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ABSTRACT

The Su–Schrieffer–Heeger model becomes non-Hermitian in general when the reciprocity of wave propagation is broken in the couplings.
Here, we introduce phase non-reciprocity in the coupling of an acoustic Su–Schrieffer–Heeger chain by adding direction-dependent imagi-
nary parts in the coupling strengths while keeping the real parts independent on the direction. We theoretically and numerically investigate
the effect of the phase non-reciprocity on the band structure and the topology of the chain. The hermiticity is broken in general, but there is
still one special case where the model remains Hermitian. An acoustic analog of this case is build where fluid flow is introduced in the cou-
plings. In the non-Hermitian cases, the skin effect is visible except for one specific transition case where the system remains non-Hermitian
but where reciprocity is maintained.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0254537

I. INTRODUCTION

The Su–Schrieffer–Heeger (SSH) model constitutes one of the
seminal models for understanding the fundamentals of topological
insulators. The unit cell of this one-dimensional crystal is com-
posed of two sites that are coupled by intracell and intercell hop-
pings. The topological phases of an SSH chain are triggered by the
dimerization induced by the couplings. By varying the relative real
amplitudes of the couplings, one can travel from a trivial phase to a
topological non-trivial phase passing through a topological phase
transition when the amplitude of the couplings are equal. The
effect of the topological non-trivial phase manifests itself when a
finite chain is considered and where edge states are visible at the
boundaries. The existence of these edge states is connected to the
bulk via the Bulk Boundary Correspondence (BBC), which is one
central concept of topology.

As extensively studied in the Hermitian case, the SSH model
is also largely used to explore the topology of non-Hermitian
systems. Non-hermiticity might break the conventional BBC
because of the non-Hermitian skin effect where all the bulk states
are localized at one boundary of the chain and, as a consequence,
the edge states become undistinguishable and the topological
invariant needs to be redefined.1–3 The BBC can be re-established

in non-Hermitian systems using the non-Bloch in a generalized
Brillouin zone or the biorthogonal approaches.4–8

Non-hermiticity can be introduced in two different ways in
the SSH model. In the first one, imaginary parts are added to the
onsite potentials representing either gain or loss following the sign
of the imaginary part. The topological properties of the Hermitian
SSH chain are maintained with non-Hermitian parity-time sym-
metric onsite potentials.9–14 The non-Hermitian potentials are then
perturbations to the Hermitian system, and intriguing phenomena,
such as a non-Hermitian higher-order state15 and topological
lasing,16 have been observed. However, non-Hermitian onsite poten-
tials taken alone can trigger the topological phase transition.17–27 In
this case, the required dimerization to trigger the topological phase
transitions comes from the non-Hermitian potentials.18,20,23,25,27

The second way to introduce non-hermiticity is to consider
non-reciprocal couplings between each site. In this case, the band
structures with periodic boundary conditions can be drastically dif-
ferent from those with open boundary conditions, thus breaking
the conventional BBC.1–3 This is attributed to the non-Hermitian
skin effect. The non-Hermitian skin effect has been extensively
studied28,29 and is in stark contrast to the Hermitian wave physics.
It has been experimentally observed in mechanics,30,31 optics,32
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acoustics,33–36 and electronic circuits.37,38 The non-Hermitian skin
effect can reshape the spatial form of the topological edge state by
delocalizing them.39–41 The reciprocity is usually broken with different
real parts of the coupling depending on the direction of propagation,
which corresponds to amplification in one direction of propagation
and a decrease in the other. Alternatively, the reciprocity of the wave
propagation can be broken by considering imaginary parts in the cou-
pling, which involves that the couplings induce a phase shift that
depends on the direction of propagation. This corresponds to phase
non-reciprocity, which has been much less explored.42

In this work, we consider a one-dimensional acoustic SSH
model with nonreciprocal couplings where the non-reciprocity is
introduced in the imaginary parts of the couplings. The imaginary
parts of the couplings, by acting on the magnitude of the coupling,
can induce the dimerization of the SSH chain, which can lead to a
topological phase transition. Three types of configurations can be
obtained in this system. This system can be non-reciprocal and
non-Hermitian, non-reciprocal but Hermitian, and, finally,
non-Hermitian but reciprocal.

