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ABSTRACT 

We describe the properties of Higgs bosons in a class of supersymmetric the- 

ories. We consider models in which the low-energy sector contains two weak 

complex doublets and perhaps one complex gauge singlet Higgs field. Supersym- 

metry is assumed to be either softly or spontaneously broken, thereby imposing 

a number of restrictions on the Higgs boson parameters. We elucidate the Higgs 

boson masses and present Feynman rules for their couplings to the gauge bosons, 

fermions and scalars of the theory. We also present Feynman rules for vertices 

which are related by supersymmetry to the above couplings. Exact analytic ex- 

pressions are given in two useful 

the gauge singlet Higgs field and 

supersymmetric Higgs mass term. 

limits-one corresponding to the absence of 

the other corresponding to the absence of a 
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1. Introduction -_ _ - 

With the recent discovery of the W and 2 gauge bosons [l], the experimental 

confirmation of the Glashow-Weinberg-Salam [2] (G-W-S) model of electroweak in- 

teractions is nearly complete. The final ingredient which remains to be clarified is the 

mechanism of electroweak symmetry breaking. In the G-W-S model, symmetry break- 

ing is triggered by the Higgs mechanism. The main consequence is the appearance of 

physical elementary scalar fields (the Higgs bosons) in the theory. Unfortunately, the 

present theory hardly constrains the properties of the Higgs bosons. The fact that 

p E m&/(mi cos2ew) M 1 suggests that the low-energy world consists of Higgs bosons 

which are weak SU(2) doublets and perhaps gauge singlets.* However the masses 

of these Higgs bosons and many of their couplings to fermions and scalars are not 

constrained at all by the theory. 

Although the Higgs boson masses are a priori free parameters, it is generally 

assumed that such masses must be somewhat below 1 TeV. Otherwise, one finds that 

the Higgs self-couplings become strong and it is no longer appropriate to treat the 

G-W-S model as a weak-coupling theory [3]. Th is observation has led to a number 

of puzzles (which have been referred to in the literature as the hierarchy [4] and 

naturalness [5] problems). Basically, it is difficult to understand how an elementary 

scalar field can be so light (mH 2 1 TeV). The “natural” value for a scalar boson mass 

is gA, where A is the mass scale of some underlying fundamental theory (such as the 

grand unification mass MGUT - 1015 GeV or the Planck mass Mp - 10” GeV) and 

; It is possible to have p = 1 either automatically with certain higher Higgs representatives 
(e.g., 1~ = 3, y = 4, see ref. [44]) or by artificially adjusting the parameters of the model. 
We shall neglect these alternatives on the basis of simplicity. 
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g is some coupling strength. In addressing the above problems,-various solutions have 

been proposed. The only solution which keeps the scalar Higgs bosons as elementary 

fields is supersymmetry [6]. I n supersymmetric theories, scalar masses are related by 

the supersymmetry to fermion masses which can be naturally light due to approximate 

chiral symmetries. An equivalent but more technical way of saying this is that the 

unrenormalized theory is free from quadratic divergences. 

In supersymmetric models, it is postulated that all known fermions have scalar 

partners. Unfortunately, it seems impossible to identify some of these states as the 

Higgs bosons of the G-W-S model. The reason is that the scalar partners of quarks 

carry color quantum numbers and the scalar partners of leptons carry lepton number. 

In order that the theory not spontaneously break color and/or electromagnetism, only 

the scalar neutrino could acquire a vacuum expectation value. This possibility would 

lead to lepton number violation in the theory. As shown in Ref. 7, one cannot entirely 

rule out this scenario, although no realistic model exists where a scalar neutrino vac- 

uum expectation value alone is responsible for the electroweak symmetry breaking of 

the G-W-S model. One must therefore add Higgs bosons and their fermionic partners 

in addition to the quark and lepton supersymmetric multiplets. 

Supersymmetry imposes a new requirement on the Higgs multiplet structure of 

the theory. In the Standard Model, only one Higgs doublet is required to give mass to 

the quarks and leptons. In the supersymmetric model, two Higgs doublets are needed 

to give mass to both up-type and down-type quarks (and the corresponding leptons) 

[6,8]. This requirement arises from a technical property of supersymmetric models. 

The interaction of Higgs bosons and fermions arises from the superpotential given by: 
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(14 

where %r and fiz are the Higgs superfields, Q^ and 2 are the SU(2) weak doublet quark 

and lepton superfields, respectively, 6 and fi are SU(2) singlet quark superfields and 

2 is an SU(2) weak singlet charged lepton superfield. (See Table 1 for a summary 

of the quantum numbers of the various fields.) The SU(2) indices i, j are contracted 

in a gauge invariant way. Supersymmetry forbids the appearance of Hi and Hi in 

eq. (1). Because of gauge invariance (in this case, the hypercharge), an HlQU coupling 

is prohibited; hence, no up-quark mass can be generated if H2 is omitted. 

Thus, the minimal supersymmetric extension of the G-W-S model is a 

two-Higgs doublet model. Furthermore, supersymmetry imposes non-trivial con- 

straints on the Higgs boson sector of the model. Even if we assume that the super- 

symmetry is spontaneously or softly broken, it must be true that the dimension-four 

terms of the Higgs potential respect the supersymmetry. The consequences of this 

observation will be a major focus of this paper. 

We propose to study the Higgs sector of the minimal supersymmetric extension 

of the standard electroweak model. For the sake of generality, we shall admit all pos- 

sible soft-supersymmetric-breaking terms [9] with arbitrary coefficients, i.e., terms of 

dimension two or three which do not reintroduce quadratic divergences to the un- 

renormalized theory. This is in fact a feature of low-energy supergravity models; in 

addition, these models suggest particular values for some of the coefficients of the 

soft terms introduced.* We shall comment on some of the possible values of these 

coefficients at the end of this paper. 

* For a review of the low-energy supergravity approach and a complete set of references, 
see refs. [lo] and [ll]. 
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The use of the term “minimal” above is somewhat ambiguous. In the litera- 

ture there have been two basic choices. First, one may take a minimal SU(2)xU(l) 

model of electroweak interactions with two Higgs doublets and add supersymmetric 

partners. Unfortunately, the supersymmetric version of this model fails to break the 

SU(2) xU(1) gauge symmetry. This is not a problem since by adding appropriate soft- 

supersymmetry breaking terms, one can arrange for the SU(2) xU(1) gauge invariance 

to be spontaneously broken. In the low-energy supergravity models, this scenario oc- 

curs as follows. The resulting Lagrangian of the model appropriate at the Planck scale 

Mp has the supersymmetry softly broken and the SU(2) xU(1) gauge invariance un- 

broken. When the renormalization group equations are used to evolve down from Mp 
to energies of order mw, at least one of the SU(2) weak-doublet Higgs fields acquires a 

negative mass-squared, indicating that SU(2) x U(1) h as spontaneously broken [8,12- 

141. All Lagrangians we write down in this paper are appropriate to the energy scale 

of order mw. 

A second approach is to add a complex scalar field which is an SU(2) xU(1) gauge 

singlet to the two-Higgs doublet model [14-171. 0 ne can now write down a supersym- 

metric version of this model where the SU(2) xU(1) gauge symmetry is spontaneously 

broken. Although this model has an extra field, it is in some ways simpler than the 

model described previously. In low-energy supergravity models based on this picture, 

the SU(2) xU(1) is already broken at tree level [15-161. Of course, one must check 

that the evolution down to scales of order mw does not upset this picture. 

The plan of this paper is as follows. In sect. 2, we discuss the G-W-S model with 

two‘-Higgs doublets in generality (with no particular reference to supersymmetry). 



--- -- 
In sect. 3 we construct the most general Higgs sector in a softly-broken supersymmetric 

SU(2) xU(1) model with two Higgs doublets and one Higgs singlet. Our parameters 

are chosen so that the SU(2) xU(1) spontaneously breaks to U(~)JZJM . We then make 

a few assumptions regarding the parameters of the model. This will allow us to 

obtain analytic expressions for the masses of all the physical Higgs bosons and their 

interactions. In sect. 4 we derive the Feynman rules for the interaction of the Higgs 

bosons with all particles of the supersymmetric spectrum. For completeness, we derive 

the couplings of the Higgsinos to quarks and scalar-quarks in sect. 5. Although 

these interactions do not explicitly involve the Higgs bosons, they are supersymmetric 

analogs to some of the Higgs boson couplings discussed in this paper. This will require 

some careful discussion regarding the mixing of gauginos and Higgsinos which we 

include for completeness in appendix A. The Feynman rules presented in this paper 

provide a useful supplement to the rules given in the appendix of ref. [18]. These rules 

have. been obtained assuming one generation of quarks and leptons. Extensions to the 

case of more than one generation are discussed in appendix B. In sect. 6 we discuss 

the parameters of the Higgs potential in the context of currently fashionable models 

of “low energy” supergravity. Some final comments appear in sect. 7. We shall apply 

the results of this paper to interesting physical processes in a follow-up paper [19]. 



-- - 
2. Two-Higgs Doublet Models - Generalities 

First, we shall discuss some general properties of the Higgs doublet models [20-221. 

We shall then apply the results to the supersymmetric case in the next section as well 

as allowing for the possible addition of an SU(2)w xU(1) gauge singlet scalar field. 

Consider two complex y = 1, SU(2)w doublet scalar fields, 41 and 42. 

The Higgs potential which spontaneously breaks SU(2)xU(l) down to U(~)EM can 

be written in the following form* [20]: 

Wl, 42) = wh+ 41 - VI)” + x2(4,+ 42 - vi)” 

+ x3 [(h+ dl - VI, + (42+ 42 - $1 2 

+ x4 [Ml+ d1)@2+ 42) - (h+ 42) (d2+ &)I (24 

+A5 
[ 

Re(&t&) -vlv2cos~ 2 1 
+ x6 Im (ht $2) - vlv2 sin t 2 1 + x7 

A few comments should be useful here. First, by hermiticity the Xi are all real pa- 

rameters. Second, X7 appears for convenience only; in practice, all constant terms 

in eq. (2.1) can be dropped. However, when we discuss the supersymmetric case, it 

is convenient to choose X7 such that the minimum of the potential is V = 0 in the 

supersymmetric limit. Third, if the Xi 2 0, then the minimum of the potential is 

* This potential is the most general one subject to two constraints: (a) gauge invariance, 
_ and (b) the discrete symmetry & + -& is violated only softly (here, it is violated by 

dimension-two terms). The latter constraint is a technical one, which is related to insuring 
that flavor changing neutral currents are not too large [20]. It is automatically satisfied 
in the supersymmetric models we study here. 



-~ -- 
manifestly _ - . 

(41)= “d , ( ) (42) = V2ii( ( > P-2) 

thus breaking SU(2)wxU(l) down to U(~)EM as desired. In fact, the allowed range 

of the Xi corresponding to this desired minimum is somewhat larger. It can be eas- 

ily determined by working out the mass spectrum of the physical Higgs bosons and 

demanding that all the squared masses be non-negative. 

In the next section, we will see that supersymmetry imposes the condition X5 = &3 

on eq. (2.1). In this case, we may redefine $2 via 42 + eit 42 and remove the phase 

I from the potential. As a result, the vacuum expectation values of r$i and 42 can be 

chosen to be real and positive. 

Therefore, in this section we will not consider the most general potential as given 

in eq. (2.1). Instead we will derive all our results assuming that e = 0 (although 

we Will take X5 # x6). Th is, in fact, corresponds to the most general CP-invariant 

two-Higgs doublet model. 

Our major task is to compute the Higgs boson mass matrix. This is most easily 

done in a real basis where: 

(2.3) 
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-- -- 
The method is described in the appendix of ref.- [21]. Here we-provide the results 

and correct a few minor errors in ref. [21]. First, one rewrites eq. (2.1) (with 6 = 0) 

intermsofthe4i (;=l, . . . . 8). The Higgs boson squared mass matrix is obtained 

from: 

&g. = t 
dW 

2 Wi Wj minimum 
(24 

where “minimum” means setting ( 4s ) = or, ( 47) = ~2 and ( 4k ) = 0 for all other 

k. Note that the factor of l/2 is needed in eq. (2.4) b ecause of the normalization of 

the scalar fields as defined in eq. (2.3). When e = 0 in eq. (2.1), the scalar boson 

squared mass matrix separates into a series of 2x2 mass matrices. Diagonalization is 

straightforward and we summarize the results below. 

a) INDICES 1, 2, 5, AND 6 

These are the charged Higgs bosons. The positive and negative states decouple 

and have equal mass-squared matrices: 

Diagonalizing the charged Higgs boson mass-squared matrices results in two zero mass 

Goldstone boson states: 

G* = $$cosp + @sinp P-6) 

where $- E (4+)*, and two massive charged Higgs boson states 

H* = -d:sinP+&cosP (2.7~) 
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where 

tanP=2 . 
fJ1 

(2.7b) 

P-8) 

b) INDICES 4 AND 8 

The resulting mass-squared matrix is identical to eq. (2.5) with X4 replaced by 

Xg. Hence we obtain one zero mass neutral Goldstone boson and one massive neutral 

Higgs boson: 

Go = fi (cospImdy +sinpIm&) (2.9a) 

Hi = & (-sinpIm4; +cospImdi) (2.9b) 

mil; = &j (21; + V2”) . (2.9c) 

The factors of fi are needed in order that these fields have conventional kinetic energy 

terms. 

C) INDICES 3 AND 7 

The mass-squared matrix is: 

4v3x1 + X3) + $x5 (4x3 + x5)vlv2 

’ (4x3 + x5)vlv2 4$(x2 + A,) + V& > 

The physical states are: 

(2.10) 

HF = & [(Re4:--vr)coscr+(Re&-v2)sincr] 
(2.11) 

Hg = & [-(Re&-vr)sincr+(Rer#$-v2)cosa] . 
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If we define: 

A = 4v;(Ar + X3) + v;Xs 

B = (4X3 +X5) VlV2 

c = 4V,2 (x2 + x3) + TJ&, 

(2.12) 

then the masses and mixing angles are defined as: 

sin2a = 
2B 

&A - C)2 + 4B2 

cos2cY = 
A-C 

&A-C)2+4B2 ’ 

(2.13b) 

(2.13~) 

In eq. (2.13a) the mass of HT (Hz”) corresponds to the plus (minus) sign, 

respectively. 

To get the Feynman rules for the interactions of the Higgs bosons, we employ the 

unitary gauge. This consists of setting the Goldstone fields G* and Go to zero. In 

this gauge, 

4: = -H+sinP (2.14~) 

q5; = H+cosP (2.14b) 

4; =vr+L (H,“cosa--Hisina--Hisin@) 
fi 

(2.14~) 

c#$ = 212 + 1 (Hi’sincr+H~cosar+iH~cosp) . 
J2 

(2.14d) - 

By inserting the expressions given by eq. (2.14) into the interaction Lagrangian, 

one obtains the desired interactions of the physical Higgs bosons. Since Cl? is conserved 
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--- - 
(for E = 0), one finds (by analyzing the Hf qtj couplings) that Ht-and Hi are scalars 

and Hi is a pseudoscalar. 

