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1 Introduction

The observation of neutrino oscillations [1–3] shows that lepton flavor is not conserved in
nature. This raises the question of whether similar flavor violation might occur among charged
leptons. In the Standard Model (SM), neutrino loop amplitudes for charged lepton flavor
violation (CLFV) are suppressed by the ratio of neutrino and W masses, ∆m2

ν/m
2
W ≈ 10−24,

yielding rates too small to be observed experimentally. Consequently, any observation of
CLFV would be evidence of new physics. There are many plausible modifications of the
SM — including supersymmetry, leptoquarks, heavy neutrinos, or a more complicated Higgs
sector — that could induce observable levels of CLFV. Current upper bounds on CLFV
branching ratios thus provide stringent constraints on such UV SM extensions [4].

Among the most sensitive CLFV measurements are those performed using stopped muons.
The current best limits on the CLFV branching ratios B(µ+ → e+γ) < 4.2 × 10−13 and
B(µ+ → e+e−e+) < 1.2× 10−12 were obtained by MEG [5] and SINDRUM [6], respectively.
These bounds, given at 90% confidence level (C.L.), should be significantly improved by the
ongoing experiments MEG II [7] and Mu3e [8]. Upcoming experiments can also search for
exotic CLFV decays of muons involving light new physics states [9–16].

The main focus of the present work is the neutrinoless conversion of a muon bound
to an atomic nucleus, µ− + (A,Z) → e− + (A,Z). Experiments under construction at
Fermilab and J-PARC are expected to improve limits on the µ → e conversion rate by
approximately four orders of magnitude. Here we provide a systematic treatment of the
theory of µ→ e conversion based on effective field theory, with the goal of creating a general
analysis framework for relating experimental bounds to high-scale sources of CLFV.

The quantity extracted from experiment is the branching ratio for µ→ e conversion

B(µ− → e−) = Γ [µ− + (A,Z) → e− + (A,Z)]
Γ [µ− + (A,Z) → νµ + (A,Z − 1)] , (1.1)

with respect to ordinary muon capture in a nucleus with A nucleons and Z protons. SM
muon capture rates are generally available for targets of interest, due to the long history
of measurements [17]. The most stringent current bounds on µ → e branching ratios are
B(µ−+Ti→ e−+Ti) < 6.1× 10−13 [18] and B(µ−+Au→ e−+Au) < 7× 10−13 [19]. Both of
these 90% C.L. limits were established by the SINDRUM II collaboration. By the end of this
decade, the new Fermilab (Mu2e [20, 21]) and J-PARC (COMET [22, 23]) experiments are
expected to reach branching ratio sensitivities of about 10−17, probing new physics scales in
excess of 104 TeV. Both experiments will measure electrons produced from the conversion
of a muon bound in the 1s atomic orbital of 27Al.

The properties of nuclear targets — the nucleon number A and proton number Z,
the ground-state spin and isospin, and their responses to operators that involve orbital
angular momentum ℓ⃗, spin s⃗, or spin-orbit correlations ℓ⃗ · s⃗ — affect the relationship between
µ→ e conversion bounds and underlying sources of CLFV. Comparable branching ratio limits
obtained from different nuclear targets will differ in their sensitivity to a given source of CLFV.
This is an attractive feature of µ→ e conversion that distinguishes this process from µ→ eγ

or µ→ 3e: by using several nuclear targets, one can place multiple constraints on the CLFV
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mechanism. Were µ → e conversion to be discovered in a given target, one could conduct
additional studies with suitably selected targets to further characterize the CLFV source.

On the other hand, the interpretation of experimental limits on µ → e conversion is,
compared to µ→ eγ and µ→ 3e, significantly more complicated due to the use of nuclear
targets. Although the literature on µ→ e conversion is extensive,1 most existing work has
focused on the special case of coherent conversion, where the leading response is governed
by a scalar, isoscalar operator that sums coherently over all nucleons in the target. With
this operator choice, the nuclear physics simplifies dramatically, allowing one to compute
the µ → e conversion rate using experimentally determined proton and neutron densities
(see, e.g., ref. [35]).

While studies of the coherent operator have provided useful constraints on sources of
CLFV [36, 44, 46], symmetry arguments show that six nuclear response functions arise in
a general description of elastic µ → e conversion [24]. As we do not know a priori which
CLFV source is realized in nature, a proper interpretation of experiment requires that such
a general description be used. The situation is reminiscent of another elastic process, the
scattering of a heavy dark matter (DM) particle off a nucleus, the process exploited in DM
direct-detection searches. Over the last decade, an attractive formalism was developed for DM
direct detection based on a tower of effective theories that link the low-energy nuclear scale,
where experiments are performed, to the UV scale where the new DM interactions reside. The
starting point is the nonrelativistic effective theory (NRET) [47, 48], consisting of all possible
heavy DM-nucleon interactions that can be constructed from the available hermitian operators.
This guarantees that all symmetry-allowed nuclear responses will be generated. The NRET
is ultimately connected to UV theories of DM through a series of matchings involving a
tower of effective field theories [49, 50], encoded in a combination of DirectDM [51] and
DMFormFactor [52] computer codes, that can then be used to make leading-order predictions
for direct-detection scattering rates for (almost) any heavy DM theory.

In this manuscript, we develop a similar bottom-up approach for µ→ e conversion, with
the corresponding tower of EFTs shown in figure 1. Starting from a UV theory and integrating
out heavy mediators, one recovers the SM augmented by higher dimension operators — the so-
called Standard Model Effective Field Theory (SMEFT). Only a subset of SMEFT operators
are relevant for the problem at hand — those that induce µ → e transitions. At the
electroweak scale the Z and W gauge bosons, the Higgs, and the top quark are integrated
out, giving rise to Weak Effective Theory (WET) describing CLFV interactions with currents
constructed from quark, gluon or electromagnetic gauge fields, containing either five (above b
quark mass), four (above roughly the c quark mass) or three (u, d, s) active quark flavors. As
our default choice we take the three-flavor WET at µ = 2GeV, a scale choice most commonly
used in lattice QCD evaluations of the hadronic matrix elements. The three-flavor WET can
be matched nonperturbatively onto covariant nucleon-level interactions, describing physics
below Λχ ≈ mρ ≈ 1GeV, where the dynamics due to the omitted degrees of freedom (such as
the vector meson resonances) is included through the momentum exchange dependence of the
single-nucleon form factors. Because µ→ e is characterized by the three-momentum transfer

1Table I of ref. [24] provides a relatively thorough overview of previous elastic µ → e conversion stud-
ies [25–45].
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Figure 1. The effective field theories — and their respective thresholds — relevant for describing µ→ e

conversion, as well as the corresponding computer codes (in grey boxes). The MuonBridge repository,
introduced as part of this manuscript, consists of the interconnected packages MuonConverter,
Mu2e_NRET, and Elastic (orange boxes).

of size q ≈ mµ, a more efficient NRET can then be obtained by nonrelativistic reduction.
The NRET basis is compatible with the standard nonrelativistic many-body methods, like
the shell model, that are typically employed in nuclear response function evaluations.

The prerequisite nuclear-level NRET was developed recently in refs. [24, 42], together
with the accompanying public code Mu2e_NRET_v1, available in Mathematica and Python. In
this work, we introduce an updated code, Mu2e_NRET_v2, with two major changes. First, we
extend the code to include the leading muon-velocity-suppressed contributions, which were
calculated in ref. [24] but not included in Mu2e_NRET_v1. Second, to facilitate the matching
between NRET and WET, we extend the set of covariant scalar- and vector-mediated
interactions discussed in ref. [24] to include tensor mediators. In addition, we provide a new
open-source code MuonConverter (also available in Python and Mathematica), that facilitates
the connection between NRET and WET and provides an interface to SMEFT through
optional linking to dedicated external codes wilson [53] and DsixTools [54, 55], see figure 1.

To allow for independent usage, MuonConverter, Mu2e_NRET, and Elastic — a database
of shell-model one-body density matrices that are required for the evaluation of NRET
nuclear form factors — are integrated together within a single parent repository, MuonBridge,
containing documentation, examples, and the appropriate instructions for assembling the
independent components, depending on the specific goals of user.

The paper is organized as follows: in section 2 we introduce a convenient WET operator
basis up to dimension 7 for use in µ→ e conversion calculations. Section 3 describes the NRET
basis of 26 operators that arises in an expansion to linear order in v⃗N and v⃗µ, and the matching
from WET to the NRET is performed in section 4. As an illustration, in section 5 we perform
the EFT matching for two new physics models where µ→ e conversion is mediated by either
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heavy leptoquarks or light axion-like particles (ALPs). We also derive model-independent
bounds on individual SMEFT operators. Section 6 contains our summary and outlook.

Several appendices are included with further technical details: appendix A describes
the MuonBridge repository, appendix B contains intermediate results for WET to NRET
matching, including the mapping from WET onto the covariant Dirac basis of 32 operators
used as an intermediate step in the matching. Appendix C extends the results of section 4
to the case of second-class currents. Details on the numerical evaluation of nucleon form
factors are presented in appendix D. Finally, in appendix E we give the translation between
our WET basis and the dimension-6 WET three-flavor basis of ref. [56], which is used by
the MuonConverter to interface with other existing SMEFT/WET software.

2 Weak effective theory basis

The tower of EFTs in figure 1 relates UV-scale physics to the nuclear scale where µ → e

conversion experiments are performed. In this manuscript, we focus on the last three steps
in the ladder of EFT matchings: the Weak Effective Theory (WET) at µ = 2GeV, the
matching to NRET, and the prediction of conversion rates for nuclear targets of experimental
interest using state-of-the-art shell-model methods to evaluate nuclear response functions. The
formalism for relating the UV physics at an arbitrary high scale Λ to the WET at µ = 2GeV is,
on the other hand, well developed [56–62] and available in the form of public codes [53, 55, 63].

The part of the WET Lagrangian at µ = 2GeV relevant for describing the µ → e

conversion process is given by2

LWET
eff =

∑
a,d

Ĉ(d)
a Q(d)

a , (2.1)

where the Q(d)
a are CLFV operators of mass dimension d (defined below) and the Ĉ(d)

a

are dimensionful Wilson coefficients. By introducing an energy scale ΛCLFV associated
with the CLFV physics, we can express these dimensionful Wilson coefficients in terms of
dimensionless O(1) Wilson coefficients C(d)

a as

Ĉ(d)
a = C(d)

a

Λd−4
CLFV

. (2.2)

In what follows, we retain operators up to and including dimension 7. The full set of
dimension-5 operators consists of the magnetic and electric dipoles,

Q(5)
1 = e

8π2 (ēσ
αβµ)Fαβ , Q(5)

2 = e

8π2 (ēσ
αβiγ5µ)Fαβ , (2.3)

where Fαβ is the electromagnetic field strength tensor. The dimension-6 operators are

Q(6)
1,q = (ēγαµ)(q̄γαq) , Q(6)

2,q = (ēγαγ5µ)(q̄γαq) , (2.4)

Q(6)
3,q = (ēγαµ)(q̄γαγ5q) , Q(6)

4,q = (ēγαγ5µ)(q̄γαγ5q) . (2.5)
2Our basis at µ = 2 GeV follows from [64], though we choose instead the operator basis with currents of

definite parity. We keep only the subset of operators that give rise to µ → e transitions and assume this is the
only flavor-violating effect.
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Q(6)
5,q = (ēµ)(q̄q) , Q(6)

6,q = (ēiγ5µ)(q̄q) , (2.6)

Q(6)
7,q = (ēµ)(q̄iγ5q) , Q(6)

8,q = (ēiγ5µ)(q̄iγ5q) , (2.7)

Q(6)
9,q = (ēσαβµ)(q̄σαβq) , Q(6)

10,q = (ēiσαβγ5µ)(q̄σαβq) . (2.8)

The quark label q = u, d, s denotes one of the three light quark flavors. We assume that the
CLFV interaction responsible for µ→ e conversion is flavor-conserving in the hadronic sector.

The dimension-7 basis includes 8 operators that couple to gauge bosons

Q(7)
1 = αs

12π (ēµ)G
aαβGaαβ , Q(7)

2 = αs
12π (ēiγ5µ)GaαβGaαβ , (2.9)

Q(7)
3 = αs

8π (ēµ)G
aαβG̃aαβ , Q(7)

4 = αs
8π (ēiγ5µ)GaαβG̃aαβ , (2.10)

Q(7)
5 = α

12π (ēµ)F
αβFαβ , Q(7)

6 = α

12π (ēiγ5µ)FαβFαβ , (2.11)

Q(7)
7 = α

8π (ēµ)F
αβF̃αβ , Q(7)

8 = α

8π (ēiγ5µ)FαβF̃αβ , (2.12)

where Gaαβ is the gluon field strength tensor and G̃αβ = 1
2ϵαβµνG

µν is its dual.3 The
electromagnetic dual F̃αβ is similarly defined. In order to complete the basis of dimension-7
CLFV operators, we introduce the following four-fermion operators with derivatives acting
inside the lepton currents

Q(7)
9,q = (ē

↔
i∂α µ) (q̄γαq) , Q(7)

10,q = (ēiγ5
↔
i∂α µ) (q̄γαq) , (2.13)

Q(7)
11,q = (ē

↔
i∂α µ) (q̄γαγ5q) , Q(7)

12,q = (ēiγ5
↔
i∂α µ) (q̄γαγ5q) , (2.14)

Q(7)
13,q = ∂α(ēγβµ) (q̄σαβq) , Q(7)

14,q = ∂α(ēγβγ5µ) (q̄σαβq) , (2.15)

Q(7)
15,q = ∂α(ēγβµ) (q̄iσαβγ5q) , Q(7)

16,q = ∂α(ēγβγ5µ) (q̄iσαβγ5q) , (2.16)

where ē
↔
i∂ν µ = ēi∂νµ − ē

←
i∂ν µ.

Instead of the operators Q(7)
13,q, . . . ,Q

(7)
16,q, one could use equations of motion to write a

more symmetric operator basis, with the derivatives acting on the quark currents

Q(7)
13,q = −(ēγαµ) (q̄

↔
iDα q) + 2mqQ(6)

1,q , (2.17)

Q(7)
14,q = −(ēγαγ5µ) (q̄

↔
iDα q) + 2mqQ(6)

2,q , (2.18)

Q(7)
15,q = −(ēγαµ) (q̄iγ5

↔
iDα q) , (2.19)

Q(7)
16,q = −(ēγαγ5µ) (q̄iγ5

↔
iDα q) . (2.20)

This reformulation demonstrates that our dimension-7 basis is equivalent to the basis in
ref. [64] (when restricted to those operators that can mediate µ→ e conversion). Our basis
is chosen to make the evaluation of hadronic matrix elements straightforward.

3 Nonrelativistic effective theory

The µ→ e conversion process results in momentum exchanges typical of the nuclear scale,
where the natural degrees of freedom for describing the strong interaction are nucleons. To

3We use the convention ϵ0123 = +1.
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make contact with experiments, the CLFV light-quark operator basis of section 2 must be
matched to the basis of CLFV single-nucleon operators. Just as the WET basis is organized
by a power-counting in mass dimension, the NRET basis must also be organized through an
expansion in small dimensionless parameters. Before introducing the single-nucleon CLFV
basis, we briefly review how the physics of µ→ e conversion motivates the particular form
of the nuclear-scale effective theory [24, 42] used in this work.

3.1 Kinematics

The µ− that gets captured in the nuclear Coulomb field quickly de-excites to the 1s orbital.
The muon’s binding energy Ebind

µ (defined to be positive) and the muon’s wave function
ψµ can be determined by numerically solving the Dirac equation for a potential sourced by
the experimentally known nuclear charge distribution. To the precision we work, screening
and other corrections arising from the Coulomb potential of the surrounding electron cloud
can be ignored.

We are interested in µ→ e transitions where the nucleus remains in the ground state.4
The three-momentum q⃗ of the outgoing electron is then given by

q⃗ 2 = MT

mµ +MT

[(
mµ − Ebind

µ

)2
−m2

e

]
, (3.1)

where we keep the first correction in mµ/MT , with MT , mµ, and me being the masses of
the target nucleus, muon, and electron, respectively. Once the energy of the electron is
known, the outgoing electron wave function can be obtained from numerical solutions of
the Dirac equation in the Coulomb field generated by the extended nuclear charge. As
the momentum transfer from the leptons to the nucleus is sufficient to require retention of
several electron partial waves, this has the potential to significantly complicate calculations.
Fortunately, the Coulomb-distorted waves can be very well approximated by much simpler
plane waves, evaluated for a shifted effective momentum qeff determined from the average
value of the Coulomb potential near the nucleus [24]. Numerically, the difference between
q and qeff is ≈ 5% in 27Al.

To motivate the form of the nuclear-scale effective theory, we note that:

1. The outgoing electron is highly relativistic, with Ee ≈ mµ: the correction due to the
muon binding energy Ebind

µ is small (Ebind
µ ≈ 0.463MeV in 27Al). The electron velocity

— defined in the NRET as the Galilean-invariant velocity with respect to the center of
mass of the final-state nucleus — thus has magnitude 1 (in units of c) and direction q̂,
the latter of which is, in principle, an observable. This leaves only the nonrelativistic
velocities of the bound-state nucleons and muon to be treated as operators, a task
ideally suited for NRET methods.

2. Relativistic corrections for the bound muon are roughly proportional to Zα/2. For light
nuclei such as 27Al, the muon is highly nonrelativistic, so that its Dirac wave function

4Experimentally, this is the preferred option as the resulting conversion electrons will be at the endpoint
of the SM background from µ → eνν̄ decays. In µ → e conversions where the nucleus transitions to an
excited state, the less energetic outgoing electron must compete with a larger SM background but may provide
additional information about the underlying CLFV mechanism [65].
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is dominated by its Schrödinger-like upper component. The muon’s velocity operator
v⃗µ thus enters the NRET as a correction generated by the suppressed lower component
of the Dirac solution. In the NRET, v⃗µ is defined as the Galilean-invariant velocity
associated with the motion of the bound muon with respect to the center of mass of
the initial-state nucleus. The effects of v⃗µ are limited to small numerical changes in
nuclear form factors: the v⃗µ operator plays no role in the selection rules that determine
the nuclear response functions.

3. Nucleons bound in a nucleus are only mildly relativistic, with typical velocities vavg ≈
0.1. We can therefore perform a nonrelativistic expansion of the nuclear charges
and currents. In the NRET, the nucleon velocity operator v⃗N stands for the set of
A − 1 independent nucleon Jacobi velocities, e.g., the Galilean-invariant velocities
v⃗N ≡ {(v⃗2 − v⃗1)/

√
2, (2v⃗3 − (v⃗1 + v⃗2))/

√
6, . . .}, where v⃗i is velocity operator for the

i-th nucleon and A is the nucleon number. See [24, 48] for details.

The available Hermitian operators that enter into the construction of the NRET CLFV
operators are: iq̂ where q̂ is the velocity of the outgoing ultra-relativistic electron, the nucleon
velocity operator v⃗N , and the respective lepton and nucleon spin operators, σ⃗L and σ⃗N .
Extending this set of building-block operators to include the muon velocity operator v⃗µ
generates the relativistic corrections associated with the lower component of the muon’s
Dirac wave function.

