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Abstract

The AdS/CFT correspondence is a far-reaching equivalence between theo-
ries of quantum gravity in spacetimes with negative cosmological constant,
such as anti-de Sitter (AdS) space, and lower-dimensional, non-gravitational
quantum systems, such as conformal field theories (CFTs). In this thesis, we
will use a version of AdS/CFT applicable to boundary conformal field the-
ories (BCFTs) to investigate the physics of supersymmetric gauge theories,
and to develop holographic models for cosmology and black hole physics. We
make frequent use of an ansatz for holographic BCFT wherein AdS space-
time ends on a surface called an end-of-the-world (ETW) brane, and of the
Ryu-Takayanagi (RT) formula for holographic entanglement entropy.

We first study the N = 4 supersymmetric Yang-Mills (SYM) theory on
a half-space, with boundary conditions preserving scale invariance and half
of the original supersymmetry. We calculate a conjectured renormalization
group (RG) monotone called boundary F for the most general such bound-
ary conditions using the RT formula. In some cases, we perform an exact
calculation using supersymmetric localization, and find exact agreement for
the leading large N term as a function of the 't Hooft coupling.

Next, we introduce a toy model for cosmological physics in the framework
of AdS/CFT, wherein a 4D cosmology resides on an ETW brane propagating
behind the horizon in a black hole microstate. We study the time-dependent
physics of the behind-the-horizon region in such microstates, finding that
it can often be probed by the time-dependence of entanglement entropy
for sufficiently large CFT subsystems. We investigate the plausibility of
obtaining localized 4D gravity on the ETW brane in both effective and
microscopic versions of this model.

Last, we consider a doubly-holographic model of a radiating black hole,
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Abstract

and apply the RT formula to analyze the time-dependence of the fine-grained
entropy of its radiation. We obtain an analogue of the Page curve consistent
with unitarity due to a phase transition between RT surfaces, after which

the radiation system encodes part of the black hole interior.
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Lay Summary

Some quantum mechanical systems have the surprising property that, when
the interactions between particles in these systems are tuned to be very
strong, they appear to encode gravitational physics in a space with more
dimensions. We use this fact to learn about an important quantum system
that exhibits this “holographic” property, calculating a quantity which can
help to map the space of possible boundary conditions for this system. We
also consider the possibility that special high-energy states of such quantum
systems may encode the physics of a universe broadly similar to our own,
beginning with a “big bang” and recollapsing to a “big crunch”. Lastly,
we study a holographic quantum system describing a black hole emitting
radiation, demonstrating that information which fell into such a black hole

will eventually find its way out.



Preface

This is a manuscript-style thesis, whose main content consists of previously
published work which is reproduced here verbatim.

Chapters (1] and |2| of this work are an original synthesis of the relevant
literature, providing the necessary context and technical prerequisites for
later chapters. Section which states the objectives of this thesis, is a
paraphrasis of the abstracts of the works appearing in this thesis, which
were largely written with or by my co-authors in these works.

A version of Chapter |3 was published in [1], in collaboration with Mark
Van Raamsdonk. We jointly carried out the holographic calculation found in
Section [3.4, and collaborated in writing the material appearing in Sections

and I was solely responsible for the exact calculation
using supersymmetric localization found in Section [3.5 and Appendix [B.6,

as well as the analysis of Section[3.4.3|and and Appendices B.4, and
. I am the author of these sections and appendices (with the exception
of the finite N comparison appearing in Section .

A version of Chapter 4| was published in [2], in collaboration with Sean
Cooper, Moshe Rozali, Brian Swingle, Mark Van Raamsdonk, and David
Wakeham. I was resonsible for the analysis of Ryu-Takayanagi surfaces in
dimension d + 1 = 5 found in Section 4.3.2] as well as the argument for the
cosmological interpretation discussed in Section I am the author of the
material found in both of these sections.

A version of Chapter [5| was published in [3]; T am the sole author of this
material, though I thank Mark Van Raamsdonk for collaboration at an early
stage of this work.

A version of Chapter [6 was published in [4], in collaboration with Mark

Van Raamsdonk, much of the analysis and the writing of the main body of
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this paper (found here in Sections and being shared. The

elements of this work for which I am solely responsible include the analysis
of families of boundary conditions corresponding to arbitrarily large AdS
regions (Section and Appendix , perturbations to these families
(Section and Appendix [E.5)), the analysis of wedge and multi-wedge
holography (Section and Appendix , and the proof that the scale
of the internal space cannot be suppressed relative to the AdS scale (Ap-
pendix , as well as the writing of Sections , and all
appendices for this chapter.

A version of Chapter |7/ was published in [5], in collaboration with Moshe
Rozali, James Sully, Mark Van Raamsdonk, and David Wakeham. In addi-
tion to participating in the conceptual discussions which lead to this work,
I was involved in the gravitational calculation for the static case found in
Section and am the sole author of Section

The works [6-8], also completed during the course of my PhD program,

will not appear in this thesis.
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Chapter 1

Introduction

This is a thesis about quantum gravity and its applications. Some of these
applications will be commonsense, as in our investigations of black holes and
cosmological spacetimes: both entail strong gravitational fields varying on
microscopic scales, so it is sensible that quantum gravitational phenomena
will come into play. Other applications are perhaps surprising; through
holography, we will be able to use gravitational physics to study quantum
mechanical systems with no explicit gravitational degrees of freedom at all.
Since we are interested in quantum gravity, we should clarify what this
phrase means, and why it is worth studying; this chapter will provide a
user-friendly overview of our motivation and some of the relevant concepts,
while the following chapter will cover some more technical preliminaries.
Rather than attempting to make our coverage systematic, we emphasize

material which will be most relevant for later chapters.

1.1 Why quantize gravity?

In the pursuit of a theory describing gravitational phenomena in a quantum
mechanical framework, the most naive approach one might consider is to
simply quantize small fluctuations of spacetime, along with whatever other
quantum fields may be present, on a fixed background, utilizing the standard
techniques of quantum field theory; we might refer to such a gestalt as semi-
classical. This perturbative approach, while entirely consistent (see e.g.
[10, 11]), is incomplete, in the sense that it is unable to make predictions
about the outcome of certain experiments, which may involve high-energy
particles or strong gravitational fields.

To preview why this might be the case, one need only observe that
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the gravitational coupling governing graviton-graviton interactions is New-
ton’s gravitational constant G, which has mass dimension [G] = —(D — 2)
in D spacetime dimensions. In the machinery of perturbative quantum
field theory, this suggests that Einstein gravity is (perturbatively) non-
renormalz'zableﬂ a graviton scattering amplitude with centre of mass energy
E may be computed as a power series in the ratio of the energy to the
Planck mass E/m,, and therefore breaks down at the Planck scale. Such
considerations suggest that gravity is best understood from the Wilsonian
viewpoint, as an effective field theory with a cutoff at or somewhat below
the Planck scale. Following this philosophy, we should start by positing a
symmetry group that should be present in the theory (here diffeomorphism
and Lorentz invariance), and write down the most general Lagrangian con-
sistent with these symmetries, with coefficients fixed by dimensional analysis
up to O(1) factors.ﬂ This procedure allows one to make predictions for the
outcome of low-energy experiments; to understand high-energy experiments,
where new physics is expected to play an important role, one requires an
ultraviolet (UV) completion of the effective field theory.

1.2 String theory

The above discussion motivates the pursuit of a UV complete quantum me-
chanical theory which reproduces ordinary Einstein gravity at low energies.
At present, perhaps the most promising candidate for such a theory is string
theory, which is believed to be UV finite (see e.g. [14-17]) and which has
long been understood to naturally incorporate a graviton in its spectrum
[18-20].

While modern string theory is a vast and rich discipline, encompassing
a variety of physical objects and phenomena, a natural starting point for

the study of string theory is the quantization of the classical theory of a

Tt is a logical possibility that Einstein gravity, while being perturbatively non-
renormalizable, secretly corresponds to an RG flow with a UV fixed point; this paradigm
is referred to as asymptotic safety [12].

2Conspicuously, this philosophy is in dramatic contradiction to the observed value of
the cosmological constant; this is the cosmological constant problem, see e.g. [13].
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propagating string. The fundamental degrees of freedom in this theory de-
scribe the embedding of a two-dimensional surface, the string worldsheet,
into a D-dimensional spacetime, the target space; the action principle then
requires that the area of the resultant embedding should be extremized. To
fully define the classical theory, we must also specify boundary conditions
for the embedding functions; these can correspond to either open or closed
strings. In the former case, the possibility of a fixed boundary condition
for some coordinates, implying that the string endpoint is constrained to
lie in some (p + 1)-dimensional surface in spacetime, presages the existence
of extended objects known as Dp-branes on which fundamental strings can
end.

Canonically quantizing the classical theory, one finds an infinite tower of
states, with masses separated by a large energy scale (the string scale), with
a finite number of particles at each mass level. In the versions of this theory
enjoying supersymmetry, a symmetry relating bosonic and fermionic degrees
of freedom, the lowest mass level consists of massless states, which include
a vector boson for the open string and a graviton for the closed string.
It can be shown that the low-energy effective field theories describing the
tree-level physics of the massless spectrum of various supersymmetric string
theories are ten-dimensional supersymmetric theories of gravity, known as
supergravity theories.

For superstring theory to be well-defined at the quantum level, it tran-
spires that the number of spacetime dimensions must be equal to D = 10.
This suggests that, if string theory were to describe a universe like our own,
some of the spatial dimensions must be compactified to microscopic scales,
an idea we will return to shortly. Beyond ensuring the theory’s consis-
tency, the introduction of compactified extra dimensions leads to interesting
phenomenological consequences, given that the geometry of these extra di-
mensions plays a role in determining the particle spectrum as seen by a 4D
observer via the Kaluza-Klein (KK) mechanism [21, 22)].

One of the most important developments in the study of string theory
has been the elucidation of the central role played by D-branes [23]; rather

than the rigid surfaces appearing in the classical theory, D-branes have been
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understood to correspond to dynamical, fluctuating objects on which addi-
tional fields may reside. A particularly interesting example is the D3-brane
appearing in the superstring theory known as type IIB string theory; the
low-energy effective action of a stack of D3-branes, capturing the physics
of massless open string modes, is a special gauge theory known as N = 4
supersymmetric Yang-Mills (SYM) theory. This fact plays a crucial role in
motivating the AdS/CFT correspondence, elaborated on in the following

section.

1.3 Holography

There have long been intimations that the fundamental quantum descrip-
tion of gravity should be holographic, in the sense that the physics of a
gravitating region may be best described in terms of degrees of freedom as-
sociated to the region’s boundary. In 1972, Bekenstein argued on the basis
of a simple thought experiment that, to avoid violations of the second law of
thermodynamics, one should associate a thermodynamic entropy to a black
hole proportional to its horizon area in Planck units [24, 25]. Taking this
idea seriously suggests a holographic entropy bound which must be satisfied
by any quantum mechanical theory which contains black holes: thermody-
namic entropy that can be put into a gravitating region cannot exceed the
area of that region, since otherwise one could create a black hole within the
region by adding enough additional matter, violating a generalized version
of the second law of thermodynamics [26]. The surprising implication is
that the number of degrees of freedom required to describe a gravitating
region quantum mechanically scales with the area of the region’s boundary,
in stark contrast to the volume-extensive entropy scaling of typical quan-
tum mechanical systems. This type of reasoning led 't Hooft, and later
Susskind, to argue for a “holographic principle” governing quantum gravity
[27,28]. Only a few years later, this principle received beautiful microscopic

incarnation, in the form of the AdS/CFT correspondence [29].
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The AdS/CFT correspondence

An interesting observation in physics is that different regimes of a physical
theory may be most naturally described in terms of different degrees of
freedom; for example, Yang-Mills theory can be thought of as a theory
of glueballs at strong coupling. A remarkable and surprising fact is that,
when we consider certain conventional quantum systems in a strong coupling
limit, the natural degrees of freedom in which to formulate the theory are
inherently geometrical. In some cases, the dynamics of these degrees of
freedom may even be governed by Einstein gravity.

The AdS/CFT correspondence, more inclusively referred to as holog-
raphy or gauge/gravity duality, describes a precise equivalence between two
quantum mechanical theories [29-31]. In the canonical version of AdS/CFT,
one of these two theories, sometimes referred to as the bulk theory, is a
(d + 1)-dimensional theory of quantum gravity in a negatively curved, or
anti-de Sitter (AdS), spacetime. The other, equivalent theory, often re-
ferred to as the boundary theory, is a conventional, non-gravitational, d-
dimensional theory known as a conformal field theory (CFT); this name
refers to the presence of a collection of symmetries of the theory, known
as conformal symmetries, which includes scale invariance in addition to the
standard Poincaré invariance of local quantum field theory. The boundary
theory is so-named because it can be thought of as residing on the (con-
formal) boundary of the bulk AdS spacetime, thereby providing a precise
realization of the holographic principle. As this boundary theory becomes
increasingly strongly coupled, the corresponding bulk theory becomes in-
creasingly well-approximated by classical supergravity.

Though its earliest and most precise manifestations provide a relation-
ship between specific, microscopic supersymmetric gauge theories and su-
perstring theories, the AdS/CFT correspondence has long been understood
to apply much more broadly; effective field theories in AdS are believed to
give rise to approximate conformal field theories on very general grounds,
and conditions under which a conformal field theory should admit such a

bulk description, namely for a conformal field theory to be holographic, have
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been proposed [32] and extensively studied (see e.g. [33-38]).

The development of an increasingly detailed understanding of the map-
ping between theories related by AdS/CFT duality, colloquially referred to
as the holographic dictionary, has permitted unprecedented computational
control in understanding both quantum gravitational systems and strongly
coupled quantum field theories. One of the most important entries in this
dictionary, the GKPW dictionary [30, 31], can be used to make explicit the
relationship between a variety of physical data appearing in theories related
by holographic duality, from correlation functions of local operators to in-
formation theoretic quantities. As such, the AdS/CFT dictionary has led to
a variety of revolutionary insights, from properties of quantum mechanical
black holes to the emergence of spacetime, and even to applications well
beyond the traditional purview of quantum gravity (see e.g. the reviews
[39, 140]).

It from qubit

One of most elegant and exciting programs in the study of AdS/CFT has
been guided by the realization that, even without detailed input regarding
the structure of a holographic CFT, certain basic properties of information
processing in quantum mechanical systems may be responsible, via the du-
ality, for basic properties of gravitational physics. An early suggestion of
the role played by quantum entanglement in the state of a holographic CFT
was the observation that a particular highly entangled state of such a theory
could encode the physics of a two-sided black hole, whose two asymptotic
regions are connected by a spatial wormhole [41]. Further progress was per-
mitted by a groundbreaking result of Ryu and Takayanagi [42], who conjec-
tured a powerful generalization of Bekenstein’s formula for the entropy of a
black hole in the context of AdS/CFT. The Ryu-Takayanagi (RT) formula
equates the von Neumann entropy of spatial subregions of the boundary
CFT, which can be used to characterize the amount of entanglement be-
tween degrees of freedom inside and outside of these subregions, to the area

of certain extremal surfaces in the bulk theory, thereby “geometrizing” the
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entanglement structure of holographic states.

A particularly influential application of the Ryu-Takayanagi formula has
been to argue more broadly that the connectivity of spacetime may arise
from the entanglement structure of the underlying holographic degrees of
freedom [43-45]. This philosophy represents a fundamental reversal of the
puzzle of reconciling gravity and quantum mechanics, suggesting that the
geometrical structure so central to Einstein’s theory of gravity is precisely a

manifestation of the fundamentally quantum property of entanglement.

1.4 Black holes

Black holes are among the most fundamental objects in any theory of quan-
tum gravity; indeed, the effort to establish a theoretical framework capable
of describing the quantum physics of black holes has been an important
engine driving the pursuit of a UV completion for gravity. In spite of this
motivation, a key theme of quantum gravity research in recent years has
been the surprising extent to which foundational and previously inexplica-
ble features of quantum black holes, from their unitary dynamics to a precise
accounting of their microstates, appear to be recoverable from semi-classical
methods.

As mentioned above, reconciling the existence of black holes with the
laws of thermodynamics appears to require one to associate a thermody-
namic entropy to a black hole which is proportional to its area in Planck units
[24]. Circumstantial evidence for this proposal was granted by the discovery
of the laws of black hole mechanics [46], theorems governing the behaviour
of black holes in classical gravity which suggest an analogy with typical ther-
modynamic systems. In the context of statistical mechanics, thermodynamic
entropy admits an interpretation as counting the microstates of a theory cor-
responding to some collection of fixed macroscopic observables. However, in
classical gravity, the interpretation of a putative thermodynamic entropy is
mysterious, as classical black holes satisfy no-hair theorems [47-49] which
imply that they are completely characterized by a small number of charges,

and therefore appear to permit no distinct microstates. This observation
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indicates that a statistical interpretation of the black hole entropy should
necessarily invoke quantum mechanics.

Indeed, stronger support for understanding black holes as genuine ther-
modynamic systems came from Hawking’s calculation of the spectrum of
radiation emitted by a quantum mechanical black hole [50], based on a
semi-classical treatment of quantum fields propagating on a black hole back-
ground. This analysis suggested that black holes radiate with a perfect
blackbody spectrum, with an associated entropy given precisely by the afore-
mentioned area law, often referred to as the Bekenstein-Hawking formula for
the entropy. An alternative derivation of the Bekenstein-Hawking entropy
formula was later given by Gibbons and Hawking [51], making use of a
Euclidean version of Feynman’s path integral formalism applied to semi-
classical gravity. These results invite an interpretation of black hole physics
which is now sometimes referred to as the central dogma of black hole me-
chanics [52]: we should think of a black hole as a regular quantum me-
chanical system interacting with its environment, with roughly one degree
of freedom per unit area in Planck units.

This understanding of black hole microphysics has found explicit real-
ization in string theory and AdS/CFT. An important result of Strominger
and Vafa [53] provided a precise microstate-counting interpretation of the
Bekenstein-Hawking formula for a particular class of supersymmetric black
holes in string theory; this result has since been substantially generalized,
including to account for subleading corrections to the black hole entropy
formula (see [54] for a review). In AdS/CFT, black holes may be under-
stood as corresponding to thermal states of a holographic CFT [55], and
the Bekenstein-Hawking entropy formula appears as a special case of the
Ryu-Takayanagi formula applied to these states.

Despite these advances, a long outstanding question regarding black hole
physics follows from a disquieting consequence of Hawking’s calculation,
namely a tension between effective field theory and unitarity, sometimes
termed the black hole information problem: given that the radiation emit-
ted by an evaporating black hole is thermal, its evolution appears to trans-

form a pure state prior to black hole formation into a mixed state after its
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complete evaporation, violating unitarity [56]. A useful diagnostic for the
deviation from unitarity is the von Neumann entropy of the radiation, which
here can be thought of as measuring the amount of entanglement between
the radiation and the black hole, or more generally, as characterizing the
degree of uncertainty in the underlying quantum state of the radiation. In
unitary quantum mechanics, the von Neumann entropy would rise with the
early emission of Hawking radiation, saturate at the value of the Bekenstein-
Hawking entropy, and decrease to zero when the black hole evaporates, fol-
lowing a profile known as the Page curve [57, 58]. The inflection point of
this curve, occurring at a time referred to as the Page time, must demarcate
the onset of physics not accounted for in Hawking’s analysis.

An especially striking statement of the black hole information problem is
known as the firewall paradoz, which suggests that preserving both unitar-
ity and semi-classical physics in weakly-curved spacetime necessarily implies
the existence of extremely high-energy excitations at the horizon of an old
black hole [59, 60] (see also [61, 62]). This conclusion arises from a thought
experiment regarding the distribution of entanglement between a black hole
and its environment. To comply with unitarity, quantum information must
escape in the radiation emitted from a black hole after the Page time, im-
plying that a photon emitted at late times should be maximally entangled
with the early Hawking radiation. Basic quantum mechanical constraints
then imply that the entanglement between this photon and all modes in
the black hole interior must be completely severed, at the price of dramatic
consequences at the horizon. Refined versions of the firewall paradox remain
unresolved at the time of writing, though an intriguing principle for address-
ing this problem, the FR=FEPR proposal of Maldacena and Susskind [45],
suggests a means for circumventing the paradox may be to posit that the
early radiation modes and the interior modes should be identified, with the
two seemingly disparate spacetime regions that these modes occupy being
connected by microscopic wormholes.

Recent developments have shed significant light on many of these issues,
suggesting that, in defiance of long-held expectations, a careful effective

field theory calculation can reproduce a unitary Page curve [9, 63-67]. In
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particular, a subtle modification of the formula used to compute the en-
tropy of Hawking radiation appears to be necessary when applied to grav-
itational systems; this alteration can be motivated by the observation that
the Euclidean gravitational path integrals which can be used to compute
these entropies must include additional, previously neglected saddle-point
configurations referred to as replica wormholes [65, 66]. A model for under-
standing the modified entropy formula without recourse to the Euclidean
gravitational path integral has also been provided by [67], which makes con-
crete the idea that exponentially small quantum overlaps in the naively or-
thogonal wavefunctions of effective field theory excitations in the black hole
interior can explain the need for a correction to Hawking’s calculation | A
counter-intuitive consequence of these findings has been the conclusion that
an experimenter acting only on the Hawking radiation of an old black hole

can in principle instantaneously manipulate objects in its interior.

1.5 Braneworlds

As mentioned previously, the consistency of string theory relies on the exis-
tence of extra spacetime dimensions; consequently, taking seriously the idea
that string theory could describe our universe, one seemingly requires some
of these dimensions to be compact in order to avoid conflict with observa-
tion. A nailve expectation is that these extra dimensions must be very small
to avoid detection in high-energy collider experimentsﬁ However, an inter-
esting alternative to compactification, often referred to as the RSII modelﬂ
was offered by Randall and Sundrum [72]; in this model, one envisions low-
energy observers localized to a four-dimensional membrane which cuts off a

five-dimensional AdS spacetime near its conformal boundary. In contrast to

3Very recently, a careful treatment of these overlaps has apparently enabled a precise
accounting for the Bekenstein-Hawking entropy at the level of effective field theory [68,/69].

4An early challenge to this expectation was raised by Arkani-Hamed, Dimopoulous,
and Dvali, who proposed that a compactification manifold could have sizes up to 1 mm if
gravity is the only known force capable of probing the extra dimensions [70].

5An earlier instantiation of this model, the RSI model, involved a compact extra di-
mension, and was intended to solve the hierarchy problem regarding the large discrepancy
between the Planck scale and the electroweak scale [71].

11
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the simplest compactifications appearing in string theory, the RSII model is
what is known as a warped compactification, meaning that the local geome-
try in the full spacetime depends non-trivially on one’s location in the extra
dimensions.

Studying the classical gravitational fluctuations around the background
RSIT geometry, one finds a massless graviton in the spectrum, whose wave-
function is localized to the brane. There is additionally a continuum of
Kaluza-Klein modes with arbitrarily small mass, but the suppression of the
wavefunctions of these modes at the brane ensures that corrections to 4D
gravity for brane-localized observers remain small. Given that the RSII
background corresponds to a piece of AdS, the physics of this model has
a natural interpretation in AdS/CFT [73-76]; one can think of cutting off
AdS by placing a Planck brane near its boundary as tantamount to intro-
ducing a UV cutoff in the dual CFT, and coupling this theory to dynamical
4D gravity. With the possibility of localizing gravity to a membrane in
a higher-dimensional theory arose a substantial industry of studying phe-
nomena like black holes, gravitational waves, and cosmology on Randall-
Sundrum branes, sometimes referred to as braneworlds in this context; see
[77] for a review.

A more precise proposal for embedding the RSII idea in string the-
ory came from Karch and Randall [78, 79], who considered putting an d-
dimensional AdS brane (rather than a flat brane) in (d + 1)-dimensional
AdS; in this model, one obtains a non-zero gap in the Kaluza-Klein spec-
trum, but 4D gravity is only “locally localized”, because the graviton obtains
a small mass. The Karch-Randall set-up is expected to arise from a holo-
graphic theory where conformal symmetry is partially broken by a boundary
or defect, perhaps arising from the low-energy physics of stacks of intersect-
ing D-branes in string theory; consequently, it represents one of the first
suggestions that holographic systems with boundaries may have interesting

applications.
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1.6 Boundaries

Much less central than the developments mentioned so far within the realm
of quantum gravity is a subgenre of holographic literature concerned with ex-
tending the AdS/CFT dictionary to encompass holographic quantum field
theories with boundaries. A particularly tractable class of quantum field
theories with boundaries are boundary conformal field theories (BCFTs),
these theories are well-motivated and widely studied in the context of con-
densed matter physics [80-85], providing insight into quantum systems with
impurities or finite size effects. In 2D, BCFTs are also of direct relevance
to perturbative string theory, providing a description of the worldsheet the-
ory in the presence of a D-brane boundary condition; see [86] for a review.
The subject of the holographic correspondence for boundary conformal field
theories sometimes goes by the title of the AdS/BCFT correspondence.

A crucial feature of the proposed holographic duals for BCFTs, includ-
ing the effective model of [78, 87, 88| as well as microscopic realizations in
supergravity, is that the bulk theory involves a spacetime which ends on
a surface known as an end-of-the-world (ETW) brane, or which smoothly
degenerates in a macroscopic “ETW brane region”. In addition to allowing
one to use the tools of AdS/CFT to study the physics of field theories with
boundaries, the possibility of introducing a new gravitating object in the
bulk enriches the space of physical systems that one can study in the quan-
tum gravity theory; as in the aforementioned braneworld scenarios, black

holes or entire universes may reside on an ETW brane.

1.7 This thesis

Our objectives in this thesis will be three-fold.

First, in Chapter 3, we will apply a microscopic version of the AdS/BCFT
correspondence to investigate the physics of the celebrated N = 4 super-
symmetric Yang-Mills theory with gauge group U(N). We consider the full
space of conformally invariant boundary conditions for this theory which

preserve half of the original supersymmetry, as classified by Gaiotto and
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Witten [89, 90]. These boundary conditions arise from string theory con-
structions involving D3-branes ending on collections of 5-branes. The the-
ories obtained for each choice of boundary condition are characterized by a
quantity called boundary F', conjectured to decrease under renormalization
group flows triggered by deformations with boundary-localized operators.
We perform a holographic calculation of boundary F' for all such theories by
evaluating the entanglement entropy for a half-ball centered on the BCFT
boundary using the Ryu-Takayanagi formula in the dual solutions of type
IIB supergravity. For a subset of these boundary conditions, we also cal-
culate boundary F' exactly by evaluating the hemisphere partition function
using supersymmetric localization. We find that the leading term at large
N in the supergravity and localization results agree exactly as a function of
the 't Hooft coupling A.

Second, in Chapters and [6, we will propose and study a micro-
scopic quantum mechanical model for cosmological physics which embeds
the braneworld paradigm into the framework of AdS/BCFT, commenting
on how field theory observables may be used to probe the cosmological evolu-
tion, and investigating whether localized 4D gravity can be achieved in either
effective or microscopic versions of this model. In Chapter 4, we explore the
possibility that certain high-energy holographic CFT states correspond to
black hole microstates with a geometrical behind-the-horizon region, mod-
elled by a portion of a second asymptotic region terminating at an ETW
brane. We study the time-dependent physics of this behind-the-horizon
region, whose ETW boundary geometry takes the form of a closed FRW
spacetime. We show that in many cases, this behind-the-horizon physics
can be probed directly by looking at the time dependence of entanglement
entropy for sufficiently large spatial CFT subsystems. In Chapter [5, we
consider simple generalizations of this set-up with an additional interface
brane propagating in the bulk. We find that solutions with a viable cos-
mological interpretation for the ETW brane, wherein gravity is localized,
exist only if our model is further generalized, for example by including an
Einstein-Hilbert term in the ETW brane action. In Chapter [6, we return
to the solutions of type IIB string theory dual to A/ = 4 supersymmetric

14
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Yang-Mills theory on half of R1? with half-supersymmetric boundary condi-
tions which were used for the holographic calculations in an earlier chapter.
We show that, by choosing the boundary conditions appropriately, the ETW
brane region appearing in the supergravity solutions can be pushed arbitrar-
ily far towards the “missing” asymptotic boundary, recovering an arbitrarily
large wedge of Poincaré AdSs x S°, a pre-condition for gravity localization
in such theories.

Finally, in Chapter |7}, following [9, 63, 64], we introduce and study var-
ious holographic systems which can describe evaporating black holes. The
systems we consider are boundary conformal field theories for which the
number of local degrees of freedom on the boundary (cpgy) is large com-
pared to the number of local degrees of freedom in the bulk CFT (cpui).
We consider states where the boundary degrees of freedom on their own
would describe an equilibrium black hole, but the coupling to the bulk CFT
degrees of freedom allows this black hole to evaporate. The Page time for
the black hole is controlled by the ratio chay/chui- Using both holographic
calculations and direct CF'T calculations, we study the evolution of the en-
tanglement entropy for the subset of the radiation system (i.e. the “bulk”
CFT) at a distance d > a from the boundary, with fixed a. We find that the
entanglement entropy for this subsystem increases until time ¢ = a + tpage
and then undergoes a phase transition, after which the entanglement wedge
of the radiation system includes the black hole interior. Remarkably, this
occurs even if the radiation system is initially at the same temperature as
the black hole so that the two are in thermal equilibrium. In this case,
even though the black hole does not lose energy, it “radiates” information
through interaction with the radiation system until the radiation system

contains enough information to reconstruct the black hole interior.
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Chapter 2

The Theoretical Minimum

In this chapter, we aim to provide the minimal number of definitions and
technicalities required to understand subsequent chapters, as well as a brief
introduction to some of the standard “lore” which will be useful to contex-

tualize our results.

2.1 Gravity

While our investigations utilize the AdS/CFT correspondence, which de-
fines a theory of quantum gravity, we will often be interested in studying
the case that the gravity side of the duality is in the classical regime, with
vanishingly small string coupling constant and a string length suppressed
relative to the curvature scale of the background. It is therefore useful to
recall some features of the relevant classical gravity theories and their solu-
tions. We focus here on a class of solutions of Einstein gravity with negative
cosmological constant which are central to the study of AdS/CFT, and a
particular ten-dimensional supergravity theory which will be the context for
gravity calculations in later chapters. We will draw upon material from
[91-96] in this section.

2.1.1 Anti-de Sitter

Anti-de Sitter (AdS) space is the maximally symmetric solution of the vac-

uum Einstein equations with negative cosmological constant AE| arising from

SWe will sometimes refer to this solution as pure AdS to distinguish it from the asymp-
totically AdS spacetimes considered momentarily.
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the Einstein-Hilbert Lagrangian density with cosmological constant term

1

o (R=20). (2.1)

Len =

The (d+ 1)-dimensional space AdS;.1 is naturally realized as a hyperboloid
embedded in flat space R2’dhose locus in the flat coordinates XM is

mun XM XN = I35, n = diag(—1,-1,1,...,1). (2.2)
d

Here, Lags is called the AdS radius, and sets the curvature scale of the

spacetime; it is related to the cosmological constant A by

d(d—1)

A=——%
2L34s

(2.3)
This embedding makes manifest that the isometries of AdS;4; form the con-
formal group SO(2,d) of d-dimensional Minkowski space, to be introduced
in Section [2.2.1) here realized as Lorentz transformations in the embedding

space RQ’d

Pure AdS: global coordinates

The geometry obtained from the above embedding has closed timelike curves,
so we are typically interested in passing to the universal covering space; in
pedestrian terms, we would like to decompactify a timelike direction. To do
this, it is useful to introduce global coordinates (p,t,i") via the coordinate

transformation
X 1= L aqgs cosh(p) sin(t)

X% = Lgs cosh(p) cos(t) (2.4)
X" = Laqs sinh(p)z’

"We choose to denote the dimensionality of AdS by d+ 1 in preparation for its appear-
ance in the context of AdS/CFT.

80ur embedding construction gives Lorentzian AdSqy1; to obtain Euclidean AdSgy1,
also known as hyperbolic space, we should instead embed in R¥**!. The isometry group
of Euclidean AdSg441 is then SO(1,d + 1).
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with &% a vector on the unit S%~! such that Z?Zl 27 = 1. In these coordi-

nates, one arrives at the metric
ds® = L34g [- cosh?(p)dt? + dp* + sinh2(p)d§23_l} , (2.5)

and one can then readily pass to the universal covering space by extending
to the non-compact interval t € R.
Taking the radial coordinate transformation r = tan(p), the same space

can be parametrized by new global coordinates (r,t,2%), with metric

ds? = [ —f<r>dt2+d’”2+r2dﬂz_1] 10 =1+ ” ) 2o
f(r) Lias

It is perhaps easiest to study the global structure of AdS by making an
alternative change of radial coordinates tan ¢ = sinh p, obtaining a third set

of global coordinates

L2
ds” = 0023?9 [—dt* + dv® + sin® ¥dQ;_,] . (2.7)

Evidently, there is a second order pole at ¥ = 7/2; this is the conformal
boundary of the spacetime. To conformally compactify, we can multiply the
metric by a defining function with a second order zero at ¥ = /2. The
ambiguity in choosing such a defining function manifests in a rescaling am-
biguity g (z) ~ Q(x)%gu (x) of the d-dimensional metric of the conformal
boundary, which one therefore thinks of as a conformal structure rather than
a fixed (pseudo-)Riemannian manifold. The conformal compactification of
AdSg44; is the manifold-with-boundary obtained via this procedure.

Our three choices of global coordinates above all cover an identical man-
ifold, which we refer to as global AdS. It is often useful to visualize global
AdS, via conformal compactification, as a solid cylinder (with some of the
sphere directions suppressed for d > 2); see Figure One can justify
this by considering the expression (2.7) with the overall conformal factor

neglected. Here, the radial coordinate 9 is identified with the radial direc-
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Global AdS

Global AdS

Figure 2.1: (Left) Solid cylinder (light and navy blue) representing the con-
formal compactification of AdS, with the Poincaré patch shaded (navy blue).
This diagram suppresses some sphere directions for d + 1 > 3. (Right) Pen-
rose diagram for global AdS.

tion of the cylinder, # is identified with the axial direction)’| and one of the
spherical directions appears as an S'. Suppressing all spherical directions,
we obtain the Penrose diagram of global AdS shown in Figure 2.1

It is often stated that global AdS is “like a box”, in the sense that a
massive observer moving in AdS can send a light ray toward the conformal
boundary and receive its reflection in finite proper time (assuming reflecting
boundary conditions). However, the trajectories of massive particles cannot
reach the conformal boundary, so the space is complete with respect to

timelike geodesics.

9A similar cylinder picture can be used to visualize Euclidean AdS, obtained via the
Wick rotation 7 = it.
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Pure AdS: Poincaré coordinates

It is often useful to instead consider the AdS geometry in Poincaré coordi-

nates, in which case the metric is given by

LZ
ds® = “A8 [qz? — at? + di?] (2.8)

52
where the conformal boundary is now located at z = 0. These coordinates
exchange the spherical S%~! symmetry of global AdS for a planar R?~!
symmetry. The Poincaré coordinates only cover a portion of global AdS, the
so-called Poincaré patch'Y illustrated in Figure 2.1l The metric degenerates

at z = oo, referred to as the Poincaré horizon.

Asymptotically anti-de Sitter spacetimes

In the context of holography, one is often interested in spacetimes with AdS
asymptotics; we refer to a spacetime as asymptotically locally AdS if it is
conformally compact and satisfies the equation R,, = —dg,, at leading or-
der near the conformal boundary. Such a spacetime is asymptotically globally
AdS if it additionally has the boundary topology of global AdS, namely the
cylinder R x S%1. We will sometimes use the phrase asymptotically AdS
(AAdS) in place of asymptotically locally AdS.

The metric in the neighbourhood of the conformal boundary in such

spacetimes may be expressed in Fefferman-Graham coordinates as

L2
ds® = =2 [d2? + Ty (2, 2)dz*da”] (2.9)

where the function I',, (2, 2) has the near boundary expansion

L (z,7) = gii) (@) + O(*) . (2.10)

(0)

In particular, g, (x) is a representative of the boundary conformal structure
for the spacetime; in AdS/CFT, we will see that this can be thought of as

10The Poincaré patch in Euclidean signature covers the entirety of Euclidean AdS, with
the Poincaré horizon z = co equivalent to the origin of global coordinates p =r =9 = 0.
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the spacetime background for a holographic quantum field theory.

AdS black holes

A particularly interesting asymptotically locally AdS spacetime is the AdS
black hole, sometimes known as the eternal AdS black hole or the AdS
Schwarzschild spacetime; in Schwarzschild coordinates, the metric of this

spacetime takes the form

2
f(r)
2 =2 2 (2.11)
f(r) = +1—H_< H +1>.
LQAdS rd=2 L?xds

There is a coordinate horizon at r = rg, where f(r) = 0 and the metric
degenerates.

Much like the asymptotically flat Schwarzschild black hole, the AdS
Schwarzschild black hole permits a two-sided maximal extension, as can

be analyzed by switching to Kruskal coordinates

U=—e 2tm) = 2t (2.12)

where r, = Or % + C' is a tortoise coordinate, with the integration con-
stant C' chosen to enforce the reality of the Kruskal coordinates outside the
horizon["| In these coordinates, the metric takes the form

ds® = Ligs —%“”*dUdV +r2dQ3 | . (2.13)

The Penrose diagram for the AdS black hole is shown in Figure [2.2,
Another black hole which is an asymptotically locally AdS spacetime is

"The tortoise coordinate implicitly depends on a choice of contour around the simple
pole at » = ry, and the integral fOT % will typically take imaginary values for r > rg;
we may choose C to ensure that r.(r) is real when r > rg.
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Figure 2.2: Penrose diagram for the maximally extended AdS Schwarzschild
black hole. The geometry includes two exterior asymptotic regions, as well
as past and future singularities. The horizons are denoted by dotted lines.
In dimensions d+ 1 > 3, the past and future singularities curve upward and
downward respectively compared to what is illustrated here.

the planar AdS black hole, whose metric is

L3 d=2 d
ds? — ZAst (f(z)dt2 + ?ZZ) + dxg_l) , flz)=1- ;l{ . (2.19)

The planar AdS black hole can be obtained as a limit 7 /Lags — 00, letting
z ~ Lags/r; when the black hole becomes very large, the horizon appears

locally flat.

2.1.2 Type 1IB supergravity

The type IIB supergravity (SUGRA) theory is a ten-dimensional theory of
gravity; in the string theory context, it arises as an effective description of
the massless sector of the type IIB superstring. The field content of this

theory consists of:

e A metric gyn
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e Two real scalars C(g (the arion) and @ (the dilaton), sometimes com-

bined into a complex scalar (the axion-dilaton)

T=Clp +ie ® (2.15)

e Two two-form fields By (the NS-NS two-form) and C(yy (the R-R

two-form)

e One four-form field Cyy (the R-R 4-form) whose field strength satisfies

a self-duality condition defined below

e Two left-handed Majorana-Weyl fermions \Ilﬁw (the gravitinos) and
two right-handed Majorana-Weyl fermions A; (the dilatinos).

Various relevant conventions pertaining to the parameters of the type IIB
supergravity and string theory in the context of the AdS/CFT correspon-
dence can be found in Appendix

As usual, taking an exterior derivative of the p-form C, yields a (p+1)-
form field strength F{,) = dC(,). It is convenient to define combined field

strength tensors

Hgy=dBe), F)=Fg —CoHg),
1 1 (2.16)
Fs) = Fi5) = 5C0) Ny + 5By M)

in particular, the action for type IIB supergravity is most readily expressed
in terms of the combined field strengths, as is the self-duality condition

imposed on the field strength associated to the four-form
Fy = xF% . (2.17)

Action and supersymmetry

There is an important subtlety in formulating an action principle for this
theory, since we have a self-duality condition on the five-form field strength,

which cannot arise as an equation of motion. However, one can derive the
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equations of motion from a (string frame) action whose bosonic part is

QH%S[[B :/dmw\/—g

1
e 2® (R + 40y POM D — 2|H(3)]2>

1 1 - N
- §\F(1)\2 - §!F(3)|2 — —|F)?

and then enforce self-duality of Fy a posteriori as a separate condition.
Here, KL% is a gravitational constant which is related to the ten-dimensional
(Einstein frame) Newton constant in (2.20).

The type IIB theory is invariant under various global supersymmetry
transformations, which can be parametrized by a 16-component (complex)
Weyl spinor of SO(1,9); the theory consequently has 32 real supersymme-
tries. We refrain from recording these transformations here, though they
can be found in the works [97-99] which introduced the type IIB theory; in
our conventions, the supersymmetry transformations for the fermions can
be found in [95]. Notably, the action written above is not invariant under

all of these supersymmetries off-shell.

String frame and Einstein frame

The gravitational kinetic term in the above action has an additional factor of
the dilaton e~2® compared to the typical Einstein-Hilbert action; however,
it is possible to perform a field redefinition of the metric to recover the latter,
at the expense of modifying the remaining kinetic terms. The asymptotic
value @, of the dilaton sets the magnitude of the string coupling g = e®,
which appears in the topological expansion of the worldsheet path integral.
To convert from the string frame to the Einstein frame, one simply redefines
the metric

(SF)

g5 — gBF) = (Peom®)/24(SE) (2.19)

g 9w
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We typically suppress the labels SF and EF when the frame is clear from

context. This redefinition of the metric yields

1 1 9
2/allofc V—ge 2*R — 2/dmzr: V-9 |R—--0,20"® (2.20)
2K§ 2K 2
where the right-hand side is implicitly in terms of the Einstein frame metric.
The ten-dimensional Newton constant G1g, the couplings /ﬁ?% and k2 in the
string frame and Einstein frame actions, the string coupling g, and the string

length ¢; = Vo are related by
167G = 2K% = 2297 = (21)7(a/)* g2 . (2.21)

D3-branes, D5-branes, and NS5-branes

Type IIB string theory describes various extended objects which are charged
under the various gauge fields in the theory; in general, a p-brane is the
source for a (p+1)-form gauge field A, ), with the coupling given schemat-
ically by the pullback to the worldvolume M, 11 of the brane

S~Q [ g, (222)
Mpi1

where @, is the charge. Since we have seen that the spectrum of type IIB
supergravity includes zero-form, two-form, and four-form gauge fields, we
anticipate the existence of D(-1)-branes, D1-branes, and D3-branes in the
theory; in fact, there are additional branes which are magnetically charged
under some of these fields. In later chapters, we will be most concerned with

the following branes:
e The D3-brane, electrically charged under the R-R four-form C\y)
e The D5-brane, magnetically charged under the R-R two-form Cy)
e The NS5-brane, magnetically charged under the NS-NS two-form By).

In supergravity, the manifestation of these branes is the existence of

solitonic solutions, known as black brane solutions, which carry the appro-
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priate charges (as computed by integrating the appropriate flux over an
S8~P surrounding the brane in the transverse space). Solutions relevant for

Dp-branes in the theory are

1 v
dsty = \/ﬁnﬂydwda« +\/Ho(r) (dr? 4 12dQ2_)
e® — ng(T)(S—p)M ’ Buyn =0, (2.23)

1

—l)dxo/\dxl/\.../\d:np,

LT = (4m)>-P)/2T <7;p> gN(a)TP)/2 (2.24)

where N is interpreted as the number of coincident Dp-branes (quantized
in the full string theory). On the other hand, solutions relevant to the

NS5-branes are

1
4s* = et e+ Hy () (dr? o r2a0),
r
5 (2.25)

1
® _ 1/2 _ 0 5
=gH By = —1)dx" AN...Nd
e =9Hs(r) B (HE)(T) > ! o
with Hs(r) = 1 + f—§ and L% = /N, and N the number of NS5-branes.
Here, the six-form field B(g) is obtained by dualizing By).

2.2 Conformal field theory

In this section, we provide a brief introduction to the notion of a particular
class of quantum field theories known as conformal field theories (CFTs).
We restrict our presentation to some definitions and basic properties, since
this is all that we will require in the remainder of this thesis. Our focus will
be on the case of dimension d > 2, since two-dimensional conformal field

theories have an enhanced symmetry and consequently a special mathemat-
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ical structure which will not be relevant for our purposes. In this thesis, we
will be specifically interested in CFTs defined by a path integral; while this
assumption may not be necessary to formulate some general properties, we
will assume it here when convenient. An introduction to the path integral
methods used throughout this thesis can be found in Appendix [A.1].

2.2.1 Conformal field theory: preliminaries

Our exposition in this section will draw from [100-105]; these references
may be consulted for additional background. Further details relevant to

conformal field theory are collected in Appendix

The conformal algebra

The symmetry algebra of a conformal field theory in flat space is the con-

formal algebra, with non-vanishing commutators

[D,
D,

Pu] =
K]
[K P = 21(77;”/1) LW) ) (2.26)
(Ko, L] = i(npp Ky — mpu Ky)
[Po, Lyw| = t(pp Py — Mpw Py)
[Lyws Lpo] = i(MupLpo + MuoLvp = NupLve — MueLyp)

where 7, denotes the flat Lorentzian (or Euclidean) metric. In a conformal
field theory, this algebra is realized by charges associated to conserved cur-
rents which can be constructed by contracting the energy-momentum tensor
TH with vector fields &* which satisfy

Oy + Oy = 277#!/ 98" (2.27)
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This equation is known as the conformal Killing equation, and its solutions
are referred to as conformal Killing Uectors.E The significance of such vec-
tors is that they generate the conformal isometries of flat space, which can
be thought of as diffeomorphisms from flat space to itself which preserve
the metric up to a local rescaling. Conservation and tracelessness of the
energy-momentum tensor in conformal field theory,

9,T" =0, 1, =0, (operator equation) (2.28)

ensure the conservation of the associated charges when &* is a conformal
Killing vector. When interpreting these conformal isometries as transforma-
tions on the fields in a theory, the generators are represented by differential
operators which satisfy the conformal algebra.

The last two commutation relations in the algebra encode the
Poincaré (or Euclidean) subalgebra, generated by momentum generators P,
and Lorentz (or rotation) generators L,,. The additional generators in the
conformal algebra are the generator of dilations D, associated to the vector
field which generates scale transformations x# — Az*, and the generator of
special conformal transformations (SCTs) K, associated to the vector field

which generates the transformations

oM+ b2
14+2b-x 4 b222°

(2.29)

The SCTs may be understood as corresponding to a translation conjugated
by an inversion z# — i—;‘, which itself is not a globally well-defined diffeo-
morphism of flat space.

It is edifying to repackage some of these generators as

J;},V:L;,Ll/) J—l,OZDa

1 1
Jfl,uzi(Pu_Ku)a JO,uzi(Pu+Ku)a

12The subset of solutions for which the right-hand side of the conformal Killing equation
vanishes are the Killing vectors, corresponding to Poincaré (Euclidean) transformations
in flat Lorentzian (Euclidean) space.

28



2.2. Conformal field theory

whereby one can demonstrate that the conformal algebra is manifestly so(2, d)

or 50(1,d + 1) in Lorentzian and Euclidean signature respectively,
[Jabs Jed] = i(MadToc + Mocad — NacTbd — MbdJac) - (2.30)

Representations: primaries and descendants

To define a quantum field theory, one can begin by choosing a background
for the theory and specifying a collection of local fields transforming in
representations of a given symmetry group. These fields can appear in cor-
relation functions, as computed by the Euclidean path integral, which are
consequently constrained by symmetry. One may then choose a foliation of
the background, with slices related by an isometry (or a conformal isometry
in the case of a CFT), interpreted as the generator of Euclidean “time”. The
Hilbert space is constructed with respect to this foliation, which is referred
to as a quantization of the theory, by slicing the path integral. Euclidean
correlators with field insertions may be interpreted as time-ordered vacuum
expectation values of local operators with respect to Euclidean time. Under
suitable technical assumptions, this approach can be used to construct a
well-defined, unitary Lorentzian theory, whose correlation functions can be
obtained from the Fuclidean correlators by analytic continuation. In this
subsection, we will discuss what it means to have local operators transform-
ing in representations of the conformal symmetry algebra.

Suppose that the conformal algebra so(1,d + 1) that acts on the algebra
of local operators in Euclidean signature is represented by the generators
(Pu, L, D,K,). Given that (L£,,,D,K,) is the subalgebra of the confor-
mal algebra associated to transformations of the plane which keep the origin
fixed, we can define the operator content of the theory by positing the ex-
istence of local operators {O%(0)} at the origin transforming in irreducible
representations of this subalgebra, then define O%(z) = e*0%(0)e=*". In
particular, we can take the Cartan subalgebra to be generated by (L., D);

noting that /C, acts as a lowering operator for D, we can seek lowest weight
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representations generated by primary operators O%(0) satisfying

(L1, O%(0)] = (S,)$0°(0)
[D,0%(0)] = AO*(0) (operator equations) (2.31)
(Ku, 0%(0)] =0.

Here, S,,, are some finite-dimensional representation matrices for so(d), and
A is the scaling dimension (or conformal dimension) of O®.

The rest of the corresponding irreducible representation consists of de-
scendant operators, which can be obtained by acting on O%(0) with the
raising operator P, (via the commutator). This has the effect of taking
derivatives of the operator O%(x) at z = 0, and thereby raising the scaling

dimension A — A + 1; for example, one has
[Py, 0%(x)] = 0,0%x) . (operator equation) (2.32)

Quantization

A standard choice of quantization for conformal field theories in flat space
is radial quantization, in which we foliate the Euclidean plane by concentric
spheres S%! centred at the origin. This is particularly convenient in CFT
because the dilation operator D generates (Euclidean) evolution between
the leaves of this foliation.

Another appealing property of radial quantization arises from the ob-
servation that d-dimensional punctured FEuclidean flat space is conformally
equivalent to the Euclidean cylinder R x S9!, with the radial coordinate

of flat space and the axial coordinate 7 of the cylinder related by r = e:

1
ds%xsd_1 =dr*+d05_ | = 2 (dr2 + r2d9371) x dséd . (2.33)
Consequently, as explained in Appendix the correlation functions in a
conformal field theory defined on the former space are determined by those

on the latter; for example, using the r coordinate for both the plane and the
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cylinder as above, we have for scalar operators™|

<01(T17 iﬂl) s On(rna @%)>R><Sd—1

(1) gy g1 »
= (11 ) {Catrasdh) - Onlrms #))e |
= (g ‘

The map between the two spaces sends concentric spheres S9! centred at
the origin to the spherical slices of the cylinder at fixed Euclidean time 7;
consequently, the radially quantized theory in flat space is related to the
theory on the cylinder with the standard quantization.

The choice of quantization fixes a notion of conjugation for Euclidean
operators; as an example, if Op(t,4') denotes a Hermitian scalar operator
in the Lorentzian theory on the cylinder with the standard quantization,
then the analytic continuation 7 = it to Euclidean signature implies the

conjugation rule for Euclidean operators
Op(r,i#")1 = Op(~1,i"). (2.35)

More generally, we may be interested in operators which have Lorentz in-
dices, and which consequently accumulate additional imaginary factors upon
analytic continuation of the time-like indices; for example, the Lorentzian

vector operator O% (t,2") undergoes analytic continuation
Of(r,d') = =0y (t,2'),  Of(r,&') = Oy (¢, ") . (2.36)

For these more general operators, conjugation acts on the Euclidean opera-
tors as
Of =t (r, 2" = Ok .. Okn OtV (=7, 47) (2.37)

where O, = &%, — 26469, may be interpreted as a time-reflection.
Using the relationship (2.34) between correlators on the cylinder and

flat space, we observe that, for a given operator O(r,2%) in the flat space

13The explicit denominators in this expression account for the possibility of a Weyl
anomaly (1)g, ga—1 7# (1)ga.
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theory, we can formally define another operator Ocy(r,4) = r2O(r, #%) in
the flat space theory whose correlators can precisely reproduce those of the
original operator on the cylinder; using this identification, and demanding
that Oy satisfy the conjugation rules for the cylinder outlined above, we
can obtain the conjugation rules for the corresponding flat space operators
in radial quantization. In particular, for scalar operators, we obtain (now

using Cartesian coordinates on the plane for convenience)
Oz = 272202t /2?) , (2.38)
while for operators with spin, we obtain

Om-bn () = P (@) ... It ()22 0"+ (2 fa?) | (2.39)

Un

where It (z) = &, — 233;%

Having established a notion of conjugation compatible between Euclidean
and Lorentzian signature, we can begin to address the question of necessary
conditions for a Euclidean CFT to have a well-defined, unitary Lorentzian
continuation. A basic requirement of unitarity is that the norm of all states
in the Hilbert space must be positive definite; in Euclidean signature, this
corresponds to the statement of reflection positivity, which demands that

time reflection-symmetric correlators must be positive
(0|0(7,21) ... O(11, ) O(=11,28) ... O(=7p, #8)[0) > 0. (2.40)

The operator-state correspondence

In any quantum field theory, one can associate a state |O) in the radially
quantized Hilbert space to any local operator O(z) in the theory: given a
sphere Sjlgl of radius R centred at the origin, we can simply choose the state
|O) on S}i%_l which is prepared by the Euclidean path integral on the ball
le% with a single insertion of O(0) at the origin. Explicitly, we may define

32



2.2. Conformal field theory

|O) by requiring that, for any state |¢o) in the Hilbert space,

d(r=R)=¢o
@l0) = [ Do e=S0(0) (2.41)

In a conformal field theory, the converse is also true. Given an eigenstate of
the dilatation operator |O) with eigenvalue A, we can compute the overlap

with any other state |¥) by a Euclidean path integral

(@]0) = T2 (@l (FIP|0)
$(R)=2 (2.42)
=m0 [ d61(6110) [ doa(@lon) [ Doe S,
B(r)=¢1
for any » < R. In the limit » — 0, the insertion of the state |O) in the
path integral can be replaced by a local operator. We can extend this
correspondence to all states in the Hilbert space by linearity (and limits).
The operator-state correspondence helps us to organize the Hilbert space
of the theory into representations of the conformal algebra. In particular,

the map implies the following;:
e The identity operator 1 corresponds to the vacuum state |0).

e A primary operator O%(z) of conformal dimension A transforming in
a representation of so(d) with representation matrices S, corresponds

to a state |O%) satisfying
Ku[0%) =0, DI0O%) = A0%),  Lw]0%) = (S)3[0°%) . (243)
e Descendant operators of O%(z) correspond to descendant states
pP,|0O), P,P,O), ... (2.44)

A primary state and its descendants together form an irreducible rep-
resentation of the conformal algebra, sometimes called a conformal

multiplet.
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Operator product expansion

The primary operators in a CF'T satisfy a fusion algebra, referred to as the

operator product expansion (OPE)

Of (21)05(2) = Y _[Cijk (212, 2)|2*Of(w2)  (operator equation) (2.45)
k

valid as an operator statement (i.e. provided we do not have an insertion
within the smallest ball containing the two operators on the left-hand side).
Here, we are in Euclidean signature, and Cjji(x12,02) denotes a differential
operator which may also have Lorentz representation indices.

The existence of an operator product expansion should hold in a general
quantum field theory for arbitrary local operators; however, in conformal
field theory, conformal invariance significantly constrains this OPE, and in
particular the differential operators Cjji(212,02), such that the contribu-
tions of descendant operators in the OPE are entirely fixed by the contri-
bution of the corresponding primary. Moreover, the OPE is easily proven
in CFT as a consequence of the operator-state correspondence, given that
Oi(x1)0;(z2)|0) is a state in the Hilbert space and therefore admits an ex-
pansion in terms of primary states Oy (x2)|0) and their descendants. The
operator statement is obtained by considering inner products between these
states and any other states built from acting on the vacuum with local op-

erators outside of a ball containing x; and xo.

CFT correlators

Often, the field theory observables we are interested in are correlation func-
tions of local operators; in CF'T, these are highly constrained by symmetry,
as manifested through Ward identities, which specify how the symmetry
generators act when inserted in correlation functions with local primaries.
If the CFT is defined by a path integral, correlators arise from operator

insertions

(Ov(1) ... On(n)) = / DEe=5 0, (21) ... Op () (2.46)
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where the O;(z;) on the right-hand side are functions constructed from the
fields ® and their derivatives; in this case, the Ward identities can be shown
to arise from a (non-anomalous) symmetry of the action. Given a choice of
quantization, these objects are interpreted as time-ordered vacuum expec-

tation values, with respect to the Euclidean time of the quantization
(O1(x1) ... On(xy)) = (0| T{O1(x1) . .. Opn(x,)}0) . (2.47)

Rather than revisit the derivation of low-point conformal correlators,
which can be found in e.g. [101], we simply state the results. It suffices
to consider correlation functions of primary operators, since general cor-
relators can be generated from these via insertions of P#, using the Ward
identities. In the following, we denote the Euclidean distance z12 = |21 — x2|
for convenience.

In conformal field theory, one-point functions of non-trivial primary op-

erators vanish identically

0 0#£1
(O(z)) = . (2.48)
1 O=1

Scalar primary two-point functions are fixed up to a proportionality constant
Co
Co A=A=A
(Oi(21)0j(x2)) = ¢ 12 ; (2.49)
0 A # A
we can eliminate the factor Cp by choosing a normalized basis of primary
operators, i.e. by rescaling the O;. On the other hand, the scalar primary
three-point function is of the form
0i(21)0j(22)0 = Cii 2.50
(0i(21)0j(22)Ok(23)) = —x3x—Ay A;5a—A AFa—a, @ (2:50)
L12 Z23 Z31

where the coefficients C;j;, represent genuine physical data about the theory
equivalent to that contained in the OPE.

Up to this point, the spatial dependence of the correlation functions has
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2.2. Conformal field theory

been completely determined by conformal invariance; it is said that these
correlators are fixed by kinematic considerations, rather than depending on
the particular theory of interest, i.e. the dynamics. By contrast, the scalar
primary four-point function involves a function of the conformal cross-ratios

2 .2 2 .2
_ T1oT34 _ L2314

I

= = , (2.51)

x%3x§4 37%395%4

the two independent quantities constructed from (x1,x9, 3, x4) which can

be demonstrated to be invariant under conformal transformations. For ex-

ample, one can verify that the four-point function of a single scalar primary
g(u,v

<O($1)O($2)O($3)O(LL’4)> = M (2.52)

— T2A 2A
T13 T34

has the required symmetry properties for any function g. For a given the-
ory, we will see momentarily how the function g is related to other data
constituting the theory.

The OPE can be used to reduce high-point correlation functions to lower-
point correlation functions. An important example of this is the four-point
function; applying the OPE to the four-point function of a single scalar

primary, one obtains

1 1 1

(O(21)0(22)0(23)O0(24)) = 55555 Z Coo0 900 00 (Ti) 5
Ty "T3q ~ o

where we have indicated pairwise contraction using the OPE, the sum is

over primaries, and we have defined the objects

Iab(x24)

2A ’

gne(zi) = x?ngﬂcgfo Ca(x12,02)Ch(234, 0s) .
54

(2.53)

where I (x) is as introduced below (2.39). These objects are known as
conformal blocks; it can be shown that they depend only on the invariant

cross-ratios (u, v), and therefore that the function g(u,v) appearing in (2.52)
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can be expressed as

g(u,v) = Z C(%OO’ng,fo (u,v) . (2.54)
O/

In this sense, the conformal blocks form a basis for the space of conformally
invariant four-point functions.

The order of contractions with the OPE used above is sometimes referred
to as the S-channel; however, we could choose to expand the four-point func-
tion in another channel, using a different sequence of contractions, thereby
obtaining a different expression involving different coefficients and confor-
mal blocks. The consistency of these two expansions, referred to as crossing
symmetry, enforces powerful constraints on permissible CF'T data.

We note in passing that correlation functions for operators with spin are
somewhat more complicated, though still constrained. As an example, the
two-point function of a spin-f symmetric traceless tensor is

(p1 x L) x
(014 (2) Oy, (0) = Co (I“ ). Lule) <traces>) . (255)

where the subtraction is intended to ensure that this object is traceless in

both the p-indices and the v-indices.

The bootstrap philosophy

It is worth briefly mentioning an important perspective on conformal field
theory informed by the conformal bootstrap program, which seeks to explore
and characterize the space of legitimate conformal field theories by deriving
consequences from simple consistency conditions, like unitarity and crossing
symmetry, and possibly additional assumptions, such as restricting to large
N or holographic CFTs, or demanding superconformal symmetry.

From this perspective, a general CF'T can be thought of as being deter-
mined by the following data@

141¢ is currently unknown whether additional non-local information needs to be specified
in dimension d > 2.
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e A list of local primary operator scaling dimensions and spins {(A, s)},
and possibly other quantum numbers if we would like to impose addi-
tional structure (e.g. R-charges in the case of a superconformal field
theory). This data is sometimes referred to as the spectrum of the

theory, and encodes the kinematics.
e A list of OPE coefficients {c;;1}, which encodes the dynamics.

The conformal bootstrap then proceeds by imposing certain consistency
conditions on this data, thereby ruling out regions of the parameter space.
In general, there is no known set of sufficient consistency conditions for
the existence of a CFT that can be easily implemented in the bootstrap

approach.

2.2.2 Boundary conformal field theory

Having provided an overview of the subject of conformal field theory, we can
turn to a generalization, boundary conformal field theory (BCFT), which will
be most relevant in the following chapters. Roughly speaking, a BCFT can
be obtained from a CFT by introducing a codimension-1 boundary, thereby
reducing the symmetry of the theory; a detailed discussion of BCF'T in arbi-
trary dimension can be found in [80, 106]. For simplicity of presentation, we
will restrict our discussion to the case of a planar boundary in flat Euclidean
space R,

Suppose that we decompose the coordinates of R? as
x = (21,...,Z4-1), Y=1xq, (2.56)

and introduce a spatial boundary at y = 0, so that our background now cor-
responds to the half-space HRY defined by y > 0. As observed in [80], such
a boundary remains invariant under an SO(1,d) subgroup of the original
conformal group, generated by the (d — 1)-dimensional Poincaré transfor-
mations on the transverse coordinates x together with the usual inversion
z* — z#/22. We may then define a BCFT on the half-space by specify-
ing the spectrum of primary CFT bulk operators, transforming as in
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under the residual conformal group, and their OPE coeffiients, along with
some additional boundary data, which we discuss momentarily. Typically,
we will be interested in the case where a BCFT is defined with reference
to a particular CFT on the original space by imposing suitable boundary
conditions on the CFT bulk fields and possibly introducing additional de-
grees of freedom at the boundary, such that the resulting theory respects
the SO(1,d) symmetry.

Given that a general transformation from the residual conformal group

applied to points x1, x9 induce transformations of the form

2

2 (21— x2) Yi
— - ; — 2.57
(xl 1.2) Q(xl)Q(.’EQ) b y’L Q(ZUZ) ( )

for some conformal factor 2, we see that the cross-ratios

_ 2 _ 2
€= (@1 = )" , v? = (21 2x2) __¢ (2.58)
4y1y2 (r1 —22)? +4y1y2 E+1

are invariant. The reduced symmetry now permits non-vanishing one-point

functions for primary scalar fields of the form

(O@) = 555 (2.59)

If we choose to normalize the CFT bulk operators by specifying the two-

point functions in the original CFT, then the constants Ap appearing in
the one-point functions are physically meaningful, depending generically on
the operator O(x) and its boundary condition. Moreover, the two-point
function of quasi-primary bulk CFT operators may now be proportional to
a function of the invariant cross-ratio defined above, and is not necessarily
vanishing for operators with distinct scale dimension or spin. For example,

the scalar-scalar two-point function takes the form

(O1(#)0a(r2)) = o s o) (2.60)

where the function fi2 is constrained by the OPE.
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As we mentioned above, one must also specify additional boundary data
in order to determine the BCFT. In addition to the bulk CFT operators, we
may generically have a spectrum of local boundary operators O[(X) (where
the circumflex connotes quantities at the boundary). These boundary op-
erators, which are specified by their own scaling dimensions and OPE, also
form a basis for the BCF'T, in the sense that one has a boundary operator
expansion (BOE) analogous to the OPE

B! .
Oi(x) = zj: WOJ(X) + (descendants) . (2.61)

In particular, Ap = B(l). The BOE also constrains the function fio ap-
pearing in the CFT bulk two-point function. More generally, correlation
functions may be decomposed in either bulk or boundary channels, provid-
ing general crossing-symmetry constraints which must be satisfied by the
dynamical BCFT data.

To summarize, the BCFT is characterized by the spectrum of bulk op-
erators and their OPE coefficients, the spectrum of boundary operators and
their OPE coefficients, and the bulk-boundary two-point function coeffi-

cients.

2.3 Supersymmetry

The notion of supersymmetry, a type of spacetime symmetry which inter-
relates bosonic and fermionic degrees of freedom, plays an integral role in
the study of string theory and of AdS/CFT. Supersymmetry can also serve
as a powerful tool for simplifying calculations and obtaining exact results
in otherwise intractable systems like strongly coupled gauge theories. Our
objective in this section will be to introduce the concept of supersymme-
try and the terminology which will be important in the remainder of this
thesis; to achieve this concisely, we largely focus our presentation on the
case of Lorentzian signature. Our discussion will draw on material from the
references [96, 107-113].
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2.3.1 Supersymmetry algberas in 3D and 4D

We begin with a discussion of the 3D and 4D supersymmetry algebras. Our
exposition will focus on the case of the supersymmetric extensions of the
Poincaré algebra, relevant to theories in flat space (and conformal theories

in conformally flat spaces).

Supersymmetry algebra in 4D

The supersymmetric extension of the 4D Poincaré algebra is obtained by
augmenting the Poincaré algebra by additional fermionic supersymmetry

generators, which obey the algebra
{Q4, Qan} = 20500 P, {Qa,QF ) =2eap2"", (2:62)

where Qa7 = (Qé)Jr Here, o# = (1,5) are the Pauli matrices, P* are
the momentum generators, and the elements of the anti-symmetric tensor
Z!7 are referred to as central charges, since they commute with all of the
generators. Note that the Greek indices are two-component spinor indices,
which are raised and lowered with the anti-symmetric symbol €,5 and its
inverse, while the uppercase Latin indices run in the list {1,..., N}, and
are raised and lowered with d4p and its inverse. In particular, we have 4N
real supersymmetries in 4D. The remainder of the super-Poincaré algebra
is fixed by noting that the supercharges transform as Weyl spinors under
s0(1,3), and commute with translations.

In a supersymmetric theory, the supersymmetry generators may trans-
form under a bosonic symmetry referred to as an R-symmetry. Formally, the
R-symmetry is the subgroup of outer automorphisms of the super-Poincaré
algebra which leave the Poincaré subgroup invariant. As an example, we
observe that a supersymmetric theory with A/ > 1 has a manifest SU(N)
R-symmetry, with supercharges @) transforming in the fundamental repre-

sentation. We will see that in superconformal field theories, R-symmetries

15Because Weyl spinors are self-conjugate in 4D Euclidean spacetime, this conjugation
relation no longer holds in Euclidean signature. A useful reference for supersymmetry in
general signature can be found in [114].
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are promoted to a more central role: they will generate inner automorphisms
of the superconformal algebra. As with any global symmetry, R-symmetries

may become anomalous in a quantum theory.

Supersymmetry algebra in 3D

The 3D super-Poincaré algebra is most easily expressed in terms of real

(Majorana) superchargeﬂ satisfying
{Q, QB = 2425048 Py + 2e0p 27 (2.63)

where Greek and uppercase Latin indices are again spinor indices and su-
persymmetry labels in {1,...,N'} respectively. The remainder of the com-
mutation relations are fixed in an analogous way to those in 4D. Also as in
the 4D case, Z4B denotes an anti-symmetric tensor of central charges. In
3D, we have 2\ real supercharges.

For N' = 2 supersymmetry, it is sometimes convenient to consider com-
plex supercharges by taking complex linear combinations

1

— L 1 Y A L 1 12
Qo = ﬁ(Qa +iQ3), Qo= Q(Qa iQa) - (2.64)

The SUSY algebra may then be expressed as
{Qo, Qp} = 203 Pu + 2ieapZ , {QarQp} = {Qa, Qs} =0,  (2.65)

with Z = Z?!' = —Z1'2. In this basis, we can easily observe the diagonal
U(1) R-symmetry

Qo = €Qa, Qo — e "Qa. (2.66)

For N' = 4 supersymmetry, we have an SO(4) = SU(2) x SU(2) R-
symmetry. This can be understood by considering 3D A = 4 theories as

18In Euclidean signature, it is not possible to impose a Majorana condition in 3D.
Consequently, the minimal amount of supersymmetry is ' = 2 in Euclidean. A statement
of the 3D N = 2 Euclidean super-Poincaré algebra can be found in [115].
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dimensional reductions of 6D N = 1 theories; one factor of SU(2) arises
from the R-symmetry of the 6D theory, while the second factor of SU(2)

arises from the rotation group of the reduced dimensions [116].

2.3.2 Supersymmetry representations in 4D

When introducing representations of the super-Poincaré algebra, it is often
convenient to distinguish between massless and massive representations; we
consider each in turn. To streamline our discussion, we will focus on the
representation theory of states in the Hilbert space of a Lorentzian quantum
field theory, rather than on supersymmetry transformations of fields and
supersymmetric actions of these fields; we will discuss the latter for the

specific case of N’ = 4 supersymmetric Yang-Mills in a later subsection.

Massless representations

For massless representations, it is convenient to boost to a frame where
the momentum is P* = (F,0,0, E),E and study the representations of the
supersymmetry subalgebra in this frame. The supersymmetry algebra then

includes the anti-commutator
~ 4F 0
af

In particular, we observe that {Q2, (Q‘24)T} = 0, which requires these gen-
erators to identically vanish on the representation, and thus (via the other
anti-commutators) that all of the central charges also vanish.

The remaining generators Qi and Qi 4 obey the algebra of fermionic
creation and annihilation operators, up to rescaling by v2E; the real and
imaginary parts of these generators satisfy the Clifford algebra associated to
the Euclidean rotation group SO(2N), and the non-trivial supersymmetry
generators act as raising and lowering operators for the helicity. We can thus

consider a 2V-dimensional representation of this algebra, obtained by acting

"Namely, to choose a state within a given Lorentz orbit with these quantum numbers
for the components of P*.
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on a highest helicity state |h) with the lowering operators Qf. In actuality,
CPT symmetry requires that the spectrum should be symmetric under a sign
reversal of the helicity; consequently, we will obtain either a 2N _dimensional
representation or a 2V *1-dimensional representation, depending on whether
we need to append the CPT conjugate states.

Constructing the massless irreducible multiplets for A/ = 1 supersym-
metry in this way, we obtain the following multiplets with helicities not
exceeding one, labelled by the helicities (A, A + %) of the states in the mul-
tiplet:

e The chiral multiplet (—%, 0)® (0, %), consisting of a complex scalar and

a Weyl fermion.

e The vector multiplet (—1, —3)&(5, 1), sometimes called the gauge mul-
tiplet, consisting of a vector boson and a Weyl fermion in the adjoint

of the gauge group.

Multiplets with states of helicity greater than one, including the gravitino
and graviton multiplets, are of relevance in the supergravity context.
We also record here the multiplets with states whose helicity does not

exceed one for the case of N'= 2 and N = 4 extended supersymmetry:

e The N = 2 gauge/vector multiplet (—1, —%, —%,0) @ (0, %, %, 1), con-

sisting of one vector, two Weyl fermions, and one complex scalar.

e The N = 2 hypermultiplet (—%, 0,0, %)@(—%, 0,0, %), consisting of two

Weyl fermions and two complex scalars.

e The N = 4 gauge/vector multiplet (—1, 4><—%, 6x0, 4><%, 1), consisting

of a vector, four Weyl fermions, and three complex scalars.

Both N = 1 chiral multiplets and A/ = 2 hypermultiplets will sometimes
be referred to as matter multiplets, in contrast to the vector multiplets ap-

pearing in the supersymmetric gauge theories we consider.
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Massive representations

When considering massive representations, we boost to a frame with P* =

(M,0,0,0); the supersymmetry algebra now includes the anti-commutator
{Q2, Qppt = 2M5,56% . (2.68)

We can begin by considering the case of minimal N' = 1 supersymmetry,
where the supersymmetry algebra does not include central charges. The
supercharges may then be identified with fermionic creation and annihila-
tion operators as in the massless case, though now we have two uncoupled
fermionic oscillators for N' = 1 supersymmetry. Consequently, we find the

following multiplets with helicities not exceeding one:

e The chiral multiplet (—%, 0,0, %), consisting of a complex scalar and

Weyl fermion.

e The vector/gauge multiplet (—1, —%, —%, 0) @ (0, %, %, 1), consisting of
a massive gauge field, a massive Dirac fermion, and a real complex

scalar.

Considering now the case of extended supersymmetry, we first observe
that an arbitrary anti-symmetric matrix Z42 can be block-diagonalized to

the form
diag(eZy,...,€eZ N = 2r even
diag(eZ1,...,€Z,,0) N =2r+ 1odd
where Z; are (real) constants and € is the anti-symmetric tensor (with
indices suppressed in our expression). An enlightening form of the algebra
can consequently be obtained by rotating the supercharges by a SU(N)gr
transformation in order to block-diagonalize the matrix of central charges

Z%_ Letting barred indices @, b run over the 2 x 2 blocks, and thus in the

range {1,...,r} with r = {%/J, and defining
a 1 a a
at = §(Q}1 + UgB(Q% )" (2.70)
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we have non-vanishing anti-commutators
{Q0+: (Qhy)T} = 0505, (M £ Za) . (2.71)

The fact that this is again positive-definite for a = b and o = § implies the
BPS bound
M > |Zs] . (2.72)

When one or more of these bounds is saturated, the corresponding super-
charges must vanish by the same logic as in the massless case; the result is
that the naive size 22V of the representation is reduced, yielding a shortened
or BPS multiplet. The number of vanishing supercharges determines the
degree of shortening; for example, one saturated BPS inequality results in a

1 22N—2)

5-BPS multiplet (dimension , while two saturated inequalities results

ina i—BPS multiplet (dimension 22V =4). In the extreme cases where  BPS
inequalities are saturated, one refers to the representation as an wultrashort
multiplet. In practice, the presence of shortened representations in a su-
persymmetric theory is often essential for providing computational control,
the reason being that the BPS requirement prevents the spectrum of short
representations from receiving perturbative quantum corrections. A review
of the massive multiplets for N' = 2 and N = 4 theories can be found in e.g.

[111].

Decomposing representations of extended supersymmetry

It is manifest from the form of the super-Poincaré algebras with N' = N
and N/ = N3 that the former is a subalgebra of the latter when N7 < Ns.
Consequently, irreducible representations of the super-Poincaré algebra with
N = N> decompose into multiple irreducible representations of the super-
Poincaré algebra with N' = Aj. Some examples relevant for later chapters

are as follows:

e One N = 4 vector multiplet in the adjoint of gauge group G decom-

poses to:
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— One adjoint N' = 2 vector multiplet

— One adjoint N' = 2 hypermultiplet.

e One N = 2 vector multiplet in the adjoint of gauge group G decom-

poses to:

— One adjoint N/ = 1 vector multiplet
— One adjoint N = 1 chiral multiplet.

e One N = 2 hypermultiplet in representation R decomposes to:

— Two N =1 chiral multiplets in reprsentation R.

2.3.3 Supersymmetry representations in 3D

In this subsection, we will focus on the cases of 3D A/ = 2 and N = 4 super-
symmetry which will be relevant in later sections. A discussion of 3D N =1
multiplets can be found in [113]; notably, this amount of supersymmetry is
only possible in Lorentzian signature, whereas in Euclidean signature the
minimal amount of supersymmetry is N' = 2.

