS; in this model, one obtains a non-zero gap in the Kaluza-Klein spec-

trum, but 4D gravity is only “locally localized”, because the graviton obtains

a small mass. The Karch-Randall set-up is expected to arise from a holo-

graphic theory where conformal symmetry is partially broken by a boundary

or defect, perhaps arising from the low-energy physics of stacks of intersect-

ing D-branes in string theory; consequently, it represents one of the first

suggestions that holographic systems with boundaries may have interesting

applications.
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1.6 Boundaries

Much less central than the developments mentioned so far within the realm

of quantum gravity is a subgenre of holographic literature concerned with ex-

tending the AdS/CFT dictionary to encompass holographic quantum field

theories with boundaries. A particularly tractable class of quantum field

theories with boundaries are boundary conformal field theories (BCFTs);

these theories are well-motivated and widely studied in the context of con-

densed matter physics [80–85], providing insight into quantum systems with

impurities or finite size effects. In 2D, BCFTs are also of direct relevance

to perturbative string theory, providing a description of the worldsheet the-

ory in the presence of a D-brane boundary condition; see [86] for a review.

The subject of the holographic correspondence for boundary conformal field

theories sometimes goes by the title of the AdS/BCFT correspondence.

A crucial feature of the proposed holographic duals for BCFTs, includ-

ing the effective model of [78, 87, 88] as well as microscopic realizations in

supergravity, is that the bulk theory involves a spacetime which ends on

a surface known as an end-of-the-world (ETW) brane, or which smoothly

degenerates in a macroscopic “ETW brane region”. In addition to allowing

one to use the tools of AdS/CFT to study the physics of field theories with

boundaries, the possibility of introducing a new gravitating object in the

bulk enriches the space of physical systems that one can study in the quan-

tum gravity theory; as in the aforementioned braneworld scenarios, black

holes or entire universes may reside on an ETW brane.

1.7 This thesis

Our objectives in this thesis will be three-fold.

First, in Chapter 3, we will apply a microscopic version of the AdS/BCFT

correspondence to investigate the physics of the celebrated N = 4 super-

symmetric Yang-Mills theory with gauge group U(N). We consider the full

space of conformally invariant boundary conditions for this theory which

preserve half of the original supersymmetry, as classified by Gaiotto and
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Witten [89, 90]. These boundary conditions arise from string theory con-

structions involving D3-branes ending on collections of 5-branes. The the-

ories obtained for each choice of boundary condition are characterized by a

quantity called boundary F , conjectured to decrease under renormalization

group flows triggered by deformations with boundary-localized operators.

We perform a holographic calculation of boundary F for all such theories by

evaluating the entanglement entropy for a half-ball centered on the BCFT

boundary using the Ryu-Takayanagi formula in the dual solutions of type

IIB supergravity. For a subset of these boundary conditions, we also cal-

culate boundary F exactly by evaluating the hemisphere partition function

using supersymmetric localization. We find that the leading term at large

N in the supergravity and localization results agree exactly as a function of

the ’t Hooft coupling λ.

Second, in Chapters 4, 5, and 6, we will propose and study a micro-

scopic quantum mechanical model for cosmological physics which embeds

the braneworld paradigm into the framework of AdS/BCFT, commenting

on how field theory observables may be used to probe the cosmological evolu-

tion, and investigating whether localized 4D gravity can be achieved in either

effective or microscopic versions of this model. In Chapter 4, we explore the

possibility that certain high-energy holographic CFT states correspond to

black hole microstates with a geometrical behind-the-horizon region, mod-

elled by a portion of a second asymptotic region terminating at an ETW

brane. We study the time-dependent physics of this behind-the-horizon

region, whose ETW boundary geometry takes the form of a closed FRW

spacetime. We show that in many cases, this behind-the-horizon physics

can be probed directly by looking at the time dependence of entanglement

entropy for sufficiently large spatial CFT subsystems. In Chapter 5, we

consider simple generalizations of this set-up with an additional interface

brane propagating in the bulk. We find that solutions with a viable cos-

mological interpretation for the ETW brane, wherein gravity is localized,

exist only if our model is further generalized, for example by including an

Einstein-Hilbert term in the ETW brane action. In Chapter 6, we return

to the solutions of type IIB string theory dual to N = 4 supersymmetric
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Yang-Mills theory on half of R1,3 with half-supersymmetric boundary condi-

tions which were used for the holographic calculations in an earlier chapter.

We show that, by choosing the boundary conditions appropriately, the ETW

brane region appearing in the supergravity solutions can be pushed arbitrar-

ily far towards the “missing” asymptotic boundary, recovering an arbitrarily

large wedge of Poincaré AdS5 × S5, a pre-condition for gravity localization

in such theories.

Finally, in Chapter 7, following [9, 63, 64], we introduce and study var-

ious holographic systems which can describe evaporating black holes. The

systems we consider are boundary conformal field theories for which the

number of local degrees of freedom on the boundary (cbdy) is large com-

pared to the number of local degrees of freedom in the bulk CFT (cbulk).

We consider states where the boundary degrees of freedom on their own

would describe an equilibrium black hole, but the coupling to the bulk CFT

degrees of freedom allows this black hole to evaporate. The Page time for

the black hole is controlled by the ratio cbdy/cbulk. Using both holographic

calculations and direct CFT calculations, we study the evolution of the en-

tanglement entropy for the subset of the radiation system (i.e. the “bulk”

CFT) at a distance d > a from the boundary, with fixed a. We find that the

entanglement entropy for this subsystem increases until time t = a + tPage

and then undergoes a phase transition, after which the entanglement wedge

of the radiation system includes the black hole interior. Remarkably, this

occurs even if the radiation system is initially at the same temperature as

the black hole so that the two are in thermal equilibrium. In this case,

even though the black hole does not lose energy, it “radiates” information

through interaction with the radiation system until the radiation system

contains enough information to reconstruct the black hole interior.
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Chapter 2

The Theoretical Minimum

In this chapter, we aim to provide the minimal number of definitions and

technicalities required to understand subsequent chapters, as well as a brief

introduction to some of the standard “lore” which will be useful to contex-

tualize our results.

2.1 Gravity

While our investigations utilize the AdS/CFT correspondence, which de-

fines a theory of quantum gravity, we will often be interested in studying

the case that the gravity side of the duality is in the classical regime, with

vanishingly small string coupling constant and a string length suppressed

relative to the curvature scale of the background. It is therefore useful to

recall some features of the relevant classical gravity theories and their solu-

tions. We focus here on a class of solutions of Einstein gravity with negative

cosmological constant which are central to the study of AdS/CFT, and a

particular ten-dimensional supergravity theory which will be the context for

gravity calculations in later chapters. We will draw upon material from

[91–96] in this section.

2.1.1 Anti-de Sitter

Anti-de Sitter (AdS) space is the maximally symmetric solution of the vac-

uum Einstein equations with negative cosmological constant Λ,6 arising from

6We will sometimes refer to this solution as pure AdS to distinguish it from the asymp-
totically AdS spacetimes considered momentarily.
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the Einstein-Hilbert Lagrangian density with cosmological constant term

LEH =
1

16πG
(R− 2Λ) . (2.1)

The (d+1)-dimensional space AdSd+1 is naturally realized as a hyperboloid

embedded in flat space R2,d,7whose locus in the flat coordinates XM is

ηMNX
MXN = −L2

AdS , η = diag(−1,−1, 1, . . . , 1︸ ︷︷ ︸
d

) . (2.2)

Here, LAdS is called the AdS radius, and sets the curvature scale of the

spacetime; it is related to the cosmological constant Λ by

Λ = −d(d− 1)

2L2
AdS

. (2.3)

This embedding makes manifest that the isometries of AdSd+1 form the con-

formal group SO(2, d) of d-dimensional Minkowski space, to be introduced

in Section 2.2.1, here realized as Lorentz transformations in the embedding

space R2,d.8

Pure AdS: global coordinates

The geometry obtained from the above embedding has closed timelike curves,

so we are typically interested in passing to the universal covering space; in

pedestrian terms, we would like to decompactify a timelike direction. To do

this, it is useful to introduce global coordinates (ρ, t, x̂i) via the coordinate

transformation

X−1 = LAdS cosh(ρ) sin(t)

X0 = LAdS cosh(ρ) cos(t)

Xi = LAdS sinh(ρ)x̂
i ,

(2.4)

7We choose to denote the dimensionality of AdS by d+1 in preparation for its appear-
ance in the context of AdS/CFT.

8Our embedding construction gives Lorentzian AdSd+1; to obtain Euclidean AdSd+1,
also known as hyperbolic space, we should instead embed in R1,d+1. The isometry group
of Euclidean AdSd+1 is then SO(1, d+ 1).
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with x̂i a vector on the unit Sd−1 such that
∑d

i=1 x̂
2
i = 1. In these coordi-

nates, one arrives at the metric

ds2 = L2
AdS

[
− cosh2(ρ)dt2 + dρ2 + sinh2(ρ)dΩ2

d−1

]
, (2.5)

and one can then readily pass to the universal covering space by extending

to the non-compact interval t ∈ R.
Taking the radial coordinate transformation r = tan(ρ), the same space

can be parametrized by new global coordinates (r, t, x̂i), with metric

ds2 = L2
AdS

[
−f(r)dt2 + dr2

f(r)
+ r2dΩ2

d−1

]
, f(r) =

(
1 +

r2

L2
AdS

)
. (2.6)

It is perhaps easiest to study the global structure of AdS by making an

alternative change of radial coordinates tanϑ = sinh ρ, obtaining a third set

of global coordinates

ds2 =
L2
AdS

cos2 ϑ

[
−dt2 + dϑ2 + sin2 ϑdΩ2

d−1

]
. (2.7)

Evidently, there is a second order pole at ϑ = π/2; this is the conformal

boundary of the spacetime. To conformally compactify, we can multiply the

metric by a defining function with a second order zero at ϑ = π/2. The

ambiguity in choosing such a defining function manifests in a rescaling am-

biguity gµν(x) ∼ Ω(x)2gµν(x) of the d-dimensional metric of the conformal

boundary, which one therefore thinks of as a conformal structure rather than

a fixed (pseudo-)Riemannian manifold. The conformal compactification of

AdSd+1 is the manifold-with-boundary obtained via this procedure.

Our three choices of global coordinates above all cover an identical man-

ifold, which we refer to as global AdS. It is often useful to visualize global

AdS, via conformal compactification, as a solid cylinder (with some of the

sphere directions suppressed for d > 2); see Figure 2.1. One can justify

this by considering the expression (2.7) with the overall conformal factor

neglected. Here, the radial coordinate ϑ is identified with the radial direc-
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Figure 2.1: (Left) Solid cylinder (light and navy blue) representing the con-
formal compactification of AdS, with the Poincaré patch shaded (navy blue).
This diagram suppresses some sphere directions for d+1 > 3. (Right) Pen-
rose diagram for global AdS.

tion of the cylinder, t is identified with the axial direction,9 and one of the

spherical directions appears as an S1. Suppressing all spherical directions,

we obtain the Penrose diagram of global AdS shown in Figure 2.1.

It is often stated that global AdS is “like a box”, in the sense that a

massive observer moving in AdS can send a light ray toward the conformal

boundary and receive its reflection in finite proper time (assuming reflecting

boundary conditions). However, the trajectories of massive particles cannot

reach the conformal boundary, so the space is complete with respect to

timelike geodesics.

9A similar cylinder picture can be used to visualize Euclidean AdS, obtained via the
Wick rotation τ = it.
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Pure AdS: Poincaré coordinates

It is often useful to instead consider the AdS geometry in Poincaré coordi-

nates, in which case the metric is given by

ds2 =
L2
AdS

z2
[
dz2 − dt2 + dx⃗2

]
, (2.8)

where the conformal boundary is now located at z = 0. These coordinates

exchange the spherical Sd−1 symmetry of global AdS for a planar Rd−1

symmetry. The Poincaré coordinates only cover a portion of global AdS, the

so-called Poincaré patch10, illustrated in Figure 2.1. The metric degenerates

at z =∞, referred to as the Poincaré horizon.

Asymptotically anti-de Sitter spacetimes

In the context of holography, one is often interested in spacetimes with AdS

asymptotics; we refer to a spacetime as asymptotically locally AdS if it is

conformally compact and satisfies the equation Rµν = −dgµν at leading or-

der near the conformal boundary. Such a spacetime is asymptotically globally

AdS if it additionally has the boundary topology of global AdS, namely the

cylinder R × Sd−1. We will sometimes use the phrase asymptotically AdS

(AAdS) in place of asymptotically locally AdS.

The metric in the neighbourhood of the conformal boundary in such

spacetimes may be expressed in Fefferman-Graham coordinates as

ds2 =
L2

z2
[
dz2 + Γµν(z, x)dx

µdxν
]
, (2.9)

where the function Γµν(z, x) has the near boundary expansion

Γµν(z, x) = g(0)µν (x) +O(z2) . (2.10)

In particular, g
(0)
µν (x) is a representative of the boundary conformal structure

for the spacetime; in AdS/CFT, we will see that this can be thought of as

10The Poincaré patch in Euclidean signature covers the entirety of Euclidean AdS, with
the Poincaré horizon z = ∞ equivalent to the origin of global coordinates ρ = r = ϑ = 0.
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the spacetime background for a holographic quantum field theory.

AdS black holes

A particularly interesting asymptotically locally AdS spacetime is the AdS

black hole, sometimes known as the eternal AdS black hole or the AdS

Schwarzschild spacetime; in Schwarzschild coordinates, the metric of this

spacetime takes the form

ds2 = L2
AdS

[
−f(r)dt2 + dr2

f(r)
+ r2dΩ2

d−1

]
,

f(r) =
r2

L2
AdS

+ 1−
rd−2
H

rd−2

(
r2H
L2
AdS

+ 1

)
.

(2.11)

There is a coordinate horizon at r = rH , where f(r) = 0 and the metric

degenerates.

Much like the asymptotically flat Schwarzschild black hole, the AdS

Schwarzschild black hole permits a two-sided maximal extension, as can

be analyzed by switching to Kruskal coordinates

U = −e−2(t−r∗) , V = e2(t+r∗) , (2.12)

where r∗ =
∫ r
0

dr′

f(r′) + C is a tortoise coordinate, with the integration con-

stant C chosen to enforce the reality of the Kruskal coordinates outside the

horizon.11 In these coordinates, the metric takes the form

ds2 = L2
AdS

[
−f
4
e−4r∗dUdV + r2dΩ2

d−1

]
. (2.13)

The Penrose diagram for the AdS black hole is shown in Figure 2.2.

Another black hole which is an asymptotically locally AdS spacetime is

11The tortoise coordinate implicitly depends on a choice of contour around the simple
pole at r = rH , and the integral

∫ r

0
dr′

f(r′) will typically take imaginary values for r > rH ;

we may choose C to ensure that r∗(r) is real when r > rH .
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Figure 2.2: Penrose diagram for the maximally extended AdS Schwarzschild
black hole. The geometry includes two exterior asymptotic regions, as well
as past and future singularities. The horizons are denoted by dotted lines.
In dimensions d+1 > 3, the past and future singularities curve upward and
downward respectively compared to what is illustrated here.

the planar AdS black hole, whose metric is

ds2 =
L2
AdS

z2

(
−f(z)dt2 + dz2

f(z)
+ dx⃗2d−1

)
, f(z) = 1− zd

zdH
. (2.14)

The planar AdS black hole can be obtained as a limit rH/LAdS →∞, letting

z ∼ LAdS/r; when the black hole becomes very large, the horizon appears

locally flat.

2.1.2 Type IIB supergravity

The type IIB supergravity (SUGRA) theory is a ten-dimensional theory of

gravity; in the string theory context, it arises as an effective description of

the massless sector of the type IIB superstring. The field content of this

theory consists of:

• A metric gMN
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• Two real scalars C(0) (the axion) and Φ (the dilaton), sometimes com-

bined into a complex scalar (the axion-dilaton)

τ = C(0) + ie−Φ (2.15)

• Two two-form fields B(2) (the NS-NS two-form) and C(2) (the R-R

two-form)

• One four-form field C(4) (the R-R 4-form) whose field strength satisfies

a self-duality condition defined below

• Two left-handed Majorana-Weyl fermions ΨM
I (the gravitinos) and

two right-handed Majorana-Weyl fermions λI (the dilatinos).

Various relevant conventions pertaining to the parameters of the type IIB

supergravity and string theory in the context of the AdS/CFT correspon-

dence can be found in Appendix B.1.

As usual, taking an exterior derivative of the p-form C(p) yields a (p+1)-

form field strength F(p) = dC(p). It is convenient to define combined field

strength tensors

H(3) = dB(2) , F̃(3) = F(3) − C(0)H(3) ,

F̃(5) = F(5) −
1

2
C(2) ∧H(3) +

1

2
B(2) ∧ F(3) ;

(2.16)

in particular, the action for type IIB supergravity is most readily expressed

in terms of the combined field strengths, as is the self-duality condition

imposed on the field strength associated to the four-form

F̃5 = ∗F̃5 . (2.17)

Action and supersymmetry

There is an important subtlety in formulating an action principle for this

theory, since we have a self-duality condition on the five-form field strength,

which cannot arise as an equation of motion. However, one can derive the

23



2.1. Gravity

equations of motion from a (string frame) action whose bosonic part is

2κ20SIIB =

∫
d10x
√
−g

[
e−2Φ

(
R+ 4∂MΦ∂MΦ− 1

2
|H(3)|2

)

− 1

2
|F(1)|2 −

1

2
|F̃(3)|2 −

1

4
|F̃(5)|2

]

− 1

2

∫
C(4) ∧H(3) ∧ F(3) , (2.18)

and then enforce self-duality of F̃5 a posteriori as a separate condition.

Here, κ20 is a gravitational constant which is related to the ten-dimensional

(Einstein frame) Newton constant in (2.20).

The type IIB theory is invariant under various global supersymmetry

transformations, which can be parametrized by a 16-component (complex)

Weyl spinor of SO(1, 9); the theory consequently has 32 real supersymme-

tries. We refrain from recording these transformations here, though they

can be found in the works [97–99] which introduced the type IIB theory; in

our conventions, the supersymmetry transformations for the fermions can

be found in [95]. Notably, the action written above is not invariant under

all of these supersymmetries off-shell.

String frame and Einstein frame

The gravitational kinetic term in the above action has an additional factor of

the dilaton e−2Φ compared to the typical Einstein-Hilbert action; however,

it is possible to perform a field redefinition of the metric to recover the latter,

at the expense of modifying the remaining kinetic terms. The asymptotic

value Φ∞ of the dilaton sets the magnitude of the string coupling g = eΦ∞ ,

which appears in the topological expansion of the worldsheet path integral.

To convert from the string frame to the Einstein frame, one simply redefines

the metric

g(SF)µν → g(EF)µν ≡ e(Φ∞−Φ)/2g(SF)µν . (2.19)
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We typically suppress the labels SF and EF when the frame is clear from

context. This redefinition of the metric yields

1

2κ20

∫
d10x

√
−ge−2ΦR→ 1

2κ2

∫
d10x

√
−g
(
R− 9

2
∂µΦ∂

µΦ

)
(2.20)

where the right-hand side is implicitly in terms of the Einstein frame metric.

The ten-dimensional Newton constant G10, the couplings κ20 and κ2 in the

string frame and Einstein frame actions, the string coupling g, and the string

length ℓs =
√
α′ are related by

16πG10 = 2κ2 = 2κ20g
2 = (2π)7(α′)4g2 . (2.21)

D3-branes, D5-branes, and NS5-branes

Type IIB string theory describes various extended objects which are charged

under the various gauge fields in the theory; in general, a p-brane is the

source for a (p+1)-form gauge field A(p+1), with the coupling given schemat-

ically by the pullback to the worldvolume Mp+1 of the brane

S ∼ Qp

∫
Mp+1

A(p+1) , (2.22)

where Qp is the charge. Since we have seen that the spectrum of type IIB

supergravity includes zero-form, two-form, and four-form gauge fields, we

anticipate the existence of D(-1)-branes, D1-branes, and D3-branes in the

theory; in fact, there are additional branes which are magnetically charged

under some of these fields. In later chapters, we will be most concerned with

the following branes:

• The D3-brane, electrically charged under the R-R four-form C(4)

• The D5-brane, magnetically charged under the R-R two-form C(2)

• The NS5-brane, magnetically charged under the NS-NS two-form B(2).

In supergravity, the manifestation of these branes is the existence of

solitonic solutions, known as black brane solutions, which carry the appro-
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priate charges (as computed by integrating the appropriate flux over an

S8−p surrounding the brane in the transverse space). Solutions relevant for

Dp-branes in the theory are

ds210 =
1√
Hp(r)

ηµνdx
µdxν +

√
Hp(r)(dr

2 + r2dΩ2
8−p) ,

eΦ = gHp(r)
(3−p)/4 , BMN = 0 ,

C(p+1) =

(
1

Hp(r)
− 1

)
dx0 ∧ dx1 ∧ . . . ∧ dxp ,

(2.23)

with Hp(r) = 1 +
(
Lp

r

)7−p
and

L7−p
p = (4π)(5−p)/2Γ

(
7− p
2

)
gN(α′)(7−p)/2 , (2.24)

where N is interpreted as the number of coincident Dp-branes (quantized

in the full string theory). On the other hand, solutions relevant to the

NS5-branes are

ds2 =
1

H5(r)1/4
ηµνdx

µdxν +H5(r)
3/4(dr2 + r2dΩ2

3) ,

eΦ = gH5(r)
1/2 , B(6) =

(
1

H5(r)
− 1

)
dx0 ∧ . . . ∧ dx5 ,

(2.25)

with H5(r) = 1 +
L2
5

r2
and L2

5 = α′N , and N the number of NS5-branes.

Here, the six-form field B(6) is obtained by dualizing B(2).

2.2 Conformal field theory

In this section, we provide a brief introduction to the notion of a particular

class of quantum field theories known as conformal field theories (CFTs).

We restrict our presentation to some definitions and basic properties, since

this is all that we will require in the remainder of this thesis. Our focus will

be on the case of dimension d > 2, since two-dimensional conformal field

theories have an enhanced symmetry and consequently a special mathemat-
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ical structure which will not be relevant for our purposes. In this thesis, we

will be specifically interested in CFTs defined by a path integral; while this

assumption may not be necessary to formulate some general properties, we

will assume it here when convenient. An introduction to the path integral

methods used throughout this thesis can be found in Appendix A.1.

2.2.1 Conformal field theory: preliminaries

Our exposition in this section will draw from [100–105]; these references

may be consulted for additional background. Further details relevant to

conformal field theory are collected in Appendix A.2.

The conformal algebra

The symmetry algebra of a conformal field theory in flat space is the con-

formal algebra, with non-vanishing commutators

[D,Pµ] = iPµ ,

[D,Kµ] = −iKµ ,

[Kµ, Pν ] = 2i(ηµνD − Lµν) ,

[Kρ, Lµν ] = i(ηρµKν − ηρνKµ) ,

[Pρ, Lµν ] = i(ηρµPν − ηρνPµ) ,

[Lµν , Lρσ] = i(ηνρLµσ + ηµσLνρ − ηµρLνσ − ηνσLµρ) ,

(2.26)

where ηµν denotes the flat Lorentzian (or Euclidean) metric. In a conformal

field theory, this algebra is realized by charges associated to conserved cur-

rents which can be constructed by contracting the energy-momentum tensor

Tµν with vector fields ξµ which satisfy

∂µξν + ∂νξµ =
2

d
ηµν∂ρξ

ρ . (2.27)
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This equation is known as the conformal Killing equation, and its solutions

are referred to as conformal Killing vectors.12 The significance of such vec-

tors is that they generate the conformal isometries of flat space, which can

be thought of as diffeomorphisms from flat space to itself which preserve

the metric up to a local rescaling. Conservation and tracelessness of the

energy-momentum tensor in conformal field theory,

∂µT
µν = 0 , Tµ

µ = 0 , (operator equation) (2.28)

ensure the conservation of the associated charges when ξµ is a conformal

Killing vector. When interpreting these conformal isometries as transforma-

tions on the fields in a theory, the generators are represented by differential

operators which satisfy the conformal algebra.

The last two commutation relations in the algebra (2.26) encode the

Poincaré (or Euclidean) subalgebra, generated by momentum generators Pµ

and Lorentz (or rotation) generators Lµν . The additional generators in the

conformal algebra are the generator of dilations D, associated to the vector

field which generates scale transformations xµ → λxµ, and the generator of

special conformal transformations (SCTs) Kµ, associated to the vector field

which generates the transformations

xµ → xµ + bµx2

1 + 2b · x+ b2x2
. (2.29)

The SCTs may be understood as corresponding to a translation conjugated

by an inversion xµ → xµ

x2 , which itself is not a globally well-defined diffeo-

morphism of flat space.

It is edifying to repackage some of these generators as

Jµν = Lµν , J−1,0 = D ,

J−1,µ =
1

2
(Pµ −Kµ) , J0,µ =

1

2
(Pµ +Kµ) ,

12The subset of solutions for which the right-hand side of the conformal Killing equation
vanishes are the Killing vectors, corresponding to Poincaré (Euclidean) transformations
in flat Lorentzian (Euclidean) space.
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whereby one can demonstrate that the conformal algebra is manifestly so(2, d)

or so(1, d+ 1) in Lorentzian and Euclidean signature respectively,

[Jab, Jcd] = i(ηadJbc + ηbcJad − ηacJbd − ηbdJac) . (2.30)

Representations: primaries and descendants

To define a quantum field theory, one can begin by choosing a background

for the theory and specifying a collection of local fields transforming in

representations of a given symmetry group. These fields can appear in cor-

relation functions, as computed by the Euclidean path integral, which are

consequently constrained by symmetry. One may then choose a foliation of

the background, with slices related by an isometry (or a conformal isometry

in the case of a CFT), interpreted as the generator of Euclidean “time”. The

Hilbert space is constructed with respect to this foliation, which is referred

to as a quantization of the theory, by slicing the path integral. Euclidean

correlators with field insertions may be interpreted as time-ordered vacuum

expectation values of local operators with respect to Euclidean time. Under

suitable technical assumptions, this approach can be used to construct a

well-defined, unitary Lorentzian theory, whose correlation functions can be

obtained from the Euclidean correlators by analytic continuation. In this

subsection, we will discuss what it means to have local operators transform-

ing in representations of the conformal symmetry algebra.

Suppose that the conformal algebra so(1, d+1) that acts on the algebra

of local operators in Euclidean signature is represented by the generators

(Pµ,Lµν ,D,Kµ). Given that (Lµν ,D,Kµ) is the subalgebra of the confor-

mal algebra associated to transformations of the plane which keep the origin

fixed, we can define the operator content of the theory by positing the ex-

istence of local operators {Oa(0)} at the origin transforming in irreducible

representations of this subalgebra, then define Oa(x) = ex·POa(0)e−x·P . In

particular, we can take the Cartan subalgebra to be generated by (Lµν ,D);
noting that Kµ acts as a lowering operator for D, we can seek lowest weight
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representations generated by primary operators Oa(0) satisfying

[Lµν , Oa(0)] = (Sµν)
a
bO

b(0)

[D, Oa(0)] = ∆Oa(0) (operator equations)

[Kµ, O
a(0)] = 0 .

(2.31)

Here, Sµν are some finite-dimensional representation matrices for so(d), and

∆ is the scaling dimension (or conformal dimension) of Oa.

The rest of the corresponding irreducible representation consists of de-

scendant operators, which can be obtained by acting on Oa(0) with the

raising operator Pµ (via the commutator). This has the effect of taking

derivatives of the operator Oa(x) at x = 0, and thereby raising the scaling

dimension ∆→ ∆+ 1; for example, one has

[Pµ, O
a(x)] = ∂µO

a(x) . (operator equation) (2.32)

Quantization

A standard choice of quantization for conformal field theories in flat space

is radial quantization, in which we foliate the Euclidean plane by concentric

spheres Sd−1 centred at the origin. This is particularly convenient in CFT

because the dilation operator D generates (Euclidean) evolution between

the leaves of this foliation.

Another appealing property of radial quantization arises from the ob-

servation that d-dimensional punctured Euclidean flat space is conformally

equivalent to the Euclidean cylinder R× Sd−1, with the radial coordinate r

of flat space and the axial coordinate τ of the cylinder related by r = eτ :

ds2R×Sd−1 = dτ2 + dΩ2
d−1 =

1

r2
(
dr2 + r2dΩ2

d−1

)
∝ ds2Rd . (2.33)

Consequently, as explained in Appendix A.2, the correlation functions in a

conformal field theory defined on the former space are determined by those

on the latter; for example, using the r coordinate for both the plane and the
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cylinder as above, we have for scalar operators13

⟨O1(r1, x̂
i
1) . . . On(rn, x̂

i
n)⟩R×Sd−1

⟨1⟩R×Sd−1

=

(
n∏

i=1

r∆i
i

)
⟨O1(r1, x̂

i
1) . . . On(rn, x̂

i
n)⟩Rd

⟨1⟩Rd

.

(2.34)

The map between the two spaces sends concentric spheres Sd−1 centred at

the origin to the spherical slices of the cylinder at fixed Euclidean time τ ;

consequently, the radially quantized theory in flat space is related to the

theory on the cylinder with the standard quantization.

The choice of quantization fixes a notion of conjugation for Euclidean

operators; as an example, if OL(t, x̂
i) denotes a Hermitian scalar operator

in the Lorentzian theory on the cylinder with the standard quantization,

then the analytic continuation τ = it to Euclidean signature implies the

conjugation rule for Euclidean operators

OE(τ, x̂
i)† = OE(−τ, x̂i) . (2.35)

More generally, we may be interested in operators which have Lorentz in-

dices, and which consequently accumulate additional imaginary factors upon

analytic continuation of the time-like indices; for example, the Lorentzian

vector operator Oµ
L(t, x̂

i) undergoes analytic continuation

O0
E(τ, x̂

i) = −iO0
L(t, x̂

i) , Oi
E(τ, x̂

i) = Oi
L(t, x̂

i) . (2.36)

For these more general operators, conjugation acts on the Euclidean opera-

tors as

Oµ1...µn

E (τ, x̂i)† = Θµ1
ν1 . . .Θ

µn
νnO

ν1...νn
E (−τ, x̂i) , (2.37)

where Θµ
ν = δµν − 2δµ0δ

0
ν may be interpreted as a time-reflection.

Using the relationship (2.34) between correlators on the cylinder and

flat space, we observe that, for a given operator O(r, x̂i) in the flat space

13The explicit denominators in this expression account for the possibility of a Weyl
anomaly ⟨1⟩R×Sd−1 ̸= ⟨1⟩Rd .
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theory, we can formally define another operator Ocyl(r, x̂
i) ≡ r∆O(r, x̂i) in

the flat space theory whose correlators can precisely reproduce those of the

original operator on the cylinder; using this identification, and demanding

that Ocyl satisfy the conjugation rules for the cylinder outlined above, we

can obtain the conjugation rules for the corresponding flat space operators

in radial quantization. In particular, for scalar operators, we obtain (now

using Cartesian coordinates on the plane for convenience)

O(xµ)† = x−2∆O(xµ/x2) , (2.38)

while for operators with spin, we obtain

Oµ1...µn(xµ)† = Iµ1
ν1(x) . . . I

µn
νn(x)x

−2∆Oν1...νn(xµ/x2) , (2.39)

where Iµν(x) = δµν − 2xµxν
x2 .

Having established a notion of conjugation compatible between Euclidean

and Lorentzian signature, we can begin to address the question of necessary

conditions for a Euclidean CFT to have a well-defined, unitary Lorentzian

continuation. A basic requirement of unitarity is that the norm of all states

in the Hilbert space must be positive definite; in Euclidean signature, this

corresponds to the statement of reflection positivity, which demands that

time reflection-symmetric correlators must be positive

⟨0|O(τn, x̂
i
n) . . . O(τ1, x̂

i
1)O(−τ1, x̂i1) . . . O(−τn, x̂in)|0⟩ ≥ 0 . (2.40)

The operator-state correspondence

In any quantum field theory, one can associate a state |O⟩ in the radially

quantized Hilbert space to any local operator O(x) in the theory: given a

sphere Sd−1
R of radius R centred at the origin, we can simply choose the state

|O⟩ on Sd−1
R which is prepared by the Euclidean path integral on the ball

Bd
R with a single insertion of O(0) at the origin. Explicitly, we may define
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|O⟩ by requiring that, for any state |ϕ0⟩ in the Hilbert space,

⟨ϕ0|O⟩ =
∫ ϕ(r=R)=ϕ0

Dϕ e−S[ϕ]O(0) . (2.41)

In a conformal field theory, the converse is also true. Given an eigenstate of

the dilatation operator |O⟩ with eigenvalue ∆, we can compute the overlap

with any other state |Ψ⟩ by a Euclidean path integral

⟨Φ|O⟩ = e(R−r)∆⟨Φ|e−(R−r)D|O⟩

= e(R−r)∆

∫
dϕ1⟨ϕ1|O⟩

∫
dϕ2⟨Φ|ϕ2⟩

∫ ϕ(R)=ϕ2

ϕ(r)=ϕ1

Dϕe−S[ϕ] ,
(2.42)

for any r < R. In the limit r → 0, the insertion of the state |O⟩ in the

path integral can be replaced by a local operator. We can extend this

correspondence to all states in the Hilbert space by linearity (and limits).

The operator-state correspondence helps us to organize the Hilbert space

of the theory into representations of the conformal algebra. In particular,

the map implies the following:

• The identity operator 1 corresponds to the vacuum state |0⟩.

• A primary operator Oa(x) of conformal dimension ∆ transforming in

a representation of so(d) with representation matrices Sµν corresponds

to a state |Oa⟩ satisfying

Kµ|Oa⟩ = 0 , D|Oa⟩ = ∆|Oa⟩ , Lµν |Oa⟩ = (Sµν)
a
b|Ob⟩ . (2.43)

• Descendant operators of Oa(x) correspond to descendant states

Pµ|O⟩, PµPν |O⟩ , . . . (2.44)

A primary state and its descendants together form an irreducible rep-

resentation of the conformal algebra, sometimes called a conformal

multiplet.
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Operator product expansion

The primary operators in a CFT satisfy a fusion algebra, referred to as the

operator product expansion (OPE)

Oa
i (x1)O

b
j(x2) =

∑
k

[Cijk(x12, ∂2)]
ab
c O

c
k(x2) (operator equation) (2.45)

valid as an operator statement (i.e. provided we do not have an insertion

within the smallest ball containing the two operators on the left-hand side).

Here, we are in Euclidean signature, and Cijk(x12, ∂2) denotes a differential

operator which may also have Lorentz representation indices.

The existence of an operator product expansion should hold in a general

quantum field theory for arbitrary local operators; however, in conformal

field theory, conformal invariance significantly constrains this OPE, and in

particular the differential operators Cijk(x12, ∂2), such that the contribu-

tions of descendant operators in the OPE are entirely fixed by the contri-

bution of the corresponding primary. Moreover, the OPE is easily proven

in CFT as a consequence of the operator-state correspondence, given that

Oi(x1)Oj(x2)|0⟩ is a state in the Hilbert space and therefore admits an ex-

pansion in terms of primary states Ok(x2)|0⟩ and their descendants. The

operator statement is obtained by considering inner products between these

states and any other states built from acting on the vacuum with local op-

erators outside of a ball containing x1 and x2.

CFT correlators

Often, the field theory observables we are interested in are correlation func-

tions of local operators; in CFT, these are highly constrained by symmetry,

as manifested through Ward identities, which specify how the symmetry

generators act when inserted in correlation functions with local primaries.

If the CFT is defined by a path integral, correlators arise from operator

insertions

⟨O1(x1) . . . On(xn)⟩ =
∫
DΦe−S[Φ] O1(x1) . . . On(xn) , (2.46)
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2.2. Conformal field theory

where the Oi(xi) on the right-hand side are functions constructed from the

fields Φ and their derivatives; in this case, the Ward identities can be shown

to arise from a (non-anomalous) symmetry of the action. Given a choice of

quantization, these objects are interpreted as time-ordered vacuum expec-

tation values, with respect to the Euclidean time of the quantization

⟨O1(x1) . . . On(xn)⟩ ≡ ⟨0|T {O1(x1) . . . On(xn)}|0⟩ . (2.47)

Rather than revisit the derivation of low-point conformal correlators,

which can be found in e.g. [101], we simply state the results. It suffices

to consider correlation functions of primary operators, since general cor-

relators can be generated from these via insertions of Pµ, using the Ward

identities. In the following, we denote the Euclidean distance x12 ≡ |x1−x2|
for convenience.

In conformal field theory, one-point functions of non-trivial primary op-

erators vanish identically

⟨O(x)⟩ =

0 O ̸= 1

1 O = 1
. (2.48)

Scalar primary two-point functions are fixed up to a proportionality constant

CO

⟨Oi(x1)Oj(x2)⟩ =


CO

x2∆
12

∆i = ∆j ≡ ∆

0 ∆i ̸= ∆j

; (2.49)

we can eliminate the factor CO by choosing a normalized basis of primary

operators, i.e. by rescaling the Oi. On the other hand, the scalar primary

three-point function is of the form

⟨Oi(x1)Oj(x2)Ok(x3)⟩ =
Cijk

x
∆i+∆j−∆k

12 x
∆j+∆k−∆i

23 x
∆k+∆i−∆j

31

, (2.50)

where the coefficients Cijk represent genuine physical data about the theory

equivalent to that contained in the OPE.

Up to this point, the spatial dependence of the correlation functions has
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2.2. Conformal field theory

been completely determined by conformal invariance; it is said that these

correlators are fixed by kinematic considerations, rather than depending on

the particular theory of interest, i.e. the dynamics. By contrast, the scalar

primary four-point function involves a function of the conformal cross-ratios

u =
x212x

2
34

x213x
2
24

, v =
x223x

2
14

x213x
2
24

, (2.51)

the two independent quantities constructed from (x1, x2, x3, x4) which can

be demonstrated to be invariant under conformal transformations. For ex-

ample, one can verify that the four-point function of a single scalar primary

⟨O(x1)O(x2)O(x3)O(x4)⟩ =
g(u, v)

x2∆12 x
2∆
34

(2.52)

has the required symmetry properties for any function g. For a given the-

ory, we will see momentarily how the function g is related to other data

constituting the theory.

The OPE can be used to reduce high-point correlation functions to lower-

point correlation functions. An important example of this is the four-point

function; applying the OPE to the four-point function of a single scalar

primary, one obtains

⟨O(x1)O(x2)O(x3)O(x4)⟩ =
1

x2∆O
12 x2∆O

34

∑
O′

C2
OOO′g∆O′ ,ℓO′ (xi) ,

where we have indicated pairwise contraction using the OPE, the sum is

over primaries, and we have defined the objects

g∆,ℓ(xi) ≡ x2∆O
12 x2∆O

34 Ca(x12, ∂2)Cb(x34, ∂4)
Iab(x24)

x2∆24
, (2.53)

where Iµν(x) is as introduced below (2.39). These objects are known as

conformal blocks; it can be shown that they depend only on the invariant

cross-ratios (u, v), and therefore that the function g(u, v) appearing in (2.52)
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can be expressed as

g(u, v) =
∑
O′

C2
OOO′g∆O,ℓO(u, v) . (2.54)

In this sense, the conformal blocks form a basis for the space of conformally

invariant four-point functions.

The order of contractions with the OPE used above is sometimes referred

to as the S-channel ; however, we could choose to expand the four-point func-

tion in another channel, using a different sequence of contractions, thereby

obtaining a different expression involving different coefficients and confor-

mal blocks. The consistency of these two expansions, referred to as crossing

symmetry, enforces powerful constraints on permissible CFT data.

We note in passing that correlation functions for operators with spin are

somewhat more complicated, though still constrained. As an example, the

two-point function of a spin-ℓ symmetric traceless tensor is

⟨Oµ1...µℓ(x)Oν1...νℓ(0)⟩ = CO

(
I
(µ1
ν1 (x) . . . I

µℓ)
νℓ (x)

x2∆
− (traces)

)
, (2.55)

where the subtraction is intended to ensure that this object is traceless in

both the µ-indices and the ν-indices.

The bootstrap philosophy

It is worth briefly mentioning an important perspective on conformal field

theory informed by the conformal bootstrap program, which seeks to explore

and characterize the space of legitimate conformal field theories by deriving

consequences from simple consistency conditions, like unitarity and crossing

symmetry, and possibly additional assumptions, such as restricting to large

N or holographic CFTs, or demanding superconformal symmetry.

From this perspective, a general CFT can be thought of as being deter-

mined by the following data:14

14It is currently unknown whether additional non-local information needs to be specified
in dimension d > 2.
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• A list of local primary operator scaling dimensions and spins {(∆, s)},
and possibly other quantum numbers if we would like to impose addi-

tional structure (e.g. R-charges in the case of a superconformal field

theory). This data is sometimes referred to as the spectrum of the

theory, and encodes the kinematics.

• A list of OPE coefficients {cijk}, which encodes the dynamics.

The conformal bootstrap then proceeds by imposing certain consistency

conditions on this data, thereby ruling out regions of the parameter space.

In general, there is no known set of sufficient consistency conditions for

the existence of a CFT that can be easily implemented in the bootstrap

approach.

2.2.2 Boundary conformal field theory

Having provided an overview of the subject of conformal field theory, we can

turn to a generalization, boundary conformal field theory (BCFT), which will

be most relevant in the following chapters. Roughly speaking, a BCFT can

be obtained from a CFT by introducing a codimension-1 boundary, thereby

reducing the symmetry of the theory; a detailed discussion of BCFT in arbi-

trary dimension can be found in [80, 106]. For simplicity of presentation, we

will restrict our discussion to the case of a planar boundary in flat Euclidean

space Rd.

Suppose that we decompose the coordinates of Rd as

x ≡ (x1, . . . , xd−1) , y ≡ xd , (2.56)

and introduce a spatial boundary at y = 0, so that our background now cor-

responds to the half-space HRd defined by y ≥ 0. As observed in [80], such

a boundary remains invariant under an SO(1, d) subgroup of the original

conformal group, generated by the (d − 1)-dimensional Poincaré transfor-

mations on the transverse coordinates x together with the usual inversion

xµ → xµ/x2. We may then define a BCFT on the half-space by specify-

ing the spectrum of primary CFT bulk operators, transforming as in (2.31)
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under the residual conformal group, and their OPE coeffiients, along with

some additional boundary data, which we discuss momentarily. Typically,

we will be interested in the case where a BCFT is defined with reference

to a particular CFT on the original space by imposing suitable boundary

conditions on the CFT bulk fields and possibly introducing additional de-

grees of freedom at the boundary, such that the resulting theory respects

the SO(1, d) symmetry.

Given that a general transformation from the residual conformal group

applied to points x1, x2 induce transformations of the form

(x1 − x2)2 →
(x1 − x2)2

Ω(x1)Ω(x2)
, yi →

yi
Ω(xi)

(2.57)

for some conformal factor Ω, we see that the cross-ratios

ξ ≡ (x1 − x2)2

4y1y2
, v2 ≡ (x1 − x2)2

(x1 − x2)2 + 4y1y2
=

ξ

ξ + 1
(2.58)

are invariant. The reduced symmetry now permits non-vanishing one-point

functions for primary scalar fields of the form

⟨O(x)⟩ = AO

(2y)∆
. (2.59)

If we choose to normalize the CFT bulk operators by specifying the two-

point functions in the original CFT, then the constants AO appearing in

the one-point functions are physically meaningful, depending generically on

the operator O(x) and its boundary condition. Moreover, the two-point

function of quasi-primary bulk CFT operators may now be proportional to

a function of the invariant cross-ratio defined above, and is not necessarily

vanishing for operators with distinct scale dimension or spin. For example,

the scalar-scalar two-point function takes the form

⟨O1(x1)O2(x2)⟩ =
1

(2y1)∆1(2y2)∆2
f12(ξ) , (2.60)

where the function f12 is constrained by the OPE.
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As we mentioned above, one must also specify additional boundary data

in order to determine the BCFT. In addition to the bulk CFT operators, we

may generically have a spectrum of local boundary operators ÔI(x) (where

the circumflex connotes quantities at the boundary). These boundary op-

erators, which are specified by their own scaling dimensions and OPE, also

form a basis for the BCFT, in the sense that one has a boundary operator

expansion (BOE) analogous to the OPE

Oi(x) =
∑
J

BJ
i

(2y)∆i−∆̂J

ÔJ(x) + (descendants) . (2.61)

In particular, AO = B1
O. The BOE also constrains the function f12 ap-

pearing in the CFT bulk two-point function. More generally, correlation

functions may be decomposed in either bulk or boundary channels, provid-

ing general crossing-symmetry constraints which must be satisfied by the

dynamical BCFT data.

To summarize, the BCFT is characterized by the spectrum of bulk op-

erators and their OPE coefficients, the spectrum of boundary operators and

their OPE coefficients, and the bulk-boundary two-point function coeffi-

cients.

2.3 Supersymmetry

The notion of supersymmetry, a type of spacetime symmetry which inter-

relates bosonic and fermionic degrees of freedom, plays an integral role in

the study of string theory and of AdS/CFT. Supersymmetry can also serve

as a powerful tool for simplifying calculations and obtaining exact results

in otherwise intractable systems like strongly coupled gauge theories. Our

objective in this section will be to introduce the concept of supersymme-

try and the terminology which will be important in the remainder of this

thesis; to achieve this concisely, we largely focus our presentation on the

case of Lorentzian signature. Our discussion will draw on material from the

references [96, 107–113].
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2.3.1 Supersymmetry algberas in 3D and 4D

We begin with a discussion of the 3D and 4D supersymmetry algebras. Our

exposition will focus on the case of the supersymmetric extensions of the

Poincaré algebra, relevant to theories in flat space (and conformal theories

in conformally flat spaces).

Supersymmetry algebra in 4D

The supersymmetric extension of the 4D Poincaré algebra is obtained by

augmenting the Poincaré algebra by additional fermionic supersymmetry

generators, which obey the algebra

{QA
α , Q̃α̇B} = 2δABσ

µ
αα̇Pµ , {QA

α , Q
B
β } = 2ϵαβZ

AB , (2.62)

where Q̃α̇I = (QI
α)

†.15 Here, σµ = (1, σ⃗) are the Pauli matrices, Pµ are

the momentum generators, and the elements of the anti-symmetric tensor

ZIJ are referred to as central charges, since they commute with all of the

generators. Note that the Greek indices are two-component spinor indices,

which are raised and lowered with the anti-symmetric symbol ϵαβ and its

inverse, while the uppercase Latin indices run in the list {1, . . . ,N}, and
are raised and lowered with δAB and its inverse. In particular, we have 4N
real supersymmetries in 4D. The remainder of the super-Poincaré algebra

is fixed by noting that the supercharges transform as Weyl spinors under

so(1, 3), and commute with translations.

In a supersymmetric theory, the supersymmetry generators may trans-

form under a bosonic symmetry referred to as an R-symmetry. Formally, the

R-symmetry is the subgroup of outer automorphisms of the super-Poincaré

algebra which leave the Poincaré subgroup invariant. As an example, we

observe that a supersymmetric theory with N > 1 has a manifest SU(N )

R-symmetry, with supercharges Q transforming in the fundamental repre-

sentation. We will see that in superconformal field theories, R-symmetries

15Because Weyl spinors are self-conjugate in 4D Euclidean spacetime, this conjugation
relation no longer holds in Euclidean signature. A useful reference for supersymmetry in
general signature can be found in [114].
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are promoted to a more central role: they will generate inner automorphisms

of the superconformal algebra. As with any global symmetry, R-symmetries

may become anomalous in a quantum theory.

Supersymmetry algebra in 3D

The 3D super-Poincaré algebra is most easily expressed in terms of real

(Majorana) supercharges16 satisfying

{QA
α , Q

B
β } = 2γµαβδ

ABPµ + 2ϵαβZ
AB , (2.63)

where Greek and uppercase Latin indices are again spinor indices and su-

persymmetry labels in {1, . . . ,N} respectively. The remainder of the com-

mutation relations are fixed in an analogous way to those in 4D. Also as in

the 4D case, ZAB denotes an anti-symmetric tensor of central charges. In

3D, we have 2N real supercharges.

For N = 2 supersymmetry, it is sometimes convenient to consider com-

plex supercharges by taking complex linear combinations

Qα =
1√
2
(Q1

α + iQ2
α) , Q̃α =

1√
2
(Q1

α − iQ2
α) . (2.64)

The SUSY algebra may then be expressed as

{Qα, Q̃β} = 2σµαβPµ + 2iϵαβZ , {Qα, Qβ} = {Q̃α, Q̃β} = 0 , (2.65)

with Z = Z21 = −Z12. In this basis, we can easily observe the diagonal

U(1) R-symmetry

Qα → eiθQα , Q̃α → e−iθQ̃α . (2.66)

For N = 4 supersymmetry, we have an SO(4) ∼= SU(2) × SU(2) R-

symmetry. This can be understood by considering 3D N = 4 theories as

16In Euclidean signature, it is not possible to impose a Majorana condition in 3D.
Consequently, the minimal amount of supersymmetry is N = 2 in Euclidean. A statement
of the 3D N = 2 Euclidean super-Poincaré algebra can be found in [115].
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dimensional reductions of 6D N = 1 theories; one factor of SU(2) arises

from the R-symmetry of the 6D theory, while the second factor of SU(2)

arises from the rotation group of the reduced dimensions [116].

2.3.2 Supersymmetry representations in 4D

When introducing representations of the super-Poincaré algebra, it is often

convenient to distinguish between massless and massive representations; we

consider each in turn. To streamline our discussion, we will focus on the

representation theory of states in the Hilbert space of a Lorentzian quantum

field theory, rather than on supersymmetry transformations of fields and

supersymmetric actions of these fields; we will discuss the latter for the

specific case of N = 4 supersymmetric Yang-Mills in a later subsection.

Massless representations

For massless representations, it is convenient to boost to a frame where

the momentum is Pµ = (E, 0, 0, E),17 and study the representations of the

supersymmetry subalgebra in this frame. The supersymmetry algebra then

includes the anti-commutator

{QA
α , Q̃α̇B} =

(
4E 0
0 0

)
αβ̇

δAB . (2.67)

In particular, we observe that {QA
2 , (Q

A
2 )

†} = 0, which requires these gen-

erators to identically vanish on the representation, and thus (via the other

anti-commutators) that all of the central charges also vanish.

The remaining generators QA
1 and Q̃1̇A obey the algebra of fermionic

creation and annihilation operators, up to rescaling by
√
2E; the real and

imaginary parts of these generators satisfy the Clifford algebra associated to

the Euclidean rotation group SO(2N ), and the non-trivial supersymmetry

generators act as raising and lowering operators for the helicity. We can thus

consider a 2N -dimensional representation of this algebra, obtained by acting

17Namely, to choose a state within a given Lorentz orbit with these quantum numbers
for the components of Pµ.
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on a highest helicity state |h⟩ with the lowering operators QA
1 . In actuality,

CPT symmetry requires that the spectrum should be symmetric under a sign

reversal of the helicity; consequently, we will obtain either a 2N -dimensional

representation or a 2N+1-dimensional representation, depending on whether

we need to append the CPT conjugate states.

Constructing the massless irreducible multiplets for N = 1 supersym-

metry in this way, we obtain the following multiplets with helicities not

exceeding one, labelled by the helicities (λ, λ+ 1
2) of the states in the mul-

tiplet:

• The chiral multiplet (−1
2 , 0)⊕(0,

1
2), consisting of a complex scalar and

a Weyl fermion.

• The vector multiplet (−1,−1
2)⊕(

1
2 , 1), sometimes called the gauge mul-

tiplet, consisting of a vector boson and a Weyl fermion in the adjoint

of the gauge group.

Multiplets with states of helicity greater than one, including the gravitino

and graviton multiplets, are of relevance in the supergravity context.

We also record here the multiplets with states whose helicity does not

exceed one for the case of N = 2 and N = 4 extended supersymmetry:

• The N = 2 gauge/vector multiplet (−1,−1
2 ,−

1
2 , 0) ⊕ (0, 12 ,

1
2 , 1), con-

sisting of one vector, two Weyl fermions, and one complex scalar.

• The N = 2 hypermultiplet (−1
2 , 0, 0,

1
2)⊕(−

1
2 , 0, 0,

1
2), consisting of two

Weyl fermions and two complex scalars.

• TheN = 4 gauge/vector multiplet (−1, 4×−1
2 , 6×0, 4×

1
2 , 1), consisting

of a vector, four Weyl fermions, and three complex scalars.

Both N = 1 chiral multiplets and N = 2 hypermultiplets will sometimes

be referred to as matter multiplets, in contrast to the vector multiplets ap-

pearing in the supersymmetric gauge theories we consider.
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Massive representations

When considering massive representations, we boost to a frame with Pµ =

(M, 0, 0, 0); the supersymmetry algebra now includes the anti-commutator

{QA
α , Q̃β̇B} = 2Mδαβ̇δ

A
B . (2.68)

We can begin by considering the case of minimal N = 1 supersymmetry,

where the supersymmetry algebra does not include central charges. The

supercharges may then be identified with fermionic creation and annihila-

tion operators as in the massless case, though now we have two uncoupled

fermionic oscillators for N = 1 supersymmetry. Consequently, we find the

following multiplets with helicities not exceeding one:

• The chiral multiplet (−1
2 , 0, 0,

1
2), consisting of a complex scalar and

Weyl fermion.

• The vector/gauge multiplet (−1,−1
2 ,−

1
2 , 0)⊕ (0, 12 ,

1
2 , 1), consisting of

a massive gauge field, a massive Dirac fermion, and a real complex

scalar.

Considering now the case of extended supersymmetry, we first observe

that an arbitrary anti-symmetric matrix ZAB can be block-diagonalized to

the form

Z =

diag(ϵZ1, . . . , ϵZr) N = 2r even

diag(ϵZ1, . . . , ϵZr, 0) N = 2r + 1 odd
, (2.69)

where Zi are (real) constants and ϵab is the anti-symmetric tensor (with

indices suppressed in our expression). An enlightening form of the algebra

can consequently be obtained by rotating the supercharges by a SU(N )R

transformation in order to block-diagonalize the matrix of central charges

Zab. Letting barred indices ā, b̄ run over the 2 × 2 blocks, and thus in the

range {1, . . . , r} with r ≡ ⌊N2 ⌋, and defining

Qā
α± ≡

1

2
(Q1ā

α ± σ0αβ̇(Q
2ā
β )†) , (2.70)
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we have non-vanishing anti-commutators

{Qā
α±, (Qb̄

β±)
†} = δāb̄δ

β
α(M ± Zā) . (2.71)

The fact that this is again positive-definite for a = b and α = β implies the

BPS bound

M ≥ |Zā| . (2.72)

When one or more of these bounds is saturated, the corresponding super-

charges must vanish by the same logic as in the massless case; the result is

that the naive size 22N of the representation is reduced, yielding a shortened

or BPS multiplet. The number of vanishing supercharges determines the

degree of shortening; for example, one saturated BPS inequality results in a
1
2 -BPS multiplet (dimension 22N−2), while two saturated inequalities results

in a 1
4 -BPS multiplet (dimension 22N−4). In the extreme cases where r BPS

inequalities are saturated, one refers to the representation as an ultrashort

multiplet. In practice, the presence of shortened representations in a su-

persymmetric theory is often essential for providing computational control,

the reason being that the BPS requirement prevents the spectrum of short

representations from receiving perturbative quantum corrections. A review

of the massive multiplets for N = 2 and N = 4 theories can be found in e.g.

[111].

Decomposing representations of extended supersymmetry

It is manifest from the form of the super-Poincaré algebras with N = N1

and N = N2 that the former is a subalgebra of the latter when N1 < N2.

Consequently, irreducible representations of the super-Poincaré algebra with

N = N2 decompose into multiple irreducible representations of the super-

Poincaré algebra with N = N1. Some examples relevant for later chapters

are as follows:

• One N = 4 vector multiplet in the adjoint of gauge group G decom-

poses to:
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– One adjoint N = 2 vector multiplet

– One adjoint N = 2 hypermultiplet.

• One N = 2 vector multiplet in the adjoint of gauge group G decom-

poses to:

– One adjoint N = 1 vector multiplet

– One adjoint N = 1 chiral multiplet.

• One N = 2 hypermultiplet in representation R decomposes to:

– Two N = 1 chiral multiplets in reprsentation R.

2.3.3 Supersymmetry representations in 3D

In this subsection, we will focus on the cases of 3D N = 2 and N = 4 super-

symmetry which will be relevant in later sections. A discussion of 3D N = 1

multiplets can be found in [113]; notably, this amount of supersymmetry is

only possible in Lorentzian signature, whereas in Euclidean signature the

minimal amount of supersymmetry is N = 2.

While one can obtain representations of the supersymmetry algebra in

a similar way to the 4D case, the representations of 3D N = 2 and N = 4

supersymmetry are most easily obtained by dimensional reduction of 4D

N = 1 or N = 2 supersymmetry respectively; concretely, this amounts

to choosing a 4D N = 1 representation on fields, dimensionally reducing

to 3D, and observing how the resulting fields transform under the reduced

Lorentz group SO(1, 3) → SO(1, 2) or the corresponding spin group. The

dimensional reduction preserves the number of real supercharges; for exam-

ple, at the level of the algebra, dimensionally reducing in the x2 direction

corresponds to considering representations for which the quantum number

associated with the component P 2 is fixed to some value Z, in which case

the 4D N = 1 supersymmetry algebra can be written as

{Qα, (Qβ)
†} = 2σµαβPµ + 2iϵαβZ , (2.73)
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where µ ∈ (0, 1, 3). We recognize this as the 3D N = 2 algebra with a

particular choice of basis for the gamma matrices.

We refrain from presenting the full analysis here, instead recording the

relevant results. For the case of N = 2 supersymmetry, one obtains the

following multiplets:18

• The chiral multiplet, obtained from a 4D N = 1 chiral multiplet,

consisting of a complex scalar and a complex Weyl fermion.

• The vector multiplet, obtained from a 4D N = 1 vector multiplet,

consisting of a vector, a complex Weyl fermion, and a real scalar in

the adjoint of the gauge group.

On the other hand, for the case of 3D N = 4 supersymmetry, one has the

following representations:

• The vector multiplet, obtained from a 4D N = 2 vector multiplet,

consisting of a 3D N = 2 vector and a 3D N = 2 hypermultiplet.

• The hypermultiplet, obtained from a 4D N = 2 hypermultiplet, con-

sisting of two 3D N = 2 chiral multiplets.

2.3.4 Superconformal algebras in 3D and 4D

In 3D and 4D,19 the conformal algebra admits a supersymmetric extension

to the so-called superconformal algebras with various amounts of supersym-

metry. The superconformal algebras consist of two types of fermionic gen-

erators, which are spinors of the d-dimensional Lorentz group: supercharges

QA (and possibly Q̃A) whose anti-commutators include the momentum Pµ,

and the supercharges SA (and possibly S̃A) whose anti-commutators include

the special conformal generatorKµ.
20 The 3D superconformal group withN

supercharges Q is denoted OSp(N|4), while the 4D superconformal algebra

18In 3D, there are also multiplets known as linear multiplets, in which global currents
appear.

19The classification of superconformal algebras was given by Nahm in [117]; in particular,
such algebras are only possible in dimension d ≤ 6.

20We neglect spinor indices for the fermionic generators in this subsection.
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is denoted by SU(2, 2|N ) (or PSU(2, 2|N ) in the case N = 4). We will omit

the corresponding algebras here; useful references include [96, 118–120]. We

can, however, schematically summarize the algebra as follows:

[D,Q] = − i
2
Q , [D,S] =

i

2
S , [K,Q] ≈ S , [P, S] ≈ Q ,

{Q,Q} ≈ P , {S, S} ≈ K , {Q,S} ≈ L+D +R .
(2.74)

The precise form of these commutation relations will generally be different

in different dimensions, but the above indicates which charges appear in a

given commutator or anti-commutator. The bosonic charges R correspond

to generators of the R symmetry algebra.

As in the case of conformal symmetry, one is interested in constructing

representations by considering local primary operators, annihilated by Kµ,

whose behaviour at the origin is

[Lµν ,Oa(0)] = (Sµν)abOb(0) , [D,Oa(0)] = ∆Oa(0) , (2.75)

meaning that Oa(0) transforms in a representation of “scale + Lorentz”. In

superconformal field theories, we are interested in constructing representa-

tions from operators which additionally satisfy

[SA,Oa(0)]± = [S̃A,Oa(0)]± = 0 , (2.76)

where± denotes that we should either take commutators or anti-commutators,

depending on whether Oa(0) is bosonic or fermionic. Such an operator is

referred to as a superconformal primary operator. Note that all superconfor-

mal primary operators are also conformal primaries, as can be established

from the definitions and the fact that {S, S̃} ∼ K.

Superconformal descendant operators can be obtained by acting with

the generators Pµ and QA; in particular, acting on a superconformal pri-

mary with one of the supercharges Q gives rise to a super-descendant op-

erator O′ = [Q,O]±. Super-descendant operators are themselves conformal

primary operators; a superconformal multiplet therefore consists of many

conformal multiplets related by supersymmetry.
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An important subclass of superconformal primary operators are the chi-

ral primary operators, which additionally satisfy

[QA,O]± = 0 (2.77)

for at least one A and one spinor component. Such operators are BPS, in

the sense that they give rise to shorter representations of supersymmetry,

consisting of fewer conformal primaries. One significant property of chiral

primaries is that their dimensions do not receive quantum corrections, as

they are protected by the R-symmetry.

2.3.5 4D N = 4 supersymmetric Yang-Mills theory

The 4D N = 4 supersymmetric Yang-Mills (SYM) theory is a prototypi-

cal superconformal field theory, and has particular importance in the holo-

graphic context. The 4D SYM theory is most readily obtained from di-

mensional reduction of the 10D N = 1 Yang-Mills theory [121], whose field

content consists of the gauge field AM and the Majorana-Weyl gaugino Ψ,

and whose action is given by

S =
1

g2YM

∫
d10x tr

(
1

2
FMNF

MN − iΨ̄ΓMDMΨ

)
. (2.78)

Here, uppercase Latin indices are 10D (flat Lorentzian) spacetime indices,

and ΓM are the 10D Dirac matrices; the overbar on Ψ denotes the Dirac

conjugate, and DM is the gauge-covariant derivative.

Dimensionally reducing by requiring the fields to only depend on coor-

dinates (x0, . . . , x3), the 10D Lorentz group breaks to a subgroup

SO(1, 9)→ SO(1, 3)× SO(6)R . (2.79)

The gauge field decomposes into a 4D gauge field Aµ and six real scalars

(A4, . . . , A9), which we may rename Φi for convenience (up to rescaling by

gYM). The Majorana-Weyl fermion decomposes into four conjugate Weyl

spinors λa, such that Ψ transforms in the (2, 1, 4) ⊕ (1, 2, 4̄) of SO(1, 3) ×
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SO(6)R. One then obtains an action whose purely bosonic part is

S =

∫
d4x tr

(
1

2g2YM

FµνF
µν

+
∑
i

DµΦ
iDµΦi −

g2YM

2

∑
i,j

[Φi,Φj ]2

)
. (2.80)

Operator spectrum

We briefly discuss the spectrum of local gauge-invariant operators in the

quantum theory. The general such operator is either the trace of a product

of the elementary fields, referred to as a single-trace operator, or the product

of single-traces, referred to as a multi-trace operator. We will focus the

discussion here on the single-trace operators; in the ’t Hooft limit

λ ≡ g2YMN fixed , N →∞ , (2.81)

which will be relevant in the holographic context, correlation functions in-

volving multi-traces will be suppressed by powers of N relative to those

involving single-traces.

Given that the 4D N = 4 superalgebra has 16 real supercharges, a

generic (long) representation of the superconformal algebra consists of 216

conformal primaries, with helicities in half-integer increments spanning {λ−
4 , . . . , λ+4} for λ the helicity of the primary with lowest conformal dimen-

sion. As discussed previously, one can also have short representations and

ultra-short representations.

A special class of superconformal primary operators introduced in Sec-

tion 2.3.4 are the chiral primaries; we will follow [107] in presenting the

known spectrum of chiral primary operators of the N = 4 SU(N) super-

symmetric Yang-Mills theory, though a straightforward systematic way of

computing the full spectrum is not known. Given that the field strength

Fµν and fermions λa are found to arise in the action of supersymmetry on

the fundamental fields, it turns out that the lowest components of the chiral

primary representations are built from the scalars Φi. We therefore begin
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by considering operators of the form

Õi1...in = tr(Φi1 . . .Φin) , (2.82)

where the ij are free indices. Since in fact we also observe commutators

of Φi arising in the action of supersymmetry on the fields, we can further

restrict to linear combinations of these operators which symmetrize the in-

dices, sometimes denoted using the symmetrized trace as

Oi1...in = str(Φi1 . . .Φin) . (2.83)

The linear combinations of such primary scalar operators which are trace-

less with respect to contractions of any two indices are precisely the chiral

primaries; we can unambiguously use the notation Oi1...in to refer to such

traceless linear combinations.

It can be shown that the dimension of Oi1...in defined in this way, as de-

termined from the superconformal algebra, is [On] = n, coinciding with the

value in free field theory. Notably, for finite N , short chiral primary repre-

sentations are built from these operators with n in the range n ∈ {2, . . . , N};
this is because the product of more than N commuting N ×N matrices can

be written as a sum of products of traces of fewer matrices.21

Non-perturbative features

In the string theory context, the N = 4 U(N) SYM theory arises as a

description of the low-energy physics of a stack of N coincident D3-branes

in type IIB string theory. An important conjecture about the N = 4 SYM

theory is that it is in fact UV finite, and retains exact conformal symmetry

at the quantum level.

The SYM theory is believed to exhibit an exact SL(2,Z) global symme-

try, known asMontonen-Olive duality or S-duality, whereby the complexified

21We have focused our discussion on single-trace operators, but the spectrum of N = 4
SYM also includes multi-trace operators, including chiral primary multi-traces; see e.g.
[122] for details.
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coupling

τ =
θI
2π

+
4πi

g2
(2.84)

undergoes a Möbius transformation

τ → aτ + b

cτ + d
, ad− bc = 1 , a, b, c, d ∈ Z . (2.85)

In particular, this group of transformations is generated by the shift τ →
τ + 1 and the S-duality transformation τ → −1/τ ; the former is known

to hold, while the latter is conjectured. As can be seen by applying the S-

duality transformation in the case θI = 0, S-duality is a strong-weak coupling

duality or a non-perturbative duality.

2.3.6 Supersymmetric localization

The existence of supersymmetry in a theory sometimes permits an exact

calculation of protected quantities in the theory, using a technique called

supersymmetric localization. We will give a cursory review of the general

theory behind supersymmetric localization; a useful introduction can be

found in [123], while [124] provides a very comprehensive overview of relevant

techniques.

Supersymmetry on curved backgrounds

A starting point for most computations involving supersymmetric localiza-

tion is to put a supersymmetric theory of interest on a compact (Euclidean)

manifold M ; doing so assists the convergence of the path integral by ex-

plicitly removing IR divergences. We would like the theory on M to have

the same UV behaviour as our original theory in flat space, and to preserve

supersymmetry. However, näıvely covariantizing the original Lagrangian,

while providing a suitable curved space generalization of the original theory,

may explicitly break supersymmetry; moreover, a generic curved manifold

may not permit supersymmetry.

One systematic approach to placing a given supersymmetric theory on a

curved manifold is to consider an expansion of both the covariantized super-
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symmetry transformations and the Lagrangian in inverse powers of the cur-

vature scale r on the manifold, enforcing order-by-order that the supersym-

metry algebra closes and the theory is supersymmetric. Under favourable

circumstances, this expansion will truncate and yield an exactly supersym-

metric theory. An alternative approach, due to Festuccia and Seiberg [125],

is to first directly couple the flat space theory to supergravity, then take a

rigid limit G → 0 to decouple dynamical gravity and recover a fixed back-

ground. Demanding that the background preserve supersymmetry leads to

the requirement that the gravitino and its supersymmetry variation should

vanish; the latter condition directly imposes that the spinor parameter gen-

erating supersymmetry must satisfy a differential equation known as the

generalized Killing spinor equation. This suggests an obstruction to defin-

ing a supersymmetric theory on manifolds which do not admit solutions to

this equation.

A relevant example of a supersymmetric theory on a curved background

is the case of the N = 4 SYM theory on S4. Expressing the action in terms

of the fields of 10D N = 1 SYM from which the 4D theory is a dimensional

reduction, one arrives at the compact expression

SE =
1

g2YM

∫
d4x
√
g tr

(
1

2
FMNF

MN −ΨΓMDMΨ+
2

r2
ΦiΦ

i

)
, (2.86)

where r denotes the radius of the S4, such that the Ricci curvature is given by

R = 12
r2
, and covariant derivatives are now also geometrically covariant. The

supersymmetry transformations, parametrized by a Majorana-Weyl spinor

parameter ε, can be found in [126]. Similar considerations for 3D N = 2

theories on S3 can be found in [127].

General theory of supersymmetric localization

We now turn to a bird’s-eye view of the argument underpinning supersym-

metric localization. It will be most conceptually straightforward to formu-

late the logic in the arena of standard finite-dimensional integrals, but the

extension to quantum field theory path integrals is entirely analogous.
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Suppose that we are interested in computing an integral of the form

Z =

∫
dxdθ e−SE [x,θ] , (2.87)

where x and θ are bosonic and fermionic coordinates respectively; we can

think of this as an integration over a Grassmann-odd line bundle with canon-

ical measure, where x are coordinates on the base space and θ are coordi-

nates on the fibre. Suppose further that the function SE is invariant under

a fermionic symmetry, as implemented by a differential operator Q on su-

perspace (x, θ) which is a linear combination of derivatives: QSE = 0. The

square of Q either vanishes, or is a bosonic symmetry of SE which we may

denote by δB.

Consider next the deformed integral

Z(t) =

∫
dxdθ e−SE [x,θ]−tQV [x,θ] , δBV = 0 , QV ≥ 0 , (2.88)

where V is some function invariant under the bosonic symmetry obtained

by squaring Q. Taking a t-derivative, we obtain

∂Z

∂t
= −

∫
dxdθ QV e−SE−tQV = −

∫
dxdθ Q

(
V e−SE−tQV

)
. (2.89)

Since Q is a total derivative operator, this manifestly vanishes, assuming

suitable behaviour of the functions SE and V at infinity. We may therefore

conclude that Z(t) is independent of t; we are hence free to evaluate Z(0) by

considering the limit limt→∞ Z(t), which we can compute by a saddle-point

approximation which becomes exact in the limit.

In detail, denoting by (x0, θ0) a zero of QV , and parametrizing

x = x0 +
x̂√
t
, θ = θ0 +

θ̂√
t
, (2.90)

we may write

SE + tQV = SE [x0, θ0] + (QV )2[x0, θ0; x̂, θ̂] +O(t−1/2) , (2.91)
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where (QV )2 is the term in QV which is second order in (x̂, θ̂). We then

have

Z = lim
t→∞

Z(t) =
∑

(x0,θ0) zeros

e−SE [x0,θ0]

SDet(QV )2[x0, θ0]
, (2.92)

where the quantity SDet, which can be thought of as a one-loop determinant

in the field theory version of this argument, is defined by22

1

SDet(QV )2[x0, θ0]
=

∫
dx̂dθ̂ e−(QV )2[x0,θ0;x̂,θ̂] , (2.93)

and can be evaluated by Gaussian integration.

It is clear from the derivation of this result that a similar argument

applies not only to Euclidean partition functions, but to correlation functions

of supersymmetric observables with suitable asymptotic behaviour in field

space.

2.4 The AdS/CFT correspondence

The AdS/CFT correspondence can be viewed as the statement that any

conformal field theory on a suitable d-dimensional spacetime background

B can be interpreted as a theory of quantum gravity in an asymptotically

AdSd+1×M spacetime with B the conformal boundary of the AdSd+1 factor,

where M is compact (or perhaps trivial). The fact that B is the conformal

boundary of the AdS spacetime motivates our use of the phrase boundary

theory to refer to the CFT, and bulk theory to refer to the quantum gravity

theory. In some cases, the bulk quantum gravity theory may look like general

relativity, perhaps coupled to a small number of additional light fields, at

low energies; in others, the theory might look much more complicated, with

infinite towers of massless higher spin fields.

More broadly, AdS/CFT is something of a misnomer, as some version

of holographic duality may be applicable in situations where the boundary

theory is not strictly conformal. Some examples are as follows:

22We have used here that the canonical measure on the integration space, involving an
appropriately graded version of the Pfaffian, satisfies dxdθ = dx̂dθ̂.
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• The term AdS/BCFT correspondence is sometimes applied in situa-

tions where conformal invariance is partially broken by the presence

of boundaries or interfaces in the boundary theory.

• Bulk theories with non-trivial profiles for matter fields which backreact

on the geometry can describe holographic RG flows.

• A holographic dual interpretation has been proposed for some theories

of matrix quantum mechanics.

• In some low-dimensional examples, an equivalence has been estab-

lished between a bulk theory of quantum gravity and a dual ensemble

of quantum theories.

Given that we do not have a fully independent definition of string theory

beyond the regime of string worldsheet perturbation theory, one common

perspective is to understand the CFT as providing a non-perturbative, UV

complete definition of a quantum gravity theory. However, even in the

absence of a non-perturbative definition of string theory, we should be able

to describe bulk physics below the string scale within the framework of

effective field theory (EFT). In this case, the AdS/CFT correspondence

provides a map from bulk EFT physics to physics in an underlying CFT.

An alternative perspective is that two dual quantum mechanical descrip-

tions exist, and in particular that there should be some intrinsically bulk

definition of the UV complete theory; in this case, AdS/CFT can be viewed

as an exact isomorphism between Hilbert spaces respecting the dynamics.

The subject of AdS/CFT is concerned both with situations in which a pre-

cise microscopic duality is identified, and the more “bottom-up” approach

of bulk effective field theory. In both cases, understanding features of the

holographic map has been a longstanding goal of research in AdS/CFT; in

this section, we will make note of some important entries in the holographic

dictionary. Our discussion will rely on material found in [52, 93, 96, 107, 128–

131].
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2.4.1 Fundamentals of the AdS/CFT dictionary

An equivalence between two quantum theories is established if the Hilbert

spaces and operator algebras can be shown to be isomorphic. We shall see

that two of the central pillars of our current understanding of the AdS/CFT

dictionary are a map between bulk and boundary Hilbert spaces, and a map

between path integrals.

Equivalence of Hilbert spaces

One statement of the equivalence of Hilbert spaces between bulk and bound-

ary theories related by holographic duality is that there exists an isomor-

phism

V : HAdS-QG → HCFT , (2.94)

where HAdS-QG and HCFT are the bulk and boundary Hilbert spaces respec-

tively, such that

V ◦ UAdS-QG = UCFT ◦ V , (2.95)

where the U are unitary operators implementing the SO(2, d) symmetries

in the two theories.23 Such a map V evidently preserves representations of

SO(2, d). Hamiltonian evolution is an example of one of these unitaries U ,

so that in particular the spectrum of the Hamiltonian is preserved via the

isomorphism. We will revisit the spectrum in more granular detail when we

consider the effective approach to AdS/CFT below.

This statement is satisfactory when we have a UV complete theory in

the bulk, but we can make a slightly different statement applying to bulk

effective field theory around an asymptotically AdS background. In this

case, one anticipates that there exists an injection between Hilbert spaces

V : HAdS-EFT → HCFT . (2.96)

Such a map may or may not be an isometry, namely a map which preserves

23We note that the UAdS-QG are still physical symmetries rather than gauge symme-
tries in the bulk theory; at the semi-classical level, they can be thought of as related to
diffeomorphisms that act non-trivially on the boundary.
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the inner product, and therefore satisfies V †V = 1. A statement like (2.95)

can no longer be precisely true, since for example some of the SO(2, d)

transformations in the CFT could raise the energy of a state beyond the

regime of validity of effective field theory. As we will briefly return to below,

the map V is best understood in the language of quantum error correction.

Equivalence of path integrals

In the AdS/CFT correspondence, every bulk field in AdSd+1 is associated

to a corresponding gauge-invariant boundary operator,24 including the fol-

lowing important examples:

• Bulk scalar fields correspond to boundary scalar operators;

• Bulk vector fields correspond to boundary current operators;

• The bulk metric corresponds to the boundary stress tensor.

The conformal dimension ∆ of the CFT operator is related to the mass m

of the corresponding bulk field; for example, one has for scalar operators25

m2 = ∆(∆− d) . (2.97)

As is clear from our examples, the spin of the CFT operator is fixed by

the spin of the corresponding bulk field (as reflected in the Lorentz index

structure).

Concretely, the boundary condition for a field ϕ corresponds to a source

ϕ(0) for the associated operator O, meaning a deformation of the CFT action

by a term

SCFT → SCFT +

∫
ddx
√
|g(x)|ϕ(0)(x)O(x) , (2.98)

with a precise identification made via the relation

ϕ(0)(x) = lim
z→0

z−∆ϕ(z, x) , (2.99)

24When dimensionally reducing AdSd+1 ×M with compact M to AdSd+1, one obtains
a tower of Kaluza-Klein modes; each mode is associated to a different CFT operator.

25A dictionary for general operators can be found in [107].
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where z denotes the holographic coordinate in Fefferman-Graham coordi-

nates introduced in (2.9), and x schematically denotes the remaining bulk

coordinates and the boundary coordinates they induce.

Much of the basic content of the AdS/CFT correspondence is contained

in the Gubser-Klebanov-Polyakov-Witten (GKPW) dictionary [30, 31]

Zgrav[ϕ
(0)(x)]

!
= ZCFT[ϕ

(0)] , (2.100)

where the left hand side is the Euclidean gravitational path integral with

appropriate boundary conditions for the fields ϕ,

Zgrav[ϕ
(0)(x)] ≡

∫
ϕ(z,x)∼z∆ϕ(0)(x)

DgDϕ e−SE [g,ϕ] , (2.101)

and the right hand side is a generating functional for the CFT

ZCFT[ϕ
(0)(x)] =

∫
Dφ e−SCFT[φ]−

∫
ddx
√

|g|ϕ(0)(x)O(x)

= ⟨e−
∫
ddx
√

|g|ϕ(0)(x)O(x)⟩CFT .

(2.102)

We have focused on a Euclidean statement of the GKPW dictionary and the

relationship between bulk fields and boundary sources, though it is possible

to formulate a similar duality between path integrals with more general

contours (see e.g. [132, 133]).

Formally, both sides of (2.100) are divergent; one expects UV diver-

gences in the CFT correlators, as well as long-distance divergences from the

infinite-volume asymptotically AdS region in the bulk. The disparate ori-

gins of these divergences hint at the notion of UV/IR duality in AdS/CFT,

and the heuristic that the holographic direction in the bulk geometrizes the

spectrum of energy scales for processes in the CFT. The GKPW formula

can be more carefully defined by making use of holographic renormaliza-

tion, wherein a cutoff surface is chosen in the bulk to regulate calculations

and local counterterms are introduced on this surface to cancel divergent

quantities as the cutoff is removed; see [92] for an introduction.

Differentiating a generating functional with respect to sources is a route
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to calculating correlation functions, and part of the utility of the GKPW

dictionary is that it permits CFT correlators to be extracted from a bulk

calculation

⟨O1(x1) . . . On(xn)⟩ =
(−1)n

Zgrav[0]

δnZgrav[ϕ
(0)
1 , . . . , ϕ

(0)
n ]

δϕ
(0)
1 (x1) . . . δϕ

(0)
n (xn)

∣∣
ϕ
(0)
i =0

. (2.103)

An alternative but equivalent [134] formulation is the so-called extrapolate

dictionary, which directly relates bulk and boundary correlators via

⟨O1(x1) . . . On(xn)⟩CFT

= lim
z→0

z−(∆1+...+∆n)⟨O1(z, x1) . . . On(z, xn)⟩grav . (2.104)

In practice, we often consider the semi-classical regime (with small New-

ton constant G), such that we can approximate bulk path integral calcu-

lations by a classical saddle-point approximation. This is the basis for the

common claim that bulk geometries are dual to CFT states; the bulk ge-

ometry in question is the leading classical saddle appearing in a bulk path

integral calculation, and the CFT state is obtained by cutting open the

corresponding Euclidean CFT path integral. The semi-classical limit also

allows us to compute CFT correlation functions by performing perturbative

quantum field theory on a fixed background, using Feynman diagrams which

are referred to as Witten diagrams in the AdS context, and then differenti-

ating the result with respect to the functions ϕ(0) appearing in the boundary

conditions.

