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Abstract
Neutral atomic tweezer arrays have become a promising platform for quantum computation, which possess rich
degrees of freedom (DoFs) as an important resource for encoding quantum information. We explore the DoF
quantum resource in a ladder-shaped atomic tweezer array and propose a scheme of high-dimensional universal
quantum computation. This scheme encodes qubits to two degrees of freedom of a single atom, namely the
motional (Mo) and the site-occupation (SO) DoFs, which allows one atom to carry two qubits and results in a
two-layer qubit architecture. The single-qubit rotational gates on Mo- and SO-qubits, as well as the intra- and
inter-DoF Controlled-NOT (CNOT) gates are designed, and the crosstalk between qubits encoded with different DoFs
is particularly addressed and compensated by the strategy composed of the detuning engineering and
multi-chromatic Hamiltonian modulation. Quantum circuits are assembled from these gates in the ladder-shaped
atomic array, generating the hyper and hyper-hybrid entangled states between the Mo and SO DoFs. Our work
paves the way for high-dimensional quantum computation with multiple DoFs.

Keywords: Ladder-shaped tweezer array, High-dimensional universal quantum computation, Multiple degrees of
freedom, Two-layer qubit architecture

1 Introduction
The rapid development of the manipulation technologies
on the neutral atom array has made this setup a versa-
tile platform for quantum information processing. It has
been experimentally realized the individual control and
detection of ultracold atoms in a single tweezer [1–5], en-
gineering interactions via the Rydberg excitation [6–10],
and the configuration of two [9, 11–13] and three di-
mensions [14, 15] neutral atomic arrays. These operations
benefit the parallel implementation of high-fidelity multi-
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qubit gates [16, 17], the construction of programmable
large-scale quantum simulator [3, 18–20], and the coher-
ent transport of entangled atom arrays [21], which enables
the atomic tweezer array as a promising physical platform
for realizing large scalable programmable quantum com-
putation, quantum simulation, and quantum sensing [4,
16, 22–24].

Besides the flexible controllability, the multiple degrees
of freedom of atoms confined in the tweezer array have
also drawn growing attention, and the spin, motional (Mo),
and site-occupation (SO) degrees of freedom (DoFs) have
been recognized as an important quantum resource. For
instance, the Mo states in a single tweezer can be mapped
to the SO states among different tweezers, allowing the
manipulation and detection of the Mo states [5]. Moreover,
the Mo DoF has been exploited to generate a two-atom en-
tangled state in a single tweezer [25], which is then trans-
ferred to the spin DoF for spatial transport of the entan-

© The Author(s) 2025. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1007/s44214-025-00077-5
https://crossmark.crossref.org/dialog/?doi=10.1007/s44214-025-00077-5&domain=pdf
mailto:xiaofanxu@live.com
mailto:lushuai_cao@hust.edu.cn
mailto:zkhu@hust.edu.cn
http://creativecommons.org/licenses/by/4.0/


Deng et al. Quantum Frontiers             (2025) 4:4 Page 2 of 21

glement. There have also been attempts to explore the SO
DoF for quantum computation and combine both the spin
and the SO DoFs to realize the simultaneous mapping of
the charge and gauge sector of the gauge theory [26]. More
recently the hyper-entanglement between the spin and Mo
DoFs of tweezer atoms has been experimentally generated
[27]. These works have witnessed a trend to explore the
DoF resource and integrate different DoFs on a single plat-
form to enhance the performance of the atomic tweezer
array for quantum computation tasks.

In this work, we propose a scheme to integrate the Mo
states in single tweezers and the SO states among different
tweezers to realize the high-dimensional quantum com-
putation, which can advance the trend of exploring multi-
DoF quantum resources of the atomic array. In order to
consistently accommodate the two DoFs in a single setup,
we come up with a ladder-shaped tweezer array (LTA) con-
figuration, in which each rung of the ladder contains two
tweezers and forms a cell of the setup. Loading one atom
to each cell, the occupation of the atom in the two tweez-
ers contributes to the SO DoF, and within each tweezer,
the atom can occupy different Mo states, which is mani-
fested as the Mo DoF. Both the SO and Mo DoF are ap-
plied to encode qubits, which enables each atom to carry
two qubits. We further design the single-qubit rotational
gates for the SO and Mo qubits, as well as the SO-SO, Mo-
Mo, and SO-Mo CNOT gates for qubits belonging to the
same and different DoFs, which transfers the LTA to a two-
layer highly connected qubit architecture. We also assem-
bled quantum circuits to generate the hyper- and hybrid-
entanglements between the SO and Mo DoFs, which can
be further applied to high-dimensional universal quantum
computations.

This paper is organized as follows: Sect. 2 introduces
the LTA system under consideration; Sect. 3 presents the
single- and two-atom operation elements to the quantum
gates, and the assembling of these operation elements to
quantum gates is given in Sect. 4; The application of the
quantum gates to generate the hyper- and hybrid entan-
glements is given in Sect. 5; in Sect. 6 the discussion of the
experimental feasibility of the proposal is supplied; and a
brief summary is given in Sect. 7.

2 The ladder-shaped atomic tweezer array
The spatial configuration of the ladder-shaped tweezer

array (LTA) is depicted in Fig. 1(a), in which the leg and
rung of the LTA are along the x- and y-direction, respec-
tively. Each rung is composed of two tweezers lying close to
each other and is taken as a supercell of the array, of which
the filling of a single atom in each supercell is considered.
The LTA contributes to the storage tweezer for atoms, and
we also introduce the shuttle tweezers, which are mov-
able and can transport atoms. We further consider that the
storage and the shuttle tweezers can only trap atoms of a

Figure 1 The quantum computation platform of the ladder-shaped
atomic array (LTA). (a) The sketch of the LTA setup with one atom
trapped in each supercell. (b) The illustration of the qubits encoded in
the SO and Mo DoF. (c) The two-layer highly-connected qubit
architecture constructed from the LTA setup. The purple circles and
yellow squares denote the SO and Mo qubits, respectively, and the
blue, red, and green (dotted) lines connecting different qubits
represent the two-qubit gates

particular spin state, i.e. the inner state of the atom, which
can be realized by the state-dependent tweezers. The po-
tential profile for both the storage and shuttle tweezers are
given as:

Vtwz[V0, R⃗0](r⃗) = V0e–2(x–x0)2/w2
x–2(y–y0)2/w2

y , (1)

where V0 and R⃗0 =
(︁
x0, y0

)︁
denote the depth and the equi-

librium position of the tweezer, respectively. V0 can be
dynamically controlled for both the storage and shuttle
tweezers, while R⃗0 is time-dependent for shuttle tweezers
only, with R⃗0 for the storage tweezer in the upper (lower)
leg of the j-th cell fixed to position R⃗j,u(d) =

(︁
xj,u(d), yj,u(d)

)︁
.

The waists of all tweezers along the x- and y-direction
are chosen unequal, i.e. wx ≠ wy, to induce the anisotropy
along the two directions. The state-dependent storage and
shuttle tweezers are exerted on atoms in the spin states of
|↓⟩s and |↑⟩s, respectively.

Besides the spin states, atoms trapped in LTA also ac-
quire various DoFs, such as the SO and Mo DoFs, provid-
ing rich resources for quantum computation. Given that
each atom can only occupy the two tweezers in a particular
supercell, the SO DoF of each is spanned by the occupation
states of {|u⟩o, |d⟩o}, which specify the occupation of the
atom in the up or down tweezer of the cell. Within a sin-
gle tweezer, the atom can occupy different Mo states along
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the x- and y-direction, and the anisotropy of the tweez-
ers lifts the degeneracy and energetically decouples the Mo
states in the two directions. In this work, we only consider
the Mo states in the x-direction and fix the atom occupy-
ing the lowest Mo state in the y-direction. The two low-
est Mo states in the x-direction in the tweezer are denoted
as |s⟩m and |p⟩m, which is referred to as the Mo DoF. In
this way, each atom confined in a separate supercell resides
in the single-particle Hilbert space of {|R⃗⟩o|α⟩m|σ ⟩s}, with
R⃗ ∈ {R⃗j,u, R⃗j,d}, α ∈ {s, p}, and σ ∈ {↑,↓}, corresponding to
the SO, Mo and spin DoF, respectively. In this work, we
explore the Mo and SO DoF to encode the computational
qubit, with the inner states working as ancillary DoF for
the manipulation of the qubits. Each atom is then carrying
two qubits, with the computational basis states |0⟩ and |1⟩
shown in Fig. 1(b).

Exploiting the SO and Mo DoF to encode qubits, the LTA
is transferred to a two-layer qubit architecture, as shown in
Fig. 1(c), in which the qubits in the first and second layers
are the Mo (square nodes) and SO (circle nodes) qubits, re-
spectively. In Fig. 1(c), the connection between SO and Mo
qubits is realized by the intra-layer SO-SO (solid blue), the
Mo-Mo (solid red) CNOT gates coupling atoms in neigh-
bor supercells, as well as the inter-layer SO-Mo CNOT
gates, which couple the two DoFs of the same atom. The
dashed lines in Fig. 1(c) indicate that atoms can still di-
rectly couple to those not in the nearest neighbor super-
cells, by e.g. moving the corresponding two cells close by.

3 Operation elements for quantum gates
There have been various proposals to implement one-
and two-qubit gates on qubits encoded in a single DoF of
atoms, while these implementations cannot be directly ap-
plied in the presence of multiple DoFs, due to the crosstalk
between different DoFs, which we term as the inter-DoF
crosstalk in the following. The inter-DoF crosstalk is ad-
dressed in this work, and we propose the general strat-
egy composed of the detuning engineering and the multi-
chromatic Hamiltonian modulation to suppress the inter-
DoF crosstalk. This strategy is explored for both the single-
and two-qubit gates of the LTA setup, which can fulfill the
need for universal high-dimensional quantum computa-
tion with the Mo and SO qubits. These gates are decom-
posed into a set of single- and two-atom operation ele-
ments. In this section, we introduce these operation el-
ements, which can be assembled to realize the quantum
gates for the universal high-dimensional quantum compu-
tation.

3.1 Single-atom elements
3.1.1 Mo-maintained spin rotation
The spin rotation operation takes place between the |↓⟩s
and |↑⟩s states of a single atom, which is subject to a stor-
age tweezer and a shuttle tweezer located at the same po-
sition. Since the storage and the shuttle tweezers can only

trap the atom in the |↓⟩s and |↑⟩s states, respectively, the
spin rotation also transfers the atom between the stor-
age and the shuttle tweezers. The spin rotation is nor-
mally induced by the Rabi oscillation between the two
spin states, e.g. through the two-photon Raman (TPR)
transition. In the multi-DoF setup, the Rabi frequency
of the spin rotation will become dependent on the Mo
state, since atoms of different Mo states exhibit different
spatial wavefunction, and consequently experience differ-
ent interaction strengths with the Raman lasers. The Mo-
dependent Rabi frequency is the major source for the inter-
DoF crosstalk in the spin rotation operation. In order to
circumvent this inter-DoF crosstalk, we firstly introduce
the Mo-selective spin rotation, including the s-s, p-p, and
s-p spin rotations. In the α –α′ spin rotation (α, α′ ∈ {s, p}),
the Rabi oscillation only takes place for the atom between
|↓⟩s |α⟩m and |↑⟩s |α′⟩m states.

The Mo-selective spin rotation is composed of the de-
tuning engineering of the states |σ ⟩s|α⟩m, where σ ∈ {↑,↓}
and α ∈ {s, p}, and the monochromatic Hamiltonian mod-
ulation through e.g. the TPR process. The detuning engi-
neering is introduced by assigning the shuttle and storage
tweezers, with different depths of Vsh and Vsg , respectively,
with Vsh ≠ Vsg . The unequal tweezer depth leads to the
different energy detuning ϵs,sh – ϵs,sg ≠ ϵp,sh – ϵp,sg , where
ϵα,S refers to the energy of the atom in the α ∈ {s, p} Mo
state of the S ∈ {sh, sg} tweezer. Consider the Rabi oscilla-
tion induced by the TPR process, which employs two lasers
with frequency ω1 and ω2, respectively. Under the condi-
tion that ħ|ω1 –ω2| = |ϵs,sh –ϵs,sg |, the Raman lasers are only
in resonance with the transition from |↓⟩s |s⟩m to |↑⟩s |s⟩m,
and will selectively induce the spin rotation for the atom in
|s⟩m Mo state, i.e. the s-s spin rotation. Similarly, applying
the Raman lasers of ħ|ω1 –ω2| = |ϵp,sh –ϵp,sg | will selectively
induce the p-p spin rotation.

