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ABSTRACT

We describe the properties of Higgs bosons in a class of supersymmetric the-
ories. We consider models in which the low-energy sector contains two weak
complex doublets and perhaps one complex gauge singlet Higgs field. Supersym-
metry is assumed to be either softly or spontaneously broken, thereby imposing
a number of restrictions on the Higgs boson parameters. We elucidate the Higgs
boson masses and present Feynman rules for their couplings to the gauge bosons,
fermions and scalars of the theory. We also present Feynman rules for vertices
which are related by supersymmetry to the above couplings. Exact analytic ex-
pressions are given in two useful limits—one corresponding to the absence of
the gauge singlet Higgs field and the other corresponding to the absence of a

supersymmetric Higgs mass term.
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1. Introduction . -

With the recent discovery of the W and Z gauge bosons [1], the experimental
confirmation of the Glashow-Weinberg—Salam [2] (G-W-S) model of electroweak in-
teractions is nearly complete. The final ingredient which remains to be clarified is the
mechanism of electroweak symmetry breaking. In the G-W-8 model, symmetry break-
ing is triggered by the Higgs mechanism. The main consequence is the appearance of
physical elementary scalar fields {the Higgs bosons) in the theory. Unfortunately, the
present theory hardly constrains the properties of the Higgs bosons. The fact that
p = mi, [(m% cos®Oy) =~ 1 suggests that the low-energy world consists of Higgs bosons
which are weak SU(2} doublets and perhaps gauge singlets.” However the masses
of these Higgs bosons and many of their couplings to fermions and scalars are not

constrained at all by the theory.

Although the Higgs boson masses are a priori free parameters, it is generally
assumed that such masses must be somewhat below 1 TeV, Qtherwise, one finds that
the Higgs self-couplings become strong and it is no longer appropriate to treat the
G-W-8 model as a weak-coupling theory [3]. This observation has led to a2 number
of puzzles (which have been referred to in the literature as the hierarchy [4] and
naturalness [5] problems). Basically, it is difficult to understand how an elementary
scalar field can be so light (mg 5 1 TeV). The “natural” value for a scalar boson mass
is gA, where A is the mass scale of some underlying fundamental theory {such as the

grand unification mass Mgyt ~ 10'° GeV or the Planck mass Mp ~ 10'° GeV) and

* This possible to have p = 1 either automatically with certain higher Higgs representatives
(e.g., Iw = 3, y = 4, see ref. [44]) or by artificially adjusting the parameters of the model.
We shall neglect these alternatives on the basis of simplicity.



g is some coupling strength. In addressing the a;bove problems, various solutions have
been proposed. The only solution which keeps the scalar Higgs bosons as elementary
fields is supersymmetry [6]. In supersymmetric theories, scalar masses are related by
the supersymmetry to fermion masses which can be naturally light due to approximate
chiral symmetries. An equivalent but more technical way of saying this is that the

unrenormalized theory is free from quadratic divergences.

In supersymmetric models, it is postulated that all known fermions have scalar
pariners. Unfortunately, it seems impossible to identify some of these states as the
Higgs bosons of the G-W-8 model. The reason is that the scalar partners of quarks
carry color quantum numbers and the scalar partners of leptons carry lepton number.
In order that the theory not spontaneousiy break color and/or electromagnetism, only
the scalar neutrino could acquire a vacuum expectation value. This possibility would
lead to lepton number violation in the theory. As shown in Ref. 7, one cannot entirely
rule out this scenario, although no realistic model exists where a scalar neutrino vac-
uum expectation value alone is responsible for the electroweak symmetry breaking of
the G-W-8 model. One must therefore add Higgs bosons and their fermionic partners

in addition to the quark and lepton supersymmetric multiplets.

Supersymrmetry imposes a new requirement on the Higgs multiplet structure of
the theory. In the Standard Model, only one Higgs doublet is required to give mass to
the quarks and leptons. In the supersymmetric model, two Higgs doublets are needed
to give mass to both up-type and down-type quarks (and the corresponding leptons)
[6,8]. This requirement arises from a technical property of supersymmetric models.

The interaction of Higgs bosons and fermions arises from the superpotential given by:



Wr = ¢;; [ff?;' DR+ hB{QD + 5 ﬁgé"%}} (1.1)
where I?l and H, are the Higgs superfields, @ and I, are the SU(2) weak doublet quark
and lepton superfields, respectively, U and D are SU(2) singlet quark superfields and
B is an SU(2) weak singlet charged lepton superfield. (See Table 1 for a summary
of the quantum numbers of the various fields.) The SU(2) indices ¢, 7 are contracted
In a gauge invariant way. Supersymmetry forbids the appearance of H} and H} in
eq. (1}. Because of gauge invariance {in this case, the hypercharge), an H; QU coupling

is prohibited; hence, no up-quark mass can be generated if Hy is omitted.

Thus, the minimal supersymmetric extension of the G-W-8 model is a
two-Higgs doublet model. Furthermore, supersymmetry imposes non-trivial con-
straints on the Higgs boson sector of the model. Even if we assume that the super-
symmetry is spontaneously or softly broken, it must be true that the dimension-four
terms of the Higgs potential respect the supersymmetry. The consequences of this

observation will be a major focus of this paper.

We propose to study the Higgs sector of the minimal supersymmetric extension
of the st_anda.rd eleciroweak model. For the sake of generality, we shall admit all pos-
sible soft-supersymmetric-breaking terms [9] with arbitrary coefficients, 1.e., terms of
dimension two or three which do not reintroduce quadratic divergences to the un-
renormalized theory. This is in fact a feature of low-energy supergravity models; in
addition, these models suggest particular values for some of the coefficients of the
soft terms introduced.” We shall comment on some of the possible values of these

coefficients at the end of this paper.

« TFor a review of the low-energy supergravity approach and a completé set of references,
see refs. [10] and [11].



The use of the term “minimal” above is somewhat ambiguous. In the litera-
ture there have been two basic choices. First, one may take a minimal SU(2)xU(1)
model of electroweak interactions with two Higgs doublets and add supersymmetric
partners. Unfortunately, the supersymmetric version of this model fails to break the
SU(2)xU(1) gauge symmetry. This is not a problem since by adding appropriate soft-
supersymmetry breaking terms, one can arrange for the SU(2)xU(1) gauge invariance
to be spontaneously broken. In the low-energy supergravity models, this scenario oc-
curs as follows. The resulting Lagrangian of the model appropriate at the Planck scale
Mp has the supersymmetry softly broken and the SU(2)xU(1) gauge invariance un-
broken. When the renormalization group equations are used to evolve down from M P
to energies of order myy, at least one of the SU{2) weak-doublet Higgs fields acquires a
negative mass-squared, indicating that SU(2)xU(1) has spontaneously broken [8,12—-

14). All Lagrangians we write down in this paper are appropriate to the energy scale

of order myy.

A second approach is to add a complex scalar field which is an SU(2)xU(1) gauge
singlet to the two-Higgs doublet model [14-17]. One can now write down a supersym-
metric version of this model where the SU(2)xU(1) gauge symmetry is spontaneously
broken. Although this model has an extra field, it is in some ways simpler than the
model described previously. In low-energy supergravity models based on this picture,
the SU(2)xU(1) is already broken at tree level [15-16]. Of course, one must check

that the evolution down to scales of order my does not upset this picture.

The plan of this paper is as follows. In sect. 2, we discuss the G-W-8 model with

two-Higgs doublets in generality (with no particular reference to supersymmetry).



In sect. 3 we construct the most general Higgs sector in a softly-broken supersymmetric

SU(2)xU(1) model with two Higgs doublets and one Higgs singlet. Our parameters
are chosen so that the SU(2) x U(1) spontaneously breaks to U{1)gy . We then make
a few assumptions regarding the parameters of the model. This will allow us to
obtain analytic expressions for the masses of all the physical Higgs bosons and their
interactions. In sect. 4 we derive the Feynman rules for the interaction of the Higgs
bosons with all particles of the supersymmetric spectrum. For completeness, we derive
the couplings of the Higgsinos to quarks and scalar-quarks in sect. 5. Although
these interactions do not explicitly involve the Higgs bosons, they are supersymmetric
analogs to some of the Higgs boson couplings discussed in this paper. This will require
some careful discussion regarding the mixing of gauginos and Higgsinos which we
include for completeness in appendix A. The Feynman rules presented in this paper
provide a useful supplement to the rules given in the appendix of ref. [18]. These rules
have been obtained assuming one generation of quarks and leptons. Extensions to the
case of more than one generation are discussed in appendix B. In sect. 6 we discuss
the parameters of the Higgs potential in the context of currently fashionable models
of “low energy” supergravity. Some final comments appear in sect. 7. We shall apply

the results of this paper to interesting physical processes in a follow-up paper [19].



2. Two—Higgs Doublet Models — Generalities

First, we shall discuss some general properties of the Higgs doublet models [20-22].
We shall then apply the results to the supersymmetric case in the next section as well

as allowing for the possible addition of an SU(2)w xU(1) gauge singlet scalar field.

Consider two complex y = 1, SU(2)w doublet scalar fields, ¢; and ¢-.
The Higgs potential which spontaneously breaks SU(2)xU(1) down to U(1)gm can

be written in the following form™ [20]:
V(g1 62) = M1 61— o1)? + dalds! g2 — o3)?
+ A3 :(¢1T ¢ —vj) + (¢2T ¢z — Ug)]2
N [CARN AR S EACAFAICARS (2.1

- 2
+ As _Re (d:lT ¢2) — vive cos f]

' 2
+ Ag |Im (¢1T¢2) — v1v2 Sinf] + A7

A few cemments should be useful here. First, by hermiticity the A; are all real pa-
rameters. Second, A7 appears for convenience only; in practice, all constant terms
in eq. {2.1) can be dropped. However, when we discuss the supersymmetric case, it
is convenient to choose A7 such that the minimum of the potential is V = 0 in the

supersymmetric limit. Third, if the A; > 0, then the minimum of the potential is

» This potential is the most general one subject to two constraints: (a) gauge invariance,
.and (b) the discrete symmetry ¢; — —¢; is violated only softly (here, it is violated by
dimension-two terms). The latter constraint is a technical one, which is related to insuring
that flavor changing neutral currents are not too large [20]. It is automatically satisfied
in the supersymmetric models we study here.



manifestly - B R

1 v e"s
(1) = (0) ; {$2) = ( 20 ) (2.2)

thus breaking SU{2)wxU(1) down to U(1)gm as desired. In fact, the allowed range
of the A; corresponding to this desired minimum is somewhat larger. It can be eas-
ily determined by working out the mass spectrum of the physical Higgs bosons and

demanding that all the squared masses be non-negative.

In the next section, we will see that supersymimetry imposes the condition As = Ag
on eq. (2.1). In this case, we may redefine ¢z via ¢ — e ¢y and remove the phase
¢ from the potential. As a result, the vacuum expectation values of ¢; and ¢2 can be

chosen to be real and positive.

Therefore, in this section we will not consider the most general potential as given
in eq. (2.1). Instead we will derive all our results assuming that £ = 0 (although
we will take A5 # Ag). This, in fact, corresponds to the most general CP-invariant

two—Higgs doublet model.

Our major task is to compute the Higgs boson mass matrix. This is most easily

done in a real basis where:

[41)

b = (cbf) _ (¢1 + iqﬁz) | #
o 1 $3 + 14 $3
\ ¢4 /
(2.3)
[ &5\

] o\ _ (¢5 + ='¢6> | %
? &5 or + ids) - | #1

\ ¢s /




The method is described in the appendix of ref.-[21]. Here we-provide the results

and correct a few minor errors in ref. [21]. First, one rewrites eq. (2.1} {with § = 0)

in terms of the ¢; (t =1, ..., 8). The Higgs boson squared mass matrix is obtained
from:
1 8
ML = - = 2.4
T 7 84:00; | . . (2-4)
minimum

where “minimum” means setting {#3) = v1, {7} = v2 and {$; ) = O for all other
k. Note that the factor of 1/2 is needed in eq. (2.4) because of the normalization of
the scalar fields as defined in eq. (2.3). When £ = 0 in eq. {2.1}, the scalar boson
squared mass mafrix separates into a series of 2x2 mass matrices. Diagonalization is

straightforward and we summarize the results below.
a) INDICES 1, 2, 5, AND 6

These are the charged Higgs bosons. The positive and negative states decouple

and have equal mass-squared matrices:

2
L2 —W1 V2
W3 ) o
= —tv2 Vg

Diagonalizing the charged Higgs boson mass-squared matrices results in two zero mass

Goldstone boson staies:

G* = ¢ cos B+ ¢ sinB (2.6)
where ¢~ = (¢7)*, and two massive charged Higgs boson states
HE = —¢fsinB + g5 cos B {2.7a)



mys = A (v +0f) - - (2.76)

where

IS

v
tan 3 =

@

1

b} INDICES 4 AND 8

The resulting mass-squared matrix is identical to eq. {2.5) with A4 replaced by
A¢. Hence we obtain one zero mass neutral Goldstone boson and one massive neutral

Higgs boson:

G° = /2 (cos BIm ¢ + sin § Im ¢3) (2.9a)
Hy =2 (~sinfBIm¢ + cos §Im ¢5) (2.95}
m%f;. =X (v} +vd) . (2.9¢)

The factors of 1/2 are needed in order that these fields have conventional kinetic energy

terms.

c) INDICES 3 AND 7

The mass-squared mafrix is:

40%()\1 + Ag) + U%As (4/\3 + /\5)‘011}2 (2 0)
d
(4A3 + )\5)‘2)1 Vg 41}%()\2 + A3) + 1}%}\5
The physical states are:
HY =2 [(Redi —v1)cosa + (Reds — vp)sine|
’ (2.11)

H? =2 [—(Red} —v1)sina + (Re ¢ — vy} cos a

10



i If we define: -
- A = 4vf()\1 + 1\3) + v%)\s

B = (4/\3 + >15) v1V2

C = 4‘!)%(/‘\2 + )\3) + ‘U%A5

then the masses and mixing angles are defined as:

m%flo’H; - % [A + C :i: V(A — 0)2 + 432
2B
V{A-C) +4B2

A-C
V(A-C)+4B?

sin2¢ =

cos2a =

(2.12)

(2.13a)

(2.13b)

(2.13¢)

In eq. (2.13a) the mass of Hy(Hj) corresponds to the plus (minus) sign,

respectively.

To get the Feynman rules for the interactions of the Higgs bosons, we employ the

unitary gauge. This consists of setting the Goldstone fields G* and G° to zero. In

this gauge,

- ¢t = — H*sing

¢4 = HVcosf

1 .
¢y = v+ — (Hycosa— Hjsina — tHgsinf)

V2

1
$5 =va+ — (Hysina + Hj cosa + tHj cos f§)

V2

(2.14aq)

(2.145)

(2.14¢)

(2.14d)

By inserting the expressions given by eq. (2.14) into the interaction Lagrangian,

one obiains the desired interactions of the physical Higgs bosons. Since CP is conserved

11



(for £ = 0), one finds (by analyzing the H{ ¢7 couplings) that H7-and Hj are scalars

and H3 i5 a pseudoscalar.

3. The Higgs Sector in a Minimal Supersymmetric Model

We now turn to the implications of supersymmetry for the properties of the Higgs
bosons [8,23]. We shall analyze a “minimal” supersymmetric extension of the Standard
Model consisting of two Higgs doublets and perhaps one SU{2)xU(1) singlet Higgs
field. A list of the fields in our model, which also defines our notation, is provided in

Table 1. Details of this model can be found in the Appendices of ref. [18].”