2.4.2 Microscopic AdS/CFT

The paradigmatic example of an exact equivalence between microscopic the-

ories in the context of AdS/CFT, which will be of interest to us later in this

thesis, is the following [29]:

The N = 4 supersymmetric Yang-Mills theory with gauge

group SU(N) and Yang-Mills coupling gYM is dynamically equiv-

alent to type IIB string theory, with string length ℓs and string
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coupling g, on AdS5 × S5 with (string frame) curvature scale

L
(SF)
AdS and N units of F(5) flux on S5. The relationship between

field theory and string theory parameters is

g2YM = 4πg , λ ≡ g2YMN = (L
(SF)
AdS/ℓs)

4 . (2.105)

This correspondence is motivated by the equivalence of open and closed

string descriptions of the physics of N coincident D3-branes in type IIB

string theory. It will also sometimes be convenient to introduce the quantity

α′ ≡ ℓ2s. The Planck scale is related to the string scale by ℓp = g1/4ℓs, so one

can think of the large N limit as ensuring a hierarchy between the AdS scale

and the Planck scale. Our conventions for this iteration of the AdS/CFT

correspondence are available for reference in Appendix B.1.

Parameter regimes

The regime of classical (type IIB) supergravity is

λ≫ 1 and N →∞ ←→ g → 0 and ℓs/L
(SF)
AdS ≪ 1 . (2.106)

Setting the string coupling to zero truncates the string loop perturbative

expansion to tree-level, while suppressing the string length relative to the

curvature scale suppresses higher derivative α′ corrections in the action.

On the other hand, one can maintain the large N limit while relaxing

the condition of large λ to obtain the regime of classical string theory

λ = O(1) and N →∞ ←→ g → 0 and ℓs/L
(SF)
AdS = O(1) , (2.107)

or one can consider general (λ,N) to recover the regime of truly quantum

string theory. While the latter regime is not well understood on the bulk

side, the AdS/CFT correspondence as stated above has been conjectured to

hold for arbitrary parameter values.

AdS/CFT is sometimes referred to as a strong-weak coupling duality ;

more precisely, we see that the CFT is strongly coupled (λ ≫ 1) precisely
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when the bulk theory is weakly-curved (ℓs ≪ L
(SF)
AdS ) and vice versa. This

mutual incompatibility of the regimes of validity of perturbation theory in

Yang-Mills and classical type IIB supergravity poses a challenge for verify-

ing the AdS/CFT correspondence, but also provides a direct route toward

calculating non-perturbative effects through controlled calculations on the

opposite side of the duality.

Operator spectrum matching

The microscopic AdS/CFT duality as stated above has been subjected to

extensive numerical checks; an incomplete list can be found in [107]. We will

briefly review a check at the level of the spectrum, since this will provide

insights relevant beyond this particular microscopic iteration of AdS/CFT.

Although one would like to be able to compare the full spectrum of

N = 4 SYM and type IIB string theory on AdS5 × S5, it is not known how

to compute the spectrum when stringy effects become important, namely

for energies above the inverse string length E ≳ 1/ℓs. Consequently, one can

only compare spectra well below this scale, where the classical supergravity

approximation is valid. Though the results should correspond to results at

large coupling in the CFT, one can compare these directly for operators with

protected dimensions, including chiral primary operators.

To compute the spectrum of type IIB supergravity on AdS5 × S5, one

first writes the 10D fields in terms of spherical harmonics on the S5

ϕ(xµ, ŷi) =
∞∑
k=0

ϕk(x
µ)Yk(ŷ

i) , (2.108)

where xµ are the AdS5 coordinates, ŷi are coordinates on S5 (such that∑6
i=1(ŷ

i)2 = 1), and Yk are spherical harmonics. One then expands the

Kaluza-Klein modes ϕk(x
µ) in fluctuations around the AdS5 background,

and then diagonalizes the equations for the fluctuations. It transpires that

these fluctuations can be organized into chiral representations of the su-

perconformal transformations, with chiral primaries corresponding to lin-

ear combinations of the metric and self-dual four form. These represen-
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tations can therefore be matched to the 1
2 -BPS chiral representations of

SU(N) N = 4 SYM theory discussed in Section 2.3.5. Notably, in the

supergravity calculation, the effective masses of the Kaluza-Klein modes

are unbounded, whereas the chiral primary operator dimensions range from

n ∈ {2, . . . , N}; this reflects the fact that the supergravity approximation

breaks down when the KK mass scale becomes of order the string scale,

or when n ∼ LAdS/ℓs = λ1/4 ≪ N . The supergravity calculation should

account for the entire spectrum below the string scale, and it appears to

be precisely matched to the spectrum of chiral primary representations in

N = 4 SYM; this suggests firstly that all non-chiral primary operators in

SYM acquire parametrically large anomalous dimensions, at least of order

λ1/4, and secondly that all states above the string scale should necessarily

appear in long multiplets.

2.4.3 Effective AdS/CFT

Much of the power of the AdS/CFT correspondence relies on the fact that

many of the features observed in the above microscopic example appear to

have a much broader range of applicability; indeed, it is typical to think

of an arbitrary CFT as defining a possibly very exotic theory of grav-

ity. We are most interested in those gravitational theories which reduce

to general relativity, possibly coupled to a small number of light, weakly-

interacting fields,26 at low energies;27consequently, an important program

within AdS/CFT is to establish a set of necessary and sufficient conditions

to impose on a CFT that ensure this property in the dual.

Generalized free theories

A useful point of reference in the following discussion is the case of a free

field theory in the bulk, which will define a generalized free field theory in the

26One may also be interested in the case of strong interactions, see e.g. [135].
27The phrase sub-AdS locality is sometimes used to signify the validity of effective field

theory between the AdS scale and some parametrically larger cutoff scale.
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boundary via the extrapolate dictionary.28 Before considering a free field,

we can begin by considering an even simpler system, namely one-particle

quantum mechanics in AdSd+1; a pedagogical account is provided in [131].

One can identify differential operators (D,Pµ,Kµ,Lµν) in AdSd+1 which

implement the conformal algebra so(2, d); in particular, we can choose D
to be the generator of global time translations, and therefore interpret it as

the AdS Hamiltonian. One may then construct irreducible representations of

this algebra by first identifying a primary wavefunction satisfying Kµψ0 = 0,

then acting on ψ0 with general products of Pµ to produce wavefunctions

(PµPµ)nPµ1 . . .Pµℓ
ψ0 . (2.109)

Letting ∆ denote the D eigenvalue of ψ0, these wavefunctions have energy

En,ℓ = ∆ + 2n + ℓ with respect to the operator D. For fixed n and ℓ,

we can choose to consider linear combinations ψn,ℓ,J of the states (2.109)

transforming in irreducible representations of so(d) labelled by additional

angular momentum quantum numbers J . For a fixed ∆, we can arrange for

all ψn,ℓ,J to be orthonormal.

Having understood single-particle quantum mechanics in AdS, we can

turn to free field theory. The canonical quantization of a free scalar field in

the bulk proceeds by introducing an expansion29

ϕ(t, ϑ, x̂i) =
∑
n,ℓ,J

ψn,ℓ,J(t, ϑ, x̂
i)an,ℓ,J + ψ∗

n,ℓ,J(t, ϑ, x̂
i)a†n,ℓ,J . (2.110)

Here, the orthonormalized solutions to the Klein-Gordon equation ψn,ℓ,J are

precisely the one-particle wavefunctions obtained for m2 = ∆(∆ − d), and
a†n,ℓ,J and an,ℓ,J are creation and annihilation operators satisfying

[an1,ℓ1,J1 , a
†
n2,ℓ2,J2

] = δn1n2δℓ1ℓ2δJ1J2 . (2.111)

Following the standard approach to free quantum field theory, one can define

28Of course, this will not define a genuine CFT dual unless we have a perturbative
graviton in the bulk and therefore a boundary stress tensor.

29We are using here the global AdS coordinates introduced in equation (2.7).
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a Fock space including all multi-particle excitations.

To understand the corresponding boundary theory, we can apply the

extrapolate dictionary to ϕ(t, ϑ, x̂i), thereby obtaining a boundary operator

O(t, x̂i) expressed as a linear combination of the operators an,ℓ,J and a†n,ℓ,J .

More generally, we can also apply the extrapolate dictionary to the descen-

dant fields obtained by acting on the expression (2.110) with the differential

operators Pµ, and also to normal-ordered products of bulk fields obtained

this way.30 Some immediate consequences of this procedure are as follows:

• Operators which produce single-particle excitations in the bulk corre-

spond to the primary operator O of dimension ∆ and its descendants

On,ℓ,J , which have dimension ∆ + 2n + ℓ and spin ℓ. These are the

analogues of single-trace operators for the generalized free field theory.

• Operators which produce multi-particle excitations in the bulk cor-

respond to products of On,ℓ,J . The conformal dimension of such op-

erators is simply the sum of conformal dimensions of the constituent

single-particle operators, since energies are additive in the bulk free

field theory. These are the analogues of multi-trace operators for the

generalized free field theory.

• The simplest multi-trace operators are the double-trace operators, de-

noted by [OO]n,ℓ,J , which arise from the product of O and On,ℓ,J .

These operators are the only operators appearing in the OPE of O

with itself.

• The three-point function of O with itself vanishes, because vacuum

expectation values involving precisely three creation/annihilation op-

erators in the bulk must vanish.

• Higher-point correlation functions factorize, in the sense that they are

equal to a sum over products of two-point functions, with all possi-

ble pairwise contractions included in the sum. This is because free

field theory correlators are computed by Wick contractions, as a con-

sequence of the algebra (2.111).
30See [131] for a careful explanation.
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Gapped large N theories

We would like to move beyond the case of bulk free field theory, allowing

general semi-classical bulk physics including both perturbative gravity and

interactions. The natural constructions to produce this bulk physics are

known as gapped large N CFTs, which are families of d-dimensional CFTs

satisfying the following conditions (paraphrased from [130]):31

• There exists a finite set of primary operators {Oi} with scaling dimen-

sions {∆i}, referred to as single-trace, which, when normalized such

that ⟨OO⟩ = O(N0), have the property that

⟨OiOjOk⟩ = O(N−1) . (2.112)

These operators are interpreted as the primary operators dual to the

fundamental fields ϕi in the bulk which create single-particle states.

• There exists a unique single-trace spin-2 primary operator of dimen-

sion ∆ = d, the energy-momentum tensor Tµν , which has two-point

function ⟨TT ⟩ ∼ N .

• For any collection of n = O(N0) single-trace primaries {Oi1 , . . . , Oin},
there exists an associated multi-trace primary Oi1...in whose scaling

dimension is

∆i1 + . . .+∆in +O(N−1) . (2.113)

These operators are dual to operators which create multi-particle states

in the bulk.

• Correlation functions of the single-trace and multi-trace operators de-

fined above agree with the factorized (generalized free field) result at

leading order in 1/N .

31As stated here, this definition is appropriate for capturing effective field theory in
AdSd+1; to accommodate the possibility of a higher-dimensional bulk with a compact
internal space giving rise to towers of Kaluza-Klein modes, we should also permit towers
of single-trace operators with O(1) spacing of their conformal dimensions.
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• All operators with ∆ = O(N0) are the above-mentioned single-trace

and multi-trace primaries and descendants.

The proposal that gapped large N theories should ensure bulk semi-classical

physics was put forward in [32], and has since been subject to various tests

and refinements (see e.g. [34–38, 136–139]).

In this more general language, bulk free field theory may be thought

of formally as a theory at infinite N , whereas perturbative interactions in

the bulk are captured by the large N expansion. Many of the features

of the generalized free field case, including the Fock space structure, the

suppression of three-point functions, and the factorization of higher-point

correlation functions, are therefore required to hold at leading order in 1/N .

That single-trace and multi-trace primaries and their descendants are the

only operators with O(1) scaling dimension reflects the expectation that all

bulk states up to some cutoff scale are described by EFT excitations.

Our definition is broad enough to allow for any low-energy effective field

theory with gravity; in particular, it could include higher spin fields in the

low-energy spectrum, which could arise for example as excited string modes.

On the other hand, it may also be desirable to require a parametric separa-

tion for higher spin fields, demanding that the low-energy theory in the bulk

should resemble Einstein gravity. In the context of N = 4 SYM, establishing

such a parametric separation, namely demanding that ℓs ≪ LAdS, required

a strongly coupled field theory. It transpires that the analogous criterion

in the context of the abstract gapped large N CFTs introduced here is the

existence of a single-trace higher spin gap, namely a parametrically large

∆gap, with 1 ≪ ∆gap ≪ N , such that there do not exist primaries with

dimension ∆ < ∆gap and spin greater than two.

For a generic gapped large N CFT with a higher spin gap, we can sum-

marize the important regimes in the spectrum in terms of the bulk physics

they describe as follows:

• ∆ ≪ ∆gap: Effective field theory excitations, including perturbative

gravitons. In string theory language, this is the part of the spectrum

lying well below the string scale, where classical supergravity is valid.
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This regime may include Kaluza-Klein excitations, with large dimen-

sion 1≪ ∆≪ ∆gap.

• ∆gap ≲ ∆ ≪ N : “Stringy” and/or higher-spin excitations. These are

massive states that would be found in the spectrum of perturbative

string theory.

• ∆ ∼ N : An intermediate regime of the spectrum associated to bulk

physics including non-perturbative objects like D-branes. CFT oper-

ators with scaling dimension in this regime are sometimes referred to

as “hefty operators”.

• ∆ ∼ N2: Black hole states.32 CFT operators with scaling dimension

in this regime are sometimes referred to as “heavy operators”.

Notably, high-energy states of the theory are interpreted as black hole mi-

crostates; we turn to a discussion of black holes in the context of AdS/CFT

presently.

2.4.4 Black holes in AdS/CFT

One of the most important applications of the AdS/CFT correspondence

has been to the study of black hole physics. Historically, the behaviour of

quantum black holes has been mysterious, since a semi-classical calculation

due to Hawking appeared to suggest the break down of unitarity [50, 56]. In

AdS/CFT, unitarity is inherent in the CFT description, and an important

question, which has not been fully answered at the time of writing despite

much recent progress [9, 63–67], is how the bulk perspective of the black

hole evolution is able to account for this.

We have already discussed how black holes appear as high-energy mi-

crostates of holographic theories; in this subsection, we will mention two

other important appearances of black holes in the context of AdS/CFT. We

first consider the black holes which arise in computations in the canonical

32Small black holes may appear in the spectrum below ∆ ∼ N2, when the bulk en-
ergy scale exceeds the Planck mass; for example, in the microscopic version of AdS/CFT
discussed earlier, one has small black holes appearing at ∆ ∼ N1/4 and above [140].
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ensemble of the CFT, where we are able to treat the bulk semi-classically.

We then describe a particular, special microstate of the two-fold tensor prod-

uct of a CFT, known as the thermofield double, describing a two-sided black

hole in the bulk; this state has been an invaluable laboratory for black hole

physics and the emergence of geometry in AdS/CFT.

Canonical ensemble

As discussed in Appendix A.1, the thermal partition function of a quantum

field theory quantized on the surface Σd−1 at inverse termperature β can be

computed via the Euclidean path integral on Σd−1×S1
β, with S

1
β the thermal

circle of circumference β. Via the GKPW dictionary (2.100), we have the

equivalence of path integrals

Zgrav = ZCFT[Σd−1 × S1
β] , (2.114)

where the bulk path integral includes an integration over suitable asymp-

totically AdS Euclidean metrics with conformal boundary Σd−1 × S1
β. We

will restrict our consideration to the case of pure gravity, and focus on

Σd−1 = Sd−1 for concreteness.

In the limit of vanishing Newton constant G → 0, when semi-classical

gravity is valid in the bulk, we recall that the bulk path integral should be

well-approximated by

Zgrav =
∑

saddles

e−SE [saddle] , (2.115)

where we are summing over Euclidean gravity solutions with the required

boundary conditions, evaluating the on-shell Euclidean action SE for each.

We neglect loop corrections for the moment; they contribute to the expo-

nential at order O((Ld−1
AdS/G)

0), whereas the on-shell Euclidean action con-

tributes at order O(Ld−1
AdS/G).

The simplest such saddle in the case of the thermal partition function

is Euclidean thermal AdS, whose metric is precisely that of pure Euclidean
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AdS,

ds2 = L2
AdS

[
f(r)dτ2 +

dr2

f(r)
+ r2dΩ2

d−1

]
, f(r) = 1 +

r2

L2
AdS

, (2.116)

but subject to the identification τ ∼ τ + β in Euclidean time. We note that

a closed path which wraps the τ direction is not contractible in the bulk;

this is most easily visualized for AdS3, where thermal AdS has the topology

of a solid torus, as shown in Figure 2.3.

An alternative saddle is the Euclidean black hole, sometimes called the

Euclidean cigar, with metric

ds2 = L2
AdS

[
f(r)dτ2 +

dr2

f(r)
+ r2dΩ2

d−1

]
,

f(r) =
r2

L2
AdS

+ 1−
rd−2
H

rd−2

(
r2H
L2
AdS

+ 1

)
,

(2.117)

where we still demand periodicity τ ∼ τ + β. Unlike thermal AdS, the

Euclidean black hole has the topology of Diskβ × Sd−1 as shown in Figure

2.3, with a closed path wrapping the τ direction now contractible in the

bulk. The solution r = rH to the equation f(r) = 0 gives the position of

the Euclidean horizon, which can be thought of as the origin of the disk.

Demanding that the solution has no conical singularity at this horizon, one

discovers that the inverse temperature β and the horizon of the black hole

rH are related by

β =
4πrHL

2
AdS

(d− 2)L2
AdS + dr2H

. (2.118)

This expression is readily inverted to deduce the horizon position in terms

of β,

rH
LAdS

=
2πLAdS ±

√
4π2L2

AdS − d(d− 2)β2

dβ
. (2.119)

Since rH is real, we immediately observe that there is a minimum possible
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Figure 2.3: Solid torus representing the Euclidean gravity solutions appear-
ing as saddle points in the calculation of the thermal partition function
in d + 1 = 3. For thermal AdS, loops in the thermal direction are non-
contractible while loops in the spatial S1 direction are contractible, whereas
the opposite holds for the Euclidean black hole.

temperature, or maximum possible β, given by

βmax =
2πLAdS√
d(d− 2)

. (2.120)

Moreover, for a given β below this maximum, we see that there are in fact

two Euclidean black hole solutions corresponding to the two signs in (2.119);

we refer to these as the large and small black holes at a given temperature.33

To determine which saddle dominates the canonical ensemble, one can

evaluate the on-shell Euclidean action for each; the saddle with least ac-

tion will dominate.34 As noted above, for low temperatures β > βmax, no

black hole saddles exist, and thermal AdS always dominates the canonical

ensemble. Moreover, for β < βmax, it can be shown that the large black hole

33In the d = 2 case of AdS3, 2.119 has only one positive solution, so there are no small
black holes.

34Care must be taken to regulate large volume divergences in AdS; this can be achieved
by cutting off the solutions at the surface z = ϵ in Fefferman-Graham coordinates, calcu-
lating the difference between on-shell actions for two solutions subject to this cutoff, and
taking the limit ϵ → 0 to obtain a finite difference.
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always has lower action than the small black hole. Comparing the on-shell

action between the large black hole and thermal AdS for β < βmax, one finds

∆SE =
βrd−2

H Vol(Sd−1)

16πG

(
1−

r2H
L2
AdS

)
, (2.121)

and therefore, using (2.119), one observes an exchange of dominance from

thermal AdS to the large black hole as we lower β below the critical value

βc =
2πLAdS

d− 1
. (2.122)

This exchange is known as the Hawking-Page transition [141].35

In addition to the partition function, it is interesting to consider how the

thermal entropy varies with β. For the Euclidean black hole, we can use a

standard thermodynamic relation and Zgrav ≈ e−SE [saddle] to compute

S = (1− β∂β) lnZ =
AH

4G
+ . . . , AH = rd−1

H Vol(Sd−1) . (2.123)

This is the famous Bekenstein-Hawking area law for the entropy of a black

hole [24, 25, 50], which states the proportionality between the thermody-

namic entropy and the horizon area. On the other hand, a similar calculation

for thermal AdS would yield vanishing entropy, which we expect to become

O((Ld−1
AdS/G)

0) with the inclusion of quantum corrections (due to thermal

gravitons). Consequently, the thermal entropy at the Hawking-Page tran-

sition jumps from O((Ld−1
AdS/G)

0) to O(Ld−1
AdS/G), indicating a large number

of high-energy states that become populated at high temperatures. This is

related to a confinement-deconfinement transition in the dual CFT [55].

35It is worth noting that the Hawking-Page transition is absent in the case of the planar
AdS black hole, which always dominates the canonical ensemble for the theory on flat
space Σd−1 = Rd−1. The interpretation is that, although we have set the radius R of the
Sd−1 on which the CFT is quantized to one in the above analysis, it is the dimensionless
parameter β/R which controls the Hawking-Page transition, and thus sending R → ∞
enforces that we are always below this transition.
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The eternal AdS black hole and the thermofield double state

We have seen that thermal physics at temperatures above the Hawking-Page

transition is dominated by the Euclidean black hole in the bulk, meaning

that the Euclidean CFT partition function corresponds to a Euclidean grav-

ity partition function whose leading saddle is this black hole. An interesting

result can be obtained by slicing this Euclidean CFT path integral to define

a state on two copies of Σd−1; as argued in Appendix A.1, this defines a

particular entangled state known as the thermofield double state

|TFDβ⟩12 ≡
∑
n

e−βEn/2|En⟩1|En⟩2 (2.124)

in the two-fold tensor product of the CFT. This state can be thought of

as a canonical purification of the thermal state on Σd−1; when we perform

a partial trace of the pure state |TFDβ⟩⟨TFDβ| over one CFT, we recover

precisely the thermal density matrix ρβ on the remaining CFT.

Considering the corresponding slicing of the bulk path integral, we find

that this path integral prepares a state of the eternal AdS black hole geome-

try introduced in Section 2.1.1, obtained by performing the analytic contin-

uation τ → it; this is known as the Hartle-Hawking state [142]. This path

integral manipulation suggests the proposal, due to Maldacena [41], that the

full Lorentzian geometry, including the black hole interior, is holographically

dual to the thermofield double state of two CFTs with temperature above

the Hawking-Page transition.

This is a remarkable claim; as we will return to shortly, we anticipate

that the thermal density matrix obtained by tracing out either of the two

entangled CFTs describes only the physics occurring outside the black hole

horizon, in one of the two exterior regions. The existence of a smooth interior

connecting these regions must then be intimately related to the pattern of

quantum entanglement found in the thermofield double state; we will explore

the notion of entanglement and its relevance to AdS/CFT further in the next

subsection.
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2.4.5 Quantum information in AdS/CFT

Quantum information theory is an enormous discipline, and its applications

to AdS/CFT have been widespread.36 For the purposes of this thesis, we

will need relatively modest input from quantum information theory; we will

focus our presentation on perhaps the most basic measure of correlations

between quantum subsystems known as entanglement entropy.

Von Neumann entropy

For a quantum mechanical system with Hilbert space H, the von Neumann

entropy associated to a density matrix ρ on H is defined by

S(ρ) = −tr(ρ ln ρ) . (2.125)

The von Neumann entropy quantifies both classical and quantum uncer-

tainty present in the state ρ. As such, the minimum possible entropy occurs

when ρ = |Ψ⟩⟨Ψ| is a pure state, in which case

S(|Ψ⟩⟨Ψ|) = 0 , (2.126)

while the maximum possible entropy in a d-dimensional Hilbert space occurs

when ρ = 1
d1 is maximally mixed, in which case

S
(1
d
1
)
= ln d . (2.127)

A case of particular interest is when the density matrix ρ is obtained from

a pure state by tracing out some of the degrees of freedom in the system.

In particular, suppose that we have a bipartite system AB with factorizing

Hilbert space HAB = HA ⊗ HB, and a pure state |Ψ⟩ of the full Hilbert

space HAB. We can then obtain a density matrix on the subsystem A by

36A high-level summary of the applications of quantum information theory to quantum
gravity appears in [143].
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performing a partial trace

ρA = trB(|Ψ⟩⟨Ψ|) . (2.128)

In this context, the von Neumann entropy of the state ρA is referred to as the

entanglement entropy, since it reflects the degree of entanglement between

A and B in the state |Ψ⟩. When A and B are unentangled in |Ψ⟩, then
ρA is pure, whereas when |Ψ⟩ is a state with a pattern of entanglement like

that of 1√
d

∑d
i=1 |ai⟩⊗|bi⟩, with {ai} and {bi} orthonormal bases for HA and

HB,
37 then ρA is maximally mixed.

We will often be interested in the entanglement entropy of spatial sub-

regions in the context of quantum field theory, for example in the case of a

holographic CFT. In fact, this quantity is technically not well-defined, essen-

tially because the Hilbert space does not factorize into HA, HĀ associated

with an open region A and the interior of its complement. If we attempted

to choose a lattice regularization and then take a continuum limit, we would

find the entanglement entropy to be UV-divergent, reflecting the generic

presence of short-range entanglement in quantum field theory.3839 However,

as a result of the universal structure of these divergences, emerging from the

fact that all finite energy states in QFT have the entanglement structure of

the vacuum state in the limit of short distances, one can introduce UV reg-

ulators and compute quantities, like differences in the entanglement entropy

of a fixed subregion for different quantum states, which remain finite when

the regulator is removed.

It is important to note that the von Neumann entropy is not a thermo-

dynamic entropy, in the sense that it does not count microstates consistent

with a list of macroscopic data. For this reason, the von Neumann entropy is

37If HA and HB have different dimension, then the rank of ρA is at most equal to the
smaller dimension. In particular ρA cannot be maximally mixed when the A Hilbert space
is larger than the B Hilbert space.

38In the language of algebraic QFT, the von Neumann algebra associated to a subregion
in quantum field theory is a type III factor, which has neither a well-defined density matrix
nor entropy.

39Additional technical challenges arise when attempting to define a notion of subregion
entanglement entropy in the context of gauge theory.
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also sometimes called a fine-grained entropy : it is a property of a particular

density matrix. A coarse-grained or thermodynamic entropy may instead be

defined with respect to a collection a = (a1, . . . , an) of expectation values of

macroscopic observables {A1, . . . , An} by

Sthermo(a) ≡ maxρ∈AaS(ρ) , Aa ≡ {ρ : tr(ρA) = ai} . (2.129)

In words, it is obtained by maximizing the von Neumann entropy with re-

spect to density matrices with the appropriate expectation values for the

operators Ai.

Entanglement entropy in AdS/CFT

A remarkable entry in the AdS/CFT dictionary, which can be derived from

a careful treatment of the equivalence of path integrals and an application

of the replica trick [65, 66, 144–146], is the Ryu-Takayanagi formula [42]

and its various generalizations (e.g. [145, 147–149]), which relate the von

Neumann entropy of a boundary subregion to the area of an extremal surface

in the bulk.40 The original proposal of Ryu and Takayanagi, relevant to the

special case of holographic states with classical, static, asymptotically AdS

duals, stated that the von Neumann entropy associated to the subregion A

should be given by

S(ρA) = min
XA

A[XA]

4G
(2.130)

where the minimization is over surfaces XA, contained in some static slice

Σ whose boundary contains A, which are homologous to A, meaning that

there exists a homology surface HA whose boundary is ∂HA = A ∪XA. A

prototypical example of the application of this formula is to the thermofield

double state on two copies of a holographic CFT, which we saw in the

previous subsection is dual to an eternal AdS black hole. In this case,

the entanglement entropy of the reduced density matrix on the left CFT is

simply the von Neumann entropy of the thermal state of this CFT, which we

have seen is given by the Bekenstein-Hawking formula, which here precisely

40A useful overview of the RT formula and its generalizations can be found in [150].
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coincides with the Ryu-Takayanagi formula.

A useful generalization of the RT formula due to Hubeny, Rangamani,

and Takayanagi, known as the HRT formula [147], applies to any classi-

cal, asymptotically AdS spacetime satisfying the null energy condition. The

statement of the HRT formula is superficially identical to (2.130), with the

caveat that the minimization is now with respect to all bulk extremal sur-

faces XA homologous to A, rather than all surfaces restricted to a particular

static slice. The HRT formula admits a convenient reformulation due to

Wall, known as the maximin formulation [148], which states

S(ρA) = max
Σ

min
XA⊂Σ

A[XA]

4G
. (2.131)

In words, the maximin formula instructs one to first select a Cauchy slice

Σ and minimize with respect to homologous surfaces XA ⊂ Σ, and then to

maximize the result over all possible Σ.

It is sometimes of interest to consider corrections to the holographic en-

tanglement entropy formula, including higher derivative corrections to the

gravitational action and quantum corrections from propagating quantum

fields. In this case, an expression which accounts for leading order correc-

tions is provided by [145, 151]

S[ρA] =
Agen[XA]

4G
+ S[ρHA

] ≡ Sgen[XA] , (2.132)

where XA is precisely the surface appearing in the HRT formula for a given

background, HA is a homology surface for XA, Agen is a generalized area

which accounts for higher derivative corrections, and S[ρHA
] is the von Neu-

mann entropy of the semi-classical bulk fields in the region HA. An im-

portant upgrade of this formula, known as the Engelhardt-Wall formula or

sometimes simply the gravitational entropy formula [149], proposes modify-

ing (2.132) by replacing XA with the quantum extremal surface which mini-

mizes the generalized entropy. Here, a quantum extremal surface XA is sim-

ply a surface homologous to A for which the generalized entropy is extrem-

ized. This improvement has played a significant role in recent progress in
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understanding the black hole information paradox; importantly, it is needed

in situations where quantum corrections need not be small, but can rather

compete with the area term in the generalized entropy formula. It is also sig-

nificant in this context that the surface XA appearing in the extremization

procedure need not be connected, but can contain disconnected components

which therefore allow for HA to include disconnected entanglement island

regions; such surfaces are important for restoring a unitary Page curve in

holographic models of black hole evaporation.

Bulk reconstruction

A primary goal in the study of AdS/CFT is to understand how bulk physics

is encoded in the boundary theory. To this end, a basic question is whether,

given a CFT state and a choice of boundary spatial subregion A at fixed

time, there exists some bulk subregion whose semi-classical physics is entirely

reconstructible from data contained within A. Concretely, one might require

that any element of the algebra of bulk local operators within this subregion

can be expressed in terms of the algebra of boundary local operators in the

region A. The existence of such a bulk subregion is not guaranteed a priori

due to the inherently non-local nature of the AdS/CFT correspondence; it

is a manifestation of a property of the correspondence sometimes referred

to as subregion duality.

Perhaps the most intuitive guess for the relevant bulk subregion is a

region known as the causal wedge of A, defined by

C[A] = J+[D(A)] ∩ J−[D(A)] , (2.133)

whereD(A) denotes the domain of dependence ofA, defined as the spacetime

region consisting of points p such that all causal curves through p intersect A,

and J±[S] denote the bulk future/past light cones of boundary region S. We

can think about the causal wedge as the collection of points in the bulk which

lie on causal curves whose endpoints are in the domain of dependence of A.

The fact that causality permits a probe to be sent from and back to D(A)

via any point in the causal wedge is at least suggestive that physics within
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this wedge may be reconstructible on D(A), and therefore in principle on A.

An explicit demonstration of causal wedge reconstructibility is provided by

the HKLL procedure [152], which makes use of the extrapolate dictionary to

relate bulk and boundary operators.

In fact, general arguments making use of the Ryu-Takayanagi formula

suggest that a generically larger region41 known as the entanglement wedge

of A should be reconstructible within A; this region is defined by

E[A] ≡ D[HA] , (2.134)

where HA denotes a homology surface appearing in the HRT formula. No-

tably, whereas the definition of the causal wedge forbids reconstruction of

physics at bulk spacetime points behind causal horizons, such points may

lie within the entanglement wedge of a boundary subregion; in particular,

the entanglement wedge of the entire boundary is necessarily the entire bulk

spacetime.

A näıve puzzle posed by the entanglement wedge reconstruction paradigm

is illustrated in Figure 2.4, which demonstrates a situation in which a tripar-

tition of the boundary into subregions A, B, and C might permit some bulk

points to be reconstructible on AB, BC, or AC but not A, B, or C indi-

vidually. Such considerations have led to the realization that the AdS/CFT

map has the structure of a quantum error correcting code, where quantum

information may be simultaneously stored in an entangled state of multi-

ple quantum subystems, thereby protecting against errors within individual

subsystems. This is formalized by the existence of an embedding

V : HAdS-EFT → HCFT , (2.135)

where in this context the image of the EFT Hilbert space V (HAdS-EFT) is

referred to as a code subspace of the CFT Hilbert space. A pedagogical

introduction to this subject can be found in [130].

41The containment C[A] ⊆ E[A] can be derived subject to certain physical assumptions,
including the null energy condition.
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2.4. The AdS/CFT correspondence

Figure 2.4: Time slice of a static bulk configuration illustrating a puzzle
for entanglement wedge reconstruction. The CFT is partitioned into three
regions, A, B, and C. Ryu-Takayanagi surfaces are shown in red. The bulk
region D (dark blue) is not contained in the entanglement wedges of A, B,
or C (light blue), but is contained in the entanglement wedge of e.g. AB,
which is equal to E[A] ∪ E[B] ∪D.
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Chapter 3

Boundary F in N = 4

Supersymmetric Yang-Mills

Theory

3.1 Introduction

Conformal field theories in various dimensions may be characterized by a

parameter, sometimes known as F̃ or “generalized F”, that characterizes the

number of local degrees of freedom [153–158]. This is equal to the central

charge c for two-dimensional CFTs, and the Weyl-anomaly coefficient a

for four-dimensional CFTs. In general, F̃ may be defined from a regulator-

independent term in the sphere free energy, or alternatively from a universal

term in the vacuum entanglement entropy for a ball-shaped region. The

F̃ parameter is conjectured to decrease under renormalization group (RG)

flows between conformal fixed points. This has been proven in two, three,

and four dimensions as the c-theorem [153], F -theorem [154, 155, 159], and

a-theorem [156, 157], respectively.

A similar parameter, boundary F̃ , may be defined for boundary con-

formal field theories (BCFTs) [84, 160–162].42 It can be understood as a

measure of the number of local degrees of freedom associated with the bound-

42We recall that a BCFT is a local quantum field theory defined on a manifold with
boundary such that the theory on a half-space preserves the conformal invariance of a
CFT in one lower dimension (see e.g. [80, 106, 163, 164]). Each BCFT is associated
with some bulk CFT which governs the short-distance behavior of local bulk correlators.
Some BCFTs may be naturally understood by starting with this bulk CFT and choosing
some boundary conditions for the fields. More generally, we can couple in (arbitrarily
numerous) additional boundary degrees of freedom.
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3.1. Introduction

Figure 3.1: D-brane construction of a half-supersymmetric BCFT whose
bulk CFT is N = 4 SYM theory.

ary.43 Boundary F̃ may be defined from the partition function of the BCFT

on a hemisphere, or from the vacuum entanglement entropy of a half-ball

centered on the boundary. It is conjectured to decrease under boundary RG

flows (where a UV BCFT is perturbed by a relevant boundary operator)

[162, 165–168]; this has been proven as the g-theorem in two dimensions

[84, 160, 169] and the b-theorem in three dimensions [170, 171], but remains

a conjecture (the boundary F theorem) for four-dimensional BCFTs.

It is interesting to characterize the possible BCFTs that are associated

with a particular bulk CFT, and specifically to understand which values of

boundary F̃ are possible. This is understood for minimal model CFTs in

two dimensions, but relatively few results are available for more complicated

CFTs or CFTs in higher dimensions. The main goal of this chapter is

to investigate the possible values of boundary F in a very special higher-

dimensional example where we take the bulk CFT to be U(N) N = 4

supersymmetric Yang-Mills (SYM) theory and we constrain the BCFT to

preserve half of the supersymmetry.

This rich class of theories was classified by Gaiotto andWitten in [89, 90].

These theories preserve an OSp(4|4) subgroup of the original 4D super-

conformal symmetry group PSU(2, 2|4); they are four-dimensional BCFTs

with the maximum possible supersymmetry. Many of these theories de-

43This quantity can be negative; in this case, we can understand the boundary condition
as removing some of the bulk degrees of freedom near the boundary.
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scribe the decoupled low-energy physics of coincident D3-branes in type IIB

string theory ending in various ways on stacks of D5-branes and NS5-branes,

possibly with additional D3-branes stretched between the five-branes, as

depicted in Figure 3.1. As for their N = 4 SYM parent, the associated

half-supersymmetric BCFTs are holographic; their vacuum states are dual

to solutions of type IIB supergravity preserving SO(3)× SO(3)× SO(3, 2)

symmetry. These solutions were described in [172–175].

In this chapter, we calculate boundary F for a generalOSp(4|4)-symmetric

BCFTs whose bulk CFT is U(N) N = 4 SYM theory. First, we perform a

holographic calculation, making use of the Ryu-Takayanagi (RT) formula to

calculate the vacuum entanglement entropy for a half-ball. This was done

in [162] for a particular type of boundary condition associated with nk D3-

branes ending on k D5-branes;44 we extend these calculations to the most

general case, arising from the brane construction in Figure 3.1 with arbi-

trary numbers and configurations of branes. The result is given as equation

(3.73) in Section 3.4.2.

Next, we calculate boundary F exactly by evaluating the hemisphere par-

tition function using supersymmetric localization, for the class of boundary

conditions arising from D3-branes ending on only D5-branes or only NS5-

branes, in all possible ways.45 These results are given as equation (3.118) for

boundary conditions associated with NS5-branes and (3.120) for boundary

conditions associated with D5-branes.

We compare the localization results, which should be exact, to the su-

pergravity calculations, which are expected to be valid at large N and large

’t Hooft coupling λ. The results agree precisely in a limit where a certain

set of integers characterizing the theory (roughly, the number of D3-branes

ending on each five-brane in the string theory picture and the non-zero dif-

ferences between these numbers) are large. Perhaps surprisingly, we find

that this agreement holds exactly as a function of the ’t Hooft coupling λ,

44Similar calculations were performed in [176] for 3D superconformal theories and in
[177] for 3D BCFTs.

45Localization calculations of F for related 3D SCFTs were performed in [176], and
calculations of the interface entropy for supersymmetric Janus interfaces in 4D N = 2
SCFTs were performed in [178].
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suggesting a non-renormalization theorem governing the α′ corrections in

the string theory calculation.

Making use of our results, we analyze in Section 3.6 the distribution of

possible values of boundary F for various classes of boundary conditions.

For the most general boundary conditions associated with D5-branes and

NS5-branes, we can have arbitrarily large values of boundary F for a given

N and λ, in accord with the fact that we can couple in a 3D SCFT with

an arbitrarily large number of degrees of freedom. For the theories asso-

ciated with NS5-branes only or D5-branes only (which may be interpreted

as boundary conditions for N = 4 SYM theory without added degrees of

freedom), we find that boundary F is bounded, but can take positive or neg-

ative values. For boundary conditions associated with D5-branes only, we

find that F is typically negative at small ’t Hooft coupling, consistent with

the fact that these boundary conditions are associated with scalar vevs that

diverge near the boundary and give spatially dependent mass terms that

effectively remove some of the bulk CFT degrees of freedom. For NS5-brane

boundary conditions, we find that boundary F is positive for small λ but

that an increasing proportion of these boundary conditions become negative

as λ grows.46

3.2 Background

In this section, we review some relevant background material on boundary

F and on half-supersymmetric BCFTs associated with the N = 4 SYM

theory.

46For λ > 4πN , we can make an S-duality transformation that maps a theory with
NS5 boundary conditions to a theory with D5 boundary conditions and λ < 4πN , so it
is expected that the proportion of NS5 boundary conditions with negative boundary F
grows with λ; likewise, the proportion of D5 boundary conditions with positive boundary
F should grow with λ.
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3.2.1 Boundary entropy and boundary free energy

In a d-dimensional CFT, the vacuum state entanglement entropy of a ball-

shaped region of radius R has the general UV divergence structure

S[Bd−1
R ] = ad−2 (R/ϵ)

d−2 + ad−4 (R/ϵ)
d−4

+ . . .+

4(−1)
d−2
2 A ln(R/ϵ) 2 | d

(−1)
d−1
2 F 2 ∤ d

, (3.1)

where ϵ is a UV regulator. The coefficients ai are generally scheme-dependent,

and arise from integration of local geometric quantities over the entangling

surface, while the coefficients A and F are universal, i.e. independent of

the regularization scheme. In particular, the quantity A coincides with the

A-type trace anomaly in even dimensions, while F is the sphere free energy

F = − lnZ[Sd]; this equivalence is established by the relation

S[Bd−1
R ]univ = lnZ[Sd

R]univ (3.2)

of Casini, Huerta, and Myers for sphere entanglement entropy and the sphere

partition function in CFT [179]. These universal terms are conjectured

to be RG monotones in arbitrary dimension [158, 180–182]; this has been

proven in dimensions d = 2, 3, and 4, with the results referred to as the

(Zamolodchikov) c-theorem [153], the F -theorem [154, 155, 159], and the

a-theorem [156, 157] respectively. The conjectured extension to arbitrary

dimension is sometimes referred to as the generalized F -theorem.

In the BCFT case, we may instead consider the entanglement entropy

of a half-ball region centred at the BCFT boundary (see Figure 3.2). The

entanglement entropy now has divergences of d-dimensional and (d − 1)-
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Figure 3.2: Set-up for calculation of boundary F , showing the entangling
surface for a half-ball region centred at the boundary for a BCFT on half of
R1,3.

dimensional origin, taking the form

S[HBd−1
R ] = ãd−2 (R/ϵ)

d−2 + ãd−3 (R/ϵ)
d−3 + . . .

+

4(−1)
d−2
2 A ln(R/ϵ) + (−1)

d−2
2 F̃ 2 | d

4(−1)
d−3
2 Ã ln(R/ϵ) + (−1)

d−1
2 F 2 ∤ d

. (3.3)

The coefficient F̃ in this expression is not universal, insofar as the logarith-

mic term changes by a constant when we change regulators. However, by

analogy to the two-dimensional case [183], one may define the “boundary

entropy”

S∂(R) ≡ S(BCFT)[HBd−1
R ]− 1

2
S(CFT)[Bd−1

R ] , (3.4)

where S(CFT) denotes the entanglement entropy calculated in the ambient

CFT for a region far from the boundary.47 Given that the divergences with

d-dimensional origin cancel in this subtraction, we recover boundary entropy

47In practice, S(CFT) may be calculated in the theory without a boundary. For example,
in our holographic calculation, we compute S(CFT) using the RT formula in the AdS5×S5

geometry.
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of the form

S∂(R) = ãd−3 (R/ϵ)
d−3 + ãd−5 (R/ϵ)

d−5 + . . .

+

(−1)
d−2
2 F̃ 2 | d

4(−1)
d−3
2 Ã ln(R/ϵ) 2 ∤ d

. (3.5)

In particular, F̃ and Ã are universal terms appearing in the expression for

S∂(R). The coefficient Ã occurring for odd dimensions is related to the

boundary Weyl anomaly in BCFT, using a similar argument to that of [179]

(see also [167, 171, 184, 185]). In general, as for the CFT case, the boundary

entropy can be related to the logarithm of the partition function via

S∂(R)univ =

(
lnZ[HSd

R]−
1

2
lnZ[Sd

R]

)
univ

. (3.6)

This quantity has also been conjectured to satisfy an RG monotonicity the-

orem in various dimensions [162, 165–168] (see [87, 88, 186] for proposed

holographic g-functions); this has been proven in dimensions d = 2 and

d = 3, with the results referred to as the g-theorem [84, 160, 169] and the

b-theorem [170, 171].48

In this chapter, we will be specifically concerned with the case d = 4,

where we have

S∂(R) = S1
R

ϵ
+ Suniv . (3.7)

Defining

F∂ ≡ −Suniv , (3.8)

the universal quantity F∂ appearing in the boundary entropy is referred to

as “boundary F” or the “boundary free energy”. The boundary free energy

was conjectured to satisfy an RG monotonicity theorem in [162, 166]. Note

48In fact, the b-theorem establishes the monotonicity of the Weyl anomaly coefficient
on a dimension-2 submanifold in arbitrary dimension.

89



3.2. Background

that we may extract F∂ from the boundary entropy by

F∂ = lim
ϵ→0

(
R
d

dR
− 1

)
S∂(R) . (3.9)

In the d = 4 case, one finds exactly [185]

F∂ = − lim
ϵ→0

(
lnZ[HS4

R]−
1

2
lnZ[S4

R]

)
. (3.10)

3.2.2 Half-supersymmetric BCFTs from N = 4 SYM

In this section, we review the boundary conformal field theories constructed

from N = 4 SYM that preserve half of the supersymmetry and an OSp(4|4)
subgroup of the superconformal symmetry group PSU(2, 2|4) of N = 4

SYM. The classification of these theories is due to Gaiotto and Witten; see

[89, 90] for details. Our conventions are similar to those of [187].

Starting with the four-dimensional N = 4 SYM theory on R1,3, we can

introduce a planar boundary at x3 = 0, and consider boundary conditions

preserving the subset of conformal transformations which leave this plane

fixed. Specifically, we are interested in half-BPS boundary conditions which

preserve an OSp(4|4) superconformal subgroup of the initial superconformal

group PSU(2, 2|4). We will also consider the addition of extra degrees

of freedom at this boundary such that the full theory preserves the same

symmetry.

The bosonic sector of the residual symmetry group corresponds to

so(2, 3)× so(3)× so(3) . (3.11)

To reflect this reduction in R-symmetry, it is convenient to decompose the

scalars Φi of the N = 4 theory as triples

(X1, X2, X3) ≡ (Φ4,Φ5,Φ6) , (Y 1, Y 2, Y 3) ≡ (Φ7,Φ8,Φ9) , (3.12)
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and the fermions as49

Ψ± ≡
1

2
(1± Γ3456)Ψ . (3.14)

The four-dimensionalN = 4 vector multiplet decomposes with respect to the

reduced symmetry group into two different multiplets, naturally interpreted

from the perspective of the three-dimensionalN = 4 supersymmetry algebra

as

hyper : Ψ− , A3 , X
i , vector : Ψ+ , A0,1,2 , Y

i . (3.15)

The various theories we consider arise from the low-energy physics of string

theory configurations with D3-branes ending on and stretched between both

D5-branes and NS5-branes. We consider first boundary conditions involving

only D5-branes or only NS5-branes before considering the general case.

Single NS5-brane boundary conditions

For the boundary condition corresponding to D3-branes ending on a single

NS5-brane in the (012789) directions, Neumann boundary conditions are

imposed on the three-dimensional vector multiplet and Dirichlet conditions

on the hypermultiplet, i.e.

NS5 : F3µ| = Xi| = D3Y
i| = 0 , Ψ−| = 0 . (3.16)

Here, the vertical line denotes that the fields are evaluated at x3 = 0.

D5-brane boundary conditions

For boundary conditions associated with the D3-branes ending on one or

more D5-branes in the (012456) directions, we have a Dirichlet condition on

49Here, our notation reflects the fact that N = 4 SYM theory may be understood as
the dimensional reduction of ten-dimensional supersymmetric Yang-Mills theory. There
exists a family of inequivalent OSp(4|4) subalgebras related by U(1) outer automorphisms
of psu(2, 2|4) [89], and we are choosing a particular one which preserves SUSY generators
ε satisfying

Γ3456ε = ε . (3.13)

.

91



3.2. Background

the three-dimensional vector multiplet and a (generalized) Neumann condi-

tion on the hypermultiplet,

D5 : Fµν | = D3Xi| −
i

2
ϵijk[Xj , Xk]| = Yi| = 0 , Ψ+| = 0 . (3.17)

This is a generalization of the Dirichlet boundary condition, sometimes re-

ferred to as a “Nahm pole” boundary condition, since the scalar fields Xi

are seen to satisfy the Nahm equation in the vicinity of the boundary, with

solution

Xi =
ti

x3
, [ti, tj ] = iϵijktk . (3.18)

Here ti can be SU(2) generators in an arbitrary N -dimensional represen-

tation. Choosing the irreducible representation gives a boundary condition

that corresponds to N D3-branes along the (0123) directions ending on a sin-

gle D5-brane. The non-commuting configuration of scalar matrices describe

a non-commutative geometry corresponding to a string theory picture where

the D3-branes flare out to form a “fuzzy funnel” [188] as they approach the

D5-brane.

Taking ti to correspond to a more general reducible representation of the

SU(2) with irreducible representations of size pi gives a boundary condition

related to a more general brane configuration where groups of pi D3-branes

each end on a single D5-brane.

General D5-NS5 boundary conditions

We now describe the more general theories that arise from configurations

with both D5-branes and NS5-branes. It is convenient to consider first ND5

D5-branes and NNS5 NS5-branes at distinct locations in the x3 direction,

with the D5s stretched along the (012456) directions and the NS5s stretched

along the (012789) directions. Next, we consider N semi-infinite D3-branes

stretched in the (0123) directions, extending to x3 = ∞, each ending on

some five-brane. Finally, we can have additional D3-branes of finite extent

in x3 stretched between some of the five-branes. An example is shown in

Figure 3.3.
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As explained in [90], the low-energy physics of such configurations does

not depend on the specific positions of the five-branes along the x3 direction,

and is even unchanged if we rearrange the five-branes relative to one another,

taking into account the fact that when a D5-brane is moved past an NS5-

brane towards the direction of larger x3, we create and additional D3-brane

stretched between the D5 and NS5 [189]. We consider brane configurations

related by such re-arrangements as being part of an equivalence class.

The distinct IR superconformal BCFTs that can arise from these brane

configurations are in one-to-one correspondence with equivalence classes that

obey certain additional constraints [90].50 The distinct theories satisfying

the constraints may be represented by brane configurations of the type shown

in Figure 3.3, where we have ni D3-branes immediately to the right of the

ith NS5-brane counted from the left, and Mi D5-branes that intersect these,

with the constraint that

Mi ≥ 2ni − ni+1 − ni−1 i = 1 . . . NNS5 − 1 (3.19)

taking n0 = 0. Additional D5-branes sit to the right of all NS5-branes, and

we have a constraint that the net number of D3-branes ending on each D5-

brane from the right (i.e. the number on the right minus the number on the

left) increases from left to right.

The constraints (3.19) are equivalent to the requirement that by moving

all D5-branes to the right of all NS5-branes (while preserving their order)

as in Figure 3.3 (bottom), the net number Ki of D3-branes ending from

the right on the ith NS5-brane (starting from the left) is positive and non-

decreasing with i. By construction, the net number L̃i of D3-branes ending

from the right on the ith D5-brane (starting from the left) is also non-

decreasing with i, and satisfies L̃i > −NNS5. The quantities Li = L̃i +

NNS5 are then positive and increasing with i; the action of S-duality simply

exchanges {Ki} ↔ {Li}. The parameters Ki and L̃i (or alternatively Li),

known as “linking numbers,” are closely related to the parameters appearing

50Configurations which do not obey the constraints may fail to have a supersymmetric
vacuum or may give rise to theories which factorize into a superconformal BCFT and some
other 3D SCFT.
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in the dual supergravity solutions.51

We can read off the linking numbers without re-ordering the branes by

defining Ki in general to be the net number of D3-branes ending on the ith

NS5-brane from the right plus the total number of D5-branes to the left of

this NS5, and defining L̃i to be the net number of D3-branes ending on the

ith D5-brane from the right minus the total number of NS5-branes to the

right of this D5. With this definition, we can check that the linking numbers

do not change as we move a D5-brane past an NS5-brane. It follows that

the NS5-brane linking numbers Ki can be expressed in terms of Mi and ni

as

Ki = ni − ni−1 +

i−1∑
j=1

Mj . (3.20)

Conversely, we have thatMi is the number of D5-branes with linking number

L̃ = i−NNS5 while

nj =

j∑
i=1

(Ki + (i− j)Mi) , (3.21)

so the requirement that nj should be positive may be expressed as a con-

straint on the linking numbers.

It will also be useful to note that the rank of the gauge group for our

N = 4 SYM theory is related to the linking numbers by

N =
∑
i

Ki +
∑
i

L̃i . (3.22)

We can understand the field theory corresponding to such brane config-

urations as follows [90]. The semi-infinite D3-branes give rise to the bulk

N = 4 theory. Some subset of these end on D5-branes, so we have D5-brane

boundary conditions as above for a subset of fields. These break the gauge

symmetry from U(N) to some subgroup U(n) where n ≡ nNNS5
corresponds

to the number of D3-branes intersecting the rightmost NS5-brane. The sim-

plest situation is where these n D3-branes simply end on a single NS5-brane

51Here, the parameters (Li,Ki) were introduced in [90] while the alternative (L̃i,Ki)
were used in [174].
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3.2. Background

Figure 3.3: (Top) General brane configuration associated to a half-SUSY
BCFT whose bulk CFT is N = 4 SYM theory. For this configuration, we
have n⃗ = (2, 4, 3, 4) and M⃗ = (1, 3, 1). (Bottom) the same configuration
after a rearrangement of branes. Linking numbers Ki and L̃i for the five-
branes are shown. (Apologies to M.C. Escher.)

with no additional branes to the left. This defines some particular BCFT

with unbroken U(n) gauge symmetry. The more general theories can be un-

derstood as coupling this theory to a 3D SCFT with global U(n) symmetry,

arising from the low-energy dynamics of the brane configuration between

the leftmost and rightmost NS5-brane.

The 3D superconformal theories that are coupled at the boundary arise

from the IR limit of certain 3-dimensional linear quiver gauge theories [90,

175], where we have gauge group U(n1)× · · · × U(nNNS5−1), and

• One 3D N = 4 gauge multiplet for each gauge group factor U(ni)

(coming from strings that start and end on D3-branes stretched be-

tween NS5s);

• One 3D N = 4 bifundamental hypermultiplet for each neighbouring

pair of gauge group factors U(ni)×U(ni+1) (coming from strings that

begin and end on D3-branes on either side of an NS5-brane);
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• One 3d N = 4 fundamental hypermultiplet for each D5-brane between

NS5-branes (coming from 3-5 strings);

• An additional n 3d N = 4 hypermultiplets in the fundamental of

U(nNNS5−1).

We have a global symmetry {
∏

i U(Mi)} × U(n) under which the various

fundamental hypermultiplets transform. See [90] for additional details.

3.3 Dual gravity solutions

Through the AdS/CFT correspondence, the vacuum states of the OSp(4|4)-
symmetric BCFTs descending from U(N) N = 4 SYM theory correspond

to OSp(4|4)-symmetric solutions of type IIB supergravity. The general local

solutions with this symmetry were constructed by D’Hoker, Estes, and Gut-

perle in [172, 173] by solving the BPS equations. The SO(3, 2) × SO(3) ×
SO(3) global symmetry is reflected in the fact that the solutions are

AdS4 × S2
1 × S2

2 , (3.23)

fibred over a Riemann surface Σ. Such solutions turn out to be uniquely

characterized by specifying a pair of harmonic functions h1, h2 on Σ. The

requirement that the solutions are non-singular imposes the extra constraint

that the poles of hi lie on the boundary of Σ, and flux-quantization condi-

tions place additional constraints on the locations of these poles. Ultimately,

the harmonic functions hi and thus the entire supergravity solutions are de-

termined by the locations of the poles.

This set of solutions includes geometries dual to the BCFTs we are in-

terested in, but also geometries dual to N = 4 SYM theories with planar

codimension-one defects or interfaces between N = 4 SYM theories with

different parameters. Those solutions corresponding to the BCFT case were

specifically analyzed in [174] (see also [175]).
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3.3.1 General local solution

We now review explicitly the solutions of [172–174]; our conventions for

type IIB string theory parameters and their relation to N = 4 SYM theory

parameters are summarized in Appendix B.1.

To describe the solutions, we take Σ to be the first quadrant of the plane,

with complex coordinate w = reiθ = x+ iy and metric

ds2Σ = 4ρ2|dw|2 . (3.24)

The solutions are expressed in terms of harmonic functions h1, h2 on Σ.

The full metric for the ten-dimensional solution takes the form

ds2 = f24ds
2
AdS4 + f21ds

2
S2
1
+ f22ds

2
S2
2
+ ds2Σ , (3.25)

where f1, f2, f4 are real-valued functions on Σ, and ds2AdS4
and ds2

S2
i
are

metrics for AdS4 and two-spheres with unit radius.

The metric functions and dilaton field can be expressed via a set of real

functions

W ≡ ∂wh1∂w̄h2 + ∂wh2∂w̄h1

Ni ≡ 2h1h2|∂whi|2 − h2iW (i = 1, 2)
(3.26)

in terms of which the dilaton is

e2Φ = e4ϕ =
N2

N1
, (3.27)

and the Einstein frame metric factors are

ρ2 = e−
Φ
2

√
−N2W

h1h2
, f21 = 2e

Φ
2 h21

√
−W
N1

, (3.28)

f22 = 2e−
Φ
2 h22

√
−W
N2

, f24 = 2e−
Φ
2

√
−N2

W
. (3.29)

The solutions also have a non-trivial NS-NS three-form field strengths and

R-R three-form and five-form field strengths. We do not need these for our

97



3.3. Dual gravity solutions

analysis, but review them in Appendix B.2 for completeness.

3.3.2 Supergravity solutions: AdS5 × S5

It is useful to begin by describing the solution corresponding to AdS5 × S5.

Making use of polar coordinates on Σ, we have

h1 =
L2
AdS

4

1
√
g
cos θ

(
r

r0
+
r0
r

)
, h2 =

L2
AdS

4

√
g sin θ

(
r

r0
+
r0
r

)
, (3.30)

where g is the string coupling. Using

∂w∂w̄f =
1

4

[
1

r
∂r(r∂rf) +

1

r2
∂2θf

]
, (3.31)

we find that

W = −
L4
AdS

16r2
sin(2θ) ,

1

g
N2 = gN1 =

L8
AdS

1024r40
sin(2θ)

(r2 + r20)
4

r6
. (3.32)

This gives a constant dilaton e2ϕ = eΦ = g and a metric

ds2 = L2
AdS

{[
dθ2 + sin2(θ)dΩ2

2 + cos2(θ)dΩ2
2

]
+

[
dr2

r2
+

(r2 + r20)
2

4r20r
2

(
1

u2
(du2 − dt2 + dx⃗2))

]}
. (3.33)

The first term in square brackets is the metric of a unit five-sphere while

the second term in square brackets is the metric for AdS5 with unit AdS

radius; the latter can be checked by the change of coordinates

z = u
2rr0
r2 + r20

, x⊥ = u
r2 − r20
r20 + r2

, (3.34)

after which this factor becomes

1

z2
(dz2 + dx2⊥ − dt2 + dx⃗2) . (3.35)
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We see that the parameter LAdS corresponds to the AdS radius in Ein-

stein frame, the parameter g corresponds to the string coupling, and the

parameter r0 is only associated with our choice of coordinates, with r = r0

corresponding to the plane x⊥ = 0 in Fefferman-Graham coordinates.

3.3.3 Supergravity solutions: general BCFT solutions

The general solution we consider may be expressed most simply using Carte-

sian coordinates (x, y) on the first quadrant as52

h1 =
πℓ2s
2

x
√
g
+
ℓ2s
4

∑
A

cA√
g
ln

(
(x+ lA)

2 + y2

(x− lA)2 + y2

)
h2 =

πℓ2s
2

√
gy +

ℓ2s
4

∑
B

dB
√
g ln

(
x2 + (y + kB)

2

x2 + (y − kB)2

)
. (3.36)

We see that lA give the location of poles of h1 on the x axis, while kA give

the location of poles of h2 on the y-axis.

Near r =∞, these functions asymptote to

h1 =
ℓ2s√
g

(
π

2
r +

1

r

∑
A

cAlA

)
cos θ +O(r−2)

h2 = ℓ2s
√
g

(
π

2
r +

1

r

∑
B

dBkB

)
sin θ +O(r−2) .

(3.37)

Using these asymptotic expressions in the general equations for the metric

and dilaton, we find that the asymptotic metric is AdS5×S5, with Einstein

frame AdS length

L4
AdS = 4πℓ4s(

∑
A

cAlA +
∑
B

dBkB) (3.38)

and asymptotic dilaton eΦ = g. In the asymptotic AdS5 × S5 region, our

52Here, we assume that lA and kB are distinct. Alternatively, we could omit the coef-
ficient cA/

√
g and dB

√
g (which we will see are quantized in string theory solutions) and

allow specific lA to appear with some multiplicity. The solutions described in [174] have
set g = 1; we have used the symmetry ϕ → ϕ + ϕ0, B(2) → eϕ0B(2), C(2) → e−ϕ0C(2) to
write the solution for general asymptotic string coupling g = eΦ∞ .
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Figure 3.4: (Left) The dual geometries are AdS4 × S2 × S2 fibred over
the quadrant shown, with the first and second S2 contracting to zero on
the y- and x-axes respectively. (Right) The geometries can be understood
as corresponding to a portion of Poincaré AdS5 × S5 with Poincaré angle
Θ > Θ∗, capped off by an “end-of-the-world” brane (shaded grey region)
where the internal space degenerates smoothly. Arcs for large r correspond
to AdS4 × S5 slices of the AdS5 × S5 region.

coordinate choice here matches with the coordinates of the previous section

if we choose

r0 =
L2
AdS

2πℓ2s
. (3.39)

From (B.5), the rank of the gauge group is related to the parameters in the

solution by

N =
∑
A

cAlA +
∑
B

dBkB . (3.40)

As shown in Figure 3.4, the large r part of the geometry (where r is

the radial coordinate on the quadrant) corresponds to a portion of Poincaré

AdS5 × S5 with Poincaré angle near π/2. From (3.34) we have that the

Poincaré angle is related to r by

tanΘ =
1

2

(
r

r0
− r0

r

)
. (3.41)

The small r region corresponds to an “end-of-the-world” brane in the full

geometry where the internal space degenerates smoothly, apart from D5-
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brane throats associated with the singularities at x = lA, y = 0 and NS5-

brane throats associated with the singularities at y = kA, x = 0.

Using (B.8) and the result (4.14) from [174] for the flux integral, we find

that the number of units of D5-brane flux associated to the singularity at

lA is

N
(A)
D5 =

1
√
g
cA . (3.42)

Similarly, from (B.9) and the result (4.13) from [174], we have that the

number of units of NS5-brane flux associated with the singularity at kB is

N
(B)
NS5 =

√
gdB . (3.43)

By analyzing the five-form fluxes in the solution, [174] determined that the

number of units of five-form flux (the flux associated with D3-branes) per

five-brane coming from the D5-branes in the Ath stack and the NS5-branes

in the Bth stack are

NA
D3 = l̂A −

2

π

∑
B

N
(B)
NS5 arctan

(
g
k̂B

l̂A

)
.

N̂B
D3 = k̂B +

2

π

∑
A

N
(A)
D5 arctan

(
g
k̂B

l̂A

)
(3.44)

where we have defined k̂B = kB/
√
g and l̂A =

√
glA.

In string theory, NA
D3 and N̂B

D3 should be quantized, so while we have

a supergravity solution for any choice of {lA} and {kA}, the allowed values

corresponding to string theory solutions are discrete. We see that for suf-

ficiently small g, the parameters l̂A and k̂B should be integers up to small

corrections.
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Relating supergravity parameters and gauge theory parameters

As pointed out in [174], it is natural to identify the numbers on the left in

(3.44) with the linking numbers that specify the BCFT,53 where we have

{L̃i} = {NA
D3 with multiplicity N

(A)
D5 }

{Ki} = {N̂B
D3 with multiplicity N

(B)
NS5} . (3.45)

Alternatively, we can take lA with multiplicityN
(A)
D5 and kB with multiplicity

N
(B)
NS5 in the original definition of hi, setting cA/

√
g = dB

√
g=1. In this case,

we find the original linking numbers (LA,KA) of Gaiotto and Witten can

be related simply to the supergravity parameters as

LA =
√
glA +

2

π

∑
B

arctan
lA
kB

.

KB =
kB√
g
+

2

π

∑
A

arctan
kB
lA

, (3.46)

where the poles lA, kB are now appearing with multiplicity (i.e. they need

not all be distinct). The sum in the first expression has a geometric inter-

pretation as the acute angle between the x-axis and the line segment from

(lA, 0) to (0, kB), summed over kB, while the sum in the second expression is

the acute angle between the y axis and the segment from (0, kB) to (lA, 0),

summed over lA. We note that (3.46) are invariant under the S-duality

transformations {LA} ↔ {KB}, {lA} ↔ {kB}, g ↔ 1/g.

In order to find the supergravity solution corresponding to the vacuum

state of a particular BCFT defined by linking numbers {L̃A} and {KA},
we need to use (3.44) to solve for the parameters {l̂A} and {k̂B}, though
it is not clear how to do this explicitly in general. An interesting check is

that for any linking numbers that can be expressed in terms of supergravity

parameters as in 3.44, the field theory constraint that the quantities (3.21)

must be positive (so that the brane configuration can be represented as in

the top of Figure 3.3) is automatically satisfied, as we show in Appendix

53Recall that these corresponded to the number of D3-branes ending on each five-brane
in the bottom picture of Figure 3.3.
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B.4.

We note that the final terms in the two equations in (3.44) are bounded

in magnitude by the total number of NS5-branes and D5-branes respec-

tively. Thus, when the linking numbers (D3-branes per five-brane) are all

large compared with the total number of five-branes, the solution will have

k̂B ∼ KB and l̂A ∼ LA, and we can find the corrections to these leading

order expressions perturbatively in 1/K and/or 1/L. Similarly, when the

asymptotic string coupling g is taken small with fixed linking numbers, we

will have k̂B ∼ KB +O(g) and l̂A ∼ LA +O(g).

3.4 Holographic computation of boundary F

In this section, we perform a holographic computation of boundary F for

the general BCFTs defined by a set of linking numbers {Ki, L̃i}. This was

done for the special case of N D3-branes ending on k D5-branes (linking

numbers Ki = 0, Li = N/k with multiplicity k) in [162]; similar calculations

of F in 3D superconformal theories were performed in [176].

As we have described earlier, boundary F may be computed either by

evaluating the partition function for the theory on a hemisphere, or by

calculating the vacuum entanglement entropy for a half-ball centered on the

boundary. Either of these may be computed holographically using the dual

gravity solutions; the two calculations give rise to the same final expression

for boundary F in terms of the harmonic functions h1 and h2. In our

presentation, we will holographically calculate the entanglement entropy,

using the Ryu-Takayanagi formula [42, 147]

S(A) =
Area(Ã)

4G
, (3.47)

where Ã is the minimal area codimension-two extremal surface homologous

to the half-ball region on the boundary of AdS, computed using the Einstein-

frame metric. The boundary F is then extracted by subtracting off half of

the entanglement entropy for a ball-shaped region in N = 4 SYM and

keeping the universal piece, as in equations (3.4,3.7,3.8).
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In the ten-dimensional geometry, the extremal surface we need to con-

sider is codimension-two in the full spacetime. It wraps both of the internal

S2, and the directions spanned by the Riemann surface Σ, so that the sur-

face is specified by describing a codimension-two locus in each AdS4 slice.

It turns out that the appropriate extremal surface to compute the entangle-

ment entropy of a half-ball region of radius R centred at the BCFT boundary

is just the one described by the hemisphere {t = t0, u
2 + x⃗2 = R2, u > 0} in

each AdS4 slice, which we recall had metric

ds2AdS4 =
1

u2
(
du2 − dt2 + dx⃗2

)
, x⃗ = (x1, x2) . (3.48)

Indeed, one can verify that the surface u2+ x⃗2 = R2 is extremal in AdS from

the Euler-Lagrange equations; this holds in any dimension, provided we let

x⃗ denote the d− 2 transverse coordinates. Moreover, in the boundary coor-

dinates (t, x⃗, x⊥) of the half-space HR1,3, our extremal surface asymptotes

to the entangling surface {t = t0, x
2
⊥ + x⃗2 = R2, x⊥ < 0}.

The area of the extremal surface diverges as usual, but we will regulate

this by placing a cutoff at z = ϵ in Fefferman-Graham coordinates. Sub-

tracting off half of the area of the RT surface for a ball of radius R in N = 4

SYM theory with the same regulator, we will obtain a result that is finite

in the limit ϵ→ 0.

Regulated areas

Representing the AdS4 metric as

ds2AdS4 =
1

u2
(−dt2 + du2 + dx⃗2)

=
1

ρ2 cos2 θP
(−dt2 + dρ2 + ρ2dθ2P + ρ2 sin2 θPdϕ

2) ,
(3.49)

we have that the extremal surface is at ρ = R and fixed t. The eight-

dimensional area of this surface is

Area = 64π2
∫
rdrdθdϕ sin θPdθP

cos2 θP
ρ2f21 f

2
2 f

2
4 , (3.50)
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where the regulator z = ϵ in Fefferman-Graham coordinates corresponds

to a restriction θP < θϵP (r, θ). The regularization procedure is described

in detail in Appendix B.3. After subtracting off the regulated area of the

RT surface for a ball of radius R in N = 4 SYM theory and removing the

regulator, we find from the definitions (3.4,3.7,3.8) that

F∂ = − lim
Λ→∞

256π3

G

[∫ Λ

0
dr

∫ π
2

0
dθ rh1h2∂w∂w̄(h1h2)

−
∫ Λ

r0

dr

∫ π
2

0
dθ rhAdS

1 hAdS
2 ∂w∂w̄(h

AdS
1 hAdS

2 )

]
, (3.51)

where hAdS
i are the harmonic functions corresponding to pure AdS5×S5. We

can easily evaluate the second term explicitly using the explicit expressions

in Section 3.3.2, to give

F∂ = lim
Λ→∞

{
− 256π3

G

∫ Λ

0
dr

∫ π
2

0
dθ rh1h2∂w∂w̄(h1h2)

− π

8
NΛ2 − 1

4
N2 ln

(
Λ2π

N

)}
, (3.52)

where we have used (B.5). Alternatively, we can combine the integrands to

obtain a convergent integral,

F∂ = −π
3

G

∫
Σ
d2x{h1h2∂w∂w̄(h1h2)− J0} (3.53)

where (recalling the definition of r0 in (3.39))

J0 =

0 r < r0

hAdS
1 hAdS

2 ∂w∂w̄(h
AdS
1 hAdS

2 ) = −L8
AdS sin2(2θ)(r2+r20)

2

512r20r
4 r ≥ r0

. (3.54)

3.4.1 Boundary free energy: the integral

In this section, we will evaluate the integral (3.52) for the general solution

(3.36) in order to calculate the boundary free energy F∂ in the supergravity
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approximation. We note that the metric, expressed in terms of the param-

eters (cA, dA, lA, kA), does not depend on the string coupling g, so we can

work with g = 1. However, when expressing the results in terms of the

natural field theory parameters, some g-dependence will appear.

In terms of the parameters (cA, dA, lA, kA), we have

F∂(cA, dA, lA, kA) = −2π lim
Λ→∞

{
I(cA, dA, kA, lA,Λ)

+
1

16
NΛ2 +

1

8π
N2 ln

(
Λ2π

N

)}
, (3.55)

where we define

I(cA, dA, kA, lA,Λ)

=

∫
d2w

{
ĥ1ĥ2∂w∂w̄(ĥ1ĥ2)

}
=

1

4

∫ Λ

0
rdr

∫ π
2

0
dθ

{
ĥ1ĥ2

(
1

r
∂r(r∂r(ĥ1ĥ2)) +

1

r2
∂2θ (ĥ1ĥ2)

)} (3.56)

with

ĥ1 = r cos(θ) +
∑
A

cA
2π

ln

(
r2 + 2rlA cos(θ) + l2A
r2 − 2rlA cos(θ) + l2A

)
ĥ2 = r sin(θ) +

∑
A

dA
2π

ln

(
r2 + 2rkA sin(θ) + k2A
r2 − 2rkA sin(θ) + k2A

)
.

(3.57)

We note that the factors of ℓs present in h1 and h2 have cancelled in those

from the Einstein frame expression for G taken from Appendix B.1.

There are no terms independent of cA and dA, so we can express the full
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result as

I(cA, dA, kA, lA,Λ) =
∑
A

cAIcA +
∑
A

dAIdA +
∑
A,B

cAcBIccAB

+
∑
A,B

dAdBIddAB +
∑
A,B

cAdBIcdAB +
∑

A,B,C

cAcBdCIccdABC

+
∑

A,B,C

cAdBdCIcddABC +
∑

A,B,C,D

cAcBdCdDIccddABCD . (3.58)

Integration techniques

There are various tricks that facilitate evaluation of the integral. First, it is

helpful to use Stokes’ theorem in order to rewrite the integral as a simpler

integral plus a term that can be expressed as a boundary integral. We have

4 I(cA, dA, kA, lA,Λ)

=

∫ Λ

0
rdr

∫ π
2

0

{
−ĥ22

(
∂rĥ1∂rĥ1 +

1

r2
∂θĥ1∂θĥ1

)}
+

∫ π
2

0
dθ
{
ĥ1ĥ

2
2r∂rĥ1

}
r=Λ

+

∫ Λ

0
dr

{
−ĥ1ĥ22

1

r
∂θĥ1

}
θ=0

−
∫ Λ

0
dr

{
−ĥ1ĥ22

1

r
∂θĥ1

}
θ=π/2

.

(3.59)

In evaluating the various pieces, it is helpful to differentiate with respect

to the parameters kA or lA in order to convert the logarithms into rational

functions of r. The resulting expressions can be expressed in a partial frac-

tion expansion, with denominators that are polynomials in r and cos(θ) and

numerators that are constant or linear functions of cos(θ). After evaluating

the integrals of the various parts, we can antidifferentiate with respect to

kA or lA to obtain the final results.

We now present results for the various parts of the integral.
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Linear terms

The terms linear in cA or dA are:

IcA = − 1

16
lA Λ2 +

lA
3

24
(3.60)

and

IdA = − 1

16
kA Λ2 +

kA
3

24
. (3.61)

Quadratic terms

For the terms quadratic in cA and/or dA, we find

π IccAB = −1

4
lA lB ln (Λ)− 3

16
lA lB +

1

32
(lA + lB )

2 ln
(
(lA + lB )

2
)

− 1

32
(lA − lB )

2 ln
(
(lA − lB )

2
)

(3.62)

π IddAB = −1

4
kA kB ln (Λ)− 3

16
kA kB +

1

32
(kA + kB )

2 ln
(
(kA + kB )

2
)

− 1

32
(kA − kB )

2 ln
(
(kA − kB )

2
)

(3.63)

and

π IcdAB = −1

2
lA kB ln (Λ)− 3

8
lA kB +

1

4
kB lA ln

(
kB

2 + lA
2
)
. (3.64)
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Cubic terms

For the cubic terms, it is simpler to first give the derivatives with respect to

one of the parameters. We have:

π2
d

dkC
IccdABC =

1

8

(
lA

2

kC
2 + lA

2 +
lB

2

kC
2 + lB

2

)
ln

(
(lA − lB )

2

(lA + lB )
2

)

− 1

8

(
lA lB

kC
2 + lA

2 +
lA lB

kC
2 + lB

2

)
ln
((

lA
2 − lB

2
)2)

+
1

4

lA lB

kC
2 + lB

2 ln
(
kC

2 + lA
2
)
+

1

4

lA lB

kC
2 + lA

2 ln
(
kC

2 + lB
2
)
. (3.65)

We can integrate this with respect to kC , requiring that the result vanishes

at kC = 0. The result is conveniently written in terms of the Bloch-Wigner

dilogarithm54

D(z) = Im(Li2(z)) + arg(1− z) log |z| . (3.66)

Here, Li2 is the dilogarithm function defined as

Li2(z) =

∞∑
n=1

zn

n2
= −

∫ z

0

dt

t
log(1− t) . (3.67)

Our result is simply

IccdABC =
lA
4π2

{
D

[
lB − ikC
lA + lB

]
+D

[
lB − ikC
lB − lA

]}
+ {lA ↔ lB} . (3.68)

The diagonal terms lB = lA simplify to

IccdAAC =
lA
2π2

D

[
1

2
− i

2

kC
lA

]
. (3.69)

54This is Jamie Sully’s favorite dilogarithm. We thank him for making us aware of it
and extolling its virtues.
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Quartic terms

We find that

d

dkC

d

dkD
IccddABCD

=
1

8π3

{
lA lB(

kC
2 + lB

2
) (

kD
2 + lA

2
) ln((lA2 − lB

2
)2 (

kC
2 − kD

2
)2(

kC
2 + lA

2
)2 (

kD
2 + lB

2
)2
)

+
lA lB(

kD
2 + lB

2
) (

kC
2 + lA

2
) ln((lA2 − lB

2
)2 (

kC
2 − kD

2
)2(

kC
2 + lB

2
)2 (

kD
2 + lA

2
)2
)

+
lA

2(
kD

2 + lA
2
) (

kC
2 + lA

2
) ln((lA + lB )

2

(lA − lB )
2

)

+
lB

2(
kD

2 + lB
2
) (

kC
2 + lB

2
) ln((lA + lB )

2

(lA − lB )
2

)}
.

(3.70)

We now need to integrate this with respect to kC and kD. This time,

the result involves the trilogarithm function Li3(z) in addition to diloga-

rithms and elementary functions. Taking guidance from the cubic terms,

which could be written simply in terms of the Bloch-Wigner dilogarithm,

we can make the guess that the full result here may be obtained by keeping

only the terms with trilogarithms, and replacing each trilogarithm with the

combination

L(z) = Re(Li3(z)− ln |z|Li2(z) +
1

3
ln2 |z|Li1(z)) (3.71)

which has been shown to be real analytic on C − {0, 1} and continuous

everywhere, and to obey various nice relations such as L(1/z) = L(z). This
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turns out to be correct. The full result for the integral is

8π3 IccddABCD

= L
(
(kC + ilA) (kD + ilB )

(kD + ilA) (kC + ilB )

)
+ L

(
(kC + ilA) (kD + ilB )

(kD − ilA) (kC − ilB )

)
− L

(
(kC + ilA) (kD − ilB )
(kD + ilA) (kC − ilB )

)
− L

(
(kC + ilA) (kD − ilB )
(kD − ilA) (kC + ilB )

)
+ L

(
(kD + ilA) (lB − ikC )
(kC + kD) (lA + lB )

)
+ L

(
(lA + ikD) (kC − ilB )
(kC − kD) (lA − lB )

)
− L

(
(lA + ikD) (kC + ilB )

(kC − kD) (lA + lB )

)
− L

(
(lA + ikD) (kC + ilB )

(kC + kD) (lA − lB )

)
+ {lA ↔ lB} .

(3.72)

We note that the first two lines are already invariant under {lA ↔ lB}. The
diagonal terms can be recovered by taking a limit in the above expression.

3.4.2 Full result

Combining all terms, we can now write the full result for F∂ (in the super-

gravity approximation) associated to the theory whose vacuum has super-

gravity dual labeled by P ≡ {cA, dA, lA, kA}. The result is

F∂(P) =
3

8
N2 +

1

4
N2 ln

(
N

π

)
− π

12

∑
A

cAl
3
A −

π

12

∑
B

dBk
3
B

− 1

16

∑
A,B

cAcB

{
(lA + lB)

2 ln
(
(lA + lB)

2
)

−(lA − lB)2 ln
(
(lA − lB)2

)}
− 1

16

∑
A,B

dAdB

{
(kA + kB)

2 ln
(
(kA + kB)

2
)

−(kA − kB)2 ln
(
(kA − kB)2

)}
−1

2

∑
A,B

cAdB
{
lAkB ln

(
l2A + k2B

)}
− 1

π

∑
A,B,C

cAcBdC lA

{
D

[
lB − ikC
lA + lB

]
+D

[
lB − ikC
lB − lA

]}
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− 1

π

∑
A,B,C

dAdBcCkA

{
D

[
kB − ilC
kA + kB

]
+D

[
kB − ilC
kB − kA

]}

− 1

2π2

∑
A,B,C,D

cAcBdCdD

{
L
(
(kC + ilA) (kD + ilB )

(kD + ilA) (kC + ilB )

)
+L

(
(kC + ilA) (kD + ilB )

(kD − ilA) (kC − ilB )

)
− L

(
(kC + ilA) (kD − ilB )
(kD + ilA) (kC − ilB )

)
−L

(
(kC + ilA) (kD − ilB )
(kD − ilA) (kC + ilB )

)
+ L

(
(kD + ilA) (lB − ikC )
(kC + kD) (lA + lB )

)
+L

(
(lA + ikD) (kC − ilB )
(kC − kD) (lA − lB )

)
− L

(
(lA + ikD) (kC + ilB )

(kC − kD) (lA + lB )

)
−L

(
(lA + ikD) (kC + ilB )

(kC + kD) (lA − lB )

)}
, (3.73)

where we recall that

N =
∑
A

cAlA +
∑
B

dBkB . (3.74)

We can express the results in terms of field theory parameters using the

correspondence described in Section 3.3.3.