3. The Higgs Sector in a Minimal Supersymmetric Model 

We now turn to the implications of supersymmetry for the properties of the Higgs 

bosons [8,23]. We shall analyze a “minimal” supersymmetric extension of the Standard 

Model consisting of two Higgs doublets and perhaps one SU(2)xU(l) singlet Higgs 

field. A list of the fields in our model, which also defines our notation, is provided in 

Table 1. Details of this model can be found in the Appendices of ref. (18].* 

In order to use the results of sect. 2, we must be careful in our notation. In 

supersymmetric models, one employs two Higgs doublet fields of opposite hypercharge: 

HI with y = -1 and H2 with y = 1. The relations between these fields and the & of 

sect.’ 2 are: 

(&)i = cij Hi* 
(34 

(q52)i = Hi 

where ;,j are SU(2) ’ d m ices and ~12 = -621 = 1, ~11 = ~22 = 0. That is, 

where 41 G (4:)” and the asterisk indicates complex conjugation. 

P-2) 

*- Our notation follows that of ref. [18] with the following exceptions: 1) what we call r 
here [eq. (3.3)] is called -s there; 2) what we call vi here [eq. (3.7)] is called u;/fi there; 
3) what we call tanp here [eq.(2.8)] h ere is called cot 0” there; and 4) the Higgs-boson- 
quark-Yukawa couplings are denoted by fi here. 
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As described in the introduction, we propose to-analyze- the most general Higgs po- 

tential corresponding to a softly broken supersymmetric theory. To obtain this poten- 

tial, we first consider the superpotential of an unbroken supersymmetric theory made 

up of the fields listed in Table 1. The most general superpotential 

(which conserves baryon number and lepton number) is: 

where 

WF = Eij [f Hf zj i? + fl Hi $5 + f2 H; @ 51 (3.4 

where we have replaced the superfields by their component scalar field; the definitions 

of the scalar fields are provided in Table 1. The scalar potential is computed by [24] 

v = ; [DaDa + (D’)2] + q?& 

where 

Fi =g 
1 

(3.5) 

(3.6~) 

Da = i gA:aiajAj (3.66) 

D’ = $%jiAfAi+E . (3.6~) 

In the above expressions, Ai collectively denotes all scalar fields appearing in the 

theory. We shall henceforth assume that the Fayet-Iliopoulos term [25] t in eq. (3.6~) 

is negligible. 
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-- - 
We have described above how to calculate the scalar potential in the supersym- . 

metric model. We now add all possible explicit soft-supersymmetry breaking terms 

to the model. The allowable terms have been derived in ref. [9]; the relevant terms 

for the scalar potential fall into two classes. The first class consists of all possible 

dimension-two terms consistent with gauge invariance. The second class consists of 

those gauge invariant dimension-three terms which do not mix the scalar fields with 

their complex conjugates. These terms correspond in form precisely to the cubic terms 

of the superpotential W  [eqs. (3.3),(3.4)] plus their hermitian conjugates. 

The resulting scalar potential is the one we shall analyze. We make the following 

assumptions about this potential. First, the Higgs doublet fields HI and H2 acquire 

vacuum expectation values: 

(HI) = “,’ , 0 (3.7) 

By appropriate choice of phases for the Higgs fields, vr and vz are real and non- 

negative. Second, we assume that the scalar-quark and scalar-lepton fields do not 

acquire vacuum expectation values. We then can ignore WF in eqs. (3.3) and (3.4) 

when studying the Higgs boson mass matrix. Third, note that we can make a shift 

in the N field such that the parameter M in eq. (3.3) disappears. We will simply set 

M = 0 with no loss of generality. 
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-- -- 
The scalar potential as a function of HI, H2 and N can then be written as: 

- 2(Hf*H;)(H;* Hi) + (Hf* H;)2 + (Hi* H;)2 1 
+ f t~‘~ (Hi* Hi - Hi* Hi)” + ) hHi Hi Eij - r + AN2 I2 

+ IhI2 (Hj* Hf + H;* H;) N’N + jpl2 (Hf* H; + H;* H;) 

+ (Hi’ H; + HF Hi) (p*hN + h.c. ) + V,,, 

(3.8) 

V soft = mi(Hf* I-r;‘) + rni(HF Hi) - (mt, Eij Hf Hi + h.c. ) + rn: N*N 

(3-g) 
+ (rng N2 + h.c. ) + ms(cij hArH;H:‘N+;AA2N3+h.c.) 

The parameters rni and ml2 have dimensions of mass, r has dimensions of mass- 

squared and Al, A2 are dimensionless. We will study the terms involving scalar-quark 

and scalar-lepton fields in sect. 4. 

We proceed to compute the spectrum of physical Higgs bosons and their masses. 

In the most general case [eqs. (3.8), (3.9)], numerical methods are required to obtain 

some of the physical Higgs masses and eigenstates. We are interested in certain special 

cases where the Higgs masses and eigenstates can be computed analytically. 

CASE 1: p=(N)=A1=O. 

In this case, there is no mixing between N and the doublet Higgs fields. 

Consequently, we may use all the results of sect. 2. The required translation is: 

qb,t r#~~ = Hi* Hi (3.104 
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Finally, a useful relation is: 

IH~*H~12+/~ijH;H~/2=(H;‘H:)(H~*~$ . 

We then find: 

V = rnf Hi’ Hi + rni Hi’ Hi - 
[ 
(mf, + hr*) Eij Hi Hi + h.c. ] 

+ i ($+p) (H:*H!)~ + (HUSH; 2 
[ )I 

+ i (g2 -gr2) (Hf’ Hi’) (H;* Hi) 

(3.10b) 

(3.1oc) 

(3.11) 

(3.12) 

+ (lh12-i g2) Ie~jH~H~12+l~]2 

where we have ignored terms involving N. We have retained the constant term lr12 

for later convenience. Note in particular that no term of the form 

‘ijH~H~)2 + h.c. (3.13) 

appears above. This implies that X5 = &3 in eq. (2.1). Therefore, within the pure HI, 

H2 sector of the theory, we may absorb the phase of rnT2 + hr* into the definition of 

H2 and set 6 = 0 in eq. (2.1). W e emphasize that the same logic allows us to choose 

01 and ‘~2 to be non-negative. Henceforth, we shall take the parameters mf2, h and r 

to be real. Note, however, that with the conventions above, CP violating phases may 

reappear in the interaction of HI and H2 with other fields in the theory. 
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-~ .-- 
Comparing eq. (3.12) t o eq. (2.1) (with 6 = 0.. ) and-using eqs. (3.10), 

we obtain the following results: 

x2 = Xl (3.14a) 

x3 = ; (g2+g'2) -x1 (3.14b) 

x4 = 2x1 - 5 9’2 (3.14c) 

x5 = x6 = h2 - ; (g2 + g’2) + 2x1 (3.14d) 

x7 = r2 - h2v,2v; - 5 (v; - 1122)~ (g2 + g’2) (3.14e) 

1 
rnf = 2Xrv,2 - z rnb W4f) 

1 
rn; = 2Xrvf - 2 rni 

42 = h (v1v2h - r) - ; v1v2 (g2 + g12 - 4X1) 

(3.149) 

(3.14h) 

where the 2” mass is given by m ; = (l/2) (vf + v,“) (g2 + gr2). These results indicate 

that supersymmetry imposes strong constraints on the Higgs doublet model of sect. 2. 

As axheck, let us consider the supersymmetric limit by setting Vsoft = 0 in eq. (3.8) 

( i.e., rnp = rni = rnT2 = 0 ). We then find from eqs. (3.14f), (3.14g) and (3.14h) that 

Vl = v2 (3.15u) 

Xl = ; (g2+g'2) (3.15b) 

r = v1v2h (3.15c) 

Inserting these values into eq. (3.14e) gives X7 = 0, i.e., the value of the potential at 

the supersymmetric minimum is zero. 
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Using eqs. (3.14a)-(3.14h) and the results of sect. 2, we may immediately obtain . 

the spectrum of physical Higgs particles. The results are: 

rn&, = - ; (4x1 - d2) (2112 + vi) 

m&i = m& - m& + h2 (VI + ~22) 

1 
m%Igr; = ij 

1 
m& + rni 

(3.17) 

> 
2 

f r-n&: + rng - 4rni m& cos2 2p - 32h2 t@~X1 3 1 (3.18) 

(3.16) 

tan 2c~ = tan 2p 
m&: + rn&; - 2h2(v,2 + v;) 

rn& - rni > 
(3.19) 

where H* are the charged Higgs fields, Hi” (i = 1, 2, 3) are the neutral Higgs fields, 

tan@ E v2/vr and CY is the mixing angle which leads to the H,“, Hi eigenstates. As 

usual,m&=~g2(v~+v?J andm~=~(g2+g’2)(v~+v~). 

The results of eqs. (3.17)-(3.19) have been obtained in refs. [8] and [23] in the case 

of h = 0. In that case, we see that one of the neutral Higgs scalars must have mass 

less than or equal to rnz and that the charged Higgs scalar must be heavier than mw. 

Neither of these two conditions needs to be true for h # 0. Note that even when h # 0, 

the mass relation: 

m&. -I- rn&; = rn& + rni (3.20) - 
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still holds. The supersymmetric limit is also of interest. In this-limit, the complex 

N scalar consists of two degenerate states of mass m& = h2(vf + vi). In addition, 

eqs. (3.15b) and (3.16) imply that mH* = rnw from which it follows that mH0 = 3 

W&H; = mN and mH; = mz. This result was expected. In the supersymmetric limit, 

the H* become the scalar superpartners of the W* (along with some appropriate 

combination of the gauginos and Higgsinos) and one scalar field, Hi, becomes the 

scalar superpartner of the 2” [14]. The remaining neutral Higgs fields are degenerate 

and live in their own chiral superfield along with the appropriate Higgsino. 

CASE 2: p # 0, N field not present. 

This case corresponds to taking h = mg = rn4 = mg = r = A = 0 in eqs. (3.8) 

and (3.9). Again, the results of sect. 2 are applicable. In this case, eqs. (3.14d-h) are 

replaced by 

x5 = As = 2x1 - f (g2 + gr2) 

x7 = - f (vf - v;)2 (g2 + g’2) 

rn; = - IpI2 + 2x1~; - i rng 

rnz = - IpI2 + 2Xrv,2 - i rni 

WV2 (4x1 - g2 - g’2) , 

(3.21~) 

(3.21b) 

(3.21~) 

(3.21d) 

(3.21e) 

whereas eqs. (3.14a,b,c) remain unchanged. The masses of the physical Higgs bosons 

and the mixing angle a are given by eqs. (3.16)-(3.19) with h = 0. We may obtain a 

useful expression for the mass of Hi as follows. Using eqs. (3.21c-e), we find 
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mf + mi + 2]p12 = mf2 (tan/? + cotp) , 

42 Xl = i (s2 + d2) + 2211212 . 

Using eqs. (2.9c) and (3.21a), we end up with 

m&i = mf+rnfj+21p12 . (3.24) 

(3.22) 

(3.23) 

We have already noted that we may choose vr and v2 both non-negative, which implies 

(by our convention) that 0 5 p 5 7r/2. Furthermore, if we use eq. (2.13) (which by 

our definition implies that V&H1 2 mHz), it follows that sin2cu 5 0 for this case; so we 

may take -7r/2 5 CY 5 0. One interesting limit is vr = 212; in this case, p = --Q = 7r/4, 

and m& = 0 (at tree level). Useful formulas for sin( cII f ,L?) and COS(CY f p) in terms of 

the neutral Higgs boson masses (these factors often appear in the Feynman rules, see 

sects. 4 and 5) may be found in ref. [19]. 

The supersymmetric limit consists of setting ml = m2 = ml2 = 0. However, in this 

limit, eqs. (3.21c-e) are inconsistent (under the assumption that ,Q # 0 and a nonvan- 

ishing vacuum expectation value). The reason for the problem here is simply that the 

potential V [eqs. (3.8) and (3.9)] with h = mg = m4 = mg = r = A = 0 does not spon- 

taneously break SU(2)xU(l) (i.e., vr = 212 = 0). Thus, in a supersymmetric model 

with only two Higgs doublets but with no singlet Higgs fields, soft-supersymmetry 

breaking terms are required in order to (spontaneously) break the SU(2) xU(1) gauge 

symmetry. 
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CASE 3: p # 0 or Al # 0, N field present. _ - . 

This is the general case where the potential is given by eqs. (3.8) and (3.9). We 

shall simply indicate some of the resulting complexities. 

First, let us assume that < N >= 0. This depends on the values of the parameters 

r, A, rni and rn: which are relevant in determining the mass matrix of the two states 

Re N and Im N. The term 

H4’* H; + Hi* H; p*hN + h.c. 
> 

+hA1msEijHiHiN+h.C. (3.25) 

leads to mixing of the complex N scalar with all three physical Higgs scalars Hi, 

i = 1, 2, 3. This would require a 5 x 5 neutral Higgs boson mass matrix. Note that 

this implies CP-violation in the Higgs sector which has entered due to the complex 

couplings of N with other scalar fields. If we impose CP-conservation on the Higgs 

parameters, then some simplification occurs: namely, Re N mixes with H,” and Hl and 

Im N mixes with Hi as can be seen from eq. (3.25). If we now allow for < N ># 0, 

no new complexities arise. 

For the remainder of this paper, we shall concentrate on CASES 1 and 2, described 

above. There are a number of reasons for this choice. First, we believe that it is useful 

to have analytic expressions for the Higgs boson masses and eigenstates. Second, we 

think that the approximations used in obtaining those expressions are sensible. In 

models without a singlet Higgs field (CASE 2), our results are completely general. 

In models (e.g., CASE 1) with the singlet field N, we have the convenience of a 

minimal supersymmetric extension of the Standard Model in which SU(2)xU(l) is 

spontaneously broken at the tree level. 
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4. Feynman Rules for Higgs Boson~jnteradions 

In this section we compute the Higgs boson interactions under the assumptions 

stated in CASES 1 and 2, described in sect. 3. The upshot of those assumptions is 

that if a singlet field is present, it does not mix with the neutral weak doublet Higgs 

fields. This allows us to use eqs. (2.14a-d); in terms of the notation of sect. 3, we 

obtain: 

H; = H+cosp (4.lu) 

Hf = H-sinP (4.lb) 

Hf = VI+ -!- (H,“cosa!- Hisina+iHisinp) 
fi 

(4.lc) 

Hi =v2+1 (Hisina+Hicosa+iHicos/3) . 
fi 

(4.ld) 

where tanp = v2/vr and Q is given by eq. (3.19). As discussed previously, we may 

choose our phases such that vr and v2 are real and non-negative; hence 0 5 ,0 5 7r/2. 

In supersymmetric models, the Higgs bosons interact with gauge bosons, quarks, 

leptons, other Higgs bosons and their supersymmetric partners. We shall describe each 

of these interactions in turn. We rely heavily here on the appendices of ref. [18] where 

much of the interaction Lagrangian for a supersymmetric extension of the Standard 

Model has been discussed in great detail. 