This work is organized as follows. We start in Sec. II by
describing the acoustic SSH model and the tight-binding model
that is considered to describe it. Then, the topological properties of
the Hermitian case are specifically studied before generalizing to
the non-Hermitian case. In Sec. III, the Hermitian acoustic SSH is
modeled with the transfer matrix method. The phase non-
reciprocity is induced by a mean air flow in one of the couplings of
the unit cells. The band structures are then derived by considering
the acoustic SSH chain as nonreciprocal Willis materials.43–45 The
topological edge states are then exposed with finite element numer-
ical simulations.

II. TOPOLOGY OF THE SSH MODELWITH
NON-RECIPROCAL COUPLINGS

The acoustic SSH unit cell is composed of two sites A and B
with resonant cylindrical cavities of length Lres ¼ 8 cm and radius
Rres ¼ 1:6 cm connected by tubes of length Lco ¼ 7 cm and radius
Rco ¼ 0:8 cm as shown in Fig. 1. The length of the unit cell is
a ¼ 2Lres þ 2Lco. The resonators have a dipolar resonance at

f0 ¼ 4027 Hz. The tubes induce a real coupling strength
t0 ¼ 120 Hz. Going beyond the standard model, the reciprocity of
wave propagation in one of the connecting tubes is broken by
adding imaginary parts it1 in the backward direction and it2 in the
forward direction, which corresponds to phase non-reciprocity.
Here, the parameters f0, t0, t

0
0, t1, and t2 are kept real. We consider

two unit cells: U1 and U2. In the first unit cell U1, the intracell con-
nection is non-reciprocal while keeping a reciprocal intercell con-
nection as shown in Fig. 1(b) and where the Bloch Hamiltonian is
written using a tight-binding model,

H1 ¼
f0

�
t00 þ it1

�
þ t0e�iqa

�
t00 þ it2

�
þ t0eiqa f0

2
64

3
75, (1)

where q is the Bloch wavenumber. The chiral symmetry with
respect to the resonant frequency f0 induces the quantization of the
non-Hermitian Zak phase.46 t0 ¼ t00 when the internal radii of the
coupling waveguides are equal, and t0 = t00, otherwise. In the
second unit cell U2, the intercell connection is non-reciprocal while
keeping a reciprocal intracell connection as shown in Fig. 1(b) and
where the Bloch Hamiltonian is written as

H2 ¼
f0 t0 þ

�
t00 þ it1

�
e�iqa

t0 þ
�
t00 þ it2

�
eiqa f0

2
64

3
75: (2)

Finite chains with an open boundary condition on each end com-
posed of N unit cells U1 are described by the Hamiltonian,

HO1 ¼
�
t
0
0 þ it1

��XN
n¼1

cyA,ncB,n

�
þ
�
t
0
0 þ it2

��XN
n¼1

cyB,ncA,n

�

þ t0

�XN�1

n¼1

cyA,nþ1cB,n þ cyB,ncA,nþ1

�

þ f0

�XN
n¼1

cyA,ncA,n þ cyB,ncB,n

�
, (3)

where cA,n and cyA,n are the creation and annihilation operators of
site A, respectively, and for the chain composed of unit cells U2,
the Hamiltonian is written as

HO2 ¼ t0

�XN
n¼1

cyA,ncB,n þ cyB,ncA,n

�
þ
�
t
0
0 þ it1

��XN�1

n¼1

cyB,ncA,nþ1

�

þ
�
t
0
0 þ it2

��XN�1

n¼1

cyA,nþ1cB,n

�
þ f0

�XN
n¼1

cyA,ncA,n þ cyB,ncB,n

�
:

(4)

In this work, the finite chains with open boundaries are composed
of 15 unit cells. Before analyzing the general non-Hermitian case,
we first consider a special case, which is Hermitian.

FIG. 1. Schematics of the acoustic SSH chain with the unit cell U1 and the unit
cell U2.
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A. Hermitian case

The model in Eqs. (1) and (2) becomes Hermitian when
t2 ¼ �t1, and the eigenvalues of the Hamiltonian H1 read

E1,2 ¼ f0 +
h
t20 þ

�
t
0
0 þ it1

��
t
0
0 � it1

�
þ t0

�
t
0
0 þ it1

�
eiqa

þ t0
�
t
0
0 � it1

�
e�iqa

i1
2

¼ f0 +
h
t20 þ tty þ t0t

yeiqa þ t0te
�iqa

i1
2
,

(5)

with t ¼ t
0
0 þ it1, and the eigenvalues of H2 read

E1,2 ¼ f0 +
h
t20 þ tty þ t0te

iqa þ t0t
ye�iqa

i1
2
: (6)