D5-branes only

We now consider various special cases. For theories descending from string

theory configurations with only D3-branes and D5-branes, the result simpli-

fies to

F∂ =
3

8
N2 −

∑
A

π

12
cAl

3
A −

∑
A,B

1

16
cAcB

{
(lA + lB)

2 ln

(
π
(lA + lB)

2

N

)

− (lA − lB)2 ln
(
π
(lA − lB)2

N

)}
. (3.75)

112



3.4. Holographic computation of boundary F

Expressed purely in terms of the linking numbers LA (which coincide with

L̃A in this case), this is

F∂ =
N2

4

(
3

2
+ ln

(
λ

4π2

))
− π2N

3λ

∑
A

L3
A

− 1

16

∑
A,B

{
(LA + LB)

2 ln
(
(LA + LB)

2
)

− (LA − LB)
2 ln

(
(LA − LB)

2
)}

. (3.76)

We recall that in the brane construction, {LA} represents the numbers of

D3-branes ending on each individual D5-brane, such that
∑

A LA = N .

When we have N D3-branes ending on N5 D5-branes with N/N5 D3-branes

ending on each D5, the result simplifies further to

F∂ =
N2

8

[
3− 8π2

3λ

N2

N2
5

− 2 ln

(
16π2

λ

N2

N2
5

)]
. (3.77)

This result corresponds to the case considered previously in [162]; our result

agrees precisely with that computation.

NS5-branes only

For boundary conditions associated with only NS5-branes, we find that

F∂ =
3

8
N2 −

∑
A

π

12
dAk

3
A −

∑
A,B

1

16
dAdB

{
(kA + kB)

2 ln

(
π
(kA + kB)

2

N

)

− (kA − kB)2 ln
(
π
(kA − kB)2

N

)}
. (3.78)

We can check that this may also be obtained from the D5-brane result by

S-duality, manifested in the transformations lA → kA, cA → dA, g → 1/g

(or λ→ 16π2N2/λ). Expressed purely in terms of the linking numbers KA,
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this gives

F∂ =
N2

4

(
3

2
+ ln

(4N2

λ

))
− λ

48N

∑
A

K3
A

− 1

16

∑
A,B

{
(KA +KB)

2 ln
(
(KA +KB)

2
)

− (KA −KB)
2 ln

(
(KA −KB)

2
)}

, (3.79)

where {KA} represents the numbers of D3-branes ending on each individual

NS5-brane, as for the D5-brane case above. In the case corresponding to N

D3-branes ending on N5 NS5-branes with N/N5 D3-branes ending on each

NS5, the result simplifies to

F∂ =
N2

8

[
3− λ

6N2
5

− 2 ln

(
λ

N2
5

)]
. (3.80)

Both D5-branes and NS5-branes

In the special cases with either D5-branes or NS5-branes only, we were able

to write an explicit expression for F∂ in terms of variables in the brane con-

structions, i.e. the five-brane charges and linking numbers. For the most

general constructions involving both D5-branes and NS5-branes, however,

we do not know how to analytically invert the relations between supergrav-

ity and field theory variables. In scenarios of interest, we can always choose

some field theory parameters, try to solve for the SUGRA parameters nu-

merically, and then evaluate F∂ .

3.4.3 Validity of the supergravity approximation

The results of this section are based on the supergravity approximation to

the dual gravity solutions and on the leading order RT formula without α′-

corrections or quantum corrections. However, we expect that the solution

and the RT formula receive both string loop and α′-corrections. These will

correct our result, unless the corrections vanish, for example due to some
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supersymmetric non-renormalization theorem.

Taking into account α′ and string loop corrections, the purely gravita-

tional sector of the effective action in string frame takes the schematic form

S ∼
∫
dx
√
g
[
e2ϕ
(
α′R+ (α′R)2 + . . .

)
+ e4ϕ

(
α′R+ (α′R)2 + . . .

)
+ . . .

]
, (3.81)

though certain terms vanish in type IIB supergravity due to constraints of

supersymmetry.

This implies that the α′-corrections will be suppressed if the string frame

Ricci curvature obeys

α′R≪ 1 , (3.82)

whereas string loop corrections will be suppressed if

e2ϕ ≪ 1 . (3.83)

For large N and large λ, we anticipate that these expressions should hold in

the asymptotically AdS region, but might break down in the vicinity of the

five-brane throats.

In order to estimate the expected size of the corrections to the super-

gravity results, we can employ the following general procedure:

• For an arbitrary fixed set of parameters, determine the region near a

given five-brane stack where these correction terms would naively have

a similar order of magnitude to the leading supergravity results.

• Find the size of the supergravity contribution to F∂ from this region.

Assuming that the corrections have a similar order of magnitude, we

will take this as an estimate of size of the correction terms. Terms in

the supergravity result that are parametrically larger than this will be

considered reliable.

The details of this analysis are provided in Appendix B.5. As a specific

example of the results, we find that for the theory corresponding to N
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D3-branes ending on a single stack of L̃ = N/N5 D5-branes, the expected

contribution from the part of the D5-brane throat where the string frame

curvature is large is O(N2
5 ) L̃ ∼ 1

O
(
(N5 ln L̃)

2
)

L̃≫ 1
. (3.84)

Thus, we might expect corrections to the supergravity result (3.77) at this

order.

For the case of N D3-branes ending on a single stack of K = N/N5

NS5-branes, the string frame curvature is only large in the vicinity of the

NS5-brane throat provided that NNS5 ∼ 1, in which case the expected

contribution to F∂ from this region is O(N2). Additionally, the expected

contribution from the region in which the dilaton is large is
O
((
N2

5 ln
(
K2/N2

5

))2)
K ≫ N5

O(N4
5 ) K ∼ N5

O(N2) K ≪ N5

. (3.85)

Thus, we might expect corrections to the supergravity result (3.80) at this

order.

In the next section, we will be able to calculate boundary F exactly using

supersymmetric localization, for boundary conditions associated either with

only D5-branes or only NS5-branes. We will see that the supergravity results

are actually more reliable than our analysis suggests.

3.5 Localization calculation

In the above analysis, we have extracted the value of F∂ by holographically

computing the entanglement entropy for a half-ball centred at the field the-

ory boundary. However, we recall that F∂ is also related to the partition

116



3.5. Localization calculation

function for the theory on a hemisphere; specifically, we have [166]

F∂ ≡ −
1

2
lim
r→∞

ln
( |ZHS4 |2

ZS4

)
, (3.86)

where r = R/ϵ is the quotient of the radius R of the (hemi)sphere and a UV

regulator ϵ.

Calculations of the partition function in theories with supersymmetry

are often tractable using the technique of supersymmetric localization; see

[124] for a review. In particular, the calculation of the partition function, in

addition to generic half-BPS Wilson loop observables, for N = 2 (or N = 4)

supersymmetric gauge theories on a background S4 was first performed in

[126]. Localization was later applied to compute ’t Hooft loop observables

[190] and 1
8 -BPS Wilson loop observables [191] in such theories, and gener-

alizations to theories on ellipsoids appeared in [192], as reviewed in [193].

Analogous calculations were performed for N = 2 theories on S3 in [127],

with exact evaluation of the partition function for three-dimensional quiver

gauge theories appearing in [194–196]. Localization calculations on mani-

folds with boundary in two and three dimensions first appeared in [197]; in

four dimensions, the first direct calculations appeared in [198], which con-

sidered Neumann and Dirichlet boundary conditions only, followed by [199],

which considered more general boundary conditions for the Abelian theory.

Earlier general considerations for the case with boundaries can be found in

[166, 200, 201]. More recent results involving localization and supersymmet-

ric boundaries and interfaces include [178, 187, 202, 203].

We will therefore endeavour in this section to compare our gravity results

to the calculation of F∂ using supersymmetric localization on the field theory

side. In particular, we will restrict our attention to theories arising from

D3-branes and NS5-branes only (i.e. with arbitrary linking numbers {Ki},
but {Li} = ∅). In this case, the form of the partition function as a zero-

dimensional matrix integral may be inferred by recalling the established

results for the hemisphere with Neumann boundary conditions [187, 198]

and three-dimensional quiver gauge theories [127, 194–196], and applying

the gluing formula of [201]. Using S-duality, we can obtain results for general
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D5-like boundary conditions.

In the following, we will denote

sh(x) = 2 sinhπx , ch(x) = 2 coshπx . (3.87)

The partition function of U(N) N = 4 SYM on the hemisphere HS4 with

Neumann boundary conditions is then

ZNeum.[HS
4
r=1]

=
1

N !

∫ ( N∏
i=1

dλi

)
e
− 4π2

g2
YM

∑N
i=1 λ

2
i

N∏
i<j

(λi − λj)sh(λi − λj) , (3.88)

and the partition function for a 3D N = 4 U(n1)×. . .×U(nN5) quiver gauge

theory withMi fundamental hypermultiplets associated to the U(ni) factor,

with hypermultiplet masses mi,j and Fayet-Iliopoulos (FI) parameters αi, is

Zα,m[S3
r=1] =

1

n1! . . . nN5 !

∫ N5∏
j=1

nj∏
ℓ=1

dλj,ℓe
2πiαjλj,ℓ


N5∏
j=1

nj∏
k<ℓ

sh2 (λj,k − λj,ℓ)
N5−1∏
j=1

nj∏
k=1

nj+1∏
ℓ=1

1

ch(λj,k − λj+1,ℓ)

N5∏
j=1

nj∏
ℓ=1

Mj∏
k=1

1

ch(λj,ℓ −mj,k)
. (3.89)

The hemisphere partition function for the N = 4 SYM theory coupled to a

quiver gauge theory at the boundary is then obtained by integrating the in-

tegrand of ZNeum.[HS
4] against an appropriate “brane factor” with respect

to the bulk zero modes (λ1, . . . , λN ); in this case, the brane factor coin-

cides with the partition function of the boundary theory Zα,m[S3], where

the masses in the terminal node of the quiver diagram are replaced by the

bulk zero modes (as the restriction of the bulk vector multiplet gauges the

boundary flavour symmetry). For example, in the case where the quiver

gauge theory contains vanishing FI parameters and no fundamental hyper-
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multiplets (as will arise in the present case), we recover the partition function

Z[HS4] =
1

n1! . . . nN5 !

∫ N5∏
j=1

nj∏
ℓ=1

dλj,ℓ

 e
− 4π2

g2
YM

∑N
i=1 λ

2
N5,i

×
N∏
i<j

(λN5,i − λN5,j) sh(λN5,i − λN5,j)

×
N5−1∏
j=1

nj∏
k<ℓ

sh2 (λj,k − λj,ℓ)
N5−1∏
j=1

nj∏
k=1

nj+1∏
ℓ=1

1

ch(λj,k − λj+1,ℓ)
, (3.90)

where we will let nN5 ≡ N for convenience. In the brane construction, there

are nj D3-branes stretched between the jth and (j + 1)th NS5-brane, so

that for a configuration satisfying the Gaiotto-Witten constraints, one has

0 < K1 ≤ . . . ≤ KN5 where Ki ≡ ni − ni−1.

Since the calculation of F∂ involves a subtraction of the partition function

for the theory on the full S4, we will need to know the partition function for

U(N) N = 4 SYM on S4. One has matrix integral partition function [126]

Z[S4
r=1] =

1

N !

∫ ( N∏
i=1

dλi

)
e
− 8π2

g2
YM

∑N
i=1 λ

2
i

N∏
i<j

(λi − λj)2 (3.91)

on S4 with unit radius r = 1, where the measure factor 1
N !

∏
i<j(λi − λj)2

arises from reducing the integration over the full Lie algebra u(N) to the

Cartan subalgebra, and the exponential factor is the classical contribution

to the partition function, coming from evaluating the on-shell action.55 For

S4
r with arbitrary radius, the purely gauge-theoretic measure should be in-

variant, but the classical contribution has

Son-shell
E (r) ∼ r2Son-shell

E (r = 1) . (3.92)

55The one-loop and instanton corrections vanish in this highly symmetric situation.
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The calculation can be found in Appendix B.6: it provides

Z[S4
r ] = (2π)N/2

(gYM

4πr

)N2

G2(N + 1) , (3.93)

where

G2(N + 1) ≡
N−1∏
k=1

k! (3.94)

is the Barnes G-function. One then has

lnZ[S4
r ] = −N2 ln r +

N2

2
ln
( λ

16π2N

)
+ lnG2(N + 1) +

N

2
ln 2π . (3.95)

For the purposes of comparing to the gravity calculation, we will typically

be interested in the large N behaviour of this expression, so we require the

asymptotics of

lnG2(N + 1) =

N−1∑
k=1

(N − k) ln k = N ln(N − 1)!−
N−1∑
k=1

k ln k . (3.96)

The asymptotics of the first term are given by the Stirling formula

N ln(N − 1)! = N2 lnN −N2 +O(N lnN) . (3.97)

To find an asymptotic expression for the sum
∑N−1

k=1 k ln k, we will use the

Euler-Maclaurin formula

b∑
k=a

f(k) ∼
∫ b

a
f(x) dx

+
f(b) + f(a)

2
+

∞∑
k=1

B2k

(2k)!

(
f2k−1(b)− f (2k−1)(a)

)
, (3.98)

whence
N−1∑
k=1

k ln k =
N2 lnN

2
− N2

4
+O(N lnN) . (3.99)

It is straightforward to determine the higher order terms if needed. All
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together, we have

lnG2(N + 1) =
N2

2
lnN − 3

4
N2 +O(N lnN) , (3.100)

and so

lnZ[S4
r ] = −N2 ln r+

N2

2
ln
( λ

16π2

)
− 3

4
N2+

N

2
ln 2π+O(N lnN). (3.101)

It is worth noting that, from the general theory of the structure of UV

divergences in the partition function, we anticipate

lnZ[S4
r ] = A1r

4 +A2r
2 +A ln r + F4 ; (3.102)

here, A1, A2 can be tuned through the addition of local counterterms, as can

F4 (the local counterterm corresponds to the Euler density). Although these

quantities are scheme-dependent, they will cancel out in the calculation of F∂

as long as we are consistent. The coefficient A of the logarithmic divergence,

however, is physically meaningful: it is proportional to the A-type anomaly

a for the N = 4 SYM theory on S4, with

∂

∂ ln r
lnZ[S4

r ] = −64π2a . (3.103)

The general Weyl anomaly in four dimensions is

⟨Tµ
µ⟩ = aE − cW 2 , (3.104)

with E the Euler density and W 2 shorthand for a contraction of the Weyl

tensor, and in the super-Yang-Mills theory,

⟨Tµ
µ⟩ =

N2

64π2
(
E −W 2

)
. (3.105)

We thus indeed recover a = N2

64π2 , and therefore A = −N2, which confirms

the r-dependence.
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3.5.1 Neumann boundary condition

As a warm-up to the case of general NS5-like boundary conditions, we can

consider a pure Neumann boundary condition. This corresponds to N D3-

branes ending on a single NS5-brane, associated with parameter values

NNS5 =
√
gd = 1 , k̂ =

1
√
g
k = N , (3.106)

that is,

d =

√
4πN

λ
, k =

√
λN

4π
. (3.107)

The partition function for this theory (expressed as a matrix integral in

[198]) on the unit hemisphere is

ZNeum.[HS
4
r=1] =

1

N !

∫ ( N∏
i=1

dλi

)
e
− 4π2

g2
YM

∑N
i=1 λ

2
i

N∏
i<j

(λi − λj)sh(λi − λj) . (3.108)

This is similar to the S4 partition function (3.91), except one now has one-

loop determinant

Z1−loop
Neum. =

∏
i<j

sh(λi − λj)
λi − λj

, (3.109)

where we have combined one-loop factors from an N = 2 vector multiplet

and an adjoint N = 2 hypermultiplet to recover the full one-loop determi-

nant for the N = 4 vector multiplet theory. Using the results of Appendix

B.6, this yields

ZNeum.[HS
4
r=1] = (2π)

N2

2

(g2YM

8π2

)N2

2
e

g2YMN(N+1)(N−1)

48 G2(N + 1) . (3.110)
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3.5. Localization calculation

We thus have

ln
∣∣ZNeum.[HS

4
r=1]

∣∣ = λ(N + 1)(N − 1)

48

+
N2

2
ln

(
λ

4πN

)
+ lnG2(N + 1) . (3.111)

We therefore find that F∂ is given by

FNeum.
∂ = −

(
ln |ZNeum.[HS

4
r ]|2 − lnZS4

r

)
= −λ(N

2 − 1)

48
− N2

4
ln

(
λ

N

)
+
N

4
ln 2π − 1

2
lnG2(N + 1) .

(3.112)

Using the results above, we we can expand this for large N as

FNeum.
∂ =

N2

8

(
− λ

6
− 2 ln(λ) + 3

)
+O(N lnN) . (3.113)

This may be compared to the gravity result

F SUGRA
∂ =

N2

8

(
− λ

6
− 2 ln(λ) + 3

)
. (3.114)

Remarkably, at leading order inN , the exact expression for F∂ agrees exactly

with the supergravity result as a function of λ.
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3.5. Localization calculation

3.5.2 General NS5-like boundary conditions

We would like to evaluate the integral

Z[HS4] = lim
α1,...,αN5−1→0

1

n1! . . . nN5 !

∫ N5∏
j=1

nj∏
ℓ=1

dλj,ℓ

 e
− 4π2

g2
YM

∑N
i=1 λ

2
N5,i

×

N5−1∏
j=1

nj∏
ℓ=1

e2πiαjλj,ℓ

 N∏
i<j

(λN5,i − λN5,j) sh(λN5,i − λN5,j)

×
N5−1∏
j=1

nj∏
k<ℓ

sh2 (λj,k − λj,ℓ)
N5−1∏
j=1

nj∏
k=1

nj+1∏
ℓ=1

1

cosh(λj,k − λj+1,ℓ)
. (3.115)

As detailed in Appendix B.6, this integral yields

Z[HS4] = (2π)−
∑N5−1

i=1 ni

(
g2YM

4π

)N2

2

e
g2YM
48

∑N5
c=1 Kc(Kc−1)(Kc+1)

(
N5∏
c=1

G2(Kc + 1)

)
N5∏
c<d

[
2−(Kd−Kc)Kc

(π
2

)ϵcdKc

(
((Kd −Kc)!!)

Kc

Kc−1∏
k=1

(
Kd −Kc

2
+ k

)Kc−k
)2 ]

, (3.116)

where Ki ≡ ni − ni−1 is the ith linking number (satisfying 0 < K1 ≤ . . . ≤
KN5), and

ϵcd ≡
1− (−1)Kc−Kd

2
. (3.117)

124



3.5. Localization calculation

We thus find

F∂ = − ln
∣∣Z[HS4]

∣∣+ 1

2
lnZ[S4]

= −

N(2N − 1)

4
−

N5∑
p=1

(N5 − p)Kp

 ln(2π)− N2

4
ln

(
λ

4π2N

)

− λ

48N

 N5∑
p=1

K3
p −N

− N5∑
p=1

lnG2(Kp + 1)

+
1

2
lnG2(N + 1) + ln 2

N5∑
p<q

Kp(Kq −Kp)

− ln
(π
2

) N5∑
p<q

ϵpqKp − 2

N5∑
p<q

Kp ln ((Kq −Kp)!!)

− 2

N5∑
p<q

Kp−1∑
k=1

(Kp − k) ln
(Kq −Kp

2
+ k
)
.

(3.118)

Equation (3.118) is our exact expression for the boundary free energy, in the

case with exclusively NS5-branes.

One particular case of interest is when we have N D3-branes ending on

N5 NS5-branes of equal linking number K = N/N5. In this case,

F∂ = −
(
N(N −N5)

2
+
N

4

)
ln(2π)− N2

4
ln

(
λ

4π2N

)
− λ

48

(
N2

N2
5

− 1

)
−N2

5 lnG2

(
N

N5
+ 1

)
+

1

2
lnG2(N + 1) .

(3.119)

This is the exact version of the supergravity expression (3.80).

3.5.3 General D5-like boundary conditions

We can obtain F∂ for a general D5-like boundary condition by applying

an S-duality transformation to the above result, which simply amounts to

replacing the NS5-brane linking numbers with D5-brane linking numbers,
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3.5. Localization calculation

and performing an S-transformation to the gauge coupling λ
4πN →

4πN
λ . We

thus obtain

F∂ = − ln |Z[HS4]|+ 1

2
lnZ[S4]

= −

N(2N − 1)

4
−

N5∑
p=1

(N5 − p)Lp

 ln(2π)− N2

4
ln

(
4N

λ

)

− π2N

3λ

 N5∑
p=1

L3
p −N

− N5∑
p=1

lnG2(Lp + 1)

+
1

2
lnG2(N + 1) + ln 2

N5∑
p<q

Lp(Lq − Lp)

− ln
(π
2

) N5∑
p<q

ϵpqLp − 2

N5∑
p<q

Lp ln ((Lq − Lp)!!)

− 2

N5∑
p<q

Lp−1∑
k=1

(Lp − k) ln
(Lq − Lp

2
+ k
)
.

(3.120)

For N D3-branes ending on N5 D5-branes of equal linking number L =

N/N5, we obtain

F∂ = −
(
N(N −N5)

2
+
N

4

)
ln(2π)− N2

4
ln

(
4N

λ

)
− π2N2

3λ

(
N2

N2
5

− 1

)
−N2

5 lnG2

(
N

N5
+ 1

)
+

1

2
lnG2(N + 1) .

(3.121)

This is the exact version of the supergravity expression (3.77).

Comparison with supergravity results

We now compare the localization result (3.118) with our supergravity results.

When the Kk (and their differences) are taken to be large in (3.118),

then we can use the Euler-Maclaurin approximation for the last term to
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find

− 2

N5∑
p<q

Kp−1∑
k=0

k ln

(
Kq +Kp

2
− k
)

≈ −2
N5∑
p<q

∫ Kp−1

k=0
dx x ln

(
Kq +Kp

2
− x
)

= −1

4

N5∑
p<q

(
(Kq +Kp)

2 ln(Kq +Kp)− (Kq −Kp)
2 ln(Kq −Kp)

)
−

N5∑
p<q

Kp(Kp −Kq) ln(Kq −Kp)

+
1

2

N5∑
p<q

Kp(Kq + 2(1 + ln 2)Kp) +O(N2
5K lnK) .

(3.122)

Meanwhile, using the Stirling approximation, we find

ln(M !!) =
M

2
lnM − M

2
+O(lnM) . (3.123)

Thus,

− 2

N5∑
p<q

Kp ln((Kq −Kp)!!)

= −2
N5∑
p<q

Kp

(
(Kq −Kp)

2
ln(Kq −Kp)−

(Kq −Kp)

2

)
+O(N2

5K lnK) . (3.124)
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We thus find

F∂ = −

(
N2

2
−

N5∑
p<q

Kp

)
ln(2π)− N2

4
ln

(
λ

4π2N

)
− λ

48N

N5∑
p=1

K3
p

−
N5∑
p=1

(
K2

p

2
lnKp −

3K2
p

4

)
+

1

2

(
N2

2
lnN − 3N2

4

)

+ ln 2

N5∑
p<q

Kp(Kq −Kp)− ln
(π
2

) N5∑
p<q

ϵpqKp

− 2

N5∑
p<q

Kp

(
(Kq −Kp)

2
ln(Kq −Kp)−

(Kq −Kp)

2

)

− 1

4

N5∑
p<q

(
(Kq +Kp)

2 ln(Kq +Kp)− (Kq −Kp)
2 ln(Kq −Kp)

)
−

N5∑
p<q

Kp(Kp −Kq) ln(Kq −Kp) +
1

2

N5∑
p<q

Kp(Kq + 2(1 + ln 2)Kp)

+O(N2
5K lnK) .

(3.125)

Massaging this expression, we arrive at

F∂ =
N2

4

(
3

2
+ ln

(
4N2

λ

))
− λ

48N

N5∑
p=1

K3
p

− 1

16

N5∑
p,q

[
(Kq +Kp)

2 ln
(
(Kq +Kp)

2
)

− (Kq −Kp)
2 ln

(
(Kq −Kp)

2
) ]

+O(N2
5K lnK) . (3.126)

This limit exactly reproduces our result from the supergravity calculation.

We can similarly check that the exact expression for general D5-brane bound-

ary conditions reproduces the supergravity answer when the linking numbers

and their differences are large.
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3.5. Localization calculation

Comparison for finite N

We can also compare the exact results with the supergravity results for finite

N . We note that the log λ term agrees exactly between the supergravity

and localization calculations, while the term of order λ in the NS5-brane

supergravity expression (or 1/λ in the D5-brane expression) becomes exact

under the replacement ∑
A

K3
A →

∑
A

(K3
A −KA) (3.127)

(or the same replacement with LA for the D5-brane expression).

The remaining terms are λ-independent. It is straightforward to cal-

culate these for all possible boundary conditions for small fixed values of

the gauge group rank N and compare supergravity results with the exact

results. For N = 2, N = 3, and N = 8, this λ-independent part of the

spectrum of boundary F values is shown in Figure 3.5.

We see that the results agree reasonably well even for small values of N .

As an example, for the N = 8 case, the λ-independent parts of the boundary

F values for linking numbers

(
[1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 2], [1, 1, 1, 1, 2, 2], [1, 1, 2, 2, 2],

[2, 2, 2, 2], [1, 1, 1, 1, 1, 3], [1, 1, 1, 2, 3], [1, 2, 2, 3], [1, 1, 3, 3], [2, 3, 3],

[1, 1, 1, 1, 4], [1, 1, 2, 4], [2, 2, 4], [1, 3, 4], [4, 4], [1, 1, 1, 5], [1, 2, 5],

[3, 5], [1, 1, 6], [2, 6], [1, 7], [8]
)

(3.128)

are (rounded to the nearest integer)

(101, 89, 81, 75, 71, 76, 69, 65, 61, 59, 63,

58, 55, 52, 47, 50, 47, 43, 39, 37, 30, 24) (3.129)
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3.5. Localization calculation

Figure 3.5: The λ-independent part of the spectrum of possible boundary F
values for U(N) N = 4 SYM theory with N = 2, 3, 8. Black lines represent
the exact values while red lines give the supergravity approximation.
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3.6. Statistics of boundary F

using the exact results and

(90, 82, 76, 71, 68, 71, 66, 63, 59, 57, 60,

56, 54, 51, 46, 49, 46, 43, 39, 37, 30, 24) (3.130)

with the supergravity expressions.

3.6 Statistics of boundary F

In this section, we will use our results above to investigate the distribution of

possible values for F∂ for a givenN , for various types of boundary conditions.

For fixed λ and N , there are infinitely many superconformal boundary

conditions that one can impose, since we can couple in an arbitrarily com-

plicated 3D SCFT. We expect that there is a lower bound, but no upper

bound on the allowed value of F∂ , which can be thought of as a measure of

the number of local boundary degrees of freedom.

For the class of theories corresponding to D3-branes ending on D5-branes

only or NS5-branes only, we have only a finite set of possibilities, enumerated

by partitions of N , the rank of the gauge group. In this case, we have upper

and lower bounds for F∂ that depend on N and λ, and we can investigate the

distribution of F∂ values for a given N and λ either using the supergravity

expressions or the exact results from localization.

D5-brane boundary conditions

Defining pA = LA/N , our supergravity expression for F∂ for the theories

associated with D3-branes ending on D5-branes is

F SUGRA
∂ =

N2

4

(3
2
+ ln

( λ

4π2N2

))
− π2N4

3

∑
A

p3A

− N2

16

∑
A,B

[
(pA + pB)

2 ln
(
(pA + pB)

2
)

− (pA − pB)2 ln
(
(pA − pB)2

)]
, (3.131)
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where the positivity of Li and the relation
∑

A LA = N give pA ≥ 0 and∑
A pA = 1. Thus {pA} satisfies the constraints of a probability distribution.

In Appendix B.7, we show that the minimum and maximum values of

F SUGRA
∂ are obtained by considering the distribution {pA} with the min-

imum and maximum entropy respectively, i.e. where {pA} = {1} and

{pA} = {1/N, . . . , 1/N}. This yields

N2

(
−π

2N2

3λ
− 1

4
ln
(16π2N2

λ

)
+

3

8

)
≤ F SUGRA

∂

≤ N2

(
1

4
ln
( λ

16π2

)
+

3

8
− π2

3λ

)
. (3.132)

Assuming that the same sets of linking numbers lead to the minimum and

maximum values for F∂ with the exact expression, we find a range of allowed

values

F−
∂ ≤ F∂ ≤ F+

∂ (3.133)

where F+
∂ corresponds to the maximum entropy configuration and is given

by (setting L = 1 in (3.121))

F+
∂ = −N

4
ln(2π)− N2

4
ln

(
4N

λ

)
+

1

2
lnG2(N + 1) , (3.134)

and F−
∂ corresponds to the minimum entropy configuration and is given by

(setting L = N in (3.121))

F−
∂ = −

(
N2

2
− N

4

)
ln(2π)− N2

4
ln

(
4N

λ

)
− π2N2

3λ
(N − 1)(N + 1)− 1

2
lnG2 (N + 1) . (3.135)

Using the large N approximation to the Barnes G-function, we then find
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that up to O(N lnN) corrections we have a range of allowed values

N2

(
−π

2N2

3λ
− 1

4
ln

(
16π2N2

λ

)
+

3

8

)
≤ FD5

∂

≤ N2

(
1

4
ln

(
λ

4

)
− 3

8

)
. (3.136)

We note that the upper bound is modified here compared to the supergravity

result (3.138). We emphasize that we have not proven that the left and right

sides here are actually the upper and lower bounds on F∂ ; this will be true

assuming that the same boundary conditions giving rise to the minimum

and maximum for F SUGRA
∂ also give rise to the minimum and maximum for

F∂ .

We see that this allowed range covers primarily negative values, with

the upper end of the range positive only for sufficiently large λ. We can

understand the large negative values of boundary F that arise for boundary

conditions associated with D3-branes ending on few D5-branes by the fact

that the scalars are developing an expectation value, and this results in a

large fraction of the N2 fields becoming massive, with mass increasing as we

approach the boundary. Thus, we lose degrees of freedom compared with

the situation where the scalar vevs are vanishing. The quantity boundary F

is in some sense a measure of the number of boundary degrees of freedom,

but in this case, the negative value indicates that it is taking away from the

bulk degrees of freedom.
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NS5-brane boundary conditions

A similar analysis applies to the NS5-brane boundary conditions. Defining

pA = KA/N , we have

F SUGRA
∂ =

N2

4

(
3

2
+ ln

( 4
λ

))
− λN2

48

∑
A

p3A −
N2

16

− N2

16

∑
A,B

[
(pA + pB)

2 ln
(
(pA + pB)

2
)

− (pA − pB)2 ln
(
(pA − pB)2

)]
, (3.137)

A similar argument to that for the D5-brane boundary conditions shows that

F SUGRA
∂ is again minimized/maximized on the minimum/maximum entropy

distribution, yielding

N2

(
− λ

48
− 1

4
lnλ+

3

8

)
≤ F SUGRA

∂

≤ N2

(
− λ

48N2
+

1

4
ln
(N2

λ

)
+

3

8

)
.

(3.138)

Assuming that the same sets of linking numbers lead to the minimum

and maximum values for F∂ with the exact expression, we find a range of

allowed values

F−
∂ ≤ F∂ ≤ F+

∂ (3.139)

where F−
∂ corresponds to the “minimum entropy” configuration and is given

by (setting K = N in (3.119))

F+
∂ = −

(
N2

2
− N

4

)
ln(2π)− N2

4
ln

(
λ

4π2N

)
− λ

48
(N − 1)(N + 1)− 1

2
lnG2 (N + 1) , (3.140)

and F+
∂ corresponds to the “maximum entropy” configuration and is given
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by (setting K = 1 in (3.119))

F−
∂ = −N

4
ln(2π)− N2

4
ln

(
λ

4π2N

)
+

1

2
lnG2(N + 1) , (3.141)

Using the large N approximation to the Barnes G-function, we then find

that up to O(N lnN) corrections, we have a range of allowed values

N2

(
− λ

48
− 1

4
lnλ+

3

8

)
≤ FNS5

∂ ≤ N2

(
1

4
ln

(
4π2N2

λ

)
− 3

8

)
. (3.142)

As above, the upper bound is modified here compared to the supergravity

result (3.138), which is expected since the linking numbers are not large in

this case. We emphasize that we have not proven that the left and right

sides here are actually the upper and lower bounds on F∂ ; this will be true

assuming that the same boundary conditions giving rise to the minimum

and maximum for F SUGRA
∂ also give rise to the minimum and maximum for

F∂ .

We see that at least for small values of λ, the range of allowed boundary

F values for these boundary conditions is positive, consistent with the fact

that the scalar vevs are zero for these boundary conditions and the full set

of massless bulk degrees of freedom remain.
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Figure 3.6: (Top Left) Histogram of values of λ
4πN

F∂
N2 for D5-like boundary conditions, with N = 100 and λ

4πN =

10−3. (Bottom Left) Contours of histograms of λ
4πN

F∂
N2 (bins removed for clarity) for D5-like boundary conditions,

with N = 100 and various values of λ up to the self-dual value λ = 4πN . (Top Right) Histogram of values of
1

ln(4π2N2/λ)
F∂
N2 for NS5-like boundary conditions, with N = 100 and λ

4πN = 10−3. (Bottom Right) Contours of

histograms of 1
ln(4π2N2/λ)

F∂
N2 (bins removed for clarity) for NS5-like boundary conditions, with N = 100 and various

values of λ up to the self-dual value λ = 4πN . For each histogram, we uniformly sample 5000 partitions of the
integer N , and compute F∂ for the associated boundary conditions.
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Distribution of boundary F values

It is also of interest to ask about the distribution of allowed F∂ values for

a given N and λ. In Figure 3.6, we display contour plots for histograms of

allowed values (scaled by positive factors involving λ and N for convenience)

for the case N = 100 with various values of λ. We display the results for

D5-brane and NS5-brane boundary conditions with up to the self-dual value

λ = 4πN for the ’t Hooft coupling; these confirm that, for λ below the self-

dual value, F∂ is predominantly negative for D5-brane boundary conditions,

and predominantly positive for NS5-brane boundary conditions. These plots

also implicitly reveal the behaviour of F∂ for λ above the self-dual value; the

distribution of F∂ for D5-brane boundary conditions with such λ is identical

to that for NS5-brane boundary conditions with the dual value of the ’t

Hooft coupling, and vice versa.

We also display similar plots for the case of fixed λ and increasing N

in Figure 3.7. One notable feature of these plots is that, for fixed λ, the

proportion of D5-like/NS5-like boundary conditions for which F∂ is posi-

tive/negative appears to asymptote to zero for increasing N ; this is illus-

trated further in Figure 3.8.
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Figure 3.7: (Top Left) Histogram of values of λ
4πN

F∂
N2 for D5-like boundary conditions, with λ = 20 and N = 103.

(Bottom Left) Contours of histograms of λ
4πN

F∂
N2 (bins removed for clarity) for D5-like boundary conditions,

with λ = 20 and various values of N . (Top Right) Histogram of values of 1
ln(4π2N2/λ)

F∂
N2 for NS5-like boundary

conditions, with λ = 20 and N = 103. (Bottom Right) Contours of histograms of 1
ln(4π2N2/λ)

F∂
N2 (bins removed for

clarity) for NS5-like boundary conditions, with λ = 20 and various values of N . For each histogram, we uniformly
sample 5000 partitions of the integer N , and compute F∂ for the associated boundary conditions.
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Figure 3.8: (Left) Logarithm of the proportion of D5-like boundary conditions giving rise to positive F∂ , for various
values of λ and increasing N . Values are exact, as we include every possible such boundary condition. (Right)
Logarithm of the proportion of NS5-like boundary conditions giving rise to negative F∂ , for various values of λ
and increasing N . Each point is based on 5000 uniformly sampled partitions of the integer N .
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Arbitrarily large boundary F for general boundary conditions

To conclude this section, we verify the claim that by considering general

boundary conditions involving D5-branes and NS5-branes, we can make F∂

arbitrarily large. This is expected, since the general boundary conditions

can be understood as coupling in a SCFT to one of the theories with D5-

branes or NS5-branes only, and we can take this SCFT to have arbitrarily

many degrees of freedom. We are therefore motivated to verify this claim

by considering such a boundary condition with a large number of boundary

degrees of freedom; for simplicity, we consider the case of a single stack

of many D5-branes and a single stack of many NS5-branes, with linking

numbers

L̃ = −1 , K = 1 , (3.143)

and with N,NNS5 taken to be large independent parameters, with N ≪
NNS5. We then have

ND5 = NNS5 −N . (3.144)

The supergravity parameters l̂, k̂ are given by

−1 = l̂ − 2

π
NNS5 arctan(gk̂/l̂) ,

1 = k̂ +
2

π
(NNS5 −N) arctan(gk̂/l̂) ,

(3.145)

which has perturbative solution

k̂ =
2π2

λ

N2

N2
NS5

+O

(
N3

N3
NS5

)
l̂ =

N

NNS5
+O

(
N2

N2
NS5

)
.

(3.146)

Most of the terms appearing in the uncorrected F∂ in the case of this bound-

ary condition are suppressed by N
NNS5

, and will vanish in the limit N
NNS5

→ 0

with fixed λ and N ; the terms which are not suppressed in this limit are the
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constant contribution 3
8N

2, the “cubic terms”

− 1

π
c2dlD

[
1

2
− ik

2l

]
∼ NNNS5 ln 2 ,

− 1

π
d2ckD

[
1

2
− il

2k

]
∼ 2π2

λ
N2 ln(NNS5) ,

(3.147)

and the “quartic term”

− 1

2π2
c2d2

{
L
(
(k + il)2

(k − il)2

)
+ L

(
(k + il)2

4ikl

)
− ζ(3)

}
∼ N2

NS5 ln(NNS5) . (3.148)

Meanwhile, the anticipated corrections from the vicinity of the D5-branes

and NS5-branes are O(N2
NS5) (see Appendix B.5). Consequently, the leading

term in the uncorrected F∂ , which is N2
NS5 lnNNS5, should provide a good

approximation to F∂ when NNS5 ≫ N . Since NNS5 can take arbitrarily

large values, we see that F∂ is unbounded from above.

3.7 Discussion

In this final section, we mention a few possible applications of our results.

RG ordering of BCFTs

We recall that F∂ has been conjectured to decrease under boundary renor-

malization group flows. Assuming that this is true, our results provide very

detailed information about which boundary RG flows are possible between

the various BCFTs we consider. For cases where the endpoints of an RG

flow are known, for example where we add supersymmetric mass terms or

Fayet-Illiopoulos parameters to a UV theory, it would be interesting to ver-

ify the decrease of boundary F to provide support for the conjecture; this

was done in [162] for the simple case considered there.

We note that for N > 7, the ordering of boundary F for different theories

depends on the bulk ’t Hooft coupling parameter λ. Thus, if the boundary
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F monotonicity conjecture is correct, we could have the interesting situation

where some relevant perturbation of theory A flows to theory B for small

values of λ while some relevant perturbation of theory B flows to theory A

for large values of λ. Of course, it may also be the case that no RG flows

are possible between theories whose boundary F values switch orderings as

a function of λ.

Holographic interpretation

As we discussed in Section 3.3, the addition of a boundary to the N = 4

theory corresponds to the addition of a certain type of “end-of-the-world”

brane in the five-dimensional gravity picture. This corresponds in the higher-

dimensional picture to a region where the internal space smoothly degen-

erates. In many holographic applications of BCFTs, the gravity side is

described using a bottom-up approach, in which such an ETW brane is

simply described by adding a boundary action with certain parameters to

the bulk gravitational theory [79, 87]. The simplest such parameter is the

tension of the ETW brane. An interesting question, one of the questions

that motivated this work, is to understand the range of tension parameters

in bottom-up models for which the qualitative physics can be reproduced in

microscopic constructions.

As discussed in [87], there is a direct relationship between the tension

parameter of a bottom up model and the boundary entropy, obtained by

performing a holographic calculation of boundary F as a function of this

tension. We provide this calculation in the four-dimensional case in Ap-

pendix B.8, with the result that

F = cbulk

(
T

1− T 2
+

1

2
ln

1 + T

1− T

)
. (3.149)

where we define cbulk = (L3
AdSπ/4G) and the tension is 3LAdST/(8πG). This

provides a guide to choosing the tension parameter if one wishes to model

the physics of our more detailed microscopic theories using a bottom-up

model.

142



3.7. Discussion

Generalizations

There is a significantly larger class of theories with the same symmetry as

the theories considered in this chapter. The more general theories corre-

spond to N = 4 SYM theory with a supersymmetric planar defect, or to

supersymmetric interfaces between N = 4 SYM theories with different pa-

rameters. Type IIB supergravity solutions for these theories are also known,

so it should be straightforward to use the methods of this chapter to calcu-

late the defect/interface entropy for these theories.
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Braneworlds
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Chapter 4

Black Hole Microstate

Cosmology

4.1 Introduction

The AdS/CFT correspondence is believed to provide a non-perturbative

description of quantum gravity for spacetimes which are asymptotic to anti-

de Sitter space. For a holographic CFT defined on a spatial sphere, typical

pure states with large energy expectation value correspond to microstates

of a large black hole in AdS. Simple observables in the CFT can be used

to probe the exterior geometry of this black hole, revealing the usual AdS

Schwarzschild metric with a horizon. However, what lies beyond the horizon

for such states and how this is encoded in the CFT is still a significant open

question.

Classically, a static (eternal) black hole solution can be extended to in-

clude a second full asymptotically AdS region. In this classical picture, the

horizon is not distinguished by any local physics, so a conventional expecta-

tion is that black hole microstate geometries should include at least some of

the behind-the-horizon region from the maximally extended geometry.56 On

the other hand, including the full second asymptotic region is tantamount to

introducing the degrees of freedom of a second CFT, so it is very plausible

that single-CFT microstate geometries have at most a part of the second

56Some authors have argued that quantum effects should modify these expectations: the
“fuzzball” proposal [204–207] suggests that microstate geometries are actually horizonless,
while proponents of the “firewall” scenario [59, 60] argued that consistency with unitarity
and the equivalence principle imply that the geometry must end in some type of singularity
at or just beyond the horizon. But many authors have given counter-arguments suggesting
a more conventional picture.
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asymptotic region in common with the maximally extended spacetime.

In this chapter, following [208] and [209], we will explore the possibility

that for certain CFT states, the corresponding black hole geometry is cap-

tured by the Penrose diagram in Figure 4.1.57 Here, the geometry on the

right side is the AdS-Schwarzschild black hole exterior. On the left, instead

of the full second asymptotic region that would be present in the maximally

extended black hole geometry, we have a finite region terminating on an end-

of-the-world (ETW) brane (shown in red in Figure 4.1). In the microscopic

description, this brane could involve some branes from string/M-theory the-

ory or could correspond to a place where the spacetime effectively ends due

to a degeneration of the internal space (as in a “bubble of nothing” geometry

[211]). In this note we mainly make use of a simple effective description of

the ETW brane, which we describe in detail below.

In order to decode the physics of these microstate spacetimes from the

microscopic CFT state, we need to understand the CFT description of

physics behind the black hole horizon. This is a notoriously difficult prob-

lem; the present understanding is that decoding local physics behind the

horizon requires looking at extremely complicated operators in the CFT

and furthermore that the operators needed depend on the particular CFT

state being considered [212–215].58

Fortunately, we will see that in many cases, entanglement entropy in

the CFT can probe the geometry behind the horizon, and in particular

can be used to inform us about the effective geometry of the ETW brane.

To understand this, recall that for holographic theories, the entanglement

entropy for a spatial region in the CFT corresponds to the area in the

corresponding geometry of the minimal area extremal surface homologous

to the region [42, 218]. In the geometry of Figure 4.1, we have extremal

surfaces that remain outside the black hole horizon and extremal surfaces

57The recent paper [210] that appeared during the course of our work also considered
black hole microstate geometries, describing a picture somewhat different from the one in
Figure 4.1. However, [210] were discussing typical black hole microstates, while we are
focusing on more specific states, so there is no conflict.

58For recent discussions of state dependence and bulk reconstruction of black hole inte-
riors from the quantum error correction perspective, see [216, 217].
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a(t)

Figure 4.1: Penrose diagram for spacetimes associated with certain black
hole microstates. The spacetime terminates on the left with an effective end-
of-the-world brane (shown in red on the left) whose worldvolume geometry is
a four-dimensional FRW big bang/big crunch cosmology. For certain brane
trajectories, the physics of the left region would correspond to a Randall-
Sundrum II cosmology, with gravity localized on the brane. If there are
CFT states that realize this scenario, the CFT would provide a complete
microscopic description of this cosmology.
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that penetrate the horizon and end on the ETW brane, as shown in Figure

4.2. We find that if the black hole is sufficiently large, the behind-the-horizon

region is not too large, and the CFT region is large enough, the extremal

surfaces penetrating the horizon can have the minimal area for some window

of boundary time [−tE , tE ], where tE depends on the size of the region being

considered. During this time, the entanglement entropy is time-dependent

and directly probes the geometry of the ETW brane. This was observed for

a simple case in [219].59

Our investigations were motivated by the work of [208] in the context of

the SYK model, a simple toy model for AdS/CFT. Here, Kourkoulou and

Maldacena argued that for states e−βH |B⟩ arising via Euclidean evolution

of states |B⟩ with limited entanglement, the corresponding AdS2 black hole

microstate take a form similar to that shown in Figure 4.1. This work was

generalized to CFTs in [209], where the states |B⟩ were taken to be confor-

mally invariant boundary states of the CFT.60 In that case, the correspond-

ing geometries were deduced by making use of a simple ansatz discussed by

Karch and Randall [78], and by Takayanagi [87] for how to holographically

model conformally invariant boundary conditions in CFTs. The resulting

geometries again take the form shown in Figure 4.1, with the trajectory of

the ETW brane depending on properties of the CFT boundary state. We

review the construction of these states and their corresponding geometries in

Section 4.2, generalizing the calculations to higher dimensions. We make use

of this particular set of geometries for our detailed calculations since they

are simple to interpret holographically, but we expect that the qualitative

picture of Figure 4.1 should hold in a more complete holographic treatment

of Euclidean-time-evolved CFT boundary states, and perhaps for a more

general class of states.

Our calculations of entanglement entropy for these states are described

in detail in Section 4.3. As an example of the results, Figure 4.3 shows the

59Various other works have considered the entanglement entropy in black hole geometries
with a time-dependent exterior, such as the Vaidya geometry (see, for example, [220]). In
these cases, the entanglement entropy can also probe behind the horizon.

60The states e−βH |B⟩ in this case have been considered in the past by Cardy and
collaborators [221], [222] as time-dependent states used to model quantum quenches.
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H r
H

r

Figure 4.2: Two possibilities for extremal surfaces and associated entan-
glement wedges (shaded) for ball-shaped boundary regions. The extremal
surface on the right has the topology of Sd−2 times an interval, so is con-
nected for d > 2.

entanglement entropy for ball-shaped regions in a particular five-dimensional

black hole geometry with constant-tension ETW brane behind the horizon.

For small subsystems or late times, the RT surfaces stay outside the hori-

zon and the entanglement entropy is time-independent. However, for large

enough subsystems, there is an interval of time where the minimal-area ex-

tremal surfaces probe behind the horizon and end on the ETW brane. Thus,

the entanglement entropy gives a direct probe of behind-the-horizon physics.

The ansatz of Karch/Randall/Takayanagi, in which boundaries in the

asymptotic region are extended into the bulk along a dynamical ETW brane

of a fixed tension, is the simplest proposal that reproduces expected proper-

ties of boundary CFT entanglement entropy via a holographic calculation.

For specific microstates of specific CFTs, the detailed microstate geometry is

more complicated and the ETW brane will have a more specific microscopic

description, but it is plausible that the qualitative picture is similar. Thus,

our results for the behavior of entanglement entropy using the simple ansatz
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4.1. Introduction

Figure 4.3: Time-dependence of subsystem entanglement entropy for a five-
dimensional black hole microstate modeled by a constant tension ETW
brane behind the horizon. Curves from bottom to top correspond to suc-
cessively larger ball-shaped subsystems on the sphere. For large enough
subsystems, the minimal area extremal surfaces probe behind the horizon
for an interval of time.

150



4.1. Introduction

can be viewed as a prediction for the qualitative behaviour of entanglement

entropy in actual Euclidean-time-evolved boundary states of holographic

CFTs. This can be tested by direct calculation for specific states; obtain-

ing results similar to the ones we find based on the above described simple

ansatz would provide a check that our general picture is viable.

As a warm-up for such a direct test, we perform an analogous calculation

in a generalization of the SYKmodel, a coupled-cluster model which includes

both all-to-all within-cluster interactions and spatially local between-cluster

interactions. Here, the states we consider are analogs of those of [208] ex-

tended to include the physics of spatial locality, where in place of the bound-

ary state |B⟩, we have states which are eigenstates of a collection of spin

operators formed from pairs of fermions. We numerically calculate the en-

tanglement entropy as a function of time for subsets of various numbers of

fermions (as a model for CFT spatial regions on varying size) for a single

SYK cluster and for two coupled SYK clusters. We find that the dependence

of entanglement entropy on time and on the fraction of the system being

considered is qualitatively similar to our predictions for holographic CFT

states (compare Figure 4.20 with Figure 4.3), but (as expected) without the

sharp features observed in the holographic case. We also give analytical

large-N arguments that apply to many clusters, where direct numerical cal-

culation is not possible. These calculations are described in detail in Section

4.4.

It is noteworthy that imaginary time-evolved product states have also

been considered in the condensed matter literature. For example, they

were proposed as tools to efficiently sample from thermal distributions of

spin chains. In that context, they were named minimally entangled typ-

ical thermal states (METTS), with the expectation that they would be

only lightly entangled [223, 224]. Interestingly, we find that such states are

generically highly entangled, unlike what was seen for simple gapped spin

chains [223, 224]. One can argue that the low entanglement observed in the

finite-size gapped spin chain occurs because of the strong microscopic-scale

energy gap. To better understand the holographic and SYK results in some

simple models, and with this quantum matter background in mind, we also
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give some additional results for spin/qubit models in Appendices C.3 and

C.4.

We also consider in Section 4.5 the calculation of holographic complexity

[225–227] (both the action and volume versions). These provide additional

probes of the behind-the-horizon physics, though their CFT interpretation is

less clear. We find interesting differences in behavior between the action and

volume versions. While both show the expected linear growth at late times,

the volume-complexity increases smoothly from the time-symmetric point

t = 0, while the action-complexity has a phase transition that separates

the late-time growth from an earlier period where the action-complexity is

constant.

In Section 4.6, we point out a Rindler analogue of our construction in 2+1

dimensions, where the maximally extended black hole geometry is replaced

with empty AdS space divided into complementary Rindler wedges and the

microstates are particular states of a CFT on a half-sphere with BCFT

boundary conditions. Since the BTZ geometry is obtained as a quotient of

pure AdS3, we can unwind the compact direction and reuse the results of

Section 4.3 to determine when knowledge of a boundary subsystem grants

access to the region behind the Rindler horizon.

Black hole microstate cosmology

An interesting feature of the geometries we consider is that the geometry

on the left side can be thought of as an asymptotically AdS spacetime (the

second asymptotic region of the maximally extended geometry) cut off by

a UV brane. This is reminiscent of the Randall-Sundrum II scenario for

braneworld cosmology. In that case, we have gravity localized on the brane;

that is, the physics on the brane can be described (in the case where the full

spacetime is d+1-dimensional) over a large range of scales by d-dimensional

gravity coupled to matter.61

Whether or not we have an effective four-dimensional description for

61Via another application of the AdS/CFT correspondence, some of the matter, dual
to the gravitational physics in the partial second asymptotic region, should be described
by a cutoff d-dimensional conformal field theory.
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physics in the second asymptotic region will depend on the details of the

microstate geometry, in particular on the size of the black hole relative to

the AdS scale and to the ETW brane trajectory. These in turn depend on

the details of the state we are considering. If there exist states for which the

conditions for localized gravity are realized, the effective description of the

physics beyond the black hole horizon would correspond to d-dimensional

FRW cosmology, where the evolution of the scale factor corresponds to the

evolution of the proper size of the ETW brane in the full geometry. This evo-

lution corresponds to an expanding and contracting FRW spacetime which

classically starts with a big bang and ends with a big crunch, though we ex-

pect that the early and late time physics does not have a good d-dimensional

description.

Since the states we are describing are simply specific high-energy states

in our original CFT, the original CFT should provide a complete micro-

scopic description of this cosmological physics. A very optimistic scenario is

that for the right choice of four-dimensional CFT (or other non-conformal

holographic theory) and black hole microstate, the effective four-dimensional

description of the dynamics of the ETW brane could match with the cosmol-

ogy in our universe. In this case, the CFT itself could be supersymmetric62;

the effective theory on the ETW brane will be related to the choice of state

in the CFT and need not have unbroken supersymmetry. The small cosmo-

logical constant would be explained by having a large central charge in the

CFT together with some properties of the CFT state we are considering.

Even if the relevant cosmologies turn out not to be realistic, it is in-

triguing that CFTs could provide a microscopic description of interesting

cosmological spacetimes, since the usual applications of AdS/CFT describe

spacetimes whose asymptotics are static.63 Understanding how to generalize

AdS/CFT to provide a non-perturbative formulation of quantum gravity in

cosmological situations is among the most important open questions in the

field, so it is very interesting to explore whether the scenario we describe

62Perhaps it could even be N = 4 supersymmetric Yang-Mills theory.
63There have been many other approaches to describing cosmological physics using

holography. For examples, see [228–233].

153



4.2. Microstates with behind-the-horizon geometry

can be realized in microscopic examples.

In Section 4.7, we give a more detailed review of Randall-Sundrum II cos-

mology and the conditions for localizing gravity. We then explore whether

these conditions can be met in the simple class of geometries with a con-

stant tension ETW brane. Our analysis suggests that realizing the localized

cosmology requires considering a black hole which is much larger than the

AdS scale, and an ETW brane tension that is sufficiently large. Unfortu-

nately, while the Lorentzian geometries corresponding to these parameters

are sensible, our analysis in Section 4.2 suggests that for CFT states corre-

sponding to these parameter values, a different branch of solutions for the

dual gravity solution may be preferred. However, a more complete holo-

graphic treatment for the BCFT physics will be required in order to reach

a more decisive conclusion.

Finally, in Section 4.8, we comment on various possible generalizations

and future directions.

4.2 Microstates with behind-the-horizon

geometry

In this section, we describe a specific class of CFT excited states which

describe certain black hole microstates when the CFT is holographic. For

these states, it is possible to plausibly describe the full black hole geome-

try, at least approximately. These states were suggested and studied in the

context of the SYK model by [208], and later studied directly in the con-

text of holographic CFTs in [209]. Simple specific examples of these states

and the corresponding geometries have been discussed earlier, for example

in [41, 219, 234]. The microstate geometries will be time-dependent and

hence “non-equilibrium”; for a different construction of non-equilibrium mi-

crostates with geometry behind the horizon, see [235]. In this section, we

will review and generalize those discussions, starting with the definition of

the CFT states and then moving to the geometrical interpretation. We will

make use of this specific construction in the remainder of the chapter in
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order to have an example where we can do explicit calculations.

4.2.1 CFT states

The states we consider, suggested in [208], have two equivalent descriptions.

First, consider the thermofield double state of two CFTs (on Sd) which we

will call the left and right CFTs,

|Ψβ
TFD⟩ =

1

Zβ

∑
e

−βEi
2 |Ei⟩L ⊗ |Ei⟩R . (4.1)

For high enough temperatures, this corresponds to the maximally extended

AdS-Schwarzschild black hole geometry. Now consider projecting this state

onto some particular pure state |B⟩ of the left CFT. This could be the result

of measuring the state on the left. We will be more specific about the pure

state |B⟩ later on. The result is a pure state of the right CFT given by

|Ψ̂β
B⟩ =

1

Zβ

∑
e

−βEi
2 ⟨B|Ei⟩|Ei⟩ . (4.2)

We can think of this state as the result of measuring the state of the left

CFT. If this measurement corresponds to looking at the state of local (UV)

degrees of freedom, we might expect that the effects on the corresponding

geometry propagate inwards causally (forward and backward, since we will

be considering time-symmetric states) from near the left boundary, so that

the geometry retains a significant portion of the second asymptotic region.

This motivates considering states |B⟩ with no long-range entanglement.

We can also consider a closely related state |Ψβ
B⟩ obtained by complex

conjugation of the coefficients in the superposition,

|Ψβ
B⟩ =

1

Zβ

∑
e

−βEi
2 ⟨Ei|B⟩|Ei⟩

=
1

Zβ

∑
e

−βEi
2 |Ei⟩⟨Ei|B⟩

=
1

Zβ
e−βH/2|B⟩ . (4.3)
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S
d-1

|B

β/2

Figure 4.4: Path integral description of black hole microstates |Ψβ
B⟩.

We recall that the operation |Ψ̂β
B⟩ → |Ψ

β
B⟩ is anti-linear and anti-unitary

and corresponds to the operation of time-reversal. For example, given any

Hermitian O we have that

⟨Ψβ
B(t)|O|Ψ

β
B(t)⟩ = ⟨Ψ̂

β
B(−t)|O|Ψ̂

β
B(−t)⟩ . (4.4)

In our case, we will consider states which are time-reversal symmetric, so

the two definitions are equivalent.

We see from (4.3) that the states |Ψβ
B⟩ correspond to starting from a

state |B⟩ and having a finite amount of Euclidean evolution. These states

are naturally defined by a Euclidean path integral as shown in Figure 4.4.

Since the CFT path integral for holographic theories maps onto the gravity

path integral, we will be able to make use of the AdS/CFT corresponence to

deduce the corresponding geometries if we can choose states |B⟩ for which

we can understand a gravity prescription for dealing with the boundary

condition at the initial Euclidean time.

Euclidean evolution of CFT boundary states

In the CFT context, a nice class of states to consider for the states |B⟩ are
certain boundary states of the CFT, as suggested in [208] and explored in

detail in [209]. For any CFT, we can ask whether it is possible to define

the theory on a manifold with boundary. In general, there will be a family
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(a)

NCFT

MAdS MAdS

NCFT

QETW

(b)

Figure 4.5: (a) The AdS/CFT correspondence, with an asymptotically
AdS bulk MAdS and an asymptotic boundary NCFT = ∂MAdS. (b) The
AdS/BCFT correspondence. We add a boundary to the CFT, whose holo-
graphic “image” is the ETW brane Q.

of distinct theories corresponding to different allowed boundary conditions.

Some of these boundary conditions are special in the sense that they preserve

some of the conformal symmetry of the theory; specifically, the vacuum state

of the CFT on a half space with such a boundary condition would preserve

SO(2, d− 1) of the SO(2, d) conformal symmetry.

For each of these allowed boundary conditions, we can associate a bound-

ary state |B⟩ for the CFT on Sd−1 by saying that choosing this state in (4.3)

is equivalent to the state obtained from the Euclidean path integral with our

chosen boundary condition at τ = −β/2. The boundary state itself (equal

to |Ψβ
B⟩ in the limit β → 0) is singular and has infinite energy. It also can

be understood to have no long range entanglement, as we motivated above

[236]. However, the Euclidean evolution suppresses the high-energy con-

tributions to give a state with finite energy. The states |Ψβ
B⟩ are generally

time-dependent and were considered by Cardy and collaborators in studying

quantum quenches [221, 222, 237].

For our purposes, the boundary states are interesting since now the de-

scription of our states is completely in terms of a Euclidean path integral

with a specific boundary condition for the CFT at τ = −β/2.
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4.2.2 Holographic model

In [78] and [87, 88], these boundary conditions were discussed in the context

of AdS/CFT. These references proposed that the gravitational dual for a

CFT with boundary should be some asymptotically AdS spacetime with

a dynamical IR boundary that forms an extension of the CFT boundary

into the bulk, as depicted in Figure 4.5. For simplicity, the physics of this

boundary was modeled by an end-of-the-world brane with constant tension,

and a Neumann boundary condition ensuring that no energy/momentum

flows through the brane. A modified proposal for how to treat the boundary

conditions was presented recently in [238], but for the cases we consider, the

proposals are equivalent.

It is convenient to introduce a dimensionless tension parameter T defined

so that the stress-energy tensor on the ETW brane is

8πGTab = (1− d)Tgab/LAdS , (4.5)

where T can be positive or negative. The parameter T is related to prop-

erties of the boundary state; we will review the physical significance of this

parameter in the CFT below. The gravitational action including bulk and

boundary terms is then given as

Ibulk + IETW =
1

16πG

∫
MAdS

dd+1x
√
−g (R− 2Λ)

+
1

8πG

∫
QETW

ddy
√
−h (K − (d− 1)T/LAdS) , (4.6)

where Λ = −d(d − 1)/2L2
AdS. With this simple model, various expected

properties of boundary CFT were shown to be reproduced via gravity cal-

culations. In [87] and [88], the boundary conditions were taken as spatial

boundary conditions for a CFT on an interval or strip, but we can apply

the same model in our case with a past boundary in Euclidean time.

For general holographic BCFTs, we expect that the boundary action

would be more complicated; it could include general terms involving intrin-

sic and extrinsic curvatures, sources for various bulk fields, and additional
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fields localized to the boundary. However, for this chapter, we will focus on

studying the simple one-parameter family of models as proposed in [78, 87].

Relation between tension and boundary entropy in 1+1

dimensions

The significance of the tension parameter T may be understood most sim-

ply for the case of 1+1 dimensional conformal field theories. In that case,

each conformally invariant boundary condition may be characterized by a

parameter g that can be understood as a boundary analogue of the central

charge [81, 160]. We can define g by

g = ⟨0|B⟩ (4.7)

which has the interpretation of the disk partition function, computed with

the boundary conditions associated with |B⟩. Along boundary RG flows

(defined by deforming a BCFT by some boundary operator), the parameter

g always decreases [84]. This parameter g also appears in the expression

for the vacuum entanglement entropy for the CFT on a half line [239]. The

entanglement entropy for an interval of length L including the boundary is

given in general by

S(L) =
c

6
log

(
L

ϵ

)
+ log(g) . (4.8)

Here, the second term is known as the boundary entropy and in general can

have either sign.

Using the holographic prescription, Takayanagi computed both the disk

partition function and the entanglement entropy for intervals on a half line,

showing that in both cases, the holographic calculation matches with the

CFT result if the tension parameter is related to the boundary entropy by

log g =
LAdS

4G
arctanh(T ) . (4.9)

Thus, larger values of the tension correspond to larger boundary entropy, or
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L

ln(g)

c/6 ln(L/  )ε

θ

Figure 4.6: Calculation of entanglement entropy for an interval of length L
including the boundary in the vacuum state of a holographic BCFT. The
geometry is locally Poincaré-AdS, with the ETW brane at a constant angle
θ = arcsin(T ). The boundary entropy is the x > 0 portion of the RT area.

more degrees of freedom associated with the boundary. We expect that this

qualitative relationship also holds in higher dimensions.

Geometrically, the tension parameter T determines the angle at which

the ETW brane intersects the boundary, via T = sin(θ); this also holds in

higher dimensions [88]. As an example, Figure 4.6 depicts the calculation of

entanglement entropy for an interval including the boundary in the vacuum

state of a holographic BCFT.

4.2.3 Microstate geometries from Euclidean-time-evolved

boundary states

We now make use of the simple holographic BCFT recipe to deduce the mi-

crostate geometries associated with Euclidean-time-evolved boundary states

|Ψ⟩ = e−τ0H |B⟩. (4.10)

This was already carried out for 1+1 dimensional CFT states in [209]. We

review their calculations and generalize to higher dimensions.

We are considering a CFT on a spatial Sd−1 with the state prepared by

a Euclidean path integral with boundary conditions in the Euclidean past at

τ = −τ0. We would like to work out a Lorentzian geometry dual to our state.
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Figure 4.7: Euclidean gravity solutions corresponding to the CFT path in-
tegral for ⟨B|e−βH |B⟩. The boundary geometry is a cylinder Sd × [−τ0, τ0].
The phase with a connected ETW brane configuration (left), dominant for
small τ0, gives rise to a Lorentzian black hole geometry.

We start by noting that t = 0 correlators in our state |Ψτ0
B ⟩may be computed

via the Euclidean path integral on Sd−1 times an interval of Euclidean time

τ ∈ [−τ0, τ0], with operators inserted at τ = 0. Holographically, this can

be computed using the extrapolate dictionary as a limit of bulk correlators

in a Euclidean geometry with boundary Sd−1 × [−τ0, τ0] that is determined

by extremizing the gravitational action with appropriate boundary terms

for the ETW brane. This geometry is time-reversal symmetric. To find

the Lorentzian geometry associated with our state, we take the τ = 0 bulk

slice as the initial data for our Lorentzian solution (which will also be time-

reversal symmetric).

There are two possible configurations of the ETW brane in the Euclidean

solution, depending on the values of T and τ0, as shown in Figure 4.7. The

configuration which dominates the gravitational path integral is the one with

lower action. For some values of T we can have a transition between these

solutions analogous to the Hawking-Page transition. Above a critical value

τcrit(T ), the lower action configuration is a portion of Euclidean AdS, and the

Lorentzian solution will be pure AdS with a small amount of quantummatter

(as we have for the dual of a finite temperature CFT below the Hawking-

Page transition). For τ0 < τcrit(T ), the Lorentzian solution corresponds to

a part of the AdS-Schwarzschild geometry. For T > 0, this includes the full
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exterior solution plus spacetime behind the horizon terminating with the

ETW brane.

In Appendix C.1, we present a detailed derivation of the Euclidean and

Lorentzian solutions corresponding to the Euclidean-time-evolved boundary

states; here, we summarize the basic results.

Euclidean solutions

We begin by describing the Euclidean solutions for each of the phases. In

each case, the boundary geometry is taken to be a sphere Sd−1 with unit

radius times an interval [−τ0, τ0]. For the case d = 2, our calculation is

actually equivalent to a calculation in [88], who considered the Euclidean

solutions associated with the path integral for a BCFT defined on an interval

(i.e. with two boundaries) at finite temperature. In that case, the interval

[−τ0, τ0] represented the spatial direction, while the S1 was the thermal

circle.

Since the states we consider preserve spherical symmetry, the relevant

geometries will also be spherically symmetric, and must therefore locally be

described by the Euclidean AdS-Schwarzschild geometry,

ds2 = f(r)dτ2 +
dr2

f(r)
+ r2dΩ2

d−1 (4.11)

with

f(r) =
r2

L2
AdS

+ 1−
rd−2
H

rd−2

(
r2H
L2
AdS

+ 1

)
. (4.12)

Here, the value of rH will depend on which phase we are in and on the values

of τ0 and T . The periodicity of τ (for rH > 0) is determined by smoothness

at r = rH to be τ ∼ τ + β with

β =
4πrHL

2
AdS

(d− 2)L2
AdS + dr2H

. (4.13)

This relates the inverse black hole temperature to rH .

For convenience, we will set LAdS = 1 in much of the following.
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Black hole phase

We will mainly be interested in the “black hole” phase in which the ETW

brane is connected and takes the form shown on the left in Figure 4.7.

Describing the spherically symmetric brane embedding by r(τ) we find that

the equations of motions for the brane imply that the trajectory obeys

dr

dτ
=
f(r)

Tr

√
f(r)− T 2r2 . (4.14)

Solutions that are symmetric about τ = 0 will have dr
dτ = 0 for τ = 0, with

r equal to some minimum value r0 determined in terms of T and rH by

f(r0) = T 2r20 . (4.15)

This gives the maximum ETW brane radius in the Lorenzian solution. As

we increase T , the ratio r0/rH increases monotonically from 1 at T = 0. In

d = 2, we have simply
r0
rH

=
1√

1− T 2
, (4.16)

while in higher dimensions, we will see below that this ratio reaches a finite

maximum value.

The brane locus is then given by

τ(r) =

∫ r

r0

dr̂
T r̂

f(r̂)
√
f(r̂)− T 2r̂2

. (4.17)

A typical solution for T > 0 is depicted in Figure 4.8. On the left, the full

disk represents the r, τ coordinates of the Euclidean Schwarzschild geometry,

with r ranging from rH at the center to infinity at the boundary. We have an

Sd−1 of radius r associated with each point. The ETW brane bounds a por-

tion of the spacetime (shaded) that gives the Euclidean geometry associated

with our state. This has a time-reflection symmetry about the horizontal

axis. The invariant codimension one surface (blue dashed line) gives the

t = 0 geometry (depicted on the right) for the associated Lorentzian solu-

tion. In this picture, the minimum radius sphere corresponds to the black
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d
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0
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0
2 τ
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Figure 4.8: Euclidean geometry associated with a T > 0 state. Left: ETW
brane trajectory on the (r, τ)-plane, with r = rH at the center and r = ∞
represented as the boundary of the disk. We have an Sd−1 of radius r
associated with each point. Right: spatial geometry fixed by time-reflection
symmetry (blue dashed line on the left). This provides the initial data for
the Lorentzian solution.

hole horizon, so we see that the ETW brane is behind the horizon. For

T < 0, we obtain the same trajectories, but the geometry corresponds to

the unshaded part, and the ETW brane from the initial data slice is outside

the horizon.

For a given rH and T , the Euclidean preparation time τ0 associated with

the solution corresponds to half the range of τ bounded by the ETW brane

at the AdS boundary. This is given explicitly by

τ0 =
2πrH

(d− 2) + dr2H
−
∫ ∞

r0

dr
Tr

f(r)
√
f(r)− T 2r2

. (4.18)

For a specified tension T and preparation time τ0, the temperature of the

corresponding black hole is determined implicitly by this equation. There

can be more than one pair rH that gives the same τ0 for fixed T , but in this

case, the solution with smaller rH is never the minimum action solution.

For d = 2, we find that for every value of T and rH , the ETW brane

trajectory meets the boundary of the (r, τ) disc at antipodal points, so the
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black hole temperature is very simply related to the Euclidean preparation

time,

τ0 =
β

4
=

π

2rH
. (4.19)

In this case, the ETW brane radius on the initial data slice is

r0 =
rH√
1− T 2

, (4.20)

so the region behind the horizon can become arbitrarily large as we take

T → 1.

For d > 2 we find that Euclidean solutions in this phase exist only for

a portion of the (τ0, T )-plane, shown for d = 4 in Figure 4.9. In particular,

for any rH , there is a value T∗(rH) above which there are no Euclidean

solutions with a connected ETW brane (corresponding to a Lorentzian black

hole geometry). The values T∗(rH) converge to some finite Tmax in the large

rH limit, giving an absolute maximum value for T above which no such

solutions exist.

• For d = 3, we find Tmax ≈ 0.95635. This leads to a maximum value of

maxrH{r0/rH} ≈ 2.2708 for the ratio of the ETW brane radius to the

horizon radius.

• For d = 4, we find Tmax ≈ 0.79765. This leads to a maximum value of

maxrH{r0/rH} ≈ 1.2876 for the ratio of the ETW brane radius to the

horizon radius.

For T > T∗(rH), the corresponding Euclidean solutions are not sensible

since the ETW brane overlaps itself, as shown on the left in Figure 4.10.

In this case, the thermal AdS geometry (with disconnected ETW branes

bounding the Euclidean past and future in the Euclidean solution) is appar-

ently the only possibility.

Pure AdS phase

For any value of τ0 and T > 0, we can also have a Euclidean solution where

the ETW brane has two disconnected components as shown on the right
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in Figure 4.7. The Euclidean geometry is a portion of pure Euclidean AdS

(described by the metric in (4.11) with f(r) = r2 + 1) bounded by the two

branes. We can parameterize the brane embedding by τ(r) with τ(∞) = ±τ0
for the upper and lower brane respectively. The equations determining the

brane location are the same as in the previous case since the geometry takes

the same form, so we find that the brane embedding is given by

τ(r)− τ0 =
∫ ∞

r
dr̂

T r̂

f(r̂)
√
f(r̂)− T 2r̂2

, (4.21)

with f(r) = r2 + 1. Integrating, we find (in any dimension)

τ(r)− τ0 = arcsinh

(
T√

r2 + 1
√
1− T 2

)
(4.22)

The negative τ component of the ETW brane is obtained via τ → −τ .

Comparison of the gravitational actions

In order to determine which type of solution leads to the classical geometry

associated with our state for given (τ0, T ), we need to compare the gravita-

tional action for solutions from the two phases. For d = 2, this calculation

was carried out in [88] (Section 4) while studying the Hawking-Page type

transition for BCFT on an interval. Our calculations in Appendix C.1 gen-

eralize this to arbitrary dimensions. In order to compare the actions, we

need to regularize; in each case, we can integrate up to the r corresponding

to z = ϵ in Fefferman-Graham coordinates and then take the limit ϵ → 0

after subtracting the actions for the two phases.

As examples, we find that for d = 2, we have

lim
ϵ→0

(IAdS
E (T, τ0, ϵ)− IBH

E (T, τ0, ϵ))

=
1

2G

[
−arctanh(T )− τ0

2
+
π2

8τ0

]
. (4.23)

Thus, our states (for a CFT on a unit circle) correspond to bulk black holes
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when

τ0 < −arctanh(T ) +
√
π2

4
+ arctanh2(T ) . (4.24)

This phase boundary is shown in Figure 4.9. Our result agrees with the

calculation of [88] (reinterpreted for our context).

For d = 4, the action difference is given in equation (C.25) in the ap-

pendix. The resulting phase boundary is shown in Figure 4.9; the critical τ0

decreases from π/6 at T = 0 to 0 at T = Tmax. We see that for T > 0, the

black hole solutions typically have lower action when they exist.

It is somewhat surprising that the black hole phase never dominates (and

doesn’t even exist) for any value of T above Tmax, since taking τ0 sufficiently

small would be expected to lead to a state of arbitrarily large energy, which

should correspond to a black hole in the Lorentzian picture. One possible

resolution to this puzzle is that among the possible conformally invariant

boundary conditions for holographic CFTs, there may not exist examples

that correspond to T > T∗ in our models. Our Euclidean gravity results

could be seen as a prediction of some constraints on the possible boundary

conditions for holographic CFTs (and specifically on a higher-dimensional

analogue of boundary entropy).

Alternatively, the simple prescription of holographically modelling the

CFT boundary by introducing a bulk ETW brane with some constant ten-

sion may not be adequate to model boundary conditions which naively cor-

respond to larger values of T . For example, about T∗, solving the equations

to determine the Euclidean trajectory naively gives a result that folds back

on itself. But a more complete model of the ETW brane physics would

presumably include interactions of the brane with itself that invalidate our

naive analysis. For example, an effective repulsion could turn a naively

unphysical solution into a physical one, as shown in Figure 4.10.

Lorentzian geometries

To find the Lorentzian geometries associated with our states, we use the

τ = 0, π slice of the Euclidean geometry as initial data for Lorenztian evolu-

tion. The resulting geometry is a portion of the maximally extended black
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Figure 4.9: Critical value of τ0 vs T for d = 2 (top) and d = 4 (bottom). The
thick curve on the right shows the phase boundary below which the black
hole phase dominates. The other curves on the right show τ0(T ) for fixed
values of rH , equal to 1, 1.25, 1.5, 2, 3, 4, 8, and 16 from top to bottom on
the left. Where the curves overlap in the black hole phase region, the value
of rH for the physical solution is always the larger one.
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Figure 4.10: (Left) Euclidean ETW brane trajectories for dimension d > 2
and T∗(rH) < T < Tcrit. The naive ETW brane trajectory overlaps itself.
(Right) A possible alternative picture in a more complete holographic model
with self-interactions of the ETW brane.

hole geometry, with one side truncated by a dynamical ETW brane. These

Lorentzian geometries parallel earlier results on domain walls and thin shells

in AdS [240–242].64

For T > 0, we will see that the brane emerges from the past singularity,

expands into the second asymptic region and collapses again into the future

singularity. For T < 0 we have an equivalent ETW brane trajectory but on

the other side of the black hole, so that the brane emerges from the horizon,

enters the right asymptotic region, and falls back into the horizon.

Using Schwarzschild coordinates to describe the portion of the ETW

brane trajectory in one of the black hole exterior regions, the brane locus is

given by the analytic continuation of the Euclidean trajectory,

t(r) =

∫ r

r0

dr̂
T r̂

f(r̂)
√
T 2r̂2 − f(r̂)

. (4.25)

For example, in d = 2, we obtain

cosh(trH)

√
r2

r2H
− 1 =

T√
1− T 2

. (4.26)

64Indeed, the Neumann condition reduces to the thin shell junction condition where the
extrinsic curvature on the “excised” side of the brane vanishes.
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To understand the behaviour of the brane in the full spacetime, it is

convenient to rewrite the equation in terms of the proper time λ on the

brane, related to Schwarzschild time by

dt

dλ
= γ =

√
f(r)

f(r)2 − ṙ2
. (4.27)

We then find that the coordinate-independent equation of motion for the

brane relating the proper radius r to the proper time λ is simply

ṙ2 + [f(r)− T 2r2] = 0 , (4.28)

where now the dot indicates a derivative with respect to proper time. In

terms of L = log(r), this becomes simply

L̇2 + V (L) = T 2 (4.29)

where

V (L) =
f(r)

r2
= 1 + e−2L − e−d(L−LH)(1 + e−2LH ) . (4.30)

So the trajectory L(λ) is that of a particle in a one-dimensional potential

V (L) with energy T 2. These potentials take the form shown in Figure 4.11.

Considering general values of T , we can have five classes of trajectories

(two for d = 2), as shown in Figure 4.11. However, all of our time-symmetric

Euclidean solutions in the black hole phase correspond to values T < 1

(corresponding to case (a) in Figure 4.11) for which the Lorentzian trajectory

starts at r = 0, increases to r = r0 and decreases back to r = 0. Thus, the

brane emerges from the past singularity, reaches a maximum size r0, and

shrinks again to r = 0 at the future singularity.

Using the proper time parametrization, the worldvolume metric for the

brane takes the close FRW form

ds2d = −dλ2 + r(λ)2dΩ2
d−1 , (4.31)

where the scale factor r(λ) is determined from equation (4.28). The entire
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Figure 4.11: Effective potential V (L) and types of Lorenzian ETW brane
trajectories for d = 2 (top) and d > 2 (bottom).
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trajectory covers some finite amount of proper time given by

λtot = 2

∫ r0

0

dr√
T 2r2 − f(r)

. (4.32)

For d = 2, the explicit scale factor in the worldvolume metric is

r(λ) =
rH

1− T 2
cos(λ

√
1− T 2) (4.33)

and the total proper time for the evolution is

λd=2
tot =

π√
1− T 2

. (4.34)

For d = 4, the scale factor is

r(λ) =

[
cos(2

√
1− T 2λ)

√
1 + 4(1− T 2)r2H(1 + r2H)− 1

] 1
2√

2(1− T 2)
(4.35)

and the total proper time for the evolution is

λd=4
tot =

1√
1− T 2

arccos

 1√
1 + 4(1− T 2)r2H(1 + r2H)

 . (4.36)

The d = 3 results are given in terms of elliptic integrals.

We briefly discuss the remaining trajectories in Appendix C.1, in case

they may be relevant to some other class of CFT states. In Section 4.7 we

discuss the possibility that for certain parameter ranges, we can have gravity

localized to the ETW brane, so that the FRW metrics here would represent

cosmological solutions of an effective d-dimensional theory of gravity.
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4.3 Probing behind the horizon with

entanglement

In this section, we consider the holographic calculation of entanglement en-

tropy for CFT states whose dual geometries are captured by Figure 4.1.

We will continue to use the simple model of a spacetime terminating with

an ETW brane, but we expect the same qualitative conclusions when the

ETW brane is replaced by a more complete microscopic description. We

begin by considering a general behind-the-horizon ETW brane trajectory

r(t) symmetric about t = 0 with maximum radius r(0) = r0.

We will consider the entanglement entropy for ball-shaped regions on

the sphere as a function of size and of CFT time. As depicted in Figure

4.2, we have extremal surfaces that stay outside the horizon, but we can

also have extremal surfaces that enter the horizon and end on the ETW

brane.65 Depending on the value of time and the ball size, we can have

transitions between which type of surface has least area. In the phase where

the exterior surface has less area, the CFT entanglement entropy will be

time-independent (at leading order in large N), while in the other phase, we

will have time-dependence inherited from the time-dependent ETW brane

trajectory. In our examples below, we will find that in favourable cases,

the minimal area surface for sufficiently large balls goes behind the horizon

during some time interval [−t0, t0] which increases with the size of the ball.

We now turn to the details of the holographic calculation of entanglement

entropy given some ETW brane trajectory r(t). This was calculated for the

T = 0 case in [219]. Similar methods were used in slightly more exotic

geometries, and reaching different conclusions, in [243].