In order to use the results of sect. 2, we must be careful in our notation. In
supersymmetric models, one employs two Higgs doublet fields of opposite hypercharge:

Hy with y = —1 and Hy; with y = 1. The relations between these fields and the ¢; of

sect.”2 are:
(41 = ¢; HY
(3.1)
(¢2)) = H;
where z’,}' are SU(2) indices and €13 = —€g1 =1, €11 = €22 = 0. That is,

n= ()= (%) e

where ¢ = (47 )* and the asterisk indicates complex conjugation.

» Our notation follows that of ref. [18] with the following exceptions: 1) what we call r

“here [eq. (3.3)] is called —s there; 2) what we call v; here [eq. (3.7)] is called v;/y/2 there;
3) what we call tan 8 here [eq.(2.8)] here is called cot #, there; and 4) the Higgs—boson—
quark—Yukawa couplings are denoted by f; here.

12



As described in the introduction, we propose to-analyze the most general Higgs po-
tential corresponding to a softly broken supersymmetric theory. To obtain this poten-
tial, we first consider the superpotential of an unbroken supersymmetric theory made
up of the fields listed in Table 1. The most general superpotential

(which conserves baryon number and lepton number) is:
. o 1 1
W = he i HyHy N +pey; Hi H —vN + 5MN2 + §AN3 +Wp  (3.3)

where
We = ¢; |[fHiD B+ f H] G D+ hE T (3.4)

where we have replaced the superfields by their component scalar field; the definitions

of the scalar fields are provided in Table 1. The scalar potential is computed by [24]

V= % [D°D® + (D")?] + R} F, (3.5)
where
- ow
F;, = 9A. (3.6&)
3 1 * a
’ i, "
D’ = E g Y Ai A{ + E . (3.60)

In the above expressions, A; collectively denotes all scalar fields appearing in the
theory. We shall henceforth assume that the Fayet-Iliopoulos term [25] £ in eq. {3.6¢)

is negligible.

13



We have described above how to calculate the scalar potential in the supersym-
metric model. We now add all possible explicit soft-supersymmetry breaking terms
to the model. The allowable terms have been derived in ref. [9]; the relevant terms
for the scalar potential fall into two classes. The first class consists of all possible
dimension-two terms consistent with gauge invariance. The second class consists of
those gauge invariant dimension-three terms which do not mix the scalar fields with
their comnplex conjugates. These terms correspond in form precisely to the cubic terms

of the superpotential W [egs. (3.3),(3.4)] plus their hermitian conjugates.

The resulting scalar potential is the one we shall analyze. We make the following
assumptions about this potential. First, the Higgs doublet fields H; and H; acquire

vacuum expectation values:

By appropriate choice of phases for the Higgs fields, v; and vy are real and non-
negative. Second, we assume that the scalar-quark and scalar-lepton fields do not
acquire vacuum expectation values. We then can ignore Wy in egs. (3.3} and (3.4)
when studying the Higgs boson mass matrix. Third, note that we can make a shift
in the IV field such that the parameter M in eq. (33) disappears. We will simply set

M = 0 with no loss of generality.

14



The scalar potential as a function of H;, Hy and N can then be written as:
1 .42 . L N L
v =gt [a|mrm| o )+ o m o+  m)

1 Nt o .
+g 0 (Bf B - i H) | R By~ AN

(3.9
+ |h|* (HY* Hi + Hy H}) N*N + |of* (B} Hi + H} Hj)
+ (H{* H + Hy H}) (1*hN +he. ) + Vgopy
Vsoft = m"l’(H{* 1)+ mi(Hy H&) — (mi, €5 Hi H%‘ +he )+ miN'N
(39)

. 1
+ (mEN? +he. )+ male;; R ALHy HY N + 3 A A N34 he )

The parameters m; and myz have dimensions of mass, r has dimensions of mass-
squared and A;, Aj are dimensionless. We will study the terms involving scalar-quark

and scalar-lepton fields in seci. 4.

We proceed to compute the spectrum of physical Higgs bosons and their masses.
In the most general case {egs. (3.8),(3.9)], numerical methods are required to obtain
some of the physical Higgs masses and eigenstates. We are interested in certain special

cases where the Higgs masses and eigenstates can be computed analytically.
CASE 1: pu={(N)= A4 =0.
In this case, there is no mixing between N and the doublet Higgs fields.
Consequently, we may use all the results of sect. 2. The required translation is:
sl ¢ = HI* Hi (3.10a)

15



$2l ¢y = HYy H} - LT (3.100)

$il g = €4 HiH] . (3.10¢)
Finally, a useful relation is:

. .12 , L 12 . . . .
| 1|+ |y B B | = (i ) (g ) (3.11)

We then find:

V = miH H +mi HY HS — [(mfz + hr*) €4 Hi H] + h.c. ]

oo | =+

+

@+ | (it 1)+ ()|
(3.12)
+3 (- o' (mi ) (g B])

1 .2
+ (|h|2 ~3 g2) ‘Ez‘j H; Hg| + |:*'|2

where we have ignored terms involving N. We have retained the constant term [r|?

for later convenience. Note in particular that no term of the form
Y
(e;HiH]) +he (3.13)

appears above. This implies that A5 = A¢ in eq. {2.1). Therefore, within the pure H,,
H; sector of the theory, we may absorb the phase of m%, + hr* into the definition of
Hy and set £ = 0 in eq. (2.1). We emphasize that the same logic allows us to choose
vy and vy to be non-negative. Henceforth, we shall take the parameters m%z, handr
to be real. Note, however, that with the conventions above, CP violating phases may

reappear in the interaction of Hy and H; with other fields in the theory.

16



Comparing eq. (3.12) to eq. (2.1) (with ¢ = 0 )} and-using egs. (3.10),

we obtain the following results:

Az = Ay (3.14a)
L2 12
A3 =g (g +g'%) -\ (3.14b)
1 12
Ay =20 — 2 g (3.146)
1
)\5 = )\5 = h,2 — E (92 + g’z) + 2)1 (3.14d)
i 2
A e 3 (vi —v3)" (¢*+4¢'?) (3.14¢)
1
m% = 2)\11;% 3 m’, (3.14f)
1
mi = 20vi - 5 m? (3.14¢)
1
mi, = h(viveh —7) — 5 v1v2 {(g®+ g7 —4)) {3.14h)

where the Z° mass is given by m% = (1/2) (v + v2) (¢ + ¢'?). These results indicate

that supersymmetry imposes strong constrainis on the Higgs doublet model of sect. 2.

As acheck, let us consider the supersymmetric limit by setting Vs = 0 in eq. (3.8)

i.e.,, m?! = m% = m?, = 0). We then find from egs. (3.14f), (3.14g) and (3.14h) that
1 2 12

v = vy (3.15a)
1

o= (0" +e") (3.155)

r = vivgh (3.15¢)

Inserting these values into eq. (3.14e) gives Ay = 0, f.e., the value of the potential at

the supersymmetric minimum is zero.

17



Using egs. (3.14a)-(3.14h) and the results of sect. 2, we may immediately obtain

the spectrum of physical Higgs particles. The results are:

1
mi: = 5 (4x —¢'?) (v} +v3) (3.16)
mir; = mys —my + k% (v} + v) (3.17)
m = l [m2 + m?
HpH; T 5 Hs z

2
+ \/( m%fg + mzz) — 4m? m%;. cos? 23 — 32h? vivil, } {3.18)

3.19
mﬁfg —m (3.19)

m20+m2a_2h2 v2+v2)
tan 2o = tan 283 ( H; H3 (v 2
where HT are the charged Higgs fields, H? (i =1, 2, 3) are the neutral Higgs fields,
tanf = vz/vi and o is the mixing angle which leads to the H}, HS eigenstates. As
usual, mf, = 1 g*(v} + vZ) and my = L (g% + ¢'%) (v} + v3).
The results of egs. (3.17)-(3.19) have been obtained in refs. [8] and [23] in the case
of h = 0. In that case, we see that one of the neutral Higgs scalars must have mass
less than or equal to mz and that the charged Higgs scalar must be heavier than myy.

Neither of these two conditions needs to be true for & # 0. Note that even when h # 0,

the mass relation:

mipe +mye = mye + mj (3.20)

18



still holds. The supersymmetric limit is also of interest. In thislimit, the complex
N scalar consists of two degenerate states of mass m%, = h%(v} + v2). In addition,
eqs. (3.15b) and (3.16) imply that my: = my from which it follows that mye =
mpg> = my and mpge = mz. This result was expected. In the supersymmetric limit,
the H* become the scalar superpartners of the W* (along with some appropriate
combination of the gauginos and Higgsinos) and one scalar field, HJ, becomes the
scalar superpartner of the Z° [14]|. The remaining neutral Higgs fields are degenerate

and live in their own chiral superfield along with the appropriate Higgsino.
CASE 2: p # 0, N field not present.

This case corresponds to taking h = m3 = mg = ms =r = A = 0 in eqs. (3.8}
and (3.9). Again, the results of sect. 2 are applicable. In this case, egs. (3.14d-h) are

replaced by

ds = de = 2 _% (¢ +4¢'%) (3.21a)

A= — % (v - v§)2 (¢* +¢'%) (3.215)

) mi = — |ul® + 2x0vf — % m% (3.21¢)
mi = — |u|®+ 2A 0% — % m% {3.21d)

mi, = %— v1vg (4/\1 —gt— g'z) , (3.21¢)

whereas eqgs. (3.14a,b,c) remain unchanged. The masses of the physical Higgs bosons
and the mixing angle o are given by egs. {3.16)-(3.19) with 2 = 0. We may obtain a

useful expression for the mass of Hy as follows. Using egs. (3.21c-¢), we find

19



m? +mi 4+ 2u? = m?, (tanB +cotB) (3.22}

1 m?
A= - (gP+e't) + 3.23
! 4 (g + g ) + 20102 ( )
Using egs. (2.9¢) and (3.21a)}, we end up with
mfgg = m? 4+ m?+20ul® . (3.24)

We have already noted that we may choose v; and ve both non-negative, which implies
{by our convention) that 0 < B < #/2. Furthermore, if we use eq. (2.13) (which by
our definition implies that mg, > my,), it follows that sin 2« < 0 for this case; so we
may take —7/2 < @ < 0. One interesting limit is vy = v9; in this case, 8 = —a = 7 /4,
and my, = 0 (at tree level). Useful formulas for sin{a + 8) and cos(e + ) in terms of
the neutral Higgs boson masses {these factors often appear in the Feynman rules, see

sects. 4 and 5) may be found in ref. {19).

The supersymmetric limit consists of seiting my; = mz = m;2 = 0. However, in this
limit, eqgs. (3.21c-e) are inconsistent {under the assumption that y # 0 and a nonvan-
ishing vacuum expectation value). The reasen for the problem here is simply that the
potential V [egs. (3.8} and (3.9)] with A = m3 = m4 = ms = r = A = 0 does not spon-
taneously break SU(2)xU(1) (i.e., v1 = vz = 0). Thus, in a supersymmetric model
with only two Higgs doublets but with no singlet Higgs fields, soft-supersymmetry
breaking terms are required in order to (spontaneously) break the SU(2)x U(1) gauge

symmetry.
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CASE 3: u #0or A; #0, N field present. - - .-

This is the general case where the potential is given by eqgs. (3.8) and (3.9). We

shall simply indicate some of the resulting complexities.

First, let us assume that < N >= 0. This depends on the values of the parameters

r, A, mZ and m? which are relevant in determining the mass matrix of the two states

Re N and Im N. The term
(H{* Hy + HY H;) (,u,*h,N + h.c. ) +h Aymye; HY Hg N +he (3.25)

leads to mixing of the complex N scalar with all three physical Higgs scalars H?,
¢ = 1, 2, 3. This would require a 5 x 5 neutral Higgs boson mass matrix. Note that
this implies CP-violation in the Higgs sector which has entered due to the complex
couplings of N with other scalar fields. If we impose CP—conservation on the Higgs
parameters, then some simplification occurs: namely, Re N mixes with HY and HS and
Im N mixes with H3 as can be seen from eq. (3.25). If we now allow for < N ># 0,

no new complexities arise.

For the remainder of this paper, we shall concentrate on CASES 1 and 2, described
above. There are a number of reasons for this choice. First, we believe that it is useful
to have analytic expressions for the Higgs boson masses and eigenstates. Second, we
think that the approximations used in obtfaining those expressions are sensible. In
models without a singlet Higgs field (CASE 2), our results are completely general.
In models (e.g., CASE 1) with the singlet field N, we have the convenience of a
minimal supersymmetric extension of the Standard Model in which SU(2}xU(1) is

spontaneously broken at the tree level.
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4. Feynman Rules for Higgs Boson Interactions

In this section we compute the Higgs boson interactions under the assumptions
stated in CASES 1 and 2, described in sect. 3. The upshot of those assumptions is
that if a singlet field is present, it does not mix with the neutral weak doublet Higgs

flelds. This allows us to use egs. (2.14a-d); in terms of the notation of sect. 3, we

obiain:

HY = H%cosp (4.1a)

H? = H sinf (4.15)

H =uv+ L (H{ cos a — Hy sin e + 7 H sin 8) (4.1¢)
V2

H: =wv; + % (Hysina+ Hycosa+1 Hjcos ) . (4.1d)

where tan § = v2/v1 and « is given by eq. (3.19). As discussed previously, we may

choose our phases such that v; and vy are real and non-negative; hence 0 < 8 < w2

In supersymmetric models, the Higgs bosons interact with gauge bosons, quarks,
lept(')ns, other Higgs bosons and their supersymmetric partners. We shail describe each
of these interactions in turn. We rely heavily here on the appendices of ref. [18] where
much of the interaction Lagrangian for a supersymmetric extension of the Standard

Model has been discussed in great detail.

4.1 INTERACTION WITH GAUGE BOSONS

One starts with an interaction Lagrangian consisting of HHV and HHVV terms

(H = Higgs boson, V = vector gauge boson). For example, the interaction with the
photon field A4, is

: 2+ Su 2 1 n g1 2 2|2 12
Liw=ieAu (HY O*HI—H} orm}) +eta, o (B2 +|H[P) . (42)

We also need the interaction with the Z° and W+ gauge bosons. The required expres-

sion is given by eq. {C98) and (C99) of ref. [18]. One merely has to substitute for H}
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and Hj as given by eq. (4.1). We simply quote the result

Line = Luav + Lavv + Laavy (4.3)
where
1 . + - AI O = O g [a]
Ly = — 5 W, H™ %[ Hisin{a— B) + Hy cos(a — 8) +i H3 | + hc.
ig 0 o [ 170 o o
~ Teostn Zy tHy 0% [HY sin{e — B} + Hj cos{a — B)] (4.4)

> —
— (2sin®6w — 1) H™ af*}ﬁ} — ieA, H™ 9*H?