While one can obtain representations of the supersymmetry algebra in
a similar way to the 4D case, the representations of 3D N =2 and N =4
supersymmetry are most easily obtained by dimensional reduction of 4D
N =1 or N = 2 supersymmetry respectively; concretely, this amounts
to choosing a 4D N = 1 representation on fields, dimensionally reducing
to 3D, and observing how the resulting fields transform under the reduced
Lorentz group SO(1,3) — SO(1,2) or the corresponding spin group. The
dimensional reduction preserves the number of real supercharges; for exam-
ple, at the level of the algebra, dimensionally reducing in the z? direction
corresponds to considering representations for which the quantum number
associated with the component P? is fixed to some value Z, in which case

the 4D N = 1 supersymmetry algebra can be written as

{Qa: (Qp)'} = 201, P, + 2i€apZ | (2.73)

47



2.3. Supersymmetry

where p € (0,1,3). We recognize this as the 3D N = 2 algebra with a
particular choice of basis for the gamma matrices.

We refrain from presenting the full analysis here, instead recording the
relevant results. For the case of N/ = 2 supersymmetry, one obtains the

following multiplets;'|

e The chiral multiplet, obtained from a 4D AN = 1 chiral multiplet,

consisting of a complex scalar and a complex Weyl fermion.

e The wector multiplet, obtained from a 4D N = 1 vector multiplet,
consisting of a vector, a complex Weyl fermion, and a real scalar in

the adjoint of the gauge group.

On the other hand, for the case of 3D N = 4 supersymmetry, one has the

following representations:

e The wvector multiplet, obtained from a 4D N = 2 vector multiplet,
consisting of a 3D N = 2 vector and a 3D N = 2 hypermultiplet.

e The hypermultiplet, obtained from a 4D N = 2 hypermultiplet, con-
sisting of two 3D N = 2 chiral multiplets.

2.3.4 Superconformal algebras in 3D and 4D

In 3D and 4DJ§| the conformal algebra admits a supersymmetric extension
to the so-called superconformal algebras with various amounts of supersym-
metry. The superconformal algebras consist of two types of fermionic gen-
erators, which are spinors of the d-dimensional Lorentz group: supercharges
QA (and possibly Q 4) whose anti-commutators include the momentum P,,
and the supercharges S (and possibly S 'A) whose anti-commutators include
the special conformal generator K u@ The 3D superconformal group with N’
supercharges @ is denoted OSp(N|4), while the 4D superconformal algebra

181n 3D, there are also multiplets known as linear multiplets, in which global currents
appear.

9The classification of superconformal algebras was given by Nahm in [117]; in particular,
such algebras are only possible in dimension d < 6.

20We neglect spinor indices for the fermionic generators in this subsection.
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is denoted by SU(2,2|N) (or PSU(2,2|N) in the case N' = 4). We will omit
the corresponding algebras here; useful references include [96, 118-120]. We
can, however, schematically summarize the algebra as follows:

7

[D>Q]:_§Q7 [D,S] 287 [K,Q]WS, [PvS]%Q) (2'74)

{Q.Q}~P, {SS}~K, {QS}~L+D+R.

The precise form of these commutation relations will generally be different
in different dimensions, but the above indicates which charges appear in a
given commutator or anti-commutator. The bosonic charges R correspond
to generators of the R symmetry algebra.

As in the case of conformal symmetry, one is interested in constructing
representations by considering local primary operators, annihilated by K,

whose behaviour at the origin is
(L, 0%(0)] = (SW)%OI’(O) ,  [D,0%0)] = A0%0), (2.75)

meaning that O%(0) transforms in a representation of “scale + Lorentz”. In
superconformal field theories, we are interested in constructing representa-

tions from operators which additionally satisfy
[S4,0%0)]+ = [Sa,0%(0)]+ =0, (2.76)

where + denotes that we should either take commutators or anti-commutators,
depending on whether O%(0) is bosonic or fermionic. Such an operator is
referred to as a superconformal primary operator. Note that all superconfor-
mal primary operators are also conformal primaries, as can be established
from the definitions and the fact that {S, S} ~ K.

Superconformal descendant operators can be obtained by acting with
the generators P* and Q4; in particular, acting on a superconformal pri-
mary with one of the supercharges () gives rise to a super-descendant op-
erator O’ = [Q, O]+. Super-descendant operators are themselves conformal
primary operators; a superconformal multiplet therefore consists of many

conformal multiplets related by supersymmetry.
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An important subclass of superconformal primary operators are the chi-

ral primary operators, which additionally satisfy
Q1,0+ =0 (2.77)

for at least one A and one spinor component. Such operators are BPS, in
the sense that they give rise to shorter representations of supersymmetry,
consisting of fewer conformal primaries. One significant property of chiral
primaries is that their dimensions do not receive quantum corrections, as

they are protected by the R-symmetry.

2.3.5 4D N = 4 supersymmetric Yang-Mills theory

The 4D N = 4 supersymmetric Yang-Mills (SYM) theory is a prototypi-
cal superconformal field theory, and has particular importance in the holo-
graphic context. The 4D SYM theory is most readily obtained from di-
mensional reduction of the 10D N = 1 Yang-Mills theory [121], whose field
content consists of the gauge field AM and the Majorana-Weyl gaugino W,

and whose action is given by

S = QL / d'"x tr <1FMNFMN - i\TlI‘MDMlII> . (2.78)
9ym 2
Here, uppercase Latin indices are 10D (flat Lorentzian) spacetime indices,
and T'™ are the 10D Dirac matrices; the overbar on ¥ denotes the Dirac
conjugate, and D), is the gauge-covariant derivative.
Dimensionally reducing by requiring the fields to only depend on coor-

dinates (20, ..., 23), the 10D Lorentz group breaks to a subgroup
SO(1,9) — SO(1,3) x SO(6)R . (2.79)

The gauge field decomposes into a 4D gauge field A* and six real scalars
(A% ..., A%), which we may rename ®' for convenience (up to rescaling by
gym). The Majorana-Weyl fermion decomposes into four conjugate Weyl
spinors A%, such that ¥ transforms in the (2,1,4) & (1,2,4) of SO(1,3) x
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SO(6)r. One then obtains an action whose purely bosonic part is

1
4
S:/d xtr(2g%ﬂ\AFuyFuu

+3 D, D — gYTM > [, qﬂ]?> . (2.80)
i 2]

Operator spectrum

We briefly discuss the spectrum of local gauge-invariant operators in the
quantum theory. The general such operator is either the trace of a product
of the elementary fields, referred to as a single-trace operator, or the product
of single-traces, referred to as a multi-trace operator. We will focus the

discussion here on the single-trace operators; in the t Hooft limit
A= g2y N fixed , N — oo, (2.81)

which will be relevant in the holographic context, correlation functions in-
volving multi-traces will be suppressed by powers of N relative to those
involving single-traces.

Given that the 4D N = 4 superalgebra has 16 real supercharges, a
generic (long) representation of the superconformal algebra consists of 216
conformal primaries, with helicities in half-integer increments spanning {\ —
4,...,A+4} for X the helicity of the primary with lowest conformal dimen-
sion. As discussed previously, one can also have short representations and
ultra-short representations.

A special class of superconformal primary operators introduced in Sec-
tion are the chiral primaries; we will follow [107] in presenting the
known spectrum of chiral primary operators of the N' = 4 SU(N) super-
symmetric Yang-Mills theory, though a straightforward systematic way of
computing the full spectrum is not known. Given that the field strength
F,,, and fermions ), are found to arise in the action of supersymmetry on
the fundamental fields, it turns out that the lowest components of the chiral

primary representations are built from the scalars ®’. We therefore begin
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by considering operators of the form
Ot-in — r (@, Pin) | (2.82)

where the i; are free indices. Since in fact we also observe commutators
of ®' arising in the action of supersymmetry on the fields, we can further
restrict to linear combinations of these operators which symmetrize the in-

dices, sometimes denoted using the symmetrized trace as
O™+ = str(®™ ... d™) . (2.83)

The linear combinations of such primary scalar operators which are trace-
less with respect to contractions of any two indices are precisely the chiral
primaries; we can unambiguously use the notation O to refer to such
traceless linear combinations.

It can be shown that the dimension of O defined in this way, as de-
termined from the superconformal algebra, is [O,] = n, coinciding with the
value in free field theory. Notably, for finite IV, short chiral primary repre-
sentations are built from these operators with n in the range n € {2,...,N};
this is because the product of more than N commuting N x N matrices can

be written as a sum of products of traces of fewer matrices]]

Non-perturbative features

In the string theory context, the N' = 4 U(N) SYM theory arises as a
description of the low-energy physics of a stack of N coincident D3-branes
in type IIB string theory. An important conjecture about the N' = 4 SYM
theory is that it is in fact UV finite, and retains exact conformal symmetry
at the quantum level.

The SYM theory is believed to exhibit an exact SL(2,Z) global symme-
try, known as Montonen-Olive duality or S-duality, whereby the complexified

21We have focused our discussion on single-trace operators, but the spectrum of A = 4
SYM also includes multi-trace operators, including chiral primary multi-traces; see e.g.
[122] for details.
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coupling
0 4mi
=——+4 — 2.84

undergoes a Mobius transformation

at+b
%

, ad—bc=1, a,bcdelZ. (2.85)
ct+d

In particular, this group of transformations is generated by the shift 7 —
7+ 1 and the S-duality transformation 7 — —1/7; the former is known
to hold, while the latter is conjectured. As can be seen by applying the S-
duality transformation in the case 8; = 0, S-duality is a strong-weak coupling

duality or a non-perturbative duality.

2.3.6 Supersymmetric localization

The existence of supersymmetry in a theory sometimes permits an exact
calculation of protected quantities in the theory, using a technique called
supersymmetric localization. We will give a cursory review of the general
theory behind supersymmetric localization; a useful introduction can be
found in [123], while [124] provides a very comprehensive overview of relevant

techniques.

Supersymmetry on curved backgrounds

A starting point for most computations involving supersymmetric localiza-
tion is to put a supersymmetric theory of interest on a compact (Euclidean)
manifold M; doing so assists the convergence of the path integral by ex-
plicitly removing IR divergences. We would like the theory on M to have
the same UV behaviour as our original theory in flat space, and to preserve
supersymmetry. However, naively covariantizing the original Lagrangian,
while providing a suitable curved space generalization of the original theory,
may explicitly break supersymmetry; moreover, a generic curved manifold
may not permit supersymmetry.

One systematic approach to placing a given supersymmetric theory on a

curved manifold is to consider an expansion of both the covariantized super-
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symmetry transformations and the Lagrangian in inverse powers of the cur-
vature scale r on the manifold, enforcing order-by-order that the supersym-
metry algebra closes and the theory is supersymmetric. Under favourable
circumstances, this expansion will truncate and yield an exactly supersym-
metric theory. An alternative approach, due to Festuccia and Seiberg [125],
is to first directly couple the flat space theory to supergravity, then take a
rigid limit G — 0 to decouple dynamical gravity and recover a fixed back-
ground. Demanding that the background preserve supersymmetry leads to
the requirement that the gravitino and its supersymmetry variation should
vanish; the latter condition directly imposes that the spinor parameter gen-
erating supersymmetry must satisfy a differential equation known as the
generalized Killing spinor equation. This suggests an obstruction to defin-
ing a supersymmetric theory on manifolds which do not admit solutions to
this equation.

A relevant example of a supersymmetric theory on a curved background
is the case of the N = 4 SYM theory on S*. Expressing the action in terms
of the fields of 10D N/ =1 SYM from which the 4D theory is a dimensional

reduction, one arrives at the compact expression

1 1 2 .
Sp=—— [ d'z/gtx <FMNFMN — UMDy + <1>i<1>1> ., (2.86)
2 72
9vym
where 7 denotes the radius of the S4, such that the Ricci curvature is given by
R = i—%, and covariant derivatives are now also geometrically covariant. The
supersymmetry transformations, parametrized by a Majorana-Weyl spinor
parameter ¢, can be found in [126]. Similar considerations for 3D N = 2

theories on S3 can be found in [127].

General theory of supersymmetric localization

We now turn to a bird’s-eye view of the argument underpinning supersym-
metric localization. It will be most conceptually straightforward to formu-
late the logic in the arena of standard finite-dimensional integrals, but the

extension to quantum field theory path integrals is entirely analogous.
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Suppose that we are interested in computing an integral of the form
Z = / dzdf e 5P (2.87)

where x and 6 are bosonic and fermionic coordinates respectively; we can
think of this as an integration over a Grassmann-odd line bundle with canon-
ical measure, where x are coordinates on the base space and 6 are coordi-
nates on the fibre. Suppose further that the function Sg is invariant under
a fermionic symmetry, as implemented by a differential operator @ on su-
perspace (z,6) which is a linear combination of derivatives: QSg = 0. The
square of () either vanishes, or is a bosonic symmetry of Sg which we may
denote by §p.

Consider next the deformed integral
Z(t) = / drdf e~ SElBO—QVIZOl 5oy~ QV >0, (2.88)

where V' is some function invariant under the bosonic symmetry obtained

by squaring (). Taking a t-derivative, we obtain

%f = / dzdfd QVe 1RV — _ / dzdf Q (Ve 719V - (2.89)
Since @ is a total derivative operator, this manifestly vanishes, assuming
suitable behaviour of the functions Sg and V' at infinity. We may therefore
conclude that Z(t) is independent of ¢; we are hence free to evaluate Z(0) by
considering the limit lim;_, Z(t), which we can compute by a saddle-point
approximation which becomes exact in the limit.

In detail, denoting by (xq,6y) a zero of QV, and parametrizing

i 0
a4 =6+ —, 2.90
r=wt 0+ 7 (2.90)
we may write
Sp +tQV = Sglxo, 6o] + (QV)a[zo, 00; 2, 6] + O(t~/?), (2.91)
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where (QV)s is the term in QV which is second order in (&,0). We then

have
e—95EB[z0,0]

Z = lim Z(t) = > SDet(QV )a[zo, 0] '

(z0,00) zeros

(2.92)

where the quantity SDet, which can be thought of as a one-loop determinant
in the field theory version of this argument, is defined by’

1 R .
= [ didf e=(@V)zlzoboie 0] 2.93
SDet(QV )20, fo) / : (2.93)

and can be evaluated by Gaussian integration.
It is clear from the derivation of this result that a similar argument
applies not only to Euclidean partition functions, but to correlation functions
of supersymmetric observables with suitable asymptotic behaviour in field

space.

2.4 The AdS/CFT correspondence

The AdS/CFT correspondence can be viewed as the statement that any
conformal field theory on a suitable d-dimensional spacetime background
B can be interpreted as a theory of quantum gravity in an asymptotically
AdSg.1 x M spacetime with B the conformal boundary of the AdS;, 1 factor,
where M is compact (or perhaps trivial). The fact that B is the conformal
boundary of the AdS spacetime motivates our use of the phrase boundary
theory to refer to the CFT, and bulk theory to refer to the quantum gravity
theory. In some cases, the bulk quantum gravity theory may look like general
relativity, perhaps coupled to a small number of additional light fields, at
low energies; in others, the theory might look much more complicated, with
infinite towers of massless higher spin fields.

More broadly, AdS/CFT is something of a misnomer, as some version
of holographic duality may be applicable in situations where the boundary

theory is not strictly conformal. Some examples are as follows:

22We have used here that the canonical measure on the integration space, involving an
appropriately graded version of the Pfaffian, satisfies dzdf = dzd6.
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e The term AdS/BCFT correspondence is sometimes applied in situa-
tions where conformal invariance is partially broken by the presence

of boundaries or interfaces in the boundary theory.

e Bulk theories with non-trivial profiles for matter fields which backreact

on the geometry can describe holographic RG flows.

e A holographic dual interpretation has been proposed for some theories

of matriz quantum mechanics.

e In some low-dimensional examples, an equivalence has been estab-
lished between a bulk theory of quantum gravity and a dual ensemble

of quantum theories.

Given that we do not have a fully independent definition of string theory
beyond the regime of string worldsheet perturbation theory, one common
perspective is to understand the CF'T as providing a non-perturbative, UV
complete definition of a quantum gravity theory. However, even in the
absence of a non-perturbative definition of string theory, we should be able
to describe bulk physics below the string scale within the framework of
effective field theory (EFT). In this case, the AdS/CFT correspondence
provides a map from bulk EFT physics to physics in an underlying CFT.

An alternative perspective is that two dual quantum mechanical descrip-
tions exist, and in particular that there should be some intrinsically bulk
definition of the UV complete theory; in this case, AdS/CFT can be viewed
as an exact isomorphism between Hilbert spaces respecting the dynamics.
The subject of AdS/CFT is concerned both with situations in which a pre-
cise microscopic duality is identified, and the more “bottom-up” approach
of bulk effective field theory. In both cases, understanding features of the
holographic map has been a longstanding goal of research in AdS/CFT; in
this section, we will make note of some important entries in the holographic
dictionary. Our discussion will rely on material found in [52, 93, 96, 107, 128~
131].
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2.4.1 Fundamentals of the AdS/CFT dictionary

An equivalence between two quantum theories is established if the Hilbert
spaces and operator algebras can be shown to be isomorphic. We shall see
that two of the central pillars of our current understanding of the AdS/CFT
dictionary are a map between bulk and boundary Hilbert spaces, and a map

between path integrals.

Equivalence of Hilbert spaces

One statement of the equivalence of Hilbert spaces between bulk and bound-
ary theories related by holographic duality is that there exists an isomor-
phism

V1 Haas-qa — Horr, (2.94)

where Haqs.qq and Hcpr are the bulk and boundary Hilbert spaces respec-
tively, such that
VoUpagas-qaz = UcrroV, (2.95)

where the U are unitary operators implementing the SO(2,d) symmetries
in the two theories@ Such a map V evidently preserves representations of
SO(2,d). Hamiltonian evolution is an example of one of these unitaries U,
so that in particular the spectrum of the Hamiltonian is preserved via the
isomorphism. We will revisit the spectrum in more granular detail when we
consider the effective approach to AdS/CFT below.

This statement is satisfactory when we have a UV complete theory in
the bulk, but we can make a slightly different statement applying to bulk
effective field theory around an asymptotically AdS background. In this

case, one anticipates that there exists an injection between Hilbert spaces
Vi Haaserr = Herr - (2.96)

Such a map may or may not be an isometry, namely a map which preserves

23We note that the Uads-qc are still physical symmetries rather than gauge symme-
tries in the bulk theory; at the semi-classical level, they can be thought of as related to
diffeomorphisms that act non-trivially on the boundary.
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the inner product, and therefore satisfies VIV = 1. A statement like
can no longer be precisely true, since for example some of the SO(2,d)
transformations in the CFT could raise the energy of a state beyond the
regime of validity of effective field theory. As we will briefly return to below,

the map V is best understood in the language of quantum error correction.

Equivalence of path integrals

In the AdS/CFT correspondence, every bulk field in AdS;,; is associated
to a corresponding gauge-invariant boundary operator@ including the fol-

lowing important examples:
e Bulk scalar fields correspond to boundary scalar operators;
e Bulk vector fields correspond to boundary current operators;
e The bulk metric corresponds to the boundary stress tensor.

The conformal dimension A of the CFT operator is related to the mass m

of the corresponding bulk field; for example, one has for scalar operatorﬁ
m? = A(A —d). (2.97)

As is clear from our examples, the spin of the CFT operator is fixed by
the spin of the corresponding bulk field (as reflected in the Lorentz index
structure).

Concretely, the boundary condition for a field ¢ corresponds to a source
#) for the associated operator O, meaning a deformation of the CFT action

by a term

Scrr — Scrr + / 2/ Tg(@)]6 (2)0(x) (2.98)

with a precise identification made via the relation

¢(0) (x) = lim z_Agb(z,ac) , (2.99)

z—0

2"When dimensionally reducing AdSs;1 x M with compact M to AdS,. 1, one obtains
a tower of Kaluza-Klein modes; each mode is associated to a different CFT operator.
%5 A dictionary for general operators can be found in [107].
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where z denotes the holographic coordinate in Fefferman-Graham coordi-
nates introduced in , and x schematically denotes the remaining bulk
coordinates and the boundary coordinates they induce.

Much of the basic content of the AdS/CFT correspondence is contained
in the Gubser-Klebanov-Polyakov-Witten (GKPW) dictionary [30, 31]

Zgrav[(ﬁ([)) (.%')] ; ZCFT[¢(0)] ; (2.100)

where the left hand side is the Euclidean gravitational path integral with
appropriate boundary conditions for the fields ¢,

Zgrav[¢) (z)] = DgD¢ e~ rlodl, (2.101)

/qﬁ(sz)NzAé(o)(w)

and the right hand side is a generating functional for the CFT

Zerr[o (z)] = / D e~ Scrrlel—f dla/gl6® @)0()
(2.102)
= (e~ J 4'=V/161o " (@)0())

CFT -

We have focused on a Euclidean statement of the GKPW dictionary and the
relationship between bulk fields and boundary sources, though it is possible
to formulate a similar duality between path integrals with more general
contours (see e.g. [132, 133]).

Formally, both sides of are divergent; one expects UV diver-
gences in the CF'T correlators, as well as long-distance divergences from the
infinite-volume asymptotically AdS region in the bulk. The disparate ori-
gins of these divergences hint at the notion of UV/IR duality in AdS/CFT,
and the heuristic that the holographic direction in the bulk geometrizes the
spectrum of energy scales for processes in the CFT. The GKPW formula
can be more carefully defined by making use of holographic renormaliza-
tion, wherein a cutoff surface is chosen in the bulk to regulate calculations
and local counterterms are introduced on this surface to cancel divergent
quantities as the cutoff is removed; see [92] for an introduction.

Differentiating a generating functional with respect to sources is a route
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to calculating correlation functions, and part of the utility of the GKPW
dictionary is that it permits CF'T correlators to be extracted from a bulk

calculation

_1)n 5nZgrav[¢gO)7 try @1(10)]

(
(O1(@1) - On(n)) = Zgrar0] 56\ (21) . .. 56\ () 600

(2.103)

An alternative but equivalent [134] formulation is the so-called extrapolate

dictionary, which directly relates bulk and boundary correlators via

(O1(x1) ... Op(zp))crT
= lim 2~ A1 T F8)(0) (2, 21) ... Op(2, ) gray - (2.104)

z—0

In practice, we often consider the semi-classical regime (with small New-
ton constant G), such that we can approximate bulk path integral calcu-
lations by a classical saddle-point approximation. This is the basis for the
common claim that bulk geometries are dual to CFT states; the bulk ge-
ometry in question is the leading classical saddle appearing in a bulk path
integral calculation, and the CFT state is obtained by cutting open the
corresponding Euclidean CFT path integral. The semi-classical limit also
allows us to compute CFT correlation functions by performing perturbative
quantum field theory on a fixed background, using Feynman diagrams which
are referred to as Witten diagrams in the AdS context, and then differenti-
ating the result with respect to the functions ¢(©) appearing in the boundary

conditions.

2.4.2 Microscopic AdS/CFT

The paradigmatic example of an exact equivalence between microscopic the-
ories in the context of AdS/CFT, which will be of interest to us later in this
thesis, is the following [29]:

The N = 4 supersymmetric Yang-Mills theory with gauge
group SU(N) and Yang-Mills coupling gy is dynamically equiv-
alent to type IIB string theory, with string length ¢, and string
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coupling g, on AdSs x S® with (string frame) curvature scale
Lf(fs) and N units of F(5) flux on S5. The relationship between

field theory and string theory parameters is

Gu=drg,  A=guN=(R/6) . (2105)

This correspondence is motivated by the equivalence of open and closed
string descriptions of the physics of N coincident D3-branes in type IIB
string theory. It will also sometimes be convenient to introduce the quantity
o' = (2. The Planck scale is related to the string scale by by = g4, so one
can think of the large N limit as ensuring a hierarchy between the AdS scale
and the Planck scale. Our conventions for this iteration of the AdS/CFT
correspondence are available for reference in Appendix B.1l

Parameter regimes

The regime of classical (type IIB) supergravity is
A>1 and N—oo  «—  g—0 and £/L$E) < 1. (2.106)

Setting the string coupling to zero truncates the string loop perturbative

expansion to tree-level, while suppressing the string length relative to the

curvature scale suppresses higher derivative o’ corrections in the action.
On the other hand, one can maintain the large N limit while relaxing

the condition of large A to obtain the regime of classical string theory

A=0(1) and N w00 «— g—0and £,/L% =0(1), (2.107)
or one can consider general (A, V) to recover the regime of truly quantum
string theory. While the latter regime is not well understood on the bulk
side, the AdS/CFT correspondence as stated above has been conjectured to
hold for arbitrary parameter values.

AdS/CFT is sometimes referred to as a strong-weak coupling duality;

more precisely, we see that the CFT is strongly coupled (A > 1) precisely
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when the bulk theory is weakly-curved (f5 < LdeS) ) and vice versa. This

mutual incompatibility of the regimes of validity of perturbation theory in
Yang-Mills and classical type IIB supergravity poses a challenge for verify-
ing the AdS/CFT correspondence, but also provides a direct route toward
calculating non-perturbative effects through controlled calculations on the

opposite side of the duality.

Operator spectrum matching

The microscopic AdS/CFT duality as stated above has been subjected to
extensive numerical checks; an incomplete list can be found in [107]. We will
briefly review a check at the level of the spectrum, since this will provide
insights relevant beyond this particular microscopic iteration of AdS/CFT.

Although one would like to be able to compare the full spectrum of
N =4 SYM and type IIB string theory on AdSs x S°, it is not known how
to compute the spectrum when stringy effects become important, namely
for energies above the inverse string length E > 1/¢5. Consequently, one can
only compare spectra well below this scale, where the classical supergravity
approximation is valid. Though the results should correspond to results at
large coupling in the CFT, one can compare these directly for operators with
protected dimensions, including chiral primary operators.

To compute the spectrum of type IIB supergravity on AdSs x S°, one

first writes the 10D fields in terms of spherical harmonics on the S°
S, 5 =Y dr(@") V(i) , (2.108)
k=0

where z# are the AdS; coordinates, §° are coordinates on S° (such that
Z?Zl(g)i)Q = 1), and Y} are spherical harmonics. One then expands the
Kaluza-Klein modes ¢ (z#) in fluctuations around the AdSs background,
and then diagonalizes the equations for the fluctuations. It transpires that
these fluctuations can be organized into chiral representations of the su-
perconformal transformations, with chiral primaries corresponding to lin-

ear combinations of the metric and self-dual four form. These represen-
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tations can therefore be matched to the %—BPS chiral representations of
SU(N) N = 4 SYM theory discussed in Section Notably, in the
supergravity calculation, the effective masses of the Kaluza-Klein modes
are unbounded, whereas the chiral primary operator dimensions range from
n € {2,...,N}; this reflects the fact that the supergravity approximation
breaks down when the KK mass scale becomes of order the string scale,
or when n ~ Lpgs/ls = A/ « N. The supergravity calculation should
account for the entire spectrum below the string scale, and it appears to
be precisely matched to the spectrum of chiral primary representations in
N = 4 SYM; this suggests firstly that all non-chiral primary operators in
SYM acquire parametrically large anomalous dimensions, at least of order
A/4 and secondly that all states above the string scale should necessarily

appear in long multiplets.

2.4.3 Effective AdS/CFT

Much of the power of the AdS/CFT correspondence relies on the fact that
many of the features observed in the above microscopic example appear to
have a much broader range of applicability; indeed, it is typical to think
of an arbitrary CFT as defining a possibly very exotic theory of grav-
ity. We are most interested in those gravitational theories which reduce
to general relativity, possibly coupled to a small number of light, weakly-
interacting ﬁelds@ at low energiesﬂconsequently, an important program
within AdS/CFT is to establish a set of necessary and sufficient conditions

to impose on a CF'T that ensure this property in the dual.

Generalized free theories

A useful point of reference in the following discussion is the case of a free
field theory in the bulk, which will define a generalized free field theory in the

260ne may also be interested in the case of strong interactions, see e.g. [135].
2TThe phrase sub-AdS locality is sometimes used to signify the validity of effective field
theory between the AdS scale and some parametrically larger cutoff scale.
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boundary via the extrapolate dictionary@ Before considering a free field,
we can begin by considering an even simpler system, namely one-particle
quantum mechanics in AdSy1; a pedagogical account is provided in [131].
One can identify differential operators (D, Py, K., L) in AdSgzy1 which
implement the conformal algebra so0(2,d); in particular, we can choose D
to be the generator of global time translations, and therefore interpret it as
the AdS Hamiltonian. One may then construct irreducible representations of
this algebra by first identifying a primary wavefunction satisfying K, = 0,

then acting on 1y with general products of P, to produce wavefunctions
(PuP*)" Puy - - - Pugtho - (2.109)

Letting A denote the D eigenvalue of vy, these wavefunctions have energy
E,; = A+ 2n + ¢ with respect to the operator D. For fixed n and ¢,
we can choose to consider linear combinations v, ; of the states (2.109)
transforming in irreducible representations of so(d) labelled by additional
angular momentum quantum numbers J. For a fixed A, we can arrange for
all 1, ¢ 7 to be orthonormal.

Having understood single-particle quantum mechanics in AdS, we can
turn to free field theory. The canonical quantization of a free scalar field in

the bulk proceeds by introducing an expansion@

O(t,0,8°) =Y s (60,3 an g + 050 (49, 8)al, ;. (2.110)
nl,J

Here, the orthonormalized solutions to the Klein-Gordon equation v, ¢ ; are
precisely the one-particle wavefunctions obtained for m? = A(A — d), and

a;rl .7 and ay ¢ ; are creation and annihilation operators satisfying

[anl,el,JlaaILQ,eg,JQ] = Onin 00,050, 7 - (2.111)

Following the standard approach to free quantum field theory, one can define

Z80f course, this will not define a genuine CFT dual unless we have a perturbative
graviton in the bulk and therefore a boundary stress tensor.
29We are using here the global AdS coordinates introduced in equation 1}
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a Fock space including all multi-particle excitations.

To understand the corresponding boundary theory, we can apply the
extrapolate dictionary to ¢(t, v, #%), thereby obtaining a boundary operator
O(t, #%) expressed as a linear combination of the operators ap¢,7 and aim g
More generally, we can also apply the extrapolate dictionary to the descen-
dant fields obtained by acting on the expression with the differential
operators P,, and also to normal-ordered products of bulk fields obtained

this Waym Some immediate consequences of this procedure are as follows:

e Operators which produce single-particle excitations in the bulk corre-
spond to the primary operator O of dimension A and its descendants
Onp,7, which have dimension A + 2n + ¢ and spin ¢. These are the

analogues of single-trace operators for the generalized free field theory.

e Operators which produce multi-particle excitations in the bulk cor-
respond to products of O, ;. The conformal dimension of such op-
erators is simply the sum of conformal dimensions of the constituent
single-particle operators, since energies are additive in the bulk free
field theory. These are the analogues of multi-trace operators for the

generalized free field theory.

e The simplest multi-trace operators are the double-trace operators, de-
noted by [0O], ¢, which arise from the product of O and O, ;.
These operators are the only operators appearing in the OPE of O
with itself.

e The three-point function of O with itself vanishes, because vacuum
expectation values involving precisely three creation/annihilation op-

erators in the bulk must vanish.

e Higher-point correlation functions factorize, in the sense that they are
equal to a sum over products of two-point functions, with all possi-
ble pairwise contractions included in the sum. This is because free
field theory correlators are computed by Wick contractions, as a con-

sequence of the algebra (2.111)).

30See [131] for a careful explanation.
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Gapped large N theories

We would like to move beyond the case of bulk free field theory, allowing
general semi-classical bulk physics including both perturbative gravity and
interactions. The natural constructions to produce this bulk physics are
known as gapped large N CFTs, which are families of d-dimensional CFT's
satisfying the following conditions (paraphrased from [13()]):E|

e There exists a finite set of primary operators {O;} with scaling dimen-
sions {A;}, referred to as single-trace, which, when normalized such
that (OO) = O(N"), have the property that

(0,0,01) =O(N™1) . (2.112)

These operators are interpreted as the primary operators dual to the

fundamental fields ¢; in the bulk which create single-particle states.

e There exists a unique single-trace spin-2 primary operator of dimen-
sion A = d, the energy-momentum tensor T),,, which has two-point
function (T'T) ~ N.

e For any collection of n = O(N?) single-trace primaries {O;,,...,0;, },
there exists an associated multi-trace primary O;, ;, whose scaling

dimension is

Ay +...+ A, +ONT. (2.113)

These operators are dual to operators which create multi-particle states
in the bulk.

e Correlation functions of the single-trace and multi-trace operators de-
fined above agree with the factorized (generalized free field) result at
leading order in 1/N.

31 As stated here, this definition is appropriate for capturing effective field theory in
AdSgy1; to accommodate the possibility of a higher-dimensional bulk with a compact
internal space giving rise to towers of Kaluza-Klein modes, we should also permit towers
of single-trace operators with O(1) spacing of their conformal dimensions.
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e All operators with A = O(N") are the above-mentioned single-trace

and multi-trace primaries and descendants.

The proposal that gapped large N theories should ensure bulk semi-classical
physics was put forward in [32], and has since been subject to various tests
and refinements (see e.g. [34-38, 136-139)]).

In this more general language, bulk free field theory may be thought
of formally as a theory at infinite N, whereas perturbative interactions in
the bulk are captured by the large N expansion. Many of the features
of the generalized free field case, including the Fock space structure, the
suppression of three-point functions, and the factorization of higher-point
correlation functions, are therefore required to hold at leading order in 1/N.
That single-trace and multi-trace primaries and their descendants are the
only operators with O(1) scaling dimension reflects the expectation that all
bulk states up to some cutoff scale are described by EFT excitations.

Our definition is broad enough to allow for any low-energy effective field
theory with gravity; in particular, it could include higher spin fields in the
low-energy spectrum, which could arise for example as excited string modes.
On the other hand, it may also be desirable to require a parametric separa-
tion for higher spin fields, demanding that the low-energy theory in the bulk
should resemble Einstein gravity. In the context of N'= 4 SYM, establishing
such a parametric separation, namely demanding that ¢; < Lags, required
a strongly coupled field theory. It transpires that the analogous criterion
in the context of the abstract gapped large N CFTs introduced here is the
existence of a single-trace higher spin gap, namely a parametrically large
Agap, with 1 < Agap < N, such that there do not exist primaries with
dimension A < Ag,p and spin greater than two.

For a generic gapped large N CFT with a higher spin gap, we can sum-
marize the important regimes in the spectrum in terms of the bulk physics

they describe as follows:

o A < Agap: Effective field theory excitations, including perturbative
gravitons. In string theory language, this is the part of the spectrum

lying well below the string scale, where classical supergravity is valid.
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This regime may include Kaluza-Klein excitations, with large dimen-
sion 1 < A < Agap.

o Agap S A K N: “Stringy” and/or higher-spin excitations. These are
massive states that would be found in the spectrum of perturbative

string theory.

e A ~ N: An intermediate regime of the spectrum associated to bulk
physics including non-perturbative objects like D-branes. CFT oper-
ators with scaling dimension in this regime are sometimes referred to

as “hefty operators”.

e A ~ N2: Black hole states@ CFT operators with scaling dimension

in this regime are sometimes referred to as “heavy operators”.

Notably, high-energy states of the theory are interpreted as black hole mi-
crostates; we turn to a discussion of black holes in the context of AdS/CFT

presently.

2.4.4 Black holes in AdS/CFT

One of the most important applications of the AdS/CFT correspondence
has been to the study of black hole physics. Historically, the behaviour of
quantum black holes has been mysterious, since a semi-classical calculation
due to Hawking appeared to suggest the break down of unitarity [50, 56]. In
AdS/CFT, unitarity is inherent in the CFT description, and an important
question, which has not been fully answered at the time of writing despite
much recent progress [9, 63-67], is how the bulk perspective of the black
hole evolution is able to account for this.

We have already discussed how black holes appear as high-energy mi-
crostates of holographic theories; in this subsection, we will mention two
other important appearances of black holes in the context of AdS/CFT. We

first consider the black holes which arise in computations in the canonical

328mall black holes may appear in the spectrum below A ~ N2, when the bulk en-
ergy scale exceeds the Planck mass; for example, in the microscopic version of AdS/CFT
discussed earlier, one has small black holes appearing at A ~ N*/* and above [140).
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ensemble of the CFT, where we are able to treat the bulk semi-classically.
We then describe a particular, special microstate of the two-fold tensor prod-
uct of a CFT, known as the thermofield double, describing a two-sided black
hole in the bulk; this state has been an invaluable laboratory for black hole

physics and the emergence of geometry in AdS/CFT.

Canonical ensemble

As discussed in Appendix [A.1], the thermal partition function of a quantum
field theory quantized on the surface ¥;_1 at inverse termperature 8 can be
computed via the Euclidean path integral on ¥;_1 X Sé, with Sé the thermal
circle of circumference 8. Via the GKPW dictionary , we have the

equivalence of path integrals
Zgray = ZcFT[Bd—1 X Sé] , (2.114)

where the bulk path integral includes an integration over suitable asymp-
totically AdS Euclidean metrics with conformal boundary ¥4 1 X Sé. We
will restrict our consideration to the case of pure gravity, and focus on
Y41 = 8% for concreteness.

In the limit of vanishing Newton constant G — 0, when semi-classical
gravity is valid in the bulk, we recall that the bulk path integral should be
well-approximated by

Zgray = Z e_SE[Saddle], (2.115)
saddles

where we are summing over Euclidean gravity solutions with the required
boundary conditions, evaluating the on-shell Euclidean action Sg for each.
We neglect loop corrections for the moment; they contribute to the expo-
nential at order O((Li:ié /G)?), whereas the on-shell Euclidean action con-
tributes at order O(L%/G).

The simplest such saddle in the case of the thermal partition function

is Euclidean thermal AdS, whose metric is precisely that of pure Euclidean
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AdS,

2 2

d
T 2402 |, fr) =1+

f(r)

ds® = Ligg | f(r)dr® + ., (2.116)

L?AdS
but subject to the identification 7 ~ 74 8 in Euclidean time. We note that
a closed path which wraps the 7 direction is not contractible in the bulk;
this is most easily visualized for AdS3, where thermal AdS has the topology
of a solid torus, as shown in Figure

An alternative saddle is the Euclidean black hole, sometimes called the

Euclidean cigar, with metric

2
ds? = L3 | f(r)dr? + ar L r2d02_, |
f(r)
- s (2.117)
fr) =y ( i +1),
L?AdS rd=2 Lids

where we still demand periodicity 7 ~ 7 + 5. Unlike thermal AdS, the
Euclidean black hole has the topology of Diskg x 591 as shown in Figure
with a closed path wrapping the 7 direction now contractible in the
bulk. The solution r = rgy to the equation f(r) = 0 gives the position of
the Euclidean horizon, which can be thought of as the origin of the disk.
Demanding that the solution has no conical singularity at this horizon, one
discovers that the inverse temperature S and the horizon of the black hole

rg are related by
47WHL?&dS

8= (2.118)

This expression is readily inverted to deduce the horizon position in terms

of 3,

ri 27Laas /4723 g — d(d - 2)°
Lags dp

Since rg is real, we immediately observe that there is a minimum possible

(2.119)
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s! Sk st S}
o @

Thermal AdS Fuclidean black hole

Figure 2.3: Solid torus representing the Euclidean gravity solutions appear-
ing as saddle points in the calculation of the thermal partition function
in d+ 1 = 3. For thermal AdS, loops in the thermal direction are non-
contractible while loops in the spatial S' direction are contractible, whereas
the opposite holds for the Euclidean black hole.

temperature, or maximum possible 3, given by

2L ags
Vdd—2)

Moreover, for a given 8 below this maximum, we see that there are in fact
two Euclidean black hole solutions corresponding to the two signs in (2.119));

we refer to these as the large and small black holes at a given temperature.ﬁ

Prmax = (2.120)

To determine which saddle dominates the canonical ensemble, one can
evaluate the on-shell Euclidean action for each; the saddle with least ac-
tion will dominate@ As noted above, for low temperatures 8 > Bmax, DO
black hole saddles exist, and thermal AdS always dominates the canonical

ensemble. Moreover, for 5 < fnax, it can be shown that the large black hole

33In the d = 2 case of AdSs, has only one positive solution, so there are no small
black holes.

34Care must be taken to regulate large volume divergences in AdS; this can be achieved
by cutting off the solutions at the surface z = € in Fefferman-Graham coordinates, calcu-
lating the difference between on-shell actions for two solutions subject to this cutoff, and
taking the limit € — 0 to obtain a finite difference.
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always has lower action than the small black hole. Comparing the on-shell
action between the large black hole and thermal AdS for 8 < Bpax, one finds

d—2 d—1 2

1

Asy = P VST () ) (2.121)
167G L3 45

and therefore, using (2.119), one observes an exchange of dominance from
thermal AdS to the large black hole as we lower 8 below the critical value

_ 2mLpgs
Be = 11

(2.122)
This exchange is known as the Hawking-Page transition [141]*]

In addition to the partition function, it is interesting to consider how the
thermal entropy varies with 5. For the Euclidean black hole, we can use a

standard thermodynamic relation and Zgay =~ e~ Selsaddle] ¢ compute

A

S=(1-p03)InZ= ﬁ o, Ag =Vl (S84 (2.123)
This is the famous Bekenstein-Hawking area law for the entropy of a black
hole [24, 25, 50], which states the proportionality between the thermody-
namic entropy and the horizon area. On the other hand, a similar calculation
for thermal AdS would yield vanishing entropy, which we expect to become
O((Liﬁé /G)?) with the inclusion of quantum corrections (due to thermal
gravitons). Consequently, the thermal entropy at the Hawking-Page tran-
sition jumps from O((Liaé/G)O) to O(LdA?ié/G), indicating a large number
of high-energy states that become populated at high temperatures. This is

related to a confinement-deconfinement transition in the dual CFT [55].

35Tt is worth noting that the Hawking-Page transition is absent in the case of the planar
AdS black hole, which always dominates the canonical ensemble for the theory on flat
space Xq_1 = R4, The interpretation is that, although we have set the radius R of the
5971 on which the CFT is quantized to one in the above analysis, it is the dimensionless
parameter §/R which controls the Hawking-Page transition, and thus sending R — oo
enforces that we are always below this transition.
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The eternal AdS black hole and the thermofield double state

We have seen that thermal physics at temperatures above the Hawking-Page
transition is dominated by the Euclidean black hole in the bulk, meaning
that the Euclidean CFT partition function corresponds to a Euclidean grav-
ity partition function whose leading saddle is this black hole. An interesting
result can be obtained by slicing this Euclidean CF'T path integral to define
a state on two copies of ¥;_1; as argued in Appendix [A.1], this defines a

particular entangled state known as the thermofield double state

ITFDg)12 = > e P52 B, )1|En)s (2.124)
n

in the two-fold tensor product of the CFT. This state can be thought of
as a canonical purification of the thermal state on X;_1; when we perform
a partial trace of the pure state |TFDg)(TFDg| over one CFT, we recover
precisely the thermal density matrix pg on the remaining CFT.

Considering the corresponding slicing of the bulk path integral, we find
that this path integral prepares a state of the eternal AdS black hole geome-
try introduced in Section [2.1.1] obtained by performing the analytic contin-
uation 7 — it; this is known as the Hartle-Hawking state [142]. This path
integral manipulation suggests the proposal, due to Maldacena [41], that the
full Lorentzian geometry, including the black hole interior, is holographically
dual to the thermofield double state of two CFTs with temperature above
the Hawking-Page transition.

This is a remarkable claim; as we will return to shortly, we anticipate
that the thermal density matrix obtained by tracing out either of the two
entangled CFTs describes only the physics occurring outside the black hole
horizon, in one of the two exterior regions. The existence of a smooth interior
connecting these regions must then be intimately related to the pattern of
quantum entanglement found in the thermofield double state; we will explore
the notion of entanglement and its relevance to AdS/CFT further in the next

subsection.
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2.4.5 Quantum information in AdS/CFT

Quantum information theory is an enormous discipline, and its applications
to AdS/CFT have been Widespread@ For the purposes of this thesis, we
will need relatively modest input from quantum information theory; we will
focus our presentation on perhaps the most basic measure of correlations

between quantum subsystems known as entanglement entropy.

Von Neumann entropy

For a quantum mechanical system with Hilbert space H, the von Neumann

entropy associated to a density matrix p on H is defined by

S(p) = —tr(plnp) . (2.125)

The von Neumann entropy quantifies both classical and quantum uncer-
tainty present in the state p. As such, the minimum possible entropy occurs

when p = |¥)(¥| is a pure state, in which case
S(wy ) =0, (2.126)

while the maximum possible entropy in a d-dimensional Hilbert space occurs

when p = %]1 is maximally mixed, in which case
S(lll) Ind (2.127)
-1) =Ind. .
d

A case of particular interest is when the density matrix p is obtained from
a pure state by tracing out some of the degrees of freedom in the system.
In particular, suppose that we have a bipartite system AB with factorizing
Hilbert space Hap = Ha ® Hp, and a pure state |¥) of the full Hilbert
space Hap. We can then obtain a density matrix on the subsystem A by

36 A high-level summary of the applications of quantum information theory to quantum
gravity appears in [143].
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performing a partial trace
pa = trp(|U)W)). (2.128)

In this context, the von Neumann entropy of the state p 4 is referred to as the
entanglement entropy, since it reflects the degree of entanglement between
A and B in the state |¥). When A and B are unentangled in |¥), then
pA is pure, whereas when |¥) is a state with a pattern of entanglement like
that of ﬁ Zle |a;) ®|b;), with {a;} and {b;} orthonormal bases for H4 and
H Bm then p,4 is maximally mixed.

We will often be interested in the entanglement entropy of spatial sub-
regions in the context of quantum field theory, for example in the case of a
holographic CFT. In fact, this quantity is technically not well-defined, essen-
tially because the Hilbert space does not factorize into H 4, H ; associated
with an open region A and the interior of its complement. If we attempted
to choose a lattice regularization and then take a continuum limit, we would

find the entanglement entropy to be UV-divergent, reflecting the generic

presence of short-range entanglement in quantum field theory However,
as a result of the universal structure of these divergences, emerging from the
fact that all finite energy states in QFT have the entanglement structure of
the vacuum state in the limit of short distances, one can introduce UV reg-
ulators and compute quantities, like differences in the entanglement entropy
of a fixed subregion for different quantum states, which remain finite when
the regulator is removed.

It is important to note that the von Neumann entropy is not a thermo-
dynamic entropy, in the sense that it does not count microstates consistent

with a list of macroscopic data. For this reason, the von Neumann entropy is

3TIf Ha and Hp have different dimension, then the rank of pa is at most equal to the
smaller dimension. In particular p4 cannot be maximally mixed when the A Hilbert space
is larger than the B Hilbert space.

38In the language of algebraic QFT, the von Neumann algebra associated to a subregion
in quantum field theory is a type I1II factor, which has neither a well-defined density matrix
nor entropy.

39 Additional technical challenges arise when attempting to define a notion of subregion
entanglement entropy in the context of gauge theory.
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also sometimes called a fine-grained entropy: it is a property of a particular

density matrix. A coarse-grained or thermodynamic entropy may instead be

defined with respect to a collection a = (a1, ..., a,) of expectation values of
macroscopic observables {A1,..., A,} by
Sthermo(a) = maXpEAaS(p) ) Aa = {P : tI‘(pA) = ai} . (2129)

In words, it is obtained by maximizing the von Neumann entropy with re-
spect to density matrices with the appropriate expectation values for the

operators Aj;.

Entanglement entropy in AdS/CFT

A remarkable entry in the AdS/CFT dictionary, which can be derived from
a careful treatment of the equivalence of path integrals and an application
of the replica trick [65, 66, 144-146], is the Ryu-Takayanagi formula [42]
and its various generalizations (e.g. [145, 147-149]), which relate the von
Neumann entropy of a boundary subregion to the area of an extremal surface
in the bulk@ The original proposal of Ryu and Takayanagi, relevant to the
special case of holographic states with classical, static, asymptotically AdS
duals, stated that the von Neumann entropy associated to the subregion A

should be given by

o AIX A
S(pa) = ngin =/~

where the minimization is over surfaces X 4, contained in some static slice

(2.130)

> whose boundary contains A, which are homologous to A, meaning that
there exists a homology surface H s whose boundary is 0H4 = AU X 4. A
prototypical example of the application of this formula is to the thermofield
double state on two copies of a holographic CFT, which we saw in the
previous subsection is dual to an eternal AdS black hole. In this case,
the entanglement entropy of the reduced density matrix on the left CFT is
simply the von Neumann entropy of the thermal state of this CFT, which we

have seen is given by the Bekenstein-Hawking formula, which here precisely

40 A useful overview of the RT formula and its generalizations can be found in [150].
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2.4. The AdS/CFT correspondence

coincides with the Ryu-Takayanagi formula.

A useful generalization of the RT formula due to Hubeny, Rangamani,
and Takayanagi, known as the HRT formula [147], applies to any classi-
cal, asymptotically AdS spacetime satisfying the null energy condition. The
statement of the HRT formula is superficially identical to , with the
caveat that the minimization is now with respect to all bulk extremal sur-
faces X 4 homologous to A, rather than all surfaces restricted to a particular
static slice. The HRT formula admits a convenient reformulation due to

Wall, known as the mazimin formulation [148], which states

S(pa) = max min AXa] .

2.131
Y Xicx 4G ( )

In words, the maximin formula instructs one to first select a Cauchy slice
>} and minimize with respect to homologous surfaces X4 C 3, and then to
maximize the result over all possible X.

It is sometimes of interest to consider corrections to the holographic en-
tanglement entropy formula, including higher derivative corrections to the
gravitational action and quantum corrections from propagating quantum
fields. In this case, an expression which accounts for leading order correc-
tions is provided by [145, 151]

-Agen [X A]

Slpal = e

+ S[pm,] = Sgen[X 4l , (2.132)

where X 4 is precisely the surface appearing in the HRT formula for a given
background, H4 is a homology surface for X4, Agen is a generalized area
which accounts for higher derivative corrections, and S{pg,] is the von Neu-
mann entropy of the semi-classical bulk fields in the region H4. An im-
portant upgrade of this formula, known as the Engelhardt-Wall formula or
sometimes simply the gravitational entropy formula [149], proposes modify-
ing by replacing X 4 with the quantum extremal surface which mini-
mizes the generalized entropy. Here, a quantum extremal surface X 4 is sim-
ply a surface homologous to A for which the generalized entropy is extrem-

ized. This improvement has played a significant role in recent progress in
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understanding the black hole information paradox; importantly, it is needed
in situations where quantum corrections need not be small, but can rather
compete with the area term in the generalized entropy formula. It is also sig-
nificant in this context that the surface X4 appearing in the extremization
procedure need not be connected, but can contain disconnected components
which therefore allow for H4 to include disconnected entanglement island
regions; such surfaces are important for restoring a unitary Page curve in

holographic models of black hole evaporation.

Bulk reconstruction

A primary goal in the study of AdS/CFT is to understand how bulk physics
is encoded in the boundary theory. To this end, a basic question is whether,
given a CFT state and a choice of boundary spatial subregion A at fixed
time, there exists some bulk subregion whose semi-classical physics is entirely
reconstructible from data contained within A. Concretely, one might require
that any element of the algebra of bulk local operators within this subregion
can be expressed in terms of the algebra of boundary local operators in the
region A. The existence of such a bulk subregion is not guaranteed a priori
due to the inherently non-local nature of the AdS/CFT correspondence; it
is a manifestation of a property of the correspondence sometimes referred
to as subregion duality.

Perhaps the most intuitive guess for the relevant bulk subregion is a

region known as the causal wedge of A, defined by
ClA] = JT[D(A)] N J~[D(A)], (2.133)

where D(A) denotes the domain of dependence of A, defined as the spacetime
region consisting of points p such that all causal curves through p intersect A,
and J*[S] denote the bulk future/past light cones of boundary region S. We
can think about the causal wedge as the collection of points in the bulk which
lie on causal curves whose endpoints are in the domain of dependence of A.
The fact that causality permits a probe to be sent from and back to D(A)

via any point in the causal wedge is at least suggestive that physics within
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this wedge may be reconstructible on D(A), and therefore in principle on A.
An explicit demonstration of causal wedge reconstructibility is provided by
the HKLL procedure [152], which makes use of the extrapolate dictionary to
relate bulk and boundary operators.

In fact, general arguments making use of the Ryu-Takayanagi formula
suggest that a generically larger regior@ known as the entanglement wedge

of A should be reconstructible within A; this region is defined by
E[A] = D[H4], (2.134)

where H 4 denotes a homology surface appearing in the HRT formula. No-
tably, whereas the definition of the causal wedge forbids reconstruction of
physics at bulk spacetime points behind causal horizons, such points may
lie within the entanglement wedge of a boundary subregion; in particular,
the entanglement wedge of the entire boundary is necessarily the entire bulk
spacetime.

A naive puzzle posed by the entanglement wedge reconstruction paradigm
is illustrated in Figure 2.4, which demonstrates a situation in which a tripar-
tition of the boundary into subregions A, B, and C' might permit some bulk
points to be reconstructible on AB, BC, or AC but not A, B, or C indi-
vidually. Such considerations have led to the realization that the AdS/CFT
map has the structure of a quantum error correcting code, where quantum
information may be simultaneously stored in an entangled state of multi-
ple quantum subystems, thereby protecting against errors within individual

subsystems. This is formalized by the existence of an embedding

V : Hads-EFT — HerT , (2.135)

where in this context the image of the EFT Hilbert space V(Haqs-grr) iS
referred to as a code subspace of the CFT Hilbert space. A pedagogical

introduction to this subject can be found in [130].

“IThe containment C[A] C E[A] can be derived subject to certain physical assumptions,
including the null energy condition.
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2.4. The AdS/CFT correspondence

Figure 2.4: Time slice of a static bulk configuration illustrating a puzzle
for entanglement wedge reconstruction. The CFT is partitioned into three
regions, A, B, and C. Ryu-Takayanagi surfaces are shown in red. The bulk
region D (dark blue) is not contained in the entanglement wedges of A, B,
or C (light blue), but is contained in the entanglement wedge of e.g. AB,
which is equal to E[A]U E[B]U D.
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Chapter 3

Boundary F in N =4
Supersymmetric Yang-Mills
Theory

3.1 Introduction

Conformal field theories in various dimensions may be characterized by a
parameter, sometimes known as F or “generalized F”, that characterizes the
number of local degrees of freedom [153-158]. This is equal to the central
charge ¢ for two-dimensional CFTs, and the Weyl-anomaly coefficient a
for four-dimensional CFTs. In general, F' may be defined from a regulator-
independent term in the sphere free energy, or alternatively from a universal
term in the vacuum entanglement entropy for a ball-shaped region. The
F parameter is conjectured to decrease under renormalization group (RG)
flows between conformal fixed points. This has been proven in two, three,
and four dimensions as the c-theorem [153], F-theorem [154, 155, 159], and
a-theorem [156, 157], respectively.

A similar parameter, boundary F, may be defined for boundary con-
formal field theories (BCFTs) [84, 160-162],*?| It can be understood as a

measure of the number of local degrees of freedom associated with the bound-

42We recall that a BCFT is a local quantum field theory defined on a manifold with
boundary such that the theory on a half-space preserves the conformal invariance of a
CFT in one lower dimension (see e.g. [80, 106, 163, 164]). Each BCFT is associated
with some bulk CFT which governs the short-distance behavior of local bulk correlators.
Some BCFTs may be naturally understood by starting with this bulk CFT and choosing
some boundary conditions for the fields. More generally, we can couple in (arbitrarily
numerous) additional boundary degrees of freedom.
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\

D3 (0123)

~1
NS5 (012456

&\

D5 (012789)

Figure 3.1: D-brane construction of a half-supersymmetric BCFT whose
bulk CFT is N' =4 SYM theory.

ary Boundary F may be defined from the partition function of the BCFT
on a hemisphere, or from the vacuum entanglement entropy of a half-ball
centered on the boundary. It is conjectured to decrease under boundary RG
flows (where a UV BCFT is perturbed by a relevant boundary operator)
[162, 165-168]; this has been proven as the g-theorem in two dimensions
[84, 160, 169] and the b-theorem in three dimensions [170, 171], but remains
a conjecture (the boundary F' theorem) for four-dimensional BCFTs.

It is interesting to characterize the possible BCFTs that are associated
with a particular bulk CFT, and specifically to understand which values of
boundary F are possible. This is understood for minimal model CFTs in
two dimensions, but relatively few results are available for more complicated
CFTs or CFTs in higher dimensions. The main goal of this chapter is
to investigate the possible values of boundary F' in a very special higher-
dimensional example where we take the bulk CFT to be U(N) N = 4
supersymmetric Yang-Mills (SYM) theory and we constrain the BCFT to
preserve half of the supersymmetry.

This rich class of theories was classified by Gaiotto and Witten in [89, 90].
These theories preserve an OSp(4|4) subgroup of the original 4D super-
conformal symmetry group PSU(2,2|4); they are four-dimensional BCFTs

with the maximum possible supersymmetry. Many of these theories de-

43This quantity can be negative; in this case, we can understand the boundary condition
as removing some of the bulk degrees of freedom near the boundary.
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scribe the decoupled low-energy physics of coincident D3-branes in type IIB
string theory ending in various ways on stacks of D5-branes and NS5-branes,
possibly with additional D3-branes stretched between the five-branes, as
depicted in Figure As for their ' = 4 SYM parent, the associated
half-supersymmetric BCFTs are holographic; their vacuum states are dual
to solutions of type IIB supergravity preserving SO(3) x SO(3) x SO(3,2)
symmetry. These solutions were described in [172-175].

In this chapter, we calculate boundary F for a general OSp(4|4)-symmetric
BCFTs whose bulk CFT is U(N) N =4 SYM theory. First, we perform a
holographic calculation, making use of the Ryu-Takayanagi (RT) formula to
calculate the vacuum entanglement entropy for a half-ball. This was done
in [162] for a particular type of boundary condition associated with nk D3-
branes ending on k D5—branesﬁ we extend these calculations to the most
general case, arising from the brane construction in Figure with arbi-
trary numbers and configurations of branes. The result is given as equation
in Section

Next, we calculate boundary F' exactly by evaluating the hemisphere par-
tition function using supersymmetric localization, for the class of boundary
conditions arising from D3-branes ending on only D5-branes or only NS5-
branes, in all possible Ways@ These results are given as equation (3.118)) for
boundary conditions associated with NS5-branes and for boundary
conditions associated with D5-branes.

We compare the localization results, which should be exact, to the su-
pergravity calculations, which are expected to be valid at large N and large
't Hooft coupling A. The results agree precisely in a limit where a certain
set of integers characterizing the theory (roughly, the number of D3-branes
ending on each five-brane in the string theory picture and the non-zero dif-
ferences between these numbers) are large. Perhaps surprisingly, we find

that this agreement holds exactly as a function of the ’t Hooft coupling A,

“4Gimilar calculations were performed in [176] for 3D superconformal theories and in
[177] for 3D BCFTs.

“5Localization calculations of F' for related 3D SCFTs were performed in [176], and
calculations of the interface entropy for supersymmetric Janus interfaces in 4D N = 2
SCFTs were performed in [178].
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suggesting a non-renormalization theorem governing the o/ corrections in
the string theory calculation.

Making use of our results, we analyze in Section the distribution of
possible values of boundary F' for various classes of boundary conditions.
For the most general boundary conditions associated with D5-branes and
NS5-branes, we can have arbitrarily large values of boundary F' for a given
N and A, in accord with the fact that we can couple in a 3D SCFT with
an arbitrarily large number of degrees of freedom. For the theories asso-
ciated with NS5-branes only or D5-branes only (which may be interpreted
as boundary conditions for ' = 4 SYM theory without added degrees of
freedom), we find that boundary F' is bounded, but can take positive or neg-
ative values. For boundary conditions associated with D5-branes only, we
find that F is typically negative at small 't Hooft coupling, consistent with
the fact that these boundary conditions are associated with scalar vevs that
diverge near the boundary and give spatially dependent mass terms that
effectively remove some of the bulk CF'T degrees of freedom. For NS5-brane
boundary conditions, we find that boundary F' is positive for small A but

that an increasing proportion of these boundary conditions become negative
as A grows, ™|

3.2 Background

In this section, we review some relevant background material on boundary
F and on half-supersymmetric BCFTs associated with the N' = 4 SYM
theory.

“For A > 47N, we can make an S-duality transformation that maps a theory with
NS5 boundary conditions to a theory with D5 boundary conditions and A < 47N, so it
is expected that the proportion of NS5 boundary conditions with negative boundary F
grows with \; likewise, the proportion of D5 boundary conditions with positive boundary
F should grow with A.
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3.2.1 Boundary entropy and boundary free energy

In a d-dimensional CF'T, the vacuum state entanglement entropy of a ball-

shaped region of radius R has the general UV divergence structure

S[BE) = aaa (R/e)"? + ag_a (R/)"!

- 4(—13_1%/1111(}2/6) 2|d’ (3.1)
(-1) =2z F 24d

where € is a UV regulator. The coefficients a; are generally scheme-dependent,
and arise from integration of local geometric quantities over the entangling
surface, while the coefficients A and F' are universal, i.e. independent of
the regularization scheme. In particular, the quantity A coincides with the
A-type trace anomaly in even dimensions, while F' is the sphere free energy
F = —1In Z[S%; this equivalence is established by the relation

S[BE Juniv = In Z[SE)univ (3.2)

of Casini, Huerta, and Myers for sphere entanglement entropy and the sphere
partition function in CFT [179]. These universal terms are conjectured
to be RG monotones in arbitrary dimension [158, 180-182]; this has been
proven in dimensions d = 2,3, and 4, with the results referred to as the
(Zamolodchikov) c-theorem [153], the F-theorem [154, 155, 159], and the
a-theorem [156, 157] respectively. The conjectured extension to arbitrary
dimension is sometimes referred to as the generalized F-theorem.

In the BCFT case, we may instead consider the entanglement entropy
of a half-ball region centred at the BCFT boundary (see Figure . The

entanglement entropy now has divergences of d-dimensional and (d — 1)-
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Figure 3.2: Set-up for calculation of boundary F', showing the entangling
surface for a half-ball region centred at the boundary for a BCFT on half of
RS,

dimensional origin, taking the form

SHBE ' = a2 (R/)"* + da—s (R/)" > + ...
*Aln(R/e) + (-1)T°F 2|d

R i . (3.3)
2 Aln(R/e)+(-1) =z F 24d

>~
—~
|
—_
~—  —
4

The coefficient F in this expression is not universal, insofar as the logarith-
mic term changes by a constant when we change regulators. However, by

analogy to the two-dimensional case [183], one may define the “boundary

entropy”
_ 1 _
Sap(R) = SECFD gLt - §s<0FT> B, (3.4)
where S(CFT) denotes the entanglement entropy calculated in the ambient

CF'T for a region far from the boundary.E] Given that the divergences with

d-dimensional origin cancel in this subtraction, we recover boundary entropy

4TIn practice, S(°FT) may be calculated in the theory without a boundary. For example,
in our holographic calculation, we compute S(¥T) using the RT formula in the AdSs x S°
geometry.
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of the form

So(R) = g3 (R/e)" > + dqs (R/e)™ " + ...

(_1)75 2ld (3.5)

In particular, F' and A are universal terms appearing in the expression for
Sa(R). The coefficient A occurring for odd dimensions is related to the
boundary Weyl anomaly in BCFT, using a similar argument to that of [179]
(see also [167,171,184,185]). In general, as for the CFT case, the boundary

entropy can be related to the logarithm of the partition function via

So(R)ums = (m2Z[11SH] - 3 zlsf]) (3.6)
univ
This quantity has also been conjectured to satisfy an RG monotonicity the-
orem in various dimensions [162, 165-168] (see [87, 88, 186] for proposed
holographic g-functions); this has been proven in dimensions d = 2 and
d = 3, with the results referred to as the g-theorem [84, 160, 169] and the
b-theorem [170, 171] %]
In this chapter, we will be specifically concerned with the case d = 4,
where we have
Sa(R) = Sé + Suniv - (3.7)
Defining
Fy = —Suiv , (3.8)

the universal quantity Fjy appearing in the boundary entropy is referred to
as “boundary F” or the “boundary free energy”. The boundary free energy

was conjectured to satisfy an RG monotonicity theorem in [162, 166]. Note

48In fact, the b-theorem establishes the monotonicity of the Weyl anomaly coefficient
on a dimension-2 submanifold in arbitrary dimension.
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that we may extract Fy from the boundary entropy by

) d

In the d = 4 case, one finds exactly [185]

Fy = —lim <1nZ[HS4R] - ;an[S}‘%O : (3.10)

e—0

3.2.2 Half-supersymmetric BCFTs from N =4 SYM

In this section, we review the boundary conformal field theories constructed
from A/ = 4 SYM that preserve half of the supersymmetry and an OSp(4[4)
subgroup of the superconformal symmetry group PSU(2,2[4) of N = 4
SYM. The classification of these theories is due to Gaiotto and Witten; see
[89, 90] for details. Our conventions are similar to those of [187].

Starting with the four-dimensional A" = 4 SYM theory on R3, we can
introduce a planar boundary at 3 = 0, and consider boundary conditions
preserving the subset of conformal transformations which leave this plane
fixed. Specifically, we are interested in half-BPS boundary conditions which
preserve an OSp(4|4) superconformal subgroup of the initial superconformal
group PSU(2,2/4). We will also consider the addition of extra degrees
of freedom at this boundary such that the full theory preserves the same
Symmetry.

The bosonic sector of the residual symmetry group corresponds to
50(2,3) x 50(3) x 50(3) . (3.11)

To reflect this reduction in R-symmetry, it is convenient to decompose the

scalars ®° of the A/ = 4 theory as triples

(Xt X% x% = (049 0%, (YLY%Y?) = (9,952, (3.12)
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and the fermions a9 )

\Ifi = 5 (1 + F3456) . (3.14)

The four-dimensional ' = 4 vector multiplet decomposes with respect to the
reduced symmetry group into two different multiplets, naturally interpreted
from the perspective of the three-dimensional N' = 4 supersymmetry algebra
as

hyper : W_, Az, X', vector : Wi, Agi2, Ye. (3.15)

The various theories we consider arise from the low-energy physics of string
theory configurations with D3-branes ending on and stretched between both
D5-branes and NS5-branes. We consider first boundary conditions involving

only Db5-branes or only NS5-branes before considering the general case.

Single NS5-brane boundary conditions

For the boundary condition corresponding to D3-branes ending on a single
NS5-brane in the (012789) directions, Neumann boundary conditions are
imposed on the three-dimensional vector multiplet and Dirichlet conditions

on the hypermultiplet, i.e.
NS5 : Fy,|=X'|=D3Y|=0, W_|=0. (3.16)
Here, the vertical line denotes that the fields are evaluated at x3 = 0.

D5-brane boundary conditions

For boundary conditions associated with the D3-branes ending on one or

more D5-branes in the (012456) directions, we have a Dirichlet condition on

“9Here, our notation reflects the fact that N/ = 4 SYM theory may be understood as
the dimensional reduction of ten-dimensional supersymmetric Yang-Mills theory. There
exists a family of inequivalent OSp(4]4) subalgebras related by U(1) outer automorphisms
of psu(2,2[4) [89], and we are choosing a particular one which preserves SUSY generators
¢ satisfying

F3456E =£. (3.13)
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the three-dimensional vector multiplet and a (generalized) Neumann condi-

tion on the hypermultiplet,
i
D5 : FMV|:D3X1'|—§EZ']']€[XJ',X]€”:YH:0, \I/+|:0 (317)

This is a generalization of the Dirichlet boundary condition, sometimes re-
ferred to as a “Nahm pole” boundary condition, since the scalar fields X*
are seen to satisfy the Nahm equation in the vicinity of the boundary, with

solution ,
tl

X'=—, [t1, 7] = i€tk (3.18)
xr

Here t* can be SU(2) generators in an arbitrary N-dimensional represen-
tation. Choosing the irreducible representation gives a boundary condition
that corresponds to N D3-branes along the (0123) directions ending on a sin-
gle D5-brane. The non-commuting configuration of scalar matrices describe
a non-commutative geometry corresponding to a string theory picture where
the D3-branes flare out to form a “fuzzy funnel” [188] as they approach the
D5-brane.

Taking ¢’ to correspond to a more general reducible representation of the
SU(2) with irreducible representations of size p; gives a boundary condition
related to a more general brane configuration where groups of p; D3-branes

each end on a single D5-brane.

General D5-NS5 boundary conditions

We now describe the more general theories that arise from configurations
with both D5-branes and NS5-branes. It is convenient to consider first Nps
D5-branes and Nygs NS5-branes at distinct locations in the 2 direction,
with the D5s stretched along the (012456) directions and the NS5s stretched
along the (012789) directions. Next, we consider N semi-infinite D3-branes
stretched in the (0123) directions, extending to 23 = 0o, each ending on
some five-brane. Finally, we can have additional D3-branes of finite extent

in 23 stretched between some of the five-branes. An example is shown in

Figure [3.3|
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As explained in [90], the low-energy physics of such configurations does
not depend on the specific positions of the five-branes along the 3 direction,
and is even unchanged if we rearrange the five-branes relative to one another,
taking into account the fact that when a D5-brane is moved past an NS5-

3 we create and additional D3-brane

brane towards the direction of larger x
stretched between the D5 and NS5 [189]. We consider brane configurations
related by such re-arrangements as being part of an equivalence class.

The distinct IR superconformal BCFTs that can arise from these brane
configurations are in one-to-one correspondence with equivalence classes that
obey certain additional constraints [9()]@ The distinct theories satisfying
the constraints may be represented by brane configurations of the type shown
in Figure [3.3, where we have n; D3-branes immediately to the right of the
i*h NS5-brane counted from the left, and M; D5-branes that intersect these,

with the constraint that
Mi ZQni—nH_l—ni_l ’izl...NNS5—1 (319)

taking np = 0. Additional D5-branes sit to the right of all NS5-branes, and
we have a constraint that the net number of D3-branes ending on each D5-
brane from the right (i.e. the number on the right minus the number on the
left) increases from left to right.

The constraints are equivalent to the requirement that by moving
all D5-branes to the right of all NS5-branes (while preserving their order)
as in Figure (bottom), the net number K; of D3-branes ending from
the right on the i*" NS5-brane (starting from the left) is positive and non-
decreasing with i. By construction, the net number L; of D3-branes ending
from the right on the ith D5-brane (starting from the left) is also non-
decreasing with ¢, and satisfies f)i > —Npygs. The quantities L; = I~/i +
Npgs are then positive and increasing with ¢; the action of S-duality simply
exchanges {K;} <+ {L;}. The parameters K; and L; (or alternatively L;),

known as “linking numbers,” are closely related to the parameters appearing

%0Configurations which do not obey the constraints may fail to have a supersymmetric
vacuum or may give rise to theories which factorize into a superconformal BCFT and some
other 3D SCFT.
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in the dual supergravity solutionsﬂ

We can read off the linking numbers without re-ordering the branes by
defining K; in general to be the net number of D3-branes ending on the i*®
NS5-brane from the right plus the total number of D5-branes to the left of
this NS5, and defining L; to be the net number of D3-branes ending on the
i*h D5-brane from the right minus the total number of NS5-branes to the
right of this D5. With this definition, we can check that the linking numbers
do not change as we move a D5-brane past an NS5-brane. It follows that
the NS5-brane linking numbers K; can be expressed in terms of M; and n;

as

i—1
K,=n,—n;_1+ ZM] . (320)
j=1

Conversely, we have that M; is the number of D5-branes with linking number
L =i — Nyss while '
J

nj = (Ki+(i—j)M;), (3.21)

i=1

so the requirement that n; should be positive may be expressed as a con-
straint on the linking numbers.

It will also be useful to note that the rank of the gauge group for our

N =4 SYM theory is related to the linking numbers by
N=> Ki+)» L. (3.22)

We can understand the field theory corresponding to such brane config-
urations as follows [90]. The semi-infinite D3-branes give rise to the bulk
N = 4 theory. Some subset of these end on D5-branes, so we have D5-brane
boundary conditions as above for a subset of fields. These break the gauge
symmetry from U(N) to some subgroup U(n) where n = ny,, corresponds
to the number of D3-branes intersecting the rightmost NS5-brane. The sim-

plest situation is where these n D3-branes simply end on a single NS5-brane

51Here, the parameters (L;, K;) were introduced in [90] while the alternative (L;, K;)
were used in [174].
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D5
NS5
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SCFT

-3 -2 -2 -2 -1 1 1

Figure 3.3: (Top) General brane configuration associated to a half-SUSY
BCFT whose bulk CFT is N’ = 4 SYM theory. For this configuration, we
have @ = (2,4,3,4) and M = (1,3,1). (Bottom) the same configuration
after a rearrangement of branes. Linking numbers K; and L; for the five-
branes are shown. (Apologies to M.C. Escher.)

with no additional branes to the left. This defines some particular BCFT
with unbroken U(n) gauge symmetry. The more general theories can be un-
derstood as coupling this theory to a 3D SCFT with global U(n) symmetry,
arising from the low-energy dynamics of the brane configuration between
the leftmost and rightmost NS5-brane.

The 3D superconformal theories that are coupled at the boundary arise
from the IR limit of certain 3-dimensional linear quiver gauge theories [90),

175], where we have gauge group U(ni) X -+ x U(nnyg,—1), and

e One 3D N = 4 gauge multiplet for each gauge group factor U(n;)
(coming from strings that start and end on D3-branes stretched be-
tween NS5s);

e One 3D N = 4 bifundamental hypermultiplet for each neighbouring
pair of gauge group factors U(n;) x U(n;+1) (coming from strings that

begin and end on D3-branes on either side of an NS5-brane);
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e One 3d N = 4 fundamental hypermultiplet for each D5-brane between

NS5-branes (coming from 3-5 strings);

e An additional n 3d N' = 4 hypermultiplets in the fundamental of

U(nNNSS_1>'

We have a global symmetry {[[, U(M;)} x U(n) under which the various

fundamental hypermultiplets transform. See [90] for additional details.

3.3 Dual gravity solutions

Through the AdS/CFT correspondence, the vacuum states of the O.Sp(4[4)-
symmetric BCFTs descending from U(N) N' = 4 SYM theory correspond
to OSp(4]4)-symmetric solutions of type IIB supergravity. The general local
solutions with this symmetry were constructed by D’Hoker, Estes, and Gut-
perle in [172, 173] by solving the BPS equations. The SO(3,2) x SO(3) x
SO(3) global symmetry is reflected in the fact that the solutions are

AdSy x S? x S, (3.23)

fibred over a Riemann surface 3. Such solutions turn out to be uniquely
characterized by specifying a pair of harmonic functions hi, hs on X. The
requirement that the solutions are non-singular imposes the extra constraint
that the poles of h; lie on the boundary of ¥, and flux-quantization condi-
tions place additional constraints on the locations of these poles. Ultimately,
the harmonic functions h; and thus the entire supergravity solutions are de-
termined by the locations of the poles.