The α – α spin rotation with α ∈ {s, p} can be described
by the propagator as:

R̂α
spin[θ ,ϕ] = |α⟩m⟨α| ⊗

(︃
[|↑⟩s , |↓⟩s]

←→
R [θ ,ϕ]

[︃
s ⟨↑|
s ⟨↓|

]︃)︃
,

←→
R [θ ,ϕ] =

[︃
cos(θ ) sin(θ )e–iϕ

sin(θ )eiϕ – cos(θ )

]︃
,

(2)

where cos(θ ) = δα√︂
δ2
α+Ω2

α

, sin(θ ) = Ωα√︂
δ2
α+Ω2

α

and ϕ = ϕα . In the

above equations, δα and Ωα denote the energy detuning
from the intermediate state of the TPR process, and the
Rabi frequency of the corresponding Raman laser, respec-
tively, with ϕα the phase bias of the Raman lasers. δα and
Ωα can be controlled by the frequency and amplitude of
the Raman lasers as in the normal two-photon Raman pro-
cess. The operation time can be found as Tα = π√︂

δ2
α+Ω2

α

.

The detailed derivation of R̂α
spin[θ ,ϕ] can be found in Ap-

pendix A.1. Figure 2 (a) and (b) illustrate the s-s and p-p
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Figure 2 Sketch of the Mo-maintained spin rotation for (a) s-s, (b) p-p
and (c) s-p rotation channels. The atom of spin states |↑⟩s and |↓⟩s is
trapped in the shuttle (upper row) and storage (bottom row)
tweezers, respectively. The energy levels of the basis states under
consideration are indicated by the dashed lines, with that of the
intermediate states shown by dotted lines. Raman lasers are
illustrated with vertical arrows

spin rotation through the two-photon Raman transition,
respectively.

The s-p spin rotation can be realized by the two-photon
Raman transition in which the laser frequency fulfills
ħ|ω1 – ω2| = |ϵs,sh – ϵp,sg |, and is of the similar mecha-
nism as the Raman sideband cooling, which induces the
state transfer between |↑⟩s |s⟩m and |↓⟩s |p⟩m, as sketched
in Fig. 2(c). The unitary propagator for the Raman side-
band transition can be given as:

R̂RSC[θ ,ϕ] = [|s⟩m |↑⟩s , |p⟩m |↓⟩s]

× ←→
R [θ ,ϕ]

[︃
m⟨s|s ⟨↑|
m⟨p|s ⟨↓|

]︃
+ P̂RSC ,

X̂RSC(R⃗1) = R̂RSC[
π

2
, 0] ⊗ |R⃗1⟩o⟨R⃗1|

+ Îm ⊗ Îspin ⊗ (1 – |R⃗1⟩o⟨R⃗1|),

(3)

where P̂RSC = [|s⟩m |↓⟩s , |p⟩m |↑⟩s] ×
[︃

m⟨s|s ⟨↓|
m⟨p|s ⟨↑|

]︃
.

The Mo-maintained spin rotation refers to the fact that
the spin rotation is independent of the Mo state of the
atom, and can be realized by the synchronized s-s and p-
p spin rotation. The synchronization of the s-s and p-p
spin rotations requires that the energy detuning from the
intermediate state and the Rabi frequency of both rota-
tions are the same, i.e. δs = δp = δ and Ωs = Ωp = Ω. The
synchronization condition can be achieved by two sets
of the TPR processes, termed as the bi-TPR process, of
which the first and second sets are composed of two Ra-
man lasers of frequency {ωs,1,ωs,2} and {ωp,1,ωp,2}, respec-
tively. Under the condition that ħ|ωs,1 – ωs,2| = |ϵs,sh – ϵs,sg |
and ħ|ωp,1 – ωp,2| = |ϵp,sh – ϵp,sg |, the first and second set of
Raman lasers will separately induce the s-s and p-p spin
rotation, respectively, and the synchronization condition

can be fulfilled by separately tuning the frequency and
amplitude of the corresponding two lasers. The resultant
propagator can be derived by the direct combination of
R̂s

spin[θ ,ϕ] and R̂p
spin[θ ,ϕ], as:

R̂spin[θ ,ϕ] = R̂s
spin[θ ,ϕ] + R̂p

spin[θ ,ϕ]

= (|s⟩m⟨s| + |p⟩m⟨p|)

⊗
(︃

[|↑⟩s , |↓⟩s]
←→
R [θ ,ϕ]

[︃
s ⟨↑|
s ⟨↓|

]︃)︃

= Îm ⊗ [|↑⟩s , |↓⟩s]
←→
R [θ ,ϕ]

[︃
s ⟨↑|
s ⟨↓|

]︃
,

(4)

where Îm = |s⟩m⟨s| + |p⟩m⟨p|.
Embedding the Mo-maintained Spin rotation in the

complete LTA setup, this operation is applied to a particu-
lar atom trapped by a storage and a shuttle tweezer at the
position of R⃗1, is described by the corresponding propaga-
tor, as:

R̂MmSF [θ ,ϕ](R⃗1) = R̂spin[θ ,ϕ] ⊗ |R⃗1⟩o⟨R⃗1|
+ Îm ⊗ Îspin ⊗ (1 – |R⃗1⟩o⟨R⃗1|),

(5)

where Îspin = |↑⟩s ⟨↑| + |↓⟩s ⟨↓|. We particularly introduce
X̂MmSF (R⃗1) = R̂MmSF [ π

2 , 0](R⃗1).
The Mo-maintained spin rotation transfers the atom

from the storage to the shuttle tweezer and is accom-
panied by the spatial transport of the atom in the shut-
tle tweezer. The transport maintains the Mo state in the
shuttle tweezer, and the propagator of the Mo-maintained
transport is written as:

T̂MmT (R⃗1 → R⃗2;σ )|α⟩m|R⃗1⟩o|σ ⟩s = |α⟩m|R⃗2⟩o|σ ⟩s, (6)

where α = s/p denotes Mo states and σ =↓ / ↑ denotes
spin states. Given that the transport operation is only ap-
plied to the atom in the |↑⟩s state trapped in the shuttle
tweezer, the propagator T̂MmT (R⃗1 → R⃗2;↑) can be simpli-
fied to T̂MmT (R⃗1 → R⃗2), with the symbol for the spin state
omitted. Combining the Mo-maintained (Mo-selective)
spin-rotation and transport operations, we obtain the Mo-
maintained (Mo-selective) shuttle operation, described by
the unitary operators X̂MdS(R⃗1 → R⃗2) (X̂MmS(R⃗1 → R⃗2)),
which is defined as:

X̂MdS(R⃗1 → R⃗2) = T̂MmT (R⃗1 → R⃗2) ∗ X̂RBC(R⃗1),

X̂MmS(R⃗1 → R⃗2) = T̂MmT (R⃗1 → R⃗2) ∗ X̂MmSF (R⃗1).
(7)

3.1.2 Mo-maintained SO rotation
The SO rotation refers to the hopping of a single atom be-
tween the up and down tweezers in the same supercell.
The inter-DoF crosstalk in the SO rotation arises from
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the fact that the hopping atom can stay in different Mo
states of the initial tweezer, and the temporal period for the
hopping processes depends on the Mo state of the atom,
which leads to the requirement of synchronizing the hop-
ping processes for the atom in different Mo states.

To suppress this crosstalk, we adopt a similar strategy
as that in the Mo-maintained spin rotation in the last sec-
tion, and firstly introduce three types of Mo-selective SO
rotations, including the s-s, p-p, and p-s hoppings. In the
α1 – α2 hopping, with α1,α2 ∈ {s, p}, the hopping pro-
cess can take place only between the |α1⟩m state in the
initial tweezer and the |α2⟩m state in the target tweezer,
with atoms in the other Mo state remaining in the initial
tweezer. The atom hopping with the Mo state maintained,
i.e., the Mo-maintained SO rotation, can be realized by the
combination of the s-s and p-p hoppings, each of which
transfers an atom in a single Mo state from the initial to
the target tweezer.

The Mo-selective SO rotations can also be realized by
the strategy of the detuning engineering accompanied by
the monochromatic Hamiltonian modulation through the
photon-assisted tunneling [28, 29], in which the periodic
lattice shaking plays the role of an effective photon. The
photon-assisted tunneling is capable of transferring an
atom between two traps with the on-site energy detun-
ing experienced by the hopping atom, which could be in-
duced by the local interaction in one trap [28] and/or a lat-
tice gradient [29]. In the Mo-selective SO rotations, the
detuning engineering refers to setting the depths of the
two tweezers differently, and consequently inducing the
energy detuning between the Mo states in the two tweez-
ers, i.e. ϵα1,ini ≠ ϵα2,tar , where ϵα,ini(tar) denotes the atom in
|α⟩m state of the initial (target) tweezer of the hopping
process, with α ∈ {s, p}. More importantly, the potential
depth difference induces the different energy detuning of
Δs–s ≠ Δp–p, with Δs–s(p–p) = ϵs(p),ini – ϵs(p),tar . The photon-
assisted tunneling through monochromatic shaking of the
initial tweezer is then applied, and the exclusive hopping of
the atom from the |α1⟩m state in the initial tweezer to the
|α2⟩m state in the target tweezer can be induced by choos-
ing the shaking frequency ħωα1–α2 = ϵα1,ini –ϵα2,tar , which is
termed as the α1 –α2 hopping. Particularly, (α1,α2) = (s, s),
(p, p) and (p, s) refer to the s-s, p-p, and s-p hopping, as in-
dicated by the red, orange, and purple arrows in Fig. 3(a),
(b) and (c), respectively.

The energy detuning engineering with ϵα1,ini ≠ ϵα2,tar
guarantees that the s-s, p-p and p-s hoppings fulfill dif-
ferent resonant shaking conditions, and cannot be acti-
vated under the same monochromatic shaking. The uni-
tary propagator for the α1 – α2 hopping with evolution
time Tα1–α2 = π√︂

δ2
α1–α2 +Ω2

α1–α2
, where δα1–α2 and Ωα1–α2 de-

note the energy detuning and Rabi frequency of the hop-

Figure 3 Mo-dependent hopping with the (a) s-s, (b) p-p, and (c) s-p
tunneling between the two tweezers located at R⃗1 (bottom row) and
R⃗2 (upper row). The red, yellow, and purple arrows indicate the
photo-assisted tunneling operation, through the lattice shaking of the
tweezer at R⃗1 with a particular frequency

ping, can be written as:

R̂α1→α2
SO [θ ,ϕ](R⃗1 → R⃗2) =

(︂
|α1⟩m|R⃗1⟩o, |α2⟩m|R⃗2⟩o]

←→
R [θ ,ϕ]

[︃
m⟨α1|o⟨R⃗1|
m⟨α2|o⟨R⃗2|

]︃
+ (1 – P̂SO)

)︃
⊗ Îspin,

(8)

where P̂SO = |α1⟩m⟨α1| × |R⃗1⟩o⟨R⃗1| + |α2⟩m⟨α2| × |R⃗2⟩o⟨R⃗2|,
cos(θ ) = δα1–α2√︂

δ2
α1–α2 +Ω2

α1–α2
, sin(θ ) = Ωα1–α2√︂

δ2
α1–α2 +Ω2

α1–α2
, with ϕ =

ϕα1–α2 determined by the bias phase of the tweezer shak-
ing. The detailed derivation of R̂α→α′

SO [θ ,ϕ](R⃗1 → R⃗2) can
be found in Appendix A.2. By adjusting the depths and
distances of the tweezers as well as the evolving time, one
can induce the operations manifested as the Pauli-X gates,
which are expressed as:

X̂MdH(R⃗1,α1; R⃗2,α2) = R̂α1→α2
SO [

π

2
, 0](R⃗1 → R⃗2), (9)

where α1(2) denotes the Mo states trapped in R⃗1(2).
The Mo-maintained SO rotation can be realized by si-

multaneously performing the s-s and p-p SO rotations in
the synchronized manner, during which the atom can hop
from the arbitrary superposition of Mo states in the ini-
tial tweezer to the same Mo superposition in the target
tweezer, i.e., the Mo state is maintained during the hop-
ping process. The synchronization of the s-s and p-p SO
rotations can be realized by a multi-chromatic shaking of
the form A1 cos(ω1t + ϕ) + A2 cos(ω2t + ϕ). The two fre-
quencies separately match the resonance conditions of the
s-s and p-p hoppings, respectively, with ħω1 = ϵs,ini – ϵs,tar
and ħω2 = ϵp,ini – ϵp,tar . Meanwhile tuning the shaking am-
plitudes A1 and A2 can then selectively tune the Rabi fre-
quencies of the s-s and p-p hoppings, respectively. The two
hopping processes can then be synchronized, which gives
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rise to the Mo-maintained SO rotation. The propagator of
the Mo-maintained SO rotation can be expressed as:

R̂SO[θ ,ϕ](R⃗1; R⃗2)

= R̂p→p
SO [θ ,ϕ](R⃗1 → R⃗2) ∗ R̂s→s

SO [θ ,ϕ](R⃗1 → R⃗2)

= Îm ⊗ [|R⃗1⟩o, |R⃗2⟩o]
←→
R [θ ,ϕ]

[︃
o⟨R⃗1|
o⟨R⃗2|

]︃
⊗ Îspin.