3.2 NRET basis

Working to the first order in the nucleon velocity v⃗N and neglecting the muon velocity v⃗µ,
there are 16 independent CLFV single-nucleon operators [24, 42],

O1 = 1L 1N , O′2 = 1L iq̂ · v⃗N , (3.2a)
O3 = 1L iq̂ · [v⃗N × σ⃗N ] , O4 = σ⃗L · σ⃗N , (3.2b)
O5 = σ⃗L · (iq̂ × v⃗N ) , O6 = iq̂ · σ⃗L iq̂ · σ⃗N , (3.2c)
O7 = 1L v⃗N · σ⃗N , O8 = σ⃗L · v⃗N , (3.2d)
O9 = σ⃗L · (iq̂ × σ⃗N ) , O10 = 1L iq̂ · σ⃗N , (3.2e)
O11 = iq̂ · σ⃗L 1N , O12 = σ⃗L · [v⃗N × σ⃗N ] , (3.2f)
O′13 = σ⃗L · (iq̂ × [v⃗N × σ⃗N ]) , O14 = iq̂ · σ⃗L v⃗N · σ⃗N , (3.2g)
O15 = iq̂ · σ⃗L iq̂ · [v⃗N × σ⃗N ] , O′16 = iq̂ · σ⃗L iq̂ · v⃗N . (3.2h)

This operator basis matches closely the one previously derived for dark matter direct detec-
tion [48]; we distinguish with a prime the operators for which there are significant differences.
The NRET operators Oi are understood to act between Pauli spinors ξs for muon, electron,
and nucleons. The leptonic current operators 1L or σ⃗L couple the 1s muon wave function to
the various distorted partial waves comprising the outgoing electron’s wave function.

The corresponding effective interaction can be expressed as

LNRET
eff =

∑
N=n,p

16∑
i=1

cNi ON
i + · · · , (3.3)
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where ellipses denote omitted corrections due to operators generated by v⃗µ, two-body currents
that arise in nuclear systems, etc. We refer to the numerical coefficients cNi as the low-energy
constants (LECs) of the NRET. They are the analogs of the Wilson coefficients Ĉ(d)

a in the
WET Lagrangian, eq. (2.1), and carry dimensions of 1/(mass)2. Strictly speaking, the LECs
are functions of q⃗ 2; however, for a given target the momentum transfer in µ→ e conversion
is a fixed quantity determined by kinematics, as in eq. (3.1). As a result, the NRET LECs
are genuine constants capable of encoding the exact momentum dependence that arises, for
example, from the exchange of light mediators with m2 ≲ q⃗ 2. Thus, the NRET formalism is
ideally suited to describe not just heavy mediators but also light new physics such as the
CLFV axion-like-particle scenario considered below in section 5.3.

In eq. (3.3) we have also introduced the index N to allow for the CLFV physics to
couple differently to protons vs. neutrons. Equivalently, we can work in terms of isoscalar
and isovector operators

LNRET
eff =

∑
τ=0,1

16∑
i=1

cτiOit
τ + · · · , (3.4)

where c0
i = (cpi + cni )/2, c1

i = (cpi − cni )/2, and t0 = 1, t1 = τ3 are the isospin matrices.
Working to first order in the nucleon velocity vN and neglecting the muon velocity vµ,

the µ → e conversion rate is given by [24, 42]

Γ(µ→ e) = 1
2π

q2
eff

1 + q/MT

∣∣ϕZeff
1s (⃗0)

∣∣2
×
∑
τ,τ ′

{[
Rττ

′
MMW

ττ ′
MM (qeff) +Rττ

′
Σ′′Σ′′W ττ ′

Σ′′Σ′′(qeff) +Rττ
′

Σ′Σ′W ττ ′
Σ′Σ′(qeff)

]

+ q2
eff
m2
N

[
Rττ

′
Φ′′Φ′′W ττ ′

Φ′′Φ′′(qeff) +Rττ
′

Φ̃′Φ̃′W
ττ ′

Φ̃′Φ̃′(qeff) +Rττ
′

∆∆W
ττ ′
∆∆(qeff)

]
−2qeff
mN

[
Rττ

′
Φ′′MW

ττ ′
Φ′′M (qeff) +Rττ

′
∆Σ′W ττ ′

∆Σ′(qeff)
]}
,

(3.5)

where

Rττ
′

MM = cτ1c
τ ′∗
1 + cτ11c

τ ′∗
11 , (3.6)

Rττ
′

Σ′′Σ′′ =
(
cτ4 − cτ6

)(
cτ

′
4 − cτ

′
6
)∗ + cτ10c

τ ′∗
10 , (3.7)

Rττ
′

Σ′Σ′ = cτ4c
τ ′∗
4 + cτ9c

τ ′∗
9 , (3.8)

Rττ
′

Φ′′Φ′′ = cτ3c
τ ′∗
3 + (cτ12 − cτ15)(cτ

′∗
12 − cτ

′∗
15 ), (3.9)

Rττ
′

Φ̃′Φ̃′ = cτ12c
τ ′∗
12 + cτ13c

τ ′∗
13 , (3.10)

Rττ
′

∆∆ = cτ5c
τ ′∗
5 + cτ8c

τ ′∗
8 , (3.11)

Rττ
′

Φ′′M = Re[cτ3cτ
′∗

1 − (cτ12 − cτ15)cτ
′∗

11 ], (3.12)
Rττ

′
∆Σ′ = Re[cτ5cτ

′∗
4 + cτ8c

τ ′∗
9 ], (3.13)

and ϕZeff
1s (⃗0) is the 1s wave function of a muonic atom with effective charge Zeff , evaluated

at the origin. The leptonic response functions Rττ ′i are bilinears in the NRET LECs. The
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specific combinations define what can (and thus what cannot) be determined about CLFV
from elastic µ → e conversion. Note that the nuclear response functions W ττ ′

i depend on
the modified momentum of the outgoing electron wave qeff .

In the long wavelength limit, qeff → 0, the coherently enhanced response function W ττ
MM

counts the number of protons and neutrons in the nucleus, while W ττ ′
Σ′Σ′ and W ττ ′

Σ′′Σ′′ measure
the transverse and longitudinal nuclear spin responses, respectively. The velocity-dependent
response functions W ττ ′

Φ′′Φ′′ , W ττ ′

Φ̃′Φ̃′ , and W ττ ′
∆∆ appear in the rate formula multiplied by a factor

of q2
eff/m

2
N , reflecting their origin as responses sensitive to the composite structure of the

nucleus, generated by operators like the orbital angular momentum ℓ⃗. As such, contributions
from these responses vanish in the limit of a point-like nucleus, qeff → 0.

One of these response functions, W ττ ′
Φ′′Φ′′ , becomes coherent in nuclei like 27Al where

one of two spin-orbit partner shells j = ℓ± 1/2 is occupied [48]. The response Φ′′, which is
generically associated with tensor mediators, corresponds to the longitudinal projection of the
nuclear spin-velocity current v⃗N × σ⃗N and can interfere with the charge multipole operator
M . (Similarly, there can be interference between the transverse-magnetic response ∆ and
the transverse-electric response Σ′.) In 27Al, which is a nearly ideal target for maximizing
the coherence of Φ′′, the interference term W 00

Φ′′M contributes ≈ 5% of the total response (for
equal NRET coefficients, e.g., c0

1 = c0
3). Along with the usual coherent coupling to nuclear

charge, these two distinct sources of nuclear enhancements of operators lead to a hierarchy in
the associated response functions for 27Al. In the case of isoscalar couplings — assuming
that the relevant NRET coefficients are roughly equal in magnitude — the hierarchy is

W 00
MM ∼ O(A2) ≫ qeff

mN
W 00
MΦ′′ ≫

{
W 00

Σ′Σ′ ,W 00
Σ′′Σ′′ ,

q2
eff
m2
N

W 00
Φ′′Φ′′

}
≫
{
q2

eff
m2
N

W 00
∆∆,

q2
eff
m2
N

W 00
Φ̃′Φ̃′

}
.

(3.14)
This assumes, as is the case for 27Al, that the nuclear ground state carries angular

momentum j ≥ 1, so that all nuclear response functions can contribute. The above hierarchy
of nuclear response functions illustrates that the nucleus can alter the naïve nucleon-level
counting based on the small parameter |v⃗N |; coherence can elevate operators to be of the
allowed strength.

The six response functions (and the two interference terms) constitute the most general
set of symmetry-allowed nuclear response functions. That is, the constraints of the nuclear
ground state — angular momentum, parity, and time-reversal — restrict the operators that
can contribute to the elastic µ→ e conversion process, so that the 16 leading single-nucleon
operators embed into just six nuclear response functions and two interference terms. The
general form is generated at O(vN ); the extension to O(vµ) adds small form factor corrections,
but does not change any of the essential features of the CLFV physics.

If one includes all first-order effects of velocity, whether associated with the nucleon or
muon, the NRET operator basis in eq. (3.3) expands to [24]

LNRET
eff =

∑
N=n,p

16∑
i=1

cNi ON
i +

∑
N=n,p

∑
i∈I

bNi O
f,N
i , (3.15)

where the second sum is over ten new operators linear in v⃗µ, indexed by the set I =
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{2, 3, 5, 7, 8, 12, 13, 14, 15, 16}, which arise from the muon’s lower component,

Of ′
2 = iq̂ · v⃗µ2 1N , Of

3 = iq̂ ·
[
v⃗µ
2 × σ⃗L

]
1N , (3.16a)

Of
5 =

(
iq̂ × v⃗µ

2

)
· σ⃗N , Of

7 = v⃗µ
2 · σ⃗L 1N , (3.16b)

Of
8 = v⃗µ

2 · σ⃗N , Of
12 =

[
v⃗µ
2 × σ⃗L

]
· σ⃗N , (3.16c)

Of ′
13 =

(
iq̂ ×

[
v⃗µ
2 × σ⃗L

])
· σ⃗N , Of

14 = v⃗µ
2 · σ⃗L iq̂ · σ⃗N , (3.16d)

Of
15 = iq̂ ·

[
v⃗µ
2 × σ⃗L

]
iq̂ · σ⃗N , Of ′

16 = iq̂ · v⃗µ2 iq̂ · σ⃗N , (3.16e)

with the bNi the associated LECs. Although there are only 10 additional operators, they are
labeled in analogy with the 16 upper component operators: Oi ↔ Of

i under the exchange
v⃗N ↔ v⃗µ/2. Here we employ v⃗µ/2 because this operator, when acting on the muon’s upper
Dirac component, generates the lower component. The complete expression for Γ(µ→ e) with
all velocities handled through linear order is given in eq. (B3) of ref. [24]. The new public
computer codes discussed in appendix A are the first to properly include the effects of v⃗µ.

4 Matching quarks and gluons to nucleons

We turn next to the nonperturbative matching from WET to NRET, starting with single
nucleon matrix elements.

4.1 Nucleon matrix elements

For the nucleon matrix elements, we use a notation closely resembling that of refs. [51, 66]5

⟨N ′|q̄γµq|N⟩ = ū′N

[
F
q/N
1 (q2

rel.)γµ −
i

2mN
F
q/N
2 (q2

rel.)σµνqν
]
uN , (4.1)

⟨N ′|q̄γµγ5q|N⟩ = ū′N

[
F
q/N
A (q2

rel.)γµγ5 −
1

2mN
F
q/N
P ′ (q2

rel.)γ5q
µ
]
uN , (4.2)

⟨N ′|mq q̄q|N⟩ = F
q/N
S (q2

rel) ū′NuN , (4.3)

⟨N ′|mq q̄iγ5q|N⟩ = F
q/N
P (q2

rel) ū′N iγ5uN , (4.4)

⟨N ′| αs12πG
aµνGaµν |N⟩ = FNG (q2

rel.) ū′NuN , (4.5)

⟨N ′|αs8πG
aµνG̃aµν |N⟩ = −FN

G̃
(q2

rel.) ū′N iγ5uN , (4.6)

⟨N ′|q̄σµνq|N⟩ = ū′N

[
F̂
q/N
T,0 (q2

rel.)σµν −
i

2mN
γ[µqν]F̂

q/N
T,1 (q2

rel.)

− i

m2
N

q[µk
ν]
12F̂

q/N
T,2 (q2

rel.)
]
uN ,

(4.7)

5The difference is in the definitions of the tensor form factors, F̂
q/N
T,i ≡ F

q/N
T,i /mq, where F

q/N
T,i , with

i = 0, 1, 2, are the form factors in [51, 66]. This choice reflects the normalization of the tensor current operators
in WET basis, section 2. For scalar and pseudoscalar form factors F

q/N
S , F

q/N
P we keep the mq prefactors in

the currents, since the form factors thus defined are more precisely known. Note that the definitions of Fγ̃ and
FG̃ form factors include minus signs in order to match [51, 66], where the ϵ0123 = +1 convention was used.
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⟨N ′| α12πF
µνFµν |N⟩ = FNγ (q2

rel.) ū′NuN , (4.8)

⟨N ′| α8πF
µνF̃µν |N⟩ = −FNγ̃ (q2

rel.) ū′N iγ5uN . (4.9)

Here we shortened ⟨N ′| = ⟨N(k2)|, |N⟩ = |N(k1)⟩, ū′N = ūN (k2), uN = uN (k1) and
introduced qµ = kµ1 − kµ2 , kµ12 = kµ1 + kµ2 , with

q2
rel. ≡ qµq

µ ≃ −|q⃗ |2 ≡ −q2. (4.10)

Compared to ref. [51], the definition of the momentum exchange qµ differs by a sign (but the
definitions of form factors coincide). For covariant derivative we use Dµψ = (∂µ + ieQψAµ)ψ,
where Qψ is the electric charge. The antisymmetrized tensors are defined as γ[µqν] = γµqν −
γνqµ, and similarly for q[µk

ν]
12 and γ[µ/qγν]. For CP-violating light new physics, additional

form factors appear on right-hand sides (r.h.s.) of eqs. (4.1), (4.2), and (4.7). These are
expected to be small and are discussed in appendix C. The numerical values of the form
factors for µ → e conversion in 27Al are derived in appendix D.

4.2 Covariant nucleon-level interactions

To facilitate matching between nuclear NRET and WET, we follow ref. [24] and introduce
an intermediate step — a set of covariant single-nucleon operators and corresponding LECs.
We denote the resulting interaction as

Lcov
eff =

∑
N=n,p

32∑
j=1

dNj L
j,N
int . (4.11)

The Lorentz covariant operators Lj,Nint are listed in appendix B.2, in the first columns of
tables 1 and 2. The operators in table 1 appear in ref. [24], where all covariant interactions
generated from scalar or vector mediators were enumerated. Here, we extend this set to
include tensor-mediated interactions, listed in the first column of table 2.

The WET is matched onto Lcov
eff , relating the LECs of the former to the CLFV coefficients

dNj of the nucleon-level interaction that we employ below Λχ. In this nonperturbative
matching, we use the definitions of the nucleon matrix elements in eqs. (4.1)–(4.9), with
the corresponding results for dNj coefficients listed in appendix B.1, eqs. (B.10)–(B.41). The
dNi coefficients — expressed in the proton/neutron basis — are readily converted into the
isospin basis via

d0
i =

1
2 (dpi + dni ) , d1

i =
1
2 (dpi − dni ) . (4.12)

4.3 The NRET

Because the momentum scale in µ → e conversion is set by mµ ≪ mN , we can perform
a nonrelativistic reduction of the covariant operators, Lj,Nint , to obtain the NRET. This
reduces the number of nucleon-level operators while generating an interaction compatible
with standard nuclear calculations, which are typically nonrelativistic. Since we consider
only elastic µ → e conversion, and since the nuclear recoil energy ≈ m2

µ/MT is extremely
small, the reduction can be done with q0 ≡ 0.
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The relativistic reduction of operators L1−20
int — the interactions arising from scalar and

vector mediators — to their corresponding NRET forms was done in ref. [24]. For convenience
those results are summarized in appendix B.2, with the resulting ON

i and Of,N
i displayed in

tables 1 and 3, respectively. The corresponding results from the nonrelativistic reduction of
12 new tensor-mediated interactions are given in tables 2 and 4, respectively. (We note that
certain tensor operators were also considered recently in [67].) The final columns of these
tables relate the relativistic {dNi } to the appropriate {cNi , bNi } NRET LEC combinations.

Combining with the results for the dNi in appendix B.1, we then obtain for the cNi

cN1 = − α

πq
Ĉ(5)

1
∑
q

QqF
q/N
1 +

∑
q

Ĉ(6)
1,qF

q/N
1 +

∑
q

1
mq

Ĉ(6)
5,qF

q/N
S

− q

mN

∑
q

Ĉ(6)
9,q
(
F̂
q/N
T,0 − F̂

q/N
T,1 + 4F̂ q/NT,2

)
+ Ĉ(7)

1 FNG + Ĉ(7)
5 FNγ +

(
q +m+

)∑
q

Ĉ(7)
9,qF

q/N
1

− q2

2mN

∑
q

Ĉ(7)
13,q

[
F̂
q/N
T,0 − F̂

q/N
T,1 +

(
4 + q2

m2
N

)
F̂
q/N
T,2

]
,

(4.13)

cN2 = i
[∑

q

Ĉ(6)
1,qF

q/N
1 +m+

∑
q

Ĉ(7)
9,qF

q/N
1 + q2

2mN

∑
q

Ĉ(7)
13,q

(
F̂
q/N
T,1 − 4F̂ q/NT,2

)]
, (4.14)

cN3 = − 2
∑
q

Ĉ(6)
9,q F̂

q/N
T,0 − q

∑
q

Ĉ(7)
13,q

(
F̂
q/N
T,0 + q2

m2
N

F̂
q/N
T,2

)
, (4.15)

cN4 = − α

2πmN
Ĉ(5)

1
∑
q

Qq
(
F
q/N
1 + F

q/N
2

)
− q

2mN

∑
q

Ĉ(6)
1,q
(
F
q/N
1 + F

q/N
2

)
−
∑
q

Ĉ(6)
4,qF

q/N
A + 2

∑
q

Ĉ(6)
9,q F̂

q/N
T,0 − q

2mN

(
m+ − q

)∑
q

Ĉ(7)
9,q
(
F
q/N
1 + F

q/N
2

)
+ i(m− − q)

∑
q

Ĉ(7)
12,qF

q/N
A − q

∑
q

Ĉ(7)
13,q

[
F̂
q/N
T,0 + q2

4m2
N

F̂
q/N
T,1

]
,

(4.16)

cN5 = − α

πq

∑
q

Ĉ(5)
1 QqF

q/N
1 −

∑
q

Ĉ(6)
1,qF

q/N
1

− (m+ − q)
∑
q

Ĉ(7)
9,qF

q/N
1 − q2

2mN

∑
q

Ĉ(7)
13,q

(
F̂
q/N
T,1 − 4F̂ q/NT,2

)
,

(4.17)

cN6 = − α

2πmN

∑
q

Ĉ(5)
1 Qq

(
F
q/N
1 + F

q/N
2

)
− q

2mN

∑
q

Ĉ(6)
1,q
(
F
q/N
1 + F

q/N
2

)
− qm+

4m2
N

∑
q

Ĉ(6)
4,qF

q/N
P ′ − q

2mN

∑
q

1
mq

Ĉ(6)
8,qF

q/N
P + q

2mN

(
Ĉ(7)