The Dirac point is located at the Brillouin zone boundary only if
t1 ¼ 0 Hz, as shown in Fig. 2(a). As a result of the non-reciprocity
when t1 = 0 giving Im(t) = 0, the bands are not symmetric
anymore with respect to q ¼ 0. With jtj ¼ t0, the Dirac point is
visible away from the Brillouin zone boundary as shown in
Fig. 2(b). The Dirac degeneracy is lifted when jtj = t0, as shown in
Fig. 2(c). This denotes that a topological phase transition occurs
when jtj ¼ t0. Since the model is Hermitian, the topological phase
can be characterized by the Zak phase,

Z ¼ i
2π

ð
q
hunj@qunidq, (7)

where un is the eigenvector of the band n. The dependence of the
Zak phases of the two unit cells U1 and U2 as a function of t00 and
t1 is shown in Figs. 2(e) and 2(f). One can see that the cell is topo-
logically trivial when the magnitude of the intracell coupling is
smaller than the one of the intercell couplings, while being topologi-
cally nontrivial otherwise. In the case where the intracell and intercell
couplings have the same radius giving t

0
0 ¼ t0, the unit cell U1 is

trivial and the unit cell U2 is nontrivial if t1 = 0. Using Eqs. (3) or
(4), the eigenfrequencies of finite chains with open boundaries
exhibit two topological edge states in the nontrivial case, while no
edge state is visible when the finite chain is composed of a trivial
unit as shown in Fig. 2(d). The mode shape of the topological edge
state is shown in Fig. 2(g). An acoustic implementation of this
Hermitian case with the transfer matrix method is shown in Sec. III.

B. General non-Hermitian case

In the case where t2 = �t1, the model is non-Hermitian with
complex eigenfrequencies and where the conventional BBC is
broken as expected for a non-Hermitian SSH model with non-
reciprocal couplings.2,4,46,47 Taking the case of couplings having
equal real parts, i.e., t

0
0 ¼ t0 and under a Periodic Boundary

Condition (PBC), the gap between the two bands given by the
complex eigenfrequencies of Eqs. (1) and (2) closes when either
t1 ¼ 0 or t2 ¼ 0 at q ¼ +π=a. This is in contradiction when the
Open Boundary Condition (OBC) is considered where the gap is
still opened when either t1 ¼ 0 or t2 ¼ 0. This inequivalence

between PBC and OBC is stemming from the non-Bloch wave
nature of the eigenstates due to the non-Hermitian skin effect
(NHSE).4 The BBC can be re-established following the non-Bloch
approach in the generalized Brillouin zone using the similarity

FIG. 2. Band structures of the SSH model (a) with no phase non-reciprocity,
t0 ¼ t

0
0 ¼ 120 Hz and t1 ¼ 0 Hz; (b) with phase non-reciprocity and the Dirac

degeneracy still closed t0 ¼ 120 Hz, t
0
0 ¼ 70 Hz, and t1 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1202 � 702

p
Hz; (c)

with phase non-reciprocity and a frequency bandgap, t0 ¼ t
0
0 ¼ 120 Hz and

t1 ¼ �70 Hz for the unit cell U1 (blue dots) and the unit cell U2 (red curve). (d)
Eigenfrequencies of finite chains with open boundaries composed of 15 unit cells
U1 (blue circles) and U2 (red stars) with the same parameters as in (c). Two topo-
logical edge states are visible in the bandgap when the finite chain is composed of
the cell U2. A topological phase diagram of the unit cells (e) U1 and (f ) U2. (g)
Mode shape of the topological edge state with the same parameters as in (c).
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transformation of the Hamiltonians HO1,2,
4

�HO1,2 ¼ S�1HO1,2S, (8)

where S is a diagonal matrix whose diagonal elements are
{r, r, r2, r2, . . . , rN , rN } and {1, r, r, r2, r2, . . . , rN�1, rN } when the
similarity transformation is applied to HO1 and HO2, respectively.
Taking the case where r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(t00 þ it1)=(t

0
0 þ it2)

p
, �HO1,2 are still

non-Hermitian in general but become reciprocal; thus, it annihi-
lates the NHSE. The different couplings are transformed as follows:

t0 ) t0, (t
0
0 þ it1) ) �t1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(t 00 þ it1)(t

0
0 þ it2)

q
,

and (t
0
0 þ it2) ) �t1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(t00 þ it1)(t

0
0 þ it2)

q
:

(9)