(10)

3.1.3 Mo rotation
The rotation between different Mo states of one atom in
a single tweezer can be realized by the periodic tweezer
shaking, and is less affected by the inter-DoF crosstalk than
the rotation of the spin and SO states, since the Mo-state
rotation amplitude and temporal period are less dependent
on the location and spin states of the atoms. Consider that
the Mo rotation is applied to the atom trapped in a partic-
ular supercell of the LAT, shaking the two tweezers with
the same amplitude, frequency, and biased phase can real-
ize the SO-maintained Mo rotation, while the shaking of a
single tweezer can directly be used as the inter-DoF CNOT
gate, in which the control and target qubits are encoded in
the SO and Mo DoF, respectively.

We take the single-tweezer shaking for instance, and
consider a single atom confined in a storage tweezer, un-
der the periodic modulation of the tweezer’s equilibrium
position, as

V̂Mo = Vtwz[Vsg , (xc(t), yc)](r⃗) |↓⟩s ⟨↓| ,

xc(t) = xc + Ω̃Mo cos(ωMot + ϕMo).
(11)

In the above equation, xc (yc) is the coordinate of the
initial location of the tweezer along the x-coordinate (y-
coordinate). The modulation frequency, amplitude, and
the biased phase are given as ωMo, Ω̃Mo and ϕMo, respec-
tively. Under the resonant shaking condition where ħωMo =
ϵs,sg – ϵp,sg , the atom in the storage tweezer is undergoing
a Rabi-like oscillation between the |s⟩m and |p⟩m states,
which is termed as the Mo rotation process. The propa-
gator of the Mo rotation element is:

R̂Mo[θ ,ϕ] = [|s⟩m, |p⟩m]
←→
R [θ ,ϕ]

[︃
m⟨s|
m⟨p|

]︃
⊗ Îspin, (12)

where cos(θ ) = δMo√︂
δ2

Mo+Ω2
Mo

, sin(θ ) = ΩMo√︂
δ2

Mo+Ω2
Mo

and ϕ = ϕMo,

with the evolution time TMo = π√︂
δ2

Mo+Ω2
Mo

. The detail defini-

tion of the detuning δMo, the Rabi frequency ΩMo and the
biased phase ϕMo are given in Appendix A.3. Adjusting the
modulation frequency, biased phase, and amplitude, dif-
ferent kinds of Mo rotation operations exerted on the posi-
tion R⃗1 can be realized, such as the Pauli-X element, which

has:

R̂Mo[θ ,ϕ](R⃗1) = R̂Mo[θ ,ϕ] ⊗ |R⃗1⟩o⟨R⃗1|
+ Îm ⊗ Îspin ⊗ (1 – |R⃗1⟩o⟨R⃗1|),

X̂Mo(R⃗1) = R̂Mo[
π

2
, 0](R⃗1).

(13)

3.2 Two-atom operation elements
Besides the single-qubit gates, universal quantum com-
putation also requires entanglement generation gates be-
tween two qubits, e.g. the CNOT gate. In the multi-DoF
LTA setup, the CNOT gates can be further specified as
the intra-DoF CNOT gates with both the control and tar-
get qubits being the same DoF, denoted as the Mo-Mo
and SO-SO CNOT gates, as well as the inter-DoF SO-Mo
CNOT gate, with the control and target qubits being the
SO and Mo qubits of the same atom. The intra-DoF SO-
Mo CNOT gate has been introduced in Sect. 3.1.3, and the
implementation of SO-SO and Mo-Mo CNOT gates also
follows the strategy of the combination of the detuning en-
gineering and the synchronization scheme through multi-
chromatic Hamiltonian modulation. The energy detuning
in both gates is engineered by the interaction between the
control and target atoms, and the multi-chromatic Hamil-
tonian modulation is realized by the corresponding oper-
ation elements of the SO and Mo rotations.

3.2.1 Controlled Mo-maintained spin rotation
The controlled Mo-maintained spin rotation is applied to
a target atom. The tweezers trapping the target atom are
composed of a storage and a shuttle tweezer located at
the same position, from which a control tweezer is lying
nearby. The controlled Mo-maintained spin rotation real-
izes the function that the spin rotation of the target atom
can only take place when the control tweezer is not oc-
cupied by an atom. The controlled Mo-maintained spin
rotation can then be demonstrated in the three-tweezer
setup, which is composed of a storage and a shuttle tweezer
for the target atom in different spin states, and a control
tweezer, as illustrated in Fig. 4. The potential of the three-
tweezer setup is given as:

V̂CSF = Vtwz[Vsg , R⃗1] |↓⟩s ⟨↓|
+ Vtwz[Vsh, R⃗1] |↑⟩s ⟨↑|
+ Vtwz[Vc, R⃗2] |↑⟩s ⟨↑| ,

(14)

in which the first and the second terms denote the stor-
age and shuttle tweezer, respectively, located at R⃗1, and the
last term is the control tweezer located at R⃗2. we assume
that the control tweezer lies close to the storage and shut-
tle tweezer.
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Figure 4 The controlled Mo-maintained spin-rotation operation, with
the storage (lower row) and shuttle tweezer (upper row) of the target
atom located at R⃗1 and the control tweezer located at R⃗2. (a) Under
the condition that the control tweezer is not loaded with an atom, the
target atom in the storage tweezer can perform the Mo-maintained
spin rotation, which is accompanied with the transfer of the target
atom from the storage to the shuttle tweezer. (b) Under the condition
that the control tweezer is loaded with an atom, the Mo-maintained
SO rotation of the target atom is prevented by the atom-atom
interaction

In the controlled Mo-maintained spin rotation, the de-
tuning engineering is introduced by the interaction be-
tween the target atom and the atom in the control tweezer,
denoted as UR⃗1,R⃗2

σ ,σ ′ , where σ and σ ′ refers to the spin state of
the atom in the storage and control tweezer, respectively.
The contact interaction is assumed to be spin-dependent,
as UR⃗1,R⃗2

↓,↑ ≠ UR⃗1,R⃗2
↑,↑ . The energy difference between the |s⟩m

(|p⟩m) in the storage and shuttle tweezers with the ab-
sence of an atom in the control tweezer is given as Δs,0 =
ϵs,sh –ϵs,sg (Δp,0 = ϵp,sh –ϵp,sg ), and the corresponding energy
difference between the |s⟩m (|p⟩m) in the two tweezers with
the control tweezer loaded with an atom is then given as
Δs,1 = Δs,0 + UR⃗1,R⃗2

↑,↑ – UR⃗1,R⃗2
↓,↑ (Δp,1 = Δp,0 + UR⃗1,R⃗2

↑,↑ – UR⃗1,R⃗2
↓,↑ ).

Provided the detuning engineering by the interaction be-
tween the two atoms, the Mo-maintained spin rotation can
be directly realized by the synchronized s-s and p-p spin
rotation by the bi-TPR process as introduced in 3.1.1. The
two TPR-laser sets are separately in resonance with Δs,0
and Δp,0, respectively, which can induce synchronized s-s
and p-p spin rotation under the condition that the con-
trol tweezer is not loaded with an atom. The presence of
an atom in the control tweezer, however, will change the
energy detuning to Δs(p),1, which is off-resonant with the
TPR lasers and prevents the s-s and p-p spin rotations.
The cooperation of the detuning engineering through the
atom-atom interaction and the synchronized bi-TPR pro-
cess gives rise to the controlled Mo-maintained spin rota-
tion.

The controlled Mo-maintained spin rotation is then il-
lustrated in Fig. 4, which shows that the Mo-maintained
spin rotation of the target atom is permitted (Fig. 4 (a))

or suppressed (Fig. 4 (b)) with the control atom loaded or
not in the control tweezer. The resultant propagator of the
controlled Mo-maintained shuttling is given as

ÛC
MmSF (R⃗1) = (1 – n̂C) ⊗ X̂MmSF (R⃗1) + n̂C ⊗ ÎR⃗1

, (15)

where n̂C denotes atom population number in the control
shuttle tweezer in the R⃗2 and is 1 or 0 depends the con-
trol tweezer contains atom or not, ÎR⃗1

denotes unit opera-
tor to the states in the storage tweezer in R⃗1. The potential
depths of the control tweezer and the shuttle tweezer, VC
and Vsh, are adjusted mismatch to stop tunneling between
these two tweezers, as shown in Fig. 4.

3.2.2 Controlled Mo-maintained SO rotation
The controlled Mo-maintained SO rotation also involves
a three-tweezer setup, of which two storage tweezers hold
a target atom and a shuttle tweezer plays the role of the
control tweezer. The SO rotation refers to the hopping of
the target atom between the two storage tweezers, and
the process is determined by whether an atom is present
in the control tweezer or not. The absence (presence)
of the atom in the control tweezer will permit (prevent)
the Mo-maintained hopping of the target atom. In order
to realize the controlled Mo-maintained SO rotation, we
engineer the energy detuning by both the depth differ-
ence between the two storage tweezers and the interac-
tion between the target atom and the atom in the con-
trol tweezer. The synchronized hopping of the target atom
is realized through the multi-chromatic photon-assisted
tunneling as introduced in 3.1.2. in the control tweezer is
Δα–α (Δα–α,1 = Δα–α +Uα) defined in 3.1.2, where Uα is the
interaction strength with the target atom in the |α⟩m state.
The photon-assisted tunneling is then done with the shak-
ing of the storage tweezer where the target atom is initially
located, with the function of A1cos(ω1t + ϕ) + A2cos(ω2t +
ϕ), of which the shaking frequency ω1(2) = Δs–s(p–p)/ħ to en-
sure that only the absence of an atom in the control tweezer
can permit the Mo-maintained hopping, with the value
of A1(2) realizing the synchronization condition. The con-
trolled Mo-maintained SO rotation refers to that the s-s
hopping between the target and goal tweezers can (can-
not) take place in the absence (presence) of one atom in the
control tweezer, as sketched in Fig. 5(a) (Fig. 5(b)). This op-
eration also resembles the interaction controlled Joseph-
son junction [30], in which the tunneling of the atom in a
double well is determined by whether an ion is lying in be-
tween the two wells. Consider the case of a single control
tweezer, the corresponding propagator reads:

ÛC
MdH(R⃗1,α1; R⃗2,α2)

= (1 – n̂C) ⊗ X̂MdH(R⃗1,α1; R⃗2,α2)

+ n̂C ⊗ ÎR⃗1;R⃗2
,

(16)
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Figure 5 The Controlled Mo-dependent hopping, with the control
tweezer lying in between the target and the goal tweezers. (a) Under
the condition that the control tweezer is not loaded with an atom,
then s-s hopping takes place between the target and the goal
tweezers. (b) The presence of an atom in the control tweezer prevents
the s-s hopping between the target and the goal tweezers

in which R⃗1, R⃗2 and R⃗3 are the locations of the initial, the
target, and the control tweezer, respectively. ÎR⃗1;R⃗2

denotes
the unit operator for the states in the two target tweezers.
The controlled Mo-maintained SO rotation can be gener-
alized to a setup with two control tweezers located at R⃗3
and R⃗4, in which one atom presenting in either of the two
control tweezers will prevent the Mo-maintained SO rota-
tion of the target atom.

3.2.3 Controlled Mo rotation
The Mo rotation refers to switching the Mo states of the
target atom confined in the storage tweezer controlled by
the presence and/or absence of an atom in the control
tweezer lying nearby. The potential for the coexistence of
the control and target tweezers is given as:

V̂CMF = Vtwz[Vsg , R⃗1](r⃗) |↓⟩s ⟨↓|
+ Vtwz[VC , R⃗2](r⃗) |↑⟩s ⟨↑| ,

(17)

in which the storage and control tweezer are lying at R⃗1
and R⃗2, respectively, with the control tweezer exerted
to the atom in |↓⟩s state. Similar to the controlled Mo-
maintained shuttling, the atom in the storage tweezer can
undergo the Mo rotation through the resonant tweezer
shaking, as sketched in Fig. 6(a), with no atom loaded in
the control tweezer. The presence of one atom in the con-
trol tweezer, however, will induce a Mo-dependent interac-
tion energy to the atom in the storage tweezer, and the en-
ergy difference between the Mo states will be off-resonant
with the tweezer shaking frequency, which will suppress
the flipping of the Mo states, as sketched in Fig. 6(b). The
corresponding propagator of the controlled Mo rotation
then reads:

ÛC
MF (R⃗1) = (1 – n̂C) ⊗ X̂Mo(R⃗1) + n̂C ⊗ ÎR⃗1

(18)

where n̂C⃗ denotes the atom population number in the con-
trol tweezer in R⃗2, ÎR⃗1

denotes unit operator of the target
tweezer in R⃗1. Alternatively, tuning the shaking frequency
in resonance with the energy difference between the initial

Figure 6 Controlled Mo rotation operation with the target and
control tweezers located at R⃗1 and R⃗2, respectively. (a) In the absence
of an atom in the control tweezer, the atom in the target tweezer can
perform the Mo rotation, driven by the periodic modulation of the
target tweezer. (b) In the presence of an atom in the control tweezer,
the Mo rotation in the target tweezer is prevented by atom-atom
interaction between the two tweezers

and final states of the target atom, which is subjected to the
interaction from one atom in the control tweezer, one can
realize the control scheme that the Mo rotation of the tar-
get atom can only take place in the presence of one atom
in the control tweezer, as described by:

ÛC
MF (R⃗1) = n̂C ⊗ X̂Mo(R⃗1) + (1 – n̂C) ⊗ ÎR⃗1

. (19)

The controlled Mo rotation can also be generalized to
the situation with two control tweezers, specified with
their location of R⃗2 and R⃗3, which are both close to the
storage tweezer at R⃗1. Under the condition that at most
one atom will occupy the two control tweezers, with nC =
nR⃗2

+ nR⃗3
∈ {0, 1}, (nR⃗2(3)

denotes the atom occupation in
the control tweezer located at R⃗2(3)).