This set of solutions includes geometries dual to the BCFTs we are in-
terested in, but also geometries dual to N' = 4 SYM theories with planar
codimension-one defects or interfaces between N' = 4 SYM theories with
different parameters. Those solutions corresponding to the BCFT case were

specifically analyzed in [174] (see also [175]).
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3.3. Dual gravity solutions

3.3.1 General local solution

We now review explicitly the solutions of [172-174]; our conventions for
type IIB string theory parameters and their relation to N' =4 SYM theory
parameters are summarized in Appendix

To describe the solutions, we take ¥ to be the first quadrant of the plane,

0

with complex coordinate w = re? = x + iy and metric

ds% = 4p*|dwl|? . (3.24)

The solutions are expressed in terms of harmonic functions A1, he on X.

The full metric for the ten-dimensional solution takes the form

ds® = fidsiqas, + ffdsg% + fgdsig + ds%, (3.25)

2

o are
Si

where f1, fo, f1 are real-valued functions on 3, and d32Ad54 and ds
metrics for AdS4 and two-spheres with unit radius.
The metric functions and dilaton field can be expressed via a set of real

functions

W = 0uh10ghs + OwhaOghi

(3.26)
N; = 2h1ho|Oyhil® = B2W (i =1,2)
in terms of which the dilaton is
e =l = Ny (3.27)

Ny’

and the Einstein frame metric factors are

—N.
P MLy fr=2end /-2 (3.28)
hiho Ny

W N.
f§=2e—%h§,/—ﬁ2, f§:2e—§,/—w2. (3.29)

The solutions also have a non-trivial NS-NS three-form field strengths and

R-R three-form and five-form field strengths. We do not need these for our
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3.3. Dual gravity solutions

analysis, but review them in Appendix for completeness.

3.3.2 Supergravity solutions: AdS; x S°

It is useful to begin by describing the solution corresponding to AdSs x S°.

Making use of polar coordinates on 3., we have
LQAdS 1 r To L2AdS . r 7o
hi=—=2L—cosf| —+—), hy=-—"2/gsinf|—+— ) ,(3.30)
4 /g 0 r 4 70 T
where g is the string coupling. Using

1

0u00f = 1 [Tamarf) " :ﬁgf] | (3:31)

we find that

(r? + rg)*

76

L} 1 LY
W= 45 sin(26) , §N2 = gN; = —AdS_in(20) (3.32)

162 "~ 1024r¢

This gives a constant dilaton e?? = ¢® = g and a metric

ds* = LE\ds{ [d6* + sin®(0)d23 + cos®(0)d3]

dr? (43?1, 2, g2
+ [7"2+417°(2)7“2(1L2(du —dt* +dz ))] . (3.33)

The first term in square brackets is the metric of a unit five-sphere while
the second term in square brackets is the metric for AdSs; with unit AdS

radius; the latter can be checked by the change of coordinates

2rrg r? — r%
_ - y——20 3.34
z Ur2 +r8 s x| uT(Q) +7’2 ’ ( )
after which this factor becomes
1
—(d2* + da? — dt* + di?) . (3.35)

z
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3.3. Dual gravity solutions

We see that the parameter Lagqg corresponds to the AdS radius in Ein-
stein frame, the parameter g corresponds to the string coupling, and the
parameter r( is only associated with our choice of coordinates, with r = rq

corresponding to the plane x| = 0 in Fefferman-Graham coordinates.

3.3.3 Supergravity solutions: general BCFT solutions

The general solution we consider may be expressed most simply using Carte-

sian coordinates (z,y) on the first quadrant ag?|

2 2 2 2
o= e b CAln<(x—i—lA)2+y2>
2 Vg 445 \([@—1a)?+y

ml2

&
hy = = \/§y+4ZB:dB\/§ln<

22+ (y + kB)2> (3.36)

22+ (y — kp)?

We see that [4 give the location of poles of hy on the x axis, while k4 give
the location of poles of ho on the y-axis.

Near r = oo, these functions asymptote to

2 (r 1 _9
hy = =% —7’+ch,4[,4 cos + O(r—=)
V3 \ 2 T
(3.37)
s

1
he = Ez\/f] <27“ + - ZB:dBkB> sin 6 + O(r_z) .
Using these asymptotic expressions in the general equations for the metric

and dilaton, we find that the asymptotic metric is AdSs x S®, with Einstein
frame AdS length

Ligs = 47T5§(Z cala + Z dpkp) (3.38)
A B

and asymptotic dilaton e® = g. In the asymptotic AdSs x S® region, our

52Here, we assume that {4 and kp are distinct. Alternatively, we could omit the coef-
ficient ca/,/g and dp,/g (which we will see are quantized in string theory solutions) and
allow specific 4 to appear with some multiplicity. The solutions described in [174] have
set g = 1; we have used the symmetry ¢ — ¢ + ¢o, B2y — e?o By, Cy — e~ %0 C(g) to
write the solution for general asymptotic string coupling g = e”°.
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S50 AdSxS®

e, 'iA E S50

Figure 3.4: (Left) The dual geometries are AdS; x S? x S? fibred over
the quadrant shown, with the first and second S? contracting to zero on
the y- and z-axes respectively. (Right) The geometries can be understood
as corresponding to a portion of Poincaré AdSs x S° with Poincaré angle
O > O,, capped off by an “end-of-the-world” brane (shaded grey region)
where the internal space degenerates smoothly. Arcs for large r correspond
to AdSy x S° slices of the AdS5 x S° region.

coordinate choice here matches with the coordinates of the previous section
if we choose

ro = Lias (3.39)
20?2

From (B.5), the rank of the gauge group is related to the parameters in the

solution by
N=> cala+) dpks. (3.40)
A B

As shown in Figure the large r part of the geometry (where r is
the radial coordinate on the quadrant) corresponds to a portion of Poincaré
AdSs5 x S° with Poincaré angle near w/2. From (3.34) we have that the

Poincaré angle is related to r by

_ 1/ 70
tan© = 5 <r0 r> . (3.41)

The small r region corresponds to an “end-of-the-world” brane in the full

geometry where the internal space degenerates smoothly, apart from D5-
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3.3. Dual gravity solutions

brane throats associated with the singularities at * = [4,y = 0 and NS5-
brane throats associated with the singularities at y = ka4, z = 0.

Using and the result (4.14) from [174] for the flux integral, we find
that the number of units of D5-brane flux associated to the singularity at
lgis )

NGY = oA (3.42)
Similarly, from and the result (4.13) from [174], we have that the

number of units of NS5-brane flux associated with the singularity at kp is

NEL = Jadp . (3.43)

By analyzing the five-form fluxes in the solution, [174] determined that the
number of units of five-form flux (the flux associated with D3-branes) per
five-brane coming from the D5-branes in the A" stack and the NS5-branes
in the B stack are

. 2 k
Npg = la—= ZN](V@E) arctan (g AB> .
T ia
B ~
N ~ 2 k
Npy = kp+-3 NSV arctan <g Zf) (3.44)
A

where we have defined kg = kp/\/g and [4 = Vola.

In string theory, IV g3 and N gg should be quantized, so while we have
a supergravity solution for any choice of {l4} and {k4}, the allowed values
corresponding to string theory solutions are discrete. We see that for suf-
ficiently small g, the parameters [4 and kg should be integers up to small

corrections.
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3.3. Dual gravity solutions

Relating supergravity parameters and gauge theory parameters

As pointed out in [174], it is natural to identify the numbers on the left in
(3.44) with the linking numbers that specify the BCFT@ where we have

{f/l} = {]\[‘S3 with multiplicity N(DA5)}
(K} = {NB, with multiplicity N\".} . (3.45)

Alternatively, we can take [ 4 with multiplicity N ]gg)

N ](\%)5 in the original definition of h;, setting c4/,/g = dp,/g=1. In this case,

and kp with multiplicity

we find the original linking numbers (L4, K4) of Gaiotto and Witten can
be related simply to the supergravity parameters as

2 la
L = l — tan — .
A \/§A+ﬂ2arcank3

B
kp 2 kp
K = —+— arctan — | 3.46
B AR XA: P (3.46)

where the poles l4, kp are now appearing with multiplicity (i.e. they need
not all be distinct). The sum in the first expression has a geometric inter-
pretation as the acute angle between the z-axis and the line segment from
(14,0) to (0, kp), summed over kg, while the sum in the second expression is
the acute angle between the y axis and the segment from (0, kp) to (14,0),
summed over 4. We note that are invariant under the S-duality
transformations {L4} <> {Kp}, {la} < {kB}, g < 1/g.

In order to find the supergravity solution corresponding to the vacuum
state of a particular BCFT defined by linking numbers {L4} and {K4},
we need to use to solve for the parameters {i4} and {kg}, though
it is not clear how to do this explicitly in general. An interesting check is
that for any linking numbers that can be expressed in terms of supergravity
parameters as in the field theory constraint that the quantities (3.21))
must be positive (so that the brane configuration can be represented as in
the top of Figure is automatically satisfied, as we show in Appendix

53Recall that these corresponded to the number of D3-branes ending on each five-brane
in the bottom picture of Figure
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3.4. Holographic computation of boundary F

B.4

We note that the final terms in the two equations in are bounded
in magnitude by the total number of NS5-branes and D5-branes respec-
tively. Thus, when the linking numbers (D3-branes per five-brane) are all
large compared with the total number of five-branes, the solution will have
12:3 ~ Kp and [ A ~ Ly, and we can find the corrections to these leading
order expressions perturbatively in 1/K and/or 1/L. Similarly, when the

asymptotic string coupling g is taken small with fixed linking numbers, we
will have kp ~ K + O(g) and I4 ~ L4 + O(g).

3.4 Holographic computation of boundary F

In this section, we perform a holographic computation of boundary F' for
the general BCFTs defined by a set of linking numbers { Kj, L} This was
done for the special case of N D3-branes ending on k& D5-branes (linking
numbers K; = 0, L; = N/k with multiplicity k) in [162]; similar calculations
of F' in 3D superconformal theories were performed in [176].

As we have described earlier, boundary F' may be computed either by
evaluating the partition function for the theory on a hemisphere, or by
calculating the vacuum entanglement entropy for a half-ball centered on the
boundary. Either of these may be computed holographically using the dual
gravity solutions; the two calculations give rise to the same final expression
for boundary F' in terms of the harmonic functions h; and hs. In our
presentation, we will holographically calculate the entanglement entropy,

using the Ryu-Takayanagi formula [42, 147]

Area(A)
S(A) = —— 3.47
()= 222 (3.47
where A is the minimal area codimension-two extremal surface homologous
to the half-ball region on the boundary of AdS, computed using the Einstein-
frame metric. The boundary F' is then extracted by subtracting off half of

the entanglement entropy for a ball-shaped region in ' = 4 SYM and

keeping the universal piece, as in equations (3.4/3.7/3.8).

103



3.4. Holographic computation of boundary F

In the ten-dimensional geometry, the extremal surface we need to con-
sider is codimension-two in the full spacetime. It wraps both of the internal
5?2, and the directions spanned by the Riemann surface 3, so that the sur-
face is specified by describing a codimension-two locus in each AdSy slice.
It turns out that the appropriate extremal surface to compute the entangle-
ment entropy of a half-ball region of radius R centred at the BCF'T boundary
is just the one described by the hemisphere {t = to,u? + 7% = R?,u > 0} in

each AdSy slice, which we recall had metric
1
dsias, = ) (du® — dt* + dz?) | T = (x1,29) . (3.48)

Indeed, one can verify that the surface u?+ &2 = R? is extremal in AdS from
the Euler-Lagrange equations; this holds in any dimension, provided we let
Z denote the d — 2 transverse coordinates. Moreover, in the boundary coor-
dinates (¢, &, 2 ) of the half-space HR!3, our extremal surface asymptotes
to the entangling surface {t = o, :Ei + 22 =R? 2z, <0}

The area of the extremal surface diverges as usual, but we will regulate
this by placing a cutoff at z = € in Fefferman-Graham coordinates. Sub-
tracting off half of the area of the RT surface for a ball of radius R in N' = 4
SYM theory with the same regulator, we will obtain a result that is finite
in the limit € — 0.

Regulated areas

Representing the AdS, metric as

1
d82AdS4 = 72(—dt2 + du2 + d.’f2)
v (3.49)

_ pzcoTep(—dt2 + dp* + p*dh% + p? sin® Opdo?)

we have that the extremal surface is at p = R and fixed t. The eight-

dimensional area of this surface is

drdfd¢ sin 0 pdl
Area = 647T2/r 4 ¢§m P Pﬂ2f12f22ff» (3.50)
cos?fp
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3.4. Holographic computation of boundary F

where the regulator z = € in Fefferman-Graham coordinates corresponds
to a restriction p < 0%(r,0). The regularization procedure is described
in detail in Appendix After subtracting off the regulated area of the
RT surface for a ball of radius R in N' = 4 SYM theory and removing the

regulator, we find from the definitions 3.8) that

) 3 A z
Fy = — lim 2207 / dr / ® 40 7hihod0p (hihs)
A—o0 G 0 0
A 2
- / dr / df rhy Bhy 0,05 (M She%®) |, (3.51)
0 0
where h?ds are the harmonic functions corresponding to pure AdSs x S°. We

can easily evaluate the second term explicitly using the explicit expressions

in Section [3.3.2], to give

, 25673 (A 2
Fa_/\lgréo{— - /0 dr/o d 71y hoBh O (hiha)

2
~TNAZ - %NZ In <M> } . (3.52)

8 N

where we have used (B.5)). Alternatively, we can combine the integrands to
obtain a convergent integral,

’/T3

Fy=—5 / d?z{h1h90y0g(h1hs) — To} (3.53)
Y

where (recalling the definition of rg in (3.39))

0 r<Tro

AdS;AASH A (pAdSpAdS\ _  LRagsin®(20)(r?+13)?
h‘l h‘? 6’LUa'LU(hl h’2 ) - 5127‘87«4

. (3.54)
(A )

3.4.1 Boundary free energy: the integral

In this section, we will evaluate the integral (3.52) for the general solution
(3.36) in order to calculate the boundary free energy Fy in the supergravity
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3.4. Holographic computation of boundary F

approximation. We note that the metric, expressed in terms of the param-
eters (ca,da,la,ka), does not depend on the string coupling g, so we can
work with ¢ = 1. However, when expressing the results in terms of the
natural field theory parameters, some g-dependence will appear.

In terms of the parameters (cq,da,la,ka), we have

Fa(CA,dA,lA, k:A) = f27rAlim {Z(CA,dA, k:A,lA,A)

—00

A2
+ 6NA2+8 N2In <N7r)} (3.55)

where we define
I(ca,da, ka,la, A)

:/d2w{i11328w5’w(51ﬁ2)} (3.56)

1A 2 (.. (1 - 15,0 -
= / T'd?“/ do hlhg *8r(7"87«(h1h2)) + —289 (h1h2>
4 0 0 T T

_|_
+
)
4.

We note that the factors of £ present in h; and ho have cancelled in those

with

2

- cA 7%+ 2rlg cos(9)
- 4y

fu = rcos(6) + ; or (rQ — 27l 4 cos(h)

(9)

(0)

72 4 2rk 4 sin(6
hy = rsin(§ +Z <r2—2rk:Asin(9

(3.57)

from the Einstein frame expression for G taken from Appendix B.1}

There are no terms independent of c4 and d 4, so we can express the full
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result as

I(carda,ka,la,A) =) calf+ Z daT§ + > cacpIip
A AB

+ Z dAdBIiB + Z CAdBIICAB + Z cAchCIifgc
AB AB AB,C

+ Y cadpdeIifo+ > cacpdedpI§htn . (3.58)
A,B,C A,B,C,D

Integration techniques

There are various tricks that facilitate evaluation of the integral. First, it is
helpful to use Stokes’ theorem in order to rewrite the integral as a simpler

integral plus a term that can be expressed as a boundary integral. We have

4 (CAa dA7 kAa lAa

A 1 . R
/ Td?“/ { <8Th187~h1 +7“289h189h1)}
3 . . A ol . (3.59)
df { hih2rd.h dr{ —hi1h2=9yh
+/0' { 12 I}T:A+/O r{ ! 27’ o 1}9_0
A 1.
—/ dr{—hlhgaghl} :
0 r 0=m/2

In evaluating the various pieces, it is helpful to differentiate with respect
to the parameters k4 or [4 in order to convert the logarithms into rational
functions of r. The resulting expressions can be expressed in a partial frac-
tion expansion, with denominators that are polynomials in  and cos(6) and
numerators that are constant or linear functions of cos(#). After evaluating
the integrals of the various parts, we can antidifferentiate with respect to
k4 or l4 to obtain the final results.

We now present results for the various parts of the integral.
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Linear terms

The terms linear in c4 or d4 are:

c _ - 2
75 = 161AA +724 (3.60)
and 5
1 ka
T4 — — —ka A%+ 22 .61

Quadratic terms

For the terms quadratic in ¢4 and/or dy4, we find

1 3 1
mIip = —glals (M) = gelals + oo (I + I5)*In ((zA + 13)2)

. % (Ia — Ig)*In ((ZA - 53)2) (3.62)

1 3 1
m Tl = —ha ke In(A) = Toka ko + o (ka + k)" In ((ka + kp)°)

1 2 2
~ 35 (ka = kp)"In ((kA — kp) ) (3.63)
and
cd 1 3 1 2 2
WIAB:_glA kp IH(A)—glA kB"‘EkB s ln(kB + s ) . (3.64)
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Cubic terms

For the cubic terms, it is simpler to first give the derivatives with respect to

one of the parameters. We have:

d 1 142 Ig? ) (Ia —1 )2
2 ced A B A B

m° —ZTipc = 3 + In| ——%=
dkc ABC T8 </€02+ZA2 /fc2+l32 ((ZA+ZB)2

1 lalp lalp > 2 212

- = + In{(l4°—1
8 <k02+l,42 k02+l32 <(A B ) )
1 lalp 2 2 1 lalp
+ " In(kc”+1 + -
4kc2+lB2 D(C A) 4kc2+lA2

In (k¢ + 1) . (3.65)

We can integrate this with respect to k¢, requiring that the result vanishes
at ko = 0. The result is conveniently written in terms of the Bloch-Wigner
dilogarithm®

D(z) = Im(Liy(2)) + arg(1 — 2z) log | 2] . (3.66)

Here, Lis is the dilogarithm function defined as

n

Lis(z) = Y % =— /0 %log(l _— (3.67)
n=1

Our result is simply

la Ilp —iko Ip —ikc
Tecd  — L )p |2 ¢ D|—— l { . 3.68
ABC 471'2{ |:lA+lB:|+ |:ZB—ZA:|}+{A<_>B} ( )

The diagonal terms Ig = [ 4 simplify to

ced
Taac = Gy

2 21y

%4This is Jamie Sully’s favorite dilogarithm. We thank him for making us aware of it
and extolling its virtues.

a D[l ““C] . (3.69)
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Quartic terms
We find that

4 d e

1 { Ials | ((L42——l32)2(k02——kp2)2>
(

T 8 kc2 + 132) (kD2 + ZAQ) ! (k02 + ZA2)2 (k’D2 + ZBQ)2

n lalp In (14 — 532)2 (ke? — kD2)2
(kp® +15%) (ke +1a%)  \ (ke? + 152)% (kp? + 14%)°
N 142 | Iy + 1p)?
(kD2 + lA2) (k02 + ZAQ) 2

Ig?

+ 1
(kD2 + l32) (kc2 + 132) <

n
n

(

(la —lB)
(@+@f)}
(Ia —1g)? '

We now need to integrate this with respect to k¢ and kp. This time,

(3.70)

the result involves the trilogarithm function Liz(z) in addition to diloga-
rithms and elementary functions. Taking guidance from the cubic terms,
which could be written simply in terms of the Bloch-Wigner dilogarithm,
we can make the guess that the full result here may be obtained by keeping
only the terms with trilogarithms, and replacing each trilogarithm with the

combination
1
L(z) = Re(Lis(z) — In|z|Lia(2) + 3 In? |z|Lii(2)) (3.71)

which has been shown to be real analytic on C — {0,1} and continuous

everywhere, and to obey various nice relations such as £(1/z) = £(z). This
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turns out to be correct. The full result for the integral is
87° T5Hep
(kc—l—ilA) (kD —|—ilB ko +Zl,4 /ﬂD +’il3)

<(/€D+il,4) (ke +ilp) ) ( kp —ily) k’c—ilB)>

(kC +il,4) (kﬁD —ZZB) (k‘c—}—’LlA kD —llB)
a <(kD +ila) (ko — le)> ((kD —ila) (ko + le))
<(kD+ilA) (Ip —ch)) ir ((ZA-i-ZkD ) (k¢ —ZlB))

(ko + kp) (la + ) ke —kp) (la — Ip)
_£<(l,4+ikD)(kc+le > E( (la +ikp) ( kc—i—le))

(k¢ —kp)(la+ B (k¢ +kp) (la — IB)

‘l‘{lA(—)lB}.

(3.72)

We note that the first two lines are already invariant under {l4 <+ [p}. The

diagonal terms can be recovered by taking a limit in the above expression.

3.4.2 Full result

Combining all terms, we can now write the full result for Fj (in the super-
gravity approximation) associated to the theory whose vacuum has super-
gravity dual labeled by P = {ca,da,la,ka}. The result is

3. 1 5 N ™ 3 3
Fp(P) = SN*+ N 1n<7r>—12§A:cAlA—IQZdBkB

_% > CACB{(ZA +15)*In ((La +15)%)

)

—(la—1p)%In (L4 — )% }

ZdAdB{ (ka+ kp)2In ((ka + kp)2)
AB

(k= k) (ks — ks)?) }
L s (ko + 42)

A,B
1 Ig — ik Ig — ik
—— 3" cacpdela {D {f ZZC} +D[f Zlc]}
WA,B,C A+l B—la

111



3.4. Holographic computation of boundary F

kB—ilC k?B—ilC
—— dad k —_ D
Z ABCCA{ |:]{,‘A—|—]-{,’B:|+ |:k'B—k’A:|}

ko +ily

l\;

_l’_

)
kp — il

o Ag r < kD -+ llA) (lB — ch))
) (ko + kp) (la + )

_r < lA + Zk‘D) (kc + ilB)>
kc —kp) (la + Ip)

} (3.73)

N=> cala+) dpks. (3.74)
A B

kc + llB

ABC
1 (ko +ila) (kp +ilB)>
- dodpl L
27T2ABXC:’DCACB © D{ <( +ilg) (ko +ilp)
+£<kc+ll,4 kp +ilg) <kc+ZlA)(kD—ilB)>
ko — ZZB) kp + ZZA) (kc — ilB)
)
)
)

(
( (
( (kp —ilp
(kp —ila) (
(lA + Z]{}D) (k‘c —ilp

E( (k¢ — kp) (la — IB)

_I_

_r (la +ikp) (ko +ilp)
kc + kD lA — lB

where we recall that

We can express the results in terms of field theory parameters using the
correspondence described in Section

D5-branes only

We now consider various special cases. For theories descending from string
theory configurations with only D3-branes and D5-branes, the result simpli-
fies to

Fy = 8N 2126,41 ZI6CACB{(ZA+ZB) In <7r N

— (4 —15)*In <7r(lA_NlB)2> } . (3.75)
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Expressed purely in terms of the linking numbers L4 (which coincide with

L, in this case), this is

N2 (3 A 72N
Fop=—(24+m(-2)) -5 18
0 4<2+n<47r2> 3)\§A

1

T {(LA + Lg)*In((La+ Lp)?)
A

oy

)

—(La—Lp)*In((La— Lp)? } . (3.76)

We recall that in the brane construction, {L4} represents the numbers of
D3-branes ending on each individual D5-brane, such that ), La = N.
When we have N D3-branes ending on N5 D5-branes with N/N5 D3-branes

ending on each D5, the result simplifies further to

N2 2]\]2 1 2N2
R PO —21n< om )} (3.77)

7y = 2 b
778 3\ N2 A N2

This result corresponds to the case considered previously in [162]; our result

agrees precisely with that computation.

NS5-branes only

For boundary conditions associated with only NS5-branes, we find that

3 T 1 (ko + kp)?
Fy=°N2-N —dik3 =S —dadp (ka+kp)?1 ASAEL LS P
973 %:12AA %16AB{(A+ B) n<7r N

ka—kg)?
— (ka —kp)?In <7r(ANB)> } . (3.78)

We can check that this may also be obtained from the D5-brane result by
S-duality, manifested in the transformations l4 — ka, ca — da, g — 1/g
(or A = 1672N?/)). Expressed purely in terms of the linking numbers K 4,
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3.4. Holographic computation of boundary F

this gives
N? 4N? A
Fy="" (241 (—) K3
0 4<2+n ) > 48N§A
1
~ 16 {(KA + Kp)*In (Ka + Kp)?)
AB

— (Ka—Kp)*In ((Ka — KB)?) } , (3.79)

where { K 4} represents the numbers of D3-branes ending on each individual
NS5-brane, as for the D5-brane case above. In the case corresponding to N
D3-branes ending on N5 NS5-branes with N/N5 D3-branes ending on each
NS5, the result simplifies to

N2 A A
=2 l3-_ 2 _om(2)]. 3.80
9778 [ 6NV2 n(Ng)} (3.80)

Both D5-branes and NS5-branes

In the special cases with either D5-branes or NS5-branes only, we were able
to write an explicit expression for Fy in terms of variables in the brane con-
structions, i.e. the five-brane charges and linking numbers. For the most
general constructions involving both D5-branes and NS5-branes, however,
we do not know how to analytically invert the relations between supergrav-
ity and field theory variables. In scenarios of interest, we can always choose
some field theory parameters, try to solve for the SUGRA parameters nu-

merically, and then evaluate Fj.

3.4.3 Validity of the supergravity approximation

The results of this section are based on the supergravity approximation to
the dual gravity solutions and on the leading order RT formula without «/'-
corrections or quantum corrections. However, we expect that the solution
and the RT formula receive both string loop and «'-corrections. These will

correct our result, unless the corrections vanish, for example due to some
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3.4. Holographic computation of boundary F

supersymmetric non-renormalization theorem.
Taking into account o/ and string loop corrections, the purely gravita-

tional sector of the effective action in string frame takes the schematic form

S~ /dx \/§[e2¢ (&/R+ (/R)*+...)
+e4¢(a'R+(a'R)2+...)+...}, (3.81)

though certain terms vanish in type IIB supergravity due to constraints of
supersymmetry.
This implies that the o/-corrections will be suppressed if the string frame
Ricci curvature obeys
dR< 1, (3.82)

whereas string loop corrections will be suppressed if
e < 1. (3.83)

For large N and large A\, we anticipate that these expressions should hold in
the asymptotically AdS region, but might break down in the vicinity of the
five-brane throats.

In order to estimate the expected size of the corrections to the super-

gravity results, we can employ the following general procedure:

e For an arbitrary fixed set of parameters, determine the region near a
given five-brane stack where these correction terms would naively have

a similar order of magnitude to the leading supergravity results.

e Find the size of the supergravity contribution to Fy from this region.
Assuming that the corrections have a similar order of magnitude, we
will take this as an estimate of size of the correction terms. Terms in
the supergravity result that are parametrically larger than this will be

considered reliable.

The details of this analysis are provided in Appendix As a specific
example of the results, we find that for the theory corresponding to N
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3.5. Localization calculation

D3-branes ending on a single stack of L = N /N5 Db5-branes, the expected
contribution from the part of the D5-brane throat where the string frame

curvature is large is

O(N2) L~1

- - . (3.84)
O«Nmnmﬂ L>1

Thus, we might expect corrections to the supergravity result at this

order.

For the case of N D3-branes ending on a single stack of K = N/Nj3
NS5-branes, the string frame curvature is only large in the vicinity of the
NS5-brane throat provided that Nygs ~ 1, in which case the expected
contribution to Fy from this region is O(N?). Additionally, the expected

contribution from the region in which the dilaton is large is

O (V2 (K2/N2))*) K > Ns
O(Ny) K ~Nj - (3.85)
O(N?) K < Nj

Thus, we might expect corrections to the supergravity result at this
order.

In the next section, we will be able to calculate boundary F' exactly using
supersymmetric localization, for boundary conditions associated either with
only D5-branes or only NS5-branes. We will see that the supergravity results

are actually more reliable than our analysis suggests.

3.5 Localization calculation

In the above analysis, we have extracted the value of Fj by holographically
computing the entanglement entropy for a half-ball centred at the field the-

ory boundary. However, we recall that Fjy is also related to the partition
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3.5. Localization calculation

function for the theory on a hemisphere; specifically, we have [166]

r—00

1 Zyeal|?
Fy=—3 lim In (ﬂ) : (3.86)

where 7 = R/e is the quotient of the radius R of the (hemi)sphere and a UV
regulator e.

Calculations of the partition function in theories with supersymmetry
are often tractable using the technique of supersymmetric localization; see
[124] for a review. In particular, the calculation of the partition function, in
addition to generic half-BPS Wilson loop observables, for N' = 2 (or N' = 4)
supersymmetric gauge theories on a background S* was first performed in
[126]. Localization was later applied to compute 't Hooft loop observables
[190] and $-BPS Wilson loop observables [191] in such theories, and gener-
alizations to theories on ellipsoids appeared in [192], as reviewed in [193].
Analogous calculations were performed for ' = 2 theories on $3 in [127],
with exact evaluation of the partition function for three-dimensional quiver
gauge theories appearing in [194-196]. Localization calculations on mani-
folds with boundary in two and three dimensions first appeared in [197]; in
four dimensions, the first direct calculations appeared in [198], which con-
sidered Neumann and Dirichlet boundary conditions only, followed by [199],
which considered more general boundary conditions for the Abelian theory.
Earlier general considerations for the case with boundaries can be found in
[166, 200, 201]. More recent results involving localization and supersymmet-
ric boundaries and interfaces include [178, 187, 202, 203].

We will therefore endeavour in this section to compare our gravity results
to the calculation of F using supersymmetric localization on the field theory
side. In particular, we will restrict our attention to theories arising from
D3-branes and NS5-branes only (i.e. with arbitrary linking numbers { K},
but {L;} = (). In this case, the form of the partition function as a zero-
dimensional matrix integral may be inferred by recalling the established
results for the hemisphere with Neumann boundary conditions [187, 198]
and three-dimensional quiver gauge theories [127, 194-196], and applying

the gluing formula of [201]. Using S-duality, we can obtain results for general
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3.5. Localization calculation

D5-like boundary conditions.

In the following, we will denote
sh(z) = 2sinh 7wz, ch(z) = 2coshmz . (3.87)

The partition function of U(N) A/ = 4 SYM on the hemisphere HS* with

Neumann boundary conditions is then

ZNeum [HS4— ]
4=7r2 ZN AQ N
/(HdA)e B T = Ash(hi = Ag) . (3.88)
1<J

and the partition function for a 3D N =4 U(ny) x...xU(ny,) quiver gauge
theory with M; fundamental hypermultiplets associated to the U(n;) factor,

with hypermultiplet masses m; ; and Fayet-Iliopoulos (FI) parameters «, is

1 N5 nj
ZalSi) = oy [ (T TL ahseetmse
n....n J=1 01
N5 ny N5—1 nj njq1
ITITs* =250 TT TT 1T
=1 ket J=1 k=1 =1 ch(Ajx — g+1e)
Ns nj M;
I o= 659
j=1¢=1k=1 7, J:k

The hemisphere partition function for the N'=4 SYM theory coupled to a
quiver gauge theory at the boundary is then obtained by integrating the in-
tegrand of Zneum.[H S?] against an appropriate “brane factor” with respect
to the bulk zero modes (A1,...,Ay); in this case, the brane factor coin-
cides with the partition function of the boundary theory Z,.,[S%], where
the masses in the terminal node of the quiver diagram are replaced by the
bulk zero modes (as the restriction of the bulk vector multiplet gauges the
boundary flavour symmetry). For example, in the case where the quiver

gauge theory contains vanishing FI parameters and no fundamental hyper-
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multiplets (as will arise in the present case), we recover the partition function

N5 1y _ 4n? N 32

Ar A
1 j=10=1
N
x [T = A ) shAwg i = A )
i<j
-1 7y N5—1 mj Mj+1 1
X sh? ( . (3.90)
]]‘_[1 ,g 1;[ 1;[ 1;[ h(Xj k= Ajt1,0)

where we will let ny, = N for convenience. In the brane construction, there
are nj D3-branes stretched between the %™ and (j + 1)™ NS5-brane, so
that for a configuration satisfying the Gaiotto-Witten constraints, one has
0< K; <...< Ky, where K; =n; — n;—1.

Since the calculation of Fy involves a subtraction of the partition function
for the theory on the full S*, we will need to know the partition function for
U(N) N =4 SYM on S% One has matrix integral partition function [126]

B DS
A / Hd)\ B T T = M) (3.91)
1<J

on S* with unit radius r = 1, where the measure factor + [[,- (i — 2j)?
arises from reducing the integration over the full Lie algebra u(/N) to the
Cartan subalgebra, and the exponential factor is the classical contribution
to the partition function, coming from evaluating the on-shell actionﬁ For
S# with arbitrary radius, the purely gauge-theoretic measure should be in-

variant, but the classical contribution has

S]%H_Shell(’l“) ~ TQS]%H_SheH(T — 1) ) (392)

55The one-loop and instanton corrections vanish in this highly symmetric situation.
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The calculation can be found in Appendix it provides

Z[84] = (21)V/?2 (ﬁf)w Go(N +1), (3.93)

where

N—
o(N +1) H (3.94)

is the Barnes G-function. One then has

N2 A

N
41 _ a2
InZ[S;] = —-N*lnr + 5 1n(16772N)+1nG2(N+1)+ 5 In27. (3.95)

For the purposes of comparing to the gravity calculation, we will typically
be interested in the large N behaviour of this expression, so we require the

asymptotics of

N-1 N-1
Ge(N+1)=> (N —k)Ink=NIn(N klnk.  (3.96)
k=1 k=1

The asymptotics of the first term are given by the Stirling formula
NIn(N -1)!=N%?InN - N>+ O(NInN). (3.97)

To find an asymptotic expression for the sum Zév:_ll k1nk, we will use the

Euler-Maclaurin formula

b
k:)w/ f(x) dz
+ J() +Z BQ’“ f% L) — f*D(a)), (3.98)
whence Nt
2 2
kink = 2NV _ NT +O(NInN). (3.99)
k=1

It is straightforward to determine the higher order terms if needed. All
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together, we have

2

N
IGy(N +1) = - InN — ZN2 +O(NInN), (3.100)

and so

N2 A 3 N
41 a2 o _“ar2 7
InZ[S}] = —N?Inr+ 5 111(167T2) 4N + 5 In27+O(NInN). (3.101)

It is worth noting that, from the general theory of the structure of UV

divergences in the partition function, we anticipate
In Z[SY = Ayt + Agr? + Alnr + Fy ; (3.102)

here, Ay, Ao can be tuned through the addition of local counterterms, as can
F} (the local counterterm corresponds to the Euler density). Although these
quantities are scheme-dependent, they will cancel out in the calculation of Fj
as long as we are consistent. The coefficient A of the logarithmic divergence,
however, is physically meaningful: it is proportional to the A-type anomaly
a for the N' =4 SYM theory on S*, with

In Z[S%] = —64n°a . (3.103)

Olnr

The general Weyl anomaly in four dimensions is
(TH) = aE — cW?, (3.104)
with E the Euler density and W?2 shorthand for a contraction of the Weyl

tensor, and in the super-Yang-Mills theory,

2

Ty =
(T) 6472

(BE—-W?) . (3.105)

We thus indeed recover a = %, and therefore A = —N?2, which confirms

the r-dependence.
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3.5. Localization calculation

3.5.1 Neumann boundary condition

As a warm-up to the case of general NS5-like boundary conditions, we can
consider a pure Neumann boundary condition. This corresponds to N D3-

branes ending on a single NS5-brane, associated with parameter values

“ 1
Nyss =+/gd=1, k= %k:N7 (3.106)

[4m N [AN
d=+/—— k=1/—. 1
N i (3.107)

The partition function for this theory (expressed as a matrix integral in

that is,

[198]) on the unit hemisphere is

42 SN a2

N
1 — NoA2
ZNeum-[HS;l:l] = N'/ (H d)\i> e %YM !
’ i=1
N

[T = A)shxi = Aj) . (3.108)
i<j
This is similar to the S* partition function (3.91), except one now has one-

loop determinant

_ h(A; — A
Zeot? = [[ 02 (,’7 ,]) : (3.109)
LLN =)
1<)
where we have combined one-loop factors from an A/ = 2 vector multiplet
and an adjoint N' = 2 hypermultiplet to recover the full one-loop determi-

nant for the N’ = 4 vector multiplet theory. Using the results of Appendix
B.6| this yields

2 g2\ By NN+ (V-1)
e [HS11) = (2m) % (B01) 7 g 1), (B110)
s
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We thus have
AN+ 1)(N-1)
48

+N—21n A +InGy(N +1). (3.111)
2 ArN 2 C

In | Zxeum. [HS;—]| =

We therefore find that Fj is given by

FY"™ = — (1| Zneum. [HS? — In Zgs)
2 2
ooy Nm(k)

13 1 N (3.112)
+ gln%r — 1lnGg(N—i— 1).
4 2
Using the results above, we we can expand this for large N as
Neum N2 A
F) ':?(—E—QIH(/\)—FS)—FO(NInN). (3.113)
This may be compared to the gravity result
N2
FSUGRA _ ?<_ % _21H(A)+3). (3.114)

Remarkably, at leading order in NV, the exact expression for Fjy agrees exactly

with the supergravity result as a function of A.
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3.5.2 General NS5-like boundary conditions

We would like to evaluate the integral

N5 1y

5 N )\2
Z|HS" = lim —>0/ HHCZ/\JZ e gYM L Th Nt
Qe QNg —1 n1 jale iy
Ns—1 nyj ‘ N
% H H e?wzaj)\j,l H(AN5,’L' _ )‘Ns,j) Sh(AN&Z‘ . >‘N5,j)
j=1 ¢=1 i<j
Ns—1 nj Ns—1 nj Mj+1
x sh? (A 3.115
lel ]g ( gk T ], Jl_[l kl_[l él_Il COSh ]k _)\jJrl,Z) ( )
As detailed in Appendix this integral yields
N2
2154 = ory B (200 T S )
47
N5 N5 € dK
(H Go(K. + 1)) H [2—(Kd—KC)KC (g) cake
c=1 c<d
Ke—1 Ko\ 2
K;— K ©
K. d c
<((Kd—KC)!!) kHI (2 +k> ) ] . (3.116)

where K; = n; — n;_q is the it linking number (satisfying 0 < K3 < ... <
Ky, ), and
1— (—1)Ke=Ka

5 (3.117)

€cd =
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We thus find

Fy=—In|Z[HS"| + %1112[54]

Ns
=— ML—U—Z(Z\%—}Q)KP 1n(27r)—N21n< . )

4 — 4 Am2N
)\ N5 N5
3
T D KI-N| =) InGy(K,+1)
p=1 p=1
1 it
+ 5 Gy(N +1) + 2> K,(K, - Kp)
p<q
o N5 N5
~In (5) S Ky 23 Kyl ((K, - K,
p<q p<q
N5 Kp—1
K, - K,
23y (Kp—k)ln<T+k) .
p<q k=1

(3.118)

Equation is our exact expression for the boundary free energy, in the
case with exclusively NS5-branes.

One particular case of interest is when we have N D3-branes ending on
N5 NS5-branes of equal linking number K = N/Nj5. In this case,

N(N-N;) N N2 A
Fi=—| —— =7 7 _ -
0 < 2 4>ln(2w) 1 1N 5.119)
\ [ N2 N 1 '
— s —1) =N2InGs | ~— +1 —1 N+1).
48<N52 ) 5n2<N5+)+2nG2( +1)

This is the exact version of the supergravity expression (3.80)).

3.5.3 General D5-like boundary conditions

We can obtain Fjy for a general D5-like boundary condition by applying
an S-duality transformation to the above result, which simply amounts to

replacing the NS5-brane linking numbers with D5-brane linking numbers,

125



3.5. Localization calculation

and performing an S-transformation to the gauge coupling 47%]\/ — @. We

thus obtain

Fy=—In|Z[HSY| + %an[S“]

Ns
N(2N —1) > N? 4N
p=1
2N N5 N5
- W:TA SN IE-N| =Y Gy, + 1)
p=1 p=1
. Ns (3.120)
+ 5 mGa(N +1) + 2 Ly(Lg— Ly)
p<q
T N5 N5
~In (5) > Ly —2 Lpln((Ly — Ly)1)
p<q p<q
Ns Lp—1
L,— L
=23 Y (LK) (F2 k)
r<q k=1

For N D3-branes ending on N5 D5-branes of equal linking number L =
N/Ns5, we obtain

w2 N? [ N? 5 N 1
- — — 1) - N1 — 1)+l N+1).
0 (Ng 1) NZln Gy <N5+ >+2 nGo(N +1)

(3.121)

This is the exact version of the supergravity expression (3.77)).

Comparison with supergravity results

We now compare the localization result (3.118)) with our supergravity results.
When the K}, (and their differences) are taken to be large in (3.118]),

then we can use the Euler-Maclaurin approximation for the last term to
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find

p<q k=0
N5 Kp—1 K
z—22/ dwxln( et p—a:)
p<q k=0
1 &
T ((Kq + Kp)2 In(Ky + Kp) — (Kq — Kp)2 In(K, — Kp))
p<q
Ns
- Kp(Kp — Kq) In(Kq — Kp)
p<q
1
+3 > Kp(Ky+2(1+In2)K,) + O(N;KInK) .
p<q
(3.122)
Meanwhile, using the Stirling approximation, we find
M M
In(M!) = ?lnM ey +O(InM) . (3.123)
Thus,
N5
—2) K,In((K, — K)!")
p<q
= e (o~ K) (Ky — 1)
= —2%[@, fln([(q - K,) — —

+O(N2KInK). (3.124)
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We thus find

s N A PR

p<q
3K} 1 /N? 3N?
f— p —_— —— p— —_— —_— —
Z( In K, 4>+2<21nN 4)
N5 T N5
+1n2Y KK, — K,) ~ In (5) 3 ek,
p<q p<q
Ns
(K K ) (Kq — Kp)
~-2) K, (21n(K Kp) —
p<q
1Y
1 ((Kq + Kp)* In(Ky + Kp) — (Kq = Kp)? In(K, - Kp))
p<q
N5
Y KKy — Ko)In(K, — Kp) ZK K,+2(1+1n2)K))
p<q P<q
+O(N2KInK) .

(3.125)

Massaging this expression, we arrive at

N? (3 AN? A,
Fo= <2+1“< ; )) R
Ns
[(Kq + Kp)2 In ((Kq + KP)Q)

1

16
p.q

—(Ky— Kp)?1n (K, — K)?) } FO(N2KInK). (3.126)

This limit exactly reproduces our result from the supergravity calculation.
We can similarly check that the exact expression for general D5-brane bound-
ary conditions reproduces the supergravity answer when the linking numbers

and their differences are large.
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Comparison for finite N

We can also compare the exact results with the supergravity results for finite
N. We note that the log A term agrees exactly between the supergravity
and localization calculations, while the term of order A in the NS5-brane
supergravity expression (or 1/X in the D5-brane expression) becomes exact

under the replacement
Y KL= (K] - Ka) (3.127)
A A

(or the same replacement with L4 for the D5-brane expression).

The remaining terms are A-independent. It is straightforward to cal-
culate these for all possible boundary conditions for small fixed values of
the gauge group rank N and compare supergravity results with the exact
results. For N = 2, N = 3, and N = 8, this A-independent part of the
spectrum of boundary F' values is shown in Figure 3.5

We see that the results agree reasonably well even for small values of V.
As an example, for the N = 8 case, the A-independent parts of the boundary

F values for linking numbers

(1,1,1,1,1,1,1,1],[1,1,1,1,1,1,2],[1,1,1,1,2,2],[1,1,2,2,2],
2,2,2,2],[1,1,1,1,1,3],[1,1,1,2,3],[1,2,2,3],[1,1,3,3],[2,3, 3],
[1,1,1,1,4],[1,1,2,4],[2,2,4],[1,3,4], [4,4],[1,1,1,5],[1,2, 5],

3,51, [1, 1,6, 2, 6], [1, 7], [8)) (3.128)

are (rounded to the nearest integer)

(101,89,81, 75,71, 76, 69, 65, 61, 59, 63,
58,55, 52,47, 50,47, 43,39,37,30,24)  (3.129)
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Figure 3.5: The A-independent part of the spectrum of possible boundary F
values for U(N) N =4 SYM theory with N = 2, 3, 8. Black lines represent
the exact values while red lines give the supergravity approximation.
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using the exact results and

(90,82, 76,71, 68,71, 66,63, 59, 57, 60,
56,54, 51,46, 49, 46, 43,39, 37,30,24)  (3.130)

with the supergravity expressions.

3.6 Statistics of boundary F

In this section, we will use our results above to investigate the distribution of
possible values for Fj for a given N, for various types of boundary conditions.

For fixed A and N, there are infinitely many superconformal boundary
conditions that one can impose, since we can couple in an arbitrarily com-
plicated 3D SCFT. We expect that there is a lower bound, but no upper
bound on the allowed value of Fy, which can be thought of as a measure of
the number of local boundary degrees of freedom.

For the class of theories corresponding to D3-branes ending on D5-branes
only or NS5-branes only, we have only a finite set of possibilities, enumerated
by partitions of N, the rank of the gauge group. In this case, we have upper
and lower bounds for Fj that depend on N and A, and we can investigate the
distribution of Fj values for a given N and A either using the supergravity

expressions or the exact results from localization.

D5-brane boundary conditions

Defining py = L4/N, our supergravity expression for Fy for the theories

associated with D3-branes ending on D5-branes is

N2 /3 A w2 N4
FSUGRA _ 7(7 1 ( )) _ 3
9 IRV 3 é;pA

N2 2 2
16 [(pA +p5)°In((pa+pB)?)
AB

~ (pa—p)*In ((pa —pp)?) |, (3.131)
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where the positivity of L; and the relation ) 4, La = N give py > 0 and
> apa = 1. Thus {pa} satisfies the constraints of a probability distribution.

In Appendix we show that the minimum and maximum values of
F gUGRA are obtained by considering the distribution {p4} with the min-
imum and maximum entropy respectively, i.e. where {p4} = {1} and

{pa} ={1/N,...,1/N}. This yields

2 AT2 2 AT2
9 _7TN _1 (167rN ) § < jSUGRA

1 A 3 n?
<N (ZIn(—)+=—-——). (3
=N (4ln(167r2>+8 3)\> (3.132)

Assuming that the same sets of linking numbers lead to the minimum and
maximum values for Fjy with the exact expression, we find a range of allowed
values

Fy <Fy<Fy (3.133)

where F g corresponds to the maximum entropy configuration and is given
by (setting L =1 in (3.121))
N N2 [4NY\ 1
+
and F} corresponds to the minimum entropy configuration and is given by
(setting L = N in (3.121))

_ N2 N N? AN

w2 N2
3\

(N—1)(N+1)— %111(;2 (N+1). (3.135)

Using the large N approximation to the Barnes G-function, we then find
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that up to O(N In N) corrections we have a range of allowed values
2 \72 2 \72
zW(-”N-—an&“V>+3>gﬂ?

3\ A 8
1 A 3
<N’ (-In(Z)-2). (31
s (in(3)2) o
We note that the upper bound is modified here compared to the supergravity

result (3.138). We emphasize that we have not proven that the left and right

sides here are actually the upper and lower bounds on Fj; this will be true

assuming that the same boundary conditions giving rise to the minimum
and maximum for F aSUGRA also give rise to the minimum and maximum for
Fy.

We see that this allowed range covers primarily negative values, with
the upper end of the range positive only for sufficiently large A. We can
understand the large negative values of boundary F' that arise for boundary
conditions associated with D3-branes ending on few D5-branes by the fact
that the scalars are developing an expectation value, and this results in a
large fraction of the N2 fields becoming massive, with mass increasing as we
approach the boundary. Thus, we lose degrees of freedom compared with
the situation where the scalar vevs are vanishing. The quantity boundary F
is in some sense a measure of the number of boundary degrees of freedom,
but in this case, the negative value indicates that it is taking away from the

bulk degrees of freedom.
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3.6. Statistics of boundary F

NS5-brane boundary conditions

A similar analysis applies to the NS5-brane boundary conditions. Defining

pa = K4 /N, we have

N2 /3 4 AN? NZ2
FSUGRA _ 2V° (9 4 <7) _ MV 3 _ IV
Z TGS 18 4 PA— 95

_ [(pA +pp)°In((pa + pB)?)

— (pa—pB)*In ((pa —pB)Q)} ., (3.137)

A similar argument to that for the D5-brane boundary conditions shows that

FasUGRA is again minimized /maximized on the minimum /maximum entropy

distribution, yielding
N2 (_)\ _ llnA_'_ g) < FSUGRA

48 4
A 1. /N2y 3
< N2 (- h (7) °) .
<N ( 48N2+4ln \ +8>

Assuming that the same sets of linking numbers lead to the minimum

(3.138)

and maximum values for Fy with the exact expression, we find a range of

allowed values
Fy <Fy<Fy (3.139)

where F5" corresponds to the “minimum entropy” configuration and is given

by (setting K = N in (3.119)))

N2 N N? A
Ff=— (5% -2 )m@n) -~ —2—
? (2 4>n( ™ n<47r2N>

S SN DN - G (N+1), (3140)

and F 5’ corresponds to the “maximum entropy” configuration and is given
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3.6. Statistics of boundary F

by (setting K =1 in (3.119)))
1
Fy =——In(27r) - —In > +§lnG2(N—i—1), (3.141)

Using the large N approximation to the Barnes G-function, we then find

that up to O(N In N) corrections, we have a range of allowed values

A1 1 472 N2
N2 (——1nA+3>§FéVS5SN2 (4111( il )—3>~ (3.142)

48 4 8 A 8

As above, the upper bound is modified here compared to the supergravity
result (3.138)), which is expected since the linking numbers are not large in
this case. We emphasize that we have not proven that the left and right
sides here are actually the upper and lower bounds on Fj; this will be true
assuming that the same boundary conditions giving rise to the minimum
and maximum for F gUGRA also give rise to the minimum and maximum for
Fy.

We see that at least for small values of A, the range of allowed boundary
F values for these boundary conditions is positive, consistent with the fact
that the scalar vevs are zero for these boundary conditions and the full set

of massless bulk degrees of freedom remain.
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histograms of mﬁ (bins removed for clarity) for NS5-like boundary conditions, with N = 100 and various

values of A\ up to the self-dual value A = 47 N. For each histogram, we uniformly sample 5000 partitions of the
integer N, and compute Fj for the associated boundary conditions.
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3.6. Statistics of boundary F

Distribution of boundary F' values

It is also of interest to ask about the distribution of allowed Fjy values for
a given N and \. In Figure we display contour plots for histograms of
allowed values (scaled by positive factors involving A and N for convenience)
for the case N = 100 with various values of A. We display the results for
D5-brane and NS5-brane boundary conditions with up to the self-dual value
A =4xN for the 't Hooft coupling; these confirm that, for A below the self-
dual value, Fy is predominantly negative for D5-brane boundary conditions,
and predominantly positive for NS5-brane boundary conditions. These plots
also implicitly reveal the behaviour of Fj for A above the self-dual value; the
distribution of Fj for D5-brane boundary conditions with such A is identical
to that for NS5-brane boundary conditions with the dual value of the 't
Hooft coupling, and vice versa.

We also display similar plots for the case of fixed A\ and increasing N
in Figure One notable feature of these plots is that, for fixed A, the
proportion of D5-like/NS5-like boundary conditions for which Fj is posi-
tive/negative appears to asymptote to zero for increasing N; this is illus-

trated further in Figure 3.8
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3.6. Statistics of boundary F

Arbitrarily large boundary F' for general boundary conditions

To conclude this section, we verify the claim that by considering general
boundary conditions involving D5-branes and NS5-branes, we can make Fjy
arbitrarily large. This is expected, since the general boundary conditions
can be understood as coupling in a SCF'T to one of the theories with D5-
branes or NS5-branes only, and we can take this SCFT to have arbitrarily
many degrees of freedom. We are therefore motivated to verify this claim
by considering such a boundary condition with a large number of boundary
degrees of freedom; for simplicity, we consider the case of a single stack
of many Db5-branes and a single stack of many NS5-branes, with linking
numbers

L=-1, K=1, (3.143)

and with N, Nygs taken to be large independent parameters, with N <
Npyss. We then have
Nps = Nyss — N . (3.144)

The supergravity parameters lA,l;: are given by

) .
—1=1— —Npgsarctan(gk/l) ,
™

9 o (3.145)
1=k+ —(Nngs — N) arctan(gk/1) ,
7r
which has perturbative solution
- 272 N? N3
o)
NS5 N NS5 (3146)
. N N
l= + 0 5 .
Nnss NN55

Most of the terms appearing in the uncorrected Fjy in the case of this bound-

ary condition are suppressed by %SF, and will vanish in the limit N?fsr

with fixed A and N; the terms which are not suppressed in this limit are the

—0
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constant contribution %N 2. the “cubic terms”

1 1 ik
—ZdID |~ — 2| ~ NNygsIn2,

s 2 2]

' . 02 (3.147)
2 LM AT A2

7Td ckD [2 %] 3 N°In(Nnss) ,

and the “quartic term”

~ N¥gsIn(Nygs) . (3.148)

Meanwhile, the anticipated corrections from the vicinity of the D5-branes
and NS5-branes are O(N%,45) (see Appendix. Consequently, the leading
term in the uncorrected Fjy, which is NZQV g5 In Nngs5, should provide a good
approximation to Fy when Nygs > N. Since Nygs can take arbitrarily

large values, we see that Fy is unbounded from above.

3.7 Discussion

In this final section, we mention a few possible applications of our results.

RG ordering of BCFTs

We recall that Fjy has been conjectured to decrease under boundary renor-
malization group flows. Assuming that this is true, our results provide very
detailed information about which boundary RG flows are possible between
the various BCFTs we consider. For cases where the endpoints of an RG
flow are known, for example where we add supersymmetric mass terms or
Fayet-Illiopoulos parameters to a UV theory, it would be interesting to ver-
ify the decrease of boundary F' to provide support for the conjecture; this
was done in [162] for the simple case considered there.

We note that for NV > 7, the ordering of boundary F for different theories
depends on the bulk t Hooft coupling parameter A. Thus, if the boundary
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3.7. Discussion

F monotonicity conjecture is correct, we could have the interesting situation
where some relevant perturbation of theory A flows to theory B for small
values of A\ while some relevant perturbation of theory B flows to theory A
for large values of A\. Of course, it may also be the case that no RG flows
are possible between theories whose boundary F' values switch orderings as

a function of \.

Holographic interpretation

As we discussed in Section [3.3, the addition of a boundary to the N' = 4
theory corresponds to the addition of a certain type of “end-of-the-world”
brane in the five-dimensional gravity picture. This corresponds in the higher-
dimensional picture to a region where the internal space smoothly degen-
erates. In many holographic applications of BCFTs, the gravity side is
described using a bottom-up approach, in which such an ETW brane is
simply described by adding a boundary action with certain parameters to
the bulk gravitational theory [79, 87]. The simplest such parameter is the
tension of the ETW brane. An interesting question, one of the questions
that motivated this work, is to understand the range of tension parameters
in bottom-up models for which the qualitative physics can be reproduced in
microscopic constructions.

As discussed in [87], there is a direct relationship between the tension
parameter of a bottom up model and the boundary entropy, obtained by
performing a holographic calculation of boundary F' as a function of this
tension. We provide this calculation in the four-dimensional case in Ap-
pendix [B.8|, with the result that

In ——

1-72 +§ -7 (3.149)

T 1 1+T
F:Cbulk< >

where we define cpui = (L3 447/4G) and the tension is 3LaqsT/(87G). This
provides a guide to choosing the tension parameter if one wishes to model
the physics of our more detailed microscopic theories using a bottom-up

model.
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3.7. Discussion

Generalizations

There is a significantly larger class of theories with the same symmetry as
the theories considered in this chapter. The more general theories corre-
spond to N = 4 SYM theory with a supersymmetric planar defect, or to
supersymmetric interfaces between N = 4 SYM theories with different pa-
rameters. Type IIB supergravity solutions for these theories are also known,
so it should be straightforward to use the methods of this chapter to calcu-

late the defect/interface entropy for these theories.
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Chapter 4

Black Hole Microstate
Cosmology

4.1 Introduction

The AdS/CFT correspondence is believed to provide a non-perturbative
description of quantum gravity for spacetimes which are asymptotic to anti-
de Sitter space. For a holographic CFT defined on a spatial sphere, typical
pure states with large energy expectation value correspond to microstates
of a large black hole in AdS. Simple observables in the CFT can be used
to probe the exterior geometry of this black hole, revealing the usual AdS
Schwarzschild metric with a horizon. However, what lies beyond the horizon
for such states and how this is encoded in the CFT is still a significant open
question.

Classically, a static (eternal) black hole solution can be extended to in-
clude a second full asymptotically AdS region. In this classical picture, the
horizon is not distinguished by any local physics, so a conventional expecta-
tion is that black hole microstate geometries should include at least some of
the behind-the-horizon region from the maximally extended geometry.@ On
the other hand, including the full second asymptotic region is tantamount to
introducing the degrees of freedom of a second CFT, so it is very plausible

that single-CFT microstate geometries have at most a part of the second

56Some authors have argued that quantum effects should modify these expectations: the
“fuzzball” proposal [204-207] suggests that microstate geometries are actually horizonless,
while proponents of the “firewall” scenario |59, 60] argued that consistency with unitarity
and the equivalence principle imply that the geometry must end in some type of singularity
at or just beyond the horizon. But many authors have given counter-arguments suggesting
a more conventional picture.
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4.1. Introduction

asymptotic region in common with the maximally extended spacetime.

In this chapter, following [208] and [209], we will explore the possibility
that for certain CF'T states, the corresponding black hole geometry is cap-
tured by the Penrose diagram in Figure Here, the geometry on the
right side is the AdS-Schwarzschild black hole exterior. On the left, instead
of the full second asymptotic region that would be present in the maximally
extended black hole geometry, we have a finite region terminating on an end-
of-the-world (ETW) brane (shown in red in Figure 4.1)). In the microscopic
description, this brane could involve some branes from string/M-theory the-
ory or could correspond to a place where the spacetime effectively ends due
to a degeneration of the internal space (as in a “bubble of nothing” geometry
[211]). In this note we mainly make use of a simple effective description of
the ETW brane, which we describe in detail below.

In order to decode the physics of these microstate spacetimes from the
microscopic CFT state, we need to understand the CFT description of
physics behind the black hole horizon. This is a notoriously difficult prob-
lem; the present understanding is that decoding local physics behind the
horizon requires looking at extremely complicated operators in the CF'T
and furthermore that the operators needed depend on the particular CFT
state being considered [2127215]1@

Fortunately, we will see that in many cases, entanglement entropy in
the CFT can probe the geometry behind the horizon, and in particular
can be used to inform us about the effective geometry of the ETW brane.
To understand this, recall that for holographic theories, the entanglement
entropy for a spatial region in the CFT corresponds to the area in the
corresponding geometry of the minimal area extremal surface homologous
to the region [42, 218]. In the geometry of Figure we have extremal

surfaces that remain outside the black hole horizon and extremal surfaces

5TThe recent paper [210] that appeared during the course of our work also considered
black hole microstate geometries, describing a picture somewhat different from the one in
Figure However, [210] were discussing typical black hole microstates, while we are
focusing on more specific states, so there is no conflict.

58For recent discussions of state dependence and bulk reconstruction of black hole inte-
riors from the quantum error correction perspective, see [216, 217].
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4.1. Introduction

a(t)

Figure 4.1: Penrose diagram for spacetimes associated with certain black
hole microstates. The spacetime terminates on the left with an effective end-
of-the-world brane (shown in red on the left) whose worldvolume geometry is
a four-dimensional FRW big bang/big crunch cosmology. For certain brane
trajectories, the physics of the left region would correspond to a Randall-
Sundrum II cosmology, with gravity localized on the brane. If there are
CFT states that realize this scenario, the CFT would provide a complete
microscopic description of this cosmology.

147



4.1. Introduction

that penetrate the horizon and end on the ETW brane, as shown in Figure
We find that if the black hole is sufficiently large, the behind-the-horizon
region is not too large, and the CFT region is large enough, the extremal
surfaces penetrating the horizon can have the minimal area for some window
of boundary time [—tg, tg], where tg depends on the size of the region being
considered. During this time, the entanglement entropy is time-dependent
and directly probes the geometry of the ETW brane. This was observed for
a simple case in [219]@

Our investigations were motivated by the work of [208] in the context of
the SYK model, a simple toy model for AdS/CFT. Here, Kourkoulou and
Maldacena argued that for states e #|B) arising via Euclidean evolution
of states | B) with limited entanglement, the corresponding AdSs black hole
microstate take a form similar to that shown in Figure [4.1 This work was
generalized to CFTs in [209], where the states |B) were taken to be confor-
mally invariant boundary states of the CFTm In that case, the correspond-
ing geometries were deduced by making use of a simple ansatz discussed by
Karch and Randall [78], and by Takayanagi [87] for how to holographically
model conformally invariant boundary conditions in CFTs. The resulting
geometries again take the form shown in Figure 4.1, with the trajectory of
the ETW brane depending on properties of the CFT boundary state. We
review the construction of these states and their corresponding geometries in
Section 4.2, generalizing the calculations to higher dimensions. We make use
of this particular set of geometries for our detailed calculations since they
are simple to interpret holographically, but we expect that the qualitative
picture of Figure [4.1 should hold in a more complete holographic treatment
of Euclidean-time-evolved CFT boundary states, and perhaps for a more
general class of states.

Our calculations of entanglement entropy for these states are described
in detail in Section As an example of the results, Figure shows the

59Various other works have considered the entanglement entropy in black hole geometries
with a time-dependent exterior, such as the Vaidya geometry (see, for example, [220]). In
these cases, the entanglement entropy can also probe behind the horizon.

59The states 676H|B> in this case have been considered in the past by Cardy and
collaborators [221], [222] as time-dependent states used to model quantum quenches.
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4.1. Introduction

Figure 4.2: Two possibilities for extremal surfaces and associated entan-
glement wedges (shaded) for ball-shaped boundary regions. The extremal
surface on the right has the topology of S%2 times an interval, so is con-
nected for d > 2.

entanglement entropy for ball-shaped regions in a particular five-dimensional
black hole geometry with constant-tension ETW brane behind the horizon.
For small subsystems or late times, the RT surfaces stay outside the hori-
zon and the entanglement entropy is time-independent. However, for large
enough subsystems, there is an interval of time where the minimal-area ex-
tremal surfaces probe behind the horizon and end on the ETW brane. Thus,
the entanglement entropy gives a direct probe of behind-the-horizon physics.

The ansatz of Karch/Randall/Takayanagi, in which boundaries in the
asymptotic region are extended into the bulk along a dynamical ETW brane
of a fixed tension, is the simplest proposal that reproduces expected proper-
ties of boundary CFT entanglement entropy via a holographic calculation.
For specific microstates of specific CFTs, the detailed microstate geometry is
more complicated and the ETW brane will have a more specific microscopic
description, but it is plausible that the qualitative picture is similar. Thus,

our results for the behavior of entanglement entropy using the simple ansatz
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100 1

Figure 4.3: Time-dependence of subsystem entanglement entropy for a five-
dimensional black hole microstate modeled by a constant tension ETW
brane behind the horizon. Curves from bottom to top correspond to suc-
cessively larger ball-shaped subsystems on the sphere. For large enough
subsystems, the minimal area extremal surfaces probe behind the horizon
for an interval of time.
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can be viewed as a prediction for the qualitative behaviour of entanglement
entropy in actual Euclidean-time-evolved boundary states of holographic
CFTs. This can be tested by direct calculation for specific states; obtain-
ing results similar to the ones we find based on the above described simple
ansatz would provide a check that our general picture is viable.

As a warm-up for such a direct test, we perform an analogous calculation
in a generalization of the SYK model, a coupled-cluster model which includes
both all-to-all within-cluster interactions and spatially local between-cluster
interactions. Here, the states we consider are analogs of those of [208] ex-
tended to include the physics of spatial locality, where in place of the bound-
ary state |B), we have states which are eigenstates of a collection of spin
operators formed from pairs of fermions. We numerically calculate the en-
tanglement entropy as a function of time for subsets of various numbers of
fermions (as a model for CFT spatial regions on varying size) for a single
SYK cluster and for two coupled SYK clusters. We find that the dependence
of entanglement entropy on time and on the fraction of the system being
considered is qualitatively similar to our predictions for holographic CF'T
states (compare Figure with Figure[4.3), but (as expected) without the
sharp features observed in the holographic case. We also give analytical
large-N arguments that apply to many clusters, where direct numerical cal-
culation is not possible. These calculations are described in detail in Section
4.4

It is noteworthy that imaginary time-evolved product states have also
been considered in the condensed matter literature. For example, they
were proposed as tools to efficiently sample from thermal distributions of
spin chains. In that context, they were named minimally entangled typ-
ical thermal states (METTS), with the expectation that they would be
only lightly entangled [223, 224]. Interestingly, we find that such states are
generically highly entangled, unlike what was seen for simple gapped spin
chains [223, 224]. One can argue that the low entanglement observed in the
finite-size gapped spin chain occurs because of the strong microscopic-scale
energy gap. To better understand the holographic and SYK results in some

simple models, and with this quantum matter background in mind, we also
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give some additional results for spin/qubit models in Appendices and

We also consider in Section [4.5/the calculation of holographic complexity
[225-227] (both the action and volume versions). These provide additional
probes of the behind-the-horizon physics, though their CF'T interpretation is
less clear. We find interesting differences in behavior between the action and
volume versions. While both show the expected linear growth at late times,
the volume-complexity increases smoothly from the time-symmetric point
t = 0, while the action-complexity has a phase transition that separates
the late-time growth from an earlier period where the action-complexity is
constant.

In Section 4.6, we point out a Rindler analogue of our construction in 2+1
dimensions, where the maximally extended black hole geometry is replaced
with empty AdS space divided into complementary Rindler wedges and the
microstates are particular states of a CFT on a half-sphere with BCFT
boundary conditions. Since the BTZ geometry is obtained as a quotient of
pure AdS3, we can unwind the compact direction and reuse the results of
Section to determine when knowledge of a boundary subsystem grants

access to the region behind the Rindler horizon.

Black hole microstate cosmology

An interesting feature of the geometries we consider is that the geometry
on the left side can be thought of as an asymptotically AdS spacetime (the
second asymptotic region of the maximally extended geometry) cut off by
a UV brane. This is reminiscent of the Randall-Sundrum II scenario for
braneworld cosmology. In that case, we have gravity localized on the brane;
that is, the physics on the brane can be described (in the case where the full
spacetime is d + 1-dimensional) over a large range of scales by d-dimensional
gravity coupled to matter.@

Whether or not we have an effective four-dimensional description for

51Via another application of the AdS/CFT correspondence, some of the matter, dual
to the gravitational physics in the partial second asymptotic region, should be described
by a cutoff d-dimensional conformal field theory.
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4.1. Introduction

physics in the second asymptotic region will depend on the details of the
microstate geometry, in particular on the size of the black hole relative to
the AdS scale and to the ETW brane trajectory. These in turn depend on
the details of the state we are considering. If there exist states for which the
conditions for localized gravity are realized, the effective description of the
physics beyond the black hole horizon would correspond to d-dimensional
FRW cosmology, where the evolution of the scale factor corresponds to the
evolution of the proper size of the ETW brane in the full geometry. This evo-
lution corresponds to an expanding and contracting FRW spacetime which
classically starts with a big bang and ends with a big crunch, though we ex-
pect that the early and late time physics does not have a good d-dimensional
description.

Since the states we are describing are simply specific high-energy states
in our original CFT, the original CFT should provide a complete micro-
scopic description of this cosmological physics. A very optimistic scenario is
that for the right choice of four-dimensional CFT (or other non-conformal
holographic theory) and black hole microstate, the effective four-dimensional
description of the dynamics of the ETW brane could match with the cosmol-
ogy in our universe. In this case, the CFT itself could be supersymmetri@;
the effective theory on the ETW brane will be related to the choice of state
in the CFT and need not have unbroken supersymmetry. The small cosmo-
logical constant would be explained by having a large central charge in the
CF'T together with some properties of the CFT state we are considering.

Even if the relevant cosmologies turn out not to be realistic, it is in-
triguing that CFTs could provide a microscopic description of interesting
cosmological spacetimes, since the usual applications of AdS/CFT describe
spacetimes whose asymptotics are static@ Understanding how to generalize
AdS/CFT to provide a non-perturbative formulation of quantum gravity in
cosmological situations is among the most important open questions in the

field, so it is very interesting to explore whether the scenario we describe

52Perhaps it could even be N = 4 supersymmetric Yang-Mills theory.
53There have been many other approaches to describing cosmological physics using
holography. For examples, see [228-233].
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4.2. Microstates with behind-the-horizon geometry

can be realized in microscopic examples.

In Section 4.7, we give a more detailed review of Randall-Sundrum IT cos-
mology and the conditions for localizing gravity. We then explore whether
these conditions can be met in the simple class of geometries with a con-
stant tension ETW brane. Our analysis suggests that realizing the localized
cosmology requires considering a black hole which is much larger than the
AdS scale, and an ETW brane tension that is sufficiently large. Unfortu-
nately, while the Lorentzian geometries corresponding to these parameters
are sensible, our analysis in Section suggests that for CFT states corre-
sponding to these parameter values, a different branch of solutions for the
dual gravity solution may be preferred. However, a more complete holo-
graphic treatment for the BCFT physics will be required in order to reach
a more decisive conclusion.

Finally, in Section we comment on various possible generalizations

and future directions.

4.2 Microstates with behind-the-horizon

geometry

In this section, we describe a specific class of CFT excited states which
describe certain black hole microstates when the CFT is holographic. For
these states, it is possible to plausibly describe the full black hole geome-
try, at least approximately. These states were suggested and studied in the
context of the SYK model by [208], and later studied directly in the con-
text of holographic CFTs in [209]. Simple specific examples of these states
and the corresponding geometries have been discussed earlier, for example
in [41, 219, 234]. The microstate geometries will be time-dependent and
hence “non-equilibrium”; for a different construction of non-equilibrium mi-
crostates with geometry behind the horizon, see [235]. In this section, we
will review and generalize those discussions, starting with the definition of
the CFT states and then moving to the geometrical interpretation. We will

make use of this specific construction in the remainder of the chapter in
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4.2. Microstates with behind-the-horizon geometry

order to have an example where we can do explicit calculations.

4.2.1 CFT states

The states we consider, suggested in [208], have two equivalent descriptions.
First, consider the thermofield double state of two CFTs (on S?) which we
will call the left and right CFTs,

1
"I’TFD> 75 Z €

For high enough temperatures, this corresponds to the maximally extended

z'>L [} |Ez>R . (4.1)

AdS-Schwarzschild black hole geometry. Now consider projecting this state
onto some particular pure state |B) of the left CF'T. This could be the result
of measuring the state on the left. We will be more specific about the pure

state |B) later on. The result is a pure state of the right CFT given by

g1
|‘I’B>—762

We can think of this state as the result of measuring the state of the left

e (B|E)|E) . (4.2)

CFT. If this measurement corresponds to looking at the state of local (UV)
degrees of freedom, we might expect that the effects on the corresponding
geometry propagate inwards causally (forward and backward, since we will
be considering time-symmetric states) from near the left boundary, so that
the geometry retains a significant portion of the second asymptotic region.
This motivates considering states |B) with no long-range entanglement.
We can also consider a closely related state \\I/%> obtained by complex

conjugation of the coefficients in the superposition,

w5 = Z Zez (E:|B)| E:)
= Ze ) (Ei| B)
- Zlﬂe_BH/2|B>. (4.3)
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S P
)

B2

Figure 4.4: Path integral description of black hole microstates \\I/@

We recall that the operation |\TJBB> — \\Il@ is anti-linear and anti-unitary
and corresponds to the operation of time-reversal. For example, given any

Hermitian O we have that
(U5 ()OI (1)) = (W (—t)| O[T (~1)) . (4.4)

In our case, we will consider states which are time-reversal symmetric, so
the two definitions are equivalent.

We see from that the states \\Il@ correspond to starting from a
state |B) and having a finite amount of Euclidean evolution. These states
are naturally defined by a Euclidean path integral as shown in Figure [4.4l.
Since the CFT path integral for holographic theories maps onto the gravity
path integral, we will be able to make use of the AdS/CFT corresponence to
deduce the corresponding geometries if we can choose states |B) for which
we can understand a gravity prescription for dealing with the boundary

condition at the initial Euclidean time.

Euclidean evolution of CFT boundary states

In the CFT context, a nice class of states to consider for the states |B) are
certain boundary states of the CFT, as suggested in [208] and explored in
detail in [209]. For any CFT, we can ask whether it is possible to define

the theory on a manifold with boundary. In general, there will be a family
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QETW

(a) (b)

Figure 4.5: (a) The AdS/CFT correspondence, with an asymptotically
AdS bulk Mpgqs and an asymptotic boundary Nepr = OMags. (b) The
AdS/BCFT correspondence. We add a boundary to the CFT, whose holo-
graphic “image” is the ETW brane Q.

of distinct theories corresponding to different allowed boundary conditions.
Some of these boundary conditions are special in the sense that they preserve
some of the conformal symmetry of the theory; specifically, the vacuum state
of the CFT on a half space with such a boundary condition would preserve
SO(2,d — 1) of the SO(2,d) conformal symmetry.

For each of these allowed boundary conditions, we can associate a bound-
ary state | B) for the CFT on S?~! by saying that choosing this state in (4.3)
is equivalent to the state obtained from the Euclidean path integral with our
chosen boundary condition at 7 = —/3/2. The boundary state itself (equal
to \\Il%> in the limit 8 — 0) is singular and has infinite energy. It also can
be understood to have no long range entanglement, as we motivated above
[236]. However, the Euclidean evolution suppresses the high-energy con-
tributions to give a state with finite energy. The states |\IJﬁB> are generally
time-dependent and were considered by Cardy and collaborators in studying
quantum quenches [221, 222, 237].

For our purposes, the boundary states are interesting since now the de-
scription of our states is completely in terms of a Euclidean path integral
with a specific boundary condition for the CFT at 7 = —3/2.
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4.2.2 Holographic model

In [78] and [87, 88], these boundary conditions were discussed in the context
of AdS/CFT. These references proposed that the gravitational dual for a
CFT with boundary should be some asymptotically AdS spacetime with
a dynamical IR boundary that forms an extension of the CFT boundary
into the bulk, as depicted in Figure 4.5, For simplicity, the physics of this
boundary was modeled by an end-of-the-world brane with constant tension,
and a Neumann boundary condition ensuring that no energy/momentum
flows through the brane. A modified proposal for how to treat the boundary
conditions was presented recently in [238], but for the cases we consider, the
proposals are equivalent.

It is convenient to introduce a dimensionless tension parameter 1" defined

so that the stress-energy tensor on the ETW brane is
STFGTab = (1 - d)Tgab/LAdS s (45)

where T' can be positive or negative. The parameter T is related to prop-
erties of the boundary state; we will review the physical significance of this
parameter in the CFT below. The gravitational action including bulk and

boundary terms is then given as

1
Ibulk + IETW = m dd+1f1}' vV —g (R — 2A)
Maaqs
1
+ 3nC d%yvV/=h (K - (d=1)T/Laas), (4.6)
n QeTW

where A = —d(d — 1)/2L3,4. With this simple model, various expected
properties of boundary CFT were shown to be reproduced via gravity cal-
culations. In [87] and [88], the boundary conditions were taken as spatial
boundary conditions for a CFT on an interval or strip, but we can apply
the same model in our case with a past boundary in Euclidean time.