4.1 INTERACTION WITH GAUGE BOSONS 

One starts with an interaction Lagrangian consisting of HHV and HHVV terms 

(H = Higgs boson, V = vector gauge boson). For example, the interaction with the 

photon field A, is 

Li,t=ieAp Hf*%Hf-Hi%Hi +e2A,Ap (IHfi2+IHii2) . (4.2) 

We also need the interaction with the 2” and W* gauge bosons. The-required expres- 

sion is given by eq. (C98) and (C99) of ref. [ 181. 0 ne merely has to substitute for Hl 
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and Hi as given by eq. (4.1). We simply quote the result,.. - - 

Lint = LHHV + &iVV + LHHW 

where 

LHHV = -i igW~H-~p[Hfsin(cx-p)+H~cos(a-p)+iH~]+h.c. 

ig - 
2 cos ew 

2, iHi% [H,” sin(a - p) + Hi cos(a - p)] 

- (2 sin2 Bw - 1) H- ypH+ - ieApH-ypH+ 

C~V = g mw WpWp [H,” cos(p - a) + Hi sin(P - a)] 

+ ’ mZ 
2 cos ew 

ZpZp [H,” cos(p - a) + Hi sin@ - cr)] 

P-3) 

(4.4 

(4.5) 

&wvv = ; g2 WpWp [(H,“)2 + (H;)2 + (H;)2 + 2H+H-] 

+ g2 
8 COS2 ew 

2, Zp [(H,“)’ + (H;)2 + (H;)2 + 2cos2 20w H+H-] 

+ ,2 A, A/1 H+H- + e g ‘OS 2ew 
cos ew 

A,Z’1 H+H- 

!I -- eAp _ gsin2 ew 
2 cos 8w 

Zp 
> 

x { Wz H- [ Hi sin@ - cy) - Hl cos(@’ - CY) - iHi ] + h.c. } . 
(4.6) - 

Note that W,Wp G WZW-“. These results have been previously obtained in a non- 

supersymmetric two-Higgs doublet model in ref. [26]. Except for a difference in sign 

convention for the coupling constant g, our results are in agreement. [We choose 

d, + ig Wi Ta for our covariant derivative.] The relevant Feynman rules are given 
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in figs. l-6. We emphasize a few features. First, note the presence of ZH,“H,” and 

ZH,“H,” couplings; whereas, CP-invariance forbids a Z Hf Hi vertex. The Higgs sector 

is effectively CP conserving (more on this later); as we shall see in the next subsection, 

Hl is a CP-odd scalar and H,” and Hi are CP-even. (Bose statistics forbid a ZH”H” 

vertex.) Second, there is no tree-level W+ZH- vertex; this is a general feature of 

two-Higgs doublet models [27]. 

Finally, note that there are no couplings of the field N to vector bosons for the 

obvious reason that N is an SU(2) xU(1) gauge singlet. 

4.2 INTERACTION WITH QUARKS AND LEPTONS 

The Higgs-quark-quark coupling is conveniently written down, using two-component 

spinors for the quarks, as follows: 

Lint = -fl [h+D H,l - +Q,+D H;] - f2 [$Q& H; - ?,bQa?,b’V H;] + hsc. (4.7) 

The four-component quark spinors are defined by: 

u= (4.8) 

Converting to four-component notation and using eq. (4.la-d), we first identify the 

quark masses which arise due to vacuum expectation values of the Higgs fields: 

fl = fi gmd f2 = a 
9m.i 

mw cosp ’ mw sin/3 . (4-g) 

Using eq. (4.9), we may compute the trilinear interaction terms: 

lH,,=- grny 
2mw sin p 

[?iu(Hisina+ H,“coscr) -icosp ~75uH30] 

gmd - 
2mw cos p 

[;id(H,“cosa- Hisina) -isinp;irsdH,“] 

+ g 
2&w 

{H% [ (md tan p + mu cot ,8) 

(4.10) 

+ (m&ad - mucotp) 751 + h.c. } . 
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The Feynman rules are displayed in figs. 7 and 8. As we have-mentioned before, 

eq. (4.10) allows us to identify H,” and Hl as CP-even (Jpc = O++) and Hi as CP- 

odd (J pc = O-+). Because the Higgs sector is effectively CP-conserving, the neutral 

states must separately conserve C and P in their interactions. 

Note that there are no couplings of the SU(2) xU(1) gauge singlet scalar field N 

to quarks. This follows simply from gauge invariance. Otherwise, one would be able 

to construct gauge-invariant mass terms for the quarks, which is not possible. 

The interactions with leptons are easily obtained by replacing (u,d) with (~,e-). 

Note that although we have discussed only one generation of quarks, the extension 

to the multi-generation case is straightforward (see appendix B). The particular form 

of eq. (4.7) is a consequence of eq. (1.1) which implies that HI alone is responsible 

for the mass of down-type quarks and H2 alone is responsible for the mass of up- 

type quarks. General theorems [28] tell us that such models have no flavor changing 

neutral currents at tree level. In addition, the charged Higgs-quark couplings involve 

the Kobayaskh-Maskawa matrix in the same way as the W*qq’ couplings. If the 

neutrinos are massless, no such matrix is required in the lepton sector. Henceforth, we 

will ignore the presence of other quark and lepton generations for the sake of simplicity. 

4.3 SELF-COUPLING OF THE HIGGS BOSONS 

It is a straightforward, although tedious task to insert eqs. (4.la-d) into eq. (3.12) 

to obtain the desired interaction terms. The trilinear pieces are of the most interest 

since if the masses are appropriate, then the decay of one Higgs boson into two other 

Higgs bosons is allowed. In a model with no Higgs singlet field, the end result is 

&HH = - g mw H+H- [H; COS(p - a) + H; Sin(P - a)] 

’ mZ - 
4 cos ew [H;” cos(p + a) + Hi sin@ + a)] 

(4.11) 

X {COS 2a [(H,“)2 - (H,0)2] - 2sin 2a! Hi’Hi 

- cos 2p [(Hi)’ + 2H+H-]} . 
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The Feynman rules are displayed in figs. 9 and -10. Note that-the restrictions of 

supersymmetry have led to a very simple form for LHHH. Expressions for three-Higgs 

couplings in a general (nonsupersymmetric) two-Higgs doublet model are notoriously 

complicated as illustrated in the last two papers of ref. [26]. 

There are also three-Higgs vertices involving the N field. If we consider CASE 1 

of sect. 3, the only vertices involved are of the form Ni Nj Hi or Ni Nj Nk, where 

Nr and Nz are the mass-eigenstates obtained by diagonalizing the (ReN,ImN) mass 

matrix. These interactions are easily obtained from eqs. (3.8) and (3.9) by inserting 

the expressions given by eq. (4.1) and picking out the trilinear terms. The exact 

terms obtained depend on the unknown N mass matrix, so we will not dwell on them. 

The quartic Higgs couplings are of lesser interest and will be omitted here. 

4.4 INTERACTION WITH SCALAR-QUARKS AND SCALAR-LEPTONS 

We begin with a discussion of the scalar-quark and scalar-lepton sector of the 

theory. In eqs. (3.8) and (3.9), we omitted the scalar-quark and scalar-lepton fields. 

These terms arise from three sources. First, there are the F-terms [see eq. (3.5) and 

eq. (3.6a)] due to the presence of WF [eq.(3.4)] in the superpotential. Second, there 

are the D-terms [see eq. (3.5) and eq. (3.6b,c)]. F’ mally, we must add the most general 

set of soft supersymmetry breaking terms to the scalar potential. We write 

v = VF + &I + v,,, 

where 

(4.12) 

(4.13) 
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V soft 

(4.14) 

(4.15) 

where y* = l/3, yu = -4/3, yd = 2/3. We have omitted the terms involving scalar- 

leptons; they are easy to obtain from the above expressions with appropriate choice of 

the hypercharges. Presumably, the mass terms in V,,f+, are responsible for making the 

scalar quarks sufficiently heavy such that they would not have been observed to date. 

However, contributions to the masses of the scalar-quarks also arise from other 

terms. First, the supersymmetric piece of the scalar-quark masses arises from VF when 

the Higgs bosons acquire vacuum expectation values. Mass terms may also arise in a 

similar way from VD and Vsoft. To compute them, insert eqs. (4.la-d) in eqs. (4.13)- 

(4.15) [and use eq. (4.9)]. We shall h enceforth use more conventional notation for the 

scalar-quarks: 

(4.16) - 

Notice the complex conjugation in eq. (4.16). This has been inserted so that the 

electric charge of 6~ and CR are equal to e, E +2/3; similarly the electric charge of 
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dL and dR is given by cd E -l/3. We find for the scalar-quark mass terms: 

-lc, =~~~L E~tm~cos2/3 
[ ( 

1 
Z-f?usin2($Jw ) 1 +mE 

+ CbcR z$ + mi Cos 2p e, sin2 8~ + mt 1 
XZ$ - mf cos 2p 

(4.17) 

+ (%?~L + c%R) mu (A, w&j + j~cot p) . 

Thus, in general, the scalar-quark eigenstates are 

I& = & COS 8, + GR Sin 8, (4.18~) 

62 = -@LSinf& + GRCOS 8, . (4.18b) 

One needs to diagonalize a 2 x 2 mass matrix. General formulas can be found in ref. [29]; 

see also eqs. (C2)-(C4) of ref. [18]. 

The interaction terms C~iq” can be found by using the familiar procedure. It is 

convenient to express the results in the GL - f& basis 
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we. 

CHId =. &Lw 
(mz tanp + rni cot @ - m& sin 2/3) (H.?iiLz~ +h.c. ) 

+ gmumd(cotp+ tan8 
fimw 

(me A, cot p - 

H+iTiki~ + h.c. 
> 

4 (H ‘ii;& + h.c. 
> 

4 (H +&iL + h.c. 
> 

v-u -~ 
cos ew 

c [(T& - ei Sin2 ew) GfL &;.L + ei sin2 ew GzR i&R] 
i 

x [H,” cos(a + /3) - Hl sin(cr + ,O)] 

94 - 
mw cos p 

(&,i~ + &i~) (H,” cos LL: - Hi sin or) 

smt - 
mw sin p 

(ii;e~ + CkcR) (Ht sin a + Hi cos a) 

gmd - 
2mw cos p 

(&& + &iR) 

x [(,xsincr+m6Adcosa) H; + (pcosa- m6Adsincr) H;] 

!lmu - 
2mw sin p 

(e;iiL + ii;iiR) 

x [(pc0sa+m~A,sina) H,” + (-psina+m~A,cosa) Hi] 

- e (me Ad tan p - p) ( &$L - &ci~) Hi 

- e (m6 Au Cot ,d - p) (iikti~ - iii;;c~) Hg 

(4.19) 

- m,cotpN~;;iiR+mdtanpNd”f;~Rfh.c. 1 . 
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One clarification is required. The term in eq. (4.19) proportional to mz contains a . 
sum over qi = u, d. In the sum we must remember that* ecR = e- UL E +2/3 and 
es =e,,, = 

dR dL - 
-l/3. As usual T3 = +1/2, -l/2 for CL, 2~ respectively. The Feynman 

rules for the Hq”q” vertices in the GL - i& basis are given in figs. 11-15. Note that we 

do not display separately the rules for Hi@ vertices. These may be obtained from 

the rules for HtG@ vertices (figs. 12-13) by making the replacement: CLI + a + $ and 

,6 unchanged. In reality, the appropriate Feynman rules to use are those involving the 

scalar-quark mass eigenstates [given by eq. (4.18)]. Th ese rules can be easily obtained 

from figs. 11-15 by making use of table 2. Schematically, if V(Hi&ij) and V(Hck&) 

are the Feynman rules in the @r - & and in - iR bases respectively, then 

(4.20) 

where the Tijkl are the appropriate entries in table 2. We give two examples. For Hi 

interactions, 

A more complicated example would be: 

V(H;ii&) = -zgmZ cos(p + a) 
cos ew 

[ ( 
cos2 8, 1 

- - e, sin2 ew 
2 > 

+ sin2 8, e, sin2 ew 1 
-ig rnt sin cy: ig mu sin 28, 

mwsinp - 2 mw sin/3 
Aum6Sinai-pCOSa 1 

(4.21) 

(4.22) 

* A comment at this point is appropriate. Consider the following expression which appears 
in eqs. (4.19) and (4.23): 

The term proportional to ei changes sign when we go from “QL to &. The origin of this 
-sign change is related to the fact that we have defined 6 = G& and 5 = & in table 1. 

Thus, the scalar-quarks which appear in the 4 chi&zZ supermultiplet have the opposite 
electric charge from the scalar-quarks which appear in the 0 and b chiralsupermultiplet. 
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It is  important to note that even in the limit of- zero quark masses 

(mu = md = 0), some terms surv ive in eq. (4.19). These terms originated from 

V’ [eq. (4.14)]. Explic itly, we have: 

. 
LHQ IQ I (m,=md=o) = - gmws1n2P 

fi H+il;dL + h.c. 
> 

- 9 [H,O cos(a + p) - Hl s in(cr + /?)I 
cos ew 

X 
1 --  
2 

e, s in2 ew 6LtiL + eu s in2 ew 6keR 

(4.23) 

- i + ed s in2 ew 
> 

- d”rdL + ed s in2 ow &dR . 

The interpretation of this term in the supersymmetric  limit is  as follows. As men- 

tioned in sect. 3, the H* become the scalar superpartners of the W *. Similarly, one 

combination of the neutral Higgs scalars becomes the scalar superpartner of the 2”. 

Hence, eq. (4.23) is  related by supersymmetry to the W qq’ and Zqq interactions. 

The structure of eq. (4.23) is  quite interesting. Suppose we attempt to produce H,” 

or Hi v ia gluon-gluon fusion. A c lass of contributing diagrams is  shown in fig. 16. If 

CL, CR, dL and dR are all degenerate in mass, then the sum total of the contributions 

of scalar-quark loops due to eq. (4.23) vanishes! The remaining contributions which 

enter according to eq. (4.19) are all proportional to quark masses. However, in the 

supersymmetric  limit, the scalar-quarks are not all degenerate but are equal in mass 

to the corresponding quarks. Thus, amusingly, we find that in this limit, the total 

contribution of the terms of eq. (4.23) to fig. 16 is  also proportional to the quark mass. 

For completeness, we mention the interaction of scalar-quarks with the gauge s in- 

glet N-field (CASE 1 of sect. 3). Us ing eq. (4.13) we can immediately wr ite down the 

Feynman rules for the Nq”q” vertices. The interaction terms are as follows: 

-  

L NiC = -  mu cot p [h*N*iiLiik  + h.c. ] 

. 

1 
(4.24) 

- md tan p h’N*dL$R + h.c. 
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The precise Feynman rules require knowledge of the mass eigenstates Nr and Nz . 
obtained by diagonalizing the (Re N, Im N) mass matrix. 

We now turn to the quartic interactions of the form HHiji. These terms are 

required, for example, in the calculation of multi-Higgs production via gluon fusion. 

Note that because these terms are dimension four, they arise only from the super- 

symmetric part of the theory. However, these interaction terms are sensitive to the 

soft-supersymmetry breaking sector of the theory to the extent that it is this sector 

which determines the precise scalar-quark and Higgs boson mass eigenstates. 