3.3 Numerical verifications
In the above two sections, we have introduced the single-
and two-atom operation elements to design the quantum
gates required by the high-dimensional universal quan-
tum computation. These elements, for one thing, gen-
eralize the standard operations, such as the two-photon
Raman process and the photon-assisted tunneling from
standard monochromatic to the multi-chromatic synchro-
nized scheme, and for another, adapts the tweezer trans-
port of atoms in the |p⟩m Mo state. It is then necessary
to numerically verify the feasibility of the multi-chromatic
synchronization scheme, and the stability of the |p⟩m Mo
state during the transport by moving the tweezer. In this
section, we take the Mo-maintained spin rotation for ex-
ample to numerically verify the synchronization scheme,
and also numerically demonstrate the stability of the p Mo
state during the tweezer transport. The numerical sim-
ulations are done with the ab initio method multi-layer
multi-configuration time-dependent Hartree method for
arbitrary species (ML-MCTDHX) [31–33], and the first-
principle simulation with the method can well resolve the
Mo states and their response to temporal modulation to
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Figure 7 Numerical verification of the synchronization scheme of the
Mo-maintained spin rotation. (a) Sketch of the Mo-maintained spin
rotation scheme through two sets of Raman lasers, denoted by the
red and yellow arrows, respectively. (b) The temporal evolution of the
basis-state Probability P|b⟩ (t) with |b⟩ = |↓⟩s |s⟩m (blue circle),
|b⟩ = |↑⟩s |s⟩m (green circle), |b⟩ = |↓⟩s |p⟩m (blue cross), and
|b⟩ = |↑⟩s |p⟩m (green cross). The blue and green lines are a guide to
the eye

the tweezers. In particular, the leakage of the Mo states
out of the computational basis {|s⟩m, |p⟩m} can be cap-
tured by the temporal modification of the spatial wave-
function of the atom by the method. A brief introduction
to the method and the numerical setup is given in the Ap-
pendix C.

Figure 7 presents the Mo-maintained spin rotation
through four Raman lasers. The coupling between dif-
ferent basis states by the four Raman lasers is sketched
in Fig. 7(a), in which the coupling channels for the s-s
and p-p spin rotations are illustrated with the red and
yellow vertical arrows, respectively. The temporal evo-
lution of the probability P|b⟩ (t) for the basis states |b⟩ ∈
{|↓⟩s |s⟩m, |↑⟩s |s⟩m, |↓⟩s |p⟩m, |↑⟩s |p⟩m}, are shown in
Fig. 7(b). In the figure we can find that probability evolu-
tion of |↓⟩s |s⟩m (|↑⟩s |s⟩m) coincides with that of |↓⟩s |p⟩m
(|↑⟩s |p⟩m), which directly verifies the validity of the syn-
chronization scheme. Quantitatively speaking, the numer-
ical simulation indicates that the Mo-maintained spin ro-
tation can achieve a fidelity > 99% under an operation
time around 5ms (the parameters are given in detail in
Appendix C). The residual infidelity of the numerical sim-
ulation is attributed to the leakage to the higher excited
Mo states out of the computational basis spanned by {|s⟩m,
|p⟩m}, which can be faithfully captured by the temporal
updating of the spatial wavefunction of the tweezer atoms
implemented in ML-MCTDHX. The performance can be
further improved by the optimal control scheme [17], of
which system parameters, e.g. the amplitude and the bi-
ased phase of the Raman lasers are temporally optimized
to reduce the operation time while maintaining the high
fidelity.

The stability of the |p⟩m Mo state during the atom trans-
port by moving the tweezer is numerically verified, and

Figure 8 Numerical verification of the stability of the atom in the
|p⟩m state during the transport process. (a) The sketch of the
two-piece trajectory from the initial position R⃗1 to the target position
R⃗2, which is illustrated with the solid arrows. (b) and (c) shows the
one-body density of the atom under the transport along the x
direction and y direction, respectively, which is initially prepared in the
|p⟩m state. The inset of (b) shows the one-body density of the initial
state of the atom under transport. In (c), each panel plots the
one-body density at a particular time, which is given in the inset of
each panel, and the red line crossing different panels illustrates the
trajectory R⃗c (t)

the results are shown in Fig. 8. As depicted in Fig. 8(a),
any transport from initial location R⃗1 to the goal loca-
tion of R⃗2 can be realized by the two-piece trajectory,
with the first and second piece of the trajectory along
the x- and y-direction, respectively. Figures 8(b) and (c)
show the one-body density of the atom at different times
during the transport along the x- and y-direction, re-
spectively, and particularly, the trajectories along both di-
rections follow the sinusoidal function as R⃗c (t) = R⃗ini +(︂

R⃗fin – R⃗ini

)︂
[sin(π t/T – π/2) + 1] /2, where R⃗ini (R⃗fin) de-

notes the initial (final) location of the trajectory. It can
be found that the Mo state of |p⟩m remains stable during
the transport along both directions, which guarantees that
the transport of the atom between any two locations can
maintain the Mo state by the two-piece trajectory. Quanti-
tatively, the numerical simulation indicates that the fidelity
of the atom remaining in the |p⟩m state can reach > 99%
during a transport time around T = 5ms over a distance
of 8μm. The sinusoidal trajectory presents a more stable
transport of the tweezer atom in the |p⟩m state than the lin-
ear one, as compared in Appendix C, and it also suggests
that the optimization of the trajectory can further improve
the efficiency and the stability of the Mo-maintained shut-
tling [34].
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Table 1 Quantum gates’ operations

Quantum gate Operation

Single-qubit
rotation gate

SO R̂MmSF [θ ,ϕ](R⃗) + X̂MmS(R⃗2 → R⃗1)
R̂SO[θ ,ϕ](R⃗1; R⃗2)

Mo R̂Mo[θ ,ϕ](R⃗)

Two-qubit
CNOT gate

SO-Mo X̂Mo(R⃗)
SO-SO ÛC

MmSF (R⃗) + X̂MmS(R⃗2 → R⃗1)
ÛC
MdH(R⃗1,α; R⃗2,α) + X̂MmS(R⃗2 → R⃗1)

Mo-Mo ÛC
MF (R⃗) + X̂MdS(R⃗2 → R⃗1) + T̂MmT (R⃗2 → R⃗1)

4 Quantum gates
In this section, we introduce the necessary single- and two-
qubit gates for the high-dimensional universal quantum
computation with the integration of the Mo and SO DoF.
The single-qubit gates include the arbitrary rotation gates
for the Mo and SO qubits. The two-qubit gates are chosen
as the SO-Mo, SO-SO, and Mo-Mo CNOT gates, among
which the SO-Mo CNOT gate is applied to the Mo and SO
states of the same atom, and the SO-SO (Mo-Mo) CNOT
gates are applied to the SO (Mo) qubits of two atoms. The
single- and two-qubit gates can be assembled by the op-
eration elements introduced in the previous section, and
in the following, we will demonstrate the fabrication of
the quantum gates through the related operation elements.
The correspondence between the quantum gates and the
operation elements is illustrated in Table 1.

SO rotation gates, such as the Pauli and Hadamard gates,
can be realized by the Mo-maintained shuttling elements.
The Pauli and Hadamard gates on the SO DoF of the j-th
cell can be simultaneously realized by the rotation opera-
tion Û j

SO[θ ,ϕ], as:

X̂ j
SO = Û j

SO[
π

2
, 0],

Ĥj
SO = Û j

SO[
π

4
, 0],

(20)

where X̂ and Ĥ separately denote Pauli-X gate and Hada-
mard gate.

The rotation operation Û j
SO[θ ,ϕ] can be realized by the

Mo-maintained shuttling operation, and assembled by the
operation elements of

Û j
SO[θ ,ϕ] = X̂MmS(R⃗j,u → R⃗j,d)–1 ∗ R̂MmSF [θ ,ϕ](R⃗j,d)

∗ X̂MmS(R⃗j,u → R⃗j,d),
(20)

where R⃗j,u(d) denotes the locations of the y = u(d) tweezer
in the j-th cell, and X̂MmS(R⃗j,u → R⃗j,d)–1 is the inverse op-
eration of X̂MmS(R⃗j,u → R⃗j,d).

Another rotation operation Û j
SO[θ ,ϕ] can be realized by

the Mo-maintained SO rotation operation, which has:

Û j
SO[θ ,ϕ] = R̂SO[θ ,ϕ](R⃗j,u; R⃗j,d), (21)

where R⃗j,u(d) denotes the locations of the y = u(d) tweezer
in the j-th cell.

Mo rotation gates and the SO-Mo CNOT gate can be
fabricated by the Mo rotation element and the periodic
shaking applied simultaneously and identically to the two
tweezers in the same cell realizes the single-qubit rotation
gates on the Mo DoF. The Rotation operation on the Mo
DoF of the atom in the j-th cell can then be assembled as

Û j
Mo[θ ,ϕ] = R̂Mo[θ ,ϕ](R⃗j,d) ∗ R̂Mo[θ ,ϕ](R⃗j,u). (22)

Choosing different parameters of θ and ϕ, one can realize
the Pauli and Hadamard gates for the Mo DoF, as:

X̂ j
Mo = Û j

Mo[
π

2
, 0],

Ĥj
Mo = Û j

Mo[
π

4
, 0].

(23)

SO-Mo CNOT gate applied to the two DoFs of a single
atom can be realized by the X-type Mo rotation element on
a single tweezer, which induces the SO-control Mo-NOT
gate, as:

Ĉ j,y
SO–Mo = X̂Mo(R⃗j,y), (24)

where y = u/d denotes in which tweezer the atom will ex-
perience the Mo rotation.

SO-SO CNOT gate is applied to two atoms in different
cells, and realizes the function that the SO state flipping of
the target atom is determined by the SO state of the control
atom. The SO-SO CNOT gate is then realized through the
combination of the Mo-maintained shuttling of the control
atom to the nearby of the target atom, and the controlled
Mo-maintained hopping of the target atom, with the cor-
responding unitary operator is given as:

Ĉ j1,j2
SO–SO = X̂j1,j2

dMmS
–1 ∗ ÛC

MmSF (R⃗j1,d; R⃗j1,d̃) ∗ X̂j1,j2
dMmS,

X̂j1,j2
dMmS = X̂MmS(R⃗j2,u → R⃗j1,d̃) ∗ X̂MmS(R⃗j1,u → R⃗j1,d),

(25)

where j1 and j2 separately denote the target and control
cells exerted two-qubit gate operations, R⃗j1,d̃ denotes the
position close to R⃗j1,d to induce interaction-control spin-
flipping. The operator Ûj1,j2

dMmS is double Mo-maintained
shuttling acting on two tweezers, which are separately
from the j1 and j2 cells. Alternatively, the SO-SO CNOT
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gate can utilize the controlled Mo-dependent hopping el-
ements, as:

Ĉ j1,j2
SO–SO = X̂MmS(R⃗j2,u → R⃗j1,ỹc )

–1

∗ ÛC;j1,j2
dMdH ∗ X̂MmS(R⃗j2,u → R⃗j1,ỹc ),

ÛC;j1,j2
dMdH = ÛC

MdH(R⃗j1,d, s; R⃗j1,u, s) ∗ ÛC
MdH(R⃗j1,d, p; R⃗j1,u, p),

(26)

where R⃗j1,ỹc denotes the center position between R⃗j1,u and
R⃗j1,d , serving for controlled Mo-dependent hopping opera-
tions. The operator ÛC;j1,j2

dMdH is used to independently tunnel
s and p Mo states between two target tweezers if the con-
trol tweezer is empty. Otherwise, the tunneling between
two target tweezers will be prevented. Then depending
on the site-occupation in the j2 cell, we can control SO-
flipping in the j1 cell.