For general holographic BCFTs, we expect that the boundary action
would be more complicated; it could include general terms involving intrin-

sic and extrinsic curvatures, sources for various bulk fields, and additional
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fields localized to the boundary. However, for this chapter, we will focus on

studying the simple one-parameter family of models as proposed in [78, 87].

Relation between tension and boundary entropy in 141

dimensions

The significance of the tension parameter 7" may be understood most sim-
ply for the case of 1+1 dimensional conformal field theories. In that case,
each conformally invariant boundary condition may be characterized by a
parameter g that can be understood as a boundary analogue of the central
charge [81, 160]. We can define g by

g =(0|B) (4.7)

which has the interpretation of the disk partition function, computed with
the boundary conditions associated with |B). Along boundary RG flows
(defined by deforming a BCFT by some boundary operator), the parameter
g always decreases [84]. This parameter g also appears in the expression
for the vacuum entanglement entropy for the CFT on a half line [239]. The
entanglement entropy for an interval of length L including the boundary is

given in general by

Cc

S(L) = glog <f> + log(g) . (4.8)

Here, the second term is known as the boundary entropy and in general can
have either sign.

Using the holographic prescription, Takayanagi computed both the disk
partition function and the entanglement entropy for intervals on a half line,
showing that in both cases, the holographic calculation matches with the

CFT result if the tension parameter is related to the boundary entropy by

L
logg = A((;S arctanh(T) . (4.9)

Thus, larger values of the tension correspond to larger boundary entropy, or
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c/6 In(L/¢)

Figure 4.6: Calculation of entanglement entropy for an interval of length L
including the boundary in the vacuum state of a holographic BCFT. The
geometry is locally Poincaré-AdS, with the ETW brane at a constant angle
0 = arcsin(T"). The boundary entropy is the > 0 portion of the RT area.

more degrees of freedom associated with the boundary. We expect that this
qualitative relationship also holds in higher dimensions.

Geometrically, the tension parameter T determines the angle at which
the ETW brane intersects the boundary, via 7' = sin(6); this also holds in
higher dimensions [88]. As an example, Figure depicts the calculation of
entanglement entropy for an interval including the boundary in the vacuum
state of a holographic BCFT.

4.2.3 Microstate geometries from Euclidean-time-evolved

boundary states

We now make use of the simple holographic BCF'T recipe to deduce the mi-

crostate geometries associated with Euclidean-time-evolved boundary states
|T) = e ™| B). (4.10)

This was already carried out for 141 dimensional CFT states in [209]. We
review their calculations and generalize to higher dimensions.

We are considering a CFT on a spatial 4! with the state prepared by
a Euclidean path integral with boundary conditions in the Euclidean past at

T = —79. We would like to work out a Lorentzian geometry dual to our state.
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Figure 4.7: Euclidean gravity solutions corresponding to the CFT path in-
tegral for (Ble H|B). The boundary geometry is a cylinder S¢ x [—7g, 70].
The phase with a connected ETW brane configuration (left), dominant for
small 7p, gives rise to a Lorentzian black hole geometry.

We start by noting that ¢ = 0 correlators in our state |¥3)) may be computed
via the Euclidean path integral on S%! times an interval of Euclidean time
T € [—70, 70, with operators inserted at 7 = 0. Holographically, this can
be computed using the extrapolate dictionary as a limit of bulk correlators
in a Euclidean geometry with boundary S¢=1 x [—7g, 70] that is determined
by extremizing the gravitational action with appropriate boundary terms
for the ETW brane. This geometry is time-reversal symmetric. To find
the Lorentzian geometry associated with our state, we take the 7 = 0 bulk
slice as the initial data for our Lorentzian solution (which will also be time-
reversal symmetric).

There are two possible configurations of the ETW brane in the Euclidean
solution, depending on the values of T" and 7y, as shown in Figure The
configuration which dominates the gravitational path integral is the one with
lower action. For some values of T we can have a transition between these
solutions analogous to the Hawking-Page transition. Above a critical value
Terit (T'), the lower action configuration is a portion of Euclidean AdS, and the
Lorentzian solution will be pure AdS with a small amount of quantum matter
(as we have for the dual of a finite temperature CFT below the Hawking-
Page transition). For 79 < 7¢it(T"), the Lorentzian solution corresponds to
a part of the AdS-Schwarzschild geometry. For T > 0, this includes the full
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exterior solution plus spacetime behind the horizon terminating with the
ETW brane.

In Appendix we present a detailed derivation of the Euclidean and
Lorentzian solutions corresponding to the Euclidean-time-evolved boundary

states; here, we summarize the basic results.

Euclidean solutions

We begin by describing the Euclidean solutions for each of the phases. In
each case, the boundary geometry is taken to be a sphere S?~! with unit
radius times an interval [—79, 70]. For the case d = 2, our calculation is
actually equivalent to a calculation in [88], who considered the Euclidean
solutions associated with the path integral for a BCFT defined on an interval
(i.e. with two boundaries) at finite temperature. In that case, the interval
[~70, 7o) Tepresented the spatial direction, while the S' was the thermal
circle.

Since the states we consider preserve spherical symmetry, the relevant
geometries will also be spherically symmetric, and must therefore locally be
described by the Euclidean AdS-Schwarzschild geometry,

d 2
ds* = f(r)dr? + 7f(rr) +r2dQ3 (4.11)
with ) s )
T Ty T
f(r) = +1— - ( H 4 1> . (4.12)
Lids rd=2 L2AdS

Here, the value of rg will depend on which phase we are in and on the values
of 7o and T'. The periodicity of 7 (for 7z > 0) is determined by smoothness

at r =ryg to be 7 ~ 7+ 8 with

2

B = .

(4.13)

This relates the inverse black hole temperature to r.

For convenience, we will set Laqgs = 1 in much of the following.

162



4.2. Microstates with behind-the-horizon geometry

Black hole phase

We will mainly be interested in the “black hole” phase in which the ETW
brane is connected and takes the form shown on the left in Figure 4.7,
Describing the spherically symmetric brane embedding by r(7) we find that

the equations of motions for the brane imply that the trajectory obeys

RGN O (4.14)

Solutions that are symmetric about 7 = 0 will have g—: = 0 for 7 = 0, with

r equal to some minimum value ry determined in terms of 7" and rg by
fro) =122 . (4.15)

This gives the maximum ETW brane radius in the Lorenzian solution. As
we increase T, the ratio ro/ry increases monotonically from 1 at 7= 0. In
d = 2, we have simply

To 1

VST 19

while in higher dimensions, we will see below that this ratio reaches a finite

maximum value.

The brane locus is then given by

" T
7(r) = dr .
") / T =T

A typical solution for 7' > 0 is depicted in Figure[4.8. On the left, the full

disk represents the r, 7 coordinates of the Euclidean Schwarzschild geometry,

(4.17)

with r ranging from 7 at the center to infinity at the boundary. We have an
S=1 of radius r associated with each point. The ETW brane bounds a por-
tion of the spacetime (shaded) that gives the Euclidean geometry associated
with our state. This has a time-reflection symmetry about the horizontal
axis. The invariant codimension one surface (blue dashed line) gives the
t = 0 geometry (depicted on the right) for the associated Lorentzian solu-

tion. In this picture, the minimum radius sphere corresponds to the black
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21,

Figure 4.8: Euclidean geometry associated with a T' > 0 state. Left: ETW
brane trajectory on the (r,7)-plane, with » = rgy at the center and r = oo
represented as the boundary of the disk. We have an S% ! of radius r
associated with each point. Right: spatial geometry fixed by time-reflection
symmetry (blue dashed line on the left). This provides the initial data for
the Lorentzian solution.

hole horizon, so we see that the ETW brane is behind the horizon. For
T < 0, we obtain the same trajectories, but the geometry corresponds to
the unshaded part, and the ETW brane from the initial data slice is outside
the horizon.

For a given rg and T', the Euclidean preparation time 7y associated with
the solution corresponds to half the range of 7 bounded by the ETW brane
at the AdS boundary. This is given explicitly by

To = e —/ dr I (4.18)

(d=2)+dry; Sy fO)VFO) —T22°

For a specified tension 1" and preparation time 7, the temperature of the

corresponding black hole is determined implicitly by this equation. There

can be more than one pair ry that gives the same 7y for fixed 7', but in this

case, the solution with smaller ry is never the minimum action solution.
For d = 2, we find that for every value of T and rp, the ETW brane

trajectory meets the boundary of the (r,7) disc at antipodal points, so the
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black hole temperature is very simply related to the Euclidean preparation
time,
I5] T

_P_ T 4.19
=0T 9y (4.19)

In this case, the ETW brane radius on the initial data slice is

TH

V1-T2'

so the region behind the horizon can become arbitrarily large as we take
T —1.

For d > 2 we find that Euclidean solutions in this phase exist only for
a portion of the (79, T)-plane, shown for d = 4 in Figure [4.9, In particular,

for any rp, there is a value T.(ry) above which there are no Euclidean

(4.20)

To =

solutions with a connected ETW brane (corresponding to a Lorentzian black
hole geometry). The values Ty (rg) converge to some finite Ty,ax in the large
rg limit, giving an absolute maximum value for T above which no such

solutions exist.

e For d = 3, we find Thax =~ 0.95635. This leads to a maximum value of
max,, {ro/ru} ~ 2.2708 for the ratio of the ETW brane radius to the

horizon radius.

e For d = 4, we find Thax =~ 0.79765. This leads to a maximum value of
max,, {ro/ru} ~ 1.2876 for the ratio of the ETW brane radius to the

horizon radius.

For T' > T, (rm), the corresponding Euclidean solutions are not sensible
since the ETW brane overlaps itself, as shown on the left in Figure 4.10
In this case, the thermal AdS geometry (with disconnected ETW branes
bounding the Euclidean past and future in the Euclidean solution) is appar-

ently the only possibility.

Pure AdS phase

For any value of 19 and T' > 0, we can also have a Euclidean solution where

the ETW brane has two disconnected components as shown on the right
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in Figure [4.7. The Euclidean geometry is a portion of pure Euclidean AdS
(described by the metric in with f(r) = 72 4+ 1) bounded by the two
branes. We can parameterize the brane embedding by 7(r) with 7(c0) = £79
for the upper and lower brane respectively. The equations determining the
brane location are the same as in the previous case since the geometry takes

the same form, so we find that the brane embedding is given by

0 T
T(r)—m = / dr - ) (4.21)
- IRV T
with f(r) = r? + 1. Integrating, we find (in any dimension)
) it () (4.22)
7(r) — 79 = arcsin )
’ Vit + 141 - 12

The negative 7 component of the ETW brane is obtained via 7 — —7.

Comparison of the gravitational actions

In order to determine which type of solution leads to the classical geometry
associated with our state for given (79, 7’), we need to compare the gravita-
tional action for solutions from the two phases. For d = 2, this calculation
was carried out in [88] (Section 4) while studying the Hawking-Page type
transition for BCFT on an interval. Our calculations in Appendix gen-
eralize this to arbitrary dimensions. In order to compare the actions, we
need to regularize; in each case, we can integrate up to the r corresponding
to z = € in Fefferman-Graham coordinates and then take the limit ¢ — 0
after subtracting the actions for the two phases.

As examples, we find that for d = 2, we have

lim(I5"(T, 70, €) — 15" (T’ 70, €))

€~
- —arcta h(T)—E—i-Tr—2 (4.23)
B 2 " 8]

Thus, our states (for a CFT on a unit circle) correspond to bulk black holes
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when

2
10 < —arctanh(T") + \/72l + arctanh?(T) . (4.24)

This phase boundary is shown in Figure 4.9l Our result agrees with the
calculation of [88] (reinterpreted for our context).

For d = 4, the action difference is given in equation in the ap-
pendix. The resulting phase boundary is shown in Figure the critical
decreases from /6 at T =0 to 0 at T = Tyyax. We see that for T' > 0, the
black hole solutions typically have lower action when they exist.

It is somewhat surprising that the black hole phase never dominates (and
doesn’t even exist) for any value of T" above Tiax, since taking 7y sufficiently
small would be expected to lead to a state of arbitrarily large energy, which
should correspond to a black hole in the Lorentzian picture. One possible
resolution to this puzzle is that among the possible conformally invariant
boundary conditions for holographic CFTs, there may not exist examples
that correspond to 1" > T in our models. Our Euclidean gravity results
could be seen as a prediction of some constraints on the possible boundary
conditions for holographic CFTs (and specifically on a higher-dimensional
analogue of boundary entropy).

Alternatively, the simple prescription of holographically modelling the
CFT boundary by introducing a bulk ETW brane with some constant ten-
sion may not be adequate to model boundary conditions which naively cor-
respond to larger values of T'. For example, about T}, solving the equations
to determine the Fuclidean trajectory naively gives a result that folds back
on itself. But a more complete model of the ETW brane physics would
presumably include interactions of the brane with itself that invalidate our
naive analysis. For example, an effective repulsion could turn a naively

unphysical solution into a physical one, as shown in Figure 4.10.

Lorentzian geometries

To find the Lorentzian geometries associated with our states, we use the
7 = 0, 7 slice of the Euclidean geometry as initial data for Lorenztian evolu-

tion. The resulting geometry is a portion of the maximally extended black
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Figure 4.9: Critical value of 79 vs T for d = 2 (top) and d = 4 (bottom). The
thick curve on the right shows the phase boundary below which the black
hole phase dominates. The other curves on the right show 79(7") for fixed
values of rg, equal to 1, 1.25, 1.5, 2, 3, 4, 8, and 16 from top to bottom on
the left. Where the curves overlap in the black hole phase region, the value
of rg for the physical solution is always the larger one.
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(9 (@&

Figure 4.10: (Left) Euclidean ETW brane trajectories for dimension d > 2
and Ty (rg) < T < Tuit- The naive ETW brane trajectory overlaps itself.
(Right) A possible alternative picture in a more complete holographic model
with self-interactions of the ETW brane.

hole geometry, with one side truncated by a dynamical ETW brane. These
Lorentzian geometries parallel earlier results on domain walls and thin shells
in AdS [240-242] 5

For T' > 0, we will see that the brane emerges from the past singularity,
expands into the second asymptic region and collapses again into the future
singularity. For T' < 0 we have an equivalent ETW brane trajectory but on
the other side of the black hole, so that the brane emerges from the horizon,
enters the right asymptotic region, and falls back into the horizon.

Using Schwarzschild coordinates to describe the portion of the ETW
brane trajectory in one of the black hole exterior regions, the brane locus is

given by the analytic continuation of the Euclidean trajectory,

T T"
t(r) = / di— — (4.25)
ro SRV = f(F)
For example, in d = 2, we obtain
2 T
cosh(trg) A (4.26)

2 V1=T72

54Indeed, the Neumann condition reduces to the thin shell junction condition where the
extrinsic curvature on the “excised” side of the brane vanishes.
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To understand the behaviour of the brane in the full spacetime, it is
convenient to rewrite the equation in terms of the proper time A on the

brane, related to Schwarzschild time by

dt f(r)

o Ve (4.27)

We then find that the coordinate-independent equation of motion for the

brane relating the proper radius r to the proper time A is simply
i+ [f(r) = T?*?% =0, (4.28)

where now the dot indicates a derivative with respect to proper time. In

terms of L = log(r), this becomes simply
L4+ V(L) =17 (4.29)

where
V(L) = fy) =1+e 2 — e dE=Lu)(] 4 o720m) (4.30)

So the trajectory L(A) is that of a particle in a one-dimensional potential
V(L) with energy T2. These potentials take the form shown in Figure .

Considering general values of T', we can have five classes of trajectories
(two for d = 2), as shown in Figure However, all of our time-symmetric
Fuclidean solutions in the black hole phase correspond to values T < 1
(corresponding to case (a) in Figure[4.11)) for which the Lorentzian trajectory
starts at » = 0, increases to r = rg and decreases back to » = 0. Thus, the
brane emerges from the past singularity, reaches a maximum size rg, and
shrinks again to r = 0 at the future singularity.

Using the proper time parametrization, the worldvolume metric for the
brane takes the close FRW form

ds? = —d\* +r(\)2d03_, , (4.31)

where the scale factor r(\) is determined from equation (4.28). The entire

170



4.2. Microstates with behind-the-horizon geometry

Figure 4.11: Effective potential V(L) and types of Lorenzian ETW brane
trajectories for d = 2 (top) and d > 2 (bottom).
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trajectory covers some finite amount of proper time given by

(4.32)

To
Y L
0 VI —J(n)

For d = 2, the explicit scale factor in the worldvolume metric is

r(\) i cos(A\V/1 —T7?) (4.33)

1712
and the total proper time for the evolution is

™

b Vol — 4.34
tot m ( )
For d = 4, the scale factor is
1
cos(2v/T = T2A)\/1+4(1 = T2)r, (1 +73) - 1] ’
r(A) = (4.35)
2(1-17?)
and the total proper time for the evolution is
_ 1 1
A4 —  —arccos . (4.36)

V1-17 V1H+40 = T2 1+ 1)

The d = 3 results are given in terms of elliptic integrals.

We briefly discuss the remaining trajectories in Appendix [C.1], in case
they may be relevant to some other class of CFT states. In Section |4.7] we
discuss the possibility that for certain parameter ranges, we can have gravity
localized to the ETW brane, so that the FRW metrics here would represent

cosmological solutions of an effective d-dimensional theory of gravity.
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4.3. Probing behind the horizon with entanglement

4.3 Probing behind the horizon with

entanglement

In this section, we consider the holographic calculation of entanglement en-
tropy for CFT states whose dual geometries are captured by Figure [4.1]
We will continue to use the simple model of a spacetime terminating with
an ETW brane, but we expect the same qualitative conclusions when the
ETW brane is replaced by a more complete microscopic description. We
begin by considering a general behind-the-horizon ETW brane trajectory
r(t) symmetric about ¢ = 0 with maximum radius 7(0) = ro.

We will consider the entanglement entropy for ball-shaped regions on
the sphere as a function of size and of CFT time. As depicted in Figure
we have extremal surfaces that stay outside the horizon, but we can
also have extremal surfaces that enter the horizon and end on the ETW
braneﬂ Depending on the value of time and the ball size, we can have
transitions between which type of surface has least area. In the phase where
the exterior surface has less area, the CFT entanglement entropy will be
time-independent (at leading order in large N'), while in the other phase, we
will have time-dependence inherited from the time-dependent ETW brane
trajectory. In our examples below, we will find that in favourable cases,
the minimal area surface for sufficiently large balls goes behind the horizon
during some time interval [—to, to] which increases with the size of the ball.

We now turn to the details of the holographic calculation of entanglement
entropy given some ETW brane trajectory r(¢). This was calculated for the
T = 0 case in [219]. Similar methods were used in slightly more exotic

geometries, and reaching different conclusions, in [243].

5%We recall that the topological constraint on the extremal surfaces is that they are
homologous to the boundary region under consideration. This means that the surface
together with the boundary region form the boundary of some portion of a spatial slice
of the bulk spacetime. The relevant regions in the two cases are shown as the shaded
regions in Figure In the case where the extremal surfaces go behind the horizon and
terminate on the ETW brane, this region includes part of the ETW brane. We emphasize
that this is not part of the extremal surface and its area should not be included in the
holographic calculation of entanglement entropy.
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Exterior extremal surfaces

First, consider the exterior extremal surfaces, working in Schwarzschild co-
ordinates. Let 0y be the angular size of the ball, such that 6y = 7/2 corre-
sponds to a hemisphere.

Since the exterior geometry is static, the extremal surface lives in a
constant ¢ slice, and we can parameterize it by r(#). In terms of this, the

area is calculated as

Areagy = Wi_9 / do r*2sin?20, [r2 + L(7“’)2 ) (4.37)
f(r)
where wy_o is the volume of a (d — 2)-dimensional sphere.
Extremizing this action, we obtain equations of motion that can be solved
numerically (or analytically in the d = 2 case — see below).
To obtain a finite result for entanglement entropy, we can regulate by in-
tegrating up to some fixed ryax corresponding to z = € in Fefferman-Graham
coordinates, subtracting off the vacuum entanglement entropy (calculated

in the same way but with f(r) = r? + 1), and then taking e — 0.

Interior extremal surfaces

To study extremal surfaces that pass through the horizon, it is convenient
to work in a set of coordinates that cover the entire spacetime. In this case,
we parameterize the surfaces by a time coordinate and a radial coordinate,
which are both taken to be functions of an angle 6 on the sphere.

The only new element here is that the extremal surfaces intersect the
ETW brane, and we need to understand the appropriate boundary con-
ditions here. Since we are extremizing area, our extremal surfaces must
intersect the ETW brane normally, so that a variation of the intersection

locus does not change the surface area to first order.
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Criterion for seeing behind the horizon with entanglement

When the behind-the-horizon extremal surfaces have less area, the CFT
entanglement is detecting a difference between our state and the thermal
state. We expect that this is most likely to happen for § = 7/2, where we
are looking at the largest possible subsystem, and for ¢ = 0, since at other
times the state will become more thermalized.

For this case 6y = 7/2, t = 0, the behind-the-horizon extremal surface
remains at § = 7/2 and t = 0, extending all the way to the ETW brane on
the far side of the horizon. This intersects the ETW brane normally by the
time-reflection symmetry. In this case, we can calculate the regulared areas

explicitly as

Areai (0 = w/2,t = 0,r0)
o d—2
dr—

’I“d_2
dr——— + wy— .
rH V f(?") e /TH V f(?”)

When this area is greater than the area of the exterior extremal surface

Tmax

= Wd—2 (438)

corresponding to § = m/2, we expect that the entanglement entropy will
always be calculated in terms of the exterior surfaces. Thus, we have a basic
condition

Areacyt (m/2) > Areajnt (0 = 7/2,t = 0,r0) (4.39)

for when entanglement will tell us something about the geometry behind the
horizon. This is more likely to be satisfied for smaller values of ro (ETW
brane not too far past the horizon). It can fail to be satisfied even for
ro = ry if the black hole is too small, so below some minimum value r%in,
all minimal area extremal surfaces probe outside the horizon.

For d = 2, we will see below that the constraint gives explicitly

(with factors of Laqgg restored)

g 2L
(riinyd=2 %arcsinh(l) (4.40)
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4.3. Probing behind the horizon with entanglement

and that for larger rz, the maximum brane radius must satisfy

70 1/ . THT . _1( THT >>
— < — [ sinh + sinh . 4.41
rg 2 ( (2LAdS> 2L pqs (4.41)

in order that we can see behind the horizon with entanglement.

4.3.1 Example: BCFT states for d =2

In this section, we work out the explicit results for d = 2 where the CF'T lives
on a circle. We calculate the entanglement entropy S(A6,t) for an interval
of angular size Af on the circle, as a function of CFT time ¢t. We find that
having access to a large enough subsystem of the CFT allows us to probe
behaind the horizon, and thus renders the microstates distinguishable, in

broad qualitative agreement with [244].

Exterior extremal surfaces

First consider the exterior surfaces, which we parameterize by r(). Since
the integrand £ in (4.37) does not depend explicitly on 6, the extremizing
surfaces must satisfy
oL
/
Ui L = constant (4.42)

Calling this constant r, (this represents the minimum value of r on the

trajectory, where 1’ = 0), we get

r

W \/(TQ —r2)(r2 —r2) | (4.43)

T« Lads

The solution, taking 8 = 0 to be the point where r = r,, is given implicitly
by

—Qr?{rf + 7“%17“2 +r2r2 — QT'*TH\/(T2 —r2)(r? — r%{)

- _ Laas In
2ryg r2(r2 — 7’121[)
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4.3. Probing behind the horizon with entanglement

We will only need that

Laqgs T« +TH
O(r = — 1 4.45
(r=o0) = S () (4.45)
so that N
Ty Ty
— = coth . 4.46
TH (2LAdS) (4.46)

The area of such a surface, regulating by integrating only up to rmax =

Lags/e is

2L
Areaeyt (Af) = 2L ags In < AdS sinh(rHAG/ZLAds)> (4.47)
€ry

where we have dropped terms of order e. Using ¢ = 3Laqs/2G, this gives
an entropy S = Area/4G of

oL
S=Smn ( AdS sinh(rHA0/2LAds)> . (4.48)
3 ETH

In terms of the CFT effective temperature 3, we have r/Lags = 2mLcerr /S,

so the result in terms of CFT parameters is

S’—Cln< b sinh(chpTA9/5)> . (4.49)
3 meLcpr

where Lgpr is the size of the circle on which the CFT lives.
For comparison, the area of a disconnected surface with two parts ex-
tending from the interval boundaries to the horizon via the geodesic path

at constant 6 and t gives

Tmax d
Areag = 2/ L — 9L nasIn(2Laas/ern) - (4.50)
TH

VI(r)

This shows that regardless of what happens behind the horizon, the entan-

glement entropy of an interval with size Af will be calculated by an extremal
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4.3. Probing behind the horizon with entanglement

surface outside the horizon if
sinh(rgAf/2Lags) < 1. (4.51)
This will hold even for the largest interval Af = r if
2 .
""H/LAdS < —arcsmh(l) . (4.52)
T

Thus, we must have a sufficiently large black hole if the CFT entanglement

entropy is going to have any chance of seeing behind the horizon.

Interior extremal surfaces

Now we consider the extremal surfaces that enter the horizon and end on
the ETW brane. Here, it is most convenient to use coordinates for which the
maximally extended black hole spacetime takes the form (with Lagqs = 1)

dsir, = (—d52 + dy* + 13 cos®(s) dqbQ) (4.53)

cos?(y)
where the coordinate ranges are —7/2 < s,y < 7/2, with the horizons at
y = £s. The coordinate transformations relating this to Schwarzschild coor-
dinates are given in Appendix Using these, the ETW brane trajectory
is found to be simply

y = —arcsin(T) . (4.54)

We find that the general spacelike geodesics in this geometry take the
form

sin(sp — $¢) sin(y) = sin(s — sg) , (4.55)

where the geodesic passes through sg at y = 0 and ends on the AdS boundary
(y = m/2) at sp. The geodesics with fixed sp and different sg all end on
the same point at the AdS boundary, but different points on the ETW
brane. However, requiring that the surface extremize area also with respect
to variations of this boundary point on the ETW brane implies that the
geodesic should be normal to the ETW brane worldvolume. This gives the
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4.3. Probing behind the horizon with entanglement

s =pi/2

y=-hresin) . y = pi/2

s =-pi/2

Figure 4.12: BTZ black hole in s,y coordinates, showing ETW brane (red)
and various geodesics orthogonal to it. Geometry to the left of the ETW
brane is excised.

very simple class of geodesics
s =5 (4.56)

which sit at fixed 6 and s. The black hole geometry together with these
geodesics is depicted in Figure |4.12

We can now evaluate the area of these extremal surfaces. We will eval-
uate the area up to the same regulator point ryax = Lags/e. This gives a

maximum y of

_ [Tmax/TH — 1 Tmax/TH — 1
= arctan [ e "H!B, [ LD~ ) 4 arctan | e HiB, [ S
Ymax ( rmax/rH +1 Tmax/TH +1
(4.57)
Note that this depends on the Schwarzschild time tg. We have then

Ymax
Areain (Af) = 2/ dy
— arcsin(T) COS(y)
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4.3. Probing behind the horizon with entanglement

2L
— 2LagsIn ( Ads) (4.58)
Ery
tprg 1+7T
+2Lpq5In | cosh ( > . (4.59)
L3 45 1-T

where we have again restored factors of Lagg. The regulated entanglement

entropy is then
c 2L Aqgs 14T
In terms of CF'T parameters, this gives

c 15} 1+T
= —In | ——— cosh(2 — ] . 4.61
S 3 n<€7TLCFT cosh(2ntcrr/p) 1—T> (4.61)

This gives less area than the exterior surface (so that entanglement en-

tropy will probe the interior) when

Af t 1+T
sinh (TH ) > cosh ( B27"H> i . (4.62)
2L aas 2.)V1i-T

When this is satisfied, the entanglement entropy is given by the expression
and is time-dependent but independent of the interval size@ Oth-
erwise, the entanglement entropy is time-independent but depends on the
interval size and is given by .

The entanglement entropy as a function of interval size for various times
is shown in Figure The entanglement entropy as a function of time for
various interval sizes is shown in Figure The fact that the entanglement
entropies are independent of angle when the minimal-area extremal surfaces

probe behind the horizon is a special feature of the d = 2 case arising from

561f we express condition (4.62) in terms of the radius r of the ETW brane where we
shoot out a normal geodesic, we obtain an even simpler condition

sinh (THAG) > TH
2Laas ) — (1 — LAdsT)T.
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8,

-4 -3 -2 -1 0 1 2 3 4

[— Theta = Pi/4 — Theta = Pi/2— Theta = 3 Pi/4 — Theta = Pi

Figure 4.13: Regulated entanglement entropy as a function of time for var-
ious interval sizes for T'= 0.5, rg = 2Lag4s, € = 0.01. Plots from bottom to
top show Al = 7 /4, w/2, 3w /4, .

the fact that these extremal surfaces have two disconnected parts, each
at a constant angle. In higher dimensions, the corresponding surfaces are

connected and we have non-trivial angular dependence for all angles.

4.3.2 Results for d =4

As another explicit example, we consider the case of a (4+1)-dimensional
black hole. In this case, the Lagrangian describing the extremal surfaces has

an explicit angle dependence, and the surfaces must be found numerically.

Interior extremal surfaces

The metric for the (441)-dimensional Schwarzschild black hole in Schwarzschild

coordinates is

d 2
ds®> = —f(r)dt* + ﬁ + r2d3 (4.63)
where ) ) )
T T T
f(r) = +1—H( H +1> . (4.64)
Lids r? LidS

Once again, we set Lags = 1 in the following.
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2n

7,
s4:
2,
O T T T T T T T '
ks ks 3n T 5m 3n n
4 2 4 4 2 4
Delta Theta
[—t=0—J=1—J=2—|>3]

Figure 4.14: Regulated entanglement entropy as a function of interval size
for various times for T' = 0.5, ryg = 2Laqs, € = 0.01. Plots from bottom to

top show successively later times starting at ¢t = 0.

To switch to Kruskal-type coordinates (Y, .S), we define

t= 1 SR —
2(2r2, + 1) n(Y—S) -9 2(2r2, + 1) ( )
where

T odr

\/T‘?{-l-l

ry rg —7r r

= log + arctan ————+C' .

22ry, +1) “lra+r| 2y +1 m
Then the metric is
2
2 T?{€_2<2;§+l)g(r) 2 2 2 102
d —dS* +dY 9
s 27 T 1) f(r)]| + |+
i f(r)

2 2 2 2
(%%{H)QYZ_SQ[—dS +dY?) 4 r2dQ

(4.65)

(4.66)

(4.67)

where 7 is defined implicitly as a function of Y2 — S2 by the second equation
in (4.65). Note that the zero at r = rpy in f(r) cancels the pole in the

exponential factor, leaving a function that is regular at the horizon.

Changing the constant C' amounts to a rescaling of Y and S, so we can
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4.3. Probing behind the horizon with entanglement

make a choice C' = 0. Then, the metric is

ds® = B(r)(—dS* + dY?) + r?dQ? (4.68)
with
By = (e’ 4y 4 )
(2r%, +1)2 r2
X exp —27‘7%4_1 arctan | ———— (4.69)

"'H i+l

and r defined in terms of Y2 — S2 as

2/ )
YQ_SQZ r—ry . ré{ arctan( >
r+rg
We would like to extremize the action
2 2
S :47T/dY7‘2SiIl29 B(r) (1 — <3§S/> ) + 2 (jf/)
(4.71)

E47T/dY£

=F(r). (4.70)

for surfaces described by S(Y), 0(Y), r(Y) with
Y282 - F(r)=0. (4.72)

Introducing a Lagrange multiplier 47 A for the constraint, this gives equa-

tions
d 0L
Aok oL
N
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4.3. Probing behind the horizon with entanglement

where primes denote derivatives with respect to Y. Eliminating A, and using
(4.72) to get an equation for r’, we get

d oL 28 oL

aves T arjarsr = Y
A oL oL
2dY 50 60
/ - - _
'+ dF/dr(SS Y) 0. (4.74)

These differential equations can be solved numerically, along with the equa-

tion for the surface area, Areaj,; = A with

2 2
A = 4nr?sin® 0, | B(r) <1 - <;€> ) + 72 (jﬁ) : (4.75)

to determine the functions (S(Y),6(Y),r(Y), A(Y)). For initial conditions,

we should again enforce normality of the extremal surface to the brane. One

can use the brane equation of motion
i+ [f(r) —r*T?] =0 (4.76)

to determine the brane trajectory, and select some collection of initial coor-
dinates (tpy, by, Opr) on the brane. The Kruskal coordinate transformation
in equation (4.65) is then used to find the corresponding Sy, Y1, and we

take initial conditions

SYor) =Sy 0(Yor) =0, 7(Yor) = Tbr s (4.77)
1- {érlja_’rz) Ybr - Sbr
A(Yy) =0, S'(Wy) = - . (4.78)
1— LSy, — Vi,
br

Provided that this extremal surface does not fall into the singularity, one
can integrate up to some cutoff radius r = rpax near the AdS-Schwarzschild

boundary; the result of this computation is a cutoff surface area Ay, a
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Figure 4.15: Radial profiles of extremal surfaces in Kruskal coordinates
(S,Y). Those surfaces emitted from the brane at sufficiently late or early
times fall into the singularity.

boundary subregion size 05, and a boundary Schwarzschild time ¢p.

Exterior extremal surfaces

The exterior extremal surface was computed in Schwarzschild coordinates;
again, the geometry is static, so the surface lives in a constant ¢ slice, and

one has action

=47 r? sin® (r)” r2(0)? = 4r
S=4 /d)\ 0”]"(1")—*_ 202 =4 /dAE. (4.79)

There is of course a reparametrization invariance; it is numerically desirable

to consider the gauge

M) = Gl P20 =1. (4.80)
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Substituting this constraint into the equations of motion, one arrives at

2r' f(r)cos04/1 — 'y +7"rf(r)sin@

f
+ <3f(r) - g%)(r’)QsinH —3f(r)2sinf =0, (4.81)

which can be integrated together with our constraint equation, and the

equation for the surface area, Acyy = A with
A = 4rr? sin? 6, (4.82)

to determine the functions (r(XA),8()\), A(X)) given some initial condition@
r(0) = r,0(0) = 0,A(0) = 0. We can again integrate up to some radius

rmax t0 find a cutoff area Aeyt and a boundary angle 0p.

Regularization of the surface area

To understand the divergences appearing in the entanglement entropy, it is
helpful to work out an explicit expression for the regularized entanglement
entropy in the case of vacuum AdS. In this case, the area associated with
extremal surfaces in the vacuum geometry may be calculated most easily by
working in Poincaré coordinates where the extremal surfaces are hemispheres
with some radius R(6p). Making the appropriate change of coordinates and

integrating the area up to the value of z that corresponds to r = ryax gives
1
Avac(0B) = 27[r3 . sin® 05— In(2rmpax sin O)—5 cos(20p)|+0(ry2,) (4.83)

In performing numerical calculations, the divergent part of this can be sub-
tracted from the cutoff areas of the extremal surfaces in the black hole
geometry to give a finite result in the limit ry.x — 0.

The results of this computation are found in Figures and [4.17, The

5"The boundary angle #p turns out to be a smooth function of 7.; we can invert this
function 65 (r.) to find the appropriate initial condition 7. given some boundary angle 0,
allowing us to compare interior and exterior surface areas with fixed 0p.
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1001

0 T T T T T T 1
0 0.1 02 03 04 05 06 07

Figure 4.16: Regulated entanglement entropy as a function of time for
T = 0.5, rg = 3Lags, "max = 100. Plots from bottom to top show
A =1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2.
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80

707

04 06 08 10 12 14
A9

Figure 4.17: Regulated entanglement entropy as a function of subregion size
for T = 0.5, rg = 3Lags, ™Tmax = 100. Plots from bottom to top show
t/Lagqs =0, 0.1, 0.2, 0.3.
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4.4. Entanglement entropy: SYK model calculation

results are qualitatively similar to the case of d = 2 dimensions; in particular,
for a boundary subregion of sufficiently large size, the entanglement entropy
has a period of time dependence, during which the extremal surface probes
the brane geometry. However, whereas in d = 2 the entanglement entropy
was independent of the size of the boundary subregion whilst the minimal
area surface was probing the brane, this is visibly no longer the case in d = 4.
This property was unique to d = 2, where the area of the interior extremal

surface was independent of the size of the subtended boundary region.

4.4 Entanglement entropy: SYK model

calculation

Here we study a coupled-cluster generalization [245] of the single SYK cluster
consider in [208]. The first step is to define the analog of boundary states for
this model, which now include both spatial and internal degrees of freedom,
and generalize the analysis of [208]. We also present entanglement data
obtained from exact diagonalization of a single cluster and two coupled
clusters which corroborate the holographic entanglement calculations above.

Consider LN Majorana fermions x, , withr =1,--- ,Landa=1,--- | N

with N even. The basic anti-commutator is

{Xr,ay XT’,a’} = 67“,7“’5(1,(1’ . (484)

The Majorana fermions are arranged in the Hamiltonian into L clusters of N
Majoranas each, with the clusters having only nearest neighbor interactions.

The Hamiltonian is

L
H= E g Jabchr,a,Xr,er,ch,d
r=1 a<b<c<d

L
‘1‘2 Z Jabchr,aXr,er+1,CXTJrl,d7 (4'85)
r=1 a<b,c<d

assuming periodic boundary conditions. The couplings are Gaussian random
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4.4. Entanglement entropy: SYK model calculation

variables with zero mean and variances

o

J2q = N3 abed = N3 (4.86)
The bare Euclidean 2-point function is
1
(Xr,a(T)Xr a/(0)) = = sgn(7)d;0q,q7 - (4.87)

2

The dressing is the usual melonic large N analysis, but here extended to the
coupled chain [245]. For our present purpose, the key point of this analysis
is that the system possesses an emergent O(N)* symmetry at large N.
Essentially, one can apply an independent O(N) transformation acting on
the a index of x; 4 at every site of the chain. This occurs because, ignoring a
possible spin glass or localized phase, the J and J couplings can be treated
as dynamical fields with a particular two-point function, at large V.

A complete basis for the Hilbert space can be obtained as follows. For
each pair of Majorana operators in a cluster, x,2r—1 and X, 2, define the

complex fermion
_ Xr2k—1 T X2k

C
T,k} \/é

These fermions obey the usual algebra, {cryk,ci, wt = OppOp . It is con-

(4.88)

venient to label the Hilbert space using the spin-like operator 5, = 1 —

2617]@07‘,]6 = +1. In terms of the Majoranas, it is

Srp =1~ 2C1J[,kCTJf = —20Xr,2k—1Xr,2k - (4.89)

The mutual eigenbasis of all the ;. operators forms a complete basis de-
noted |s) and obeying
'§r,k‘8> = 5T,k|5> . (490)

Note that the transformations which flip a particular even numbered x, such

as taking Xy ok, to —Xy 2, also flips the eigenvalue of 5 ;.
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4.4. Entanglement entropy: SYK model calculation

Now consider the imaginary time evolved |s) basis,
s, B) = e BH/2|g) . (4.91)

Let @, denote the unitary which sends X, 2r to —X,2r. The idea of the
analysis in [208] is, roughly speaking, that the Hamiltonian is invariant under
Q1 at large N, so that when computing correlation functions one can use
the relation

Qrre PH2|s) ~ e PHI2Q 1 ]s) (4.92)

though it is not literally true for fixed J and J.
The goal is to analyze various physical properties in the states |s, 3).

The most basic object is the two-point function,

(8, BIxra(T)xra(0)]s, B)

Gra(Tis, ) = (s, B|s, B)

(4.93)

Since each X, is mapped to £x, 4 by @, it follows from equation (4.92)
that G, (7;s, ) is actually independent of s, at least to leading order at
large N. Hence, even though the states |s, ) are not translation invariant
in general, the two-point function in state |s, §) is approximately translation
invariant.

To determine the value of G, (7 s, 3), first observe that the leading large
N part of (s, |s,B) is also independent of s by virtue of equation (4.92]).

Summing over s gives

> (s.8ls, 8) = Tr(e ) = Z(8) (4.94)

S

so since each term is approximately equal, it must be that

(5,805, ~ 2. (4.95)

with D the Hilbert space dimension. This in turn implies that G, 4(7; s, 3)
must be given by the thermal answer at inverse temperature 5 independent

of s.
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One property of particular interest is the entanglement entropy of subre-
gions in the state |s, 8). The n-th Rényi entropy of a subset A of Majorana

fermions in the normalized state

_ s, 8)(s, Bl
o(s,p) = 5. Bls. B) (4.96)
is
e~ (=D = v (Mo (s, B)F") . (4.97)

Here H;? is a shift operator acting on the n copies which swaps fermions from
the set A between the copies. It is defined for a single pair of Majoranas
below. Crucially, it is invariant under the @, ; transformation provided it is
enacted in every copy (replica) simultaneously. Hence at the level of rigor
we have been observing, it follows that the large IV part of the Renyi entropy
of a collection A in state |s, 8) is independent of s.

The value of S,,(A) is less clear. The same trick, summing over s, which
showed that G, ,(7;s, ) was thermal does not work here because there are
two copies of the state appearing. While the thermal Renyi entropy is one
natural candidate, this cannot be true for all collections since the state
is pure. At a minimum, non-thermality must occur when A exceeds half
the total system. However, it is certainly consistent to lose thermality for
smaller sets, as this occurs in holographic calculations. To say more requires
a detailed calculation of the Renyi entropy using the replicated path integral,
which we defer to future work.

Note that, in the numerical data reported below, the entanglement en-
tropy of subsystems is computed by first grouping fermions into pairs and
performing a Jordan-Wigner transformation to a spin basis. The definition
of entanglement in the spin basis is trivial, and moreover, one can show that
the precise location of the Jordan-Wigner string does not effect the entropy
calculation. This is because given two different strings, meaning two dif-
ferent mappings of fermion states to spin states, the two final sets of spin
states are related by a local unitary. Hence as long a fixed fermion pairing

is chosen to define the spins, the choice of string is actually irrelevant since
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entanglement entropy is invariant under local unitary transformations.

4.4.1 Data for a single SYK cluster

Here data is presented for a single SYK cluster, L = 1, for a variety of N
and . Turning first to the diagonal matrix elements of the thermal state,
Figure shows a histogram of (s, 8|s, 8) for all s for an N = 28 cluster.
There is a clear concentration around the central value of Z(3)/D and some
evidence of an emerging universal distribution at large 5, although the data
are also consistent with the distribution merely varying slowly with j3.

Turning to the entanglement of subsets of the Majoranas, Figure [4.19
shows a histogram of the entanglement of the first site for various § and
N = 28. As [ increases, the distribution appears to peak near one, although
the width does not dramatically decrease with increasing 8. An analysis
of the data for smaller values of IV suggests that the distribution is also
becoming sharper as N increases.

Next we consider the time evolution of entanglement, with Figure [4.20
showing the time evolution of entanglement for a single state s and N = 32
fermions. For small subsystems, the entanglement entropy is close to the
thermal value (obtained by imaginary time evolution acting on a random
Hilbert space state) even at zero time. The result is similar to the holo-
graphic results, where it was found that small subsystems look exactly ther-
mal to leading order in large N. By contrast, larger systems deviate from
thermality at early time but quickly thermalize. Unlike the holographic cal-
culations, there is no sharp transition as subsystem size is increased, but
such a transition is not expected at finite V.

To show that such imaginary time-evolved boundary states have a ther-
mal character for systems beyond SYK at large-N, Appendices and
contain simple spin systems where very rapid entanglement growth and

other thermal properties of boundary states can be shown exactly.
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counts, different 3, N =28
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Figure 4.18: Histogram of (s, |s,8) for N = 28 Majorana fermions in a
single SYK cluster (L = 1). The different curves correspond to § =0, --- , 10
in units with Jy = 1. There is a strong concentration around the value
predicted by the random model studied above.

4.4.2 Data for two coupled clusters

The single cluster analysis can be repeated for two coupled clusters, with the
caveat that adding a second cluster reduces the number of fermions that can
be studied in each cluster. Figures 4.21] 4.22| and [4.23| show data for two
coupled SYK clusters, L = 2, with N = 12 Majoranas in each cluster. Some

similar features to the single cluster case are visible, although the necessarily
smaller sizes induce larger finite size effects.

In Figure we see evidence that the diagonal matrix elements of
the thermal density are beginning to concentrate near the value Z(8)/D
predicted by the large- N analysis. However, the distribution is considerably
wider. One possible explanation is that the much smaller value of N has
led to much larger finite size effects. Figure shows a histogram of the
entanglement of one cluster normalized to its thermal value. A similar kind
of concentration effect near the thermal value is seen as ( is increased.

Finally, Figure 4.23 shows a thermofield double-like correlation averaged
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counts, different 3, N =28
15000
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Figure 4.19: Histogram of the entropy of one pair of Majoranas for N = 28
Majorana fermions in a single SYK cluster (L = 1). The different curves
correspond to f = 0,---,10 in units with Jy = 1. As ( varies, the en-
tropy increases from zero and remains reasonably peaked. As the average
approaches one, the distribution appears to become more peaked, possibly
indicating convergence to a value independent of s at large 8 and large V.
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=10, N =32

T BTN
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Figure 4.20: The solid lines are the entropies of different sized subsystems
as a function of time for N = 32 Majoranas in a single SYK cluster (L = 1)
with 8 = 10. The dashed lines show the same subsystem entropies in a
random state which has been evolved in imaginary time as a proxy for the
thermal entropy. After a short time of order 3, all subsystem entropies have
reached their late time thermal values.
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Figure 4.21: Histogram of (s|p(53)|s)D for two coupled SYK clusters cor-
responding to L = 2 and N = 12. The different curves correspond to
B=0,--,10 in units with Jy = 1.

over all the fermions. Those data also show signs of concentrating near
the thermal value, albeit with significant width to the distribution. It is
plausible that this broadening is a finite size effect coming from the rather
small value of IV on each cluster in the two cluster system.

We did not study time-evolution of entanglement for the two cluster sys-
tem because the single cluster data is already a reasonable caricature of the
holographic results and the numerics do not have enough spatial resolution
to study in detail the dependence on spatially non-uniform boundary states.
The above data for L = 2 indicate that the thermal behavior of boundary
states expected at large- NV is beginning to emerge for two coupled SYK clus-
ters at quite modest IV, but a definite conclusion is hard to make from the
finite size numerical data.

In Appendix we exhibit a simple model with spatial locality where
the thermality of simple correlators can be shown rigourously. Hence, ev-
idence is accumulating that imaginary time evolved states across a broad
class of models, including those with spatial locality, have a thermal char-

acter.
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Figure 4.22: Histogram of the entropy of one cluster relative to thermal
value for two coupled SYK clusters corresponding to L = 2 and N = 12.
The different curves correspond to 8 = 0,---,10 in units with Jy = 1.
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Figure 4.23: Histogram of TFD-like correlation averaged over fermions for
two coupled SYK clusters corresponding to L = 2 and N = 12. The different
curves correspond to 8 =0,---,10 in units with Jy = 1.
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4.4. Entanglement entropy: SYK model calculation

4.4.3 Swap operator for fermions

Given n fermion modes, the shift operator, II,,, is defined by II,a;IT,* = a;11
for i < n and I,a,I,* = (—=1)""'a;. Its meaning is obtained from its
relation to Renyi entropies. Given a fermion density matrix p = (1 — p) +

(2p — 1)a’a, the n-th Renyi entropy of p is
e~ (DS — (1 — p)" 4 p. (4.98)

From the definition of II,, it follows that the empty state and the full state
are mapped to themselves with no phase factor by II,,. The factor of (—1)"~!
is needed to ensure that the full state does not acquire a phase, since

Hnai AN | I (—1)"*1a£ eal a]i = a]; eal . (4.99)
Every other state in the a; basis is mapped to an orthogonal state (ob-

tained, up to a phase, by rearranging the occupation numbers). Hence the

expectation value of 11, in the n-copy state is
n
Tr (Hn Hp(a») — (L= p)" 4", (4.100)
i=1

the desired Renyi entropy.

Now suppose each a; is written in terms of Majorana operators,

_ Xt iXi

a; ,
V2

and consider the transformation x; — —x;. This transformation maps a; to
_I.

7

(4.101)

a; and hence exchanges the empty and filled states. Moreover, it commutes
with the transformation induced by II¢, hence if the unitary () implements
the sign inversion, then QIL,Q~' = II,. For example, with two copies,
n = 2, the shift is

I, = ¢~ 3 (alaz—afar) (4.102)

which enacts H2a1H2_1 = ay and 1_[20,21'[2_1 = —a,. Its Majorana representa-
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tion is
I, = ¢~ z(Xx1x2+X1X2) (4.103)

which is manifestly invariant under a sign flip of all x;.
The generalization to many modes in a single copy is straightforward.
The conclusion remains the same: the swap operator is invariant under the

transformation x; . — —Xi,a Provided it acts on all copies simultaneously.

4.5 Holographic complexity

We have seen that the entanglement entropy for sufficiently large CFT sub-
systems can provide a probe of behind-the-horizon physics for our black
hole microstates. In [225] and [227], a pair of additional probes capable of
providing information behind the horizon were defined holographically and
conjectured to provide a measure of the complexity of the CFT state@ The
first, which we denote by Cy, is proportional to the volume of the maximal-
volume spacelike hypersurface ending on the boundary time slice at which
the state is defined [225]. The second, which we denote by C4, is propor-
tional to the gravitational action evaluated on the spacetime region formed
by the union of all spacelike hypersurfaces ending on this boundary time
slice (called the Wheeler-deWitt patch for this time slice) [227].

In this section, we explore the behaviour of both of these quantities as a
function of time and the parameter T' for our microstates in the case d = 2.
We will see that while the late-time growth of both quantities is the same
and matches the expectations for complexity, the time-dependence at early
times is significantly different. This may provide some insight into the CFT

interpretations for these two quantities.

58For a more detailed exposition of the definition and calculation of holographic com-
plexity, see [246].
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4.5. Holographic complexity

4.5.1 Calculation of Cy for d =2

The volume-complexity for a CF'T state defined on some boundary time slice

is defined holographically as

v

Cvzav

(4.104)

where V' is the volume of the maximal-volume co-dimension one bulk hy-
persurface anchored at the asymptotic CFT boundary on the time slice in
question. Here, [ is a length scale associated to the geometry in question,
taken here to be Lags. We will generally set Lags = 1 and make use of the
s,y coordinates defined in Appendix

Consider the boundary time slice corresponding to a particular time sp
at the boundary. The maximal volume bulk hypersurface anchored here
will wrap the circle direction and have some profile s(y) in the other two

directions. For a surface described by such a parametrization, the volume is

V =2y / dy;(’;((sy)) 1- <Z;>2 . (4.105)

Extremizing this gives

jgj; - <1 - (Z;)j <taﬂ(3) - Qtan(y)j;) : (4.106)

Maximizing volume also requires that the slice intersects the ETW brane

normally,

d

—3’ ~0. (4.107)
dy Y=Ybr

We regulate the volume by integrating up to rmax = L/€ in the Schwarzschild
coordinates. We can subtract the regulated volume for pure AdS to obtain a

result that is finite for € — 0. This regulated volume for pure AdS (working
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in Schwarzschild coordinates with f(r) = r2 + 1) is

Vaas = /01 dr QW\/f(lr) — f(r) <;l:>2

~ o [1 g 0(6)} . (4.108)

In the s,y coordinates, this maximum value corresponds to

Ymax = arctan (eTHt Tmax_rH) + arctan (e”H t Tmax_rH)
r Tmax + 7 Tmax T TH
H 2
= 12— gm0 4.109
™/ 6cosh(trH) +0(e%) ( )

The values of s at the boundary are related to the original Schwarzschild

time by

tp = 7’11 In(tan(w/4 4+ sp/2)) . (4.110)

We find that there is a monotonic relationship between the intersection time
Spr Oof the maximal volume slice with the ETW brane and the Schwarzschild
time tp of the maximal volume slice at the AdS boundary. A finite range
Sbr € [—8«, 8« with s, < 7/2 maps to the full range tp € [—o00,00] of
Schwarzschild time. We have that s, — 0 as T — 1 or equivalently as y,
(the brane location) approaches —7 /2.

For ¢t = 0, the maximal volume slice is just the s = 0 slice of the space-

time, and the subtracted volume is

Ymax dy
Vieo = 27y / 5~ — VAdS
Ybr COos= Yy

= lil’% [27rrH(tan(ymax) - tan(ybr)) — VAdS (Tmax)]
e— (4.111)

=27(1 4 rg tan |yp,|)

THT )

V1-—1T7?

It is actually convenient to subtract off the 27 here and below, since the re-

=2nr(1l+

maining volumes are all proportional to ry. We will refer to this subtracted
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volume as AV.

We can numerically find the maximal volume slices and evaluate AV for
different values of sy, to understand how the volume depends on time. For
each sy, we calculate tg, the Schwarzschild time where the slice intersecting
the ETW brane at sy, intersects the AdS boundary. The results for AV/ry
vs tgry are independent of rg; these are plotted in Figure |4.24

As a function of Schwarzschild time, the regulated volume increases
smoothly to infinity as ¢ — oo, with a linear increase in volume as a function

of Schwarzschild time for late times. The slope is the same in all cases,

dv 9

Using this result to compute the late time rate of change of volume-complexity,
one finds: )

where we have used the relation
rf = 8GM (4.114)

between the horizon radius rg and the black hole mass M for a non-rotating
BTZ black hole.

The same slope can be obtained analytically as a lower bound by noting
that in the future interior region, which can be described by Schwarzschild
coordinates with®)

dt?

2 _ 12
rg —t

ds? = — + (r; — tH)dr? + t2d9* (4.115)

with ¢ € [-7x, 0], there is an extremal volume surface ¥ described by

5
t= —\ng. (4.116)

. m _ p
%9These are related to the u, v coordinates by u = e""H# \/:ZT, v=¢e "TH \/7 %
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Figure 4.24: Volume AV/rg of maximal slice vs Schwarzschild time rytp
for T'= k/10 with k£ € {0,...,9} from bottom to top.

This is a tube with constant radius rp/ V2. In the w,v coordinates, this
is uv = (2 —v/2)/(2 + v/2). From a time tg at the AdS boundary, we can
consider a surface which coincides with a future-directed lightlike surface u =
e"#B until the intersection with ¥ and then along ¥ until the intersection

with the ETW brane. The part of this surface with y > 0 has volume

V =7ritg + mryln (\/;_1> . (4.117)
This gives a lower bound for the maximal volume, and has the same time
derivative as our result above.

The late time growth of Cy is in line with earlier studies (e.g. [225, 247])
of holographic complexity for black hole states (e.g. evolution of the two-
sided black hole with forward time-evolution on both sides), and has the
same qualitative bulk explanation. We also see a monotonic increase for all

t > 0, as would generically be expected for the evolution of complexity in a
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generic state with less-than-maximal complexity.

4.5.2 Calculation of C4 for d =2

The action-complexity for a CFT state defined on some boundary time slice

is defined holographically as

caz v (4.118)
wh
Here, Iy is the value of the gravitational action of the bulk theory when
evaluated on some region W. In particular, this region is the Wheeler-
DeWitt patch anchored at the asymptotic boundary at the time slice in
question. That is, WV is the union of all the spatial slices anchored at this
time slice. Again, in these calculations we will take Laqs = 1.

As shown in Figure the boundary of the region W is comprised of
different surfaces depending upon which asymptotic time slice we choose.
To avoid conflating this boundary time with the bulk Schwarzschild time
coordinate, let us refer to the time on the asymptotic CF'T boundary as tp
(and sp for the boundary time in s,y coordinates). We find that there are

three distinct phases depending on the time slice in question:

Phase (i): sp < —arcsin(7T)
Phase (ii): —arcsin(7') < sp < arcsin(7")
Phase (iii): sp > arcsin(T) (4.119)

As before, this sp is related to the Schwarzschild boundary time, tg, by

1 s SB
tp=—1 [t (f —)} . 4.120
B - n |tan 1 + 2 ( )
The Wheeler-DeWitt patches for each of these phases are depicted in the
Penrose diagrams shown in Figure One should note that, due to the
symmetry of our system, the results for the negative boundary times are re-
lated to those for the positive times by tg — —tp. Hence, we only explicitly

list here the results for the distinctly different phases (ii) and (iii).
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NS
s

A

Figure 4.25: Penrose diagrams showing the Wheeler-DeWitt patch (shaded
yellow) during each phase. Left-to-right: Phase (i), Phase (ii), Phase (iii).
The surface A is used in calculations of the regulated action.

The details of our calculations in this section may be found in Appendix
here, we describe the results. The action diverges as we integrate up to
the asymptotic boundary, but we can define a finite quantity by subtracting
off half of the action for the two-sided black hole at time 7 = t;, +tgr = 0
where t;, and tr are the thermofield double’s left and right boundary times
respectivelym We will refer to this subtracted complexity as ACg4; results
for the bare complexity with an explicit UV regulator may be found in the
appendix.

In phase (ii), for times |sp| < arcsin(T"), we find the very simple result
ACy(sp) — AC4(0) =0. (4.121)

We can understand this directly from the geometric argument shown in

Figure
The complexity during phase (iii), with the divergence subtracted in the

same way as above, is found to simply beE|

rg sin(sp — S« sin(sp — S«
ACa(sp) — AC4(0) = G (COSS ) In < Ezos . )> (4.122)

"The asymptotic geometries are the same here, so the subtraction is unambiguous.
"'We don’t know if there is any reason for the “entropic” form of this result.
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4.5. Holographic complexity

Figure 4.26: The geometric argument for why the complexity is constant
during phase (ii). The half TFD Wheeler-DeWitt patch (red) is subtracted
from the phase (ii) patch (blue). The remaining region is broken into two
pieces (green and yellow) that are rearranged to become the entire region
behind the horizon. This “proof” is independent of boundary time.

where s, = arcsin(T") or equivalently@

ACy(tp) — AC4(0)

’\/1—T2 sinh(rgtp) T‘

T sech(rgtp)

Yo > (4.123)

In the T — 0 limit this result is simply the complexity for the BTZ

4Gh

X (tanh(rHtB) —

geometry without any additional spacetime behind the horizon. Figure [4.27]

shows the regularized complexity for a range of ETW brane tensions. We

"The results here include the null boundary counterterms first proposed in [248].
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see again the linear growth of complexity at late times, which takes the form

. dCsqa  2M
lim — =

= —. 4.124
t—glo dt mh ( )

We see that both Cyy and C4 grow linearly at late times, but exhibit different
behaviour at early times. The volume-complexity increases smoothly from
the time-symmetric surface t = 0, but the action-complexity is constant until
one of the null boundaries defining the Wheeler-DeWitt patch intersects the
ETW brane. During the period that the action-complexity is constant,
the entanglement entropy is increasing, indicating thermalisation without
complexity increase. This is puzzling, but not impossible. Alternatively, it
may be that the action tracks the complexity well over large time scales but

not during this early-time regime.

21tGh ACa
H
1.2
1.0+ T
[ 0.6
0.6
— 04
041 — 0.2
0.2 — 0.

! ; / . ' rHIR
MWK 15 . . 3.0
0.2 '

Figure 4.27: The regularized complexity during phases (ii) and (iii), as a
function of boundary time, for a selection of different brane tensions, T

4.6 Pure AdS analogue

There is a close analogy between the maximally extended AdS-Schwarzschild

black hole spacetime and pure AdS space divided into complementary Rindler
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AN,
NN

Figure 4.28: Euclidean path integral geometries defining (a) the thermofield
double state of two CFTs, (b) the vacuum state of a single CFT, (c) a black
hole microstate, and (d) a microstate for a half space. Red curves indicate
BCFT boundary conditions.

wedges [249], where the two exterior regions correspond to the interiors of
the two Rindler wedges, as shown in Figure In this section, we extend
this analogy to describe states of a CF'T on a half-sphere that are analogous
to the black hole microstates considered in the main part of the chapter.
We specialize to 241 dimensions for simplicity.

In the black hole story, the full geometry is described by two entangled
CF'Ts, each in a thermal state. Our microstates are pure states of just one of
these CFTs. For pure AdS, the geometry is described by a state in which the
CF'T degrees of freedom on two halves of a circle are entangled. The analog
of a black hole microstate is a pure state of the CFT on a half circle (i.e. an
interval). To make this fully well-defined, we can place boundary conditions
on the two ends of the interval, so that our CFT on a circle is replaced by
a pair of BCFTs each on an interval. As discussed in [250], we can define
an entangled state of this pair of BCFTs whose dual geometry is a good
approximation to the geometry of the original CFT state (inside a Wheeler-
deWitt patch). Now, the analog of one of our black hole microstates is a
pure state of one of these BCFTs that we can define using a path integral,
as shown in Figure 4.28

The path integral in Figure d) is equivalent via a conformal trans-
formation to the path integral that defines the vacuum state of the BCF'T
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on an interval. For this state, the corresponding geometry was described in
[87] and can be represented as a portion of the global AdS geometry ending
on a static ETW brane, as shown in Figure [4.29. That figure also shows
the Rindler wedges that are analogous to the two exterior regions in the
maximally extended black hole geometry. We can see that (in the 7" > 0
case) the ETW brane emerges from the past Rindler horizon in the second
asymptotic region, reaches some maximum distance from the horizon, and
then falls back in.

Explicit geometry

To find the geometry associated with the BCFT vacuum state, it is simplest

to consider a conformal frame where the interval on which the BCFT lives is

(=00, 0]. In this case, we recall from Section 4.2 that in Poincaré coordinates
» L7 2 2 2

ds* = ?(—dt +dz* +dx*) (4.125)

the vacuum geometry corresponds to the region z/z < T/ V1 —=T2? termi-
nating with an ETW brane, as shown in Figure Passing to global
coordinates via the transformations

L/z = cosh(p) cos(7) — sinh(p) sin(0)

x/z = sinh(p) cos() (4.126)

t/z = cosh(p)sin(7) ,

the ETW brane locus becomes

T

sinh(p) cos(f) = ——— 4.127

(P)cos(0) = (1.127)
in coordinates where the metric is

ds? = L*(— cosh? pdr? + dp* + sinh? pdf?) . (4.128)
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Here, the brane is static in the global coordinates, extending to antipodal
points at the boundary of AdS, as shown in Figure [4.29. In that figure, we
see that from the point of view of one of the Rindler wedges, the brane falls
into the horizon.

To make the analogy with the black hole more clear, we can now describe
the ETW brane trajectory for T > 0 in a Rindler wedge, the analog of
the second asymptotic region in the black hole case. Defining coordinates

(x, ¢, r) from the Poincaré coordinates by

. 1
t/L = eXsinh(¢)4/1 — 2
1
x/L = eXcosh(()4/1 - — (4.129)
r
1
I — X2
z/ e,

the Rindler wedge corresponding to the second asymptotic region takes the

form of a Schwarzschild metric with non-compact horizon [251],

2 2 2 2 dr’ 27,2
ds® = L*(—(r" = 1)d¢* + — . + rdx”) , (4.130)
ré —

and the brane locus is simply

V12 —1cosh(t) = \/11:77’2 . (4.131)

Note that this is precisely the same as the result (setting 7 = 1). The
reason is that the black hole geometry we considered previously is simply
obtained from the present case by periodically identifying the x direction.
Thus, as in that case, for each time ¢, the ETW brane sits at a constant r

in the Schwarzschild picture, with r(¢) reaching a maximum at ¢ = 0.

Entanglement calculations

In analogy to the earlier result for BTZ black holes, the entanglement en-

tropy of sufficiently large intervals in the BCFT can provide information
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>&

Figure 4.29: (Left) The ETW brane in global AdS. For T" > 0 we have
the geometry on the left of the brane. For T' > 0, we have the geometry
on the right of the brane. Diagonal planar surfaces are Rindler horizons
dividing the spacetime into complementary Rindler wedges plus past and

future regions. (Right) Dependence of the radial position parameter £ =
V72 — 1 on Schwarzschild time (.

about the geometry behind the Rindler horizon.

Using the standard CFT time in a conformal frame where we have a
fixed distance between the two boundaries, the entanglement entropy for a
connected boundary region is time-independent. However, to provide the
closest analogy with our earlier calculations, we can instead consider the
entanglement entropy of an interval of fixed width in the Schwarzschild
spatial coordinate yx, as shown in Figure |4.30L

We have seen that the geometry and the brane trajectory in the present
case is mathematically identical to the black hole case for rg = 1 except that
the x coordinate is now non-compact. The compactness of 6 did not enter
into the previous calculations of entanglement entropy, so all the calculations
in Section apply here as well, and we can immediately jump to the result,

that the entangling surface will probe behind the horizon when

sinh <A2X> > cosh({p)\/ —— - (4.132)
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Figure 4.30: Interval of fixed width in Schwarzschild time (blue shaded
region) in the BCFT worldvolume geometry.

Since x is noncompact now, we have that for any time (p and any T, we
can always choose a large enough interval Ay so that the entangling surface
probes behind the horizon. The explicit expressions for entanglement en-
tropy in the two phases are the same as those in Sectionm (withrg = 1).

Thus, if we unwrap the compact direction of the BTZ black hole, the
ETW branes will be dual to boundary states on a spatial interval of pure
AdSs. Our BTZ entanglement calculations carry over, implying that control
of a suitably large boundary subregion should allow an observer to probe
behind the Rindler horizon.

4.7 Effective cosmological description?

We have seen in Section that the worldvolume geometry of our ETW
brane takes the form of a d-dimensional FRW spacetime. For the simple
model with a constant tension ETW brane, the explicit metric was given in
for the case of a (3+1)-dimensional ETW brane. Generally speaking,
the physics on this brane does not provide a model of d-dimensional cosmol-

ogy, since the gravitational physics is higher-dimensional. However, there is
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a vast literature on braneworld cosmology (see [77] for a review) exploring
scenarios where the physics of a d-dimensional brane embedded in a higher-
dimensional spacetime does have an effective description as d-dimensional
gravity coupled to matter. This requires gravity to “localize” to the brane,
such that over a large range of distance scales gravitational interactions be-
tween matter on the brane are well-described by d-dimensional rather than
higher-dimensional gravity. In [72], such localization was shown to occur for
a brane which cuts off the UV region of an anti-de Sitter spacetime; this
is known as the Randall-Sundrum II (RSII) braneworld scenario. In our
geometries, the brane cuts off the UV in an asymptotically AdS spacetime
(the AdS-Schwarzschild black hole). While this is globally different from
pure AdS, it is expected that for appropriate values of Laqs, g, and the
ETW brane trajectory, the physics should be sufficiently similar to the pure
AdS case that gravity localization still occurs and we still have an effec-
tive d-dimensional description. Since our brane worldvolume is that of a
cosmological FRW spacetime, our model would then provide a microscopic

description of d-dimensional braneworld cosmology.

Gravity localization in the Randall-Sundrum IT model

In this section, we will review the basic mechanism of gravity localization
(see [252] for a pedagogical introduction) and try to understand the re-
quirements on the parameters in our model in order that an effective lower-
dimensional description exists. In the Randall-Sundrum II model [72] we
have an infinite extra dimension, but the bulk metric (for d = 4) is now a

warped product of the form
ds? = d22 + e g, (v)datdz” | —00 < 2z < 00, (4.133)

with a 3-brane placed at z = 0 and Zs-symmetry imposed in this coordinate.
In the original RSII model, one has warp factor A(z) ~ |z|/¢; the bulk
spacetime is then simply a slice of AdSs which is cut off in the UV by a
3-brane (referred to as a UV or Planck brane), with Zs-symmetry imposed

about the brane. Tuning the brane tension against the bulk cosmological
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constant allows for a Poincaré-invariant brane metric g,,, () = 7,,. Randall
and Sundrum found that, within this set-up, one reproduces 4-dimensional
Einstein gravity on the brane for distances much larger than the AdS radius

Lgs; for example, the gravitational potential on the brane is [253]

GM 217
Vi)~ (1 + 37{*;5) . (4.134)
The reason for the localization is that the warp factor suppresses metric per-
turbations far from the brane, with L aqs the length scale on which this sup-
pression occurs. Formally, one considers separable metric perturbations of
the form h,, = €, (2)p(z*), with ¢(z#) an eigenstate of the 4-dimensional
wave operator [J4¢ = mZ¢; the linearized Einstein equations then reduce
to an analogue Schrodinger problem for 1(z), where the Schrodinger “en-
ergy” determines the particle mass in the four-dimensional description. The
analysis reveals a massless ‘zero mode’ wavefunction which localizes at the
brane and exactly reproduces the 4-dimensional Newtonian potential; the
continuum of massive Kaluza-Klein modes provide corrections, but they are
suppressed at the position of the brane due to a peak in the potential.

The localization phenomenon has been interpreted in the context of
AdS/CFT [73-76, 254-256], by the observation that the RSII model in a
(d 4 1)-dimensional AdS bulk (and its curved-brane descendents in (d + 1)-
dimensional AAdS spacetimes) should be equivalent to a d-dimensional CF'T

with some UV cutoff coupled to dynamical gravity on the branem

Locally localized gravity

Based on these results, it is natural to ask whether gravity localization ex-
tends to cases where we have an approximately AdS bulk cut off by a UV
brane which is approximately Minkowski. In fact, there are some complica-

tions; for example, as noted by Karch and Randall in [79], in the case of a

" This doesn’t provide a full microscopic description of the theory since the dynamical
gravity is added in “by hand” to the cutoff CFT. In contrast, the CFT in our discussion
corresponds to the asymptotic region on the far side of the black hole; this is an ordinary
CFT with no dynamical gravity and thus can provide a microscopic description.
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brane with AdS4 worldvolume in global AdSs, one no longer has a normal-
izable zero mode. This is because only part of the UV region of global AdS
is excised by the introduction of an AdS4 UV brane; a graviton at the brane
can still tunnel toward the true boundary of AdS, where the warp factor
blows up, so this geometry does not trap gravity at the brane. However,
Karch and Randall showed that if we are close enough to the Minkowski
situation, the time scale for this tunneling is long, so that four-dimensional
Einstein gravity still provides a good approximation over sufficiently short
time scales. This supports the more general idea that localization of grav-
ity should be a “local” phenomenon, which should not depend upon the

behaviour of the warp factor far from some region of interest.

Branes in AdS Schwarzschild

The question relevant for us is whether one retains gravity localization when
the bulk is modified through the introduction of a black hole, and the brane
worldvolume is allowed to be dynamical. The first question has been previ-
ously investigated [257-263]. Based on the work of Karch and Randall, one
expects that if the brane is taken far enough from the black hole horizon, so
that the nearby spacetime is approximately AdS, then the local character of
gravity localization should allow for effective Einstein gravity on the brane,
up to O(rg/rye) corrections (where 7, is the position of the brane). The
detailed analysis performed in [261, 262] for the case of an Einstein static
(ES) braneworld (with 7, = const) in AdS Schwarzschild supports this con-
clusion. Our FRW branes are not static, but we expect similar qualitative
behaviour during the period when the effective Hubble parameter is small
compared with the AdS scale H = 7/r < 1/Lags.

Implications for the constant-tension brane scenario

Let is now apply these constraints to the geometries arising in the simple
model with a constant tension ETW brane. We have seen that obtaining
an effective four-dimensional description requires 7, > rg and H < Lags.

In our set-up, the maximum proper radial size of the brane, in the case of
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2
critical tension T' = 1, is given for d = 4 by ro = rg,/1+ LZ—H; thus, in
AdS

order to have some regime for which r,. > rg, we must consider a large

black hole rg > Lags, and almost-critical tension T' =~ 1. The requirement
that H < Lags will be satisfied for most of the evolution as long as the
total proper time is large in AdS units. Again, this requires that T
is very close to 1.

Unfortunately, we recall that while the Lorentzian solutions for any value
T < 1 (and even larger values for d > 2) look physically reasonable, the
corresponding Euclidean solutions for d > 2 appear to make sense only for
T < T, < 1 since otherwise the ETW brane overlaps itself in the Euclidean
picture (see Figure . The requirement 7" < T, would rule out a viable
model with an effective four dimensional description since this required r <
1.2876 7. On the other hand, we had reason to question the validity of the
simple holographic treatment in these cases.

To summarize, in the simplest toy model for how to treat the BCFT
boundary conditions holographically, it does not seem possible to realize
microstates for which the effective description of the ETW brane physics
corresponds to a four-dimensional cosmology. However, it remains very in-
teresting to understand whether this scenario for cosmology can be realized
with more general effective actions that would correspond to a more com-

plete treatment of the holographic BCFT physics.

4.8 Discussion

In this final section, we discuss a few possible generalizations and future
directions.

For the specific examples in this chapter, we have mainly considered ge-
ometries obtained by assuming the very simple holographic ansatz for how
to model CFT boundary conditions holographically. In that model, the
ETW brane is filling in for some more detailed microscopic physics. This
could involve branes or orientifold planes of string/M-theory, or geometrical

features such as the degeneration of an internal manifold. Depending on the
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particular situation, a more realistic model might include additional terms
in the brane action or couplings to additional bulk fields. As a particular
example, scalar operators in a BCFT can have one-point functions growing
as 1/y?2 as the distance y to the boundary decreases. This would corre-
spond to having some extra scalar fields in the bulk, sourced by the ETW
brane[™| In our context, this would lead to matter outside the black hole
that falls into the horizon. Thus, the explicit geometries we have utilized
should be viewed as simple examples that may elucidate the basic physics of
more precise holographic duals for Euclidean-time-evolved boundary states.
It will be interesting to flesh out the AdS/CFT correspondence for BCFTs
more fully and explore the microstate geometries emerging from more gen-
eral bulk effective actions. It will also be interesting to understand better the
constraints on boundary conditions/boundary states for a given holographic
CFT that lead to a fully geometrical bulk description.

Within the context of any particular choice of bulk effective action (e.g.
the constant tension ETW brane model we used here), it is also interesting
to understand which parameter values can be realized in some microscopic
theory. For example, if there are microscopic models that realize (at least
approximately) the simple ansatz, which values of the parameter T' arise
from legitimate boundary conditions for a holographic CFT. For (1+1)-
dimensional CFTs, this is related to the question of which boundary en-
tropies are possible. Some constraints have been discussed previously [267],
but these do not apply for holographic models. An interesting result is that
for the monster CF'T, only positive values (or perhaps extremely small neg-
ative values) of In(g) (proportional to arctanh(7’) in the holographic case)
are allowed [268]. If this extended to holographic theories, it would imply
that only the case with an ETW brane behind the horizon is physical.

Another interesting generalization would be to consider states constructed
in a similar way, but with boundary conditions that do not preserve con-
formal invariance. For example, we can have boundary conditions that cor-

respond to boundary RG flows from one conformally invariant boundary

"Some particular top-down examples of complete geometries dual to supersymmetric
BCFT states have already been understood: see [264-266].
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condition to another. These may be represented by a more general class
of ETW brane actions, and give rise to a wider variety of geometries. Fi-
nally, we can consider similar constructions in holographic theories which
are not conformal, for example in holographic RG flow theories or in holo-
graphic theories derived from low-energy Dp-brane actions. For all these
cases, we expect that the basic idea of probing behind-the-horizon physics
via time-dependence of subsystem entanglement remains valid.