4 FN
G̃

+ Ĉ(7)
8 FNγ̃

)
− (m+ − q)q

2mN

∑
q

Ĉ(7)
9,q
(
F
q/N
1 + F

q/N
2

)
− iq

∑
q

Ĉ(7)
12,q

(
F
q/N
A − m+m−

4m2
N

F
q/N
P ′

)
− q

∑
q

Ĉ(7)
13,q

(
F̂
q/N
T,0 + q2

4m2
N

F̂
q/N
T,1

)
+ iq

∑
q

Ĉ(7)
16,qF̂

q/N
T,0 ,

(4.18)

cN7 =
∑
q

Ĉ(6)
3,qF

q/N
A + (m+ + q)

∑
q

Ĉ(7)
11,qF

q/N
A , (4.19)
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cN8 = i
α

πq

∑
q

Ĉ(5)
2 QqF

q/N
1 −

∑
q

Ĉ(6)
2,qF

q/N
1

+ i(m− − q)
∑
q

Ĉ(7)
10,qF

q/N
1 − q2

2mN

∑
q

Ĉ(7)
14,q

(
F̂
q/N
T,1 − 4F̂ q/NT,2

)
,

(4.20)

cN9 = i
α

2πmN

∑
q

Ĉ(5)
2 Qq

(
F
q/N
1 + F

q/N
2

)
− q

2mN

∑
q

Ĉ(6)
2,q
(
F
q/N
1 + F

q/N
2

)
−
∑
q

Ĉ(6)
3,qF

q/N
A − 2i

∑
q

Ĉ(6)
10,qF̂

q/N
T,0

+ i
(m− − q)q

2mN

∑
q

Ĉ(7)
10,q
(
F
q/N
1 + F

q/N
2

)
− (m+ − q)

∑
q

Ĉ(7)
11,qF

q/N
A

− q
∑
q

Ĉ(7)
14,q

(
F̂
q/N
T,0 + q2

4m2
N

F̂
q/N
T,1

)
,

(4.21)

cN10 = i
∑
q

Ĉ(6)
3,q

(
F
q/N
A − q m−

4m2
N

F
q/N
P ′

)
+ q

2mN

∑
q

1
mq

Ĉ(6)
7,qF

q/N
P − 2

∑
q

Ĉ(6)
10,qF̂

q/N
T,0

− q

2mN

(
Ĉ(7)

3 FN
G̃

+ Ĉ(7)
7 FNγ̃

)
+ im+

∑
q

Ĉ(7)
11,q

(
F
q/N
A − qm−

4m2
N

F
q/N
P ′

)
− q

∑
q

Ĉ(7)
15,qF̂

q/N
T,0 ,

(4.22)

cN11 = α

πq

∑
q

Ĉ(5)
2 QqF

q/N
1 − i

∑
q

Ĉ(6)
2,qF

q/N
1 −

∑
q

1
mq

Ĉ(6)
6,qF

q/N
S

+ q

mN

∑
q

Ĉ(6)
10,q

(
F̂
q/N
T,0 − F̂

q/N
T,1 + 4F̂ q/NT,2

)
− C(7)

2 FNG − C(7)
6 FNγ

− (m− + q)
∑
q

Ĉ(7)
10,qF

q/N
1 + i

q2

2mN

∑
q

Ĉ(7)
14,q

[
F̂
q/N
T,0 − F̂

q/N
T,1 +

(
4 + q2

m2
N

)
F̂
q/N
T,2

]
,

(4.23)

cN12 = − 2
∑
q

Ĉ(6)
10,qF̂

q/N
T,0 + q

∑
q

Ĉ(7)
15,qF̂

q/N
T,0 , (4.24)

cN13 = − 2i
∑
q

Ĉ(6)
9,q F̂

q/N
T,0 + q

∑
q

Ĉ(7)
16,qF̂

q/N
T,0 , (4.25)

cN14 = − i
∑
q

Ĉ(6)
4,qF

q/N
A − (m− + q)

∑
q

Ĉ(7)
12,qF

q/N
A , (4.26)

cN15 = iq
∑
q

Ĉ(7)
14,q

(
F̂
q/N
T,0 + q2

m2
N

F̂
q/N
T,2

)
+ q

∑
q

Ĉ(7)
15,qF̂

q/N
T,0 , (4.27)

cN16 = i
α

πq

∑
q

Ĉ(5)
2 QqF

q/N
1 − iq

∑
q

Ĉ(7)
10,qF

q/N
1 , (4.28)

where all the form factors are understood to be evaluated at q2
rel. = −q2

eff , and we defined

m± = mµ ±me. (4.29)

Similarly, one can express the bNi coefficients in terms of Ĉ(d)
i . While the bNi coefficients are

included in our numerical results, as well as in the MuonBridge computer code, they generate
only subleading corrections. As a result, they are not relevant to the present qualitative
discussion, and we do not show their matching explicitly.
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Figure 2. A graphical representation of how different WET operators (2.1) contribute to the µ→ e

conversion rate, in which we keep the terms that remain in the vN , vµ → 0 limit, as well as the
coherently enhanced but velocity-suppressed contribution from the WΦ′′Φ′′ response function. The
NRET coefficients cN

i receive contributions from WET Wilson coefficients Ĉ(d)
i , as denoted with

the corresponding colored circles (only the cN
i that contribute to the numerically leading response

functions are considered). These then enter the leptonic response factors Rττ ′

OO′ that multiply various
nuclear response functions, as indicated. For instance, Ĉ(5)

1 contributes to cN
1 , c

N
4 and cN

6 , and these
lead to W ττ ′

MM , W ττ ′

Σ′Σ′ , W ττ ′

Σ′′Σ′′ nuclear responses.

Note that the NRET LECs cNi are in general complex. First of all, the Wilson coefficients
Ĉ

(d)
i can be complex, given that the lepton-flavor-violating WET operators in eq. (2.1) are

not hermitian (note though, that they are defined in such a way that they would have been
hermitian, had the leptonic currents been flavor conserving). However, even if Ĉ(d)

i are taken
to be real, the cNi are still complex in general, due to the appearance of explicit factors of i in
eqs. (4.13)–(4.28). These can be traced back to the fact that iq̂ used to construct the NRET
operators actually represents two operators, the electron velocity and the three-momentum
transfer, see the discussion in appendix A of ref. [24].

Using the results for cNi in eqs. (4.13)–(4.28), together with the rate formula in eq. (3.5)
and the known nuclear response functions, W ττ ′

a , one can obtain predictions for the µ→ e

conversion rate in terms of the WET Wilson coefficients Ĉ(d)
i . Here, we focus on the leading

contribution to Γ(µ → e), i.e., those terms that are nonzero in the vN , vµ → 0 limit,
supplemented by the coherently enhanced but velocity suppressed contribution from the
WΦ′′Φ′′ response function, which in general contributes at the same level as the spin-dependent
nuclear response functions, cf., eq. (3.14). The graphical representation of how the WET
Wilson coefficients Ĉ(d)

i map onto the leading prediction for the µ → e conversion rate is
shown in figure 2.
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We make several phenomenologically relevant observations:

• Dimension-5 WET operators Q(5)
1,2, i.e., the transition magnetic and electric moments,

induce the coherently enhanced spin-independent, W ττ ′
MM , as well as the spin-dependent,

W ττ ′
Σ′Σ′ , W ττ ′

Σ′′Σ′′ , nuclear responses. At dimension 6 also W ττ ′
Φ′′Φ′′ is generated (although

only from Ĉ(6)
9,q and Ĉ(6)

10,q).

• Even if only a single Wilson coefficient Ĉ(d)
i is nonzero, this always results in a nonzero

contribution from at least one of the numerically leading nuclear response functions.

• All 16 NRET operators are generated by the dimension d ≤ 7 WET basis. At dimension
d ≤ 6, all NRET operators except ON

15 are generated.

• Not all NRET operators ON
i in eq. (3.15) contribute to the above numerically leading

nuclear response functions: cN5 , cN8 , and cN13 contribute only to numerically subleading
nuclear responses, whereas cN2 , cN7 , cN14, and cN16 do not contribute at all to elastic
µ→ e conversion due to the parity and time-reversal properties of the nuclear response
functions that they generate [24].

• Working at this numerically leading order, certain WET Wilson coefficients contribute
to just a single NRET operator:6 the Wilson coefficients Ĉ(6)

5,q , Ĉ
(7)
1 , Ĉ

(7)
5 only contribute

to cN1 ; Ĉ(6)
6,q , Ĉ

(7)
2 , Ĉ

(7)
6 only to cN11; Ĉ(6)

7,q , Ĉ
(7)
3 , Ĉ

(7)
7 only to cN10; and Ĉ

(6)
8,q , Ĉ

(7)
4 , Ĉ

(7)
8 only

to cN6 . The Wilson coefficients only contributing to a single cNi cannot be distinguished
from each other using measurements on different targets, since they always enter in the
same linear combination, unless the much smaller vµ suppressed relativistic corrections
and the small corrections from the q2 dependence of nucleon form factors can also
be taken into account (i.e., the total theoretical error on the prediction for Γ(µ→ e)
reaches the level where these corrections become relevant).

• The qeff dependence of CLFV coefficients Rττ ′MM , Rττ ′Σ′Σ′ , Rττ ′Σ′′Σ′′ and Rττ
′

Φ′′Φ′′ comes from
the q dependence of cNi in eqs. (4.13)–(4.28) (for heavy new physics the WET Wilson
coefficients C(d)

i are q independent). Since qeff depends only mildly on the chosen target
nucleus, the cNi entering the predictions for the µ→ e rate are effectively constant, i.e.,
independent of the nuclear target. In this limit there are only 12 combinations of cNi ,
i.e., the combinations multiplying Rττ ′MM , Rττ ′Σ′Σ′ , Rττ ′Σ′′Σ′′ and Rττ

′
Φ′′Φ′′ for τ (′) = 0, 1 that

can be measured.

At a future time when µ→ e conversion has been discovered in several different targets,
one could use the “bottom-up” approach to efficiently encode the CLFV physics in the
NRET LECs, which would then serve as constraints on generic UV models. Given existing
uncertainties in nuclear response calculations — perhaps in the range of tens of percent —
details like the variation of qeff with target could be neglected. (If our ability to compute
nuclear responses were ever to reach the few percent level, one would need to exercise

6We ignored for simplicity the quark flavor in this counting. A more precise statement is that a certain
linear combination of Ĉ

(6)
5,u, Ĉ

(6)
5,d , Ĉ

(6)
5,s , Ĉ

(7)
1 , Ĉ

(7)
5 enters cp

1, while a different linear combination enters cn
1 , and

similarly for the other cN
i .
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more care.) In general, one would not be able to determine individual LECS, but only the
combinations that appear in the expressions for the Rττ ′OO′ . To do more, one would need
additional constraints on CLFV, beyond those available from elastic µ → e conversion.

The NRET employs single-nucleon currents and charges, but could in principle be
extended to include a similar set of Galilean-invariant two-body operators. For certain cases,
like the Rayleigh operators, these two-body currents can be important [68]. Due to the
averaging properties of nuclei, most of the effects of such contributions (assuming they are
not treated explicitly) would be absorbed into the one-body LECs, making them effective,
as discussed in section IIIG of ref. [24]. While most of the missing physics would thus be
properly incorporated into the fitted LECs, one would need to account for the associated
renormalization and operator mixing, before relating empirically determined LECs to the
predictions of an underlying model.

5 Sample new physics models

Next we turn to a few examples of new physics models that can lead to µ→ e conversions.
In the “top-down” approach, our results can be used to obtain predictions for Γ(µ→ e) in
a particular UV model. In this case, one must first match the UV model onto SMEFT by
integrating out the mediators at scale µ ≈ mmediator, then RG evolve in SMEFT down to
µ ≈ mW , match onto WET, and finally RG evolve down to µ = 2GeV. At this point one can
then use our results, encoded in the MuonBridge code suite, to obtain the prediction for the
µ→ e transition rate. In section 5.1 we first illustrate the expected reach of the upcoming
µ→ e experiments in terms of bounds on single SMEFT Wilson coefficients. In sections 5.2
and 5.3, on the other hand, we use concrete new physics models. From the large array of
possible UV examples, we choose two that best highlight the strengths of our systematic
EFT based approach: µ → e conversions induced by leptoquark exchanges, which lead to
scalar, vector, and tensor currents (section 5.2), and µ → e conversions induced by light
pseudoscalar/ALP exchanges, which can also be covered by our formalism, but now with
q2-dependent Wilson coefficients Ĉ(d)

i (section 5.3).

5.1 Bounds on UV Wilson coefficients

We start by considering the case where the UV theory generates a single SMEFT operator
above the electroweak scale. This is a standard approach in phenomenological EFT analysis
used to estimate the scales that are being probed by experiments, without consideration
for the ability or inability of plausible new physics models to realize these single-operator
contributions.

For concreteness, let us consider a UV theory that, after integrating out the heavy degrees
of freedom at a scale µ = Λ (∼ heavy mediator mass), generates just a single dimension-6
SMEFT operator in the Warsaw basis

LSMEFT,UV = Ci
Λ2Qi. (5.1)

To arrive at the prediction for the µ→ e conversion rate, as described in section 3, one first
needs to RGE evolve from the scale µ = Λ to µ = 2GeV using the tower of EFTs, from
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SMEFT to WET with nf = 5 to WET with nf = 4 flavors followed by a tree-level matching
to WET with nf = 3, as shown in figure 1. We perform the one-loop RG running using
wilson [53] and then use MuonConverter to obtain the prediction for the µ→ e conversion
rate. Using the projected experimental sensitivity B(µ− +Al → e− +Al) < 10−17, we show
in figure 3 the implied bounds on ΛCLFV,i = Λ/

√
Ci, if no signal is found. We perform

the calculation for each dimension-6 CLFV SMEFT operator Qi in the Warsaw basis that
can induce µ → e transitions.

For each operator in figure 3, the bound is obtained by identifying the UV scale ΛCLFV,i
that, after one-loop RGE evolution to µ = 2GeV, produces a conversion rate saturating the
projected single-event sensitivities of the upcoming Mu2e and COMET experiments. The
magnitude of the initial Wilson coefficient, assuming Ci = 1, is set by Λ−2

CLFV,i and scanned
over ten equally spaced points in the range Λ−2

CLFV,i ∈ 10−17 − 10−4 GeV−2 corresponding to
new physics scales ΛCLFV,i ∼ 100 GeV − 105 TeV. The resulting conversion rates are then
interpolated as a function of ΛCLFV,i and a root-finding algorithm is utilized to obtain the
scale at which the conversion rate crosses the projected experimental limits. The running
of each operator is solved exactly via numerical integration of the one-loop RG equations
from µ = Λ to µ = 2GeV using wilson. In agreement with the leading log resummation,
the matchings between different thresholds are performed at tree level.

Operator-mixing induced by the one-loop running allows for non-zero limits to be placed
on the purely leptonic and off-diagonal semi-leptonic SMEFT operators. This treatment is
consistent as long as the logarithmically enhanced RG running contributions to dimension-six
operators are numerically leading and the finite terms from loop-level matching can be ignored.

5.2 Leptoquarks

Next, we use our computational framework to analyze the µ → e conversion rate in the
context of an explicit UV model. Specifically, we assume that the µ → e conversion is
generated by tree-level exchange of a leptoquark scalar R2, which then leads to vector, scalar
and tensor interactions, making it an ideal showcase for quantifying the relative magnitudes
and correlations between different nuclear responses. The leptoquark R2 is in the (3,2, 7/6)
representation of the SM gauge group, so that the interaction Lagrangian is given by [70]

L ⊃ −yRL2 ij ū
i
RR

a
2ϵ
abLj,bL + yLR2 ij ē

i
RR

a ∗
2 Qj,aL + h.c., (5.2)

where the summation over flavor indices, i, j = 1, 2, 3, and electroweak SU(2) indices a, b = 1, 2
is implicit, and we do not display the contraction of color indices.

Integrating out the leptoquark at tree level, cf. figure 4, gives the following nonzero
contributions to the SMEFT Wilson coefficients (we use the notation of refs. [54, 69]),

C12ii
ℓu = − 1

2m2
LQ
yRL2 i2y

RL∗
2 i1 , (5.3a)

Cii12
qe = − 1

2m2
LQ
yLR∗2 2i y

LR
2 1i, (5.3b)

C
(1),12ii
ℓequ = 2C(3),12ii

ℓequ = − 1
2m2

LQ
yLR∗2 2i y

RL∗
2 i1 , (5.3c)
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Figure 3. The energy scales probed by dimension-six SMEFT operators assuming the projected
experimental limits of the future Mu2e and COMET experiments, B(µ− +Al → e− +Al) < 10−17.
The notation is as in [54, 69].
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R2
5/3

(R2
2/3

)

µ−

e− u(d)

u(d)

e−

Figure 4. Diagram for tree-level contributions to µ→ e conversion mediated by scalar leptoquark
R2. Leptoquark superscripts indicate the electric charge of the exchanged particle.

C
(1),21ii
ℓequ = 2C(3),21ii

ℓequ = − 1
2m2

LQ
yLR2 i2y

RL
2 1i, (5.3d)

where mLQ is the leptoquark mass. The Wilson coefficients in eqs. (5.3a), (5.3b) multiply
vector four-fermion operators (ℓ̄1γµℓ2)(ūiγµui) and (q̄iγµqi)(ē1γµe2), respectively, while the
Wilson coefficients in eqs. (5.3c), (5.3d) with the superscript (1) [(3)] multiply scalar [tensor]
four-fermion operators of the form (ℓ̄a1e2)ϵab(q̄biui) [(ℓ̄a1σµνe2)ϵab(q̄biσµνui)] and with 1 ↔ 2
lepton flavor indices exchanged.