There are two sources for the HHq”q” interaction terms: the F-terms given by 

eq. (4.13) and the D-terms given by eq. (4.14). Th e computation involves inserting 

eqs. (4.la-d) into these terms and extracting the quartic pieces. The results are fairly 

involved, and we summarize them in Feynman rules given in figs. 17 and 18. (See 

eq. (B22) in appendix B for the extension to the case of more than one generation 

of scalar-quarks.) We may also consider CASE 1 of sect. 

singlet complex field N which does not mix with the doublet 

we get additional four-point interactions which result from 

interaction term is given by: 

gh mu 
. 

c NH@ = - - 2mw 
Nii~ SL z H; - zHi-+-iHi 1 

ghmd - -- 
2mw 

NdR aL Hi + iHlf 1 
mu CR d”), NH- + md iR ii; NH+ 1 + h.c. 

3, i.e., a neutral gauge 

Higgs fields. In this case, 

eq. (4.13). The relevant 

(4.25) 

To derive Feynman rules from eq. (4.25), one would have to determine the proper N 

eigenstates. 

It may also turn out that the proper scalar-quark mass eigenstates are mixtures of 

in and & as discussed below eq. (4.19). A s b f e ore, we may use the results of table 2 to 

convert rules in the in - GR basis to the &- 52 basis; All one has to do is to make use 

of eq. (4.20) h w ere X here stands for the appropriate two-Higgs-boson combination. 
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Finally, we note that the Feynman rules for HH1”? vertices involving scalar-leptons 

may be obtained from figs. 17 and 18 by using the appropriate values for the T3 and 

e quantum numbers, as well as the appropriate masses. 

4.5 INTERACTION WITH CHARGINOS AND NEUTRALINOS 

In this section we compute the interaction of the Higgs bosons with the supersym- 

metric partners of the gauge and Higgs bosons (the gauginos and higgsinos). After 

the spontaneous breaking of SU(2)xU(l) , the gauginos and higgsinos with the same 

electric charge can mix. This mixing is model dependent [30-321 and is discussed in 

the appendix. (For further details, see appendix C of ref. [18].) The resulting mass 

eigenstates are called charginos, z*, and neutralinos, T. We proceed now to compute 

the HFF interaction terms. 

The source of the (dimension-four) interaction terms (in two-component notation) 

is [24,18], 

(4.26) 

where W is given by eq. (3.3) (including terms involving the N field, if desired) and 

$J and A stand for generic two-component fermion and scalar fields. Writing out the 

results explicitly, 

- hat = i!l (H:*X’$& + H;*X-$& + H;*X+$k2 + H;*X-+L2) 

+ -$ (gX” + g/X’) (H;* $L2 - H;* &) (4.27) 

+ hN ( $J;,+& 2 - $‘&$‘&2) - 2A+hhv + h-c. 
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In addition, there are mass terms which are responsible for-the chargino and neutralino 

mass matrices. They arise from three sources. First, quadratic terms in W  when 

inserted into eq. (4.26) lead to $11, mass terms: 

(4.28) 

Second, there is a soft-supersymmetry-breaking mass term for the gauginos: 

Lzrt = -MXaXa - M’X’X’ + h.c. (4.29) 

(Note that explicit supersymmetry-breaking mass terms for the higgsinos are not soft 

according to the definition of ref. [9].) F inally, because Ht and Hl acquire vacuum 

expectation values when we insert eq. (4.1) into eq. (4.27), one finds the following mass 

terms due to SU(2) xU(1) symmetry breaking: 

theaking _ * 
m - zg 

+ 5 (gx3 - g’x’) (vlti&l + ~2G2) (4.30) 

- hh (vl$‘K, + vz$&,) + kc. 

where X’ = (1/4)(X’ 7 iX2). 

We shall now sketch the derivation of the Hz+g- rules. For all other cases we 

simply summarize the final results. Starting with the first term in eq. (4.27), we convert 

to four-component notation. Then, using the spinor fields defined by eq. (All), we 

find 
- 

Lint = -g { H;*EPLf + H,2*i?PL ii + h.c. } (4.31) 

where PR,L = 3 (1 f 75). The z and H fields are -not mass eigenstates. To obtain 

the desired Feynman rules, we express @ and g in terms of 2: and 2: using 
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eqs. (AlSa-d). Finally, we insert the proper Higgs boson mass eigenstates using eq. (4.1). 

The end result is 

L H;+;- = - g (H,” cos CY - Hi sin a)?: [Q~j PL + Qji PR] 2: 

- g (HF sin a + Hi cos CX)~: [St> PL + Sji PR] 2: 
(4.32) 

+ ig Hi sin PFT [Q~j PL - Qji PR] 2: 

+ ig Hi cos PFz [S$ PL - Sji PR] 2: 

where summation over i, j is implied and Q and S are defined in terms of the matrices 

U and V which diagonalize the chargino mass matrix [see eqs. (A4,A5)]: 

Qij = $ vi2 Vjl (4.33) 

(4.34) 

We can rewrite eq. (4.32) in another form by relating S to Q and the chargino mass 

matrix. From eqs. (4.28)-(4.30) and eq. (A4), the chargino mass matrix can be written 

as follows: 

-J$y = &q; {[ ( g V1 Qfj + ~2s;) + h mw Rtj PL 1 
(4.35) 

+ [g (VlQji + v2Sji) + A mw&] PR} SZT 

where Q and S are defined in eqs. (4.33) and (4.34) and R is defined by 

Rij = 1 
2mw [M*uilVjl + p*UizVj2] - (4.36) - 

However, U and V are chosen specifically such that: 

(4.37) 
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Equating eqs. (4.35) and (4.37) leads to: _ - . 

6ij - COS PQij - Rij 1 . (4.38) 

Inserting this expression into eq. (4.32) gives us our desired form: 

L Hx”++x”- 
gz$+’ 

= - 2mw SinP (sin (YHF + cos aH,“) ~~~~ + i cos PH~~~75~~ 1 
- & TT [(Qt sin(P - CX) - R~j sin (Y) PL 

+ (Qji sin@? - a) - Rji sin (Y) PR] $H,O 

+ T& Fr [ (Qb COS(P - a) + Rfj COS (Y) PL 

+ (Qji COS (P - Q) + Rji COS a) PR] ‘$ Hi 

- 5 Fc [(Qzj COS 2P + R~j COS P) PL 

- (Qji COS 2P + Rji COS P) PR] 2; Hi . 
(4.39) 

The corresponding Feynman rules are shown in fig. 19. Note that if Q and R are real 

matrices-then CP is conserved, and indeed the diagonal couplings HizlFT are purely 

scalar for Hr , Hi and pseudoscalar for Hi. 

Next, we consider the H+F-r interactions. Here the analysis is straightforward 

and we quote the final result: 

&-jy+p = --H-F: Q&GPL + Q,$~PR 1 zjf + h.c. (4.40) 

where we have defined: 

Q$ = g cos p NT4V$ + -$ ( Nf2 + N/f1 tan 0;) V$ 1 - h’ sinPNi;Vj*2 (4.41) 
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QiJ”. = gsinp Ni3Ujl - -$ (Niz + Nil tan&v) Uj2 - h* coSPN~~Uj2 
I 

(4.42) 

The matrix N diagonalizes the neutralino mass matrix as shown in eqs. (A20)-(A21). 

The corresponding Feynman rule is shown in fig. 20. 

As an interesting exercise, suppose that the 7 is a neutralino mass eigenstate, to 

be identified with E;l. Then it follows from eqs. (A17) and (A23) that Nr’r = 1 and 

NLl = Nr’k = 0 for k # 1. Using eq. (A23), this implies that Nrr = cos 8w, Nr2 = 

sinew and Nlk = 0 for k = 3,4,(5). 1 nserting these results into eqs. (4.40)-(4.42), we 

find (using e = g sin 8w): 

&-;+y = -h eH-5 [Vi2 COSPPL - Uj2ShpPR] 2; i- h.c. (4.43) 

which is displayed in fig. 20. In order to make the physical origin of this result clear, 

it is useful to make use of the “interaction” eigenstate fi [see eq. (All)]. Using 

eqs. (AlSc-d), eq. (4.43) may be written as: 

&$-;;+y = -& eH- 7 [cos /~PL - Sin @PR] g + h.c. (4.44) 

Thus we see that eq. (4.43) is the supersymmetric version of the H+H-7 vertex. One 

final limiting case of interest is the supersymmetric limit [see eqs. (A7)-(A8)]. In this 

limit, the charginos are degenerate in mass with the W* and H& (these particles belong 

to a common massive supermultiplet). It is convenient to make use of the wiggsinos 

C$ as the chargino mass eigenstates [see eq. (A9)-(AlO)]. Then in the supersymmetric 

limit (where sin p = cos ,0 = l/a), we find: 

L SUSY 
H-T+‘;; = -fi eH-7 (P~tiiz - PRW~) + h.c. . (4.45) 

Finally, we turn to the HfzTFi interaction. The procedure is similar to the one 

described above. However, there is one subtlety which must be considered. Because 
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ji;s is a Majorana fermion, one must note the following identity which holds for anti- . 
commuting four-component Majorana spinors: 

3lf75)rk = T3f75)q . (4.46) 

This implies that the HfzTpk interaction must be symmetric under interchange of j 

and k. Starting from eq. (4.27), we arrive at: 

(4.47) 

- (9:; sin p - S&’ cos /3) PR] 2; 

where 

g&i; = ; 
[ ( NCS gNj2 - g’Nj1) + h h*Nid Njs + (i t) j) 1 (4.48) 

gs; =; [ ( N4 gNj2 - g ‘Nil) - h h* Ni3 Njs + (i +-+ j) 1 (4.49) 

We can rewrite eq. (4.47) 

eqs. (4.28)-(4.30) 

in another form by using the neutralino mass matrix. Using 

and eq. (A20), the neutralino mass matrix can be written as follows: 

-&I = 1 F 
a” I[ ( g vlQ&!* - v2S{*) + & mWR”* PL 1 

(4.50) 

where Q” and S” are defined in eqs. (4.48) and (4.49) and R” is defined by: 

Ri’j’ = & [M*Ni2 Nj2 + M’*Nil Njl - CL* (-hi3 Nj4 + Ni4 Nj3)] - (4.51) 
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However, the matrix N is chosen specifically such that: - - . 

(4.52) 

where summation over i = 1, . . . ,5 is implied. Equating eqs. (4.50) and (4.52) leads to: 

(4.53) 

We now insert this into eq. (4.47) in order to get the desired form: 

-& Ft [ (Q&! * sin@ - a) - Ri/ * sin (Y) PL 

+ (Q&! sin@? - o) - Ri/ sin o) PR] GH,” 

+& 2: [ (Q&!*cos(~ - CU) + R&!*COSCX) PL 

+ (Q;; cos(p - a) + Ri’j’ cos a) PR] GH; 

-& ?; [ (Q;;*cos2p + R;;* co,@ PL 

- (Q;; cos 2/? + Ri’; cos p) PR] 2; H3” 
(4.54) 

where summation over i, j = 1, . . . . 5 is implied. Note that Q$! and R// are symmetric 

under interchange of i ++ j as required. Equation (4.54) is closely analogous to the 

Hx”+F- interaction given by eq. (4.39) and the remarks we made there also apply here. 

Note that the extra factor of l/2 between the two equations is simply a consequence 

of the Majorana nature of the neutralinos. This factor of l/2 must be removed when 

writing down the Feynman rules as shown in fig. 21: These rules allow the index i to 

run from l,... ,5. If the model contains no SU(2) xU(1) gauge singlet N-field (and 

39 



-- -- 
hence no 2; ), one must simply set Nsj = Ni5 = 0 above. (or equivalently set h = 0) 
and not allow i = 5. 

Let us once again examine the case where one (or both) of the neutralinos is the 

photino. As before, we set Nrr = cos 6w, Nr2 = sinew and Nrk = 0 for k = 3, 4, (5). 

Using eqs. (4.48), (4.51) and (4.53), we find that in this limit, 

(4.55) 

(4.56) 

z~ = Msin28w + M’cos28w . (4.57) 

Inserting these results into eq. (4.54) we find that 

(4.58) 

This result is not surprising as there is no corresponding supersymmetric version of 

these vertices. Note that the fact that .CHy = 0 is algebraically nontrivial and serves 

as an additional check on the correct form for eq. (4.54). 

The last interaction vertices we consider involve the gauge singlet N field. As 

before, these interactions will depend on the unknown N mass matrix. The relevant 

interact&r terms can be obtained from eq. (4.27) and the result is: 

c - = N h U;2V;2T;pLz; Nxx 1 
(4.59) 

; [ h(N,?P,?4+N;4N;3) + 4~iN,r,N;~] zpLji39) +hSca -_ 

This completes our study of the interaction of charginos and neutralinos with the 

Higgs bosons. 
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5. Feynman Rules for Related Interactions 

In this section we discuss Feynman rules for the interaction of quarks and scalar- 

quarks with charginos and neutralinos, i.e., the qijc+ and qt? vertices. There are 

two contributions to the above vertices. The first contribution is the supersymmetric 

analog of the q$V* and qq.Z’O interactions. These have been discussed in detail in 

appendix C of ref. [18]. The second contribution is the supersymmetric analog of the 

q?jH interaction. This contribution is proportional to the quark mass and depends on 

the properties of the Higgs bosons in the supersymmetric model. The source of these 

two contributions corresponds to the two terms given in eq. (4.26). In this case the 

relevant part of W used in eq. (4.26) is given by WF [see eq. (3.4)]. 

Consider first the qijz+ interaction. We convert from two-component notation to 

four-component notation as discussed in sect. 4.5. We then find: 

(54 

mu - 
+a mw sin p 

?~PL ihi, + ii’pl d?ik 1 + h.c. 

where u and d are four-component quark spinors, and the “interaction”-eigenstates 

r and z are defined in eq. (All). An unusual feature of eq. (5.1) is the appearance 

of charge-conjugated states.* (See appendix A of ref. [18] for a summary of our 

notation.) This arises due to the existence of a nonconserved fermion-number which 

is a standard feature of supersymmetric models. We shall discuss this further after 

we have written down the final Feynman rules. The next step is to convert eq. (5.1) 

to an expression involving the chargino mass eigenstates jr:, i = 1,2. This is done 

+ This feature did not occur in the H-z+? vertices [eq. (4.40)]. The reason is that 2 
is a Majorana field, i.e., (T)c = Ji”, so we were able to avoid the appearance of (X+)” 
fields. In the present case, if one were to make use of a similar technique, one would end 
up with the appearance of charge-conjugated quark fields. We prefer not to do that. 
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by using eqs. (AlSa-d). I n addition, we need four-additional equations involving the . 
charge conjugated fields. It is easy to derive an appropriate recipe. For example, 

PR t? = PR (vll x”“l + h1 x”;) - (5.2) 

(We employ the notation: xi” E (xr)’ which is a negatively charged fermion.) Thus 

the recipe is simply to charge conjugate all fields in eqs. (AlSa-d) and interchange the 

matrices 27 and V. The final result is: 

L &+ = -9 [EPR (&I x”;’ + u21 z;) dz + =R (vll x”l + v21?f) CL] 

gmd 

mw cos p [=R (h2 x”;’ + u22 2;) & + dPL (u;z T; + t7i2 x”;) ii~] 

+Jz 
v-b 
mw sin p 

[-L (1/;*2 F; + v;2 2;) & + dPR (VI2 x”“l + v22 2) iiR] + h.c. 