Lavy = gmw W ,W* [H} cos(8 — a) + H; sin(f — a)]

gmz (4.5)

Toos O ZuZ* [HY cos(f — o) + H3 sin(f — )]

1
Lunvy =3 g W, W# [(HD)E + (HS) + (HS)* + 2HTH™|

2
g Gy 2 oy 2 a2 b _
+ MZ“Z” [(HY)? + (H3)® + (H3)? + 2cos? 20 HTH™|

26
-+ A AFHYH + %‘i"- A ZFHYH™
W

.2
_9 p_ gsin”Ow o,
2 (EA cos O Z )

x {WF H™[H}sin(8 — a) — Hj cos(f — a) — iH3 ]+ h.c. }
(4.6)
Note that W, W# = WJW_”. These results have been previously obtained in a non-

supersymmetric two—Higgs doublet model in ref. [26]. Except for a difference in sign
convention for the coupling constant g, our results are in agreement. [We choose

du + 1gW; T® for our covariant derivative.] The relevant Feynman rules are given
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in figs. 1-6. We emphasize a few features. First, note the presence of ZH;H; and
ZHIHy ;:ouplings; whereas, CP-invarianceforbids a Z Hy HJ vertex. The Higgs sector
is effectively CP conserving (more on this later); as we shall see in the next subsection,
Hj is a CP—odd scalar and H{ and HJ are CP—even. (Bose statistics forbid a ZH°H®
vertex.) Second, there is no tree-level Wt ZH~ vertex; this is a general feature of

two-Higgs doublet models [27].

Finally, note that there are no couplings of the field N to vector bosons for the

obvious reason that N is an SU(2)xU(1) gauge singlet.

4.2 INTERACTION WITH QUARKS AND LEPTONS

The Higgs-quark-quark coupling is conveniently written down, using two-component

spinors for the quarks, as follows:

Ling = ~f1 Y@, ¥p HY — . ¥p H}| — f2 [Yq.¥v Hi — ¥g,%u Hy| +hec. (4.7)
The four-component quark spinors are defined by:

u= ('ﬁQ’) , d= (ﬁq") : (4.8)
Yy Yp

Converting to four-component notation and using eq. {4.1a-d), we first identify the

quark masses which arise due to vacuum expectation values of the Higgs fields:

gmyg gmy
] - . , y = I 4.9
h V2mw cos ! V2my sin 8 (4.9)
Using eq. (4.9), we may compute the trilinear interaction terms:
gmu —_ L+ I Q - —_— [+]
‘chpE = — Sy S B [uu(Hl sina + Hj cosa) —icos 8 u’ygqu]
__9™md _ [dd (HF cosa — Hysina) —isinf dvys d H; |
2mw cos f3 1
(4.10)
g i
+ — H zl{mtan § + my cot
S (Y [(mgtan 4 mucotd)

+ (md tan 8 — my cotﬁ) ";-'5] + h.c. }
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The Feynman rules are displayed in figs. 7 and 8. As we have mentioned before,
eq. (4.10) allows us to identify Hy and Hy as CP-even (JFC =0%*) and H as CP-
odd (J PC — 0~ *). Because the Higgs sector is effectively CP—conserving, the neutral

states must separately conserve C and P in their interactions.

Note that there are no couplings of the SU(2)xU(1) gauge singlet scalar field N
to quarks. This follows simply from gauge invariance. Otherwise, one would be able

to construct gauge-invariant mass terms for the quarks, which is not possible.

The interactions with leptons are easily obtained by replacing (u,d) with (v,e7).
Note that although we have discussed only one generation of quarks, the extension
to the multi-generation case is straightforward (see appendix B). The particular form
of eq. {4.7) is a consequence of eq. (1.1} which implies that H; alone is responsible
for the mass of down-type quarks and Hj alone is responsible for the mass of up-
type quarks. General theorems (28] tell us that such models have no flavor changing
neutral currents at tree level. In addition, the charged Higgs—quark couplings involve
the Kobayaskh-Maskawa matrix in the same way as the W¥gg’' couplings. If the
neutrinos are massless, no such mairix is required in the lepton sector. Henceforth, we

will ignore the presence of other quark and lepton generations for the sake of simplicity.
4.3 SELF-COUPLING OF THE HIGGS BOSONS

It is a straightforward, although tedious task to insert egs. (4.1a—d) into eq. (3.12)
to obtain the desired interaction terms. The trilinear pieces are of the most interest
since if the masses are appropriate, then the decay of one Higgs boson into two other

Higgs bosons is allowed. In a model with no Higgs singlet field, the end result is

Lupay = —gmw HYH™ [H{ cos( — o) + Hj sin(f — «)]

gmz

~ Zcosty [HY cos(B + a) + Hy sin(8 + a)]

(4.11)
x {cos 2a [(H7)? — (H3)?] — 2sin 2a H} Hy

— cos 28 [(H3)* +2H H |}
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The Feynman rules are displayed in figs. 9 and -10. Note that-the restrictions of
supersymmetry have led to a very simple form for Ly g. Expressions for three-Higgs
couplings in a general (nonsupersymmetric) two-Higgs doublet model are notoriously

complicated as illustrated in the last two papers of ref. |26].

There are also three-Higgs vertices involving the N field. If we consider CASE 1
of sect. 3, the only vertices involved are of the form N; N; H or N; N; N, where
Ni and N; are the mass-eigenstates obtained by diagonalizing the (ReN,ImN ) mass
matrix. These interactions are easily obtained from egs. (3.8) and (3.9) by inserting
the expressions given by eq. {4.1) and picking out the trilinear terms. The exact
terms obtained depend on the unknown N mass matrix, so we will not dwell on them.

The quartic Higgs couplings are of lesser interest and will be omitted here.

4.4 INTERACTION WITH SCALAR-QUARKS AND SCALAR—LEPTONS

We begin with a discussion of the scalar-quark and scalar-lepton sector of the
theory. In egs. (3.8) and (3.9}, we omitted the scalar-quark and scalar-lepton fields.
These terms arise from three sources. First, there are the F-terms [see eq. (3.5) and
eq. (3.6a)] due to the presence of Wr [eq.(3.4)] in the superpotential. Second, there
are the D-terms [see eq. {3.5) and eq. (3.6b,c}]. Finally, we must add the most general

set of soft supersymmetry breaking terms to the scalar potential. We write

- V=Vr+Vp+ Vsoft (4.12)
where
Vi = (RHIN' +p Hf' + ,°0) (hHIN + B + 12,50
v (h*H;’*N* S HE 4 é‘*ﬁ*) (h HiN + p Hi + flfé"ﬁ)
(4.13)
+ flzlezy H) QJIZ + fzzlfij H; Q:’I2
+(n B D - pEp D) (£ HD - £ HD)
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1 2 :’z"iz i*"t'z
Vb =29 4|H1Q +4‘H2Q

R R

« [+ 1)+ (3 (4.14)

1 , . T pooy s ~ o~ o 2
+50' | B B - H B+ 5, @G + w00 + 3 5 D]

A

Veoft = ﬁé 61‘* é‘. + MEU*

ot

U+MD'D
y g (4.15)
+mg (€9 f1 Ag Hi @D — & 1 4, Hy 39T + hc. )

where y;, = 1/3, yu = —4/3, yg = 2/3. We have omitted the terms involving scalaz-
leptons; they are easy to obtain from the above expressions with appropriate choice of
the hypercharges. Presumably, the mass terms in Vioft are responsible for making the

scalar quarks sufficiently heavy such that they would not have been observed to date.

However, contributions to the masses of the scalar-quarks also arise from other
terms. First, the supersymmetric piece of the scalar-quark masses arises from Vr when
the Higgs bosons acquire vacuum expectation values. Mass terms may also arise in a
similar way from Vp and V. To compute them, insert eqs. (4.1a-d} in eqgs. (4.13)-

(4.15) [and use eq. {4.9)]. We shall henceforth use more conventional notation for the

scalar-quarks:
~ iy, ~ . ~ .
Q‘=(- ) ; Ur=uar, D'=dgy . (4.16)

Notice the complex conjugation in eq. {4.16). This has been inserted so that the

electric charge of 4y and #p are equal to e, = +2/3; similarly the electric charge of

27



dr, and JR is given by e; = —1/3. We find for the scalar-quark mass terms:

P 1 )
—Lm = 418y [Mé + mzz cos 23 (5 — ey 5in? ﬂw) +mﬁ]

+ @RigR [ﬁ{% + m% cos 28 ey sin® b + mﬁ]

P 1
+ didp [Mé - mzz cos 23 (5 + egsin? ew) + mg]

(4.17)
+ J*RJR [J’\‘Zf) + m% cos 20 egsin® Oy + mﬁ]
+ (cf;eéL + JiéR) my (Agme + ptan §)
+ (@gir +4LER) mu(Ayms + pcot §)
Thus, in general, the scalar-quark eigenstates are
- 1 = grcosby+ rsind, (4.18a)
g2 = —qrsinfy + greosly . (4.18b)

One needs to diagonalize 2 2X 2 mass matrix. General formulas can be found in ref. [29);

see also egs. (C2)-(C4) of ref. [18].

The interaction terms Lpgz; can be found by using the familiar procedure. It is

convenient to express the results in the §r, — gg basis
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9 (m2tan B + m? cot § — my sin 28) (H_frﬁ, tdr +hee. )

V2 my
L gMumg {cot B + tan §) (H*—ﬁ;zé}{”*‘h-c-)
V2mw

gm4 +ax g
+ me Agtanf — p (HudR—l—h.c.)

o (s Ag ) L

g My tms

mg Aucot 8 — u (H u dL-l-h.c.)

‘\/imw ( ) R

gmz [(T3i—eisin2i9w) iy @r + eisin® 0w §lp Gl

cos B

x [Hy cos{e + B} — Hj sin{a + 8))
2
_9Ma (J‘J J*J) H cosa — H sina
myy cos 3 1+ drdr) (Hi 2 )
2 (4.19)

gm, ok ot 2Py O o HO

o Sid (i} 8L + dxtr) (Hysina+ Hj cosal

__9md (g*g J*J)

2mw cos B ROL+ 2LER

x [(usina -+ mg Agcosa) HY + (pcosa — mg Agsina) Hy |

g My

— 2 (SR + Uy
2mw sin 8 (@RiL Lir)

X [(cos a+ mg Aysina) Hy + (—pusina + mg Aycosa) Hj |

O (g Agtan§ — p) (JEJL — JEJR) Hy
2mw
W (g Agcot B — p) (dgiy — dLig) HS
2mw

h [mu cot B NiiLig + mgtan B Ndydp + hec. ]
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One clarification is required. The term in eq. (4.19) proportional to mz contains a

€ip = €4, = +2/3 and

e; =e5 = ~1/3. As usual Ty = +1/2, —1/2 for iy, dj, respectively. The Feynman
R L

) *
sum over ¢; = u, d. In the sum we must remember that

rules for the Hgq vertices in the §r — §p basis are given in figs. 11-15. Note that we
do not display separately the rules for Hj§§ vertices. These may be obtained from
the rules for H7§q vertices (figs. 12-13) by making the replacement: @ — a + 5 and
B unchanged. In reality, the appropriate Feynman rules to use are those involving the
scalar-quark mass eigenstates [given by eq. (4.18)]. These rules can be easily obtained
from figs. 11-15 by making use of table 2. Schematically, if V(Hu‘d ) and V (Hizd)

are the Feynman rules in the §; — §2 and §; — §r bases respectively, then

ViXaid)= Y TynV(Xi;d) (4.20)
k,i=LH

where the Ty, are the appropriate entries in table 2. We give two examples. For H3

interactions,
V(H; ¢ 1) = V(H3 Gpar) . (4.21)

A more complicated example would be:

V(HPGd) = :‘ﬁ""—% cos(B + )

os f
2 1 .2 . 2 "'
- cos“ 3~ € 5in“ Ow | + sin 8, e, sin® O (4.22)
—1g mﬁ.sin a 1g My 511.1 28, Au e sin &+ pcos a
mw sin 8 2mw sin B

* A comment at this point is appropriate. Consider the following expression which appears
in egs. {4.19) and (4.23):
(T3.- — ¢ sin” 9w) 4y GiL + eisin’ 0w §p Gir

The term proportional to ¢; changes sign when we go from §g to gg. _The origin of this
“sign change is related to the fact that we have defined I = ty and D= d in table 1.
Thus, the scalar-quarks which appear in the Q chiral supermultiplet have the opposite
electric charge from the scalar-quarks which appear in the 7 and D chiral supermultiplet.
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It is important to note that even in the limit of zero quark masses

{my = my = 0), some terms survive in eq. (4.19). These terms originated from

Vp leq. (4.14)]. Explicitly, we have:

g mw sin 23

V2

‘ch"c;? (m,_,, =myg = 0) = — (H+ﬁLJL + h.c. )

gmz o
cos b [HF cos{a+ B) — Hy sin{a + B)]

1 (4.23)
X [ (5 — ey 8in® ﬂw) @}iis + ey sin? O ipin

1 - S
— (5 + egsin® BW) didy + egsin? Oy d*RdR]

The interpretation of this term in the supersymmetric limit is as follows. As men-
tioned in sect. 3, the HT become the scalar superpartners of the W=. Similarly, one
combination of the neutral Higgs scalars becomes the scalar superpartner of the Z°.

Hence, eq. (4.23) is related by supersymmetry to the W¢g’ and Zq7 interactions.

The structure of eq. (4.23) is quite interesting. Suppose we attempt to produce HT
or H'g via gluon-gluon fusion. A class of contributing diagrams is shown in fig. 16. If
UL, WR, JL and JR are all degenerate in mass, then the sum total of the contributions
of scalar-quark loops due to eq. (4.23) vanishes! The remaining contributions which
enter according to eq. {4.19) are all proportional to quark masses. However, in the
supersyn;metric limit, the scalar-quarks are not all degenerate but are equal in mass
to the corresponding quarks. Thus, amusingly, we find that in this limit, the total

contribution of the terms of eq. (4.23) to fig. 16 is also proportional to the quark mass.

For completeness, we mention the interaction of scalar-quarks with the gauge sin-
glet N-field (CASE 1 of sect. 3). Using eq. {(4.13) we can immediately write down the

Feynman rules for the N¢q vertices. The interaction terms are as follows:

-~

Lngg= —mucotB[R*N*épiy + he. |

e (4.24)
— mgtan [h*N*dejg +he ]
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The precise Feynman rules require knowledge of the mass eigenstates N; and N

obtained by diagonalizing the (Re N, I'm N) mass matrix.

We now turn to the quartic interactions of the form HH{§G. These terms are
required, for example, in the calculation of multi-Higgs production via gluon fusion.
Note that because these terms are dimension four, they arise only from the super-
symmetric part of the theory. However, these interaction terms are sensitive to the
soft-supersymmetry breaking sector of the theory to the extent that it is this sector

which determines the precise scalar-quark and Higgs boson mass eigenstates.

There are two sources for the HH¢g interaction terms: the F-—terms given by
eq. (4.13) and the D—terms given by eq. (4.14). The computation involves inserting
egs. (4.1a—d) into these terms and extracting the quartic pieces. The results are fairly
involved, and we summarize them in Feynman rules given in figs. 17 and 18. ({See
eq. (B22) in appendix B for the extension to the case of more than one generation
of scalar-quarks.) We may also consider CASE 1 of sect. 3, t.e., a neutral gauge
singlet complex field N which does not mix with the doublet Higgs fields. In this case,
we get additional four-point interactions which result from eq. (4.13). The relevant

interaction term is given by:

ghmy .. _, [cosea _, sine _ . .
= — Nugp iy | — - —— Hy +1H,
Lnnyg 2m “R UL | sin 3 1 &ing ® 3_
ghmy .~ - |[sine _, cosa __, . .|
. - Ndp d}; |—— Hi+ — H; +:H 4.25
2mw £ L | cos § 1% cosp 2 ' 3_ ( )
+ gh’ ~ T - 7o +
— 2 —— |myUrd, NH™ + mgdpup NH7 | + h.c,
V2 my

To derive Feynman rules {from eq. (4.25}, one would have to determine the proper N

cigenstates.