Mo-Mo CNOT gate can be realized by the combination
of the Mo-dependent transfer and controlled Mo rota-
tion elements. Mo-dependent transfer elements are used
to transfer p Mo states in the j2 cell to control tweezers.
Then two control tweezers of the up and down occupa-
tion for the R-cell are moved around up and down storage
tweezers in the j1 cell, respectively when controlled Mo ro-
tation elements are acting on them. Thus only when the
j2 cell atom occupies the s Mo state, the j1 cell atom’s Mo
state will be flipped. The unitary operator of the motional-
motional two-qubit gate thus has:

Ĉ j1,j2
Mo–Mo = X̂j1,j2;d

dMdS
–1 ∗ ÛC;j1,j2

dMF ∗ X̂j1,j2;u
dMdS ,

X̂j1,j2;y
dMdS = X̂MdS(R⃗j2,d → R⃗j1,ỹ2 ) ∗ X̂MdS(R⃗j2,u → R⃗j1,ỹ1 ),

ÛC;j1,j2
dMF = ÛC

MF (R⃗j1,d) ∗ T̂ j1
dMmT ∗ ÛC

MF (R⃗j1,u),

T̂ j1
dMmT = T̂MmT (R⃗j1,ũ2 → R⃗j1,d̃2

) ∗ T̂MmT (R⃗j1,ũ1 → R⃗j1,d̃1
),

(27)

where X̂j1,j2;y
dMdS denotes the double Mo-dependent shuttling

operations, which is used to transport p Mo states of the j2
cell to shuttle tweezers and move to R⃗j1,ỹ which is around
R⃗j1,y as control cells. ÛC;j1,j2

dMF is used to perform controlled
Mo rotation separately for the up and down tweezers.
T̂ j1

dMmT is used to move two control tweezers into the posi-
tion around the target tweezer for the controlled Mo rota-
tion operation.

5 Quantum circuits
The ultra-cold atoms trapped in the optical tweezer sys-
tem possess the capabilities of both efficient parallel op-
erations and high-fidelity individual manipulations. Let
us first focus on the basic quantum gates for quantum
computing, which include all single qubit rotations(in-
cluding Hadamard) and CNOT operations. For this ultra-
cold atomic system, these qubits are encoded into SO and

Mo DoF, which could be described as ladder-like con-
nected devices due to unique connection patterns between
these qubits. The two-qubit gates that link these qubits
distributed in this ladder-like connected devices can be
mainly divided into two categories: intra two-qubit gates
and inter two-qubit gates, which are the intrinsic factors of
hyper and hybrid nonlocality [35]. This system has excel-
lent scalability, for 2n qubits encoded on n atomic tweez-
ers array, which could be seen as two independent linear
nearest neighbor connected devices, and the topology of
this ladder-like tweezer array and the number of qubits
are illustrated in Fig. 9(a): one is constructed by SO-qubit-
chain q0, q2, . . . , q2n–2, which are denoted by circles and
the correlation with the adjacent qubit could be resulted
by the SO-SO gate Ĉi,j

SO–SO, the other is constituted by Mo-
qubit-chain q1, q3, . . . , q2n–1, which are denoted by squares
and could be entangled with the nearest Mo-qubit through
the Mo-Mo gate Ĉi,j

Mo–Mo. More importantly, the SO-Mo
gate Ĉ j,y

SO–Mo creates a powerful hybrid correlation between
these two different qubit-chains, which is the intrinsic mo-
tivation of this system’s capability to perform multi-DoF
quantum computation.

We could employ the set of multi-DoF gates to construct
the quantum circuits required for quantum computing
tasks, such as quantum Fourier transform [36, 37], Jordan–
Wigner String [38, 39], Grover’s diffusion operator [40, 41],
quantum error correction codes [42–44], and so on. The
ability to create multi-qubit entanglement serves as an im-
portant benchmark for quantum technologies, here we
construct quantum circuits required for the preparation
of multiple entangled states by simultaneously exploiting
two different DoFs. Multi-DoF entanglement is divided
into the following types [45]: hyper-entanglement, hybrid-
entanglement, and hyper-hybrid entanglement. Among
these multi-DoF entanglements, hyper-entanglement and
hyper-hybrid entanglement possess higher entanglement
degrees and better application scenarios and could be writ-
ten as:

|ψ⟩hyper = |GHZ⟩o ⊗ |GHZ⟩m,

|GHZ⟩o =
1√
2

(|0⟩⊗n
o + |1⟩⊗n

o ),

|GHZ⟩m =
1√
2

(|0⟩⊗n
m + |1⟩⊗n

m ); (28)

|ψ⟩hyper–hybrid =
1√
2

(|0⟩⊗2n + |1⟩⊗2n),

|0⟩⊗2n = |0⟩⊗n
o ⊗ |0⟩⊗n

m ,

|1⟩⊗2n = |1⟩⊗n
o ⊗ |1⟩⊗n

m . (29)

In Eq. (28), |GHZ⟩o and |GHZ⟩m represent maximally en-
tangled GHZ states at SO and Mo DoF, respectively, and n
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Figure 9 Number of the qubit and the quantum circuits. (a) The topology and number of the multi-degrees-of-freedom qubits. Quantum circuits for
the generation of (b) hyper-entangled states and (c) hyper-hybrid entangled states with 12 qubits encoded on 6 atoms

is the number of atoms. In Eq. (29), |0⟩⊗2n as well as |1⟩⊗2n

represent 2n qubits global vector.
For both Eq. (28) and Eq. (29), starting with all atoms

loaded in different cells are trapped in the same SO and
Mo state,

|ψ⟩ini ≡ |0⟩⊗2n = |0⟩⊗n
o ⊗|0⟩⊗n

m , (30)

and design a specific quantum circuit with n = 6, which
are shown in Fig. 9(b) and 9(c), respectively. Both quan-
tum circuits are optimal circuit depth for our system and
could be decomposed into single qubit rotations (includ-
ing Hadamard) and CNOT operations. In this context,
Ĉi,j

SO–SO(Mo–Mo) represents SO-SO (Mo-Mo) CNOT gate be-
tween i – th cell and j – th Cell, and Ĉ j,d

SO–Mo represents SO-
Mo CNOT gate in j – th cell.

More precisely, for Eq. (28), generation entangled state
|ψ⟩hyper only required quantum gates sets belong to single
DoF gates. To schedule this circuit for generating |ψ⟩hyper,
two individual sets of quantum operation sequences are
used for preparing |GHZ⟩o in site-qubit-chain and |GHZ⟩m
within Mo-qubit-chain, respectively. Because the quantum
operations on these two DoFs affect each other, the en-
tangled states of qubits encoded in the two different DoFs
|GHZ⟩o and |GHZ⟩m needs to be completed separately
in different time at different time periods. As shown in

Fig. 9(b), we first complete the preparation of entangled
states at the SO DoF via performing a total of n + 1 quan-
tum gate operations (one Ĥj

SO and n Ĉi,j
SO–SO), and the key

steps are as follows: First, a single qubit gate operation Ĥk
SO

was applied to the atoms trapped in the middle position
k = n/2 (n is even) or k = (n + 1)/2 (n is odd), and the sys-
tem is evolved from the initial state Eq. (30) to:

|ψ⟩k
o =

1√
2

(|0⟩k
o + |1⟩k

o). (31)

Then, a SO-SO CNOT gate Ĉk,k+1
SO entangled the two atoms

in the middle cell, and the corresponding state could be
written as:

|GHZ⟩k,k+1
o =

1√
2

(|0, 0⟩k,k+1
o + |1, 1⟩k,k+1

o ). (32)

Next, under the combined action of these two quantum
gates Ĉk,k–1

SO and Ĉk+1,k+2
SO , the corresponding state evolved

to a 4-qubits GHZ state:

|GHZ⟩k–1,k,k+1,k+2
o =

1√
2

(|0, 0, 0, 0⟩k–1,k,k+1,k+2
o +

|1, 1, 1, 1⟩k–1,k,k+1,k+2
o ).

(33)
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On this basis, under the induction of a series of SO-SO
CNOT gates, the region of GHZ entanglement is gradually
extended from the middle region to the whole SO-qubits-
chain and evolved to a n-qubits GHZ state |GHZ⟩o. Sim-
ilarly, we repeat this operation array in Mo-qubits-chain
and could construct a n-qubits GHZ state |GHZ⟩m. Mean-
while, the quantum state of the whole ladder-like system is
|ψ⟩hyper. In the process of performing quantum circuits for
the entangled state |ψ⟩hyper, we need to perform 2(n + 1)
quantum gate operations, and the corresponding circuit
depth [46] results after decomposition is n + 2 (n is even)
or n + 3 (n is odd).

Another key application is generating multi-qubit hyper-
hybrid entangled states, such as |ψ⟩hyper–hybrid, which are
specifically designed for generating the max entangle-
ment using this two-DoF ladder-like device, as shown in
Fig. 9(c). Starting with the initial state Eq. (30), the con-
struction of 2n qubits GHZ state |ψ⟩hyper–hybrid is incor-
porated with two elementary steps, including the prepara-
tion of |GHZ⟩o and quantum manipulation across different
DoFs. For the preparation of n qubits GHZ state among n
different atoms encoded on SO DoF |GHZ⟩o, which is in
the same way as the previously introduced method. Bene-
fiting from the advantages of this system in parallel opera-
tions, we could based on the GHZ state in SO-qubit-chain
simultaneously perform n sets of Ĉj,d

SO–Mo for all atoms and
obtain a global hyper-hybrid-GHZ state |ψ⟩hyper–hybrid. The
hyper-hybrid-GHZ state |ψ⟩hyper–hybrid is a highly entan-
gled quantum state, in addition to SO-SO entangled and
Mo-Mo entangled, different DoFs, i.e., SO and Mo DoF
also intricately entangled with each other. The optimal
quantum circuit for the entangled state |ψ⟩hyper–hybrid can
be decomposed into 2n + 1 quantum gates operations and
the corresponding circuit depth results after decomposi-
tion is n/2 + 2 (n is even) or (n + 1)/2 + 2 (n is odd).

6 Discussion on the experimental feasibility
The high-dimensional quantum computation scheme pro-
posed in this work can be implemented with various al-
kali (earth) atoms, such as the 87Rb and 87(88)Sr atoms. For
instance, the state-dependent storage and shuttle tweez-
ers are readily implemented for 87Rb atoms in the 52S1/2
manifold [47], and 87(88)Sr atom in the 1S0 and 3P0 man-
ifolds [26, 48–50]. Moreover, the Mo state manipulation
and the motional-dependent hopping between tweezers of
87Rb atoms have been experimentally demonstrated [5].
The erasure cooling scheme to prepare tweezer-trapped
atoms in the motional ground state has been proposed for
both 87Rb and 87(88)Sr atoms, and experimentally verified
for 88Sr atoms [27]. These developments guarantee the im-
plementation of the ladder-shaped tweezer array with the
additional shuttle tweezers, and the initial state prepara-
tions in the platform.

The LTA scheme suffers from imperfections in the real-
istic setup and operations, which can be categorized into
the leakage beyond the computational basis, the static in-
homogeneity of the tweezer arrays and the temporal ef-
fects, such as the long-term drift and the short-term noise
of the laser systems. Taking the Mo-maintained spin ro-
tation for instance, our numerical simulation shown in
Fig. 7 has indicated that, the leakage to higher Mo states
beyond the computational basis of {|s⟩m, |p⟩m} would in-
deed lead to imperfection of the operation, while the in-
fidelity caused by the leakage can be well suppressed by
the energetical detuning between different Mo states, with
the total fidelity reaching > 99%. Besides the global shot-
to-shot fluctuations in trapping frequency, the inhomo-
geneity of the arrays refers to the difference in the trap-
ping potential between different storage tweezers, as well
as between the storage and shuttle tweezers. For one thing,
it has been suggested [26, 27] that the dephasing intro-
duced by the inhomogeneity between storage tweezers
can be suppressed by the motional echo technique, which
can be directly adapted to the LTA scheme. For another,
the inhomogeneity-induced energy detuning of the Mo
states between the storage and shuttle tweezers can be sup-
pressed by the multi-chromatic synchronization schemes
proposed in this work, given that the energy detuning is
static and can be measured before the temporal modula-
tion operations. It is also noticeable that the homogene-
ity control of the tweezer arrays has been experimentally
improving, and the large-size array of uniform tweezers
has been experimentally implemented [13]. The temporal
imperfections determine the coherence and life times of
the qubit states, and one can shed a light to the feasibility
with respect to the temporal imperfections by comparing
the operation time with the coherence time of the qubit
states. Taking the motional qubit states for instance, which
are more sensitive to the temporal imperfections, the Mo-
related operation time according to the numerical simula-
tion is on the order of 10 ms. The coherence time of the Mo
states in the atomic tweezer array can reach 100 ms in ex-
periments [27], which provides a support to the feasibility
of the proposed LTA scheme.