The Feynman rules are given in fig. 22. As mentioned above, the appearance of both 

chargino fields and their charge-conjugates in eq. (5.3) is a consequence of fermion- 

number violation which naturally occurs in supersymmetric models. This violation 

is well understood in the case of neutral Majorana fields. In the present context, 2: 

and 2,’ are charged Dirac fields. Nevertheless, fermion-number violation may still 

occur when a given interaction involves both 2: and zi fields. This is apparent in 

the Feynman rules exhibited in fig. 22. In figs. 22(c) and 22(d) the flow of fermion- 

number as indicated by the direction of the arrows on the (solid) fermion lines is not 

continuous. This leads to the explicit appearance of the charge-conjugation matrix C 

in the rules themselves [33,18]. (The C arises from eq. (5.3) simply because xc = Cx’). 

It is not difficult to deal with fermion-number violating propagators and vertices. A 

complete discussion of the appropriate rules can be found in appendix D of ref. [18]. 

One must also consider four more diagrams which are obtained by reversing all 

arrows in fig. 22. (Note that the arrows indicate the direction of flow of a particular 

electric charge: +l for the FT, and e4 for q and t, where e, = 2/3 and cd = -l/3.) 

The Feynman rules for the four new diagrams are easily stated. First, in all four cases, 
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make the following interchanges: U t) U*, V f-) -V*, (1 + ys)- w-(1 - y5). Second, 

for the diagrams corresponding to figs. 22(c) and 22(d), remove the factor of C which 

appears on the right and insert a factor of -C-l which should be placed on the left. 

(This rule arises because 2 = -CmlxT.) This is illustrated in fig. 23. 

We next consider the qij? interaction. After converting to four component nota- 

tion, we find: 

N 
-gWsPLd+yqg’EPLd 1 

(5.4 

gmd N - NM 

--\/z mw cos p 
HIPLdciR+dPLHldL 1 

9mu = 

-a mw sin p [ 
H2P~uiik+~P~fi~ii~ +h.c. , 1 

where the “interaction” eigenstates Es, g, gr and g2 are defined in eq. (A24). Note 

that even in models with a gauge singlet Higgs field, N, the higgsino field fi does not 

appear in eq. (5.4). 

It is straightforward to convert eq. (5.4) into an equation involving the chargino 

mass eigenstates Fi, by using eqs. (A25a-b) and similar equations involving @s and 

5. In addition, we find it convenient to replace the matrix elements Nil and Nj2 by 

Njl and Ni2 defined in eq. (A23). 
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One last trick is to eliminate the hypercharges-yq, yU and y&in-favor of the electric 

charges e, = 2/3 and ed = -l/3. This is done most easily by using yq = -1 + 2e, = 

1 + 2% 3% = -2eu, and yd = -2ed. The final result is: 

Lqqp = - J2qi g mqi Nj& 
2mwBi PL 

eeiNi:+L 
cos ew 

Ni2 (Tai - ei sin2 6~) PR ji,g&~ 
I > 

+ h ‘i 
[( 

e ei N;c - gei sin2 ew N, * 
cos ew j2 

> 
PL 

+ g mqi Nj,s-i 
2mw Bi 

PR 1 q&R + h.c. 

where a summation over i = 1,2 and j is implied, and 

U 
Qi = 0 d 

, B; = 

(5.5) 

F-6) 

The quantum numbers Tsi and e; are the weak-isospin and electric charge (in units 

of e > 0) of the quarks qi. We emphasize that &;.R and ii;.~ have the same electric 

charge as the quarks qi. The Feynman rules are depicted in fig. 24. Note that if the 

supersymmetric model involves the gauge singlet N field, then one must sum over 

j= 1,2,..., 5; otherwise the sum stops at j = 4. 

The results obtained in this section can also be used to obtain the couplings of 

leptons and scalar-leptons. One need only insert the correct quantum numbers (i.e., 

T3i and ei) as specified in table 1. 
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6. Comments on the Supersymmetric Parameters 

In the Feynman rules presented in this paper, many parameters appear that are 

not fixed by general principles. For example, all possible soft supersymmetry breaking 

terms (consistent with the gauge symmetry and possibly some discrete symmetries) 

are allowed a priori; their coefficients must be taken as free parameters in a general 

approach. This can result in too much freedom when we apply our rules to phe- 

nomenological questions. It is often useful to make use of specific models as a guide 

to suggest (possible) likely values for many of the free parameters. One of the most 

popular approaches that one finds in the literature is that of low-energy supergravity 

[lo-131. In this approach, one obtains an effective Lagrangian which is relevant at the 

Planck scale. One then uses the renormalization group equations to obtain the values 

of the parameters at a scale of order mw. The resulting parameters are the ones which 

appear in the Feynman rules given in sets. 4 and 5. 

Of course, the results given in this paper are for the most part model-independent. 

But, given the results of a particular model, one may easily use the techniques and 

results of this paper to obtain all the Higgs boson vertices which appear. We think 

it is useful to illustrate some of the aspects of the procedure by which one obtains 

the appropriate low energy parameters from a supergravity model. However, it is 

not our purpose to review supergravity model building techniques here [lO,ll]. Fairly 

detailed-models have been studied in the literature (see e.g., ref. [13]) which satisfy the 

necessary phenomenological requirements. For the purposes of illustration, we exhibit 

below some of the features of one of the original low energy supergravity models studied 

in ref. [12]. 0 ur choice here is motivated by one of simplicity-a minimum of algebra 

helps to make the procedure quite transparent. Note, however, that this model is 

certainly not realistic (it requires a very heavy top quark); the reader is referred to 

the the literature [10,11,13] for more realistic examples. 

The model of ref. [12] consists of a minimal supersymmetric extension of the 

Standard Model, with two Higgs doublet fields but with no Higgs singlet field. At the 
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Planck scale (Mp ), the parameters of this model-satisfy: . 

where A0 and B are constants of order unity and %g is the gravitino mass which is 

expected to be of order mw. The parameter p is less certain and one can imagine either 

~~a%,or~-@( h w ere CY is some small coupling constant). In the former case, 

p is small and to first approximation can be neglected. Then because rnf, rng > 0, 

SU(2) xU(1) is unbroken. However, upon evolution down to scales of order mw, one 

finds that rni < 0. In ref. [12], this is triggered by a large Higgs-fermion Yukawa 

coupling (such as the top quark). We sketch here some of the details for this particular 

example. In the evolution of scalar masses, we ignore all couplings except for the top- 

quark-Higgs-Yukawa coupling. The solution to the renormalization group equations 

takes the simple form [10,12] 

where 

m:(t) = 3C- :Zfi 

q c=- 
1-C 

1+;A2 s 
1-C 1 

(6.10) 
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1-C (6.11) 

where au E X2/47r is the top-quark Yukawa coupling [analogous to eq. (4.9)], A0 is 

given in eq. (6.3)) and CI! and A are the corresponding quantities at the low-energy scale. 

Note that in eqs. (6.5) and (6.6) we use the subscript 3 to denote the third generation 

scalar-quark masses. In the approximation we are using, all other scalar-quark and 

Higgs masses do not run but are fixed at @ [cf., eq. (6.1)]. 

We need one boundary condition to fix t = .&z (mw/Mp). This is obtained by 

inserting eq. (3.23) into eq. (3.14g), resulting in 

2 - 1 
m2 - -5 

,3+; v~(g2+g’2)+m~2cotP . (6.12) 

In the approximation where p is neglected, we may take rnf2 = 0 [see eq. (6.2)]. Also, 

because rn: does not run (i.e., rnf = @ > 0), it is clear that vr = 0. Therefore, 

eq. (6.12) reduces to m;(t) = -irng. This implies that C = ($$ - mi)/6 and 

plugging back into eqs. (6.5), (6.6) yields the scalar-quark mass parameters. It then 

follows that [l2]: 

(6.13) 

(6.14) 

iif& = iz; , i= 1,2 (6.15) 

i& = z; , i= 1,2 (6.16) 

XT& = ii!?; , i = 1,2,3 (6.17) 

It is these parameters which are to be inserted into eq. (4.17) to obtain the desired 

scalar-quark mass matrix. The appropriate value of A [eq. (S.ll)] would also have to be 

used in eq. (4.17). Note, however, that under the assumptions being considered here, 

the term in the scalar-quark mass matrix which mixes ij~ with iR is non-negligible 

only for massive quarks (the t-quark or heavier). 
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Clearly, the above calculation is unrealistic since the approximations we have used . 
implied that vr = 0. An improvement can be made by taking into account the effects 

of the parameter CL. According to eq. (6.2), mf2 # 0 and this can induce a vacuum 

expectation value for HI. Using eqs. (3.21c-e) one finds to leading order in ,X 

211 w mf2v2 
mf+rnIj ’ 

(6.18) 

Note that rn: > 0 and rni < 0. We may now go back and recompute C based on 

the boundary condition given by eq. (6.12). N ow, we may no longer omit the last two 

terms of eq. (6.12) (they are both of the same order in p = mT2/B@). We can rewrite 

eq. (6.12) as: 

2 - 1 m~cosP+m~,cot/3 . m2 - 2 

The solution for C [from eq. (6.4)] becomes 

(6.19) 

c = i ~~~+m~cos2P+2mf2c0tp) . Wo) > 

(This equation reduces to the one we obtained previously, since for 111 = 0,/3 = 900.) 

Plugging into eqs. (6.5) and (6.6), we obtain: 

(6.21) 

(6.22) 

which are to be used in eq. (4.17) to obtain the scalar-quark masses. These mass 

formulas have been previously obtained in ref. [lo] .* 

Of course, realistic models require numerical solution of a complicated set of renor- 

malization group equations. The resulting scalar-quark masses as well as other param- 

eters of the model must be obtained numerically. Typical results have been presented 

in refs. [13,34]. Nevertheless, the analytic formulas displayed above give a rough guide 

as to possible values for the supersymmetric parameters. 

* Note that in the notation of ref. [lo], their angle (Y is equal to s/2 - p. 
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There have also been low-energy supergravity modelswhich make use of the Higgs 

singlet field N. However, realistic models do not appear to satisfy the requirements of 

p=O,(N)#O h’h w K we imposed in sect. 3 in order to obtain analytic expressions 

for the neutral Higgs (H,“, Hi, N) mixing. In particular, we point out that in an 

interesting model discussed in ref. [16] w h ere all dimensionful parameters in eqs. (3.8) 

(p, r and A) are set to zero, one finds that necessarily ( N ) # 0 in order to get a realistic 

particle spectrum. Therefore, in such models with a Higgs singlet field, although the 

Feynman rules of sect. 4 are still correct, H,“, Hl and N will no longer be mass- 

eigenstates. One will be required to diagonalize numerically a more complicated mass 

matrix in order to obtain Feynman rules involving physical particles. 

The final set of remarks in this section are concerned with the possible appearance 

of CP-violating phases in the theory [35-371. W e h ave emphasized in Sets. 2 and 3 

that in a supersymmetric two-Higgs doublet model, we are free to choose the phases 

of the weak doublet fields HI and H2 such that no CP-violating phases appear in the 

pure HI, H2 sector of the theory. This also allows us to choose the vacuum expectation 

values 211 and 02 to be real and non-negative. Having implemented this convention, 

CP,violating phases can in general appear elsewhere in the theory. These can arise 

from a number of sources [see eqs. (3.8), (3.9), (4.15) and (4.29)]. First, the parameters 

~1, M, M ‘, Al, Aa, A, and Ad are in general complex. This can lead to CP-violation 

in the H”ii interactions [eq. (4.19)] and the Hog% interactions [eqs. (4.39) and (4.54)]. 

The easiest way to identify CP-violation is as follows. In a CP-invariant theory, we 

have shown that Hi’ and Hl are CP-even states and Hi is a CP-odd state. Violations 

of these conditions are a signal of CP-violation. For example, in eqs. (4.39) and (4.54), 

CP-invariance requires the diagonal H”FiF; interaction to be of the form 

where ai, bi and ci are real constants. In eq. (6.23) zt stands for either a chargino 

or neutralino field. This implies that the diagonal elements of the coupling ma- 

trices Q, R, Q” and R” [defined in eqs. (4.33), (4.36), (4.48) and (4.51)] are real. 
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Second, if the singlet N field is present, then h, r, rnz and a possible vacuum expecta- 

tion value ( N ) ( w rc h’ h would depend on some of the previously mentioned parameters) 

can also be complex. One could choose the phases of N and the scalar-quark fields 

to eliminate a few of the phases but some non-trivial phases must remain. This could 

be a serious constraint on supersymmetric models [35-371. For example, the absence 

of an observed neutron electric dipole moment [36] requires that such phases be very 

small (if not absent altogether). A natural explanation for the smallness of such phases 

would be highly desirable. 

One can peruse the Feynman rules for the occurrence of possible sources of CP- 

violation. Some examples: if there is a singlet Higgs field N, one has in general complex 

HHN couplings. In general, the Hijij couplings [eq. (4.19)] will exhibit CP-violating 

phases due to the presence of complex p and A-parameters. It is interesting to note 

that in the neutral Higgs couplings to quarks, no CP-violating phases occur. Thus, our 

claim that Hi’ and Hi are CP-even states and Hi is a CP-odd state remain valid (at 

least at tree-level) as far as its interactions with the quarks are concerned. Likewise, 

no CP-violating phases occur in the tree-level interactions of the Higgs bosons with 

the vector gauge bosons. 

In models with three or more generations, the charged Higgs interactions with 

quarks involve the Cabibbo-Kobayashi-Maskawa (CKM) [37] matrix which possesses 

the usual CP-violating phases. In addition, new generation mixing matrices must be 

introduced due to the generational mixing of scalar-quarks. These new matrices can 

also introduce new CP-violating phases. The modification of the Feynman rules due 

to more than one generation of quarks and scalar-quarks is discussed in appendix B. 
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7. Conclusion - - 

It has been obvious for many years that the Higgs sector of electroweak theories 

is the most sensitive to the nature of interactions at mass scales higher than those 

currently probed experimentally. Thus many theoretical uncertainties regarding the 

Higgs sector have emerged. In particular, there are the problems of hierarchy and 

naturalness, the number of Higgs doublets, the possibility of higher Higgs representa- 

tions, composite Higgs and so forth. Of the existing models which propose to solve 

the hierarchy and naturalness problems, supersymmetric theories are unique in two 

respects: 

1) they are completely consistent internally and at present suffer no known 

phenomenological defects; 

2) they have the potential to solve the hierarchy/naturalness problems while 

maintaining the elementarity of the Higgs. 

In this paper we have chosen to examine in detail minimal supersymmetric theories. 

At least two Higgs doublets are required in order to give mass to both up and down 

type quarks. In the absence of other scalar Higgs fields, SU(2)xU(l) is not broken 

until soft supersymmetry breaking terms are added. Thus we have also considered 

the case in which an additional complex scalar field, an SU(2)xU(l) gauge singlet, 

is introduced so that SU(2)xU(l) may be broken at tree level even in the absence of 

supersymmetry breaking. 