It may also turn out that the proper scalar-quark mass eigenstates are mixtures of
gz and §g as discussed below eq. (4.19). As before, we may use the results of table 2 to
convert rules in the § — §r basis to the §; — g basis: All one has to do is to make use

of eq. (4.20) where X here stands for the appropriate two-Higgs-boson combination.
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Finally, we note that the Feynman rules for HH il vertices invelving scalar-leptons
may be obtained from figs. 17 and 18 by using the appropriate values for the 73 and

e quanium numbers, as well as the appropriate masses.

4.5 INTERACTION WITH CHARGINOS AND NEUTRALINOS

In this section we compute the interaction of the Higgs bosons with the supersym-
metric partners of the gauge and Higgs bosons {the gauginos and higgsinos). After
the spontaneous breaking of SU(2)xU(1) , the gauginos and higgsinos with the same
electric charge can mix. This mixing is model dependent [30-32| and is discussed in
the appendix. (For further details, see appendix C of ref. [18].) The resulting mass
eigenstates are called charginos, ¥+, and neutralinos, X°. We proceed now to compute

the HXX interaction terms.

The source of the (dimension-four) interaction terms (in two-component notation)
is [24,18],

: , 1 3w
Ling = ‘g\/i TS A® T»bj A — (

: a—A,-aA,-) With; + hc. (4.26)

where W is given by eq. (3.3} {including terms involving the N field, if desired) and
¥ and A stand for generic two-component fermion and scalar fields. Writing out the

results explicitly,
Lo =g (HING5 + HEA O, + HE N g, + HEA 9, )
i [+] ]
+ 72 (X% — ¢’ (thil’Hl - Hg*%sz)

7 . . g—
+ o5 (¥ 49N (3 of, - HF ¥7, ) (4.27)
+ iy (HIwh, + Hivg, — Hlvg, - Hivg,)

+hN (¥, 0%, — Vi ¥h,) ~2AN nun +he.
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In addition, there are mass terms which are responsible for the chargino and neutralino
mass matrices. They arise from three sources. First, quadratic terms in W when

inserted into eq. (4.26) lead to ¥4 mass terms:
L™ = p (Y, ¥, — ¥, vh,) (4.28)
Second, there is a soft-supersymmetry-breaking mass term for the gauginos:
£t — _MAA® — M'A'A + he. (4.29)

(Note that explicit supersymmetry-breaking mass terms for the higgsinos are not soft
according to the definition of ref. {9].) Finally, because H] and H? acquire vacuum
expectation values when we insert eq. {4.1) into eq. (4.27), one finds the following mass

terms due to SU(2)xU(1) symmetry breaking:
‘Cf;eaking = ig (Ul}"-l-"bg’l + sz\_#)}i}g)
J 3 AN o )
+ E (g,\ —g'A ) (vlngl + ”2"!’}{2) (4.30)
~ iy (v, + ot ) +he

where AT = (1//2)(A! F1A%).
We shall now sketch the derivation of the HY¥ 'YX~ rules. For all other cases we
simply summarize the final results. Starting with the first term in eq. (4.27), we convert

to four-component notation. Then, using the spinor fields defined by eq. (A11), we
find

Lins = —g {H%*EPL’W" + HPWPLH +he } (4.31)
where Pp 1 = % (1 £ ~5). The W and H fields are -not mass eigenstates. To obtain
the desired Feynman rules, we express W and H in terms of Xy and %7 using

34



eqs. (A13a~d). Finally, we insert the proper Higgs boson mass eigenstates using eq. (4.1).

The end result is
£H§+§— = —g (Hycosa — Hysina)X;} [Q,, PL+Qji Pr] X

(H°31na+H2 COSO: [ - Pr + j,‘PR] 55;!-
(4.32)
+ 19 H§ Sinﬁi‘:‘ [Qﬁ th PR] 5‘(‘;

+ 19 Hj cos ,B?;l- [S:j P — Sy PR] 5.(,4_

where summation over ¢, j is implied and Q and S are defined in terms of the matrices

U and V which diagonalize the chargino mass matrix [see egs. (A4,A5)}:

i

Qi; = 7 U (4.33)
1

Sy = 7 Ua Vj2 (4.34)

We can rewrite eq. (4.32) in another form by relating S to @ and the chargino mass
matrix. From eqs. (4.28)-(4.30} and eq. (A4), the chargino mass matrix can be written

as follows:

24 = VBT {[o (i +vuS) + VB rw B3] Py

(4.35)
+ [9 (v1Qyi + v28;) + V2 meej] PR} Xt
where @ and § are defined in egs. (4.33) and {(4.34) and R is defined by
1
Rij = T M*UaVi + p*UpVj) . (4.36)
However, U and V are chosen specifically such that:
—L0h = MVRr R + M ek X5 X7 - (4.37)
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Equating egs. (4.35) and (4.37) leads to: : - -

S,'_?' =

1 [ M
sin 3

8 — cos BQy; — Rij] . (4.38)

Inserting this expression into eq. {4.32) gives us our desired form:

BH;C'**;E’ = — St [(sin aH7 + cos aHj) ?j'f;" + icosﬁﬂgfj"mf{j]

smﬂ x: [(Q‘J sin{8 — o) — R:J- sin a) Py,

+ (Qj,; sin(f — a) — Ryisin Oi) PR] S(V;‘-Hf

+ suglﬁ X: [(QtJ cos(B — @) + R};cosa) Pr
+ (QJ-‘- cos{f — a) + Rj;cos a:) PR] ng
Y =4
_ stﬁ [(QU cos28 + R cosﬁ)

- (Qj,- cos 28 + Ry, cos ﬂ) PR] SE;'Hg
(4.39)

The corresponding Feynman rules are shown in fig. 19. Note that if @ and R are real
matrices-then C'P is conserved, and indeed the diagonal couplings H,-;'{;rf; are purely

scalar for Hy, H; and pseudoscalar for Hj.

Next, we consider the H+ ¥ X° interactions. Here the analysis is straightforward

and we quote the final result:
Ly = —HR [Q Pr+ QY PR] X +he. (4.40)
where we have defined:

z!j.L = gcosf [ NV (N5 + Nj tan 9W) ] — h'sin SNV, {4.41)

1
\/5
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V2

The matrix N diagonalizes the neutralino mass matrix as shown in egs. (A20)-(A21).

Q:}R = gsiﬂﬁ \: Ni3Uj1 - (Nt‘g + Nil tan ﬂw) Ujg} — h* COE ﬁNissz (4.42)

The corresponding Feynman rule is shown in fig. 20.

As an interesting exercise, suppose that the 7 is a neutralino mass eigenstate, to
be identified with X§. Then it foliows from eqs. {A17) and {A23) that N/, = 1 and
N}, = NJ, = 0for k # 1. Using eq. (A23), this implies that Ny; = cosbw, Niz =
sinfw and Ny = 0 for k = 3,4, (5). Inserting these results into eqs. (4.40}-(4.42), we
find (using e = gsinfw ):

Lyy = —V2eH N [V} cos BPL — Ujy sin BPg] 5(";' + h.c. (4.43)

which is displayed in fig. 20. In order to make the physical origin of this result clear,
it is useful to make use of the “interaction” eigenstate H [see eq. (All)]. Using

egs. {A13c—d)}, eq. {4.43) may be written as:

Ly ~

oy = T2 eH™ % [cos BPr, — sin BPg| H + h.c. {4.44)
Thus we see that eq. {4.43) is the supersymmetric version of the H+ H ™~ vertex. One
final limiting case of inferest is the supersymmetric limit [see egs. (A7)-(A8)]. In this
limit, th_e.charginos are degenerate in mass with the W* and H* (these particles belong
to a common massive supermultiplet). It is convenient to make use of the wiggsinos
w; as the chargino mass eigenstates [see eq. (A9)-(A10)|. Then in the supersymmetric

limit (where sin 8 = cos 8 = 1/v/2), we find:

Ly s = —V2 eH™ § (Prij — Priy) +he. . (4.45)

Finally, we turn to the Hff("?j‘{i interaction. The procedure is similar to the one

described above. However, there is one subtiety which must be considered. Because
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5{';" is a Majorana fermion, one must note the following identity which holds for anti-

commutihg four-component Majorana spinors:
GOAEwX = BAEwT (4.46)

This implies that the Hfj'{‘;fz interaction must be symmetric under interchange of j

and k. Starting from eq. (4.27), we arrive at:

g Q a _: o) * o0
Lprye = — 5 (HY cos o — Hysina) X7 (Q))*PrL + Q! Pr) X3
+2 (Hisina+ Hycosa) X7 (SY*Pr,+ S}/ Pr) %
ig o= s = ifx (4'47)
+ - HaXi [(Q,-J- sin 8 — S cosﬁ‘) Py,
- ( ;J‘-'sinﬂ - S‘-;-’cosﬁ) PR] X;
where
1 £ . +
gQy] = 5 [Nis (9Nj2 ~ ¢'Njy) + V2 h* Ny Nis+ (1 & 3)] (4.48)
1 \ o
05 =5 |Na(oNj2 = 9'Nj) = VZ b*Nig Njs + (i )] (4.49)

We can rewrite eq. (4.47) in another form by using the neutralino mass matrix. Using

eqs. {4.28)-(4.30) and eq. (A20), the neutralino mass matrix can be written as follows:

1 = * *
—‘CS:.) = E f(';? { [g (le‘f;* - Uzsi;’ ) + \/5 me” ] PL
(4.50)
+ [9 QY — vaSf) + V2 mWR”] PR} X;
where @'/ and S’/ are defined in egs. (4.48) and (4.49) and R'' is defined by:
1 . .
Byj = g (M'NaNig + M" Ny Njy — " (Nig Njs + N Nig)] . (4.51)
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However, the matrix N is chosen specifically such that: -

-9 = %AZ-(O)? % (4.52)

1

where summation over ¢ = 1,...,5 is implied. Equating eqgs. (4.50) and (4.52) leads to:

T 1 M " 1"
S = gy m b;; —cos fQ;; — R} (4.53)

We now insert this into eq. (4.47) in order to get the desired form:

o

EH;Z";" = —”m [(Sin GIH{’ + cos (XHS) ?2 ﬂxwf -+ ‘i.COS ﬁHg_f;}'}’sf:]

g9 = He s .
ey X: [ (@i *sin{ — o) — R!*sina) P,

+ ( sin(8 — o) — R//sin a) Pg| X5 Hy

g = e £
+2sinﬁ X 1 ( ij cos(8—a)+ R[l*cosa) P

+ (@i cos(8 — &) + R cos @) Pg] XHs

?:g o
- 2sin 8 X

[ (Q;;* cos2f8 + R;j” cos ﬁ) Py,

( :; cos28 + Rg coS ﬁ) PR] f;Hg
(4.54)

where summation over 7,5 = 1,..., 5 is implied. Note that Q:; and R}/ are symmetric
under interchange of ¢ « j as required. Equation (4.54) is closely analogous to the
HXTX™ interaction given by eq. (4.39) and the remarks we made there also apply here.
Note that the extra factor of 1/2 between the two equations is simply a consequence
of the Majorana nature of the neutralinos. This factor of 1/2 must be removed when
writing down the Feynman rules as shown in fig. 21.- These rules allow the index 7 to

run from 1,...,5. If the model contains no SU(2)xU(1) gauge singlet N—field (and
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hence no X2 ), one must simply set N5; = Nz = 0 above {or equivalently set A = 0)

and not é,llow = 5.

Let us once again examine the case where one {or both) of the neutralinos is the
photino. As before, we set Ni; = cos 0y, N1z = sinfy and Ny = Ofor k = 3, 4, (5).
Using eqs. (4.48), (4.51) and (4.53), we find that in this limit,

Qi = Sk =0 (4.55)
Rl = ﬁ? Sk (4.56)
M, = Msin® 8y + M'cos* by . (4.57)

Inserting these results into eq. {4.54) we find that

‘CH:}"}' = .CH'X-';;; =0 . (4.58)
This result is not surprising as there is no corresponding supersymmetric version of
these vertices. Note that the fact that £ ey = 0 is algebraically nontrivial and serves

as an additional check on the correct form for eq. (4.54).

The last interaction vertices we consider involve the gauge singlet N field. As
before, these interactions will depend on the unknown N mass matrix. The relevant
interaction terms can be obtained from eq. (4.27) and the result is:

— T+ p ot
Ly = N {h Ui Vi Xi PLX]

(4.59)

i * * ¥ * * * ] ™o ~Q
—§[h( i3 Vjq+ Ny ,1':3)+4"L £5Nj5] Xz'PLXj}‘*'h'C‘

This completes our study of the interaction of charginos and neutralinos with the

Higgs bosons.
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5.. Feynman Rules for Related Interactions

In this section we discuss Feynman rules for the interaction of quarks and scalar-
quarks with charginos and neutralinos, i.e., the ¢§x+ and ¢g¥x° vertices. There are
two contributions to the above vertices. The first contribution is the supersymmetric
analog of the gqgW* and ¢3Z° interactions. These have been discussed in detail in
appendix C of ref. [18]. The second contribution is the supersymmetric analog of the
gGH interaction. This contribution is proportional to the quark mass and depends on
the properties of the Higgs bosons in the supersymmetric model. The source of these
two contributions corresponds to the two terms given in eq. {4.26). In this case the

relevant part of W used in eq. (4.26} is given by Wy [see eq. (3.4)].

Consider first the ¢g§X* interaction. We convert from two-component notation to

four-component notation as discussed in sect. 4.5. We then find:

Loz = [WPLudL WePy di ]
gmy o TP s
9™ [ FpLuds +d Py I ]
V2 my cos 8 [ LuR LHEeL (5.1)
gmy

m [EEPL Hd; + HeP;, di‘e}'%] + hec.

where v and d are four-component quark spinors, and the “interaction”—eigenstates
W and H are defined in eq. (A11). An unusual feature of eq. (5.1} is the appearance
of charge-conjugated states.” (See appendix A of ref. [18] for a summary of our
notation.) This arises due to the existence of a nonconserved fermion-number which
is a standard feature of supersymmetric models. We shall discuss this further after
we have written down the final Feynman rules. The next step is to convert eq. {5.1)

to an expression involving the chargino mass eigenstates ff, t = 1,2, This is done

% This feature did not occur in the H~¥t%° vertices jeq. (4.40})]. The reason is that %°
is 2 Majorana field, i.e., (¥°)° = %°, so we were able to avoid the appearance of (¥1)°
fields. In the present case, if one were to make use of a similar technique, one would end
up with the appearance of charge-conjugated quark fields. We prefer not to do that.
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by using egs. {A13a-d). In addition, we need four-additional equations involving the

charge conjugated fields. It is easy to derive an appropriate recipe. For example,
PrW® = Pp (VuXi+Vaxs) - (5.2)

(We employ the notation: x{ = (X;")c which is a negatively charged fermion.) Thus
the recipe is simply to charge conjugate all fields in egs. (A132-d} and interchange the

matrices IV and V. The final resuit is:

L

g = 9 [EPR (UuXf +UnX3)de +dPr(ViL %5 + Va1 X5) ﬁL]

L gma
V2 mw cos 8

gmy

+._.—_.._
\/ﬁmwsinﬁ

[EPR (Ui XY + Une %3 ) dp + dPL (UL 3 + UL %5) ﬁL]

|[@P (Vio &} + Vi &) do + 4 Pr (Via X5 + Ve 5) ] + .