The finite temperature would affect the coherence of the
atom in the superposition states between different Mo or
SO states. The deep cooling in the initial state preparation
stage can well suppress this effect, and the Raman sideband
cooling [5] and the erasure correction cooling [27] have
been experimentally implemented for cooling the tweezer
atoms to the ground Mo state, which is suitable for the LTA
setup. Another error source is the heating caused by oper-
ations, e.g. the Raman process, and tweezer position ma-
nipulation. The atom heating resulting from tweezer posi-
tion manipulation, including tweezer shaking and moving,
has been taken into account in our first-principles numeri-
cal simulation, which indicates that the heating can be well



Deng et al. Quantum Frontiers             (2025) 4:4 Page 14 of 21

controlled with stable laser setups. The heating effect dur-
ing the Raman process is small enough for our spin rota-
tion process to be neglected, since our two-photon ampli-
tude is far less than the normal two-photon Raman process
to compatible Mo states.

7 Summary
In this work, we have introduced the high-dimensional
universal quantum computation scheme in a ladder-
shaped atomic tweezer array. The key strategy of the
scheme is integrating different degrees of freedom to ex-
tend the single-atom computational basis to high dimen-
sions and enable each atom to carry multiple qubits. The
Mo and SO DoF are considered in this work to contribute
to the computation basis, which doubles the quantum
information capacity of a single atom. We have demon-
strated the feasibility of the high-dimensional quantum
computation through the integration of different DoFs in
the LTA setup, with the concrete design of the quantum
gates for the universal quantum computation.

The current work mainly focuses on the suppression of
the inter-DoF crosstalk between qubits encoded into dif-
ferent DoFs, and a unified strategy composed of detun-
ing engineering and the multi-chromatic synchronized
Hamiltonian modulation is introduced to suppress such
inter-DoF crosstalk. The experimental feasibility is also
briefly discussed. The LTA scheme can be further im-
proved by exploring the optimal control to simplify the
operation elements and improve the fidelity. Moreover,
this scheme can be further generalized to involve more
degrees of freedom to enlarge the computational basis,
such as the spin and the Mo DoF in different direc-
tions.

Appendix A: Arbitrary single-qubit rotation
operations

Here we introduce arbitrary single-qubit rotation opera-
tions in detail for various DoFs, including spin, Mo- and
SO-, which provide elements for quantum gates fabrica-
tion.

A.1 Spin arbitrary single-qubit operations
Two-photon Raman lasers can be utilized to arbitrarily
transform spin states as we need, which provides a foun-
dation for the spin arbitrary single-qubit operations. The

two-photon Raman Hamiltonian have:

ĤRa = –
ħ

2∇⃗2

2m
+ V̂Spin(r⃗) +

∑︂

σ=↓,↑,e

εσ |σ ⟩s⟨σ | + ħΩ̂α
Ra(r⃗),

V̂Spin(r⃗) = V̂twz[Vsg , R⃗1](r⃗) ⊗ |↓⟩s ⟨↓|
+ V̂twz[Vsh, R⃗1](r⃗) ⊗ |↑⟩s ⟨↑| ,

Ω̂α
Ra(r⃗) = Ω̃α,1fRa[R⃗1,

√
2w⃗Ra](r⃗)

× cos(ωα,1t + ϕα,1) |↓⟩s ⟨e|
+ Ω̃α,2fRa[R⃗1,

√
2w⃗Ra](r⃗)

× cos(ωα,2t + ϕα,2) |↑⟩s ⟨e| + h.c.,

fRa[R⃗1, w⃗](r⃗) = e–2(x–x1)2/w2
x–2(y–y1)2/w2

y ,

(A.1)

where w⃗Ra = (wRa
x , wRa

y ), R⃗1 = (x1, y1), Ω̃α,j, ωα,j and ϕα,j are
the waist width, the equilibrium position, the peak ampli-
tude, the frequency and the phase of the Raman laser de-
noting by α = s, p and j = 1, 2, εσ denotes the energy of the
internal state |σ ⟩s, e denotes excited states |e⟩s, ωα,j is the
laser frequency and ϕα,j is laser phase. We set Ω̃α,1 = Ω̃α,2,
the effective two-photon Raman Hamiltonian thus have:

Ĥeff
Ra = –

ħ
2∇⃗2

2m
+ V̂Spin(r⃗) + ħΩ̂α

eff (r⃗),

Ω̂α
eff (r⃗) = Ω̃αfRa[R⃗1, w⃗Ra](r⃗)ei(ωα t+ϕα )(|↓⟩s ⟨↑| + h.c.)

+ Ω̃αfRa[R⃗1, w⃗Ra](r⃗)(|↓⟩s ⟨↓| + |↑⟩s ⟨↑|),

(A.2)

of which Ω̃α = Ω̃α,1Ω̃α,2
4(ω↓–ωe) , ωα = ωα,1 – ωα,2 – (ε↓ – ε↑) and

ϕα = ϕα,1 – ϕα,2 denotes the effective amplitude, the effec-
tive frequency, and the biased phase of the TPR transition.

We can acquire reduced Hamiltonian for the basis states
{|α⟩m |↑⟩s, |α⟩m |↓⟩s}

Ĥspin =
[︃
ϵα,sh + (ε↓ – ε↑) ħ

Ωα

2 e–i(ωα t+ϕα )

ħ
Ωα

2 ei(ωα t+ϕα ) ϵα,sg

]︃
, (A.3)

where the tweezer energy ϵα,sg(sh) = m⟨α|s ⟨↓ (↑)| [–ħ
2∇⃗2

2m +
V̂SF (r⃗) + ħΩ̃αfRa[R⃗0, w⃗Ra](r⃗)] |↓ (↑)⟩s |α⟩m, and the ampli-
tude Ωα

2 = m⟨α|Ω̃αfRa[R⃗0, w⃗Ra](r⃗)|α⟩m is the reduced two-
photon Rabi frequency of the state |α⟩m |↓ (↑)⟩s. Then we
perform a rotating wave approximation, giving:

Ĥrwa
spin/ħ =

[︃
δα
2

Ωα

2 e–iϕα

Ωα

2 eiϕα – δα
2

]︃
, (A.4)
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where detuning δα = (ϵα,sh – ϵα,sg)/ħ – ωα + (ε↓ – ε↑)/ħ.
When evolving a time t = Tα , its evolution operator has:

Ôspin[θ ,ϕ,φ]

= e–iφ/2

×
[︄

cos(θ ) 1–eiφ
2 + 1+eiφ

2 –sin(θ )e–iϕ eiφ–1
2

–sin(θ )eiϕ eiφ–1
2 –cos(θ ) 1–eiφ

2 + 1+eiφ
2

]︄

,

(A.5)

where cos(θ ) = δα√︂
δ2
α+Ω2

α

, sin(θ ) = Ωα√︂
δ2
α+Ω2

α

, ϕ = ϕα and φ =

Tα

√︁
δ2
α + Ω2

α . Then an arbitrary rotation gate can be con-
structed as follows:

R̂α
spin[θ ,ϕ] = Ôspin[θ ,ϕ,π]

= –i
[︃

cos(θ ) sin(θ )e–iϕ

sin(θ )eiϕ –cos(θ )

]︃
.

(A.6)

The (–i) term as a global phase can be neglected. Other
gates can be derived from it, such as Pauli-X, Hadamard,
phase, and π/8 gates, shown as below:

X̂α
spin = R̂α

spin[
π

2
, 0] =

[︃
0 1
1 0

]︃
,

Ĥα
spin = R̂α

spin[
π

4
, 0] =

1√
2

[︃
1 1
1 –1

]︃
,

Ŝα
spin = R̂α

spin[
π

2
, –

π

4
] ∗ R̂α

spin[
π

2
, 0] =

[︃
1 0
0 i

]︃
,

T̂α
spin = R̂α

spin[
π

2
, –

π

8
] ∗ R̂α

spin[
π

2
, 0] =

[︃
1 0
0 ei π

4

]︃
,

(A.7)

where the global phases are neglected. Combining a two-
qubit CNOT gate and a single-qubit arbitrary rotation
gate, we can acquire a universal quantum gate set to ap-
proximate any unitary operation to arbitrary accuracy.

A.2 Mo-dependent hopping arbitrary single-qubit
operations

Considering two SO states which separately occupy two
tweezers located in R⃗1 and R⃗2, an additional shaking po-
tential with cosine periodic modulation Ω̂shk(t) = Aα1–α2 ×
cos(ωα1–α2 t + ϕα1–α2 )Vpot(r⃗) is performed between target
tweezers to resonantly couple the two SO states. For a ba-
sis {|R⃗1⟩o|α1⟩m, |R⃗2⟩o|α2⟩m}, Hamiltonian have:

ĤSO =
[︃

ϵR⃗1,α1 ħΩα1–α2 cos(ωα1–α2 t + ϕα1–α2 )
ħΩα1–α2 cos(ωα1–α2 t + ϕα1–α2 ) ϵR⃗2,α2

]︃
,
(A.8)

where Ωα1–α2 = Aα1–α2 m⟨α1|o⟨R⃗1|Vpot(r⃗)|R⃗2⟩o|α2⟩m/ħ is the
Rabi frequency between the two basis states |R⃗1⟩o|α1⟩m

and |R⃗2⟩o|α2⟩m, and ϵR⃗,α⃗ is the energy of the state |R⃗⟩o|α⃗⟩m
with α1(2) = s/p denotes correspond Mo state. Then we per-
form a rotating wave approximation, giving:

Ĥrwa
SO /ħ =

[︄
δα1–α2

2
Ωα1–α2

2 e–iϕα1–α2
Ωα1–α2

2 eiϕα1–α2 – δα1–α2
2

]︄

, (A.9)

where detuning δα1–α2 = (ϵR⃗1,α1
– ϵR⃗2,α2

)/ħ– ωα1–α2 . We can
get the evolution operator and rotation gate evolving a
time t = Tα1–α2 as Appendix A.1, which have:

ÔSO[θ ,ϕ,φ]

= e–iφ/2

×
[︄

cos(θ) 1–eiφ

2 + 1+eiφ

2 –sin(θ)e–iϕ eiφ–1
2

–sin(θ)eiϕ eiφ–1
2 –cos(θ) 1–eiφ

2 + 1+eiφ

2

]︄

,

R̂α1→α2
SO [θ ,ϕ](R⃗1 → R⃗2)

= ÔSO[θ ,ϕ,π] = –i
[︃

cos(θ) sin(θ)e–iϕ

sin(θ)eiϕ –cos(θ)

]︃
,

(A.10)

where cos(θ ) = δα1–α2√︂
δ2
α1–α2 +Ω2

α1–α2
, sin(θ ) = Ωα1–α2√︂

δ2
α1–α2 +Ω2

α1–α2
, ϕ =

ϕα1–α2 and φ = Tα1–α2

√︂
δ2
α1–α2 + Ω2

α1–α2 .

A.3 Mo arbitrary single-qubit operations
For a shaking tweezer given as Eq. 11, we can derive its re-
duced Hamiltonian for the basis states {|s⟩m, |p⟩m}, shown
as below:

ĤMo =
[︃

ϵs ħΩ(t)
ħΩ(t) ϵp

]︃
, (A.11)

where ϵs(p) is the energy of the Mo state |s(p)⟩m and the
coupling strength Ω(t) = m⟨s|V̂Mo(t)|p⟩m/ħ with a sine pe-
riodic modulation, which can be approximated as:

Ω(t) = ΩMocos(ωMot + ϕMo) + Ω0,

ΩMo = Ωmax
Mo – Ωmin

Mo ,

Ω0 = (Ωmax
Mo + Ωmin

Mo )/2,

(A.12)

where the maximum and minimum of the coupling
strength for the modulation tweezer are separately Ωmax

Mo =
m⟨s|Vtwz[Vsg , (xc, yc)]|p⟩m and Ωmax

Mo = m⟨s|Vtwz[Vsg , (xc +
Ω̃Mo, yc)]|p⟩m, which correspond to the shaking tweezer
moving to the positions (xc, yc) and (xc + Ω̃Mo, yc). Then
we perform an rotating wave approximation and Ω0 is ne-
glected as high frequency term, giving:

Ĥrwa
Mo /ħ =

[︃
δMo

2
ΩMo

2 e–iϕMo

ΩMo
2 eiϕMo – δMo

2

]︃
, (A.13)

where the detuning δMo = (εs – εp)/ħ – ωMo.
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We can get the evolution operator and arbitrary rota-
tion gate evolving a time t = TMo as Appendix A.1 and A.2,
which have:

ÔMo[θ ,ϕ,φ]

= e–iφ/2

[︄
cos(θ) 1–eiφ

2 + 1+eiφ

2 –sin(θ)e–iϕ eiφ–1
2

–sin(θ)eiϕ eiφ–1
2 –cos(θ) 1–eiφ

2 + 1+eiφ

2

]︄

,

R̂Mo[θ ,ϕ]

= ÔMo[θ ,ϕ,π] = –i
[︃

cos(θ) sin(θ)e–iϕ

sin(θ)eiϕ –cos(θ)

]︃
,

(A.14)

where cos(θ ) = δMo√︂
δ2

Mo+Ω2
Mo

, sin(θ ) = ΩMo√︂
δ2

Mo+Ω2
Mo

, ϕ = ϕMo and

φ = TMo

√︂
δ2

Mo + Ω2
Mo.