While supersymmetric theories provide a direct motivation for a two-Higgs dou- 

blet model, they simultaneously impose severe constraints on the otherwise enormously 

model-dependent self-coupling of the Higgs. Of course, as part of the solution to the 

51 



-- .-- 
hierarchy problem, couplings to new supersymmetric partners of the ordinary particles 

appear. The purpose of this paper has been to enumerate all the Higgs couplings that 

are of most immediate phenomenological interest. These include: 

(1) couplings to gauge particles, figs. 1-6; 

(11) couplings to ordinary fermions, figs. 7-8; 

(III) self-couplings, figs. 9-10; 

(IV) couplings to scalar-quarks, figs. 11-15 and 17-18; and 

P> couplings to charginos and neutralinos, figs. 19-21. 

For completeness, we have also derived rules for the coupling of quarks and scalar- 

quarks to charginos and neutralinos shown in figs. 22-24. These are related (in part) 

by supersymmetry to II and IV above, and are therefore sensitive to the Higgs boson 

sector of the model. 

All of the couplings we have obtained under (I) and (II), above, are the same 

as those which appear in certain non-supersymmetric two-doublet models in which a 

fully general choice of vacuum expectation values is allowed for. There are, however, 

many aspects of these couplings and constraints among them which have not been 

fully explored in the literature. For instance p E tan-l(vz/vr) and the mixing angle 

a which results from diagonalization of the neutral Higgs boson mass matrix yield 

potentially enhanced couplings of the charged Higgs couplings to quarks. In some low- 

energy supergravity models, these angles tend to take on extreme values which could 

result in unexpected phenomenological consequences. Also, the absence of certain 

couplings (e.g., no WZH vertex) can have important phenomenological implications 

for expectations regarding Higgs production. 

The Higgs self-couplings become of phenomenological importance when one Higgs 

is much more massive than others, and its decay into two lighter Higgs is allowed. 

Trilinear Higgs couplings also yield new sources of single Higgs production through a 

process analogous to the effective W approximation [41], in which the fusing virtual 

gauge particles are replaced by virtual Higgs. 
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The couplings of Higgs bosons and scalar-quarks yield new contributions (through 

scalar quark loops) to the gluon-gluon fusion mechanism for Higgs production [42]. 

Due to cancellations, these are not as large as the order g couplings which appear in 

the Feynman rules of figs. 12-13 might suggest [as discussed below eq. (4.23)], but can 

result in a significant enhancement to Higgs production cross sections. The order g 

couplings are certainly important to the phenomenology of Higgs decays if the scalar 

quarks are sufficiently light that these channels are open. 

In a future paper [19] we shall explore some of the above phenomenological conse- 

quences of minimal two-Higgs doublet supersymmetric theories. The Higgs sector in 

such theories, while varied and complex, is tightly constrained. Above threshold for 

production of Higgs particles, the phenomenology of their production, interaction and 

decay will provide an important testing ground for the theory and help constrain the 

nature of supersymmetry breaking. As an example, a Higgs doublet with enhanced 

couplings to both up and down quarks would be incompatible with the two doublet 

Higgs supersymmetry model [42]. In general, the discovery of multiple Higgs doublets 

(or convincing evidence for only one doublet) would provide important insight into 

the viability of low-energy supersymmetry. 

In the absence of the gauge singlet field, the minimal two-Higgs doublet model 

requires that one of the neutral Higgs lies below the mass of the 2. It could well appear 

in toponium decays and other reactions that will soon be available. In such models, 

the H+ is always heavier than the W +. However, in models with a gauge singlet field 

present, there is a range of parameters for which the H+ is sufficiently light so that 

it could appear in W and 2 decays. In general the minimal supersymmetric models 

suggest that some of the Higgs masses are modest in size and perhaps accessible in the 

near future. Thus, the Higgs sector may play a crucial role in suggesting the nature of 

new physics beyond the Standard Model as well as revealing the nature of spontaneous 

symmetry breaking and the generation of the electroweak scale. 

- 
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APPENDIX A ~-_ - - 

CHARGINO AND NEUTRALINO MIXING 

In this appendix, we will summarize the required formalism needed to obtain the 

mass-eigenstates in the gaugino-higgsino sector of the theory. For details, we direct 

the reader to appendix C of ref. [ 18].* (See also refs. [30-321.) 

1. CHARGINOS 

The charginos, 2: (i = 1,2), are four-component Dirac fermions which arise due to 

the mixing of the winos, %-, E+, and the charged Higgsinos, & and 2:. Because 

there are actually two independent mixings, (E-, &) and (@+, &+), we shall need 

to define two unitary mixing matrices [31]. We define: 

?q = ( -ix+, +g2) 
j = 1,2 (Al) 

$7 = (-iA-, $fGl) 3 

where we have used the notation of table 1. In eq. (Al), the fields are two-component 

fermion fields, with X * = (X1 F iX2)/& The mass term in the Lagrangian is: 

where 

M 
x= 

rnwfi sinP 

mwt/Z cots/3 > 
w 

P 

where M is a Majorana mass term for the winos, /.L is defined in eq. (3.3) and 

tan@ E 212/21r. Note that rnk = (g2/2)($ + vi), where the vi are defined in eq. (3.7). 

*A The notation in this appendix is identical to that qf ref. [18] with two exceptions. We 
denote here (Hi) = q, (Hi) = 212 and tan /I E Q/VI, whereas in ref. [18] tri is replaced 
by vi/& and tan/3 is replaced by cot 0”. 
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We define two-component mass-eigenstates via: _ - 

Xl = V;j t/J: 

i,j = 1,2 

XT = Uij +I: 

where U and V are unitary matrices chosen such that: 

(A4 

U*XV-1 = MD ( w 

where MD is the diagonal chargino mass matrix. In particular, U and V can be chosen 

so that the elements of the diagonal matrix MD are real and non-negative. The proper 

four-component mass-eigenstates are the charginos which are defined in terms of the 

two-component XT fields as: 

(A6) 

The supersymmetric limit can be taken where SU(2) x U( 1) remains broken if the model 

possesses a gauge singlet N-field. In this limit (taking M = p = 0), we find: 

sinp = cosp = J- 
fi 

(A71 

W) 

Note that U # V; the difference in the two matrices has been arranged so that the 

masses of the chargino eigenvalues are positive. In the above limit, we can write the 

chargino states as 

x1 = 
iZ;tfW -7 

7x2 = 
q-q 

a - d 

where wr and w2 are the wiggsinos: 

W) _ 

-+ = 
( 

-ix+ 
Wl 

Gil 
(A 10) 
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Furthermore, in this limit, the chargino states for the wiggsinosare degenerate in 

mass with the IV*. In fact, from eqs. (3.15) and (3.16) we see that mH+ = rnW& in 

this limit. It follows that (H-; C;,; IV-) and (H+; Gl; IV+) make up two massive 

supermultiplets consisting of particles with mass equal to mw. 

It is sometimes convenient to work with four-component fields which are not mass- 

eigenstates but which lead to simpler expressions for interaction terms. We choose to 

work with F and g defined by: 

(All) 

If one has an interaction Lagrangian involving@ and g, it is a simple matter to convert 

it to the appropriate expression involving the chargino mass-eigenstates. Define: 

PL = ; (1- 7s) 

pR = ; (1+7s) 

w4 

which project out respectively the top two components and the bottom two components 

of a four-component spinor. Then, using eqs. (A4),(A6) and (All) we find: 

PLF = PL (V;l x”l + vi1 F2) (A13a) 

PRE = PR (ull x”l + u21 22) (A13b) 

PLE = PL (q-2 x”l + v2t2 F2) (A13c) - 

PRg = PR (ul2 x”l + u22 22) . (A13d) 
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-- .- 
Using these equations, one can write out any interaction~term -involving i? and E in 

terms of the charginos, 2. Note that from eqs. (A13a)-(A13d) one can derive additional 

equations, such as: 

EpR = (k x”l + v21 3 PR , bw 

where as usual, 4 E $try”. 

2. NEUTRALINOS 

We turn next to the neutralinos, g which are due to the mixing of the photino, 

zino and neutral higgsinos. Here, j = 1, . . . ,4 in the minimal model with no gauge 

singlet N-field. If an N-field is included in the model, then the model necessarily 

contains an extra higgsino resulting in five neutralinos, so we must take j = 1, . . . . 5. 

We shall consider the two possible cases in turn. 

In the case with four neutralinos, we define the two-component fermion fields: 

?j; = (-z-X’, 4x3, $&, +g2, (Al5) 

Again using the notation of table 1, X3 is the neutral wino and X’ is the bino. These 

fields can also be expressed in terms of the (two-component) photino and zino via: 

A, = X3cosf3w - X’sin0w 

A, = X3sineW +X’cOsew . 

(46~) 

(Ai6b) 

Occasionally, it will be useful to define 

qq” = (-ix,, -&, Icl&,, tik2, (A17) - 

in place of eq. (A15). Th e mass term in the Lagrangian is given by: 

lm = -$ ($,“)* Y $” + h.c. (AW 
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where Y is in general a complex symmetric matrix* given by: - - 

M’ 0 -mz sinew cos p mz sin ew sin p 

0 M 
Y= 

mz cos ew cos p -mz cos ew sin p 

-mZ sin ew cos p mz cos ew cos p 0 -CL 

mz sin ew sin p -mz cos ew sin p -CL 0 

(A: 

M’ is the Majorana mass for the bino; all other terms above have been previously 

defined. As usual, rni = $ (g2 + gr2) (vf + vi). We define two-component mass- 

eigenstates using: 

where N is a unitary matrices satisfying: 

N*YN-l = N D - Wl) 

where ND is the diagonal neutralino mass matrix. One can choose N such that the 

elements of the diagonal matrix ND are real and non-negative. The proper four- 

component mass-eigenstates are the neutralinos which are defined in terms of the 

two-component Fi fields as 

-0 Xp xi= -0 
( > xi 

(i = 1, . . . 4) . (A22) 

Note that the 2; are Majorana fermions. 

If we had wished to make use of eq. (A17) instead of eq. (A15), then the matrix 

Y would be replaced by a matrix Y’ and the unitary matrices N would be replaced 

by a new matrix N’ given by: 

* The fact that Y is symmetric follows from eq. (4.46) and is due to the Majorana nature of the 
neutralinos. As a result, only one diagonalizing matrix N [eq. (A21)] is required in this case. 

59 



-- .- 

NJ!1 = Njl cos ew + Nj2 sin 8w 

Nj’2 = -Njl sin Ow + Nj2 cos ew 

Ni3 = Nj3 

NJ’4 = Nj4 W3) 

As above, interactions often look simpler in terms of four-component fields which 

are not mass eigenstates. We define the following four-component (neutral) Majorana 

spinors: 

) fi, =  ) ii2 = . (A24) 

We may then relate the above spinors [eq. (A24)] to the mass eigenstates (eq. (A22)] 

using relations analogous to those given in eq. (A13). For example, 

P~fii = PR C Nj,i+z Ty 
i 

(A25a) 

(A256) 

where we have used the fact that N is unitary, with similar equations for 5 and ?s. 

It is sometimes convenient to introduce the four-component photino (7) and zino (2) 

Majorana spinors: 

T= -ix, 
( > 

&& -ax, 
ir;, , ( > z-r;, VW 

which are related to %s and g by the obvious relations [see eq. (~i6)]. Then, to 

express 7 and 2 in terms of the mass eigenstates zi, we need to use the matrix N’. 
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For example, 

(A27u) 

PRY = PR c Ni: q 
i 

(A27b) 

The analysis above assumed that there were only four neutralino states. If we 

include the SU(2) xU(1) singlet field N, then the (two-component) higgsino field $N 

must be included in the discussion. As discussed in CASE 1 of sect. 3, we can obtain 

explicit analytic expressions for all results of interest if we assume that p =< N >= 0. 

In this case we expand our previous definitions. In place of eq. (A15) we have: 

+y = (-ix’, +X3, $$, tik2, +N) . (A28) 

Eq. (A18) defines the mass matrix, where Y is now a 5 x 5 matrix. Setting p = 0, we 

obtain: 

M’ 0 bJld)l~ (v2g’)/fi 0 

0 M hdl& (-vzs)/fi 0 

(-w’)l~ (w7)/4 0 0 hv2 (A 29) 

(v29’)/& (-vlag)/fi 0 0 hvl 

0 0 hv2 hvl 0 

To be different, we have replaced mz, 0w and p in eq. (A19) with VI, 212, g and g’. 

Most of the remaining formulas go through. By using the appropriate generalization of 

eq. (A25) (i.e., summing over five possible neutralino states), the physical neutralinos 

2: can then be expressed in terms of the fields of eq. (A24) and 

The advantage of including the fifth neutralino state is that it permits a super- 

symemtric limit which still breaks the SU(2)xU(l) symmetry. In this limit (where 
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M’ = M = p = 0 and vr = us), it is convenient to choose.the following basis instead 

0f eq. (~28): 

-ix,, -ix,, -$ (+& - ‘hk2) 7 -& (+Ll + tik2) 3 +N] - (A=) 

The mass matrix is then 

mZ xz (+i& - tiif2> + hv ‘bN ($$ + $s2) (A=) 

where v = 211 = 2)~. Note that in the supersymmetric limit the neutral Higgs boson 

spectrum is mH0 = mH; 3 
= mN and mH; = rnz [see discussion below eq. (3.20)], 

where ??2N = fi hv. We therefore define the ziggsino state: 

and the higgsino state: 

(A 33) 

which are both four-component Dirac spinors. In addition, we have the photino 

(A341 

+ -iA, 
( ) ix, (A351 

which is a four-component Majorana spinor. In the supersymmetric limit, we see that 

the photino is massless, &$ = mz and %i = ?nN. The massive supersymmetric 

multiplets are then identified as (Hi; E 2’) and (H,“, Hi, Re N/1/Z, Im N/u/Z; i); and 

the (7; 7) supermultiplet stays massless. 

Finally, we can compute the values of the diagonalizing matrix N [see eqs. (A.21) 

and (A29)] which produces the diagonal mass matrix given by eq. (A32). The result is: 
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cos ew sinew 0 0 0 

- (l/fi) sin ew (l/d3 cos ew 112 -l/2 0 

N= -(i/a) sinew (i/d) cos ew -i/2 i/2 0 . (~36) 

0 0 112 112 l/fi 
0 0 i/2 i/2 -i/a 

A few subtleties are worth mentioning. The factors of i in the third and fifth rows have 

been chosen so that the neutralino eigenvalues are all non-negative. This is possible 

because of the appearance of N* in eq. (A21). (A n alternative method is to allow for 

negative mass eigenvalues for some of the neutralinos. Then one must multiply the 

corresponding neutralino spinors by 75.) Using eq. (A36), one can read off the physical 

neutralino states by examining the rows of N. For example, the first row corresponds 

to the photino given in eq. (A16b). H owever, using this method, one gets (in terms 

of four-component fermions) Marjorana fermions (i.e., the Fi) rather than the Dirac 

fermions given by eqs. (A33) and (A34). In th e supersymmetric limit the resulting 

Majorana spinors can be defined as follows: 

where i = 1,2 and $+ and & are defined below: 

-i$2 = -$ 
[ 

-iA, - 5 ( 
$I;~ _ g2 ti 11 

& =~[~~+-+&i,tp%,] 
-ie2 =-$[+N-$(,,,+,,)] 

W) 

Lw 

Wo) 

(A41) 

In terms of our previous notation, s = 7, Fi,3 = L$ and s,5 = & 2~. The factors of 

i in eqs. (A39) and (A41) correspond to the factors of i in the matrix N [eq. (A36)]; 
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-- .- 
these factors insure that the neutralino masses are all non-negative. Of course, the 

physical content of eq. (A37) is identical to eqs. (A33) and (A34). Namely, a neutral 

Dirac fermion is equivalent to two Marjorana fermions which are degenerate in mass. 