It would be very interesting to perform direct entanglement entropy cal-
culations for Euclidean-time-evolved boundary states in specific CFTs, to
see whether the results are qualitatively similar to those in our model calcu-
lation, and to generate microscopic examples of black hole microstates for
which we can learn about the behind-the-horizon physics directly. Naively,
this will be challenging in strongly coupled holographic CF'Ts, but perhaps
even calculations for tractable non-holographic theories (such as large ¢ sym-
metric orbifold CFTS)|E| will be enlightening. It may also be possible to per-
form direct calculations in holographic CF'Ts by assuming something about
the structure of holographic BCF'T correlators, similar to the calculations
in [269, 270].

Finally, with a larger toolbox for studying holographic duals of Euclidean-
time-evolved boundary states, it will be interesting to see if it is possible to
realize any examples where gravity is localized on the ETW brane, or more
generally, that the physics of the spacetime causally disconnected from the
asymptotic boundary is effectively described by four-dimensional cosmology.
This would be very interesting whether or not such a cosmology can be made
realistic, since there currently aren’t any known complete, non-perturbative
quantum descriptions of four-dimensional big bang cosmology, as far as we
are aware. In our case, the CFT and the specific microstate would provide
the complete description and allow (in principle) a calculation of the initial
conditions for cosmology that should be used as inputs for the effective field
theory description (also to be determined from the CFT /state) that would

be valid at intermediate times/"| Of course, these calculations would require

"5We thank Volker Schomerus for this suggestion.
"SIf our approach can be realized, it would be similar in some ways to the Hartle and
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a much better understanding of how black hole behind-the-horizon physics
is encoded in a CFT.

One of the major challenges in coming up with candidates for quantum
gravity theories capable of describing cosmology is that it is not even clear
what the very basic mathematical framework could be. Usual examples of
holography making use of conventional quantum systems describe space-
times with some fixed asymptotic behavior. This is normally assumed to
be incompatible with cosmological physics, so various qualitative ideas have
been put forward for how to come up with something more general (see
e.g. [43, 228, 231, 272-274] for a variety of perspectives). However, to date,
none of these has led to a complete model, or even a precise mathematical
structure that could generalize the usual state-in-a-Hilbert-space of ordi-
nary quantum mechanics. A likely possibility is that we have simply not yet
stumbled across the right idea. But it is worth considering the alternative,
that cosmology is somehow described by a conventional quantum system,
just like the rest of physics. If this quantum system is related to gravity in
the usual holographic way, we would need to understand how our cosmologi-
cal observations could be compatible with fixed asymptotic behavior for the
global spacetime. One of the most attractive features of our suggestion is
that it gives a possible way to realize this, and thus, to describe cosmology

with ordinary quantum mechanics.

Hawking’s 'no boundary’ approach to cosmology [271], except that our Euclidean path
integral is for a non-gravitational boundary theory, and the path integral itself is defined
using a boundary. So one might call it the “boundary-boundary-no-boundary” approach.
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Chapter 5

Bottom-Up Holographic
Models for Cosmology

5.1 Introduction

An important open question in theoretical physics is how to formulate a
non-perturbative quantum mechanical description of gravity in cosmological
backgrounds. Given the theoretical successes of the AdS/CFT correspon-
dence over the past two decades [29], an especially appealing prospect is the
possibility of embedding cosmological physics in AdS/CFT, though the via-
bility of this approach for “realistic” cosmologies remains unclear at present.
A number of differing holographic approaches to cosmology appear in the
literature; an incomplete catalogue of these includes [228, 230-233, 275].
The class of holographic models that we will be interested in here orig-
inated with [2], and has subsequently been further studied in [276-278]. In
the model considered in these papers, a Euclidean boundary conformal field
theory (BCFT) path integral is used to prepare a state of a holographic
CFT; via a simple effective or “bottom-up” model for AdS/BCFT intro-
duced in 78, 87, 88], this state is understood to correspond to an AdS black
hole terminating on an end-of-the-world (ETW) brane behind the horizon.
The worldvolume of this ETW brane is a recollapsing (negative cosmologi-
cal constant) FRW universe. Under appropriate conditions, when the ETW
brane propagates far outside the black hole horizon in the second asymptotic
region, the effective theory on the ETW brane would be expected to exhibit
gravity localization via the Karch/Randall/Sundrum mechanism [72, 79];

the upshot is that gravitational physics on a cosmological background is
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5.1. Introduction

encoded in a particular state, prepared by a Euclidean path integral, in a
holographic theory. See Figure for a visualization of this logic; references
[2, 277, 278] should be consulted for additional details.

The simple model analyzed in the references mentioned above has proven
interesting and suggestive, but not entirely satisfactory: the properties re-
quired for the solution to exhibit gravity localization cannot actually be
realized within the parameter space.m In particular, analytically continuing
the Lorentzian solutions where gravity localization is expected to Fuclidean
signature, we find that the corresponding Euclidean solutions involve self-
intersecting ETW branes, whose holographic interpretation is not clear; see
Figure [5.2,

An approach to circumventing this issue was proposed by Van Raams-
donk in [278]. It was suggested that the previous bottom-up models could be
modified by adding an additional “interface brane” separating two regions
of asymptotically AdS spacetime in the bulk, generally with differing AdS
lengths LSC)IS and Lf[)is, as shown in Figure A practical rationale for this
proposition is to avoid the self-intersection problem mentioned above, which
arises because the Euclidean gravity solutions require a periodically identi-
fied coordinate z ~ z 4+ 3 to avoid developing a singularity at the coordinate
horizon; in the case with both an ETW brane and an interface brane, the
region between these branes no longer includes a coordinate horizon, and
therefore need not have any periodically identified coordinate.

A somewhat more sophisticated motivation was also given in [278], mak-
ing use of an effect observed in [279]. To understand the second motivation,
one should note that, by performing a different analytic continuation of the
bulk Euclidean solutions with a single ETW brane, corresponding to Wick
rotating one of the transverse coordinates suppressed in Figures [5.1) [5.2]
and (which we assume to have R?~! planar symmetry for a (d + 1)-

dimensional bulk), one obtains a static Lorentzian solution with an ETW

""The exception to this point is [276], in which it was found that an ETW brane propa-
gating in a charged black hole background could enjoy the desired properties for cosmology.
It is not clear how to make sense of this set-up as an analytic continuation of Euclidean
AdS/CFT, since it appears that the gauge field component A° should be imaginary in the
FEuclidean signature solution.
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R L NN
ETW
Z ...".“\‘ "..,,.,.....
ETW| oo
.................. \/\/\/\/\/\/
Fuclidean Lorentzian

Figure 5.1: An approach to holographic cosmology proposed in [2]. We
begin on the left with a Euclidean BCFT path integral (bold black line),
with some choice of boundary condition imposed in the past and future
Euclidean time. The transverse directions suppressed in this figure could be
taken to have S¢ or R? symmetry, so that the Euclidean CFT path integral
is on a cylinder or a strip respectively. Cutting open this path integral at
the moment of time symmetry, we obtain some state |¥) of the holographic
CFT. In the bulk, we have a Euclidean asymptotically AdS spacetime (blue)
terminating on an ETW brane (red). We may then analytically continue to
Lorentzian time to obtain the leading geometry encoding the evolution of
|U), shown on the right. The ETW brane stays behind the horizon of an
AdS black hole; it is a “big bang/big crunch” cosmology (with spherical or
flat spatial sections). The construction is time-symmetric throughout, with
the moment of time symmetry illustrated as a dotted line. Here, 2z indicates
the Euclidean coordinate analytically continued to the Lorentzian time (.
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5.1. Introduction

Figure 5.2: Pathological Euclidean gravity solution with a self-intersecting
ETW brane (red). The trajectory of the ETW brane in the Euclidean
asymptotically AdS spacetime (blue) can be determined from the equations
of motion; the fact that this trajectory self-intersects arises from the coor-
dinate periodicity z ~ z + 8 which must be imposed to ensure smoothness
at the coordinate horizon (central dot).

Figure 5.3: Two putative bulk duals of holographic BCFT. Here, ETW
branes are shown in red, and interface branes in blue; the shaded region is
an asymptotically AdS Euclidean spacetime. The premise of this work is to
move from the model depicted on the left to that depicted on the right, i.e.
to introduce an additional interface brane.
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5.1. Introduction

brane whose worldvolume is an asymptotically AdS traversable wormhole;
see Figure Consequently, the effective description of the cosmology is
related by “double analytic continuation” to an effective theory involving a
cutoff CFT on a traversable wormhole background; from this perspective,
the non-existence of the solutions relevant for cosmology appears to be re-
lated to a no-go result for such traversable wormholes in the absence of large
amounts of negative energy [280]. However, in a simple bottom-up model
for the holographic dual of a conformal interface between two CFTs (also
shown in Figure [5.4)), the authors of [279] found that one could produce
an anomalously large negative Casimir energy in one of the two CFTs in
a particular critical limit of the tension of a bulk interface brane. From
this interface CFT starting point, the model that we are concerned with in
this chapter would correspond to “coupling one of the CFTs to gravity” by
introducing an ETW “Planck brane” in the bulk. In this case, one might

2

hope that a similar “negative energy enhancement” effect could allow for a
means of negating the hypotheses of the aforementioned no-go result.

The purpose of this work is to investigate this possibility, generalizing
the model of [2] by adding an interface brane. We begin by considering the
case where this interface brane is governed by a single tension parameter;
in this case, we argue that there are no consistent solutions in the region
of parameter space where we expect to recover gravity localization in the
cosmology, suggesting that this model has no significant advantage over
the previous model. In particular, putative solutions do not have an ETW
brane and an interface brane which join properly; for example, they may
instead intersect. We then generalize the model further by incorporating
Einstein-Hilbert terms on the ETW brane,@ arguing that solutions with the
desirable properties should exist in this case. We comment on the nature of
the relevant region of parameter space from the perspective of physics in the
effective theory on the ETW brane, but leave further commentary about the

physicality of this region, and an exploration of the parameter space more

"8This is referred to as a “DGP term” in [281], after an analogous construction by Dvali,
Gabadadze and Porrati [282], though of course the present model has an asymptotically
AdS bulk.
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| I

CFTs
CFT

|\ CFT, N

Figure 5.4: Holographic duals of (left) boundary CFT and (right) interface
CFT. The ETW brane is illustrated in red, and the interface brane in blue.
We can interpret these diagrams as either representing Euclidean spacetimes,
or the Lorentzian spacetimes obtained by Wick rotating a coordinate of one
of the transverse directions suppressed in Figures and which is
the vertical direction here. In Lorentzian signature, the intrinsic geometry
of the ETW /interface brane is a traversable asymptotically AdS wormhole.

broadly, to future work.

The outline of this chapter is as follows. In Section 5.2 we attempt to
briefly review the relevant results already appearing in the literature. We
follow this in Section [5.3 with an analysis of the model with an additional
interface brane of constant tension, and then further augment this model in
Section |5.4] with an Einstein-Hilbert term on the ETW brane. We briefly
conclude in Section [5.5

Note: As this work was nearing completion, we were alerted to the
existence of similar work by Seamus Fallows and Simon Ross [283]. These

authors graciously agreed to coordinate in submitting pre-prints.
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5.2. Review of bottom-up holographic solutions for boundary /interface CFT

5.2 Review of bottom-up holographic solutions
for boundary/interface CFT

To keep our presentation self-contained, we will review the relevant holo-
graphic models and solutions in this section, and briefly recapitulate some
important results in this and the following section. The models discussed in
this section follow a prescription for AdS/BCFT involving ETW /interface
branes which originated in [78, 87, 88], and the solutions we discuss in this
section appear in [2, 278, 279, 284]; the purpose of this section is to sum-

marize the pertinent information from the latter references, and to establish

notation. The gravity solutions discussed in Section [5.2.1| and [5.2.2] cor-

respond to those in the first and second panels of Figure [5.4] respectively:
they are Euclidean asymptotically AdS;11 spacetimes, with either an ETW

brane or an interface brane, and preserving a transverse R~ symmetry.

5.2.1 Solutions with an ETW brane

We begin by considering a class of models for the gravitational dual of a

holographic BCFT, determined by the Euclidean gravitational action

tt
S = Spuk + Sgl%wer

1
Shulk = ————— ditt R —2A
bulk 167G /M z/9 ( ) (5.1)
1
+— dyVh K ,
8T Ghulk /ETW Y
where we take the brane matter action to be’d)
1—d)A
sater = L— DA / d*yvh. 5.2
ETW 87Ghulk JETW Y (5:2)

™In this chapter, we use the symbols A and & for the ETW brane and interface brane
tensions respectively rather than T as in the previous chapter, in order to differentiate
between these two types of branes.
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5.2. Review of bottom-up holographic solutions for boundary /interface CFT

The cosmological constant A is related to the AdS length Lagg by

-1
A= 2D (5.3)
2LAdS

Here and throughout, we will take A to lie in the interval <0, ﬁ).

The bulk equation of motion is simply the Einstein equation with cos-
mological constant A; meanwhile, the ETW brane trajectory is given by the
equation of motion (see Appendix

Koy = Mg - (5.4)

In [2], Euclidean solutions with a S%~! spherical symmetry were consid-
ered; here, we will instead consider Euclidean solutions with a R%~! symme-
try, though the two cases are completely analogous. The appropriate bulk

ansatz is then the Fuclidean AdS soliton solution

2 2

d
o + Tdeudx“ , flr)= A H

2 _ g2 2 _ _
ds Aasf(r)dz" + 10 I rd—2

5 (5.5)
AdS
The radial coordinate r ranges from the coordinate horizon value ry =
(,uLidS)l/ ¢ to infinity. In order to avoid a conical singulariy, the z coordinate

must be taken to be periodic, with period@

. 47TLAdS

B (5.6)

drH

The ETW brane has trajectory z = 2TW(r) in this (Euclidean) back-
ground, determined by the equation of motion (see Appendix D.1))

dzETW 2 2272 1
( : > r (5.7)

dr - LZAde(T)Q f(r)—A2r2”°

80In the solutions of interest to us here, this coordinate horizon is kept in our solution,
rather than being excised by the ETW brane, so this periodicity must be enforced.
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In particular, the ETW brane attains a minimum radius at rgTW with

TH
Fog™) =206, gt = S 09
(1 —A LAdS)

We will also denote the z-coordinate distance traversed by the ETW brane

from its minimum radius to infinity by

%) dZETW
AZETW :/ dr . (5.9)
FETW dr
0
Despite the appearance that r(I;DTW can be made arbitrarily large by

sending A — L;(lis, one must recall that the z coordinate is periodic, and
such solutions have the ETW brane self-intersecting at finite r in the case
d > 2@ as shown in Figure This places an upper bound A < A\, (ry) on
allowed values of the tension parameter A with sensible Euclidean solutions.
Explicitly, this upper bound can be found by demanding 2AzFTW = 3, that

is, by enforcing

(5.10)

o0 A 1
8= 2/ dr ! .
5w Laas f(r) \/f(r) — A2r2
A maximal upper bound can be found from Apmax = max,, {\«(rm)}. For
example, we find
,’,ETW
e d=3: AnaxLags ~ 0.95635 and OriH < 2.2708

W

o d =4 AuaxLags ~ 0.79765 and "2

< 1.2876.

Lorentzian picture and cosmology

In the Lorentzian picture with z — ¢(, the ETW brane analytically continues
to a spatially flat FRW universe; it is worth noting a few features of the

intrinsic geometry of these solutions.

81For d = 2, the ETW brane always spans coordinate range 2Az5™W = g

limit can be realized.

, so the desired

229



5.2. Review of bottom-up holographic solutions for boundary /interface CFT

In terms of the proper time s on the brane defined by

o d¢\* 1 [dr\?
1= Ligsf <ds> _f<ds> ; (5.11)

the metric on the ETW brane is the FRW metric
dr\ 2
ds? = —ds* + r(s)*dz,dz" | <ds> =22 — f(r). (5.12)

Comparing to the usual Friedmann equation for a flat universe

1 (dr\? 87tGp
— - — 1
r2 <ds> 3 7 (5-13)

we infer that our cosmology is effectively sourced by a negative vacuum

energy
87mGpp 1
Ph o (1= N2L3) (5.14)
3 LAdS
and a “dark radiation” term
877Gprad 1%
. 1
3 rd (5.15)

We may also note that the total proper time elapsed on the brane is

finite, given by
g

That is, the spacetime is geodesically incomplete, beginning with a “big

Stot = 2 (516)

bang” and ending with a “big crunch”. We thus have that the model intro-
duced here necessarily describes a recollapsing FRW universe with radiation
and a negative cosmological constant.

It was suggested in [2] that locally localized gravity on the ETW brane
may be expected in a region which exhibits “quasistatic” cosmological evo-
lution, and for which the brane remains far outside of the bulk black hole

horizon

|H| < , >y, (5.17)

1
Lpas
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where H is the Hubble parameter. Note that we have for the Lorentzian

solution

272 7’?1 r 272 \—1/d
[H|Laas =/ —(1 = A*Ligs) + 5 i (1= NLigs) 5 (5.18)
so both conditions require AL — 1, and therefore lead to self-intersecting

solutions in Euclidean signature.

5.2.2 Solutions with an interface brane

Analogous to the boundary case in the previous subsection, one may consider
a class of models for the gravitational dual of holographic interface conformal
field theory (ICFT), determined by the Euclidean gravitational action

S = Sbulk + Smatter

interface

2
__1 3 d+1 _ oA
Sbulk = 167 Gpuik 4= / id v =2 (5:19)

1
[ ah i),
interface

871Gk

where we take the brane matter action to be

matter (1 — d)K‘ / d
! =" dyv/h . 5.20
interface ] WGbulk terface ( )
Here and in the following, the brackets represent the discontinuity [X] =
X1 — X across the interface brane separating regions M; and My. We are
also permitting two different cosmological constants A;, related to the AdS
lengths L; as in equation (5.3). Here,  lies within the interval

1 1

k€ (k—,ky) , K = I L,

L2 (5.21)
Ky = — + —. .

The bulk equations of motion are simply the Einstein equations with the

appropriate cosmological constants, while the interface brane trajectory is
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determined by the junction conditions (see Appendix D.1))
[hao) =0, [Kap] = Khap - (5.22)

We again assume the Euclidean solutions have a R?~! symmetry; the
bulk solutions therefore involve the gluing together of two pieces of the AdS

soliton geometry, described by the metric

2 m 7’1‘2 i
+ r; dl'#d.ﬁ(} s fz(’f’z) = ﬁ ~ Td=2 (523)
i r;

2
dr;

45" = Liflrdder + 705

where L; is the AdS radius related to the central charge of the i*® CFT (which
we call CFT;). One may choose coordinates so that the z* agree across
the interface joining these two regions; this is our rationale for neglecting a
subscript on these coordinates. We may also choose the radial coordinates so
that 71 = ro = r on the interface, so we will sometimes drop the subscript of
r; for quantities on the interface brane. The trajectory of the interface 21 (r)
in each region is determined by equations (4.1) - (4.4) of [279], which are
analogous to from the ETW brane case. These solutions are analyzed
extensively in [279, 284], and we will try to reiterate only the necessary
features.
It will be useful to introduce the parameters
- Lo e K— K_

e=—-. (5.24)

U= -, )
L1 H 1251 Ry — R—

The full interface solution is then completely specified by the parameters

(Llnul:ua 22 6).

Periodicity of z; coordinates in interface solutions

In contrast to the boundary case in the previous subsection, the coordinate
z; need only be taken periodic, with period 5; given by equation , if
the region M; includes the coordinate value r; = rg) = (,uiL?)l/ . if not,
then the z; coordinate need not be periodic, and in fact the region can be

“multiply wound” from the perspective of this naive periodicity.
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To clarify what we mean by “multiply wound”, we can first define the
quantity Az%nt to be equal to the z;-coordinate distance traversed by the
interface brane from its minimum radius r; to infinity; in equations, we may
define

) 0 dzint
Az = / dr; ——, (5.25)
pint d'l"i
where r%)“t is the minimum value of both the r; and r9 coordinates on the

int
interface brane, and d;;'i is given by the equation of motion (4.4) in [279).

Explicitly, one ﬁnd@

; 1 [~ dr 1 1
A — = (f = 4z ,
T e AV <2m<f 1= ) 2”)
AP (5.26)
— f1—k*r
‘/eff = fl - < 2 21 > )
KT

and an analogous expression for Azint.
Importantly, Az;nt can be either positive or negative, depending on the
data specifying our solution; the former case corresponds to a situation

where the i*

b gravity region contains the coordinate horizon, whereas the
latter case corresponds to a situation where it does not. See Figure for
an illustration of this.

One may then define the quantity R; = R;(u, i, e) to be the fraction of
the span of the asymptotic z; coordinate in the pure AdS soliton solution
(with period f;) that is covered by the patch associated with CFT; in the
interface solution. We then have two different cases:
2AzInt

i

. int int
o If AzI" is negative, then R; = 1 — % =1+ ZA%

7 7

o If Az is positive, then R; =

int

The multiply wound case corresponds to a situation where Az;™" is positive

(so that the coordinate horizon is not included), and we have R; > 1.

82The notation Veg is based on the analysis of [279], which reduces the dynamics of
the interface brane to that of a particle moving an an effective potential. We keep the
notation here for consistency.
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(3

Azt

Figure 5.5: (Left) In the case that Azi-nt < 0, the i*® gravity region includes
the horizon. (Right) In the case that Az > 0, the ith gravity region does
not include the horizon.

Throughout this work, as a matter of convention, we would like to choose
M to be the bulk region which excludes r = rg; in this case, Azilnt is
positive and Ry = QA/BZ:lm, while the similarly defined Azt
Ry =1+ 2A5Z;2nt. The condition for this to be the case can be readily derived
from checking the sign of the expression for Azit: one finds that the

condition is

is negative and

1
p< - K2L? (5.27)

which we will assume henceforth.

Negative energy enhancement: motivation

The above Euclidean interface solutions, analytically continued to Lorentzian
signature in one of the transverse planar directions, are anticipated to pro-
vide a simple holographic description of two CFTs on R?2! times an in-
terval of width w;, coupled at their endpoints via a conformal interface (see
the right panel of Figure . Due to the symmetries of this theory, the
energy-momentum tensor must take the form

R s L I N RS

d7
wy i
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where z is the CFT interval direction. Here, F; is a characteristic scale for

the vacuum state energy in CFT;. Following [279], one may then define
E; = (Fi/Fs)"/* (5.29)

to be the ratio of the scale of the energy density for CFT; on the strip
of width w; (in the interface case) to that of the same CFT on a periodic
direction of length 8 = w;. One expects that this quantity should be a

function of the dimensionless ratio

w9
==z 5.30
z wr ( )

of the widths for the two CFTs. It is useful to note that this ratio is given

in terms of bulk quantities by

v R332
Rif1

(5.31)

The authors of [279] observed that a particularly interesting regime in

the parameter space occurred for>|

‘xﬁxed, u<l, e— 0], (5.32)

where the requirement that x remains fixed can be understood as a particular
way of taking the limit g — 0, as we will see below. In this limit, F;
increases without bound, suggesting that CFT; can exhibit an arbitrarily
large negative Casimir energy provided that a family of interfaces realizing
this limit can be considered. Interestingly, this effect is only observed in
CFT; when u < 1, i.e. when the central charge of CFTs is smaller than
that of CF'T;. We will henceforth refer to the limit in as the “negative
energy enhancement” or NEE limit.

In the bulk, this effect can be attributed to the fact that © — 0 cor-

83We note that this limit eventually implies the condition (5.27), so we need not worry
about the latter being satisfied when we are interested in the limit. On the other hand, if
we are interested in fixed small e > 0, we should check that (5.27) is still satisfied.
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5.2. Review of bottom-up holographic solutions for boundary /interface CFT

responds to the limit in which the black hole mass associated to region 1
becomes much larger than that associated to region 2; this results directly
in a similar hierarchy for the energy density in the two CFT regions. We can
then think of the NEE limit as taking the lengths Ly, Ly to be held fixed (as
is natural since these correspond to the central charges of the two CFTs),
taking the black hole mass u; associated with region 1 to be much larger
than us, and adjusting the interface brane tension as e — 0 to maintain a
fixed value of z in the limit. This relies crucially on the possibility of having
a multiply wound region 1, since maintaining fixed x while §; — 0 requires
Ry — oo.

We may also observe that the limit e — 0 amounts to shifting the brane
out toward the asymptotic region associated to CF'T;. This can be seen by
noting that the Poincaré angle between the normal to the AdS boundary

and the brane in each region is given by [279)

1 1 L
01 = arcsin |- [ kL1 + — — 712 ex0 T ’
2 I€L1 I<;L2 2 (5 33)
0 in |2 (kLo + — — L2 )| 20T |
=arcsin |- ( k =z T
’ 2\ T KLy kI3 >

We will now provide some important technical details underlying the

above result.
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Negative energy enhancement: details

Since the NEE limit involves fixing u < 1, we will collect here some important expressions pertaining to this

regime. Defining

1 u?(1 - p)?
ag = =
2(1 —u+2eu)\/(1 — pu)? + duep(l — u + ue) + 2u(l + p)(1 — e)(1 + eu) — (1 +u)(1 + pu)
o =1 u(p —1)
"T 21— w)(1 = 2e) — 2¢%u
o — (1 —u)(1 - 2¢e) —2e%u
? Vel —e) (1 +eu)(l —u+eu)’
it was found in [279, that
By Loz g (o L oated ol e (21t (for u < 1) (5.34)
1 47Ta(1)/d d ay ap’ 4ad 2 u '

where O(+) is a step function and

_ [Ty (y —a)
Id(a,b,C)—/1 y e (y — )/ (y — 1)y + ¢)

. (5.35)
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Meanwhile, defining

1 (1-)?
a0 u? 2
(i—l—i—?e)\/(l—li) +‘f(%—1+e)+2(1+§)(1—e)(%+e)—(1+%) (1+ll

1 (1-4)
al_ﬁ(l—l) (L +2€) 4 2¢2
R (l—l) (%+2e)+2e2
Qg = )

Jel=e)(E+e) (A —1+¢)

one has

1 ay a1 G242
RQZ 12

1
_E@ 1\ e a0 182 ) +06 [H—(1+2eu)(2u—1—2eu) (foru<1).
Moreover, the minimum radius of the interface brane is

(r%)nt)d = o L3éyg (foru <1).

Assuming u < 1 and p < % (both of which are prerequisites for the NEE limit), it was found that

1—pu 1 u(p—1 1— 1
o — 041—>§(1”_u), g — — /0, (u<l,p<s,e—0)
A 1—pu . 1 p—1 A 1 /1 1
a0—>4eu’i2, aléﬂ—’ffu, G — 24/ . (u<l,p<y,e—0)

(5.36)

(5.37)

(5.38)
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Thus, defining

. 41/d/°° dy 4T ()T (5)
"Toar fy oy fyly—1)  Am T(i+3)

it was found that

2A2’1 ZO vV1—u 1
Ry = ~ <l,pu<—,e—0
1 51 6%75 (l—uu)l/d (U H w € )

2A2:2 1/d 2/d— IO V 1 —Uu
Ry =1+ ~ 1 — gty 21 u<l,p<=,e—0
2 3, H V2 (1 )7 ( H )
Moreover, in this limit, the minimum radius goes as
1/d 1/d

it (2) (L —up W (1—-up 1
~ = . <1 <—,e—0
A <4euu2 ) H ( de > (u S )

(5.39)

(5.40)

(5.41)
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5.3. Bottom-up model with constant tension branes

So far, we have been considering limits with a general fixed value of
w; eventually, we would like to instead consider the NEE limit in which
we instead fix . Indeed, it is clear from the expression for Rs that we
cannot consistently take © < 1 and p < % fixed and send e — 0; doing so
would result in a negative value of Ra, taking the result beyond its regime
of validity. It is therefore more convenient to express the results in terms of
the ratio x defined in , which is related to u(x) at leading order by

4

e2 u d
Hiw) = u? ((14—%)10@) ' (5.42)

The NEE limit properly involves fixing u < 1 and z, and sending e — 0,

which will also send i — 0 as a result of this equation. The authors of [279]
then found

1
——TVT—u and Ep~ — (NEE)  (5.43)
e2"d

B~ .
! 1+x

This limit is the most physical from the CFT perspective, since one would
typically like to keep the dimensions of the strip on which the CFTs are
defined fixed while varying a parameter related to properties of the conformal

interface.

5.3 Bottom-up model with constant tension

branes

In the previous section, we reviewed a model of holographic BCFT and
its application to cosmology, as well as a model for holographic interfaces
exhibiting an interesting “negative energy enhancement” effect in an appro-
priate limit. In this section, we would like to combine these two models,
considering a gravitational bulk with both an ETW brane and an interface
brane; see Figure 5.6l The motivation for this is to see whether, in this
augmented model, it is possible to obtain well-behaved Euclidean solutions,

without intersecting or self-intersecting branes, so that conditions analo-
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5.3. Bottom-up model with constant tension branes

ETW brane -

Interface brane

Interface brane

'''''
......

Figure 5.6: Two Euclidean AdS soliton regions of a holographic interface
solution. Here, z; is the angular direction and r; is the radial direction, with
¢ = 1 on the left and ¢ = 2 on the right; planar directions are suppressed.
In this figure, region 1 is “multiply wound” in the z; direction, while region
2 (which includes the horizon re = rp) is not.

gous to those of hold for the ETW brane cosmology arising in the
Lorentzian continuation.

We might expect that an effective description of the physics in this com-
bined model should involve a non-gravitational CF'T joined at an interface
to a CF'T coupled to gravity@ the background for the latter is the geom-
etry of the ETW brane in the bulk picture, which can be interpreted as a
traversable Wormhole@ It has been argued that large quantities of negative
null energy would be required to support such traversable wormholes [280];
as pointed out in [278], it is therefore natural to look for bulk solutions
with both an ETW brane and an interface brane in the critical interface
tension or NEE limit considered in the previous section. We will argue in

this section that it is not possible to find such solutions in that limit in

84This is the usual Karch/Randall/Sundrum mechanism [72]: given a holographic CFT,
we anticipate that introducing a “UV” or “Planck” brane in the bulk has the effect of
introducing a cutoff to the CFT and coupling to dynamical gravity. Here, we anticipate
that introducing an ETW brane in region 1 has this effect on CFT1, while region 2 is not
cut off and CFT; therefore does not couple to gravity directly. See [278] for a discussion
of this.

85We are here thinking about the Lorentzian picture where we Wick rotate one of the
" coordinates.
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5.3. Bottom-up model with constant tension branes

the present model, prompting a modification to the model explored in the
following section.

Before preceding to elucidate this result, it is worth taking a moment
to comment on the anticipated effect of adding an interface brane to our
model, beyond what we have already mentioned. Introducing this additional
ingredient into our model allows us to describe a larger class of holographic
duals of boundary states, with different boundary spectra, each of which
will give rise to different effective theories on the brane. The geometry
of the region between the interface and ETW branes is intimately related
to the physics of the BCFT boundary degrees of freedom, including the
number of these degrees of freedom; this can be understood as an example
of generalized wedge holography [285], where we have a bulk dual of a BCFT

[4

involving two “wedges” of AdS separated by an interface brane (see also [4]
for a microscopic version of this phenomenon). In particular, as in the
previous section, we are typically interested in the case v < 1, so that,
despite considering a BCFT with central charge ¢, we have a holographic
dual including a spacetime region which we expect to be described by a
CFT with larger central charge c; > co; this suggests that the corresponding
BCEFT is defined by permitting many degrees of freedom localized near the
boundary, and we anticipate that, as a result, the effective theory on the
brane will also have more degrees of freedom than the non-gravitating CFT
in the effective picture.

One could nominally be concerned that adding an interface brane could
disrupt the condition for gravity localization, namely an ETW brane far in
the UV; for example, one could worry that the interface brane may localize
gravity in this set-up. However, we do not expect that the interface brane
should interfere with the gravity localization condition, particularly in a re-
gion where the ETW brane is much further in the UV than the interface
brane. While it is true that interface branes can also exhibit gravity local-
ization (as in the original Randall-Sundrum II model [72]), we have in our
case a situation where the interface brane is not situated at a local maximum
of the warp factor, and we therefore do not expect it to support a localized

bound state of the (d+ 1)-dimensional graviton. Moreover, following the in-
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5.3. Bottom-up model with constant tension branes

tuition of [79], we can observe that the ETW brane localization phenomenon
should be a consequence of local physics, rather than depending on global
features of the bulk spacetime; provided we are interested in a region where
the ETW brane and interface brane are significantly separated, we should
be able to recover locally localized gravity. Just as in [79], we expect to find
a massive, normalizable Kaluza-Klein mode whose wavefunction localizes to
the ETW brane, but whose precise profile depends on the details of the IR

physics, including the location and geometry of the interface brane.

5.3.1 Non-existence of solutions

The Euclidean action for the theory considered in this section is obtained
by straightforwardly combining those for the two models considered in the
previous section, found in and , and is given in Appendix .
We assume without loss of generality that the ETW brane is added to region
1, so that in the effective description, CFT; is coupled to gravity via the
Randall/Sundrum mechanism while CFTy is not.

We again consider Euclidean solutions with R4~! symmetry (or R?=2!
symmetry upon Wick rotating one of the z# coordinates); these are again
pieces of the Euclidean AdS soliton geometry, which we will continue to
parametrize as in . The interface brane trajectory in the two regions is
given by the same equation of motion for zI"*(r) as in Section and Azint
still denotes the z;-coordinate distance traversed by the interface brane from
its minimum radius r; = 7' to infinity, as in ; ZETW (1) and AZFETW
are analogous quantities for the ETW brane, following the definitions in
and (5.9). We will assume z{™(ri™*) = 0 without loss of generality, a
choice for the zero of the coordinate z1; solutions where the ETW brane and

interface brane join properly at infinity must therefore have ziETW(rgTW)

0 by symmetry, so we will assume this in the following.
As in the previous section, we will be interested in the case that region

(1)

1 does not include the coordinate horizon r1 = 7, while region 2 does
include the coordinate horizon ro = Tg); this permits region 1 to be multiply

wound, which is what we expect to be required to obtain the negative energy
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5.3. Bottom-up model with constant tension branes

enhancement effect in CF'T;. Recall that this implies Az; > 0, and therefore
R = 282, > 0.
1

Conditions for existence of solutions

It is clear that solutions of the desired type, parametrized by (L1, p1, u, i, €)
and the ETW brane tension A (and with 2% (rint) = ;FTWETW) — ¢
as mentioned above), will exist if and only if the following conditions are
satisfied:

1. Ra(u,p,e)>0;
2. Azt = ALFTW .
3. rFTW S pltand |20 ()| > |2ETW (ry)] for all 7 > r§TW.

The first condition ensures that the interface solution on its own would
be Well—deﬁned@ (the width of CFT3 is non-negative), the second that the
ETW brane and interface brane join properly (they subtend the same z;-
coordinate length), and the third that the ETW brane always sits at a larger
value of the radial coordinate than the interface brane in region 1.

In particular, to demonstrate the non-existence of solutions for a given
set of parameters (L1, uu1, u, i, €) and any A, it is sufficient to show that one

of the following two conditions is not satisfied:
(C1) Ra(u,p,e) >0
(C2) For A = \g with \g defined by fi(ri’*) = A\3(ri**)2, one has

AZPTW

The latter condition requires a brief explanation. Here, A\g is the value
of the ETW brane tension A for which the minimum radius r§™"W of the
ETW brane would coincide with that of the interface brane, r%)m. We know

from 1) that TSDTW monotonically increases over (rg) ,00) as a function of

86The requirement R; > 0 is already enforced by our assumption Az; > 0.
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5.3. Bottom-up model with constant tension branes

AL; € (0,1), and as shown in Appendix we have AzPTW monotonically
increasing from zero to infinity over the same range of ETW brane tensions.
Consequently, condition (C2) above is equivalent to the existence of a tension
AL; € (AoL1,1) such that

rgTW > it AZETW = A0t (5.45)

In the following, we will show that these two conditions cannot simulta-
neously be satisfied in the NEE limit.

No solutions in the NEE limit

We can begin by determining when (C2) can be satisfied. Recalling the
limiting behaviour of (5.40) and (/5.41))

(1) 1/d
~ 2Ly I 1-— . 1_
a2 o on e O )
dry’ e2”d (1 — pu) (4e)
we have from the definition of Ag
1 2e
MN=—|1—-——— O(e?) . 5.47
o=, (1 ) o (547
In the limit e — 0,
1 1
2rL 1-— 274
AZFTW(\ = )g) ~ T2 e To, (5.48)
dry e
H

and thus

ETW y _ —
Az T(A=Ao) Lo (5.49)
Az‘lnt 1—u

Assuming fixed v < 1, we thus have two possibilities. If y < 1, then
this quantity will be greater than one, so that (C2) is not satisfied in the
limit, while if 1 < p < %, then this quantity will be less than one, so (C2) is

satisfied and a solution may exist.
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On the other hand, we have already seen in (5.40) that

Ry~ 1— M1/du2/d71 110 V1-—u

65_5 (1- N“)l/d ;

(5.50)

for fixed u < 1, we see that requiring R > 0 in the e — 0 limit requires
@ — 0. Thus, the condition p — 0 imposed by (C1) is inconsistent with
p > 1 imposed by (C2).

Solutions for v < 1

While we have shown that it is not possible to obtain solutions with an
ETW brane and an interface brane that join properly in the NEE limit,
it is certainly the case that well-behaved solutions exist elsewhere in the
parameter space. The reason that we are not concerned with these solutions
here is that they are not expected to be relevant for cosmology, on the basis of
arguments we have previously mentioned regarding the effective description
of the bulk physics of this model; without the NEE limit, we expect the
background for the gravitational CFT to have a 4D curvature scale L4 of
order Lpianck (the cutoff scale for the gravitational CFT) rather than some
hierarchically larger length scale@ Nonetheless, we briefly comment here
about the larger parameter space.

A convenient feature for an investigation of this parameter space is that
both conditions (C1) and (C2) can be expressed in terms of inequalities
which depend only on the parameters (u, i, ). From , we recall that,

87 As observed in equation (4.10) of [278], the boundary central charge csp = L3/G4
in our set-up, which is the bulk description of a holographic BCFT, is equal (up to O(1)
factors) to the coefficient F' of the energy density for the gravitational CFT in an expression
analogous to , i.e. in Too ~ F/w". One would expect that the typical value for F is
roughly equal to the number of degrees of freedom in the gravitational CFT, which is not
expected to be large in general, implying that we should generically expect La ~ Lpianck
unless we consider something like the NEE limit. We thank Mark Van Raamsdonk for
emphasizing this point.
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if u < 1, the first condition yields the inequality

11 1 Gao a; 1 afas
R =R (—,—e)=1-——2T >0 <1).
2(“’7”76) 1 <u7,u76> An dé/d d <a0 aO 40(0 (’U, )

(5.51)
On the other hand, recalling from (5.38)) that
int\d
0" _ tae (w<1), (5.52)

i L2

and from (5.8) that

/fl ETW 1L2 1L2 1/d
ETW 1— L2)\2 ’

(5.53)
we see that when the tension takes the value \g for which ’I“ETW rf)nt =79,
we have

ETW T)\O 1

- L1f1 fi(r) — r2\3 (5.54)

Ll \/ /LuQééo -1 1 '

= Zi|0,—5—.0]) .
drg pu?dg
We therefore have
A A=A 1/d Z4(0, 34, 0)
A=) g () g 1
Zint Hu=Qg asTy (4’ 0%07 410%2)

(5.55)

It follows that we can express the conditions introduced above as

(C1) 1 - & ST, (2,4,55) >0

&0’ &0’ 442

1/d
— 2A0 — a1}
These expressions are a convenient reformulation of (C1) and (C2) for the
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purposes of verifying their compatibility within the parameter space.

As a preliminary for determining where such well-behaved solutions
could exist in the parameter space, our goal in the remainder of this section
will be to indicate a portion of the parameter space where these solutions

cannot occur. We will restrict our attention to the region satisfying:
oy <1

o i< mm{u, = 2L%};
however, one could ultimately explore the parameter space more broadly.

We note that, together, these conditions imply 0 < e < % We therefore

assume here that

1 (11 )
O<u<l, O<e<g, p<min{> —(1-(-u+2en)?)}|.
(5.56)

We will denote
1 éo a1 1 alal
Cl(“n“’a ) 47_[_ Al/dI ()A A0 )

1/d Id( )
CZ(UHU’J 6) = _2 (O;O"> V ,U’u2d0 - ]- Nu210‘0 O[2@2 i
pusao a21-d (Oco’ ao’ 41(1 2)

(5.57)

so that the condition (C;) corresponds to the inequality c¢;(u, u,e) < 1.

We observe (but will not attempt to prove here) that, for fixed (e, u),
the function ¢ (u, u, €) is monotonically decreasing in u, while co(u, p, €) is
monotonically increasing in p. Assuming that this is true, then a pair of
parameters (u, e) may be ruled out, meaning that they do not permit a well-
behaved solution, if the solution u = pg to the equation ¢q (u, p, e) = 1 (which
we may obtain numerically) yields ca(u, po, €) > 1. Using this approach, we
construct the plot shown in Figure The shaded portion of the plot
corresponds to a region of the parameter space which has been ruled out,
meaning that it does not contain any well-behaved solutions; the unshaded
portion may or may not contain solutions (further investigation would be

needed to determine this). This plot already confirms the conclusion of
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U

Figure 5.7: Plot of “ruled out” region of the (u,e)-plane. Here, the region
shaded in red is part of the parameter space where we do not expect solutions
to occur, as conditions (C1) and (C2) cannot be simultaneously satisfied.
The remaining unshaded region in the upper right corner may or may not
have solutions (our procedure for ruling out regions of the parameter space
was not exhaustive).

Section that solutions cannot exist in the NEE limit, which requires
e — 0 for fixed u < 1.

5.4 Bottom-up model with Einstein-Hilbert term
on the ETW brane

We will now consider a generalization of the model considered above, where
an Einstein-Hilbert term is added to the ETW branef’ig] In particular, we

modify the ETW brane contribution to the action of the previous section to

88We do not add an Einstein-Hilbert term to the interface brane, as this complicates
the analysis, though we provide the relevant equations in Appendix
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become

1
Sprw = ——~—— d*yvh R + SE 5.58
ETW 167Grrw Jerw Y ETW ( )

where the matter contributions are from constant tension terms as before,
and where we will introduce the constant ~ defined by

1 7 (5.59)

Gerw  Ghoulk

Again, for the solutions with the desired symmetry, the bulk consists of two
AdS soliton regions; the equations of motion for the ETW brane can be
found in Appendix

While there may be various constraints on the model parameters, includ-
ing «, required to ensure that the bulk theory is a reasonable holographic
dual of a BCFT, a good starting point is to consider those theories for which
the corresponding effective theory enjoys a positive-sign Einstein-Hilbert
term. Ideally, one will also have a suppression of the higher curvature terms
in the effective theory. We should therefore clarify the action for the effective
theories describing the physics of the above models. We can do so following
the general recipe outlined in [281].

As derived in [286] (see also [281]), the contribution induced by integrat-
ing the bulk action (including the Gibbons-Hawking-York term) on-shell is

given by
1 2(d —1) Ly
induced = dd —h @
Sinduced = J6 o / oy oL Ta-oh
(5.60)
SR S 0 S A
(d—4)(d—2)2 \" Ad—1)

Higher order terms would be expected to depend in detail on the IR physics,
including the dynamics of the interface brane. In fact, we are interested in
the case d = 4, so the last term shown will be modified; we anticipate
that the numerical coefficient will be replaced by an order one number, and

an additional “non-local” term of the schematic form “R2L3In(RL3)” will
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occur. The full effective action, including the terms from Sgrw, is therefore

1
167 Ghuk

1 Ly <(d_2)7+1)R(d)+.._

Seff

/dd:c\/fhle_l) (1—\Ly)
1

(5.61)

d—2) ' L

Canonically normalizing the Einstein-Hilbert term, we should define an

effective Newton constant

1 1 L [(d-2)n )
- 1), 5.62
Get  Gouk (d —2) < Ly (5:62)

obtaining

R@

1 d
_ V=
Set 167G /d .

L 2d=1)(d~2) (1= ALy)
o2 Wyt

(5.63)

In particular, the cosmological constant for the effective theory is then

2(d—1)(d—2) (1—ALy)
L2 (d-2)7+17

2A = — (5.64)

and we must also scale the higher order terms suitably, by replacing Gyux —
d—2
Geff(d[fQ) (( Ll)’Y + 1)
As in the previous section, we would now like to establish the existence

of solutions with non-intersecting branes in the NEE limit. We begin by con-
sidering the special case of a trivial interface, before permitting an interface

with non-zero tension.
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5.4.1 Trivial interface

We will begin by considering the case with only an ETW brane and no
interface brane | In this case, we must demand the z coordinate to have
the appropriate periodicity 5. While one might hope that the addition of
an extra parameter as compared to the model of Section could permit
solutions with the property T(I)ETW/ rg > 1, we will see that this does not
occur.

We will be interested in the limit where LA — 1, which we recognize
as the critical tension limit where r§TW — oo due to (note that the
expression for TETW in terms of \ is unchanged from the pure tension case);

to investigate this limit, we will consider the tension
AL=1—c¢ (5.65)

with € > 0 small. At leading order, we find

+1, (5.66)

9\ LETW 9\ 1/2-1/d d—29

A 7, (d—2)y
I5) € L
taking all parameters other than € to be fixed. To avoid self-intersections,
this ratio should be smaller than one; this would appear to be possible

provided that we take v — —ﬁ sufficiently quickly, namely

[
L

+ 1‘ = O(e!2/dy (5.67)

In particular, we should saturate these asymptotics to avoid sending AzFTW /3
to zero.

Note that, in this case, the cosmological constant for the effective the-
ory will be vanishing in the limit, while our expectation is that the
coefficients for the higher curvature terms will blow up, due to the rescal-

ing of coefficients required to obtain the canonically normalized effective

89We are free to drop the subscript on bulk quantities in this subsection, since we have
a single region of the AdS soliton.
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action. We are most interested in an effective theory where the higher cur-
vature terms remain under control, so the trivial interface does not appear

desirable for our purposes.

5.4.2 Non-zero tension interface

We would now like to consider the case where we restore the interface, but
leave the interface brane action as a pure tension term, and take the NEE

limit. To this end, we again consider near-critical ETW brane tension

ALy =1—c¢, (5.68)

2e

= to ensure

with e > 0 small. Note that we require (at leading order) € <
that the minimum ETW brane radius is larger than that of the interface
brane, using the expression for rgTW and for r(i)“t in the NEE
limit. We then obtain

ol ) 1/2—-1/d _9
AETW T (2 T JU=27 4 g (5.69)
drg) € Ly

and thus

ATV (2 ey \/m @20, (5.70)
Azint 1—pue 1—u Ly ' '

Since we would like to require that this approaches one in the limit, and we

have in the limit

2 \V2 Ve T
- 1 .71
(1—,uue> —u (5.71)

we see that this is still a requirement that v be negative in the limit; however,

it is less stringent than in the case of a trivial interface. In particular, if we

take € to scale proportionally to e (while keeping € < 1_2‘;u throughout), and

recall that p — 0 is required to ensure Ra(u, u,e) > 0, then we see that this

bound always requires % 4+ 1 to approach a positive constant, rather
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than zero, in the limit.

QLCU with fixed 0 < ¢ < 1, then we require

Specifically, if we take € ~ =

lim, ((dglz” + 1> =71~ ) . (5.72)

In particular, we see that the limiting value of « lies within the range

IR Gt (5.73)
Ly

The fact that the quantity appearing in , which appeared as a
scaling factor in the denominator of terms in the properly normalized effec-
tive action , is now a positive constant in the limit implies that the
coefficients for the higher curvature terms will remain finite. Consequently,
for a weakly curved ETW brane, it seems plausible that the physics should
be well-described by pure Einstein gravity with small corrections. The cos-
mological constant for the effective theory again vanishes in the limit. We
expect that the curvature length scale of the ETW brane should become
parametrically larger than the (d + 1)-dimensional AdS scale in the limit,
with the ratio diverging in the strict limit.

Here we have shown that it is possible to indicate a limit for which one
can obtain a solution with properly joining branes, for which the minimum
radius of the ETW brane is larger than that of the interface brane. This
limit can be interpreted as taking the NEE limit while tuning the ETW
brane tension so that the brane propagates close to the asymptotic AdS
boundary, and tuning the Einstein-Hilbert or DGP term so that the ETW

and interface branes join properly; it is given by

Ly

d—2
pw—0,e—0,1—A\L; ~ 2ec, <()7+1> ~ T — )| (5.74)

where we keep 0 < u < 1 and 0 < ¢ < 1 fixed. Here, one must take ;1 to
simply vanish sufficiently quickly so that Rg remains positive in the limit,
meaning that p = O(egfl). Note that we have yet to establish that the
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ETW brane stays outside of the interface brane, i.e. that the branes do not
intersect, in order to verify that the desired solutions indeed exist. We verify
this property in Appendix

We note in passing that, for the limit considered here, the coupling for

the Einstein-Hilbert term in the action for the effective theory satisfies

1 0172/d Li— Lo
167Geg  167GHuk (d—2) ’

(5.75)

so the effective coupling in the limit is controlled by the positive difference

between the central charges of the two CFTs.

5.5 Conclusions

In this work, we have pursued the suggestion of [278] that adding an in-
terface brane to the existing bottom-up holographic models in [2, 277, 278]
could permit solutions capable of realizing localized gravity on an ETW
brane via the Karch/Randall/Sundrum mechanism, making such solutions
“cosmologically viable”. We provide evidence to affirm this suggestion, with
an important caveat: one also needs to include additional local geometri-
cal terms in the ETW brane action, such as an Einstein-Hilbert term. In
particular, just adding a constant tension interface brane (with no Einstein-
Hilbert term on the ETW brane) was not sufficient, and just adding an
Einstein-Hilbert term to the ETW brane (with no interface brane) was also
not sufficient.

With both ingredients, we found that solutions appear in the region of
parameter space, the “NEE limit”, associated with cosmologically viable
solutions; this represents an important proof-of-concept for these models.
Solutions in this limit require a “wrong sign” Einstein-Hilbert term on the
ETW brane, as indicated in (5.74) and , but correspond to a “cor-
rect sign” Einstein-Hilbert term in the action describing the physics of the

effective theory. While the latter is the most important criterion for ensur-

9In particular, we verify that it holds for d > 4, including the case d = 4 we are
especially interested in.
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ing a physically reasonable model (given that the effective theory is where
the cosmology lives), one may still wonder whether there may be other im-
portant constraints on the parameters involved in this model arising from
the requirement that the bulk physics represents a valid holographic dual
of a BCFT. Indeed, it has been suggested that such negative values of the
“DGP coupling” parameter may be problematic for holographic models of
this type; for example, it was noted in Appendix B of [281] that such models
may permit the formation of “Ryu-Takayanagi bubbles” on the brane whose
associated generalized entropy may be negative, an evident pathology@ We
leave the interesting question of better understanding these possible addi-

tional constraints to future work.

91We thank Dominik Neuenfeld for emphasizing this and related points.
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Chapter 6

Finding AdS; x S° in
(241)-Dimensional
Superconformal Field Theory
Physics

6.1 Introduction

End-of-the-world (ETW) branes arise in many applications of string theory,
from model building, to cosmology”?| [2, 276-278], to recent studies of black
hole evaporation [5, 281, 287-291].

A particularly interesting case occurs when an ETW brane cuts off the
asymptotic region of an asymptotically AdS spacetime [72]. In this case,
gravity can localize on the ETW brane such that over a significant range
of scales, gravity on the brane appears to be four-dimensional. Such ETW
branes can have a microscopic description when the brane intersects the
asymptotic boundary of AdS. As explained by Karch and Randall 78, 79]
(see also [87]), in this case the full system can be dual to a boundary con-
formal field theory (BCFT). The localization of gravity can arise in the
situation where there are many more boundary degrees of freedom than
bulk degrees of freedom.

Often, such ETW branes are considered in bottom-up models where the
brane is described as a codimension-one boundary hypersurface with some

simple action. In this case, gravity localization can occur when this brane

92Gee [77] for a review of braneworld cosmology.
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Figure 6.1: Schematic of geometries dual to N' = 4 SYM theory on half
of RY3 coupled to a 3D SCFT at the boundary. The geometry contains a
region that approximates a range © € (6, 7/2) of Poincaré AdSs x S°, and
an end-of-the-world brane region where the S° smoothly degenerates. When
the 3D boundary SCFT has many more local degrees of freedom than the
N = 4 theory, the internal space typically grows to a large volume before
pinching off.

intersects the boundary at a large angle, so that it removes a region O <
O, = —m/2 4 € of AdS, where O is the polar angle in Poincaré coordinates
formed by the radial direction and the field theory direction perpendicular
to the CFT boundary. The limit ¢ — 0 corresponds to the tension of the
brane increasing to a critical value.

There are also fully microscopic models which realize ETW brane physics,
e.g. [174,175]. In these cases, the ETW brane often corresponds to a re-
gion of a higher-dimensional geometry where the internal space degenerates
smoothly. In [292], examples were provided of such microscopic models
where gravity is localized to the ETW brane. In this chapter, we further
study these models, showing that the bulk geometry away from the ETW
brane can include a region © > 0, = —7/2 + € of Poincaré AdS with arbi-
trarily small e. That is, we can push the ETW brane arbitrarily far towards
the missing asymptotic boundary.

We further show that there exist solutions with two ETW branes such
that the dual contains a region well-approximated by the —7/2 4+ ¢ < © <
m/2 — € wedge of AdS, again with arbitrarily small e.

In the first case, we conclude that the physics of the missing half of the
bulk CFT can be reproduced by a set of boundary degrees of freedom. In

the second case, the physics of a higher-dimensional CFT can be reproduced
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by a carefully chosen lower dimensional theory. This is reminiscent of the

“deconstructing dimensions” story [293].

The microscopic set-up

In the microscopic set-ups we consider, the BCFT is U(N) N = 4 super-
symmetric Yang-Mills theory on R%? x RT with boundary physics preserv-
ing half supersymmetry and an OSp(4|4) superconformal symmetry. This
boundary physics can generally be understood as a set of boundary degrees
of freedom coupled to the N/ = 4 fields in some way. These theories arise
in string theory from the low-energy limit of D3-branes ending on stacks
of D5-branes and NS5-branes, with additional D3-branes stretched between
the five-branes. In many cases, the boundary physics can be considered in-
dependently and describes a three-dimensional superconformal theory with
OSp(4]4) symmetry.

The vacuum states of these field theories on a half-space are dual to
known solutions of type IIB supergravity. These solutions have an asymp-
totically AdSs x S° asymptotic region whose boundary geometry is half of
R'3. The full geometry has a part that is well approximated by a portion
© > O, of Poincaré AdSs x S°, where © € (—m/2,7/2) is the angle in
Poincaré coordinates that labels different AdSy slices and © = /2 corre-
sponds to the asymptotic region that is present.@ The remaining part of
the geometry can be understood as a geometrical “end-of-the-world brane”:
this is a region of the ten-dimensional geometry where the internal space
smoothly degenerates, so that we have a spacetime boundary from the five-
dimensional point of view. This ETW brane emerges from the CFT bound-
ary where the SCFT lives. Such geometries are illustrated schematically in
Figure 6.1}

For a fixed set of parameters in the N' = 4 theory, different choices of the
boundary physics (i.e. the choice of 3D SCFT and how this is coupled to
the A/ = 4 theory) give supergravity solutions with the same asymptotically

9Here, we assume that ©. is the smallest such angle for which this is true, given some
criterion for how closely the geometry should match AdSs x S5.
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AdSs x S® region but a different behavior for the ETW brane, and in par-
ticular, a different brane angle ©,. The main goal of this chapter is to show
that by choosing the boundary physics appropriately, we can find examples
with ©, arbitrarily close to —m /2. In other words, with the right choice of
boundary degrees of freedom, we can, to an arbitrarily good approximation,
reproduce the physics of the missing half of the N = 4 theory.

At the level of type IIB supergravity, it is trivial to exhibit families of
such solutions that recover all of Poincaré AdSs x S° in a limit. However,
the flux quantization conditions of the full type IIB string theory imply
that the parameters present in the supergravity solutions cannot be varied
continuously, but instead correspond to discrete solutions of a family of non-
linear equations. These parameters correspond to the discrete data used to
specify the choice of boundary SCFT to which we couple the N' = 4 theory.
The non-linear constraints on the supergravity parameters are complicated
enough that it is not possible to find a general solution analytically. Never-
theless, we are able to exhibit the existence of sequences of such solutions
with the behavior that ©, — —m/2.

On the field theory side, the theories that give O, ~ —7/2 correspond
to boundary theories with many degrees of freedom. These arise from string
theory brane constructions where we have D3-branes ending on stacks of
D5-branes and NS5-branes where both Nps and Nygs are taken large. The
SCFTs describing these boundary degrees of freedom correspond to the IR
limit of quiver gauge theories where the quiver generally has many nodes;

we provide some explicit examples below.

Three-dimensional duals to arbitrarily large wedges of AdS; x S°

For a give choice of boundary physics, we can also consider introducing a
second boundary with the same physics (arising from an equivalent config-
uration of branes) so that supersymmetry is preserved. This theory, now
on a strip, will flow to some SCFT in the infrared. The gravity dual for
this theory will correspond to a wedge —|0.| < © < |0,] of AdS; x S° with

ETW branes on either side. Such solutions were considered in [294] and pro-
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vide a microscopic example of the “wedge holography” discussed in [285].
Our results in this chapter show that the wedge can actually be arbitrarily
large, i.e. with an angle that is arbitrarily close to w. Thus, we can have
a (2 4+ 1)-dimensional theory whose dual geometry contains an arbitrarily
large wedge of AdS5 x S°.

End-of-the-world brane geometries

The ETW branes in these constructions have a ten-dimensional geometry
that was compared by Bachas and Lavdas [292] to a bagpipe. Here, the
“bag” is a small perturbation to the AdSs; x Mg geometry dual to the de-
coupled 3D SCFT, where Mg is a compact internal space. When the SCF'T
is coupled to the higher-dimensional N' = 4 SYM theory, the previously
compact internal space Mg is perturbed to include a narrow semi-infinite
“pipe” with the geometry of S times a non-compact direction [292]. The
perturbation is small since the N' = 4 theory has many fewer local degrees
of freedom than the SCFT.

The curvature scale of the internal space Mg is generally of the same
order of magnitude as the scale Lgﬁs describing the non-compact AdSy
geometry of the ETW brane, and these are both much larger than the AdSs
scale Lf()is. The lack of scale separation between the AdS4 scale and the
curvature radius of the Mg has been noted in the past [292, 295]; we provide
a direct argument for it in Appendix

Outline

In the remainder of the chapter, we review in Section the field theories
that we consider and their gravity duals in type IIB supergravity. In Section
6.3, we derive conditions on the parameters describing the boundary SCF'T
such that the dual theories include a region that is well-approximated by a
region © > —7/2 + € of AdS5 x S® to an accuracy 6. In Sections and
m we find explicit examples of sequences of theories (with fixed gyn and
N for the NV = 4 theory) that satisfy our conditions with parameters e and
d both approaching zero. In Section 6.6, we describe 3D SCFTs whose duals
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include arbitrarily large wedges of AdSs x S° (|©] < 7/2 — € with arbitrarily
small €). We end with a brief discussion in Section

6.2 Background

The field theories we consider and the corresponding supergravity solutions
were reviewed in detail in Sections and [3.3. We refer the reader to those
sections, or to the earlier references [89, 90] for a discussion of theories with
half-maximal supersymmetry N’ = 4 on a half-space and [172-175] for a
discussion of the supergravity solutions. Here, we summarize only the basic
information that we will use.

The set of supergravity solutions that we discuss take the form of AdSy x
S? x 52 fibred over a two-dimensional space ¥ that we can take to be the

positive quadrant of a plane. Explicitly, the metric takes the form
ds® = fidsiqs, + flzds?g% + fgds?gg + 4p%(dr® 4 r2d6?) , (6.1)

where 6 € [0,7/2] and ds3 4g, and ds%f are metrics for AdSy and two-spheres
with unit radius. Here, f; and p are functions of r and 6 which are given
explicitly in terms of a pair of harmonic functions hi, ho on 3.

The general expressions for the harmonic functions corresponding to
vacua of N'=4 SYM on a half space with various choices for the boundary

physics are given as

hlzwﬁgrc056+€§zmln<(rcos0+l,4)z+rzs%n26>
2 /g 4 \/g (rcosf —14)% + r?sin” 6
62
hy = %\/@“ sin 0 (6.2)

2 r2cos? 0 + (rsinf + kp)?
=N\ g \
+ 1 zB: BYVgIn <r2c0829+ (rsin9—k‘B)2>

Here, the sets {l4} and {kp} represent the locations of poles on the z-axis
and y-axis respectively. These correspond to throats in the ETW brane

region of the geometry that are sources of D5-brane flux and NS5-brane
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flux respectively. The parameters c4 and dp control the amount of D5 and
NS5-brane flux emerging from these throats.

In string theory, the five-brane flux is quantized; this gives the constraints
that

1
NV =—cieNt, N =gz eNt. (6.3)

V9

The throats also have D3-brane flux, and there are additional constraints

related to the quantization of this. These are

2 l
Nfs = \/§ZA+; ZN](V?5arctank—A €Nt

B=1 B

1 9 " 1 (6.4)
7B B A B

Npg = ﬁ + WAE_lNDE) arctana e Nt.

Here, the integer parameters N ’33 and N 53 can roughly be thought of as
the number of units of D3-brane charge per D5-brane associated with the
14 throat or NS5-brane associated with the kp throat respectively.

The parameters (N 1(3’?, N J(V]?E’, N gg, N 53) are directly related to the pa-
rameters specifying the field theory. The connection is described most easily
by referring to the string theory brane constructions from which the field

theory arises. It is convenient to define

(Li) = (Np3 with multiplicity N7s)
(K;) = (NB, with multiplicity N5s) ,

where both sets are ordered from left to right. Then, in the set-up of Figure
K; is the net number of D3-branes ending from the right on the i*®
NS5-brane plus the number of D5-branes to the left of this NS5-brane, and
L; is the net number of D3-branes ending from the right on the i** D5-brane
plus the number of NS5-branes to the left of this D5-brane/”|

941t is sometimes convenient to order the 5-branes such that all NS5-branes occur to
the left of all D5-branes; in this case, L; is the net number of D3-branes ending on the
i*" D5-brane plus the total number of NS5-branes, while K; is simply the net number of
D3-branes ending on the i NS5-brane.
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~ AT T
e

/

Figure 6.2: Cartoon of D-brane configuration giving rise to a supersymmetric
boundary condition of N' = 4 SYM; here, D3-branes are black, D5-branes
are blue, and NS5-branes are red. This configuration corresponds to linking
numbers L = (1,3,3,3,6) and K = (2,2,3,3). Removing the semi-infinite
D3-branes on the right, we have a brane configuration that gives rise to a
3D SCFT in the infrared.

6.3 Obtaining a large AdS; x S° region

The solutions dual to OSp(4|4)-preserving BCFTs we consider can be thought

of as having two general geometrical regions with distinct features:

e Region I: An asymptotically AdSs x S® region occurring at large values
of the radial coordinate r > l4,kp on X, where O(la/r), O(ky/7)

corrections due to the 5-brane throats are small; and

e Region II: An “end-of-the-world” brane region at r < la,kp where
the geometry caps off smoothly except at the locations of the 5-brane
throats.

We are interested in considering whether certain allowed choices for the
supergravity parameters are able to produce a geometry where region (I)
is large and approximates pure AdSs x S%; by “large”, we mean that the

AdSs5 x S5 region extends to Poincaré angle O, ~ —7 /2.
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Conditions for a large AdS; x S° region

Consider the harmonic functions (6.2) that determine the metric and other

fields. Expanding these in 1/r, we can write

2 _
hy = h/fds + f} [% ZA cala ZB dpkp cos
g r

e ()

. 1 l dpk (6:5)
hy = hAdS +e§\/§[— QZACA A= 2pdshs o
T
> kz\ 2" sin((2n + 1)6)
2.2 ds (—> Tt )
n=1 B
where
L2 .q 1 rooom L3 T
AdS _ Lads 1 r., T AdS _ ~AdS g 40
hi®® = 1 \/gcos&(ro—i— 7a), hs 4 gsm&(m%— 7“) (6.6)

are the harmonic functions that give pure AdSs x S°, with AdS length Laqg
given by

L2
Ligs = 47T£§(Z cala + ZdBkB) = 4mliN ro = =248 - (6.7)
A B

For the pure AdSs x S® solution, the plane r = g is an AdSy slice perpen-
dicular to the boundary that divides the space in half.
We note that for » < rg, the first term in square brackets will be small

compared to the terms in 229 if and only if
A= cala—) dpkp| <N . (6.8)
A B

The ratio A/N gives the fractional size of the corrections (which do not have
a significant dependence on r for r < o).
The remaining corrections, involving higher powers of 1/r, become larger

(relative to the leading terms) for smaller r. It is straightforward to check
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that these corrections will be small relative to the leading terms provided

that r >[4 and r > kp. For example, when this is true, we have

2 2t 72 1 2N Lo
— % ca L =N cplpy—~ =—r S22 — (6.9)
\/§ ; 742n+1 \/g ; r \/g r \/g r

where the term on the right is the leading term in h‘fds in the r < rq region.

To summarize, we expect that provided the condition holds, the
solutions will be well-approximated by pure AdSs x S° in a region r > r,
where the coordinate r is much larger than any of the 4 or k. For h; =
hAdS | the coordinate 7 is related to the Poincaré angle © by [296]

r O =«
% = tan (2 + 4> (610)

so the geometry includes a region well-approximated by the © > 0O, region

of Poincaré AdS, where

T T
O,=——+2tan" ' = . 6.11
5 + 2tan o ( )

In particular, having ©, close to —7/2 requires r, < 1, which requires
ka,la < VN . (6.12)

Thus, we have arrived at the two conditions and (6.12). In Appendix
we provide a more detailed justification that these give solutions with
small ©,.

Satisfying the conditions within string theory

In the context of type IIB supergravity, it is trivial to find solutions satisfying
the constraints and (6.12)) for a given fixed N. We are free to take the

individual [ 4 and kp as small as we like, and then choose c4 and dp so that

N=> cala+) dpks. (6.13)
A B
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and is satisfied.

However, in string theory, the solutions obey flux quantization condi-
tions and (6.4). Below, we will investigate, for fixed (g, Laqs) (or
equivalently fixed parameters (gym, V) in the N' = 4 theory), the space
of parameters {l4, kp,ca,dp} that satisfy both the quantization conditions
and the constraints and . We will demonstrate discrete families
of solutions for which we obtain an arbitrarily large region@ of AdSs x S%,

approximated arbitrarily well, within the family.

6.4 Solutions with single D5-pole and NS5-pole

It is not possible to obtain a large AdSs x .S® region when we have a boundary
condition corresponding to a D-brane configuration with only Db5-branes
or only NS5-branes, since this manifestly violates in our constraints.
Thus, the simplest possibility is a solution with a single D5-brane throat
and a single NS5-brane throat. We consider this case in the present section.

We fix the parameters N and g. Then, in terms of the integer parameters
Nps, Nygs, the relation and the constraint demands that [, k
satisfy

k
N = %NNS5 +1/gNps

2 l
Np3 = /gl + ;NNSS arctan <k> € Nt (6.14)

N k 2 k
Np3 = % + ;ND5 arctan <l> e NT ,

In Appendix , we show that the allowed (I, k) are in one-to-one cor-
respondence with positive parameters (Nps, Nyss, Nps, ND3) such that

G = ged(Nps, Nnss) | NV, (6.15)

9That is, for any e > 0 there exists a solution within the family for which 7. < ero.
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and
NpsNps + NyssNps = N + NpsNyss - (6.16)

The latter equation always has at least one solution with positive integers

(Nps, NDg) provided that 1' is satisfied.
In this section, we will understand the space of quadruples of parameters

(Nps, Nnss, Nps, NDg) which can realize constraints and 1) and
therefore give rise to supergravity solutions with a large region of AdSs x S°.

The main results of this section are as follows:

o If we would like a solution that is well approximated by AdSs x S° to
an accuracy d < 1 in some range r > erg (meaning that |Cl;72dk| ~ 62),
0

it is necessary that ged(Nps, Nyss) | N and

Nps 2 —~— . (6.17)

e When these are satisfied, the additional condition

7 ( (9Nps gND5)_1 )
— + <0 6.18
8G ((NN55> <NNS5 ( )

is sufficient to ensure the existence of suitable (V. Dg,N p3) to give

a solution with the desired properties. In particular, if we choose
Nps, Nnss such that ged(Nps, Nnss) = N and gNps/Nnss = O(1),
the approximation accuracy 0 will be of order 1/ V/'N.

e We explicitly construct sequences of solutions labeled by a parameter

n € Z* with
nh_}n(go max{l(n),k(n)} =0, nh_)ngo le(n)l(n) —d(n)k(n)| =0, (6.19)

thus obtaining an arbitrarily good approximation to an arbitrarily

large AdSs x S° region for large n. For example, in the case of self-
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dual coupling g = 1, this occurs for the choice

Nps(n) =nN , Nyngs(n) =nN +2, ( |
6.20
Npsm) = S (n 141, Npsl)= > (n+1)

(or exchanging Nps <+ Nygs and Nps <> Nps in these expressions),
where n € NT is an integer parameter (and we must also require that n
is odd if N is odd). More generally, we construct such families for any
string coupling g and any choice of relative scaling zNps ~ Nygs5, 2z €
RT.

6.4.1 Necessary conditions for solutions with large
AdS; x S° region

Suppose we would like a solution that is well-approximated by AdSs x S°

to an accuracy d in some range r > erg. Then according to the conditions

and (6.12)) we require that

| <eVN (6.21)
k<e/N (6.22)
. "“Njgss — ZND5\/§‘5 <. (6.23)
Recalling that
jgNng) +1y/gNps = N, (6.24)

we may combine (6.23)) and (6.24)) to find that

N k N
—(1-0? —N, — (140
]%[( §7) < \/§N55<N2(+5)
5(1—52) < l\/§ND5<5(1+52). (6.25)

Combining these with (6.21)) and (6.22)), we see that
1
Niss > VN5 (1= %)
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IN 1 )
Nps > YEn (1-16%) . (6.26)

Consequently, we see that both Nps and Nygs must be sufficiently large for
and (6.12) to simultaneously be satisfied, in addition to the previous

requirement G | N. Notably, this implies that if we would like to construct a

family of solutions which can achieve an arbitrarily large AdSs x S® region,
then we will need to take both Nps and Nygs to be increasingly large within
this family.

6.4.2 Sufficient conditions for solutions with large
AdS; x S® region

Given Nps, Nygs satisfying G | N and , we will now investigate the
additional conditions which guarantee a choice of (I, k) in the range
for which Np3 and N D3 are integers.

For Nps and Nygs5 satisfying constraints and G | N, we have from

(6.25) that
k Nps
l Nnss

Using (6.14) together with (6.25)) and (6.27)), we have that

[1—26%1+26%. (6.27)

N 2 Nnss
D3 D3 = N + —Niss arctan (gND5)
. . N 2 gNps
Nps ~ NO — N t 6.28
b3 D3 2Nnss * g pparean Nnss (6.28)

More precisely, taking into account the allowed range of [ and k/I, L must

lie in a range of values with half width

N 2 gN
ANps = 252 T A (6.29)
Wos 7 ()

Nnss

We can show that the second term here is larger when (6.26) is satisfied, so
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we can take the range as

2 gNps
ANp3 = 252 2
1+ <gND5>

Nnss

(6.30)

We need the range [Nj(t;):s) —ANps, Ngg +ANps] to be large enough to contain
an integer value. More specifically, we need a value for which Np3 — Nps =
(N — Np3Nps)/Nnss is also an integer. This requires that G | N, in which
case, a range of Npg of length Ny g5/G will lead to at least one integer value
of N D3-

Thus, for fixed g and N, and some chosen Nps and Nygs satisfying the
constraints and that G | N, we will get a solution provided that the
range is at least Ny g5/G; that is, it should be sufficient that

9Nps
2 § Nnss

1
— <0 (6.31)
G s Nos\2 |
L (8e)
or )
™ 9Nps QND5>_ 2
— + < 6°. 6.32
8G <<NNS5> (NNS5 > (6.32)

Since the term in brackets is larger than or equal to 2 and G < N, we
expect that our sufficient condition can be satisfied provided that ¢ is at
least 1/ V/N. However, we will see below that for fixed N, arbitrarily small

values of € and § are possible for carefully chosen parameters.

6.4.3 One-parameter families with arbitrarily large
AdS; x S° region

For simplicity, we will begin with the case of self-dual coupling ¢ = 1. We
consider a sequence of parameters labeled by n € N* (and further imposing
that n is odd for odd N to satisfy (6.15)), defining

Nps =nN, Nyss=nN+2, (6.33)
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6.4. Solutions with single D5-pole and NS5-pole

and

N N N
Npy=5(n=1)+1, Npg=Tm+1), (6.34)

or alternatively, using the same expressions but with Nps <> Nygs and

Np3 < N p3. In this case, we can check that 1} and 1) are satisfied,
so our results in Appendix show that there will be a unique choice (I, k)

satisfying (6.14)).

For large n, we can write this solution perturbatively as

=L <”+1)+0(n3)

on 22 \4 N
| ) | (6.35)
_ . - (T _ 2t -3
k_2n+2n2<4 N)+O(” )
From these, we find that
1 N
el — dk| = ~ (1 + ”4) +OMn?). (6.36)

so we can indeed make max{l, k} and |cl — dk| arbitrarily small within this
particular class of solutions, by choosing sufficiently large n. Thus, we can
have an arbitrarily large region of AdSs x S° arbitrarily well-approximated
by our solution.

To emphasize that these choices of parameters indeed give rise to a large
AdSs x S® region, we show in Figures and the metric functions
obtained for particular choices of these parameters, as well as the metric
functions of AdSs x S° for reference. We find that these metric functions
agree to good approximation for r above some r, which becomes small as

the parameter n is taken to be large.