The above effective interactions introduce both spin-independent as well as spin-dependent
nuclear responses, when running down to low energies and matching onto NRET. Ignoring
for the moment the effect of RG running, integrating out the leptoquark results in the
SMEFT operators in eq. (5.3) and gives the following nonzero contributions to the WET
Wilson coefficients:

Ĉ(6)
1,u = −Ĉ(6)

4,u = − 1
8m2

LQ
λ+ , (5.4)

Ĉ(6)
2,u = −Ĉ(6)

3,u = − 1
8m2

LQ
λ− , (5.5)

Ĉ(6)
1,dj

= Ĉ(6)
2,dj

= −Ĉ(6)
3,dj

= −Ĉ(6)
4,dj

= − 1
8m2

LQ
λ′j , (5.6)

Ĉ(6)
5,u = −Ĉ(6)

8,u = 2Ĉ(6)
9,u = 1

8m2
LQ
λRL+ , (5.7)

Ĉ(6)
6,u = Ĉ(6)

7,u = 2Ĉ(6)
10,u = i

8m2
LQ
λRL− . (5.8)

The up-quark couplings are

λ± = c1Lc
∗
2L ± c2Rc

∗
1R, λRL± = c2Rc1L ± c∗2Lc

∗
1R, (5.9)

where (for i = 1, 2)

ciL = (yLR2 V †)i1, ciR = yRL2 1i, (5.10)

The coupling to the down quarks is (for j = 1, 2 down quark flavors)

λ′j = yLR2 1jy
LR∗
2 2j . (5.11)
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The NRET LECs that lead to coherently enhanced nuclear responses (again, ignoring
RGE effects) are given by

cN1 =− 1
8m2

LQ

{
λ+F

u/N
1 − λRL+

[ 1
mu

F
u/N
S − q

2mN

(
F̂
u/N
T,0 − F̂

u/N
T,1 + 4F̂ u/NT,2

)]}

− 1
8m2

LQ

(
λ′1F

d/N
1 + λ′2F

s/N
1

)
,

(5.12)

cN11 =− icN1
(
λ+ → λ−, λRL+ → λRL−

)
, (5.13)

while the LECs that contribute to spin-dependent nuclear responses W ττ ′
Σ′Σ′ , W ττ ′

Σ′′Σ′′ are

cN4 = 1
8m2

LQ

{
λ+

[
− F

u/N
A + q

2mN

(
F
u/N
1 + F

u/N
2

)]
+ λRL+F̂

u/N
T,0

}

+ 1
8m2

LQ

∑
j

λ′j

[
− F

dj/N
A + q

2mN

(
F
dj/N
1 + F

dj/N
2

)] (5.14)

cN6 = 1
8m2

LQ

q

2mN

[
λ+

(
F
u/N
1 + F

u/N
2 − m+

2mN
F
u/N
P ′

)
+ λRL+

mu
F
u/N
P

]

+ 1
8m2

LQ

q

mN

∑
j

λ′j

(
F
dj/N
1 + F

dj/N
2 − m+

2mN
F
dj/N
P ′

) (5.15)

cN9 = 1
8m2

LQ

{
λ−

[
q

2mN

(
F
u/N
1 + F

u/N
2

)
− F

u/N
A

]
+ λRL−F̂

u/N
T,0

}

+ 1
8m2

LQ

∑
j

λ′j

[
q

2mN

(
F
dj/N
1 + F

dj/N
2

)
− F

dj/N
A

]
,

(5.16)

cN10 = i

8m2
LQ

[
λ−

(
F
u/N
A − qm−

4m2
N

F
u/N
P ′

)
− λRL−

(
F̂
u/N
T,0 − q

2mN

1
mu

F
u/N
P

)]

+ i

8m2
LQ

∑
j

λ′j

(
F
dj/N
A − qm−

4m2
N

F
dj/N
P ′

)
,

(5.17)

and those that generate the coherent but velocity-suppressed W ττ ′
Φ′′Φ′′ nuclear response are

cN3 = − 1
8m2

LQ
λRL+F̂

u/N
T,0 , (5.18)

cN12 = − i

8m2
LQ
λRL−F̂

u/N
T,0 . (5.19)

In addition, the NRET LECs cN5 , cN8 , and cN13 are nonzero but contribute only to numerically
subleading nuclear response functions. The NRET LECs cN2 , cN7 , and cN14 are also nonzero,
but do not contribute to the elastic conversion process due to the parity and time-reversal
symmetries of the nuclear ground state. Numerically,

cp1(11)+c
n
1(11) =

−1(+i)
8m2

LQ

{
2.91(λ± + λ′1)− [6.8(2.2)− 0.26(15)]λRL± +

[
2.2(2.1)× 10−4λ′2

]}
.

(5.20)
In summary, i) the LQ model leads to many different NRET coefficients, including those
leading to velocity suppressed but coherently enhanced Φ′′ nuclear response, and ii) it is

– 21 –



J
H
E
P
1
1
(
2
0
2
4
)
0
7
6

|M
M
| 00

|Σ
′′ Σ
′′ | 11

|M
M
| 01

|Σ
′′ Σ
′′ | 01

|Φ
′′ M
| 00

|Σ
′′ Σ
′′ | 00

|Φ
′′ M
| 10

|M
M
| 11
|∆∆
| 00

|Φ
′′ M
| 01
|∆Σ
′ | 00

|Φ
′′ Φ
′′ | 00
|∆Σ
′ | 01
|Σ
′ Σ
′ | 00

|Φ
′′ M
| 11
|Σ
′ Σ
′ | 11
|Σ
′ Σ
′ | 01

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

|R
τ
τ
′

O
O
′W

τ
τ
′

O
O
′|/
∑

τ
τ
′ O
O
′
|R

τ
τ
′

O
O
′W

τ
τ
′

O
O
′|

98.41%

0.35%
0.26% 0.21%

0.16% 0.13%

0.02%

mLQ = 100 TeV

yLR,RL12,21 = yLR,RL11,22 = 0.1, yLR,RL13,31,23,32,33 = 0.0

27Al

Figure 5. A decomposition of the µ → e conversion rate in terms of contributions from different
nuclear response components classified by the type of response (OO′) as well as the isoscalar/isovector
component (ττ ′), for 27Al target, at a single representative point in the parameter space of the R2
leptoquark model, eq. (5.2).

possible that the leading, spin-independent, contribution could be accidentally small due
to cancellations between different contributions, though that is not a generic situation (cf.
eq. (5.20)). These two qualitative features persist also once the RGE running is included,
as we demonstrate below using a numerical analysis.

The leptoquark model introduced in eq. (5.2) depends on one dimensionful quantity, mLQ,
and 36 dimensionless parameters (i.e., 18 complex coefficients yRL,LR2 ij ). In matching onto
SMEFT in eq. (5.3), we already limited the discussion to µ→ e transitions and anticipated
that only flavor-conserving quark currents are relevant in nuclear transitions.

In our numerical analysis, we focus on conversion in 27Al and explore the 18-dimensional
complex Yukawa parameter space. The SMEFT coefficients at the scale µ = mLQ, eq. (5.3),
are RG evolved to µ = 2GeV using wilson, after which we utilize our WET to NRET
matching expressions to compute the µ→ e conversion rate as described in sections 2–4. The
conversion rate is proportional to the product of leptonic Rττ ′OO′ and nuclear W ττ ′

OO′ response
functions summed over all nuclear responses (OO′) and isospin (τ, τ ′ = 0, 1) components (see
eq. (3.5)). To better understand which nuclear responses are numerically relevant it is useful
to analyze the sum in terms of its summands. We define the quantities

|OO′|ττ ′ ≡
|Rττ ′OO′W ττ ′

OO′ |∑
ττ ′OO′ |Rττ ′OO′W ττ ′

OO′ |
, (OO′)ττ ′ ≡

Rττ
′

OO′W ττ ′
OO′∑

ττ ′OO′ Rττ
′

OO′W ττ ′
OO′

, (5.21)

such that |OO′|ττ ′ denotes the normalized, non-negative fractional contribution of the
Rττ

′
OO′W ττ ′

OO′ component to the total rate and (OO′)ττ ′ denotes the normalized, signed frac-
tional contribution. Figure 5 shows the relative strengths of each response at a representative
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Figure 6. A comparison of the isoscalar nuclear response components over 2× 104 parameterizations
of the R2 leptoquark model introduced in eqs. (5.2), (5.3). Each of the 18 dimensionless complex
parameters yRL,LR

2 ij are randomly sampled over the unit complex circle and the leptoquark mass is held
fixed at 5000TeV. The color denotes the logarithm of the ratio of the summed isoscalar components
and the sum of isovector components for all contributing nuclear responses. Whenever the scalar
response contributions fall below ≈ 98% of the total rate, the gray lines are used to illustrate how
the components are distributed. The µ → e conversion rates for the shown points lie in the range
10−17 < B(µ− +Al → e− +Al) < 10−11 (we do not denote which of the points are already excluded).

point in the leptoquark Yukawa parameter space, mLQ = 100TeV, yLR,RL12,21 = yLR,RL11,22 = 0.1,
yLR,RL13,31,23,32,33 = 0. We find that the isoscalar component of the scalar response |MM |00
dominates the rate, as expected, but additionally that the coherent tensor-scalar interfer-
ence response |Φ′′M |00 is comparable in magnitude to the longitudinal nuclear spin response
|Σ′′Σ′′|00 (but where the total summed longitudinal response dominates). For µ→ e conversion
on 63Cu nuclei, at the same point in parameter space, we find that the total tensor-scalar inter-
ference response instead dominates over longitudinal spin response — the former making up∑
ττ ′ |Φ′′M |ττ ′ ≈ 0.23% of the total rate compared to ∑ττ ′ |Σ′′Σ′′|ττ ′ ≈ 0.17% from the latter.
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In figure 6 we illustrate the correlations between the leading isospin-summed nuclear
response (MM) and the next-to-leading (Σ′′Σ′′), (∆Σ′), (∆∆), and (Φ′′M) nuclear responses
over 2 × 104 samples of the 18-dimensional yRL,LR2 ij parameter space. Additional nuclear
response components, such as (Σ′Σ′), (Φ′′Φ′′), and (Φ̃′Φ̃′) are also generated but contribute
< 10−5% to the total rate and thus are not shown. Each point represents a unique parame-
terization of the model where the 18 complex Yukawas have been sampled independently
and uniformly over the unit complex circle such that∣∣∣yRL,LR2 ij

∣∣∣2 = Re
(
yRL,LR2 ij

)2
+ Im

(
yRL,LR2 ij

)2
≤ 1, (5.22)

while leptoquark mass is set to mLQ = 5 · 103 TeV. We find that the scalar (MM) and
longitudinal-spin (Σ′′Σ′′) nuclear responses dominate the total rate and are highly correlated
across parameter space. The remaining nuclear responses generally provide < 1% contributions
to the total rate. However, in some parts of parameter space, where contributions from
the scalar response falls below ≈ 98%, these responses become enhanced with O(1%)–level
contributions that may be measurable, as depicted by the gray lines between the figure
sub-panels that connect like-parameterizations.

While outside the scope of the current work, a detailed analysis exploring the similarities
and differences of nuclear responses between different target nuclei (see, for example, [43]) as
well as UV completions is easily accommodated by our computational framework.

5.3 ALP exchanges

The above formalism for computing Γ(µ→ e) can, with trivial modifications, also be used in
scenarios where the mediators are light. We illustrate this in the case of µ→ e conversion
induced by the exchange of a light axion-like particle (ALP) with mass ma. The only
required change is that now the Wilson coefficients Ĉ(d)

i in WET Lagrangian (2.1) become
q2 dependent. As long as one is only interested in µ→ e conversion, the fact that WET is
strictly speaking no longer the correct effective field theory, since there is an additional light
degree of freedom — the ALP, makes no practical difference since all the relevant effects
of the ALP are absorbed in Ĉ

(d)
i (q2).

The ALP interactions with the SM fields start at dimension 5 and are given by

LALP ⊃ −αs8π
1
fa
aGaαβG̃

aαβ + ∂αa

2fa
ēγα

(
CVℓ + CAℓ γ5)µ+

∑
q=u,d,s

CAq
∂αa

2fa
q̄γαγ5q, (5.23)

where we only display the couplings relevant for µ → e conversion. The tree level ALP
exchange induces µ → e transition, inducing the following Ĉ(d)

i coefficients

Ĉ(6)
7,q = −imqm−

2f2
a

CAq C
V
ℓ

q2 +m2
a

, (5.24)

Ĉ(6)
8,q = mqm+

2f2
a

CAq C
A
ℓ

q2 +m2
a

, (5.25)

Ĉ(7)
3 = −im−2f2

a

CVℓ
q2 +m2

a

, (5.26)

Ĉ(7)
4 = m+

2f2
a

CAℓ
q2 +m2

a

, (5.27)
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where we used q2
rel ≃ −q2, cf. eq. (4.10). Since these are higher dimension operators, suppressed

by two powers of the UV scale, ∝ 1/f2
a , other dimension 6 contributions from the complete

new physics model could be relevant as well, a possibility that we ignore in this example (see,
however, ref. [71]). More importantly for our purposes is that the Ĉ(d)

i are, as anticipated,
now explicitly q2 dependent. Since these coefficients are induced in the IR, no RGE running
needs to be included in the numerical analysis. That is, the values of the Ĉ(d)

i coefficients
in (5.24)–(5.27) are already given at µ = 2GeV.

The resulting NRET coefficients are

cN6 = q

2mN

m+
2f2
a

CAℓ
q2 +m2

a

[
−
∑
q

CAq F
q/N
P + FN

G̃

]
,

cN10 = i
q

2mN

m−
2f2
a

CVℓ
q2 +m2

a

[
−
∑
q

CAq F
q/N
P + FN

G̃

]
,

(5.28)

which both contribute to the longitudinal spin response function W ττ ′
Σ′′Σ′′ .

6 Conclusions

Next-generation experiments, such as Mu2e at Fermilab [20, 21] and COMET at J-PARC [22,
23], are expected to advance limits on µ → e conversion rate by four orders of magnitude,
to about B(µ− +Al → e− +Al) ≲ 10−17. What will the new limits — or a nonzero signal

— tell us about the new physics responsible for CLFV?
The experiments are done at low energy, using nonrelativistic nuclear targets, yet probe

new BSM physics associated with UV energy scales. Effective field theory is a powerful
technique for bridging between low energies and the UV, thereby connecting experimental
constraints to BSM models. Recently, a nonrelativistic nucleon-level effective theory (NRET)
was constructed and then embedded in a series of nuclei, allowing limits extracted from
different nuclear targets to be meaningfully compared. The NRET can be organized according
to a hierarchy of dimensionless small parameters, y = (qb/2)2 > |v⃗N | > |v⃗µ| > |v⃗T |. The
operator expansion through order v⃗N was shown to generate the most general form of the
nuclear µ→ e conversion rate, while the retention of v⃗µ adds form factor corrections associated
with the muon’s lower component [24, 42]. Open-source Mathematica and Python codes
named Mu2e_NRET_v1 for calculating nuclear µ→ e conversion rates were released with [24],
using the NRET basis obtained by expanding through order v⃗N .

In this paper, we connected this NRET to a CLFV weak effective theory (WET) in which
the degrees of freedom are the light quarks (u, d, s), gluons, and photons. We also updated
and extended the accompanying nucleon-level computer codes, to fully support this matching.
These codes are collected in the repository MuonBridge, consisting of MuonConverter and
Mu2e_NRET_v2 computer codes (available in both Mathematica and Python versions), as well
as of the Elastic repository (see appendix A for details). MuonConverter matches from
WET to the intermediate step of relativistic covariant nucleon interactions, while the new
script Mu2e_NRET_v2 extends Mu2e_NRET_v1 to support this matching. This was done by
adding to the script’s existing 16 operators the 10 additional v⃗µ suppressed NRET operators
already identified in [24]. Furthermore, selected tensor-mediated interactions were added to
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the scalar- and vector-mediated interactions already present in Mu2e_NRET_v1. These are
needed in the WET matching at dimension 7. Finally, the repository Elastic is a database
of shell-model one-body density matrices needed for nuclear form-factor calculations. In
principle, this repository can be utilized for other problems such as the calculation of dark
matter direct detection rates.

Our choice for the WET basis, consisting of dimension-5, -6, and -7 operators, was
motivated by the problem at hand; the operators are built out of quark, gluon and photon
currents with definite parity, which simplifies the calculation of nucleon matrix elements. The
basis is consistent with the complete WET basis of ref. [64], when the latter is restricted
to the operators that can mediate µ → e conversion. MuonBridge contains an example of
translation between our WET basis and provides the interface to external SMEFT softwares
such as wilson [53], and DsixTools [54, 55], that can be used to perform RG running, see
appendix A for further details.

In conclusion, over the next decade the experimental community will be making a major
effort to improve our understanding of CLFV. In anticipation of these experiments, it is
important to develop theory tools that can treat the particle and nuclear physics of µ→ e

conversion as completely and accurately as possible. As discussed in [24], most past work
on µ→ e conversion has focused on one or two of the 16 + 10 NRET operators, employed
schematic nuclear response functions, and simplified the leptonic physics through partial-wave
truncations and other steps that are not well justified. The formalism developed in [24, 42]
and encoded in Mu2e_NRET_v2 addresses all of these issues, and now MuonConverter connects
this low-energy formalism to the light-quark and gluon WET as well as to higher energy EFTs.
The completeness of the WET and NRET operator bases ensures that they can faithfully
encode the low-energy consequences of any UV CLFV theory.
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A Public code

Below we outline the structure and purpose of the accompanying public code available in
Python and Mathematica at https://github.com/Berkeley-Electroweak-Physics/MuonBridge .
The full code repository, termed MuonBridge, is composed of three independent sub-reposito-
ries, namely Elastic, Mu2e_NRET, and MuonConverter each with dependencies on the former
i.e., MuonConverter is dependent on Mu2e_NRET, which is dependent on Elastic.

Elastic is a database containing ground-state-to-ground-state one-body density matrices
computed using the nuclear shell-model code BIGSTICK [72, 73] for a variety of relevant
isotopes for muon-to-electron conversion.

The repository Mu2e_NRET contains two versions: Mu2e_NRET_v1 and Mu2e_NRET_v2.
Mu2e_NRET_v1, originally developed in [24], provides functionality for computing branch-
ing ratios and decay rates for nuclear muon to electron conversion. The current release,
Mu2e_NRET_v2, extends the original code by including the effects that arise from tensor-
mediated exchanges as well as form-factor corrections induced by the muon’s velocity operator
v⃗µ. These additions were necessary to support the current “top-down” WET reduction as dis-
cussed in the main text. A top-level Python (Mathematica) notebook, Mu2e_v2.ipynb(.nb)
provides an example of typical usage and input. The Mathematica version offers both an
interactive and manual (in the form of an association) input interface while the Python version
requires manual input in the form of a dictionary or YAML file containing the required
parameters. The parameters for both languages include:

1. A target isotope choice. For an updated list of supported target isotopes, please refer
to the current repository.

2. A shell-model interaction, used to select one-body density matrices. A detailed list of
supported shell-model interactions for specific target nuclei can be found in table XIII
of [24].

3. An optional harmonic oscillator length scale b in units of fm.

4. An optional response function option to generate an analytic nuclear response function
W (y) (available with Mathematica only) and/or to generate plots of the response
functions. With this option, one also specifies the isospin with one of the options:
isoscalar, isovector, proton-only, or neutron-only couplings.

5. The leptonic scale mL, which should match the leptonic scale used by MuonConverter
so that LEC interpretation matches.

6. The relativistic LECs, i.e., the dNi coefficients of the Lorentz-covariant EFT defined in
eq. (4.11). Only non-zero values need to be specified.

7. An optional override of the default ordinary muon capture rate to be used in the
branching ratio calculation. The default values are obtained through a weighted average
of the measurements compiled in [17].

Additional documentation and annotated examples of input files are included in the repository.
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The main purpose of MuonConverter is to provide an interface between external EFT
software such as wilson [53], DsixTools [54, 55], etc, and the Mu2e_NRET software developed
in [24]. This interface extends the functionality of the original Mu2e_NRET code and allows
for full top-down (or bottom-up) phenomenological studies of muon-to-electron conversion
in the field of a target nucleus. Explicitly, in conjunction with external EFT software,
MuonConverter can be used to compute the influence of UV charged-lepton-flavor-violating
operators on the predictions for branching and capture ratios reported by experimental
collaborations.

Both versions of MuonConverter (Python and Mathematica) are comprised of four
modular components:

1. Numerical inputs — all numerical inputs are stored within an associative array that can
be modified by the user upon intialization of the MuonConverter class. The parameters
and their default values can be found in parameters.py(.wl).

2. Form factors — the form factor expressions required for the WET to NRET matching,
eqs. (4.1)–(4.9), and whose numerical values are derived in appendix C can be found in
form_factors.py(.wl). For maximum flexibility, the default form factor values may
be manually overwritten within parameters.py(.wl).