65We recall that the topological constraint on the extremal surfaces is that they are
homologous to the boundary region under consideration. This means that the surface
together with the boundary region form the boundary of some portion of a spatial slice
of the bulk spacetime. The relevant regions in the two cases are shown as the shaded
regions in Figure 4.2. In the case where the extremal surfaces go behind the horizon and
terminate on the ETW brane, this region includes part of the ETW brane. We emphasize
that this is not part of the extremal surface and its area should not be included in the
holographic calculation of entanglement entropy.
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Exterior extremal surfaces

First, consider the exterior extremal surfaces, working in Schwarzschild co-

ordinates. Let θ0 be the angular size of the ball, such that θ0 = π/2 corre-

sponds to a hemisphere.

Since the exterior geometry is static, the extremal surface lives in a

constant t slice, and we can parameterize it by r(θ). In terms of this, the

area is calculated as

Areaext = ωd−2

∫
dθ rd−2 sind−2 θ

√
r2 +

1

f(r)
(r′)2 . (4.37)

where ωd−2 is the volume of a (d− 2)-dimensional sphere.

Extremizing this action, we obtain equations of motion that can be solved

numerically (or analytically in the d = 2 case — see below).

To obtain a finite result for entanglement entropy, we can regulate by in-

tegrating up to some fixed rmax corresponding to z = ϵ in Fefferman-Graham

coordinates, subtracting off the vacuum entanglement entropy (calculated

in the same way but with f(r) = r2 + 1), and then taking ϵ→ 0.

Interior extremal surfaces

To study extremal surfaces that pass through the horizon, it is convenient

to work in a set of coordinates that cover the entire spacetime. In this case,

we parameterize the surfaces by a time coordinate and a radial coordinate,

which are both taken to be functions of an angle θ on the sphere.

The only new element here is that the extremal surfaces intersect the

ETW brane, and we need to understand the appropriate boundary con-

ditions here. Since we are extremizing area, our extremal surfaces must

intersect the ETW brane normally, so that a variation of the intersection

locus does not change the surface area to first order.

174



4.3. Probing behind the horizon with entanglement

Criterion for seeing behind the horizon with entanglement

When the behind-the-horizon extremal surfaces have less area, the CFT

entanglement is detecting a difference between our state and the thermal

state. We expect that this is most likely to happen for θ = π/2, where we

are looking at the largest possible subsystem, and for t = 0, since at other

times the state will become more thermalized.

For this case θ0 = π/2, t = 0, the behind-the-horizon extremal surface

remains at θ = π/2 and t = 0, extending all the way to the ETW brane on

the far side of the horizon. This intersects the ETW brane normally by the

time-reflection symmetry. In this case, we can calculate the regulared areas

explicitly as

Areaint(θ = π/2, t = 0, r0)

= ωd−2

∫ rmax

rH

dr
rd−2√
f(r)

+ ωd−2

∫ r0

rH

dr
rd−2√
f(r)

. (4.38)

When this area is greater than the area of the exterior extremal surface

corresponding to θ = π/2, we expect that the entanglement entropy will

always be calculated in terms of the exterior surfaces. Thus, we have a basic

condition

Areaext(π/2) > Areaint(θ = π/2, t = 0, r0) (4.39)

for when entanglement will tell us something about the geometry behind the

horizon. This is more likely to be satisfied for smaller values of r0 (ETW

brane not too far past the horizon). It can fail to be satisfied even for

r0 = rH if the black hole is too small, so below some minimum value rmin
H ,

all minimal area extremal surfaces probe outside the horizon.

For d = 2, we will see below that the constraint (4.39) gives explicitly

(with factors of LAdS restored)

(rmin
H )d=2 =

2LAdS

π
arcsinh(1) (4.40)
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and that for larger rH , the maximum brane radius must satisfy

r0
rH
≤ 1

2

(
sinh

(
rHπ

2LAdS

)
+ sinh−1

(
rHπ

2LAdS

))
. (4.41)

in order that we can see behind the horizon with entanglement.

4.3.1 Example: BCFT states for d = 2

In this section, we work out the explicit results for d = 2 where the CFT lives

on a circle. We calculate the entanglement entropy S(∆θ, t) for an interval

of angular size ∆θ on the circle, as a function of CFT time t. We find that

having access to a large enough subsystem of the CFT allows us to probe

behaind the horizon, and thus renders the microstates distinguishable, in

broad qualitative agreement with [244].

Exterior extremal surfaces

First consider the exterior surfaces, which we parameterize by r(θ). Since

the integrand L in (4.37) does not depend explicitly on θ, the extremizing

surfaces must satisfy

r′
δL
δr′
− L = constant (4.42)

Calling this constant r∗ (this represents the minimum value of r on the

trajectory, where r′ = 0), we get

r′ = ± r

r∗LAdS

√
(r2 − r2H)(r2 − r2∗) . (4.43)

The solution, taking θ = 0 to be the point where r = r∗, is given implicitly

by

θ = −LAdS

2rH
ln

−2r2Hr2∗ + r2Hr
2 + r2r2∗ − 2r∗rH

√
(r2 − r2∗)(r2 − r2H)

r2(r2∗ − r2H)

 .

(4.44)
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We will only need that

θ(r =∞) =
LAdS

2rH
ln

(
r∗ + rH
r∗ − rH

)
, (4.45)

so that
r∗
rH

= coth

(
rH∆θ

2LAdS

)
. (4.46)

The area of such a surface, regulating by integrating only up to rmax =

LAdS/ϵ is

Areaext(∆θ) = 2LAdS ln

(
2LAdS

ϵrH
sinh(rH∆θ/2LAdS)

)
(4.47)

where we have dropped terms of order ϵ. Using c = 3LAdS/2G, this gives

an entropy S = Area/4G of

S =
c

3
ln

(
2LAdS

ϵrH
sinh(rH∆θ/2LAdS)

)
. (4.48)

In terms of the CFT effective temperature β, we have rH/LAdS = 2πLCFT/β,

so the result in terms of CFT parameters is

S =
c

3
ln

(
β

πϵLCFT
sinh(πLCFT∆θ/β)

)
. (4.49)

where LCFT is the size of the circle on which the CFT lives.

For comparison, the area of a disconnected surface with two parts ex-

tending from the interval boundaries to the horizon via the geodesic path

at constant θ and t gives

Area0 = 2

∫ rmax

rH

dr√
f(r)

= 2LAdS ln(2LAdS/ϵrH) . (4.50)

This shows that regardless of what happens behind the horizon, the entan-

glement entropy of an interval with size ∆θ will be calculated by an extremal
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surface outside the horizon if

sinh(rH∆θ/2LAdS) ≤ 1 . (4.51)

This will hold even for the largest interval ∆θ = π if

rH/LAdS ≤
2

π
arcsinh(1) . (4.52)

Thus, we must have a sufficiently large black hole if the CFT entanglement

entropy is going to have any chance of seeing behind the horizon.

Interior extremal surfaces

Now we consider the extremal surfaces that enter the horizon and end on

the ETW brane. Here, it is most convenient to use coordinates for which the

maximally extended black hole spacetime takes the form (with LAdS = 1)

ds2BTZ =
1

cos2(y)

(
−ds2 + dy2 + r2H cos2(s) dϕ2

)
(4.53)

where the coordinate ranges are −π/2 ≤ s, y ≤ π/2, with the horizons at

y = ±s. The coordinate transformations relating this to Schwarzschild coor-

dinates are given in Appendix C.1. Using these, the ETW brane trajectory

is found to be simply

y = − arcsin(T ) . (4.54)

We find that the general spacelike geodesics in this geometry take the

form

sin(sB − s0) sin(y) = sin(s− s0) , (4.55)

where the geodesic passes through s0 at y = 0 and ends on the AdS boundary

(y = π/2) at sB. The geodesics with fixed sB and different s0 all end on

the same point at the AdS boundary, but different points on the ETW

brane. However, requiring that the surface extremize area also with respect

to variations of this boundary point on the ETW brane implies that the

geodesic should be normal to the ETW brane worldvolume. This gives the
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y = pi/2

s = pi/2

s = -pi/2

y = -arcsin(T)

Figure 4.12: BTZ black hole in s, y coordinates, showing ETW brane (red)
and various geodesics orthogonal to it. Geometry to the left of the ETW
brane is excised.

very simple class of geodesics

s = s0 (4.56)

which sit at fixed θ and s. The black hole geometry together with these

geodesics is depicted in Figure 4.12.

We can now evaluate the area of these extremal surfaces. We will eval-

uate the area up to the same regulator point rmax = LAdS/ϵ. This gives a

maximum y of

ymax = arctan

(
e−rH tB

√
rmax/rH − 1

rmax/rH + 1

)
+ arctan

(
erH tB

√
rmax/rH − 1

rmax/rH + 1

)
,

(4.57)

Note that this depends on the Schwarzschild time tB. We have then

Areaint(∆θ) = 2

∫ ymax

− arcsin(T )

dy

cos(y)
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= 2LAdS ln

(
2LAdS

ϵrH

)
(4.58)

+2LAdS ln

(
cosh

(
tBrH
L2
AdS

)√
1 + T

1− T

)
. (4.59)

where we have again restored factors of LAdS. The regulated entanglement

entropy is then

S =
c

3
ln

(
2LAdS

ϵrH
cosh(tBrH/L

2
AdS)

√
1 + T

1− T

)
. (4.60)

In terms of CFT parameters, this gives

S =
c

3
ln

(
β

ϵπLCFT
cosh(2πtCFT/β)

√
1 + T

1− T

)
. (4.61)

This gives less area than the exterior surface (so that entanglement en-

tropy will probe the interior) when

sinh

(
rH∆θ

2LAdS

)
≥ cosh

(
tBrH
L2
AdS

)√
1 + T

1− T
. (4.62)

When this is satisfied, the entanglement entropy is given by the expression

(4.60) and is time-dependent but independent of the interval size.66 Oth-

erwise, the entanglement entropy is time-independent but depends on the

interval size and is given by (4.48).

The entanglement entropy as a function of interval size for various times

is shown in Figure 4.14. The entanglement entropy as a function of time for

various interval sizes is shown in Figure 4.13. The fact that the entanglement

entropies are independent of angle when the minimal-area extremal surfaces

probe behind the horizon is a special feature of the d = 2 case arising from

66If we express condition (4.62) in terms of the radius r of the ETW brane where we
shoot out a normal geodesic, we obtain an even simpler condition

sinh

(
rH∆θ

2LAdS

)
≥ rH

(1− LAdST )r
.
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Figure 4.13: Regulated entanglement entropy as a function of time for var-
ious interval sizes for T = 0.5, rH = 2LAdS, ϵ = 0.01. Plots from bottom to
top show ∆θ = π/4, π/2, 3π/4, π.

the fact that these extremal surfaces have two disconnected parts, each

at a constant angle. In higher dimensions, the corresponding surfaces are

connected and we have non-trivial angular dependence for all angles.

4.3.2 Results for d = 4

As another explicit example, we consider the case of a (4+1)-dimensional

black hole. In this case, the Lagrangian describing the extremal surfaces has

an explicit angle dependence, and the surfaces must be found numerically.

Interior extremal surfaces

The metric for the (4+1)-dimensional Schwarzschild black hole in Schwarzschild

coordinates is

ds2 = −f(r)dt2 + dr2

f(r)
+ r2dΩ2

3 (4.63)

where

f(r) =
r2

L2
AdS

+ 1−
r2H
r2

(
r2H
L2
AdS

+ 1

)
. (4.64)

Once again, we set LAdS = 1 in the following.
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Figure 4.14: Regulated entanglement entropy as a function of interval size
for various times for T = 0.5, rH = 2LAdS, ϵ = 0.01. Plots from bottom to
top show successively later times starting at t = 0.

To switch to Kruskal-type coordinates (Y, S), we define

t =
rH

2(2r2H + 1)
ln

(
Y + S

Y − S

)
, g(r) =

rH
2(2r2H + 1)

ln(Y 2 − S2) , (4.65)

where

g(r) =

∫ r dr

f(r)

=
rH

2(2r2H + 1)
log

∣∣∣∣rH − rrH + r

∣∣∣∣+
√
r2H + 1

2r2H + 1
arctan

r√
r2H + 1

+ C .

(4.66)

Then the metric is

ds2 =
r2He

− 2(2r2H+1)

rH
g(r)

(2r2H + 1)2
f(r)[−dS2 + dY 2] + r2dΩ2

=
r2H

(2r2H + 1)2
f(r)

Y 2 − S2
[−dS2 + dY 2] + r2dΩ2 (4.67)

where r is defined implicitly as a function of Y 2−S2 by the second equation

in (4.65). Note that the zero at r = rH in f(r) cancels the pole in the

exponential factor, leaving a function that is regular at the horizon.

Changing the constant C amounts to a rescaling of Y and S, so we can
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make a choice C = 0. Then, the metric is

ds2 = B(r)(−dS2 + dY 2) + r2dΩ2 (4.68)

with

B(r) =
r2H

(2r2H + 1)2
(r + rH)2(r2 + r2H + 1)

r2

× exp

−2
√
r2H + 1

rH
arctan

 r√
r2H + 1

 (4.69)

and r defined in terms of Y 2 − S2 as

Y 2 − S2 =

(
r − rH
r + rH

)
e

2
√

r2
H

+1

rH
arctan

(
r√

r2
H

+1

)
≡ F (r) . (4.70)

We would like to extremize the action

S = 4π

∫
dY r2 sin2 θ

√√√√B(r)

(
1−

(
dS

dY

)2
)

+ r2
(
dθ

dY

)2

≡ 4π

∫
dY L

(4.71)

for surfaces described by S(Y ), θ(Y ), r(Y ) with

Y 2 − S2 − F (r) = 0 . (4.72)

Introducing a Lagrange multiplier 4πΛ for the constraint, this gives equa-

tions

d

dY

δL
δS′ + 2ΛS = 0

d

dY

δL
δθ′
− δL
δθ

= 0

δL
δr
− Λ

dF

dr
= 0 , (4.73)
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where primes denote derivatives with respect to Y . Eliminating Λ, and using

(4.72) to get an equation for r′, we get

d

dY

δL
δS′ +

2S

dF/dr

δL
δr

= 0

d

dY

δL
δθ′
− δL
δθ

= 0

r′ +
2

dF/dr
(SS′ − Y ) = 0 . (4.74)

These differential equations can be solved numerically, along with the equa-

tion for the surface area, Areaint = A with

A′ = 4πr2 sin2 θ

√√√√B(r)

(
1−

(
dS

dY

)2
)

+ r2
(
dθ

dY

)2

, (4.75)

to determine the functions (S(Y ), θ(Y ), r(Y ), A(Y )). For initial conditions,

we should again enforce normality of the extremal surface to the brane. One

can use the brane equation of motion

ṙ2 + [f(r)− r2T 2] = 0 (4.76)

to determine the brane trajectory, and select some collection of initial coor-

dinates (tbr, rbr, θbr) on the brane. The Kruskal coordinate transformation

in equation (4.65) is then used to find the corresponding Sbr, Ybr, and we

take initial conditions

S(Ybr) = Sbr , θ(Ybr) = θbr , r(Ybr) = rbr , (4.77)

A(Ybr) = 0 , S′(Ybr) =

√
1− f(rbr)

r2brT
2 Ybr − Sbr√

1− f(rbr)
r2brT

2 Sbr − Ybr
. (4.78)

Provided that this extremal surface does not fall into the singularity, one

can integrate up to some cutoff radius r = rmax near the AdS-Schwarzschild

boundary; the result of this computation is a cutoff surface area Aint, a
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Figure 4.15: Radial profiles of extremal surfaces in Kruskal coordinates
(S, Y ). Those surfaces emitted from the brane at sufficiently late or early
times fall into the singularity.

boundary subregion size θB, and a boundary Schwarzschild time tB.

Exterior extremal surfaces

The exterior extremal surface was computed in Schwarzschild coordinates;

again, the geometry is static, so the surface lives in a constant t slice, and

one has action

S = 4π

∫
dλ r2 sin2 θ

√
(r′)2

f(r)
+ r2(θ′)2 ≡ 4π

∫
dλ L . (4.79)

There is of course a reparametrization invariance; it is numerically desirable

to consider the gauge

M(λ) ≡ (r′)2

f(r)
+ r2(θ′)2 = 1 . (4.80)
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Substituting this constraint into the equations of motion, one arrives at

2r′f(r) cos θ

√
1− (r′)2

f
+ r′′rf(r) sin θ

+
(
3f(r)− r

2

df

dr

)
(r′)2 sin θ − 3f(r)2 sin θ = 0 , (4.81)

which can be integrated together with our constraint equation, and the

equation for the surface area, Aext = A with

A′ = 4πr2 sin2 θ , (4.82)

to determine the functions (r(λ), θ(λ), A(λ)) given some initial conditions67

r(0) = r∗, θ(0) = 0, A(0) = 0. We can again integrate up to some radius

rmax to find a cutoff area Aext and a boundary angle θB.

Regularization of the surface area

To understand the divergences appearing in the entanglement entropy, it is

helpful to work out an explicit expression for the regularized entanglement

entropy in the case of vacuum AdS. In this case, the area associated with

extremal surfaces in the vacuum geometry may be calculated most easily by

working in Poincaré coordinates where the extremal surfaces are hemispheres

with some radius R(θB). Making the appropriate change of coordinates and

integrating the area up to the value of z that corresponds to r = rmax gives

Avac(θB) = 2π[r2max sin
2 θB−ln(2rmax sin θB)−

1

2
cos(2θB)]+O(r−2

max) (4.83)

In performing numerical calculations, the divergent part of this can be sub-

tracted from the cutoff areas of the extremal surfaces in the black hole

geometry to give a finite result in the limit rmax →∞.

The results of this computation are found in Figures 4.16 and 4.17. The

67The boundary angle θB turns out to be a smooth function of r∗; we can invert this
function θB(r∗) to find the appropriate initial condition r∗ given some boundary angle θB ,
allowing us to compare interior and exterior surface areas with fixed θB .
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Figure 4.16: Regulated entanglement entropy as a function of time for
T = 0.5, rH = 3LAdS, rmax = 100. Plots from bottom to top show
∆θ = 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2.
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Figure 4.17: Regulated entanglement entropy as a function of subregion size
for T = 0.5, rH = 3LAdS, rmax = 100. Plots from bottom to top show
t/LAdS = 0, 0.1, 0.2, 0.3.

188



4.4. Entanglement entropy: SYK model calculation

results are qualitatively similar to the case of d = 2 dimensions; in particular,

for a boundary subregion of sufficiently large size, the entanglement entropy

has a period of time dependence, during which the extremal surface probes

the brane geometry. However, whereas in d = 2 the entanglement entropy

was independent of the size of the boundary subregion whilst the minimal

area surface was probing the brane, this is visibly no longer the case in d = 4.

This property was unique to d = 2, where the area of the interior extremal

surface was independent of the size of the subtended boundary region.

4.4 Entanglement entropy: SYK model

calculation

Here we study a coupled-cluster generalization [245] of the single SYK cluster

consider in [208]. The first step is to define the analog of boundary states for

this model, which now include both spatial and internal degrees of freedom,

and generalize the analysis of [208]. We also present entanglement data

obtained from exact diagonalization of a single cluster and two coupled

clusters which corroborate the holographic entanglement calculations above.

Consider LN Majorana fermions χr,a with r = 1, · · · , L and a = 1, · · · , N
with N even. The basic anti-commutator is

{χr,a, χr′,a′} = δr,r′δa,a′ . (4.84)

The Majorana fermions are arranged in the Hamiltonian into L clusters of N

Majoranas each, with the clusters having only nearest neighbor interactions.

The Hamiltonian is

H =

L∑
r=1

∑
a<b<c<d

Jabcdχr,aχr,bχr,cχr,d

+
L∑

r=1

∑
a<b,c<d

J̃abcdχr,aχr,bχr+1,cχr+1,d , (4.85)

assuming periodic boundary conditions. The couplings are Gaussian random
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variables with zero mean and variances

J2
abcd =

6J2
0

N3
, J̃2

abcd =
J2
1

N3
. (4.86)

The bare Euclidean 2-point function is

⟨χr,a(τ)χr′,a′(0)⟩ =
1

2
sgn(τ)δr,r′δa,a′ . (4.87)

The dressing is the usual melonic large N analysis, but here extended to the

coupled chain [245]. For our present purpose, the key point of this analysis

is that the system possesses an emergent O(N)L symmetry at large N .

Essentially, one can apply an independent O(N) transformation acting on

the a index of χr,a at every site of the chain. This occurs because, ignoring a

possible spin glass or localized phase, the J and J̃ couplings can be treated

as dynamical fields with a particular two-point function, at large N .

A complete basis for the Hilbert space can be obtained as follows. For

each pair of Majorana operators in a cluster, χr,2k−1 and χr,2k, define the

complex fermion

cr,k =
χr,2k−1 + iχr,2k√

2
. (4.88)

These fermions obey the usual algebra, {cr,k, c†r′,k′} = δr,r′δk,k′ . It is con-

venient to label the Hilbert space using the spin-like operator ŝr,k = 1 −
2c†r,kcr,k = ±1. In terms of the Majoranas, it is

ŝr,k = 1− 2c†r,kcr,k = −2iχr,2k−1χr,2k . (4.89)

The mutual eigenbasis of all the ŝr,k operators forms a complete basis de-

noted |s⟩ and obeying

ŝr,k|s⟩ = sr,k|s⟩ . (4.90)

Note that the transformations which flip a particular even numbered χ, such

as taking χr,2k, to −χr,2k, also flips the eigenvalue of ŝs,k.
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Now consider the imaginary time evolved |s⟩ basis,

|s, β⟩ = e−βH/2|s⟩ . (4.91)

Let Qr,k denote the unitary which sends χr,2k to −χr,2k. The idea of the

analysis in [208] is, roughly speaking, that the Hamiltonian is invariant under

Qr,k at large N , so that when computing correlation functions one can use

the relation

Qr,ke
−βH/2|s⟩ ∼ e−βH/2Qr,k|s⟩ , (4.92)

though it is not literally true for fixed J and J̃ .

The goal is to analyze various physical properties in the states |s, β⟩.
The most basic object is the two-point function,

Gr,a(τ ; s, β) =
⟨s, β|χr,a(τ)χr,a(0)|s, β⟩

⟨s, β|s, β⟩
. (4.93)

Since each χr,a is mapped to ±χr,a by Qr,k, it follows from equation (4.92)

that Gr,a(τ ; s, β) is actually independent of s, at least to leading order at

large N . Hence, even though the states |s, β⟩ are not translation invariant

in general, the two-point function in state |s, β⟩ is approximately translation

invariant.

To determine the value of Gr,a(τ ; s, β), first observe that the leading large

N part of ⟨s, β|s, β⟩ is also independent of s by virtue of equation (4.92).

Summing over s gives∑
s

⟨s, β|s, β⟩ = Tr(e−βH) = Z(β) , (4.94)

so since each term is approximately equal, it must be that

⟨s, β|s, β⟩ ≈ Z(β)

D
, (4.95)

with D the Hilbert space dimension. This in turn implies that Gr,a(τ ; s, β)

must be given by the thermal answer at inverse temperature β independent

of s.
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One property of particular interest is the entanglement entropy of subre-

gions in the state |s, β⟩. The n-th Rényi entropy of a subset A of Majorana

fermions in the normalized state

σ(s, β) =
|s, β⟩⟨s, β|
⟨s, β|s, β⟩

(4.96)

is

e−(n−1)Sn(A) = Tr
(
ΠA

nσ(s, β)
⊗n
)
. (4.97)

Here ΠA
n is a shift operator acting on the n copies which swaps fermions from

the set A between the copies. It is defined for a single pair of Majoranas

below. Crucially, it is invariant under the Qr,k transformation provided it is

enacted in every copy (replica) simultaneously. Hence at the level of rigor

we have been observing, it follows that the large N part of the Renyi entropy

of a collection A in state |s, β⟩ is independent of s.
The value of Sn(A) is less clear. The same trick, summing over s, which

showed that Gr,a(τ ; s, β) was thermal does not work here because there are

two copies of the state appearing. While the thermal Renyi entropy is one

natural candidate, this cannot be true for all collections since the state

is pure. At a minimum, non-thermality must occur when A exceeds half

the total system. However, it is certainly consistent to lose thermality for

smaller sets, as this occurs in holographic calculations. To say more requires

a detailed calculation of the Renyi entropy using the replicated path integral,

which we defer to future work.

Note that, in the numerical data reported below, the entanglement en-

tropy of subsystems is computed by first grouping fermions into pairs and

performing a Jordan-Wigner transformation to a spin basis. The definition

of entanglement in the spin basis is trivial, and moreover, one can show that

the precise location of the Jordan-Wigner string does not effect the entropy

calculation. This is because given two different strings, meaning two dif-

ferent mappings of fermion states to spin states, the two final sets of spin

states are related by a local unitary. Hence as long a fixed fermion pairing

is chosen to define the spins, the choice of string is actually irrelevant since
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entanglement entropy is invariant under local unitary transformations.

4.4.1 Data for a single SYK cluster

Here data is presented for a single SYK cluster, L = 1, for a variety of N

and β. Turning first to the diagonal matrix elements of the thermal state,

Figure 4.18 shows a histogram of ⟨s, β|s, β⟩ for all s for an N = 28 cluster.

There is a clear concentration around the central value of Z(β)/D and some

evidence of an emerging universal distribution at large β, although the data

are also consistent with the distribution merely varying slowly with β.

Turning to the entanglement of subsets of the Majoranas, Figure 4.19

shows a histogram of the entanglement of the first site for various β and

N = 28. As β increases, the distribution appears to peak near one, although

the width does not dramatically decrease with increasing β. An analysis

of the data for smaller values of N suggests that the distribution is also

becoming sharper as N increases.

Next we consider the time evolution of entanglement, with Figure 4.20

showing the time evolution of entanglement for a single state s and N = 32

fermions. For small subsystems, the entanglement entropy is close to the

thermal value (obtained by imaginary time evolution acting on a random

Hilbert space state) even at zero time. The result is similar to the holo-

graphic results, where it was found that small subsystems look exactly ther-

mal to leading order in large N . By contrast, larger systems deviate from

thermality at early time but quickly thermalize. Unlike the holographic cal-

culations, there is no sharp transition as subsystem size is increased, but

such a transition is not expected at finite N .

To show that such imaginary time-evolved boundary states have a ther-

mal character for systems beyond SYK at large-N , Appendices C.3 and

C.4 contain simple spin systems where very rapid entanglement growth and

other thermal properties of boundary states can be shown exactly.
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Figure 4.18: Histogram of ⟨s, β|s, β⟩ for N = 28 Majorana fermions in a
single SYK cluster (L = 1). The different curves correspond to β = 0, · · · , 10
in units with J0 = 1. There is a strong concentration around the value
predicted by the random model studied above.

4.4.2 Data for two coupled clusters

The single cluster analysis can be repeated for two coupled clusters, with the

caveat that adding a second cluster reduces the number of fermions that can

be studied in each cluster. Figures 4.21, 4.22, and 4.23 show data for two

coupled SYK clusters, L = 2, with N = 12 Majoranas in each cluster. Some

similar features to the single cluster case are visible, although the necessarily

smaller sizes induce larger finite size effects.

In Figure 4.21 we see evidence that the diagonal matrix elements of

the thermal density are beginning to concentrate near the value Z(β)/D
predicted by the large-N analysis. However, the distribution is considerably

wider. One possible explanation is that the much smaller value of N has

led to much larger finite size effects. Figure 4.22 shows a histogram of the

entanglement of one cluster normalized to its thermal value. A similar kind

of concentration effect near the thermal value is seen as β is increased.

Finally, Figure 4.23 shows a thermofield double-like correlation averaged
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Figure 4.19: Histogram of the entropy of one pair of Majoranas for N = 28
Majorana fermions in a single SYK cluster (L = 1). The different curves
correspond to β = 0, · · · , 10 in units with J0 = 1. As β varies, the en-
tropy increases from zero and remains reasonably peaked. As the average
approaches one, the distribution appears to become more peaked, possibly
indicating convergence to a value independent of s at large β and large N .
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Figure 4.20: The solid lines are the entropies of different sized subsystems
as a function of time for N = 32 Majoranas in a single SYK cluster (L = 1)
with β = 10. The dashed lines show the same subsystem entropies in a
random state which has been evolved in imaginary time as a proxy for the
thermal entropy. After a short time of order β, all subsystem entropies have
reached their late time thermal values.
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Figure 4.21: Histogram of ⟨s|ρ(β)|s⟩D for two coupled SYK clusters cor-
responding to L = 2 and N = 12. The different curves correspond to
β = 0, · · · , 10 in units with J0 = 1.

over all the fermions. Those data also show signs of concentrating near

the thermal value, albeit with significant width to the distribution. It is

plausible that this broadening is a finite size effect coming from the rather

small value of N on each cluster in the two cluster system.

We did not study time-evolution of entanglement for the two cluster sys-

tem because the single cluster data is already a reasonable caricature of the

holographic results and the numerics do not have enough spatial resolution

to study in detail the dependence on spatially non-uniform boundary states.

The above data for L = 2 indicate that the thermal behavior of boundary

states expected at large-N is beginning to emerge for two coupled SYK clus-

ters at quite modest N , but a definite conclusion is hard to make from the

finite size numerical data.

In Appendix C.4 we exhibit a simple model with spatial locality where

the thermality of simple correlators can be shown rigourously. Hence, ev-

idence is accumulating that imaginary time evolved states across a broad

class of models, including those with spatial locality, have a thermal char-

acter.
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Figure 4.22: Histogram of the entropy of one cluster relative to thermal
value for two coupled SYK clusters corresponding to L = 2 and N = 12.
The different curves correspond to β = 0, · · · , 10 in units with J0 = 1.

Figure 4.23: Histogram of TFD-like correlation averaged over fermions for
two coupled SYK clusters corresponding to L = 2 and N = 12. The different
curves correspond to β = 0, · · · , 10 in units with J0 = 1.
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4.4.3 Swap operator for fermions

Given n fermion modes, the shift operator, Πn, is defined by ΠnaiΠ
−1
n = ai+1

for i < n and ΠnanΠ
−1
n = (−1)n−1a1. Its meaning is obtained from its

relation to Renyi entropies. Given a fermion density matrix ρ = (1 − p) +
(2p− 1)a†a, the n-th Renyi entropy of ρ is

e−(n−1)Sn = (1− p)n + pn. (4.98)

From the definition of Πn it follows that the empty state and the full state

are mapped to themselves with no phase factor by Πn. The factor of (−1)n−1

is needed to ensure that the full state does not acquire a phase, since

Πna
†
1 · · · a

†
nΠ

−1
n = (−1)n−1a†2 · · · a

†
na

†
1 = a†1 · · · a

†
n. (4.99)

Every other state in the ai basis is mapped to an orthogonal state (ob-

tained, up to a phase, by rearranging the occupation numbers). Hence the

expectation value of Πn in the n-copy state is

Tr

(
Πn

n∏
i=1

ρ(ai)

)
= (1− p)n + pn, (4.100)

the desired Renyi entropy.

Now suppose each ai is written in terms of Majorana operators,

ai =
χi + iχ̃i√

2
, (4.101)

and consider the transformation χ̃i → −χ̃i. This transformation maps ai to

a†i and hence exchanges the empty and filled states. Moreover, it commutes

with the transformation induced by Πf , hence if the unitary Q implements

the sign inversion, then QΠnQ
−1 = Πn. For example, with two copies,

n = 2, the shift is

Π2 = e−
π
2
(a†1a2−a†2a1), (4.102)

which enacts Π2a1Π
−1
2 = a2 and Π2a2Π

−1
2 = −a1. Its Majorana representa-
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tion is

Π2 = e−
π
2
(χ1χ2+χ̃1χ̃2), (4.103)

which is manifestly invariant under a sign flip of all χ̃i.

The generalization to many modes in a single copy is straightforward.

The conclusion remains the same: the swap operator is invariant under the

transformation χi,α → −χi,α provided it acts on all copies simultaneously.

4.5 Holographic complexity

We have seen that the entanglement entropy for sufficiently large CFT sub-

systems can provide a probe of behind-the-horizon physics for our black

hole microstates. In [225] and [227], a pair of additional probes capable of

providing information behind the horizon were defined holographically and

conjectured to provide a measure of the complexity of the CFT state.68 The

first, which we denote by CV , is proportional to the volume of the maximal-

volume spacelike hypersurface ending on the boundary time slice at which

the state is defined [225]. The second, which we denote by CA, is propor-

tional to the gravitational action evaluated on the spacetime region formed

by the union of all spacelike hypersurfaces ending on this boundary time

slice (called the Wheeler-deWitt patch for this time slice) [227].

In this section, we explore the behaviour of both of these quantities as a

function of time and the parameter T for our microstates in the case d = 2.

We will see that while the late-time growth of both quantities is the same

and matches the expectations for complexity, the time-dependence at early

times is significantly different. This may provide some insight into the CFT

interpretations for these two quantities.

68For a more detailed exposition of the definition and calculation of holographic com-
plexity, see [246].
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4.5.1 Calculation of CV for d = 2

The volume-complexity for a CFT state defined on some boundary time slice

is defined holographically as

CV =
V

Gl
, (4.104)

where V is the volume of the maximal-volume co-dimension one bulk hy-

persurface anchored at the asymptotic CFT boundary on the time slice in

question. Here, l is a length scale associated to the geometry in question,

taken here to be LAdS. We will generally set LAdS = 1 and make use of the

s, y coordinates defined in Appendix C.2.

Consider the boundary time slice corresponding to a particular time sB

at the boundary. The maximal volume bulk hypersurface anchored here

will wrap the circle direction and have some profile s(y) in the other two

directions. For a surface described by such a parametrization, the volume is

V = 2πrH

∫
dy

cos(s)

cos2(y)

√
1−

(
ds

dy

)2

. (4.105)

Extremizing this gives

d2s

dy2
=

(
1−

(
ds

dy

)2
)(

tan(s)− 2 tan(y)
ds

dy

)
. (4.106)

Maximizing volume also requires that the slice intersects the ETW brane

normally,
ds

dy

∣∣∣
y=ybr

= 0 . (4.107)

We regulate the volume by integrating up to rmax = L/ϵ in the Schwarzschild

coordinates. We can subtract the regulated volume for pure AdS to obtain a

result that is finite for ϵ→ 0. This regulated volume for pure AdS (working
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in Schwarzschild coordinates with f(r) = r2 + 1) is

VAdS =

∫ 1
ϵ

0
dr 2πr

√
1

f(r)
− f(r)

(
dt

dr

)2

= 2π

[
1

ϵ
− 1 +O(ϵ)

]
. (4.108)

In the s, y coordinates, this maximum value corresponds to

ymax = arctan

(
e−rH t

√
rmax − rH
rmax + rH

)
+ arctan

(
erH t

√
rmax − rH
rmax + rH

)
= π/2− ϵ rH

cosh(trH)
+O(ϵ2) (4.109)

The values of s at the boundary are related to the original Schwarzschild

time by

tB =
1

rH
ln(tan(π/4 + sB/2)) . (4.110)

We find that there is a monotonic relationship between the intersection time

sbr of the maximal volume slice with the ETW brane and the Schwarzschild

time tB of the maximal volume slice at the AdS boundary. A finite range

sbr ∈ [−s∗, s∗] with s∗ < π/2 maps to the full range tB ∈ [−∞,∞] of

Schwarzschild time. We have that s∗ → 0 as T → 1 or equivalently as ybr

(the brane location) approaches −π/2.
For t = 0, the maximal volume slice is just the s = 0 slice of the space-

time, and the subtracted volume is

Vt=0 = 2πrH

∫ ymax

ybr

dy

cos2 y
− VAdS

= lim
ϵ→0

[2πrH(tan(ymax)− tan(ybr))− VAdS(rmax)]

= 2π(1 + rH tan |ybr|)

= 2π(1 +
rHT√
1− T 2

) .

(4.111)

It is actually convenient to subtract off the 2π here and below, since the re-

maining volumes are all proportional to rH . We will refer to this subtracted
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volume as ∆V .

We can numerically find the maximal volume slices and evaluate ∆V for

different values of sbr to understand how the volume depends on time. For

each sbr we calculate tB, the Schwarzschild time where the slice intersecting

the ETW brane at sbr intersects the AdS boundary. The results for ∆V/rH

vs tBrH are independent of rH ; these are plotted in Figure 4.24.

As a function of Schwarzschild time, the regulated volume increases

smoothly to infinity as t→∞, with a linear increase in volume as a function

of Schwarzschild time for late times. The slope is the same in all cases,

dV

dt
∼ πr2H . (4.112)

Using this result to compute the late time rate of change of volume-complexity,

one finds:

lim
t→∞

dCV

dt
=
πr2H
G

= 8πM , (4.113)

where we have used the relation

r2H = 8GM (4.114)

between the horizon radius rH and the black hole massM for a non-rotating

BTZ black hole.

The same slope can be obtained analytically as a lower bound by noting

that in the future interior region, which can be described by Schwarzschild

coordinates with69

ds2 = − dt2

r2H − t2
+ (r2H − t2)dr2 + t2dθ2 , (4.115)

with t ∈ [−rH , 0], there is an extremal volume surface Σ described by

t = −
√
2

2
rH . (4.116)

69These are related to the u, v coordinates by u = errH
√

rH+t
rH−t

, v = e−rrH
√

rH+t
rH−t

.
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Figure 4.24: Volume ∆V/rH of maximal slice vs Schwarzschild time rHtB
for T = k/10 with k ∈ {0, . . . , 9} from bottom to top.

This is a tube with constant radius rH/
√
2. In the u, v coordinates, this

is uv = (2 −
√
2)/(2 +

√
2). From a time tB at the AdS boundary, we can

consider a surface which coincides with a future-directed lightlike surface u =

erH tB until the intersection with Σ and then along Σ until the intersection

with the ETW brane. The part of this surface with y > 0 has volume

V = πr2HtB + πrH ln

(
1√
2− 1

)
. (4.117)

This gives a lower bound for the maximal volume, and has the same time

derivative as our result above.

The late time growth of CV is in line with earlier studies (e.g. [225, 247])

of holographic complexity for black hole states (e.g. evolution of the two-

sided black hole with forward time-evolution on both sides), and has the

same qualitative bulk explanation. We also see a monotonic increase for all

t > 0, as would generically be expected for the evolution of complexity in a
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generic state with less-than-maximal complexity.

4.5.2 Calculation of CA for d = 2

The action-complexity for a CFT state defined on some boundary time slice

is defined holographically as

CA =
IW
πℏ

. (4.118)

Here, IW is the value of the gravitational action of the bulk theory when

evaluated on some region W. In particular, this region is the Wheeler-

DeWitt patch anchored at the asymptotic boundary at the time slice in

question. That is, W is the union of all the spatial slices anchored at this

time slice. Again, in these calculations we will take LAdS = 1.

As shown in Figure 4.25, the boundary of the region W is comprised of

different surfaces depending upon which asymptotic time slice we choose.

To avoid conflating this boundary time with the bulk Schwarzschild time

coordinate, let us refer to the time on the asymptotic CFT boundary as tB

(and sB for the boundary time in s, y coordinates). We find that there are

three distinct phases depending on the time slice in question:

Phase (i): sB < − arcsin(T )

Phase (ii): − arcsin(T ) < sB < arcsin(T )

Phase (iii): sB > arcsin(T ) (4.119)

As before, this sB is related to the Schwarzschild boundary time, tB, by

tB =
1

rH
ln
[
tan

(π
4
+
sB
2

)]
. (4.120)

The Wheeler-DeWitt patches for each of these phases are depicted in the

Penrose diagrams shown in Figure 4.25. One should note that, due to the

symmetry of our system, the results for the negative boundary times are re-

lated to those for the positive times by tB → −tB. Hence, we only explicitly

list here the results for the distinctly different phases (ii) and (iii).
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Figure 4.25: Penrose diagrams showing the Wheeler-DeWitt patch (shaded
yellow) during each phase. Left-to-right: Phase (i), Phase (ii), Phase (iii).
The surface Λ is used in calculations of the regulated action.

The details of our calculations in this section may be found in Appendix

C.5; here, we describe the results. The action diverges as we integrate up to

the asymptotic boundary, but we can define a finite quantity by subtracting

off half of the action for the two-sided black hole at time τ = tL + tR = 0

where tL and tR are the thermofield double’s left and right boundary times

respectively.70 We will refer to this subtracted complexity as ∆CA; results
for the bare complexity with an explicit UV regulator may be found in the

appendix.

In phase (ii), for times |sB| < arcsin(T ), we find the very simple result

∆CA(sB)−∆CA(0) = 0 . (4.121)

We can understand this directly from the geometric argument shown in

Figure 4.26.

The complexity during phase (iii), with the divergence subtracted in the

same way as above, is found to simply be71

∆CA(sB)−∆CA(0) =
rH

4πGℏ
sin(sB − s∗)

cos s∗
ln

(
sin(sB − s∗)

cos sB

)
(4.122)

70The asymptotic geometries are the same here, so the subtraction is unambiguous.
71We don’t know if there is any reason for the “entropic” form of this result.
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_

= =

Figure 4.26: The geometric argument for why the complexity is constant
during phase (ii). The half TFD Wheeler-DeWitt patch (red) is subtracted
from the phase (ii) patch (blue). The remaining region is broken into two
pieces (green and yellow) that are rearranged to become the entire region
behind the horizon. This “proof” is independent of boundary time.

where s∗ = arcsin(T ) or equivalently72

∆CA(tB)−∆CA(0) =
rH

4πGℏ
ln

∣∣∣∣√1− T 2 sinh(rHtB)− T
∣∣∣∣

×
(
tanh(rHtB)−

T sech(rHtB)√
1− T 2

)
. (4.123)

In the T → 0 limit this result is simply the complexity for the BTZ

geometry without any additional spacetime behind the horizon. Figure 4.27

shows the regularized complexity for a range of ETW brane tensions. We

72The results here include the null boundary counterterms first proposed in [248].
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see again the linear growth of complexity at late times, which takes the form

lim
t→∞

dCA
dt

=
2M

πℏ
. (4.124)

We see that both CV and CA grow linearly at late times, but exhibit different

behaviour at early times. The volume-complexity increases smoothly from

the time-symmetric surface t = 0, but the action-complexity is constant until

one of the null boundaries defining the Wheeler-DeWitt patch intersects the

ETW brane. During the period that the action-complexity is constant,

the entanglement entropy is increasing, indicating thermalisation without

complexity increase. This is puzzling, but not impossible. Alternatively, it

may be that the action tracks the complexity well over large time scales but

not during this early-time regime.

Figure 4.27: The regularized complexity during phases (ii) and (iii), as a
function of boundary time, for a selection of different brane tensions, T .

4.6 Pure AdS analogue

There is a close analogy between the maximally extended AdS-Schwarzschild

black hole spacetime and pure AdS space divided into complementary Rindler
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a b

c d

Figure 4.28: Euclidean path integral geometries defining (a) the thermofield
double state of two CFTs, (b) the vacuum state of a single CFT, (c) a black
hole microstate, and (d) a microstate for a half space. Red curves indicate
BCFT boundary conditions.

wedges [249], where the two exterior regions correspond to the interiors of

the two Rindler wedges, as shown in Figure 4.29. In this section, we extend

this analogy to describe states of a CFT on a half-sphere that are analogous

to the black hole microstates considered in the main part of the chapter.

We specialize to 2+1 dimensions for simplicity.

In the black hole story, the full geometry is described by two entangled

CFTs, each in a thermal state. Our microstates are pure states of just one of

these CFTs. For pure AdS, the geometry is described by a state in which the

CFT degrees of freedom on two halves of a circle are entangled. The analog

of a black hole microstate is a pure state of the CFT on a half circle (i.e. an

interval). To make this fully well-defined, we can place boundary conditions

on the two ends of the interval, so that our CFT on a circle is replaced by

a pair of BCFTs each on an interval. As discussed in [250], we can define

an entangled state of this pair of BCFTs whose dual geometry is a good

approximation to the geometry of the original CFT state (inside a Wheeler-

deWitt patch). Now, the analog of one of our black hole microstates is a

pure state of one of these BCFTs that we can define using a path integral,

as shown in Figure 4.28.

The path integral in Figure 4.28(d) is equivalent via a conformal trans-

formation to the path integral that defines the vacuum state of the BCFT
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on an interval. For this state, the corresponding geometry was described in

[87] and can be represented as a portion of the global AdS geometry ending

on a static ETW brane, as shown in Figure 4.29. That figure also shows

the Rindler wedges that are analogous to the two exterior regions in the

maximally extended black hole geometry. We can see that (in the T > 0

case) the ETW brane emerges from the past Rindler horizon in the second

asymptotic region, reaches some maximum distance from the horizon, and

then falls back in.

Explicit geometry

To find the geometry associated with the BCFT vacuum state, it is simplest

to consider a conformal frame where the interval on which the BCFT lives is

(−∞, 0]. In this case, we recall from Section 4.2 that in Poincaré coordinates

ds2 =
L2

z2
(−dt2 + dz2 + dx2) , (4.125)

the vacuum geometry corresponds to the region x/z < T/
√
1− T 2 termi-

nating with an ETW brane, as shown in Figure 4.6. Passing to global

coordinates via the transformations

L/z = cosh(ρ) cos(τ)− sinh(ρ) sin(θ)

x/z = sinh(ρ) cos(θ)

t/z = cosh(ρ) sin(τ) ,

(4.126)

the ETW brane locus becomes

sinh(ρ) cos(θ) =
T√

1− T 2
(4.127)

in coordinates where the metric is

ds2 = L2(− cosh2 ρdτ2 + dρ2 + sinh2 ρdθ2) . (4.128)
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Here, the brane is static in the global coordinates, extending to antipodal

points at the boundary of AdS, as shown in Figure 4.29. In that figure, we

see that from the point of view of one of the Rindler wedges, the brane falls

into the horizon.

To make the analogy with the black hole more clear, we can now describe

the ETW brane trajectory for T > 0 in a Rindler wedge, the analog of

the second asymptotic region in the black hole case. Defining coordinates

(χ, ζ, r) from the Poincaré coordinates by

t/L = eχ sinh(ζ)

√
1− 1

r2

x/L = eχ cosh(ζ)

√
1− 1

r2

z/L = eχ
1

r
,

(4.129)

the Rindler wedge corresponding to the second asymptotic region takes the

form of a Schwarzschild metric with non-compact horizon [251],

ds2 = L2(−(r2 − 1)dζ2 +
dr2

r2 − 1
+ r2dχ2) , (4.130)

and the brane locus is simply

√
r2 − 1 cosh(t) =

T√
1− T 2

. (4.131)

Note that this is precisely the same as the result (4.26) (setting rH = 1). The

reason is that the black hole geometry we considered previously is simply

obtained from the present case by periodically identifying the χ direction.

Thus, as in that case, for each time t, the ETW brane sits at a constant r

in the Schwarzschild picture, with r(t) reaching a maximum at t = 0.

Entanglement calculations

In analogy to the earlier result for BTZ black holes, the entanglement en-

tropy of sufficiently large intervals in the BCFT can provide information
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ξ

ζ

Figure 4.29: (Left) The ETW brane in global AdS. For T > 0 we have
the geometry on the left of the brane. For T > 0, we have the geometry
on the right of the brane. Diagonal planar surfaces are Rindler horizons
dividing the spacetime into complementary Rindler wedges plus past and
future regions. (Right) Dependence of the radial position parameter ξ =√
r2 − 1 on Schwarzschild time ζ.

about the geometry behind the Rindler horizon.

Using the standard CFT time in a conformal frame where we have a

fixed distance between the two boundaries, the entanglement entropy for a

connected boundary region is time-independent. However, to provide the

closest analogy with our earlier calculations, we can instead consider the

entanglement entropy of an interval of fixed width in the Schwarzschild

spatial coordinate χ, as shown in Figure 4.30.

We have seen that the geometry and the brane trajectory in the present

case is mathematically identical to the black hole case for rH = 1 except that

the χ coordinate is now non-compact. The compactness of θ did not enter

into the previous calculations of entanglement entropy, so all the calculations

in Section 4.3 apply here as well, and we can immediately jump to the result,

that the entangling surface will probe behind the horizon when

sinh

(
∆χ

2

)
≥ cosh(ζ0)

√
1 + T

1− T
. (4.132)
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Figure 4.30: Interval of fixed width in Schwarzschild time (blue shaded
region) in the BCFT worldvolume geometry.

Since χ is noncompact now, we have that for any time ζ0 and any T , we

can always choose a large enough interval ∆χ so that the entangling surface

probes behind the horizon. The explicit expressions for entanglement en-

tropy in the two phases are the same as those in Section 4.3.1 (with rH = 1).

Thus, if we unwrap the compact direction of the BTZ black hole, the

ETW branes will be dual to boundary states on a spatial interval of pure

AdS3. Our BTZ entanglement calculations carry over, implying that control

of a suitably large boundary subregion should allow an observer to probe

behind the Rindler horizon.

4.7 Effective cosmological description?

We have seen in Section 4.2 that the worldvolume geometry of our ETW

brane takes the form of a d-dimensional FRW spacetime. For the simple

model with a constant tension ETW brane, the explicit metric was given in

(4.35) for the case of a (3+1)-dimensional ETW brane. Generally speaking,

the physics on this brane does not provide a model of d-dimensional cosmol-

ogy, since the gravitational physics is higher-dimensional. However, there is
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a vast literature on braneworld cosmology (see [77] for a review) exploring

scenarios where the physics of a d-dimensional brane embedded in a higher-

dimensional spacetime does have an effective description as d-dimensional

gravity coupled to matter. This requires gravity to “localize” to the brane,

such that over a large range of distance scales gravitational interactions be-

tween matter on the brane are well-described by d-dimensional rather than

higher-dimensional gravity. In [72], such localization was shown to occur for

a brane which cuts off the UV region of an anti-de Sitter spacetime; this

is known as the Randall-Sundrum II (RSII) braneworld scenario. In our

geometries, the brane cuts off the UV in an asymptotically AdS spacetime

(the AdS-Schwarzschild black hole). While this is globally different from

pure AdS, it is expected that for appropriate values of LAdS, rH , and the

ETW brane trajectory, the physics should be sufficiently similar to the pure

AdS case that gravity localization still occurs and we still have an effec-

tive d-dimensional description. Since our brane worldvolume is that of a

cosmological FRW spacetime, our model would then provide a microscopic

description of d-dimensional braneworld cosmology.

Gravity localization in the Randall-Sundrum II model

In this section, we will review the basic mechanism of gravity localization

(see [252] for a pedagogical introduction) and try to understand the re-

quirements on the parameters in our model in order that an effective lower-

dimensional description exists. In the Randall-Sundrum II model [72] we

have an infinite extra dimension, but the bulk metric (for d = 4) is now a

warped product of the form

ds25 = dz2 + e−2A(z)gµν(x)dx
µdxν , −∞ < z <∞ , (4.133)

with a 3-brane placed at z = 0 and Z2-symmetry imposed in this coordinate.

In the original RSII model, one has warp factor A(z) ∼ |z|/ℓ; the bulk

spacetime is then simply a slice of AdS5 which is cut off in the UV by a

3-brane (referred to as a UV or Planck brane), with Z2-symmetry imposed

about the brane. Tuning the brane tension against the bulk cosmological
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constant allows for a Poincaré-invariant brane metric gµν(x) = ηµν . Randall

and Sundrum found that, within this set-up, one reproduces 4-dimensional

Einstein gravity on the brane for distances much larger than the AdS radius

LAdS; for example, the gravitational potential on the brane is [253]

V (r) ≈ GM

r

(
1 +

2L2
AdS

3r2

)
. (4.134)

The reason for the localization is that the warp factor suppresses metric per-

turbations far from the brane, with LAdS the length scale on which this sup-

pression occurs. Formally, one considers separable metric perturbations of

the form hµν = ϵµνψ(z)ϕ(x
µ), with ϕ(xµ) an eigenstate of the 4-dimensional

wave operator □4ϕ = m2ϕ; the linearized Einstein equations then reduce

to an analogue Schrödinger problem for ψ(z), where the Schrödinger “en-

ergy” determines the particle mass in the four-dimensional description. The

analysis reveals a massless ‘zero mode’ wavefunction which localizes at the

brane and exactly reproduces the 4-dimensional Newtonian potential; the

continuum of massive Kaluza-Klein modes provide corrections, but they are

suppressed at the position of the brane due to a peak in the potential.

The localization phenomenon has been interpreted in the context of

AdS/CFT [73–76, 254–256], by the observation that the RSII model in a

(d+ 1)-dimensional AdS bulk (and its curved-brane descendents in (d+ 1)-

dimensional AAdS spacetimes) should be equivalent to a d-dimensional CFT

with some UV cutoff coupled to dynamical gravity on the brane.73

Locally localized gravity

Based on these results, it is natural to ask whether gravity localization ex-

tends to cases where we have an approximately AdS bulk cut off by a UV

brane which is approximately Minkowski. In fact, there are some complica-

tions; for example, as noted by Karch and Randall in [79], in the case of a

73This doesn’t provide a full microscopic description of the theory since the dynamical
gravity is added in “by hand” to the cutoff CFT. In contrast, the CFT in our discussion
corresponds to the asymptotic region on the far side of the black hole; this is an ordinary
CFT with no dynamical gravity and thus can provide a microscopic description.
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brane with AdS4 worldvolume in global AdS5, one no longer has a normal-

izable zero mode. This is because only part of the UV region of global AdS

is excised by the introduction of an AdS4 UV brane; a graviton at the brane

can still tunnel toward the true boundary of AdS, where the warp factor

blows up, so this geometry does not trap gravity at the brane. However,

Karch and Randall showed that if we are close enough to the Minkowski

situation, the time scale for this tunneling is long, so that four-dimensional

Einstein gravity still provides a good approximation over sufficiently short

time scales. This supports the more general idea that localization of grav-

ity should be a “local” phenomenon, which should not depend upon the

behaviour of the warp factor far from some region of interest.

Branes in AdS Schwarzschild

The question relevant for us is whether one retains gravity localization when

the bulk is modified through the introduction of a black hole, and the brane

worldvolume is allowed to be dynamical. The first question has been previ-

ously investigated [257–263]. Based on the work of Karch and Randall, one

expects that if the brane is taken far enough from the black hole horizon, so

that the nearby spacetime is approximately AdS, then the local character of

gravity localization should allow for effective Einstein gravity on the brane,

up to O(rH/rbr) corrections (where rbr is the position of the brane). The

detailed analysis performed in [261, 262] for the case of an Einstein static

(ES) braneworld (with rbr = const) in AdS Schwarzschild supports this con-

clusion. Our FRW branes are not static, but we expect similar qualitative

behaviour during the period when the effective Hubble parameter is small

compared with the AdS scale H ≡ ṙ/r ≪ 1/LAdS.

Implications for the constant-tension brane scenario

Let is now apply these constraints to the geometries arising in the simple

model with a constant tension ETW brane. We have seen that obtaining

an effective four-dimensional description requires rbr ≫ rH and H ≪ LAdS.

In our set-up, the maximum proper radial size of the brane, in the case of
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critical tension T = 1, is given for d = 4 by r0 = rH

√
1 +

r2H
L2
AdS

; thus, in

order to have some regime for which rbr ≫ rH , we must consider a large

black hole rH ≫ LAdS, and almost-critical tension T ≈ 1. The requirement

that H ≪ LAdS will be satisfied for most of the evolution as long as the

total proper time (4.36) is large in AdS units. Again, this requires that T

is very close to 1.

Unfortunately, we recall that while the Lorentzian solutions for any value

T < 1 (and even larger values for d > 2) look physically reasonable, the

corresponding Euclidean solutions for d > 2 appear to make sense only for

T < T∗ < 1 since otherwise the ETW brane overlaps itself in the Euclidean

picture (see Figure 4.10). The requirement T < T∗ would rule out a viable

model with an effective four dimensional description since this required r <

1.2876 rH . On the other hand, we had reason to question the validity of the

simple holographic treatment in these cases.

To summarize, in the simplest toy model for how to treat the BCFT

boundary conditions holographically, it does not seem possible to realize

microstates for which the effective description of the ETW brane physics

corresponds to a four-dimensional cosmology. However, it remains very in-

teresting to understand whether this scenario for cosmology can be realized

with more general effective actions that would correspond to a more com-

plete treatment of the holographic BCFT physics.

4.8 Discussion

In this final section, we discuss a few possible generalizations and future

directions.

For the specific examples in this chapter, we have mainly considered ge-

ometries obtained by assuming the very simple holographic ansatz for how

to model CFT boundary conditions holographically. In that model, the

ETW brane is filling in for some more detailed microscopic physics. This

could involve branes or orientifold planes of string/M-theory, or geometrical

features such as the degeneration of an internal manifold. Depending on the
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particular situation, a more realistic model might include additional terms

in the brane action or couplings to additional bulk fields. As a particular

example, scalar operators in a BCFT can have one-point functions growing

as 1/y2∆ as the distance y to the boundary decreases. This would corre-

spond to having some extra scalar fields in the bulk, sourced by the ETW

brane.74 In our context, this would lead to matter outside the black hole

that falls into the horizon. Thus, the explicit geometries we have utilized

should be viewed as simple examples that may elucidate the basic physics of

more precise holographic duals for Euclidean-time-evolved boundary states.

It will be interesting to flesh out the AdS/CFT correspondence for BCFTs

more fully and explore the microstate geometries emerging from more gen-

eral bulk effective actions. It will also be interesting to understand better the

constraints on boundary conditions/boundary states for a given holographic

CFT that lead to a fully geometrical bulk description.

Within the context of any particular choice of bulk effective action (e.g.

the constant tension ETW brane model we used here), it is also interesting

to understand which parameter values can be realized in some microscopic

theory. For example, if there are microscopic models that realize (at least

approximately) the simple ansatz, which values of the parameter T arise

from legitimate boundary conditions for a holographic CFT. For (1+1)-

dimensional CFTs, this is related to the question of which boundary en-

tropies are possible. Some constraints have been discussed previously [267],

but these do not apply for holographic models. An interesting result is that

for the monster CFT, only positive values (or perhaps extremely small neg-

ative values) of ln(g) (proportional to arctanh(T ) in the holographic case)

are allowed [268]. If this extended to holographic theories, it would imply

that only the case with an ETW brane behind the horizon is physical.

Another interesting generalization would be to consider states constructed

in a similar way, but with boundary conditions that do not preserve con-

formal invariance. For example, we can have boundary conditions that cor-

respond to boundary RG flows from one conformally invariant boundary

74Some particular top-down examples of complete geometries dual to supersymmetric
BCFT states have already been understood: see [264–266].
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condition to another. These may be represented by a more general class

of ETW brane actions, and give rise to a wider variety of geometries. Fi-

nally, we can consider similar constructions in holographic theories which

are not conformal, for example in holographic RG flow theories or in holo-

graphic theories derived from low-energy Dp-brane actions. For all these

cases, we expect that the basic idea of probing behind-the-horizon physics

via time-dependence of subsystem entanglement remains valid.

It would be very interesting to perform direct entanglement entropy cal-

culations for Euclidean-time-evolved boundary states in specific CFTs, to

see whether the results are qualitatively similar to those in our model calcu-

lation, and to generate microscopic examples of black hole microstates for

which we can learn about the behind-the-horizon physics directly. Naively,

this will be challenging in strongly coupled holographic CFTs, but perhaps

even calculations for tractable non-holographic theories (such as large c sym-

metric orbifold CFTs)75 will be enlightening. It may also be possible to per-

form direct calculations in holographic CFTs by assuming something about

the structure of holographic BCFT correlators, similar to the calculations

in [269, 270].

Finally, with a larger toolbox for studying holographic duals of Euclidean-

time-evolved boundary states, it will be interesting to see if it is possible to

realize any examples where gravity is localized on the ETW brane, or more

generally, that the physics of the spacetime causally disconnected from the

asymptotic boundary is effectively described by four-dimensional cosmology.

This would be very interesting whether or not such a cosmology can be made

realistic, since there currently aren’t any known complete, non-perturbative

quantum descriptions of four-dimensional big bang cosmology, as far as we

are aware. In our case, the CFT and the specific microstate would provide

the complete description and allow (in principle) a calculation of the initial

conditions for cosmology that should be used as inputs for the effective field

theory description (also to be determined from the CFT/state) that would

be valid at intermediate times.76 Of course, these calculations would require

75We thank Volker Schomerus for this suggestion.
76If our approach can be realized, it would be similar in some ways to the Hartle and
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a much better understanding of how black hole behind-the-horizon physics

is encoded in a CFT.

One of the major challenges in coming up with candidates for quantum

gravity theories capable of describing cosmology is that it is not even clear

what the very basic mathematical framework could be. Usual examples of

holography making use of conventional quantum systems describe space-

times with some fixed asymptotic behavior. This is normally assumed to

be incompatible with cosmological physics, so various qualitative ideas have

been put forward for how to come up with something more general (see

e.g. [43, 228, 231, 272–274] for a variety of perspectives). However, to date,

none of these has led to a complete model, or even a precise mathematical

structure that could generalize the usual state-in-a-Hilbert-space of ordi-

nary quantum mechanics. A likely possibility is that we have simply not yet

stumbled across the right idea. But it is worth considering the alternative,

that cosmology is somehow described by a conventional quantum system,

just like the rest of physics. If this quantum system is related to gravity in

the usual holographic way, we would need to understand how our cosmologi-

cal observations could be compatible with fixed asymptotic behavior for the

global spacetime. One of the most attractive features of our suggestion is

that it gives a possible way to realize this, and thus, to describe cosmology

with ordinary quantum mechanics.

Hawking’s ’no boundary’ approach to cosmology [271], except that our Euclidean path
integral is for a non-gravitational boundary theory, and the path integral itself is defined
using a boundary. So one might call it the “boundary-boundary-no-boundary” approach.
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Chapter 5

Bottom-Up Holographic

Models for Cosmology

5.1 Introduction

An important open question in theoretical physics is how to formulate a

non-perturbative quantum mechanical description of gravity in cosmological

backgrounds. Given the theoretical successes of the AdS/CFT correspon-

dence over the past two decades [29], an especially appealing prospect is the

possibility of embedding cosmological physics in AdS/CFT, though the via-

bility of this approach for “realistic” cosmologies remains unclear at present.

A number of differing holographic approaches to cosmology appear in the

literature; an incomplete catalogue of these includes [228, 230–233, 275].

The class of holographic models that we will be interested in here orig-

inated with [2], and has subsequently been further studied in [276–278]. In

the model considered in these papers, a Euclidean boundary conformal field

theory (BCFT) path integral is used to prepare a state of a holographic

CFT; via a simple effective or “bottom-up” model for AdS/BCFT intro-

duced in [78, 87, 88], this state is understood to correspond to an AdS black

hole terminating on an end-of-the-world (ETW) brane behind the horizon.

The worldvolume of this ETW brane is a recollapsing (negative cosmologi-

cal constant) FRW universe. Under appropriate conditions, when the ETW

brane propagates far outside the black hole horizon in the second asymptotic

region, the effective theory on the ETW brane would be expected to exhibit

gravity localization via the Karch/Randall/Sundrum mechanism [72, 79];

the upshot is that gravitational physics on a cosmological background is

221



5.1. Introduction

encoded in a particular state, prepared by a Euclidean path integral, in a

holographic theory. See Figure 5.1 for a visualization of this logic; references

[2, 277, 278] should be consulted for additional details.

The simple model analyzed in the references mentioned above has proven

interesting and suggestive, but not entirely satisfactory: the properties re-

quired for the solution to exhibit gravity localization cannot actually be

realized within the parameter space.77 In particular, analytically continuing

the Lorentzian solutions where gravity localization is expected to Euclidean

signature, we find that the corresponding Euclidean solutions involve self-

intersecting ETW branes, whose holographic interpretation is not clear; see

Figure 5.2.

An approach to circumventing this issue was proposed by Van Raams-

donk in [278]. It was suggested that the previous bottom-up models could be

modified by adding an additional “interface brane” separating two regions

of asymptotically AdS spacetime in the bulk, generally with differing AdS

lengths L
(1)
AdS and L

(2)
AdS, as shown in Figure 5.3. A practical rationale for this

proposition is to avoid the self-intersection problem mentioned above, which

arises because the Euclidean gravity solutions require a periodically identi-

fied coordinate z ∼ z+β to avoid developing a singularity at the coordinate

horizon; in the case with both an ETW brane and an interface brane, the

region between these branes no longer includes a coordinate horizon, and

therefore need not have any periodically identified coordinate.

A somewhat more sophisticated motivation was also given in [278], mak-

ing use of an effect observed in [279]. To understand the second motivation,

one should note that, by performing a different analytic continuation of the

bulk Euclidean solutions with a single ETW brane, corresponding to Wick

rotating one of the transverse coordinates suppressed in Figures 5.1, 5.2,

and 5.3 (which we assume to have Rd−1 planar symmetry for a (d + 1)-

dimensional bulk), one obtains a static Lorentzian solution with an ETW

77The exception to this point is [276], in which it was found that an ETW brane propa-
gating in a charged black hole background could enjoy the desired properties for cosmology.
It is not clear how to make sense of this set-up as an analytic continuation of Euclidean
AdS/CFT, since it appears that the gauge field component A0 should be imaginary in the
Euclidean signature solution.
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Figure 5.1: An approach to holographic cosmology proposed in [2]. We
begin on the left with a Euclidean BCFT path integral (bold black line),
with some choice of boundary condition imposed in the past and future
Euclidean time. The transverse directions suppressed in this figure could be
taken to have Sd or Rd symmetry, so that the Euclidean CFT path integral
is on a cylinder or a strip respectively. Cutting open this path integral at
the moment of time symmetry, we obtain some state |Ψ⟩ of the holographic
CFT. In the bulk, we have a Euclidean asymptotically AdS spacetime (blue)
terminating on an ETW brane (red). We may then analytically continue to
Lorentzian time to obtain the leading geometry encoding the evolution of
|Ψ⟩, shown on the right. The ETW brane stays behind the horizon of an
AdS black hole; it is a “big bang/big crunch” cosmology (with spherical or
flat spatial sections). The construction is time-symmetric throughout, with
the moment of time symmetry illustrated as a dotted line. Here, z indicates
the Euclidean coordinate analytically continued to the Lorentzian time ζ.
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Figure 5.2: Pathological Euclidean gravity solution with a self-intersecting
ETW brane (red). The trajectory of the ETW brane in the Euclidean
asymptotically AdS spacetime (blue) can be determined from the equations
of motion; the fact that this trajectory self-intersects arises from the coor-
dinate periodicity z ∼ z + β which must be imposed to ensure smoothness
at the coordinate horizon (central dot).

Figure 5.3: Two putative bulk duals of holographic BCFT. Here, ETW
branes are shown in red, and interface branes in blue; the shaded region is
an asymptotically AdS Euclidean spacetime. The premise of this work is to
move from the model depicted on the left to that depicted on the right, i.e.
to introduce an additional interface brane.
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brane whose worldvolume is an asymptotically AdS traversable wormhole;

see Figure 5.4. Consequently, the effective description of the cosmology is

related by “double analytic continuation” to an effective theory involving a

cutoff CFT on a traversable wormhole background; from this perspective,

the non-existence of the solutions relevant for cosmology appears to be re-

lated to a no-go result for such traversable wormholes in the absence of large

amounts of negative energy [280]. However, in a simple bottom-up model

for the holographic dual of a conformal interface between two CFTs (also

shown in Figure 5.4), the authors of [279] found that one could produce

an anomalously large negative Casimir energy in one of the two CFTs in

a particular critical limit of the tension of a bulk interface brane. From

this interface CFT starting point, the model that we are concerned with in

this chapter would correspond to “coupling one of the CFTs to gravity” by

introducing an ETW “Planck brane” in the bulk. In this case, one might

hope that a similar “negative energy enhancement” effect could allow for a

means of negating the hypotheses of the aforementioned no-go result.

The purpose of this work is to investigate this possibility, generalizing

the model of [2] by adding an interface brane. We begin by considering the

case where this interface brane is governed by a single tension parameter;

in this case, we argue that there are no consistent solutions in the region

of parameter space where we expect to recover gravity localization in the

cosmology, suggesting that this model has no significant advantage over

the previous model. In particular, putative solutions do not have an ETW

brane and an interface brane which join properly; for example, they may

instead intersect. We then generalize the model further by incorporating

Einstein-Hilbert terms on the ETW brane,78 arguing that solutions with the

desirable properties should exist in this case. We comment on the nature of

the relevant region of parameter space from the perspective of physics in the

effective theory on the ETW brane, but leave further commentary about the

physicality of this region, and an exploration of the parameter space more

78This is referred to as a “DGP term” in [281], after an analogous construction by Dvali,
Gabadadze and Porrati [282], though of course the present model has an asymptotically
AdS bulk.
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Figure 5.4: Holographic duals of (left) boundary CFT and (right) interface
CFT. The ETW brane is illustrated in red, and the interface brane in blue.
We can interpret these diagrams as either representing Euclidean spacetimes,
or the Lorentzian spacetimes obtained by Wick rotating a coordinate of one
of the transverse directions suppressed in Figures 5.1, 5.2, and 5.3, which is
the vertical direction here. In Lorentzian signature, the intrinsic geometry
of the ETW/interface brane is a traversable asymptotically AdS wormhole.

broadly, to future work.

The outline of this chapter is as follows. In Section 5.2, we attempt to

briefly review the relevant results already appearing in the literature. We

follow this in Section 5.3 with an analysis of the model with an additional

interface brane of constant tension, and then further augment this model in

Section 5.4 with an Einstein-Hilbert term on the ETW brane. We briefly

conclude in Section 5.5.

Note: As this work was nearing completion, we were alerted to the

existence of similar work by Seamus Fallows and Simon Ross [283]. These

authors graciously agreed to coordinate in submitting pre-prints.
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5.2 Review of bottom-up holographic solutions

for boundary/interface CFT

To keep our presentation self-contained, we will review the relevant holo-

graphic models and solutions in this section, and briefly recapitulate some

important results in this and the following section. The models discussed in

this section follow a prescription for AdS/BCFT involving ETW/interface

branes which originated in [78, 87, 88], and the solutions we discuss in this

section appear in [2, 278, 279, 284]; the purpose of this section is to sum-

marize the pertinent information from the latter references, and to establish

notation. The gravity solutions discussed in Section 5.2.1 and 5.2.2 cor-

respond to those in the first and second panels of Figure 5.4 respectively:

they are Euclidean asymptotically AdSd+1 spacetimes, with either an ETW

brane or an interface brane, and preserving a transverse Rd−1 symmetry.

5.2.1 Solutions with an ETW brane

We begin by considering a class of models for the gravitational dual of a

holographic BCFT, determined by the Euclidean gravitational action

S = Sbulk + Smatter
ETW

Sbulk =
1

16πGbulk

∫
M
dd+1x

√
g (R− 2Λ)

+
1

8πGbulk

∫
ETW

ddy
√
h K ,

(5.1)

where we take the brane matter action to be79

Smatter
ETW =

(1− d)λ
8πGbulk

∫
ETW

ddy
√
h . (5.2)

79In this chapter, we use the symbols λ and κ for the ETW brane and interface brane
tensions respectively rather than T as in the previous chapter, in order to differentiate
between these two types of branes.
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The cosmological constant Λ is related to the AdS length LAdS by

Λ = −d(d− 1)

2L2
AdS

. (5.3)

Here and throughout, we will take λ to lie in the interval
(
0, 1

LAdS

)
.

The bulk equation of motion is simply the Einstein equation with cos-

mological constant Λ; meanwhile, the ETW brane trajectory is given by the

equation of motion (see Appendix D.1)

Kab = λhab . (5.4)

In [2], Euclidean solutions with a Sd−1 spherical symmetry were consid-

ered; here, we will instead consider Euclidean solutions with a Rd−1 symme-

try, though the two cases are completely analogous. The appropriate bulk

ansatz is then the Euclidean AdS soliton solution

ds2 = L2
AdSf(r)dz

2 +
dr2

f(r)
+ r2dxµdx

µ , f(r) =
r2

L2
AdS

− µ

rd−2
. (5.5)

The radial coordinate r ranges from the coordinate horizon value rH =

(µL2
AdS)

1/d to infinity. In order to avoid a conical singulariy, the z coordinate

must be taken to be periodic, with period80

β =
4πLAdS

drH
. (5.6)

The ETW brane has trajectory z = zETW(r) in this (Euclidean) back-

ground, determined by the equation of motion (see Appendix D.1)

(
dzETW

dr

)2

=
λ2r2

L2
AdSf(r)

2

1

f(r)− λ2r2
. (5.7)

80In the solutions of interest to us here, this coordinate horizon is kept in our solution,
rather than being excised by the ETW brane, so this periodicity must be enforced.

228



5.2. Review of bottom-up holographic solutions for boundary/interface CFT

In particular, the ETW brane attains a minimum radius at rETW
0 with

f(rETW
0 ) = λ2(rETW

0 )2 , rETW
0 =

rH(
1− λ2L2

AdS

)1/d . (5.8)

We will also denote the z-coordinate distance traversed by the ETW brane

from its minimum radius to infinity by

∆zETW ≡
∫ ∞

rETW
0

dr
dzETW

dr
. (5.9)

Despite the appearance that rETW
0 can be made arbitrarily large by

sending λ → L−1
AdS, one must recall that the z coordinate is periodic, and

such solutions have the ETW brane self-intersecting at finite r in the case

d > 2,81 as shown in Figure 5.2. This places an upper bound λ ≤ λ∗(rH) on

allowed values of the tension parameter λ with sensible Euclidean solutions.

Explicitly, this upper bound can be found by demanding 2∆zETW = β, that

is, by enforcing

β = 2

∫ ∞

rETW
0

dr
λ∗r

LAdSf(r)

1√
f(r)− λ2∗r2

. (5.10)

A maximal upper bound can be found from λmax = maxrH{λ∗(rH)}. For

example, we find

• d = 3: λmaxLAdS ≈ 0.95635 and
rETW
0
rH

≲ 2.2708

• d = 4: λmaxLAdS ≈ 0.79765 and
rETW
0
rH

≲ 1.2876.

Lorentzian picture and cosmology

In the Lorentzian picture with z → iζ, the ETW brane analytically continues

to a spatially flat FRW universe; it is worth noting a few features of the

intrinsic geometry of these solutions.

81For d = 2, the ETW brane always spans coordinate range 2∆zETW = β
2
, so the desired

limit can be realized.

229



5.2. Review of bottom-up holographic solutions for boundary/interface CFT

In terms of the proper time s on the brane defined by

1 = L2
AdSf

(
dζ

ds

)2

− 1

f

(
dr

ds

)2

, (5.11)

the metric on the ETW brane is the FRW metric

ds2d = −ds2 + r(s)2dxµdx
µ ,

(
dr

ds

)2

= λ2r2 − f(r) . (5.12)

Comparing to the usual Friedmann equation for a flat universe

1

r2

(
dr

ds

)2

=
8πGρ

3
, (5.13)

we infer that our cosmology is effectively sourced by a negative vacuum

energy
8πGρΛ

3
= − 1

L2
AdS

(
1− λ2L2

AdS

)
(5.14)

and a “dark radiation” term

8πGρrad
3

=
µ

rd
. (5.15)

We may also note that the total proper time elapsed on the brane is

finite, given by

stot = 2

∫ rETW
0

0

dr√
λ2r2 − f(r)

. (5.16)

That is, the spacetime is geodesically incomplete, beginning with a “big

bang” and ending with a “big crunch”. We thus have that the model intro-

duced here necessarily describes a recollapsing FRW universe with radiation

and a negative cosmological constant.

It was suggested in [2] that locally localized gravity on the ETW brane

may be expected in a region which exhibits “quasistatic” cosmological evo-

lution, and for which the brane remains far outside of the bulk black hole

horizon

|H| ≪ 1

LAdS
, r ≫ rH , (5.17)
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where H is the Hubble parameter. Note that we have for the Lorentzian

solution

|H|LAdS =

√
−(1− λ2L2

AdS) +
rdH
rd

,
r

rH
<
(
1− λ2L2

AdS

)−1/d
, (5.18)

so both conditions require λL → 1, and therefore lead to self-intersecting

solutions in Euclidean signature.

5.2.2 Solutions with an interface brane

Analogous to the boundary case in the previous subsection, one may consider

a class of models for the gravitational dual of holographic interface conformal

field theory (ICFT), determined by the Euclidean gravitational action

S = Sbulk + Smatter
interface

Sbulk =
1

16πGbulk

2∑
i=1

∫
Mi

dd+1x
√
g (R− 2Λi)

+
1

8πGbulk

∫
interface

ddy
√
h [K] ,

(5.19)

where we take the brane matter action to be

Smatter
interface =

(1− d)κ
8πGbulk

∫
interface

ddy
√
h . (5.20)

Here and in the following, the brackets represent the discontinuity [X] =

X1−X2 across the interface brane separating regionsM1 andM2. We are

also permitting two different cosmological constants Λi, related to the AdS

lengths Li as in equation (5.3). Here, κ lies within the interval

κ ∈ (κ−, κ+) , κ− =

∣∣∣∣ 1L1
− 1

L2

∣∣∣∣ , κ+ =
1

L1
+

1

L2
. (5.21)

The bulk equations of motion are simply the Einstein equations with the

appropriate cosmological constants, while the interface brane trajectory is
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determined by the junction conditions (see Appendix D.1)

[hab] = 0 , [Kab] = κhab . (5.22)

We again assume the Euclidean solutions have a Rd−1 symmetry; the

bulk solutions therefore involve the gluing together of two pieces of the AdS

soliton geometry, described by the metric

ds2 = L2
i fi(ri)dz

2
i +

dr2i
fi(ri)

+ r2i dxµdx
µ , fi(ri) =

r2i
L2
i

− µi

rd−2
i

, (5.23)

where Li is the AdS radius related to the central charge of the ith CFT (which

we call CFTi). One may choose coordinates so that the xµ agree across

the interface joining these two regions; this is our rationale for neglecting a

subscript on these coordinates. We may also choose the radial coordinates so

that r1 = r2 = r on the interface, so we will sometimes drop the subscript of

ri for quantities on the interface brane. The trajectory of the interface zinti (r)

in each region is determined by equations (4.1) - (4.4) of [279], which are

analogous to (5.7) from the ETW brane case. These solutions are analyzed

extensively in [279, 284], and we will try to reiterate only the necessary

features.

It will be useful to introduce the parameters

u =
L2

L1
, µ =

µ2
µ1

, e =
κ− κ−
κ+ − κ−

. (5.24)

The full interface solution is then completely specified by the parameters

(L1, µ1, u, µ, e).

Periodicity of zi coordinates in interface solutions

In contrast to the boundary case in the previous subsection, the coordinate

zi need only be taken periodic, with period βi given by equation (5.6), if

the region Mi includes the coordinate value ri = r
(i)
H = (µiL

2
i )

1/d; if not,

then the zi coordinate need not be periodic, and in fact the region can be

“multiply wound” from the perspective of this naive periodicity.
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To clarify what we mean by “multiply wound”, we can first define the

quantity ∆zinti to be equal to the zi-coordinate distance traversed by the

interface brane from its minimum radius ri to infinity; in equations, we may

define

∆zinti ≡
∫ ∞

rint0

dri
dzinti

dri
, (5.25)

where rint0 is the minimum value of both the r1 and r2 coordinates on the

interface brane, and
dzinti
dri

is given by the equation of motion (4.4) in [279].

Explicitly, one finds82

∆zint1 = − 1

L1

∫ ∞

rint0

dr

f1
√
Veff

(
1

2κr
(f1 − f2) +

1

2
κr

)
,

Veff = f1 −
(
f2 − f1 − κ2r2

2κr

)2

,

(5.26)

and an analogous expression for ∆zint2 .

Importantly, ∆zinti can be either positive or negative, depending on the

data specifying our solution; the former case corresponds to a situation

where the ith gravity region contains the coordinate horizon, whereas the

latter case corresponds to a situation where it does not. See Figure 5.5 for

an illustration of this.

One may then define the quantity Ri = Ri(u, µ, e) to be the fraction of

the span of the asymptotic zi coordinate in the pure AdS soliton solution

(with period βi) that is covered by the patch associated with CFTi in the

interface solution. We then have two different cases:

• If ∆zinti is positive, then Ri =
2∆zinti

βi
.

• If ∆zinti is negative, then Ri = 1− 2|∆zinti |
βi

= 1 +
2∆zinti

βi
.

The multiply wound case corresponds to a situation where ∆zinti is positive

(so that the coordinate horizon is not included), and we have Ri > 1.

82The notation Veff is based on the analysis of [279], which reduces the dynamics of
the interface brane to that of a particle moving an an effective potential. We keep the
notation here for consistency.
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Figure 5.5: (Left) In the case that ∆zinti < 0, the ith gravity region includes
the horizon. (Right) In the case that ∆zinti > 0, the ith gravity region does
not include the horizon.