The appearance of the factors of i in eqs. (A39) and (A41) seems less mysterious 

if we write out the corresponding four-component equations. In the chiral basis where 

75 = ( i1 y) , eq. (A39) can be written as 

(A42) 

In eq. (A42), the factor of i is an irrelevant phase factor which we shall dispose of in 

the next section (see eqs. (A50) and (A51)). The factor of 75 is important and insures 

that the mass of 5 is non-negative. 

The HsjlT rules are easily obtained in the supersymmetric limit. The matrices 

Q” and R” which appear in eq. (4.54) take on a simple form: 

0 0 0 0 0 

0 2 0 l-x i(l + x) 
Q” = ’ 

4& coseW 
0 0 2 i(l + x) -1+x (A43u) 

0 l-x i(l+ x) 2x 0 

0 i(l+x) -1+x 0 2x : 

R” = 0 

where 

& h* cos ew x= 
g - 

(A43b) 

(A44) - 
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3. THE PROBLEM OF NEGATIVE MASS EIGENVALIJES - - 

In the previous two sections of this appendix, we have defined the diagonalizing 

matrices U,V [eq. (A5)] and N [eq. (A21)] such that the diagonal elements of the 

mass matrices were real and non-negative. It is sometimes more convenient to allow 

the (real) mass eigenvalues to be either positive or negative. If the mass eigenvalue is 

negative, then one must replace the corresponding four-component eigenspinor 2 by 

752 in the interaction Lagrangian. Let us see how this works out in practice. Replace 

ew (A4),(A5), (A26) and (A21) by the following: 

x+ =Wij+T, a (i,j = 1,2) (A45u) 

Xf = U;i tiJr , (i, j = 1,2) (A45b) 

XP = Zij $y , (i, j = 1, . . . , n) (A45c) 

U*XW-1 = diag 

Z*YZ-’ = diag E1izfO), . . . . E,z$) 
> 

(A46) 

W7) 

where n is the number of neutralino states (either four or five in this paper), “diag” 

means a diagonal matrix (with the diagonal entries listed in parentheses), the Mi are 

non-negative masses and ei and Q are either fl. U, W  and Z are unitary matrices. 

Technically, one determines the matrices by solving the eigenvalue problem for XXt, 

XtX and YtY. This determines the diagonal elements of eqs. (A46) and (A47) up 

to a sign. We can arrange the phases of these matrices to give non-negative mass 

eigenvalues as we did in previous sections of the appendix. In this section, we allow 

for the appearance of negative eigenvalues as shown in eqs. (A46) and (A47). The 

question then arises: how will this change the Feynman rules which we have derived 

in sects. 4 and 5. 

We demand that the Lagrangian contain only non-negative masses for the charginos 

and neutralinos. In two-component notation, what appears in the Lagrangian is 
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(summed over i) : _ - . 

We require that in four-component notation, eq. (A48) must read: 

This implies that we must define our charginos and neutralino fields as follows: 

xi -+ = (vi PL + PR) 

-0 Xi = (c& + PR) 

Wg) 

Wo) 

bw 

Note that for ci = -1, PR - PL = 75 which confirms the statement made earlier. [For 

ci = 1, PL + PR = 1 and there is no change from eqs. (A6) and (A22).] In order to 

see how this affects interaction terms, all we need to do is determine how eqs. (A13) 

and (A25) change. Clearly, only the equations involving PL change (since Pi = PL, 

Pi = PR and PLPR = 0). The new results are: 

(A521 

PL g = PL (WIG 71 21 + w;2 72 5) 

‘L i?i = pL C Zj:i+2 Ej ~ 
j 

PR gi = PR 1 Zj,i+2 2; . 

i 
W) 

If we compare now with eqs. (A13a)-(A13c) and (A25), we can make the following 

identification: 

V{j = ?li Wij (no sum over ;) (A56) 
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Nij 2: + Zij ,fi$ (no sum over i) - - (A57) 

N$Z -+ e;z,; F; (no sum over i) . (A58) 

In eqs. (A57) and (A58), we have used the arrow to mean “make the replacement” 

since if it were an equality, then eqs. (A57) and (A58) would be incompatible. Equa- 

tions (A56)-(A58) [or eq. (A59) below] is the appropriate recipe for using in the Feyn- 

man rules stated in sections 4 and 5 if negative mass eigenvalues are obtained. Note 

that eq. (A57) 1 a so implies the substitution rule zNz; + gPZi;. Thus, in a Feynman 

rule where the z is annihilated, N&. is replaced by E~Z$ [see eq. (A58)]. But, if the 

fi$’ is created, N$. is replaced by Z,?$. 

There is a second alternative: eqs. (A57) and (A58) can be replaced by: 

Nii = ~f12 Zi3. (no sum over i) . ( A591 

This satisfies the requirement that eqs. (A57) and (A58) have opposite signs when 

E. = 2 . -1 since then c?12 a = i changes sign under complex conjugation. 

We give two simple examples of the above procedure by examining the supersym- 

metric limit. First, the chargino mass matrix, X is off-diagonal and real symmetric. 

It can therefore be diagonalized by a single real orthogonal matrix W = U and the 

resultingeigenvalues are fmw. By eq. (A56) we see that Vlj = Ulj and V2j = -U2j 

which confirms eq. (A8). Second, the neutralino mass matrix, Y, is off-diagonal and 

real symmetric. It can be diagonalized by a real orthogonal matrix Z and has five 

eigenvalues: 0, fmz, fmN. By eq. (A59), Nsj = iZsj and Nsj = iZsj, Nij = Zij for 

i = 1,2,4. This explains the appearance of the factors of i in eq. (A36). However, 

when it comes to the Feynman rules involving neutralinos, it is perfectly acceptable 

to make the replacement (A57) and (A58) instead of using eq. (A59). This procedure 

has the advantage that it avoids the proliferation of factors of i’s in the rules where 

they are not really needed. In the above example, the two alternatives correspond to 

defining the eigenstate corresponding to the mass eigenvalue of -mz to be i7sz or 
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755 (corresponding to eqs. (A42) and (A51), respectively). Thus the respective Feyn- . 
man rules involving one incoming “2 field differ by a factor of i. Of course, in the end, 

the physical consequences of either set of rules are identical. 
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APPENDIXB - - 

EXTENSION TO MORE THAN ONE GENERATION 

OF QUARKS AND SCALAR-QUARKS 

Although we have confined the discussion in this paper to the case of one generation 

of quarks (and scalar-quarks), the extension to multigenerations is straightforward. 

However, one must be careful since, a priori, the Cabibbo-Kobayashi-Maskawa(CKM) 

[38] angles in the scalar-quark sector can be different from the usual CKM angles which 

appear in the quark sector [39-401. The precise details are a model dependent question, 

although the absence of flavor-changing neutral currents does impose nontrivial (but 

not impossible) constraints on the model-building [39-401. In this appendix we shall 

briefly indicate some of the changes which occur for the multigeneration case. If we 

put in the generational indices in eq. (3.4), we obtain for the terms involving the 

scalar-quarks: 

w 
where fr and fz are now matrices in generation space. 

Equation (Bl) leads to the following terms in the supersymmetric Lagrangian 

(using two-component notation for the fermions): 

where A; is a generic notation for the scalar fields in eq. (Bl). Our first task is to 

diagonalize the quark mass matrix thereby identifying fr and f2 in eq. (Bl). Here, 

we can simply use the same mixing formalism which we employed for the charginos in 

appendix A. We denote the two-component “interaction” eigenstates as: 
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corresponding to the left- and right-handed quarks, -respectively,-where b is a generation 

label. The quark eigenstates of definite mass are defined by: 

t. ra = 6ab $‘Qib w4 

%a = Uiab +qb VW 

where U;, Vi (i=1,2) are unitary matrices. The four-component quark spinors are then: 

Uoa = 
d 

oa = 

, da = . 

P5) 

( w 
We can simply transcribe the desired results from eqs. (A4)-(A6). The quark mass 

term is given by 

2 

= 
c %a Miab Ei + h-c. 

i=l 

Pw 

where Mi are the diagonal quark mass matrices: 

Ml E Mu = diag (mUr, mu2, . . . ,) w4 

M2 = Ma = diag (mdl, md2, . . . ,) (B8b) 

and the quark mass matrices Xi are obtained by inserting eq. (Bl) into eq. (B2) and 

setting < Hi >= vi&j. 

Xlab = 212 f2b” (J-4 

X2ab = Vl ffa * P w 
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Xi and Mi are related by: _ - 

u*?xJ;-’ = A& . @lo) 

From eqs. (All)-(A13), we find, for example: 

PR Uoa = PR UIba ub 3 PL uoa = PL vcba u b (Blla) 

PR doa = PR U2ba db 9 PL doa = PL &$a db (Bllb) 

These equations immediately yield the CKM matrix (denoted by K): 

(w,-j- & 7’ PL & d, + h.c. ) P 12) 

where 

t K=VlV2 . (Bl3) 

The GIM mechanism [43] insures that the qQ(Z”,7, Ho) vertices are flavor diagonal. 

However, the CKM matrix appears in the q1Q2H* interactions. Using eqs. (Blla-b), 

we find: 

Lq1q2Hf = 9 (U; X2 I+),, & PL ud H- + h.c. 

+ “r (U;XIV.),d zCPLddH++h.c. 
(B 14 

which has been obtained from eqs. (Bl)-(B2) using eqs. (4.la-b) and (BSa-b). This 

equation may be cast in a familiar form using: 

cos p sin /3 -=-= 
Vl 7J2 

With the help of eqs. (BlO) and (B13) we obtain: 

VW 

H+E [PR Ki& tan p + PL A&K cot ,0] d + h.c. W6) 
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We now turn to the scalar-quark interactions. First we consider just those terms 

which appear when there is no supersymmetry breaking. The D-terms [which arise 

from gauge interactions-see eqs. (3.5-3.6)] are diagonal in the “interaction” basis so 

we focus on the terms which arise from the first term in eq. (B2). First consider the 

scalar-quark mass terms which are obtained by setting < Hi >= v&j. The result is: 

-&,, =& susy 
(x1x:) CoR 

(W 

where the scalar-quark fields ciio~ = Gra, ion = Gza, fiOR = 6: and &R = Q, are 

vectors in generational space and the subscript zero denotes “interaction” eigenstates. 

In the supersymmetric limit, eq. (B17) is the only source of scalar-quark mass terms 

and we see that the scalar-quarks and quarks have identical mass matrices. When 

supersymmetry breaking is introduced, additional contributions to the scalar-quark 

masses are obtained [see eq. (4.17)], some of which need not be diagonal in the “in- 

teraction” basis. In the scalar-quark sector, one has an additional complication in 

that .mixing is possible between in and GR of different generations. To simplify the 

remaining discussion, we will neglect 6L-c~ mixing in what follows ( see Duncan [40] 

for further comments). We then introduce the mass eigenstates: 

&La = viab &oLb (B18a) 

%Ra = ca?h &oRb (B18b) 

in analogy with eq. (B4). 

Let us now survey the scalar-quark interactions to see how the mixing matrices 

enter. The GqW* interaction involves the super-CKM matrix: 

N N  

K = t VIV2 VW 

in analogy with eqs. (B12),(B13), whereas the @(Z”,7) interactions are flavor 

diagonal. The Q”Q”H and q”q”HH vertices are more complicated. Before we study 
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these vertices, it is convenient to introduce some additional- notation. We define 

new matrices: 

(i = 1,2) Pw 

B; = &?v,T (i = 1,2) . P21) 

Using this notation, we now exhibit the structure of the @H and ijq”HH interaction: 

tint = ZF + 10 + lbreak , (B22a) 

&i’ = - &&M;B;&h~ - iij&M,2BfiiRh2 

- $L I’2 
[ 
Mj h + Kt Mt Kh4 I’f tiL - ii; rl [M,” h5 + ICI@ Kt he] rl iiL 1 

iiRB2KtMdMuBfiiRh7 

+ d”f;rz [ M,2Kths+KtM,2h9 ,riiL+h.c.} 1 (B22b) 

The hi(i = 1, . . . , 9) are combinations of one or two Higgs fields. Explicit expres- 

sions for the hi are listed in table 4. The terms in eq. (B22a) which are not pro- 

portional to the quark masses have their origin in the D-terms (denoted by LD and 

are generation-diagonal in the “interaction” basis. Finally, Cbreak in eq. (B22a) refers 

to terms proportional to ,!.L, A, or Ad. These terms mix ij~ with & and can make 

the scalar-quark mixing problem substantially more complicated. We will continue to 

ignore these terms in this appendix.* 

* In some low-energy supergravity models, +LL-&~ mixing tends to be small except for 
the case of the z. Because mixing angles involving the t-quark tend to be small, 
it should be adequate to deal with the ZL-~R mixing after the generational mixing has 
been included. However, the reader should be warned that for some physical applications 
(such as the electric dipole moment of the neutron)., the above approximations are not 
adequate and one must treat the full scalar-quark mixing problem correctly (A. I. Sanda, 
private communication). 
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Equation (B22) can be simplified considerably- by making certain model assump- . 

tions. Here, we follow the analysis of Duncan [40]. We denote the scalar-quark squared 

mass matrix (before diagonalization) by z:L and z& where i = 1,2 corresponds to 

up-type and down-type flavors, respectively: 

In many low-energy supergravity models, one finds that at the Planck scale, Lc, differs 

from the supersymmetric mass term given by eq. (B17) by a universal generation 

independent mass term. However, one must use the renormalization group to evolve 

down to low-energies. At the low energy scale, Duncan finds [40]: 

%L =m&p!$iI + p 0) t 
2LX2X2 + &$& 

VW 

(B25a) 

(B25b) 

where I is the identity matrtix generation space. The dimensionless numbers ~(~1 are 

model-dependent, typically of 0 (1) [40]. Th e extra term in ztL (; = 1,2) as compared 

to j;;izR arises due to the difference in GL and f!jR interactions given in eq. (B22b). 

We &nd that %& is easily diagonalized: using eq. (BlO), it follows from eqs. (B21) 

and eq. (B24) that: 

& = ui , (i = 1,2) (B26a) 

B; =I (B26b) 

In order to diagonalize zfL, we consider two special cases: 

CASE 1: p(2) = 0. In this case, we see that vi = Vi (i = 1,2), which implies that 

k = K and Ii = I. That is, there is only one CKM matrix for W-interactions with 

quarks and scalar-quarks. The scalar-quarks-Higgs-boson interactions [eq. (B22b)] 
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simplify significantly since ri = Bi = I. Tree-level flavor-changing neutral currents 

due to W”iiLijL (i # j) vertices do exist (e.g., KMjKt is not diagonal), although 

they tend to be suppressed by small mixing angles and quark mass differences. (Note 

that in this case, ~L-GR mixing can be easily treated since it decouples from the 

intergenerational scalar-quark mixing.) 