(5.3)
The Feynman rules are given in fig. 22. As mentioned above, the appearance of both
chargino fields and their charge-conjugates in eq. (5.3) is a consequence of fermion-
number violation which naturally occurs in supersymmetric models. This violation
is well understoed in the case of neutral Majorana fields. In the present context, XT
and 5('; are charged Dirac fields. Nevertheless, fermion-number violation may still
occur when a given interaction involves both j‘{;" and ¥{ fields. This is apparent in
the Feynman rules exhibited in fig. 22. In figs. 22(c) and 22(d) the flow of fermion-
number as indicated by the direction of the arrows on the (solid) fermion lines is not
continuous. This leads to the explicit appearance of the charge-conjugation matrix ¢
in the rules themselves [33,18]. (The C arises from eq. (5.3} simply because x¢ = Cx7).
It is not difficult to deal with fermion-number violating propagators and vertices. A

complete discussion of the appropriate rules can be found in appendix D of ref. [18].

One must also consider four more diagrams which are obtained by reversing all
arrows in fig. 22. (Note that the arrows indicate the direction of flow of a particular
electric charge: +1 for the 5{;, and e, for g and ¢, where e, = 2/3 and ¢; = —1/3.)

The Feynman rules for the four new diagrams are easily stated. First, in all four cases,
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make the following interchanges: U « U*, V & V*, (1 + ~5). &1 — v5). Second,
for the di.agrams corresponding to figs. 22{c) and 22(d}, remove the factor of C which
appears on the right and insert a factor of —C~! which should be placed on the left.
(This rule arises because ¥° = —C~!xT.) This is illustrated in fig. 23.

We next consider the g¢X° interaction. After converting to four component nota-

tion, we find:
1 .

£q§;° = — 2%}, [gWaPLu+yq9’§PLu]

Sl N

33 [—gﬁ’usPLd+ng’§PLd]
1 F] _ ~~ ~ -~
_—ﬁg [yuuPLBUR+yddPLBdR] (5.4)

gmg

- V2 my cos B

gmy

- V2 my sin 3

[E Py ddy +d Py Hydy
[Ez Pr, uﬁ}g+ﬁPLﬁ2ﬁL] +he.

where the “interaction” eigenstates W;;, ﬁ, fﬂ and ﬁg are defined in eq. (A24). Note
that even in models with a gauge singlet Higgs field, N, the higgsino field N does not
appear in eq. (5.4).

It is :stra.ightforward to convert eq. (5.4) into an equation involving the chargino
mass eigenstates X7, by using egs. {A25a-b) and similar equations involving W3 and
B. In addition, we find it convenient to replace the matrix elements N;1 and Ny by
N/ and N/, defined in eq. (A23).
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One last trick is to eliminate the hyperchargesy,, yu and yg infavor of the electric
charges e, = 2/3 and e¢; = —1/3. This is done most easily by using y; = —1 4 2e, =
1+ 2eq, yu = —2e,, and y3 = —2e4. The final result is:

gmg, Nig .
seo = — A2 0 L NN /it ) P
Lasx V2 % { 2mw B; L

q

e ot

Ny (T3 — e;sin’ 9w)l PR} X74iL
(5.5)

cos

. 2
; Ow
+v2 g; [(e e N;l* _geisin W N;z*) Py,

g m?{ Nj!s_‘:

Pp| X54s .C.
2o B R] X;4ir + he

where a summation over ¢ = 1,2 and 3 is implied, and

U sin
¢ = (d) ) B; = (cosﬁ) . (5.6)

The quantum numbers T%; and e; are the weak-isospin and electric charge (in units
of e > 0) of the quarks ¢;. We emphasize that ¢;r and §;; have the same eleciric
charge as the quarks ¢;. The Feynman rules are depicted in fig. 24. Note that if the
supersymmetric model involves the gauge singlet NV field, then one must sum over
7 =1,2,...,5; otherwise the sum stops at 7 = 4.

The results obtained in this section can also be used to obtain the couplings of
ieptons and scalar-leptons. One need only insert the correct quantum numbers (t.e.,

Ts; and e;) as specified in table 1.
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6. Comments on the SuperSymmetr_i_c Parameters

In the Feynman rules presented in this paper, many parameters appear that are
not fixed by general principles. For example, all possible soft supersymmetry breaking
terms (conmsistent with the gauge symmetry and possibly some discrete symmetries)
are allowed a prior:; their coefficients must be taken as free parameters in a general
approach. This can result in too much freedom when we apply our rules to phe-
nomenological questions. It is often useful to make use of specific models as a guide
to suggest (possible) likely values for many of the free parameters. One of the most
popular approaches that one finds in the literature is that of low-energy supergravity
[10-13]. In this approach, one obtains an effective Lagrangian which is relevant at the
Planck scale. One then uses the renormalization group equations to obtain the values
of the parameters at a scale of order my . The resulting parameters are the ones which

appear in the Feynman rules given in secs. 4 and 5.

Of course, the results given in this paper are for the most part model-independent.
But, given the results of a particular model, one may easily use the fechniques and
results of this paper to obtain ail the Higgs boson vertices which appear. We think
it is useful to illustrate some of the aspects of the procedure by which one obtains
the appropriate low energy parameters from a supergravity model. However, it is
not our purpose to review supergravity model building techniques here [10,11]. Fairly
detailed models have been studied in the literature (see e.g., ref. [13]) which satisfy the
necessary phenomenological requirements. For the purposes of illustration, we exhibit
below some of the features of one of the original low energy supergravity models studied
in ref. [12]. Our choice here is motivated by one of simplicity—a minimum of algebra
helps to make the procedure quite transparent. Note, however, that this model is
certainly not realistic {it requires a very heavy top quark); the reader is referred to

the the literature [10,11,13} for more realistic examples.

‘The model of ref. [12] consists of a minimal supersymmetric extension of the

Standard Model, with two Higgs doublet fields but with no Higgs singlet field. At the
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Planck scale (Mp ), the parameters of this model satisfy: .-

Mg ~ My =~ Mp =m; = my & mgm M, (6.1)
m3, = BuM, 6.2
Ay = Ay m~ Ay = Ay =~ A (6 3)

where Ag and B are constants of order unity and ﬁg is the gravitino mass which is
expected to be of order my . The parameter g is less certain and one can imagine either
o~ aﬁg or u ~ ﬁg (where « is some small coupling constant). In the former case,
t is small and to first approximation can be neglected. Then because m?, mZ > 0,
SU(2)xU(1) is unbroken. However, upon evolution down to scales of order my, cne
finds that m2 < 0. In ref. [12], this is triggered by a large Higgs—fermion Yukawa,
coupling (such as the top quark). We sketch here some of the details for this particular

example. In the evolution of scalar masses, we ignore all couplings except for the top-

quark—Higgs—Yukawa coupling. The solution to the renormalization group equations

takes the simple form [10,12]

m3(t) = 3C — %ijg (6.4)
ME(t) =2C (6.5)
- — 1~
Mg (t) =C+ 3 M} (6.6)
where
M? 1 ¢
— g Z a2
¢ == [1+3A l—g] (6.7)
_ 3aot
o(t) = — (6.8)
_ mw.
t =2 ( MP) (6.9)
) ’ '
= 6.10
o = 2 (6.10)
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(6.11)

where op = A?/4n is the top-quark Yukawa coupling [analogous to eq. (4.9)], 4o is
given in eq. {6.3), and « and A are the corresponding quantities at the low-energy scale.
Note that in egs. (6.5) and (6.6} we use the subscript 3 to denote the third generation
scalar-quark masses. In the approximation we are using, all other scalar-quark and

Higgs masses do not run but are fixed at M, [cf., eq. (6.1)].

We need one boundary condition to fix t = £n(my /Mp). This is obtained by
inserting eq. (3.23) into eq. {3.14g), resulting in

1 1
mi = —5;mz+g

5 5 vf(g2+g'2)+mf2cotﬂ

(6.12)

In the approximation where y is neglected, we may take m?, = 0 [see eq. (6.2)]. Also,
because m? does not run (i.e., m? = AFZ': > 0), it is clear that vy = 0. Therefore,
This implies that C = (M2 — m%)/6 and
plugging back into egs. {6.5),(6.6) yields the scalar-quark mass parameters. It then

follows that [12]:

eq. {6.12) reduces to m3(t) = —im%.

2~y 1
M}, = 3 My —gm5 (6.13)
e _ 1 (on 2
.I‘!JU3 = ':‘3‘ (Mg - mz) (6.14)
) M3, =M, i=1,2 (6.15)
M}, =M? i=1,2 (6.16)
M}, =M: i=1,2,3 (6.17)

It is these parameters which are to be inserted into eq. {4.17) to obiain the desired
scalar-quark mass matrix. The appropriate value of A [eq. {6.11)] would also have to be
used in eq. {4.17). Note, however, that under the assumptions being considered here,
the -term in the scalar-quark mass matrix which mixes 4y with §p is non-negligible

only for massive quarks (the t—quark or heavier).
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Clearly, the above calculation is unrealistic since the approximations we have used
implied that v; = 0. An improvement can be made by taking into account the effects
of the parameter 4. According to eq. (6.2), m%; # 0 and this can induce a vacuum

expectation value for H,. Using egs. (3.21c—€) one finds to leading order in g

2
My2V2

vy m —1EZ
mé + m2

(6.18)
Note that m? > 0 and mi < 0. We may now go back and recompute C based on
the boundary condition given by eq. (6.12). Now, we may no longer omit the last two
terms of eq. (6.12) (they are both of the same order in u = mfz/Bﬁg). We can rewrite
eq. {6.12) as:

1
m: = 2 mbcos B+ micot B . (6.19)
The solution for C [from eq. (6.4)] becomes

1 A
C = s (Mg + m% cos 288 + 2m?, cot ﬁ) . (6.20))

(This equation reduces to the one we obtained previously, since for v; = 0,8 = 90°.)

Plugging into egs. (6.5} and (6.6), we obtain:
M, = 280 + fmYcos 26+ S m, cot 8 6.21
Q = z3My szcos 3m12c0 (6.21)
T2 1oy 1o 2
- MU3 = § Mg + g g CO8 26 + § mMje cotﬁ (622)

which are to be used in eq. (4.17) to obtain the scalar-quark masses. These mass

formulas have been previously obtained in ref. [10].”

Of course, realistic models require numerical solution of a complicated set of renor-
malization group equations. The resulting scalar-quark masses as well as other param-
eters of the model must be obtained numerically. Typical resulis have been presented
in refs. [13,34]. Nevertheless, the analytic formulas displayed above give a rough guide

as fo possible values for the supersymmetric parameters.

* Note that in the notation of ref. [10], their angle « is equal to /2 — 8.
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There have also been low-energy supergravity models which make use of the Higgs
singlet field N. However, realistic models do not appear to satisfy the requirements of
# =0, {N) # 0 which we imposed in sect. 3 in order to obtain analytic expressions
for the neutral Higgs (Hy, H3, N) mixing. In particular, we point out that in an
interesting model discussed in ref. {16] where all dimensionful parameters in egs. {(3.8)
(1, r and A) are set to zero, one finds that necessarily { N ) # 0in order to get a realistic
particle spectrum. Therefore, in such models with a Higgs singlet field, although the
Feynman rules of sect. 4 are still correct, Hy, Hy and N will no longer be mass-
eigenstates. One will be required to diagonalize numerically a more complicated mass

matrix in order to obtain Feynman rules involving physical particles.

The final set of remarks in this section are concerned with the possible appearance
of CP-violating phases in the theory [35-37]. We have emphasized in Secs. 2 and 3
that in a supersymmetric two-Higgs doublet model, we are free to choose the phases
of the weak doublet fields H; and H; such that no CP-violating phases appear in the
pure Hy, H; sector of the theory. This also allows us to choose the vacuum expectation
values v; and vz to be real and non-negative. Having implemented this convention,
CP-violating phases can in general appear elsewhere in the theory. These can arise
from a number of sources [see egs. (3.8), (3.9), (4.15) and (4.29)]. First, the parameters
w, M, M', A, Az, A, and Ay are in general complex. This can lead to CP—violation
in the H°§§ interactions [eq. (4.19)] and the H°XY interactions [eqgs. (4.39) and (4.54)].
The easiest way to identify CP-violation is as follows. In a CP-invariant theory, we
have shown that HY and Hj are CP—even states and Hj is a CP-odd state. Violations
of these conditions are a signal of CP-violation. For example, in eqgs. (4.39) and (4.54),

CP-invariance requires the diagonal H°¥;X; interaction to be of the form
Loy = (@ HY + b HY) % % +ie; HS X vs X (6.23)

where a;,b; and ¢; are real constants. In eq. (6.23) ¥%; stands for either a chargino
or neutralino field. This implies that the diagonal elements of the coupling ma-

trices @, R, Q" and R" [defined in eqgs. {4.33), (4.36), (4.48) and (4.51)] are real.
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Second, if the singlet N field is present, then h, r, mZ and a possible vacuum expecta-
tion value (N} (which would depend on some of the previously mentioned parameters)
can also be complex. One could choose the phases of N and the scalar-quark fields
to eliminate a few of the phases but some non-trivial phases must remain. This could
be a serious constraint on supersymmetric models [35-37]. For example, the absence
of an observed neutron electric dipole moment [36] requires that such phases be very
small (if not absent altogether). A natural explanation for the smallness of such phases

would be highly desirable.

One can peruse the Feynman rules for the occurrence of possible sources of CP-
violation. Some examples: if there is a singlet Higgs field N, one has in general complex
HHON couplings. In general, the H§§ couplings [eq. {4.19)] will exhibit CP-violating
phases due to the presence of complex ¢ and A-parameters. It is interesting to note
that in the neutral Higgs couplings to quarks, no CP-violating phases occur. Thus, our
claim that Hy and Hy are CP-even states and Hj is a CP~odd state remain valid (at
least at free-level) as far as its interactions with the quarks are concerned. Likewise,
no CP-violating phases occur in the tree-level interactions of the Higgs bosons with

the vector gauge bosons.

In models with three or more generations, the charged Higgs interactions with
quarks involve the Cabibbo-Kobayashi-Maskawa {CKM]} [37] matrix which possesses
the usual CP-violating phases. In addition, new generation mixing matrices must be
introduced due to the generational mixing of scalar-quarks. These new mairices can
also introduce new CP—violating phases. The modification of the Feynman rules due

to more than one generation of quarks and scalar-quarks is discussed in appendix B.
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7. Conclusion ) o

It has been obvious for many years that the Higgs sector of electroweak theories
is the most sensitive to the nature of interactions at mass scales higher than those
currently probed experimentally. Thus many theoretical uncertainties regarding the
Higgs sector have emerged. In particular, there are the problems of hierarchy and
naturalness, the number of Higgs doublets, the possibility of higher Higgs representa-
tions, composite Higgs and so forth. Of the existing models which propose to solve
the hierarchy and naturalness problems, supersymmetric theories are unique in two

respects:

1) they are completely consistent internally and at present suffer no known

phenomenological defects;

2) they have the potential to solve the hierarchy/naturalness problems while

maintaining the elementarity of the Higgs.

In this paper we have chosen to examine in detail minimal supersymmetric theories.
At least two Higgs doublets are required in order to give mass to both up and down
type quarks. In the absence of other scalar Higgs fields, SU(2)xU{1) is not broken
untii soft supersymmetry breaking terms are added. Thus we have also considered
the case in which an additional complex scalar field, an SU{2)xU(1) gauge singlet,
is introduced so that SU(2)xU{1) may be broken at tree level even in the absence of
supersymmetry breaking.