Throughout this work, as a matter of convention, we would like to choose

M1 to be the bulk region which excludes r = rH ; in this case, ∆zint1 is

positive and R1 =
2∆zint1

β1
, while the similarly defined ∆zint2 is negative and

R2 = 1+
2∆zint2

β2
. The condition for this to be the case can be readily derived

from checking the sign of the expression (5.26) for ∆zint1 ; one finds that the

condition is

µ <
1

u2
− κ2L2

1 , (5.27)

which we will assume henceforth.

Negative energy enhancement: motivation

The above Euclidean interface solutions, analytically continued to Lorentzian

signature in one of the transverse planar directions, are anticipated to pro-

vide a simple holographic description of two CFTs on Rd−2,1 times an in-

terval of width wi, coupled at their endpoints via a conformal interface (see

the right panel of Figure 5.4). Due to the symmetries of this theory, the

energy-momentum tensor must take the form

T (i)
µν = ηµν

Fi

wd
i

, T (i)
zz = −(d− 1)Fi

wd
i

, T (i)
µz = 0 , (5.28)
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where z is the CFT interval direction. Here, Fi is a characteristic scale for

the vacuum state energy in CFTi. Following [279], one may then define

Ei = (Fi/Fβ)
1/d (5.29)

to be the ratio of the scale of the energy density for CFTi on the strip

of width wi (in the interface case) to that of the same CFT on a periodic

direction of length β = wi. One expects that this quantity should be a

function of the dimensionless ratio

x =
w2

w1
(5.30)

of the widths for the two CFTs. It is useful to note that this ratio is given

in terms of bulk quantities by

x =
R2β2
R1β1

. (5.31)

The authors of [279] observed that a particularly interesting regime in

the parameter space occurred for83

x fixed , u < 1 , e→ 0 , (5.32)

where the requirement that x remains fixed can be understood as a particular

way of taking the limit µ → 0, as we will see below. In this limit, E1

increases without bound, suggesting that CFT1 can exhibit an arbitrarily

large negative Casimir energy provided that a family of interfaces realizing

this limit can be considered. Interestingly, this effect is only observed in

CFT1 when u < 1, i.e. when the central charge of CFT2 is smaller than

that of CFT1. We will henceforth refer to the limit in (5.32) as the “negative

energy enhancement” or NEE limit.

In the bulk, this effect can be attributed to the fact that µ → 0 cor-

83We note that this limit eventually implies the condition (5.27), so we need not worry
about the latter being satisfied when we are interested in the limit. On the other hand, if
we are interested in fixed small e > 0, we should check that (5.27) is still satisfied.
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5.2. Review of bottom-up holographic solutions for boundary/interface CFT

responds to the limit in which the black hole mass associated to region 1

becomes much larger than that associated to region 2; this results directly

in a similar hierarchy for the energy density in the two CFT regions. We can

then think of the NEE limit as taking the lengths L1, L2 to be held fixed (as

is natural since these correspond to the central charges of the two CFTs),

taking the black hole mass µ1 associated with region 1 to be much larger

than µ2, and adjusting the interface brane tension as e → 0 to maintain a

fixed value of x in the limit. This relies crucially on the possibility of having

a multiply wound region 1, since maintaining fixed x while β1 → 0 requires

R1 →∞.

We may also observe that the limit e→ 0 amounts to shifting the brane

out toward the asymptotic region associated to CFT1. This can be seen by

noting that the Poincaré angle between the normal to the AdS boundary

and the brane in each region is given by [279]

θ1 = arcsin

[
1

2

(
κL1 +

1

κL1
− L1

κL2
2

)]
e→0→ −π

2
,

θ2 = arcsin

[
1

2

(
κL2 +

1

κL2
− L2

κL2
1

)]
e→0→ π

2
.

(5.33)

We will now provide some important technical details underlying the

above result.
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Negative energy enhancement: details

Since the NEE limit involves fixing u < 1, we will collect here some important expressions pertaining to this

regime. Defining

α0 =
1

2

u2(1− µ)2

(1− u+ 2eu)
√

(1− µu)2 + 4ueµ(1− u+ ue) + 2u(1 + µ)(1− e)(1 + eu)− (1 + u)(1 + µu)

α1 =
1

2

u(µ− 1)

(1− u)(1− 2e)− 2e2u

α2 = −
(1− u)(1− 2e)− 2e2u√

e(1− e)(1 + eu)(1− u+ eu)
,

it was found in [279] that

R1 = −
1

4π

α2

α
1/d
0

Id
(
α1

α0
,
1

α0
,
α2
1α

2
2

4α2
0

)
+Θ

[
µ− (1− 2e)

(
2

u
− 1 + 2e

)]
(for u < 1) (5.34)

where Θ(·) is a step function and

Id(a, b, c) =
∫ ∞

1

dy

y1/d
(y − a)

(y − b)
√
(y − 1)(y + c)

. (5.35)
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Meanwhile, defining

α̂0 =
1

2u2

(1− 1
µ)

2

(
1
u − 1 + 2e

)√(
1− 1

µ
1
u

)2
+ 4e

µ

(
1
u − 1 + e

)
+ 2

(
1 + 1

µ

)
(1− e)

(
1
u + e

)
−
(
1 + 1

u

) (
1 + 1

µ
1
u

)
α̂1 =

1

2u2

(
1− 1

µ

)
(
1
u − 1

) (
1
u + 2e

)
+ 2e2

α̂2 =

(
1
u − 1

) (
1
u + 2e

)
+ 2e2√

e(1− e)
(
1
u + e

) (
1
u − 1 + e

) ,
(5.36)

one has

R2 = −
1

4π

α̂2

α̂
1/d
0

Id
(
α̂1

α̂0
,
1

α̂0
,
α̂2
1α̂

2
2

4α̂2
0

)
+Θ

[
1

µ
− (1 + 2eu) (2u− 1− 2eu)

]
(for u < 1) . (5.37)

Moreover, the minimum radius of the interface brane is

(
rint0

)d
= µ2L

2
2α̂0 (for u < 1) . (5.38)

Assuming u < 1 and µ < 1
u (both of which are prerequisites for the NEE limit), it was found that

α0 → 1−µu
4e , α1 → 1

2
u(µ−1)
1−u , α2 → −

√
1−u
e , (u < 1 , µ < 1

u , e→ 0)

α̂0 → 1−µu
4eµu2 , α̂1 → 1

2µ
µ−1
1−u , α̂2 → 1

u

√
1−u
e . (u < 1 , µ < 1

u , e→ 0)
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Thus, defining

I0 =
41/d

4π

∫ ∞

1

dy

y1/d
√
y(y − 1)

=
41/d

4π

Γ
(
1
2

)
Γ
(
1
d

)
Γ
(
1
2 + 1

d

) , (5.39)

it was found that

R1 =
2∆z1
β1

∼ I0
e

1
2
− 1

d

√
1− u

(1− µu)1/d
(u < 1 , µ <

1

u
, e→ 0)

R2 = 1 +
2∆z2
β2

∼ 1− µ1/du2/d−1 I0
e1/2−1/d

√
1− u

(1− µu)1/d
. (u < 1 , µ <

1

u
, e→ 0)

(5.40)

Moreover, in this limit, the minimum radius goes as

rint0 ∼ r
(2)
H

(
1− uµ
4eµu2

)1/d

= r
(1)
H

(
1− uµ
4e

)1/d

. (u < 1 , µ <
1

u
, e→ 0) (5.41)
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5.3. Bottom-up model with constant tension branes

So far, we have been considering limits with a general fixed value of

µ; eventually, we would like to instead consider the NEE limit in which

we instead fix x. Indeed, it is clear from the expression for R2 that we

cannot consistently take u < 1 and µ < 1
u fixed and send e → 0; doing so

would result in a negative value of R2, taking the result beyond its regime

of validity. It is therefore more convenient to express the results in terms of

the ratio x defined in (5.30), which is related to µ(x) at leading order by

µ(x) =
e

d
2
−1

u2

(
u

(1 + x)I0
√
1− u

)d

. (5.42)

The NEE limit properly involves fixing u < 1 and x, and sending e → 0,

which will also send µ→ 0 as a result of this equation. The authors of [279]

then found

E1 ∼
1

e
1
2
− 1

d

I0
√
1− u and E2 ∼

x

1 + x
. (NEE) (5.43)

This limit is the most physical from the CFT perspective, since one would

typically like to keep the dimensions of the strip on which the CFTs are

defined fixed while varying a parameter related to properties of the conformal

interface.

5.3 Bottom-up model with constant tension

branes

In the previous section, we reviewed a model of holographic BCFT and

its application to cosmology, as well as a model for holographic interfaces

exhibiting an interesting “negative energy enhancement” effect in an appro-

priate limit. In this section, we would like to combine these two models,

considering a gravitational bulk with both an ETW brane and an interface

brane; see Figure 5.6. The motivation for this is to see whether, in this

augmented model, it is possible to obtain well-behaved Euclidean solutions,

without intersecting or self-intersecting branes, so that conditions analo-
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5.3. Bottom-up model with constant tension branes

Figure 5.6: Two Euclidean AdS soliton regions of a holographic interface
solution. Here, zi is the angular direction and ri is the radial direction, with
i = 1 on the left and i = 2 on the right; planar directions are suppressed.
In this figure, region 1 is “multiply wound” in the z1 direction, while region
2 (which includes the horizon r2 = rH) is not.

gous to those of (5.17) hold for the ETW brane cosmology arising in the

Lorentzian continuation.

We might expect that an effective description of the physics in this com-

bined model should involve a non-gravitational CFT joined at an interface

to a CFT coupled to gravity;84 the background for the latter is the geom-

etry of the ETW brane in the bulk picture, which can be interpreted as a

traversable wormhole.85 It has been argued that large quantities of negative

null energy would be required to support such traversable wormholes [280];

as pointed out in [278], it is therefore natural to look for bulk solutions

with both an ETW brane and an interface brane in the critical interface

tension or NEE limit considered in the previous section. We will argue in

this section that it is not possible to find such solutions in that limit in

84This is the usual Karch/Randall/Sundrum mechanism [72]: given a holographic CFT,
we anticipate that introducing a “UV” or “Planck” brane in the bulk has the effect of
introducing a cutoff to the CFT and coupling to dynamical gravity. Here, we anticipate
that introducing an ETW brane in region 1 has this effect on CFT1, while region 2 is not
cut off and CFT2 therefore does not couple to gravity directly. See [278] for a discussion
of this.

85We are here thinking about the Lorentzian picture where we Wick rotate one of the
xµ coordinates.
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the present model, prompting a modification to the model explored in the

following section.

Before preceding to elucidate this result, it is worth taking a moment

to comment on the anticipated effect of adding an interface brane to our

model, beyond what we have already mentioned. Introducing this additional

ingredient into our model allows us to describe a larger class of holographic

duals of boundary states, with different boundary spectra, each of which

will give rise to different effective theories on the brane. The geometry

of the region between the interface and ETW branes is intimately related

to the physics of the BCFT boundary degrees of freedom, including the

number of these degrees of freedom; this can be understood as an example

of generalized wedge holography [285], where we have a bulk dual of a BCFT

involving two “wedges” of AdS separated by an interface brane (see also [4]

for a microscopic version of this phenomenon). In particular, as in the

previous section, we are typically interested in the case u < 1, so that,

despite considering a BCFT with central charge c2, we have a holographic

dual including a spacetime region which we expect to be described by a

CFT with larger central charge c1 > c2; this suggests that the corresponding

BCFT is defined by permitting many degrees of freedom localized near the

boundary, and we anticipate that, as a result, the effective theory on the

brane will also have more degrees of freedom than the non-gravitating CFT

in the effective picture.

One could nominally be concerned that adding an interface brane could

disrupt the condition for gravity localization, namely an ETW brane far in

the UV; for example, one could worry that the interface brane may localize

gravity in this set-up. However, we do not expect that the interface brane

should interfere with the gravity localization condition, particularly in a re-

gion where the ETW brane is much further in the UV than the interface

brane. While it is true that interface branes can also exhibit gravity local-

ization (as in the original Randall-Sundrum II model [72]), we have in our

case a situation where the interface brane is not situated at a local maximum

of the warp factor, and we therefore do not expect it to support a localized

bound state of the (d+1)-dimensional graviton. Moreover, following the in-
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tuition of [79], we can observe that the ETW brane localization phenomenon

should be a consequence of local physics, rather than depending on global

features of the bulk spacetime; provided we are interested in a region where

the ETW brane and interface brane are significantly separated, we should

be able to recover locally localized gravity. Just as in [79], we expect to find

a massive, normalizable Kaluza-Klein mode whose wavefunction localizes to

the ETW brane, but whose precise profile depends on the details of the IR

physics, including the location and geometry of the interface brane.

5.3.1 Non-existence of solutions

The Euclidean action for the theory considered in this section is obtained

by straightforwardly combining those for the two models considered in the

previous section, found in (5.1) and (5.19), and is given in Appendix D.1.

We assume without loss of generality that the ETW brane is added to region

1, so that in the effective description, CFT1 is coupled to gravity via the

Randall/Sundrum mechanism while CFT2 is not.

We again consider Euclidean solutions with Rd−1 symmetry (or Rd−2,1

symmetry upon Wick rotating one of the xµ coordinates); these are again

pieces of the Euclidean AdS soliton geometry, which we will continue to

parametrize as in (5.23). The interface brane trajectory in the two regions is

given by the same equation of motion for zinti (r) as in Section 5.2.2, and ∆zinti

still denotes the zi-coordinate distance traversed by the interface brane from

its minimum radius ri = rint0 to infinity, as in (5.25); zETW
1 (r1) and ∆zETW

1

are analogous quantities for the ETW brane, following the definitions in

(5.7) and (5.9). We will assume zint1 (rint0 ) = 0 without loss of generality, a

choice for the zero of the coordinate z1; solutions where the ETW brane and

interface brane join properly at infinity must therefore have zETW
1 (rETW

0 ) =

0 by symmetry, so we will assume this in the following.

As in the previous section, we will be interested in the case that region

1 does not include the coordinate horizon r1 = r
(1)
H while region 2 does

include the coordinate horizon r2 = r
(2)
H ; this permits region 1 to be multiply

wound, which is what we expect to be required to obtain the negative energy
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enhancement effect in CFT1. Recall that this implies ∆z1 > 0, and therefore

R1 =
2∆z1
β1

> 0.

Conditions for existence of solutions

It is clear that solutions of the desired type, parametrized by (L1, µ1, u, µ, e)

and the ETW brane tension λ (and with zint1 (rint0 ) = zETW
1 (rETW

0 ) = 0

as mentioned above), will exist if and only if the following conditions are

satisfied:

1. R2(u, µ, e) > 0 ;

2. ∆zint1 = ∆zETW
1 ;

3. rETW
0 > rint0 and |zint1 (r1)| > |zETW

1 (r1)| for all r1 > rETW
0 .

The first condition ensures that the interface solution on its own would

be well-defined86 (the width of CFT2 is non-negative), the second that the

ETW brane and interface brane join properly (they subtend the same z1-

coordinate length), and the third that the ETW brane always sits at a larger

value of the radial coordinate than the interface brane in region 1.

In particular, to demonstrate the non-existence of solutions for a given

set of parameters (L1, µ1, u, µ, e) and any λ, it is sufficient to show that one

of the following two conditions is not satisfied:

(C1) R2(u, µ, e) > 0

(C2) For λ = λ0 with λ0 defined by f1(r
int
0 ) = λ20(r

int
0 )2, one has

∆zETW
1

∆zint1

< 1 . (5.44)

The latter condition requires a brief explanation. Here, λ0 is the value

of the ETW brane tension λ for which the minimum radius rETW
0 of the

ETW brane would coincide with that of the interface brane, rint0 . We know

from (5.8) that rETW
0 monotonically increases over (r

(1)
H ,∞) as a function of

86The requirement R1 > 0 is already enforced by our assumption ∆z1 > 0.
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λL1 ∈ (0, 1), and as shown in Appendix D.2, we have ∆zETW
1 monotonically

increasing from zero to infinity over the same range of ETW brane tensions.

Consequently, condition (C2) above is equivalent to the existence of a tension

λL1 ∈ (λ0L1, 1) such that

rETW
0 > rint0 , ∆zETW

1 = ∆zint1 . (5.45)

In the following, we will show that these two conditions cannot simulta-

neously be satisfied in the NEE limit.

No solutions in the NEE limit

We can begin by determining when (C2) can be satisfied. Recalling the

limiting behaviour of (5.40) and (5.41)

∆zint1 ∼
2πL1

dr
(1)
H

I0
e

1
2
− 1

d

√
1− u

(1− µu)1/d
, rint0 ∼

r
(1)
H (1− uµ)1/d

(4e)1/d
, (5.46)

we have from the definition of λ0

λ0 =
1

L1

(
1− 2e

(1− µu)

)
+O(e2) . (5.47)

In the limit e→ 0,

∆zETW
1 (λ = λ0) ∼

2πL1

dr
(1)
H

(
1− µu
e

) 1
2
− 1

d

I0 , (5.48)

and thus

∆zETW
1 (λ = λ0)

∆zint1

∼
√

1− µu
1− u

. (5.49)

Assuming fixed u < 1, we thus have two possibilities. If µ < 1, then

this quantity will be greater than one, so that (C2) is not satisfied in the

limit, while if 1 < µ < 1
u , then this quantity will be less than one, so (C2) is

satisfied and a solution may exist.
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On the other hand, we have already seen in (5.40) that

R2 ∼ 1− µ1/du2/d−1 I0
e

1
2
− 1

d

√
1− u

(1− µu)1/d
; (5.50)

for fixed u < 1, we see that requiring R2 > 0 in the e → 0 limit requires

µ → 0. Thus, the condition µ → 0 imposed by (C1) is inconsistent with

µ > 1 imposed by (C2).

Solutions for u < 1

While we have shown that it is not possible to obtain solutions with an

ETW brane and an interface brane that join properly in the NEE limit,

it is certainly the case that well-behaved solutions exist elsewhere in the

parameter space. The reason that we are not concerned with these solutions

here is that they are not expected to be relevant for cosmology, on the basis of

arguments we have previously mentioned regarding the effective description

of the bulk physics of this model; without the NEE limit, we expect the

background for the gravitational CFT to have a 4D curvature scale L4 of

order LPlanck (the cutoff scale for the gravitational CFT) rather than some

hierarchically larger length scale.87 Nonetheless, we briefly comment here

about the larger parameter space.

A convenient feature for an investigation of this parameter space is that

both conditions (C1) and (C2) can be expressed in terms of inequalities

which depend only on the parameters (u, µ, e). From (5.37), we recall that,

87As observed in equation (4.10) of [278], the boundary central charge c3D = L2
4/G4

in our set-up, which is the bulk description of a holographic BCFT, is equal (up to O(1)
factors) to the coefficient F of the energy density for the gravitational CFT in an expression
analogous to (5.28), i.e. in T00 ∼ F/w4. One would expect that the typical value for F is
roughly equal to the number of degrees of freedom in the gravitational CFT, which is not
expected to be large in general, implying that we should generically expect L4 ∼ LPlanck

unless we consider something like the NEE limit. We thank Mark Van Raamsdonk for
emphasizing this point.
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if u < 1, the first condition yields the inequality

R2(u, µ, e) = R1

(
1

u
,
1

µ
, e

)
= 1− 1

4π

α̂2

α̂
1/d
0

Id
(
α̂1

α̂0
,
1

α̂0
,
α̂2
1α̂

2
2

4α̂2
0

)
> 0 (u < 1) .

(5.51)

On the other hand, recalling from (5.38) that

(rint0 )d

µ1L2
1

= µu2α̂0 (u < 1) , (5.52)

and from (5.8) that

λ =

√
f1(rETW

0 )

rETW
0

=
1

L1

√
1− µ1L2

1

(rETW
0 )d

, rETW
0 =

(
µ1L

2
1

1− L2
1λ

2

)1/d

,

(5.53)

we see that when the tension takes the value λ0 for which rETW
0 = rint0 = r0,

we have

∆zETW =

∫ ∞

r0

dr
rλ0

L1f1(r)

1√
f1(r)− r2λ20

=
L1

√
µu2α̂0 − 1

dr0
Id
(
0,

1

µu2α̂0
, 0

)
.

(5.54)

We therefore have

∆zETW(λ = λ0)

∆zint
= −2

(
α0

µu2α̂0

)1/d√
µu2α̂0 − 1

Id(0, 1
µu2α̂0

, 0)

α2Id
(
α1
α0
, 1
α0
,
α2
1α

2
2

4α2
0

) .
(5.55)

It follows that we can express the conditions introduced above as

(C1) 1− 1
4π

α̂2

α̂
1/d
0

Id
(
α̂1
α̂0
, 1
α̂0
,
α̂2
1α̂

2
2

4α̂2
0

)
> 0

(C2) −2
(

α0
µu2α̂0

)1/d√
µu2α̂0 − 1

Id(0, 1
µu2α̂0

,0)

α2Id
(

α1
α0

, 1
α0

,
α2
1α

2
2

4α2
0

) < 1.

These expressions are a convenient reformulation of (C1) and (C2) for the
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5.3. Bottom-up model with constant tension branes

purposes of verifying their compatibility within the parameter space.

As a preliminary for determining where such well-behaved solutions

could exist in the parameter space, our goal in the remainder of this section

will be to indicate a portion of the parameter space where these solutions

cannot occur. We will restrict our attention to the region satisfying:

• u < 1

• µ < min{ 1u ,
1
u2 − κ2L2

1};

however, one could ultimately explore the parameter space more broadly.

We note that, together, these conditions imply 0 < e < 1
2 . We therefore

assume here that

0 < u < 1 , 0 < e <
1

2
, µ < min

{1
u
,
1

u2
(
1− (1− u+ 2eu)2

)}
.

(5.56)

We will denote

c1(u, µ, e) =
1

4π

α̂2

α̂
1/d
0

Id
(
α̂1

α̂0
,
1

α̂0
,
α̂2
1α̂

2
2

4α̂2
0

)
,

c2(u, µ, e) = −2
(

α0

µu2α̂0

)1/d√
µu2α̂0 − 1

Id(0, 1
µu2α̂0

, 0)

α2Id
(
α1
α0
, 1
α0
,
α2
1α

2
2

4α2
0

) , (5.57)

so that the condition (Ci) corresponds to the inequality ci(u, µ, e) < 1.

We observe (but will not attempt to prove here) that, for fixed (e, u),

the function c1(u, µ, e) is monotonically decreasing in µ, while c2(u, µ, e) is

monotonically increasing in µ. Assuming that this is true, then a pair of

parameters (u, e) may be ruled out, meaning that they do not permit a well-

behaved solution, if the solution µ = µ0 to the equation c1(u, µ, e) = 1 (which

we may obtain numerically) yields c2(u, µ0, e) > 1. Using this approach, we

construct the plot shown in Figure 5.7. The shaded portion of the plot

corresponds to a region of the parameter space which has been ruled out,

meaning that it does not contain any well-behaved solutions; the unshaded

portion may or may not contain solutions (further investigation would be

needed to determine this). This plot already confirms the conclusion of
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Figure 5.7: Plot of “ruled out” region of the (u, e)-plane. Here, the region
shaded in red is part of the parameter space where we do not expect solutions
to occur, as conditions (C1) and (C2) cannot be simultaneously satisfied.
The remaining unshaded region in the upper right corner may or may not
have solutions (our procedure for ruling out regions of the parameter space
was not exhaustive).

Section 5.3 that solutions cannot exist in the NEE limit, which requires

e→ 0 for fixed u < 1.

5.4 Bottom-up model with Einstein-Hilbert term

on the ETW brane

We will now consider a generalization of the model considered above, where

an Einstein-Hilbert term is added to the ETW brane.88 In particular, we

modify the ETW brane contribution to the action of the previous section to

88We do not add an Einstein-Hilbert term to the interface brane, as this complicates
the analysis, though we provide the relevant equations in Appendix D.1.
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become

SETW =
1

16πGETW

∫
ETW

ddy
√
h R(d) + Smatter

ETW , (5.58)

where the matter contributions are from constant tension terms as before,

and where we will introduce the constant γ defined by

1

GETW
=

γ

Gbulk
. (5.59)

Again, for the solutions with the desired symmetry, the bulk consists of two

AdS soliton regions; the equations of motion for the ETW brane can be

found in Appendix D.1.2.

While there may be various constraints on the model parameters, includ-

ing γ, required to ensure that the bulk theory is a reasonable holographic

dual of a BCFT, a good starting point is to consider those theories for which

the corresponding effective theory enjoys a positive-sign Einstein-Hilbert

term. Ideally, one will also have a suppression of the higher curvature terms

in the effective theory. We should therefore clarify the action for the effective

theories describing the physics of the above models. We can do so following

the general recipe outlined in [281].

As derived in [286] (see also [281]), the contribution induced by integrat-

ing the bulk action (including the Gibbons-Hawking-York term) on-shell is

given by

Sinduced =
1

16πGbulk

∫
ddx
√
−h

[
2(d− 1)

L1
+

L1

(d− 2)
R(d)

+
L3
1

(d− 4)(d− 2)2

(
RabR

ab − d

4(d− 1)
R2

)
+ . . .

]
.

(5.60)

Higher order terms would be expected to depend in detail on the IR physics,

including the dynamics of the interface brane. In fact, we are interested in

the case d = 4, so the last term shown will be modified; we anticipate

that the numerical coefficient will be replaced by an order one number, and

an additional “non-local” term of the schematic form “R2L3
1 ln(RL

2
1)” will
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occur. The full effective action, including the terms from SETW, is therefore

Seff =
1

16πGbulk

∫
ddx
√
−h

[
2(d− 1)

L1
(1− λL1)

+
L1

(d− 2)

(
(d− 2)γ

L1
+ 1

)
R(d) + . . .

]
.

(5.61)

Canonically normalizing the Einstein-Hilbert term, we should define an

effective Newton constant

1

Geff
=

1

Gbulk

L1

(d− 2)

(
(d− 2)γ

L1
+ 1

)
, (5.62)

obtaining

Seff =
1

16πGeff

∫
ddx
√
−h

[
R(d)

+
2(d− 1)(d− 2)

L2
1

(1− λL1)
(d−2)γ

L1
+ 1

+ . . .

]
.

(5.63)

In particular, the cosmological constant for the effective theory is then

2Λ = −2(d− 1)(d− 2)

L2
1

(1− λL1)

(d− 2) γ
L1

+ 1
, (5.64)

and we must also scale the higher order terms suitably, by replacing Gbulk →
Geff

L1
(d−2)

(
(d−2)γ

L1
+ 1
)
.

As in the previous section, we would now like to establish the existence

of solutions with non-intersecting branes in the NEE limit. We begin by con-

sidering the special case of a trivial interface, before permitting an interface

with non-zero tension.
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5.4.1 Trivial interface

We will begin by considering the case with only an ETW brane and no

interface brane.89 In this case, we must demand the z coordinate to have

the appropriate periodicity β. While one might hope that the addition of

an extra parameter as compared to the model of Section 5.2.1 could permit

solutions with the property rETW
0 /rH ≫ 1, we will see that this does not

occur.

We will be interested in the limit where Lλ → 1, which we recognize

as the critical tension limit where rETW
0 → ∞ due to (5.8) (note that the

expression for rETW
0 in terms of λ is unchanged from the pure tension case);

to investigate this limit, we will consider the tension

λL = 1− ϵ (5.65)

with ϵ > 0 small. At leading order, we find

2∆zETW

β
=

(
2

ϵ

)1/2−1/d

I0

√
(d− 2)γ

L
+ 1 , (5.66)

taking all parameters other than ϵ to be fixed. To avoid self-intersections,

this ratio should be smaller than one; this would appear to be possible

provided that we take γ → − L
(d−2) sufficiently quickly, namely∣∣∣∣(d− 2)γ

L
+ 1

∣∣∣∣ = O(ϵ1−2/d) . (5.67)

In particular, we should saturate these asymptotics to avoid sending ∆zETW/β

to zero.

Note that, in this case, the cosmological constant for the effective the-

ory (5.64) will be vanishing in the limit, while our expectation is that the

coefficients for the higher curvature terms will blow up, due to the rescal-

ing of coefficients required to obtain the canonically normalized effective

89We are free to drop the subscript on bulk quantities in this subsection, since we have
a single region of the AdS soliton.
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action. We are most interested in an effective theory where the higher cur-

vature terms remain under control, so the trivial interface does not appear

desirable for our purposes.

5.4.2 Non-zero tension interface

We would now like to consider the case where we restore the interface, but

leave the interface brane action as a pure tension term, and take the NEE

limit. To this end, we again consider near-critical ETW brane tension

λL1 = 1− ϵ , (5.68)

with ϵ > 0 small. Note that we require (at leading order) ϵ < 2e
1−µu to ensure

that the minimum ETW brane radius is larger than that of the interface

brane, using the expression (5.8) for rETW
0 and (5.41) for rint0 in the NEE

limit. We then obtain

∆zETW
1 ∼ 2πL1

dr
(1)
H

(
2

ϵ

)1/2−1/d

I0

√
(d− 2)γ

L1
+ 1 , (5.69)

and thus

∆zETW
1

∆zint1

∼
(

2

1− µu
e

ϵ

)1/2−1/d
√

1− µu
1− u

√
(d− 2)γ

L1
+ 1 . (5.70)

Since we would like to require that this approaches one in the limit, and we

have in the limit (
2

1− µu
e

ϵ

)1/2−1/d
√

1− µu
1− u

> 1 , (5.71)

we see that this is still a requirement that γ be negative in the limit; however,

it is less stringent than in the case of a trivial interface. In particular, if we

take ϵ to scale proportionally to e (while keeping ϵ < 2e
1−µu throughout), and

recall that µ→ 0 is required to ensure R2(u, µ, e) > 0, then we see that this

bound always requires (d−2)γ
L1

+ 1 to approach a positive constant, rather
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than zero, in the limit.

Specifically, if we take ϵ ∼ 2ec
1−µu with fixed 0 < c < 1, then we require

lim
NEE

(
(d− 2)γ

L1
+ 1

)
= c1−2/d (1− u) . (5.72)

In particular, we see that the limiting value of γ lies within the range

−1 < (d− 2)γ

L1
< −u . (5.73)

The fact that the quantity appearing in (5.72), which appeared as a

scaling factor in the denominator of terms in the properly normalized effec-

tive action (5.63), is now a positive constant in the limit implies that the

coefficients for the higher curvature terms will remain finite. Consequently,

for a weakly curved ETW brane, it seems plausible that the physics should

be well-described by pure Einstein gravity with small corrections. The cos-

mological constant for the effective theory again vanishes in the limit. We

expect that the curvature length scale of the ETW brane should become

parametrically larger than the (d + 1)-dimensional AdS scale in the limit,

with the ratio diverging in the strict limit.

Here we have shown that it is possible to indicate a limit for which one

can obtain a solution with properly joining branes, for which the minimum

radius of the ETW brane is larger than that of the interface brane. This

limit can be interpreted as taking the NEE limit while tuning the ETW

brane tension so that the brane propagates close to the asymptotic AdS

boundary, and tuning the Einstein-Hilbert or DGP term so that the ETW

and interface branes join properly; it is given by

µ→ 0 , e→ 0 , 1− λL1 ∼ 2ec ,

(
(d− 2)γ

L1
+ 1

)
∼ c1−2/d(1− u) , (5.74)

where we keep 0 < u < 1 and 0 < c < 1 fixed. Here, one must take µ to

simply vanish sufficiently quickly so that R2 remains positive in the limit,

meaning that µ = O(e
d
2
−1). Note that we have yet to establish that the
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ETW brane stays outside of the interface brane, i.e. that the branes do not

intersect, in order to verify that the desired solutions indeed exist. We verify

this property in Appendix D.3.90

We note in passing that, for the limit considered here, the coupling for

the Einstein-Hilbert term in the action for the effective theory satisfies

1

16πGeff
∼ c1−2/d

16πGbulk

L1 − L2

(d− 2)
, (5.75)

so the effective coupling in the limit is controlled by the positive difference

between the central charges of the two CFTs.

5.5 Conclusions

In this work, we have pursued the suggestion of [278] that adding an in-

terface brane to the existing bottom-up holographic models in [2, 277, 278]

could permit solutions capable of realizing localized gravity on an ETW

brane via the Karch/Randall/Sundrum mechanism, making such solutions

“cosmologically viable”. We provide evidence to affirm this suggestion, with

an important caveat: one also needs to include additional local geometri-

cal terms in the ETW brane action, such as an Einstein-Hilbert term. In

particular, just adding a constant tension interface brane (with no Einstein-

Hilbert term on the ETW brane) was not sufficient, and just adding an

Einstein-Hilbert term to the ETW brane (with no interface brane) was also

not sufficient.

With both ingredients, we found that solutions appear in the region of

parameter space, the “NEE limit”, associated with cosmologically viable

solutions; this represents an important proof-of-concept for these models.

Solutions in this limit require a “wrong sign” Einstein-Hilbert term on the

ETW brane, as indicated in (5.74) and (5.73), but correspond to a “cor-

rect sign” Einstein-Hilbert term in the action describing the physics of the

effective theory. While the latter is the most important criterion for ensur-

90In particular, we verify that it holds for d ≥ 4, including the case d = 4 we are
especially interested in.
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ing a physically reasonable model (given that the effective theory is where

the cosmology lives), one may still wonder whether there may be other im-

portant constraints on the parameters involved in this model arising from

the requirement that the bulk physics represents a valid holographic dual

of a BCFT. Indeed, it has been suggested that such negative values of the

“DGP coupling” parameter may be problematic for holographic models of

this type; for example, it was noted in Appendix B of [281] that such models

may permit the formation of “Ryu-Takayanagi bubbles” on the brane whose

associated generalized entropy may be negative, an evident pathology.91 We

leave the interesting question of better understanding these possible addi-

tional constraints to future work.

91We thank Dominik Neuenfeld for emphasizing this and related points.
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Chapter 6

Finding AdS5 × S5 in

(2+1)-Dimensional

Superconformal Field Theory

Physics

6.1 Introduction

End-of-the-world (ETW) branes arise in many applications of string theory,

from model building, to cosmology92 [2, 276–278], to recent studies of black

hole evaporation [5, 281, 287–291].

A particularly interesting case occurs when an ETW brane cuts off the

asymptotic region of an asymptotically AdS spacetime [72]. In this case,

gravity can localize on the ETW brane such that over a significant range

of scales, gravity on the brane appears to be four-dimensional. Such ETW

branes can have a microscopic description when the brane intersects the

asymptotic boundary of AdS. As explained by Karch and Randall [78, 79]

(see also [87]), in this case the full system can be dual to a boundary con-

formal field theory (BCFT). The localization of gravity can arise in the

situation where there are many more boundary degrees of freedom than

bulk degrees of freedom.

Often, such ETW branes are considered in bottom-up models where the

brane is described as a codimension-one boundary hypersurface with some

simple action. In this case, gravity localization can occur when this brane

92See [77] for a review of braneworld cosmology.
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Figure 6.1: Schematic of geometries dual to N = 4 SYM theory on half
of R1,3 coupled to a 3D SCFT at the boundary. The geometry contains a
region that approximates a range Θ ∈ (Θ∗, π/2) of Poincaré AdS5×S5, and
an end-of-the-world brane region where the S5 smoothly degenerates. When
the 3D boundary SCFT has many more local degrees of freedom than the
N = 4 theory, the internal space typically grows to a large volume before
pinching off.

intersects the boundary at a large angle, so that it removes a region Θ <

Θ∗ = −π/2 + ϵ of AdS, where Θ is the polar angle in Poincaré coordinates

formed by the radial direction and the field theory direction perpendicular

to the CFT boundary. The limit ϵ → 0 corresponds to the tension of the

brane increasing to a critical value.

There are also fully microscopic models which realize ETW brane physics,

e.g. [174, 175]. In these cases, the ETW brane often corresponds to a re-

gion of a higher-dimensional geometry where the internal space degenerates

smoothly. In [292], examples were provided of such microscopic models

where gravity is localized to the ETW brane. In this chapter, we further

study these models, showing that the bulk geometry away from the ETW

brane can include a region Θ > Θ∗ = −π/2 + ϵ of Poincaré AdS with arbi-

trarily small ϵ. That is, we can push the ETW brane arbitrarily far towards

the missing asymptotic boundary.

We further show that there exist solutions with two ETW branes such

that the dual contains a region well-approximated by the −π/2 + ϵ < Θ <

π/2− ϵ wedge of AdS, again with arbitrarily small ϵ.

In the first case, we conclude that the physics of the missing half of the

bulk CFT can be reproduced by a set of boundary degrees of freedom. In

the second case, the physics of a higher-dimensional CFT can be reproduced
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by a carefully chosen lower dimensional theory. This is reminiscent of the

“deconstructing dimensions” story [293].

The microscopic set-up

In the microscopic set-ups we consider, the BCFT is U(N) N = 4 super-

symmetric Yang-Mills theory on R1,2 × R+ with boundary physics preserv-

ing half supersymmetry and an OSp(4|4) superconformal symmetry. This

boundary physics can generally be understood as a set of boundary degrees

of freedom coupled to the N = 4 fields in some way. These theories arise

in string theory from the low-energy limit of D3-branes ending on stacks

of D5-branes and NS5-branes, with additional D3-branes stretched between

the five-branes. In many cases, the boundary physics can be considered in-

dependently and describes a three-dimensional superconformal theory with

OSp(4|4) symmetry.

The vacuum states of these field theories on a half-space are dual to

known solutions of type IIB supergravity. These solutions have an asymp-

totically AdS5 × S5 asymptotic region whose boundary geometry is half of

R1,3. The full geometry has a part that is well approximated by a portion

Θ > Θ∗ of Poincaré AdS5 × S5, where Θ ∈ (−π/2, π/2) is the angle in

Poincaré coordinates that labels different AdS4 slices and Θ = π/2 corre-

sponds to the asymptotic region that is present.93 The remaining part of

the geometry can be understood as a geometrical “end-of-the-world brane”:

this is a region of the ten-dimensional geometry where the internal space

smoothly degenerates, so that we have a spacetime boundary from the five-

dimensional point of view. This ETW brane emerges from the CFT bound-

ary where the SCFT lives. Such geometries are illustrated schematically in

Figure 6.1.

For a fixed set of parameters in the N = 4 theory, different choices of the

boundary physics (i.e. the choice of 3D SCFT and how this is coupled to

the N = 4 theory) give supergravity solutions with the same asymptotically

93Here, we assume that Θ∗ is the smallest such angle for which this is true, given some
criterion for how closely the geometry should match AdS5 × S5.
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AdS5 × S5 region but a different behavior for the ETW brane, and in par-

ticular, a different brane angle Θ∗. The main goal of this chapter is to show

that by choosing the boundary physics appropriately, we can find examples

with Θ∗ arbitrarily close to −π/2. In other words, with the right choice of

boundary degrees of freedom, we can, to an arbitrarily good approximation,

reproduce the physics of the missing half of the N = 4 theory.

At the level of type IIB supergravity, it is trivial to exhibit families of

such solutions that recover all of Poincaré AdS5 × S5 in a limit. However,

the flux quantization conditions of the full type IIB string theory imply

that the parameters present in the supergravity solutions cannot be varied

continuously, but instead correspond to discrete solutions of a family of non-

linear equations. These parameters correspond to the discrete data used to

specify the choice of boundary SCFT to which we couple the N = 4 theory.

The non-linear constraints on the supergravity parameters are complicated

enough that it is not possible to find a general solution analytically. Never-

theless, we are able to exhibit the existence of sequences of such solutions

with the behavior that Θ∗ → −π/2.
On the field theory side, the theories that give Θ∗ ∼ −π/2 correspond

to boundary theories with many degrees of freedom. These arise from string

theory brane constructions where we have D3-branes ending on stacks of

D5-branes and NS5-branes where both ND5 and NNS5 are taken large. The

SCFTs describing these boundary degrees of freedom correspond to the IR

limit of quiver gauge theories where the quiver generally has many nodes;

we provide some explicit examples below.

Three-dimensional duals to arbitrarily large wedges of AdS5 × S5

For a give choice of boundary physics, we can also consider introducing a

second boundary with the same physics (arising from an equivalent config-

uration of branes) so that supersymmetry is preserved. This theory, now

on a strip, will flow to some SCFT in the infrared. The gravity dual for

this theory will correspond to a wedge −|Θ∗| < Θ < |Θ∗| of AdS5×S5 with

ETW branes on either side. Such solutions were considered in [294] and pro-

260



6.1. Introduction

vide a microscopic example of the “wedge holography” discussed in [285].

Our results in this chapter show that the wedge can actually be arbitrarily

large, i.e. with an angle that is arbitrarily close to π. Thus, we can have

a (2 + 1)-dimensional theory whose dual geometry contains an arbitrarily

large wedge of AdS5 × S5.

End-of-the-world brane geometries

The ETW branes in these constructions have a ten-dimensional geometry

that was compared by Bachas and Lavdas [292] to a bagpipe. Here, the

“bag” is a small perturbation to the AdS4 ⋊M6 geometry dual to the de-

coupled 3D SCFT, where M6 is a compact internal space. When the SCFT

is coupled to the higher-dimensional N = 4 SYM theory, the previously

compact internal space M6 is perturbed to include a narrow semi-infinite

“pipe” with the geometry of S5 times a non-compact direction [292]. The

perturbation is small since the N = 4 theory has many fewer local degrees

of freedom than the SCFT.

The curvature scale of the internal space M6 is generally of the same

order of magnitude as the scale L
(4)
AdS describing the non-compact AdS4

geometry of the ETW brane, and these are both much larger than the AdS5

scale L
(5)
AdS. The lack of scale separation between the AdS4 scale and the

curvature radius of theM6 has been noted in the past [292, 295]; we provide

a direct argument for it in Appendix E.1.

Outline

In the remainder of the chapter, we review in Section 6.2 the field theories

that we consider and their gravity duals in type IIB supergravity. In Section

6.3, we derive conditions on the parameters describing the boundary SCFT

such that the dual theories include a region that is well-approximated by a

region Θ > −π/2 + ϵ of AdS5 × S5 to an accuracy δ. In Sections 6.4 and

6.5, we find explicit examples of sequences of theories (with fixed gYM and

N for the N = 4 theory) that satisfy our conditions with parameters ϵ and

δ both approaching zero. In Section 6.6, we describe 3D SCFTs whose duals
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include arbitrarily large wedges of AdS5×S5 (|Θ| < π/2− ϵ with arbitrarily

small ϵ). We end with a brief discussion in Section 6.7.

6.2 Background

The field theories we consider and the corresponding supergravity solutions

were reviewed in detail in Sections 3.2 and 3.3. We refer the reader to those

sections, or to the earlier references [89, 90] for a discussion of theories with

half-maximal supersymmetry N = 4 on a half-space and [172–175] for a

discussion of the supergravity solutions. Here, we summarize only the basic

information that we will use.

The set of supergravity solutions that we discuss take the form of AdS4×
S2 × S2 fibred over a two-dimensional space Σ that we can take to be the

positive quadrant of a plane. Explicitly, the metric takes the form

ds2 = f24ds
2
AdS4 + f21ds

2
S2
1
+ f22ds

2
S2
2
+ 4ρ2(dr2 + r2dθ2) , (6.1)

where θ ∈ [0, π/2] and ds2AdS4
and ds2

S2
i
are metrics for AdS4 and two-spheres

with unit radius. Here, fi and ρ are functions of r and θ which are given

explicitly in terms of a pair of harmonic functions h1, h2 on Σ.

The general expressions for the harmonic functions corresponding to

vacua of N = 4 SYM on a half space with various choices for the boundary

physics are given as

h1 =
πℓ2s
2

r cos θ
√
g

+
ℓ2s
4

∑
A

cA√
g
ln

(
(r cos θ + lA)

2 + r2 sin2 θ

(r cos θ − lA)2 + r2 sin2 θ

)
h2 =

πℓ2s
2

√
gr sin θ

+
ℓ2s
4

∑
B

dB
√
g ln

(
r2 cos2 θ + (r sin θ + kB)

2

r2 cos2 θ + (r sin θ − kB)2

)
.

(6.2)

Here, the sets {lA} and {kB} represent the locations of poles on the x-axis

and y-axis respectively. These correspond to throats in the ETW brane

region of the geometry that are sources of D5-brane flux and NS5-brane
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flux respectively. The parameters cA and dB control the amount of D5 and

NS5-brane flux emerging from these throats.

In string theory, the five-brane flux is quantized; this gives the constraints

that

N
(A)
D5 ≡

1
√
g
cA ∈ N+ , N

(B)
NS5 ≡

√
gdB ∈ N+ . (6.3)

The throats also have D3-brane flux, and there are additional constraints

related to the quantization of this. These are

NA
D3 =

√
glA +

2

π

∑
B=1

N
(B)
NS5 arctan

lA
kB
∈ N+ ,

N̂B
D3 =

kB√
g
+

2

π

∑
A=1

N
(A)
D5 arctan

kB
lA
∈ N+ .

(6.4)

Here, the integer parameters NA
D3 and N̂B

D3 can roughly be thought of as

the number of units of D3-brane charge per D5-brane associated with the

lA throat or NS5-brane associated with the kB throat respectively.

The parameters (N
(A)
D5 , N

(B)
NS5, N

A
D3, N̂

B
D3) are directly related to the pa-

rameters specifying the field theory. The connection is described most easily

by referring to the string theory brane constructions from which the field

theory arises. It is convenient to define

(Li) = (NA
D3 with multiplicity NA

D5)

(Ki) = (N̂B
D3 with multiplicity NB

D5) ,

where both sets are ordered from left to right. Then, in the set-up of Figure

6.2, Ki is the net number of D3-branes ending from the right on the ith

NS5-brane plus the number of D5-branes to the left of this NS5-brane, and

Li is the net number of D3-branes ending from the right on the ith D5-brane

plus the number of NS5-branes to the left of this D5-brane.94

94It is sometimes convenient to order the 5-branes such that all NS5-branes occur to
the left of all D5-branes; in this case, Li is the net number of D3-branes ending on the
ith D5-brane plus the total number of NS5-branes, while Ki is simply the net number of
D3-branes ending on the ith NS5-brane.
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6.3. Obtaining a large AdS5 × S5 region

Figure 6.2: Cartoon of D-brane configuration giving rise to a supersymmetric
boundary condition of N = 4 SYM; here, D3-branes are black, D5-branes
are blue, and NS5-branes are red. This configuration corresponds to linking
numbers L = (1, 3, 3, 3, 6) and K = (2, 2, 3, 3). Removing the semi-infinite
D3-branes on the right, we have a brane configuration that gives rise to a
3D SCFT in the infrared.

6.3 Obtaining a large AdS5 × S5 region

The solutions dual toOSp(4|4)-preserving BCFTs we consider can be thought

of as having two general geometrical regions with distinct features:

• Region I: An asymptotically AdS5×S5 region occurring at large values

of the radial coordinate r ≫ lA, kB on Σ, where O(lA/r), O(kb/r)

corrections due to the 5-brane throats are small; and

• Region II: An “end-of-the-world” brane region at r ≲ lA, kB where

the geometry caps off smoothly except at the locations of the 5-brane

throats.

We are interested in considering whether certain allowed choices for the

supergravity parameters are able to produce a geometry where region (I)

is large and approximates pure AdS5 × S5; by “large”, we mean that the

AdS5 × S5 region extends to Poincaré angle Θ∗ ≈ −π/2.
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Conditions for a large AdS5 × S5 region

Consider the harmonic functions (6.2) that determine the metric and other

fields. Expanding these in 1/r, we can write

h1 = hAdS
1 +

ℓ2s√
g

[1
2

∑
A cAlA −

∑
B dBkB

r
cos θ

+
∞∑
n=1

∑
A

cA

(
lA
r

)2n+1 cos((2n+ 1)θ)

2n+ 1

]
h2 = hAdS

2 + ℓ2s
√
g
[
− 1

2

∑
A cAlA −

∑
B dBkB

r
sin θ

+

∞∑
n=1

∑
B

dB

(
−kB
r

)2n+1 sin((2n+ 1)θ)

2n+ 1

]
,

(6.5)

where

hAdS
1 =

L2
AdS

4

1
√
g
cos θ(

r

r0
+
r0
r
) , hAdS

2 =
L2
AdS

4

√
g sin θ(

r

r0
+
r0
r
) (6.6)

are the harmonic functions that give pure AdS5×S5, with AdS length LAdS

given by

L4
AdS = 4πℓ4s(

∑
A

cAlA +
∑
B

dBkB) = 4πℓ4sN , r0 =
L2
AdS

2πℓ2s
. (6.7)

For the pure AdS5 × S5 solution, the plane r = r0 is an AdS4 slice perpen-

dicular to the boundary that divides the space in half.

We note that for r ≤ r0, the first term in square brackets will be small

compared to the terms in hAdS if and only if

∆ ≡
∣∣∑

A

cAlA −
∑
B

dBkB
∣∣≪ N . (6.8)

The ratio ∆/N gives the fractional size of the corrections (which do not have

a significant dependence on r for r < r0).

The remaining corrections, involving higher powers of 1/r, become larger

(relative to the leading terms) for smaller r. It is straightforward to check

265



6.3. Obtaining a large AdS5 × S5 region

that these corrections will be small relative to the leading terms provided

that r ≫ lA and r ≫ kB. For example, when this is true, we have

ℓ2s√
g

∑
A

cA
l2n+1
A

r2n+1
≪ ℓ2s√

g

∑
A

cAlA
1

r
∼ ℓ2s√

g

N

r
≈
L2
AdS√
g

r0
r
, (6.9)

where the term on the right is the leading term in hAdS
1 in the r < r0 region.

To summarize, we expect that provided the condition (6.8) holds, the

solutions will be well-approximated by pure AdS5 × S5 in a region r > r∗

where the coordinate r is much larger than any of the lA or kB. For hi =

hAdS
i , the coordinate r is related to the Poincaré angle Θ by [296]

r

r0
= tan

(
Θ

2
+
π

4

)
(6.10)

so the geometry includes a region well-approximated by the Θ > Θ∗ region

of Poincaré AdS, where

Θ∗ = −
π

2
+ 2 tan−1 r∗

r0
. (6.11)

In particular, having Θ∗ close to −π/2 requires r∗ ≪ r0, which requires

kA, lA ≪
√
N . (6.12)

Thus, we have arrived at the two conditions (6.8) and (6.12). In Appendix

E.2, we provide a more detailed justification that these give solutions with

small Θ∗.

Satisfying the conditions within string theory

In the context of type IIB supergravity, it is trivial to find solutions satisfying

the constraints (6.8) and (6.12) for a given fixed N . We are free to take the

individual lA and kB as small as we like, and then choose cA and dB so that

N =
∑
A

cAlA +
∑
B

dBkB . (6.13)
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and (6.8) is satisfied.

However, in string theory, the solutions obey flux quantization condi-

tions (6.3) and (6.4). Below, we will investigate, for fixed (g, LAdS) (or

equivalently fixed parameters (gYM, N) in the N = 4 theory), the space

of parameters {lA, kB, cA, dB} that satisfy both the quantization conditions

and the constraints (6.8) and (6.12). We will demonstrate discrete families

of solutions for which we obtain an arbitrarily large region95 of AdS5 × S5,

approximated arbitrarily well, within the family.

6.4 Solutions with single D5-pole and NS5-pole

It is not possible to obtain a large AdS5×S5 region when we have a boundary

condition corresponding to a D-brane configuration with only D5-branes

or only NS5-branes, since this manifestly violates (6.8) in our constraints.

Thus, the simplest possibility is a solution with a single D5-brane throat

and a single NS5-brane throat. We consider this case in the present section.

We fix the parameters N and g. Then, in terms of the integer parameters

ND5, NNS5, the relation (6.7) and the constraint (6.4) demands that l, k

satisfy

N =
k
√
g
NNS5 + l

√
gND5

ND3 ≡
√
gl +

2

π
NNS5 arctan

(
l

k

)
∈ N+

N̂D3 ≡
k
√
g
+

2

π
ND5 arctan

(
k

l

)
∈ N+ ,

(6.14)

In Appendix E.3, we show that the allowed (l, k) are in one-to-one cor-

respondence with positive parameters (ND5, NNS5, ND3, N̂D3) such that

G ≡ gcd(ND5, NNS5) | N , (6.15)

95That is, for any ϵ > 0 there exists a solution within the family for which r∗ ≪ ϵr0.
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and

ND5ND3 +NNS5N̂D3 = N +ND5NNS5 . (6.16)

The latter equation always has at least one solution with positive integers

(ND3, N̂D3) provided that (6.15) is satisfied.

In this section, we will understand the space of quadruples of parameters

(ND5, NNS5, ND3, N̂D3) which can realize constraints (6.8) and (6.12), and

therefore give rise to supergravity solutions with a large region of AdS5×S5.

The main results of this section are as follows:

• If we would like a solution that is well approximated by AdS5 × S5 to

an accuracy δ ≪ 1 in some range r > ϵr0 (meaning that |cl−dk|
r20
∼ δ2),

it is necessary that gcd(ND5, NNS5) | N and

NNS5 ⪆
1

2ϵ

√
gN

ND5 ⪆
1

2ϵ

√
N
√
g
. (6.17)

• When these are satisfied, the additional condition

π

8G

((
gND5

NNS5

)
+

(
gND5

NNS5

)−1
)
< δ2 (6.18)

is sufficient to ensure the existence of suitable (ND3, N̂D3) to give

a solution with the desired properties. In particular, if we choose

ND5, NNS5 such that gcd(ND5, NNS5) = N and gND5/NNS5 = O(1),
the approximation accuracy δ will be of order 1/

√
N .

• We explicitly construct sequences of solutions labeled by a parameter

n ∈ Z+ with

lim
n→∞

max{l(n), k(n)} = 0 , lim
n→∞

|c(n)l(n)−d(n)k(n)| = 0 , (6.19)

thus obtaining an arbitrarily good approximation to an arbitrarily

large AdS5 × S5 region for large n. For example, in the case of self-
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dual coupling g = 1, this occurs for the choice

ND5(n) = nN , NNS5(n) = nN + 2 ,

ND3(n) =
N

2
(n− 1) + 1 , N̂D3(n) =

N

2
(n+ 1)

(6.20)

(or exchanging ND5 ↔ NNS5 and ND3 ↔ N̂D3 in these expressions),

where n ∈ N+ is an integer parameter (and we must also require that n

is odd if N is odd). More generally, we construct such families for any

string coupling g and any choice of relative scaling zND5 ∼ NNS5, z ∈
R+.

6.4.1 Necessary conditions for solutions with large

AdS5 × S5 region

Suppose we would like a solution that is well-approximated by AdS5 × S5

to an accuracy δ in some range r > ϵr0. Then according to the conditions

(6.8) and (6.12) we require that

l < ϵ
√
N (6.21)

k < ϵ
√
N (6.22)

1√
N

∣∣∣kNNS5√
g − lND5

√
g
∣∣∣ 12 < δ . (6.23)

Recalling that
k
√
g
NNS5 + l

√
gND5 = N , (6.24)

we may combine (6.23) and (6.24) to find that

N

2
(1− δ2) <

k
√
g
NNS5 <

N

2
(1 + δ2)

N

2
(1− δ2) < l

√
gND5 <

N

2
(1 + δ2) . (6.25)

Combining these with (6.21) and (6.22), we see that

NNS5 >
√
gN

1

2ϵ

(
1− δ2

)
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ND5 >

√
N

g

1

2ϵ

(
1− δ2

)
. (6.26)

Consequently, we see that both ND5 and NNS5 must be sufficiently large for

(6.8) and (6.12) to simultaneously be satisfied, in addition to the previous

requirement G | N . Notably, this implies that if we would like to construct a

family of solutions which can achieve an arbitrarily large AdS5 × S5 region,

then we will need to take both ND5 and NNS5 to be increasingly large within

this family.

6.4.2 Sufficient conditions for solutions with large

AdS5 × S5 region

Given ND5, NNS5 satisfying G | N and (6.26), we will now investigate the

additional conditions which guarantee a choice of (l, k) in the range (6.25)

for which ND3 and N̂D3 are integers.

For ND5 and NNS5 satisfying constraints (6.26) and G | N , we have from

(6.25) that
k

l
∈ g ND5

NNS5
[1− 2δ2, 1 + 2δ2] . (6.27)

Using (6.14) together with (6.25) and (6.27), we have that

ND3 ≈ N
(0)
D3 =

N

2ND5
+

2

π
NNS5 arctan

(
NNS5

gND5

)
N̂D3 ≈ N̂

(0)
D3 =

N

2NNS5
+

2

π
ND5 arctan

(
gND5

NNS5

)
. (6.28)

More precisely, taking into account the allowed range of l and k/l, L must

lie in a range of values with half width

∆ND3 = 2δ2

 N

4ND5
+

2

π

gND5

1 +
(

gND5
NNS5

)2
 . (6.29)

We can show that the second term here is larger when (6.26) is satisfied, so
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we can take the range as

∆ND3 ≈ 2δ2

 2

π

gND5

1 +
(

gND5
NNS5

)2
 . (6.30)

We need the range [N
(0)
D3−∆ND3, N

(0)
D3+∆ND3] to be large enough to contain

an integer value. More specifically, we need a value for which N̂D3−ND5 =

(N −ND3ND5)/NNS5 is also an integer. This requires that G | N , in which

case, a range of ND3 of length NNS5/G will lead to at least one integer value

of N̂D3.

Thus, for fixed g and N , and some chosen ND5 and NNS5 satisfying the

constraints (6.26) and that G | N , we will get a solution provided that the

range (6.29) is at least NNS5/G; that is, it should be sufficient that

1

G
< δ2

 8

π

(
gND5
NNS5

)
1 +

(
gND5
NNS5

)2
 , (6.31)

or
π

8G

((
gND5

NNS5

)
+

(
gND5

NNS5

)−1
)
< δ2 . (6.32)

Since the term in brackets is larger than or equal to 2 and G < N , we

expect that our sufficient condition can be satisfied provided that δ is at

least 1/
√
N . However, we will see below that for fixed N , arbitrarily small

values of ϵ and δ are possible for carefully chosen parameters.

6.4.3 One-parameter families with arbitrarily large

AdS5 × S5 region

For simplicity, we will begin with the case of self-dual coupling g = 1. We

consider a sequence of parameters labeled by n ∈ N+ (and further imposing

that n is odd for odd N to satisfy (6.15)), defining

ND5 = nN , NNS5 = nN + 2 , (6.33)
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and

ND3 =
N

2
(n− 1) + 1 , N̂D3 =

N

2
(n+ 1) , (6.34)

or alternatively, using the same expressions but with ND5 ↔ NNS5 and

ND3 ↔ N̂D3. In this case, we can check that (6.15) and (6.16) are satisfied,

so our results in Appendix E.3 show that there will be a unique choice (l, k)

satisfying (6.14).

For large n, we can write this solution perturbatively as

l =
1

2n
− 1

2n2

(
π

4
+

1

N

)
+O(n−3)

k =
1

2n
+

1

2n2

(
π

4
− 1

N

)
+O(n−3) .

(6.35)

From these, we find that

|cl − dk| = 1

n

(
1 +

πN

4

)
+O(n−2) . (6.36)

so we can indeed make max{l, k} and |cl − dk| arbitrarily small within this

particular class of solutions, by choosing sufficiently large n. Thus, we can

have an arbitrarily large region of AdS5 × S5 arbitrarily well-approximated

by our solution.

To emphasize that these choices of parameters indeed give rise to a large

AdS5 × S5 region, we show in Figures 6.3 and 6.4 the metric functions

obtained for particular choices of these parameters, as well as the metric

functions of AdS5 × S5 for reference. We find that these metric functions

agree to good approximation for r above some r∗ which becomes small as

the parameter n is taken to be large.

General construction of one-parameter families

Next, we consider a more general case where the string coupling takes the

form

g = m cot
(π
2

a

b

)
, (6.37)
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(a) ln f21
(
r, π4

)
versus r (b) ln f22

(
r, π4

)
versus r

(c) ln f24
(
r, π4

)
versus r (d) ln ρ2

(
r, π4

)
versus r

Figure 6.3: In these figures, we are taking g = 1, ℓs = 1, N = 100. The
metric functions shown in red are for the case (c, d, l, k) = (104, 104+2, 4.96×
10−3, 5.04 × 10−3) (namely n = 100 in our family of solutions), while the
metric functions shown in blue are for pure AdS5 × S5. Note that in this
case r0 ≈ 5.64.
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(a) ln
(
f24
(
r, π4

))
versus r on r ∈ (0, 8)

(b) Close-up: ln
(
f24
(
r, π4

))
versus r on

r ∈ (0, 1)

Figure 6.4: In these figures, we are taking g = 1, ℓs = 1, N = 100. The
metric functions shown correspond to the indicated values of n in the family
of solutions above, as well as the case of pure AdS5 × S5.

where m ∈ Z+ and a < b are relatively prime. The set of such string cou-

plings is dense in [0,∞). Taking (α, δ) to be any solution to the Diophantine

equation96

(b− a)α− bδ = N , (6.38)

we define a sequence97

ND5(n) = bn+ α

NNS5(n) = m(bn+ α)− b

ND3(n) = amn− a+m(α− δ)

N̂D3(n) = (b− a)n+ δ .

(6.39)

We can also consider a similar sequence with the replacements ND5 ↔
NNS5, ND3 ↔ N̂D3, g ↔ 1/g. This choice is motivated in Appendix E.4.

96A simple explicit case is to take b = a + 1 (so that g = m tan(π/2b)), α = N , and
δ = 0.

97Note that different choices for (α, δ) lead to the same sequence with a redefinition of
n.
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For these choices, it is straightforward to check that (6.16) is satisfied.

Also, constraint
√
gND5l +

1√
gNNS5k = N implies that both l and k are at

most O
(
n−1

)
, so these go to zero in the limit n → ∞. Finally, we need to

verify that |cl − dk| also vanishes in this limit.

From the definitions of ND3(n), NNS5(n), and g, we see that

ND3(n)

NNS5(n)
=
a

b
+O

(
n−1

)
=

2

π
arctan(m/g) +O

(
n−1

)
(6.40)

The equations (6.14) yield

ND3(n)

NNS5(n)
=

2

π
arctan(l/k) +O

(
n−2

)
. (6.41)

Thus, we have

l/k = m/g +O
(
n−1

)
. (6.42)

It follows that

|cl − dk| =
∣∣ (√gbn)(km

g
+O

(
n−2

))
−
(

1
√
g
bmn

)
k
∣∣ = O

(
n−1

)
, (6.43)

as desired. Thus, an arbitrarily large region of AdS5×S5 becomes arbitrarily

well approximated for solutions corresponding to large enough n.

The construction so far applies to a particular dense set of string cou-

plings of the form (6.37), and leads to a scaling of parameters

ND5 ∼ mNNS5 , (6.44)

where m is an integer. In Appendix E.4, we generalize the construction to

arbitrary real string coupling and find families of solutions that exhibit a

more general scaling NNS5 ∼ zND5 for arbitrary z > 0.

For general z, conditions (6.8) and (6.12) then fix the scaling for the

linking numbers to be

ND3

NNS5
∼ 2

π
arctan(z/g) ,

N̂D3

ND5
∼ 2

π
arctan(g/z) . (6.45)
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6.4.4 Field theory interpretation for solution families

approaching AdS5 × S5

We would now like to understand from the field theory perspective what

boundary physics for the N = 4 SYM theory gives rise to the solutions with

arbitrarily large regions of AdS5×S5 (Θ∗ arbitrarily close to −π/2). In each

case, we are coupling the N = 4 SYM theory on a half space to a particular

3D SCFT98 that can be understood as arising from the low-energy physics

of a particular brane configuration in string theory, or as the IR limit of a

quiver gauge theory.

To understand the brane construction corresponding to the parameters

(ND5, NNS5, ND3, N̂D3), we note that the parameters Li introduced in Sec-

tion 6.2 are simply ND3 with multiplicity ND5, while the parameters Ki

are N̂D3 with multiplicity NNS5. From the relation between these parame-

ters and the brane configuration, we can check that this set corresponds to

having NNS5 NS5-branes which we can initially think of as being separated

along a direction x3 (the direction in which the D3-branes are semi-infinite),

with a stack of ND5 D5-branes between the N th
D3 and (ND3+1)th NS5-brane

from the left. We additionally have ni D3-branes stretched between the ith

and (i+ 1)th NS5, where

ni =

iN̂D3 i ≤ ND3

iN̂D3 −ND5(i−ND3) i > ND3

. (6.46)

To the right of the final NS5-brane, we have the N semi-infinite D3-branes.

Stripping off the semi-infinite D3-branes gives a brane set-up whose low-

energy physics is a SCFT that corresponds to the IR limit of the quiver

98We recall that the general OSp(4|4)-invariant boundary condition of this theory can be
specified by a triple (ρ,H,B) [89, 90]; here, ρ : su(2) → g is a homomorphism into the Lie
algebra of the gauge group (in our case U(N)) which specifies the “Nahm pole” boundary
condition for the scalars in the bulk 4D hypermultiplet, H is the residual symmetry group
at the field theory boundary, and B is the 3D SCFT coupled at the boundary. For
the boundary conditions in the one-parameter families that we are currently considering,
we are imposing a simple Dirichlet boundary condition on the bulk hypermultiplet (and
a Neumann condition on the 4D vector multiplet), and there is no reduction in gauge
symmetry; our boundary conditions are then entirely specified by the SCFT B.

276



6.4. Solutions with single D5-pole and NS5-pole

gauge theory shown in Figure 6.5. Such a quiver consists of NNS5−1 nodes,

with ND5 fundamental hypermultiplets coupled to the N th
D3 node. For nodes

to the left of the N th
D3 node, the gauge group rank increases in increments

of N̂D3 as we read the quiver from left to right; for nodes to the right, the

gauge group rank decreases in increments of ND5 − N̂D3.

So far, this construction is completely general within boundary condi-

tions involving a single D5-brane throat and a single NS5-brane throat; we

now restrict to boundary conditions within the families considered in this

section. For the one-parameter family introduced at the beginning of Sec-

tion 6.4.3 (with g = 1 and z = 1), we see that the corresponding quiver

is approximately “left-right symmetric” for large n; given that our family

has ND3
NNS5

≈ 1
2 for large n, the hypermultiplets are coupled to a single node

which is roughly in the middle of the quiver, after which the gauge group

rank decreases in increments of ND5 − N̂D3, where
ND5−N̂D3

N̂D3
≈ 1 for large

n. More generally, we find that, if we parametrize the quiver by its length

NNS5−1 ≈ NNS5, then we will have ND5 ≈ 1
zNNS5 fundamental hypermul-

tiplets coupled to a node whose placement in the quiver grows proportionally

to the length of the quiver to enforce the ratio ND3
NNS5

≈ 2
π arctan(z/g). In

particular, we note that in the case of small coupling g ≪ z, the fundamen-

tal hypermultiplets will be roughly at the right end of the quiver, while in

the case of large coupling g ≫ z they will be at the left end.

The fact that all the hypermultiplets are attached to the same gauge

group factor (or that the D5-branes in the brane construction come in a

single stack) is an artifact of our simplifying assumption that the harmonic

functions leading to the supergravity solution have only a single D5-brane

pole and a single NS5-brane pole. We expect that there are many other

choices with additional poles that lead to more general quivers but still give

Θ∗ → −π/2 in a limit. In Appendix E.5, we will verify that such cases

can be obtained by small deformations of the boundary conditions in this

section. In particular, we construct examples where we couple in additional

hypermultiplets to an additional node of the quiver; this corresponds to

adding in additional D5 and NS5-brane poles. We also consider deforming

our single-pole boundary conditions by coupling the corresponding quivers
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Figure 6.5: General form of a quiver gauge theory which corre-
sponds to the field theory boundary conditions determined by the data
(ND5, NNS5, ND3, N̂D3), where we take ND3 = L and N̂D3 = K.

to an additional small quiver at the left endpoint. In both of these contexts,

we find more general sequences of solutions that still yield Θ∗ → −π/2. We

will consider a further generalization with multiple D5-brane poles in the

following section.

6.5 Solutions with multiple poles

In this section, we consider a more general case where we still have only a

single NS5-brane pole in h2 at location y = k with multiplicity NNS5, but

we allow arbitrary numbers of D5-brane poles in h1 at (possibly coincident)

locations x = li.

These poles will correspond to some linking numbers K with multiplicity

NNS5 and ND5 linking numbers {Li}, such that

NNS5N̂D3 +
∑
i

Li = N +NNS5ND5 . (6.47)

Given linking numbers satisfying this, the corresponding pole locations k

and l̂i must satisfy

Li =
√
gl̂i +

2

π
NNS5 arctan

li
k

N̂D3 =
k
√
g
+

2

π

∑
i

arctan
k

li
. (6.48)
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We can determine k and li as follows. Defining

Fk(x) =
√
gx+

2

π
NNS5 arctan

x

k
(6.49)

and noting that for any k, Fk is a monotonic map from [0,∞) to [0,∞), we

have that

li = F−1
k (li) . (6.50)

The actual value of k is determined by solving99

N =
k
√
g
NNS5 +

√
g
∑
i

F−1
k (Li) . (6.51)

To see which linking numbers satisfy our conditions for having a Θ∗ close

to −π/2, we note that the requirements that

√
g
∑
i

li +
k
√
g
NNS5 = N (6.52)

(which follows from the first three equations of this section) and our condi-

tion

|√g
∑
i

li −
k
√
g
NNS5| ≪ N (6.53)

require that both terms in each expression are close to N/2 so

√
g
∑
i

li ≈
N

2
(6.54)

and

k ≈ k(0) ≡
√
gN

2NNS5
. (6.55)

In order that k ≪
√
N , the latter condition implies

NNS5 ≫
√
gN . (6.56)

99We note that each term on the right is monotonically increasing with k, and the entire
right side increases monotonically from a value less than N for k = 0 to infinity for k = ∞,
so there will be a unique solution.
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Then the li are approximately related to Li by

li ≈ l(0)i ≡ F
−1
k(0)

(Li) . (6.57)

The condition li ≪
√
N gives that

F−1
k(0)

(Li)≪
√
N . (6.58)

From the condition (6.54), we have

√
g
∑
i

F−1
k(0)

(Li) ≈
N

2
. (6.59)

Since each li = F−1
k(0)

(Li) in the sum is required to be much less than
√
N

but also greater than or equal to F−1
k(0)

(1) ∼ π
√
gN/(4N2

NS5), we note that

the number of D5-brane poles (including multiplicity) must satisfy

1

2

√
N

g
≪ ND5 <

2N2
NS5

πg
. (6.60)

Our choice of the Li must be such that

N̂D3 = ND5 +
N −

∑
i Li

NNS5
(6.61)

is an integer. To see when this is possible, we note that for Li ≪ NNS5, F

is linear and

li = F−1
k(0)

(Li) ≈
π

4

√
gN

N2
NS5

Li . (6.62)

Thus, adding an additional pole with L = 1 or varying one of the Li by 1

leads to a change in the left side of (6.59) of

π

4

gN

N2
NS5

≪ 1 . (6.63)

Given any set of Li, changing the sum by an amount less than NNS5 will

be enough to give an integer N̂D3. If we add or change the Li in the linear
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regime of F , the change in
√
g
∑

i li will be less than

π

4

gN

NNS5
. (6.64)

We can satisfy (6.59) for integer N̂D3 provided that this quantity is much

less than N/2, so we have the additional condition

NNS5 ≫ g . (6.65)

So far, we have assumed that k = k(0). The actual value of k corre-

sponding to our chosen Li and N̂D3 is determined by

k
√
g
NNS5 +

√
g
∑
i

F−1
k (Li)−N = 0 . (6.66)

We need to check that for this actual value, |k/√gNNS5 − N/2| ≪ N so

that (6.53) is still satisfied. Since

|k
(0)

√
g
NNS5 +

√
g
∑
i

F−1
k(0)

(Li)−N | ≪ N , (6.67)

we know that the function

G(k) =
k
√
g
NNS5 +

√
g
∑
i

F−1
k (Li) (6.68)

varies by an amount much less than N as k is varied from k(0) to its actual

value. This gives

δk ≪ N

G′(k)
, (6.69)

so kNNS5/
√
g will change by an amount much less than N provided that

the right side here is less than
√
gN/NNS5, or G

′(k) > NNS5/
√
g. This is

clearly true, since the k derivative of the first term in G is NNS5/
√
g and

the k derivative of the second term is positive.

To summarize, given N and g, the following procedure will yield a set of

linking numbers that satisfy our conditions:
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• Choose some NNS5 satisfying NNS5 ≫
√
gN and NNS5 ≫ g and ND5

satisfying (6.60).

• Choose a set {Li} of ND5 Li such that (6.58) and (6.59) are satisfied

and

N̂D3 = ND5 +
N −

∑
i Li

NNS5
(6.70)

is an integer. This will be possible provided the conditions on NNS5

and ND5 are satisfied.

• Once the linking numbers are fixed in this way, the precise k and li

are determined by the procedure described at the beginning of this

subsection.

For this more general class of SCFTs, the corresponding quiver gauge the-

ory will have fundamental matter distributed among the nodes of the quiver,

with the number of distinct Li determining the number of nodes with fun-

damental matter.

If we require that li < ϵ
√
N to satisfy (6.58), we get

max{Li} ≈ Fk(0)(ϵ
√
N) = ϵ

√
gN +

2

π
NNS5 arctan

(
2ϵNNS5√

gN

)
. (6.71)

If NNS5 ≫
√
gN/ϵ, we get max{Li} ≈ NNS5. As there are NNS5 nodes

in the quiver, it seems possible in some cases to have matter uniformly

distributed throughout the quiver, with order one fundamentals per node.

6.6 Microscopic wedge holography

In this section we describe a generalization of the previous construction

in which we have two ETW branes bounding an arbitrarily large wedge

Θ ∈ (−Θ∗,Θ∗) of AdS5 × S5. In this case, only an R1,2 of the original

asymptotic region R1,3 of AdS5 × S5 remains, and the dual theory is a

three-dimensional SCFT.
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Figure 6.6: Illustration of procedure used to define families of solutions
realizing arbitrarily large wedges of AdS5 × S5; here, D3-branes are black,
D5-branes are blue, and NS5-branes are red. To pass from the second to
the third configuration, we rearrange the five-branes so that all NS5-branes
are to the left of all D5-branes, while D3-branes between these five-branes
are created or annihilated to maintain fixed linking numbers. The third

configuration is convenient for defining the quantities N
(A)
3 , N̂

(B)
3 in (6.73):

they represent the net number of D3-branes ending on branes in the Ath

D5-brane stack or the Bth NS5-brane stack respectively.

6.6.1 A 3D dual to an arbitrarily large wedge of AdS5 × S5.

We have seen that for an appropriate choice of 3D SCFT coupled to N = 4

SYM theory on a half space, the ETW brane region of the dual geometry

can be pushed to a Poincaré angle that is arbitrarily close to −π/2. We next

consider the situation where we introduce another such boundary parallel

to the first so that the N = 4 theory now lives on a strip. We can choose

this second boundary SCFT to preserve the same set of supersymmetries as

the first one. The brane construction of this SCFT involves the same set

of branes as for the first SCFT, with the same orientations, but arranged

in the opposite order in the spatial direction in which the D3-branes have a

boundary;100 see Figure 6.6.

We expect the dual of this theory to have two ETW branes, bounding a

wedge of AdS5×S5 whose asymptotic region has the geometry R1,2 times an

interval. The solutions of [172–175] are not general enough to describe this,

since they correspond to theories with a 3D superconformal symmetry, while

the interval in our construction introduces a scale. However, we expect that

the IR limit of the theory on a strip will be a certain superconformal theory;

this is the theory whose brane construction combines that of the original

100More generally, we could consider two different SCFTs which nevertheless preserve
the same supersymmetries.
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BCFT with that of the second SCFT, so that the initial semi-infinite D3-

branes now connect the brane configurations describing the two SCFTs. The

gravity dual of this IR SCFT is a wedge of AdS5×S5 with two ETW branes.

Such wedge geometries can be described explicitly as particular cases of the

solutions in [172–175] and were considered previously in [175, 294]. These

geometries are microscopic realizations of the “wedge holography” discussed

in [285].

The new element in our work is that we can, by the choices described in

the previous section, arrange for the wedge of AdS5×S5 between the ETW

branes to be arbitrarily large.

To verify this, we note that, making the change of coordinates z = r0e
w =

r0e
x+iy so that the positive quadrant is mapped to the strip 0 ≤ ℑ(w) ≤ π/2,

the single boundary geometries correspond to harmonic functions

h1 =
πℓ2s
2
√
g
r0e

x cos y +
ℓ2s
4
√
g

∑
A

cA ln

(
cosh(x+ αA) + cos(y)

cosh(x+ αA)− cos(y)

)
h2 =

πℓ2s
√
g

2
r0e

x sin y +
ℓ2s
√
g

4

∑
B

dB ln

(
cosh(x+ βB) + sin(y)

cosh(x+ βB)− sin(y)

)
,

where we have defined αA = − ln(lA/r0) and βA = − ln(kA/r0).

The pole of h1 at −α and the pole of h2 at iπ/2−β lie at large negative

values of x for the single-pole cases of interest. The corresponding solution

with two ETW branes is given by

h1 =
ℓ2s
4

2∑
a=1

N
(a)
5 ln

(
cosh(x− δa) + cos(y)

cosh(x− δa)− cos(y)

)
h2 =

ℓ2s
4

2∑
b=1

N̂
(b)
5 ln

(
cosh(x− δ̂b) + sin(y)

cosh(x− δ̂b)− sin(y)

)
,

where N
(1)
5 = N

(2)
5 = ND5 and N̂

(1)
5 = N̂

(2)
5 = NNS5 are the number of D5-

branes and NS5-branes in the initial boundary condition, and now we have

poles of h1 at δ1/2 and of h2 at iπ/2+ δ̂1/2 whose leading order behaviour is

given by

δ1 ∼ −δ2 ∼ α , δ̂1 ∼ −δ̂2 ∼ β . (6.72)
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Solutions corresponding to more general 3D SCFTs are obtained by allowing

the poles to be at more general locations.

To demonstrate this claim, we will proceed by analyzing the D-brane

constructions for these theories. We must first revisit the families of bound-

ary conditions from the previous section, choosing for convenience a string

coupling g in the boundary case to be of the form g = m cot
(
π
2
a
b

)
, as we

have done above, and defining the parameters (ND5, NNS5, ND3, N̂D3) using

(6.39). As in [175], when we pass to the dual of the 3D theory, we may

consistently set g = 1 (while the dilaton is left arbitrary).

The doubled theory is described in the language of [175] by parameters101

N
(1)
5 = N

(2)
5 = ND5 ,

N̂
(1)
5 = N̂

(2)
5 = NNS5 ,

N
(1)
3 = 2NNS5 −ND3 , N

(2)
3 = ND3 ,

N̂
(1)
3 = N̂D3 , N̂

(2)
3 = 2ND5 − N̂D3 ,

(6.73)

where the supergravity parameters δa, δ̂b are related to the D3-brane charges

by

N
(a)
3 =

2

π

2∑
b=1

N̂
(b)
5 tan−1

(
eδa−δ̂b

)
N̂

(b)
3 =

2

π

2∑
a=1

N
(a)
5 tan−1

(
eδa−δ̂b

)
.

(6.74)

These latter equations yield at leading order in n

eδ1−δ̂1 =
g

m
, eδ1−δ̂2 =

4mb2n2

πN
,

eδ2−δ̂1 =
πN

4mb2n2
, eδ2−δ̂2 =

m

g
,

(6.75)

101Our notation is actually slightly different from that of [175]: the N
(i)
3 and N̂

(i)
3 are

both defined to be positive quantities, and differ from the conventions of that reference
by factors of N

(i)
5 and N̂

(i)
5 respectively.
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so that without loss of generality we may take leading order behaviour

eδ1 =
g

m
eδ̂1 = e−δ2 =

g

m
e−δ̂2 =

2
√
gbn

√
πN

. (6.76)

Comparing with the supergravity parameters from the boundary case

l

r0
∼
√
πN

2
√
gbn

,
k

r0
∼
√
gπN

2mbn
, (6.77)

we find the leading behaviour of the poles δ1/2 and δ̂1/2 mentioned above.

One can consider h1, h2 at leading order, and show that they give rise to

an AdS5 × S5 region when |x| ≪ lnn. Indeed, we find in this region

h1 ∼
L2
AdS

2
√
g
coshx cos y ,

h2 ∼
√
gL2

AdS

2
coshx sin y ,

(6.78)

where L2
AdS =

√
4πNℓ2s. We recognize these as corresponding to pure AdS5×

S5. As n is increased, the curvature scale of the AdS5×S5 region approaches

a constant value, while the size of this region increases.

In Figure 6.7, we show the metric functions for such solutions (as well as

those of AdS5 × S5 for comparison) in the vicinity of the locally AdS5 × S5

bridge between the two ETW branes, for various increasing values of n. We

see that for increasing n, the bridge connecting the two ETW brane regions

corresponds to an increasingly large wedge of AdS5 × S5.