CASE 2: NEGLECT TERMS PROPORTIONAL TO x,tX, IN EQ. (B25). This is 

suggested in supergravity models where a large top-quark mass is responsible for the 

SU(2)xU(1) b rea m in the low-energy effective theory. Then VI = V2 = VI since k’ g 

both up and down flavors of in are now diagonalized by the Same unitary matrix 

which diagonalizes the (left-handed) up-quark mass matrix. In this case, k = I’r = I 

and I’2 = K. 

Our final task is to see the effect of generational mixing on the qijz+ and qi? 

interactions (see sect. 5). We first focus on the pieces of these interactions which arise 

from the second term of eq. (B2). Th’ 1s simply requires us to put the generational 

indices correctly in the terms proportional to quark masses in eqs. (5.1) and (5.4). 

As an example, one term which appears in eq. (5.1) is ?ioP~Xlio# [where we 

have used eq. (B9)]. Using the results summarized in table 5, it is simple to verify that 

?ioPLX&L = uPLMUKI’fiL . (B27) 

The remaining terms are calculated in a similar manner. The terms proportional 

to g and g’ in eqs. (5.1) and (5.4) are generation-diagonal using the “interaction” 

eigenstates. The correct generalization of the qijF+ [eq. (5.3)] and qij? [eq. (5.5)] 

interactions is summarized in table 6, which exhibits a few noteworthy features. 

First, in general there are exactly five independent generational matrices which 

arise when describing interactions of quarks and scalar-quarks: K, I’) and Bit 

(; = 1,2). As argued above, eq. (B26), we expect to find Bi = I which reduces 

the number of independent matrices to three. These remarks are also true for the 

other interactions previously studied, since the super-CKM matrix is not independent 
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t but can be written as g = I’lKI’, . If we make further simplifications (e.g., CASES I 

and II above), then all generational matrices are related to the CKM matrix,* K. 

Second, in the most general case, the qij? interaction terms are flavor nondiagonal. 

One must therefore be careful lest ones model predict flavor changing neutral current 

processes at too large a rate. In CASE I the qij? interaction is exactly flavor diagonal. 

However, CASE II probably represents a more realistic supergravity model. In such a 

model, the T.LCF vertex is flavor-diagonal, but the dd”j7” vertex is flavor nondiagonal 

(as emphasized in ref. [40]). Note that these arguments can also be extended to the 

q@j interaction which is given by: 

VW 

where i sums over u and d-type quarks, j and k are quark color indices, c is the gluino 

color index and a and b are generational labels. 

The entire discussion of this appendix can be equally well applied to leptons. Since 

neutrinos are massless in the Standard Model, there is no CKM matrix for leptons and 

we may set Xl = Mu = 0 and K = I in the above formulas when applying them to 

leptons. Furthermore, X2 can be chosen diagonal because all interactions involving 

leptons and scalar-leptons conserve individual lepton numbers (one for each genera- 

tion). Using eqs. (B24),(B25), we see that by choosing X2 diagonal, one automatically 

obtains diagonal scalar-lepton mass matrices (again, a consequence of lepton number 

conservation). This is so, despite the fact that both charged and neutral scalar-leptons 

of different generations differ in mass-squared (proportional to the difference of the 

corresponding charged-lepton squared masses). Unlike in the scalar-quark sector, the 
. I 

inclusion of eL-!?R mixing is straightforward since there is no communication among 

different generations. 

* Note in particular that a “right-handed CKM matrix” (Uru:) never appears in the theory. 
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Table 1 

We list the gauge and matter multiplets of the super symmetric SU(2) xU(1) 

model. The charge & is obtained via & = T3 + y/2. The labels are as follows: 

a = 1,2,3 labels the SU(2) triplet of gauge bosons and ;,j = 1,2 are SU(2) 

indices. Labels referring to multiple generations of quarks, leptons and their 

scalar partners are suppressed. 

Superfield Boson Fields 
Fermionic 
Partners SW4 w Y 

Gauge 
Multiplets 

P 

PI 

Matter 
Multiplets 

2- 

2 

Va 
V’ 

1 
z = (&) 

scalar leptons E = ;fi 

scalar quarks 

@ = (ii&) (u, d)L doublet 

g = 6; % singlet 

fi = (jR di singlet 

H:’ 

Higgs bosons Hi 

N 

xa 
A’ 

triplet 

singlet 

(4 e->L doublet 

6 singlet 

!e& 7 ClJ doublet 

(G2 3 Y212) doublet 

$N singlet 

0 

0 

-1 

2 

113 
-413 

213 

-1 

1 

0 
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Table 2 

Using this table, we can convert Feynman rules for X@ vertices (where X is a 

one- or two-particle state) from the f!jL-& basis to the @r-i2 basis. If V 

is the desired Feynman rule (i, j = 1 or 2)) then 

where Tijkl is the appropriate entry in the table below. For the case of identical 

scalar-quarks, simply replace the symbol u (or d) with d (or u) in all expressions. 

i;; dL ii; dR 

6; dl COS eu COS ed sin 8, sin ed cos eu sin ed sin eu COS ed 

cos eu sin ed Sin 8, COS ed cos eu cos ed -sine, sin ed 

i?;-d; - Sin eu COS ed cos eu sined -sine, sined COS eu COS Bd 

ii; d2 sin eu sin ed COS& COSed -Sin& COSed - COS eu Sined 
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Table 3 

We list coefficients which appear in the rules given in figs. 17 and 18 for 

HH@j four-point vertices. The index j labels the neutral Higgs boson, while 

k = 1,2 corresponds to up-type and down-type flavors, respectively. 

W Djl Dj2 

- cos 2cr 

cos 2a 

cos 2p 

(sin2 a!) / sin2 p 

(cos2 0) / sin2 p 

cot2 p 

(cos2 a) / cos2 p 

( sin2 a) / cos2 p 

tan2 /3 

sin(a: + P) 

cos(a + p) 

i cos 2p 

(sin cy cos p) / sin2 p 

(cos a cos p) / sin2 p 

i cot2 p 

(cos c.t sin /?)/ cos2 p 

-(sincrsinp)/~os~p 

4 tan2 /? 

w Dk Ek F/c 

1 

2 

l/ sin2 p 

-1/cos2p 

rni tan2 p 

rnt cot2 p 

rnt cot2 p 

rni tan2 p 
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Table 4 

We list the fields hi which appear in eqs. (B22b). The following notation is 

used below: c#q = H,” sin CY + Hi cos CY , $9 = Hicosa-Hisina. 

hl = h3 + htj 

h2 = hi + h4 

h3 = * (42 + & I&)” + (fW2sin2 P]} 

h4 = ( g;+;p) H+H- 

h5 = i%$g {41+ ,qg$&p [(+d2 + (H;J2 ax2 P] } 

h6 = ( g2;;;p) H+H- 

h7=& ? mw sin p cos p 
& [Hr cos(p - CY) + Hi sin@ - CY)]} 

g 
‘2mw 

($9 - iHg sin@] 

g 
!zF&z-g @I+ iH; ~0s P,] 
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Table 5 _ - 

Summary of quark and scalar-quark mixing and mass matrices. We denote the 
interaction-eigenstate quarks and scalar-quarks by qi,-, and ii0 respectively, where i = 1,2 
corresponds to up-type and down-type flavors respectively. The corresponding mass 
eigenstates are qi and &. If N is the number of generations, then the symbols q, i above 
all are N-vectors. All other symbols below are N x N matrices. We neglect 4~ - iR 
mixing here so that &L and &;.R are the appropriate scalar-quark mass eigenstates. In 
the expressions below, do not sum over the repeated index i. 

I. Quark Sector 

XT = v2 f2 

x2’ = v1 fl 

fi (i = 1,2) are the Yukawa couplings of quarks 

to the Higgs bosons Hi, where < Hi >= vi. 

pL QiO = pL ‘i 
t 

Qi PL = 4 (1 - 7s) 

PR SO = PR UT Qi 

U: XiVi-’ = Mi 

PR = i (1 - 75) 

Mu = Ml = diag(m,, m,, mt, . . .) 

i& = M2 = diag(md, m,, mb, . . .) 

t K y Vl V2 Kobayashi-Maskawa matrix 

II. Scalar-Quark Sector 

2QL 

ZfR 

mass matrix of &L in interaction basis 

mass matrix of ii;.R in interaction basis 

III. Other Mixing Matrices 

diagonal 4~ mass-matrix 

diagonal & mass-matrix 

Super-Kobayashi-Maskawa matrix 

Note that k = rr K I’! 
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Table 6 

_ - . 

Effect of generational mixing on qijF+ and qi? vertices. The unmixed terms 

obtained from eqs. (5.3) and (5.5) respectively are listed in column 1. Column 2 

lists the appropriate combination of mixing matrices which will appear if 

“interaction eigenstates” are replaced by mass eigenstates. Columns 3 and 4 list two in- 

teresting special cases of column 2: CASE I: 6i = Ui, ?.. = V; and 

CASE II: 6; = Ui, fr = & = VI. We denote the diagonal quark mass matrices by 

A& and A&. Definitions of mixing and mass matrices are summarized in table 5. 

Interaction Term Mixing Matrices CASE I CASE II 

Eo PR d”oL 

20 PR CoL 

uo PL Xl d”oL 

t - 
Eo PR x2 doR 

20 PL x2 GoL 

;i, PR xi iioR 

Krf 

Kt r;t 

Mu K r; 

KMd B; 

ii& Kt I’[ 

Kt Mu Bf 

K 

Kt 

Mu K 

KMd 

ii& Kt 

Kt Mu 

I 

Kt 

Mu I 

K Md 

Md Kt 

Kt M,, 

Interaction Term Mixing Matrices 
CASE II 

CASE I i=l i=2 

rt i 
Bt i 

Mi rJ 
Mi Bt 

I 

I 

w 
Mi 

I Kt 

I I 

MU ibid Kt 

Mu Md 
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FIGURE CAPTIONS _ - . 

Fig. 1 . Feynman rules for W+H+Ht vertices. The direction of momentum is 

indicated above. 

Fig. 2 . Feynman rules for (Z”, 7)H+H- and Z”Ht Hj”. Note that Bose symmetry 

forbids i = j. In addition, CP-invariance forbids a Z”H,“H,” vertex. 

Fig. 3 . Feynman rules for H~W+W- and Hf 2’2” vertices (; = 1,2). All other 

possible triliner HVV vertices vanish at tree level. 

Fig. 4 . Feynman rules for four-point Higgs boson-gauge boson couplings-I. 

Fig. 5 . Feynman rules for four-point Higgs boson-gauge boson couplings-II. 

Fig. 6 . Feynman rules for four-point Higgs boson-gauge boson couplings-III. Note 

that in (e) the sign of the rule depends on the direction of the flow of electric charge 

(as indicated). 

Fig. 7 . Feynman rules for H~EU and Hfad, (i = 1,2). 

Fig. 8 . Feynman rules for H,“uE, H,“dJ and H*ud. In the charged-Higgs boson 

interactions, all quark mixing angles have been neglected. (See Appendix B.) 

Fig. 9 . Feynman rules for H+HH-H;” and [Ht]’ vertices (i=1,2). CP-invariance 

forbids i = 3. 

Fig. 10. Feynman rules for HTHTHT vertices (i # j). CP- invariance forbids vertices 

where Hi occurs singly. 

Fig. 11. Feynman rules for the g+fiid” vertices in the 4L-c~ basis. To get appropriate 

rules in the ir-& basis, see table 2 and discussion in text following eq. (4.19). 
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Fig. 12. Feynman rules for the H,“iiii vertices in the CL+ basis. Rules for the H,“iiii . 
vertices are obtained by the following replacement: CI! + cy + (7r/2), and p unchanged 

[i.e., sin (Y + cos o, cos cy: -+ - sin cr and cos(p + CY) + - sin@ + cr). To get appropriate 

rules in the &-& basis, see table 2 and discussion in text following eq. (4.19)]. 

Fig. 13. Feynman rules for the HicZd”vertices in the i~-i~ basis. See caption to fig. 12 

for the recipe for obtaining rules for the H,“&! vertices and the appropriate rules in 

the 4”r-52 basis. 

Fig. 14. Feynman rules for the H,“ii~ii~ and H~cZR~“L vertices. To obtain the appro- 

priate rules in the &-& basis, simply replace L with 1 and I2 with 2. The directions 

of the scalar-quark momenta are indicated by the arrows. Reversing the arrows leads 

to an extra factor of -1 as depicted in fig. 15. 

Fig. 15. Behavior of the Feynman rules for Hi&j vertices under a change of sign of 

the scalar-quark momentum. The indices i, j refer to either the @L-& or &-& bases. 

Note that this rule implies that for i = j, the vertex vanishes. 

Fig. 16. A class of diagrams which contribute to the production of neutral Higgs 

bosons via gluon fusion. The internal loop consists of all possible flavors of scalar- 

quarks, & and &. 

Fig. 17. Feynman rules for four-point interactions among scalar-quarks and neutral 

Higgs bosons. The index j labels the neutral Higgs bosons, while k = 1,2 corresponds 

to up-type and down-type flavors, respectively. For definitions of the quantum numbers 

T3 and e, see table 1. The coefficients Cj, Djk and Dk are given in table 3. (Note that 

there is no HlHTij@ vertex, j = 1,2.) 

Fig. 18. Feynman rules for the four-point interaction among scalar-quarks and Higgs 

bosons. See caption to fig. 17. The coefficients Ek, -Fk, I$, Si and Ti are defined in 

table 3. (Note that there is no HJ~H-~$R vertex) 
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Fig. 19. Feynman rules for the H”x”+~- vertices where-g: are the charginos, with 

masses Z$+‘. The matrices &ii and Rii are defined in eqs. (4.33) and (4.36), 

respectively. 

Fig. 20. (a) F y e nman rules for the H+F-F vertex. The matrices Q&F and Q&F 

are defined in eqs. (4.41) and (4.42), respectively; (b) Feynman rules for the H+z-y 

vertex. Here we assume that the photino corresponds to one of the neutralino mass 

eigenstates (3). 

Fig. 21. Feynman rules for the H”zF; vertices where 2: are the neutralinos with 

masses Z$(“‘. The index i runs from 1, . . . , 4 or 5 depending on whether one has a 

gauge singlet N field (and its higgsino partner) in the theory. The symmetric matrices 

Qi; and R&! are defined in eqs. (4.48) and (4.51), respectively. 

Fig. 22. Feynman rules for the qijz+ vertices. The matrices U and V are defined in 

eqs. (A4) and (A5). Th e arrows denote direction of flow of electric charge: +l in the 

case of z+ and eq in the case of q and t (e, = 2/3, ed = -l/3). The charge conjugation 

matrix, C, appears when there is a discontinuous flow of fermion number as indicated 

by the arrows. Diagrams should always be read in such a way that the quark lines 

are traversed in the usual direction, i.e., opposite to its arrow. This rule indicates 

the proper placement of suppressed spinor indices. See appendix D of ref. [18] for a 

discussion on Feynman rules involving the charge conjugation matrix. 

Fig. 23. Feynman rules for the qtjF+ vertices. See caption to fig. 22. This figure 

differs from fig. 22 in that all arrows are reversed. 

Fig. 24. Feynman rules for the qijr vertices. The quark charges are given by e, = 

2/3, ed = -l/3. The matrices N and N’ are defined in eqs (A20), (A21) and (A23). 
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