While supersymmetric theories provide a direct motivation for a two-Higgs dou-
blet model, they simultaneously impose severe constraints on the otherwise enormously

model-dependent self-coupling of the Higgs. Of course, as part of the solution to the
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" hierarchy problem, couplings to new supersymmetric partners of the ordinary particles
appear. The purpose of this paper has been to enumerate all the Higgs couplings that

are of most immediate phenomenological interest. These include:

(L

couplings to gauge particles, figs. 1-6;

couplings to ordinary fermions, figs. 7-8;

)
)
(ITf}  self-couplings, figs. 9-10;
1 couplings to scalar-quarks, figs. 11-15 and 17-18; and
)

(V) couplings to charginos and neutralinos, figs. 19-21.

For completeness, we have also derived rules for the coupling of quarks and scalar-
quarks to charginos and neutralinos shown in figs. 22-24. These are related (in part)
by supersymmetry to II and IV above, and are therefore sensitive to the Higgs boson

sector of the model,

All of the couplings we have obtained under (I) and (II), above, are the same
as those which appear in certain non-supersymmetric two-doublet models in which a
fully general choice of vacuum expectation values is allowed for. There are, however,
many aspects of these couplings and constraints among them which have not been
fully explored in the literature. For instance 8 = tan~(vy/v1) and the mixing angle
o which results from diagonalization of the neutral Higgs boson mass matrix yield
potentially enhanced couplings of the charged Higgs couplings to quarks. In some low-
energy supergravity models, these angles tend to take on extreme values which could
result in unexpected phenomenological consequences. Also, the absence of certain
couplings {e.g., no WZH vertex) can have importani phenomenological implications

for expectations regarding Higgs production.

The Higgs self-couplings become of phenomenological importance when one Higgs
is much more massive than others, and its decay into two lighter Higgs is allowed.
Trilinear Higgs couplings also yield new sources of single Higgs production through a
process analogous to the effective W approximation [41], in which the fusing virtual

gauge particles are replaced by virtual Higgs.
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The couplings of Higgs bosons and scalar-quarks yield new contributions (through
scalar qtiark loops) to the gluon-gluon fusion mechanism for Higgs production [42].
Due to cancellations, these are not as large as the order g couplings which appear in
the Feynman rules of figs. 12-13 might suggest |as discussed below eq. {(4.23)], but can
result in a significant enhancement to Higgs production cross sections. The order g
couplings are certainly important to the phenomenology of Higgs decays if the scalar

quarks are sufficiently light that these channels are open.

In a future paper [19] we shall explore some of the above phenomenological conse-
quences of minimal two-Higgs doublet supersymmetric theories. The Higgs sector in
such theories, while varied and complex, is tightly constrained. Above threshold for
production of Higgs particles, the phenomenology of their production, interaction and
decay will provide an important testing ground for the theory and help constrain the
nature of supersymmetry breaking. As an example, a Higgs doublet with enhanced
couplings to botk up and down quarks would be incompatible with the two doublet
Higgs supersymmetry model [42]. In general, the discovery of multiple Higgs doublets
{or convincing evidence for only one doublet) would provide important insight into

the viability of low-energy supersymimetry.

In the absence of the gauge singlet field, the minimal iwo-Higgs doublet model
requires that one of the neutral Higgs lies below the mass of the Z. It could well appear
in toponium decays and other reactions that will scon be available. In such models,
the H™ is always heavier than the W*. However, in models with a gauge singlet field
present, there is a range of parameters for which the H* is sufficiently light so that
it could appear in W and Z decays. In general the minimal supersymmetric models
suggest that some of the Higgs masses are modest in size and perhaps accessible in the
near future. Thus, the Higgs sector may play a crucial role in suggesting the nature of
new physics beyond the Standard Model as well as revealing the nature of spontaneous

symmetry breaking and the generation of the eleciroweak scale.
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APPENDIXA . -

CHARGINO AND NEUTRALINO MIXING

In this appendix, we will summarize the required formalism needed to obtain the
mass-eigenstates in the gaugino-higgsino sector of the theory. For details, we direct

the reader to appendix C of ref. [18].” (See also refs. [30-32].)
1. CHARGINOS

The charginos, X (i = 1,2), are four-component Dirac fermions which arise due to
the mixing of the winos, ﬁ;_, W"', and the charged Higgsinos, ﬁl" and ﬁ;’ Because
there are actually two independent mixings, (W‘, ﬁl' } and (W"', ﬁ;’ }, we shall need

to define two unitary mixing matrices [31]. We define:

v = (—ix*, vf,)
J =12 (A1)
¥ = (-7, vg,)
where we have used the notation of table 1. In eq. (A1), the fields are two-component

fermion fields, with A* = (Al F:1%)//2. The mass term in the Lagrangian is:

_ 1 e o0 xT Pt
. Ln = -5 (v7¢7) (X 0) (d)_) (A2)

where

X = (A3)

( M mw V2 sinﬁ)

mwv2 cos m

where M is a Majorana mass term for the winos, y is defined in eq. (3.3) and

tan § = v /vy. Note that m%, = (g%/2)(v? + vl), where the v; are defined in eq. (3.7).

% The notation in this appendix is identical to that of ref. [18] with two exceptions. We
denote here {H{) = v1, {H2) = vz and tan 8 = va/v;, whereas in ref. [18] v; is replaced
by v;/v/2 and tan g is replaced by cotf,.
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We define two-component mass-eigenstates via: - - .=

x; =V

x; = Uy

where U and V are unitary mairices chosen such that:
U*Xv = Mp (A5)

where Mp is the diagonal chargino mass matrix. In particular, U and V can be chosen
so that the elements of the diagonal matrix Mp are real and non-negative. The proper
four-component mass-eigenstates are the charginos which are defined in terms of the

two-component x;" fields as:

+ +

~+ _ [ Xa s+ _ [ X2 )

X - — - b} x - _ . A6
! ( X1 ) z ( X2 (46)

The supersymmetric limit can be taken where SU(2) xU(1) remains broken if the model

possesses a gauge singlet N—field. In this limit (taking M = p = 0), we find:

sinff = cosff = (A7)

2
V2

v 2(t1 y = L[ A8
3 T VAV 1) T V2V 1) (48)

Note that U # V; the difference in the two matrices has been arranged so that the
masses of the chargino eigenvalues are positive. In the above limit, we can write the
chargino states as
N - R
V2 2 V2

where w; and we are the wiggsinos:
ot = (2) . e =(0m) (410
¢H1 TA™
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Furthermore, in this limit, the chargino states for the wiggsinos-are degenerate in
mass with the W, In fact, from eqs. (3.15) and (3.16) we see that my+ = my+ in
this limit. It follows that (H—; & ; W) and (H*; &;; W*) make up two massive
supermultiplets consisting of particles with mass equal to my/.

It is sometimes convenient to work with four-component fields which are not mass-

eigenstates but which lead {o simpler expressions for interaction terms. We choose o

work with W and H defined by:

: +
W = (_,‘_'TL) , H = (tffﬁ) : (A11)
tA ¢H1

If one has an interaction Lagrangian involvingw and H , it is a simple matter to convert

it to the appropriate expression involving the chargino mass-eigenstates. Define:

Py = - (1—s)

B | =

(A12)

Pr = = (14 )

[Vl

which project out respectively the top two components and the bottom two components

of a four-component spinor. Then, using eqs. (A4),(A8) and (A11) we find:

- PLW = P (V] %1+ Vai %2) (Al3a)
PpW = Pp(Un %1+ Un X2) {AL13b)
PLH = PL(V{y %1+ V3 X2) (A13¢)
PpH = Pp(Usz %1+ Uns 2’2) . (A13d)
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Using these equations, one can write out any interaction term involving Hand W in
terms of the charginos, ¥. Note that from egs. (A13a)—(A13d) one can derive additional

equations, such as:
WPs = (Vi Xi + Va1 X2) Pr (Al14)
where as usual, ¢ = ¢iA°.
2. NEUTRALINOS

We turn next to the neutralinos, &'; which are due to the mixing of the photino

2

zino and neutral higgsinos. Here, § = 1,...,4 in the minimal model with no gauge
singlet N—field. If an N—field is included in the model, then the mode! necessarily
contains an extra higgsino resulting in five neutralinos, so we must take 7 = 1,...,5.

We shall consider the two possible cases in turn.

In the case with four neutralinos, we define the two-component fermion fields:
¥ = (=X, =%, 9%, ¥F,) (A15)

Again using the notation of table 1, A% is the neutral wino and )’ is the bino. These

fields can also be expressed in terms of the (two-component) photino and zino via:

Az = Acosy — A sinby (AlBa)
Ay = Xsinby + A cosby . (A16b)

Occasionally, it will be useful to define

¥i° = (—idy, ik, ¥R, ¥R, (A17)

in place of eq. {A15). The mass term in the Lagrangian is given by:

Lm = —% (+°)T Y ¥° + h.c. (A18)
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where Y is in general a complex symmetric matrix” given by:. -

M! 0 —mzsinfy cosf mzsinfysing
v 1] M mgcosbycosS —mzcosbysinf
B —mzsinfw cosf mzgcosby cosf 0 —i
mzsinfwysinf —mzcosbysinf — i 0
(A19)

M' is the Majorana mass for the bino; all other terms above have been previously

defined. As usual, m} = 1 (g% + ¢'%) (v? + v}). We define two-component mass-

eigenstates using:
X; = N,-J'qb;-’ t,7=1,...,4 (A20)

where N is a unitary matrices satisfying:
N*'YN"! = Np . (A21)

where Np is the diagonal neutralino mass matrix. One can choose N such that the
elements of the diagonal matrix Np are real and non-negative. The proper four-

component mass-eigenstates are the neutralinos which are defined in terms of the

two-component X7 fields as

w= (%) G=n.0 (422)

X
Note that the X¥? are Majorana fermions.

If we had wished to make use of eq. {A17) instead of eq. (A15), then the matrix
Y would be replaced by a matrix ¥’ and the unitary matrices N would be replaced

by a new matrix N' given by:

* The fact that Y is symmetric follows from eq. {4.46) and s due to the Majorana nature of the
neutralinos. As a result, only one diagonalizing matrix N [eq. {A21)] is required in this case.
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N/, = Njjcosy + Njpsinfy

;"2 = —lesinﬁw + Njs cos fwr
Njg = N;
o= Nj (423)

As above, interactions often look simpler in terms of four-component fields which
are not mass eigenstates. We define the following four-component (neutral) Majorana

spinors:

Y £ L N A A A ~ _ (¥n
B = (;'x')’ Ws_(iiﬁ)’ B = (*”Hi) = (1/3;;;) - {a2)

We may then relate the above spinors [eq. (A24)] to the mass eigenstates [eq. (A22)]

using relations analogous to those given in eq. (A13). For example,

PoH; =PL Y N, %5 (A25a)
-
- PpH; = Pp ), Njisa X5 (A258)

7

where we have used the fact that N is unitary, with similar equations for B and Wg.

It is sometimes convenient to introduce the four-component photino (¥) and zino (Z)

= _ = - A26
i ( Ay ) 2 ( iA, ) (426)

which are related to W3 and I by the obvious relations [see eq. (A16)). Then, to

Majorana spinors:

express ¥ and 7 in terms of the mass eigenstates ¥;, we need to use the matrix N'.
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For example, : . B -

Py =P, ) NEXS (A27a)
j

PeY =Pr Y Nj % (A27b)
i

The analysis above assumed that there were only four neutralino states. If we
include the SU(2)xU(1) singlet field N, then the (two-component) higgsino field ¥x
must be included in the discussion. As discussed in CASE 1 of sect. 3, we can obtain
explicit analytic expressions for all results of interest if we assume that p =< N >=0.

In this case we expand our previous definitions. In place of eq. {A15) we have:

¥ = (—u’, —iX%, ¥}, b, ng) . (A28)
Eq. (A18) defines the mass matrix, where Y is now a 5 x 5 matrix. Setting x = 0, we
obtain:
[ M 0 (—ng")/V2 (vng’)/vV2 0 )
0 M (vig)/v2 (-vg)/v2 O
Y = (—vig")/V2 (ng)/V2 0 0 hvy (A29)
(v29')/vV2  (~v29)/V2 0 0 hv
B \ 0 0 hvg hvy 0 J

To be different, we have replaced mz, 6y and B in eq. (A19) with v, vz, ¢ and g¢’.
Most of the remaining formulas go through. By using the appropriate generalization of
eq. (A25) (i.e., summing over five possible neutralino states), the physical neutralinos

X¢ can then be expressed in terms of the fields of eq. {A24) and

The advantage of including the fifth neutralino state is that it permils a super-

symemtric limit which still breaks the SU{2}xU(1) symmetry. In this limit (where
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M "= M =p=0and v1 = v}, it is convement to choose the follewing basis instead
of eq. (A28]:

e = [«z‘hq, - 7 (¥, = 98) » = (¥, + 95,) v,bN] L (a3)
The mass matrix is then
-2 = - mae (v v, 4 kot (v, +9B,) (432)

where v = v; = v2. Note that in the supersymmetric limit the neutral Higgs boson
spectrum is myy = myy = My and mys = mgz [see discussion below eq. (3.20}],

where my = v/2 hv. We therefore define the ziggsino state:
o — < 2
¢ = ( (¢31 ¢H2)/\/_) (A33)
1A,

and the higgsino state:

I3 ( (w?fl +‘:ff2)/\/§) (A34)

which are both four-component Dirae spinors. In addition, we have the photino

()

which is a four-component Majorana spinor. In the supersymmetric limit, we see that
the photino is massless, EZ?' = myz and ﬁi = mypy. The massive supersymmetric
multiplets are then identified as (H;¢; Z2°) and (H], HS, Re N/v/2, Im N/+/2; k); and
the (¥;+) supermultiplet stays massless.

i“inally, we can compute the values of the diagonalizing matrix N [see eqs. {A21)

and (A29)] which produces the diagonal mass matrix given by eq. (A32). The result is:
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[ cos fw sin 0 0

—(1/v2)sin8w (1/v2)cosby 1/2 —1/2

N = —(¢/V2)sinbw (i/v2)cosbw —i/2 i/2
0 0 /2 1/2
\ 0 0 if2 if2

o

0

1/V3

—i/V2 ]

(A36)

A few subtleties are worth mentioning. The factors of 7 in the third and fifth rows have

been chosen so that the neutralino eigenvalues are all non-negative. This is possible

because of the appearance of N* in eq. {A21). {An alternative method is to allow for

negative mass eigenvalues for some of the neutralinos. Then one must multiply the

corresponding neutralino spinors by vs.) Using eq. (A36), one can read off the physical

neutralino states by examining the rows of N. For example, the first row corresponds

to the photino given in eq. (A16b). However, using this method, one gets {in terms

of four-component fermions) Marjorana fermions (i.e., the X¢) rather than the Dirac

fermions given by egs. (A33) and (A34). In the supersymmetric limit the resulting

Majorana spinors can be defined as follows:

~ _ (¥ :o_ f{)
. (‘J’i) M (E:'

where 1 = 1,2 and o; and &; are defined below:

i o= :—sxz+% (3, _d)f‘fz)]
iy = _}2, :—a,—iz(d:?ﬁ tb}’fz)]

6 = [ T (v + o) |

i = :¢N—%(’f’°1+¢f%)]

(A37)

(438)

(A39)

{A40)

(A41)

In terms of our previous notation, X$ = ¥, ig,a = ?{’,2 and X35 = k3 5- The factors of

¢ in egs. (A39) and {A41) correspond to the factors of ¢ in the matrix N [eq. (A36)];
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these factors insure that the neutralino masses are ail non-negative. Of course, the

physical content of eq. (A37) is identical to egs. (A33) and (A34). Namely, a neutral

Dirac fermion is equivalent to two Marjorana fermions which are degeneraie in mass.