6.6.2 Multi-wedge geometries

We have given a specific class of constructions describing arbitrarily large

wedges of AdS5×S5 as the dual of a 3D SCFT. For concreteness, we focused

on the case obtained by doubling a brane configuration considered earlier

in the context of boundary conditions for the 4D N = 4 theory. More

generally, we may consider 3D SCFTs which descend from linear quivers

arising from “gluing” together several large sub-quivers of the type discussed
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(a) ln f21 versus w1 (b) ln f22 versus w1

(c) ln f24 versus w1 (d) ln ρ2 versus w1

Figure 6.7: In these figures, we are taking g = 1, ℓs = 2, N = 100. The

metric functions shown are for N5 = 2nN, N̂5 = 2(nN +2), N̂
(1)
3 = N

2 (n+1)
with the values of n given, while the metric functions shown in light blue are
for pure AdS5 × S5 (with LAdS fixed by N). We are displaying the metric
functions with respect to complex coordinates (w, w̄) = (w1 + iw2, w1 −
iw2) =

(
ln
(
reiθ/r0

)
, ln
(
re−iθ/r0

))
, and setting θ = π/4 in the figures. Note

that the Jacobian of this coordinate change modifies ρ2 from the expression
provided.
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in Section 6.4.4 by coupling the first and last nodes of consecutive sub-

quivers with bifundamental matter to some additional U(mA) nodes with

small mA. This procedure is in the spirit of the “quantum gate” solutions

described by Bachas and Lavdas in [294], but the result here is a spacetime

description involving multiple wedges of AdS5 × S5 separated by interface

branes.

This “multi-wedge” construction suggests further generalizations for holo-

graphic theories realizing the same OSp(4|4) symmetry as the 3D SCFTs,

including the OSp(4|4)-preserving BCFTs and 3D SCFTs descending from

circular quiver gauge theories. In the former case, the holographic descrip-

tion involves a large AdS5 × S5 region in the vicinity of the asymptotic

boundary, but this region is connected to an additional multi-wedge region

by an interface brane. In the latter case, we again obtain a multi-wedge

geometry whose boundary is only an R1,2 subset of the asymptotic R1,3 of

AdS5 × S5, but in this case, the first and last AdS5 × S5 wedges are con-

nected by another interface brane, so that we have non-contractible loops in

the internal space which traverse all of the wedges. We leave a more detailed

analysis of multi-wedge solutions to Appendix E.6.

6.7 Discussion

We have provided a number of microscopic constructions of 4D BCFTs

enjoying a holographic description with an arbitrarily large AdS5×S5 region

terminating on an ETW brane, as well as 3D SCFTs which correspond to

an arbitrarily large AdS5 × S5 wedge. While the possibility of realizing

similar features by considering limits of the supergravity solutions provided

in [174, 175, 297] has been discussed previously (e.g. in [175, 292, 294,

297]), we have provided an important check that the required limits can

indeed be realized in string theory, where the various charges are subject

to quantization requirements, and we have characterized the appropriate

boundary conditions explicitly in terms of the corresponding field theory

data.

The simplest such BCFT boundary conditions arise in string theory from
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a single stack of ND5 D5-branes and NNS5 NS5-branes; choosing ND5, NNS5

sufficiently large with gND5/NNS5 = O(1) ensures a large AdS5×S5 region,

and a judicious choice of these parameters and the linking numbers L,K can

make this region arbitrarily large. While these “single-pole” boundary condi-

tions are especially easy to analyze, we have indicated several generalizations

involving multiple five-brane throats in the ETW brane region, including

small perturbations to the single-pole boundary conditions, boundary con-

ditions which redistribute the fundamental matter throughout the defining

quiver diagram, and boundary conditions involving extended quivers which

give rise to “multi-wedge” duals. By invoking similar D-brane constructions

to generate supersymmetric boundary conditions for the 4D N = 4 SYM

theory or 3D SCFTs describing the IR physics of linear or circular quiver

gauge theories, we are able to produce holographic duals for these theories

in type IIB supergravity that possess similar local features, including one or

more AdS5 × S5 wedges. This suggests a precise sense in which the physics

of these degrees of freedom can be associated to the wedge. In all of our

examples, such wedges are necessarily accompanied by a large ETW brane

region.

There are a number of further directions which remain interesting to

explore. While we have studied a large class of solutions with large AdS5×S5

regions, it would be desirable to provide a general characterization of theories

which possess this feature. It is also interesting to understand if there is a

relationship between our work and the “dimensional (de)construction” story

[293, 298]. In this context, it is shown that certain quiver gauge theories may

admit a low-energy effective description with emergent extra dimensions;

for example, this may occur in superconformal theories moved onto the

Higgs branch, with the spectrum of massive vectors obtained via the Higgs

mechanism organizing precisely into the Kaluza-Klein modes of the higher-

dimensional theory. Our results also suggest a relationship between 3D and

4D supersymmetric theories, in the sense that the physics of large wedges of

AdS5 × S5 can either be described by degrees of freedom in the 4D N = 4

SYM theory or in a suitably chosen 3D SCFT capturing the low-energy

behaviour of a quiver gauge theory.
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Black Holes
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Chapter 7

Information Radiation in

BCFT Models of Black Holes

7.1 Introduction

Within the context of holographic models of quantum gravity, the forma-

tion and evaporation of black holes is a manifestly unitary process in the

sense that the underlying quantum system evolves through conventional

Schrödinger evolution with a Hermitian Hamiltonian. However, in the grav-

ity picture, the physics of the black hole interior and the mechanism through

which information about the microstate of the black hole emerges in the

Hawking radiation are still not fully understood.

A crucial piece of physics to understand is the evolution of the density

matrix for the black hole radiation. Hawking’s original calculation [56] sug-

gests that the entropy of this density matrix continues to increase through-

out the black hole’s evaporation. But unitary evolution predicts that this

entropy should begin decreasing at the “Page time” when the black hole’s

(macroscopic) entropy has been reduced to half of its original value [57, 58]

and the remaining black hole becomes maximally entangled with the radi-

ation system. The specific increasing and then decreasing behavior of the

entropy of the radiation system as a function of time is known as the Page

curve. Understanding how this curve comes about from the gravity picture

is a key challenge.

A further mystery appeared in the work [59–61, 299, 300], in which the

authors argued that assuming a unitary picture of black hole evaporation

leads to the conclusion that there cannot be a smooth region of spacetime
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behind the horizon of an evaporating black hole past the Page time. The

argument was based on an apparent inconsistency between having maximal

entanglement between the black hole and its early Hawking radiation after

the Page time and having entanglement between field theory degrees of

freedom on either side of the black hole horizon, as required by smoothness.

The proposed alternative is that the old black hole develops a “firewall” at

its horizon.

A fascinating suggestion [45] to avoid this firewall conclusion, making use

of the general idea that the connectivity of spacetime is related to quantum

entanglement between underlying degrees of freedom [44, 301], is that the

entanglement between the black hole and its early radiation past the Page

time is actually responsible for the existence of a smooth geometry behind

the black hole horizon, in the same way that the entanglement between two

conformal field theories (CFTs) in the thermofield double state gives rise

to a smooth wormhole geometry connecting the two black hole exteriors.102

In this picture, the behind-the-horizon degrees of freedom are the radiation

degrees of freedom, so there is no contradiction that both are entangled with

outside-the-horizon modes of the black hole.

Very recently, a series of papers [9, 63, 64] have provided more detailed

insight into how the black hole radiation can be seen to have an entropy

described by a Page curve yet avoid the firewall paradox by the mechanism

of [45] (see also [303]). The examples in these papers make use of an aux-

iliary radiation system coupled to a system that would otherwise describe

an equilibrium black hole.103 The new insights come by making use of the

quantum version [145, 149] of the Ryu-Takayanagi formula [42, 305], which

gives the gravity interpretation of entanglement entropies for subsystems of

a holographic quantum system.104 Importantly, the prescription for calcu-

102It was suggested in [302] that this analogy could be made precise by coupling a holo-
graphic CFT to an auxiliary “radiation” system consisting of another copy of the holo-
graphic CFT. In this case, an initial pure-state black hole described by the first CFT
would evolve to an entangled state of the two CFTs which could be dual to a two-sided
black hole. In this case, the radiation system manifestly describes the region behind the
horizon of the original black hole.
103See [304] for an early application of this idea.
104For a subsystem A of a holographic system, the quantum Ryu-Takayanagi (RT) surface
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lating these entropies in the gravity picture requires the identification of a

“quantum extremal surface” on which the functional (7.1) is evaluated to

calculate the entanglement entropy. A central observation of [9, 63, 64] is

that during the evaporation of a black hole, the quantum extremal surface

that computes the entanglement entropy of the radiation system can jump,

leading to a first-order transition in the entanglement entropy that provides

the necessary switch from increasing to decreasing behavior.

Further insights in [9, 63, 64] make use of the notion of the “entanglement

wedge” of a subsystem of a holographic system, which is the portion of the

full spacetime that is dual to or reconstructible from the density matrix

for the subsystem, and is understood to be the bulk region enclosed by the

quantum extremal surface [146, 148, 306–310]. In the examples of [9, 63,

64], it is seen that after the transition in the quantum extremal surface,

the entanglement wedge of the radiation system actually includes a portion

of the black hole interior. Thus, the underlying degrees of freedom for

this interior region after the transition are understood to be the degrees

of freedom of the radiation system, in accord with the proposal of [45].

Summary and outline

In this chapter, our first motivation is to further elucidate the observations

of [9, 63, 64] by studying the evolution of black holes in a new class of

models where the evolution of entanglement entropy and the entanglement

wedge can be studied very explicitly through direct holographic calculations.

Our models are similar to and motivated by the one in [9] in that they

have a holographic description in one higher dimension than the original

black hole of interest, and the full dynamics of entanglement entropy for the

basic degrees of freedom is captured geometrically through the behaviour

Ã in the dual gravitational picture is a bulk surface which is homologous to A and has
the minimum value of the functional

Sgrav(A) =
Area(Ã)

4G
+ Sbulk(ΣA) (7.1)

among extrema of this functional. Here Sbulk(ΣA) is the entanglement entropy of bulk
fields in the bulk region ΣA enclosed by Ã.
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7.1. Introduction

Figure 7.1: Basic set-up. (A) Our thermal system, dual to a bulk black
hole, is the red boundary. It interacts with a bulk CFT which can serve as
an auxiliary system into which the black hole can radiate. (B) The higher-
dimensional bulk picture. The red surface is a dynamical “end-of-the-world”
(ETW) brane whose tension is monotonically related to the number of local
degrees of freedom in the boundary system. For large tension, this ETW
brane moves close to the boundary and behaves like a Randall-Sundrum
Planck brane. (C) The Planck brane picture suggests an effective lower-
dimensional description where a part of the CFT in the central region is
replaced with a cutoff CFT coupled to gravity, similar to the set-up in [9].

of classical Hubeny-Rangamani-Takayanagi (HRT) surfaces. However, our

systems are described somewhat more explicitly than the one in [9] and have

an additional parameter that controls the Page time for the black hole.

Our specific construction, described in Section 7.2, starts with a d-

dimensional holographic system on Sd−1 in a high-energy state, or a ther-

mofield double state with a second copy of the holographic system. These

holographically describe one-sided or two-sided black holes in spacetimes

that are asymptotically AdS if the theory that we start with is a CFT.

The black holes are in equilibrium with their Hawking radiation, which re-

flects off the boundary of the spacetime. In order to have the black holes

evaporate, we couple our holographic system to an auxiliary system as in

[9, 63, 64, 302, 304]. Our auxiliary system is a CFT in one higher dimension

living on a space whose boundary is Sd−1 (or two copies of this), such that

our original degrees of freedom provide boundary degrees of freedom for

this higher-dimensional CFT. We can take the higher-dimensional CFT to

be holographic, such that the full system is a holographic boundary confor-

mal field theory (BCFT) (or flows to one in the IR). We show in Section 7.2

that the Page time for the black hole is proportional to the ratio cbdy/cbulk of
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the local number of boundary degrees of freedom to the local number of de-

grees of freedom in the bulk CFT. In the limit where cbdy is large and cbulk is

fixed, the Page time that we calculate from CFT considerations matches the

Page time obtained in the gravity picture in AdS with absorbing boundary

conditions [311].

For our explicit calculations, we consider various states of the BCFT con-

structed via Euclidean path integrals, so that the dual gravity geometries

can be understood explicitly. For these states, we will consider the computa-

tion of entanglement entropy for the auxiliary system, considering a spatial

region defined by the points at distance greater than a from the boundary

system. We calculate the entanglement entropy for this system as a function

of time and of the distance a. We perform the calculation holographically by

finding the HRT surface in a dual (d+1)-dimensional gravitational system.

We make use of a bottom-up holographic prescription for studying the dual

BCFTs in which the CFT boundary extends into the bulk as a dynamical

end-of-the-world brane whose tension is directly related to cbdy. We also

reproduce the results of these holographic calculations through direct cal-

culations in our BCFT system, making use of standard assumptions about

holographic CFTs.

As hoped, our calculations show a first order phase transition of the

entanglement entropy at the Page time after which the entropy of the ra-

diation stops increasing; a sample result for the transition time is shown in

Figure (7.2). In the higher-dimensional gravity picture, we find that after

the transition, the entanglement wedge of the radiation system includes a

portion of the black hole interior.

A new qualitative result of the present chapter is that the phase transi-

tion described in the previous paragraph can occur even when the black hole

is not evaporating, but simply coupled to an open radiation system which

is in thermal equilibrium with the black hole. In this case, we find that

while the energy density is static everywhere, the entanglement entropy for

subsets of the radiation system still shows interesting dynamics, increasing

with time until a phase transition after which it is constant. Again, the

entanglement wedge of the radiation system includes a portion of the black
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Figure 7.2: Time at which the subsystem of the radiation system greater
than some distance from the BCFT boundary exhibits a transition in its
entanglement entropy, for the case cbdy/cbulk ∼ 50. After the transition,
the entanglement wedge of this subset of the radiation system includes a
portion of the black hole interior. After a time equal to the Page time plus
the light travel time from the boundary to our subsystem, there is enough
information in the subsystem to reconstruct part of the black hole.
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hole interior after the transition. This static case is the focus of Section 7.3.

In Section 7.4, we consider more general states for which the initial

radiation system is not in equilibrium with the black hole and the energy

density is time-dependent. These more closely model evaporating black

holes. Our detailed results are again in line with the expectations of [9, 63,

64] and confirm some of the qualitative predictions of [9].

We end in Section 7.5 with a discussion. There, we describe some di-

rections for future work and describe further holographic constructions of

evaporating black hole systems. We also point out that the transition in ex-

tremal surfaces described in this chapter and in [9, 63, 64] is closely related

to a similar transition [2] that can occur when looking at the entanglement

entropy for subsystems of a CFT on Sd−1 in a high-energy state dual to a

single-sided black hole. For the CFT states described in [2], we can have a

transition as the subsystem size is increased, after which the entanglement

wedge of the subsystem includes part of the geometry behind the black hole

horizon. Remarkably, in the case of 3D gravity, the CFT calculations that

exhibit this transition are precisely the same CFT calculations that show

the entanglement wedge transition in the present chapter.

Note added: While this manuscript was in preparation, the paper [312]

appeared, which has some overlap with Section 7.3 of this chapter.

7.2 Basic set-up

A schematic of our basic set-up is shown in Figure 7.1(A). We imagine

starting with a holographic system on Sd−1 whose high-energy states or

high-temperature thermal states describe black holes in a dual gravitational

picture. In these systems, the black hole is in equilibrium with its Hawking

radiation, which reflects off the boundary of the spacetime.

Next, following [9, 63, 64, 302] we augment our holographic model with

additional degrees of freedom which will serve as an auxiliary radiation sys-

tem, allowing the black hole to evaporate. As in [9, 64], our auxiliary degrees

of freedom will take the form of a higher-dimensional CFT living on a space

with boundary Sd−1, such that the original system now serves as a set of
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boundary degrees of freedom for the higher-dimensional CFT. We will de-

note by cbulk the number of local bulk CFT degrees of freedom and by cbdy

the local number of boundary degrees of freedom. We have in mind that

cbdy ≫ cbulk ≫ 1. This will allow the full system to be holographic, but as

we show below, will give a parametrically large evaporation time.

Holographic models of this type can arise in string theory by considering

branes ending on other branes. For example, we can have a stack of n

D3-branes in directions (0123) ending on various D5- and NS5-branes at

some locations in the 3 direction [89, 90]. The low-energy physics is N = 4

SYM theory on a half-space with some boundary conditions. We can have an

additional N D3-branes of finite extent in the 3 direction which are stretched

between some of the five-branes. Without the original n D3-branes, these

can give rise to a 3D CFT in the infrared. In the full set-up, this 3D CFT is

coupled to the N = 4 theory at its boundary. Here, in this set-up, we have

cbdy/cbulk = N2/n2.

Evaporation time in the CFT picture

Now, suppose we have some initial energyM in the boundary degrees of free-

dom such that the energy corresponds to a temperature above the Hawking-

Page transition for that system. The relation between temperature, energy,

and entropy is

E ∼ cbdyRd−1T d , S ∼ cbdyRd−1T d−1 , (7.2)

for a boundary system of size R. If this system is coupled to a higher-

dimensional CFT with cbulk local degrees of freedom, we expect that the

energy will be radiated away at a rate

dE

dt
∼ −ecbulkRd−1T d+1 , (7.3)

where we are using a Boltzmann law, with emissivity e that presumably

depends on the nature of the coupling. The factor of cbulk can be understood

from a weak-coupling picture where we have cbulk light fields that can carry
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away the energy.

Using these results, we have that

dT

dt
= −ê cbulk

cbdy
T 2 , (7.4)

where ê is defined to absorb any numerical coefficients we are ignoring.

Solving, we have

T =
1

1
T0

+ ê cbulkcbdy
t
. (7.5)

The Page time is when half the (macroscopic) entropy of the black hole has

been radiated. This corresponds to a temperature

TPage =
1

2
1

d−1

T0 . (7.6)

Ignoring O(1) factors, we find that

tPage ∼
cbdy
cbulk

1

êT0
(7.7)

or

tPage/R ∼
c
1+ 1

d
bdy

êcbulk

1

(MR)
1
d

. (7.8)

Since the initial energy is of order cbdy, it is also illustrative to write

MR = xcbdy, so that

tPage/R ∼
cbdy
êcbulk

1

x
1
d

. (7.9)

We see that the Page time is proportional to
cbdy
cbulk

; we can make the black

hole evaporation take a long time by choosing cbdy ≫ cbulk.

Evaporation time for a black hole with absorbing boundary

conditions

We can compare this to the calculation in [311] of Page (see also [313]), who

considers perfectly absorbing boundary conditions for a large black hole in
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AdS. Using those results, one finds a Page time

tPage ∼
L
d+1− 2

d
AdS

G1+ 1
d

1

M
1
d

(7.10)

where we have omitted some numerical factors. An energy of 1/R in the

field theory corresponds to energy 1/LAdS on the gravity side, while field

theory entropy cbdyR
d−1T d−1 corresponds on the gravity side to rd−1

H /G =

T d−1L2d−2
AdS /G, so we can relate

cbdyR
d−1 =

L2d−2
AdS

G
. (7.11)

Rewriting (7.10) in terms of field theory parameters, we get

tPage/R ∼
c
1+ 1

d
bdy

(MR)
1
d

(7.12)

Comparing with the expression (7.8) above, we see that the expressions have

the same dependence on cbdy and M ; to match the gravity calculation, we

should take cbulkê to be of order 1, at least in terms of scaling with cbdy. In

order that the full system is holographic, we want to take cbdy ≫ cbulk ≫ 1.

7.2.1 Holographic duals of BCFTs

In this section, we briefly review the gravitational dual description of holo-

graphic BCFTs and explain how the dual of a BCFT with large cbdy ≫ cbulk

can give rise to the physics of a Planck brane whose geometry is the geometry

of the black hole we are studying.

In their vacuum state, BCFTs preserve the conformal invariance of a

CFT in one lower dimension. Thus, the gravity dual of a d-dimensional

CFT with boundary in its vacuum state will generally correspond to a space-

time that is a warped product of AdSd with some internal space, but which

has an asyptotically AdSd+1 region with boundary geometry equal to the

half space. For various supersymmetric examples, gravitational dual solu-
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tions corresponding to the vacuum state are known explicitly [264, 265].

For example, there is a family of half-supersymmetric solutions to type IIB

supergravity that correspond to the vacua of N = 4 SYM theory living

on half-space with the various boundary conditions preserving half of the

supersymmetry (e.g. [172–175]).

In general it is difficult to work with the fully microscopic examples and

to find full solutions of the ten or eleven-dimensional supergravity equations

that would correspond to various BCFT states. Thus, rather than employing

this top-down approach, we will consider bottom-up models of BCFT duals,

introduced in [78, 87, 88].105 Here, the bulk dual of a d-dimensional CFT

with boundary is taken to be a (d+1)-dimensional gravitational theory on a

space which has a dynamical boundary extending from the CFT boundary

into the bulk. Just as we can consider various possibilities for the bulk

gravitational effective action, we can choose various terms for the boundary

effective action. We expect that for appropriate choices of the bulk and

boundary effective actions, we can accurately capture the physics of various

holographic CFTs.106 In this chapter, we consider the simple situation where

the “end-of-the-world” (ETW) brane couples only to the bulk metric field;

its action is taken to include a boundary cosmological constant (interpreted

as the brane tension) and a Gibbons-Hawking-York term involving the trace

of the extrinsic curvature. The details of the action and equation of motion,

and all the solutions that we will require in this chapter may be found in

[2].

The work of [87] established a connection between the tension of the

ETW brane and the boundary entropy (or higher-dimensional generaliza-

tions), which can be understood as a measure of the number of degrees of

freedom associated with the boundary. One simple calculation that indi-

cates this relation is the holographic calculation of entanglement entropy

for a region of the BCFT that is the interior of a half-sphere centred on the

105Note that other bottom-up constructions for the bulk dual of a BCFT have been
proposed, e.g. [314].
106We note that in the top-down models, there is generally not an explicit ETW brane;

instead, the spacetime can “end” by a smooth degeneration of the internal space; the
ETW brane in the bottom-up model models this higher-dimensional behavior.
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7.2. Basic set-up

Figure 7.3: An ETW brane with tension parameter T enters the bulk at
coordinate angle Θ in Fefferman-Graham coordinates. Larger T gives a
larger angle Θ. Shown in blue is the RT surface computing the entanglement
entropy of the subsystem A which includes the boundary. The area to the
right of the dashed line is proportional to the boundary entropy.

boundary. Holographically, this is computed via the area of an extremal

surface anchored to the half-sphere which extends into the bulk and ends on

the ETW brane. For larger tension of the ETW brane, this brane enters the

bulk at a larger coordinate angle from the vertical in Fefferman-Graham co-

ordinates for the asymptotic region, as shown in Figure 7.3. As a result, the

area of the extremal surface becomes larger, indicating a larger boundary

entropy.

In our application, we would like to consider the case where the number

of local boundary degrees of freedom is large compared with the number of

local bulk degrees of freedom. In this case, there is an independent way to

motivate the ETW brane picture. Since we are considering the bulk CFT

degrees of freedom to be much fewer than the boundary degrees of freedom,

we expect that in some sense, they act as a small perturbation. Over short

time scales (much shorter than the Page time), the physics of the boundary

degrees of freedom is not significantly affected by the bulk CFT degrees of

freedom. We can think of the d-dimensional geometry of the ETW brane as

the usual holographic dual of the (d − 1)-dimensional boundary system in

its state at a particular time. The (d + 1)-dimensional system dual to the

bulk CFT-degrees of freedom couples to this system, and this corresponds to
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adding in the bulk (d+1)-dimensional geometry coupled to the d-dimensional

brane. Over long time scales, the bulk CFT degrees of freedom can have a

significant impact (e.g. when the black hole evaporates). Thus, over long

time scales, the full geometry of the ETW brane can be affected significantly

by its coupling to the bulk gravity modes, so it is important to consider the

full (d+1)-dimensional system when understanding the long-time dynamics

of the system.

The Randall-Sundrum Planck brane and the effective gravity

picture

As we have reviewed above, a large number of boundary degrees of freedom

corresponds to a large tension for the ETW brane and in this case, the

ETW brane enters the bulk at a very large angle to the AdS boundary. For

the case of a single sphere-topology boundary, the resulting dual gravity

solutions have ETW branes that stay close to the boundary in some sense

(e.g. they correspond to a cutoff surface in a complete AdS spacetime for

which light signals can propagate out to the AdS boundary and back in

small proper time). In this and similar cases, the ETW brane behaves as

a “Planck brane” in the Randall-Sundrum sense [72], cutting off a portion

of the asymptotic region of the geometry so that this part of the spacetime

now terminates with a dynamical brane.107 This point of view suggests a

third description of the physics of our situation: from the CFT point of

view, the addition of a Planck brane to a region of the bulk corresponds

to cutting off the CFT in some spatial region and coupling to gravity in

this region. The cutoff goes to infinity at the boundary of the region. This

picture corresponds to the “2D gravity with holographic matter” picture

of [9]. This latter picture most closely aligns with the model in [64]. The

three pictures are summarized in Figure 7.1. Note that it is this last picture

(Figure 7.1(C)) where the coupling between the black hole system and the

radiation system is strictly at the boundary of the gravitational system.

107It is interesting that BCFTs can provide a microscopic realization of Randall-Sundrum
models; this idea manifested itself in a different way in the recent work [2, 315].
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7.3 Two-dimensional models: static case

In this section, we will consider a very simple system that already exhibits

all of the key features of the entanglement dynamics described in [9, 63, 64].

The system we consider is not an evaporating black hole, but one where

the auxiliary radiation system has the same initial temperature as the black

hole, so that the two systems are in equilibrium. The system we look at has a

static energy density (in a particular conformal frame), but the entanglement

entropy for various subsystems still evolves with time and the entanglement

wedge exhibits a phase transition similar to the ones discussed in [9, 63, 64].

Specifically, we consider a (1 + 1)-dimensional BCFT which is in the

thermofield double state with a second copy of this system. This can be

constructed via a path integral on a quarter-cylinder y ≤ 0, 0 ≤ ϕ ≤ π,

where ϕ is the Euclidean time direction, and the boundary of each CFT is

at y = 0. This is shown in Figure 7.4(a).

To understand the gravity dual, we use the bottom-up prescription where

the boundary system leads to a bulk ETW brane. For (1 + 1)-dimensional

CFTs, it is convenient to define

cbdy = 6 ln g , (7.13)

where ln g is the usual boundary entropy. Then, defining

F =
cbdy
cbulk

, (7.14)

the tension parameter T (defined explicitly in [2]) for the ETW brane is

related to F and to the angle Θ in Figure 7.3 by

T = tanhF = sinΘ . (7.15)

The dual Euclidean solution corresponding to our state is a portion of

Euclidean AdS, which we may describe using metric (setting LAdS = 1)

ds2 = (ρ2 + 1)dy2 +
dρ2

ρ2 + 1
+ ρ2dϕ2 . (7.16)
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Figure 7.4: (a) BCFT path integral defining the thermofield double state
of two (1 + 1)-dimensional BCFTs. (b) Euclidean geometry dual to the
BCFT thermofield double. The red surface is an ETW brane. (c) The same
geometry represented as part of Euclidean Poincaré AdS. (d) Lorentzian ge-
ometry of the original state, viewed along the z-axis. Dashed lines represent
horizons on the ETW brane, corresponding to the horizons of the two-sided
black hole represented by the boundary system.
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The specific solution we need was already constructed in [2, 88]. The bulk

Euclidean solution terminates on an end-of-the-world (ETW) brane with

locus

y(ρ) = −arcsinh

(
tanΘ√
ρ2 + 1

)
, (7.17)

where Θ is related to the brane tension and the number of boundary de-

grees of freedom by (7.15). The Euclidean geometry is depicted in Figure

7.4(b). The Lorentzian geometry dual to our state is obtained by taking the

geometry of the ϕ = 0, π slice of the Euclidean solution as our initial data.

To analyze the extremal surfaces in the Lorentzian version of this ge-

ometry, it will be convenient to change to Poincaré coordinates, via the

transformations

y = ln(r) ρ = tan(θ) (7.18)

which bring us to spherical Poincaré coordinates and

z = r cos θ x = r sin θ cosϕ τ = r sin θ sinϕ . (7.19)

which bring us to the usual Cartesian Poincaré coordinates in which the

metric is

ds2 =
1

z2
(dz2 + dx2 + dτ2) . (7.20)

In these coordinates, the CFT boundary is at x2 + τ2 = 1, while the ETW

brane is the surface

x2 + τ2 + (z + tanΘ)2 = sec2Θ , (7.21)

as shown in Figure 7.4(c). We obtain the Lorentzian solution by analytic

continuation τ → it. This gives

ds2 =
1

z2
(dz2 + dx2 − dt2) , (7.22)

with CFT boundary at x2 − t2 = 1, and ETW brane at

x2 − t2 + (z + tanΘ)2 = sec2Θ . (7.23)
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This is shown in Figure 7.4(d).

Horizons on the ETW brane

Let’s now understand the causal structure of the ETW brane geometry to

map out the horizons of the black hole that it contains. Consider the ETW

brane in the Lorentzian picture, where it is described as the surface (7.23) in

the metric (7.22). We would like to find the future horizon for this surface,

i.e. the boundary of the set of points from which it is possible to reach the

right ETW brane boundary on a causal curve. The lightlike curves on the

ETW brane satisfy

x(t)2 − t2 + (z(t) + tanΘ)2 = sec2Θ (7.24)

and (
dx

dt

)2

+

(
dz

dt

)2

= 1 . (7.25)

We find that they are given by

x(t) = vt±
√
1− v2
cosΘ

, z(t) = |
√
1− v2t± v secΘ| − tanΘ (7.26)

for |v| < 1. The right and left boundaries of the ETW brane are described by

x = ±
√
t2 + 1. The future horizons are the lightlike curves that asymptote

to this for t→∞. These are the trajectories

x = ±t z =
1− sinΘ

cosΘ
. (7.27)

Thus, independent of Θ, we have horizons on the ETW brane located at

x = ±t and these lie at constant z. The black hole interior can be identified

with the region |x| < t, or alternatively z > 1−sinΘ
cosΘ .

Extremal surfaces

We would now like to investigate the HRT surfaces which calculate the en-

tanglement entropy associated with the spacetime region spacelike separated
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from the interval [−x0, x0] at t = t0 (equivalently, the union of intervals

[±x0,±∞) at t = t0).

In general, there are two possibilities for this HRT surface. First, we

have the connected surfaces described by the semicircle

t = t0 , z2 + x2 = x20 . (7.28)

We can also have disconnected surfaces that end on the ETW brane. We

need to compare the areas to find out which one is the minimal area extremal

surface that computes the entanglement entropy.

It will be somewhat simpler to perform our calculations in the Euclidean

picture and then analytically continue the results to the Lorentzian case.

That is, we will look at geodesics in the Euclidean geometry, evaluate their

length and the length difference between the two cases, and find the phase

boundary for transitions between the two surfaces. The Lorentzian version

of all of these things can be obtained by analytic continuation.108

To find the areas, we note that the area of a geodesic semicircle of coor-

dinate radius R from the point z = R of maximum z to some zmin is

A(R, zmin) = arccoth

 1√
1− z2min

R2


=

1

2
ln

1 +
√

1− z2min/R
2

1−
√
1− z2min/R

2

 . (7.29)

For zmin = ϵ with infinitesimal ϵ, this reduces to ln(2R/ϵ).

From this, the area of the connected extremal surface is

Ac = 2 ln

(
2x0
ϵ

)
. (7.30)

For the disconnected surface, each part is the arc of a circle which lies at

constant θ, intersecting the ETW brane orthogonally and intersecting one

108We have checked that this matches with direct Lorentzian calculations.
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Figure 7.5: Geometry of the ETW brane and half of the disconnected RT
surface in the plane of the RT surface. We have OQ = 1 and OA = tanΘ.
Thus, AQ = AH = secΘ. Also HB ⊥ AH so AH2 +HB2 = OA2 + OB2.

This gives rH = (r2 − 1)/(2r) . Now OM = OA tanα = tanΘ tanα and

AM = OA secα = tanΘ secα. So HM = HA−MA = secΘ− tanΘ secα.
Finally, HM/HB = tanα gives rH = secΘ cotα− tanΘ cscα , while

HP = HB sinα gives z = rH sinα . The boxed equations allow us to ex-
press z and rH in terms of r.

of the the points (±x0, τ0).109 This is shown in Figure 7.5.

Using basic geometry (see Figure 7.5), we find that the extremal surface

has coordinate radius

rH =
r2 − 1

2r
(7.31)

and intersects the ETW brane at z coordinate

zbr =
cosΘ

r2+1
r2−1

+ sinΘ
(7.32)

where r2 = x20 + τ20 .

From (7.29), we find that the area of the disconnected surface (including

109In the Lorentzian picture, the disconnected RT surfaces lie at constant x/t and are
related by a boost to the circle arc from the point (x =

√
x2
0 − t20, t = 0) to the ETW

brane.
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both parts) is

Ad = 2 ln

(
r2 − 1

ϵ

1 + sinΘ

cosΘ

)
(7.33)

The difference in areas between the two possible extremal surfaces is

Ad −Ac = 2 ln

(
x20 + τ20 − 1

2x0

1 + sinΘ

cosΘ

)
. (7.34)

From this, we see that there will be a transition when

τ20 +

(
x0 −

1− sinΘ

cosΘ

)2

=
2

1 + sinΘ
. (7.35)

In the Lorentzian picture, this gives the trajectory of the phase boundary

as (
x0 −

1− sinΘ

cosΘ

)2

= t2 +
2

1 + sinΘ
. (7.36)

We can now map back to the original conformal frame (corresponding to

Figure 7.4(a)) where the energy density is time-independent.

Using the coordinate transformations

x = ey cosϕ τ = ey sinϕ (7.37)

we have that the phase boundary in Euclidean coordinates is

eF sinh y = cosϕ . (7.38)

Here, ϕ is the Euclidean time, so in Lorentzian coordinates (where η is the

time coordinate), this phase boundary becomes

eF sinh y = cosh η . (7.39)

Finally, if we consider an interval [y0,∞) (together with the equivalent in-

terval in the other BCFT), we find that the entanglement wedge for this

subsystem makes a transition to include geometry behind the black hole
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horizon when

η = arccosh(eF sinh y0) ∼ F + y0 (7.40)

where the last relation holds for large y0 and F . Thus, for intervals that

include most of the radiation system (when y0 is some small order 1 number),

we see a transition at the Page time after which the black hole interior can be

reconstructed from the radiation system. For large y0 the time is increased

by an amount which is the time taken for the radiation to reach y0. The

behavior of the transition time is shown in Figure 7.2. In this frame, the

entanglement entropy is constant after the transition, since each part of the

disconnected extremal surface in this case is just a boosted version of the

extremal surface for earlier times. Thus, the entanglement entropy increases

from the initial time and then remains constant after the transition. Using

the results above, the precise expression for the entropy as a function of time

is110

S =

{ cbulk
3 ln

(
2
ϵ cosh η

)
η < arccosh(eF sinh y0)

2 ln g + cbulk
3 ln

(
2
ϵ sinh y0

)
η > arccosh(eF sinh y0)

, (7.41)

so we have an approximately linear increase before the transition and a

constant entropy afterwards.

Let’s understand the physics of this phase transition in the behavior

of the entanglement. We have that the energy density in both BCFTs

is completely time-independent. However, the entanglement entropy for

the union of regions x > x0 in the two CFTs increases with time, then

undergoes a first order phase transition after which it is constant. The

entanglement wedge initially does not include the black hole system, but

after the transition includes a portion of the interior of the black hole.

Thus, while everything is static from an energy point of view, the state

is evolving in such a way that information about the black hole interior

eventually becomes accessible in the auxiliary radiation system.

To understand this better, it is helpful to recall that for a free field

110Here, we use that the cutoff surface ρ = 1/ϵ maps to the cutoff surface z = ϵr in
the Poincaré coordinates. We use this cutoff surface in the equations (7.30) and (7.33) to
calculate the entanglement entropies in the original y-coordinates.
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theory in the thermofield double state, each mode in one copy of the system

is purified by the corresponding mode in the other copy of the system. In

our present case, we expect similarly that the boundary system is initially

purified to a large extent by the other copy of the boundary system, while

the bulk system is purified by the other copy of the bulk system.111 However,

as we evolve forward in time, the entanglement structure evolves, and the

information initially contained within the boundary system (describing our

black hole initial state) leaks out into the bulk degrees of freedom, eventually

leading to the transition we observe.

7.3.1 Entanglement wedge after the transition

We would now like to understand where the boundary of the entanglement

wedge lies on the ETW brane after the transition.

Consider a point (x0, τ0) on the Euclidean transition surface (7.35). Just

after the transition to a disconnected minimal area extremal surface, the

part of the surface originating at (x0, τ0) will end on the ETW brane at

a point (xbr, τbr) = λ(x0, τ0). From Figure 7.5 we see that the distance

rbr =
√
x2br + τ2br from the origin for this point will satisfy

r = rbr + rH +
√
r2H − z2br . (7.42)

This gives

rbr =
2r

r2(1 + sinΘ) + (1− sinΘ)
, (7.43)

so we have

λ =
rbr
r

=
2

(x20 + τ20 )(1 + sinΘ) + (1− sinΘ)

=
1

x0 cosΘ + 1
,

111Here, we are describing the situation relative to the vacuum case. Of course, there is
always an infinite entanglement entropy between the boundary system of one CFT and
the bulk of that CFT.
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where we have used (7.35) in the last line. Thus, we have

xbr =
x0

x0 cosΘ + 1
τbr =

τ0
x0 cosΘ + 1

. (7.44)

Inverting these relations and plugging the resulting expressions for x0 and

τ0 in (7.35), we find that the points (xbr, τbr) lie on a curve

(1 + (1− sinΘ)2)x2br + 2 tanΘ(1− sinΘ)xbr + τ2br = 1 . (7.45)

For the Lorentzian version of the problem, this becomes

(1 + (1− sinΘ)2)x2br + 2 tanΘ(1− sinΘ)xbr = t2br + 1 . (7.46)

Note that x0 >
√
t20 + 1 > t0, so from (7.44), we see that we will also have

xbr > tbr. Thus, while the curve (7.46) crosses the horizon, the part beyond

the horizon isn’t relevant to us. The extremal surface always ends at a point

on the brane that is outside the horizon.

Let’s now calculate the proper distance to the horizon from the inter-

section point (xbr, tbr, zbr) on the ETW brane. We can consider a plane

containing the origin and the point (x0, t0) and extending directly inward

in the z direction; in this plane, the geometry is as in Figure 7.5, where the

outermost point is at distance r =
√
x20 − t20.

This is the proper distance along the red curve in Figure 7.5 from H to

the top of the red arc, which lies at

zmax = secΘ− tanΘ . (7.47)

The distance is

d =

∫ zmax

zbr

dz

z

√
dz2 + dr2 (7.48)

Using

r2 + (z + tan θ)2 = sec2 θ , (7.49)
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we find that the result is

d =
1

cosΘ
ln

(
r + 1

r − 1

)
. (7.50)

In the y0 coordinates and in terms of F , this is

d = cosh(F ) ln

(
1 + e−y0

1− e−y0

)
(7.51)

We see that for large y0, the location of the HRT surface intersection with

the ETW brane after the transition is very close to the horizon.

Finally, we can look at the trajectory of the intersection point as a func-

tion of time after the transition. For the interval with left boundary y0 in

the y-coordinates, the initial intersection point is at

xbr =
secΘ

1 + 2
(1+sinΘ)(e2y0−1)

(7.52)

on the curve (7.46) and the later trajectory follows the curve

x2br − t2br = e2y0(1− xbr cosΘ)2 . (7.53)

At late times, independent of y0, this approaches the point

x = t = secΘ = cosh(F ) (7.54)

on the horizon.

The outgoing lightlike curve along the ETW brane from this point is

x = t, while the ingoing lightlike curve along the ETW brane from this

point is simply x = secΘ for all t (using the result (7.26)). We note that

the corresponding lightlike curve x = − secΘ on the other side of the black

hole does not intersect this curve, but the ingoing lightlike curve from any

closer point does intersect this curve. Thus, the points t = ±x = secΘ are

a distinguished pair of points on the horizon for which the ingoing lightlike

curves barely meet at the future singularity. The late-time intersection be-

tween the entanglement wedge for the radiation system and the black hole
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Figure 7.6: The blue shaded region is the portion of the black hole inte-
rior that is included in the late-time entanglement wedge of the radiation
subsystem |x| > a (in Poincaré coordinates), for any a.

geometry is shown in Figure 7.6.

7.3.2 CFT calculation

The calculations of the previous section relied on holographic calculations

of the entanglement entropy in a bottom-up holographic model where the

number of boundary degrees of freedom in our BCFT is related to the tension

of an ETW brane. While bottom-up models in AdS/CFT are widely studied

and known to produce qualitative results that agree with those in systems

that can be studied using a top-down approach, one might worry about

whether our results correctly capture the physics of genuine holographic

CFTs.

In this section, we will attempt to alleviate these concerns by reproducing

our results for the entanglement entropies using direct CFT calculations,

invoking standard assumptions about the properties of holographic CFTs.

Recall that entanglement entropy can be calculated from Rényi entropies
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using the replica trick:

SA = lim
n→1

S
(n)
A = lim

n→1

1

1− n
log Tr[ρnA].

The operator ρnA can be related to the partition function of the n-fold

branched cover, or replica manifold, of the original geometry. This, in turn,

can be calculated for 2D CFTs by introducing certain twist operators Φn

at the entangling points of A [239]. The partition function is given by a

correlator of these twists. For A = [z1, z2] for instance, we have

Tr[ρnA] = ⟨Φn(z1)Φ−n(z2)⟩ .

In holographic theories, these correlation functions are dominated by the

identity block in some channel. A change in dominance will lead to a phase

transition in entanglement entropy. In an ordinary two-dimensional holo-

graphic CFT, this exchange causes a sudden shift from the disconnected

to the connected entanglement wedge for two disjoint intervals. In a holo-

graphic BCFT, this exchange can occur for a two-point correlator of twists,

corresponding to the entanglement entropy of a single interval. This is anal-

ogous to the four-point result in a CFT since the two-point function in

a BCFT has the same symmetries as the four-point function, and can be

evaluated using the method of images.

Consider a BCFT with central charge c and boundary condition b on the

upper half-plane (UHP), {ℑ(z) ≥ 0}. We can perform a global transforma-

tion to the complement of the disk of radius R via

w = R

(
1

z − i/2
− i
)
. (7.55)

For simplicity, we also define ϑ ≡ w + iR. We then have

z =
R

ϑ
+
i

2
, ℑ[z(w)] = |w|

2 −R2

2|ϑ|2
, w′(z) = − 1

R
ϑ2 . (7.56)

Since we have performed a global transformation, the energy density van-
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ishes:

⟨T (w)⟩ = c

12
{z;w} = c

12

z′′′z′ − (3/2)(z′′)2

(z′)2
= 0 . (7.57)

Consider a two-point function of twist operators, Φn(w1),Φ−n(w2), in-

troducing an n-fold branched cover with branch cut from w1 to w2. The

twists are primary by definition, so the correlation function transforms as

⟨Φn(w1)Φ−n(w2)⟩disk = |w′(z1)w
′(z1)|−dn⟨Φn(z1)Φ−n(z2)⟩UHP

=

∣∣∣∣ (ϑ1ϑ2)2R2

∣∣∣∣−dn

⟨Φn(z(w1))Φ−n(z(w2))⟩UHP . (7.58)

For holographic BCFTs, the correlator of twists on the UHP can be evaluated

[316], using vacuum block dominance and an appropriate sparsity condition

on the density of states, in a similar vein to [219]. Using this correlator and

the replica trick, the entanglement entropy of the interval A = (−∞, w1] ∪
[w2,∞) is calculated by

SA = lim
n→1

1

1− n
log⟨Φn(w1)Φ−n(w2)⟩disk

=
c

6

[
2 log

∣∣∣∣ϑ1ϑ2R

∣∣∣∣+min

{
12

c
gb

+ log

∣∣∣∣(|w1|2 −R2)(|w2|2 −R2)

(ϑ1ϑ2ϵ)2

∣∣∣∣ , log ∣∣∣∣Rw12

ϑ1ϑ2ϵ

∣∣∣∣2
}]

,

where gb := − log⟨0|b⟩ is the boundary entropy, and F is given by (7.14).

We note the relations

eF =
1 + T√
1− T 2

=
1 + sinΘ

cosΘ
, 1− e−2F =

2 sinΘ

1 + sinΘ
, (7.59)

which we will use momentarily. Note that the UV regulator ϵ is chosen in

the physical conformal frame, namely the complement of the disk.

We now specialize to the symmetric interval A at some fixed time ℑ(w) =
τ0, with w1,2 = ±x0 + iτ0. Exponentiating (7.59), a phase transition occurs
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Figure 7.7: Replica calculation of entanglement entropy.

at

(
x20 − e−FR

)2
+ τ20 = R2(1− e−2F ) (7.60)

=⇒
(
x20 −

cosΘ

1 + sinΘ
R

)2

+ τ20 =
2R sinΘ

1 + sinΘ
, (7.61)

using (7.59). In Lorentzian signature τ20 → −t20, we obtain(
x20 −

cosΘ

1 + sinΘ
R

)2

= t20 +
2R sinΘ

1 + sinΘ
. (7.62)

These phase boundaries precisely match (7.35) and (7.36) for R = 1.

7.3.3 Holographic replica calculation

It is interesting to consider a replica version of the same calculation.112

In calculating the entanglement entropy, we want to evaluate the Rényi

entropies by calculating the BCFT partition function on a replica manifold

obtained by gluing n copies of the Euclidean space shown in Figure 7.7 across

the cut. The topology of the replica manifold is a sphere with n boundaries,

as shown in the second figure. Considering a larger and smaller portion of

the radiation system corresponds to enlarging or shrinking the size of the

boundaries relative to the size of the sphere.

112The observations of this section relating the entanglement wedge phase transition and
the appearance of connected boundary saddles were directly inspired by similar obser-
vations in the JT-gravity context [66]; related observations were made independently by
[65].
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Now we can consider performing this path-integral calculation holo-

graphically, using the bottom-up approach where the boundaries extend into

the bulk as ETW branes. In the case of a smaller portion of the radiation

system, the holes in the second picture will be small, and we will have a set

of disconnected ETW branes of disk topology that “cap off” the boundary

holes. On the other hand, as we consider a larger portion of the radiation

system, the circles become large in the second picture, and we expect that

the dominant saddle in the gravitational calculation will correspond to the

topology shown in the picture on the right where we have a single connected

ETW brane with multiple boundary components.

It seems immediately plausible that the transition to this new bulk topol-

ogy is directly related to the transition of HRT surfaces in our original cal-

culation, since the two calculations must agree. However, it also appears

at first slightly confusing: the CFT calculation correctly reproduces the

disconnected bulk HRT surface from the disconnected contribution to the

twist correlation function alone, while this bulk saddle is a complicated con-

nected geometry involving both twist operators. To align the CFT and bulk

pictures, note that the same issue appears when calculating the entangle-

ment entropy of two (or multiple) intervals in the vacuum of a 2D CFT

[219]. There, the higher Rényi entropies are also computed by a connected

bulk geometry [317], but the entanglement entropy is a sum of disconnected

contributions. This is consistent because the semi-classical Virasoro block

describing the connected geometry reduces to the identity exchange in the

limit n→ 1. Despite the slightly different setting, the same ideas and kine-

matics describe the BCFT Rényi calculation [316].

Thus, taking into account the second HRT surface that correctly sees

the decreasing branch of entanglement entropy corresponds in the gravity

version of the replica calculation to including non-trivial topologies. Had

we stuck with the original topology (as we would do if treating gravity

perturbatively) it seems that we would get an answer which misses the

transition, and is perhaps more akin to Hawking’s original calculation.
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7.4 2D evaporating and single sided examples

In this section, we continue focusing on two-dimensional models, but gener-

alize the simple example of the previous section to a case where we have a

pure state of a single-sided black hole, and to cases with a dynamical energy

density (as in the example of [9]) that more closely models the physics of a

genuine evaporating black hole.113

7.4.1 Single-sided case

It is straightforward to come up with BCFT examples of single-sided black

holes. For example, Figure 7.8(a) shows a path integral defining the state

of a BCFT with some boundary system (fat red line) with many degrees of

freedom. Here, instead of evolving the full BCFT from τ = −∞ to define the

vacuum state of this system, we only evolve the boundary system from some

finite past Euclidean time, as for the SYK states in [208]. For prior Euclidean

times, we have a different boundary condition (thin red line) that we take to

be associated with a small number of boundary degrees of freedom. At the

transition between these two boundaries we have an appropriate boundary

condition changing operator.

This construction should place the boundary system in a high-energy

state, while the bulk CFT degrees of freedom should be in a lower-energy

state (through they are also affected by the change of boundary conditions in

the Euclidean past). In this case, the dual gravity solution will involve ETW

branes with different tensions, and some junction between branes dual to the

boundary-condition changing operator. This may simply be a codimension-

two surface, or something smoother, as depicted in Figure 7.8(b).

It would be interesting to analyze this example in detail. For now, we

point out that we can understand the physics of a very similar example us-

ing the results of the previous section. Figure 7.8(c) shows almost the same

113Of course, there are many examples that we can obtain from the previous case via local
conformal transformations which would have non-trivial evolution of the energy density
and may look more like an evaporating black hole. However, in this section, we focus on
examples that are not conformally related to the one in the previous section.

320



7.4. 2D evaporating and single sided examples

Figure 7.8: BCFT models for single-sided black holes.
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Figure 7.9: 2D model for an evaporating black hole.

set-up, but with a different geometry for the path-integral. This picture is

similar to a Z2 identification of our set-up from the previous section. If we

choose the lower boundary condition to correspond to a T = 0 ETW brane

in the bulk and we choose the boundary-condition changing operator appro-

priately (so that the equation of motion at the codimension-two brane gives

a constraint that the two-types of ETW branes should meet orthogonally),

then the dual geometry for this set-up will be precisely a Z2 identification

of the bulk geometries from the previous section, with a zero-tension ETW

brane at the Z2 fixed point, as shown in Figure 7.8(d). In this case, all of

our calculations and qualitative conclusions go through almost unchanged.

The only significant difference is that the connected RT surface from the

previous section is now replaced by its Z2 identification, which ends on the

T = 0 brane.

7.4.2 Dynamical case

We can also modify our two-sided example in order to introduce time evolu-

tion of the energy density more characteristic of an evaporating black hole.

We would like to have a situation where our auxiliary system starts out in

a state that is closer to the vacuum state, so that the energy in the initial

black hole state will radiate into this system.

A simple construction (similar to that discussed in [9]) is shown in Fig-

ure 7.9. The left picture shows a state of four quantum systems. The outer

systems are BCFTs with some boundary condition (denoted by a dark red
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boundary) that we imagine has a small boundary entropy. The path inte-

grals shown place these systems into their vacuum state. The remaining part

of the path integral constructs a thermofield double state of two systems,

each of which is a BCFT living on a small interval with different boundary

conditions on the two ends. The dark red boundary condition is the same

as before, but the semicircular boundary (shown bright red) corresponds to

a boundary system with many degrees of freedom as in the example of the

previous section.

In order to make the two-sided black hole evaporate, we consider a mod-

ified system where we glue the systems together as shown on the right side

of Figure (7.9). In the final path integral, shown on the right, we are de-

scribing a state of the same system that we considered in the earlier part

of this section. However, since our Euclidean path integral is in some sense

a small modification of the picture on the left, we expect that far away

from the black hole, the local physics of the reservoir system will be similar

to the vacuum. In this case, the energy in the (bright red) boundary de-

grees of freedom will gradually leak out into the reservoir system. The dual

gravitational picture will be that of an evaporating black hole.

In studying the dual system explicitly using the bottom-up approach,

we will now have two types of branes, one with a larger tension correspond-

ing to the bright red boundary condition, and one with a smaller tension

corresponding to the dark red boundary condition. The latter is what [9]

refer to as the Cardy brane. We expect that the behaviour of this system

should match the qualitative picture described in [9], but now it should be

possible to study everything quantitatively. Since the branes only couple to

the metric and we are in three dimensions, the local geometry of the holo-

graphic dual will be that of AdS, and the dynamics of the system will be

reflected in the trajectories of the ETW branes.

Phase boundaries on the annulus

In order to study situations like the previous section, we can apply the

methods of [318, 319] who were making use of a similar Euclidean set-up
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(without the middle boundary) to study local quenches in a holographic

CFT. For any specific shape of the boundaries in (7.9), it is possible to map

the doubled picture describing the full CFT path integral conformally to an

annulus, where the circular boundary maps to the inner edge of the annulus

and the other boundaries (shown in dark red) together map to the outer

boundary of the annulus. We can also map the annulus to a finite cylinder,

so we see that the physics will be related to the physics of the thermofield

double state of a pair of CFTs on a finite interval with different boundary

conditions on the two ends.

We can again start with the global AdS metric (7.16) in which we know

the ETW trajectories explicitly. Here, though, we consider a finite segment

of the boundary cylinder, with a boundary condition corresponding to ten-

sion T at y = −L and a boundary condition corresponding to tension T = 0

(or some other tension) at y = 0. Changing to Poincaré coordinates as in

Section 7.3, the CFT region becomes an annulus with inner radius R = e−L

and outer radius 1, centred at the origin. Also as in that section, the location

of the ETW brane corresponding to the inner boundary is

x2 + τ2 + (z +R tanΘ)2 = R2 sec2Θ , Θ = arcsin(T ) , (7.63)

while that corresponding to the outer boundary is

x2 + τ2 + z2 = 1 . (7.64)

For sufficiently large L, the two BCFT boundaries are far apart and the

phase boundaries for the transition between connected and disconnected

HRT surfaces are those found previously for the case of a single boundary;

the phase boundary for the transition between a connected surface and a

disconnected surface ending on the inner ETW brane has locus

(
x− R(1− sinΘ)

cosΘ

)2
+ τ2 =

2R2

1 + sinΘ
, (7.65)
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while that for the outer ETW brane is

(x+ 1)2 + τ2 = 2 . (7.66)

(These are the phase boundaries in the region x > 0; the x < 0 phase

boundaries are given by symmetry about τ = 0.) As L is decreased to some

critical value

Lc ≡ − ln
( (−1 +

√
2) cosΘ

(1− sinΘ) +
√
2(1− sinΘ)

)
, (7.67)

the phase boundaries will osculate within the annulus at τ = 0; for smaller

L, a direct transition between disconnected HRT surfaces ending on the

higher tension brane and surfaces ending on the lower tension brane can

occur (see Figure 7.10). The phase boundary between these disconnected

phases is given by

x2 + τ2 = R
((1− sinΘ) +R cosΘ

R(1− sinΘ) + cosΘ

)
≡ ℓ2 . (7.68)

We can now map to a new conformal frame with the desired dynamical

Cardy brane; the phase boundaries should simply be pushed forward using

the appropriate conformal transformation, then analytically continued to

Lorentzian signature. Note [318] that, starting from Poincaré coordinates

ds2 =
dη2 + dζdζ̄

η2
, (7.69)

a map ζ = f(w) corresponds to a coordinate transformation

ζ = f(w)− 2z2(f ′)2(f̄ ′′)

4|f ′|2 + z2|f ′′|2

η =
4z|f ′|3

4|f ′|2 + z2|f ′′|2
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Figure 7.10: Phase diagram for annulus with supercritical and subcritical
L respectively. The point (x, y) belongs to one of three regions, depending
on whether the RT surface anchored at points {(x, y), (−x, y)} is connected
(red), disconnected and ending on the inner ETW brane (black), or discon-
nected and ending on the outer ETW brane (light blue).

in the dual asymptotically AdS geometry, which gives a metric

ds2 =
1

z2
(
dz2 + dwdw̄

+ z2(T (w)dw2 + T̄ (w̄)dw̄2) + z4T (w)T̄ (w̄)dwdw̄
)
, (7.70)

where the holographic stress tensors (corresponding to the stress tensors in

the CFT state) are given by

T (w) =
3(f ′′)2 − 2f ′f ′′′

4(f ′)2
, T̄ (w̄) =

3(f̄ ′′)2 − 2f̄ ′f̄ ′′′

4(f̄ ′)2
. (7.71)

Conformal mapping

As a specific example, we can take the “single joining quench” geometry

of [318] and add to it another boundary centered at the origin; this second

boundary is taken to be the image of the inner boundary of the annulus
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Figure 7.11: Example path integral geometry generating a BCFT state cor-
responding to a two-sided black hole system with dynamical energy density.

under the conformal transformation

w(ζ) =
2ζ

1− ζ2
, (7.72)

which takes us from the unit disk (with complex coordinate ζ = x + iτ)

to the single joining quench geometry (with coordinate w = x̂ + iτ̂). An

example of the resulting path integral geometry is shown in Figure 7.11.

We note a few important features of such a map. Firstly, the symmetry

x→ −x translates to a symmetry x̂→ −x̂, and likewise symmetry τ → −τ
translates to symmetry τ̂ → −τ̂ . Secondly, the outer annular boundary

|ζ| = 1 maps to the intersection of the slits i[1,∞) and −i[1,∞), while the

inner boundary maps to

x̂2 + τ̂2 =
1

2 cosh2(L)

(
1 +

√
1 +

4x̂2

tanh2(L)

)
. (7.73)

Finally, we note that the energy density with respect to Euclidean time τ̂ is
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defined by

T (w) + T̄ (w̄) =
3

4(1 + w2)2
+

3

4(1 + w̄2)2

=
3

2

( τ̂4 − 2(3x̂2 + 1)τ̂2 + (x̂2 + 1)2

((1 + x̂2 − τ̂2)2 + 4x̂2τ̂2)2

)
;

(7.74)

the Lorentzian analogue decays as we move away from the boundary which

represents the black hole.

In the new coordinates, the phase boundary between connected HRT sur-

faces and disconnected surfaces ending on the outer ETW brane is x̂2+ τ̂2 =

1, while the phase boundary between connected surfaces and disconnected

surfaces ending on the inner ETW brane is(
α(x̂2 + τ̂2)− βx̂− sinΘ

)2
= (x̂2 + τ̂2 + 1)2 − 4τ̂2 , (7.75)

with

α =
(1 +R2)2(1 + sinΘ)− 4R2

4R2
= cosh2(L)(1 + sinΘ)− 1 ,

β =
(1 +R2)

R
cosΘ = 2 cosh(L) cosΘ .

(7.76)

If a transition between the two disconnected phases is present, the phase

boundary has locus

x̂2 + τ̂2 =
2ℓ2

(1 + ℓ2)2

(
1 +

√
1 +

4x̂2(1 + ℓ2)2

(1− ℓ2)2
)

(7.77)

See Figure 7.12. We can analytically continue t̂ = −iτ̂ to determine the

BCFT boundaries and phase boundaries in Lorentzian signature. For L >

Lc, the phase boundaries now meet at the point

x̂0 =
α− sinΘ

2 + β
, t̂0 =

√
x̂20 − 1 . (7.78)

For |t̂| < t̂0 we have three distinct phases, while for |t̂| > t̂0 we just have the

two disconnected phases. For L < Lc, we just have the two disconnected
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Figure 7.12: Phase diagram for Euclidean modified (two-boundary) single
joining quench geometry with supercritical and subcritical L respectively.
As before, the point (x, y) belongs to one of three regions, depending on
whether the RT surface anchored at points {(x, y), (−x, y)} is connected
(red), disconnected and ending on the inner ETW brane (black), or discon-
nected and ending on the outer ETW brane (light blue).

phases (see Figure 7.13).

One can now determine the time-dependence of the entanglement en-

tropy along any desired trajectory. Recall from previous sections that, on

the annulus, the HRT surfaces for symmetrically situated intervals (with in-

ner endpoints (±x, τ)) are circular arcs, and the corresponding entanglement

entropy is given by

S(x, τ) =


ln
(

2x
ϵ̃(x,τ)

)
, connected

ln
(
(x2+τ2−R2)(1+sinΘ)

ϵ̃(x,τ)R cosΘ

)
, disconnected T > 0

ln
(
1−x2−τ2

ϵ̃(x,τ)

)
, disconnected T = 0 ,

(7.79)

where we have recalled [319] that the UV regulator ϵ in the physical set-up

requires a position dependent regulator ϵ̃(x, τ) = |ζ ′(w)|ϵ in the annular set-

up. It is a simple matter to apply the appropriate conformal transformation

and Wick rotate to Lorentzian signature, whence we recover the expres-

sion for the entanglement entropy of symmetrically situated intervals in the

Lorentzian modified local quench geometry.
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Figure 7.13: Phase diagram for Lorentzian modified (two boundary) single
joining quench geometry with supercritical and subcritical L respectively.
We have simply analytically continued the phase boundaries from the Eu-
clidean case.

7.5 Discussion

In this section we present a few additional observations and some directions

for future work.

7.5.1 A connection to behind-the-horizon physics of black

hole microstates

There is an interesting connection between the transitions in entanglement

entropy that we have observed in this chapter and another type of transition

for entanglement entropy pointed out in [2]. In that paper, the authors

(including some of the present authors) considered black hole microstates

for a holographic CFT on Sd defined via a Euclidean path integral on a finite

cylinder, with a boundary at time τ0 in the Euclidean past. This corresponds

to the evolution of a boundary state |B⟩ by Euclidean time τ0. In the 2D

CFT case for small enough τ0, this state corresponds to a single-sided black

hole at inverse temperature β = τ0/4, with a time-dependent ETW brane

behind the horizon providing an inner boundary for the black hole.

For these states, the entanglement entropy for an interval can exhibit a

phase transition as the interval size is increased, such that after the tran-
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Figure 7.14: BTZ black hole microstates have the same brane profile and
hence entanglement entropy as the planar black hole dual to a global quench.
The quench geometry is obtained from a local conformal transformation of
the excised disk, so the transition in entanglement entropy for the static
case described above, and the BTZ microstates in [2], are controlled by the
same CFT correlator.

sition, the entanglement wedge of the interval includes a region behind the

black hole horizon (terminating on the ETW brane). This is somewhat rem-

iniscent of the entanglement wedge transition discussed in this chapter, but

it turns out that there is a precise connection between the two.

If we unwrap the circle on which the CFT lives, we obtain a planar black

hole dual (above the Hawking-Page transition [236]) to the global quench

geometry [237]. The holographic results for entanglement entropy in this

situation are the same as in the compact case, since the gravity dual for

the compact case is just a periodic identification of the gravity dual for the

non-compact case.

The CFT calculation of entanglement entropy in the non-compact case is

carried out via a correlation function of twist operators on an infinite strip.

But a local conformal transformation maps this calculation to exactly the

CFT calculation in Section 7.3.2 used to deduce the phase transition in this

chapter.

We visualize this connection in Figure 7.14. In the single-sided mi-

crostates, there is a transition in the extremal surfaces as the boundary

region is increased (blue and green regions in Figure 7.14). In the CFT, this

can be calculated by a correlator of twists in the large-c limit and simple

spectral constraints [316]. Remarkably, this is essentially the same correlator
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governing the transition in entanglement wedge, as a function of subsystem

size, as the static 2D case described in Section 7.3.

7.5.2 CFT constructions for duals of higher-dimensional

evaporating black holes

In future work, it would be interesting to study explicitly some higher-

dimensional analogues of the constructions considered in this chapter. We

describe a few specific constructions in this final section. For these higher-

dimensional examples, a detailed study will likely require some numerics as

the bulk geometry will no longer be locally AdS. However, as the geometries

depend on only two variables, such a study should be quite feasible.

BCFT microstate construction

Figure 7.15 shows on the left a Euclidean path integral for a high-energy

CFT state obtained by placing some boundary conditions in the Euclidean

past (at the red sphere). This corresponds to a black hole with some time-

dependent behind-the-horizon physics, as described in [2]. We have in mind

that the red boundary corresponds to a boundary condition with a large

boundary entropy, so that the holographic description involves a brane with

large tension.

Now we couple this system to a bulk CFT as shown on the right. Here,

we need to introduce an additional boundary component (shown in green)

into the Euclidean path integral. Two possible choices for the topology of

this boundary component are shown. We have in mind that this boundary

has a small boundary entropy, perhaps corresponding to a T = 0 brane. This

set-up is the precise higher-dimensional analog of the single-sided set-up of

Section 7.4.1.

In the dual holographic theory, using the bottom-up approach, we will

have a bulk (d+ 1)-dimensional gravity action, but also two different types

of d-dimensional ETW branes corresponding to the two different boundary

conditions. Finally, there will be another (d − 1)-dimensional brane that

serves as the interface between the two types of d-dimensional branes. This

332



7.5. Discussion

Figure 7.15: Higher dimensional construction based on BCFT microstates.
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Figure 7.16: Higher-dimensional construction based on CFT-Vaidya states.

can have its own tension parameter independent of the others.

Vaidya-type construction

Another interesting case makes use of the set-up of [270]. Figure 7.16 shows

on the left a Euclidean path integral for a CFT state dual to a shell of matter

that collapses to form a black hole. We have insertions of many operators

at some small time in the Euclidean past. Alternatively, we could consider

a smooth source for some operator, again localized around some particular

time τ = −ϵ. We can take a limit where τ → 0 but the sources/insertions

are chosen such that we end up with a finite energy state.

Now we couple this system to a bulk CFT as shown on the right. Without

the sources, this path-integral would give the vacuum state of the BCFT.

We expect that the sources mainly excite boundary degrees of freedom, so

the bulk part of the CFT is still nearly in the vacuum state. In this case, we

expect that the state is dual to a shell that collapses to form a black hole

but then evaporates.
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Conclusions
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Chapter 8

The Unreasonable

Effectiveness of Branes

A central goal of modern research in theoretical physics is to formulate

a consistent quantum theory of gravity capable of serving as a complete

mathematical description of the universe which we inhabit. The motivation

for this goal is far greater than the mere aesthetic appeal of fitting all known

physical phenomena into a unified framework; rather, it is expected that

detailed knowledge of this complete theory is necessary to understand the

physics of the big bang and of black holes, both of which exhibit strong

spacetime curvature. In the case of cosmology, we are faced with the exciting

prospect that near-term precision measurements will reveal features of the

early universe which are sensitive to physics at very high energies, pointing

the way toward the correct framework for reality (see e.g. [320]). Even

in the absence of data capable of distinguishing between UV complete (or

valid-at-all-energy-scales) theories of quantum gravity, simply formulating

a consistent quantum mechanical description of cosmology or black holes

appears surprisingly challenging; establishing the existence of metastable

string theory compactifications with a positive cosmological constant, which

many believe should feature in our universe, is a source of active research and

some controversy [321–324], while reconciling black hole evaporation with

the unitarity (or information-preserving nature) of quantum mechanics, and

thereby resolving the black hole information paradox [50, 56], has dominated

research in quantum gravity for decades.

One of the driving forces behind many contemporary developments in

quantum gravity research has been the advent of the AdS/CFT correspon-
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dence [29], an equivalence or duality between theories of quantum gravity

in spacetimes with negative cosmological constant (such as anti-de Sitter or

AdS space) and lower-dimensional, non-gravitating quantum systems (such

as conformal field theories or CFTs). The fundamental insights furnished

by AdS/CFT have been innumerable, but some recent highlights include

the revelation that tools from quantum information theory should play a

central role in understanding the emergence of gravitational physics (e.g.

[42, 44, 144, 146, 301, 308, 309, 325, 326]), and a partial resolution of the

black hole information problem [9, 63–67].

In this thesis, we have used a version of the AdS/CFT correspondence,

applicable to boundary conformal field theories (BCFTs), to address a wide

range of different physical questions. This iteration of the correspondence

has allowed us to use calculations in classical gravity to learn about the

space of boundary conditions for a particular widely-studied supersymmet-

ric gauge theory known as the N = 4 supersymmetric Yang-Mills (SYM)

theory. It has also permitted us to introduce new dynamical objects, known

as end-of-the-world (ETW) branes, in the gravitational bulk, such that the

standard tools of AdS/CFT may be used to analyze the interesting time-

dependent physics of these objects.

We began in Chapter 3 by studying the space of half-supersymmetric

boundary conditions of the N = 4 SYM theory with gauge group U(N).

These boundary conditions define theories which correspond to the low-

energy effective description of a stack of N D3-branes ending on stacks of

D5-branes and/or NS5-branes in type IIB string theory. We made use of

the Ryu-Takayanagi formula to perform a holographic computation of a

quantity called boundary F , which can be thought of as characterizing the

number of boundary-localized degrees of freedom in a BCFT, for all half-

supersymmetric boundary conditions. We also computed the same quantity

exactly, using results from supersymmetric localization, for a subset of these

boundary conditions corresponding to the physics of D3-branes ending on

D5-branes only or NS5-branes only. We found precise agreement at leading

order in large N , for all values of the ’t Hooft coupling λ, perhaps suggesting

a non-renormalization theorem governing the α′ corrections.
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In Chapter 4, we considered a class of high-energy states of a holographic

CFT prepared by the Euclidean evolution of CFT boundary states. Using

the ansatz of [78, 87, 88], such states were seen to correspond to black

hole microstates including part of the behind-the-horizon region, with the

second asymptotic region cut off by an ETW brane. We investigated the

time-dependence of the entanglement entropy in these states using the RT

formula, observing that this was able to probe behind-the-horizon physics

for sufficiently large CFT subsystems in some cases, due to the possibility

for RT surfaces to penetrate the horizon and end on the ETW brane. We

also provided a direct check of the qualitative behaviour of the entanglement

entropy by computing this quantity for analogous states in the SYK model,

and we computed the holographic complexity as a function of time for these

states using both the action-complexity and volume-complexity conjectures.

Observing that the intrinsic geometry of the ETW brane is a big bang/big

crunch cosmology, we proposed that this model could provide an approach to

realizing cosmological physics within AdS/CFT, though we found no regime

within our simple model allowing both brane-localized gravity and a sensible

Euclidean path integral construction.

To further investigate the plausibility of our toy model for holographic

cosmology, we considered generalizations of this model in Chapter 5, aug-

menting the previous model with an additional interface brane and modi-

fications to the gravitational action. We observed that bulk solutions with

a viable cosmological interpretation existed only in the presence of both

modifications, for example in the case with both an interface brane and an

Einstein-Hilbert term added to the ETW brane action. Even in this case,

the required regime of the parameter space enforced a negative value for

the ETW brane Einstein-Hilbert term, though the Einstein-Hilbert term

for the effective theory on the braneworld obtained by integrating out the

holographic direction remains positive.

To pursue the possibility of brane-localized gravity in string theory, we

returned in Chapter 6 to the half-supersymmetric boundary conditions for

N = 4 SYM, in order to identify limits of the dual supergravity solutions,

satisfying certain quantization conditions required in string theory, in which
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the ETW brane region could be moved arbitrarily close to the “missing” AdS

boundary, thereby recovering a large region of AdS5×S5. We identified sim-

ple families of such boundary conditions with this property. Likewise, we

considered families of 3D superconformal field theories, preserving the same

supersymmetry algebra as the half-supersymmetric N = 4 SYM BCFTs,

and identified families of these 3D SCFTs whose dual solutions could pro-

duce arbitrarily large AdS5 × S5 wedges, a microscopic realization of wedge

holography.

Finally, in Chapter 7, we considered a simple holographic model for an

evaporating black hole inspired by [9], wherein a coupled black hole-radiation

system was modelled by a BCFT with a large number of boundary degrees

of freedom. We used the RT formula to explicitly quantify the information

emitted by the black hole in this model, observing that its time-dependence

was consistent with unitary quantum mechanical evolution, exhibiting a

characteristic phase transition between RT surfaces as predicted by [287].

These observations confirmed that a portion of the black hole interior lies

within the entanglement wedge of the radiation system following the phase

transition, providing a doubly-holographic justification for the island rule

for gravitational entropy.

It is perhaps mildly surprising how many new insights into deep ques-

tions regarding quantum gravitational physics are apparently enabled by

applications of the AdS/BCFT correspondence; in this thesis, we have exam-

ined a few such applications highlighting the “unreasonable effectiveness of

branes”. It appears that these models provide us with a useful and tractable

picture of the physics of holographic BCFTs, and that their further appli-

cation may continue to yield insights into the nature of quantum gravity.
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Appendix A

Appendices for Chapter 2

A.1 Path integral methods

Path integral methods offer a useful approach to calculations in quantum

mechanics and quantum field theory. They play a particularly central role

in the AdS/CFT correspondence, since one of the most useful and explicit

tools for studying holographic systems makes use of the equivalence of path

integrals on two sides of the duality, the GKPW dictionary of (2.100). We

provide a brief introduction to how the path integral will be used in this

thesis; more detailed information can be found in Appendix A of [102] and

Chapters 4 - 6 of [128]. As in the rest of this thesis, we set ℏ = 1 throughout.

States and amplitudes

In quantum field theory, a transition amplitude between two field eigenstates

|ϕ1⟩, |ϕ2⟩ is obtained by evolving the first state and then projecting onto the

second state; an important result is that this is equivalent to a (Lorentzian)

path integral

⟨ϕ2|e−iHT |ϕ1⟩ =
∫ ϕ(t=T )=ϕ2

ϕ(t=0)=ϕ1

Dϕ(t) eiSL[ϕ(t)] . (A.1)

In principle, ϕ may denote a collection of fields. We are implicitly assuming

a fixed, static background of the form R×Σd−1, though generalizations can

be made to curved backgrounds.

Similarly, an amplitude with Euclidean evolution by β = iT is equivalent
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A.1. Path integral methods

to a Euclidean path integral

⟨ϕ2|e−βH |ϕ1⟩ =
∫ ϕ(τ=β)=ϕ2

ϕ(τ=0)=ϕ1

Dϕ(τ) e−SE [ϕ(τ)] . (A.2)

The latter often has better convergence properties, since the exponential

is damped rather than oscillatory off-shell; under sufficient assumptions,

including the requirement that the Hamiltonian is bounded from below, one

anticipates that these should be related by analytic continuation. We will

work exclusively with the Euclidean path integral in the following.

We may define a state of a Lorentzian theory by slicing the Euclidean

path integral. This means that we perform the Euclidean path integral on

a manifold-with-boundary M whose boundary ∂M is the surface Σd−1 on

which we would like to quantize the Lorentzian theory, leaving the boundary

condition open. Formally, this procedure defines a wavefunctional Ψ[ϕ0],

which should correspond to a state |Ψ⟩ in the Hilbert space such that Ψ[ϕ0] =

⟨ϕ0|Ψ⟩, via

Ψ[ϕ0] =

∫ ϕ(∂M)=ϕ0

Dϕ e−SE [ϕ] . (A.3)

Though M could be arbitrary, we are typically interested in the case that

the Euclidean manifold is Σd−1 times a Euclidean “time” direction, so that

we have the interpretation of a state being prepared by Euclidean time evo-

lution. The simplest example of such a state prepared by a Euclidean path

integral is the (non-normalized) vacuum state, which arises from the semi-

infinite path integral (without boundary in the Euclidean past).

Correlation functions and operator insertions

Euclidean correlation functions of local operators are computed via the Eu-

clidean path integral with operator insertions

⟨O(x1) . . . O(xn)⟩ =
∫
Dϕ e−SE [ϕ]O(x1) . . . O(xn) , (A.4)

where O(x) are any local operators built from the fundamental fields ϕ

and their derivatives. As is clear from the path integral construction, we
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may interpret these correlators as vacuum expectation values of products

of operators ordered relative to the choice of quantization. In the operator

language, this ordering is important; as an example, if we consider a two-

point vacuum correlator

⟨0|O1(τ1, x1)O2(τ2, x2)|0⟩

= ⟨0|eHτ1O1(0, x1)e
−H(τ1−τ2)O2(0, x2)e

−Hτ2 |0⟩ , (A.5)

then having non-time-ordered operators τ1 < τ2 would result in the action

of e−H(τ1−τ2) on the state to its right being ill-defined, assuming that the

spectrum of H is unbounded from above.

More general vacuum correlation functions of local operators, including

Lorentzian time-ordered or out-of-time-order correlation functions, may be

constructed using path integrals whose time-contour includes both Euclidean

and Lorentzian sections; these are sometimes called Schwinger-Keldysh con-

tours. However, for the purposes of this thesis, Lorentzian correlators of

interest will be related to Euclidean correlators directly by analytic contin-

uation τ = it, which is expected to hold under certain technical assump-

tions.114

Operator insertions may also be used in state preparation by a Euclidean

path integral. In this construction, the wavefunctional Ψ[ϕ0] is defined by

Ψ[ϕ0] =

∫ ϕ(∂M)=ϕ0

Dϕ e−SE [ϕ]O1(x1) . . . On(xn) , (A.6)

where we have inserted operators at specific locations x1, . . . , xn ∈M.

Operators, density matrices, and the partition function

Euclidean path integrals with two open cuts formally define operators on the

Hilbert space. An important example is the un-normalized thermal density

matrix ρ̂β = e−βH , which is defined by performing the path integral over

114This is the content of the Osterwalder-Schrader reconstruction theorem.

373



A.1. Path integral methods

Euclidean time β

⟨ϕ2|ρ̂β|ϕ1⟩ ≡
∫ ϕ(β)=ϕ2

ϕ(0)=ϕ1

Dϕ e−SE [ϕ] . (A.7)

Since the thermal partition function Z(β) may be computed by taking the

trace of this operator, which in the path integral corresponds to identifying

the τ = 0 and τ = β surfaces and “sewing them together” by integrating over

field configurations on this surface, we deduce that the partition function is

calculated by performing the path integral on S1
β × Σd−1

Z(β) =

∫
Dϕ0⟨ϕ0|ρ̂β|ϕ0⟩ =

∫
S1
β×Σd−1

Dϕ e−SE [ϕ] . (A.8)

Here, S1
β is a circle of circumference β, sometimes called the thermal circle.

More generally, we may define operators on the Hilbert space by Eu-

clidean path integrals with two open cuts that also contain local operator

insertions. As for the thermal density matrix, we may also compute traces of

these operators by performing the path integral with a periodic identification

of the Euclidean time direction.

The thermofield double

Implicit in the above discussion is a notion of conjugation for states in the

Hilbert space. This is implemented by an anti-linear map Θ, which can be

thought of as a CPT map, relating bras and kets. When visualizing the path

integral, the action of this map can be thought of as reversing the orientation

of a given boundary condition. For example, we often implicitly illustrate

kets as path integrals with a free upper boundary condition, and bras as

path integrals with a free lower boundary condition; the inner products then

corresponds to “sewing” together these two path integrals at the boundaries

with the open boundary conditions.

With this in mind, we claim that the un-normalized thermofield double
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Figure A.1: Path integral construction for the thermofield double state on
two copies of S1.

state on two copies of Σd−1, namely the state

|TFDβ⟩12 ≡
∑
n

e−βEn/2|n⟩1|n⟩2 , (A.9)

is defined by the path integral shown in Figure A.1, corresponding to an

evolution by Euclidean time β/2 followed by the action of CPT on one of

the two boundaries. We can verify this identification by evalutating the

inner product with a general field eigenstate tensor product

(⟨ϕ1|1 ⊗ ⟨ϕ2|2) |path integral⟩12 = ⟨ϕ2|e−βH/2|ϕ∗1⟩

=
∑
n

⟨ϕ2|n⟩⟨n|ϕ∗1⟩e−βEn/2

= (⟨ϕ1|1 ⊗ ⟨ϕ2|2) |TFDβ⟩12 ,

(A.10)

which confirms that the two states are equivalent.

A.2 A CFT primer

In this section, we will clarify some definitions relevant to classical and

quantum field theories, and particularly to conformal field theories. We aim
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only for internal consistency, and our terminology will necessarily disagree

with that found in other references. We will be more pedantic in this section

than elsewhere, in order to clearly state and motivate the definition and

properties of conformal field theory in the main text. We implicitly work

in Euclidean signature for concreteness, though the extension to Lorentzian

signature is generally trivial. This section draws on material from [100, 101,

103–105].

Classical field theory: For our purposes, a classical field theory will be

specified by a Riemannian manifold (M, g), a list of fundamental fields {Φ},
and an action functional S which depends on the fields and their derivatives.

In practice, one might want to demand that the action S satisfy certain

physical assumptions. Under favourable circumstances, one can use these

ingredients to define a statistical field theory (i.e. a Euclidean quantum field

theory) via the path integral.

Diffeomorphism: A diffeomorphism is a differentiable bijection f : M →
N between manifolds M,N whose inverse is also differentiable. One can

state the definition of a diffeomorphism with any chosen degree of differen-

tiability, making it the natural isomorphism between manifolds with that

degree of differentiability.