3. Matching — to facilitate the WET to NRET matching, MuonConverter utilizes the
matching expressions derived in eqs. (B.10)–(B.41) for the relativistic di coefficients
(the di coefficients are automatically translated to the nonrelativistic ci, bi coefficients
within Mu2e_NRET). The matching expressions, as well as their translation to the isospin
basis, can be found in hadronization.py(.wl).

4. Interfacing — given an array of WET coefficients (in units of GeV−2),7 the inter-
face with Mu2e_NRET, utilizing external and internal basis translations as well as
the matching expressions implemented in hadronization.py(.wl), can be found in
MuonConverter.py(.wl).

To facilitate interfacing with external EFT software we provide a representation of our
WET basis (defined in eqs. (2.3)–(2.13)) up to dimension-six8 in the naming conventions
of the Wilson coefficient exchange format WCxf [74]. In addition, we provide an explicit
translation between our basis and the relevant subset of flavor-violating operators in the
Jenkins, Manohar, Stoffer (JMS) three-flavor WET basis [56, 74] which we will conventionally
use as the ‘reference basis’ when interfacing with external codes. For more details on this
translation, see appendix E.

As an example of typical usage, consider an arbitrary UV model defined above the
electroweak scale that has been matched onto a SMEFT basis, run down to ∼ 2GeV, matched
onto a three flavor WET basis, and translated to the JMS three-flavor WET basis. The

7The dimensionful input allows for the support of multiple CLFV scales Λ, Λ′, Λ′′, . . ., if desired.
8At the time of writing, commonly used EFT software [53–55] performing RG evolution and matching

above and below the electroweak scale only support operators up to dimension-six. Because our basis also
includes matching expressions for dimension-seven operators, future versions of these codes supporting higher
dimensional operators can be accommodated straightforwardly by MuonConverter.
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output of the previously described procedure will be a data-structure9 consisting of Wilson
coefficient names and values in the WET–3 JMS basis, e.g.,

{‘VeuLL_1211’:10−13, · · · }. (A.1)

Both the Python and Mathematica versions of MuonConverter take Wilson coefficient
names and values as well as the momentum transfer qµ ≡ (∆E, qx, qy, qz) as input (in addition
to the atomic and nuclear input required by Mu2e_NRET, please see appendix C of [24] or
the example notebooks and documentation within the repository for more information and
explicit examples). It is assumed by default that the input Wilson coefficients and values are
given in the WET-3 JMS basis.10 Upon initialization, the input Wilson coefficient data is
automatically translated to the basis defined in eqs. (2.3)–(2.13). The heart of MuonConverter
is the matching expressions derived in eqs. (B.10)–(B.41) which relate the Wilson coefficients
from an EFT of relativistic quarks and gluons to an EFT of relativistic nucleons. Using
these expressions, the translated dictionary can be straightforwardly ‘hadronized’ and fed
into Mu2e_NRET where these coefficients are mapped to the NRET basis using the expressions
derived in tables 1–4. The final output is the conversion rate Γ(µ− +A→ e− +A) in units
of s−1 and corresponding branching ratio B(µ− + A → e− + A).

For example, consider the WET-3 JMS data structure given in eq. (A.1), with all
coefficients except VeuLL_1211 set to zero, in an aluminum target with momentum transfer
four vector qµ = (0, 0, 0, 0.11081)GeV. Internally, the translation to the MuonConverter basis
gives non-zero C(6)

1,u, C
(6)
2,u, C

(6)
3,u, and C(6)

4,u coefficients. These WET coefficients then generate
non-zero d(N)

2 , d
(N)
4 , d

(N)
5 , d

(N)
6 , d

(N)
7 , d

(N)
13 , d

(N)
14 , d

(N)
15 covariant coefficients upon hadronization.

Finally, after feeding the covariant coefficients to Mu2e_NRET, the conversion rate and capture
ratio are given by11

Γ(µ− + Al → e− + Al)=4.19× 10−10 s−1, B(µ− +Al → e− +Al)=6.0× 10−16. (A.2)

For details on the running and matching procedure down to ∼ 2GeV, we refer the reader
to the documentation of the respective external EFT software of choice. For additional details,
documentation, and examples showcasing the usage of MuonConverter with external EFT
software see the public repository whose link is provided at the beginning of this section.

A schematic outline of the computation performed by the MuonBridge software suite
can be seen in figure 7. The graph shows how a single CLFV SMEFT operator, defined
at a scale Λ = 103 TeV, is mapped through our WET basis and down to the final NRET
basis, where the conversion rate is computed. The one-loop RGE from µ = Λ to µ = 2GeV
generates many WET operators, however, only a small portion are numerically relevant —
as depicted by the red edges of the graph.

9MuonConverter utilizes Python dictionaries and Mathematica associations as input.
10However, it is also possible to directly input coefficients from our WET basis, eqs. (2.3)–(2.13), by passing

the following argument to the relevant functions: basis = ‘HMMRZ’.
11Note that, because the Wilson coefficients in [24] are normalized using the weak scale, the conversion rate

and the capture ratio returned by the Mu2e_NRET code must be rescaled by v4/Λ4 where v =
(√

2GF

)−1/2 =
246.2 GeV is the Higgs vacuum expectation value and GF is the Fermi constant. This rescaling is automatically
incorporated into the rate computation functions within MuonConverter.
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B Intermediate results for WET to NRET matching

In this appendix we collect further details on the matching from WET to NRET effective
theories, where, following ref. [24] we use as an intermediate step a set of Lorentz covariant
CLFV operators that are the products of flavor-changing lepton currents and single-nucleon
currents. In section B.1 we first show the results for the nonperturbative matching from WET
to these covariant interactions, followed in section B.2 by the nonrelativistic reduction to
NRET. Some of the results were already derived in ref. [24] and are here merely reproduced
for reader’s convenience (tables 1 and 3), while tables 2 and 4 contain new results, required
for tensor currents.

B.1 From WET to covariant nucleon interactions

In this subsection we collect the results for the d(N)
j coefficients in the effective covariant

interaction Lagrangian, eq. (4.11). The basis of covariant operators that we use is given in
the first columns of tables 1 and 2. While the basis is overcomplete, this does not cause any
problems given that we only use the covariant interactions as the intermediate step in the
matching from WET to NRET. The goal is to write down an effective Lagrangian, valid
for interactions of external lepton currents with a single nucleon sector. This means that
we replace the operators that contain quark currents with equivalent nucleon-level currents,
using expressions for nucleon form factors in eqs. (4.1)–(4.9). For instance,

q̄γµq → N̄
[
F
q/N
1 (q2)γµ − i

2mN
F
q/N
2 (q2)σµνqν

]
N , (B.1)

where N are Dirac fields for nucleons, and the arrow means that the l.h.s. and r.h.s. give
the same result when sandwiched between single nucleon states, ⟨N ′| . . . |N⟩, as is easily
checked using eq. (4.1). Since this is an operator identity, qν should also be interpreted
as a derivative, i.e., the operator of the form

(
ē . . . µ

)(
N̄ . . . qνN

)
should be interpreted as(

ē . . . µ
)
i∂ν
(
N̄ . . . N

)
, and similarly for lepton currents containing qµ (for simplicity we do

not show the Lorentz structures explicitly). The reason for this somewhat unconventional
notation is that then the covariant interactions have exactly the same form as in ref. [24].

As usual, we make use of equations of motion when performing the matching. Furthermore,
in deriving the expressions for the dNi coefficients the following identity proves to be useful

γ[µ
/qγ

ν] = 2iϵµνλρqλγργ5, (B.2)

as well as the following expressions

mq q̄σαβiq
βq →

(
F
q/N
T,0 − q2

m2
N

F
q/N
T,2

)
N̄iσαβq

βN

+ q2

2mN

(
F
q/N
T,1 − 4F q/NT,2

)
N̄γαN,

(B.3)

ϵαβµνq
βmq q̄σ

µνq → 2iF q/NT,0 N̄σαβγ5q
βN − 4F q/NT,3

(
2qαN̄iγ5N + i

q2

mN
N̄γαγ5N

)
. (B.4)
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Making use of the relation (B.2) we can arrive at the following relations between different
possible tensor operators(

ēγ[αqβ]µ
) (
N̄σαβγ5N

)
= 1

2
(
ēγ[α

/qγ
β]γ5µ

) (
N̄σαβN

)
, (B.5)(

ēγ[αqβ]γ5µ
) (
N̄σαβγ5N

)
= 1

2
(
ēγ[α

/qγ
β]µ
) (
N̄σαβN

)
, (B.6)(

ēγ[α
/qγ

β]µ
) (
N̄σαβγ5N

)
= 2

(
ēγ[αqβ]γ5µ

) (
N̄σαβN

)
, (B.7)(

ēγ[α
/qγ

β]γ5µ
) (
N̄σαβγ5N

)
= 2

(
ēγ[αqβ]µ

) (
N̄σαβN

)
, (B.8)

so that we are left with 4 independent operators instead of 8.
While these 4 operator structures are not independent of the operators L1−20

int , we do
not attempt to reduce the basis in tables 1 and 2 further. For example, by a simple
rearrangement, we may write

L29
int =

i

2mL

(
ēγ[αqβ]µ

) (
N̄σαβN

)
= 1
mL

(ēγαµ)
(
N̄iσαβq

βN
)

= mN

mL
L6

int,

(B.9)

so that L29
int could have always be traded for L6

int. In this regard, the basis furnished by L1−32
int

is overcomplete. However, as already stated, since it is primarily used to translate between
the WET basis and the NRET basis, the overcompleteness is of little practical consequence.
The above equality also highlights the fact that in tables 1–4, the relativistic operators in
which derivatives act on the leptonic fields contain a spurious mass scale mL, whose only
role is to make all the operators of the same mass dimension. After matching to WET the
mL dependence drops out, as demonstrated explicitly in section 4.3.

Finally, the d(N)
j coefficients in the covariant single-nucleon interaction Lagrangian in

eq. (4.11) are explicitly given by

dN1 =
∑
q

1
mq

Ĉ(6)
5,qF

q/N
S + Ĉ(7)

1 FNG + Ĉ(7)
5 FNγ , (B.10)

dN2 = −i m−2mN

∑
q

Ĉ(6)
3,qF

q/N
P ′ +

∑
q

1
mq

Ĉ(6)
7,qF

q/N
P − Ĉ(7)

3 FN
G̃

− Ĉ(7)
7 FNγ̃

− i
m+m−
2mN

∑
q

Ĉ(7)
11,qF

q/N
P ′ ,

(B.11)

dN3 =
∑
q

1
mq

Ĉ(6)
6,qF

q/N
S + Ĉ(7)

2 FNG + Ĉ(7)
6 FNγ , (B.12)

dN4 = m+
2mN

∑
q

Ĉ(6)
4,qF

q/N
P ′ +

∑
q

1
mq

Ĉ(6)
8,qF

q/N
P − Ĉ(7)

4 FN
G̃

− Ĉ(7)
8 FNγ̃

− i
m+m−
2mN

∑
q

Ĉ(7)
12,qF

q/N
P ′ ,

(B.13)

dN5 =
∑
q

Ĉ(6)
1,qF

q/N
1 +m+

∑
q

Ĉ(7)
9,qF

q/N
1 −

∑
q

q2
rel.

2mN
Ĉ(7)

13,q

(
F̂
q/N
T,1 − 4F̂ q/NT,2

)
, (B.14)
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dN6 = −1
2
∑
q

Ĉ(6)
1,qF

q/N
2 − 1

2m+
∑
q

Ĉ(7)
9,qF

q/N
2 , (B.15)

dN7 =
∑
q

Ĉ(6)
3,qF

q/N
A +m+

∑
q

Ĉ(7)
11,qF

q/N
A , (B.16)

dN8 = 0, (B.17)

dN9 = −α
π
Ĉ(5)

1
mL

q2
rel.

∑
q

QqF
q/N
1 −mL

∑
q

Ĉ(7)
9,qF

q/N
1 , (B.18)

dN10 = α

2π Ĉ
(5)
1
mL

q2
rel.

∑
q

QqF
q/N
2 + mL

2
∑
q

Ĉ(7)
9,qF

q/N
2 , (B.19)

dN11 = −mL

∑
q

Ĉ(7)
11,qF

q/N
A , (B.20)

dN12 = 0, (B.21)

dN13 =
∑
q

Ĉ(6)
2,qF

q/N
1 − im−

∑
q

Ĉ(7)
10,qF

q/N
1 −

∑
q

q2
rel.

2mN
Ĉ(7)

14,q

(
F̂
q/N
T,1 − 4F̂ q/NT,2

)
, (B.22)

dN14 = −1
2
∑
q

Ĉ(6)
2,qF

q/N
2 + i

2m−
∑
q

Ĉ(7)
10,qF

q/N
2 , (B.23)

dN15 =
∑
q

Ĉ(6)
4,qF

q/N
A − im−

∑
q

Ĉ(7)
12,qF

q/N
A , (B.24)

dN16 = 0, (B.25)

dN17 = α

π
Ĉ(5)

2
mL

q2
rel.

∑
q

QqF
q/N
1 +mL

∑
q

Ĉ(7)
10,qF

q/N
1 , (B.26)

dN18 = − α

2π Ĉ
(5)
2
mL

q2
rel.

∑
q

QqF
q/N
2 − 1

2mL

∑
q

Ĉ(7)
10,qF

q/N
2 , (B.27)

dN19 = mL

∑
q

Ĉ(7)
12,qF

q/N
A , (B.28)

dN20 = 0, (B.29)

dN21 =
∑
q

Ĉ(6)
9,q F̂

q/N
T,0 , (B.30)

dN22 = −
∑
q

Ĉ(6)
9,q F̂

q/N
T,1 , (B.31)

dN23 = −
∑
q

Ĉ(6)
9,q F̂

q/N
T,2 , (B.32)

dN24 = 0, (B.33)

dN25 =
∑
q

Ĉ(6)
10,qF̂

q/N
T,0 , (B.34)

dN26 = −
∑
q

Ĉ(6)
10,qF̂

q/N
T,1 , (B.35)

dN27 = −
∑
q

Ĉ(6)
10,qF̂

q/N
T,2 , (B.36)

dN28 = 0, (B.37)
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dN29 = −mL

∑
q

Ĉ(7)
13,q

(
F̂
q/N
T,0 − q2

rel.
m2
N

F̂
q/N
T,2

)
, (B.38)

dN30 = −mL

∑
q

Ĉ(7)
14,q

(
F̂
q/N
T,0 − q2

rel.
m2
N

F̂
q/N
T,2

)
, (B.39)

dN31 = mL

4
∑
q

C(7)
16,qF̂

q/N
T,0 , (B.40)

dN32 = mL

4
∑
q

Ĉ(7)
15,qF̂

q/N
T,0 . (B.41)

Note that all the form factors depend on q2
rel = −q2, eq. (4.10), see a more detailed discussion

in appendix D. As before, we shortened the notation above by introducing m± = mµ ±me,
cf. eq. (4.29). Note that m− vanishes in the limit when electron and muon masses are
the same, me → mµ.

Six of the single-nucleon coefficients, dN8 , dN12, dN16, dN20, dN24, and dN28 are zero. They are
associated with the second-class currents — nucleon currents that have opposite time-reversal
parity from the quark currents that generate them. Although suppressed, they could be
generated by CP-violating light new physics, see further discussion in appendix C.

B.2 NRET decomposition of covariant interactions

When performing the nonrelativistic reduction of the covariant interactions in eq. (4.11),
we follow closely ref. [24]. In particular, we work to linear orders in vN and vµ, while the
nonrelativistic reduction is performed on matrix elements ⟨e,N ′|Lcov

eff |µ,N⟩. The results
in ref. [24] were limited to the first 20 Lj,Nint , since these involve scalar and vector currents.
Working to linear order in vN , but to O(v0

µ), the nonrelativistic reduction of Lj,Nint , j = 1, . . . , 20,
gives rise to the NRET operator combinations listed in table 1 (with slight abuse of notation,
N now denotes the corresponding Dirac four-component spinors, see caption for details).
We observe that these involve only a subset of the 16 operators constituting the complete
O(vN ) NRET operator basis in eq. (3.2): the operators O3, O12, O′13, and O15 do not appear.
If the contributions of O(v⃗µ) are added, thereby including contributions from the muon’s
lower component, the additional NRET operators in eq. (3.16) are generated, with the results
collected in table 3. Note that extending the nonrelativistic reduction to O(vµ) does not
generate the missing NRET operators. The net effect of v⃗µ is to modify [at O(∼ 5%)] the
nuclear response functions W ττ ′

i , all of which were already present in the expansion to order
O(v⃗N ): this is a consequence of the fact that the emitted electron is ultra-relativistic, which
guarantees that the contribution of v⃗µ to the leptonic current will always be just a correction.
The results of the above nonrelativistic reduction at O(vN ) were encoded in Mu2e_NRET_v1
version of the public code that accompanied ref. [24].