The appearance of the factors of ¢ in eqs. (A39) and (A41) seems less mysterious
if we write out the corresponding four-component equations. In the chiral basis where

~5 = (_01 (1’), eq. {A39) can be written as

~ i ~ 1 -~ ~

Y5z = —= |2 — —=(H1— H; : A42

7 |7 55 - (442)

In eq. (A42), the factor of ¢ is an irrelevant phase factor which we shall dispose of in

the next section (see eqs. (A50) and (A51)). The factor of 5 is important and insures
that the mass of & is non-negative.

The H 5(':’5{;’ rules are easily obtained in the supersymmetric limit. The matrices

@' and R’' which appear in eq. {4.54) take on a simple form:

[0 0 0 0 0\
2 0 1-z i(1+z)
1
R 0 0 2 {l+z) —1+4=z Ad3a
Q 13 cosbu | (1+2) (A43a)
0 1-z 1+ =) 2z 0
- \0 i(1+2) -1+z 0 2z
R" =0 (A43b)
where
Tz = m . (A44)
g
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3. THE PROBLEM OF NEGATIVE MASS EIGENVALUES - -

In the previous two sections of this appendix, we have defined the diagonalizing
matrices U,V [eq. (A5)] and N [eq. (A21)] such that the diagonal elements of the
mass matrices were real and non-negative. It is sometimes more convenient to allow
the (real) mass eigenvalues to be either positive or negative. If the mass eigenvalue is
negative, then one must replace the corresponding four-component eigenspinor ¥ by

75X in the interaction Lagrangian. Let us see how this works out in practice. Replace
egs. (A4),{A5), (A20) and (A21) by the following:

X7 =Wyvl, (i,7=12) (445a)
x; =Uyd¥; (1,7 =1,2) (A45b)
X2 =Zyde,  (hi=1,...,n) (Ad5e)
UXW = diag (m ML), mo ML) (A46)
2’27 = diag (a M, ..., M) (447)

where n is the number of neutralino states (either four or five in this paper), “diag”
means a diagonal matrix (with the diagonal entries listed in parentheses), the M; are
non-negative masses and ¢; and n; are either +1. U, W and Z are unitary matrices.
Technically, one determines the matrices by solving the eigenvalue problem for XX T,
XtX and Y1Y. This determines the diagonal elements of egs. (A46) and (A47) up
to a sign. We can arrange the phases of these mairices to give non-negative mass
eigenvalues as we did in previous sections of the appendix. In this section, we allow
for the appearance of negative eigenvalues as shown in eqgs. (A46) and (A47). The
question then arises: how will this change the Feynman rules which we have derived

in sects. 4 and 5.

We demand that the Lagrangian contain only non-negative masses for the charginos

and neutralinos. In two-component notation, what appears in the Lagrangian is
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(summe§ over 7): : -
~Lm = 0 M7 (G + X X) + 6 M (60 + 12 %0) (448)

We require that in four-component notation, eq. (A48) must read:
“Lm = MR+ MO R (449)

This implies that we must define our charginos and neutralino fields as follows:

+
o X'
XF = (niPL+ Pr) (’k““‘) (A50)
~o X;
Xi = (E,’ Py + PR) (_ o) (A51)
Xi
Note that for ¢; = —1, Pp — P = 5 which confirms the statement made earlier. [For

€& = 1,PL + Pr = 1 and there is no change from egs. (A6) and (A22).] In order to
see how this affects interaction terms, all we need to do is determine how eqs. (A13)
and (A25) change. Clearly, only the equations involving Py change (since P} = Pp,
Pi = Pr and PLPg = 0). The new results are:

PLW = P, (Wiym %+ W3 n2 %e) (452)
- PLH = Py (Whm i+ Wsyn%2) (A453)
PoH, =PL Y Z}0h 6% (A54)
J
PrH; = Pp Z Ziis2 X2 - (A55)

}

If we compare now with egs. (A13a)-(A13c} and (A25), we can make the following

identification:

Vii = niWy (no sum over 1) (A56)
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N X: — Zy X (no sum overi) . — (A5T)

-~

NLXD — 6255 (no sum overz) . (A58)

In egs. (A57) and (A58), we have used the arrow to mean “make the replacement”
since if it were an equality, then egs. {A57) and (A58) would be incompatible. Equa-
tions {A56)—(A58) [or eq. {A59) below] is the appropriate recipe for using in the Feyn-
man rules stated in sections 4 and 5 if negative mass eigenvalues are obtained. Note
that eq. {A57) also implies the substitution rule ;“fN‘-*j — i;’Z,’; Thus, in 2 Feynman
rule where the X7 is annshilated, N,; is replaced by €;Z}; [see eq. (A58)]. But, if the
X; is created, Nz'*j is replaced by Z:-‘;-.

There is a second alternative: egs. (A57) and {A58) can be replaced by:

Ny = e:./2 Zij (no sum over 1) . (A59)
This satisfies the requirement that egs. (A57) and (A58) have opposite signs when
¢; = —1 since then E:-/ 2=y changes sign under complex conjugation.

We give two simple examples of the above procedure by examining the supersym-
metric limit. First, the chargino mass matrix, X is off-diagonal and real symmetric.
It can therefore be diagonalized by a single real orthogonal matrix W = U and the
resulting-eigenvalues are £my. By eq. (A56) we see that V; = Uij and Vo; = —Uy;
which confirms eq. (A8). Second, the neutralino mass matrix, Y, is ofi-diagonal and
real symmetric. It can be diagonalized by a real orthogonal matrix Z and has five
eigenvalues: 0, £mgz, Tmy. By eq. (A59), N3; = 1Z3; and Ng; = 255, Ny = Z; for
¢ = 1,2,4. This explains the appearance of the factors of 7 in eq. {A36). However,
when it comes to the Feynman rules involving neutralinos, it is perfectly acceptable
to make the replacement (A57) and (A58) instead of using eq. (A59). This procedure
has the advantage that it avoids the proliferation of factors of ¢’s in the rules where
the).r are not really needed. In the above example, the two alternatives correspond to

defining the eigenstate corresponding to the mass eigenvalue of —mz to be ivs¢; or
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75¢2 (corresponding to egs. {A42) and (A51), respectively). Thus the respective Feyn-
man rules involving one incoming ¢; field differ by a factor of . Of course, in the end,

the physical consequences of either set of rules are identical.
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APPENDIXB . -

EXTENSION TO MORE THAN ONE GENERATION
OF QUARKS AND SCALAR-QUARKS

Although we have confined the discussion in this paper to the case of one generation
of quarks {and scalar-quarks), the extension to multigenerations is straightforward.
However, one must be careful since, @ priors, the Cabibbo-Kobayashi-Maskawa(CKM)
{38} angles in the scalar-quark sector can be different from the usual CKM angles which
appear in the quark sector [39—40)]. The precise details are a model dependent question,
although the absence of flavor-changing neutral currents does impose nontrivial (but
not impossible) constraints on the model-building [39-40]. In this appendix we shall
briefly indicate some of the changes which occur for the multigeneration case. If we
put in the generational indices in eq. (3.4), we obtain for the terms involving the

scalar-quarks:
Wr = & [ffbﬂf QL Dy + £3°Q% HY f}b] (B1)

where f1 and f; are now matrices in generation space.

Equation (B1} leads to the following terms in the supersymmetric Lagrangian

(using two-component notation for the fermions):

2 1 W

2 | & 84;84;
t,}

==Y “"’8”2 $i%; + hec. (B2)

where A; is a generic notation for the scalar fields in eq. (B1}. Our first task is to
diagonalize the quark mass matrix thereby identifying f and f; in eq. {B1). Here,
we can simply use the same mixing formalism which we employed for the charginos in

appendix A. We denote the two-component “interaction” eigenstates as:

YQp = (¢Q1b’¢sz) (B3a)

vy = (¥u,.¥D,) (B3b)
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corresponding to the left- and right-handed quarks, respectively, where 4 is a generation

label. Tﬁe quark eigenstates of definite mass are defined by:

Gia = Viap ¥ (B4a)

Nia = Uiah YRy (B4b)

where U;, V; (i=1,2) are unitary matrices. The four-component quark spinors are then:

Uog = (%b?la) 3 doa. - (w—an) (Bs)
Yu. ¥p.

Ug = (Ela) 3 dy = (Eza) - (BG)
Ma N2a

We can simply transcribe the desired results from egs. (A4)-(A6). The quark mass

term is given by

2
—Lm = Z YR, Xiab Y@ + hc. (BT7a)
i=1
2
= ) e My & +hec. (B7b)
i=1

where M; are the diagonal quark mass matrices:

M, =M, = diag (mu1, Mu2, ... ,) (B8a)
M, = M; = diag (mqg1, maa, - ) (B8b)

and the quark mass matrices X; are obtained by inserting eq. (B1) into eq. (B2) and
setting < Hf >= v:dy;.
Xigp = U2 fga (Bga)
Xowp = v1 f3* . (B9b)
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X; and M; are related by: - - .-
Urx; vl = M; . (B10)
From egs. (A11)~{A13), we find, for example:
Pruos = PRUpecup Pru,s = Pr Vl?aa Up (Bl]-a)

PRdoa :PRU2badb 3 PLdOG = PLV;Emdb (Bllb)

These equations immediately yield the CKM maitrix (denoted by K):

g _
where
K =wv . (B13)

The GIM mechanism [43] insures that the ¢g{Z°,~, H°) vertices are flavor diagonal.
However, the CKM matrix appears in the ¢17, HT interactions. Using egs. (Bila-b),
we find:

sin 8

¥y

— 0N 3 _
qu'q'zHi = (Ug Xz V) )cd d. PrLug H™ + h.c.

(B14)
cosf3

+ (vixiv)) @ PrdH* +he.
- Vo ed

which has been obtained from egs. (B1}-(B2) using eqgs. (4.1a-b) and (B9a-b). This

equation may be cast in a familiar form using:

cos 3 _ sin B _ g (B15)
L] v2 ‘\/§ my
With the help of egs. (B10) and (B13) we obtain:
. g —
Log,at = N H'w [PRKMjtanj + PL My K cot 8] d + h.c. (B16)
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We now turn to the scalar-quark interactions.- First we consider just those terms
which ap.pear when there is no supersymmetry breaking. The D-terms [which arise
from gauge interactions—see eqs. (3.5-3.6)| are diagonal in the “inieraction” basis so
we focus on the terms which arise from the first term in eq. (B2). First consider the

scalar-quark mass terms which are obtained by setting < Hf >= v;6;;. The result is:

— LY = &g (Xz ij) dor + iyg (Xl XI) R
(B17)
+dy (XIXz) dop + 5y, (XIXI) ol

where the scalar-quark fields 4,7 = lea, d,. = éza, Uop = ffg and d,p = 5;, are
vectors in generational space and the subscript zero denotes “interaction” eigenstates.
In the supersymmetric limit, eq. (B17) is the only source of scalar-quark mass terms
and we see that the scalar-quarks and quarks have identical mass matrices. When
supersymmetry breaking is introduced, additional contributions to the scalar-quark
masses are obtained [see eq. (4.17)], some of which need not be diagonal in the “in-
teraction” basis. In the scalar-quark sector, one has an additional complication in
that mixing is possible between ¢y and §r of different generations. To simplify the
remaining discussion, we will neglect §z—§r mixing in what follows ( see Duncan [40]

for further comments). We then introduce the mass eigenstates:
GiLa = Viab GioLs (B18a)
%iRe = Ulgs GioRe (B18b)

in analogy with eq. (B4).

Let us now survey the scalar-quark interactions to see how the mixing matrices

enter. The §GW = interaction involves the super-CKM matrix:

ot

K = WV, (B19)

in analogy with egs. (B12),(B13), whereas the §§(Z°,v) interactions are flavor

diagonal. The ¢¢H and ¢gHH vertices are more complicated. Before we study
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these vertices, it is convenient to introduce some additional notation. We define

new matrices:

T, = Vvl (i = 1,2) (B20)
B; = UpUt (f =1,2) . (B21)

Using this notation, we now exhibit the structure of the §§H and §GH H interaction:

Lint = Lr+Lp+ Lireax (B22a)

Lr = — dyByMEBldphy — @By M2 Bl ighs
— & T2 [M3hs+ KT M2 KR T]dp — G370 [M2 hs + KM K he| T iz
+ {d5 By Kt My 0, B g b
+ dy Ty M} K he+ KT M2 Ro| T g 4+ e ! (B225)
The h;(z = 1, ..., 9) are combinations of one or two Higgs fields. Explicit expres-
sions for the h; are listed in table 4. The terms in eq. (B22a) which are not pro-
portional to the quark masses have their origin in the D-terms {denoted by £p and
are generation-diagonal in the “interaction” basis. Finally, Lpreqax in eq. (B22a) refers

to terms proportional to g, Ay or A;. These terms mix gz with §r and can make

the scalar-quark mixing problem substantially more complicated. We will continue to

ignore these terms in this appendix.”

* In some low-energy supergravity models, §,-§g mixing tends to be small except for
the case of the {. Because mixing angles involving the t—quark tend to be small,
it should be adequate to deal with the -t mixing after the generational mixing has
_been included. However, the reader should be warned that for some physical applications
(such as the electric dipole moment of the neutron), the above approximations are not

adequate and one must treat the full scalar-quark mixing problem correctly (A. I. Sanda,
private communication).
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Equation (B22) can be simplified considerably. by making certain model assump-
tions. Here, we follow the analysis of Duncan [40]. We denote the scalar-quark squared
mass matrix (before diagonalization) by }?:ZL and )??R where ¢t = 1,2 corresponds to

up—type and down-type flavors, respectively:

~Lm = Z: ‘ﬁoRa X?Rab Giorb + (ﬁoLa Xt'zLa.b GioLb - (323)

t
In many low-energy supergravity models, one finds that at the Planck scale, £,, differs
from the supersymmetric mass term given by eq. (B17) by a universal generation
independent mass term. However, one must use the renormalization group to evolve

down to low-energies. At the low energy scale, Duncan finds [40]:

Xy =mpu1+udxx] (=12 (B24)
Ry =l uQ1 + wBxIx0 + B x]x, (B250)
Ry = mbyu)1 + X% + WDx]x (B255)

wher'e I is the identity matrtix generation space. The dimensionless numbers u{*) are
model-dependent, typically of 0(1) [40]. The extra term in )??L (z = 1,2) as compared
to )?3'212 arises due to the difference in g7, and §g interactions given in eq. {B22b).

We find that )’E?R is easily diagonalized: using eq. (B10)}, it follows from eqgs. (B21)
and eq. {(B24) that:

U, =U; , (i=1,2) (B26a)
B, =1

(B26b)

In order to diagonalize X‘?L, we consider two special cases:

Casg 1: p®=o0. In this case, we see that f;, = V; (+ = 1,2), which implies that

K = K and I'; = I. That is, there is only one CKM matrix for W—-interactions with

quarks and scalar-quarks. The scalar-quarks—Higgs-boson interactions [eq. {B22b)]
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simplify significantly since I'; = B; = I. Tree-level flavor-changing neutral currents
due to }f"(}',-z,a}'j;, (¢ # 7) vertices do exist {e.g., KMgKT is not diagonal}, although
they tend to be suppressed by small mixing angles and quark mass differences. (Note
that in this case, §,—¢r mixing can be easily treated since it decouples from the
intergenerational scalar-quark mixing.)