General construction of one-parameter families

Next, we consider a more general case where the string coupling takes the

form

g = mcot (g%) , (6.37)
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(c) Inf? (r,Z) versus r (d) Inp? (r, ) versus r

Figure 6.3: In these figures, we are taking g = 1,43 = 1, N = 100. The
metric functions shown in red are for the case (¢, d, 1, k) = (10%,10*+2, 4.96 x
1073,5.04 x 1073) (namely n = 100 in our family of solutions), while the
metric functions shown in blue are for pure AdSs x S®. Note that in this
case 1o ~ 5.64.
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13
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16 11
14 10
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g 7

6 6

4 0 02 04 0.6 0.8 1

r

0 1 2 3 4 5 6 7 8 |

n=10 n=100 n = 1000 —— pure AdS|

[—n=10—n=100 n = 1000 — pure AdS|

(b) Close-up: In (f7 (r, %)) versus 7 on
(a) In (f7 (r,Z)) versus r on r € (0,8) r € (0,1)

Figure 6.4: In these figures, we are taking ¢ = 1,43 = 1, N = 100. The
metric functions shown correspond to the indicated values of n in the family
of solutions above, as well as the case of pure AdSs x S°.

where m € ZT and a < b are relatively prime. The set of such string cou-

plings is dense in [0, c0). Taking (e, §) to be any solution to the Diophantine

equation@

(b—a)a—bs =N, (6.38)

we define a sequence”’|

(6.39)

Il
Q
3
3

|
S
4
=
o

|
>

We can also consider a similar sequence with the replacements Nps; <>
Nnss, Nps < Nps, g < 1/g. This choice is motivated in Appendix

9 A simple explicit case is to take b = a 4 1 (so that g = mtan(w/2b)), a = N, and
0=0.

9"Note that different choices for (o, §) lead to the same sequence with a redefinition of
n.
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6.4. Solutions with single D5-pole and NS5-pole

For these choices, it is straightforward to check that is satisfied.
Also, constraint /gNpsl + ﬁ]\f ~Nssk = N implies that both [ and k are at
most O (n_l), so these go to zero in the limit n — oco. Finally, we need to
verify that |cl — dk| also vanishes in this limit.

From the definitions of Np3(n), Nygs(n), and g, we see that

ND3(T7,) a -1 2 1
— = =—4+0(n = — arctan(m +0(n 6.40
The equations (6.14) yield
NDg(n) 2 —9
——> = —arctan({/k) + O (n . 6.41
Thus, we have
I/k=m/g+0O(n7'). (6.42)

It follows that

|cl — dk| = | (\/gbn) (km +0 (n_2)) - <1bmn) k|=0(n""), (6.43)
9 V9
as desired. Thus, an arbitrarily large region of AdSs x S® becomes arbitrarily
well approximated for solutions corresponding to large enough n.
The construction so far applies to a particular dense set of string cou-
plings of the form , and leads to a scaling of parameters

ND5 ~ mNN55 s (6.44)

where m is an integer. In Appendix we generalize the construction to
arbitrary real string coupling and find families of solutions that exhibit a
more general scaling Nygs ~ zNps for arbitrary z > 0.

For general z, conditions and then fix the scaling for the

linking numbers to be

ND3 2 NDg 2
~ —arctan(z , —— ~ —arctan(g/z) . 6.45
N~ Zarctan(z/g), 322~ Carctan(g/2) (6.45)
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6.4. Solutions with single D5-pole and NS5-pole

6.4.4 Field theory interpretation for solution families
approaching AdS; x S°

We would now like to understand from the field theory perspective what
boundary physics for the N' =4 SYM theory gives rise to the solutions with
arbitrarily large regions of AdS5 x S° (O, arbitrarily close to —7/2). In each
case, we are coupling the A" = 4 SYM theory on a half space to a particular
3D SCFT@ that can be understood as arising from the low-energy physics
of a particular brane configuration in string theory, or as the IR limit of a
quiver gauge theory.

To understand the brane construction corresponding to the parameters
(Nps, Nnss, Nps, NDg), we note that the parameters L; introduced in Sec-
tion are simply Np3 with multiplicity Nps, while the parameters Kj;
are Np3 with multiplicity Nygs. From the relation between these parame-
ters and the brane configuration, we can check that this set corresponds to
having Nygs NS5-branes which we can initially think of as being separated
along a direction 23 (the direction in which the D3-branes are semi-infinite),
with a stack of Nps D5-branes between the N and (Np3+ 1) NS5-brane
from the left. We additionally have n; D3-branes stretched between the it
and (i + 1) NS5, where

iNp3 1 < Np3

n; = R . (6.46)
iNp3 — Nps(i — Np3) i > Nps

To the right of the final NS5-brane, we have the N semi-infinite D3-branes.
Stripping off the semi-infinite D3-branes gives a brane set-up whose low-

energy physics is a SCFT that corresponds to the IR limit of the quiver

98We recall that the general OSp(4|4)-invariant boundary condition of this theory can be
specified by a triple (p, H, B) [89, 90]; here, p : su(2) — g is a homomorphism into the Lie
algebra of the gauge group (in our case U(N)) which specifies the “Nahm pole” boundary
condition for the scalars in the bulk 4D hypermultiplet, H is the residual symmetry group
at the field theory boundary, and B is the 3D SCFT coupled at the boundary. For
the boundary conditions in the one-parameter families that we are currently considering,
we are imposing a simple Dirichlet boundary condition on the bulk hypermultiplet (and
a Neumann condition on the 4D vector multiplet), and there is no reduction in gauge
symmetry; our boundary conditions are then entirely specified by the SCFT B.
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6.4. Solutions with single D5-pole and NS5-pole

gauge theory shown in Figure Such a quiver consists of Nyg5—1 nodes,
with Nps fundamental hypermultiplets coupled to the Nch3 node. For nodes
to the left of the thjhg node, the gauge group rank increases in increments
of Nps as we read the quiver from left to right; for nodes to the right, the
gauge group rank decreases in increments of Nps — N D3-

So far, this construction is completely general within boundary condi-
tions involving a single D5-brane throat and a single NS5-brane throat; we
now restrict to boundary conditions within the families considered in this
section. For the one-parameter family introduced at the beginning of Sec-
tion m (with ¢ = 1 and z = 1), we see that the corresponding quiver
is approximately “left-right symmetric” for large n; given that our family
has NNTD; ~ % for large n, the hypermultiplets are coupled to a single node
which is roughly in the middle of the quiver, after which the gauge group
rank decreases in increments of Nps — N D3, where %%;D]jm ~ 1 for large
n. More generally, we find that, if we parametrize the quiver by its length
Nnss —1 =~ Nygs, then we will have Nps5 ~ %N ~s5 fundamental hypermul-
tiplets coupled to a node whose placement in the quiver grows proportionally

to the length of the quiver to enforce the ratio ]\],V A’?s

-~ 2 arctan(z/g). In
particular, we note that in the case of small coupling g < z, the fundamen-
tal hypermultiplets will be roughly at the right end of the quiver, while in
the case of large coupling g > 2 they will be at the left end.

The fact that all the hypermultiplets are attached to the same gauge
group factor (or that the D5-branes in the brane construction come in a
single stack) is an artifact of our simplifying assumption that the harmonic
functions leading to the supergravity solution have only a single D5-brane
pole and a single NS5-brane pole. We expect that there are many other
choices with additional poles that lead to more general quivers but still give
O, — —m/2 in a limit. In Appendix , we will verify that such cases
can be obtained by small deformations of the boundary conditions in this
section. In particular, we construct examples where we couple in additional
hypermultiplets to an additional node of the quiver; this corresponds to
adding in additional D5 and NS5-brane poles. We also consider deforming

our single-pole boundary conditions by coupling the corresponding quivers
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Nnss—1
"
r N
- ‘ | 2)K — 2Nps /+Nps — K
(L-2)K Nps (L+2)K —2Nps N+ Nps — K
(L-1)K (L+1)K — Nps N +2Nps — 2K

Figure 6.5: General form of a quiver gauge theory which corre-
sponds to the field theory boundary conditions determined by the data
(Nps, Nnss, Nps, Nps3), where we take Np3 = L and Np3 = K.

to an additional small quiver at the left endpoint. In both of these contexts,
we find more general sequences of solutions that still yield ©, — —7/2. We
will consider a further generalization with multiple D5-brane poles in the

following section.

6.5 Solutions with multiple poles

In this section, we consider a more general case where we still have only a
single NS5-brane pole in ho at location y = k with multiplicity Nygs, but
we allow arbitrary numbers of D5-brane poles in h; at (possibly coincident)
locations x = ;.

These poles will correspond to some linking numbers K with multiplicity

Nngs and Nps linking numbers {L;}, such that
NyssNps+ > Li =N + NyssNps - (6.47)
i

Given linking numbers satisfying this, the corresponding pole locations k

and [; must satisfy

-2 l;
L; = /gl + —Npgsarctan —
ko2 .

Nps = % + - ; arctan L (6.48)
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6.5. Solutions with multiple poles

We can determine k and I; as follows. Defining
2 T
Fy(z) = \/gx + —Npngs5 arctan % (6.49)
7T

and noting that for any k, Fj, is a monotonic map from [0, c0) to [0, 00), we
have that
L =F'(l). (6.50)

The actual value of k is determined by solving”]

N = jgNNS5 + ﬁzi:Fkl(Li) : (6.51)

To see which linking numbers satisfy our conditions for having a ©, close

to —m/2, we note that the requirements that

k
Vay i+ s =N (6.52)

(which follows from the first three equations of this section) and our condi-

tion

7

require that both terms in each expression are close to N/2 so

k
Vg Y li— 5 Nwss| < N (6.53)

NS % (6.54)

and

N
ko k© = VIV (6.55)
In order that k < v/ N, the latter condition implies

Nnss > v/ gN . (6.56)

99We note that each term on the right is monotonically increasing with k, and the entire
right side increases monotonically from a value less than N for k£ = 0 to infinity for k = oo,
so there will be a unique solution.
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6.5. Solutions with multiple poles

Then the [; are approximately related to L; by
0 _
19 = F L (L) (6.57)
The condition [; < V/N gives that
Fro)(Li) < VN . (6.58)
From the condition (6.54), we have

N
> (6.59)

\/EZF;;((})(LZ') ~

Since each [; = k_«}) (L;) in the sum is required to be much less than v N
but also greater than or equal to F,;((})(l) ~ m/gN/(4N%gs), we note that

the number of D5-brane poles (including multiplicity) must satisfy

1 [N 2N?2
5,/;<<J\7D5<777§~‘?5. (6.60)

Our choice of the L; must be such that

N—-iLi

Np3 = Nps +
Nnss

(6.61)
is an integer. To see when this is possible, we note that for L; < Nygs, F

is linear and

)~ TVIN

Thus, adding an additional pole with L = 1 or varying one of the L; by 1
leads to a change in the left side of (6.59)) of

T gN
4 Niss

<1. (6.63)

Given any set of L;, changing the sum by an amount less than Nygs will

be enough to give an integer Nps. If we add or change the L; in the linear

280



6.5. Solutions with multiple poles

regime of F, the change in /g )", l; will be less than

™ 9N
4 Nyss

(6.64)

We can satisfy 1) for integer Nps provided that this quantity is much

less than N /2, so we have the additional condition
Nyss > g . (6.65)

So far, we have assumed that k& = k(©). The actual value of k corre-

sponding to our chosen L; and Nps is determined by

k _
—Nnss+vg Y _F (L) =N =0. (6.66)
Vi i
We need to check that for this actual value, |k/\/gNnss — N/2| < N so
that (6.53) is still satisfied. Since

(0

y%Nng) +v3> Fro(Li) - N <N, (6.67)

we know that the function

G(k) = \’jgNNss, VIS (6.68)

varies by an amount much less than N as k is varied from k(®) to its actual

value. This gives

N
ok <« m R (6'69)

so kNnss/ v/9 will change by an amount much less than N provided that
the right side here is less than \/gN/Nngs, or G'(k) > Nygs/+/g. This is
clearly true, since the k derivative of the first term in G is Nyg5/,/g and
the k derivative of the second term is positive.

To summarize, given N and g, the following procedure will yield a set of

linking numbers that satisfy our conditions:
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6.6. Microscopic wedge holography

e Choose some Nyg5 satisfying Nygs > +/gN and Nygs > g and Nps

satisfying .

e Choose a set {L;} of Nps L; such that (6.58) and (6.59) are satisfied

and

N—>Li

Np3 = Nps +
s > Nnss

(6.70)

is an integer. This will be possible provided the conditions on Nygs

and Nps are satisfied.

e Once the linking numbers are fixed in this way, the precise k and [;
are determined by the procedure described at the beginning of this

subsection.

For this more general class of SCF'Ts, the corresponding quiver gauge the-
ory will have fundamental matter distributed among the nodes of the quiver,
with the number of distinct L; determining the number of nodes with fun-

damental matter.
If we require that I; < e/ N to satisfy 1) we get

26NNS5

V9N

If Nyss > VgN /e, we get max{L;} ~ Nygs. As there are Nyg5 nodes

in the quiver, it seems possible in some cases to have matter uniformly

2
max{L;} ~ Fj0)(eVN) = ey/gN + —Nngs arctan ( ) . (6.711)
T

distributed throughout the quiver, with order one fundamentals per node.

6.6 Microscopic wedge holography

In this section we describe a generalization of the previous construction
in which we have two ETW branes bounding an arbitrarily large wedge
O € (-6,,0,) of AdS; x S°. In this case, only an RY? of the original
asymptotic region RY® of AdSs x S® remains, and the dual theory is a
three-dimensional SCFT.
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6.6. Microscopic wedge holography

Figure 6.6: Illustration of procedure used to define families of solutions
realizing arbitrarily large wedges of AdSs x S°; here, D3-branes are black,
D5-branes are blue, and NS5-branes are red. To pass from the second to
the third configuration, we rearrange the five-branes so that all NS5-branes
are to the left of all D5-branes, while D3-branes between these five-branes
are created or annihilated to maintain fixed linking numbers. The third
configuration is convenient for defining the quantities Ng(A), NS(B) in (6.73)):
they represent the net number of D3-branes ending on branes in the A®™
D5-brane stack or the B NS5-brane stack respectively.

6.6.1 A 3D dual to an arbitrarily large wedge of AdS; x S°.

We have seen that for an appropriate choice of 3D SCFT coupled to N' = 4
SYM theory on a half space, the ETW brane region of the dual geometry
can be pushed to a Poincaré angle that is arbitrarily close to —m/2. We next
consider the situation where we introduce another such boundary parallel
to the first so that the N' = 4 theory now lives on a strip. We can choose
this second boundary SCFT to preserve the same set of supersymmetries as
the first one. The brane construction of this SCFT involves the same set
of branes as for the first SCFT, with the same orientations, but arranged
in the opposite order in the spatial direction in which the D3-branes have a
boundary;'% see Figure

We expect the dual of this theory to have two ETW branes, bounding a
wedge of AdS5 x S® whose asymptotic region has the geometry R'? times an
interval. The solutions of [172-175] are not general enough to describe this,
since they correspond to theories with a 3D superconformal symmetry, while
the interval in our construction introduces a scale. However, we expect that
the IR limit of the theory on a strip will be a certain superconformal theory;

this is the theory whose brane construction combines that of the original

100More generally, we could consider two different SCFTs which nevertheless preserve
the same supersymmetries.
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6.6. Microscopic wedge holography

BCFT with that of the second SCFT, so that the initial semi-infinite D3-
branes now connect the brane configurations describing the two SCFTs. The
gravity dual of this IR SCFT is a wedge of AdS5 x S® with two ETW branes.
Such wedge geometries can be described explicitly as particular cases of the
solutions in [172-175] and were considered previously in [175, 294]. These
geometries are microscopic realizations of the “wedge holography” discussed
n [285].

The new element in our work is that we can, by the choices described in
the previous section, arrange for the wedge of AdS5 x S° between the ETW
branes to be arbitrarily large.

To verify this, we note that, making the change of coordinates z = rge" =
roe®t% so that the positive quadrant is mapped to the strip 0 < I(w) < 7/2,

the single boundary geometries correspond to harmonic functions

- 2 N cosh(z + aa) + cos(y)
hi = 2\f 4\[ Z : (cosh(x +aa) — COS(?J))

7r£2\/§ SdeB (COSh($+ﬁB)+Sin<y)> 7

h pum—
2 g roetsiny+ cosh(z + ) — sin(y)

2

where we have defined vy = —1In(l4/79) and 54 = —In(ka /7).
The pole of h; at —« and the pole of hg at im/2 — 3 lie at large negative
values of = for the single-pole cases of interest. The corresponding solution

with two ETW branes is given by

02 (@) cosh(z — 64) + cos(y)
== N1 %
4 ; 5 (cosh(x — 0a) — cos(y)>

9 2 3 .
hy = % Z Néb) In cosh(z éb) + S?n(y) ’
P cosh(x — 0p) — sin(y)

where N5(1) = N5(2) = Nps5 and ]\75(1) = ]\75(2) = Nyg5 are the number of D5-
branes and NS5-branes in the initial boundary condition, and now we have
poles of hy at §; /5 and of hy at im/2+ 51 /2 whose leading order behaviour is
given by

Sy~ —ba~a, O~ =0y~ B, (6.72)
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6.6. Microscopic wedge holography

Solutions corresponding to more general 3D SCF'Ts are obtained by allowing
the poles to be at more general locations.

To demonstrate this claim, we will proceed by analyzing the D-brane
constructions for these theories. We must first revisit the families of bound-
ary conditions from the previous section, choosing for convenience a string
coupling g in the boundary case to be of the form ¢ = m cot (g%), as we
have done above, and defining the parameters (Nps, Nyss, Nps, N D3) using
. As in [175], when we pass to the dual of the 3D theory, we may
consistently set g = 1 (while the dilaton is left arbitrary).

The doubled theory is described in the language of [175] by parametersiﬂ_n-l

Nél) = NE'EQ) = ND5 )

NV = N = Nygs,
' o (6.73)

N3 :2NNS5—ND3, N3 :ND37

Ngsl) = Np3, NgEQ) = 2Nps — Np3,

where the supergravity parameters d,, &y are related to the D3-brane charges
by

2
a 2 ¢ — _$
N?E ) = p ZNéb) tan~! (e‘s“ 61’)
b=1

) (6.74)
. 2 .
N _ 2 (@) {1 ( 5a75b) _
3 - Z Ny tan e
a=1
These latter equations yield at leading order in n
651_31 _9 651_32 _ Amb®n?
oom N (6.75)
652—51 — TN 652—52 — m
4mb3n?2’ g’

010ur notation is actually slightly different from that of [175]: the N?Ei) and Néi) are
both defined to be positive quantities, and differ from the conventions of that reference
by factors of Nél) and Néz) respectively.
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so that without loss of generality we may take leading order behaviour

= Ieh gt = I b L/ﬁbn . (6.76)
m m VTN

Comparing with the supergravity parameters from the boundary case

e

l vrN k Vg N
ro  2y/gbn’ ro  2mbn

: (6.77)

we find the leading behaviour of the poles d; /5 and 51 /2 mentioned above.
One can consider hi, ho at leading order, and show that they give rise to
an AdSs x S% region when |z| < Inn. Indeed, we find in this region
2
Lias

h1 ~ =222 coshzcosy,
2Vg

, (6.78)
hy ~ V9Laas
2

coshxsiny ,

where L is = V4r N2, We recognize these as corresponding to pure AdSs x
S5. As n is increased, the curvature scale of the AdSs x S® region approaches
a constant value, while the size of this region increases.

In Figure we show the metric functions for such solutions (as well as
those of AdSs x S° for comparison) in the vicinity of the locally AdSs x S°
bridge between the two ETW branes, for various increasing values of n. We
see that for increasing n, the bridge connecting the two ETW brane regions

corresponds to an increasingly large wedge of AdSs x S°.

6.6.2 Multi-wedge geometries

We have given a specific class of constructions describing arbitrarily large
wedges of AdS5 x S° as the dual of a 3D SCFT. For concreteness, we focused
on the case obtained by doubling a brane configuration considered earlier
in the context of boundary conditions for the 4D N = 4 theory. More
generally, we may consider 3D SCFTs which descend from linear quivers

arising from “gluing” together several large sub-quivers of the type discussed
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Figure 6.7: In these figures, we are taking g = 1,f4; = 2, N = 100. The
metric functions shown are for N5 = 2nN, N5 = 2(nN +2), Nél) = %(n—i— 1)
with the values of n given, while the metric functions shown in light blue are
for pure AdSs x S® (with Lags fixed by N). We are displaying the metric
functions with respect to complex coordinates (w,w) = (wy + iwa,w; —
iwy) = (In (re?/ry) ,In (re="/r)), and setting § = m/4 in the figures. Note
that the Jacobian of this coordinate change modifies p? from the expression
provided.
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in Section by coupling the first and last nodes of consecutive sub-
quivers with bifundamental matter to some additional U(m4) nodes with
small m4. This procedure is in the spirit of the “quantum gate” solutions
described by Bachas and Lavdas in [294], but the result here is a spacetime
description involving multiple wedges of AdSs x S® separated by interface
branes.

This “multi-wedge” construction suggests further generalizations for holo-
graphic theories realizing the same OSp(4|4) symmetry as the 3D SCFTs,
including the OSp(4]4)-preserving BCFTs and 3D SCFTs descending from
circular quiver gauge theories. In the former case, the holographic descrip-
tion involves a large AdSs x S° region in the vicinity of the asymptotic
boundary, but this region is connected to an additional multi-wedge region
by an interface brane. In the latter case, we again obtain a multi-wedge
geometry whose boundary is only an RM? subset of the asymptotic R of
AdSs x S%, but in this case, the first and last AdSs x S° wedges are con-
nected by another interface brane, so that we have non-contractible loops in
the internal space which traverse all of the wedges. We leave a more detailed
analysis of multi-wedge solutions to Appendix

6.7 Discussion

We have provided a number of microscopic constructions of 4D BCFTs
enjoying a holographic description with an arbitrarily large AdSs x S° region
terminating on an ETW brane, as well as 3D SCFTs which correspond to
an arbitrarily large AdSs x S° wedge. While the possibility of realizing
similar features by considering limits of the supergravity solutions provided
in [174, 175, 297] has been discussed previously (e.g. in [175, 292, 294,
297]), we have provided an important check that the required limits can
indeed be realized in string theory, where the various charges are subject
to quantization requirements, and we have characterized the appropriate
boundary conditions explicitly in terms of the corresponding field theory
data.

The simplest such BCF'T boundary conditions arise in string theory from
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a single stack of Nps D5-branes and Ny g5 NS5-branes; choosing Nps, Nygss
sufficiently large with gNps/Nngs = O(1) ensures a large AdS5 x S° region,
and a judicious choice of these parameters and the linking numbers L, K can
make this region arbitrarily large. While these “single-pole” boundary condi-
tions are especially easy to analyze, we have indicated several generalizations
involving multiple five-brane throats in the ETW brane region, including
small perturbations to the single-pole boundary conditions, boundary con-
ditions which redistribute the fundamental matter throughout the defining
quiver diagram, and boundary conditions involving extended quivers which
give rise to “multi-wedge” duals. By invoking similar D-brane constructions
to generate supersymmetric boundary conditions for the 4D A = 4 SYM
theory or 3D SCFTs describing the IR physics of linear or circular quiver
gauge theories, we are able to produce holographic duals for these theories
in type IIB supergravity that possess similar local features, including one or
more AdSs x S° wedges. This suggests a precise sense in which the physics
of these degrees of freedom can be associated to the wedge. In all of our
examples, such wedges are necessarily accompanied by a large ETW brane
region.

There are a number of further directions which remain interesting to
explore. While we have studied a large class of solutions with large AdSs x S°
regions, it would be desirable to provide a general characterization of theories
which possess this feature. It is also interesting to understand if there is a
relationship between our work and the “dimensional (de)construction” story
[293,298]. In this context, it is shown that certain quiver gauge theories may
admit a low-energy effective description with emergent extra dimensions;
for example, this may occur in superconformal theories moved onto the
Higgs branch, with the spectrum of massive vectors obtained via the Higgs
mechanism organizing precisely into the Kaluza-Klein modes of the higher-
dimensional theory. Our results also suggest a relationship between 3D and
4D supersymmetric theories, in the sense that the physics of large wedges of
AdSs x S® can either be described by degrees of freedom in the 4D N = 4
SYM theory or in a suitably chosen 3D SCFT capturing the low-energy

behaviour of a quiver gauge theory.
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Black Holes
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Chapter 7

Information Radiation in
BCFT Models of Black Holes

7.1 Introduction

Within the context of holographic models of quantum gravity, the forma-
tion and evaporation of black holes is a manifestly unitary process in the
sense that the underlying quantum system evolves through conventional
Schrodinger evolution with a Hermitian Hamiltonian. However, in the grav-
ity picture, the physics of the black hole interior and the mechanism through
which information about the microstate of the black hole emerges in the
Hawking radiation are still not fully understood.

A crucial piece of physics to understand is the evolution of the density
matrix for the black hole radiation. Hawking’s original calculation [56] sug-
gests that the entropy of this density matrix continues to increase through-
out the black hole’s evaporation. But unitary evolution predicts that this
entropy should begin decreasing at the “Page time” when the black hole’s
(macroscopic) entropy has been reduced to half of its original value [57, 58]
and the remaining black hole becomes maximally entangled with the radi-
ation system. The specific increasing and then decreasing behavior of the
entropy of the radiation system as a function of time is known as the Page
curve. Understanding how this curve comes about from the gravity picture
is a key challenge.

A further mystery appeared in the work [59-61, 299, 300], in which the
authors argued that assuming a unitary picture of black hole evaporation

leads to the conclusion that there cannot be a smooth region of spacetime
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behind the horizon of an evaporating black hole past the Page time. The
argument was based on an apparent inconsistency between having maximal
entanglement between the black hole and its early Hawking radiation after
the Page time and having entanglement between field theory degrees of
freedom on either side of the black hole horizon, as required by smoothness.
The proposed alternative is that the old black hole develops a “firewall” at
its horizon.

A fascinating suggestion [45] to avoid this firewall conclusion, making use
of the general idea that the connectivity of spacetime is related to quantum
entanglement between underlying degrees of freedom [44, 301], is that the
entanglement between the black hole and its early radiation past the Page
time is actually responsible for the existence of a smooth geometry behind
the black hole horizon, in the same way that the entanglement between two
conformal field theories (CFTs) in the thermofield double state gives rise
to a smooth wormhole geometry connecting the two black hole exteriors@
In this picture, the behind-the-horizon degrees of freedom are the radiation
degrees of freedom, so there is no contradiction that both are entangled with
outside-the-horizon modes of the black hole.

Very recently, a series of papers [9, 63, 64] have provided more detailed
insight into how the black hole radiation can be seen to have an entropy
described by a Page curve yet avoid the firewall paradox by the mechanism
of [45] (see also [303]). The examples in these papers make use of an aux-
iliary radiation system coupled to a system that would otherwise describe
an equilibrium black hole.lzgl The new insights come by making use of the
quantum version [145, 149] of the Ryu-Takayanagi formula [42, 305], which
gives the gravity interpretation of entanglement entropies for subsystems of

a holographic quantum systemFEI Importantly, the prescription for calcu-

1021t was suggested in [302] that this analogy could be made precise by coupling a holo-
graphic CFT to an auxiliary “radiation” system consisting of another copy of the holo-
graphic CFT. In this case, an initial pure-state black hole described by the first CFT
would evolve to an entangled state of the two CFTs which could be dual to a two-sided
black hole. In this case, the radiation system manifestly describes the region behind the
horizon of the original black hole.

103Gee [304] for an early application of this idea.

104 For a subsystem A of a holographic system, the quantum Ryu-Takayanagi (RT) surface
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lating these entropies in the gravity picture requires the identification of a
“quantum extremal surface” on which the functional is evaluated to
calculate the entanglement entropy. A central observation of [9, 63, 64] is
that during the evaporation of a black hole, the quantum extremal surface
that computes the entanglement entropy of the radiation system can jump,
leading to a first-order transition in the entanglement entropy that provides
the necessary switch from increasing to decreasing behavior.

Further insights in [9, 63, 64] make use of the notion of the “entanglement
wedge” of a subsystem of a holographic system, which is the portion of the
full spacetime that is dual to or reconstructible from the density matrix
for the subsystem, and is understood to be the bulk region enclosed by the
quantum extremal surface [146, 148, 306-310]. In the examples of [9, 63,
64], it is seen that after the transition in the quantum extremal surface,
the entanglement wedge of the radiation system actually includes a portion
of the black hole interior. Thus, the underlying degrees of freedom for
this interior region after the transition are understood to be the degrees

of freedom of the radiation system, in accord with the proposal of [45].

Summary and outline

In this chapter, our first motivation is to further elucidate the observations
of [9, 63, 64] by studying the evolution of black holes in a new class of
models where the evolution of entanglement entropy and the entanglement
wedge can be studied very explicitly through direct holographic calculations.
Our models are similar to and motivated by the one in [9] in that they
have a holographic description in one higher dimension than the original
black hole of interest, and the full dynamics of entanglement entropy for the

basic degrees of freedom is captured geometrically through the behaviour

A in the dual gravitational picture is a bulk surface which is homologous to A and has
the minimum value of the functional
_ Area(A)

Sgrav(A) = e Shuik(X4) (7.1)

among extrema of this functional. Here :S'bulk(E 4) is the entanglement entropy of bulk
fields in the bulk region ¥4 enclosed by A.
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o=y

Figure 7.1: Basic set-up. (A) Our thermal system, dual to a bulk black
hole, is the red boundary. It interacts with a bulk CFT which can serve as
an auxiliary system into which the black hole can radiate. (B) The higher-
dimensional bulk picture. The red surface is a dynamical “end-of-the-world”
(ETW) brane whose tension is monotonically related to the number of local
degrees of freedom in the boundary system. For large tension, this ETW
brane moves close to the boundary and behaves like a Randall-Sundrum
Planck brane. (C) The Planck brane picture suggests an effective lower-
dimensional description where a part of the CFT in the central region is
replaced with a cutoff CFT coupled to gravity, similar to the set-up in [9].

of classical Hubeny-Rangamani-Takayanagi (HRT) surfaces. However, our
systems are described somewhat more explicitly than the one in [9] and have
an additional parameter that controls the Page time for the black hole.
Our specific construction, described in Section starts with a d-
dimensional holographic system on S¢~! in a high-energy state, or a ther-
mofield double state with a second copy of the holographic system. These
holographically describe one-sided or two-sided black holes in spacetimes
that are asymptotically AdS if the theory that we start with is a CFT.
The black holes are in equilibrium with their Hawking radiation, which re-
flects off the boundary of the spacetime. In order to have the black holes
evaporate, we couple our holographic system to an auxiliary system as in
[9, 63, 64, 302, 304]. Our auxiliary system is a CFT in one higher dimension
living on a space whose boundary is S?! (or two copies of this), such that
our original degrees of freedom provide boundary degrees of freedom for
this higher-dimensional CFT. We can take the higher-dimensional CFT to
be holographic, such that the full system is a holographic boundary confor-
mal field theory (BCFT) (or flows to one in the IR). We show in Section
that the Page time for the black hole is proportional to the ratio chay /chulk of
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the local number of boundary degrees of freedom to the local number of de-
grees of freedom in the bulk CFT. In the limit where cpqy is large and cpyik is
fixed, the Page time that we calculate from CFT considerations matches the
Page time obtained in the gravity picture in AdS with absorbing boundary
conditions [311].

For our explicit calculations, we consider various states of the BCFT con-
structed via Euclidean path integrals, so that the dual gravity geometries
can be understood explicitly. For these states, we will consider the computa-
tion of entanglement entropy for the auxiliary system, considering a spatial
region defined by the points at distance greater than a from the boundary
system. We calculate the entanglement entropy for this system as a function
of time and of the distance a. We perform the calculation holographically by
finding the HRT surface in a dual (d + 1)-dimensional gravitational system.
We make use of a bottom-up holographic prescription for studying the dual
BCFTs in which the CFT boundary extends into the bulk as a dynamical
end-of-the-world brane whose tension is directly related to cpqy. We also
reproduce the results of these holographic calculations through direct cal-
culations in our BCFT system, making use of standard assumptions about
holographic CFTs.

As hoped, our calculations show a first order phase transition of the
entanglement entropy at the Page time after which the entropy of the ra-
diation stops increasing; a sample result for the transition time is shown in
Figure . In the higher-dimensional gravity picture, we find that after
the transition, the entanglement wedge of the radiation system includes a
portion of the black hole interior.

A new qualitative result of the present chapter is that the phase transi-
tion described in the previous paragraph can occur even when the black hole
is not evaporating, but simply coupled to an open radiation system which
is in thermal equilibrium with the black hole. In this case, we find that
while the energy density is static everywhere, the entanglement entropy for
subsets of the radiation system still shows interesting dynamics, increasing
with time until a phase transition after which it is constant. Again, the

entanglement wedge of the radiation system includes a portion of the black
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Figure 7.2: Time at which the subsystem of the radiation system greater
than some distance from the BCFT boundary exhibits a transition in its
entanglement entropy, for the case chay/chuik ~ 50. After the transition,
the entanglement wedge of this subset of the radiation system includes a
portion of the black hole interior. After a time equal to the Page time plus
the light travel time from the boundary to our subsystem, there is enough
information in the subsystem to reconstruct part of the black hole.
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hole interior after the transition. This static case is the focus of Section [7.3.

In Section [7.4, we consider more general states for which the initial
radiation system is not in equilibrium with the black hole and the energy
density is time-dependent. These more closely model evaporating black
holes. Our detailed results are again in line with the expectations of [9, 63,
64] and confirm some of the qualitative predictions of [9].

We end in Section with a discussion. There, we describe some di-
rections for future work and describe further holographic constructions of
evaporating black hole systems. We also point out that the transition in ex-
tremal surfaces described in this chapter and in [9, 63, 64] is closely related
to a similar transition [2] that can occur when looking at the entanglement
entropy for subsystems of a CFT on S¢ ! in a high-energy state dual to a
single-sided black hole. For the CFT states described in [2], we can have a
transition as the subsystem size is increased, after which the entanglement
wedge of the subsystem includes part of the geometry behind the black hole
horizon. Remarkably, in the case of 3D gravity, the CFT calculations that
exhibit this transition are precisely the same CFT calculations that show
the entanglement wedge transition in the present chapter.

Note added: While this manuscript was in preparation, the paper [312]
appeared, which has some overlap with Section of this chapter.

7.2 Basic set-up

A schematic of our basic set-up is shown in Figure [7.1(A). We imagine
starting with a holographic system on S%! whose high-energy states or
high-temperature thermal states describe black holes in a dual gravitational
picture. In these systems, the black hole is in equilibrium with its Hawking
radiation, which reflects off the boundary of the spacetime.

Next, following [9, 63, 64, 302] we augment our holographic model with
additional degrees of freedom which will serve as an auxiliary radiation sys-
tem, allowing the black hole to evaporate. Asin [9, 64], our auxiliary degrees
of freedom will take the form of a higher-dimensional CFT living on a space

with boundary S9!, such that the original system now serves as a set of
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boundary degrees of freedom for the higher-dimensional CFT. We will de-
note by cpuk the number of local bulk CFT degrees of freedom and by cpqy
the local number of boundary degrees of freedom. We have in mind that
Cbdy > Cpulk > 1. This will allow the full system to be holographic, but as
we show below, will give a parametrically large evaporation time.
Holographic models of this type can arise in string theory by considering
branes ending on other branes. For example, we can have a stack of n
D3-branes in directions (0123) ending on various D5- and NS5-branes at
some locations in the 3 direction [89, 90]. The low-energy physics is N' = 4
SYM theory on a half-space with some boundary conditions. We can have an
additional N D3-branes of finite extent in the 3 direction which are stretched
between some of the five-branes. Without the original n D3-branes, these
can give rise to a 3D CF'T in the infrared. In the full set-up, this 3D CFT is
coupled to the N/ = 4 theory at its boundary. Here, in this set-up, we have

Chdy/Coulk = N?/n?.

Evaporation time in the CFT picture

Now, suppose we have some initial energy M in the boundary degrees of free-
dom such that the energy corresponds to a temperature above the Hawking-
Page transition for that system. The relation between temperature, energy,

and entropy is
E ~ cpay RITY, S ~ cpay RIT (7.2)

for a boundary system of size R. If this system is coupled to a higher-
dimensional CFT with cpy local degrees of freedom, we expect that the

energy will be radiated away at a rate

dE
ar ~ —ecbulde_le+1 , (7.3)

where we are using a Boltzmann law, with emissivity e that presumably
depends on the nature of the coupling. The factor of ¢pyk can be understood

from a weak-coupling picture where we have ¢y light fields that can carry
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away the energy.

Using these results, we have that

dr  Chulk
T
dt Cbdy

T2, (7.4)

where ¢ is defined to absorb any numerical coefficients we are ignoring.

Solving, we have

1
T=—r (7.5)
1 5 Cbulk
To +e Cbdy t

The Page time is when half the (macroscopic) entropy of the black hole has

been radiated. This corresponds to a temperature

1
Tpage - 71T0 . (76)
9d-1
Ignoring O(1) factors, we find that
Chdy 1
t ~ — 7.7
8 ik €10 (7.7)
or
C1+§
d
tPage/R ~ bdy (78)

écpulk (MR)d
Since the initial energy is of order cpqy, it is also illustrative to write

MR = xcpgy, so that
1
tPage/R ~ Adey - - (79)

€Cbulk xd

(&
by - we can make the black
Chulk

We see that the Page time is proportional to

hole evaporation take a long time by choosing cpqy > chulk.

Evaporation time for a black hole with absorbing boundary

conditions

We can compare this to the calculation in [311] of Page (see also [313]), who

considers perfectly absorbing boundary conditions for a large black hole in
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AdS. Using those results, one finds a Page time

d+1-2
L 41
~ _—AdS
tPage G1+$ M% (710)

where we have omitted some numerical factors. An energy of 1/R in the
field theory corresponds to energy 1/Lags on the gravity side, while field
theory entropy cbdde_le_l corresponds on the gravity side to r?jl/ G=
TCl*lLi‘fj_S2 /G, so we can relate

L2d—2

dede_l = 7AC$IS . (7.11)

Rewriting (7.10) in terms of field theory parameters, we get

1+3
Chdy

(MR)i

tpage/R ~ (7.12)
Comparing with the expression (7.8) above, we see that the expressions have
the same dependence on cpqy and M; to match the gravity calculation, we
should take cpué to be of order 1, at least in terms of scaling with cpqy. In

order that the full system is holographic, we want to take cpqy > cpui > 1.

7.2.1 Holographic duals of BCFTs

In this section, we briefly review the gravitational dual description of holo-
graphic BCFTs and explain how the dual of a BCFT with large cpay > chuk
can give rise to the physics of a Planck brane whose geometry is the geometry
of the black hole we are studying.

In their vacuum state, BCFTs preserve the conformal invariance of a
CFT in one lower dimension. Thus, the gravity dual of a d-dimensional
CFT with boundary in its vacuum state will generally correspond to a space-
time that is a warped product of AdS; with some internal space, but which
has an asyptotically AdSg;1 region with boundary geometry equal to the

half space. For various supersymmetric examples, gravitational dual solu-
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tions corresponding to the vacuum state are known explicitly [264, 265].
For example, there is a family of half-supersymmetric solutions to type IIB
supergravity that correspond to the vacua of N' = 4 SYM theory living
on half-space with the various boundary conditions preserving half of the
supersymmetry (e.g. [172-175]).

In general it is difficult to work with the fully microscopic examples and
to find full solutions of the ten or eleven-dimensional supergravity equations
that would correspond to various BCFT states. Thus, rather than employing
this top-down approach, we will consider bottom-up models of BCFT duals,
introduced in [78, 87, 88]@ Here, the bulk dual of a d-dimensional CFT
with boundary is taken to be a (d+ 1)-dimensional gravitational theory on a
space which has a dynamical boundary extending from the CFT boundary
into the bulk. Just as we can consider various possibilities for the bulk
gravitational effective action, we can choose various terms for the boundary
effective action. We expect that for appropriate choices of the bulk and
boundary effective actions, we can accurately capture the physics of various
holographic CFTS.IK_TGI In this chapter, we consider the simple situation where
the “end-of-the-world” (ETW) brane couples only to the bulk metric field;
its action is taken to include a boundary cosmological constant (interpreted
as the brane tension) and a Gibbons-Hawking-York term involving the trace
of the extrinsic curvature. The details of the action and equation of motion,
and all the solutions that we will require in this chapter may be found in
12].

The work of [87] established a connection between the tension of the
ETW brane and the boundary entropy (or higher-dimensional generaliza-
tions), which can be understood as a measure of the number of degrees of
freedom associated with the boundary. One simple calculation that indi-
cates this relation is the holographic calculation of entanglement entropy

for a region of the BCFT that is the interior of a half-sphere centred on the

105Note that other bottom-up constructions for the bulk dual of a BCFT have been
proposed, e.g. [314].

106We note that in the top-down models, there is generally not an explicit ETW brane;
instead, the spacetime can “end” by a smooth degeneration of the internal space; the
ETW brane in the bottom-up model models this higher-dimensional behavior.
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1C) T

A

Figure 7.3: An ETW brane with tension parameter T' enters the bulk at
coordinate angle © in Fefferman-Graham coordinates. Larger T gives a
larger angle ©. Shown in blue is the RT surface computing the entanglement
entropy of the subsystem A which includes the boundary. The area to the
right of the dashed line is proportional to the boundary entropy.

boundary. Holographically, this is computed via the area of an extremal
surface anchored to the half-sphere which extends into the bulk and ends on
the ETW brane. For larger tension of the ETW brane, this brane enters the
bulk at a larger coordinate angle from the vertical in Fefferman-Graham co-
ordinates for the asymptotic region, as shown in Figure As a result, the
area of the extremal surface becomes larger, indicating a larger boundary
entropy.

In our application, we would like to consider the case where the number
of local boundary degrees of freedom is large compared with the number of
local bulk degrees of freedom. In this case, there is an independent way to
motivate the ETW brane picture. Since we are considering the bulk CFT
degrees of freedom to be much fewer than the boundary degrees of freedom,
we expect that in some sense, they act as a small perturbation. Over short
time scales (much shorter than the Page time), the physics of the boundary
degrees of freedom is not significantly affected by the bulk CFT degrees of
freedom. We can think of the d-dimensional geometry of the ETW brane as
the usual holographic dual of the (d — 1)-dimensional boundary system in
its state at a particular time. The (d 4 1)-dimensional system dual to the

bulk CFT-degrees of freedom couples to this system, and this corresponds to
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adding in the bulk (d+1)-dimensional geometry coupled to the d-dimensional
brane. Over long time scales, the bulk CFT degrees of freedom can have a
significant impact (e.g. when the black hole evaporates). Thus, over long
time scales, the full geometry of the ETW brane can be affected significantly
by its coupling to the bulk gravity modes, so it is important to consider the
full (d+ 1)-dimensional system when understanding the long-time dynamics

of the system.

The Randall-Sundrum Planck brane and the effective gravity

picture

As we have reviewed above, a large number of boundary degrees of freedom
corresponds to a large tension for the ETW brane and in this case, the
ETW brane enters the bulk at a very large angle to the AdS boundary. For
the case of a single sphere-topology boundary, the resulting dual gravity
solutions have ETW branes that stay close to the boundary in some sense
(e.g. they correspond to a cutoff surface in a complete AdS spacetime for
which light signals can propagate out to the AdS boundary and back in
small proper time). In this and similar cases, the ETW brane behaves as
a “Planck brane” in the Randall-Sundrum sense [72], cutting off a portion
of the asymptotic region of the geometry so that this part of the spacetime
now terminates with a dynamical brane@ This point of view suggests a
third description of the physics of our situation: from the CFT point of
view, the addition of a Planck brane to a region of the bulk corresponds
to cutting off the CFT in some spatial region and coupling to gravity in
this region. The cutoff goes to infinity at the boundary of the region. This
picture corresponds to the “2D gravity with holographic matter” picture
of [9]. This latter picture most closely aligns with the model in [64]. The
three pictures are summarized in Figure Note that it is this last picture
(Figure [7.1(C)) where the coupling between the black hole system and the

radiation system is strictly at the boundary of the gravitational system.

107t is interesting that BCFTs can provide a microscopic realization of Randall-Sundrum
models; this idea manifested itself in a different way in the recent work |2, [315].
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7.3 Two-dimensional models: static case

In this section, we will consider a very simple system that already exhibits
all of the key features of the entanglement dynamics described in [9, 63, 64].
The system we consider is not an evaporating black hole, but one where
the auxiliary radiation system has the same initial temperature as the black
hole, so that the two systems are in equilibrium. The system we look at has a
static energy density (in a particular conformal frame), but the entanglement
entropy for various subsystems still evolves with time and the entanglement
wedge exhibits a phase transition similar to the ones discussed in [9, 63, 64].

Specifically, we consider a (1 4+ 1)-dimensional BCFT which is in the
thermofield double state with a second copy of this system. This can be
constructed via a path integral on a quarter-cylinder y < 0, 0 < ¢ <
where ¢ is the Euclidean time direction, and the boundary of each CFT is
at y = 0. This is shown in Figure [7.4(a).

To understand the gravity dual, we use the bottom-up prescription where
the boundary system leads to a bulk ETW brane. For (1 4 1)-dimensional

CF'Ts, it is convenient to define
Chdy = 61ng, (7.13)
where In g is the usual boundary entropy. Then, defining

F=2Y (7.14)
Chulk

the tension parameter 7' (defined explicitly in [2]) for the ETW brane is
related to F' and to the angle © in Figure by

T =tanh F =sin© . (7.15)

The dual Euclidean solution corresponding to our state is a portion of

Euclidean AdS, which we may describe using metric (setting Lags = 1)

d 2
ds? = (p? + 1)dy? + pQ—il + p2de? . (7.16)
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Figure 7.4: (a) BCFT path integral defining the thermofield double state
of two (1 + 1)-dimensional BCFTs. (b) Euclidean geometry dual to the
BCFT thermofield double. The red surface is an ETW brane. (c¢) The same
geometry represented as part of Euclidean Poincaré AdS. (d) Lorentzian ge-
ometry of the original state, viewed along the z-axis. Dashed lines represent
horizons on the ETW brane, corresponding to the horizons of the two-sided
black hole represented by the boundary system.
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The specific solution we need was already constructed in [2, 88]. The bulk

Euclidean solution terminates on an end-of-the-world (ETW) brane with

tan ©
y(p) = —arcsinh | — ] , 7.17

where © is related to the brane tension and the number of boundary de-
grees of freedom by (7.15)). The Euclidean geometry is depicted in Figure
7.4(b). The Lorentzian geometry dual to our state is obtained by taking the

geometry of the ¢ = 0, 7 slice of the Euclidean solution as our initial data.

locus

To analyze the extremal surfaces in the Lorentzian version of this ge-
ometry, it will be convenient to change to Poincaré coordinates, via the

transformations

y=1In(r)  p=tan(f) (7.18)

which bring us to spherical Poincaré coordinates and
z =rcosf x =rsinfcos ¢ T=rsinfsing . (7.19)

which bring us to the usual Cartesian Poincaré coordinates in which the

metric is

1
ds* = —2(d22 + dx? + dr?) . (7.20)

z

In these coordinates, the CFT boundary is at 22 + 72 = 1, while the ETW

brane is the surface
22+ 72+ (2 +tan ©)? =sec? O , (7.21)

as shown in Figure (c) We obtain the Lorentzian solution by analytic

continuation 7 — ¢t. This gives
1
ds® = ?(d% + dz? — dt?) (7.22)
with CFT boundary at 22 — t*> = 1, and ETW brane at
22—t + (2 +tan©)? = sec? O . (7.23)
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This is shown in Figure [7.4(d).

Horizons on the ETW brane

Let’s now understand the causal structure of the ETW brane geometry to
map out the horizons of the black hole that it contains. Consider the ETW
brane in the Lorentzian picture, where it is described as the surface in
the metric . We would like to find the future horizon for this surface,
i.e. the boundary of the set of points from which it is possible to reach the
right ETW brane boundary on a causal curve. The lightlike curves on the
ETW brane satisfy

x(t)? — % + (2(t) + tan ©)? = sec? © (7.24)

ORO ST

We find that they are given by

V1—9v?
cos® ’

and

x(t) = vt + 2(t) = |V1— 0%t tvsecO| —tan®  (7.26)

for |u] < 1. The right and left boundaries of the ETW brane are described by
x = +vt2 + 1. The future horizons are the lightlike curves that asymptote

to this for £ — oo. These are the trajectories

~ 1—sin®©

T = =+t z
cos ©

(7.27)

Thus, independent of ©, we have horizons on the ETW brane located at

x = =t and these lie at constant z. The black hole interior can be identified

1—sin®

with the region |z| < ¢, or alternatively z > *>55=.

Extremal surfaces

We would now like to investigate the HRT surfaces which calculate the en-

tanglement entropy associated with the spacetime region spacelike separated
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from the interval [—zg,zo] at t = to (equivalently, the union of intervals
[£x0, +00) at t = tp).
In general, there are two possibilities for this HRT surface. First, we

have the connected surfaces described by the semicircle
t=to, 24t =gk. (7.28)

We can also have disconnected surfaces that end on the ETW brane. We
need to compare the areas to find out which one is the minimal area extremal
surface that computes the entanglement entropy.

It will be somewhat simpler to perform our calculations in the Euclidean
picture and then analytically continue the results to the Lorentzian case.
That is, we will look at geodesics in the Euclidean geometry, evaluate their
length and the length difference between the two cases, and find the phase
boundary for transitions between the two surfaces. The Lorentzian version
of all of these things can be obtained by analytic continuation.lizgl

To find the areas, we note that the area of a geodesic semicircle of coor-

dinate radius R from the point z = R of maximum z to some 2y, 18

1
A(R, zmin) = arccoth -
1— g
1 14 4/1—22, /R?
= 5 o . (7.29)

1- \/ 1_Z§1in/R2

For zmin = € with infinitesimal e, this reduces to In(2R/e).

From this, the area of the connected extremal surface is

21’0

A.=2In (> . (7.30)

€

For the disconnected surface, each part is the arc of a circle which lies at

constant 6, intersecting the ETW brane orthogonally and intersecting one

108WWe have checked that this matches with direct Lorentzian calculations.
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Figure 7.5: Geometry of the ETW brane and half of the disconnected RT
surface in the plane of the RT surface. We have OQ =1 and OA = tan ©.
Thus, AQ = AH = secO. Also HB | AH so AH? + HB? = OA? + OB?.
This gives [ry = (r> —1)/(2r)]|. Now OM = OAtana = tan©tana and
AM = OAseca =tan®seca. So HM = HA — M A = sec ©® — tan © sec a.
Finallyy HM/HB = tana gives ‘T’H =sec® cot o —tan O csc |, while

HP = HBsina gives . The boxed equations allow us to ex-

press z and rg in terms of 7.

of the the points (+xg, 79)['*’| This is shown in Figure
Using basic geometry (see Figure , we find that the extremal surface

has coordinate radius

2

ré—1
= 7.31
m="s (731)
and intersects the ETW brane at z coordinate

cos ©

Zr = 5 7.32

' :;ﬂ +sin® ( )

2:x%+7g.

From (7.29), we find that the area of the disconnected surface (including

where r

10911y the Lorentzian picture, the disconnected RT surfaces lie at constant x/t and are
related by a boost to the circle arc from the point (z = y/z2 —t2,t = 0) to the ETW
brane.
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both parts) is

r2—11+sinO
Ag =21 7.33
d " ( € cos © > (7.33)
The difference in areas between the two possible extremal surfaces is
A A — 9] 22 +738—11+sin© (7.34)
J— fr— n . .
d ¢ 220 cos ©
From this, we see that there will be a transition when
2, 1—5sin©)> 2 (7.35)
xo———— | =———= . :
70 0 cos © 1+sin®

In the Lorentzian picture, this gives the trajectory of the phase boundary

1-sin©\> 2
(aco— cos © > =1 T sme’ (7.36)

as

We can now map back to the original conformal frame (corresponding to
Figure [7.4{a)) where the energy density is time-independent.

Using the coordinate transformations
x = eYcos ¢ T=¢eYsing (7.37)
we have that the phase boundary in Euclidean coordinates is
e sinhy = cos ¢ . (7.38)

Here, ¢ is the Euclidean time, so in Lorentzian coordinates (where 7 is the

time coordinate), this phase boundary becomes
e sinhy = cosh1 . (7.39)

Finally, if we consider an interval [yp, 00) (together with the equivalent in-
terval in the other BCFT), we find that the entanglement wedge for this

subsystem makes a transition to include geometry behind the black hole
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horizon when
n = arccosh(e! sinhyo) ~ F + 1o (7.40)

where the last relation holds for large yg and F'. Thus, for intervals that
include most of the radiation system (when yg is some small order 1 number),
we see a transition at the Page time after which the black hole interior can be
reconstructed from the radiation system. For large yo the time is increased
by an amount which is the time taken for the radiation to reach yg. The
behavior of the transition time is shown in Figure In this frame, the
entanglement entropy is constant after the transition, since each part of the
disconnected extremal surface in this case is just a boosted version of the
extremal surface for earlier times. Thus, the entanglement entropy increases
from the initial time and then remains constant after the transition. Using
the results above, the precise expression for the entropy as a function of time

i<110)

G- { Coulk I (2 cosh 7])2 n < arccosh(ef sinh yg)

€
sinhyg) n > arccosh(e! sinhyp)

\ o (7.41)
21In g + gt In (

e
so we have an approximately linear increase before the transition and a
constant entropy afterwards.

Let’s understand the physics of this phase transition in the behavior
of the entanglement. We have that the energy density in both BCFTs
is completely time-independent. However, the entanglement entropy for
the union of regions = > x( in the two CFTs increases with time, then
undergoes a first order phase transition after which it is constant. The
entanglement wedge initially does not include the black hole system, but
after the transition includes a portion of the interior of the black hole.

Thus, while everything is static from an energy point of view, the state
is evolving in such a way that information about the black hole interior
eventually becomes accessible in the auxiliary radiation system.

To understand this better, it is helpful to recall that for a free field

1OHere, we use that the cutoff surface p = 1/e maps to the cutoff surface z = er in
the Poincaré coordinates. We use this cutoff surface in the equations (7.30) and (7.33) to
calculate the entanglement entropies in the original y-coordinates.
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theory in the thermofield double state, each mode in one copy of the system
is purified by the corresponding mode in the other copy of the system. In
our present case, we expect similarly that the boundary system is initially
purified to a large extent by the other copy of the boundary system, while
the bulk system is purified by the other copy of the bulk system.lTEI However,
as we evolve forward in time, the entanglement structure evolves, and the
information initially contained within the boundary system (describing our
black hole initial state) leaks out into the bulk degrees of freedom, eventually

leading to the transition we observe.

7.3.1 Entanglement wedge after the transition

We would now like to understand where the boundary of the entanglement
wedge lies on the ETW brane after the transition.

Consider a point (zg, 79) on the Euclidean transition surface (7.35)). Just
after the transition to a disconnected minimal area extremal surface, the
part of the surface originating at (xg,79) will end on the ETW brane at
a point (xpr, Thy) = A(xg,79). From Figure we see that the distance

Thr = x%r + Tgr from the origin for this point will satisfy
T=The +TH AT — 2 (7.42)
This gives
2r

T 21+ sin@) + (1-smO) (7.43)

so we have

Thr _ 2
r (23 +73)(1+sinO) + (1 —sinO)
1

xgcos©® + 17

1Here, we are describing the situation relative to the vacuum case. Of course, there is
always an infinite entanglement entropy between the boundary system of one CFT and
the bulk of that CFT.
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where we have used (7.35)) in the last line. Thus, we have

Zo 70

wbr:xocos@—kl Tbr::cgcos@—i-l'

(7.44)

Inverting these relations and plugging the resulting expressions for xy and
70 in (7.35), we find that the points (zpy, 7,) lie on a curve

(1+(1—-sin®)}zf, +2tanO(1 —sin O)xp, + 112, = 1. (7.45)
For the Lorentzian version of the problem, this becomes
(1+ (1 —sin®)})af, +2tanO(1 —sin O)ay, = 7, + 1. (7.46)

Note that zg > \/tgﬁ > tg, so from , we see that we will also have
Ty > tpe. Thus, while the curve crosses the horizon, the part beyond
the horizon isn’t relevant to us. The extremal surface always ends at a point
on the brane that is outside the horizon.

Let’s now calculate the proper distance to the horizon from the inter-
section point (Zp, thr, 2br) on the ETW brane. We can consider a plane
containing the origin and the point (zg,%9) and extending directly inward
in the z direction; in this plane, the geometry is as in Figure where the
outermost point is at distance r = \/ﬁ.

This is the proper distance along the red curve in Figure from H to
the top of the red arc, which lies at

Zmax = Sec©® — tan © . (7.47)
The distance is A
d= 9 Jdz? + dr? (7.48)
Zbr “
Using
2 + (2 + tanh)? = sec’ 4 , (7.49)
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we find that the result is

1 r+1
d= cos@ln (r— 1> . (7.50)

In the yg coordinates and in terms of F', this is

1—e %

d = cosh(F)In (He_y()) (7.51)

We see that for large 1o, the location of the HRT surface intersection with
the ETW brane after the transition is very close to the horizon.

Finally, we can look at the trajectory of the intersection point as a func-
tion of time after the transition. For the interval with left boundary yg in

the y-coordinates, the initial intersection point is at

S
—_ e (7.52)

1+ (1+sin ©)(e2v0—1)

on the curve and the later trajectory follows the curve
2l — 12 = e (1 — zpcos0)? . (7.53)
At late times, independent of yq, this approaches the point
x =t =secO = cosh(F) (7.54)

on the horizon.

The outgoing lightlike curve along the ETW brane from this point is
x = t, while the ingoing lightlike curve along the ETW brane from this
point is simply x = sec® for all ¢ (using the result (7.26)). We note that
the corresponding lightlike curve £ = —sec © on the other side of the black
hole does not intersect this curve, but the ingoing lightlike curve from any
closer point does intersect this curve. Thus, the points ¢ = 2 = sec © are
a distinguished pair of points on the horizon for which the ingoing lightlike
curves barely meet at the future singularity. The late-time intersection be-

tween the entanglement wedge for the radiation system and the black hole
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Figure 7.6: The blue shaded region is the portion of the black hole inte-
rior that is included in the late-time entanglement wedge of the radiation
subsystem |z| > a (in Poincaré coordinates), for any a.

geometry is shown in Figure

7.3.2 CFT calculation

The calculations of the previous section relied on holographic calculations
of the entanglement entropy in a bottom-up holographic model where the
number of boundary degrees of freedom in our BCF'T is related to the tension
of an ETW brane. While bottom-up models in AdS/CFT are widely studied
and known to produce qualitative results that agree with those in systems
that can be studied using a top-down approach, one might worry about
whether our results correctly capture the physics of genuine holographic
CFTs.

In this section, we will attempt to alleviate these concerns by reproducing
our results for the entanglement entropies using direct CF'T calculations,
invoking standard assumptions about the properties of holographic CFTs.

Recall that entanglement entropy can be calculated from Rényi entropies
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using the replica trick:

Coaln) 1
Sa = Jim 8570 =l 3

log Tr[pl4].

The operator p'j can be related to the partition function of the n-fold
branched cover, or replica manifold, of the original geometry. This, in turn,
can be calculated for 2D CFTs by introducing certain twist operators @,
at the entangling points of A [239]. The partition function is given by a

correlator of these twists. For A = [z, 25| for instance, we have

Tr[p] = (Pn(21)®-n(22)) -

In holographic theories, these correlation functions are dominated by the
identity block in some channel. A change in dominance will lead to a phase
transition in entanglement entropy. In an ordinary two-dimensional holo-
graphic CFT, this exchange causes a sudden shift from the disconnected
to the connected entanglement wedge for two disjoint intervals. In a holo-
graphic BCF'T, this exchange can occur for a two-point correlator of twists,
corresponding to the entanglement entropy of a single interval. This is anal-
ogous to the four-point result in a CFT since the two-point function in
a BCFT has the same symmetries as the four-point function, and can be
evaluated using the method of images.

Consider a BCFT with central charge ¢ and boundary condition b on the
upper half-plane (UHP), {S(z) > 0}. We can perform a global transforma-

tion to the complement of the disk of radius R via

w:R(Z_li/z—z) . (7.55)

For simplicity, we also define 9 = w + iR. We then have

w 2 _ p2
 S[a(w)] = HQWR Cwl(z) = -~ (7.56)

* R

>l
N | .

Since we have performed a global transformation, the energy density van-
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ishes:

c c "2 —(3/2)(2")?

= Llmw ==

(T(w) 5

~0. (7.57)

Consider a two-point function of twist operators, ®,(w;), ®_, (ws), in-
troducing an n-fold branched cover with branch cut from w; to ws. The
twists are primary by definition, so the correlation function transforms as

(@ (w1) Py (w2)) i = |’ (20)w (1)~ (B (21) @ (22))ump
_ ‘(19“92)2 —n

R2 (@ (2(w1))P_pn(2(w2)))unp - (7.58)

For holographic BCFTs, the correlator of twists on the UHP can be evaluated
[316], using vacuum block dominance and an appropriate sparsity condition
on the density of states, in a similar vein to [219]. Using this correlator and
the replica trick, the entanglement entropy of the interval A = (—oo,w;| U

[wa, 00) is calculated by

Sa= 7%1—>rnl 1_n 10g<q)n(w1)q)—n(w2)>m
Y10 12
—% 2log’ i —i—min{cgb
2 _ p2 2 p2 2
1og |0 = Bl = B[ R[]
(1917926)2 Hd9€

where g® := —log(0|b) is the boundary entropy, and F is given by (7.14).

We note the relations

r 1+T 1+sin®
e —

_ _ | o—2F _ 2sin ©
V1—T2 cos® ’ 1+sin®"’

which we will use momentarily. Note that the UV regulator € is chosen in

(7.59)

the physical conformal frame, namely the complement of the disk.
We now specialize to the symmetric interval A at some fixed time &(w) =

T0, With wy o = +x¢ + i79. Exponentiating (7.59), a phase transition occurs
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Figure 7.7: Replica calculation of entanglement entropy.

at
(z§ — e_FR)2 + 78 = R*(1 —e2F) (7.60)
2 .
9 cos© 9 2Rsin®
— <l‘0 —1 T S]n@R) + TO = —1 T Sin@ 5 (761)

using (7.59). In Lorentzian signature 73 — —t3, we obtain

2 .
9 cos © 9  2Rsin®
——F R =t —_—. 7.62
(xo 1+sin© ) O—i_l—i-sin@ (7.62)

These phase boundaries precisely match (7.35) and (7.36) for R = 1.

7.3.3 Holographic replica calculation

It is interesting to consider a replica version of the same calculation/'?
In calculating the entanglement entropy, we want to evaluate the Rényi
entropies by calculating the BCF'T partition function on a replica manifold
obtained by gluing n copies of the Euclidean space shown in Figure|7.7 across
the cut. The topology of the replica manifold is a sphere with n boundaries,
as shown in the second figure. Considering a larger and smaller portion of
the radiation system corresponds to enlarging or shrinking the size of the

boundaries relative to the size of the sphere.

H12The observations of this section relating the entanglement wedge phase transition and
the appearance of connected boundary saddles were directly inspired by similar obser-
vations in the JT-gravity context [66]; related observations were made independently by
165].
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Now we can consider performing this path-integral calculation holo-
graphically, using the bottom-up approach where the boundaries extend into
the bulk as ETW branes. In the case of a smaller portion of the radiation
system, the holes in the second picture will be small, and we will have a set
of disconnected ETW branes of disk topology that “cap off” the boundary
holes. On the other hand, as we consider a larger portion of the radiation
system, the circles become large in the second picture, and we expect that
the dominant saddle in the gravitational calculation will correspond to the
topology shown in the picture on the right where we have a single connected
ETW brane with multiple boundary components.

It seems immediately plausible that the transition to this new bulk topol-
ogy is directly related to the transition of HRT surfaces in our original cal-
culation, since the two calculations must agree. However, it also appears
at first slightly confusing: the CFT calculation correctly reproduces the
disconnected bulk HRT surface from the disconnected contribution to the
twist correlation function alone, while this bulk saddle is a complicated con-
nected geometry involving both twist operators. To align the CFT and bulk
pictures, note that the same issue appears when calculating the entangle-
ment entropy of two (or multiple) intervals in the vacuum of a 2D CFT
[219]. There, the higher Rényi entropies are also computed by a connected
bulk geometry [317], but the entanglement entropy is a sum of disconnected
contributions. This is consistent because the semi-classical Virasoro block
describing the connected geometry reduces to the identity exchange in the
limit n — 1. Despite the slightly different setting, the same ideas and kine-
matics describe the BCFT Rényi calculation [316].

Thus, taking into account the second HRT surface that correctly sees
the decreasing branch of entanglement entropy corresponds in the gravity
version of the replica calculation to including non-trivial topologies. Had
we stuck with the original topology (as we would do if treating gravity
perturbatively) it seems that we would get an answer which misses the

transition, and is perhaps more akin to Hawking’s original calculation.
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7.4 2D evaporating and single sided examples

In this section, we continue focusing on two-dimensional models, but gener-
alize the simple example of the previous section to a case where we have a
pure state of a single-sided black hole, and to cases with a dynamical energy
density (as in the example of [9]) that more closely models the physics of a

genuine evaporating black hole.lzgl

7.4.1 Single-sided case

It is straightforward to come up with BCFT examples of single-sided black
holes. For example, Figure [7.8(a) shows a path integral defining the state
of a BCFT with some boundary system (fat red line) with many degrees of
freedom. Here, instead of evolving the full BCFT from 7 = —oo to define the
vacuum state of this system, we only evolve the boundary system from some
finite past Euclidean time, as for the SYK states in [208]. For prior Euclidean
times, we have a different boundary condition (thin red line) that we take to
be associated with a small number of boundary degrees of freedom. At the
transition between these two boundaries we have an appropriate boundary
condition changing operator.

This construction should place the boundary system in a high-energy
state, while the bulk CFT degrees of freedom should be in a lower-energy
state (through they are also affected by the change of boundary conditions in
the Euclidean past). In this case, the dual gravity solution will involve ETW
branes with different tensions, and some junction between branes dual to the
boundary-condition changing operator. This may simply be a codimension-
two surface, or something smoother, as depicted in Figure (b)

It would be interesting to analyze this example in detail. For now, we
point out that we can understand the physics of a very similar example us-

ing the results of the previous section. Figure (c) shows almost the same

H30f course, there are many examples that we can obtain from the previous case via local
conformal transformations which would have non-trivial evolution of the energy density
and may look more like an evaporating black hole. However, in this section, we focus on
examples that are not conformally related to the one in the previous section.
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(a) (b)
(¢) (d)

Figure 7.8: BCFT models for single-sided black holes.
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</ 57
=

Figure 7.9: 2D model for an evaporating black hole.

set-up, but with a different geometry for the path-integral. This picture is
similar to a Zo identification of our set-up from the previous section. If we
choose the lower boundary condition to correspond to a 7' = 0 ETW brane
in the bulk and we choose the boundary-condition changing operator appro-
priately (so that the equation of motion at the codimension-two brane gives
a constraint that the two-types of ETW branes should meet orthogonally),
then the dual geometry for this set-up will be precisely a Zo identification
of the bulk geometries from the previous section, with a zero-tension ETW
brane at the Zj fixed point, as shown in Figure 7.8(d). In this case, all of
our calculations and qualitative conclusions go through almost unchanged.
The only significant difference is that the connected RT surface from the
previous section is now replaced by its Zs identification, which ends on the
T = 0 brane.

7.4.2 Dynamical case

We can also modify our two-sided example in order to introduce time evolu-
tion of the energy density more characteristic of an evaporating black hole.
We would like to have a situation where our auxiliary system starts out in
a state that is closer to the vacuum state, so that the energy in the initial
black hole state will radiate into this system.

A simple construction (similar to that discussed in [9]) is shown in Fig-
ure The left picture shows a state of four quantum systems. The outer
systems are BCFTs with some boundary condition (denoted by a dark red
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boundary) that we imagine has a small boundary entropy. The path inte-
grals shown place these systems into their vacuum state. The remaining part
of the path integral constructs a thermofield double state of two systems,
each of which is a BCFT living on a small interval with different boundary
conditions on the two ends. The dark red boundary condition is the same
as before, but the semicircular boundary (shown bright red) corresponds to
a boundary system with many degrees of freedom as in the example of the
previous section.

In order to make the two-sided black hole evaporate, we consider a mod-
ified system where we glue the systems together as shown on the right side
of Figure . In the final path integral, shown on the right, we are de-
scribing a state of the same system that we considered in the earlier part
of this section. However, since our Euclidean path integral is in some sense
a small modification of the picture on the left, we expect that far away
from the black hole, the local physics of the reservoir system will be similar
to the vacuum. In this case, the energy in the (bright red) boundary de-
grees of freedom will gradually leak out into the reservoir system. The dual
gravitational picture will be that of an evaporating black hole.

In studying the dual system explicitly using the bottom-up approach,
we will now have two types of branes, one with a larger tension correspond-
ing to the bright red boundary condition, and one with a smaller tension
corresponding to the dark red boundary condition. The latter is what [9]
refer to as the Cardy brane. We expect that the behaviour of this system
should match the qualitative picture described in [9], but now it should be
possible to study everything quantitatively. Since the branes only couple to
the metric and we are in three dimensions, the local geometry of the holo-
graphic dual will be that of AdS, and the dynamics of the system will be
reflected in the trajectories of the ETW branes.

Phase boundaries on the annulus

In order to study situations like the previous section, we can apply the

methods of [318, 319] who were making use of a similar Euclidean set-up
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(without the middle boundary) to study local quenches in a holographic
CF'T. For any specific shape of the boundaries in , it is possible to map
the doubled picture describing the full CFT path integral conformally to an
annulus, where the circular boundary maps to the inner edge of the annulus
and the other boundaries (shown in dark red) together map to the outer
boundary of the annulus. We can also map the annulus to a finite cylinder,
so we see that the physics will be related to the physics of the thermofield
double state of a pair of CFTs on a finite interval with different boundary
conditions on the two ends.

We can again start with the global AdS metric in which we know
the ETW trajectories explicitly. Here, though, we consider a finite segment
of the boundary cylinder, with a boundary condition corresponding to ten-
sion T" at y = —L and a boundary condition corresponding to tension 7' = 0
(or some other tension) at y = 0. Changing to Poincaré coordinates as in
Section the CFT region becomes an annulus with inner radius R = e~ %
and outer radius 1, centred at the origin. Also as in that section, the location

of the ETW brane corresponding to the inner boundary is
22+ 72+ (24 Rtan©)? = R?sec’ © , © = arcsin(T) , (7.63)
while that corresponding to the outer boundary is
2ty =1. (7.64)

For sufficiently large L, the two BCFT boundaries are far apart and the
phase boundaries for the transition between connected and disconnected
HRT surfaces are those found previously for the case of a single boundary;
the phase boundary for the transition between a connected surface and a
disconnected surface ending on the inner ETW brane has locus
R(1—sin®)\2 2R?
(ac - 7> + 7

cos © 1 +sin® "’ (7.65)
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while that for the outer ETW brane is
(x+ 1) +12=2. (7.66)

(These are the phase boundaries in the region = > 0; the z < 0 phase
boundaries are given by symmetry about 7 = 0.) As L is decreased to some

critical value

L

I (( (-1+v2)cos© ). (7.67)

1—sin®) + /2(1 —sin©)

the phase boundaries will osculate within the annulus at 7 = 0; for smaller
L, a direct transition between disconnected HRT surfaces ending on the
higher tension brane and surfaces ending on the lower tension brane can
occur (see Figure . The phase boundary between these disconnected

phases is given by

=07, (7.68)

(1 —sin®) —|—Rcos@>

2., 2_
v 7R<R(1—sin®)+cos®

We can now map to a new conformal frame with the desired dynamical
Cardy brane; the phase boundaries should simply be pushed forward using
the appropriate conformal transformation, then analytically continued to
Lorentzian signature. Note [318] that, starting from Poincaré coordinates
s _ di® +d¢dC

R (7.69)

ds

a map ¢ = f(w) corresponds to a coordinate transformation

_ 222(f1)*(f")
Y T
- 42| P

4’f’|2 + 22|f”|2
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Figure 7.10: Phase diagram for annulus with supercritical and subcritical
L respectively. The point (x,y) belongs to one of three regions, depending
on whether the RT surface anchored at points {(x,y), (—z,y)} is connected
(red), disconnected and ending on the inner ETW brane (black), or discon-
nected and ending on the outer ETW brane (light blue).

in the dual asymptotically AdS geometry, which gives a metric

1
ds* = = (dz* + dwdw

+ 22(T(w)dw? + T(w)dw?) + 2*T(w)T(w)dwdw) , (7.70)

where the holographic stress tensors (corresponding to the stress tensors in
the CFT state) are given by

_ 3(f//)2 _ 2f/f/// B _ S(fll)2 - QfIf/” .

="y =iy

(7.71)

Conformal mapping

As a specific example, we can take the “single joining quench” geometry
of [318] and add to it another boundary centered at the origin; this second

boundary is taken to be the image of the inner boundary of the annulus
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Figure 7.11: Example path integral geometry generating a BCF'T state cor-
responding to a two-sided black hole system with dynamical energy density.

under the conformal transformation

2¢

w@)=1""75 - (7.72)

which takes us from the unit disk (with complex coordinate { = = + i7)
to the single joining quench geometry (with coordinate w = Z + i7). An
example of the resulting path integral geometry is shown in Figure [7.11
We note a few important features of such a map. Firstly, the symmetry
r — —x translates to a symmetry £ — —2, and likewise symmetry 7 — —7
translates to symmetry 7 — —7. Secondly, the outer annular boundary
|¢| = 1 maps to the intersection of the slits i[1,00) and —i[l,00), while the

inner boundary maps to

1 42
22 | A2

+77 = 1+ /1 + — . 7.73
T T g cosh? (L) < tanh? (L)) (7.73)

Finally, we note that the energy density with respect to Euclidean time 7 is
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defined by

) 3 5

T(w)+T(w) = K1+ w?? A1+ a?)y
37— 2382 4 1)72 + (82 + 1)?
=3 (s amap )

(7.74)

?

the Lorentzian analogue decays as we move away from the boundary which
represents the black hole.

In the new coordinates, the phase boundary between connected HRT sur-
faces and disconnected surfaces ending on the outer ETW brane is #2472 =
1, while the phase boundary between connected surfaces and disconnected

surfaces ending on the inner ETW brane is

2
(a(fc? +#2) — B — sin @) = (32724 1)? - 472, (7.75)
with
2)2 - _AR?
a = (L+ R (14+ 2111@) AR _ cosh?(L)(1+4sin®) — 1,
. R (7.76)
B = (R) cos © = 2cosh(L) cos O .

If a transition between the two disconnected phases is present, the phase

boundary has locus

9 .9 202 432(1 + ¢2)?

See Figure We can analytically continue ¢ = —i7 to determine the
BCFT boundaries and phase boundaries in Lorentzian signature. For L >

L, the phase boundaries now meet at the point

R o —sin© . 9
- = —1. .
Zo 515 to =1/Z§ (7.78)

For |t| < ty we have three distinct phases, while for || > o we just have the

two disconnected phases. For L < L., we just have the two disconnected
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Figure 7.12: Phase diagram for Euclidean modified (two-boundary) single
joining quench geometry with supercritical and subcritical L respectively.
As before, the point (x,y) belongs to one of three regions, depending on
whether the RT surface anchored at points {(z,y),(—z,y)} is connected
(red), disconnected and ending on the inner ETW brane (black), or discon-
nected and ending on the outer ETW brane (light blue).

phases (see Figure |7.13)).

One can now determine the time-dependence of the entanglement en-
tropy along any desired trajectory. Recall from previous sections that, on
the annulus, the HRT surfaces for symmetrically situated intervals (with in-
ner endpoints (+x, 7)) are circular arcs, and the corresponding entanglement

entropy is given by

In (e(i—ﬂ)) , connected
S(z,7)=<{In <(x2+g(i_§;)£:gn @)> , disconnected T > 0 (7.79)
In (12257;72) ; disconnected T =0,

where we have recalled [319] that the UV regulator € in the physical set-up
requires a position dependent regulator é(z, 7) = |¢/(w)|e in the annular set-
up. It is a simple matter to apply the appropriate conformal transformation
and Wick rotate to Lorentzian signature, whence we recover the expres-
sion for the entanglement entropy of symmetrically situated intervals in the

Lorentzian modified local quench geometry.
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Figure 7.13: Phase diagram for Lorentzian modified (two boundary) single
joining quench geometry with supercritical and subcritical L respectively.
We have simply analytically continued the phase boundaries from the Eu-
clidean case.