Motivated by the dimension d ≤ 7 light-quark interactions described in section 2, we
add to the covariant interaction in eq. (4.11) an additional 12 operators that take the
form of products of tensor currents. The additional Lj,Nint interactions are listed in the first
column in table 2, which also gives the results of the nonrelativistic reduction, working at
O(vN ). The four NRET operators previously missing now appear. When v⃗µ corrections are
included, this generates the additional NRET contributions listed in table 4. The extended
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j Ljint Pauli operator reduction
∑
i

ciOi

1 χ̄eχµ N̄N 1L 1N O1

2 χ̄eχµ N̄iγ
5N 1L

(
i
q⃗

2mN
· σ⃗N

)
q

2mN
O10

3 χ̄eiγ
5χµ N̄N (−iq̂ · σ⃗L) 1N −O11

4 χ̄eiγ
5χµN̄iγ

5N (−iq̂ · σ⃗L)
(
i
q⃗

2mN
· σ⃗N

)
− q

2mN
O6

5 χ̄eγ
µχµN̄γµN 1L1N O1

− (q̂1L − iq̂ × σ⃗L) ·
(
v⃗N + i

q⃗

2mN
× σ⃗N

)
+iO′2 −O5 −

q

2mN
(O4 +O6)

6 χ̄eγ
µχµN̄iσµα

qα

mN
N − (q̂1L − iq̂ × σ⃗L) ·

(
−i q⃗

mN
× σ⃗N

)
q

mN
(O4 +O6)

7 χ̄eγ
µχµN̄γµγ

5N 1L (v⃗N · σ⃗N )− (q̂1L − iq̂ × σ⃗L) · σ⃗N O7 + iO10 −O9

8 χ̄eγ
µχµN̄σµα

qα

mN
γ5N 1L

(
−i q⃗

mN
· σ⃗N

)
− q

mN
O10

9 χ̄eiσ
µν qν
mL

χµN̄γµN − q

mL
1L 1N − q

mL
O1

−
(
−i q⃗
mL

× σ⃗L

)
·
(
v⃗N + i

q⃗

2mN
× σ⃗N

)
− q

mL

(
O5 +

q

2mN
(O4 +O6)

)
10 χ̄eiσ

µν qν
mL

χµN̄iσµα
qα

mN
N −

(
−i q⃗
mL

× σ⃗L

)
·
(
−i q⃗

mN
× σ⃗N

)
q

mL

q

mN
(O4 +O6)

11 χ̄eiσ
µν qν
mL

χµN̄γµγ
5N

(
− q

mL
1L
)
v⃗N · σ⃗N −

(
−i q⃗
mL

× σ⃗L

)
· σ⃗N − q

mL
(O7 +O9)

12 χ̄eiσ
µν qν
mL

χµN̄σµα
qα

mN
γ5N

(
− q

mL
1L
)(

−i q⃗

mN
· σ⃗N

)
q

mL

q

mN
O10

13 χ̄eγ
µγ5χµN̄γµN (q̂ · σ⃗L) 1N − σ⃗L ·

(
v⃗N + i

q⃗

2mN
× σ⃗N

)
−iO11 −O8 −

q

2mN
O9

14 χ̄eγ
µγ5χµN̄iσµα

qα

mN
N −σ⃗L ·

(
−i q⃗

mN
× σ⃗N

)
q

mN
O9

15 χ̄eγ
µγ5χµN̄γµγ

5N (q̂ · σ⃗L) (v⃗N · σ⃗N )− σ⃗L · σ⃗N −iO14 −O4

16 χ̄eγ
µγ5χµN̄σµα

qα

mN
γ5N (q̂ · σ⃗L)

(
−i q⃗

mN
· σ⃗N

)
i
q

mN
O6

17 χ̄eσ
µν qν
mL

γ5χµN̄γµN

(
−i q⃗
mL

· σ⃗L
)
1N − q

mL
O11

−i q
mL

(σ⃗L − q̂q̂ · σ⃗L) ·
(
v⃗N + i

q⃗

2mN
× σ⃗N

)
− q

mL

(
iO8 + i

q

2mN
O9 + iO′16

)
18 χ̄eσ

µν qν
mL

γ5χµN̄iσµα
qα

mN
N −i q

mL
(σ⃗L − q̂q̂ · σ⃗L) ·

(
−i q⃗

mN
× σ⃗N

)
i
q

mL

q

mN
O9

19 χ̄eσ
µν qν
mL

γ5χµN̄γµγ
5N

(
−i q⃗
mL

· σ⃗L
)
(v⃗N · σ⃗N ) − q

mL
O14

−i q
mL

(σ⃗L − q̂q̂ · σ⃗L) · σ⃗N − q

mL
(iO4 + iO6)

20 χ̄eσ
µν qν
mL

γ5χµN̄σµα
qα

mN
γ5N

(
−i q⃗
mL

· σ⃗L
)(

−i q⃗

mN
· σ⃗N

)
q

mL

q

mN
O6

Table 1. Dirac forms of the CLFV amplitudes Lj
int are related to linear combinations of the Pauli

forms (the operators Oi). Bjorken and Drell spinor and gamma matrix conventions are used. Here

χe =

 ξs

σ⃗L · q̂ ξs

, χµ =

 ξs

0

, and N =

 ξs

σ⃗N ·v⃗N

2 ξs

. The Dirac forms are expanded to first order

in v⃗N to maintain consistency with their use between Schrödinger wave functions.
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j Ljint Pauli Operator Reduction ∑
i ciOi

21 χ̄eσ
µνχµN̄σµνN − q

mN
1L1N − 2iq̂ · (v⃗N × σ⃗N ) + 2σ⃗L · σ⃗N + 2σ⃗L · [q̂ × (v⃗N × σ⃗N )] − q

mN
O1 − 2O3 + 2O4 − 2iO′13

22 χ̄eσ
µνχµ

i
2mN

N̄γ[µqν]N − q
mN

1L1N − q
mN

O1

23 χ̄eσ
µνχµ

i
m2

N
N̄q[µk12,ν]N 4 q

mN
1L1N 4 q

mN
O1

24 χ̄eσ
µνχµ

1
mN

N̄γ[µ/qγν]N −4i q
mN

(q̂ × σ⃗L) · (q̂ × σ⃗N ) −4i q
mN

(O4 +O6)

25 χ̄eiσ
µνγ5χµN̄σµνN 2σ⃗L · (q̂ × σ⃗N )− 2iq̂ · σ⃗N + q

mN
iq̂ · σ⃗L − 2σ⃗L · (v⃗N × σ⃗N ) −2iO9 − 2O10 + q

mN
O11 − 2O12

26 χ̄eiσ
µνγ5χµ

i
2mN

N̄γ[µqν]N
q
mN

iq̂ · σ⃗L1N q
mN

O11

27 χ̄eiσ
µνγ5χµ

i
m2

N
N̄q[µk12,ν]N −4 q

mN
iq̂ · σ⃗L1N −4 q

mN
O11

28 χ̄eiσ
µνγ5χµ

1
mN

N̄γ[µ/qγν]N −4 q
mN

σ⃗L · (iq̂ × σ⃗N ) −4 q
mN

O9

29 i
2mL

χ̄eγ
[µqν]χµN̄σµνN

q
mL

(
q

2mN
1L1N + iq̂ · (v⃗N × σ⃗N ) + (q̂ × σ⃗L) · (q̂ × σ⃗N )

)
q
mL

(
q

2mN
O1 +O3 +O4 +O6

)
30 i

2mL
χ̄eγ

[µqν]γ5χµN̄σµνN
q
mL

(
σ⃗L · (iq̂ × σ⃗N ) + q

2mN
q̂ · σ⃗L1N + q̂ · σ⃗Liq̂ · (v⃗N × σ⃗N )

)
q
mL

(
O9 − i q

2mN
O11 − iO15

)
31 1

mL
χ̄eγ

[µ/qγν]χµN̄σµνN 4 q
mL

(
− i (q̂ · σ⃗L) (q̂ · σ⃗N ) + σ⃗L · [iq̂ × (v⃗N × σ⃗N )]

)
4 q
mL

(iO6 +O′13)

32 1
mL

χ̄eγ
[µ/qγν]γ5χµN̄σµνN 4 q

mL

(
− iq̂ · σ⃗N + σ⃗L · (v⃗N × σ⃗N )− q̂ · σ⃗Lq̂ · (v⃗N × σ⃗N )

)
4 q
mL

(−O10 +O12 +O15)

Table 2. Nonrelativistic reduction of tensor currents and their correspondence to the upper-component
operators Oi.

j Ljint Pauli operator reduction
∑
i

biOf
i

1 χ̄eχµ N̄N −1
2 q̂ · v⃗µ 1N − i

2 q̂ · [v⃗µ × σ⃗L] 1N iOf ′
2 −Of

3

3 χ̄eiγ
5χµ N̄N

i

2 v⃗µ · σ⃗L1N iOf
7

5 χ̄eγ
µχµN̄γµN

1
2 q̂ · v⃗µ 1N + i

2 q̂ · [v⃗µ × σ⃗L] 1N −iOf ′
2 +Of

3

7 χ̄eγ
µχµN̄γµγ

5N −1
2 v⃗µ · σ⃗N − i

2[v⃗µ × σ⃗L] · σ⃗N −Of
8 − iOf

12

9 χ̄eiσ
µν qν
mL

χµN̄γµN
q

2mL
(q̂ · v⃗µ 1N + iq̂ · [v⃗µ × σ⃗L] 1N )

q

mL

(
−iOf ′

2 +Of
3

)
11 χ̄eiσ

µν qν
mL

χµN̄γµγ
5N

q

2mL
(v⃗µ · σ⃗N + i[v⃗µ × σ⃗L] · σ⃗N

q

mL

(
Of

8 + iOf
12

−iq̂ · [v⃗µ × σ⃗L]q̂ · σ⃗N − q̂ · v⃗µq̂ · σ⃗N ) +iOf
15 +Of ′

16

)
13 χ̄eγ

µγ5χµN̄γµN
1
2 v⃗µ · σ⃗L 1N Of

7

15 χ̄eγ
µγ5χµN̄γµγ

5N
i

2[q̂ × v⃗µ] · σ⃗N − 1
2(q̂ × [v⃗µ × σ⃗L]) · σ⃗N Of

5 + iOf ′
13

−1
2 v⃗µ · σ⃗L q̂ · σ⃗N +iOf

14

17 χ̄eσ
µν qν
mL

γ5χµN̄γµN
iq

2mL
v⃗µ · σ⃗L 1N

iq

mL
Of

7

19 χ̄eσ
µν qν
mL

γ5χµN̄γµγ
5N

q

2mL
([q̂ × v⃗µ] · σ⃗N + (iq̂ × [v⃗µ × σ⃗L]) · σ⃗N )

q

mL
(−iOf

5 +Of ′
13)

Table 3. As in table 1, but listing the additional terms generated for scalar- and vector-mediated

interactions when the linear expansion in velocities includes v⃗µ, so that χµ =

 ξs

σ⃗L·v⃗µ

2 ξs

.

nucleon-level Dirac basis, consisting of 20+12=32 operators, is employed in the updated
script, Mu2e_NRET_v2.
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j Ljint Pauli Operator Reduction ∑
i biO

f
i

21 χ̄eσ
µνχµN̄σµνN (iq̂ × v⃗µ) · σ⃗N − [q̂ × (v⃗µ × σ⃗L)] · σ⃗N − (v⃗µ · σ⃗L) (q̂ · σ⃗N ) 2Of

5 + 2iOf ′
13 + 2iOf

14

25 χ̄eiσ
µνγ5χµN̄σµνN iv⃗µ · σ⃗N − (v⃗µ × σ⃗L) · σ⃗N 2iOf

8 − 2Of
12

29 i
2mL

χ̄eγ
[µqν]χµN̄σµνN − q

mL

( (
iq̂ × v⃗µ

2

)
· σ⃗N −

[
q̂ ×

(
v⃗µ

2 × σ⃗L
)]

· σ⃗N
)

− q
mL

(
Of

5 + iOf ′
13

)
30 i

2mL
χ̄eγ

[µqν]γ5χµN̄σµνN
q
mL

(
v⃗µ

2 · σ⃗N + i
(
v⃗µ

2 × σ⃗L
)
· σ⃗N − iq̂ ·

(
v⃗µ

2 × σ⃗L
)
q̂ · σ⃗N − q̂ · v⃗µ

2 q̂ · σ⃗N
)

q
mL

(
Of

8 + iOf
12 + iOf

15 +Of ′
16

)
31 1

mL
χ̄eγ

[µ/qγν]χµN̄σµνN −2i q
mL

v⃗µ · σ⃗Lq̂ · σ⃗N −4 q
mL

Of
14

32 1
mL

χ̄eγ
[µ/qγν]γ5χµN̄σµνN 2 q

mL

(
q̂ · (v⃗µ × σ⃗L) q̂ · σ⃗N − iq̂ · v⃗µq̂ · σ⃗N

)
4 q
mL

(
−Of

15 + iOf ′
16

)

Table 4. As in table 2, but listing the additional terms generated for tensor-mediated interactions
when the linear expansion in velocities includes v⃗µ.

Mu2e_NRET_v2 thus includes 32 Dirac interactions associated with scalar, vector, or tensor
exchanges. The NRET reduction used in the new script also includes the lower-component
contributions of v⃗µ, extending the NRET basis used in Mu2e_NRET_v1 by an additional 10
operators, for a total of 26. When the nuclear physics multipole expansion is performed for
the additional operators, new nuclear multipoles arise. These appear in eq. (B7) of [24].
Matrix elements of the new multipole operators can still be evaluated analytically, if the Slater
determinants used in the shell model are constructed in a harmonic oscillator single-particle
basis. But unlike the original 16 NRET operators, the results are no longer expressible in
the form of e−2yp(y) where p(y) is a finite polynomial in y.

C Time-reversal-odd nuclear currents

In addition to the terms displayed on the right-hand sides of eqs. (4.1), (4.2), and (4.7), other
terms can be constructed that satisfy the conditions of Lorentz covariance and hermiticity

⟨N ′|q̄γµq|N⟩ = · · · + ū′N

[
iF

q/N
3 (q2

rel)
qµ

mN

]
uN , (4.1a)

⟨N ′|q̄γµγ5q|N⟩ = · · · + ū′N

[
γ5
σµνqν
mN

F
q/N
A,3 (q2

rel)
]
uN , (4.2a)

⟨N ′|q̄σµνq|N⟩ = · · · + ū′N

[
− 1
mN

γ[µ
/qγ

ν]F̂
q/N
T,3 (q2

rel)
]
uN , (4.7a)

where the ellipses denote the terms already displayed in eqs. (4.1), (4.2), and (4.7). The
single-nucleon currents displayed on the r.h.s. of eqs. (4.1)–(4.7) transform under time reversal
in the same way as the corresponding bare quark operators on the l.h.s., from which the
nucleon currents are generated. In contrast, the single-nucleon currents on the r.h.s. of
eqs. (4.1a)–(4.7a) have the opposite behavior under T . Since QCD is invariant under T
(ignoring for now the experimentally well constrained QCD θ term), the form factors on the
r.h.s. of eqs. (4.1a)–(4.7a) cannot be generated in QCD.

If all new physics is heavy, it can be integrated out and described by the WET Lagrangian
in section 2. At low energies, we then only have QCD and QED as propagating degrees of
freedom, both of which are invariant under T . In this case, the form factors F q/N3 , F q/NA,3 , F q/NT,3
are zero and do not contribute to µ→ e conversion. CP-violating light new physics, on the
other hand, could give rise to nonzero T -odd nuclear currents on the r.h.s. of eqs. (4.1a)–(4.7a).
Since such light NP couples to nucleons, it is necessarily weakly coupled, otherwise it would
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have been observed already, and thus will only give rise to highly suppressed contributions:
F
q/N
3 , F q/NA,3 , F q/NT,3 ≪ 1. (The other option is that these are generated from the small but

nonzero QCD θ term or from the CP-violating part of the SM weak interactions, again
leading to highly suppressed contributions.)

While we expect such symmetry-odd operators to be highly suppressed, nevertheless we
include them here for completeness. The modifications to the d(N)

j coefficients are

dN1 = · · · − i
m−
mN

∑
q

Ĉ(6)
1,qF

q/N
3 − i

(
m2
µ −m2

e

)∑
q

Ĉ(7)
9,qF

q/N
3 , (B.10a)

dN2 = · · ·+ m+
mN

∑
q

Ĉ(6)
2,qF

q/N
3 − 4im−

∑
q

C(7)
15,qF̂

q/N
T,3 (B.11a)

dN3 = · · · − i
(
m2
µ −m2

e

)∑
q

Ĉ(7)
10,qF

q/N
3 , (B.12a)

dN4 = · · ·+ 4m+
∑
q

C(7)
16,qF̂

q/N
T,3 , (B.13a)

dN7 = · · ·+ 2 q
2
rel.
mN

∑
q

C(7)
15,qF̂

q/N
T,3 , (B.16a)

dN8 = · · ·+
∑
q

Ĉ(6)
3,qF

q/N
A,3 +m+

∑
q

Ĉ(7)
11,qF

q/N
A,3 , (B.17a)

dN12 = · · · −mL

∑
q

Ĉ(7)
11,qF

q/N
A,3 , (B.21a)

dN15 = · · ·+ 2 q
2
rel.
mN

∑
q

C(7)
16,qF̂

q/N
T,3 , (B.24a)

dN16 = · · ·+
∑
q

Ĉ(6)
4,qF

q/N
A,3 − im−

∑
q

Ĉ(7)
12,qF

q/N
A,3 , (B.25a)

dN20 = · · ·+mL

∑
q

Ĉ(7)
12,qF

q/N
A,3 , (B.29a)

dN24 = · · · −
∑
q

Ĉ(6)
9,q F̂

q/N
T,3 , (B.33a)

dN28 = · · · −
∑
q

Ĉ(6)
10,qF̂

q/N
T,3 . (B.37a)

With this extension, all dNi coefficients are nonzero.

D Numerical values of nucleon form factors

In the numerical results of section 5, we evaluated the nucleon form factors in eqs. (4.1)–(4.9)
at q2

rel. = −q2
eff , where qeff = 110.81MeV for 27Al. Below, we provide the expressions that

were used in the numerical evaluations. The expressions are given in a form where it is
straightforward to re-use them for any other target element and the corresponding qeff . To
do so, we Taylor expand the nucleon form factors around q2

rel. = 0,

F
q/N
i (q2

rel.) = F
q/N
i (0) + F

′ q/N
i (0)q2

rel. + · · · . (D.1)
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The axial, pseudoscalar, and CP-odd gluonic current form factors include light-meson poles,
so that for these we have (for i = G̃ the superscript q/N → N)

F
q/N
i (q2

rel.) =
m2
N

m2
π − q2

rel.
a
q/N
i,π + m2

N

m2
η − q2

rel.
a
q/N
i,η + b

q/N
i + · · · , i = P, P ′, G̃ . (D.2)

Throughout this work, we use the π0 mass for mπ. The ellipses denote terms of the form
(q2

rel./m
2
N )n, which we do not include.

Unless specified otherwise, we work in the isospin limit, so that the nucleon form factors
for neutrons can be obtained from the ones for protons, e.g.,

F
u(d,s)/p
1,2 (q2

rel.) = F
d(u,s)/n
1,2 (q2

rel.). (D.3)

For the average nucleon mass, we use mN = (mp + mn)/2. We use the FLAG quality
requirements [75] to decide which lattice QCD results to include in our determinations of the
hadronic input parameters. In many respects, our results are an update of the global averaging
for the values of nucleon form factors for dark matter direct detection in refs. [51, 66].

For certain quark currents, two-nucleon terms contribute at the same order in chiral
power counting as “form-factor effects” arising from the momentum dependence of single-
nucleon form factors. Recent calculations of scalar-mediated scattering of dark matter on
4He suggest that the naïve power-counting scheme may be flawed in two ways: (1) The
calculated two-nucleon contributions are significantly smaller than expected, and (2) they
may require new short-distance operators at NLO with currently unknown LECs in order to
restore regulator independence [76]. Given the current uncertainty regarding two-nucleon
effects, our approach is to retain the relatively well understood NLO physics associated with
the momentum dependence of single-nucleon form factors while leaving a complete evaluation
of subleading effects to future investigations.