Appendix B: Quantum gate operations
To realize universal quantum computation, a set of uni-
versal quantum gates is required, which includes SO- and
Mo- single-qubit arbitrary rotation gates, SO-Mo, SO-SO,
and Mo-Mo two-qubit CNOT gates. Here we introduce
the state transformations for these gates in detail.

B.1 SO single-qubit arbitrary rotation gate
There are two ways to realize the SO single-qubit arbitrary
rotation gate, including Mo-maintained shuttling and Mo-
dependent hopping, which can transform SO qubits with
arbitrary rotations, which are equal for their Mo states.

For the j-th cell, the initial states are |R⃗j,u⟩o|α(θ⃗m)⟩m |↓⟩s
and |R⃗j,d⟩o|α(θ⃗m)⟩m |↓⟩s. We introduce the first SO single-
qubit arbitrary rotation gate, when the Mo-maintained
shuttling X̂MmS(R⃗j,u → R⃗j,d) exerting on the initial state, the
Mo-states are projected into the spin stats, which have:

X̂MmS(R⃗j,u → R⃗j,d)

[︃|R⃗j,u⟩o
|R⃗j,d⟩o

]︃
|α(θ⃗m)⟩m |↓⟩s

= |R⃗j,d⟩o|α(θ⃗m)⟩m

[︃|↑⟩s
|↓⟩s

]︃
,

(B.1)

where |α(θ⃗m)⟩m = cos(θm)|s⟩m + sin(θm)eiϕm |p⟩m, and θ⃗m =
(θm,ϕm). After that arbitrary single-qubit spin rotation
R̂MmSF [θ ,ϕ](R⃗j,d) can prepare the desired spin states as we
need, which have:

R̂MmSF [θ ,ϕ](R⃗j,d)|R⃗j,d⟩o|α(θ⃗m)⟩m

[︃|↑⟩s
|↓⟩s

]︃

= |R⃗j,d⟩o|α(θ⃗m)⟩m

[︃|σ (θ⃗)⟩s
|σ̃ (θ⃗)⟩s

]︃
,

(B.2)

where |σ (θ⃗)⟩s = cos(θ ) |↑⟩s + sin(θ )eiϕ |↓⟩s, |σ̃ (θ⃗)⟩s = –sin(θ )
e–iϕ |↑⟩s +cos(θ ) |↓⟩s, and θ⃗ = (θ ,ϕ). Finally an inverse oper-

ation of the X̂MmS(R⃗j,u → R⃗j,d) is performed, the spin states
are projected into the SO states, which have:

X̂MmS(R⃗j,u → R⃗j,d)–1|R⃗j,d⟩o|α(θ⃗m)⟩m

[︃|σ (θ⃗)⟩s
|σ̃ (θ⃗)⟩s

]︃

=

[︄
|R⃗j(θ⃗ )⟩o

|⃗̃Rj(θ⃗ )⟩o

]︄

|α(θ⃗m) |↓⟩s ,
(B.3)

where |R⃗j(θ⃗)⟩o = cos(θ )|R⃗j,u⟩o + sin(θ )eiϕ |R⃗j,d⟩o and
|⃗̃Rj(θ⃗)⟩o = –sin(θ )e–iϕ|R⃗j,u⟩o + cos(θ )|R⃗j,d⟩o.

For the second SO single-qubit gate, R̂SO[θ ,ϕ](R⃗j,u; R⃗j,d)
is utilized to rotate SO states, which have:

R̂SO[θ ,ϕ](R⃗j,u; R⃗j,d)

[︃|R⃗j,u⟩o
|R⃗j,d⟩o

]︃
|α(θ⃗m)⟩m |↓⟩s

=

[︄
|R⃗j(θ⃗ )⟩o

|⃗̃Rj(θ⃗ )⟩o

]︄

|α(θ⃗m) |↓⟩s .
(B.4)

Thus two kinds of SO single-qubit arbitrary rotation
gates can realize the same state transformations, shown as
below:

Û j
SO[θ ,ϕ]

[︃|R⃗j,u⟩o
|R⃗j,d⟩o

]︃
|α(θ⃗m)⟩m |↓⟩s

=

[︄
|R⃗j(θ⃗)⟩o

|⃗̃Rj(θ⃗)⟩o

]︄

|α(θ⃗m) |↓⟩s .
(B.5)

B.2 Mo single-qubit arbitary rotation gate
For the Mo single-qubit arbitrary rotation gate, we use
periodic modulation of the tweezer positions to flip Mo
states. The initial states are |R⃗j(θ⃗o)⟩o|s⟩m |↓⟩s
and |R⃗j(θ⃗o)⟩o|p⟩m |↓⟩s, then the Mo- single-qubit arbitrary
gate have:

Û j
Mo[θ ,ϕ]|R⃗j(θ⃗o)⟩o

[︃|s⟩m
|p⟩m

]︃
|↓⟩s =

|R⃗j(θ⃗o)⟩o

[︃|α(θ⃗)⟩m
|α̃(θ⃗ )⟩m

]︃
|↓⟩s ,

(B.6)

where |α̃(θ⃗)⟩m = –sin(θ )e–iϕ|s⟩m + cos(θ )|p⟩m.

B.3 SO-Mo two-qubit CNOT gate
For the SO-Mo two-qubit CNOT gate, the site-resolved
periodic modulation is performed to flip the Mo states of
the target tweezer. For the initial states |R⃗j(θ⃗o)⟩o|s⟩m |↓⟩s

and |R⃗j(θ⃗o)⟩o|p⟩m |↓⟩s, we take the Ĉ j,d
SO–Mo as example,
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which have:

Ĉ j,d
SO–Mo|R⃗j(θ⃗o)⟩o

[︃|s⟩m
|p⟩m

]︃
|↓⟩s

=
[︃

cos(θo)|R⃗j,u⟩o|s⟩m + sin(θo)eiϕo |R⃗j,d⟩o|p⟩m
cos(θo)|R⃗j,u⟩o|p⟩m + sin(θo)eiϕo |R⃗j,d⟩o|s⟩m

]︃
|↓⟩s ,

(B.7)

where θ⃗o = (θo,ϕo).

B.4 SO-SO two-qubit CNOT gate
Similar to the SO single-qubit gate, there are also two kinds
of methods to assemble the SO-SO two-qubit CNOT gate.
For the first gate, the operator Ûj1,j2

dMmS exert on the initial
states |R⃗j1 (θ⃗o)⟩o|α(θ⃗1m)⟩m |↓⟩s ⊗ |R⃗j2,u⟩o|α(θ⃗2m)⟩m |↓⟩s and
|R⃗j1 (θ⃗o)⟩o|α(θ⃗1m)⟩m |↓⟩s ⊗ |R⃗j2,d⟩o|α(θ⃗2m)⟩m |↓⟩s, the atoms
in control and target tweezers are transported in two shut-
tle tweezers which located closely in R⃗j1,d and R⃗j1,d̃ , shown
as below:

X̂j1,j2
dMmS|R⃗j1 (θ⃗o)⟩o|α(θ⃗1m)⟩m |↓⟩s ⊗

[︃|R⃗j2,u⟩o
|R⃗j2,d⟩o

]︃

|α(θ⃗2m)⟩m |↓⟩s = |R⃗j1,d⟩o|α(θ⃗1m)⟩m|σ (θ⃗o)⟩s

⊗
[︄
|R⃗j1,d̃⟩o |↓⟩s

|R⃗j2,d⟩o |↑⟩s

]︄

|α(θ⃗2m)⟩m,

(B.8)

where θ⃗1m = (θ1m,ϕ1m) and θ⃗2m = (θ2m,ϕ2m). Then after
ÛC

MmSF (R⃗j1,d; R⃗j1,d̃) spin states are flipped or not depending
on whether the control atoms occupy the shuttle tweezer
around the target tweezer, and after that spin states are re-
projected into the SO states, which have:

X̂j1,j2
dMmS

–1 ∗ ÛC
MmSF |R⃗j1,d⟩o|α(θ⃗1m)⟩m|σ (θ⃗o)⟩s

⊗
[︄
|R⃗j1,d̃⟩o |↓⟩s

|R⃗j2,d⟩o |↑⟩s

]︄

|α(θ⃗2m)⟩m

=
[︃|R⃗j1 (θ⃗o)⟩o ⊗ |R⃗j2,u⟩o
|R⃗′

j1 (θ⃗o)⟩o ⊗ |R⃗j2,d⟩o

]︃
|α(θ⃗1m)⟩m |↓⟩s ⊗ |α(θ⃗2m)⟩m |↓⟩s ,

(B.9)

where |R⃗′
j1 (θ⃗o)⟩o = cos(θo)|R⃗j1,d⟩o + sin(θo)eiϕo |R⃗j1,u⟩o. Then

the SO state of the j1 cell is flipped only when the SO state
of the j2 cell occupies the down tweezer.

The second SO-SO two-qubit CNOT gate is introduced
as below. Firstly the control tweezer is moved between
the target tweezers, preparing for the controlled Mo-
dependent hopping, which has:

X̂MmS(R⃗j2,d → R⃗j1,ỹc )|R⃗j1 (θ⃗o)⟩o|α(θ⃗1m)⟩m |↓⟩s ⊗
[︃|R⃗j2,u⟩o
|R⃗j2,d⟩o

]︃

|α(θ⃗2m)⟩m |↓⟩s = |R⃗j1 (θ⃗o)⟩o|α(θ⃗1m)⟩m |↓⟩s

⊗
[︃|R⃗j1,ỹc ⟩o
|R⃗j2,d⟩o

]︃
|α(θ⃗2m)⟩m |↓⟩s.

(B.10)

Then X̂C;j1,j2
dMdH swaps the SO states of j1 cell when atom in

j2 cell occupy the down tweezer, after that X̂j1
dMmS

–1 move
tweezers return their initial positions, which have:

X̂MmS(R⃗j2,d → R⃗j1,ỹc )–1 ∗ ÛC;j1,j2
dMdH |R⃗j1,d⟩o|α(θ⃗1m)⟩m|σ (θ⃗o)⟩s

⊗
[︄
|R⃗j1,d̃⟩o |↓⟩s

|R⃗j2,d⟩o |↑⟩s

]︄

|α(θ⃗2m)⟩m =

[︃|R⃗j1 (θ⃗o)⟩o ⊗ |R⃗j2,u⟩o
|R⃗′

j1 (θ⃗o)⟩o ⊗ |R⃗j2,d⟩o

]︃
|α(θ⃗1m)⟩m |↓⟩s ⊗ |α(θ⃗2m)⟩m |↓⟩s .

(B.11)

Thus two kinds of SO-SO two-qubit CNOT gates can
realize the same state transformations, shown as below:

Ĉ j1,j2
SO–SO|R⃗j1 (θ⃗o)⟩o|α(θ⃗1m)⟩m |↓⟩s

⊗
[︃|R⃗j2,u⟩o
|R⃗j2,d⟩o

]︃
|α(θ⃗2m)⟩m |↓⟩s =

[︃|R⃗j1 (θ⃗o)⟩o ⊗ |R⃗j2,u⟩o
|R⃗′

j1 (θ⃗o)⟩o ⊗ |R⃗j2,d⟩o

]︃
|α(θ⃗1m)⟩m |↓⟩s ⊗ |α(θ⃗2m)⟩m |↓⟩s .