Coordinate transformation: Given a manifold M with overlapping sub-

sets U,U ′ ⊆M and associated coordinate charts ϕ : U → Rd and ϕ′ : U ′ →
Rd, one can define a coordinate transformation as the map

ϕ′ ◦ ϕ−1|ϕ(U∩U ′) : ϕ(U ∩ U ′)→ ϕ′(U ∩ U ′) . (A.11)

In pedestrian terms, this is the map between coordinates in one coordinate

chart and another coordinate chart with overlapping domain.

In the following, we will often use the notation

xµ → x′µ(x) , (A.12)
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or simply x→ x′(x), to denote a coordinate transformation; the xµ and x′µ

of course denote the coordinates of ϕ(p) and ϕ′(p) for a given point p ∈ M
in terms of the standard basis of Rd. We recall that tensor components

transform under coordinate transformations with suitable factors of the Ja-

cobian ∂x′µ

∂xν or its inverse ∂xµ

∂x′ν . We often denote the transformed field with

a prime, so that for example a vector field transforms under a coordinate

transformation as

V µ(x)→ V ′µ(x′) =
∂x′µ

∂xν
V ν(x) . (A.13)

For compactness, we will frequently suppress Lorentz indices in the remain-

der of this subsection, and denote by R(x, x′) the appropriate product of

Jacobians required for a coordinate transformation of a tensor O(x) with a

given index structure, writing

O′(x′) = R(x, x′)O(x) . (A.14)

In a statistical field theory, observables like correlation functions should

be invariant under coordinate transformations, meaning that

⟨O′(x′1) . . . O
′(x′n)⟩g′ = R(x1, x

′
1) . . . R(xn, x

′
n)⟨O(x1) . . . O(xn)⟩g . (A.15)

The underlying metric ds2 = gµνdx
µdxν = g′µνdx

′µdx′ν is of course fixed.

Strictly speaking, a diffeomorphism is not a coordinate transformation;

the two objects have different definitions, and in particular the definition of

a diffeomorphism entails two possibly different manifolds (which could have

different geometry in the Riemannian case). A diffeomorphism can in prin-

ciple be used to define a coordinate transformation, since a diffeomorphism

f : M → N composed with a coordinate chart ϕ : W → Rd with W ⊆ N

naturally defines a coordinate chart on the manifold M via the pullback

ϕ ◦ f : f−1(W )→ Rd. On the other hand, a change of coordinates is locally

defined with respect to a single coordinate chart, and there is no general

procedure for reconstructing a diffeomorphism from a manifold M to itself
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given a change of coordinates on M .

Nonetheless, given a coordinate chart ϕ : U → Rd with U ⊆ M , new

coordinate charts ϕ′ : U → Rd with the same image ϕ(U) = ϕ′(U) are in

one-to-one correspondence with diffeomorphisms f : U → U via

ϕ′ = ϕ ◦ f . (A.16)

One can think of this diffeomorphism as actively implementing the change

of coordinates; for example, the coordinate change x′ = (x + y)/
√
2, y′ =

(x − y)/
√
2 on R2 can be implemented in this way by a diffeomorphism

which rotates the plane clockwise by 45◦. This correspondence is the ratio-

nale for referring to coordinate transformations and diffeomorphisms of Rd

interchangeably.

Isometry: Given two Riemannian manifolds (M, g) and (N,h), an isometry

is a diffeomorphism f : M → N such that g = f∗h, where f∗ denotes the

pullback. In local coordinates, the definition of an isometry implies

gµν(x) =
∂x′ρ

∂xµ
∂x′σ

∂xν
hρσ(x

′) . (A.17)

We are often interested in considering the isometries from a manifold

(M, g) to itself, namely those diffeomorphisms f : M → M satisfying g =

f∗g. Defining a coordinate transformation via ϕ′ = ϕ ◦ f , this condition

becomes

gµν(x) =
∂x′ρ

∂xµ
∂x′σ

∂xν
gρσ(x

′) , (A.18)

or, multiplying by the inverse Jacobians, using that g transforms as a tensor,

and relabelling x′ as x,

g′µν(x) = gµν(x) . (A.19)

An important example is the group of isometries from the Euclidean

plane Rd to itself, which form the d-dimensional Euclidean group.

Symmetry: We will take the term symmetry to refer to a transforma-
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tion of the dynamical fields in a theory, rather than the coordinates or any

background fields (like the metric or other sources) that might be present,

under which the action is invariant. This may include spacetime symmetries,

which may reflect isometries of the manifold; however, we can always express

symmetries, including spacetime symmetries, as pure field transformations,

and whether or not a transformation is a symmetry is always dependent

on the theory, not just the structure of the base space. For example, we

could always ensure that the isometries of the base manifold are not real-

ized as symmetries of the theory by adding position-dependent sources to

the action.

When the coordinate transformation x→ x′ induced by an isometry from

a manifold to itself is a genuine symmetry of a theory, then the correlators

in the statistical field theory satisfy

⟨O′(x1) . . . O
′(xn)⟩g = ⟨O(x1) . . . O(xn)⟩g ; (A.20)

this expression is more than a statement about covariance under coordinate

transformations, instead representing a non-trivial equality between distinct

correlators in the theory. Of course, the path integral measure must also be

invariant under the symmetry for this equality to hold.

Conformal isometry: Given two Riemannian manifolds (M, g) and (N,h),

a conformal isometry (sometimes called a conformal diffeomorphism) is a

diffeomorphism f : M → N such that Ω2g = f∗h, with Ω : M → R+. The

function Ω is sometimes called a conformal factor. In local coordinates, this

implies

Ω2(x)gµν(x) =
∂x′ρ

∂xµ
∂x′σ

∂xν
hµν(x

′) . (A.21)

We are often interested in considering conformal isometries from a man-

ifold (M, g) to itself, namely those diffeomorphisms f : M → M satisfying

Ω2g = f∗g. With analogous manipulations to the case of isometries, one

379



A.2. A CFT primer

can write

g′µν(x) = ω−2(x)gµν(x) , ω2(x′) = Ω2(x) . (A.22)

An important example is the group of conformal isometries from the

Euclidean plane Rd to itself, which form the Euclidean conformal group

SO(1, d+ 1).

Weyl transformation: In field theory, aWeyl transformation is a position-

dependent rescaling of the fields, including the metric, which does not change

the coordinates. One typically chooses a spacetime-dependent Weyl factor

Ω(x), and posits that the various fundamental fields are primaries of scaling

dimension ∆, meaning that they transform under a Weyl transformation as

ϕ(x)→ Ω(x)−∆ϕ(x) . (A.23)

One is often interested in geometrical Weyl transformations, where the back-

ground metric transforms as gµν(x)→ Ω2(x)gµν(x); evidently, such a trans-

formation näıvely changes the geometry, but preserves angles.

Although a Weyl transformation does not meet our definition of a sym-

metry when it changes the background metric, it may be the case that the

action (and path integral measure) are invariant under such transformations;

in this case, we have a non-trivial relation between correlators on the two

different backgrounds related by the Weyl transformation

⟨O1(x1) . . . On(xn)⟩Ω2g = Ω−∆1(x1) . . .Ω
−∆n(xn)⟨O1(x1) . . . On(xn)⟩g .

(A.24)

Conformal transformation: We define a conformal transformation in a

field theory to be a conformal isometry, which results in a pointwise rescal-

ing gµν → ω−2gµν , composed with a Weyl rescaling with Weyl factor ω to

pointwise restore the original metric. Conformal transformations are conse-

quently transformations on a theory with a fixed background, which act on
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primary fields of conformal dimension ∆ and general tensor structure as

O′(x′) = ω(x)−∆R(x, x′)O(x) , ω(x) =
∣∣∣∂x′
∂x

∣∣∣1/d . (A.25)

Note that a conformal isometry generally has Jacobian ∂x′µ

∂xν = ω(x)Sµ
ν(x)

with Sµ
ν ∈ SO(d).

A (classical) conformal field theory is a theory whose action is invariant

under conformal transformations, namely a theory with conformal symme-

try. The correlators of primary fields in the corresponding statistical field

theory satisfy

⟨O′(x1) . . . O
′(xn)⟩g = ⟨O(x1) . . . O(xn)⟩g , (A.26)

where O′(x′) for a conformal transformation is defined as above.

Given that a field theory is necessarily invariant under conformal isome-

tries, since these are merely diffeomorphisms, conformal invariance can also

be viewed as a statement about invariance under a restricted class of Weyl

transformations, namely those which can arise from conformal isometries of

a given manifold. This implies that a conformally invariant theory has a

non-trivial relationship between correlators on two different backgrounds,

⟨O(x1) . . . O(xn)⟩Ω2g = ⟨O′(x′1) . . . O
′(x′n)⟩g , Ω = |∂x′/∂x|1/d . (A.27)
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Appendices for Chapter 3

B.1 AdS/CFT correspondence: conventions

We here establish various formulae relevant to type IIB string theory. The

Planck scale and string scale are related by

ℓp = g
1
4 ℓs , (B.1)

where g is the string coupling and ℓs is defined in terms of the string tension
1

2πα′ by

α′ = ℓ2s . (B.2)

The ten-dimensional Newton constant is defined as

G = 8π6g2ℓ8s . (B.3)

In the AdS/CFT correspondence relating U(N) N = 4 SYM theory to type

IIB string theory on AdS5×S5, we have that the AdS radius in string frame

is related to the rank of the gauge group by

(L
(SF)
AdS )

4 = 4πgNℓ4s . (B.4)

If we make the transformation gµν → e−Φ/2gµν to Einstein frame, including

the asymptotic value of the dilaton g = eΦ∞ in Φ, this becomes

L4
AdS = 4πNℓ4s . (B.5)

In this case, we should use G = 8π6ℓ8s for the Newton constant. The string

coupling (equal to the asymptotic value of eΦ where Φ is the dilaton) is
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related to the Yang-Mills coupling by

4πg = g2YM . (B.6)

The ’t Hooft coupling is

λ = g2YMN . (B.7)

To evaluate the number of units of quantized 3-form flux through a

sphere, we use

ND5 =
1

4π2ℓ2s

∫
S3

F3 (B.8)

and

NNS5 =
1

4π2ℓ2s

∫
S3

H3 (B.9)

where F3 and H3 are the R-R and NS-NS three-form field strengths. In the

absence of three-form fields, the number of units of five-form flux through a

five-sphere is given by

ND3 =
1

16π4ℓ4s

∫
S5

F5 . (B.10)

The analysis of five-form fluxes and their relation to D3-brane charges is

more subtle when three-form fields are present (as they are in the solutions

we consider). See [174, 327] or [175] for a detailed discussion.

B.2 Supergravity solutions: form fields

In this appendix, we review for completeness the gauge fields in the super-

gravity solutions, following the conventions of [175].

The form fields are again expressed in terms of the harmonic functions

hi together with the harmonic duals hDi defined so that

A1 =
1

2
(hD1 + ih1)

A2 =
1

2
(h2 − ihD2 )
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are holomorphic. The ambiguity in choosing hDi corresponds to gauge free-

dom in defining the potentials for the form fields.

The NS-NS 3-form field strength H3 and the R-R 3-form field strength

F3 take the form

H3 = ω45 ∧ db1 F3 = ω67 ∧ db2 (B.11)

where ω45 and ω67 are volume forms on the first and second unit-radius S2s.

The real functions bi are defined in terms of the harmonic functions by

b1 = 2hD2 + 2h21h2
X

N1
, b2 = −2hD1 + 2h1h

2
2

X

N2
, (B.12)

where

X ≡ i (∂wh1∂w̄h2 − ∂wh2∂w̄h1) . (B.13)

The fiveform field strength can be expressed as

F5 = −4f44ω0123 ∧ F + 4f21 f
2
2ω

45 ∧ ω67 ∧ (∗2F) . (B.14)

Here, ω0123 is the volume form on the unit-radius AdS4, F is a one-form on

Σ, and ∗2 denotes Poincar’e duality with respect to the metric on Σ.

We have that

f44F = dj1 (B.15)

where

j1 = 3C + 3C̄ − 3D +
h1h2X

W
∂wC = A1∂wA2 −A2∂wA1

D = Ā1A2 +A1Ā2 .

So far, we have assumed that the R-R zero-form potential vanishes, but

more general solutions with non-vanishing axion can be obtained using the

SL(2,R) symmetry of type IIB supergravity.
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B.3 Regularization of the area integrals

In this appendix we explain in detail the regularization procedure used in

computing boundary F via the RT formula. Given the metric dual to one

of the BCFTs, we can redefine coordinates to place the metric in Fefferman-

Graham form

ds2 =
L2

z2
(dz2 + dx2⊥ − dt2 + dx⃗2) + dΩ2

5 +O(z2) (B.16)

where the correction terms do not involve dz. We then compute the area of

the z > ϵ portion of the RT surface for a half-ball region of radius R centered

on the BCFT boundary, and subtract half the area of the RT surface for a

ball of radius R in N = 4 SYM theory.

Regulated area in the BCFT duals

To calculate the regulated area of the extremal surface corresponding to a

half ball in one of our BCFT duals, we need to understand where the cutoff

surface z = ϵ lies in the coordinates we are using. Representing the AdS4

metric as

ds2AdS4 =
1

u2
(−dt2 + du2 + dx⃗2)

=
1

ρ2 cos2 θP
(−dt2 + dρ2 + ρ2dθ2P + ρ2 sin2 θPdϕ

2) ,
(B.17)

we will have that the cutoff surface lies at some umin(r, θ). In the full metric,

this AdS4 slice enters as

ds2 = f24 (
1

u2
(−dt2 + du2 + dx⃗2)) + . . . (B.18)

Converting to Fefferman-Graham coordinates, this will become asymptoti-

cally

ds2 =
L2

z2
(dz2 + dx2⊥ − dt2 + dx⃗2) + . . . (B.19)
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where z and x⊥ are determined in terms of the other coordinates, and LAdS

is the asymptotic AdS curvature scale that will be determined in terms of

the parameters appearing in the metric. Thus, asymptotically, we must have

that
f24
u2

=
L2
AdS

z2
. (B.20)

This allows us to fix the cutoff surface as

umin(r, θ) =
ϵ

LAdS
f4(r, θ) . (B.21)

The locus of the extremal surface in each AdS4 slice is ρ
2 = u2+x2+y2 =

R2, and the two-dimensional area of the portion of this surface inside the

cutoff is ∫ cos−1(
umin

R
)

0
dθ

2π sin θ

cos2 θ
= 2π

(
R

umin
− 1

)
. (B.22)

Using this, we find that the regulated eight-dimensional area of the extremal

surface is given by

Area = 128π3
∫ umin(r,θ)=R

0
rdrdθρ2f21 f

2
2 f

2
4

(
R

umin(r, θ)
− 1

)
= −1024π3

∫ f4(r,θ)=RLAdS/ϵ

0
rdrdθ h1h2

× ∂w∂w̄(h1h2)
(
RLAdS

ϵf4(r, θ)
− 1

)
.

(B.23)

From this expression, we need to subtract off half the area of the extremal

surface corresponding to a ball in the parent N = 4 SYM theory. The area

to be subtracted off can be expressed in a similar way to (B.23) by taking

h1 and h2 to be the expressions (3.30) relevant to pure AdS. Since we would

like to subtract off half of the regulated area of the extremal surface in pure

AdS, we can keep only the part for x⊥ ≤ 0 in Fefferman-Graham coordinates,

which translates to the part with r ≥ r0 in the coordinates we are using.
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Thus, the regulated half-hemisphere area is

1

2
AreaAdS = −1024π3

∫ fAdS
4 (r,θ)≤RLAdS/ϵ

r0

rdrdθ hAdS
1 hAdS

2

× ∂w∂w̄(hAdS
1 hAdS

2 )

(
RLAdS

ϵfAdS
4 (r, θ)

− 1

)
. (B.24)

Details of the subtraction

In order to evaluate the integrals, it is convenient to split the integration

domain into a part with r ∈ [0,Λ] and an asymptotic part {r ≥ Λ, f4(r, θ) ≤
RLAdS/ϵ}, for some large Λ that we will take to infinity as ϵ→ 0.

For the first part,

−1024π3
∫ Λ

0
dr

∫ π
2

0
dθ rh1h2∂w∂w̄(h1h2)

(
RLAdS

ϵf4(r, θ)
− 1

)
, (B.25)

the first term does not contribute to the final result since it gives an R/ϵ term

that is eliminated by the derivative in the definition (3.4,3.7,3.8) of boundary

F . Thus, this part of the integral gives a contribution to boundary F of

F1 = −
256π3

G

∫ Λ

0
dr

∫ π
2

0
dθ rh1h2∂w∂w̄(h1h2) . (B.26)

From this, we subtract off the corresponding integral for pure AdS, so

we have a contribution

F2 =
256π3

G

∫ Λ

r0

dr

∫ π
2

0
dθ rhAdS

1 hAdS
2 ∂w∂w̄(h

AdS
1 hAdS

2 ) . (B.27)

To evaluate the asymptotic part of the integral (i.e the region with r >

Λ), we use that the asymptotic form of f4 in the general solution is

f4(r, θ) = Ar +B(θ)
1

r
+O(1/r2) , (B.28)
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while the asymptotic form of the integrand is

I(r, θ) = I1(θ)r + I2(θ)
1

r
+O(1/r2) . (B.29)

Then the integral in the asymptotic region takes the form

∫ π
2

0
dθ

∫ RLAdS
ϵA

− B(θ)ϵ
RLAdS

+...

Λ
dr

[
I1(θ)r + I2(θ)

1

r
+ . . .

]
×
[
RLAdS

ϵAr
− 1 + . . .

]
, (B.30)

where the omitted terms give contributions that vanish in the limit ϵ → 0

and Λ→∞. Evaluating the integral for the remaining terms gives

∫ π
2

0
dθ

[
R2L2

AdS

2ϵ2A2
I1(θ)−

RLAdSΛ

ϵ
I1(θ)

+
1

2
I1(θ)Λ

2 − I2(θ) ln
(
RLAdS

ϵAΛ

)
+ . . .

]
. (B.31)

Now, we can check that A, I1(θ) and
∫
dθI2(θ) all give the same results for

the general solution and for the pure AdS case with the corresponding LAdS

and r0. Thus, when we perform the subtraction, there are no terms that

contribute from this r > Λ region in the limits ϵ→ 0 and Λ→∞.

To summarize, our final result is that boundary F is given by the Λ→∞
limit of the sum of the two contributions (B.26) and (B.27),

F∂ = − lim
Λ→∞

256π3

G

{∫ Λ

0
dr

∫ π
2

0
dθrh1h2∂w∂w̄(h1h2)

−
∫ Λ

r0

dr

∫ π
2

0
dθrhAdS

1 hAdS
2 ∂w∂w̄(h

AdS
1 hAdS

2 )
}
. (B.32)
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B.4 Verification of field theory constraints for

linking numbers

In this appendix, we show that for any linking numbers defined in terms of

supergravity parameters as in (3.44), the field theory constraints on linking

numbers that (3.21) are positive are automatically satisfied.

For this appendix, we define Mn to be the number of D5-branes with

linking number L̃ = n − NNS5, where 1 ≤ n < NNS5. We will also let the

indices on the linking numbers {L̃i,Ki} refer to the ith 5-brane, rather than

the ith 5-brane stack.

We will prove that for linking numbers violating the inequalities

j−1∑
n=1

(j − n)Mn <

j∑
i=1

Ki , j ∈ {1, 2, . . . , NNS5} , (B.33)

i.e. for which not all of the quantities (3.21) are positive, there is no set

of supergravity parameters that can give rise to these linking numbers via

(3.44).

We see immediately that if we define index subset

I ≡ {i : L̃i > 0} , (B.34)

then violating the final inequality

NNS5−1∑
n=1

(NNS5 − n)Mn <

NNS5∑
i=1

Ki , (B.35)

which can be written as

−
∑
i/∈I

L̃i <
∑
i

Ki , (B.36)

implies

N =
∑
i∈I

L̃i +
∑
i/∈I

L̃i +
∑
i

Ki ≤
∑
i∈I

L̃i , (B.37)

389



B.4. Verification of field theory constraints for linking numbers

and therefore

N =

(∑
i/∈I

l̂i +
∑
i

k̂i

)
+
∑
i∈I

l̂i >
∑
i∈I

l̂i ≥
∑
i∈I

L̃i ≥ N , (B.38)

a contradiction, implying that the system of equations has no solution. Here,

we have used that l̂i, k̂i > 0 and

L̃i = l̂i −
2

π

∑
j

arctan

(
gk̂j

l̂i

)
≤ l̂i . (B.39)

We would like to check that violating the other inequalities similarly

leads to a system with no solutions. We restrict to the case that K1 > 0,

i.e. the first of the inequalities in (B.33) is always satisfied; this is because

we are interested in configurations which will correspond to theories with

boundaries rather than interfaces. Moreover, we may restrict to the case

that the last of the inequalities is satisfied, since we have already shown

that violating this inequality leads to an insoluble system. To this end, let

us fix arbitrary NNS5 ≥ 3; our task is to show that violating the inequality

in (B.33) indexed by j ∈ {2, . . . , NNS5 − 1} leads to a contradiction in our

system of equations defining the supergravity parameters. This system is

constituted by the relations

k̂i = Ki −
2

π

∑
j

arctan

(
gk̂i

l̂j

)
,

l̂i = L̃i +
2

π

∑
j

arctan

(
gk̂j

l̂i

)
,

(B.40)

which in particular furnish inequalities

Ki >
2

π

∑
j

arctan

(
gk̂i

l̂j

)
, L̃i > −

2

π

∑
j

arctan

(
gk̂j

l̂i

)
. (B.41)

First, suppose that we violate the inequality indexed by j = 2; that is,
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suppose

K1 +K2 ≤M1 . (B.42)

We may assume M1 > 0 without loss of generality, so that L̃1 = . . . =

L̃M1 = −(NNS5 − 1), and in particular ND5 > 0; otherwise, M1 ≤ 0 and

K1 +K2 ≤M1 would imply K2 < 0, which is incompatible with (B.40) and

the assumption that k̂A, l̂A are positive. But since

π

2
Ki >

∑
j

arctan

(
gk̂i

l̂j

)
,

π

2
L̃1 > −

∑
B

arctan

(
gk̂j

l̂i

)
(B.43)

by (B.40), we find

M1∑
j=1

∑
i≥3

arctan

(
gk̂i

l̂j

)
>

M1∑
j=1

(
−π
2
L̃j − arctan

(
gk̂1

l̂j

)
− arctan

(
gk̂2

l̂j

))
>
π

2
((NNS5 − 1)M1 −K1 −K2)

≥ π

2
(NNS5 − 2)M1 ,

(B.44)

contradicting the bound arctan(x) < π
2 .

More generally, suppose that we violate the inequality indexed by j ∈
{2, . . . , NNS5 − 1}; that is, suppose that we have

j∑
i=1

Ki ≤
j−1∑
n=1

(j − n)Mn . (B.45)

We may assume that at least one ofM1, . . . ,Mj−1 is positive (since otherwise
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at least one of theKi would be negative). Then, lettingM ≡M1+. . .+Mj−1,

∑
i>j

M∑
m=1

arctan

(
gk̂i

l̂m

)
> −π

2

M∑
m=1

L̃m −
j∑

i=1

M∑
m=1

arctan

(
gk̂i

l̂m

)

>
π

2

(
j−1∑
n=1

(NNS5 − n)Mn −
j∑

i=1

Ki

)

≥ π

2
(NNS5 − j)

j−1∑
n=1

Mn =
π

2
(NNS5 − j)M ,

(B.46)

again contradicting arctan(x) < π
2 . This demonstrates our original claim.

B.5 Corrections to the supergravity

approximation

In this appendix, we estimate the size of the corrections to the supergravity

result, following the procedure outlined at the end of Section 3.4.

B.5.1 Estimating the corrections

Recall that our solutions are generated by the harmonic functions in (3.36),

determined by positive real constants lA, kB. These can be combined to

define Einstein frame metric functions and dilaton field, using (3.26), (3.27),

(3.28) in Section 3.3.1; to transform to the string frame, we should multiply

all of the metric functions by eϕ ≡ eΦ/2. We begin by determining the

string frame Ricci curvature and dilaton field in the vicinity of a D5-brane

or NS5-brane stack. It will be useful to define

γC ≡ π + 2
∑
B

dBkB
l2C + k2B

=
π

cC

d

dlC
N

(C)
D3

δD ≡ π + 2
∑
A

cAlA
k2D + l2A

=
π

dD

d

dkD
N

(D)
D3 ;

(B.47)

note that in the case with only D5-branes one has γC = π, and in the case

with only NS5-branes one has δD = π.
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First, we consider the vicinity of the D5-stack at (x, y) = (lC , 0), and

let L0 denote the distance in the first quadrant Σ from lC to the nearest

5-brane stack (or the origin), namely

L0 ≡ min
A,B ̸=C

{|lA − lC |,
√
k2B + l2C , lC} . (B.48)

Using polar coordinates (x, y) = (lC + r cos θ, r sin θ), we therefore have the

expansion

h1 =
πℓ2s
2

1
√
g

[
− cC

2π
ln(r2/4l2C) +

lC +
∑
A ̸=C

cA
2π

ln

(
(lC + lA)

2

(lC − lA)2

)
+ r cos θ

(
1 +

cC
2πlC

− 2

π

∑
A

cAlA
(l2C − l2A)

)
+O(r2/L2

0)
]

h2 =
πℓ2s
2

√
g

[
r sin θ

(
1 +

2

π

∑
B

dBkB
(l2C + k2B)

)

+ r2 sin θ cos θ

(
−4lC

π

∑
B

dBkB
(l2C + k2B)

2

)
+O(r3/L3

0)

]
.

(B.49)

We therefore have string frame metric functions given at leading order in

r/L0 by

ρ2 =

√
2gγCℓ

2
s

4

1

r ln(4l2C/r
2)1/2

, f24 =

√
2gγCℓ

2
s

2
r ln(4l2C/r

2)1/2 ,

f21 =

√
2gγCℓ

2
s

2
r ln(4l2C/r

2)1/2 , f22 =
√
2gγCℓ

2
s

r sin2 θ

ln(4l2C/r
2)1/2

,

(B.50)

and dilaton

e2ϕ =

√
2gγC
cC

r√
ln(4l2C/r

2)
. (B.51)

We thereby deduce string frame Ricci scalar at leading order

α′R = − 6

γCr

√
2

g
ln(4l2C/r

2) . (B.52)
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We can perform a similar analysis near an NS5-brane stack at (x, y) =

(0, kD), for which we find dilaton and Ricci scalar

e2ϕ =
gdD√
2δD

ln(4k2D/r
2)1/2

r
, α′R =

6
√
gdD

(B.53)

at leading order.

The above expressions tell us the minimum radius rmax past which the

correction terms appearing in the effective action should be suppressed. Ev-

idently, for the D5-brane stacks, the divergence of the string frame curva-

ture implies that we are only justified in ignoring corrections in the region

r ≫ rmax with

rmax ∼
1

√
gγC

√
W (gl2Cγ

2
C) , (B.54)

where W (·) denotes the Lambert W-function, and we suppress order one

numerical factors. The contribution to F∂ from the complementary region

is ∫
0<r<rmax

rdrdθ ĥ1ĥ2∂∂̄(ĥ1ĥ2) ∼ c2Cγ2Cr2max ln(4l
2
C/r

2
max) . (B.55)

For the NS5-brane stacks, we see that the curvature corrections will be

suppressed provided we take N
(D)
NS5 ≫ 1, but will be large throughout the

region r ≪ L0 otherwise; evaluating the contribution to F∂ from a region

within rmax ∼ L0 gives∫
0<r<rmax

rdrdθ ĥ1ĥ2∂∂̄(ĥ1ĥ2) ∼ d2Dδ2DL2
0 ln(4k

2
D/L

2
0) . (B.56)

Meanwhile, the string loop corrections are small outside the region

rmax ∼
gdD
δD

√
W

(
δ2Dk

2
D

g2d2D

)
, (B.57)

and the contribution to boundary F from the complementary region is∫
0<r<rmax

rdrdθ ĥ1ĥ2∂∂̄(ĥ1ĥ2) ∼ d2Dδ2Dr2max ln(4k
2
D/r

2
max) . (B.58)
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In cases of interest, we can compare these contributions for each stack to

those appearing in our classical SUGRA calculation of F∂ ; if there are terms

in F∂ which dominate all of the näıve estimates of the corrections from near

the five-brane stacks, then these terms should provide a reliable approxima-

tion to F∂ .

B.5.2 Examples

Here we will consider some examples to illustrate the procedure of compar-

ing the anticipated corrections to the terms appearing in the uncorrected

expression for F∂ . To recover a classical supergravity dual in the asymp-

totic region, we should always consider the limit N →∞ and λ≫ 1.

Single stack of D5-branes

Suppose we have a single stack of N5 D5-branes, each with linking number

L̃ = N/N5; here N5 is Ω(N0) and O(N). The anticipated correction in the

vicinity of this stack is of order

O

(
N2

5 ·W
(
π2L̃2

)
· ln
( 4π2L̃2

W
(
π2L̃2

))) =

O(N2
5 ) L̃ ∼ 1

O
(
(N5 ln L̃)

2
)

L̃≫ 1
, (B.59)

while our uncorrected expression for F∂ is

F∂ =
N2

8

[
3− 8π2

3λ

N2

N2
5

− 2 ln

(
16π2

λ

N2

N2
5

)]
. (B.60)

When N is taken to be large, we see that the α′-corrections are expected to

be suppressed relative to all terms appearing in the uncorrected F∂ unless

we have L̃ ∼ 1, in which case the corrections become comparable. Note

that L̃ = 1 corresponds to the Dirichlet boundary condition for the gauge

theory, which we refer to as a “maximum entropy” boundary condition in

Section 3.6; in that section we will see that the exact evaluation of F∂ for this

boundary condition does indeed demonstrate that F∂ receives corrections at

leading order.
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Single stack of NS5-branes

We now consider the case with a single stack of N5 NS5-branes, each with

linking number K = N/N5; again, N5 is Ω(N
0) and O(N). The expected α′-

correction is of order O(N2) if N5 ∼ 1, and should be subleading if N5 ≫ 1.

The expected string loop correction is of order

O

(
N4

5 ·W (π2K2/N2
5 ) · ln

( 4π2K2

N2
5 ·W

(
π2K2/N2

5

)))

=


O
((
N2

5 ln
(
K2/N2

5

))2)
K ≫ N5

O(N4
5 ) K ∼ N5

O(N2) K ≪ N5

. (B.61)

Meanwhile, the uncorrected expression is

F =
N2

8

[
3− λ

6N2
5

− 2 ln

(
λ

N2
5

)]
. (B.62)

When N is taken to be large, we see that the α′-corrections and string

loop corrections are both expected to be suppressed relative to the leading

term in F∂ , which is order O(N2 lnN5), provided that we take N5 ≫ 1.

Moreover, they will also be suppressed relative to the second leading term,

which is O(N2), provided that we take 1 ≪ N5 ≪ K. However, they will

not be suppressed relative to the third term, which is order O(K2), unless

N5 = o(
√
K). Note that N5 = N is referred to as a “maximum entropy”

boundary condition in Section 3.6; in that section, we see that the exact

evaluation of F∂ for this boundary condition demonstrates that the leading

O(N2 lnN) term is uncorrected while the next-to-leading O(N2) term is

corrected, as we have predicted here.
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B.5. Corrections to the supergravity approximation

Single stack of D5-branes and single stack of NS5-branes

We will focus here on a specific choice of boundary configuration involving

one stack of D5-branes and one stack of NS5-branes, where we fix

L̃ = −1 , K = 1 , (B.63)

and take N,NNS5 to be large independent parameters, with N ≪ NNS5.

We have

ND5 = NNS5 −N . (B.64)

This is the situation considered in Section 3.6 to illustrate the unbound-

edness of F∂ ; it is a natural boundary condition to consider in order to

understand a situation where the number of boundary degrees of freedom is

taken to be much larger than the number of bulk degrees of freedom. Given

that the supergravity parameters are given at leading order by

l̂ =
N

NNS5
+O

(
N2

N2
NS5

)
, k̂ =

2π2

λ

N2

N2
NS5

+O

(
N3

N3
NS5

)
, (B.65)

we find

γ =
πNNS5

N
+O(1) , δ =

λ

2π

N2
NS5

N2
+O

(
NNS5

N

)
, (B.66)

and thus an α′-correction of order

(NNS5 −N)2W (γ2 l̂2) ln

(
4γ2 l̂2

W (γ2 l̂2)

)
= O

(
N2

NS5

)
(B.67)

from the vicinity of the D5-brane stack, and a string loop correction of order

N4
NS5W

(
δ2k̂2

N2
NS5

)
ln

 4δ2k̂2

N2
NS5W

(
δ2k̂2

N2
NS5

)
 = O

(
N2

NS5

)
(B.68)

from the vicinity of the NS5-brane stack. We stated in Section 3.6 that the

leading contribution to the uncorrected F∂ was O(N2
NS5 lnNNS5) while the
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B.6. Localization integrals

next largest contribution is of order O(NNS5); consequently, we expect only

the leading large NNS5 term in the uncorrected expression to be reliable.

B.6 Localization integrals

In Section 3.5, we need to evaluate integrals of the form

I1(a, b, s,N) =
1

N !

∫ N∏
i=1

dλi√
2π
e−

1
2s

∑N
i=1 λ

2
i

×
N∏
i<j

2 sinh
(a
2
(λi − λj)

)
2 sinh

(
b

2
(λi − λj)

)

I2(b, s,N) =
1

N !

∫ N∏
i=1

dλi√
2π
e−

1
2s

∑N
i=1 λ

2
i

×
N∏
i<j

2(λi − λj) sinh
(
b

2
(λi − λj)

)

I3(s,N) =
1

N !

∫ N∏
i=1

dλi√
2π
e−

1
2s

∑N
i=1 λ

2
i

N∏
i<j

(λi − λj)2 .

(B.69)

Noting that

I2(b, s,N) = lim
a→0

a−
N(N−1)

2 I1(a, b, s,N) ,

I3(s,N) = lim
b→0

b−
N(N−1)

2 I2(b, s,N) ,
(B.70)

we see it is sufficient to calculate I1(a, b, s,N), and take the appropriate

limits to recover I2(b, s,N) and I3(s,N). Using the identity

N∏
i<j

2 sinh

(
λi − λj

2

)
=
∑
σ∈SN

(−1)σ
N∏
j=1

exp

((N + 1

2
− σj

)
λj

)
, (B.71)
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we may write

I1(a, b, s,N) =
1

N !

∫ N∏
i=1

dλi√
2π
e−

1
2s

∑N
i=1 λ

2
i

∑
σ,σ̂∈SN

(−1)σ+σ̂

exp

 N∑
j=1

[
a
(N + 1

2
− σj

)
+ b
(N + 1

2
− σ̂j

)] . (B.72)

Recalling the Gaussian integration∫
dλ√
2π
e−

1
2s

λ2
ebλ =

√
sesb

2/2 , (B.73)

we obtain

I1(a, b, s,N) =
s

N
2

N !

∑
σ,σ̂∈SN

(−1)σ+σ̂e
s
2

∑N
j=1

[
a

(
N+1

2
−σj

)
+b

(
N+1

2
−σ̂j

)]2

= s
N
2

∑
σ′∈SN

(−1)σ′
e

s
2

∑N
j=1

[
a

(
N+1

2
−σ′

j

)
+b

(
N+1

2
−j

)]2
,

(B.74)

where σ′ denotes the relative permutation between σ and σ̂. We therefore

find

I1(a, b, s,N) = s
N
2 e−

s(a+b)2N(N+1)2

8 e
s(a2+b2)N(N+1)(2N+1)

12∑
σ′∈SN

(−1)σ′
N∏
j=1

esabjσ
′
j . (B.75)

Noting

∑
σ

(−1)σ
N∏
j=1

esabjσj = e
sabN(N+1)2

4

N∏
i<j

2 sinh

(
sab(j − i)

2

)
, (B.76)
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where we have used our earlier identity (B.71) with λj → −sabj, we find

I1(a, b, s,N) = s
N
2 e

s(a2+b2)N(N+1)(N−1)
24

∏
i<j

2 sinh

(
sab(j − i)

2

)

= s
N
2 e

s(a2+b2)N(N+1)(N−1)
24

N−1∏
j=1

(
2 sinh

(sabj
2

))N−j

.

(B.77)

We therefore also deduce

I2(b, s,N) = s
N2

2 b
N(N−1)

2 e
sb2N(N+1)(N−1)

24 G2(N + 1) , (B.78)

and

I3(s,N) = s
N2

2 G2(N + 1) , (B.79)

where one recalls the definition of the Barnes G-function

N−1∏
k=1

k! ≡ G2(N + 1) . (B.80)

We can extract the partition function of N = 4 U(N) SYM on S4 from

Z[S4] = (2π)
N
2 I3

(
g2YM

16π2
, N

)
, (B.81)

and the partition function of N = 4 U(N) SYM on HS4 with Neumann

boundary conditions from

ZNeum.[HS
4] = (2π)

N
2 lim

b→2π
I2

(
b,
g2YM

8π2
, N

)
. (B.82)
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B.6.1 General NS5-like localization integrals

We also need to evaluate integrals of the form

Z[HS4] =
1

n1! . . . nN5 !

∫ N5∏
j=1

nj∏
ℓ=1

dλj,ℓ

N5−1∏
j=1

nj∏
ℓ=1

e2πiαjλj,ℓ


e
− 4π2

g2
YM

∑N
i=1 λ

2
N5,i

N∏
i<j

(λN5,i − λN5,j) sh(λN5,i − λN5,j)

N5−1∏
j=1

nj∏
k<ℓ

sh2 (λj,k − λj,ℓ)
N5−1∏
j=1

nj∏
k=1

nj+1∏
ℓ=1

1

ch(λj,k − λj+1,ℓ)
, (B.83)

where we recall the notation

sh(x) ≡ 2 sinhπx , ch(x) ≡ 2 coshπx . (B.84)

We are ultimately interested in taking the limit αi → 0. It will be convenient

to introduce the function

hs(α) ≡
∞∑
n=0

(−1)nse−(2n+1)πα =

 1
ch(α) 2 ∤ s
1

sh(α) 2 | s
. (B.85)

We let n0 ≡ 0, nm+1 ≡ N for notational ease. Additionally, we denote the

index sets

Sa ≡ {na−1 + 1, na−1 + 2, . . . , na} . (B.86)
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We will begin by showing that the integral

In1,...,ns+1(α1, . . . , αs) ≡
∫  ns∏

j=1

dλs,j

 e
2πi

∑s
j=1 αj

∑
k∈Sj

λs,k

s∏
a=1

∏
k,ℓ∈Sa
k<ℓ

sh2(λs,k − λs,ℓ)
s∏

a<b

∏
k∈Sa

∏
ℓ∈Sb

sh(λs,k − λs,ℓ)

ns∏
k=1

ns+1∏
ℓ=1

1

ch(λs,k − λs+1,ℓ)
(B.87)

is given by

In1,...,ns+1(α1, . . . , αs) =
i−ns(ns+1−ns)

(ns+1 − ns)!
H̃s

n1,...,ns+1
(α1, . . . , αs)

∑
σ∈Sns+1

∏s
a=1 e

2πiαa
∑na

ℓ=1 λs+1,σ(ℓ)∏s+1
a<b

∏
k∈Sa

∏
ℓ∈Sb

sh(λs+1,σ(k) − λs+1,σ(ℓ))
, (B.88)

where we have the recursive relation

H̃s
n1,...,ns+1

(α1, . . . , αs) = hn1+ns+ns+1(α1 + . . .+ αs)
n1

× H̃s−1
n2−n1,...,ns+1−n1

(α2, . . . , αs) , (B.89)

with H̃1
n1,n2

(α1) = hn2(α1)
n1 .

Proof. We can verify this claim inductively. To begin, we determine

In1,n2(α1) ≡
∫ ( n1∏

ℓ=1

dλ1,ℓe
2πiα1λ1,ℓ

)
n1∏
k<ℓ

sh2(λ1,k − λ1,ℓ)
n1∏
k=1

n2∏
ℓ=1

1

ch(λ1,k − λ2,ℓ)
. (B.90)

First, we integrate out the variable λ1,1. Specifically, we would like to eval-
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uate ∫
dλ1,1e

2πiα1λ1,1

n1∏
i=2

sh2(λ1,1 − λ1,i)
n2∏
j=1

1

ch(λ1,1 − λ2,j)
. (B.91)

Noting that the integrand is suppressed in the upper half plane for large |λ1|
(when α1 > 0), we may close the integration contour in the upper half plane

and apply the residue theorem. The poles occur at λ1,1 = λ2,j + (n+ 1/2)i

for j ∈ {1, . . . , n2}, n ∈ N, and the contribution to the integral from such a

pole is given by

i−(n2−1)(−1)(n1−1)−nn2 ×
e2πiα1(λ2,j+(n+1/2)i)

∏n1
i=2 ch

2(λ2,j − λ1,i)∏n2
ℓ̸=j sh(λ2,j − λ2,ℓ)

. (B.92)

Consequently, summing over all of the poles, we find the full integral

i−(n2−1)+2(n1−1)hn2(α1)

n2∑
j1=1

e2πiα1λ2,j1
∏n1

i=2 ch
2(λ1,i − λ2,j1)∏n2

ℓ̸=j1
sh(λ2,j1 − λ2,ℓ)

, (B.93)

and substituting this into I1 gives

i−(n2−1)+2(n1−1)

n1!
hn2(α1)

n2∑
j1=1

e2πiα1λ2,j1∏
ℓ ̸=j1

sh(λ2,j1 − λ2,ℓ)∫ ( n1∏
ℓ=2

dλ1,ℓe
2πiα1λ1,ℓ

)
n1∏

1<k<ℓ

sh2(λ1,k − λ1,ℓ)

n1∏
k=2

ch(λ1,k − λ2,j1)
n2∏

ℓ̸=j1

1

ch(λ1,k − λ2,ℓ)

 . (B.94)

Applying this approach to each successive integration, we find after inte-
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grating out all of the λ1,i variables that In1,n2(α1) is given by

i−n1(n2−n1)(−1)n1(n1−1)/2

n1!
[hn2(α1)]

n1

n2∑
j1 ̸=... ̸=jn1

e2πiα1
∑n1

ℓ=1 λ2,jℓ
∏n1

a<b sh(λ2,jb − λ2,ja)∏n2
ℓ̸=j1

sh(λ2,j1 − λ2,ℓ) . . .
∏n2

ℓ ̸=j1,...,jn1
sh(λ2,jn1

− λ2,ℓ)

=
i−n1(n2−n1)

n1!(n2 − n1)!
[hn2(α1)]

n1

∑
σ∈Sn2

e2πiα1
∑n1

ℓ=1 λ2,σ(ℓ)∏n1
k=1

∏n2
ℓ=n1+1 sh(λ2,σ(k) − λ2,σ(ℓ))

, (B.95)

which indeed is of the desired form.

Now suppose that the claim holds for In1,...,ns(α1, . . . , αs−1). To de-

termine In1,...,ns+1(α1, . . . , αs), we may again apply the residue theorem to

perform the first n1 integrals

∫ ( n1∏
ℓ=1

dλs,ℓ

)
e2πi(α1+...+αs)

∑n1
ℓ=1 λs,ℓ

n1∏
k<ℓ

sh2 (λs,k − λs,ℓ)

s∏
j=1

∏
a∈S0

∏
b∈Sj

sh (λs,a − λs,b)
∏
k∈S0

ns+1∏
ℓ=1

1

ch(λs,k − λs+1,ℓ)
, (B.96)

which gives

i−n1(ns+1−ns)+n1(n1−1)[hn1+ns+ns+1(α1 + . . .+ αs)]
n1

ns+1∑
j1 ̸=... ̸=jn1

[
e2πi(α1+...+αs)

∑n1
k=1 λs+1,jk

n1∏
k<ℓ

sh(λs+1,jℓ − λs+1,jk)

n1∏
k=1

ns∏
b=n1+1

ch(λs,b − λs+1,jk)
]

[ ns+1∏
ℓ̸=j1

sh(λs+1,j1 − λs+1,ℓ) . . .

ns+1∏
ℓ̸=j1,...,jn1

sh(λs+1,jn1
− λs+1,ℓ)

]−1
. (B.97)
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Substituting this into In1,...,ns+1(α1, . . . , αs) gives

i−n1(ns+1−ns)[hn1+ns+ns+1(α1 + . . .+ αs)]
n1

ns+1∑
j1 ̸=... ̸=jn1

e2πi(α1+...+αs)
∑n1

k=1 λs+1,jk
∏n1

k<ℓ sh(λs+1,jk − λs+1,jℓ)∏ns+1

ℓ̸=j1
sh(λs+1,j1 − λs+1,ℓ) . . .

∏ns+1

ℓ̸=j1,...,jn1
sh(λs+1,jn1

− λs+1,ℓ)∫  ns∏
ℓ=n1+1

dλs,ℓ

 e
2πiα2

∑n2
ℓ=n1+1 λs,ℓ . . . e

2πiαs
∑ns

ℓ=n1+1 λs,ℓ

s−1∏
a=1

na+1∏
na<k<ℓ

sh2 (λs,k − λs,ℓ)
s∏

1<a<b

∏
i∈Sa

∏
j∈Sb

sh (λs,i − λs,j)

ns∏
k=n1+1

ns+1∏
ℓ̸=j1,...,jn1

1

ch(λs,k − λs+1,ℓ)
. (B.98)

Evidently, the integral appearing in this expression is simply

In2−n1,n3−n1,...,ns+1−n1(α2, . . . , αs) , (B.99)

which by inductive hypothesis is

i−(ns−n1)(ns+1−ns)H̃s−1
n2−n1,...,ns+1−n1

(α2, . . . , αs)∑
jn1+1 ̸=... ̸=jns

∏s
a=2 e

2πiαa
∑na

ℓ=n1+1 λs+1,jℓ∏s+1
1<a<b

∏
k∈Sa

∏
ℓ∈Sb

sh(λs+1,jk − λs+1,jℓ)
.

(B.100)

Thus, we have

In1,...,ns+1(α1, . . . , αs) = i−ns(ns+1−ns)[hn1+ns+ns+1(α1 + . . .+ αs)]
n1

H̃s−1
n2−n1,...,ns+1−n1

(α2, . . . , αs)
ns+1∑

j1 ̸=... ̸=jns

∏s
a=1 e

2πiαa
∑na

k=1 λs+1,jk
∏n1

k<ℓ sh(λs+1,jk − λs+1,jℓ)∏ns+1

ℓ ̸=j1
sh(λs+1,j1 − λs+1,ℓ) . . .

∏ns+1

ℓ̸=j1,...,jn1
sh(λs+1,jn1

− λs+1,ℓ)

1∏s+1
1<a<b

∏
k∈Sa

∏
ℓ∈Sb

sh(λs+1,jk − λs+1,jℓ)
(B.101)
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that is,

In1,...,ns+1(α1, . . . , αs) =
i−ns(ns+1−ns)

(ns+1 − ns)!
H̃s

n1,...,ns
(α1, . . . , αs)

∑
σ∈Sns+1

∏s
a=1 e

2πiαa
∑na

k=1 λs+1,σ(k)∏s+1
a<b

∏
k∈Sa

∏
ℓ∈Sb

sh(λs+1,σ(k) − λs+1,σ(ℓ))
, (B.102)

which verifies the claim.

We now claim that performing the integral

Is ≡
1

n1! . . . ns!

∫ ( s∏
a=1

na∏
ℓ=1

dλa,ℓe
2πiαaλa,ℓ

)
s∏

a=1

na∏
k<ℓ

sh2 (λa,k − λa,ℓ)
s∏

a=1

na∏
k=1

na+1∏
ℓ=1

1

ch(λa,k − λa+1,ℓ)
(B.103)

yields

Is =
i−
∑s−1

ℓ=0 (nℓ+1−nℓ)(ns+1−nℓ+1)∏s
ℓ=0(nℓ+1 − nℓ)!

H(n1,...,ns+1)(α1, . . . , αs)

∑
σ∈Sns+1

∏s
a=1 e

2πiαa
∑na

ℓ=1 λs+1,σ(ℓ)∏s+1
a<b

∏
i∈Sa

∏
j∈Sb

sh(λs+1,σ(i) − λs+1,σ(j))
, (B.104)

where H(n1,...,ns+1)(α1, . . . , αs) is an expression involving the hn(α), given

recursively by

H(n1,...,ns+1)(α1, . . . , αs)

= H(n1,...,ns)(α1, . . . , αs−1)H̃
s
n1,...,ns+1

(α1, . . . , αs) , (B.105)

and H(n1,n2)(α1) = hn2(α1)
n1 .

Proof. We can inductively verify our expression for Is, using our previous

inductive result. We have already checked the base case above. Now suppose
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that the claim holds for Is−1. We have by induction hypothesis

Is =
1

ns!

∫ ( ns∏
ℓ=1

dλs,ℓe
2πiαsλs,ℓ

)
ns∏
k<ℓ

sh2 (λs,k − λs,ℓ)
ns∏
k=1

ns+1∏
ℓ=1

1

ch(λs,k − λs+1,ℓ)

i−
∑s−2

ℓ=0 (nℓ+1−nℓ)(ns−nℓ+1)∏s−1
ℓ=0(nℓ+1 − nℓ)!

H(n1,...,ns)(α1, . . . , αs−1)

∑
σ∈Sns

e2πiα1
∑n1

ℓ=1 λs,σ(ℓ) . . . e2πiαs−1
∑ns−1

ℓ=1 λs,σ(ℓ)∏s
a<b

∏
i∈Sa

∏
j∈Sb

sh(λs,σ(i) − λs,σ(j))
, (B.106)

that is,

Is =
i−
∑s−2

ℓ=0 (nℓ+1−nℓ)(ns−nℓ+1)H(n1,...,ns)(α1, . . . , αs−1)∏s−1
ℓ=0(nℓ+1 − nℓ)!∫ ( ns∏

ℓ=1

dλs,ℓ

)
e2πiα1

∑n1
ℓ=1 λs,ℓ . . . e2πiαs

∑ns
ℓ=1 λs,ℓ

s−1∏
i=0

ni+1∏
ni<k<ℓ

sh2 (λs,k − λs,ℓ)
s∏

a<b

∏
i∈Sa

∏
j∈Sb

sh (λs,i − λs,j)

ns∏
k=1

ns+1∏
ℓ=1

1

ch(λs,k − λs+1,ℓ)
. (B.107)

But the integral appearing in this expression is of the form encountered in

our previous claim, and is thus given by

In1,...,ns+1(α1, . . . , αs) =
i−ns(ns+1−ns)

(ns+1 − ns)!
H̃s

n1,...,ns+1
(α1, . . . , αs)

∑
σ∈Sns+1

∏s
a=1 e

2πiαa
∑na

ℓ=1 λs+1,σ(ℓ)∏s+1
a<b

∏
k∈Sa

∏
ℓ∈Sb

sh(λs+1,σ(k) − λs+1,σ(ℓ))
, (B.108)

407



B.6. Localization integrals

so

Is =
i−ns(ns+1−ns)−

∑s−2
ℓ=0 (nℓ+1−nℓ)(ns−nℓ+1)H(n1,...,ns)(α1, . . . , αs−1)∏s

ℓ=0(nℓ+1 − nℓ)!

H̃s
n1,...,ns+1

(α1, . . . , αs)∑
σ∈Sns+1

∏s
a=1 e

2πiαa
∑na

ℓ=1 λs+1,σ(ℓ)∏s+1
a<b

∏
k∈Sa

∏
ℓ∈Sb

sh(λs+1,σ(k) − λs+1,σ(ℓ))
. (B.109)

We note that

ns(ns+1 − ns) +
s−2∑
ℓ=0

(nℓ+1 − nℓ)(ns − nℓ+1)

= (ns − ns−1)(ns+1 − ns) +
s−2∑
ℓ=0

(nℓ+1 − nℓ)(ns+1 − nℓ+1) ,

(B.110)

so

Is =
i−
∑s−1

ℓ=0 (nℓ+1−nℓ)(ns−nℓ+1)H(n1,...,ns+1)(α1, . . . , αs)∏s
ℓ=0(nℓ+1 − nℓ)!∑

σ∈Sns+1

∏s
a=1 e

2πiαa
∑na

ℓ=1 λs+1,σ(ℓ)∏s+1
a<b

∏
k∈Sa

∏
ℓ∈Sb

sh(λs+1,σ(k) − λs+1,σ(ℓ))
,

(B.111)

as desired.

Using the above claim to perform all of the integrals except those with

respect to the bulk zero modes, the partition function from the beginning
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of this subsection is

Z[HS4] =
i−
∑N5−2

ℓ=0 (nℓ+1−nℓ)(nN5
−nℓ+1)∏N5−1

ℓ=0 (nℓ+1 − nℓ)!

lim
α1,...,αN5−1→0

H(n1,...,nN5
)(α1, . . . , αN5−1)∫ ( N∏

i=1

dλi

)
e
− 4π2

g2
YM

∑N
i=1 λ

2
i

N5−1∏
a=1

e2πiαa
∑na

ℓ=1 λℓ

N∏
i<j

(λi − λj)
N5∏
a=1

∏
i,j∈Sa
i<j

sh(λi − λj) . (B.112)

We may as well take α1 = . . . = αN5−1 before taking the limit. We may

therefore write

Z[HS4] =
i−
∑N5−2

ℓ=0 (nℓ+1−nℓ)(nN5
−nℓ+1)∏N5−1

ℓ=0 (nℓ+1 − nℓ)!

lim
α,a→0

lim
b→2π

a−N(N−1)/2H(n1,...,nN5
)(α)∫ ( N∏

i=1

dλi

)
e−

1
2s

∑N
i=1 λ

2
i

N5−1∏
c=1

e2πiαc
∑nc

ℓ=1 λℓ

N∏
i<j

sh

(
a(λi − λj)

2π

) N5∏
c=1

∏
i,j∈Sc
i<j

sh

(
b(λi − λj)

2π

)
, (B.113)

where we let s ≡ g2YM
8π2 and H(n1,...,nN5

)(α) ≡ H(n1,...,nN5
)(α, . . . , α). Again

using the identity (B.71), we may express

I ≡
∫ ( N∏

i=1

dλi

)
e−

1
2s

∑N
i=1 λ

2
i

N5−1∏
c=1

e2πiαc
∑nc

ℓ=1 λℓ

N∏
i<j

sh

(
a(λi − λj)

2π

) N5∏
c=1

∏
i,j∈Sc
i<j

sh

(
b(λi − λj)

2π

)
(B.114)

409



B.6. Localization integrals

as

I =

∫ ( N∏
i=1

dλi

)
e−

1
2s

∑N
i=1 λ

2
i

N5−1∏
c=1

e2πiαc
∑nc

ℓ=1 λℓ

∑
σ∈SN

(−1)σ
N∏
j=1

ea(
N+1

2
−σj)λj


N5∏
c=1

 ∑
σc∈Snc−nc−1

(−1)σc
∏
j∈Sc

e
b
(

nc−nc−1+1

2
−σc,j−nc−1

)
λj

 . (B.115)

Performing the Gaussian integrals, one finds

I = (2πs)N/2
∑
σ∈SN

(−1)σ
∑

σ1,...,σm+1

(−1)σ1+...+σm

N5∏
c=1

∏
j∈Sc

e
s
2

[
a(N+1

2
−σj)+b

(
nc−nc−1+1

2
−σc,j−nc−1

)
+2πi(N5−c)α

]2 , (B.116)

and thus, defining ℓc ≡ nc−nc−1 (the linking numbers in the case with only

NS5-branes),

I = (2πs)N/2e
sa2N(N−1)(N+1)

24

e
sb2

24

∑N5
c=1 ℓc(ℓc−1)(ℓc+1)−2π2sα2

∑N5
c=1(N5−c)2ℓc

eπi(N+1)sαa
∑N5

c=1(N5−c)ℓc
∑

σ1,...,σN5

(−1)σ1+...+σN5

∑
σ∈SN

(−1)σ
N∏
j=1

e−µjσj , (B.117)

where

µj ≡ sab
(
ℓc + 1

2
− σc,j−nc−1

)
+ 2πisaα(N5 − c) , j ∈ Sc . (B.118)
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That is, using the identity (B.71) above, the Gaussian integral gives

I = (2πs)N/2e
sa2N(N−1)(N+1)

24

e
sb2

24

∑N5
c=1 ℓc(ℓc−1)(ℓc+1)−2π2sα2

∑N5
c=1(N5−c)2ℓc

∑
σ1,...,σN5

(−1)σ1+...+σN5

N∏
i<j

sh

(
µi − µj

2π

)
. (B.119)

We therefore have

Z[HS4] =
i−
∑N5−2

ℓ=0 (nℓ+1−nℓ)(nN5
−nℓ+1)∏N5−1

ℓ=0 (nℓ+1 − nℓ)!

lim
α,a→0

lim
b→2π

a−N(N−1)/2H(n1,...,nN5
)(α)(2πs)

N/2

e
sa2N(N−1)(N+1)

24
+ sb2

24

∑N5
c=1 ℓc(ℓc−1)(ℓc+1)−2π2sα2

∑N5
c=1(N5−c)2ℓc

∑
σ1,...,σN5

(−1)σ1+...+σN5

N5∏
c=1

∏
i,j∈Sc
i<j

sh

(
sab(σc,j−nc−1 − σc,i−nc−1)

2π

)
N5∏
c<d

∏
i∈Sc

∏
j∈Sd

sh
[sab(σd,j−nd−1

− σc,i−nc−1)

2π

+
sab(ℓc − ℓd)

4π
+ isaα(d− c)

]
. (B.120)
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Taking the a→ 0 and b→ 2π limits gives

Z[HS4] = i−
∑N5−2

ℓ=0 (nℓ+1−nℓ)(nN5
−nℓ+1)

(
g2YM

4π

)N2

2

e
g2YM
48

∑N5
c=1 ℓc(ℓc−1)(ℓc+1)

N5∏
c=1

G2(ℓc + 1)

lim
α→0

H(n1,...,nN5
)(α)e

−2π2sα2
∑N5

c=1(N5−c)2ℓcN5∏
c<d

ℓc∏
i=1

ℓd∏
j=1

(
(j − i) + (ℓc − ℓd)

2
+ iα(d− c)

) . (B.121)

Now, we claim that

lim
α→0

H̃s
n1,...,ns+1

(α)

s∏
d=1

(nc−nc−1)∏
i=1

(ns+1−ns)∏
j=1

×
(
(j − i)− (ns+1 − ns)− (nc − nc−1)

2
+ iα(s+ 1− c)

)

= 2−ns

s∏
c=1

[
((ℓs+1 − ℓc)!!)ℓc

ℓc−1∏
k=1

(
ℓs+1 − ℓc

2
+ k

)ℓc−k
]2

×
∏

c∈{1,...,s}
(ℓc−ℓs+1)≡0 (mod 2)

(
i

π

)ℓc

(−1)
ℓc
2
(ℓs+1−1)2−(ℓs+1−ℓc)ℓc

×
∏

c∈{1,...,s}
(ℓc−ℓs+1)≡1 (mod 2)

(−1)
ℓcℓs+1

2 2−(ℓs+1−ℓc+1)ℓc .

(B.122)

Proof. We may verify this by induction. The base case s = 1 is straightfor-

ward to verify individually for the cases ℓ1 − ℓ2 even and odd.

Now suppose that the claim holds for some s = p− 1; then by induction
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hypothesis, we have

lim
α→0

H̃p
n1,...,np+1

(α)

p∏
c=1

(nc−nc−1)∏
i=1

(np+1−np)∏
j=1

×
(
(j − i) + (nc − nc−1)− (np+1 − np)

2
+ iα(p+ 1− c)

)

= lim
α→0

hn1+np+np+1(pα)
n1

ℓ1∏
i=1

ℓp+1∏
j=1

(
(j − i) + ℓ1 − ℓp+1

2
+ iαp

)

× 2−(np−n1)
p∏

c=2

[
((ℓp+1 − ℓc)!!)ℓc

ℓc−1∏
k=1

(
ℓp+1 − ℓc

2
+ k

)ℓc−k
]2

×
∏

c∈{2,...,p}
(ℓc−ℓp+1)≡0 (mod 2)

(
i

π

)ℓc

(−1)
ℓc
2
(ℓp+1−1)2−(ℓp+1−ℓc)ℓc

×
∏

c∈{2,...,p}
(ℓc−ℓp+1)≡1 (mod 2)

(−1)
ℓcℓp+1

2 2−(ℓp+1−ℓc+1)ℓc .

(B.123)

If n1 + np + np+1 is odd, then ℓ1 − ℓp+1 = n1 + np − np+1 is odd, so

lim
α→0

hn1+np+np+1(pα)
n1

ℓ1∏
i=1

ℓp+1∏
j=1

(
(j − i) + ℓ1 − ℓp+1

2
+ iαp

)

= 2−n1(−1)
ℓ1
2
(ℓp+1−ℓ1+1)

((
1

2

)
×
(
3

2

)
× . . .×

(
ℓp+1 − ℓ1

2

))2ℓ1

× (−1)
ℓ1
2
(ℓ1−1)

ℓ1−1∏
k=1

(
ℓp+1 − ℓ1

2
+ k

)2(ℓ1−k)

,

(B.124)
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and thus

lim
α→0

H̃p
n1,...,np+1

(α)

p∏
c=1

(nc−nc−1)∏
i=1

(np+1−np)∏
j=1

×
(
(j − i) + (nc − nc−1)− (np+1 − np)

2
+ iα(p+ 1− c)

)

= 2−np

p∏
c=1

[
((ℓp+1 − ℓc)!!)ℓc

ℓc−1∏
k=1

(
ℓp+1 − ℓc

2
+ k

)ℓc−k
]2

×
∏

c∈{1,...,p}
(ℓc−ℓp+1)≡0 (mod 2)

(
i

π

)ℓc

(−1)
ℓc
2
(ℓp+1−1)2−(ℓp+1−ℓc)ℓc

×
∏

c∈{1,...,p}
(ℓc−ℓp+1)≡1 (mod 2)

(−1)
ℓcℓp+1

2 2−(ℓp+1−ℓc+1)ℓc ,

(B.125)

which is of the desired form. On the other hand, if n1 + np + np+1 is even,

then

lim
α→0

hn1+np+np+1(pα)
n1

ℓ1∏
i=1

ℓp+1∏
j=1

(
(j − i) + ℓ1 − ℓp+1

2
+ iαp

)

=

(
i

2π

)−n1

(−1)
ℓ1
2
(ℓp+1−ℓ1)

(
1× 2× . . .×

(
ℓp+1 − ℓ1

2

))2ℓ1

× (−1)
ℓ1
2
(ℓ1−1)

ℓ1−1∏
k=1

(
ℓp+1 − ℓ1

2
+ k

)2(ℓ1−k)

,

(B.126)
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and thus

lim
α→0

H̃p
n1,...,np+1

(α)

p∏
c=1

(nc−nc−1)∏
i=1

(np+1−np)∏
j=1

×
(
(j − i) + (nc − nc−1)− (np+1 − np)

2
+ iα(p+ 1− c)

)

= 2−np

p∏
c=1

[
((ℓp+1 − ℓc)!!)ℓc

ℓc−1∏
k=1

(
ℓp+1 − ℓc

2
+ k

)ℓc−k
]2

×
∏

c∈{1,...,p}
(ℓc−ℓp+1)≡0 (mod 2)

(
i

π

)ℓc

(−1)
ℓc
2
(ℓp+1−1)2−(ℓp+1−ℓc)ℓc

×
∏

c∈{1,...,p}
(ℓc−ℓp+1)≡1 (mod 2)

(−1)
ℓcℓp+1

2 2−(ℓp+1−ℓc+1)ℓc ,

(B.127)

again of the desired form. This establishes the claim.

We can use the above claim in an inductive argument to establish

lim
α→0

H(n1,...,nN5
)(α)

N5∏
c<d

ℓc∏
i=1

ℓd∏
j=1

(
(j − i) + (ℓc − ℓd)

2
+ iα(d− c)

)
= 2−

∑N5−1
i=1 ni

∏
c<d

[
((ℓd − ℓc)!!)ℓc

ℓc−1∏
k=1

(
ℓd − ℓc

2
+ k

)ℓc−k
]2

×
∏

{c<d:ℓcd≡0 (mod 2)}

(
i

π

)ℓc

(−1)
ℓc
2
(ℓd−1)2−(ℓd−ℓc)ℓc

×
∏

{c<d:ℓcd≡1 (mod 2)}

(−1)
ℓcℓd
2 2−(ℓd−ℓc+1)ℓc

(B.128)

Indeed, the base case N5 = 2 coincides with the base case of the previous

claim. Now, suppose that the claim holds for some N5. Then we have by
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induction hypothesis

lim
α→0

H(n1,...,nN5+1)(α)

N5+1∏
c<d

ℓc∏
i=1

ℓd∏
j=1

(
(j − i) + (ℓc − ℓd)

2
+ iα(d− c)

)
= 2−

∑N5−1
i=1 ni

∏
c<d

[
((ℓd − ℓc)!!)ℓc

ℓc−1∏
k=1

(
ℓd − ℓc

2
+ k

)ℓc−k
]2

×
∏

{c<d:ℓcd≡0 (mod 2)}

(
i

π

)ℓc

(−1)
ℓc
2
(ℓd−1)2−(ℓd−ℓc)ℓc

×
∏

{c<d:ℓcd≡1 (mod 2)}

(−1)
ℓcℓd
2 2−(ℓd−ℓc+1)ℓc

× lim
α→0

H̃N5
n1,...,nN5+1

(α)

×
N5∏
c=1

ℓc∏
i=1

ℓN5+1∏
j=1

(
(j − i) + ℓd − ℓc

2
+ iα(N5 + 1− c)

)
,

(B.129)

so the previous claim provides the desired result. We may therefore deduce

Z[HS4] = i−
∑N5−2

ℓ=0 (nℓ+1−nℓ)(nN5
−nℓ+1)

(
g2YM

4π

)N2

2

e
g2YM
48

∑N5
c=1 ℓc(ℓc−1)(ℓc+1)

×

(
N5∏
c=1

G2(ℓc + 1)

)
2−

∑N5−1
i=1 ni

×
N5∏
c<d

[
((ℓd − ℓc)!!)ℓc

ℓc−1∏
k=1

(
ℓd − ℓc

2
+ k

)ℓc−k
]2

×
∏

{c<d:ℓcd≡0 (mod 2)}

(
i

π

)ℓc

(−1)
ℓc
2
(ℓd−1)2−(ℓd−ℓc)ℓc

×
∏

{c<d:ℓcd≡1 (mod 2)}

(−1)
ℓcℓd
2 2−(ℓd−ℓc+1)ℓc .

(B.130)
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If we denote

ϵcd ≡

0 ℓcd ≡ 0 (mod 2)

1 ℓcd ≡ 1 (mod 2)
, (B.131)

then we can write

Z[HS4] = i−
∑N5−2

ℓ=0 (nℓ+1−nℓ)(nN5
−nℓ+1)

(
g2YM

4π

)N2

2

e
g2YM
48

∑N5
c=1 ℓc(ℓc−1)(ℓc+1)

×

(
N5∏
c=1

G2(ℓc + 1)

)
2−

∑N5−1
i=1 ni

×
N5∏
c<d

[(
((ℓd − ℓc)!!)ℓc

ℓc−1∏
k=1

(
ℓd − ℓc

2
+ k

)ℓc−k
)2

× (−1)
ℓcℓd
2 π−(1−ϵcd)ℓc2−(ℓd−ℓc+ϵcd)ℓc

]
,

(B.132)

that is,

Z[HS4] = (2π)−
∑N5−1

i=1 ni

(
g2YM

4π

)N2

2

e
g2YM
48

∑N5
c=1 ℓc(ℓc−1)(ℓc+1)

(
N5∏
c=1

G2(ℓc + 1)

)
N5∏
c<d

[
2−(ℓd−ℓc)ℓc

(π
2

)ϵcdℓc
(
((ℓd − ℓc)!!)ℓc

ℓc−1∏
k=1

(
ℓd − ℓc

2
+ k

)ℓc−k
)2 ]

. (B.133)

B.7 Statistics of boundary F : details

To understand the behaviour of F SUGRA
∂ , which is easier to analyze analyt-

ically than F∂ and provides a good approximation for large N and suitable

linking numbers, we will momentarily consider the contribution to the λ-
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independent term in F SUGRA
∂ , proportional to

F0(pA) ≡
∑
A,B

[
(pA + pB)

2 ln
(
(pA + pB)

2
)

− (pA − pB)2 ln
(
(pA − pB)2

)]
, (B.134)

where pA = LA/N for D5-branes or pA = KA/N for NS5-branes. Using

concavity of the logarithm, we find inequality

F0(pA) ≥
∑
A,B

[
(pA + pB)

2 ln
(
(pA + pB)

2
)

− (pA − pB)2 ln
(
(pA + pB)

2
)]

= 8
∑
A,B

pApB ln(pA + pB)

≥ 8
∑
A,B

pApB

(
ln 2 +

1

2
ln pA +

1

2
ln pB

)
= 8 ln 2 + 8

∑
A

pA ln pA = 8 ln 2− 8S(pA) ,

(B.135)

where S(pA) is the classical entropy of the probability distribution. The

smallest possible value for the right hand side of our inequality is 8 ln(2/N),

realized on the maximum entropy distribution

p1 = . . . = pN =
1

N
. (B.136)

And in fact, for this particular distribution, the inequality is saturated and

one finds

F0

(
p1 = . . . = pN =

1

N

)
= 8 ln(2/N) . (B.137)

We may therefore deduce that F0(pA) is minimized for the maximum entropy

probability distribution.

On the other hand, we note that if p1, p2 ≤ 1
2 , then

0 ≥
[
(p1 + p2)

2 ln
(
(p1 + p2)

2
)
− (p1 − p2)2 ln

(
(p1 − p2)2

)]
, (B.138)
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while if 1
2 ≤ p1 ≤ 1 and 0 < p2 ≤ 1− p1 then

8p1p2 ln(4p
2
1) ≥ 2

[
(p1 + p2)

2 ln
(
(p1 + p2)

2
)

− (p1 − p2)2 ln
(
(p1 − p2)2

)]
+ 4p22 ln(4p

2
2) . (B.139)

Consequently, one finds that if the distribution {pA} has p1, . . . , pN ≤ 1
2 ,

then

F0(pA) ≤ 0 , (B.140)

whereas if p1 ≥ 1
2 and p2, . . . , pN ≤ 1

2 , then

F0(pA) ≤ 4p21 ln(4p
2
1) + 2

∑
A>1

[
(p1 + pA)

2 ln
(
(p1 + pA)

2
)

− (p1 − pA)2 ln
(
(p1 − pA)2

)]
+ 4

∑
A>1

p2A ln(4p2A)

+ 2
∑

B>A>1

[
(pA + pB)

2 ln
(
(pA + pB)

2
)

− (pA − pB)2 ln
(
(pA − pB)2

)]
≤ 4p21 ln(4p

2
1) + 4

∑
A>1

p2A ln(4p2A)

+ 2
∑
A>1

[
(p1 + pA)

2 ln
(
(p1 + pA)

2
)

− (p1 − pA)2 ln
(
(p1 − pA)2

)]
≤ 4p21 ln(4p

2
1) + 8p1(1− p1) ln(4p21) = 4p1(2− p1) ln(4p21) .

(B.141)

The right hand side of this inequality is a monotonically increasing function,

so it is maximized at p1 = 1, where it is equal to 4 ln 4. In fact, the minimum

entropy distribution

p1 = 1 , p2 = . . . = pN = 0 (B.142)

saturates this inequality, and one can see that

F0 (p1 = 1, p2 = . . . = pN = 0) = 4 ln 4 . (B.143)
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Thus, F0(pA) is maximized for the minimum entropy probability distribu-

tion.

We can apply these considerations to determine for which boundary

conditions consisting of D5-branes only or NS5-branes only F SUGRA
∂ will be

maximized or minimized. For D5-brane boundary conditions, we found

F SUGRA
∂ =

N2

4

(
3

2
+ ln

(
λ

4π2N2

))
− π2N4

3λ

∑
A

p3A −
N2

16
F0(pA) . (B.144)

The term in parentheses is independent of the choice of boundary condition,

while the remaining terms are both minimized (maximized) on the minimum

(maximum) entropy probability distributions. Thus, we can conclude that

F SUGRA
∂ is minimized (maximized) on the minimum (maximum) entropy

probability distributions. Similarly, for NS5-brane boundary conditions, we

found

F SUGRA
∂ =

N2

4

(
3

2
+ ln

(
4

λ

))
− λN2

48

∑
A

p3A −
N2

16
F0(pA) , (B.145)

so F SUGRA
∂ is again minimized (maximized) on the minimum (maximum)

entropy probability distributions.

B.8 Calculation of boundary F in a bottom-up

model

In this appendix, we will compute the boundary F in a bottom-up holo-

graphic model of a BCFT where the boundary in the CFT gives rise to

an end-of-the-world (ETW) brane with tension T . Here, the vacuum so-

lution may be described as a portion of pure AdS spacetime described by

x/z < T√
1−T 2

in Fefferman-Graham coordinates, with an ETW brane at

x/z = T√
1−T 2

[87]. Defining z = w cos(θ) and x = w sin(θ), we can write the

metric as

ds2 =
L2
AdSdθ

2

cos2(θ)
+

L2
AdS

w2 cos2 θ
(dw2 − dt2 + dx2⊥) , (B.146)
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and the ETW now appears at θ = arcsin(T ). The extremal surface corre-

sponds to the hemisphere w = R; using the result (B.22), we have that the

regulated area of the extremal surface is

L3
AdS

∫ arcsin(T )

−π/2+arcsin(ϵ/R)

dθ

cos3 θ
2π

(
R cos(θ)

ϵ
− 1

)
(B.147)

From this, we need to subtract off half the regulated area of the hemispher-

ical surface in pure AdS corresponding to a boundary ball of radius R. This

area is

AreaAdS = L3
AdS

∫ cos−1 ϵ
R

0
dθ

4π sin2 θ

cos3 θ

= L3
AdS

(
2πR2

ϵ2
− 2π ln

2R

ϵ
− π +O(ϵ2)

)
. (B.148)

Using these results and applying the definitions (3.4,3.7,3.8), we find that

F∂ =
L3
AdSπ

4G

(
T

1− T 2
+

1

2
ln

1 + T

1− T

)
. (B.149)

This gives a monotonic relation between boundary F and the tension pa-

rameter T , where F∂ is an odd function of T and where F∂ → ±∞ for

T → ±1.
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Appendix C

Appendices for Chapter 4

C.1 Derivation of the microstate solutions

In this appendix, we provide details of the calculations in Section 4.2 for the

geometries associated with Euclidean-time-evolved boundary states using

the simple holographic prescription with a constant-tension ETW brane.

Action and equations of motion

The physics of the bulk spacetime and ETW brane can be encoded in an

action S = Sbulk + SETW. The first term Sbulk is the usual Einstein-Hilbert

term, regularised by a Gibbons-Hawking term at the asymptotic boundary:

Sbulk =
1

16πG

∫
NAdS

dd+1x
√
−g(R− 2Λ) + Smatter

bulk + SGHY. (C.1)

The action on the ETW brane Q is a Gibbons-Hawking term, but for a

dynamical boundary metric,

SETW =
1

8πG

∫
QETW

dd−1y
√
−hK + Smatter

ETW , (C.2)

where ya are intrinsic coordinates on the brane, hab is the intrinsic brane

metric, andKab is the extrinsic curvature. The extrinsic curvature is roughly

the derivative the intrinsic metric in the normal direction nµ.

More precisely,

Kab = nµ;νe
µ
ae

ν
b , K = Kabh

ab eµa =
∂xµ

∂ya
. (C.3)

Stress-energy on the brane is defined as the variational derivative of the
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C.1. Derivation of the microstate solutions

brane matter action with respect to the intrinsic metric:

TETW
ab =

2√
−h

δSmatter
ETW

δhab
. (C.4)

Varying with respect to gµν and hab [88], we obtain Einstein’s equation in

the bulk and the Neumann condition on the brane:

Rµν −
1

2
Rgµν = 8πGT bulk

µν − Λgµν (C.5)

Kab −Khab = 8πGTETW
ab . (C.6)

We will focus on constant tension branes, with

8πGTETW
ab = (1− d)Thab , (C.7)

where the prefactor on the right hand side is chosen for convenience.

Comparison of the gravitational actions: details

To establish the critical value τ∗(T ) for τ0 below which the black hole phase

dominates the path-integral, we need to compare the gravitational action

for solutions from the two phases. For d = 2, this calculation was carried

out in [88] (Section 4) while studying the Hawking-Page type transition for

BCFT on an interval. We now generalize this to arbitrary dimensions.

The Euclidean gravitational action is the sum of bulk and boundary

contributions,

SE = − 1

16πG

∫
dd+1x

√
g(R− 2Λ)− 1

8πG

∫
ddx
√
h(K − (d− 1)T ) . (C.8)

For the solitions we consider, the bulk and boundary equations of motion

(C.5), (C.7) imply that

R− 2Λ = −2d (C.9)

and

(K − (d− 1)T ) = T . (C.10)
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C.1. Derivation of the microstate solutions

For geometries of Schwarzschild form, we have

√
g = rd−1 , (C.11)

and with the ETW brane parameterized by τ(r) given by (4.17) or (4.21)

we get

√
h = rd−1

√
f(r)

(
dr

dτ

)2

+
1

f(r)

=
rd−1√

f(r)− T 2r2

= ± 1

T
rd−2f(r)

dτ

dr
,

where we have the + or − depending on whether τ is an increasing or

decreasing function of r.

To regulate the actions, we integrate in each case up to rmax correspond-

ing to z = ϵ in Fefferman-Graham coordinates.

Pure AdS phase: For the pure AdS phase (where f(r) = r2 + 1), the

bulk action gives
ωd−1

8πG

∫ rmax

0
drd · rd−1(2τ(r)) (C.12)

where ωd−1 is the volume of a unit d− 1 sphere and

τ(r) = τ0 + arcsinh

(
T

(r2 + 1)
√
1− T 2

)
. (C.13)

Each component of the boundary action gives

ωd−1

8πG

∫ rmax

0
drrd−2f(r)

dτ

dr
. (C.14)

Combining these, we have

SAdS
E =

ωd−1

4πG

∫ rmax

0
dr

[
drd−1τ(r) + rd−2f(r)

dτ

dr

]
=

ωd−1

4πG

{
rdmaxτ(rmax) +

∫ rmax

0
drrd−2dτ

dr

}
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C.1. Derivation of the microstate solutions

where dτ/dr can be read off from (4.21).

Black hole phase: For the black hole phase, we can write the bulk ac-

tion as the full action for the Euclidean black hole up to r = r̂max (generally

not the same as rmax – see below) minus the action for the excised part.

This gives

ωd−1

8πG

∫ rM

rH

drd · rd−1β −
∫ r̂max

r0

drd · rd−12τ(r) (C.15)

where τ(r) is given in (4.17). The brane action gives

−ωd−1

4πG

∫ r̂max

r0

rd−2f(r)
dτ

dr
, (C.16)

where in this case,

f(r) = r2 + 1−
rd−2
H

rd−2
(1 + r2H) (C.17)

Combining everything, we get

SBH
E =

ωd−1

4πG

∫ r̂max

rH

drd · rd−1β

2
−
∫ r̂max

r0

dr(d · rd−1τ(r) + rd−2f(r)
dτ

dr
)

=
ωd−1

4πG

{
β

2
rd
∣∣∣∣r̂max

rH

− rdτ(r)
∣∣∣∣r̂max

r0

−
∫ r̂max

r0

dr(rd−2f(r)− rd)dτ
dr

}

where τ and dτ/dr can be read off from (4.17).

Cutoff surface: In order to compare the actions, we choose both rmax

and r̂max to each correspond to the surface z = ϵ in Fefferman-Graham

coordinates. In each case, the z coordinate is related to the r coordinate by

dz

z
=

dr√
f(r)

(C.18)

with the integration constant fixed by demanding that r ∼ 1/z at leading
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C.1. Derivation of the microstate solutions

order for small z. For the pure AdS case, this gives in any dimension

rmax =
1

ϵ
− ϵ

4
(C.19)

while for the Euclidean black hole case, we get for example

r̂d=2
max =

1

ϵ
+

π2ϵ

16τ20
+O(ϵ3) (C.20)

for d = 2 and

r̂d=4
max =

1

ϵ
− ϵ

4
+

1

8
r2H(1 + r2H)ϵ3 +O(ϵ5) (C.21)

for d = 4.

Action difference: We can now evaluate the difference

SAdS
E (T, τ0, ϵ)− SBH

E (T, τ0, ϵ) (C.22)

and take the limit ϵ → 0 in order to determine which solution has smaller

action and gives rise to the classical geometry associated with the state.