D.1 Vector currents

The hadronic matrix elements of quark currents in eq. (4.1) depend on two sets of form
factors. The Dirac form factors for the proton, at zero recoil, are given by

F
u/p
1 (0) = 2, F

d/p
1 (0) = 1, F

s/p
1 (0) = 0, (D.4)

while the derivatives at q2 = 0 are (see, e.g., ref. [77], with ap = µp − 1, an = µn)

F
′u/p
1 (0)= 1

6
(
2
[
rpE
]2+[rnE]2+[rsE]2)− 1

4m2
N

(
2µp+µn+µs−2)=5.07(1) GeV−2 , (D.5)

F
′d/p
1 (0)= 1

6
([
rpE
]2+2

[
rnE
]2+[rsE]2)− 1

4m2
N

(
µp+2µn+µs−1)=2.61(2) GeV−2 , (D.6)

F
′s/p
1 (0)= 1

6
[
rsE
]2− µs

4m2
N

=−8.9(8.4)·10−3 GeV−2 . (D.7)

The Pauli form factors at zero momentum are

F
u/p
2 (0) = 2(µp − 1) + µn + µs = 1.64(2), (D.8)

F
d/p
2 (0) = 2µn + (µp − 1) + µs = −2.07(2), (D.9)

F
s/p
2 (0) = µs = −0.036(21), (D.10)
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and the first derivatives are

F
′u/p
2 (0) = 1

6
(
2
([
rpM
]2 − [rpE]2)+ [rnM ]2 − [rnE]2 + [rsM ]2 − [rsE]2)

+ 1
4m2

N

(
2µp + µn + µs − 2) = 4.3(4) GeV−2 ,

(D.11)

F
′ d/p
2 (0) = 1

6
([
rpM
]2 − [rpE]2 + 2

([
rnM
]2 − [rnE]2)+ [rsM ]2 − [rsE]2)

+ 1
4m2

N

(
µp + 2µn + µs − 1) = 6.8(2) GeV−2 ,

(D.12)

F
′ s/p
2 (0) = 1

6
(
[rsM ]2 − [rsE ]2

)
+ µs

4m2
N

= −0.03(5) GeV−2 . (D.13)

In the numerical evaluations we used µp = 2.792847, µn = −1.91304 for the proton and
neutron magnetic moments in units of nuclear magnetons µ̂N = e/(2mN ) (the errors are
negligibly small) [78]. The value for µs in (D.10) is the average of results from refs. [79, 80],
inflating the errors according to the PDG prescription (as before, we do not include [81]
in the average). For the values of electric and magnetic charge radii, we use

[
rpE
]2 =

0.7071(7) fm2 [78],
[
rpM
]2 = 0.724(45) fm2 [78],

[
rnE
]2 = −0.1155(17) fm2 [78],

[
rnM
]2 =

0.743(16) fm2 [78], and
[
rsE
]2 = −0.0045(14) fm2 [79, 80],

[
rsM
]2 = −0.010(11) fm2 [79]. (We

do not use the Nf = 2+ 1 + 1 results for
[
rsE
]2
,
[
rsM
]2 from ref. [81] due to lack of continuum

extrapolation.)
For µ→ e conversion on 27Al the values of the Dirac and Pauli form factors are thus,

F
u/p
1
∣∣
−q2

eff
= 1.9378(4), F

d/p
1
∣∣
−q2

eff
= 0.9681(3), F

s/p
1
∣∣
−q2

eff
= 1.1(1.0) · 10−4, (D.14)

F
u/p
2
∣∣
−q2

eff
= 1.58(2), F

d/p
2
∣∣
−q2

eff
= −2.15(2), F

s/p
2
∣∣
−q2

eff
= −3.6(2.2) · 10−2. (D.15)

The errors on F
u/p
1 and F

d/p
1 are dominated by the neglected O(q4) contributions, which

we estimate to be equal to Fi(0) × (qeff/mN )4.
In the derivation of expressions for the zero recoil values of the F q/N1,2 form factors and

their derivatives in terms of the conventionally defined observables we used

GNE (q2
rel.) = GNE (0) +

1
6
[
rNE ]2q2

rel. + · · · , GNM (q2
rel.) = GNM (0) + 1

6
[
rNM ]2q2

rel. + · · · , (D.16)

where the Sachs electric and magnetic form factors are [82] (see also, e.g., [83])

GNE (q2
rel.) = FN1 (q2

rel.) +
q2

rel.
4m2

N

FN2 (q2
rel.) , and GNM (q2

rel.) = FN1 (q2
rel.) + FN2 (q2

rel.) . (D.17)

D.2 Axial vector currents

The axial vector form factor at zero recoil is given by

F
q/p
A (0) = ∆q, (D.18)

where numerically,

∆u−∆d = gA = 1.2754(13), (D.19)
∆u+∆d ≡ ∆Σud = 0.397(40), (D.20)

∆s = −0.045(9). (D.21)
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The isovector combination ∆u−∆d is determined very precisely from nuclear β decay [78]
(above we set gV = 1 in λ = gA/gV , i.e., we ignored corrections of second order in isospin
breaking [84, 85], and used positive sign convention for gA). The value for ∆u+∆d (for ∆s)
follows from averages of the lattice QCD results for ∆u and ∆d (for ∆s), summing errors in
quadrature [86, 87], and rescaling the errors for ∆u and ∆s according to the PDG description.

For derivatives of the axial form factor at zero recoil we can write

F
q/p
A (q2

rel.) = F
q/p
A (0)

(
1 + ⟨r2

A⟩q
6 q2

rel. + · · ·
)
. (D.22)

For the u−d current the axial charge radius is well known, ⟨r2
A⟩u−d = 0.392(28) fm2, averaging

over lattice QCD determinations [88–92] (see also [93, 94]). For u+ d and s quark currents
we use the results from [95] ⟨r2

A⟩u+d = 0.49(31) fm2, ⟨r2
A⟩s = 0.48(48) fm2, with the caveat

that this determination still lacks proper continuum extrapolation.
In terms of the above input quantities the zero-recoil form factors are

F
u/p
A (0) = ∆u = 1

2
(
gA +∆Σud

)
= 0.836(20), (D.23)

F
d/p
A (0) = ∆d = 1

2
(
− gA +∆Σud

)
= −0.439(20), (D.24)

F
s/p
A (0) = ∆s = −0.045(9), (D.25)

with the derivatives given by

F
u/p′
A (0) = 1

12
(
gA⟨r2

A⟩u−d +∆Σud⟨r2
A⟩u+d

)
= 1.49(28)GeV−2, (D.26)

F
d/p′
A (0) = 1

12
(
− gA⟨r2

A⟩u−d +∆Σud⟨r2
A⟩u+d

)
= −0.653(28)GeV−2, (D.27)

F
s/p′
A (0) = 1

6∆s⟨r
2
A⟩s = −0.09(9)GeV−2. (D.28)

Note that the errors on F
u/p
A (0) and F

d/p
A (0) are fully correlated (and similarly on F

u/p′
A (0)

and F
d/p′
A (0)).

For the induced pseudoscalar form factors F q/NP ′ we use the expansion in (D.2). At LO in
Heavy Baryon Chiral Perturbation Theory (HBChPT) the residues of the pion- and eta-pole
contributions to F

q/N
P ′ are given by [96]

a
u/p
P ′,π = −ad/pP ′,π = 2gA, a

s/p
P ′,π = 0, (D.29)

a
u/p
P ′,η = a

d/p
P ′,η = −1

2a
s/p
P ′,η =

2
3
(
∆Σud − 2∆s

)
(1 + ∆8

GT), (D.30)

where for the coefficients of the η pole we also include the correction that was found in
the lattice QCD study for the u + d − 2s current, ∆8

GT = 0.50(14) [95], and apply it as
a common factor for each quark flavor, so that still only the octet current contributes to
the η pole (we use the z expansion value, determination from a dipole ansatz agrees with
it). For constant terms we write

b
q/N
P ′ = F

q/N
P ′ (0)−m2

N

(aq/NP ′,π

m2
π

+
a
q/N
P ′,η

m2
η

)
, (D.31)
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where F
u/p
P ′ (0) = 119(7), F d/pP ′ (0) = −130(17), F s/pP ′ (0) = −1.6(1.0) [95] (note that the

continuum extrapolation does not satisfy FLAG criteria, so these results should still be
treated as preliminary).

For µ → e conversion on 27Al we thus have

F
u/p
A

∣∣
−q2

eff
= 0.818(20), F

d/p
A

∣∣
−q2

eff
= −0.431(20), F

s/p
A

∣∣
−q2

eff
= −4.4(9) · 10−2, (D.32)

F
u/p
P ′
∣∣
−q2

eff
= 69(7), F

d/p
P ′
∣∣
−q2

eff
= −80(17), F

s/p
P ′
∣∣
−q2

eff
= −1.5(1.1). (D.33)

D.3 Scalar currents

At zero recoil, the scalar form factors defined by eq. (4.3) are given by the nuclear sigma terms

F
q/N
S (0) = σNq . (D.34)

For u and d quarks their values follow from the pion-nucleon sigma term, σπN = ⟨N |m̄(ūu+
d̄d)|N⟩ [97]

σp/nu = 1
2 σ̃πN (1− ξ)± ĉ5(1− 1/ξ), σ

p/n
d = 1

2 σ̃πN (1 + ξ)± ĉ5(1 + 1/ξ), (D.35)

where σ̃πN = σπN + δσπN , with δσπN an isospin breaking correction, while ξ = (1− rud)/(1+
rud) = 0.357(6) [78], where rud = mu/md is given in eq. (D.52) and we shortened the product
of low energy constants to ĉ5 ≡ Bc5(md −mu) = −0.51(8)MeV [97]. The isospin corrections
δσπN depend on what part of isospin breaking has been included in the extraction of σπN . The
average of lattice results gives σπN = 44.2(2.6)MeV [98–104], with δσπN = −0.5(5)MeV [97],
which is significantly lower than the pion-atom based value σπN = 59.0(3.5)MeV [for which
δσπN = −3.6(2)MeV] [97]. Averaging the two determinations, and inflating the errors
according to the PDG prescription, gives

σ̃πN = 48(6)MeV, (D.36)

from which

σpu = 16.3(2.5)MeV , σpd = 30.6(4.2)MeV ,

σnu = 14.5(2.2)MeV , σnd = 34.5(4.0)MeV .
(D.37)

For the strange quark nuclear sigma term the average of lattice QCD determinations
is [98, 100–103, 105, 106]

σps = σns = (43.3± 4.8) MeV . (D.38)

The derivatives of the scalar form factors at zero recoil can be related to the quark
contributions to the A and D gravitational form factors (we use the notation from [107])

F
q/p′
S (0) = mNA

′
q(0)−

1
4mN

[
3Dq(0) + Aq(0)− 2Jq(0)

]
, q = u, d, s. (D.39)

Using the dipole fit to the q2
rel.-dependent form factors from ref. [107] we then obtain

F
u/p′
S (0) = 0.72(14)GeV−1, F

d/p′
S (0) = 0.59(14)GeV−1, F

s/p′
S (0) = 0.17(14)GeV−1.

(D.40)
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This then translates to the following values of scalar form factors for µ→ e conversion
on 27Al,

F
u/p
S

∣∣
−q2

eff
= 7.5(3.0)MeV, F

d/p
S

∣∣
−q2

eff
= 23.4(4.5)MeV,

F
u/n
S

∣∣
−q2

eff
= 7.3(2.7)MeV, F

d/n
S

∣∣
−q2

eff
= 25.6(4.3)MeV,

(D.41)

and
F
s/N
S

∣∣
−q2

eff
= 41(5)MeV . (D.42)

D.4 Pseudoscalar currents

For the pseudoscalar form factors F q/NP defined by eq. (4.4), the LO HBChPT expressions
for the residues of the pole are given by

a
u/p
P,π

mu
= −

a
d/p
P,π

md
= B0
mN

gA ,
a
s/p
P,π

ms
= 0 , (D.43)

a
u/p
P,η

mu
=
a
d/p
P,η

md
= −1

2
a
s/p
P,η

ms
= B0

3mN

(
∆u+∆d− 2∆s

)
, (D.44)

where B0 is a ChPT constant related to the quark condensate given, up to corrections of
O(mq), by ⟨q̄q⟩ ≃ −f2B0. In order to satisfy the PCAC relations (D.88), (D.89), we use
the SU(3) flavor symmetric meson mass relations

m2
π = B0(mu +md), m2

η =
B0
3 (mu +md + 4ms), (D.45)

for the residues of the corresponding meson poles, and include the ∆8
GT correction factor,

eq. (D.30), which then gives,

a
u/p
P,π = m2

π

mN

1
1 + 1/rud

gA = 7.9(7) · 10−3 GeV, (D.46)

a
d/p
P,π = −m2

π

mN

1
1 + rud

gA = −16.8(7) · 10−3 GeV, (D.47)

a
s/p
P,π = 0, (D.48)

and

a
u/p
P,η =

m2
η

mN

1
1 + 1/rud

1
1 + 2rs

(
∆Σud − 2∆s

)(
1 + ∆8

GT
)
= 1.4(2) · 10−4 GeV, (D.49)

a
d/p
P,η =

m2
η

mN

1
1 + rud

1
1 + 2rs

(
∆Σud − 2∆s

)(
1 + ∆8

GT
)
= 2.9(4) · 10−3 GeV, (D.50)

a
s/p
P,η = −

m2
η

mN

1
2 + 1/rs

(
∆Σud − 2∆s

)(
1 + ∆8

GT
)
= −0.11(1)GeV, (D.51)

where the ratios of the quark masses are [78]

rud =
mu

md
= 0.474(65), rs =

2ms

mu +md
= 27.33(72). (D.52)
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Using the PCAC expressions in section D.9 we obtain for the constant terms

b
u/N
P = b

d/N
P = mN

2rs + 1
[(
rs −

1
2∆

8
GT
)
∆Σud +

(
1 + ∆8

GT
)
∆s
]

+ mN

3
(1− rud)
(1 + rud)

gA −mNm̃
∑

q=u,d,s

∆q
mq

,
(D.53)

b
s/N
P = b

u/N
P + mN

2 ∆8
GT
(
∆u+∆d− 2∆s

)
, (D.54)

where 1/m̃ = (1/mu + 1/md + 1/ms). Numerically, bu/NP = b
d/N
P = −0.070(12)GeV and

b
s/N
P = 0.044(35)GeV.

For µ → e conversion on 27Al thus

F
u/p
P

∣∣
−q2

eff
= 0.16(3)GeV, F

d/p
P

∣∣
−q2

eff
= −0.55(3)GeV, F

s/p
P

∣∣
−q2

eff
= −0.28(2)GeV. (D.55)

D.5 CP-even gluonic current

For evaluating the matrix element of the CP-even gluonic current in eq. (4.5) we can use
the relation with the trace of the stress-energy tensor Tµµ = (β/2αs)GaµνGaµν +

∑
u,d,s(1 +

2γm)mq q̄q [108, 109] (see also discussions in [110–113]), where β = −(b0α
2
s+b1α

3
s+ · · · ), γm =

γ1(αs/4π)+γ2(αs/4π)2+ · · · , where b0 = (33−2nf )/12π = 27/12π, b1 = (153−19nf )/(24π2),
γ1 = 4, γ2 = 202/3 − 20nf/9, and the results for higher orders can be found in [78]. The
nucleon matrix element of the trace of the stress-energy tensor at zero momentum-transfer
is ⟨N |Tµµ |N⟩ = mN ūNuN , which then gives

FNG (0) = −2mG

27
1

1 + (b1αs + · · · )/b0
= −50.4(6)MeV, (D.56)

where mG = mN − (1 + 2γm)
∑
q σ

N
q = 823(10)MeV, where we used αs(2GeV) = 0.297(6)

and averaged over values for N = n, p since the difference is much smaller than the error.
In terms of the gravitational form factors

F ′NG (0) = − 2
27

mN

1 + (b1αs + · · · )/b0

[
A′g(0) + A′q(0)−

3
4m2

N

(
Dg(0) +Dq(0)

)
− (1 + 2γm)

mN

∑
q

F
′q/N
S (0)

]
= −0.14(5)GeV−1.

(D.57)

This then gives

FNG
∣∣
−q2

eff
= −48.7(0.9)MeV . (D.58)

D.6 CP-odd gluonic current

For the hadronic matrix element of the CP-odd gluonic current in eq. (4.6), we use the
leading-order HBChPT expression [66],

FN
G̃
(q2

rel.) = −m̃mN

[∆u
mu

+ ∆d
md

+ ∆s
ms

+ gA
2

( 1
mu

− 1
md

)
q2

rel.
m2
π − q2

rel.

+ 1
6
(
∆u+∆d− 2∆s)

( 1
mu

+ 1
md

− 2
ms

)
q2

rel.
m2
η − q2

rel.

]
,

(D.59)
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where 1/m̃ = (1/mu + 1/md + 1/ms). Using the values and expression for ∆q in (D.19)–
(D.21), along with ratios of masses in (D.52), gives

FN
G̃

∣∣
−q2

eff
= −0.306(28)GeV . (D.60)

D.7 Tensor current

The matrix elements of the tensor current in eq. (4.7) are described by three sets of form
factors, related to the generalized tensor form factors [66, 114, 115]. At zero recoil we have
F̂
q/p
T,0 (0) = gqT , with the lattice QCD results [75, 116] (see also [117])

guT = 0.784(30), gdT = −0.204(15), gsT = −2.7(1.6) · 10−3. (D.61)

In ref. [118] these results were used, combined with the assumption of pole dominance, as
well as constraints from analyticity and unitarity, to obtain the zero-recoil values of the
remaining two tensor form factors, as well as the derivatives at q2

rel. = 0. We use the values
in (D.61), with the remaining inputs given in table I of [118], together with the translation
to our notation, F̂ q/pT,0 = F q1,T , F̂ q/pT,1 /2 = F q2,T , F̂ q/pT,2 = −F q3,T , to obtain for F̂ q/NT,i

∣∣
−q2

eff

F̂
u/p
T,0 = 0.777(30), F̂

d/p
T,0 = −0.203(15), F̂

s/N
T,0 = −2.7(1.6) · 10−3, (D.62)

F̂
u/p
T,1 = −2.8(2.0), F̂

d/p
T,1 = 0.9(6), F̂

s/N
T,1 = 1.7(1.0) · 10−2, (D.63)

F̂
u/p
T,2 = −0.08(20), F̂

d/p
T,2 = 0.57(30), F̂

s/N
T,2 = 3.8(3.0) · 10−3. (D.64)

D.8 Rayleigh operators

The matrix element of the CP-even Rayleigh operator at zero momentum transfer, FNγ (0)
in eq. (4.8), can be obtained from the spin-averaged forward nucleon matrix element (we
use the same normalization as [119])

TµνN ūNuN = i

2
∑
s

∫
d4x eiq·x⟨N(k, s)|T{Jµe.m.(x), Jνe.m.(0)

}
|N(k, s)⟩, (D.65)

where N = p, n, while Jµe.m. =
∑
q=u,d,sQq q̄γ

µq, with Qq = {2/3,−1/3,−1/3} for q = {u, d, s}.
The above matrix element can be decomposed as

TµνN =
{(

−gµν+ qµqν

q2

)
TN1 (ν,Q2)+ 1

m2
N

(
kµ− k · qqµ

q2

)(
kν− k · qqν

q2

)
TN2 (ν,Q2)

}
, (D.66)

with Q2 = −q2 and ν = k · q/mN .
The hadronic matrix element FNγ (0) follows from FF operator insertion, attaching the

two photon lines to TµνN , giving the one-loop expression

FNγ (0) = −i α2

6πmN

∫
R

d4q

(2π)3
TµνN gµν
q2 + iϵ

, (D.67)

where the integral over d4q is regularized (see below). The value of FNγ (0) is directly
proportional to the electromagnetic self-energy of the nucleon δMγ

N (see, e.g., eq. (3) in [119]),

FNγ (0) = − α

3πδM
γ
N . (D.68)
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parameter value parameter value parameter value

µp 2.792847 µn −1.91304 µs −0.036(21)[
rpE
]2 0.7071(7) fm2 [

rnE
]2 −0.1155(17) fm2 [

rsE
]2 −0.0045(14) fm2[

rpM
]2 0.724(45) fm2 [

rnM
]2 0.743(16) fm2 [

rsM
]2 −0.010(11) fm2

gA 1.2754(13) ∆Σud 0.397(40) ∆s −0.045(9)

⟨r2
A⟩u−d 0.392(28) fm2, ⟨r2

A⟩u+d 0.49(31) fm2 ⟨r2
A⟩s 0.48(48) fm2

F
u/p
P ′ (0) 119(7) F

d/p
P ′ (0) −130(17) F

s/p
P ′ (0) −1.6(1.0)

∆8
GT 0.50(14)

σ̃πN 48(6)MeV ĉ5 −0.51(8) σNs 43.3(4.8) MeV

F
u/p′
S (0) 0.72(14)GeV−1 F

d/p′
S (0) 0.59(14)GeV−1 F

s/p′
S (0) 0.17(14)GeV−1

FNG (0) −50.4(6)MeV F ′NG (0) −0.14(5)GeV−1 αs(2GeV) 0.297(6)

guT 0.784(30) gdT −0.204(15) gsT −2.7(1.6) · 10−3

F̂
′u/p
T,0 (0) 0.54(11)GeV−2 F̂

′d/p
T,0 (0) −0.11(2)GeV−2 F̂

′s/N
T,0 (0) −0.0014(9)GeV−2

F̂
u/p
T,1 (0) −3.0(2.0) F̂

d/p
T,1 (0) 1.0(6) F̂

s/N
T,1 (0) 0.018(10)

F̂
′u/p
T,1 (0) −14.0(1.6)GeV−2 F̂

′d/p
T,1 (0) 5.0(6)GeV−2 F̂

′s/N
T,1 (0) 0.082(52)GeV−2

F̂
u/p
T,2 (0) −0.1(2) F̂

d/p
T,2 (0) 0.6(3) F̂

s/N
T,2 (0) 0.004(3)

F̂
′u/p
T,2 (0) −1.8(2)GeV−2 F̂

′d/p
T,2 (0) 2.1(2)GeV−2 F̂

′s/N
T,2 (0) 0.015(13)GeV−2

rud 0.474(65) rs 27.33(72)

F pγ (0) 4.7(2.6) · 10−7 GeV Fnγ (0) 1.5(0.5) · 10−6 GeV

F pγ̃ (0) 3.83(3) · 10−6 GeV Fnγ̃ (0) −3.9(7) · 10−7 GeV

Table 5. Numerical values of input parameters that enter the expressions for matrix elements of
vector, axial, scalar, pseudoscalar, and tensor quark currents, CP-even and CP-odd gluonic currents,
as well as the CP-even and CP-odd Rayleigh operators. See the main text for details and references.