7.5 Discussion

In this section we present a few additional observations and some directions

for future work.

7.5.1 A connection to behind-the-horizon physics of black
hole microstates

There is an interesting connection between the transitions in entanglement
entropy that we have observed in this chapter and another type of transition
for entanglement entropy pointed out in [2]. In that paper, the authors
(including some of the present authors) considered black hole microstates
for a holographic CFT on S? defined via a Euclidean path integral on a finite
cylinder, with a boundary at time 7y in the Euclidean past. This corresponds
to the evolution of a boundary state |B) by Euclidean time 79. In the 2D
CF'T case for small enough 7, this state corresponds to a single-sided black
hole at inverse temperature 8 = 79/4, with a time-dependent ETW brane
behind the horizon providing an inner boundary for the black hole.

For these states, the entanglement entropy for an interval can exhibit a

phase transition as the interval size is increased, such that after the tran-
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7N

Figure 7.14: BTZ black hole microstates have the same brane profile and
hence entanglement entropy as the planar black hole dual to a global quench.
The quench geometry is obtained from a local conformal transformation of
the excised disk, so the transition in entanglement entropy for the static
case described above, and the BTZ microstates in [2], are controlled by the
same CF'T correlator.

sition, the entanglement wedge of the interval includes a region behind the
black hole horizon (terminating on the ETW brane). This is somewhat rem-
iniscent of the entanglement wedge transition discussed in this chapter, but
it turns out that there is a precise connection between the two.

If we unwrap the circle on which the CFT lives, we obtain a planar black
hole dual (above the Hawking-Page transition [236]) to the global quench
geometry [237]. The holographic results for entanglement entropy in this
situation are the same as in the compact case, since the gravity dual for
the compact case is just a periodic identification of the gravity dual for the
non-compact case.

The CFT calculation of entanglement entropy in the non-compact case is
carried out via a correlation function of twist operators on an infinite strip.
But a local conformal transformation maps this calculation to exactly the
CF'T calculation in Section used to deduce the phase transition in this
chapter.

We visualize this connection in Figure In the single-sided mi-
crostates, there is a transition in the extremal surfaces as the boundary
region is increased (blue and green regions in Figure . In the CFT, this
can be calculated by a correlator of twists in the large-c limit and simple

spectral constraints [316]. Remarkably, this is essentially the same correlator
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governing the transition in entanglement wedge, as a function of subsystem
size, as the static 2D case described in Section

7.5.2 CFT constructions for duals of higher-dimensional
evaporating black holes

In future work, it would be interesting to study explicitly some higher-
dimensional analogues of the constructions considered in this chapter. We
describe a few specific constructions in this final section. For these higher-
dimensional examples, a detailed study will likely require some numerics as
the bulk geometry will no longer be locally AdS. However, as the geometries

depend on only two variables, such a study should be quite feasible.

BCFT microstate construction

Figure [7.15| shows on the left a Fuclidean path integral for a high-energy
CFT state obtained by placing some boundary conditions in the Euclidean
past (at the red sphere). This corresponds to a black hole with some time-
dependent behind-the-horizon physics, as described in [2]. We have in mind
that the red boundary corresponds to a boundary condition with a large
boundary entropy, so that the holographic description involves a brane with
large tension.

Now we couple this system to a bulk CFT as shown on the right. Here,
we need to introduce an additional boundary component (shown in green)
into the Euclidean path integral. Two possible choices for the topology of
this boundary component are shown. We have in mind that this boundary
has a small boundary entropy, perhaps corresponding to a 7' = 0 brane. This
set-up is the precise higher-dimensional analog of the single-sided set-up of
Section [7.4.1L

In the dual holographic theory, using the bottom-up approach, we will
have a bulk (d + 1)-dimensional gravity action, but also two different types
of d-dimensional ETW branes corresponding to the two different boundary
conditions. Finally, there will be another (d — 1)-dimensional brane that

serves as the interface between the two types of d-dimensional branes. This
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|

Figure 7.15: Higher dimensional construction based on BCFT microstates.
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X x x <X X x x <!

Figure 7.16: Higher-dimensional construction based on CFT-Vaidya states.

can have its own tension parameter independent of the others.

Vaidya-type construction

Another interesting case makes use of the set-up of [270]. Figure shows
on the left a Euclidean path integral for a CF'T state dual to a shell of matter
that collapses to form a black hole. We have insertions of many operators
at some small time in the Euclidean past. Alternatively, we could consider
a smooth source for some operator, again localized around some particular
time 7 = —e. We can take a limit where 7 — 0 but the sources/insertions
are chosen such that we end up with a finite energy state.

Now we couple this system to a bulk CFT as shown on the right. Without
the sources, this path-integral would give the vacuum state of the BCFT.
We expect that the sources mainly excite boundary degrees of freedom, so
the bulk part of the CFT is still nearly in the vacuum state. In this case, we
expect that the state is dual to a shell that collapses to form a black hole

but then evaporates.
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Chapter 8

The Unreasonable

Effectiveness of Branes

A central goal of modern research in theoretical physics is to formulate
a consistent quantum theory of gravity capable of serving as a complete
mathematical description of the universe which we inhabit. The motivation
for this goal is far greater than the mere aesthetic appeal of fitting all known
physical phenomena into a unified framework; rather, it is expected that
detailed knowledge of this complete theory is necessary to understand the
physics of the big bang and of black holes, both of which exhibit strong
spacetime curvature. In the case of cosmology, we are faced with the exciting
prospect that near-term precision measurements will reveal features of the
early universe which are sensitive to physics at very high energies, pointing
the way toward the correct framework for reality (see e.g. [320]). Even
in the absence of data capable of distinguishing between UV complete (or
valid-at-all-energy-scales) theories of quantum gravity, simply formulating
a consistent quantum mechanical description of cosmology or black holes
appears surprisingly challenging; establishing the existence of metastable
string theory compactifications with a positive cosmological constant, which
many believe should feature in our universe, is a source of active research and
some controversy [321-324], while reconciling black hole evaporation with
the unitarity (or information-preserving nature) of quantum mechanics, and
thereby resolving the black hole information paradoz [50, 56], has dominated
research in quantum gravity for decades.

One of the driving forces behind many contemporary developments in

quantum gravity research has been the advent of the AdS/CFT correspon-
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dence [29], an equivalence or duality between theories of quantum gravity
in spacetimes with negative cosmological constant (such as anti-de Sitter or
AdS space) and lower-dimensional, non-gravitating quantum systems (such
as conformal field theories or CFTs). The fundamental insights furnished
by AdS/CFT have been innumerable, but some recent highlights include
the revelation that tools from quantum information theory should play a
central role in understanding the emergence of gravitational physics (e.g.
[42, 44, 144, 146, 301, 308, 309, 325, 326]), and a partial resolution of the
black hole information problem [9, 63-67].

In this thesis, we have used a version of the AdS/CFT correspondence,
applicable to boundary conformal field theories (BCFTs), to address a wide
range of different physical questions. This iteration of the correspondence
has allowed us to use calculations in classical gravity to learn about the
space of boundary conditions for a particular widely-studied supersymmet-
ric gauge theory known as the N' = 4 supersymmetric Yang-Mills (SYM)
theory. It has also permitted us to introduce new dynamical objects, known
as end-of-the-world (ETW) branes, in the gravitational bulk, such that the
standard tools of AdS/CFT may be used to analyze the interesting time-
dependent physics of these objects.

We began in Chapter |3| by studying the space of half-supersymmetric
boundary conditions of the N' = 4 SYM theory with gauge group U(N).
These boundary conditions define theories which correspond to the low-
energy effective description of a stack of N D3-branes ending on stacks of
D5-branes and/or NS5-branes in type IIB string theory. We made use of
the Ryu-Takayanagi formula to perform a holographic computation of a
quantity called boundary F', which can be thought of as characterizing the
number of boundary-localized degrees of freedom in a BCFT, for all half-
supersymmetric boundary conditions. We also computed the same quantity
exactly, using results from supersymmetric localization, for a subset of these
boundary conditions corresponding to the physics of D3-branes ending on
D5-branes only or NS5-branes only. We found precise agreement at leading
order in large N, for all values of the ’t Hooft coupling A, perhaps suggesting

a non-renormalization theorem governing the o/ corrections.
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In Chapter [4, we considered a class of high-energy states of a holographic
CFT prepared by the Euclidean evolution of CFT boundary states. Using
the ansatz of [78, 87, 88|, such states were seen to correspond to black
hole microstates including part of the behind-the-horizon region, with the
second asymptotic region cut off by an ETW brane. We investigated the
time-dependence of the entanglement entropy in these states using the RT
formula, observing that this was able to probe behind-the-horizon physics
for sufficiently large CF'T subsystems in some cases, due to the possibility
for RT surfaces to penetrate the horizon and end on the ETW brane. We
also provided a direct check of the qualitative behaviour of the entanglement
entropy by computing this quantity for analogous states in the SYK model,
and we computed the holographic complexity as a function of time for these
states using both the action-complexity and volume-complexity conjectures.
Observing that the intrinsic geometry of the ETW brane is a big bang/big
crunch cosmology, we proposed that this model could provide an approach to
realizing cosmological physics within AdS/CFT, though we found no regime
within our simple model allowing both brane-localized gravity and a sensible
Euclidean path integral construction.

To further investigate the plausibility of our toy model for holographic
cosmology, we considered generalizations of this model in Chapter [5, aug-
menting the previous model with an additional interface brane and modi-
fications to the gravitational action. We observed that bulk solutions with
a viable cosmological interpretation existed only in the presence of both
modifications, for example in the case with both an interface brane and an
Einstein-Hilbert term added to the ETW brane action. Even in this case,
the required regime of the parameter space enforced a negative value for
the ETW brane Einstein-Hilbert term, though the Einstein-Hilbert term
for the effective theory on the braneworld obtained by integrating out the
holographic direction remains positive.

To pursue the possibility of brane-localized gravity in string theory, we
returned in Chapter [6] to the half-supersymmetric boundary conditions for
N =4 SYM, in order to identify limits of the dual supergravity solutions,

satisfying certain quantization conditions required in string theory, in which
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the ETW brane region could be moved arbitrarily close to the “missing” AdS
boundary, thereby recovering a large region of AdSs x S°. We identified sim-
ple families of such boundary conditions with this property. Likewise, we
considered families of 3D superconformal field theories, preserving the same
supersymmetry algebra as the half-supersymmetric N' = 4 SYM BCFTs,
and identified families of these 3D SCFTs whose dual solutions could pro-
duce arbitrarily large AdSs x S® wedges, a microscopic realization of wedge
holography.

Finally, in Chapter [7, we considered a simple holographic model for an
evaporating black hole inspired by [9], wherein a coupled black hole-radiation
system was modelled by a BCFT with a large number of boundary degrees
of freedom. We used the RT formula to explicitly quantify the information
emitted by the black hole in this model, observing that its time-dependence
was consistent with unitary quantum mechanical evolution, exhibiting a
characteristic phase transition between RT surfaces as predicted by [287].
These observations confirmed that a portion of the black hole interior lies
within the entanglement wedge of the radiation system following the phase
transition, providing a doubly-holographic justification for the island rule
for gravitational entropy.

It is perhaps mildly surprising how many new insights into deep ques-
tions regarding quantum gravitational physics are apparently enabled by
applications of the AdS/BCFT correspondence; in this thesis, we have exam-
ined a few such applications highlighting the “unreasonable effectiveness of
branes”. It appears that these models provide us with a useful and tractable
picture of the physics of holographic BCFTs, and that their further appli-

cation may continue to yield insights into the nature of quantum gravity.
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Appendix A

Appendices for Chapter 2

A.1 Path integral methods

Path integral methods offer a useful approach to calculations in quantum
mechanics and quantum field theory. They play a particularly central role
in the AdS/CFT correspondence, since one of the most useful and explicit
tools for studying holographic systems makes use of the equivalence of path
integrals on two sides of the duality, the GKPW dictionary of (2.100). We
provide a brief introduction to how the path integral will be used in this
thesis; more detailed information can be found in Appendix A of [102] and
Chapters 4 - 6 of [128]. As in the rest of this thesis, we set i = 1 throughout.

States and amplitudes

In quantum field theory, a transition amplitude between two field eigenstates
|61), |¢2) is obtained by evolving the first state and then projecting onto the
second state; an important result is that this is equivalent to a (Lorentzian)
path integral
, P(t=T)=¢2 ,
(0ale " )o0) = [ Do (1) €511 (A1)
P(t=0)=¢1

In principle, ¢ may denote a collection of fields. We are implicitly assuming
a fixed, static background of the form R x ¥;_1, though generalizations can
be made to curved backgrounds.

Similarly, an amplitude with Euclidean evolution by 5 = i7" is equivalent
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to a Euclidean path integral

(dale™?H|o1) = / T gy el (A2)
P(T=0)=¢1
The latter often has better convergence properties, since the exponential
is damped rather than oscillatory off-shell; under sufficient assumptions,
including the requirement that the Hamiltonian is bounded from below, one
anticipates that these should be related by analytic continuation. We will
work exclusively with the Euclidean path integral in the following.

We may define a state of a Lorentzian theory by slicing the Euclidean
path integral. This means that we perform the Euclidean path integral on
a manifold-with-boundary M whose boundary M is the surface X4 1 on
which we would like to quantize the Lorentzian theory, leaving the boundary
condition open. Formally, this procedure defines a wavefunctional W[¢pg],
which should correspond to a state |¥) in the Hilbert space such that ¥[¢pg] =

<¢0|\I}>? via S(OM)=d
[go] = / "D e 5El0] (A3)

Though M could be arbitrary, we are typically interested in the case that
the Euclidean manifold is ¥;_1 times a Euclidean “time” direction, so that
we have the interpretation of a state being prepared by Euclidean time evo-
lution. The simplest example of such a state prepared by a Euclidean path
integral is the (non-normalized) vacuum state, which arises from the semi-

infinite path integral (without boundary in the Euclidean past).

Correlation functions and operator insertions

Euclidean correlation functions of local operators are computed via the Eu-

clidean path integral with operator insertions
(O(1) ... O(zn)) = /ms e=SE0(21) .. O) (A4)

where O(z) are any local operators built from the fundamental fields ¢

and their derivatives. As is clear from the path integral construction, we
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may interpret these correlators as vacuum expectation values of products
of operators ordered relative to the choice of quantization. In the operator
language, this ordering is important; as an example, if we consider a two-

point vacuum correlator

(0]O1 (71, 21)O2(72, 2)|0)
= (01" 01(0, 21)e =) 00, 22)e 72|0) ,  (A.5)

then having non-time-ordered operators 71 < 7o would result in the action
of e H(m=m2) on the state to its right being ill-defined, assuming that the
spectrum of H is unbounded from above.

More general vacuum correlation functions of local operators, including
Lorentzian time-ordered or out-of-time-order correlation functions, may be
constructed using path integrals whose time-contour includes both Euclidean
and Lorentzian sections; these are sometimes called Schwinger-Keldysh con-
tours. However, for the purposes of this thesis, Lorentzian correlators of
interest will be related to Euclidean correlators directly by analytic contin-
uation 7 = ¢t, which is expected to hold under certain technical assump-
tions 114

Operator insertions may also be used in state preparation by a Euclidean

path integral. In this construction, the wavefunctional ¥[¢g] is defined by

P(OM)=do
U(o] = / Do e B0, (21) ... Op(an) (A.6)
where we have inserted operators at specific locations x1,...,x, € M.

Operators, density matrices, and the partition function

Euclidean path integrals with two open cuts formally define operators on the
Hilbert space. An important example is the un-normalized thermal density

matriz pg = e PH  which is defined by performing the path integral over

114This is the content of the Osterwalder-Schrader reconstruction theorem.
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Euclidean time

d(B)=¢2
(d2lpsln) = / D 5519l (A7)

#(0)=¢1
Since the thermal partition function Z(/3) may be computed by taking the
trace of this operator, which in the path integral corresponds to identifying
the 7 = 0 and 7 = 8 surfaces and “sewing them together” by integrating over
field configurations on this surface, we deduce that the partition function is

calculated by performing the path integral on Sé X g1

2(8) = / Déololpsldo) = / D e~ 5sl) (A8)

S,(li’ X2d71

Here, Sé is a circle of circumference 3, sometimes called the thermal circle.

More generally, we may define operators on the Hilbert space by Eu-
clidean path integrals with two open cuts that also contain local operator
insertions. As for the thermal density matrix, we may also compute traces of
these operators by performing the path integral with a periodic identification

of the Euclidean time direction.

The thermofield double

Implicit in the above discussion is a notion of conjugation for states in the
Hilbert space. This is implemented by an anti-linear map ©, which can be
thought of as a CPT map, relating bras and kets. When visualizing the path
integral, the action of this map can be thought of as reversing the orientation
of a given boundary condition. For example, we often implicitly illustrate
kets as path integrals with a free upper boundary condition, and bras as
path integrals with a free lower boundary condition; the inner products then
corresponds to “sewing” together these two path integrals at the boundaries
with the open boundary conditions.

With this in mind, we claim that the un-normalized thermofield double
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Figure A.1: Path integral construction for the thermofield double state on
two copies of S*.

state on two copies of ¥;_1, namely the state

ITFDg)12 = > e PPn/2[n)y|n), (A.9)

is defined by the path integral shown in Figure corresponding to an
evolution by Euclidean time (3/2 followed by the action of CPT on one of
the two boundaries. We can verify this identification by evalutating the

inner product with a general field eigenstate tensor product

({(¢1]1 ® (¢2]2) [path integral)is = (¢o]e PH/2|¢7)
= (galn)(nlg})e PEn/? (A.10)

= ((¢1]1 ® (¢p2]2) [ITFDg)12 ,

which confirms that the two states are equivalent.

A.2 A CFT primer

In this section, we will clarify some definitions relevant to classical and

quantum field theories, and particularly to conformal field theories. We aim
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only for internal consistency, and our terminology will necessarily disagree
with that found in other references. We will be more pedantic in this section
than elsewhere, in order to clearly state and motivate the definition and
properties of conformal field theory in the main text. We implicitly work
in Euclidean signature for concreteness, though the extension to Lorentzian
signature is generally trivial. This section draws on material from [100, 101,
103-105].

Classical field theory: For our purposes, a classical field theory will be
specified by a Riemannian manifold (M, g), a list of fundamental fields {®},
and an action functional S which depends on the fields and their derivatives.
In practice, one might want to demand that the action S satisfy certain
physical assumptions. Under favourable circumstances, one can use these
ingredients to define a statistical field theory (i.e. a Euclidean quantum field

theory) via the path integral.

Diffeomorphism: A diffeomorphism is a differentiable bijection f : M —
N between manifolds M, N whose inverse is also differentiable. One can
state the definition of a diffeomorphism with any chosen degree of differen-
tiability, making it the natural isomorphism between manifolds with that

degree of differentiability.

Coordinate transformation: Given a manifold M with overlapping sub-
sets U, U’ C M and associated coordinate charts ¢ : U — R% and ¢’ : U’ —

R?, one can define a coordinate transformation as the map
¢ o ¢_1|¢(UmU’) cp(UNU) =g (UNU). (A.11)

In pedestrian terms, this is the map between coordinates in one coordinate
chart and another coordinate chart with overlapping domain.

In the following, we will often use the notation

ot — 2P (x) (A.12)
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or simply  — 2/(x), to denote a coordinate transformation; the z# and x*
of course denote the coordinates of ¢(p) and ¢'(p) for a given point p € M
in terms of the standard basis of R. We recall that tensor components
transform under coordinate transformations with suitable factors of the Ja-

cobian %“;lf or its inverse g;j—,‘:. We often denote the transformed field with

a prime, so that for example a vector field transforms under a coordinate

transformation as

ox'H

- Oxv ().

VH(x) — V'*(2)) (A.13)
For compactness, we will frequently suppress Lorentz indices in the remain-
der of this subsection, and denote by R(z,z’) the appropriate product of
Jacobians required for a coordinate transformation of a tensor O(z) with a

given index structure, writing
O'(z") = R(x,2")O(z) . (A.14)

In a statistical field theory, observables like correlation functions should

be invariant under coordinate transformations, meaning that
(O'(z7)...0'(z,)) g = R(z1, 7)) ... R(z, 2},){O(21) ... O(x0))g . (A.15)

The underlying metric ds? = g, datdz” = g dx’tdz’ is of course fixed.

Strictly speaking, a diffeomorphism is not a coordinate transformation;
the two objects have different definitions, and in particular the definition of
a diffeomorphism entails two possibly different manifolds (which could have
different geometry in the Riemannian case). A diffeomorphism can in prin-
ciple be used to define a coordinate transformation, since a diffeomorphism
f: M — N composed with a coordinate chart ¢ : W — R% with W C N
naturally defines a coordinate chart on the manifold M via the pullback
o f: f~Y W) — R On the other hand, a change of coordinates is locally
defined with respect to a single coordinate chart, and there is no general

procedure for reconstructing a diffeomorphism from a manifold M to itself
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given a change of coordinates on M.
Nonetheless, given a coordinate chart ¢ : U — R? with U C M, new
coordinate charts ¢ : U — R? with the same image ¢(U) = ¢/'(U) are in

one-to-one correspondence with diffeomorphisms f: U — U via
¢ =dof. (A.16)

One can think of this diffeomorphism as actively implementing the change
of coordinates; for example, the coordinate change 2’ = (z + y)/v/2,y =
(x —y)/v2 on R? can be implemented in this way by a diffeomorphism
which rotates the plane clockwise by 45°. This correspondence is the ratio-
nale for referring to coordinate transformations and diffeomorphisms of R?

interchangeably.

Isometry: Given two Riemannian manifolds (M, g) and (N, h), an isometry
is a diffeomorphism f : M — N such that ¢ = f*h, where f* denotes the
pullback. In local coordinates, the definition of an isometry implies

oz’ 0x'°
Guv(x) = w%hm(%/) . (A.17)

We are often interested in considering the isometries from a manifold
(M, g) to itself, namely those diffeomorphisms f : M — M satisfying g =
f*g. Defining a coordinate transformation via ¢’ = ¢ o f, this condition
becomes 0u? 9l

@) = G o0 (A1)
or, multiplying by the inverse Jacobians, using that g transforms as a tensor,

and relabelling 2’ as =z,
g:W(.T) = g,uu(x) . (A.19)

An important example is the group of isometries from the Euclidean

plane R¢ to itself, which form the d-dimensional Euclidean group.

Symmetry: We will take the term symmetry to refer to a transforma-
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tion of the dynamical fields in a theory, rather than the coordinates or any
background fields (like the metric or other sources) that might be present,
under which the action is invariant. This may include spacetime symmetries,
which may reflect isometries of the manifold; however, we can always express
symmetries, including spacetime symmetries, as pure field transformations,
and whether or not a transformation is a symmetry is always dependent
on the theory, not just the structure of the base space. For example, we
could always ensure that the isometries of the base manifold are not real-
ized as symmetries of the theory by adding position-dependent sources to

the action.

When the coordinate transformation z — z’ induced by an isometry from
a manifold to itself is a genuine symmetry of a theory, then the correlators

in the statistical field theory satisfy
(O'(x1)...0(2p))g = (O(x1) ... O(21))g ; (A.20)

this expression is more than a statement about covariance under coordinate
transformations, instead representing a non-trivial equality between distinct
correlators in the theory. Of course, the path integral measure must also be

invariant under the symmetry for this equality to hold.

Conformal isometry: Given two Riemannian manifolds (M, g) and (N, h),
a conformal isometry (sometimes called a conformal diffeomorphism) is a
diffeomorphism f : M — N such that Q%g = f*h, with Q : M — R,. The
function €2 is sometimes called a conformal factor. In local coordinates, this
implies b oto
O (2) gy (z) = %?ﬁhuy(x’) : (A.21)
We are often interested in considering conformal isometries from a man-
ifold (M, g) to itself, namely those diffeomorphisms f : M — M satisfying

029 = f*g. With analogous manipulations to the case of isometries, one
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can write
G (@) =0 (@) g (@), () = QP(a). (A.22)

An important example is the group of conformal isometries from the
Euclidean plane R? to itself, which form the Euclidean conformal group
SO(1,d+1).

Weyl transformation: In field theory, a Weyl transformation is a position-
dependent rescaling of the fields, including the metric, which does not change
the coordinates. One typically chooses a spacetime-dependent Weyl factor
Q(z), and posits that the various fundamental fields are primaries of scaling

dimension A, meaning that they transform under a Weyl transformation as

o(x) — Q(m)_AqS(x) ) (A.23)

One is often interested in geometrical Weyl transformations, where the back-
ground metric transforms as g, () — Q2(2)g,. (x); evidently, such a trans-

formation naively changes the geometry, but preserves angles.

Although a Weyl transformation does not meet our definition of a sym-
metry when it changes the background metric, it may be the case that the
action (and path integral measure) are invariant under such transformations;
in this case, we have a non-trivial relation between correlators on the two

different backgrounds related by the Weyl transformation

(O1(21) ... On(wn))a2g = Q21 (21) ... Q72" (2)(O1(21) .. Op(@n))g -
(A.24)

Conformal transformation: We define a conformal transformation in a
field theory to be a conformal isometry, which results in a pointwise rescal-
ing g — w_QgW, composed with a Weyl rescaling with Weyl factor w to
pointwise restore the original metric. Conformal transformations are conse-

quently transformations on a theory with a fixed background, which act on
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primary fields of conformal dimension A and general tensor structure as

Oz’ 11/d
0'(2) = w(z) 2 R(z,7)0(z), wlz)= a% (A.25)
Note that a conformal isometry generally has Jacobian %’fclf = w(z)Sh ()

with S% € SO(d).

A (classical) conformal field theory is a theory whose action is invariant
under conformal transformations, namely a theory with conformal symme-
try. The correlators of primary fields in the corresponding statistical field

theory satisfy
(O'(21)...0'(xp))g = (O(x1) ... O(24))g (A.26)

where O’(2') for a conformal transformation is defined as above.

Given that a field theory is necessarily invariant under conformal isome-
tries, since these are merely diffeomorphisms, conformal invariance can also
be viewed as a statement about invariance under a restricted class of Weyl
transformations, namely those which can arise from conformal isometries of
a given manifold. This implies that a conformally invariant theory has a

non-trivial relationship between correlators on two different backgrounds,

(O(z1) ... O(n))2y = (O'(2) ... O/ (&h))y, Q=102 /0| (A.27)
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Appendices for Chapter 3

B.1 AdS/CFT correspondence: conventions

We here establish various formulae relevant to type IIB string theory. The

Planck scale and string scale are related by
0, =gil, (B.1)

where ¢ is the string coupling and /5 is defined in terms of the string tension
1
L by

2o’

o =1%. (B.2)

s

The ten-dimensional Newton constant is defined as
G = 8n%¢%8 . (B.3)

In the AdS/CFT correspondence relating U(N) N = 4 SYM theory to type
IIB string theory on AdSs x S°, we have that the AdS radius in string frame
is related to the rank of the gauge group by

(L) = dmgNe? . (B.4)

If we make the transformation g, — e ®/ 29, to Einstein frame, including

the asymptotic value of the dilaton ¢ = e®> in ®, this becomes
Ligs = 4TN£2 . (B.5)

In this case, we should use G' = 875¢8 for the Newton constant. The string

coupling (equal to the asymptotic value of e® where ® is the dilaton) is
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related to the Yang-Mills coupling by

4rg = gy - (B.6)

The 't Hooft coupling is
A=giyN. (B.7)

To evaluate the number of units of quantized 3-form flux through a

sphere, we use

1
Npr = —— F: B.8
b5 47202 /Ss 3 (B.8)

and

1
NNSS = Mz@/&“’ HS (B~9)

where F3 and Hj are the R-R and NS-NS three-form field strengths. In the
absence of three-form fields, the number of units of five-form flux through a

five-sphere is given by

1
Np3=-——|[ Fs. B.10
D3~ 16mied /Ss > (B-10)

The analysis of five-form fluxes and their relation to D3-brane charges is
more subtle when three-form fields are present (as they are in the solutions
we consider). See [174, 327] or [175] for a detailed discussion.

B.2 Supergravity solutions: form fields

In this appendix, we review for completeness the gauge fields in the super-
gravity solutions, following the conventions of [175].

The form fields are again expressed in terms of the harmonic functions
h; together with the harmonic duals hZD defined so that

1

A = 5(h{’ +ihy)
1 .

./42 == §(h2 — Zh2D)
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are holomorphic. The ambiguity in choosing hZD corresponds to gauge free-
dom in defining the potentials for the form fields.

The NS-NS 3-form field strength H3 and the R-R 3-form field strength
F3 take the form

Hj :w45/\db1 F3 :w67/\db2 (Bll)

4

where w* and w9 are volume forms on the first and second unit-radius S2s.

The real functions b; are defined in terms of the harmonic functions by
X X
by = 2hE 4+ 2n3he— , by = —2hnP 420 h3— | (B.12)
N 1 N. 2
where

X =i (Buwh10hs — dwhadghy) . (B.13)

The fiveform field strength can be expressed as

Fy = —4f{w"" B A F 4+ 4f2f20® AwST A (x0F) (B.14)

w9123 is the volume form on the unit-radius AdSy, F is a one-form on

Here,
>, and *9 denotes Poincar’e duality with respect to the metric on .
We have that

fiF = dj (B.15)
where

hiha X

j1 = 3C+3C—-3D+
0wC = A10,A9 — A30,A1
D = AiA+ AlA,.

So far, we have assumed that the R-R zero-form potential vanishes, but
more general solutions with non-vanishing axion can be obtained using the

SL(2,R) symmetry of type IIB supergravity.
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B.3 Regularization of the area integrals

In this appendix we explain in detail the regularization procedure used in
computing boundary F' via the RT formula. Given the metric dual to one
of the BCFTs, we can redefine coordinates to place the metric in Fefferman-

Graham form

L2
ds? — ?(dz2 +da? — dt* + d7?) + dQE + O(2%) (B.16)

where the correction terms do not involve dz. We then compute the area of
the z > € portion of the RT surface for a half-ball region of radius R centered
on the BCFT boundary, and subtract half the area of the RT surface for a
ball of radius R in N/ = 4 SYM theory.

Regulated area in the BCFT duals

To calculate the regulated area of the extremal surface corresponding to a
half ball in one of our BCFT duals, we need to understand where the cutoff
surface z = € lies in the coordinates we are using. Representing the AdSy

metric as

1
d&’ids4 = 72(—(1752 + du2 =+ d:EQ)

oy (B.17)

— m(—dtz + dp?® + p*dO% + p?sin® Opdp?)

we will have that the cutoff surface lies at some i, (7, 0). In the full metric,

this AdS4 slice enters as
1
ds® = fi(—(—dt* + du® + dZ*)) + . .. (B.18)
U

Converting to Fefferman-Graham coordinates, this will become asymptoti-

cally
LQ
ds? = ;(d}ﬂ +dz% —dt* +di?) + ... (B.19)
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B.3. Regularization of the area integrals

where z and x| are determined in terms of the other coordinates, and Lags
is the asymptotic AdS curvature scale that will be determined in terms of
the parameters appearing in the metric. Thus, asymptotically, we must have
that

1 Lias
This allows us to fix the cutoff surface as
Umin (1, 0) = —— fa(r,0) . (B.21)

AdS

The locus of the extremal surface in each AdSy slice is p? = u? 422432 =
R?, and the two-dimensional area of the portion of this surface inside the

cutoff is

Ymin )

cos ™1 (= :
/ AL L ( R 1) . (B.22)
0

cos2 § Umin
Using this, we find that the regulated eight-dimensional area of the extremal

surface is given by

Area = 12873 / TR rdrdfp® {1 f3f1 _ R
= o P J1J2Ja Unin(T, 0)

fa(r,0)=RLaqgs/¢€
= —102473 / rdrdf hihs (B.23)
0
RLgs
w0 —F —1
X 8 8 (hlhg) <6f4(7“,(9) )

From this expression, we need to subtract off half the area of the extremal
surface corresponding to a ball in the parent N’ =4 SYM theory. The area
to be subtracted off can be expressed in a similar way to by taking
h1 and hg to be the expressions (3.30) relevant to pure AdS. Since we would
like to subtract off half of the regulated area of the extremal surface in pure
AdS, we can keep only the part for z; < 0 in Fefferman-Graham coordinates,

which translates to the part with » > ry in the coordinates we are using.
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B.3. Regularization of the area integrals

Thus, the regulated half-hemisphere area is

FR9S(r8)<RLaas /e
/ rdrdf h*Shy®

1
—Areapqg = —102473
2 ro

RL
AdSp AdS AdS

Details of the subtraction

In order to evaluate the integrals, it is convenient to split the integration
domain into a part with r € [0, A] and an asymptotic part {r > A, f4(r,0) <
RLags/€}, for some large A that we will take to infinity as e — 0.

For the first part,

Ao RLaas
—102473 O 2 1), B.2
0247 /0 dT/O db rh1h26 15) (hlhg) <6f4(7", 9) ) ( 5)

the first term does not contribute to the final result since it gives an R/e term
that is eliminated by the derivative in the definition (3.4,3.73.8) of boundary
F'. Thus, this part of the integral gives a contribution to boundary F' of

B 25673

A jus
P = / dr / * 40 rhihodwd (hihs) . (B.26)
G 0 0

From this, we subtract off the corresponding integral for pure AdS, so

we have a contribution

25673 (A 2
Fy = G” / dr /0 © 40 rhMSRAIS Y 5 (hAASpAS) (B.27)
0

To evaluate the asymptotic part of the integral (i.e the region with r >

A), we use that the asymptotic form of f; in the general solution is

fa(r,0) = Ar + B(H)% +01/r%), (B.28)
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while the asymptotic form of the integrand is
1
I(r,0) = I,(0)r + 12(9); +0(1/r?) . (B.29)

Then the integral in the asymptotic region takes the form

3 R 1
/ d9/ Ay [11(0)r+12(9)+...]
0 A r
[RLAds
X

eAr

—1+...] , (B.30)

where the omitted terms give contributions that vanish in the limit e — 0

and A — oco. Evaluating the integral for the remaining terms gives

%
/d6’
0

R?LA 45 RLagsA
2¢2 A2 L(6) - €

1,(0)

+ %Il(Q)AQ — I,(6) In (RLAdS> o (B3

eAA

Now, we can check that A, I;(0) and [ dfI5(6) all give the same results for
the general solution and for the pure AdS case with the corresponding L aqs
and rg. Thus, when we perform the subtraction, there are no terms that
contribute from this r > A region in the limits ¢ — 0 and A — oc.

To summarize, our final result is that boundary F' is given by the A — oo
limit of the sum of the two contributions (B.26) and (B.27),

3
Fy— — lim 2561

A 2
lim =2 { /D dr /0 071 hadyd (hiha)

A s
- / dr /0 ’ d@rh{‘dshg‘dsawaw(h{‘dsh;‘ds)}. (B.32)
70
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B.4 Verification of field theory constraints for

linking numbers

In this appendix, we show that for any linking numbers defined in terms of
supergravity parameters as in , the field theory constraints on linking
numbers that are positive are automatically satisfied.

For this appendix, we define M,, to be the number of D5-branes with
linking number L=n-N NS5, where 1 < n < Nygs. We will also let the
indices on the linking numbers {L;, K;} refer to the i*" 5-brane, rather than
the i*h 5-brane stack.

We will prove that for linking numbers violating the inequalities

Jj—1 ]
> (G —n)My <ZKZ, je{l.2,... Nyss}, (B.33)
n=1 i=1

i.e. for which not all of the quantities (3.21)) are positive, there is no set
of supergravity parameters that can give rise to these linking numbers via
(3.44]).

We see immediately that if we define index subset
T={i: L; >0}, (B.34)

then violating the final inequality

Nynss—1 Nnss
Y. (Nyss—n)M, < Y K, (B.35)
n=1 =1

which can be written as

> L <ZK1, (B.36)

i¢T

implies

N=> Li+> L +ZK <> L, (B.37)

i€l 1¢7T i€l
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and therefore

a contradiction, implying that the system of equations has no solution. Here,

we have used that lAi, l%z > 0 and

~ ~ 2 g]% ~
Li=1;—= t <. B.39
7Tzj:arc an( ) < ( )

We would like to check that violating the other inequalities similarly
leads to a system with no solutions. We restrict to the case that K; > 0,
i.e. the first of the inequalities in is always satisfied; this is because
we are interested in configurations which will correspond to theories with
boundaries rather than interfaces. Moreover, we may restrict to the case
that the last of the inequalities is satisfied, since we have already shown
that violating this inequality leads to an insoluble system. To this end, let
us fix arbitrary Nygs > 3; our task is to show that violating the inequality
in indexed by j € {2,..., Nys5 — 1} leads to a contradiction in our
system of equations defining the supergravity parameters. This system is

constituted by the relations

(B.40)

which in particular furnish inequalities

2 gl{l ~ 2 g]%j
K, > = t S L >-= t A B.41
>ﬂ_zj:arcan<b> > ﬂ_zj:arcan<li ( )

J

First, suppose that we violate the inequality indexed by j = 2; that is,
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B.4. Verification of field theory constraints for linking numbers

suppose

Ky + Ko < M. (B.42)

We may assume M; > 0 without loss of generality, so that Li=...=
f/Ml = —(Nnss — 1), and in particular Nps > 0; otherwise, M; < 0 and
K1 + Ky < M; would imply Ky < 0, which is incompatible with (B.40]) and

the assumption that ka, [4 are positive. But since

T gk; T~ gl%j
EKi > zj:arctan ( l} ) , §L1 > — ZB:arctan ( P ) (B.43)

)

il T = 97;?1 9/;?2
——L; — arctan | = — arctan | =
1 2 lj lj

(Nnss — 1)My — K — K»)

by (B.40)), we find

My gl%‘
ZZarctan( l}- ) >

=1 i>3

<.
Il

—~

AV
N3N0

(Nnss —2)My,
(B.44)

contradicting the bound arctan(z) < 7.
More generally, suppose that we violate the inequality indexed by j €

{2,..., Nng5 — 1}; that is, suppose that we have

j—1
Y K<) (j—n)M,. (B.45)

=1 n=1
We may assume that at least one of My, ..., M;_; is positive (since otherwise
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B.5. Corrections to the supergravity approximation

at least one of the K; would be negative). Then, letting M = Mi+...+M;_1,

m

M i M j M k.
Z Z arctan (glA Z) > —g Zf,m—z Zarctan (gA Z)

Jj—1 J
> g ( (Nnss —n) M, — Z&) (B.46)

n=1 1=1
™ iy m
> 5 (Nnss =) > M, = 5 (Nnss = )M,
n=1

again contradicting arctan(x) < 5. This demonstrates our original claim.

B.5 Corrections to the supergravity

approximation

In this appendix, we estimate the size of the corrections to the supergravity
result, following the procedure outlined at the end of Section

B.5.1 Estimating the corrections

Recall that our solutions are generated by the harmonic functions in (3.36),
determined by positive real constants [4,kp. These can be combined to
define Einstein frame metric functions and dilaton field, using (3.26), (3.27),
in Section ; to transform to the string frame, we should multiply
all of the metric functions by e? = e®/2. We begin by determining the
string frame Ricci curvature and dilaton field in the vicinity of a D5-brane
or NS5-brane stack. It will be useful to define
dgkp  m™ d ()

c=m+2 _— = —
i ;l%—l—k% co dlo D3

cala T d (D)
op = 2 =——N3;
p=mt ZA:k%Hg dp dkp D3

(B.47)

note that in the case with only D5-branes one has y¢ = m, and in the case

with only NS5-branes one has dp = 7.
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B.5. Corrections to the supergravity approximation

First, we consider the vicinity of the D5-stack at (z,y) = (l¢,0), and
let Ly denote the distance in the first quadrant X from [~ to the nearest

5-brane stack (or the origin), namely
Lo = A%glc{u/l —lo|, k% + 12,10} . (B.48)

Using polar coordinates (x,y) = (lc + 7 cos 6, rsin§), we therefore have the

expansion

21 lo+14)?
hlzﬂs—[—cﬁln(r2/4l%)—|— lC+Z;IH<EC+A)>

2 ygt 2w for: lo —1a)?
cc 2 CAZA 2 2
o1+ -— -2y A2 L
+ 7 cos ( * omic EA (%-ﬁ))JrO(T/ 0)]

(B.49)
2 2 dpkp

hy = o8 ing (14> B

2 2\/§[Tsm < +7TB (l%+k%)>

41 dpk
2 . c BKB 3,73
+ r“sinf cosé <_7r EB W) +O(r /LO)] .

We therefore have string frame metric functions given at leading order in
r/Lo by

V290 l? 1 V2gvcl?
pz _ gCty . 7 ff _ g7cry rln(4l%/r2)1/2,
4 rin(4d/r2)/? 2
V297cl? 7 sin? 0 (B-50)
2 _ s 2 /,.2\1/2 2 _ [y 2
fl - 2 Tln(4lc/r ) ) f2 297045 1n(4l%/7"2)1/2 )
and dilaton
o2 — V20c ! . (B.51)
cc In(4i2 /r?)
We thereby deduce string frame Ricci scalar at leading order
o R = - [2 iz ). (B.52)
verVg ¢
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B.5. Corrections to the supergravity approximation

We can perform a similar analysis near an NS5-brane stack at (z,y) =

(0, kp), for which we find dilaton and Ricci scalar

26 _ gdp ln(4k]23/7“2)1/2, oR 6

= / = ol (B.53)

at leading order.

The above expressions tell us the minimum radius ry.x past which the
correction terms appearing in the effective action should be suppressed. Ev-
idently, for the D5-brane stacks, the divergence of the string frame curva-
ture implies that we are only justified in ignoring corrections in the region
7 > Tmax With .

Tmax "™~ w ng ’72 s B.54
N (9lene) (B.54)

where W(-) denotes the Lambert W-function, and we suppress order one
numerical factors. The contribution to Fjy from the complementary region

is
/ rdrdf h1hadd(hihy) ~ c2rdr?. In(4lz/r2,.) . (B.55)
0<r<rmax

For the NS5-brane stacks, we see that the curvature corrections will be
suppressed provided we take N ](VDS)S > 1, but will be large throughout the
region r < Ly otherwise; evaluating the contribution to Fjy from a region

within rpax ~ Lo gives
/ rdrdf hihodd(hihy) ~ d%6% L2 In(4k2/L2) . (B.56)
0<r<rmax

Meanwhile, the string loop corrections are small outside the region

ng 52 ]{22
Tmax ™~ g w <g§d%D) s (B57)

and the contribution to boundary F' from the complementary region is
/ rdrdf h1hedd(hihg) ~ d56%r2, In(4k% /r2..) . (B.58)
0<r<rmax
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B.5. Corrections to the supergravity approximation

In cases of interest, we can compare these contributions for each stack to
those appearing in our classical SUGRA calculation of Fjy; if there are terms
in Fy which dominate all of the naive estimates of the corrections from near
the five-brane stacks, then these terms should provide a reliable approxima-

tion to Fjy.

B.5.2 Examples

Here we will consider some examples to illustrate the procedure of compar-
ing the anticipated corrections to the terms appearing in the uncorrected
expression for Fy. To recover a classical supergravity dual in the asymp-

totic region, we should always consider the limit N — oo and A > 1.

Single stack of D5-branes

Suppose we have a single stack of N5 D5-branes, each with linking number
L = N/Ns; here N5 is Q(N°) and O(N). The anticipated correction in the

vicinity of this stack is of order

. Am?L? O(N2 L~1
O N2-W(r2L?) () | = W) k)
W (x2L?) 9, ((N5 1nL)2) L>1
while our uncorrected expression for Fjy is
N2 82 N2 1672 N2
Fy=— 13— —-— —2In{—— || . B.60
9 8[ 3\ N2 n(ANgﬂ (B.60)

When N is taken to be large, we see that the o’-corrections are expected to
be suppressed relative to all terms appearing in the uncorrected Fjy unless
we have L ~ 1, in which case the corrections become comparable. Note
that L = 1 corresponds to the Dirichlet boundary condition for the gauge
theory, which we refer to as a “maximum entropy” boundary condition in
Section 3.6 in that section we will see that the exact evaluation of Fjy for this
boundary condition does indeed demonstrate that Fj receives corrections at

leading order.
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B.5. Corrections to the supergravity approximation

Single stack of NS5-branes

We now consider the case with a single stack of N5 NS5-branes, each with
linking number K = N/Nj; again, N5 is Q(N°) and O(N). The expected o/-
correction is of order O(N?) if N5 ~ 1, and should be subleading if N5 >> 1.

The expected string loop correction is of order

42 K?
S R ).

O (V2 (K2/N2))*) K> N
= O(N?) K~ N; - (B.61)
O(N?) K < Nj

Meanwhile, the uncorrected expression is

N2 A A
F=""l3__2 _om(2)]. B.62
8 [ e n@@)] (B.62)

When N is taken to be large, we see that the a’-corrections and string
loop corrections are both expected to be suppressed relative to the leading
term in Fp, which is order O(N?1n N3), provided that we take N5 > 1.
Moreover, they will also be suppressed relative to the second leading term,
which is O(N?), provided that we take 1 < N5 < K. However, they will
not be suppressed relative to the third term, which is order O(K?), unless
N5 = o(V/K). Note that N5 = N is referred to as a “maximum entropy”
boundary condition in Section in that section, we see that the exact
evaluation of Fjy for this boundary condition demonstrates that the leading
O(N?In N) term is uncorrected while the next-to-leading O(N?) term is

corrected, as we have predicted here.

396



B.5. Corrections to the supergravity approximation

Single stack of D5-branes and single stack of NS5-branes

We will focus here on a specific choice of boundary configuration involving

one stack of D5-branes and one stack of NS5-branes, where we fix
L=-1, K=1, (B.63)

and take N, Nygs to be large independent parameters, with N < Nygs.
We have
Nps = Nygs — N . (B.64)

This is the situation considered in Section 3.6l to illustrate the unbound-
edness of Fy; it is a natural boundary condition to consider in order to
understand a situation where the number of boundary degrees of freedom is
taken to be much larger than the number of bulk degrees of freedom. Given

that the supergravity parameters are given at leading order by

. N N? .~ 272 N? N3
[ = +0(2>, k:”2+0<3>, (B.65)
Nnss Nyss A Nygs Nyss
we find
_ mNNss X Nigs Nnss
1=TE00),  d= NS0 (R (B.66)

and thus an o/-correction of order

47252

(Nnss — N)*W(y*1*) In <W(72[2)

) =0 (Nss) (B.67)

from the vicinity of the D5-brane stack, and a string loop correction of order

52k> 462k2
NagsW <N2> | — i =0 (N¥gs5) (B.68)
NS5 NygsW <7N12vss>

from the vicinity of the NS5-brane stack. We stated in Section [3.6| that the
leading contribution to the uncorrected Fy was O(N3% g5 In Nygs) while the
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next largest contribution is of order O(Nygs5); consequently, we expect only

the leading large Ny g5 term in the uncorrected expression to be reliable.

B.6 Localization integrals

In Section we need to evaluate integrals of the form

N
1 dA;
Ii(a.b,5,.N) = 1 /H L Lima A
T =1

v 2T
Tosinn (500 - 4)) 260n 5
x [[2sinh (5 (X = Aj)) 2sinh (()\i — A]-)>
1<J 2 2
N
1 dX; LN 42
Iy(b,s,N) = — Lo L= N B.69
2(bs. M) = 1 | 1% (8.69)
N b
X 1;[ 2(\; — \;) sinh (2()\1- — Aj)>
1<j
N N
1 d\; _1 <N 2
I3(s,N) = /H e 35 2oim1 N H()\’ _ )\j)Q )
NUJ o V2 i<j
Noting that
. _ N(N-1)
IQ(b,S,N):h_I;I(I)a r Ii(a,b,s,N),
. (B.70)
Is(s,N) =1limb "~ 2 Iy(b,s,N),

b—0

we see it is sufficient to calculate Iy(a,b,s, N), and take the appropriate
limits to recover I(b, s, N) and I3(s, N). Using the identity

ﬁ2sinh (A" - AJ’) =Y (-1 ﬂexp ((N2+1 = aj)Aj> . (B.T1)

i<j oCSy j=1
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we may write

1 N 2 A
Ii(a,b,s,N) ~25 2uim1 A —1)°te
(a,b, 5, N|/H\/§e =z Ny (=)

0,06ESN

exp i [CL(N;— ! —O’j) +b($ —&j)} . (B.72)

j=1

Recalling the Gaussian integration

A\ 12 gy b2/2
250 e = /5e® /2 (B.73)
Vo'

we obtain

Il(a,b,s,N):j\];v' 3 (—1)0+%52jv1 ["(%“’J)“’(L ‘}j)}z

'O',C}ESN
2
P ST o2 ) o252 9)
(B.74)

where ¢’ denotes the relative permutation between o and 6. We therefore
find

N s(a+b)ZN(N+1)2  s(a2+b2)N(N+1)(2N+1)
12

Li(a,b,s,N)=sze" 8 e
N

Z 1)0’ Hesab]cf] (B 75)

o’'eSn j=1

Noting
N

sabjo; __ 75(”]\[ (N+1)2 Sa’b( )

Z H J H2smh > (B.76)
o j=1 1<j
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where we have used our earlier identity (B.71]) with A\; — —sabj, we find

s(a2b2)( )(N—1) b—

= i (B.77)
N s(a®4b?)N(N41)(N-1) ]hl 9 sinh sabj N=i '
frd 2 24
s2e | sin ( 5 ) .
7j=1
We therefore also deduce
2 — sb2 —
Ib,s,N) = s 2 b5 e Gy (N 4 1), (B.78)
and ,
Is(s,N) = 52 Go(N + 1), (B.79)
where one recalls the definition of the Barnes G-function
N—1
[[#=G(N+1). (B.80)
k=1

We can extract the partition function of A" =4 U(N) SYM on S* from

215% = (2m) ¥ Iy <f§g§g,zv) | (B.81)

and the partition function of N' = 4 U(N) SYM on HS* with Neumann

boundary conditions from

2
newn [HSY = (2m)% Lim L (b, M N ) | B.82
Neum. [HS"] (ﬂ)?bggﬁ(bygﬂg, (B.82)
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B.6.1 General NS5-like localization integrals

We also need to evaluate integrals of the form

N5 1y N5—1 nj

VA 4] _ 2mici Aj g
[HSY] 77” / TTT] e HHe i,
j=10=1 j=1 ¢=1
_ 427r2 ZN )\?\75 ; N
e M H(/\Nsﬂ' - >‘N5J) Sh()‘Ns,i - /\N57j)
1<J
Ns—1 1 Ns—1 nj njt1 1
sh? (A\j g — Aio) , (B.83)
j=H1 zgz Ak = 1;[ 1;[ 1;[ ch(Aje = Ajy1,0)
where we recall the notation
sh(z) = 2sinh 7wz, ch(x) = 2coshrx . (B.84)

We are ultimately interested in taking the limit a;; — 0. It will be convenient

to introduce the function

— = ns ,—(2n+1)ro ch%oa) 2 )[ §
he(a) =) (~1)"e =0 (B.85)
n=0 shia) s

We let ng = 0,141 = N for notational ease. Additionally, we denote the
index sets
S, = {na,1 + 1,141 +2,...,7’La} . (B86)
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We will begin by showing that the integral
ns 2mi 33 A
In17---7ns+1 (ala ) 048) = / H d>‘s7j e -1 Zkesi il

ﬁ H Sh2()\s,k - )\s,é) f[ H H Sh()‘s,k — )\S’g)

a=1kJLES, a<bkeS, LeS,
k<t
ng MNs+1
181 (3s7)
ch(Asx — )\
bl =1 s,k s—i—l,ﬁ)
is given by
Z'*ns(na'#»l*ns) -
7, (a1, yag) = (a1, .., )
LyeeesTlst1 1y-..50g I 1y---y9Cs
+ (ns+1 - ns)' " Mot
Hsfl 627’ri04a 2721 )\S+1’0(4)
> = a= 0 X , (B.8%)
0€Sn, 4, [Tace [res, Héesb Sh(Ast1.0(k) = Ast1.0(0)
where we have the recursive relation
H:Ll, ,nS_H(O‘lv oy @) = Py g (1 o+ ag)™
s—1
X Hn2 o1 — m(ag, a), (B.89)

with Hl (041) = hn2 (Ckl)nl

ni,n2

Proof. We can verify this claim inductively. To begin, we determine

Iy my(01) / <Hd/\ WWM>
ny ng

Hsh2 ALk — ALe) HHCh Alk_A”) . (B.90)

k<t k=1/4=1

First, we integrate out the variable Ay 1. Specifically, we would like to eval-
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uate
2miay A - 2 - 1
d\ TIIALL h*(A11 — A1y _—. B.91
/ 1,16 gs ( 1,1 1, )ng Ch()\Ll _ )\QJ) ( )

Noting that the integrand is suppressed in the upper half plane for large ||
(when oy > 0), we may close the integration contour in the upper half plane
and apply the residue theorem. The poles occur at A\j 1 = Agj + (n+1/2)i
for j € {1,...,n2},n € N, and the contribution to the integral from such a
pole is given by

e2mion Kz +(n+1/2)) [T ch?(Ag 5 — Ap)
T172,sh(ha — Aa)

i~ (2= (—q)m—l)=nnz o . (B.92)

Consequently, summing over all of the poles, we find the full integral

n2 - 2miardg,jy H?:12 Ch2()\1,i — A21)

j— (2= D)F2Am=Dp (o) (B.93)
1 no (1 n ) .
2 = [172, sh(A2j, — A2e)
and substituting this into Z; gives
i—(n2—1)+2(n1—1) " ( ) i 627ria1/\2’]-1
na (A1
ny! 2 — Hf;ﬁjl Sh(AQJ‘l — >\2,4)
ni ) ni
/ (H d}\LéeQmmx\u) H Shz()\l,k N )‘175)
(=2 1<k<?t
i i
ch(A1r — A2 j) — | . (B.94)
Pl i Ch(/\l,k — AQ’E)

Applying this approach to each successive integration, we find after inte-
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grating out all of the A;; variables that Z,,, ,, (1) is given by

j—na(n2—n1) (_1)n1(n171)/2

[ony ()™

Z 627rioc1 22:11 A2,j, HZl<b Sh(>\2,jb B )\Z:ja)

) I o iny
i ey shO2gn = o) TLizy, g, s (A2gn, = Aze)
i_nl(ng—nl)

= —m!(ng - [Fng (a1)]™

7”L1!
2

627rz'a1 Z?il )‘2,0(5)

ags%Q | {5 H?inl-l—l Sh(/\Q,a(k) - )\2,0(6)) ’

(B.95)

which indeed is of the desired form.
Now suppose that the claim holds for Z,, . (o1,...,as-1). To de-

termine Ty, . 5., (1,...,a5), we may again apply the residue theorem to

perform the first n; integrals

ni ni
/ (H d)\s/) 627”'(a1+...+as)2211 As,e H sh? Nsk — Asp)
/=1

k<t
S Ns+1 1
ITIT TI st ea—2s0) TT 11 . (B.96)
j=1a€Sy beS; keSy =1 Ch(/\s’k o )‘s+1,€)

which gives

O (0 )]

MNs+1 ] " ni
Z [627"1(‘11+~-~+0‘5) 2=t At H Sh(>‘8+17j£ - )‘S-&-ij)
NFFEny k<t
ni Ng
k=1b=n1+1
Ns+1 Ts+1 —
[ I shOQeirg = Arre) oo I shAerige, — AHL@)} . (B.97)
L#£j1 L£G1500ny
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Substituting this into Zp, . n,.,(a1,...,a4) gives

i_nl(ns+l_n's)[hn1+ns+ns+1 (a1 +...+ag)™

Ns41 271 LD i n
S emilenttan il At TTH sh(Ag1, — Asti)

D VTS e WY N1 71 S WEpR—weys

Ns n
. 2 . N
/ H dAs e 2O Dumnya Aet 2T R0 g Asie
l=n1+1
s—1 MNa+1

H H Sh2 ()\s,k - /\s,ﬁ) H H H sh ()‘s,i - /\s,j)

a=1ng<k<t 1<a<bi€S, JES,
Ns+4+1 1

H H Ch(As,k - )\s+1,2) . (B.98)

k=ni1+1 Z#le ’]”1

Evidently, the integral appearing in this expression is simply

InQ*nl,n?)*nlv--wns-kl*nl (Oég, ceey O‘S) s (B,99)

which by inductive hypothesis is

—(n —n1)(ns41—ns) grs—1
° ° ° an N1y Ns 41— n1(a2"" Ozs)

Z Hs+1

Jny 417 Fins L11<a<b erSa HZES;, Sh()‘8+1,jk - /\5+1,j4)

[I5, €% iy 1 hesi (B.100)

Thus, we have

Ly, (a1, 05) = iins(nsﬂins)[hn1+n5+ns+1 (o + ...+ ag)™
1
H’rslg —N1,..,Nst1—N1 (a27 ey Oés)
<~ [[5-, €7 Xt dsvty [Trlesh(Nst1,, — Ast1,,)

1 F i H?;ggll sh(Xst1j0 = Astre) - H?;;ll sy SH(As+15n, = Ast1,0)
1

+1
Hi<a<b erSu HZeSb Sh()\SJFij - )‘SH,je)

(B.101)
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that is,
jns(nsp1—ms) _ .
oy, nass (a1,...,a5) = mth,,,,ns (a1,...,as)
Z -, 2™ ki Astiott) ( )
= B.102
+1 . )
0E€Sn, [1550 Tkes, [res, shAsv1.0k) = Ast10(0))

which verifies the claim. O

We now claim that performing the integral

S

— 1 - 2micg A
s = n1!...ns!/ <HHd>\a’ée ‘

a=1/=1
S Mng Ma+1

s ng 1
T T2 Care =20 TTTT 11 SOy B9

a=1k<l a=1k=1 (=1
yields
]:_ 22;01 (nZ+1 _nf)(ns+1 —ng+1)
Is = H, al,..., 0
) [[i—o(ret1 — ne)! (n1 i) (01, )
s e27rio¢a Z;lzal Ast1,0(0)
>, o Uomt . (B.104)
UESnSJrl Ha<b HieSa Hjesb Sh(A5+170'(1;) — )‘s—i-l,a(j))
where H,,  n. . (a1,...,as) is an expression involving the hy,(a), given
recursively by
H(n17--~7ns+1)<a17 ceey as)
=Hpyony(01, .- yae)Hy o (oa,. .0 as), (B.105)

and H(m,nz)(al) = hn2 (Oél)nl.

Proof. We can inductively verify our expression for Z, using our previous

inductive result. We have already checked the base case above. Now suppose
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that the claim holds for Z;,_;. We have by induction hypothesis

1 e .
I.=— Hd)\s,gezm%)‘s’f
Ng.: =1
Ns ns Ms+1
2
HSh ()‘s,k sZ H H Ch

ket el r—1 s,k — s+1,€)

i— XiZ0 (ney1—ne)(ns—neqr)

2:é(ne+1 —ny)! Hing,oomy (s 0s-1)

. nq . Ng_1
@21 Y2y Aso(e) | @2Mi0s—1300 51 Aso(e)

, (B.106)
e [locs ILies, [Lies, sh(As o) — Aso(s)
that is,
T, = v Zz;g(n”lfnf)(’%*”ul)H(m’” B )(ala e 7045_1)
s —
o (et — ny)!
Ns
/ (H dAs Z) e et du ... e2mias 302 Asye
/=1
s—1 Niq1 s
IT I 2 Ouw =20 TT IT 11 sk Qi = 2s)
=0 n; <k<t a<bi€Sq jES,
Nns MNs+1
B.107
IH él_{ Ch s,k — )\s+1,€) ( )

But the integral appearing in this expression is of the form encountered in

our previous claim, and is thus given by

1 s (ns+1—"ns) ~

T e (01,0 00) = o S ()
Z HZ:l 6271'7;@(1 Z;:al )‘s+1,a(Z) (B 108)
1 ’ :
0E€Sn, ) H2<b ersa Hzesb Sh()‘s+1,a(k) - )\s+1,a(4))
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SO
P — — 572 — —
g na(ner=na) =2 gmg (epi—ne)(e—ner ) fro (o, o)
S T S '
Hezo(né—i-l —ny)!
7S
Hnl,...,nerl (0117 cee ,Oés)

Hs 627”0” > Ast1,0(0)
a=1

Z Hs+1

0, ,, Ha<b [Tres, [ies, shAst1.0(k) = Ast1,0()

We note that

v

—2
Ns(Net1 — ns) + (o1 — ne)(ns — ngy1)

=0
s—2
= (ns — ng_1)(nsr1 — ns) + Z(W“ —ng)(Nst1 — Neg1)

=0

SO

_ i~ 2o (ne+1—ne)(ns—nz+1)H(n17_”’ns+1)(Oq, ceey Q)
° [Ti—o(rer1 — )
Hs ) e2mica Y0 Ast1,000)
a=
Z +1 ’
€S, H2<b szesa Heesb Sh()‘sﬂ,a(k) - >‘S+1,U(€))
as desired.

(B.109)

(B.110)

(B.111)

O]

Using the above claim to perform all of the integrals except those with

respect to the bulk zero modes, the partition function from the beginning
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of this subsection is

Ng—2
im0 (neri—ne)(nng—neta)

Z[HSY =

125 (nes1 — ne)!

lim H A1,y OUNp—1
0417---706N571—>0 (nl""’”N5)( ’ ’ 5 )

z, o et
/ Hd)\ e gYM H 627”0%2[ LA
H(A,»—Aj)H I sheu—=»x). (B112)

i<j a=14,j€S,
1<J

We may as well take oy = ... = an,—1 before taking the limit. We may

therefore write

Ng—2
i— D0 (i) (g —neq1)

Z|HSY =

Hévzso_l(néﬂ —ny)!

. . —N(N-1)/2
i, g MO ) (@)

I e
Hsh( )H I1 s < Aj)) . (B.113)

1<j c=11,5€85,
1<J

where we let s = % and H,, ,nzv5)(0‘) = H(m’m’nNs)(a,...,a). Again

using the identity -, we may express

N N N5—1
1 - ne
:/ | Id)‘l e 35 > 1)3 | | e27rzacze:1 by,
i=1

c=1
qh< )Hl Hg sh< *”) (B.114)
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as
N 1 <N 2
o ] (fin )
=1
Ns—1 N
H e2mice P YAPY) Z (_1)0' H ea(%—Uj)A]’
c=1 cESN Jj=1
N5 nc*”c—1+1 . .
I ¥ commae=s= o) mas
=1 \0c€Snc—n._; JESe

Performing the Gaussian integrals, one finds

T = (2ms)N/? Z(—1)U Z (—1)7rt-tom
11 He5["(T“’j)“’(%—”w‘—ncfl)+2“<N5—C)a]2 . (B.116)

and thus, defining ¢, = n. —n.—1 (the linking numbers in the case with only
NS5-branes),

sa2N(N—1)(N+1)
T = (2ms)NV/%e 24
o N5 be(te1) (et 1) ~2n2502 TN, (N5 —c) 2L
eﬁi(N+l)saaZ(];\[:51(N5—c)€c Z (_1)0'1+~~-+0'N5
O1,--,0Ny
N
S (=)7[Je e, (BA1T)
ogeSN 7j=1
where

le+1

pj = sab < - UCJ_nC_l) + 2misaa(Ns —¢), j€S.. (B.118)
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That is, using the identity (B.71) above, the Gaussian integral gives
sa?N(N—1)(N+1)
7 = (27s)V/? B S

e 24 Z 1 Le(e—1)(6c+1)—2m2sa? ZC 5 (Ns—c)2£.

N
Z (_1)01+---+UN5HSh <“12_7r“3) . (B.119)

01,--,0Ng 1<J
We therefore have

N5—2
7 Y20 (et —ng)(nng —Te41)

47 _
Z[HSY = " :
[1,20 (nes1 —ng)!
lim lim o V&2 a)(2ms)V/2
a,a—0b—27 (n1,...,nN5)( )( )
sa2 — s 2
o SN DINED o2 5205, Le(Ce=1) (Let1)—272502 002, (N5 —c)2 L

Z (—1 al+ Ao H H <3ab Oc¢,j—ne 217r Uc7i—nc1)>

O1,--,0Ny c=14,j€Sc
i<

H H H Sh[sab 0d,j— nd217T Oc,i—ne 1)

c<di€S: JESy

b(l, — ¢
+sa( d)

y + isac(d — c)] . (B.120)
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Taking the a — 0 and b — 27 limits gives

N2

,

ZIHSY) = i~ Si% *(nesr=ne) (g =nea) <9YM) ’
41

2
g
e XSMZ Zc(zc_1 £c+1 HG2 f +1)
c=1
: —2n2sa? ZN:5 (N5—c)?¢.
(}}L%H(nl,...,mvs)(a)e e=l
Ns £ Ed

HHH(J—Z (e 2£)+Za(d—c)> . (B.121)

c<di=1j=1
Now, we claim that

S nc_nc 1) ns+1 n.s)

iy | I V|

> ((] o Z) - (ns+l - ns) ; (nc - nC—l)

+ia(s+1—c)>

S

N cec—l loir — 0, to—k1 2
=27 ] [((«%H — 6" 1 <+12 +k> ] (B.122)

c=1 k=1

Le
l _ Lc(gs%l*l) *(ferl*ZC)Zc
X 11 <7T> (-1)% 2
ce{l,...,s}
(be—£s+1)=0 (mod 2)
X H (il)u%“Q_(gerl_fc""l)gc .
ce{l,...,s}

(be—Ls+1)=1 (mod 2)

Proof. We may verify this by induction. The base case s = 1 is straightfor-
ward to verify individually for the cases £; — 2 even and odd.

Now suppose that the claim holds for some s = p — 1; then by induction
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hypothesis, we have

(ne—ne—1) (Mp41—np)

p
Oltgl%)Hnlv 7”P+1 H H H
c=1 =1
<(] —Z) (nc_nc 1) (np+1 - p) —f—za(p—}-l —C))

2
0 Lppa 0y —
— hm hn1+np+np+1 par) H H ( . % + iap)
=1 j=1
P el k2
« 9—(np—n1) H [((gp—i-l _ gc)!!)fc H (7"*‘12‘3 + k) ]
c=2 k=1
N Lo
% H (Z) (i]_)%(ZP+1_1)2_(ZP+1_ZC)ZC
ce{2,...,p} m
(Lc—Lp4+1)=0 (mod 2)
X H (—1)262%2*(£p+1*5c+1)5c .
ce{2,...,p}

(be—Lp4+1)=1 (mod 2)
(B.123)

If n1 +ny + npq1 is odd, then 1 — £y 11 = n1 4+ np — np41 is odd, so

0 Lpta 51 0
hm hn1+np+np+1 pa) H H ( : TP —l—iap)
=1 j5=1

20
= 2—n1(_1)%1(€p+1—€1+1) <<;> % <;> N <£p+12— fl)) !

-1 2(41—k)
X (—1)%@1—1) H <€p+1 — 4 + k:) 1 ,

2
k=1
(B.124)
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and thus

) .
lim 175 o@D TT 11

c=1 =1 7j=1
x <(j —i)+ (me = ne-1) ; (Mp1 = ) +ia(p+1-— c))
P . = ot o 2
=0 [T | (s — L)1) Pc+k)
IT (s = o 11 (", )
N e
X H <Z> (_1)%(€p+1—1)2—(fp+1—€c)€c
ce{1,...,p} g
(Lc—Lp4+1)=0 (mod 2)
X H (_1)%2—(4#1—5&-1)& ,
ce{l,....,p}

(be—Lp+1)=1 (mod 2)

which is of the desired form. On the other hand, if ny 4+ n, + n,41 is even,
then

01 Cpyr ;
. . . 1 = £p+1 .
olzgr%) hn1+”p+np+1 (pa)nl q 1_‘[1 <(] - Z) + Tp + ’LOép)
i=1 j=

. —-n 20
_ (2) C(21) 3 -t <1 NPV <£p+12€1)> " (B.126)
2

Lig—1) T (o~ b #ask)
_ 5 1= _Lr- -
X (—1)2 H ( 5 + k) ,

k=1

~
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and thus

) )
i g, L@ I 11

c=1 i=1 7j=1
X <(j _ iy 4 e = ne) 5 (Mt = 10) o1 c))
P , lo—1 iy — 1 k]2
=0 [T | (s — L)1) Pc+k)
IT (s = o 11 (", -
N e
X H <Z> (_1)%(fpﬂ—l)g—(fpﬂ—fc)ﬁc
ce{1,...,p} g
(Lc—Lp4+1)=0 (mod 2)
X H (_1)%2—(4#1—5&-1)& ,
ce{l,....,p}

(be—Lp+1)=1 (mod 2)
again of the desired form. This establishes the claim. O

We can use the above claim in an inductive argument to establish

N5 c
nnn(w CETI)

c<di=1j=1
)ﬁc—k’]2

= 2_211'\7:51717” H [ gd — H (
1 be ) ¢
X H ( ) (_1)76(%—1)2—(&1—&)&

c<d
™
{c<d:l:4=0 (mod 2)}

X H (_1)%2—(&;—55-&-1)65
{e<diloq=1 (mod 2)}

(B.128)

Indeed, the base case N5 = 2 coincides with the base case of the previous

claim. Now, suppose that the claim holds for some N5. Then we have by
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induction hypothesis

N5+1 ZC éd e 6 )
B Hy e ) (@) 1T TI1I < j—1i) 5 tiold - c)>
c<d 1=1j=1

)ec—k] 2
c<d

N
X H (;—) (—]_)76(Zd 1)2*(&1*&)%

{c<d:£.q=0 (mod 2)}
< [I  (pste et
{c<d:lq=1 (mod 2)}

Ns
X lim e (@)

T (60

c=1li=1 j=1

B s

L +ia(Ns +1— c)) ,
(B.129)

so the previous claim provides the desired result. We may therefore deduce

2

, M2
Z[HSY = i~ TS (es1—ne) (s —nes1) <9YM> 2 B s g (0 1)t )
4

Ns N5—1
x HGQ(&H) 27 fimt T
éc_l f 7]6 2
by — L. ¢

c<d

k=1

N Lo

i ‘e 0.
x | | <7T> (-1) (la—1)g—(la—Le)le

{e<dil.4=0 (mod 2)}

Lely

X 11 (—1)72 2~ (labet)le
{e<dil4=1 (mod 2)}
(B.130)
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If we denote
0 4.4=0(mod 2
€og = ca =0( ) , (B.131)
1 fleg =1 (mod 2)
then we can write

2

N
Z[HSY — i 08 (e —ne)(nvg —neta) <9YM> 2 B s g (0 1)t )
47

Ns Ng—1
X HGQ(&H) 97 2i=1 M
Ec_l fd_g écfk 2
T (oo T (55 0) )
c<d k=1

Lely

X (—1)"2 7-[-_(l_ecd)ec2_(£d_£c+ecd)zc]

)

(B.132)
that is,
4 SNy ey &
Z\H = (2m)" &= e
81 = (2 Z e (20
gYM Ns s
e 48 22e2y be(le=1)(Le+1) HGQE +1
=1
Ns
(o)t (T Ceate
I 2 (3)
c<d
e f(:_l Ed _g fc—k 2
(((zd—ec)!!) e k]:[l < 5 —|—/~€> ) (B.133)

B.7 Statistics of boundary F': details

To understand the behaviour of F’ gUGRA, which is easier to analyze analyt-
ically than Fj5 and provides a good approximation for large N and suitable

linking numbers, we will momentarily consider the contribution to the A-
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SUGRA
F, 0

independent term in , proportional to

Fo(pa) =Y |(pa +p2)*In (b4 +p5)?)
A,B

— (pa —pB)*In((pa —pB)2)] ., (B.134)

where py = Ly /N for D5-branes or py = K4/N for NS5-branes. Using

concavity of the logarithm, we find inequality
Fo(pa) 2 Y [(pa +p8)*In (04 + pB)?)
AB

— (pa—pB)*In ((pa + pB)z)}

=8> pappIn(pa + ps)

v (B.135)
>8Z ln2—|—lln —1—1111
> PAPB 5 mpa+ g nps
A,B
=8In2+8) palnps =8In2—8S(pa),

A

where S(pa) is the classical entropy of the probability distribution. The
smallest possible value for the right hand side of our inequality is 8 In(2/N),

realized on the maximum entropy distribution

1

PL=- =PN= - (B.136)

And in fact, for this particular distribution, the inequality is saturated and

one finds )
Fo (pl =...=pN = N) =81In(2/N). (B.137)

We may therefore deduce that Fjy(p4) is minimized for the maximum entropy
probability distribution.
On the other hand, we note that if pi, ps < %, then

0> [(m +p2)’In ((p1 +p2)°) = (p1 — p2)*In ((; —pg)z)] . (B.13Y)
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Whileif% <pi1<land 0<py <1-—p; then
8p1p2 In(4p?) > 2[(291 +p2)?In ((p1 + p2)?)
— (p1 = p2)In (1 — p2)%) | + 493 In(4p3) . (B.139)

Consequently, one finds that if the distribution {p4} has pi,...,py < %,
then
Fo(pa) 0, (B.140)

whereas if p; > % and po,...,pN < %, then

Fo(pa) < 4piIn(4p?) + 2> [(pl +pa)’In ((p1 +pa)?)

A>1
— (p1 —pa)’In((p — pA)Q)} +4 Z P In(4p3)
A>1
+2 ) [(pA +pp)* I ((pa +pB)°)
B>A>1
—(pa—pp)°In((pa —pB)2)] (B.141)
< 4p?In(4p?) + 4 Z P’ In(4p%)
A>1
+23° [(pl +pa)’In ((p1+pa)?)
A>1

— (p1 —pa)’In((p1 — pA)Q)}

< 4p; In(4p7) + 8p1(1 — p1) In(4p}) = 4p1(2 — p1) In(4p}) .

The right hand side of this inequality is a monotonically increasing function,
so it is maximized at p; = 1, where it is equal to 41In4. In fact, the minimum

entropy distribution
=1, p=...=pyv=0 (B.142)
saturates this inequality, and one can see that
Fo(pr=1Lpr=...=pn=0)=4In4. (B.143)
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Thus, Fy(pa) is maximized for the minimum entropy probability distribu-
tion.

We can apply these considerations to determine for which boundary
conditions consisting of D5-branes only or NS5-branes only F gUGRA will be

maximized or minimized. For D5-brane boundary conditions, we found

N2 /3 Y T2 N4 N2
y T 5t e ) EA PA— 15 o(pa) . ( )

The term in parentheses is independent of the choice of boundary condition,
while the remaining terms are both minimized (maximized) on the minimum
(maximum) entropy probability distributions. Thus, we can conclude that
FSUGRA i minimized (maximized) on the minimum (maximum) entropy

probability distributions. Similarly, for NS5-brane boundary conditions, we

found
N? (3 4
SUGRA _
FS = <2 +In < >> ZpA — 7F0 (pa),  (B.145)
so F5UGRA g again minimized (maximized) on the minimum (maximum)

entropy probability distributions.