As examples, we find that for d = 2, we have

lim
ϵ→0

(SAdS
E (T, τ0, ϵ)− SBH

E (T, τ0, ϵ)) =
1

2G

[
−arctanh(T )− τ0

2
+
π2

8τ0

]
.

(C.23)

Thus, our states correspond to bulk black holes when

τ0 < −arctanh(T ) +
√
π2

4
+ arctanh2(T ) . (C.24)

Here, we assume that the CFT is defined on a circle of length 2π. This

critical value of τ0 decreases monotonically from τ∗(−1) =∞ to τ∗(0) = π/2

to τ∗(1) = 0, as shown in Figure 4.9. This result agrees with the calculation

of [88] (reinterpreted for our context).

For d = 4, it is most convenient to parameterize the action difference in

terms of rH and T since there can be more than one solution in the black
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C.1. Derivation of the microstate solutions

hole phase with the same T and τ0. We find that

∆S(rH , T ) ≡
4πG

ω3
lim
ϵ→0

(SAdS
E (T, rH , rmax(ϵ))− SBH

E (T, rH , r̂max(ϵ)))

= −
[
1

2
r2H(1 + r2H)τ0(rH)−

πr5H
1 + 2r2H

+
Tr0(rH , T )√

1− T 2
− I4(rH, T )

]
+

[
T

1− T 2
+ arctanh(T )

]
, (C.25)

where (taking f(r) = r2+1−r2H/r2(1+r2H) in the formulae below), r0(rH , T )

is defined as above by

f(r0) = T 2r20 , (C.26)

and τ0(rH , T ) is defined as

τ0(rH, T ) =

∫ ∞

r0

dr
Tr

f(r)
√
f(r)− T 2r2

(C.27)

and

I4(rH, T ) =

∫ ∞

r0(rH ,T )
dr

{
Tr(r2 − r2H(1 + r2H))

f(r)
√
f(r)− T 2r2

− T√
1− T 2

}
. (C.28)

Evaluating ∆S(rH , T ) for T ≥ 0, we find that for T < Tc ≈ 0.37505, the

difference ∆S is positive for rH > r∗H(T ) where r∗H(T ) increases monotoni-

cally from r∗H = 1 at T = 0 to r∗H =∞ at T = Tc. The corresponding value

of τ0 decreases from π/6 at T = 0 to 0 at T = Tc, as shown in figure 4.9.

We note that in cases where there are two solutions in the black hole phase

with the same τ0, the lowest action solution is always either the one with

larger rH or the corresponding pure AdS phase solution.

Lorentzian geometries: general T

In this subsection, we discuss the Lorentzian solutions corresponding to

general values of the parameter T . We recall that in terms of the proper

time and the variable L = log(r) (where r is the proper radius of the brane),
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C.1. Derivation of the microstate solutions

the equation for the brane trajectory is

L̇2 + V (L) = T 2 (C.29)

where

V (L) =
f(r)

r2
= 1 + e−2L − e−d(L−LH)(1 + e−2LH ) . (C.30)

So the trajectory L(λ) is that of a particle in a one-dimensional potential

V (L) with energy T 2. These potentials were displayed in Figure 4.11.

For d = 2, the potential is monotonically increasing and asymptotes to

1. The Lorentzian trajectories for |T | < 1 all correspond to time-symmetric

configurations where the brane emerges from the past singularity at r = 0,

reaches a maximum size r0 = rH/
√
1− T 2, and shrinks again to r = 0 at

the future singularity. These all have analytic continuations to Euclidean

solutions as discussed above. For T > 1, there are no time-symmetric trajec-

tories; the ETW brane size either increases from r = 0 to r =∞ or shrinks

from r =∞ to r = 0. These do not come from analytically continued time-

symmetric geometries, and we expect that they do not correspond to the

types of states we have been disucussing.

For d > 2, the potential is monotonically increasing to some value T 2
crit >

1, where

Tcrit = 1 +

(
2

d

) 2
d−2
(
1− 2

d

)
1

r2H(1 + r2H)
2

d−2

(C.31)

We have five classes of trajectories, as shown on the right in Figure 4.11.

The corresponding spacetimes are shown in Figure C.1.

b

c
a d e

Figure C.1: Lorentzian ETW branes for various values of T .
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C.1. Derivation of the microstate solutions

Case a: 0 < T < T∗

For this case, we have time-symmetric solutions which have analytic con-

tinuations to good Euclidean solutions corresponding to some finite positive

Euclidean preparation time. These are the geometries that are most plau-

sibly providing a holographic picture of the microstate geometries for some

legitimate CFT states. The Lorentzian geometry takes the form in Figure

4.1. The brane emerges from the past singularity, expands and enters the

second asymptotic region and then shrinks, eventually falling into the future

horizon. The maximum radius of the ETW brane is r0 (the minimal radius

in the Euclidean solution), realized at the time-symmetric point t = 0. The

entire trajectory covers some finite amount of proper time given by

λtot = 2

∫ r0

0

dr√
T 2r2 − f(r)

. (C.32)

For d = 2, this gives

λd=2
tot =

πLAdS√
1− T 2

(C.33)

while for d = 4, we get

λd=4
tot =

LAdS√
1− T 2

arccos

 1√
(1− T 2)(2r2H + 1)2 + T 2

 . (C.34)

The d = 3 result is given in terms of elliptic integrals.

Case b: 1 < T < Tcrit, small r branch

For this case, we have Lorentzian trajectories that are qualitatively simi-

lar to the previous case, but we recall that here the corresponding Euclidean

solutions are not sensible (at least without some improvement of the model).

It is possible that these Lorentzian solutions still correspond to some CFT

states, but we do not have a clear argument for this.

Case c: 1 < T < Tcrit, large r branch

For these solutions the ETW brane starts and ends at infinite size,

shrinking to a minimum size at the time-symmetric point. We have an

infinitely large portion of the second asymptotic region both in the past and
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C.2. Coordinate systems for d = 2

the future, so it is unlikely these geometries correspond to pure states of a

single CFT.

Case d: T = Tcrit

In this case, we have Lorentzian brane trajectories at a constant radius,

and the ETW brane geometry is the Einstein static universe. Here, the

solutions retain the isometry present in the maximally extended black hole

geometry and the physics of the CFT is time-independent. The Euclidean

solutions in this case also have the brane at a constant radius, so the tra-

jectory does not intersect the Euclidean boundary and does not seem likely

to correspond to the class of states we have been discussing. However, it is

interesting that the spacetime picture we have been discussing is similar to

the proposal of [210] for the geometries dual to typical states, so perhaps

the Lorentzian geometries in this case can serve as a model of the typical

states. It is interesting that we are constrained to have the brane at one

specific radius,

r

rH
=

(
d

2

) 1
d−2

(1 + r2H)
1

d−2 . (C.35)

Case e: T > Tcrit

For these case, there are no time-symmetric ETW brane trajectories, and

we have an infinitely large portion of the second asymptotic region either in

the past or the future, so it seems unlikely that these geometries correspond

to pure states of a single CFT.

C.2 Coordinate systems for d = 2

In this appendix, we give the coordinate transformations relating s− y co-

ordinates in (4.53) which cover the full maximally extended black hole ge-

ometry to the Schwarzschild coordinates.

We first go to Kruskal-type coordinates by defining

r = rH
1− uv
1 + uv

t =
1

2rH
ln
(
−u
v

)
. (C.36)
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C.3. Imaginary time entanglement growth

In these coordinates, the metric becomes (here, we have set LAdS = 1)

ds2 = − 4dudv

(1 + uv)2
+ r2H

(1− uv)2

(1 + uv)2
dϕ2 . (C.37)

These coordinates cover the whole extended spacetime. The two boundaries

are at uv = −1, the singularities are at uv = 1, and the horizons are at

uv = 0. The relation to Schwarzschild coordinates in the second asymptotic

region is given by (C.36) with the replacement u↔ v. To obtain the metric

(4.53), we further define

u = tan(α) v = tan(β) s = β + α y = α− β . (C.38)

From (4.25), the Lorentzian ETW brane trajectory in Schwarzschild co-

ordinates for the second asymptotic region is given (in the case for 0 < T <

1) by

t =
1

rH
arctanh


√
r2H − r2(1− T 2)

TrH

 . (C.39)

In the u, v coordinates, we find that this becomes (setting L = 1),

T =
v − u√

1 + u2
√
1 + v2

. (C.40)

In the s, y coordinates we get simply

y = − arcsin(T ) . (C.41)

C.3 Imaginary time entanglement growth

Imaginary time evolution can generate extremely rapid entanglement growth

even if the Hamiltonian doesn’t couple different degrees of freedom. This

fact severely restricts any conceivable bound on entanglement growth under

imaginary time dynamics.
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C.3. Imaginary time entanglement growth

Consider a decoupled Hamiltonian on N spins of the form

H =
N∑
r=1

∆
1− σzr

2
. (C.42)

Spin up is identified with 0 and spin down with 1. The system is divided

into two pieces, left L and right R, with N/2 spins each.

Now define two states as follows. State one is the all down state, the

highest energy state of H,

|ψ1⟩ = |1 · · · 1⟩. (C.43)

State two is an entangled Bell-type state obtained as an equal superposition

of all states |ψi⟩L ⊗ |ψi⟩R where |ψi⟩ is a product state with Sz = 0 (we

assumeN/2 is even). There are approximately 2N/2 such states (a significant

fraction of the full left or right Hilbert space). Note that energy of state one

is N∆ and the energy of state two is N∆/2.

The example is based on the superposition

|ψ⟩ =
√
1− ϵ|ψ1⟩+

√
ϵ|ψ2⟩, (C.44)

which can be prepared using a low depth quantum circuit. The entropy of

L or R in this pure state is Nϵ/2, so if ϵ is very small, then the entropy is

very small. Now consider the imaginary time evolved state

e−βH/2|ψ⟩. (C.45)

Up to an overall normalization, the effect is to exponentially re-weight states

one and two in the superposition,

e−βH/2|ψ⟩ ∝
√
1− ϵ|ψ1⟩+

√
ϵeβN∆/2|ψ2⟩. (C.46)
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The normalized state is

e−βH/2|ψ⟩
∥e−βH/2|ψ⟩∥

=

√
1− ϵ

1 + (eNβ∆/2 − 1)ϵ
|ψ1⟩+

√
ϵeNβ∆/2

1 + (eNβ∆/2 − 1)ϵ
|ψ2⟩.

(C.47)

Hence the entropy as a function of β is

S =
N

2

ϵeNβ∆/2

1 + (eNβ∆/2 − 1)ϵ
. (C.48)

This formula yields extremely rapid entanglement growth; for example, if

ϵ ∼ 1/N so that the initial entanglement is of order a single bit, then the

imaginary time evolution can generate N bits of entanglement in an imagi-

nary time of order lnN
N∆ .

If the ground state is also added to the superposition, then the entan-

glement depends on the relative size of the coefficients in the superposition.

If the coefficients are roughly the same size, then the ground state will grow

large much more rapidly than the middle energy states. In this case the

entanglement may not ever become very large.

C.4 Boundary states in a solvable model

By considering a simple model with a completely classical Hamiltonian, it

is possible to rigorously establish some claims analogous to those made at

large N for the coupled SYK clusters.

Consider a classical Hamiltonian on N qubits,

Hc =
∑
r,r′

Jr,r′σ
z
rσ

z
r′ , (C.49)

where classical means that the Hamiltonian is diagonal in a local product

basis. One could add additional terms which are diagonal in the σzr basis

without changing the subsequent story.

Now consider a generic product state |x⟩ in the σxr basis. It obeys σxr |x⟩ =
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C.4. Boundary states in a solvable model

xr|x⟩ with xr = ±1. When expanding in the z basis, these states are

|x⟩ = 1√
2n

∑
z

(∏
r

z
1−xr

2
r

)
|z⟩. (C.50)

Define the imaginary time-evolved states

|x, β⟩ = e−βHc/2|x⟩. (C.51)

The norm of these states is independent of x:

⟨x, β|x, β⟩ =
∑
z

(∏
r

z
1−xr

2
r

)2

⟨z|e−βHc |z⟩ = Zc(β), (C.52)

where Zc is the partition function associated with Hc. Similarly, one can

show that any moment of Hc in the state |x, β⟩ is independent of x. More

generally, any observable that is diagonal in the σzr basis has an expectation

value in the state |x, β⟩ that is independent of x and given by the corre-

sponding value in the classical statistical problem with weight e−β⟨z|Hc|z⟩.

Moreover, every state |x, β⟩ is related to every other state |x′, β⟩ by a

local unitary transformation. More precisely, we have

|x′, β⟩ =
N∏
r=1

(σzr )
1−xrx

′
r

2 |x, β⟩. (C.53)

This shows that every state |x, β⟩ has the same entanglement for every

spatial subregion independent of x. In particular, even though the states

|x, β⟩ need not be translation invariant, all the entanglement entropies are

if the Hamiltonian Hc is.

Finally, by tuning βHc to a classical statistical critical point or into

an ordered phases, it follows that imaginary time evolution can generate

long-range correlations after only a “finite depth” imaginary time evolution.

This is in stark contrast to the situation with real time dynamics, in which

long-range correlations must be established slowly starting from a short-

range correlated state due to causality restrictions. In fact, in one dimension
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Araki has established an imaginary time analog of the Lieb-Robinson bound

in which operators are allowed to expand exponentially fast [328].

C.5 Details of the Action-Complexity Calculation

As can be seen in figure 4.25, the Wheeler-DeWitt patch during each phase is

defined by two null hypersurfaces, N+ and N−, anchored at the asymptotic

boundary. Whether these null surfaces intersect the future/past singularity

(S+/S−), or the ETW brane (Q), determines which phase is being consid-

ered. The problem of calculating the gravitational action on a region with

boundaries is a well studied one (see [248] for a comprehensive review), and

generically we will have terms corresponding to: the enclosed region, the

region’s boundaries, and the joints where boundaries meet non-smoothly.

Here we breakdown each of these terms and state the results before and

after the null boundary counterterm is included.

The first term that one must consider is the Einstein-Hilbert action eval-

uated on the Wheeler-DeWitt patch. In the s, y coordinates this amounts

to computing:

SEH =
1

16πG

∫
W
dd+1x

√
−g(R− 2Λ)

= − rH
4πG

∫
W
ds dy dθ sec3(y) cos(s) (C.54)

This term diverges during all phases, since we are integrating all the way out

to the asymptotic boundary. As such, a regulator surface Λ is introduced

to classify the divergence. In the the s, y coordinates Λ is the hypersurface

defined by:

Λ : y = π/2− δ (C.55)

In the limit δ → 0 we simply recover our asymptotic boundary. Another

common cutoff method is to set the Schwarzschild radius to some maximum

value, i.e.:

Λ : r =
LAdS

δ′
(C.56)
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Working with LAdS = 1, one can convert back and forth between the two

cutoff schemes via the relation:

δ′ =
sin(δ)

rh sech(rHtR)
(C.57)

One may then ask what the contribution to the action is from this bound-

ary Λ itself. In general, a non-null boundary, B, contributes a Gibbons-

Hawking-York (GHY) term to the action:

SGHY =
1

8πG

∫
B
ddx
√
|h|K (C.58)

Here, we must be careful to choose the orientation of each hypersurface

consistently so that the relative sign of each action contribution is correct.

For the hypersurface Λ, a unit one-form normal is chosen to be:

nΛ =
1

sin(δ)
dy (C.59)

Using this the extrinsic curvature is then calculated to be:

KΛ = 2 cos(δ) (C.60)

Solving for the induce metric on Λ then putting this all into (C.58) gives

the action contribution:

SΛ =
rH
4πG

cot(δ)

sin(δ)

∫
Λ
ds dθ cos(s)

=
rH
δG

sech(rHtR) +O(δ) (C.61)

This term is present during all three phases.

Next we will consider the contribution due to the ETW brane. The

integration limits will be different depending on the phase, however the

form of the action is always the same:

SQ =
1

8πG

∫
Q
ddx
√
|h|(KQ − T ) (C.62)
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This corresponds to the GHY term for the hypersurface plus a matter ac-

tion. Here, a simplistic matter action for the brane is considered, with the

matter Lagrangian being assumed to be a constant parametrised by the

brane tension T (this follows the approach outlined in [88]) The unit normal

one-form for Q is chosen to be:

nQ = − 1√
1− T 2

dy (C.63)

Solving for the extrinsic curvature and induced metric we find:

SQ =
rH
8πG

T

1− T 2

∫
Q
ds dθ cos(s) (C.64)

The only remaining non-null hypersurfaces to consider are the past and

future singularities at s = ±π
2 . Calculating the contribution here slightly

tricky: the induced metric on S± vanishes and the extrinsic curvature K±

diverges. However, if we instead considers a hypersurfaces at s = constant

then we can compute the integrate explicitly. When doing this, one finds

that in the limit s → ±π
2 the measure and extrinsic curvature actually

combine to give a finite, regulator independent, integrand. The unit normal

one-forms to the singularities are chosen to be:

t± = sec(y)ds (C.65)

The measure for a constant s surface is√
|h| = rH cos(s) sec2(y) (C.66)

and the extrinsic curvature is:

K± = ± tan(s) cos(y) (C.67)

Note that the sign difference here is due to the orientation of S±. Combining

this together, and taking the limit s→ ±π
2 , we write our GHY term for each
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singularity respectively as:

SS± =
rH
8πG

∫
S±

dy dθ sec(y) (C.68)

This corresponds to a total contribution during phase ii of:

Phase ii: SS+ + SS− =
rH
2G

arctanh(T ) (C.69)

During phase iii the contribution is

Phase iii: SS+ =
rH
4G

(rHtR + arctanh(T )) (C.70)

Notice that this calculation did not take into account any nonclassical effects.

One might expect the divergences coming from the introduction of higher

order curvature terms not to cancel away here. These stringy corrections

have not been considered here, however in principle on could introduce a

regulator surface in the same manner done for the asymptotic boundary in

order to classify these divergences.115

We now move onto the discussion of the null hypersurfaces N+ and N−.

These surfaces are defined by the equations:

N+ : s = −y + 2arctan
(
erH tR

)
N− : s = +y − 2 arccot

(
erH tR

)
(C.71)

The null normal one-forms for these surfaces are chosen to be:116

k± = α±(±ds+ dy) (C.72)

Here, α+ and α− are normalisation constants. We also endow each null hy-

persurface with coordinates (λ±, θ), where θ is the angular BTZ coordinate

115Some related calculations can be found in [329], wherein the Gauss-Bonnet-AdS black
hole is considered.
116For brevity, we omit the derivations of these quantities. A thorough examination of

null hypersurfaces can be found in [330].

438



C.5. Details of the Action-Complexity Calculation

and λ± is given by:

λ± =
1

α±
tan(y) (C.73)

Altogether, this constitutes an affine parametrization for the null hypersur-

faces. I.e., they solve the affine geodesic equation:

kα;βk
β = κkα

= 0 (C.74)

Thus, we see that for this parametrization the constant κ = 0. The boundary

term for a null hypersurface is typically given by:

SN± = − 1

8πG

∫
N±

dλdd−1θ
√
γκ (C.75)

However, since we have chosen an affine parametrization this contribution

vanishes.

Next we consider the joints between each of these boundary surfaces. In

principle we have joints where N± intersect S±, Q and Λ, as well as non-null

joints (of the type proposed in [331]) at S±∩Q. However, one finds that the

joint terms at S± ∩ Q and at N± ∩ S± all vanish. The only non-zero joint

terms are from intersections of the null surfaces with the regulator surface

and the ETW brane. These are joints betwen null and timelike hypersurfaces

and so correspond to action contributions of the form:

Sjoints =
1

8πG

∫
Σ
dd−1x

√
σa

a = ϵ ln |k · n|
ϵ = − sign(k · n) sign(k · t̂) (C.76)

Here k and n are the normal one-forms to the null and timelike surfaces

respectively, and t̂ is some auxiliary unit vector tangent to the timelike

hypersurface. Σ is the co-dimension two hypersurface that is the intersection

between the two boundaries. Computing the contributions for N± ∩ Λ, one
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finds that in all phases we have:

SN+∩Λ + SN−∩Λ =
rH
4G

{
2 sech(rHtR)

δ
ln

(
1

√
α+α−δ

)
+ tanh(rhtR) ln

(
α−
α+

)
+O(δ)

}
(C.77)

Similarly, one can compute the action contribution for the intersections N±∩
Q. These turn out to be:

SN±∩Q = − rH
4G

ln(α±
√
1− T 2)

(
± tanh(rHtR) +

T√
1− T 2

sech(rhtR)

)
(C.78)

Where the term for N+ ∩Q is only present during phase i and the term for

N+ ∩Q only appears in phase iii.

Unfortunately, if we were to combine together all of the terms above we

would find that the resulting action is dependent on α+ and α−. This isn’t

ideal as the quantity we find is not invariant under different choices of the

parametrization of each null surface. Recently, it has been suggested that

a counterterm be introduced to the gravitational action in order to cancel

this dependence on α+ and α−:
117

Scounter = − 1

8πG

∫
B
dλ dd−1θ

√
γΘ ln |LΘ|

Θ =
1
√
γ

∂γ

∂λ
(C.79)

Where we introduce such a term for each null boundary B. Here, γ corre-

sponds to the null hypersurface’s metric. Just as the complexity=volume

conjecture was only defined up to some relative length scale, this countert-

erm depends on an arbitrary length scale L. For the purposes of this analysis,

we will simply choose to set L = LAdS = 1.118 For N+ the counterterm takes

117This counterterm was first proposed in [248] and has since been discussed throughout
the literature. Some more thorough exploration of this counterterm can be found in [332]
and [333].
118Some easy to interpret graphs are provided in appendices of [247] that show the effects

of changing the value of this length scale.
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the form:

SN+ = − rH
4G

α+ sech(rHtR)∫
N+

dλ ln

∣∣∣∣ α+ sech(rHtR)

α+ sech(rHtR)λ− tanh(rHtR)

∣∣∣∣
=
rH
4G

sech(rHtR) (sinh(rHtR)− α+λ)(
1 + ln

∣∣∣∣ α+

sinh(rHtR)− α+λ

∣∣∣∣)
∣∣∣∣∣
λf

λi

(C.80)

where λi = N+ ∩ Λ during every phase, and λf = N+ ∩ Q during phase i

or N+ ∩ S+ otherwise. Similarly, the counterterm for N− can be calculated

using:

SN− = − rH
8G

α− sech(rHtR)∫
N−

dλ ln

∣∣∣∣ α− sech(rHtR)

α− sech(rHtR)λ+ tanh(rHtR)

∣∣∣∣
= − rH

4G
sech(rHtR) (sinh(rHtR) + α−λ)(

1 + ln

∣∣∣∣ α−
sinh(rHtR) + α−λ

∣∣∣∣)
∣∣∣∣∣
λf

λi

(C.81)

with λi = N− ∩Λ during each phase, and λf being N− ∩Q during phase iii

or N− ∩ S− otherwise. Both of these integrals result in many terms, so we

will refrain from including them here.

With all of the individual contributions to the action in place, all that

remains is to combine them all together in accordance with the phases de-

picted in figure 4.25 and use equation (4.118) to calculate the complexity.

In doing this, many, many terms cancel, resulting in the simple expressions

stated in equations (4.121) and (4.123) (the phase iii result is stated with

the divergence already subtracted).
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Appendix D

Appendices for Chapter 5

D.1 Brane trajectories

Throughout this appendix, we will be interested in a codimension-1 surface

parametrized by (z, r, xµ) = (Z(r), r, xµ) in the AdS soliton geometry

ds2d+1 = L2f(r)dz2 +
dr2

f(r)
+ r2dxµdx

µ . (D.1)

This may be either an interface brane or an ETW brane; the calculation of

intrinsic geometrical quantities and the extrinsic curvature with respect to

one side will be identical in both cases, so we will not distinguish between

these cases until we come to the equations of motion. We also suppress the

coordinate subscripts that would differentiate between the regionsM1 and

M2 in the interface case. We could allow dxµdx
µ = ηµνdx

µdxν to denote the

metric on either flat Euclidean or Minkowski space; the choice of signature

will not affect any of the expressions we derive.

Geometrical quantities

We have tangent vector

eµr = (Z ′(r), 1, 0⃗) , (D.2)

and the rest of the tangent vectors on the brane are just unit vectors span-

ning the xµ directions. The induced metric hab on the ETW brane is of

course

ds2d =
L2

c(r)2
dr2 + r2dxµdx

µ , c(r) ≡

√
L2f(r)

1 + L2f(r)2(Z ′(r))2
. (D.3)
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D.1. Brane trajectories

The spacelike unit normal vector to the brane with the correct orienta-

tion (pointing out of the region) is given by

nµ = c(r)(−1, Z ′(r), 0⃗) . (D.4)

We can now compute the extrinsic curvature

Kab = eµae
ν
b∇µnν , (D.5)

using that

∇µnν =
L2cff ′Z ′

2
dz2 +

(
cf ′

2f
− c′

)
dz dr +

cf ′

2f
dr dz

+

(
cf ′Z ′

2f
+ c′Z ′ + cZ ′′

)
dr2 + rcfZ ′dxµdx

µ .

(D.6)

We find

Krr = erre
r
r∇rnr + ezre

r
r∇znr + erre

z
r∇rnz + ezre

z
r∇znz

= c

(
Z ′′ +

f ′Z ′

2f
(L2f2(Z ′)2 + 3)

)
Kii = rcfZ ′ηii ,

(D.7)

with all other components vanishing; here, the i appearing in Kii is an

(unsummed) (d − 1)-dimensional Lorentz index. In particular, the scalar

extrinsic curvature is

K = habKab =
c3

L2

(
Z ′′ +

f ′Z ′

2f
(L2f2(Z ′)2 + 3)

)
+

(d− 1)

r
cfZ ′ . (D.8)

In some cases, it may be useful to phrase our analysis in terms of deriva-

tives with respect to a proper length coordinate s along the brane in the

(z, r)-plane; that is, we take this to be the coordinate appearing in our

intrinsic parametrization of the brane, which then has metric

ds2d = ds2 + r(s)2dxµdx
µ . (D.9)
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D.1. Brane trajectories

Such a coordinate is defined by

L2f(r)

(
dz

ds

)2

+
1

f(r)

(
dr

ds

)2

= 1 . (D.10)

We then express the normal vector as nµ = L(−ṙ, ż, 0⃗), so the non-vanishing

components of the extrinsic curvature may be written as

Kss =
L

2

dz

ds
f ′(r)

(
3− L2f(r)

(
dz

ds

)2
)

Kii = Lrf(r)
dz

ds
ηii .

(D.11)

We note that reversing the orientation of the normal vector used in the

definition of the extrinsic curvature has the effect of reversing its sign; this is

especially important to note when deducing the interface equation of motion.

We will also be interested in features of the intrinsic geometry of the

brane, namely the components of the Ricci tensor and the Ricci scalar. We

find non-vanishing components

R(d)
rr = −(d− 1)

r

c′(r)

c(r)
, R

(d)
ii = −c(r)

2

L2

(
(d− 2) + r

c′(r)

c(r)

)
ηii , (D.12)

or, in the proper length coordinates,

R(d)
ss = −(d− 1)

r′′(s)

r(s)
,

Rii = −r(s)2
(
r′′(s)

r(s)
+ (d− 2)

r′(s)2

r(s)2

)
ηii .

(D.13)

The Ricci scalars are

R(d) = −(d− 1)
c(r)2

r2L2

(
(d− 2) + 2r

c′(r)

c(r)

)
= −(d− 1)

(
2
r′′(s)

r(s)
+ (d− 2)

r′(s)2

r(s)2

)
.

(D.14)
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D.1.1 Constant tension branes

We will first consider the case with two branes of constant tension: an

interface brane which divides the bulk into regions 1 and 2, and an ETW

brane which we add to region 1.

Suppose we have the Euclidean gravitational action

S = Sbulk + Smatter
interface + Smatter

ETW

Sbulk =
1

16πGbulk

2∑
i=1

∫
Mi

dd+1x
√
g (R− 2Λi)

+
1

8πGbulk

∫
interface

ddy
√
h [K]

+
1

8πGbulk

∫
ETW

ddy
√
h K ,

(D.15)

where we take the brane matter actions to be

Smatter
interface =

(1− d)κ
8πGbulk

∫
interface

ddy
√
h ,

Smatter
ETW =

(1− d)λ
8πGbulk

∫
ETW

ddy
√
h .

(D.16)

Here and in the following, the brackets represent the discontinuity [X] =

X1 − X2 across the interface brane. We are also permitting two different

cosmological constants Λi, related to the AdS lengths Li by

Λi = −
d(d− 1)

2Li
. (D.17)

The interface brane trajectory is then determined by the junction con-

ditions

[hab] = 0 , [Kab −Khab] = 8πGbulkT
interface
ab = (1− d)κhab , (D.18)

where we use

T interface
ab =

2√
h

δSmatter
interface

δhab
=

(1− d)κ
8πGbulk

hab . (D.19)
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It can be convenient to rewrite the second junction condition as

[Kab] = κhab . (D.20)

Meanwhile, the ETW brane trajectory is determined by the equations of

motion

Kab −Khab = 8πGNT
ETW
ab = (1− d)λhab , (D.21)

where we use

TETW
ab =

2√
h

δSmatter
ETW

δhab
=

(1− d)λ
8πGbulk

hab . (D.22)

We can choose to write this equation as

Kab = λhab . (D.23)

Details of the interface solutions can be found in [279]; the upshot is

that the first junction condition implies that the r coordinates of the inter-

face brane agree on both sides of the interface, while the second junction

condition yields

L1f1
dz1
ds

+ L2f2
dz2
ds

= κr . (D.24)

Using the relations

L2
i fi

(
dzi
ds

)2

+
1

fi

(
dr

ds

)2

= 1 , (D.25)

we can rephrase this in terms of r-derivatives as

L1
dz1
dr

= − 1

f1
√
Veff

(
1

2κr
(f1 − f2) +

1

2
κr

)
L2
dz2
dr

=
1

f2
√
Veff

(
1

2κr
(f2 − f1) +

1

2
κr

)
,

(D.26)

where

Veff(r) = f1 −
(
f2 − f1 − κ2r2

2κr

)2

. (D.27)
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For the ETW brane, we obtain the rr-component equation of motion

c1(r)f1(r)
dz1
dr

= rλ . (D.28)

Isolating z′1(r), we obtain

dz1
dr

=
rλ

L1f1(r)

1√
f1(r)− r2λ2

. (D.29)

Substituting this into any of the other equations of motion, we verify that

these equations are also satisfied. These equations are similar to those ob-

tained in the [2], though here we consider (d− 1)-dimensional planar rather

than spherical symmetry.

D.1.2 Branes with an Einstein-Hilbert term

We would now like to generalize the set-up of the previous subsection by

introducing Einstein-Hilbert terms on the branes. In particular, we will

now modify the brane actions to

Sinterface =
1

16πGinterface

∫
interface

ddy
√
h R(d) + Smatter

interface

SETW =
1

16πGETW

∫
ETW

ddy
√
h R(d) + Smatter

ETW ,

(D.30)

where we will introduce the constants α, γ defined by

1

Ginterface
=

α

Gbulk
,

1

GETW
=

γ

Gbulk
. (D.31)

The Israel junction conditions at the interface then yield

[hab] = 0 , [Kab −Khab] = 8πGbulkTab , Tab ≡
2√
h

δSinterface
δhab

. (D.32)

Notably, this can be interpreted as saying that the junction conditions are

unaffected by the presence of the Einstein-Hilbert term on the brane except

through the modification of the energy-momentum tensor (see Section 2.4
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of [281]), which is now

Tab =
(1− d)κ
8πGbulk

hab −
1

8πGinterface

(
R

(d)
ab −

1

2
R(d)hab

)
. (D.33)

All together, we have

[Kab] = κhab − α
(
R

(d)
ab −

1

2(d− 1)
R(d)hab

)
. (D.34)

On the other hand, the equation of motion for the ETW brane is

Kab −Khab = (1− d)λhab − γ
(
R

(d)
ab −

1

2
R(d)hab

)
, (D.35)

which we may also write as

Kab = λhab − γ
(
R

(d)
ab −

1

2(d− 1)
R(d)hab

)
. (D.36)

Interface brane

As in the constant tension case, the first junction condition for the interface

brane again implies that the r coordinate of the interface brane agrees on

both sides of the interface brane. Now the second junction condition yields,

in terms of the proper length parametrization,

L1f1
dz1
ds

+ L2f2
dz2
ds

=

(
κ+

α(d− 2)

2r2

(
dr

ds

)2
)
r . (D.37)

As before, we can combine this with the expressions (D.25) to determine the

derivatives of z1, z2 with respect to r; we find(
dr

ds

)2

= f2 − y(r)2 , (D.38)
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where y(r) is a root of the equation

α2(d− 2)2y4 − 4α(d− 2)ry3 − 2(d− 2)α
(
α(d− 2)f2 + 2κr2

)
y2

+ 4r
(
α(d− 2)f2 + 2κr2

)
y + α2(d− 2)2f22 + 4α(d− 2)f2κr

2

+ 4κ2r4 − 4(f1 − f2)r2 = 0 . (D.39)

ETW brane

For the ETW brane, we find the ii-component equation of motion

f1(r)z
′
1(r) =

λr

c1(r)
+
γ(d− 2)

2L2
1

c1(r)

r
. (D.40)

and the rr-component

(d− 2)rc1(r)f1(r)z
′
1(r)

+
c1(r)

3

L2
1

(
z′′1 (r) +

f ′1(r)z
′
1(r)

2f1(r)
(L2

1f
2
1 (r)z

′
1(r)

2 + 3)

)
r2

= (d− 1)λr2 + γ
(d− 2)

c1(r)2
L2
1

(
(d− 3)

2
+ r

c′1(r)

c1(r)

)
. (D.41)

Isolating the derivative z′1(r) in the first equation, we find

z′1(r) =
1√

2L1f1(r)
√
f1(r)− r2λ2

[
(d− 2)γλf1(r) + 2λ2r2 − f1(r)

+
f1(r)

r

√
(d− 2)2γ2f1(r) + (2(d− 2)γλ+ 1) r2

]1/2
. (D.42)
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D.2 Monotonicity of ∆zETW1 (λ)

We have the derivative

d

dλ
∆zETW

1 (λ) = lim
ϵ→0

d

dλ

∫ ∞

r0(λ)+ϵ
dr

rλ

Lf(r)

1√
f(r)− r2λ2

= lim
ϵ→0

[
− dr0(λ)

dλ

[ rλ

Lf(r)

1√
f(r)− r2λ2

]
r=r0(λ)+ϵ

+
1

L

∫ ∞

r0(λ)+ϵ
dr

r

(f(r)− r2λ2)3/2

]
,

(D.43)

where we have introduced an IR regulator so that the terms in the derivative

as per the Leibniz integral rule are finite, and we are dropping the subscripts

1 and 2 for convenience in this appendix (all quantities involve the ETW

brane, which propagates in region 1 only). The first term goes as

− dr0(λ)

dλ

[ rλ

Lf(r)

1√
f(r)− r2λ2

]
r=r0(λ)+ϵ

= − 2

d3/2
L2

(1− L2λ2)3/2
1√
r0(λ)ϵ

+O(
√
ϵ) , (D.44)

while the second goes as

1

L

∫ ∞

r0(λ)+ϵ
dr

r

(f(r)− r2λ2)3/2

=
L2

r0(λ)(1− L2λ2)3/2

[ 2

d3/2

√
r0(λ)

ϵ
−

2
√
πΓ(1d + 1)

Γ(1d −
1
2)

]
, (D.45)

where we use ∫
dy

y2
1

(1− y−d)3/2
= −1

y
2F1

(
3

2
,
1

d
; 1 +

1

d
; y−d

)
(D.46)
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and

2F1

(
3

2
,
1

d
; 1 +

1

d
;

(
1 +

ϵ

r0

)−d
)

=
2

d3/2

√
r0
ϵ
−

2
√
πΓ(1d + 1)

Γ(1d −
1
2)

+O(
√
ϵ) . (D.47)

We therefore obtain (for d > 2)

d

dλ
∆zETW

1 (λ) = −
2
√
πΓ(1d + 1)

Γ(1d −
1
2)

L2

r0(λ)(1− L2λ2)3/2
, (D.48)

which is manifestly positive, as desired.

D.3 Confirmation of ETW/interface

non-intersection

In general, suppose that we have verified that, for a fixed set of parameters

(L1, µ1, u, µ, e) and λ, one has

R2(u, µ, e) > 0 and rETW
0 > rint0 and

∆zETW
1 (λ)

∆zint1

= 1 . (D.49)

This does not yet constitute a demonstration that the solution is well-

behaved, because the ETW and interface branes may intersect at some finite

r1. We would like to verify that this does not occur for the solutions in the

limit identified in Section 5.4.

In general, to verify that there are no intersections for some set of pa-

rameters, it suffices to show that

(zETW
1 )′(r1) > (zint1 )′(r1) for all rETW

0 < r1 <∞ . (D.50)

Indeed, if by contradiction we had that the above inequality held and that
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zint1 (r̃1) = zETW
1 (r̃1) = z̃ at some finite r̃1 > rETW

0 , then we would obtain

0 = (∆zint1 − z̃)− (∆zETW
1 − z̃)

=

∫ ∞

r̃1

dr1
(
(Z int

1 )′(r1)− (ZETW
1 )′(r1)

)
< 0 ,

(D.51)

which is absurd.

To show that (D.50) holds, it suffices to show that there is no r1 ∈
(rETW

0 ,∞) such that (zETW
1 )′(r1) = (zint1 )′(r1); the fact that the inequality

manifestly holds at r1 = rETW
0 (where we are comparing a finite quantity to

a formally infinite quantity), together with continuity, then implies that the

inequality must hold for all finite r1 > rETW
0 .

It is straightforward to find all solutions to the equation (zETW
1 )′(r1) =

(zint1 )′(r1) for the models considered in Section 5.4; letting y = rd1 , we obtain

a quartic equation with non-trivial solutions

y

µ1L2
1

=

[
± (1− (1− 2e)u)

√
a1

+ u2
(
(d− 2)γ (µ− 2e(1− e)(1 + µ))− (1− µ) (1− 2e)L1

)
+ u
(
− (d− 2)γ(1− 2e)(1 + µ) + L1(1− µ)

)
+ (d− 2)γ

]

×

[
− 4L1(1− λL1)(1− u)2

+ 8e(1− u) (L1 + (d− 2)γ − 2uL1(1− λL1))

− 8e2

(
(d− 2)γ − 3u (L1 + (d− 2)γ)

+ u2
(
3L1

(
1− 2

3
λL1

)
+ (d− 2)γ

))

− 16ue3 ((d− 2)γ − u (L1 + (d− 2)γ))− 8(d− 2)γu2e4

]−1

(D.52)
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y

µ1L2
1

=

[
± (1− (1− 2e)u)

√
a2

+ u2
(
(d− 2)γ (µ− 2e(1− e)(1 + µ)) + (1− µ) (1− 2e)L1

)
+ u
(
− (d− 2)γ(1− 2e)(1 + µ)− L1(1− µ)

)
+ (d− 2)γ

]

×

[
4L1(1 + λL1)(1− u)2

+ 8e(1− u) (−L1 + (d− 2)γ + 2uL1(1 + λL1))

− 8e2

(
(d− 2)γ − 3u (−L1 + (d− 2)γ)

+ u2
(
−3L1

(
1 +

2

3
λL1

)
+ (d− 2)γ

))

− 16ue3 ((d− 2)γ − u (−L1 + (d− 2)γ))− 8(d− 2)γu2e4

]−1

, (D.53)

where

a1 = (d− 2)2γ2
(
1 + µu2(µ− 4e(1− e))− 2µu(1− 2e)

)
+ 2(d− 2)(1− µ)uL1γ (1− u(1− e− (1− µ)λL1))

+ u2(1− µ)2L2
1

a2 = (d− 2)2γ2
(
1 + µu2(µ− 4e(1− e))− 2µu(1− 2e)

)
− 2(d− 2)(1− µ)uL1γ (1− u(1− e+ (1− µ)λL1))

+ u2(1− µ)2L2
1 .

(D.54)

We are interested in taking the limit identified in Section 5.4, namely

1− λL1 = ϵ ∼ 2ec

1− µu
,

(d− 2)γ

L1
+ 1 ∼ c1−2/d(1− u) . (D.55)

We also need to take the limit µ → 0 sufficiently quickly, so that µ =

O(e
d
2
−1). In particular, we focus on the case d ≥ 4, so that µ vanishes at

least linearly in e.
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We note that one has in the limit

(d− 2)γ + uL1 ∼ (c1−2/d − 1)(1− u)L1 < 0 . (D.56)

We therefore find that the leading order contributions to the solutions are

y

µ1L2
1

=
(d− 2)γ + uL1

4ecL1(1− u)(c−2/d − 1)

y

µ1L2
1

= −(d− 2)γ

4

u2

(1− u)
1

(d− 2)γ + uL1

y

µ1L2
1

=
1

8(1− u)

[
−

√(
(d− 2)

γ

L1
− u
)2

+ 4(d− 2)
γ

L1
u2

− u+ (d− 2)
γ

L1

]
y

µ1L2
1

=
1

8(1− u)

[√(
(d− 2)

γ

L1
− u
)2

+ 4(d− 2)
γ

L1
u2

− u+ (d− 2)
γ

L1

]
.

(D.57)

It is straightforward to see that all of these quantities are negative, with

the first diverging and the last three converging to finite quantities, so we

cannot have any intersections at finite r1 in this case.
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Appendix E

Appendices for Chapter 6

E.1 Size of the internal space in the ETW brane

region

The fact that the compact spherical directions in the “bag” or “ETW brane”

region of the geometries of interest in Chapter 6 cannot be suppressed rel-

ative to the AdS4 scale has already been noted by Bachas and Lavdas in

[292] (following previous related comments by Bachas and Estes in [295]).

As remarked by these authors, this property is related to the issue of scale

separation in the context of flux compactifications (see e.g. [334–336]). More

generally, it is a broad prediction that in holographic theories with super-

symmetry, the R-symmetry is geometrized at the AdS scale (see e.g. [337]).

For the sake of completeness, we will here provide a direct argument for these

assertions in the context of the supergravity solutions considered in this note,

based on the formulation of the reduced BPS equations by D’Hoker, Estes,

and Gutperle in [172, 173]. Our conclusions will apply to the solutions dual

to the 3D N = 4 SCFTs of Gaiotto-Witten [89, 90], first studied in [175],

as well as the boundary and interface solutions studied in [174].

Our goal is to show that it is not possible to simultaneously have f21 /f
2
4 ≪

1 and f22 /f
2
4 ≪ 1 in any region of the spacetime unless that region is locally

AdS5 × S5; the conclusion is therefore that at least one of the S2 factors

of the internal space remains large relative to the AdS4 scale in the ETW

brane region.

In the following, we will be relying on the conventions of [172], introduc-

ing only the ingredients necessary. We may write the complex axion/dilaton

455



E.1. Size of the internal space in the ETW brane region

P and connection Q one-forms as

P = pae
a , Q = qae

a , (E.1)

and the anti-symmetric five-form and three-form tensors F(5) and G as

F(5) = fa

(
−e0123a + εabe

4567b
)
, G = gae

45a + ihae
67a , (E.2)

where the e are wedge products of the appropriate vielbeins; the indices a, b

are summed over the Riemann surface Σ directions. It is demonstrated in

[172] that, for solutions with 16 supersymmetries, one can always apply an

SU(1, 1) S-duality transformation to a frame where the axion field vanishes

and the dilaton is real; this corresponds to the reality conditions

p̄a = pa , ḡa = ga , h̄a = ha , qa = 0 . (E.3)

The metric functions f1, f2, f4 may be expressed in terms of a (Grassmann-

even) spinor degree of freedom (equation (6.18) of [172])

ξ =

(
α
β

)
, ξ∗ =

(
ᾱ
β̄

)
, α, β ∈ C , (E.4)

in terms of which we have (equation (6.26) of [172])

f4 = ξ†ξ = αᾱ+ ββ̄

f1 = −νξ†σ1ξ = −ν
(
αβ̄ + βᾱ

)
f2 = −ξ†σ2ξ = i

(
βᾱ− αβ̄

)
,

(E.5)

where ν ∈ {±1} (the sign will be irrelevant when we compare ratios of metric

functions f21 , f
2
2 and f24 ).

Suppose there is some neighbourhood of a point (w, w̄) in the interior of

our geometry where f21 /f
2
4 ≪ 1 and f22 /f

2
4 ≪ 1; we will restrict to consid-

ering this neighbourhood for the remainder of the subsection. In this case,

we must have either |α| ≪ |β| or |β| ≪ |α| throughout the neighbourhood.
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Indeed, using polar coordinates

α = aeiθ1 , β = beiθ2 , (E.6)

we have ∣∣∣∣∣f1f4
∣∣∣∣∣ = 2ab

a2 + b2
∣∣ cos (θ1 − θ2) ∣∣∣∣∣∣∣f2f4

∣∣∣∣∣ = 2ab

a2 + b2
∣∣ sin (θ1 − θ2) ∣∣ , (E.7)

and since

min
θ1,θ2

max{
∣∣ cos (θ1 − θ2) ∣∣, ∣∣ sin (θ1 − θ2) ∣∣} = 1√

2
, (E.8)

we must have 2ab
a2+b2

≪ 1, which requires a≪ b or b≪ a.

On the other hand, the dilatino BPS equation (equation (6.28) of [172])

gives

4pzα+ (gz − ihz)β = 0 , 4pzβ − (gz + ihz)α = 0 , (E.9)

with z, z̄ frame indices. These two equations together imply either that

pz = gz = hz = 0 or∣∣∣∣∣αβ
∣∣∣∣∣ =

∣∣∣∣∣ 4pz
gz + ihz

∣∣∣∣∣ =
∣∣∣∣∣ 4pz
gz − ihz

∣∣∣∣∣ =
∣∣∣∣∣βα
∣∣∣∣∣ , (E.10)

with the latter contradicting the conclusion that |α| ≪ |β| or |β| ≪ |α|.
We therefore must have that the special condition pz = gz = hz = 0 holds

throughout the neighbourhood we are considering.119 But as shown in Sec-

tion 6.9 of [172], that condition alone necessarily implies that the geometry

is pure AdS5 × S5, with (subject to a particular choice of normalization)

α = e−νw/2 , β = ieνw/2 , (E.11)

119Note that we could have avoided this condition by requiring that one of f2
1 /f

2
4 or

f2
2 /f

2
4 but not both was small; in this case, we would not necessarily require that |α| ≪ |β|

or |β| ≪ |α|, but could instead have that αβ̄ was almost pure real or pure imaginary.
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and metric functions

f1 = 2 sin y , f2 = −2 cos y , f4 = 2 coshx , (E.12)

where w = x+ iy is a complex coordinate on the strip Σ. (We should note

that the argument provided applies to the case where pz, gz, hz are presumed

to vanish everywhere, but the nature of the argument is local, and can be

repeated to demonstrate that the geometry within the neighbourhood we are

considering must be AdS5 × S5.) In particular, this can be consistent with

our assumption |α| ≪ |β| or |β| ≪ |α| near the asymptotic boundary x →
±∞, where the metric function f24 diverges. We have therefore shown that

the only case in which one can simultaneously have f21 /f
2
4 ≪ 1 and f22 /f

2
4 ≪

1 is when the geometry is locally AdS5 × S5; as a corollary, we clearly

cannot have the scale of the internal S2 dimensions be small compared to

the curvature scale of the non-compact dimensions.

E.2 Justification of condition (6.8)

In general, the region I introduced in Section 6.3 is only asymptotically

AdS5 × S5, and may deviate from pure AdS5 × S5 significantly before the

O(lA/r), O(kB/r) corrections become large. For example, considering the

large-r asymptotics of the metric functions for our general solution, we find

ρ2 =
L2
AdS

4

1

r2

[
1− 1

r2
(
2 cos2 θ − 1

) ( 1
π

∑
A

cAlA

(
1−

l2A
r20

)

− 1

π

∑
B

dBkB

(
1−

k2B
r20

))
+ o(r−2)

]
(E.13)
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f21 = L2
AdS cos

2 θ

[
1 +

1

r2

(
1

π

∑
A

cAlA

( (
2 cos2 θ + 1

)
+
l2A
r20

(
2 cos2 θ − 1

) )
− 1

π

∑
B

dBkB

( (
2 cos2 θ + 1

)
+
k2B
r20

(
2 cos2 θ − 1

) ))
+ o(r−2)

]
(E.14)

f22 = L2
AdS sin

2 θ

[
1 +

1

r2

(
1

π

∑
A

cAlA

( (
2 cos2 θ − 3

)
+
l2A
r20

(
2 cos2 θ − 1

) )
− 1

π

∑
B

dBkB

( (
2 cos2 θ − 3

)
+
k2B
r20

(
2 cos2 θ − 1

) ))
+ o(r−2)

]
(E.15)

f24 =
L2
AdS(r

2 + r20)
2

4r20r
2

−
L2
AdSr

2

4r20

[
1

r2
(
2 cos2 θ − 1

)( 1

π

∑
A

cAlA

(
1 +

l2A
r20

)

− 1

π

∑
B

dBkB

(
1 +

k2B
r20

))
+ o(r−2)

]
. (E.16)

Evidently, if we would like the terms subleading in large r to be suppressed

for any r ≪ r0, then in addition to (6.12), we require

∣∣∑
A

cAlA −
∑
B

dBkB
∣∣≪ r2∗ . (E.17)

We claim that conditions (6.12) and (E.17) are sufficient to ensure a large

region of approximately pure AdS5 × S5.

To further motivate this fact, let us fix N from the beginning, and recall

that r20 ≡ N
π . Suppose we would like to have a geometry well-approximated
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by pure AdS5 × S5 down to some radial coordinate r∗ ≪ r0. Our approach

will be to write down the metric functions in the limit lA
r ,

kB
r → 0 with∑

A cAlA and
∑

B dBkB held fixed, and to understand how these functions

depend on the quantity
∣∣∣∑A cAlA −

∑
B dBkB

∣∣∣. In particular, letting

∑
A

cAlA =
π

2
r20 (1 + ε) ,

∑
B

dBkB =
π

2
r20 (1− ε) , (E.18)

we find that when lA
r ,

kB
r → 0 in a way that keeps N and ε fixed, we have

(π
2

)−1
h1(r, θ) = r cos θ +

r20 cos θ

r
(1 + ε)(π

2

)−1
h2(r, θ) = r sin θ +

r20 sin θ

r
(1− ε)(π

2

)−2
W (r, θ) = −2r20 sin θ cos θ

r2

(E.19)

and

(π
2

)−4
N1(r, θ) =

sin θ cos θ

2

(
r2 + r20(1 + ε)

)
×
[
1 +

r20
r2
(
3 + ε(1− 4 cos2 θ)

)
+
r40
r4

(1 + ε)
(
3− ε(1− 4 cos2 θ)

)
+
r60
r6

(1 + ε)2 (1− ε)
]

(E.20)

(π
2

)−4
N2(r, θ) =

sin θ cos θ

2

(
r2 + r20(1− ε)

)
×
[
1 +

r20
r2
(
3 + ε(3− 4 cos2 θ)

)
+
r40
r4

(1− ε)
(
3− ε(3− 4 cos2 θ)

)
+
r60
r6

(1− ε)2 (1 + ε)
]
. (E.21)
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We then find the metric functions

ρ2(r, θ) =
L2

4r2

(
1 +

r20
r2

(1− ε)
)−3/4(

1 +
r20
r2

(1 + ε)

)−3/4

[((
1 +

r20
r2

(1− ε)
)(

1 +
r20
r2

(1 + ε)

)2

− 4ε cos2 θ
r20
r2

(
1− r20

r2
(1 + ε)

))

×
(
1 +

r20
r2
(
3 + ε(3− 4 cos2 θ)

)
+
r40
r4
(
4ε(1− ε) + 3(1− ε)2

)
+
r60
r6

(1− ε)2(1 + ε)

)]1/4
(E.22)

f21 (r, θ) = L2 cos2 θ

(
1 +

r20
r2

(1− ε)
)1/4(

1 +
r20
r2

(1 + ε)

)5/4

[((
1 +

r20
r2

(1− ε)
)(

1 +
r20
r2

(1 + ε)

)2

− 4ε cos2 θ
r20
r2

(
1− r20

r2
(1 + ε)

))−3

×
(
1 +

r20
r2
(
3 + ε(3− 4 cos2 θ)

)
+
r40
r4
(
4ε(1− ε) + 3(1− ε)2

)
+
r60
r6

(1− ε)2(1 + ε)

)]1/4
(E.23)
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f22 (r, θ) = L2 sin2 θ

(
1 +

r20
r2

(1− ε)
)5/4(

1 +
r20
r2

(1 + ε)

)1/4

[((
1 +

r20
r2

(1− ε)
)(

1 +
r20
r2

(1 + ε)

)2

− 4ε cos2 θ
r20
r2

(
1− r20

r2
(1 + ε)

))

×
(
1 +

r20
r2
(
3 + ε(3− 4 cos2 θ)

)
+
r40
r4
(
4ε(1− ε) + 3(1− ε)2

)
+
r60
r6

(1− ε)2(1 + ε)

)−3
]1/4

(E.24)

f24 (r, θ) =
L2r2

4r20

(
1 +

r20
r2

(1− ε)
)1/4(

1 +
r20
r2

(1 + ε)

)1/4

[((
1 +

r20
r2

(1− ε)
)(

1 +
r20
r2

(1 + ε)

)2

− 4ε cos2 θ
r20
r2

(
1− r20

r2
(1 + ε)

))

×
(
1 +

r20
r2
(
3 + ε(3− 4 cos2 θ)

)
+
r40
r4
(
4ε(1− ε) + 3(1− ε)2

)
+
r60
r6

(1− ε)2(1 + ε)

)]1/4
.

(E.25)
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Of course, in the limit ε → 0, we recover the metric function for pure

AdS5 × S5. One can demonstrate directly from the above expressions that

these metric functions can be made uniformly close to those of pure AdS5×
S5 in r ∈ [r∗,∞) and θ ∈ [0, π2 ] for sufficiently small ε; we have plotted some

examples in Section 6.4.3.

E.3 Space of solutions for the single pole case

In this section, we will understand the space of solutions to the constraints

(6.14). First, taking a linear combination of the last two equations in (6.14),

one obtains

ND5ND3 +NNS5N̂D3 = N +ND5NNS5 , (E.26)

so it is necessary that

G ≡ gcd(ND5, NNS5) | N . (E.27)

Choosing any NNS5 and ND5 satisfying this constraint, the linear dio-

phantine equation (E.26) for N̂D3 and ND3 will always have multiple integer

solutions of the form

ND3 = N
(0)
D3+m

NNS5

gcd(ND5, NNS5)
, N̂D3 = N̂

(0)
D3−m

ND5

gcd(ND5, NNS5)
, m ∈ Z,

(E.28)

with (N
(0)
D3 , N̂

(0)
D3) some nominal solution.

There will be at least one solution for positive N̂D3 andND3, since for real

m, (E.28) parameterizes a line that intersects the positive quadrant of the

(N̂D3, ND3) plane, and the equal spacing between the (N̂D3, ND3) values for

integerm is less than the length of the line segment in the positive quadrant:

√
N2

D5 +N2
NS5 <

√(
ND5 +

N

NNS5

)2

+

(
NNS5 +

N

ND5

)2

. (E.29)
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The number of solutions for (ND3, N̂D3) is evidently of order√√√√(ND5 +
N

NNS5

)2
+
(
NNS5 +

N
ND5

)2
N2

D5 +N2
NS5

, (E.30)

so for ND5, NNS5 ≫ N we typically have only a single solution. The condi-

tions that ND3 and N̂D3 are positive combined with (E.26) mean that any

solution will satisfy

N̂D3 <
N

NNS5
+ND5 ND3 <

N

ND5
+NNS5 . (E.31)

Now, given any choice of (ND5, NNS5) satisfying (E.27) and positive

(ND3, N̂D3) satisfying (E.26), we will show that there is a unique positive

(k, l) satisfying the constraints (6.14). We do so by combining these con-

straints to yield

N̂D3
ND5

+ ND3
NNS5

− 1
NNS5
gND5

k
l + 1

− ND3

NNS5
+ 1 =

2

π
arctan

k

l
. (E.32)

The right side increases monotonically from 0 to 1 as k/l increases from 0

to ∞. The left side varies monotonically from N̂D3/ND5 > 0 at k/l = 0

to 1−ND3/NNS5 for large k/l. Thus, there is exactly one solution for k/l.

Call this k/l = m.

We then have a unique solution (k, l) that is the intersection between

the line k = ml and the line

k
√
g
NNS5 + l

√
gND5 = N . (E.33)

In terms of m, the result is

k =
N

NNS5√
g +

√
gND5

m

l =
N

mNNS5√
g +

√
gND5

.

(E.34)
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E.4 General families with single

D5-pole/NS5-pole and arbitrarily large

AdS5 × S5 region

We will here provide a significant generalization to the one-parameter family

initially introduced in Section 6.4.3. Our construction of a one-parameter

family analogous to the one appearing in that section occurs most simply

when g is such that there exists m ∈ N+ with

arctan(m/g) =
π

2

a

b
, a, b ∈ N+ , gcd(a, b) = 1 ,

a

b
∈ (0, 1) . (E.35)

That is, we have g = m
tan(π

2
a
b )
, with m, a, b positive integers and 0 < a

b < 1

in reduced form. In this case, we will take

ND5(n) = bfn + α , NNS5(n) = bmfn + β ,

ND3(n) = amfn + γ , N̂D3(n) = (b− a)fn + δ ,
(E.36)

where fn is a sequence which we leave undetermined for now. We then see

that

ND5(n)ND3(n) +NNS5(n)N̂D3(n)

= (bfn + α) (amfn + γ) + (bmfn + β) ((b− a)fn + δ)

= ND5(n)NNS5(n) + ((a− b)mα+ bγ − aβ + bmδ) fn

+ αγ + βδ − αβ ,

(E.37)

so to ensure that (E.26) holds, we would like to ask whether or not it is

possible to choose α, β, γ, δ such that

0 = (a− b)mα+ bγ − aβ + bmδ

N = αγ + βδ − αβ .
(E.38)
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In fact, these equations are solvable for any (a, b,m). In particular, substi-

tuting the former into the latter yields

N =

(
(b− a)
b

α− δ
)
(mα− β) . (E.39)

If we take

β = mα− b , (E.40)

then this equation gives

(a− b)α+ bδ = −N . (E.41)

We know that gcd ((a− b), b) = 1, since a and b were chosen to be relatively

prime, so this linear diophantine equation has an integer solution (α, δ). We

may then define

γ ≡ a

b
β − a− b

b
mα−mδ = −a+m(α− δ) , (E.42)

which is manifestly integral.

We thus define the sequence of parameters ND5(n), NNS5(n), ND3(n),

N̂D3(n) by this choice (α, β, γ, δ), taking fn to be any growing sequence.

Since
√
gND5l +

1√
gNNS5k = N implies that both l and k are at most

O
(
f−1
n

)
, the equations (6.14) yield

ND3(n)

NNS5(n)
=
a

b
+O

(
f−1
n

)
=

2

π
arctan(m/g) +O

(
f−1
n

)
=

2

π
arctan(l/k) +O

(
f−2
n

)
,

(E.43)

and thus

l/k = m/g +O
(
f−1
n

)
. (E.44)

It follows that

|cl−dk| =
∣∣ (√gbfn)(km

g
+O

(
f−2
n

))
−
(

1
√
g
bmfn

)
k
∣∣ = O

(
f−1
n

)
, (E.45)
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as desired.

Thus, in the case that the string coupling g satisfies (E.35), we are able

to identify a one-parameter family with scaling

mND5 ∼ NNS5 ∼
b

a
ND3 ∼

mb

(b− a)
N̂D3 . (E.46)

It is notable that such g are dense in R+, since the map tan π
2 (·) : (0, 1)→

(0,∞) is a continuous bijection, implying that the image of a dense set in

this function is dense. We should therefore be able to extend the above

result by considering sequences of suitable rational approximations.

Indeed, suppose that we fix arbitrary g and take as ansatz the linear

scaling

zND5 ∼ NNS5 , (E.47)

with z ∈ R+ any fixed positive constant. In this case, requiring (E.17) to

be satisfied implies
√
gl ∼ z

√
g
k , (E.48)

and given the relationship between linking numbers and SUGRA parameters

(and the assumption that l, k will be suppressed), this would appear to

require

ND3

NNS5
∼ 2

π
arctan(z/g) ,

N̂D3

ND5
∼ 2

π
arctan(g/z) . (E.49)

We would like to construct a sequence of quadruples of parameters(
ND5(n), NNS5(n), ND3(n), N̂D3(n)

)
exhibiting the scaling that we have

suggested, subject to the requirement that these parameters must be posi-

tive integers. The most natural way to approach this is to take sequences of

rationals an
bn
, pnqn in reduced form such that

an
bn
→ 2

π
arctan(z/g) ,

pn
qn
→ z , (E.50)
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and then define120

ND5(n) = bnqnfn + αn , αn = o(bnqnfn)

NNS5(n) = bnpnfn + βn , βn = o(bnpnfn)

ND3(n) = anpnfn + γn , γn = o(anpnfn)

N̂D3(n) = (bn − an)qnfn + δn , δn = o ((bn − an)qnfn) ,

(E.51)

where fn is left undetermined for the time being. Equation (E.26) then

implies

ND5(n)ND3(n) +NNS5(n)N̂D3(n)

= (bnqnfn + αn) (anpnfn + γn)

+ (bnpnfn + βn) ((bn − an)qnfn + δn)

= ND5(n)NNS5(n)

+ ((an − bn)pnαn + bnqnγn − anqnβn + bnpnδn) fn

+ αnγn + βnδn − αnβn .

(E.52)

For any fixed n, this is precisely the same as (E.37), which we found to be

consistent with the requirement ND5ND3 +NNS5N̂D3 = N +ND5NNS5 for

suitably chosen (α, β, γ, δ). Consequently, we may here find (αn, βn, γn, δn)

which make our definitions of the parameters consistent with this equation

for each n; once we have defined (an, bn, pn, qn) and (αn, βn, γn, δn) in this

way, we may then simply choose a sequence fn which scales sufficiently

quickly such that we recover the necessary asymptotics

αn = o(bnqnfn) , βn = o(bnpnfn) ,

γn = o(anpnfn) , δn = o ((bn − an)qnfn) .
(E.53)

The sequence of solutions that we have defined will then have the desired

asymptotic suppression of max{l, k} and |cl − dk|, as can be shown in a

manner identical to that discussed above.

120In this section, o() refers to the standard “little o” notation.

468



E.5. Nearby solutions with multiple poles

E.5 Nearby solutions with multiple poles

It is reasonable to expect that the precise form of our boundary condition,

and in particular the linear quiver from which our boundary condition de-

scends, can be relaxed somewhat, and indeed we expect that the broad

geometrical features of the holographic description, including the existence

of a large AdS5×S5 region, should be robust to certain “small” deformations

of this quiver. As a concrete example, we may consider a family of solutions

(the simplest family constructed earlier in Appendix E.4) with parameters

of the form

ND5 = bn+α , NNS5 = bzn+β , ND3 = azn+γ , N̂D3 = (b−a)n+ δ ;
(E.54)

here, α, β, γ, δ are constants chosen to satisfy N = αγ + βδ − αβ, and the

constants a, b, z satisfy

tan−1(z/g) =
π

2

a

b
, a, b ∈ N+ , gcd(a, b) = 1 . (E.55)

Each element of this sequence corresponds to a quiver of the form provided

in Figure 6.5. We will now consider deforming these quivers for each n by

coupling an additional s(n) fundamental hypermultiplets to the (ND3+1)th

node of the quiver, where s(n) may scale with n but we require s(n) = o(n).

In this deformation, we have two stacks of D5-branes and two stacks of

NS5-branes with inequivalent linking numbers, described by the parameters

N
(1)
D5 = bn+ α , N

(1)
NS5 = azn+ γ + 1 ,

N
(2)
D5 = s , N

(2)
NS5 = (b− a)zn+ β − γ − 1 ,

(E.56)

and

N1
D3 = azn+ γ , N̂1

D3 = (b− a)n+ δ ,

N2
D3 = azn+ γ + 1 , N̂2

D3 = (b− a)n+ δ + s .
(E.57)
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At leading order (namely at order O(n)), (6.4) gives the conditions

π

2
a = a tan−1(l1/k1) + (b− a) tan−1(l1/k2) + o(n0)

π

2
a = a tan−1(l2/k1) + (b− a) tan−1(l2/k2) + o(n0)

π

2
(b− a) = b tan−1(k1/l1) + o(n0)

π

2
(b− a) = b tan−1(k2/l1) + o(n0) ,

(E.58)

from which we can infer

g

z
=
k1
l1

+ o(n0) =
k2
l1

+ o(n0) =
k1
l2

+ o(n0) =
k2
l2

+ o(n0) (E.59)

and thus from (6.13)

l1 =
N
√
gb

1

2n
+ o(n−1) , l2 =

N
√
gb

1

2n
+ o(n−1) ,

k1 =

√
gN

zb

1

2n
+ o(n−1) , k2 =

√
gN

zb

1

2n
+ o(n−1) ,

(E.60)

and

∆ =
∣∣c1l1 + c2l2 − d1k1 − d2k2

∣∣ = o(n0) . (E.61)

Since max{lA, kB} and ∆ are again suppressed for large n, we find that we

recover the desired geometrical features in this limit. In particular, while

we now have two D5-brane throats and two NS5-brane throats, the total

D5-brane and NS5-brane charges are approximately the same as before, and

the separation between each pair of 5-brane throats in this case is subleading

in n,
l1 − l2
l1

= o(n0) ,
k1 − k2
k1

= o(n0) . (E.62)

It is straightforward to show that a similar argument can be applied to a

more general version of this deformation, where we couple o(n) fundamental

hypermultiplets at each of O(n0) nodes in the quiver, where the location of

these nodes relative to the left endpoint of the quiver scales proportionally

to the overall size of the quiver with n.
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Another deformation of interest involves coupling an additional small

quiver to the left endpoint of our initial quiver, i.e. the endpoint oppo-

site that which is coupled directly to the 4D theory upon imposing our

field theory boundary condition. Here, “small quiver” refers to a quiver de-

scribed by an O(1) number of parameters (N
(A)
D5 , N

A
D3) and (N

(B)
NS5, N̂

B
D3), all

of which are dominated by our initial parameters (ND5, NNS5, ND3, N̂D3).

We can couple the large and small quivers together via bifundamental mat-

ter coupled to an extra U(m) node, where m is also dominated by our

initial parameters; the result will be a good quiver, provided that the small

quiver is good. This procedure results in a boundary condition described by

many distinct parameters, which we can denote by (N
(A)
D5 , N

A
D3)A=1...p and

(N
(B)
NS5, N̂

B
D3)B=1...q with some abuse of notation (they are different from

those describing the small quiver). Notably, (N
(p)
D5 , N

(q)
NS5, N

p
D3, N̂

q
D3) agree

with the original parameters (ND5, NNS5, ND3, N̂D3) at leading order. From

Np
D3 =

√
glp +

2

π

∑
B

N
(B)
NS5 arctan (lp/kB)

N̂ q
D3 =

1
√
g
kq +

2

π

∑
A

N
(A)
D5 arctan (kq/lA) ,

(E.63)

and the fact that N
(A)
D5 , N

(B)
NS5 ≪ N

(p)
D5 , N

(q)
NS5 for A < p and B < q, we see

that the leading behaviour of lp, kq will be the same as before the deforma-

tion. Moreover, the remaining equations for the linking numbers imply

lA/kq = O
(
LA/N

(q)
NS5

)
, kB/lp = O

(
KB/N

(p)
D5

)
(E.64)

for A < p and B < q. Consequently, the newly added parameters are

suppressed compared to l, k, and contribute to ∆ at subleading order; we

therefore arrive again at a solution with a large AdS5 × S5 region.

E.6 Multi-wedge generalizations

Our goal in this section is to understand how to construct theories whose

holographic description involves several wedges of AdS5 × S5 connected by
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interface branes; this applies to the BCFT case as well as the case involving

3D SCFTs which descend from linear or circular quiver gauge theories. The

intuition behind our construction is illustrated in Figure E.1.

Our construction in this section will begin with a list

(m0,m1,m2, . . . ,mp−1,mp) (E.65)

of non-negative integers, where we fix p for concreteness. In the linear quiver

case, we will have m0 = mp = 0, in the circular quiver case, we will have

m0 = m0 = L ̸= 0, and in the BCFT case, we will havem0 = 0 andmp = N .

We would then like to define the required field theory data

(N1
D3, . . . , N

p
D3) , (N̂

1
D3, . . . , N̂

p
D3) , (N

(1)
D5 , . . . , N

(p)
D5) , (N

(1)
NS5, . . . , N

(p)
NS5) ,

(E.66)

where the linking numbers are listed in increasing order. We will define these

via the brane configuration depicted in Figure E.1; we have “blocks” with

large numbers of D5-branes and NS5-branes N
(A)
D5 , N

(A)
NS5, each with large

linking numbers NA
D3, N̂

A
D3 respectively, and the (A − 1)th and Ath blocks

are connected by mA D3-branes. The quantities (N
(A)
D5 , N

(A)
NS5, N

A
D3, N̂

A
D3)

which parametrize the Ath block may be constructed in a completely iden-

tical manner to the construction of the one-parameter families we con-

sidered in Section 6.4.3 and Appendix E.4, with the simple replacement

N → (mA −mA−1); in particular, the linking numbers N̄A
D3,

ˆ̄NA
D3 that we

would obtain from that construction will be related to the correct linking

numbers NA
D3, N̂

A
D3 in the full quiver of the present construction by

NA
D3 = N̄A

D3 +

A−1∑
B=1

N
(B)
NS5 ,

ˆ̄NA
D3 =

ˆ̄NA
D3 +

A−1∑
B=1

N
(B)
D5 , (E.67)

since we need to account for the fact that the linking numbers depend on the

quantities of 5-branes present in previous blocks. Ultimately, we will take all

of the mA (and the number of blocks p) to be O(1) in some large parameters

which will determine the number of 5-branes and linking numbers in the Ath

block.
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Figure E.1: D-brane construction giving rise to the class of boundary condi-
tions considered in this appendix. We have “blocks” consisting of D3-branes

stretched between N
(i)
D5 D5-branes and N

(i)
NS5 NS5-branes with fixed linking

numbers Li,Ki, where ultimately we will take N
(i)
D5, N

(i)
NS5, Li,Ki to scale

with some large quantity. The (i − 1)th and ith blocks are connected by
mi D3-branes. We give an example of the brane configuration in one such
block, with D3-branes shown in black, D5-branes in blue, and NS5-branes
in red.

The above is the sense in which these boundary conditions correspond

to “glued together” sub-quivers; the sub-quivers that are being coupled in

this case are precisely those that arose in the discussion of Section 6.4.3,

corresponding to boundary conditions described by single linking numbers

ND3, N̂D3, with the replacement N → (mA −mA−1) in the present context.

We proceed to define (N̄A
D3,

ˆ̄NA
D3, N

(A)
D5 , N

(A)
NS5), beginning in full gener-

ality with the case of arbitrary coupling g; in general, we construct these

exactly as in Appendix E.4, taking

N
(A)
D5 = b(A)

n q(A)
n f (A)

n + α(A)
n , N

(A)
NS5 = b(A)

n p(A)
n f (A)

n + β(A)
n (E.68)
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and

N̄A
D3 = a(A)

n p(A)
n f (A)

n +γ(A)
n , ˆ̄NA

D3 = (b(A)
n −a(A)

n )q(A)
n f (A)

n +δ(A)
n , (E.69)

where
a
(A)
n

b
(A)
n

→ 2

π
tan−1(zA/g) ,

p
(A)
n

q
(A)
n

→ zA (E.70)

for some zA, the quantities α
(A)
n , β

(A)
n , γ

(A)
n , δ

(A)
n sastisfy

α(A)
n γ(A)

n + β(A)
n δ(A)

n − α(A)
n β(A)

n = mA −mA−1 , (E.71)

and f
(A)
n is quickly-scaling. Then, passing to the linking numbers by (E.67),

we have that

p∑
A=1

(
N

(A)
D5 N

A
D3 +N

(A)
NS5N̂

A
D3

)
= mp −m0 +ND5NNS5 (E.72)

and the linking numbers are increasing by construction, We will also require

that f
(A)
n scales sufficiently quickly relative to f

(A−1)
n such that the param-

eters in block A scale at least as quickly as the parameters in block A − 1.

We can now consider how the SUGRA parameters behave for each case.

E.6.1 Multi-wedge dual of BCFT

Recalling that

p∑
A=1

(
√
gN

(A)
D5 lA +

1
√
g
N

(A)
NS5kA

)
= N , (E.73)

and all of the lA, kA are positive, we see that one must have

lA <
N

N
(A)
D5

, kA <
N

N
(A)
NS5

, (E.74)

so that in particular

lim
n→∞

lA, kA = 0 . (E.75)
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We have from our definitions

NA
D3 = a(A)

n p(A)
n f (A)

n + γ(A)
n +

A−1∑
B=1

(
b(A)
n p(A)

n f (A)
n + β(A)

n

)
N̂A

D3 = (b(A)
n − a(A)

n )q(A)
n f (A)

n + δ(A)
n +

A−1∑
B=1

(
b(A)
n q(A)

n f (A)
n + α(A)

n

)
,

(E.76)

as well as the relations to SUGRA parameters

NA
D3 =

√
glA +

2

π

p∑
B=1

(
b(A)
n p(A)

n f (A)
n + β(A)

n

)
tan−1 (lA/kB)

N̂A
D3 =

1
√
g
kA +

2

π

p∑
B=1

(
b(A)
n q(A)

n f (A)
n + α(A)

n

)
tan−1 (kA/lB) .

(E.77)

Comparing these expressions at leading order, we see that consistency is

achieved by requiring

lim
n→∞

lA
kA

=
zA
g

(E.78)

and

lim
n→∞

lA
lB

= lim
n→∞

kA
kB

= 0 , A < B . (E.79)

Schematically, we can say that glA ∼ zAkA and

l1 ≪ l2 ≪ . . .≪ lp ≪ 1 , k1 ≪ k2 ≪ . . .≪ kp ≪ 1 . (E.80)

We therefore find

lim
n→∞

∣∣ p∑
A=1

(
N

(A)
D5 lA −N

(A)
NS5kA

) ∣∣ = 0 , (E.81)

as desired.

We have demonstrated that our construction thus far possesses a large

AdS5×S5 asymptotic region; to ensure that we recover a multi-wedge deep

in the interior, we will actually consider a subset of the families defined so far

for which the parameters (N
(A)
D5 , N

(A)
NS5, N̄

A
D3,

ˆ̄NA
D3) of block A are all taken
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to scale with the same large parameter as the parameters of block A − 1,

as opposed to scaling strictly faster. Note that the “doubled” construction

of Section 6.6.1 is an example of this choice. In this case, it suffices to note

that for lA, kA ≪ r ≪ lA+1, kA+1, we find the leading behaviour of h1, h2 to

be

h1 =
πℓ2s
2

r cos θ
√
g

+
ℓ2s
4

∑
A

cA√
g
ln

(
(r cos θ + lA)

2 + r2 sin2 θ

(r cos θ − lA)2 + r2 sin2 θ

)
= ℓ2s

∑
B≤A

N
(B)
D5

(
lB
r
cos θ +O(l3B/r

3)

)
+ ℓ2s

∑
B>A

N
(B)
D5

(
r

lB
cos θ +O(r3/l3B)

)
≈ ℓ2s cos θ

(
N

(A)
D5

lA
r

+N
(A+1)
D5

r

lA+1

)
(E.82)

and

h2 =
πℓ2s
2

√
gr sin θ +

ℓ2s
4

∑
A

dA
√
g ln

(
r2 cos2 θ + (r sin θ + kA)

2

r2 cos2 θ + (r sin θ − kA)2

)
= ℓ2s

∑
B≤A

N
(B)
NS5

(
kB
r

sin θ +O(k3B/r
3)

)
+ ℓ2s

∑
B>A

N
(B)
NS5

(
r

kB
cos θ +O(r3/k3B)

)
≈ ℓ2s sin θ

(
N

(A)
NS5

kA
r

+N
(A+1)
NS5

r

kA+1

)
.

(E.83)

Since zBN
(B)
D5 ∼ N

(B)
NS5 and

√
glB ∼ zB√

gkB, the geometry in this region is

approximately that of AdS5 × S5, where the value of r0 is proportional to

the geometric mean of lA (or kA) and lA+1 (or kA+1), and the AdS radius

in this wedge scales relative to the AdS radius in the asymptotic region as

L4
wedge/L

4
AdS ∼

N
(A)
D5 N

(A+1)
D5

N2
lA

lA+1
.
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E.6.2 Multi-wedge dual of SCFT: linear quiver

As at the end of last section, we will continue to restrict to the case where

the linking numbers and charges for each block are all taken to scale with

the same large parameter. The linking numbers NA
D3, N̂

A
D3 are related to

parameters N
(A)
3 , N̂

(A)
3 by

N
(A)
3 = NNS5 −NA

D3 , N̂
(A)
3 = N̂A

D3 , (E.84)

so we can write (6.74) as

NA
D3 =

2

π

∑
B

N̂
(B)
5 tan−1

(
eδ̂B−δA

)
N̂B

D3 =
2

π

∑
A

N
(A)
5 tan−1

(
eδA−δ̂B

)
.

(E.85)

It is immediate that we obtain the desired behaviour in this case, since this

system of equations is identical to the system from the BCFT case up to sub-

leading terms if we identify lA ↔ e−δA and kB ↔ e−δ̂B , and the definitions

of h1, h2 will have the same leading behaviour in the regions of interest.

E.6.3 Multi-wedge dual of SCFT: circular quiver

The solutions of type IIB supergravity describing the vacuum states of 3D

SCFTs arising from circular quiver gauge theories have not yet been dis-

cussed in this note, but were first analyzed in [297]. These solutions are

similar to those arising from linear quivers, with harmonic functions h1, h2

now given by

h1 = −
p∑

a=1

γa ln

( ∞∏
n=−∞

tanh

(
πi

4
− z − (δa + 2nt)

2

))
+ c.c. ,

h2 = −
p̂∑

b=1

γ̂b ln

( ∞∏
n=−∞

tanh

(
πi

4
− z − (δ̂b + 2nt)

2

))
+ c.c. ,

(E.86)
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where t is a positive parameter satisfying 0 ≤ δa, δ̂b ≤ 2t. These functions are

periodic under Re(z)→ Re(z)+2t by construction, and we can alternatively

express them using Jacobi ϑ-functions as

h1 = −
p∑

a=1

γa ln

(
ϑ1(νa|τ)
ϑ2(νa|τ)

)
+ c.c. , iνa = −z − δa

2π
+
i

4
,

h2 = −
p̂∑

b=1

γ̂b ln

(
ϑ1(ν̂b|τ)
ϑ2(ν̂b|τ)

)
+ c.c. , iν̂b =

z − δ̂b
2π

(E.87)

on a torus with modular parameter τ = it/π.

The linking numbers and supergravity parameters are now related by

NA
D3 =

2

π

∑
B

N
(B)
NS5

( ∞∑
n=0

arctan
(
e−δ̂B+δA−2nt

)
−

∞∑
n=1

arctan
(
eδ̂B−δA−2nt

))

N̂A
D3 =

2

π

∑
B

N
(B)
D5

( ∞∑
n=0

arctan
(
eδ̂B−δA−2nt

)
−

∞∑
n=1

arctan
(
e−δ̂B+δA−2nt

))
(E.88)

and

ND3 =
2

π

∑
A

∑
B

N
(A)
D5 N

(B)
NS5

×
∞∑
s=1

s
(
arctan(eδ̂B−δA−2st) + arctan(eδA−δ̂B−2st)

)
,

(E.89)

where ND3 = m0 = mp.

The linking number conditions can again be satisfied by requiring

e−δA , e−δ̂A ≪ e−δA+1 , e−δ̂A+1 (E.90)
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and

eδ̂A−δA ∼ tan

(
π

2

K̄A

N
(A)
D5

)
∼ g

zA
, (E.91)

provided t is sufficiently large that

e−δ̂B+δA−2t ≪ 1 , eδ̂B−δA−2t ≪ 1 (E.92)

for all A,B. It is clear from the expression for ND3 that these conditions

must be true, since N
(A)
D5 , N

(B)
NS5 ≫ ND3. Again, in the region δA ≪ Re(z)≪

δA+1, the harmonic functions h1, h2 agree with those from the linear quiver

case at leading order, since the additional contributions coming from the

n ̸= 0 terms will be suppressed.
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