For the numerical evaluation of FNγ (0) we can thus use the appropriately rescaled Cottingham’s
sum rule for δMγ

N

FNγ (0) = − α

3π
[
δM el

N + δM inel
N + δM sub

N + δM ct
N

]
, (D.69)

where δM el
N is the elastic contribution, δM inel

N the inelastic contribution, δM sub
N the contribu-

tion due to T1 requiring a once subtracted dispersion relation, and δM ct
N the counter-terms

that can be obtained using operator product expansion (OPE) at large Q2. The explicit
expressions for δM el

N , δM inel
N , and δM sub

N are given in eqs. (11), (12) and (13) in [119], and
depend on a regularization scale Λ0 separating the hadronic and the deep inelastic regimes,
while OPE results can be found in [120]. Numerically,

F pγ (0) = 4.7(2.6) · 10−7 GeV, Fnγ (0) = 1.5(0.5) · 10−6 GeV, (D.70)

where we only included the elastic contribution and the subtractions from elastic and inelastic
terms. The errors are squared summed errors due to parameterizations of elastic electric
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and magnetic form factors (we use the parameterization and numerical values in [121]),
the magnetic polarizabilities, βp = 2.5(4) · 10−4 fm3, βn = 3.7(1.2) · 10−4 fm3 [78], and the
variations of the cut-off scale regulating the dispersion integrals, as well as the modeling of
δM sub

N , where we follow the prescriptions in [119]. The omitted inelastic and counter term
contributions are expected to be percent level corrections, i.e., much smaller than the above
errors on our estimates and can thus be safely neglected.

Since the change in vector form factors FN1,2 going from Q2 = 0 to Q2 = −q2
eff is at the

level of O(5%), it is reasonable to expect a similar change also in FNγ , which is much smaller
than the errors in (D.70). In the numerics we therefore set FNγ (−q2

eff) to the numerical
values for FNγ (0) in (D.70).

For the matrix element of the CP-odd Rayleigh operator at zero momentum transfer,
FNγ̃ (0) in eq. (4.9), we can use the spin-dependent part of the forward double virtual Compton
scattering tensor

ūNM
µν
N uN = i

∫
d4x eiq·x⟨N(k, s′)|T{Jµe.m.(x), Jνe.m.(0)

}
|N(k, s)⟩. (D.71)

The scattering tensor Mµν
N can be decomposed into a symmetric spin-independent piece TµνN

and an antisymmetric spin-dependent piece SµνN as

Mµν
N = TµνN + SµνN , (D.72)

where TµνN is given in (D.65), while the SµνN is given by [122]

SµνN = i

mN
ϵµναβ

[
qαsNβS1(ν,Q2) + 1

m2
N

qα
(
k · qsNβ − sN · qkβ

)
S2(ν,Q2)

]
, (D.73)

with sN being the nucleon spin vector, satisfying sN · k = 0, s2
N = −1. Following the same

procedure as was done for the CP-even case, the hadronic matrix element FNγ̃ (0) can be
obtained from an FF̃ operator insertion, attaching the two photon lines to Mµν

N , giving
the one-loop amplitude

⟨N(k, s′)| α8πF
µνF̃µν |N(k, s)⟩ = −iα

2

π

∫
d4q

(2π)3
ūN ϵµναβq

αq′βSµνN uN
q4 , (D.74)

where qα is the loop momentum and q′β = qβrel = (pe − pµ)β is the four-momentum transfer.
This is the only place where we retain non-zero momentum transfer. The rest of the loop
is evaluated in the forward limit. Plugging in eq. (D.73), the terms proportional to S2
either vanish identically or are odd under qα → −qα and therefore vanish in the integral.
Using the non-zero contribution

ϵµναβq
αq′βSµνN → 2i

mN

[
q2(q′ · sN )− (q · q′)(q · sN )

]
S1 = 3i

2mN
q2(q′ · sN )S1, (D.75)

and the relation

ūN iγ5uN ≃ i

2mN
(qrel · sN )ūNuN , (D.76)
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we find the following expression for the hadronic matrix element

FNγ̃ (0) = 3iα2

2π

∫
d4q

(2π)3
S1(ν,Q2)

q2 . (D.77)

Performing the Wick rotation q0 → iν and the variable transformation Q2 = q⃗ 2 + ν2 the
matrix element becomes

FNγ̃ (0) = 3α2

8π3

∫ ∞
0

dQ2
∫ Q

−Q
dν

√
Q2 − ν2

Q2 S1(iν,Q2). (D.78)

Using the Born-approximation, S1 may be written as [122]

S1(iν,Q2) = − 1
2mN

[
F2(Q2)2 − Q2

ν2 + ν2
B

F1(Q2)GM (Q2)
]
. (D.79)

Using this form, the final integral is given by

FNγ̃ (0) = − 3α2

16π2mN

∫ ∞
0

dQ2
[
(GE −GM )2

2(1 + τel)2 +
(
1−

√
1 + τel√
τel

)
(GE + τelGM )GM

1 + τel

]
, (D.80)

where τel = Q2/4m2
N . This integral is both UV and IR finite, and thus does not require

regularization. Using the same form factor parameterization, ref. [121], as the CP-even
calculation, we find (in the Born approximation)

F pγ̃ = 3.83(3)× 10−6 GeV, Fnγ̃ = −3.9(7)× 10−7 GeV. (D.81)

Note that the errors include only uncertainties on GE,M form factors, while we do not attempt
to quantify the error due to the neglected inelastic contributions.

D.9 Partial conservation of axial current

The matrix elements of the axial, eq. (4.2), pseudoscalar, eq. (4.4), and CP-odd gluonic
current, eq. (4.6), are related to each other through partial conservation of axial current
(PCAC) and through the QCD chiral anomaly. For zero momentum exchange these relations
can be derived by performing a chiral rotation of the quark fields, q → exp(iβγ5)q, where β
is a diagonal 3 × 3 matrix, which results in a shift in the QCD Lagrangian,

LQCD → LQCD + 2Trβ αs8πG
a
µνG̃

aµν − ∂µ
(
q̄γµγ5βq

)
+ 2q̄iγ5βMqq, (D.82)

where Mq = diag (mu,md,ms) and q = (u, d, s) is a vector of light quarks. Requiring that
the results are independent of this phase shift implies an operator identity: the sum of the
three last terms in (D.82) vanishes for any β, and thus

−Trβ ⟨N ′|αs8πG
a
µνG̃

aµν |N⟩ = ⟨N ′|q̄iγ5βMqq|N⟩ − 1
2∂µ⟨N

′|q̄γµγ5βq|N⟩ . (D.83)

We can then write the following relation among form factors

Tr(β)FN
G̃

= Tr
(
βF

q/N
P

)
−mNTr(βF q/NA

)
− q2

rel.
4mN

Tr
(
βF

q/N
P ′

)
, (D.84)
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which are valid also for q2
rel. ̸= 0, if Trβ = 0, and valid only for q2

rel. = 0, if Trβ ̸= 0. Note
that above, we use the short-hand notation F

q/N
i = diag

(
F
u/N
i , F

d/N
i , F

s/N
i

)
, i = A,P, P ′.

Choosing β = diag (1,−1, 0) and β = diag (1, 1,−2) gives the PCAC relations, which
are valid for any q2

rel.,

F
u/N
P − F

d/N
P = mN

(
F
u/N
A − F

d/N
A

)
+ q2

rel.
4mN

(
F
u/N
P ′ − F

d/N
P ′

)
(D.85)

F
u/N
P + F

d/N
P − 2F s/NP = mN

(
F
u/N
A + F

d/N
A − 2F s/NA

)
+ q2

rel.
4mN

(
F
u/N
P ′ + F

d/N
P ′ − 2F s/NP ′

)
,

(D.86)

while for β = diag (1, 1, 1) one obtains the relation, valid only for q2
rel. = 0,∑

q

F
q/N
P (0) = 3FN

G̃
(0) +

∑
q

mNF
q/N
A (0) . (D.87)

Using the q2
rel. expansion of form factors in (D.1) and (D.2) in the relations (D.85), (D.86),

matching the pole structures on l.h.s. and r.h.s., and using the fact that u− d (u+ d− 2s)
current only has the π (η) pole, gives the following relations for the residues,

a
u/N
P,π − a

d/N
P,π = m2

π

4mN

(
a
u/N
P ′,π − a

d/N
P ′,π

)
, (D.88)

a
u/N
P,η + a

d/N
P,η − 2as/NP,η =

m2
η

4mN

(
a
u/N
P ′,η + a

d/N
P ′,η − 2as/NP ′,η

)
. (D.89)

One can easily check that our expressions for aq/NP,M , aq/NP ′,M satisfy the above relations. The
q2

rel. independent terms give

1
mN

(
b
u/N
P − b

d/N
P

)
= F

u/N
A (0)− F

d/N
A (0)− 1

4
(
a
u/N
P ′,π − a

d/N
P ′,π

)
, (D.90)

1
mN

(
b
u/N
P + b

d/N
P − 2bs/NP

)
= F

u/N
A (0) + F

d/N
A (0)− 2F s/NA (0)− 1

4
(
a
u/N
P ′,η + a

d/N
P ′,η − 2as/NP ′,η

)
.

(D.91)

Using the above two relations, together with (D.87) (setting N = p), as well as F q/pA (0) = ∆q
and the expression for F p

G̃
in (D.59), and for F q/NP in (D.2) with (D.43), (D.44), one can then

solve for bq/NP , with the results given in eqs. (D.53) and (D.54).

E WET translation

In tables 6 and 7 we list and outline explicitly the translation between a variant of the
dimension-6 WET–3 flavor basis of Jenkins, Manohar, and Stoffer [56] to our basis in
eqs. (2.4)–(2.8). These naming convention and translations are used within MuonConverter
to interface with the existing SMEFT/WET software.
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MuonConverter
WC name Operator

Tegamma_12 – Ĉ(5)
1 (ēσαβµ)Fαβ

ATegamma_12 – Ĉ(5)
2 (ēσαβiγ5µ)Fαβ

VVeu_1211 – Ĉ(6)
1,u (ēγαµ)(ūγαu)

VVed_1211 – Ĉ(6)
1,d (ēγαµ)(d̄γαd)

VVed_1222 – Ĉ(6)
1,s (ēγαµ)(s̄γαs)

AVVeu_1211 – Ĉ(6)
2,u (ēγαγ5µ)(ūγαu)

AVVed_1211 – Ĉ(6)
2,d (ēγαγ5µ)(d̄γαd)

AVVed_1222 – Ĉ(6)
2,s (ēγαγ5µ)(s̄γαs)

VAVeu_1211 – Ĉ(6)
3,u (ēγαµ)(ūγαγ5u)

VAVed_1211 – Ĉ(6)
3,d (ēγαµ)(d̄γαγ5d)

VAVed_1222 – Ĉ(6)
3,s (ēγαµ)(s̄γαγ5s)

AVAVeu_1211 – Ĉ(6)
4,u (ēγαγ5µ)(ūγαγ5u)

AVAVed_1211 – Ĉ(6)
4,d (ēγαγ5µ)(d̄γαγ5d)

AVAVed_1222 – Ĉ(6)
4,s (ēγαγ5µ)(s̄γαγ5s)

SSeu_1211 – Ĉ(6)
5,u (ēµ)(ūu)

SSed_1211 – Ĉ(6)
5,d (ēµ)(d̄d)

SSed_1222 – Ĉ(6)
5,s (ēµ)(s̄s)

ASeu_1211 – Ĉ(6)
6,u (ēiγ5µ)(ūu)

ASed_1211 – Ĉ(6)
6,d (ēiγ5µ)(d̄d)

ASed_1222 – Ĉ(6)
6,s (ēiγ5µ)(s̄s)

SAeu_1211 – Ĉ(6)
7,u (ēµ)(ūiγ5u)

SAed_1211 – Ĉ(6)
7,d (ēµ)(d̄iγ5d)

SAed_1222 – Ĉ(6)
7,s (ēµ)(s̄iγ5s)

AAeu_1211 – Ĉ(6)
8,u (ēiγ5µ)(ūiγ5u)

AAed_1211 – Ĉ(6)
8,d (ēiγ5µ)(d̄iγ5d)

AAed_1222 – Ĉ(6)
8,s (ēiγ5µ)(s̄iγ5s)

TTeu_1211 – Ĉ(6)
9,u (ēσαβµ)(ūσαβu)

TTed_1211 – Ĉ(6)
9,d (ēσαβµ)(d̄σαβd)

TTed_1222 – Ĉ(6)
9,s (ēσαβµ)(s̄σαβs)

ATTeu_1211 – Ĉ(6)
10,u (ēiσαβγ5µ)(ūσαβu)

ATTed_1211 – Ĉ(6)
10,d (ēiσαβγ5µ)(d̄σαβd)

ATTed_1222 – Ĉ(6)
10,s (ēiσαβγ5µ)(s̄σαβs)

WET-3 JMS [56, 74]
WC name Operator
egamma_12 ēLσ

αβµRFαβ
VeuLL_1211 (ēLγαµL)(ūLγαuL)
VedLL_1211 (ēLγαµL)(d̄LγαdL)
VedLL_1222 (ēLγαµL)(s̄LγαsL)
VeuRR_1211 (ēRγαµR)(ūRγαuR)
VedRR_1211 (ēRγαµR)(d̄RγαdR)
VedRR_1222 (ēRγαµR)(s̄RγαsR)
VeuLR_1211 (ēLγαµL)(ūRγαuR)
VedLR_1211 (ēLγαµL)(d̄RγαdR)
VedLR_1222 (ēLγαµL)(s̄RγαsR)
VueLR_1112 (ēRγαµR)(ūLγαuL)
VdeLR_1112 (ēRγαµR)(d̄LγαdL)
VdeLR_2212 (ēRγαµR)(s̄LγαsL)
SeuRL_1211 (ēLµR)(ūRuL)
SedRL_1211 (ēLµR)(d̄RdL)
SedRL_1222 (ēLµR)(s̄RsL)
SeuRR_1211 (ēLµR)(ūLuR)
SedRR_1211 (ēLµR)(d̄LdR)
SedRR_1222 (ēLµR)(s̄LsR)
TeuRR_1211 (ēLσαβµR)(ūLσαβuR)
TedRR_1211 (ēLσαβµR)(d̄LσαβdR)
TedRR_1222 (ēLσαβµR)(s̄LσαβsR)

Table 6. The WCxf-compatible operators and Wilson coefficient naming schemes for MuonConverter
(left) and the WET-3 JMS basis [74] (right). The translation between the two bases can be found in
table 7.
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MuonConverter WET-3 translation
Tegamma_12 4π2 egamma_12

ATegamma_12 −4π2i egamma_12

VVeu_1211 (VeuLL_1211 + VeuRR_1211 + VeuLR_1211 + VueLR_1112)/4
VVed_1211 (VedLL_1211 + VedRR_1211 + VedLR_1211 + VdeLR_1112)/4
VVed_1222 (VedLL_1222 + VedRR_1222 + VedLR_1222 + VdeLR_2212)/4
AVVeu_1211 (−VeuLL_1211 + VeuRR_1211 − VeuLR_1211 + VueLR_1112)/4
AVVed_1211 (−VedLL_1211 + VedRR_1211 − VedLR_1211 + VdeLR_1112)/4
AVVed_1222 (−VedLL_1222 + VedRR_1222 − VedLR_1222 + VdeLR_2212)/4
VAVeu_1211 (−VeuLL_1211 + VeuRR_1211 + VeuLR_1211 − VueLR_1112)/4
VAVed_1211 (−VedLL_1211 + VedRR_1211 + VedLR_1211 − VdeLR_1112)/4
VAVed_1222 (−VedLL_1222 + VedRR_1222 + VedLR_1222 − VdeLR_2212)/4
AVAVeu_1211 (VeuLL_1211 + VeuRR_1211 − VeuLR_1211 − VueLR_1112)/4
AVAVed_1211 (VedLL_1211 + VedRR_1211 − VedLR_1211 − VdeLR_1112)/4
AVAVed_1222 (VedLL_1222 + VedRR_1222 − VedLR_1222 − VdeLR_2212)/4
SSeu_1211 (SeuRL_1211 + SeuRR_1211)/4
SSed_1211 (SedRL_1211 + SedRR_1211)/4
SSed_1222 (SedRL_1222 + SedRR_1222)/4
ASeu_1211 −i(SeuRL_1211 + SeuRR_1211)/4
ASed_1211 −i(SedRL_1211 + SedRR_1211)/4
ASed_1222 −i(SedRL_1222 + SedRR_1222)/4
SAeu_1211 i(SeuRL_1211 − SeuRR_1211)/4
SAed_1211 i(SedRL_1211 − SedRR_1211)/4
SAed_1222 i(SedRL_1222 − SedRR_1222)/4
AAeu_1211 (SeuRL_1211 − SeuRR_1211)/4
AAed_1211 (SedRL_1211 − SedRR_1211)/4
AAed_1222 (SedRL_1222 − SedRR_1222)/4
TTeu_1211 TeuRR_1211/4
TTed_1211 TedRR_1211/4
TTed_1222 TedRR_1222/4
ATTeu_1211 −iTeuRR_1211/4
ATTed_1211 −iTedRR_1211/4
ATTed_1222 −iTedRR_1222/4

Table 7. The translation between the MuonConverter basis and the WET-3 JMS basis.
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