B.8 Calculation of boundary F' in a bottom-up

model

In this appendix, we will compute the boundary F' in a bottom-up holo-
graphic model of a BCFT where the boundary in the CFT gives rise to
an end-of-the-world (ETW) brane with tension 7. Here, the vacuum so-
lution may be described as a portion of pure AdS spacetime described by

x/z < % in Fefferman-Graham coordinates, with an ETW brane at
T
Vi |

metric as

x/z= 87]. Defining z = w cos(f) and x = wsin(f), we can write the

LideQQ L2AdS
cos?(f)  w?cos?d

ds* = (dw? — dt* 4 dz?) , (B.146)
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and the ETW now appears at § = arcsin(7"). The extremal surface corre-
sponds to the hemisphere w = R; using the result (B.22)), we have that the

regulated area of the extremal surface is

arcsin(7T) do 0
L34 / o ((Foos®) (B.147)
—7t/2+arcsin(e/R) cos? 0 €

From this, we need to subtract off half the regulated area of the hemispher-
ical surface in pure AdS corresponding to a boundary ball of radius R. This
area is

-1

s R Arsin? 6
Areapqs = Lids/o df ———

cos3 @
3 21 R? 2R 9

Using these results and applying the definitions , we find that

L3 T 1. 1+T
Fy = AdS”( +ln+> ) (B.149)

4G 1-72 2 1-T

This gives a monotonic relation between boundary F' and the tension pa-
rameter T', where Fjy is an odd function of 7' and where Fy — 4oo for
T — +1.
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Appendix C

Appendices for Chapter 4

C.1 Derivation of the microstate solutions

In this appendix, we provide details of the calculations in Section [4.2] for the
geometries associated with Euclidean-time-evolved boundary states using

the simple holographic prescription with a constant-tension ETW brane.

Action and equations of motion

The physics of the bulk spacetime and ETW brane can be encoded in an
action S = Spuk + Serw. The first term Sy is the usual Einstein-Hilbert

term, regularised by a Gibbons-Hawking term at the asymptotic boundary:

1

167G d™ Mz \/=g(R — 2A) + SPAe + Scny. (C.1)

Naas

Shulk =

The action on the ETW brane @ is a Gibbons-Hawking term, but for a

dynamical boundary metric,

1

% ddily V —hK + Sgl’la"wr, (CQ)

QeTw

SETW =

where y® are intrinsic coordinates on the brane, hgy, is the intrinsic brane
metric, and K is the extrinsic curvature. The extrinsic curvature is roughly
the derivative the intrinsic metric in the normal direction n,.

More precisely,

Koy =npehey, K= K p,h® el = (C.3)

oy’

Stress-energy on the brane is defined as the variational derivative of the
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C.1. Derivation of the microstate solutions

brane matter action with respect to the intrinsic metric:

2 4 Smatter
ETW __ ETW
TETW — T ohe (C.4)

Varying with respect to g"” and h® [88], we obtain Einstein’s equation in
the bulk and the Neumann condition on the brane:
1
Ryw = 5 R = 8rGT™ — Agu (C.5)
Kap — Khay = 87GTETY, (C.6)

We will focus on constant tension branes, with
StGTE™W = (1 — d)They (C.7)

where the prefactor on the right hand side is chosen for convenience.

Comparison of the gravitational actions: details

To establish the critical value 7. (T") for 79 below which the black hole phase
dominates the path-integral, we need to compare the gravitational action
for solutions from the two phases. For d = 2, this calculation was carried
out in [88] (Section 4) while studying the Hawking-Page type transition for
BCFT on an interval. We now generalize this to arbitrary dimensions.

The Euclidean gravitational action is the sum of bulk and boundary

contributions,

Sp=— 167TG/d+1 9(R — 2A)—% d?zvVh(K —(d—1)T) . (C.8)

For the solitions we consider, the bulk and boundary equations of motion

(C.5), (C.7) imply that

R—2A=-2d (C.9)

and
(K—(d-1)T)=T. (C.10)
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C.1. Derivation of the microstate solutions

For geometries of Schwarzschild form, we have

Vg =rt (C.11)

and with the ETW brane parameterized by 7(r) given by (4.17) or (4.21)
we get

Vh = rd‘l\/f(r) G:)Q " f(lr)

Td_l

70— T2
1 dr
— 4o A2 ar
T
where we have the + or — depending on whether 7 is an increasing or
decreasing function of r.
To regulate the actions, we integrate in each case up to ryax correspond-
ing to z = € in Fefferman-Graham coordinates.
Pure AdS phase: For the pure AdS phase (where f(r) =72 + 1), the

bulk action gives

Tmax

Wd-1 drd - 771 (27(r)) (C.12)

IrG 0

where wgy_1 is the volume of a unit d — 1 sphere and

) T
7(r) = 710 + arcsinh <(r2 n 1)@) . (C.13)

Each component of the boundary action gives

Wag—1 [T, dr
d —_—. 14
877G Jo ) dr (C.14)
Combining these, we have
wy_q1 [Tme= _ _ dr
Spds = G /) dr [drd Lr(r) + ¢ Qf(r)dr]
Wi—1 d Tmax a2 dT
= mazx d -
e {TmaxT(T ) +/0 " dr}
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C.1. Derivation of the microstate solutions

where dr/dr can be read off from (4.21).

Black hole phase: For the black hole phase, we can write the bulk ac-
tion as the full action for the Euclidean black hole up to r = 7,4, (generally
not the same as 7,4, — see below) minus the action for the excised part.

This gives

T
Wd—1 M

81G Jyy

drd-r¢18 — / " drd - rd7127'(7“) (C.15)
T

where 7(r) is given in (4.17). The brane action gives

Wi—1 Tmax d—2 d7-
— — 1
el AR Yo (C.16)
where in this case,
T‘d_2
f(r):r2+1—rg—_2(1+r12q) (C.17)
Combining everything, we get
sBH . -1 e drd~rd‘1é — /maz dr(d - r¢ 17 (r) +rd_2f(r)ﬁ)
4G )., 2 ro dr
Wa—1 /8 d Tmaz d Tmaz Tmaz d—2 d dT
_ Y1 P _ _ d _
e { 5" y rr(r) . /TO r(r*f(r)—r )dr}

where 7 and d7/dr can be read off from (4.17)).
Cutoff surface: In order to compare the actions, we choose both 7,44
and 7,4 to each correspond to the surface z = ¢ in Fefferman-Graham

coordinates. In each case, the z coordinate is related to the r coordinate by

= (C.18)

with the integration constant fixed by demanding that r ~ 1/z at leading

425



C.1. Derivation of the microstate solutions

order for small z. For the pure AdS case, this gives in any dimension

1 €
Tmar = — — — (C.19)
e 4

while for the Euclidean black hole case, we get for example

d=2 1 m2e

3
for d = 2 and
=4 _ 1 e 1, 243 5
Tma:v = g — 1 + gT'H(l + T‘H)E + O(G ) (CQ].)
for d = 4.

Action difference: We can now evaluate the difference
SédS(Ta 7—076) - SgH(Ta 7—076) (C22)

and take the limit € — 0 in order to determine which solution has smaller
action and gives rise to the classical geometry associated with the state.

As examples, we find that for d = 2, we have

1 T w2
. AdS _ @BH _ | _n
121(1)(5’]5 (T, 10,¢) — S (T, 70,€)) 5 [ arctanh(T") 5 + 370
(C.23)
Thus, our states correspond to bulk black holes when
2
79 < —arctanh(7) + T + arctanh?(T) . (C.24)

Here, we assume that the CFT is defined on a circle of length 27. This
critical value of 7y decreases monotonically from 7, (—1) = oo to 7(0) = /2
to 74(1) = 0, as shown in Figure This result agrees with the calculation
of [88] (reinterpreted for our context).

For d = 4, it is most convenient to parameterize the action difference in

terms of ry and T since there can be more than one solution in the black
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C.1. Derivation of the microstate solutions

hole phase with the same T and 75. We find that

4rG . R
AS(rg,T) = Z3 lg%(séds(Ta TH, Tmaz(€)) _SgH(T7 TH, Tmaz(€)))

1 3 Tro(rg,T
= L0+ (e - 2y Dot )

2 1+2r% V1-—T2
+ arctanh(T)] , (C.25)

— L(rH, T)]

+ 1-1T2

where (taking f(r) = r>+1—r%/r?(1+r%) in the formulae below), ro(rg, T)

is defined as above by

f(ro) = T3 (C.26)
and 79(rg,T) is defined as
& Tr
To(rH,T) = /TO drf('r) OENAL (C.27)
and
[ Tr(r? —r2(1+1%)) _ T
Lri, 1) = /TWH,T) a { I — T2 m} - (C)

Evaluating AS(rg,T) for T > 0, we find that for T < T, ~ 0.37505, the
difference AS is positive for rg > r3;(T") where r3;(T") increases monotoni-
cally from r3; =1 at T'= 0 to 7}; = oo at T' = T,.. The corresponding value
of 79 decreases from 7/6 at T'= 0 to 0 at T' = T, as shown in figure .
We note that in cases where there are two solutions in the black hole phase
with the same 7y, the lowest action solution is always either the one with

larger rp or the corresponding pure AdS phase solution.

Lorentzian geometries: general T

In this subsection, we discuss the Lorentzian solutions corresponding to
general values of the parameter T'. We recall that in terms of the proper

time and the variable L = log(r) (where r is the proper radius of the brane),
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C.1. Derivation of the microstate solutions

the equation for the brane trajectory is
L+ V(L) =T? (C.29)
where
V(L) =12 =142 — emd=ln) (1 4 ¢=20m)y (C.30)

So the trajectory L(\) is that of a particle in a one-dimensional potential
V(L) with energy T?. These potentials were displayed in Figure

For d = 2, the potential is monotonically increasing and asymptotes to
1. The Lorentzian trajectories for |T'| < 1 all correspond to time-symmetric
configurations where the brane emerges from the past singularity at r = 0,
reaches a maximum size ro = rg/ m, and shrinks again to r = 0 at
the future singularity. These all have analytic continuations to Fuclidean
solutions as discussed above. For T" > 1, there are no time-symmetric trajec-
tories; the ETW brane size either increases from r = 0 to r = oo or shrinks
from r = 0o to r = 0. These do not come from analytically continued time-
symmetric geometries, and we expect that they do not correspond to the
types of states we have been disucussing.

For d > 2, the potential is monotonically increasing to some value Tfm

2\ d-2 2 1
Tcrit =1+ <> <1 - > — 5 (031)
d ) v (14 3T

We have five classes of trajectories, as shown on the right in Figure [4.11]

>

1, where

The corresponding spacetimes are shown in Figure

| eyt

Figure C.1: Lorentzian ETW branes for various values of T'.
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C.1. Derivation of the microstate solutions

Case a: 0 < T < Ty

For this case, we have time-symmetric solutions which have analytic con-
tinuations to good Euclidean solutions corresponding to some finite positive
Euclidean preparation time. These are the geometries that are most plau-
sibly providing a holographic picture of the microstate geometries for some
legitimate CFT states. The Lorentzian geometry takes the form in Figure
The brane emerges from the past singularity, expands and enters the
second asymptotic region and then shrinks, eventually falling into the future
horizon. The maximum radius of the ETW brane is ry (the minimal radius
in the Euclidean solution), realized at the time-symmetric point ¢t = 0. The

entire trajectory covers some finite amount of proper time given by

70 d
Atot = 2/ S (C.32)
0 VI —F(r)
For d = 2, this gives
- Laas
N2 = TAS C.33
tot m ( )
while for d = 4, we get
_ L 1
A4 — A arecos . (C.34)

V1-T7 V=T +1)2+ 77

The d = 3 result is given in terms of elliptic integrals.

Case b: 1 < T < T, small r branch

For this case, we have Lorentzian trajectories that are qualitatively simi-
lar to the previous case, but we recall that here the corresponding Euclidean
solutions are not sensible (at least without some improvement of the model).
It is possible that these Lorentzian solutions still correspond to some CFT
states, but we do not have a clear argument for this.

Case c: 1 < T < T, large r branch

For these solutions the ETW brane starts and ends at infinite size,
shrinking to a minimum size at the time-symmetric point. We have an

infinitely large portion of the second asymptotic region both in the past and

429



C.2. Coordinate systems for d = 2

the future, so it is unlikely these geometries correspond to pure states of a
single CFT.

Case d: T =Tt

In this case, we have Lorentzian brane trajectories at a constant radius,
and the ETW brane geometry is the Einstein static universe. Here, the
solutions retain the isometry present in the maximally extended black hole
geometry and the physics of the CFT is time-independent. The Euclidean
solutions in this case also have the brane at a constant radius, so the tra-
jectory does not intersect the Euclidean boundary and does not seem likely
to correspond to the class of states we have been discussing. However, it is
interesting that the spacetime picture we have been discussing is similar to
the proposal of [210] for the geometries dual to typical states, so perhaps
the Lorentzian geometries in this case can serve as a model of the typical
states. It is interesting that we are constrained to have the brane at one
specific radius,

T (;l)“ (1+r2)72 (C.35)

Case e: T > Tyt

For these case, there are no time-symmetric ETW brane trajectories, and
we have an infinitely large portion of the second asymptotic region either in
the past or the future, so it seems unlikely that these geometries correspond

to pure states of a single CFT.

C.2 Coordinate systems for d = 2

In this appendix, we give the coordinate transformations relating s — y co-
ordinates in (4.53) which cover the full maximally extended black hole ge-
ometry to the Schwarzschild coordinates.

We first go to Kruskal-type coordinates by defining

1—uv 1 u
r=rg T a0 t o n (C.36)
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C.3. Imaginary time entanglement growth

In these coordinates, the metric becomes (here, we have set Lagg = 1)

4dudv L2 (1 —uw)?
(1+w)? " H (14 uw)?

ds® = — dep? . (C.37)
These coordinates cover the whole extended spacetime. The two boundaries
are at uv = —1, the singularities are at uv = 1, and the horizons are at
uv = 0. The relation to Schwarzschild coordinates in the second asymptotic
region is given by (C.36) with the replacement u <+ v. To obtain the metric

(4.53), we further define

From (4.25), the Lorentzian ETW brane trajectory in Schwarzschild co-
ordinates for the second asymptotic region is given (in the case for 0 < T' <

1) by

1 \/r%[—rz(l—T2)
t = —arctanh
rg TTH

(C.39)

In the u, v coordinates, we find that this becomes (setting L = 1),

v—u
T = . C.40
V14 u2v1 402 ( )

In the s,y coordinates we get simply

y = —arcsin(T) . (C.A41)

C.3 Imaginary time entanglement growth

Imaginary time evolution can generate extremely rapid entanglement growth
even if the Hamiltonian doesn’t couple different degrees of freedom. This
fact severely restricts any conceivable bound on entanglement growth under

imaginary time dynamics.
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C.3. Imaginary time entanglement growth

Consider a decoupled Hamiltonian on N spins of the form

H:ZAl_U’". (C.42)

Spin up is identified with 0 and spin down with 1. The system is divided
into two pieces, left L and right R, with N/2 spins each.
Now define two states as follows. State one is the all down state, the

highest energy state of H,
|th1) = [1---1). (C.43)

State two is an entangled Bell-type state obtained as an equal superposition
of all states |¢;)r ® |¢i)r where |¢);) is a product state with S* = 0 (we
assume N/2 is even). There are approximately 2"/2 such states (a significant
fraction of the full left or right Hilbert space). Note that energy of state one
is NA and the energy of state two is NA/2.

The example is based on the superposition

[h) = V1 — €lib1) + Vela), (C.44)

which can be prepared using a low depth quantum circuit. The entropy of
L or R in this pure state is Ne/2, so if € is very small, then the entropy is

very small. Now consider the imaginary time evolved state
e PHI2|y), (C.45)

Up to an overall normalization, the effect is to exponentially re-weight states

one and two in the superposition,

e PHRI) oc VT = elihr) + Ve N2 ahy). (C.46)
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C.4. Boundary states in a solvable model

The normalized state is

e ) Y e
lePARG)[ | 14 (VPR = 1)1 T 1 (VFB2 1)
(C.47)
Hence the entropy as a function of 3 is
N ceNBA/2

S=— : C.48
2 1+ (eNPA/2 —1)e (C48)

This formula yields extremely rapid entanglement growth; for example, if
€ ~ 1/N so that the initial entanglement is of order a single bit, then the
imaginary time evolution can generate N bits of entanglement in an imagi-
nary time of order %

If the ground state is also added to the superposition, then the entan-
glement depends on the relative size of the coefficients in the superposition.
If the coefficients are roughly the same size, then the ground state will grow
large much more rapidly than the middle energy states. In this case the

entanglement may not ever become very large.

C.4 Boundary states in a solvable model

By considering a simple model with a completely classical Hamiltonian, it
is possible to rigorously establish some claims analogous to those made at
large N for the coupled SYK clusters.

Consider a classical Hamiltonian on N qubits,

H,. = Z Jy 1 OLO; (C.49)

'
r,r!
where classical means that the Hamiltonian is diagonal in a local product
basis. One could add additional terms which are diagonal in the o basis
without changing the subsequent story.

Now consider a generic product state |z) in the of basis. It obeys o¥|z) =
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C.4. Boundary states in a solvable model

xp|x) with z, = 1. When expanding in the z basis, these states are

\/1272 (H 2:21T> 12). (C.50)

Define the imaginary time-evolved states

) =

|z, B) = e PH/2| ), (C.51)
The norm of these states is independent of x:

Ty

<$aﬁ|xaﬁ> = Z (HZ:Q

z T

2
) (zle™PHe|2) = Zo(B), (C.52)

where Z, is the partition function associated with H.. Similarly, one can
show that any moment of H, in the state |z, 3) is independent of x. More
generally, any observable that is diagonal in the o7 basis has an expectation
value in the state |z, ) that is independent of x and given by the corre-
sponding value in the classical statistical problem with weight e =8(zIHel2),
Moreover, every state |z, ) is related to every other state |2/, 3) by a

local unitary transformation. More precisely, we have

/
l—zrx,

N
@, 8) =[] ()= |=.5). (C.53)
r=1

This shows that every state |z,) has the same entanglement for every
spatial subregion independent of x. In particular, even though the states
|z, B) need not be translation invariant, all the entanglement entropies are
if the Hamiltonian H, is.

Finally, by tuning SH. to a classical statistical critical point or into
an ordered phases, it follows that imaginary time evolution can generate
long-range correlations after only a “finite depth” imaginary time evolution.
This is in stark contrast to the situation with real time dynamics, in which
long-range correlations must be established slowly starting from a short-

range correlated state due to causality restrictions. In fact, in one dimension
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C.5. Details of the Action-Complexity Calculation

Araki has established an imaginary time analog of the Lieb-Robinson bound

in which operators are allowed to expand exponentially fast [328].

C.5 Details of the Action-Complexity Calculation

As can be seen in figure the Wheeler-DeWitt patch during each phase is
defined by two null hypersurfaces, N, and N_, anchored at the asymptotic
boundary. Whether these null surfaces intersect the future/past singularity
(S4+/5-), or the ETW brane (Q), determines which phase is being consid-
ered. The problem of calculating the gravitational action on a region with
boundaries is a well studied one (see [248] for a comprehensive review), and
generically we will have terms corresponding to: the enclosed region, the
region’s boundaries, and the joints where boundaries meet non-smoothly.
Here we breakdown each of these terms and state the results before and
after the null boundary counterterm is included.

The first term that one must consider is the Einstein-Hilbert action eval-
uated on the Wheeler-DeWitt patch. In the s,y coordinates this amounts

to computing:

_ 1 dtl, /~op
e e /W oV —g(R = 24)
— —Z;T—HG st dy df sec3(y) cos(s) (C.54)

This term diverges during all phases, since we are integrating all the way out
to the asymptotic boundary. As such, a regulator surface A is introduced
to classify the divergence. In the the s,y coordinates A is the hypersurface
defined by:

A: y=7w/2-9¢ (C.55)

In the limit § — 0 we simply recover our asymptotic boundary. Another
common cutoff method is to set the Schwarzschild radius to some maximum

value, i.e.:

Laas
A: r= 5? (C.56)
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C.5. Details of the Action-Complexity Calculation

Working with Lags = 1, one can convert back and forth between the two

cutoff schemes via the relation:

in(d
5 — _ sin(9) (C.57)
rp sech(rgtr)
One may then ask what the contribution to the action is from this bound-
ary A itself. In general, a non-null boundary, B, contributes a Gibbons-

Hawking-York (GHY) term to the action:

Here, we must be careful to choose the orientation of each hypersurface
consistently so that the relative sign of each action contribution is correct.

For the hypersurface A, a unit one-form normal is chosen to be:

1

= ——=d C.59
A Sin(s) Y (C.59)

Using this the extrinsic curvature is then calculated to be:
Kp = 2cos(0) (C.60)

Solving for the induce metric on A then putting this all into (C.58)) gives

the action contribution:

. rH cot(d)/
Sy = 4G sin(0) Ads df cos(s)

:
= % sech(ritg) + O(8) (C.61)

This term is present during all three phases.
Next we will consider the contribution due to the ETW brane. The
integration limits will be different depending on the phase, however the

form of the action is always the same:

_ 1 d _
So = 87TG/Qd o/ Til(Kg - T) (C.62)
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C.5. Details of the Action-Complexity Calculation

This corresponds to the GHY term for the hypersurface plus a matter ac-
tion. Here, a simplistic matter action for the brane is considered, with the
matter Lagrangian being assumed to be a constant parametrised by the
brane tension T (this follows the approach outlined in [88]) The unit normal

one-form for () is chosen to be:

1
ng=-—————=d C.63
Q Tz (C.63)
Solving for the extrinsic curvature and induced metric we find:
TH T
SQ = 87[_(;1_112/6\?d8 d@ COS(S) (064)

The only remaining non-null hypersurfaces to consider are the past and
future singularities at s = +7. Calculating the contribution here slightly
tricky: the induced metric on S4 vanishes and the extrinsic curvature K4
diverges. However, if we instead considers a hypersurfaces at s = constant
then we can compute the integrate explicitly. When doing this, one finds
that in the limit s — 47§ the measure and extrinsic curvature actually
combine to give a finite, regulator independent, integrand. The unit normal

one-forms to the singularities are chosen to be:
ty = sec(y)ds (C.65)
The measure for a constant s surface is

V|| = iz cos(s) sec (y) (C.66)

and the extrinsic curvature is:
Ky = +tan(s)cos(y) (C.67)

Note that the sign difference here is due to the orientation of S;. Combining

this together, and taking the limit s — 45, we write our GHY term for each
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singularity respectively as:

TH

Sg, = —1L
S G St

dy df sec(y) (C.68)

This corresponds to a total contribution during phase ii of:

Phase ii: S5, +Ss_ = % arctanh(7T") (C.69)

During phase iii the contribution is

Phase iii: Sg, = (rgtr + arctanh (7)) (C.70)

TH
4G
Notice that this calculation did not take into account any nonclassical effects.
One might expect the divergences coming from the introduction of higher
order curvature terms not to cancel away here. These stringy corrections
have not been considered here, however in principle on could introduce a
regulator surface in the same manner done for the asymptotic boundary in
order to classify these divergences/'|

We now move onto the discussion of the null hypersurfaces N, and N_.

These surfaces are defined by the equations:

Ni: s = —y+2arctan (e''R)
N_: s = +y—2arccot (e"'®) (C.71)

The null normal one-forms for these surfaces are chosen to bef!16
ki = ar(fds + dy) (C.72)

Here, a; and a_ are normalisation constants. We also endow each null hy-

persurface with coordinates (A, 6), where 6 is the angular BTZ coordinate

15Some related calculations can be found in [329], wherein the Gauss-Bonnet-AdS black
hole is considered.

H6For brevity, we omit the derivations of these quantities. A thorough examination of
null hypersurfaces can be found in [330].
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and A4 is given by:

1
AL = — tan(y) (C.73)
ot

Altogether, this constitutes an affine parametrization for the null hypersur-

faces. l.e., they solve the affine geodesic equation:

ka:gk® = Kk
=0 (C.74)

Thus, we see that for this parametrization the constant x = 0. The boundary

term for a null hypersurface is typically given by:

1

- d\d* 10 C.75
87G Jy. VK (C.75)

SN, =
However, since we have chosen an affine parametrization this contribution
vanishes.

Next we consider the joints between each of these boundary surfaces. In
principle we have joints where Ny intersect Si, @ and A, as well as non-null
joints (of the type proposed in [331]) at S+ N Q. However, one finds that the
joint terms at Sy N Q and at N4+ N Sy all vanish. The only non-zero joint
terms are from intersections of the null surfaces with the regulator surface
and the ETW brane. These are joints betwen null and timelike hypersurfaces

and so correspond to action contributions of the form:

1
S . — dd*l
joints 87TG/E l‘ﬁa
a = elnlk-n]

¢ = —sign(k-n)sign(k-?) (C.76)

Here k and n are the normal one-forms to the null and timelike surfaces
respectively, and ¢ is some auxiliary unit vector tangent to the timelike
hypersurface. 3 is the co-dimension two hypersurface that is the intersection

between the two boundaries. Computing the contributions for N4 N A, one
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finds that in all phases we have:

ri [ 2sech(rytr) 1
- 1
SNyna + SN_na 4G{ 5 n s

+ tanh(rptg) In <Z:> + 0(5)} (C.77)

Similarly, one can compute the action contribution for the intersections NN
Q. These turn out to be:

sech(rptr)

(C.78)
Where the term for N, N @ is only present during phase i and the term for

r T
Sx.ng = — 2 (/1= T2) (& tanh(rt) + ———

N4 N Q only appears in phase iii.

Unfortunately, if we were to combine together all of the terms above we
would find that the resulting action is dependent on oy and a_. This isn’t
ideal as the quantity we find is not invariant under different choices of the
parametrization of each null surface. Recently, it has been suggested that
a counterterm be introduced to the gravitational action in order to cancel

this dependence on a4 and Q_E

1

_87TG B
1 0y
- 5 (C.79)

Where we introduce such a term for each null boundary B. Here, ~ corre-

d\ d16,/701n |LO|

Scounter

sponds to the null hypersurface’s metric. Just as the complexity=volume
conjecture was only defined up to some relative length scale, this countert-
erm depends on an arbitrary length scale L. For the purposes of this analysis,

we will simply choose to set L = Lags = IPEI For N, the counterterm takes

"7 This counterterm was first proposed in [248] and has since been discussed throughout
the literature. Some more thorough exploration of this counterterm can be found in [332]
and [333].

1830me easy to interpret graphs are provided in appendices of [247] that show the effects
of changing the value of this length scale.
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the form:

r
SN, = —émr sech(rgtpr)

/ d\ In
Ny

= % sech(rgtr) (sinh(rgtr) — ay )

<1+ln

where \; = Ny N A during every phase, and Ay = N, N @ during phase i

ay sech(rptr)

ay sech(rgtr)\ — tanh(rgtg)
(C.80)

Ay

a4
sinh(rgtr) — azA N

or N4 NS4 otherwise. Similarly, the counterterm for N_ can be calculated
using:

Sn_ = —;—ga_ sech(rgtg)

/ dX In

= —% sech(rgtg) (sinh(rutr) + - X)

<1+ln

with A\; = N_ N A during each phase, and Ay being N_ N @ during phase iii

a— sech(rgtp)
a_ sech(rgtr)\ + tanh(rytg)

(C.81)

Ay

o
Sinh(THtR) +a_\ ') N

or N_ N S_ otherwise. Both of these integrals result in many terms, so we
will refrain from including them here.

With all of the individual contributions to the action in place, all that
remains is to combine them all together in accordance with the phases de-
picted in figure and use equation to calculate the complexity.
In doing this, many, many terms cancel, resulting in the simple expressions
stated in equations (4.121) and (4.123) (the phase iii result is stated with

the divergence already subtracted).
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Appendix D

Appendices for Chapter 5

D.1 Brane trajectories

Throughout this appendix, we will be interested in a codimension-1 surface
parametrized by (z,r,z*) = (Z(r),r,z*) in the AdS soliton geometry
2 2 o dr? 2

dsjy = L7 f(r)dz" + 7 + redx,dxt . (D.1)
This may be either an interface brane or an ETW brane; the calculation of
intrinsic geometrical quantities and the extrinsic curvature with respect to
one side will be identical in both cases, so we will not distinguish between
these cases until we come to the equations of motion. We also suppress the
coordinate subscripts that would differentiate between the regions M; and
My in the interface case. We could allow dz,,dz" = 1, dz"dx" to denote the
metric on either flat Euclidean or Minkowski space; the choice of signature

will not affect any of the expressions we derive.

Geometrical quantities

We have tangent vector
et = (Z'(r),1,0), (D.2)

and the rest of the tangent vectors on the brane are just unit vectors span-
ning the x* directions. The induced metric hy, on the ETW brane is of

course

L’ L2f(r
ds?l = C(T’)erz + Tzd.’II,udx” , C(T) = \/1 n L2f(7{c)(2()Z/(7’))2 . (D?))
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D.1. Brane trajectories

The spacelike unit normal vector to the brane with the correct orienta-

tion (pointing out of the region) is given by
e = () (~1, Z/(r), 0) (D.4)

We can now compute the extrinsic curvature

Koy = eliegVn, , (D.5)
using that
L2 lzl / !
Vyn, = L2 2 (Cf ) dz dr + idr dz
+ (sz +d7' + cZ”> dr?® + refZ'dx,dzt .
We find

Ky =e.e,V,n, +e.e,V.n, +ee:Von, +ere.V,n,
/ !
=c <Z” f2f (L2f2(Z2")* + 3)) (D.7)
Kii =ref Z'nii

with all other components vanishing; here, the ¢ appearing in K;; is an
(unsummed) (d — 1)-dimensional Lorentz index. In particular, the scalar

extrinsic curvature is

fl /

K = habK Z//
~a (24

L2 (L2F2(2')? +3)> + (dTl)cfZ’. (D.8)

In some cases, it may be useful to phrase our analysis in terms of deriva-
tives with respect to a proper length coordinate s along the brane in the
(z,7)-plane; that is, we take this to be the coordinate appearing in our

intrinsic parametrization of the brane, which then has metric

ds? = ds* + r(s)*dz,da" . (D.9)
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D.1. Brane trajectories

Such a coordinate is defined by

L2(r) (Z)Q - (Z)Q ~1. (D.10)

We then express the normal vector as n, = L(—7, %, 6), so the non-vanishing

components of the extrinsic curvature may be written as

K= 2% (3 -2 (j))

dz

(D.11)

We note that reversing the orientation of the normal vector used in the
definition of the extrinsic curvature has the effect of reversing its sign; this is
especially important to note when deducing the interface equation of motion.

We will also be interested in features of the intrinsic geometry of the
brane, namely the components of the Ricci tensor and the Ricci scalar. We

find non-vanishing components

R = —(dzl)ccl((:)) . Ry = o) ((d -2)+ TC/(:)> mi, (D.12)

or, in the proper length coordinates,

r’(s)

R = —@-1)

(D.13)

e (7)Y

= o (T + 0= D 5 )

The Ricci scalars are
e(r)? d(r

R = -5 (-2 i)

(s) (s)? (D.14)
=—(d—1) (2 T (d—2) T(8)2> .
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D.1. Brane trajectories

D.1.1 Constant tension branes

We will first consider the case with two branes of constant tension: an
interface brane which divides the bulk into regions 1 and 2, and an ETW
brane which we add to region 1.

Suppose we have the Euclidean gravitational action

_ matter matter
S = Sbulk + Sinterface + SETW

2
1
Sl = ——— d*ay/g (R =2
P 167G ;/ e | D.15
1/ dyV'h [K] o
87'['C;'bulk interface
1
+ —_— dd \/ﬁK,
87 Ghulk /ETW Y
where we take the brane matter actions to be
1—d
N = g [ i
Tbulk Jinterface (D 16)
1— d)A '
Smatter — (/ dd \/ﬁ .
ETW = 81 G Jerw

Here and in the following, the brackets represent the discontinuity [X] =
X1 — X5 across the interface brane. We are also permitting two different
cosmological constants A;, related to the AdS lengths L; by
d(d—1)
AN=——7"——-. D.17
’ 2L, (D.17)
The interface brane trajectory is then determined by the junction con-

ditions
[hab] =0 s [Kab — Khab] = SFGbulkTégterface = (1 — d)/ihab s (D.18)

where we use

2 gSmatter (1 —d)k

Tinterface _ interface

ab T Vh 0ht T 871G

hap - (D.19)
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D.1. Brane trajectories

It can be convenient to rewrite the second junction condition as
[Kab] = Iihab . (D20)

Meanwhile, the ETW brane trajectory is determined by the equations of

motion
Kapy — Khgy = STGNTE™W = (1 — d)Ahgy (D.21)
where we use
matter _
TETW _ iéSETW _ (1 d))\h ' (D.22)

ab \/E Shab 8T Grulk

We can choose to write this equation as
Ko = Ahgy . (D.23)

Details of the interface solutions can be found in [279]; the upshot is
that the first junction condition implies that the r coordinates of the inter-
face brane agree on both sides of the interface, while the second junction

condition yields

dzl dZQ
Lifi— + Lofo— = . D.24
1f1 F 2f2 gs = hT ( )

Using the relations

2 dzz 2 1 dr 2_
Li fi <d5> +ﬁ<ds> =1, (D.25)

we can rephrase this in terms of r-derivatives as

dz 1 1 1
Llﬁz_m (M(f1—f2)+2/<;r> Do
PR 1 1 (D-26)
5 = e (e R+ )
where ) o\ 2
Veg(r) = f1 — (W) . (D.27)
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D.1. Brane trajectories

For the ETW brane, we obtain the rr-component equation of motion

d21

cr(r) fulr)—==rA. (D.28)

Isolating 2 (r), we obtain

dzy A 1

dr — Lifi(r) V) =122

Substituting this into any of the other equations of motion, we verify that

(D.29)

these equations are also satisfied. These equations are similar to those ob-
tained in the [2], though here we consider (d — 1)-dimensional planar rather

than spherical symmetry.

D.1.2 Branes with an Einstein-Hilbert term

We would now like to generalize the set-up of the previous subsection by
introducing Einstein-Hilbert terms on the branes. In particular, we will

now modify the brane actions to

1
Sinterface = i~ / ddy\/ﬁ R(d) + Sirll;ltae?gce
167 Ginterface interface D.30
1 d f (d) matte ( . )
S =— dyvVh R S t
W T 16nGrrw Jerw Y ORI
where we will introduce the constants «,~y defined by
LI L .7 (D.31)
Ginterface  Gbulk Gerw  Ghulk
The Israel junction conditions at the interface then yield
2 45;
[hab) =0, [Kup — Khap) = 87CruiTay . Tap = —— —verfoce (D.32)

\/E 5hab

Notably, this can be interpreted as saying that the junction conditions are
unaffected by the presence of the Einstein-Hilbert term on the brane except

through the modification of the energy-momentum tensor (see Section 2.4
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D.1. Brane trajectories

of [281]), which is now

(1 — d)lﬁ} 1 (d) ]. (d)
T = hap — R, — —R\%h, . D.33
b 8T Ghulk ’ 87 Ginterface ab 2 b ( )
All together, we have
_ (d) 1 (d)
K| = — — h . D.34

On the other hand, the equation of motion for the ETW brane is
Koy — Khay = (1 — d)Ahgy — (Rf;,? - ;R(dmab) : (D.35)
which we may also write as
Kap = Mgy — <jo? - Q(dIRW)th) . (D.36)

Interface brane

As in the constant tension case, the first junction condition for the interface
brane again implies that the r coordinate of the interface brane agrees on
both sides of the interface brane. Now the second junction condition yields,

in terms of the proper length parametrization,

dz dzy a(d—2) [dr\?
Lify s + Lo fo ds <K+ ) <d8> . (D37)

As before, we can combine this with the expressions (D.25) to determine the

derivatives of z1, zo with respect to r; we find

(3)2 P (D.38)
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D.1. Brane trajectories

where y(r) is a root of the equation

o?(d — 2)%y* — 4a(d — 2)ry® — 2(d — 2)« (a(d —2)f2+ 2/-@7“2) >
+4r (a(d —2) fo + 2/{7“2) y+ a?(d—2)%f2 + da(d — 2) forr?
+4r%rt —4(f1 — f2)r* =0. (D.39)

ETW brane

For the ETW brane, we find the ii-component equation of motion

, A v(d —2) ¢1(r)
fi(r)z1(r) = o . (D.40)

and the rr-component

(d—2)rey(r) f1(r)21 (r)
c1(r)? 1(r)z (r
+ 2 (o + LD gz +9))

L 2f1(r)
2 d2)a ((d=3) ()
= (@= )W 4 L1< 2 Cl(r)> . (D.41)

Isolating the derivative z}(r) in the first equation, we find

1

A = AL R o) =R

[(d =29 fi(r) +23%r% = fi(r)

1/2

I et e o 02| (pa)
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D.2. Monotonicity of AzFTW())

D.2 Monotonicity of AzFTW())

We have the derivative

e 1
iA,ZNIETW()\) = lim d/ dr A
dX ro e L) /f(r) —r2X2

_ dro(d) [ A 1 }
Lf(T) f(’l”) — r2) 2l r=rg(\)+e

(D.43)

+ 1/0O dr !
L Jrgoye  (f(r) —r2a2)2 ]

where we have introduced an IR regulator so that the terms in the derivative
as per the Leibniz integral rule are finite, and we are dropping the subscripts
1 and 2 for convenience in this appendix (all quantities involve the ETW

brane, which propagates in region 1 only). The first term goes as

~dro(N) [ A 1 ]
dN LLf(r) \/f(r) = r2X2dr=ro(V)+e
B R L_ Lo, (Dag)
d3/2 (1 _ L2)\2)3/2 \/W

while the second goes as

1 /°° d T
— r
L Jro0)+e (f(r)— 1"2)\2)3/2

_ L2 [ 2 [ro(N)  2VAl(g + 1)} (D.45)
ro(A)(1 — L2A2)3/2La3/2 Ve rE-4 1
where we use
dy 1 1 311
[Famam=pn(patiar) oo
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D.3. Confirmation of ETW /interface non-intersection

2 [ro 2fr(5 +1)

SarV e G- b

FO(e). (DAT)

We therefore obtain (for d > 2)

C2yAl(G+1) L?
P(z—3) ro)— L2232

d

(D.48)

which is manifestly positive, as desired.

D.3 Confirmation of ETW /interface
non-intersection

In general, suppose that we have verified that, for a fixed set of parameters
(L1, p1,u, uye) and A, one has
AFTW(y)

Ro(u,p,e) >0 and rgTW > pint

This does not yet constitute a demonstration that the solution is well-
behaved, because the ETW and interface branes may intersect at some finite
r1. We would like to verify that this does not occur for the solutions in the
limit identified in Section [5.4L

In general, to verify that there are no intersections for some set of pa-

rameters, it suffices to show that

ETW

(zf’TW)'(rl) > (zllm) (r1) for all rg

<r;<o0. (D.50)

Indeed, if by contradiction we had that the above inequality held and that
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D.3. Confirmation of ETW /interface non-intersection

20t (7)) = 2ETW(F)) = Z at some finite 7 > 757", then we would obtain

0= (AP — 2) — (AZFTW _ 3)

_ /-oo drl ((Zint)/(rl) - (ZFTW),(TI)) < 0,

T1

(D.51)

which is absurd.
To show that (D.50) holds, it suffices to show that there is no r; €
r&TW 00) such that (2FTWY (1) = (21" (r1); the fact that the inequality
0 1 1

ETW (

manifestly holds at r1 = rj where we are comparing a finite quantity to

a formally infinite quantity), together with continuity, then implies that the
inequality must hold for all finite r; > T(];:TW.

It is straightforward to find all solutions to the equation (zF"*W)'(r;) =
(218%)/(71) for the models considered in Section letting y = r¢, we obtain

a quartic equation with non-trivial solutions

y _
w1 L3

+(1—(1-2e)u)/ar

+u?((d =20y (1 = 2e(1 — e)(1+ ) — (1 p) (1 - 2€) L)

+u( = (d = 2)y(1 = 2¢)(1+ ) + Li(1 — ) + (d — 2>fy]

X | —4L1(1 — ALy)(1 — u)?

+8e(l —u) (L1 + (d —2)y — 2ul(1 — AL1))

— 8¢? ((d —2)y —3u (L + (d—2)v)

+ u? <3L1 <1 — z)\L1> +(d— 2)fy> )

-1
— 16ue ((d — 2)y —u (Ly + (d — 2)7)) — 8(d — 2)’yu2e4]

(D.52)
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D.3. Confirmation of ETW /interface non-intersection

Ma%: +(1-(1-2e)u) Vaz
T u2((d— 2y (5 — 2e(1 — €)1+ ) + (1 — o) (1 — 2¢) Ly)
+“(—Uﬁ—%ﬂ1—2aﬂ+wO—Lﬂ1—MD+%d—2M]
X 4L1(1 + )\Ll)(l — U)2
+8e(l —u)(—Li+ (d—2)y+ 2uLi(1+ AL1))
— 8¢? <(d —2)y—=3u(—Li+ (d—2)v)
-+u2<—3L1(14—§AL1>-%@i—2){>>
-1
—16ue® ((d —2)y —u (—Li + (d — 2)y)) — 8(d — 2)’}/U264] , (D.53)
where

a1 = (d —2)*7* (1 + pu?(p — de(1 — e)) — 2uu(l — 2¢))
+2(d—2)(1 — pulry (1 —u(l —e— (1= p)AL1))
(1 - L2

ag = (d —2)%y? (1+ pu? (g — 4e(1 —e)) — 2uu(l — 2¢))
—2(d—=2)(1 = p)ulry (1 —u(l — e+ (1 = p)ALy))
+u?(1 — p)2L?.

(D.54)

We are interested in taking the limit identified in Section [5.4] namely

2 d—2
| AL —e~ 2c (A2
1—pu Ly

+1~ 721 — ). (D.55)
We also need to take the limit p — 0 sufficiently quickly, so that p =

O(e%_l). In particular, we focus on the case d > 4, so that u vanishes at

least linearly in e.
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D.3. Confirmation of ETW /interface non-intersection

‘We note that one has in the limit
(d—2)y+uLy ~ (72— 1)1 —u)L; < 0. (D.56)

We therefore find that the leading order contributions to the solutions are

y o (d—2)y+uly

pL?  decLy(1 —wu)(c=2/d — 1)

y  (@d-2)y W 1

mL? 4 (1—wu)(d—2)y+ul

y 1 ) L.

ulLf‘su—u)[‘\/((d‘Q)Ll “> Fd=2 g

N (D.57)

—u+(d—2)L1]

- _9) ) +ad-2) L

I 81— [\/<<d )L, )*‘“d A5
—u+(d—2);].

It is straightforward to see that all of these quantities are negative, with
the first diverging and the last three converging to finite quantities, so we

cannot have any intersections at finite 1 in this case.
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Appendix E

Appendices for Chapter 6

E.1 Size of the internal space in the ETW brane

region

The fact that the compact spherical directions in the “bag” or “ETW brane”
region of the geometries of interest in Chapter [6] cannot be suppressed rel-
ative to the AdSy scale has already been noted by Bachas and Lavdas in
[292] (following previous related comments by Bachas and Estes in [295]).
As remarked by these authors, this property is related to the issue of scale
separation in the context of flux compactifications (see e.g. [334-336]). More
generally, it is a broad prediction that in holographic theories with super-
symmetry, the R-symmetry is geometrized at the AdS scale (see e.g. [337]).
For the sake of completeness, we will here provide a direct argument for these
assertions in the context of the supergravity solutions considered in this note,
based on the formulation of the reduced BPS equations by D’Hoker, Estes,
and Gutperle in [172,173]. Our conclusions will apply to the solutions dual
to the 3D N = 4 SCFTs of Gaiotto-Witten [89, 90], first studied in [175],
as well as the boundary and interface solutions studied in [174].

Our goal is to show that it is not possible to simultaneously have f2/f? <
1 and f7/f} < 1in any region of the spacetime unless that region is locally
AdSs x S®; the conclusion is therefore that at least one of the S? factors
of the internal space remains large relative to the AdSy scale in the ETW
brane region.

In the following, we will be relying on the conventions of [172], introduc-

ing only the ingredients necessary. We may write the complex axion/dilaton
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E.1. Size of the internal space in the ET'W brane region

P and connection () one-forms as

P = paea ’ Q= Qaea ’ (El)

and the anti-symmetric five-form and three-form tensors F(5) and G as
Fis) = fa (_6012311 I 5%6456%) G = gae™ iyt (E.2)

where the e are wedge products of the appropriate vielbeins; the indices a, b
are summed over the Riemann surface X directions. It is demonstrated in
[172] that, for solutions with 16 supersymmetries, one can always apply an
SU(1,1) S-duality transformation to a frame where the axion field vanishes

and the dilaton is real; this corresponds to the reality conditions

Da =Das Ga = Ya, Ba:hav Ga =0. (E?’)

The metric functions f1, fa2, f4 may be expressed in terms of a (Grassmann-

even) spinor degree of freedom (equation (6.18) of [172])

€=<g>, §*=<g>, a,BeC, (E.4)

in terms of which we have (equation (6.26) of [172])

fr=¢€¢=aa+Bp
fr=-véle'¢ = —v (af + Ba) (E.5)
fo=—¢lo*¢ =i (Ba—ap)
where v € {1} (the sign will be irrelevant when we compare ratios of metric
functions fZ, f2 and f7).
Suppose there is some neighbourhood of a point (w, ) in the interior of
our geometry where f2/f2 < 1 and f2/f? < 1; we will restrict to consid-

ering this neighbourhood for the remainder of the subsection. In this case,
we must have either |a| < |g]| or |8| < || throughout the neighbourhood.

456



E.1. Size of the internal space in the ET'W brane region

Indeed, using polar coordinates

o = aet B = be' | (E.6)
we have
ﬁ = m‘ cos (61 — 62) |
(E.7)
jij = a22—clb—bl)2‘ sin (61 — 62) |,
and since
(51117192 max{| cos (61 — 62) |, | sin (61 — 62) |} = \}5 , (E.8)

we must have % < 1, which requires a < b or b < a.
On the other hand, the dilatino BPS equation (equation (6.28) of [172])
gives
dp,a+ (g, —ih,) =0, 4p.8— (9. +ih,)a =0, (E.9)
with z,Zz frame indices. These two equations together imply either that

P =¢g.=h,=0o0r

4p.
g, — th,

4p.
g. + ih,

: (E.10)

i
«

o
B
with the latter contradicting the conclusion that |a| < |5] or || < |¢].
We therefore must have that the special condition p, = g, = h, = 0 holds
throughout the neighbourhood we are considering@ But as shown in Sec-

tion 6.9 of [172], that condition alone necessarily implies that the geometry

is pure AdS5 x S°, with (subject to a particular choice of normalization)

a=e V2, B =ie"V/? (E.11)

19Note that we could have avoided this condition by requiring that one of fi/fi or
13/ but not both was small; in this case, we would not necessarily require that |a| < |8
or |f] < |a|, but could instead have that a8 was almost pure real or pure imaginary.
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E.2. Justification of condition

and metric functions
f1=2siny, fa=—2cosy, fa=2coshzx, (E.12)

where w = = + iy is a complex coordinate on the strip X. (We should note
that the argument provided applies to the case where p,, g., h, are presumed
to vanish everywhere, but the nature of the argument is local, and can be
repeated to demonstrate that the geometry within the neighbourhood we are
considering must be AdSs x S°.) In particular, this can be consistent with
our assumption |a| < |f| or |B| < |a| near the asymptotic boundary x —
+00, where the metric function f7 diverges. We have therefore shown that
the only case in which one can simultaneously have f2/f? < 1 and f3/f <
1 is when the geometry is locally AdSs x S°: as a corollary, we clearly
cannot have the scale of the internal S? dimensions be small compared to

the curvature scale of the non-compact dimensions.

E.2 Justification of condition

In general, the region I introduced in Section is only asymptotically
AdSs5 x S5, and may deviate from pure AdSs x S° significantly before the
O(la/r), O(kp/r) corrections become large. For example, considering the

large-r asymptotics of the metric functions for our general solution, we find

L 1
o = 4dST2 1—7"—(2cos 0—1) ( ZCAZA <1_>
2
_ 2 Z dkp <1 — k) ) +o(r?)

(E.13)
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E.2. Justification of condition

fi = Liqs cos™

1/(1
1+72<W;CAZA<(QCOS29+1)

2
—I—l% (200829—1)> —lZdBkB<(2COS29+1)
5 ™

k? _
+ é (2COS29— 1))) +o(r 3| (BE.14)
1
f3=Li4gsin?0|1+ = (WZA:CAZA< 2COS 0 —3)
—i-@(QCOS «9—1)) lZdBk:B( 2(:0529—3)
3 ™
KB (02 »
+¥(2cos 9—1)) +o(r=°)| (E.15)
£2 = Lias(r? +18)°
4 4rir?
Laasr® | 1 (2c0526 — 1) lz (144
41"(2) r2 €08 T cata 7“8
k%
- *ZdBk?B ( >> +o(r~ ) (E.16)

Evidently, if we would like the terms subleading in large r to be suppressed

for any r < rg, then in addition to (6.12), we require

}ZCAZA_ZdBkB‘ <<7“z. (E.17)
A B

We claim that conditions (6.12) and (E.17) are sufficient to ensure a large

region of approximately pure AdSs x S°.
To further motivate this fact, let us fix N from the beginning, and recall

that 73 = N . Suppose we would like to have a geometry well-approximated
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E.2. Justification of condition

by pure AdSs x S® down to some radial coordinate 7, < 79. Our approach
will be to write down the metric functions in the limit 17"‘, ’%B — 0 with
Y- acala and )" dpkp held fixed, and to understand how these functions
depend on the quantity ‘ Yoacala—>p dBk:B‘. In particular, letting

ZCAZA = Er% (1+¢), ZdBkB = Er% (1-¢), (E.18)
A 2 B 2

we find that when ZTA, kTB — 0 in a way that keeps N and ¢ fixed, we have

-1 2 0
(g) hi(r,0) = rcosf + 0 C;)S (1+¢)
m\ L . 72 sin 0 E19
<§> ho(r,0) = rsiné + . (1—¢) (E.19)
T\ 2 2ré sin 6 cos 0
(5 o - Hisapee

and

T\ 4 sin 6 cos 6
(§> Ni(r,0) = — (7"2 +rE(1+ £))
2
X [1 + T—g (34 2(1 —4cos®9))
o 2 o 2

+ 74(1 +¢e)(3—e(1—4cos’0)) + 76(1 +e)*(1—¢)| (E.20)
T\ 4 sin f cos 0
() Melr0) = 2222 (24031 - )

2
X [1—1—:—2 (34 2(3 —4cos®9))

—i—é(l—a) (3—e(3—4cos®0)) +;§(1—s)2(1+5)] . (E.21)
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We then find the metric functions

2oy = 2 <1 . e)> A (1 4 :é (1+ 5)) A

4r2

[((Hﬁ(l—s)) <1+:§(1+5)>2—45c0529:§< (2)(1—1—5)))

x<1+§(3+5(3 4cos®0)) + (j(46(1—8)—}—3(1—8)2)+:§(1—6)2(1+8)>

r2 1/4 2 5/4
f3(r,0) = L? cos? ( (2)1—€> (1 g(1+a>>
2
o
2

[((H (1—s)> <1+77:§(1+5)>2—4600529:§ (1—:2(1+5)>>3

2 4 6
X (1 —0(3+5(3 4 cos? 9))+:2(45(1—e)+3(1—s)2)+;':g(1—s)2(1+e)>

1/4

1/4

(E.22)

(E.23)
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(4%

r2 5/4 2 1/4
fg(r,e):L2sin29< % 1—s> ( —g 1+5)>
_|_

[<<1+:§(1—5)> (1 §(1+a)> —4acos29:§ (1—:‘3(1+5)>> (E.24)

r2 ra 6 37 1/4
X <1 —g (3+e(3- 4 cos? 9)) + —2 (4e(1—¢)+3(1 —6)2) +7§(1—5)2(1—|—5)> ]

= < ﬁ 1—g>1/4<1+:§(1+g)>1/4
[ < é 1—€><1 §(1+E)>2—4€cos29:§ <1—:§(1+€)>> (E.25)
( .

f4?“0

2 A 6 1/4
—g (34 2(3 —4cos®0)) + Z(48(1—6)+3(1—6)2)+:g(1—€)2(1+6)>

8°9) uoppuoo jo woredyHISLL T



E.3. Space of solutions for the single pole case

Of course, in the limit € — 0, we recover the metric function for pure
AdSs x S°. One can demonstrate directly from the above expressions that
these metric functions can be made uniformly close to those of pure AdSs x
S%inr € [ry,00) and 6 € [0, 5] for sufficiently small &; we have plotted some

examples in Section [6.4.3]

E.3 Space of solutions for the single pole case

In this section, we will understand the space of solutions to the constraints
. First, taking a linear combination of the last two equations in ,
one obtains

NpsNps + NyssNps = N + NpsNyss , (E.26)

so it is necessary that
G =gced(Nps, Nyss) | N . (E.27)

Choosing any Nygs and Nps satisfying this constraint, the linear dio-
phantine equation 1) for Np3 and Nps will always have multiple integer

solutions of the form

Nps
ged(Nps, Nnss)’

Nnss S ~(0)
Nps =N Nps =N -
v D3+mg0d(ND57 Nnss)’ s D3~

m € 7,
(E.28)

with (V l()o?z’ N 1()033) some nominal solution.

There will be at least one solution for positive N p3 and Npg, since for real
m, parameterizes a line that intersects the positive quadrant of the
(Npg, Nps3) plane, and the equal spacing between the (Npg, Nps3) values for

integer m is less than the length of the line segment in the positive quadrant:

2 N\ 2
> + (NNss + > . (E.29)
Nps

N12)5 + NZ%/SE) < \/(ND5 + Nyss
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E.3. Space of solutions for the single pole case

The number of solutions for (Nps, N p3) is evidently of order

2 2
(ND5 + v ) + <NNS5 + NLDJ

Nnss

) )
Nps + Nyss

, (E.30)

so for Nps, Nygs > N we typically have only a single solution. The condi-
tions that Npsg and N p3 are positive combined with 1' mean that any

solution will satisfy

. N N
Np3 < + Nps Np3 < — + Nnss - (E.31)
Nnss Nps

Now, given any choice of (Nps, Nygs) satisfying (E.27) and positive
(Nps3, Nps3) satisfying (E.26), we will show that there is a unique positive
(k,1) satisfying the constraints (6.14). We do so by combining these con-

straints to yield

Nps Np3
+ -1 N 2 k
ND?V ]\;NSS _ D3 + 1 = — arctan — . (E32)
Nyss b 4 q Nnss 7T :
gNps 1

The right side increases monotonically from 0 to 1 as k/l increases from 0
to 0o. The left side varies monotonically from Nps /Nps > 0 at k/l =0
to 1 — Np3/Nngs for large k/I. Thus, there is exactly one solution for k/I.
Call this k/l = m.

We then have a unique solution (k,l) that is the intersection between

the line £ = ml and the line

k
—Npngs +1/gNps = N . E.33
7 NG (E.33)

In terms of m, the result is

N

Nnss 4+ V9NDs
V9 m

k=

N (E.34)

L]\%‘% +/GNps
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E.4 General families with single
D5-pole/NS5-pole and arbitrarily large
AdS; x S° region

We will here provide a significant generalization to the one-parameter family
initially introduced in Section Our construction of a one-parameter
family analogous to the one appearing in that section occurs most simply

when g is such that there exists m € NT with

arctan(m/g) = g% , a,be Nt gcd(a,b) =1, €(0,1). (E.35)

¢
b

That is, we have g = with m, a, b positive integers and 0 < 7 <1

_m
tan(Z %)’

in reduced form. In this casbe, we will take

Nps(n) =bfn + o, Nnss(n) =bmf, + 3,

> (E.36)
Nps(n) =amfn, +7, Nps(n)=(b—a)fn+9,

where f, is a sequence which we leave undetermined for now. We then see
that

Nps(n)Nps(n) + Nyss(n)Nps(n)
= (bfn +a) (amfn +7) + (b fn + B) (b — a) fn +6)
= Np5(n)Nnss(n) + ((a — b)ma + by — af + bmd) f,,
+ay+p0—ap,

(E.37)

so to ensure that (E.26) holds, we would like to ask whether or not it is
possible to choose «, 3,7, such that

0= (a—bma+by—af+bmd

(E.38)
N=avy+p6—ap.
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In fact, these equations are solvable for any (a,b,m). In particular, substi-

tuting the former into the latter yields

h—
N:(( ba)a—(S) (ma — B) . (E.39)
If we take
B=moa—0, (E.40)
then this equation gives
(a—b)aa+bd=—N. (E.41)

We know that ged ((a — b),b) = 1, since a and b were chosen to be relatively
prime, so this linear diophantine equation has an integer solution (a, ). We

may then define

_a—b
b

75%5 ma —mé = —a+m(a —6), (E.42)

which is manifestly integral.

We thus define the sequence of parameters Nps(n), Nyss(n), Nps(n),
Npg(n) by this choice («, 3,7,9), taking f, to be any growing sequence.
Since /gNpsl + %NN55]€ = N implies that both [ and k£ are at most

O ( f 1), the equations yield

7ND3(n) _ 4 1) = gaurc an(m —1
Nyss(n) p T O ) = parctan(m/g) + 0 (£7) (E.43)

= %arctan(l/k‘) +0 (fn_Q) )

and thus
l/k=m/g+O(f") . (E.44)

It follows that

cl—dk| = | (v/gbfa) (T e (f;?)) - (;gbmfn> K =0(57), (B45)
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as desired.
Thus, in the case that the string coupling g satisfies (E.35)), we are able

to identify a one-parameter family with scaling

mNDs ~ Nxss ~ “Npg ~ —_ [ (E.46)
a (b—a)
It is notable that such g are dense in RT, since the map tan % (-) : (0,1) —
(0,00) is a continuous bijection, implying that the image of a dense set in
this function is dense. We should therefore be able to extend the above
result by considering sequences of suitable rational approximations.
Indeed, suppose that we fix arbitrary g and take as ansatz the linear
scaling
zNps ~ Nnss , (E.47)

with z € R™ any fixed positive constant. In this case, requiring (E.17) to

be satisfied implies
z

val~ ok, (E.48)

and given the relationship between linking numbers and SUGRA parameters

(and the assumption that [,k will be suppressed), this would appear to

require
N 2 N 2
D3 Z arctan(z/g) D3 2 arctan(g/z) . (E.49)
Nyss —m Nps m

We would like to construct a sequence of quadruples of parameters
(ND5(n),NNS5(n),ND3(n),ND3(n)> exhibiting the scaling that we have
suggested, subject to the requirement that these parameters must be posi-

tive integers. The most natural way to approach this is to take sequences of

rationals ‘g—z, 5—: in reduced form such that
an 2 Pn
— — —arctan(z/g) — =z, (E.50)
bn, s an
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E.4. General families with single D5-pole/NS5-pole and arbitrarily large AdSs x S° region

and then defind20|

NDS(n) = annfn + ap , Qn = O(annfn)

NNSS(”) = bnpnfn + ﬁn , Bn = O(bnpnfn) (E.51)
ND3(n) = anpnfn + Yn Tn = 0(anpnfn)

ND3(”) = (bn - an)ann + On Oop =0 ((bn - an)ann) 5

where f, is left undetermined for the time being. Equation (E.26) then

implies

Nps(n)Nps(n) + Nyss(n)Nps(n)
= (bngnfn + o) (anpnfn + )
+ (bnpnfn + Bn) ((bn = an)gnfn =+ 6n)
= Np5(n)Nnss(n)
+ ((an = bp)Pnan + budn¥n — angnBn + bupndn) fn
+ anYn + Bnbn — anfn -

(E.52)

For any fixed n, this is precisely the same as , which we found to be
consistent with the requirement NpsNps + NN55ND3 = N + NpsNngs for
suitably chosen («, f3,7,0). Consequently, we may here find (au,, B, Vn, On)
which make our definitions of the parameters consistent with this equation
for each n; once we have defined (an, by, pn, ¢n) and (au, Bn, Y, 0n) in this
way, we may then simply choose a sequence f,, which scales sufficiently

quickly such that we recover the necessary asymptotics

Op = O(bn‘Infn) 5 ﬁn = O(bnpnfn) s

(E.53)
Yn = 0(anPnfn) On = 0((bn — an)qnfn) -

The sequence of solutions that we have defined will then have the desired
asymptotic suppression of max{l,k} and |cl — dk|, as can be shown in a

manner identical to that discussed above.

1291 this section, o() refers to the standard “little o” notation.
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E.5 Nearby solutions with multiple poles

It is reasonable to expect that the precise form of our boundary condition,
and in particular the linear quiver from which our boundary condition de-
scends, can be relaxed somewhat, and indeed we expect that the broad
geometrical features of the holographic description, including the existence
of a large AdSs x S° region, should be robust to certain “small” deformations
of this quiver. As a concrete example, we may consider a family of solutions
(the simplest family constructed earlier in Appendix with parameters

of the form

Nps =bn+a, Nygs=bzn+p5, Nps=azn+vy, Npz= (b—a)n+4d;

(E.54)

here, «, 3,7,0 are constants chosen to satisfy N = ay + 8J — af, and the
constants a, b, z satisfy

tan~1(z/g) = g% , a,beNT, ged(a,b)=1. (E.55)

Each element of this sequence corresponds to a quiver of the form provided

in Figure [6.5. We will now consider deforming these quivers for each n by

coupling an additional s(n) fundamental hypermultiplets to the (Np3+ 1)

node of the quiver, where s(n) may scale with n but we require s(n) = o(n).

In this deformation, we have two stacks of D5-branes and two stacks of

NS5-branes with inequivalent linking numbers, described by the parameters

Ngg:bn—l—a, N](\};5:azn+7+1,

(E.56)
N@ s, N =(-a)m+p—n—1,
and

Nbs=azn+~, Nps=@0b-an+d, (B.57)
N3s=am+~y+1, Nig=0-an+d+s. .
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E.5. Nearby solutions with multiple poles

At leading order (namely at order O(n)), (6.4) gives the conditions
(b—a)tan™1(ly /ky) + o(n?)
(b—a)tan™(la/ky) + o(n?)

ga =atan" (I /ky

)+
ga = atan_l(lg/kzl) +
)+
)+

T (E.58)
5(() —a) =btan (k1 /l1) + o(n®)
g(b —a) = btan"(ka/l1) + 0o(n°)
from which we can infer
k k k k
g2 o(n®) = 22 4 0(n°) = X + o(n®) = 22 + o(n?) (E.59)
z ll l1 l2 l2
and thus from (6.13])
N 1 1 N 1 1
= — — 4onY, = — — +to(nh),
LT Jgb2n () 27 Jgb2n () (E.60)
— \/-aNi -1 _ \/ENL —-1
P = zb 2n+0(n ) Fy = zb 2n+0(n )
and
A= }Clll + coly — diky — dgkg‘ = O(HO) . (Eﬁl)

Since max{l4, kp} and A are again suppressed for large n, we find that we
recover the desired geometrical features in this limit. In particular, while
we now have two D5-brane throats and two NS5-brane throats, the total
D5-brane and NS5-brane charges are approximately the same as before, and
the separation between each pair of 5-brane throats in this case is subleading
in n,

Iy =1 k1 —k
L2 — o(n?), L2 —on). (E.62)
l1 kl

It is straightforward to show that a similar argument can be applied to a
more general version of this deformation, where we couple o(n) fundamental
hypermultiplets at each of O(n") nodes in the quiver, where the location of
these nodes relative to the left endpoint of the quiver scales proportionally

to the overall size of the quiver with n.
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Another deformation of interest involves coupling an additional small
quiver to the left endpoint of our initial quiver, i.e. the endpoint oppo-
site that which is coupled directly to the 4D theory upon imposing our
field theory boundary condition. Here, “small quiver” refers to a quiver de-
scribed by an O(1) number of parameters (Ng;), N$,) and (N](V@5, NDBg), all
of which are dominated by our initial parameters (Nps, Nyss, Nps, N D3)-
We can couple the large and small quivers together via bifundamental mat-
ter coupled to an extra U(m) node, where m is also dominated by our
initial parameters; the result will be a good quiver, provided that the small
quiver is good. This procedure results in a boundary condition described by
many distinct parameters, which we can denote by (N gé), N gg)A:l...p and
(N ](\,1?5,N 53) B=1..q With some abuse of notation (they are different from
those describing the small quiver). Notably, (N gg, N ](\%5, NP, N%g) agree
with the original parameters (Nps, Nyss, Np3, Nps3) at leading order. From

2
NPy = /gly + p ZNI(V?5 arctan (I,/kp)
B

N (E.63)

V9

- 2
Nps = —kq+ - Z Nj(j’? arctan (kq/la) ,
A

and the fact that Nz()j?;)sz(V]?E) < Ngog,N](Vq;E) for A < p and B < ¢, we see

that the leading behaviour of [,, k; will be the same as before the deforma-

tion. Moreover, the remaining equations for the linking numbers imply
Iafky =0 (La/Nks) » ks/ly= O (Ks/NR) (E.64)

for A < p and B < ¢q. Consequently, the newly added parameters are
suppressed compared to [, k, and contribute to A at subleading order; we
therefore arrive again at a solution with a large AdS5 x S° region.

E.6 Multi-wedge generalizations

Our goal in this section is to understand how to construct theories whose

holographic description involves several wedges of AdSs x S° connected by
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interface branes; this applies to the BCF'T case as well as the case involving
3D SCFTs which descend from linear or circular quiver gauge theories. The
intuition behind our construction is illustrated in Figure |E.1

Our construction in this section will begin with a list
(mo, m1,mg, ..., Mp_1,my) (E.65)

of non-negative integers, where we fix p for concreteness. In the linear quiver
case, we will have mg = m,, = 0, in the circular quiver case, we will have
mo = mo = L # 0, and in the BCFT case, we will have mo = 0 and m, = N.
We would then like to define the required field theory data

(Nbas s NBg) s (Whayoo o, NBg) , (NGD o NEDY (N, N )

(E.66)
where the linking numbers are listed in increasing order. We will define these
via the brane configuration depicted in Figure [E.1; we have “blocks” with
large numbers of D5-branes and NS5-branes N gé),N ](\@5, each with large
linking numbers N ’5‘3,]\7 ‘33 respectively, and the (A — 1)*" and A™ blocks
are connected by m4 D3-branes. The quantities (Ng?)),NJ(V/g@Ng?),NéS)
which parametrize the A" block may be constructed in a completely iden-
tical manner to the construction of the one-parameter families we con-
sidered in Section and Appendix with the simple replacement
N — (m4 —my—_1); in particular, the linking numbers Nég,]fféz,, that we
would obtain from that construction will be related to the correct linking

numbers N gg, N £3 in the full quiver of the present construction by

A-1 A-1
N3 = Nps + E :NJ(VS)5 ) Nps = Nps + E :N1(75) ) (E.67)
B=1 B=1

since we need to account for the fact that the linking numbers depend on the
quantities of 5-branes present in previous blocks. Ultimately, we will take all
of the m4 (and the number of blocks p) to be O(1) in some large parameters
which will determine the number of 5-branes and linking numbers in the A*!
block.
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My m1 ma My—1 My
(1) Ar(1) . (2 2) — () ar(p) B
Nps» Nyss Ni2: Nighs —  Nps:Nyss —
i)lskl fJQ:R-Q ﬁpakp

NG =7

Ny =9

Figure E.1: D-brane construction giving rise to the class of boundary condi-
tions considered in this appendix. We have “blocks” consisting of D3-branes
stretched between NV g% D5-branes and N ](\%5 NS5-branes with fixed linking
numbers L;, K;, where ultimately we will take N g%,N ](\%5,LZ~,KZ- to scale
with some large quantity. The (i — 1)*" and i*" blocks are connected by

m; D3-branes. We give an example of the brane configuration in one such
block, with D3-branes shown in black, D5-branes in blue, and NS5-branes
in red.

The above is the sense in which these boundary conditions correspond
to “glued together” sub-quivers; the sub-quivers that are being coupled in
this case are precisely those that arose in the discussion of Section [6.4.3]
corresponding to boundary conditions described by single linking numbers
Nps, Nps, with the replacement N — (m4 — m4—1) in the present context.

We proceed to define (N gS,ﬁ £3, N (Dg),]\/' ](V/gs)’ beginning in full gener-
ality with the case of arbitrary coupling g; in general, we construct these

exactly as in Appendix taking

N = b g D + o, NG =P D + 80 (B.68)

473
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and
Ny = O SO, Ry = O a0 50, (Bo)
where A A
# — ;tan_l(zA/g) , # — zA (E.70)

SR

for some z4, the quantities 047({4), 67({4), sastisfy

oA + BIED — B —ma—mar, (BT

and f,SA) is quickly-scaling. Then, passing to the linking numbers by 1|
we have that

P
A A) ¢

Z (N1(35)Né3 + NJ(VS)5N£3> =my —mo + NpsNnss (E.72)

A=1

and the linking numbers are increasing by construction, We will also require

1)

that f,sA) scales sufficiently quickly relative to f,(LAf such that the param-

eters in block A scale at least as quickly as the parameters in block A — 1.

We can now consider how the SUGRA parameters behave for each case.

E.6.1 Multi-wedge dual of BCFT

Recalling that

p
1
3 <\/§Ng‘g)u + N}Vfgf)m) - N, (E.73)
) V9

and all of the l4, k4 are positive, we see that one must have

N
lA<ﬁ’ kA<ﬁ, (E74)
D5 NS5
so that in particular
li_>m la,ka=0. (E.75)
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We have from our definitions

A-1
Ny = alp i + A+ 37 (b £ + 6)
B=1
A At (E.76)
Bifly = (00 — )l 150+ 50 + 3 (Bl £ + ol
B=1
as well as the relations to SUGRA parameters
9 P
Ny = vala+ = D2 (0 £ + B tan" (a/ks)
o (E.77)
- 1 2
Npy = —ka+ = b g £ 4 o)) tan= (ky/lB) .
by = —gkat o ;( f ) (ka/lB)

Comparing these expressions at leading order, we see that consistency is

achieved by requiring

lim A _ 74 (E.78)
n—oo A g
and l L
lim 2 = lim -2=0, A<B. (E.79)

Schematically, we can say that glg ~ z4k4 and
l1<<l2<<...<<lp<<1, k1<<k2<<...<<kp<<1. (E.80)

We therefore find

I (N(A N ) - E.81
ngglo\z Nsska) [ =0, (E.81)
as desired.

We have demonstrated that our construction thus far possesses a large
AdSs x S° asymptotic region; to ensure that we recover a multi-wedge deep
in the interior, we will actually consider a subset of the families defined so far

for which the parameters (N g;)), N ](\%)5, N SS? N 63) of block A are all taken
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to scale with the same large parameter as the parameters of block A — 1,
as opposed to scaling strictly faster. Note that the “doubled” construction
of Section [6.6.1]is an example of this choice. In this case, it suffices to note
that for l4, k4 < r < la4+1,ka+1, we find the leading behaviour of hj, ha to
be

7r€2rcos0 ca (rcosf +14)% +r2sin 0
hy = 9 4 Z 2 1 2402
" (rcos —14)% 4+ r?sin“6
Z ( cosf + O(l% /r )>
BsA (E.82)
iz < cosf + O(r 3/l?’)>
B>A
)lA Ny T )
2 cos 0
< r D5 lA—l—l
and
2 r2cos? 0 + (rsinf + ka)?
h = d 1
2 4 ZA: AVY n<r200526’+(rsin«9—kA)2>
—2 Y N (% sino+ 00/r))
r
BsA (E.83)
2 3 M (st 1 00 1))
B>A B
kA A+1) T
~ (%sinf (N(A) + Nt :
NS5 . r NS5 kA+1

Since zBNl()B;) ~ ](\%)5 and /glp ~ Z—\/’%kg, the geometry in this region is

approximately that of AdSs x S°, where the value of ry is proportional to
the geometric mean of l4 (or k4) and 441 (or ka4+1), and the AdS radius

in this wedge scales relative to the AdS radius in the asymptotic region as
N NATD
/L D5 D5 A
Wedge AdS ™ N2 lay1”
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E.6.2 Multi-wedge dual of SCFT: linear quiver

As at the end of last section, we will continue to restrict to the case where
the linking numbers and charges for each block are all taken to scale with
the same large parameter. The linking numbers N ‘33,]\7 ‘33 are related to
parameters N?EA), NZ)EA) by

A (A e
N = Nygs — Ny, N = N, (E.84)

so we can write (6.74) as
NA, = g ZN(B) tan~! (68376/1)
D3 = 5
B

9 " R (E.85)
Ny = =% N tan (4707
D3 = Z 5~ tan e
A
It is immediate that we obtain the desired behaviour in this case, since this
system of equations is identical to the system from the BCF'T case up to sub-
leading terms if we identify [4 <> e %4 and kp <> e %5, and the definitions

of hy, hs will have the same leading behaviour in the regions of interest.

E.6.3 Multi-wedge dual of SCFT: circular quiver

The solutions of type I1IB supergravity describing the vacuum states of 3D
SCFTs arising from circular quiver gauge theories have not yet been dis-
cussed in this note, but were first analyzed in [297]. These solutions are
similar to those arising from linear quivers, with harmonic functions hq, ho

now given by

p e's] .
— (0g + 2nt
h1:_2’7aln< H tanh(T—'z(Q—i_m))—i—c.c.,
a=1

n=—oo

D oo . 2
— (0p + 2nt
h2_—2%1n< H tanh (T—W)) +c.c.,
b=1 =

(E.86)
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where t is a positive parameter satisfying 0 < d,, Sb < 2t. These functions are
periodic under Re(z) — Re(z)+2t by construction, and we can alternatively

express them using Jacobi ¥-functions as

V1 (va|T) ) z—0, 1
= S el (SR e, e = .,
=2 “<ﬁz<m> Tec. =TT
; . (E.87)
R 191(%‘7’)) N z—éb
ho = — In{ ——=<| +c.c., iy =

on a torus with modular parameter 7 = it /.

The linking numbers and supergravity parameters are now related by

2 = :
NgS = - Z N](\%)S < Z arctan <6_53+5A_2"t>
B n=0

m ~
- Z arctan (e‘sB_‘sA_Q”t)
n=1

o (E.88)
’ 2 B) S
NA = — ( (53 5a 2nt>
D3 = ZND5 (Zarctan e
B n=0
w ~
- Z arctan <6_55+5A_2”t> >
n=1
and
2 (A) Ar(B)
Nps = — ZZNDS Nyss
A B
0 A A (E.89)
X S (arctan(e‘sB_‘sA_QSt) + arctan(€5A—5B—25t)> ’
s=1

where Np3 = mg = m,.
The linking number conditions can again be satisfied by requiring

e704 704 70441 04 (E.90)
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and -
3 K
94794  tan (;r ('3)> ~ , (E.91)
ND5 ZA
provided ¢ is sufficiently large that
e 0B ] OBda=2 (E.92)

for all A, B. It is clear from the expression for Np3 that these conditions
must be true, since N(D’g), N](V@EJ > Nps. Again, in the region §4 < Re(z) <
dA+1, the harmonic functions hi, ho agree with those from the linear quiver
case at leading order, since the additional contributions coming from the

n # 0 terms will be suppressed.
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