Since the NHSE is annihilated, the BBC is restored and the associ-
ated bulk Hamiltonians can then be written as

�H1 ¼ f0 �t1 þ t0e�iqa

�t1 þ t0eiqa f0

� �
(10)

and

�H2 ¼ f0 t0 þ�t1e�iqa

t0 þ�t1eiqa f0

� �
: (11)

The conditions for gap closing and a topological phase transition
can then be generalized to the non-Hermitian case with

t0 ¼ j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(t 00 þ it1)(t

0
0 þ it2)

p
j. The unit cell U1 is non-trivial when

t0 . j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(t 00 þ it1)(t

0
0 þ it2)

p
j and is trivial otherwise as shown in

Fig. 3(a) where the topological edge states are visible in the
non-trivial phase. Conversely, the unit cell U2 is non-trivial when

t0 , j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(t 00 þ it1)(t

0
0 þ it2)

p
j and is trivial otherwise as shown in

Fig. 3(b).
In the general non-Hermitian case, the field localization under

OBC is importantly influenced by the NHSE. The eigenfrequencies

of the bulk Hamiltonians in Eqs. (1) and (2) form closed loops in
the complex frequency plane. The winding direction of the loop is
characterized by the spectral winding number with respect to a ref-
erence frequency fr,

39

w(fr) ¼ 1
2π

þ
BZ

d
dq

arg det [H1,2(q)� fr]dq: (12)

The spectral winding number w(fr) is +1 (�1) if the winding direc-
tion is anti-clockwise (clockwise) around the reference frequency fr,
respectively, and is 0 in the absence of NHSE.29,48,49 A spectral
winding number of +1 (�1) indicates that the eigenstates localize
on the right (left) side of the open chain, respectively. The phase
diagram of the spectral winding number in our system is shown in
Fig. 4(a). When jt1j , jt2j, the winding direction is anti-clockwise
with w(fr) ¼ 1 and the eigenstates localize on the right-hand side
of the open chain as shown in Fig. 4(c). It should be noticed that
the NHSE can compete with the localization of the topological

FIG. 3. Eigenfrequencies of the finite chain under OBC (a) composed of the
unit cell U1 and (b) composed of the unit cell U2.

FIG. 4. Skin effect in a chain composed of unit cells U2 with t0 ¼ t
0
0 ¼ 120 Hz.

(a) Phase diagram of the spectral winding number w of the Bloch Hamiltonian
H2. A mode shape of the topological edge states in a finite chain under OBC
composed of 15 unit cells U2 with (b) t1 ¼ �300 Hz and t2 ¼ 10 Hz, (c)
t1 ¼ 20 Hz and t2 ¼ 50 Hz, (d) t1 ¼ 50 Hz and t2 ¼ 50 Hz, and (e)
t1 ¼ 200 Hz and t2 ¼ 10 Hz. The insets in (b)–(e) show the mode shape of the
bulk eigenmodes.
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edge states.39–41 Two transition points occur where the eigenfre-
quencies form only one-dimensional lines instead of the closed
loop and the spectral winding number is zero. The first one is
found when the system is Hermitian, i.e., t1 ¼ �t2, which corre-
sponds to the case in Fig. 2. Thus, the imaginary components of
the eigenfrequencies are vanishing and the eigenfrequencies are
one-dimensional lines in the complex frequency plane. The second
one is found when the system is reciprocal but still non-Hermitian,
i.e., t1 ¼ t2, as shown in Fig. 4(d). When jt1j . jt2j, the winding
direction in clockwise; thus, the spectral winding number is �1
and the eigenstates localize to the left of the chain as shown in
Figs. 4(b) and 4(e).

III. ACOUSTIC MODEL OF THE HERMITIAN SSH WITH
NONRECIPROCAL COUPLINGS

In this section, we describe the acoustic implementation that
corresponds to the tight-binding model. Assuming the one-
dimensional character of the acoustic wave propagation in the
waveguides, the acoustic field at one point of the chain is given by
the state vector WT ¼ [P, U], where P is the acoustic pressure, U is
the acoustic velocity, and T is the transpose operator. The state
vector at the right end of a cell of length d is deduced from the
state vector at the left end of the cell via the transfer matrix T,

W(d) ¼ TW(0): (13)

The total transfer matrix of a cell is found by multiplying the transfer
matrices of each individual element that compose it. Here, the trans-
fer matrix of a waveguide Tw of radius R and length L is given by