(B.12)

B.5 Mo-Mo two-qubit CNOT gate
For the Mo-Mo two-qubit CNOT gate, controlled Mo ro-
tation can flip the Mo states in j1 cell when j2 cell atoms
occupy the p Mo state. The initial states are |R⃗j1 (θ⃗1o)⟩o

|α(θ⃗m)⟩m |↓⟩s ⊗ |R⃗j2 (θ⃗2o)⟩o|s⟩m |↓⟩s and |R⃗j1 (θ⃗1o)⟩o

|α(θ⃗m)⟩m |↓⟩s ⊗ |R⃗j2 (θ⃗2o)⟩o|p⟩m |↓⟩s, the operator Ûu
dMdS

move the two shuttle tweezers’ p Mo states into s states
of the control tweezers and remain the s states in the stor-
age tweezers:

X̂j1,j2;u
dMdS |R⃗j1 (θ⃗1o)⟩o|α(θ⃗m)⟩m |↓⟩s ⊗ |R⃗j2 (θ⃗2o)⟩o

[︃|s⟩m
|p⟩m

]︃
|↓⟩s = |R⃗j1 (θ⃗1o)⟩o|α(θ⃗m)⟩m |↓⟩s

⊗
[︃|R⃗j2 (θ⃗2o)⟩o |↓⟩s
|R⃗j̃1 (θ⃗2o)⟩o |↑⟩s

]︃
|s⟩m,

(B.13)

where |R⃗j̃1 (θ⃗2o)⟩o = cos(θo,2)|R⃗j1,ũ1⟩o + sin(θo,2)eiϕo,2 |R⃗j1,ũ2⟩o,
θ⃗1o = (θ1o,ϕ1o) and θ⃗2o = (θ2o,ϕ2o). Two control tweezers are
moved around the target tweezers to perform controlled
Mo rotation, as ÛC;j1,j2

dMF , and then the tweezers are moved
to return their initial positions, which have:

X̂j1,j2;d
dMdS

–1 ∗ ÛC;j1,j2
dMF |R⃗j1 (θ⃗1o)⟩o|α(θ⃗m)⟩m |↓⟩s

⊗
[︃|R⃗j2 (θ⃗2o)⟩o |↓⟩s
|R⃗j̃1 (θ⃗2o)⟩o |↑⟩s

]︃
|s⟩m = |R⃗j1 (θ⃗1o)⟩o |↓⟩s

⊗ |R⃗j2 (θ⃗2o)⟩o |↓⟩s

[︃ |α(θ⃗m)⟩m ⊗ |s⟩m
|α′(θ⃗m)⟩m ⊗ |p⟩m

]︃
,

(B.14)

where |α′(θ⃗m)⟩m = cos(θm)|p⟩m + sin(θm)eiϕm |s⟩m.
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Thus the Mo-Mo two-qubit CNOT gate has:

Ĉ j1,j2
Mo–Mo|R⃗j1 (θ⃗1o)⟩o|α(θ⃗m)⟩m |↓⟩s ⊗ |R⃗j2 (θ⃗2o)⟩o

[︃|s⟩m
|p⟩m

]︃
|↓⟩s = |R⃗j1 (θ⃗1o)⟩o |↓⟩s

⊗ |R⃗j2 (θ⃗2o)⟩o |↓⟩s

[︃ |α(θ⃗m)⟩m ⊗ |s⟩m
|α′(θ⃗m)⟩m ⊗ |p⟩m

]︃
.

(B.15)

Appendix C: Numerical method and settiings
The numerical simulations in 3.3 employ the ab-initio
method Multi-Layer Multi-Configuration Time-Depen-
dent Hartree method for arbitrary species (ML-
MCTDHX) [31–33]. A key advantage of this method lies
in the fact that the total wave function of atoms is ex-
panded by the temporal optimization single-particle func-
tions rather than fixed basis states, which enables the effi-
cient response of the atoms’ wavefunction to the temporal
modulation of the Hamiltonian. The ML-MCTDHX ex-
pansion of the wavefunction of atoms living in the high-
dimensional space spanned by the x-, y-DoF as well as the
spin DoF is shown in Fig. 10, which exhibits a multi-layer
structure. In the multi-layer expansion, the top node de-
notes the total wavefunction |Ψ(t)⟩, which is expanded as:

|Ψ(t)⟩ =
∑︂

n⃗

Cn⃗(t)|n⃗⟩, (C.1)

where the state |n⃗ = (n1, . . . , nm)⟩ refers to the second-
quantization representation of N atoms occupying m
single-particle functions (SPFs), with n1 + · · ·+ nm = N and
nj the number of atoms in the j-th SPF. The SPFs in the
second layer of Fig. 10 are further expanded with respect
to the direct products of the basis states of the x-, y-DoF,
and the spin DoF, as:

|ϕj(t)⟩ =
∑︂

jx ,jy ,js

|ϕx,jx (t)⟩|ϕy,jy (t)⟩|ϕs,js (t)⟩, (C.2)

where |ϕα,jα (t)⟩ is the temporal optimized basis states for
the α-DoF, with α ∈ {x, y, s}. |ϕα,jα (t)⟩ is further expanded
by the primitive basis states of the corresponding DoF, as:

|ϕx,jx (t)⟩ =
nx∑︂

x=1

ϕjx (x)|x⟩,

|ϕy,jy (t)⟩ =
ny∑︂

y=1

ϕjy (y)|y⟩,

|ϕs,js (t)⟩ =
ns∑︂

s=1

ϕjs (s)|s⟩.

(C.3)

The primitive basis states of the x- and y-DoF are chosen in
the method as the discrete variable representations of the

Figure 10 The tree-diagram representation of wavefunction
expansion used in the ML-MCTDHX simulation of this work. The tree
diagram possesses multiple layers, and from bottom to up, the nodes
on the first and second bottom layers denote the primitive and basis
states for each DoF, respectively. The third layer counting from the
bottom denotes the atom SPFs and the node on the top layer is the
total wavefunction of the system

real space functions and those of the spin DoF are the spin
states {|↑⟩s , |↓⟩s}. In the numerical simulations, we choose
two Mo basis states along the x direction with mx = 2 and
two SO basis states along the y direction with my = 2, as
well as ns = 2 for the spin states. The total number of the
SPFs is taken as m = 8 for the simulation, i.e. no truncation
is applied to Eq. (C.2).

It is worth mentioning that the SPF for the single atom
|ϕj(t)⟩ and for each DoF |ϕx

(︁
y,s

)︁
,j(t)⟩ is temporally optimized

according to the Dirac-Frenkel variational principle, and
can well capture the wavefunction response to the time-
dependent Hamiltonian, which is particularly suited to
our simulation of the multi-chromatic modulations of the
Hamiltonian. This is also manifested as the key difference
between the ML-MCTDHX simulation with methods us-
ing fixed expansion, of which the basis states are fixed in
time in spite of the temporal variation of the Hamiltonian.

Besides the wavefunction ansatz, we also introduce the
Hamiltonian and the related parameters for the numer-
ical simulations. The potential function of the tweez-
ers is taken as Eq. (1) of the main text, and the waists
for the storage (shuttle) tweezers are taken as (wx, wy) =
(1.5μm, 1μm). The depths of the storage and shuttle tweez-
ers are taken as Vsg/ħ = –2π × 40kHz and Vsh/ħ = –2π ×
20kHz, respectively.

Mo-maintained spin rotation X̂MmSF is realized by the
TPR transition, which is modeled with the Hamiltonian as:

Ĥ = –
ħ

2∇⃗2

2m
+ V̂Spin(r⃗) +

∑︂

α=s,p
Ω̂α

eff (r⃗), (C.4)

where the terms V̂Spin(r⃗) and Ω̂α
eff (r⃗) are expressed in Ap-

pendix A.1. In the above equation, the Raman lasers share
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the same waist widths along the x and y direction as
wRa

x = wx and wRa
y = wy. Then the effective two-photon

frequencies have ωs(p) = (ϵs(p),sh – ϵs(p),sg)/ħ + (ε↓ – ε↑)/ħ =
2π × 18.9376(18.0989)kHz to meet the resonant condi-
tion δs(p) = 0. The effective two-photon amplitudes are
taken as Ω̃s = 2π × 0.05kHz and Ω̃p = r ∗ Ω̃s, for the s-
s and p-p spin rotation, respectively. The Rabi frequency
of the two Mo channel and consequently their ratio r is
directly calculated by substituting the exact spatial wave-
function of the Mo states and the spatial distribution of the
Raman lasers to the integration of r = m⟨s|fRa[R⃗0,w⃗Ra](r⃗)|s⟩m

m⟨p|fRa[R⃗0,w⃗Ra](r⃗)|p⟩m
,

which leads to r = 1.0646 and the synchronized Rabi fre-
quency Ω = Ωs = Ωp = 2π × 0.093kHz. Starting from the
initial states |ψ(t = 0)⟩ = |↓⟩s ⊗ (|s⟩m + |p⟩m)/

√
2, we ac-

quire the evolving state |ψ(t)⟩ under the above Hamil-
tonian in the Eq. (C.4), giving the basis-state probabil-
ity P|b⟩(t) = |⟨b|ψ(t)⟩|2. Our simulation shows that, the
fidelity Fs = |m ⟨s| s ⟨↑| X̂MmSF |↓⟩s |s⟩m |2 = 2P|↑,s⟩(Ts) and
Fp = |m ⟨p| s ⟨↑| X̂MmSF |↓⟩s |p⟩m |2 = 2P|↑,p⟩(Tp) are both
above 99.9% with evolution time Ts = Tp = π

Ω
≈ 5.2ms and

phase ϕ = 0, which can be further improved by optimizing
parameters.

The Mo rotation is done with the temporal modulation
of the storage tweezer, as

Ĥ = –
ħ

2∇⃗2

2m
+ V̂Mo, (C.5)

where the term V̂Mo is expressed in Eq. 11. The modu-
lation amplitude is Ω̃Mo = 0.002μm, which contributing
to a Rabi frequency ΩMo = 2π × 0.0189kHz, and mod-
ulation frequency ωMo = 2π × 2.7198kHz. Starting from
the initial states |ψ(t = 0)⟩ = |s⟩m, we acquire the evolving
states |ψ(t)⟩ under the above Hamiltonian in the Eq. (C.5).
Our simulation demonstrates that, during a evolution of
TMo = π

ΩMo
≈ 26.7ms and phase ϕMo = 0 of the X̂Mo, the fi-

delity F = |m⟨p|X̂Mo|s⟩m|2 = |m⟨p|ψ(TMo)⟩|2 is above 98%.
Similarly, this fidelity can be improved by optimizing pa-
rameters.

The Mo-maintained transport element T̂MmT is done
with the following Hamiltonian term

Ĥ = –
ħ

2∇⃗2

2m
+ V̂move,

V̂move = Vtwz[Vsh, R⃗c(t))](r⃗) |↑⟩s ⟨↑| ,
(C.6)

the distances from initial position R⃗c = (xc, yc) to target
positions R⃗x

tar = (xc + Δx, yc) and R⃗y
tar = (xc, yc + Δy) are

Δx = Δy = 8μm with tweezer potential 20kHz. Starting
from the initial states |ψ(t = 0)⟩ = |R⃗ini⟩o ⊗ |p⟩m, we ac-
quire the evolving states |ψ(t)⟩ = ψ(r⃗, t)|r⃗⟩ under the above
Hamiltonian in the Eq. (C.6), giving the one-body den-
sity ρ(r⃗, t) = |ψ(r⃗, t)|2, in the simulation the basis state

|r⃗⟩ = |x⟩ ⊗ |y⟩. The moving time T is 5ms with fidelity
|m⟨p|o⟨R⃗x

tar|T̂MmT (R⃗c → R⃗x
tar)|R⃗ini⟩o|p⟩m|2 and |m⟨p|o⟨R⃗y

tar
|T̂MmT (R⃗c → R⃗y

tar)|R⃗ini⟩o|p⟩m|2 above 99% and 99.9%, re-
spectively, which can be further improved by optimizing
parameters and moving methods. The evolution time is
simulated as 6ms.

We also provide the comparison of different temporal
functions of the moving trajectories of the tweezer, and
consider the sinusoidal and linear function of:

R⃗sin
c (t) = R⃗ini + (R⃗tar – R⃗ini)

sin( π t
T – π

2 ) + 1
2

,

R⃗str
c (t) = R⃗ini +

R⃗tar – R⃗ini

T
t.

(C.7)

Figure 11 presents the numerical simulation of the trans-
port of the atom in the |p⟩m state with the two tempo-
ral trajectories and the one-body density is plotted as
a function of time, which can directly visualize the sta-
bility of the |p⟩m state along the transport. From the
numerical simulation, one can find that the fidelity of
the |p⟩m during the transport along the x-direction, i.e.
|m⟨p|o⟨R⃗x

tar|T̂MmT (R⃗c → R⃗x
tar)|R⃗ini⟩o|p⟩m|2 is above 99%

with the temporal trajectory R⃗sin
c (t), while the same fi-

delity for the moving path with R⃗str
c (t) drops below 46%.

And the fidelity of the |p⟩m during the transport along
y-direction i.e. |m⟨p|o⟨R⃗y

tar|T̂MmT (R⃗c → R⃗y
tar)|R⃗ini⟩o|p⟩m|2 is

above 99.9% with R⃗sin
c (t), and drops below 87% with R⃗str

c (t).
The comparison indicates that the optimization can in-
deed improve the stability of the Mo states during trans-

Figure 11 The one-body density ρ(x, t) =
∑︁

y ρ (⃗r, t) along the x-axis

for the Mo-state |p⟩m in the moving tweezer with (a) R⃗sinc (t) and (b)
R⃗strc (t) temporal trajectories. The one-body density ρ(y, t) =

∑︁
x ρ (⃗r, t)

along the y axis for the Mo-state |p⟩m with (c) R⃗sinc (t) and (d) R⃗strc (t)
temporal trajectories
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port, and the trajectories can be further optimized to in-
crease the fidelity with a shorter transporting time.
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