CASE 2: NEGLECT TERMS PROPORTIONAL TO X:f X, IN EQ. {(B25).  Thisis

suggested in supergravity models where a large top-quark mass is responsible for the
SU(2)xU(1) breaking in the low-energy effective theory. Then V; = V, = V; since
both up and down flavors of §i are now diagonalized by the same unitary matrix
which diagonalizes the (left-handed} up-quark mass matrix. In this case, K = I'y = I
and 'y = K.

Our final task is to see the effect of generational mixing on the ¢gX* and ¢4X°
interactions (see sect. 5). We first focus on the pieces of these interactions which arise
from the second term of eq. (B2). This simply requires us to put the generational

indices correctly in the terms proportional to quark masses in egs. (5.1) and (5.4).

As an example, one term which appears in eq. (5.1) is T, PLX1d, H [where we

have used eq. (B9)]. Using the results summarized in table 5, it is simple to verify that

%, PpXi1dor = wPLM,KT1dp . (B27)
The remaining terms are calculated in a similar manner. The terms proportional
to g and ¢’ in egs. (5.1) and (5.4) are generation-diagonal using the “interaction”
ecigenstates. The correct generalization of the ¢gX* [eq. (5.3)] and ¢4%° {eq. (5.5)]

interactions is summarized in table 6, which exhibits a few noteworthy features.

First, in general there are exactly five independent generational matrices which
arise when describing interactions of quarks and scalar-quarks: K, I‘j and BI
(t = 1,2). As argued above, eq. (B26), we expect to find B; = I which reduces
the Inumber of independent matrices to three. These remarks are also true for the

other interactions previously studied, since the super—CKM matrix is not independent
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but can be written as K= I‘1KI‘I. If we make further simplifications (e.g., CASES 1

and 11 above), then all generational matrices are related to the CKM matrix,” K.

Second, in the most general case, the ¢§X° interaction terms are flavor nondiagonal.
One must therefore be careful lest ones mode! predict flavor changing neutral current
processes at too large a rate. In CASE I the ¢§X° interaction is exactly flavor diagonal.
However, CASE 11 probably represents a more realistic supergravity model. In such a
model, the utX® vertex is flavor-diagonal, but the dJSZ" vertex is flavor nondiagonal
(as emphasized in ref. [40]). Note that these arguments can also be extended to the

g9q interaction which is given by:
Lygg = —V29.T5, (afa Prgc Tl d, — 7, Pr §BY, @ + hec. ) (B29)

where 2 sums over u and d-type quarks, 7 and k are quark color indices, ¢ is the gluino

color index and a and b are generational labels.

The entire discussion of this appendix can be equally well applied to leptons. Since
neutrinos are massless in the Standard Model, there is no CKM matrix for leptons and
we may set X; = My = 0 and K = I in the above formulas when applying them to
leptons. Furthermore, X; can be chosen diagonal because all interactions involving
leptons and scalar-leptons conserve individual lepton numbers (one for each genera-
tion). Using eqs. (B24),(B25), we see that by choosing X, diagonal, one automatically
obtains diagonal scalar-lepton mass matrices (again, a consequence of lepton number
conservation). This is so, despite the fact that both charged and neutral scalar-leptons
of different generations differ in mass-squared (proportional to the difference of the
corresponding charged-lepton squared masses). Unlike in the scalar-quark sector, the
inclusion of £ 1—£gr mixing is straightforward since there is no communication among

different generations.

* Note in particular that a “right-handed ckM matrix? (U, Ui) never appears in the theory.
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Table 1
We list the gauge and matter multiplets of the super symmetric SU(2)xU(1)
model. The charge @ is obtained via @ = T3 + y/2. The labels are as follows:
a = 1,2,3 labels the SU(2) triplet of gauge bosons and 1,5 = 1,2 are SU(2)

indices. Labels referring to multiple generations of quarks, leptons and their

scalar partners are suppressed.

Fermionic
Superfield Boson Fields Partners SU(2)w Y
Gauge
Multiplets
1% ye A triplet 0
v V! At singlet 0
Matter
Multiplets
L L=(%, €r) (v,e7 )L doublet -1
B scalar leptons [ EE e singlet 9
13, Q= (g, dr)  (w.d)L doublet 1/3
U scalar quarks { U = up uf, singlet  —4/3
D D= c'i'*R dg singlet 2/3
-~ j o _ _
Hy Hi (‘c,bH1 , 1,bH1) doublet 1
Hy Higgs bosons { H} (1!)}}_)}2, 1[)%2) doublet 1
N N YN singlet 1]
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Table 2
Using this table, we can convert Feynman rules for X§§ vertices (where X is a
one- or two-particle state) from the §;—gr basis to the §;—g; basis. f V (Xﬁ:c:f;-)

is the desired Feynman rule (i,5 = 1 or 2), then
v (Xﬁ;é}) - Y TV (X&};J;)
kd=L,R

where Tij;; is the appropriate entry in the table below. For the case of identical

scalar-quarks, simply replace the symbol » (or d} with d {or u) in all expressions.

iy dr ig dr i7 dp ip dr
uy dy cosf, cosdy sinf, sind, cos 8, sinfy sin 8y cosfy
%) dy —cos 8, sinfy sinf, cosfy cos @y cosly —sinf, sindy
wy dy —sind, cosfy cos @, sinfy —sinf, sindy cos By cosly
%y da sinf, sinfy cos 8y cosby —sinfy, cosfy —cosfy sinfy
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Table 3

We list coefficients which appear in the rules given in figs. 17 and 18 for

HHqgq four-point vertices. The index j labels the neutral Higgs boson, while

k = 1,2 corresponds to up-type and down-type flavors, respectively.

(7) Cy Dj, Dijy
1 —cos 2¢ (sin? &)/ sin? B {cos?® @)/ cos®
2 cos 2a (cos? )/ sin® B (sin® &)/ cos? 8
3 cos2f cot? g3 tan? g
(7) Ry S5 T;
1 sin{a + B) (sin czcos 8)/ sin® 3 (cos asin 8)/ cos® B
2 cos(a + §) (cosacosB)/sin? B —(sinasinf)/cos? B
3 tcos 28 tcot? B —{tan? B
(k) Dy Ey Fy
1 1/sin® B m?tan? mi cot? 8
2 —1/cos? B m? cot? B mZtan? g

a3



Table 4

We list the fields h; which appear in eqs. (B22b). The following notation is

used below: ¢y = Hysina+ Hicos v, ¢ = Hy cosa — Hy sina.
hi = ha+ ke
he = hs+ hy

hs = mwgcos B {432 + ZrVgc(}s? [(‘,62)2 + (H$)? sin® ﬁ]}

hy = (LT2‘°t2ﬁ) HYH-

2miy,

m—wim {¢1 + m [(451)2 + (H§)2 cos? 5] }

2t{an -
he = (g_r) HYH
me

1 = \/Emwsgi'nﬁcosﬂ = {1+?ﬂ%—w [chos(ﬁ—a)+H§sin(ﬁ—a)]}

_ gtanf - g T
hg = V2 mw H [1+ 2my cos B (¢2 — L Hj smﬂ)]

_ geotf g g 770
h,g = \/imw H [1+W (¢1+?’H3 COSﬁ):I
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Table 5 . L

Summary of quark and scalar-quark mixing and mass matrices. We denote the
interaction-eigenstate quarks and scalar-quarks by ¢;o and §;, respectively, where: = 1,2
corresponds to up-type and down-type flavors respectively. The corresponding mass
eigenstates are ¢; and g;. If N is the number of generations, then the symbols ¢, § above
all are N-vectors. All other symbols below are N x N matrices. We neglect ¢, — ¢p
mixing here so that ¢;; and §;p are the appropriate scalar-quark mass eigenstates. In
the expressions below, do not sum over the repeated index 1.

I. Quark Sector
XT =va f2
XT =wu fi
Prgio =P V,-T g
Prgio = PrUT g
U X; Vol = M;

My = My = diag{mu, mc, my, ...

Md = M2 = diag(md, g, My, - --

K=W%WV,
I1. Scalar—Quark Sector
X

2
Xin

o

gioL, = V,-T Gir
Gior = Ul @ir
f;i )?ezL ‘Z‘T = M}

HEL
ﬁ:’* )?ER ﬁ? - ﬁqz,'}z
[ A
ITE. Other Mixing Mairices
A
B;=UUF

fi (i = 1,2} are the Yukawa couplings of quarks
to the Higgs bosons H;, where < H; >= v,.
Pr=1(1-17)

Pp=1(1-"s)

Kobayashi-Maskawa matrix

mass matrix of §;z in interaction basis

mass matrix of §;g in interaction basis

diagonal g;, mass-matrix
diagonal ¢z mass-matrix

Super-Kobayashi-Maskawa matrix

Note that K =Ty KT}
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Table 6

Effect of generational mixing on ¢dX+ and ¢gx° vertices. The unmixed terms
obtained from egs. (5.3) and (5.5) respectively are listed in column 1. Column 2
lists the appropriate combination of mixing matrices which will appear if
“interaction eigenstates” are replaced by mass eigenstates. Columns 3 and 4 list two in-
Ui, !7, = V; and
CASE 1. U; = U, f;l = 772 = Vi. We denote the diagonal quark mass matrices by

teresting special cases of column 2: CASE I 5',- =

o~

M, and Mj. Definitions of mixing and mass matrices are summarized in table 5.

g§x*
Interaction Term Mixing Madtrices CASE 1 CASE I
%o Pr dor KT} K I
do Pr iior kxtrl el it
%o Pr X1 dor M, KT} M, K M, I
@ Pr X dor KM, B} KM, K M,
do Pr, X3 iior, M, kt ol M, KT M; K1
d, Pr X| fior Kt M, B} k't M, Kt M,
49X
CASE H
Interaction Term Mixing Matrices CASE 1 1=1 1 =2
%o Pr Gio, r] I I Kt
%io PL Gior Bj I I I
%o PL Xi GioL M, 1] M, M, MKl
Gio Pr X] Gior M; B] M M, M,
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FIGURE CAPTIONS . _

Fig. 1 . Feynman rules for W*H¥H; vertices. The direction of momentum is

indicated above.

Fig. 2 . Feynman rules for (Z°,4)HTH™ and Z°H}H?. Note that Bose symmetry
forbids ¢ = 7. In addition, CP-invariance forbids a Z°HY H? vertex.

Fig. 3 . Feynman rules for HYW*W~ and H{Z°Z° vertices (i = 1,2). All other

possible triliner HVV vertices vanish at tree level.
Fig. 4 . Feynman rules for four-point Higgs boson-gauge boson couplings-1.
Fig. 5 . Feynman rules for four-point Higgs boson-gauge boson couplings-II.

Fig. 6 . Feynman rules for four-point Higgs boson-gauge boson couplings—IIl. Note
that in (e) the sign of the rule depends on the direction of the flow of electric charge
(as indicated).

Fig. 7 . Feynman rules for H%u and H?dd, (i = 1,2).

Fig. 8 . Feynman rules for Hjuw, Hgda and H*ud. In the charged-Higgs boson

intera,cti:)ns, all quark mixing angles have been neglected. (See Appendix B.)

Fig. 9 . Feynman rules for H*H~HY and [H{]® vertices (i=1,2). CP-invariance
forbids ¢ = 3.

Fig. 10. Feynman rules for HY H H? vertices (¢ # 7). CP-invariance forbids vertices

where H3 occurs singly.

Fig. 11. Feynman rules for the H+4d vertices in the G1.—gr basis. To get appropriate

rules in the ¢1—-g2 basis, see table 2 and discussion in text following eq. {4.19).
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Fig. 12. Feynman rules for the Hy4# vertices in the §z-gr basis. Rules for the H3uu
vertices are obtained by the following replacement: o — « + (r/2), and # unchanged
[i.e., sine — cos @, cos o« — —sin o and cos(B+ &) — —sin(B + «). To get appropriate

rules in the §1-¢: basis, see table 2 and discussion in text following eq. (4.19)].

Fig. 13. Feynman rules for the Hf(ﬁ vertices in the gz—gp basis. See caption to fig. 12
for the recipe for obtaining rules for the chf(f vertices and the appropriate rules in

the §,—q basis.

Fig. 14. Feynman rules for the H{#giy, and HgJRcEL vertices. To obtain the appro-
priate rules in the ¢§;—¢s basis, simply replace L with 1 and R with 2. The directions
of the scalar—quark momenta are indicated by the arrows. Reversing the arrows leads

to an extra factor of —1 as depicted in fig. 15.

Fig. 15. Behavior of the Feynman rules for H5§§ vertices under a change of sign of
the scalar-quark momentum. The indices 1, 7 refer to either the §r—dz or §—§» bases.

Note that this rule implies that for ¢ = 7, the vertex vanishes.

Fig. 16. A class of diagrams which contribute to the production of neutral Higgs
bosons via gluon fusion. The internal loop consists of all possible flavors of scalar—
quarks, ¢z, and §¢g.

Fig. 17. Feynman rules for four-point interactions among scalar-quarks and neutral
Higgs bosons. The index j labels the neutral Higgs bosons, while £k = 1,2 corresponds
to up-type and down-type flavors, respectively. For definitions of the quantum numbers
T3 and e, see table 1. The coefficients C;, D;; and Dy are given in table 3. (Note that
there is no H3H?§§ vertex, y = 1,2.)

Fig. 18. Feynman rules for the four-point interaction among scalar-quarks and Higgs
bosons. See caption to fig. 17. The coefficients Ey, Fy, R;, S5 and Ty are defined in
table 3. (Note that there is no H§H"JRE.R vertex)
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Fig. 19. Feynman rules for the H°Y* ¥~ vertices where_f(’?: are the charginos, with

masses %"'). The matrices Q;; and Ry; are defined in egs. (4.33) and {4.36),

respectively.

Fig. 20. (a) Feynman rules for the Ht¥% ¥° vertex. The matrices Q‘-’J-L and Q‘-'J-R
are defined in egs. (4.41) and (4.42), respectively; (b) Feynman rules for the H* ¥~ %
vertex. Here we assume that the photino corresponds to one of the neutralino mass

eigenstates (X7§).

Fig. 21. Feynman rules for the H °£:’“x";’ vertices where X7 are the neutralinos with
masses AFZ;-{O). The index ¢ runs from 1, ..., 4 or 5 depending on whether one has a
gauge singlet NV field (and its higgsino partner) in the theory. The symmetric matrices

i and R/ are defined in eqs. (4.48) and (4.51), respectively.

Fig. 22. Feynman rules for the ggx* vertices. The matrices U and V are defined in
egs. (A4) and (A5). The arrows denote direction of flow of electric charge: +1 in the
case of X* and ey in the case of ¢ and § (e, = 2/3, e; = —1/3). The charge conjugation
matrix, C, appears when there is a discontinuous flow of fermion number as indicated
by the arrows. Diagrams should always be read in such a way that the guark lines
are traversed in the usual direction, f.e., opposite to its arrow. This rule indicates
the proper placement of suppressed spinor indices. See appendix D of ref. [18] for a

discussion on Feynman rules involving the charge conjugation matrix.

Fig. 23. Feynman rules for the ggx+ vertices. See caption to fig. 22. This figure

differs from fig. 22 in that all arrows are reversed.

Fig. 24. Feynman rules for the ¢§x° vertices. The quark charges are given by e, =
2/3, eg = —1/3. The matrices N and N’ are defined in egs (A20), (A21) and {A23).
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