Tw ¼ cos(kL) iZcsin(kL)
isin(kL)=Zc cos(kL)

� �
, (14)

where the time convention is e�iωt and Zc ¼ ρ0c0=S is the character-
istic impedance of the waveguide, where S ¼ πR2, ρ0 is the air mass
density, and c0 is the sound velocity. The transfer matrices Tres and
Tr
co of the resonators and the reciprocal couplings, respectively, are

found using Eq. (14) by applying the corresponding dimensions, i.e.,
Rres, Rco, and Lco. A correction length, which comes from radiation
at the change of section in the waveguide, is added to the length of
the resonator, i.e., LTMM

res ¼ Lres þ 0:2 cm to fit with the numerical
results. When a mean air flow is introduced in a waveguide, the
acoustic wave propagation becomes phase non-reciprocal. Neglecting
the flow-acoustic instabilities, the transfer matrix is then written as50

Tnr
co ¼ e�ikf ML cos(kf L) iZcsin(kf L)

isin(kf L)=Zc cos(kf L)

� �
, (15)

where kf ¼ k=(1�M2) is the convective wavenumber and M is the
Mach number of the mean air flow. To implement in an experimen-
tal setup, the air flow needs to be restricted to the waveguide taking
the role of the coupling. To this end, one can follow the setup pro-
posed in Ref. 51, where a pipe, which contains a fan, is connected to
both ends of the coupling. Acoustic impedance mismatch, using
Helmholtz resonators for instance, on both ends of the pipe ensures
that the acoustic waves travel only through the waveguide.

Combining Eqs. (14) and (15), the transfer matrices T1 and T2 of
the unit cells U1 and U2 can be build with

T1 ¼ Tr
coTresT

nr
coTresT

r
co and (16)

T2 ¼ Tnr
coTresT

r
coTresT

nr
co , (17)

respectively. To ensure that the unit cells have the correct length, the
transfer matrices of the couplings on both ends of the unit cells, i.e.,
Tr
co (Tnr

co) for the cell U1 (U2), respectively, are derived using half of
the length of the intercell coupling. The transmission coefficients of
the scattering matrix for left tL and right tR incidence are deduced
from the inverse of the total transfer matrix with

T�1 ¼ A B
C D

� �
, (18)

with

tL ¼ 2
Aþ B=Zc þ ZcC þ D

,

tR ¼ 2(AD� BC)
Aþ B=Zc þ ZcC þ D

,

(19)

where the characteristic impedance Zc is one of the intercell cou-
plings. The transmission coefficients through a chain composed of
15 unit cells have equal amplitudes between the reciprocal case with
no mean flow with M ¼ 0 and the non-reciprocal case with a mean
flow in one of the couplings with M ¼ 0:15 as shown in Figs. 5(a)
and 5(c). Furthermore, the amplitudes are equal for left and right
incidence, confirming that the non-reciprocity induced by the mean
flow does not affect the amplitude as shown in Figs. 5(a) and 5(c).
The amplitudes are equal to one between 3.8 and 4.3 kHz. The unity
transmission corresponds to the frequency range of the two modes
predicted by the tight-binding model. In the non-reciprocal case, the
tight-binding model predicts the existence of a bandgap, which is
visible in Fig. 5(c) around 4 kHz. The mean flow induces a phase
non-reciprocity as can be seen in Fig. 5(d) where the phases of the
transmission coefficients differ for left and right incidences, contrary
to the reciprocal case where the phase of the transmission coeffi-
cients is equal between left and right incidences.

Stemming from the mass and momentum conservation laws,
the acoustic state vector W satisfies43–45d

dx
W ¼ AW, (20)

where the matrix A is written for non-reciprocal Willis materials as

A ¼ iω
χe þ χnr ρe

Ce �χe þ χnr

� �
, (21)

where ρe is the effective density, Ce is the effective compressibility,
χe is the even Willis coupling, and χnr is the nonreciprocal Willis
coupling. It follows from Eq. (21) that for a cell of length d,

W(d) ¼ eAdW(0): (22)

Journal of
Applied Physics

ARTICLE pubs.aip.org/aip/jap

J. Appl. Phys. 137, 153101 (2025); doi: 10.1063/5.0254537 137, 153101-5

© Author(s) 2025

 16 April 2025 13:53:42

https://pubs.aip.org/aip/jap


By comparing Eqs. (13) and (22), the matrix exponential of Ad
identifies with the transfer matrix T. Therefore, the dispersion rela-
tions of the acoustic wave propagating in the periodic non-
reciprocal acoustic SSH model can be retrieved by calculating the
wave numbers using the Willis parameters with52

k+ ¼ �ωχnr + ω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�jχej2 þ ρeCe

q
: (23)

The wave numbers calculated with Eq. (23) are in good agreement
with the eigenfrequencies of the Hermitian tight-binding model in
Eqs. (5) and (6) as shown in Fig. 6. The additional mean flow in
one of the couplings breaks the reciprocity of the wave propagation
and opens the bandgap as can be seen in Figs. 6(c) and 6(d).

To further explore the topological properties of the acoustic
SSH model, we construct a finite element model composed of 15
unit cells with open boundaries. An acoustic wave is excited at one
of the open boundaries, and the amplitude of the acoustic pressure
at that boundary is measured by positioning both the source and
the receiver in the resonator at the boundary. A mean air flow is
introduced in the corresponding coupling tubes. As can be seen in
Fig. 7(a) where the acoustic amplitude drops in the frequency
bandgap when the finite chain is composed of unit cells in the
topological trivial phase. When the finite chain is composed of unit
cells in the non-trivial topological phase, a peak in the acoustic
amplitude denotes the presence of the topological edge state.

Furthermore, this topological edge state is observed on both ends
of the finite chain as shown in Fig. 7(b).

These results confirm that the phase non-reciprocal SSH can
be realized experimentally and that the acoustic implementation
provides a convenient platform to emulate the results found in

FIG. 6. Band structures of the SSH unit cells derived with the transfer matrix
method (blue circle) compared to the tight binding method (red curves). (a) and
(c) Real parts of the wavenumbers. (b) and (d) Imaginary parts of the real
number. (a) and (b) M ¼ 0. (c) and (d) M ¼ 0:15. The gray area denotes the
bandgap.

FIG. 5. Amplitudes of the transmission coefficients under left incidence (red
curve) and right incidence (blue circles) of a chain composed of 15 unit cells
with (a) M ¼ 0 and (c) M ¼ 0:15. Phases of the transmission coefficients
under left incidence (red curve) and right incidence (blue circles) of one unit cell
with (b) M ¼ 0 and (d) M ¼ 0:15.

FIG. 7. Acoustic response of the acoustic SSH chain at the open boundaries
from the finite element numerical calculations. (a) Amplitude of the acoustic
pressure at the left open boundary when the wave excited that boundary. The
SSH chain is composed of unit cells U1 in the trivial phase (blue curve) and of
unit cells U2 in the nontrivial phase (red curve). The peak of amplitude of
the red curve in the gray area corresponds to the topological edge state.
(b) Amplitude of the edge state at the left (red dots) and right (blue curve) open
boundaries.
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Sec. II A. The general non-Hermitian case with phase non-
reciprocity is more delicate to realize in a real model, but it might
be implemented using the non-reciprocal control of the phase in
Janus acoustic metamaterials.53 In Ref. 53, the phase shift in an
acoustic waveguide is nonreciprocal and independently controlled
for the two different directions of wave propagation using two
three-port acoustic circulators.

IV. CONCLUSION

To summarize, we have shown that the introduction of phase
non-reciprocity in the coupling can induce the dimerization to
build an SSH chain. The phase non-reciprocity is modeled in a
tight-binding model by adding imaginary parts to the couplings
between sites. When the imaginary parts are opposite between the
two directions of propagation, the model remains Hermitian.
The bands are not symmetric anymore around the center of the
Brillouin zone, and the bandgap can be opened because the magni-
tudes of the couplings differ, hence the dimerization. Topological
non-trivial phases are found, and the topological edge states are
visible at the open boundaries. This Hermitian SSH chain can be
mimicked in an acoustic model by introducing a mean air flow in
one of the couplings, which induce the phase non-reciprocity
between the two directions of propagation. When the values of the
imaginary parts of the coupling are not opposite, the model
becomes non-Hermitian. The chain experiences the non-Hermitian
skin effect, and the conventional bulk boundary correspondence is
broken, which can be reestablished through the non-Bloch
approach that allows us to describe the different topological phases
of the chain. When the imaginary parts of the coupling are equal
(but different from zero), the model remains non-Hermitian but
becomes reciprocal, which annihilates the non-Hermitian skin
effect. The direction of the skin effect depends on the ratio of the
two imaginary parts with the two transition points where it is anni-
hilated: the Hermitian case and the reciprocal case.
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